Sample records for pfp cementation process

  1. Customized fiber glass posts. Fatigue and fracture resistance.

    PubMed

    Costa, Rogério Goulart; De Morais, Eduardo Christiano Caregnatto; Campos, Edson Alves; Michel, Milton Domingos; Gonzaga, Carla Castiglia; Correr, Gisele Maria

    2012-02-01

    To evaluate the root fracture strength of human single-rooted premolars restored with customized fiberglass post-core systems after fatigue simulation. 40 human premolars had their crowns cut and the root length was standardized to 13 mm. The teeth were endodontically treated and embedded in acrylic resin. The specimens were distributed into four groups (n=10) according to the restorative material used: prefabricated fiber post (PFP), PFP+accessory fiber posts (PFPa), PFP+unidirectional fiberglass (PFPf), and unidirectional fiberglass customized post (CP). All posts were luted using resin cement and the cores were built up with a resin composite. The samples were stored for 24 hours at 37 degrees C and 100% relative humidity and then submitted to mechanical cycling. The specimens were then compressive-loaded in a universal testing machine at a crosshead speed of 0.5 mm/minute until fracture. The failure patterns were analyzed and classified. Data was submitted to one-way ANOVA and Tukey's test (alpha = 0.05). The mean values of maximum load (N) were: PFP - 811.4 +/- 124.3; PFPa - 729.2 +/- 157.2; PFPf- 747.5 +/- 204.7; CP - 762.4 +/- 110. Statistical differences were not observed among the groups. All groups showed favorable restorable failures. Fiberglass customized post did not show improved fracture resistance or differences in failure patterns when compared to prefabricated glass fiber posts.

  2. Are mechanics different between male and female runners with patellofemoral pain?

    PubMed Central

    Willy, Richard W.; Manal, Kurt T.; Witvrouw, Erik E.; Davis, Irene S.

    2012-01-01

    Introduction Patellofemoral pain (PFP) has often been attributed to abnormal hip and knee mechanics in females. To date, there have been few investigations of the hip and knee mechanics of males with PFP. The purpose of this study was to compare the lower extremity mechanics and alignment of male runners with PFP with healthy male runners and female runners with PFP. We hypothesized that males with PFP would move with greater varus knee mechanics compared with male controls and compared with females with PFP. Further, it was hypothesized that males with PFP would demonstrate greater varus alignment. Methods A gait and single leg squat analysis was conducted on each group (18 runners per group). Measurement of each runner’s tibial mechanical axis was also recorded. Motion data were processed using Visual 3D (CMotion, Bethesda, Md., USA). Analyses of Variance were used to analyze the data. Results Males with PFP ran and squatted in greater peak knee adduction and demonstrated greater peak knee external adduction moment compared with healthy male controls. In addition, males with PFP ran and squatted with less peak hip adduction and greater peak knee adduction compared with females with PFP. The static measure of mechanical axis of the tibial was not different between groups. However, a post-hoc analysis revealed that males with PFP ran with greater peak tibial segmental adduction. Conclusion Males with PFP demonstrated different mechanics during running and during a single leg squat compared with females with PFP and with healthy males. Based upon the results of this study, therapies for PFP may need to be sex-specific. PMID:22843103

  3. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stablemore » state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.« less

  4. [Historical changes in the list of plasma fractionation products placed on the WHO Model List of Essential Medicines].

    PubMed

    Sakagami, Yuichiro; Tsutani, Kiichiro

    2014-01-01

    The purpose of this study was to summarize the historical changes in the list of plasma fractionation products (PFP) placed on the Model List of Essential Medicines (EML) issued by the World Health Organization (WHO). PFP such as albumin, blood coagulation factors, and immunoglobulins are derived from blood collected from thousands of people. PFP have been listed since the first edition of the EML (1977). However, the PFP listed on the EML have changed dramatically because EML's selection process has changed from experience-based to evidence-based. For example, albumin, which had been listed since the 2nd edition (1979), was deleted in the 11th edition (2000) because of the uncertainty of its efficacy. Human immunoglobulin normal, which had been deleted from the 13th edition (2003), was relisted in the 15th edition (2007). Moreover, the WHO has issued several resolutions and guidelines regarding PFP production, quality, and safety in order to promote the establishment of blood programmes in every nation. The focus of WHO's EML selection process has changed over 30 years. In the 20th century, WHO mainly focused on PFP efficacy, quality, and safety problems. However, currently the focus is on the problem of PFP accessibility, especially in developing countries. Therefore, it would be important to know how to capitalize on established knowledge and production technology to increase the accessibility of PFP worldwide.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHARBONEAU, S.L.

    The Plutonium Finishing Plant (PFP) consists of a number of process and support buildings for handling plutonium. Building construction began in the late 1940's to meet national priorities and became operational in 1950 producing refined plutonium salts and metal for the United States nuclear weapons program. The primary mission of the PFP was to provide plutonium used as special nuclear material for fabrication into a nuclear device for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race. PFP has nowmore » completed its mission and is fully engaged in deactivation, decontamination and decommissioning (D&D). At this time the PFP buildings are planned to be reduced to ground level (slab-on-grade) and the site remediated to satisfy national, Department of Energy (DOE) and Washington state requirements. The D&D of a highly contaminated plutonium processing facility presents a plethora of challenges. PFP personnel approached the D&D mission with a can-do attitude. They went into D&D knowing they were facing a lot of challenges and unknowns. There were concerns about the configuration control associated with drawings of these old process facilities. There were unknowns regarding the location of electrical lines and process piping containing chemical residues such as strong acids and caustics. The gloveboxes were highly contaminated with plutonium and chemical residues. Most of the glovebox windows were opaque with splashed process chemicals that coated the windows or etched them, reducing visibility to near zero. Visibility into the glovebox was a serious worker concern. Additionally, all the gloves in the gloveboxes were degraded and unusable. Replacing gloves in gloveboxes was necessary to even begin glovebox cleanout. The sheer volume of breathing air needed was also an issue. These and other challenges and PFP's approach to overcome these challengers are described. Many of the challenges to the D&D work at PFP were met with innovative approaches based on new science and/or technology and many were also based on the creativity and motivation of the work force personnel.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charboneau, S.; Klos, B.; Heineman, R.

    The Plutonium Finishing Plant (PFP) consists of a number of process and support buildings for handling plutonium. Building construction began in the late 1940's to meet national priorities and became operational in 1950 producing refined plutonium salts and metal for the United States nuclear weapons program The primary mission of the PFP was to provide plutonium used as special nuclear material for fabrication into a nuclear device for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race. PFP has nowmore » completed its mission and is fully engaged in deactivation, decontamination and decommissioning (D and D). At this time the PFP buildings are planned to be reduced to ground level (slab-on-grade) and the site remediated to satisfy national, Department of Energy (DOE) and Washington state requirements. The D and D of a highly contaminated plutonium processing facility presents a plethora of challenges. PFP personnel approached the D and D mission with a can-do attitude. They went into D and D knowing they were facing a lot of challenges and unknowns. There were concerns about the configuration control associated with drawings of these old process facilities. There were unknowns regarding the location of electrical lines and the condition and contents of process piping containing chemical residues such as strong acids and caustics. The gloveboxes were highly contaminated with plutonium and chemical residues. Most of the glovebox windows were opaque with splashed process chemicals that coated the windows or etched them, reducing visibility to near zero. Visibility into the glovebox was a serious worker concern. Additionally, all the gloves in the gloveboxes were degraded and unusable. Replacing gloves in gloveboxes was necessary to even begin glovebox clean-out. The sheer volume of breathing air needed was also an issue. These and other challenges and PFP's approach to overcome these challengers are described. Many of the challenges to the D and D work at PFP were met with innovative approaches based on new science and/or technology and many were also based on the creativity and motivation of the work force personnel. (authors)« less

  7. THE INTEGRATION OF A PROPOSED ZONE CLOSURE APPROACH FOR THE PLUTONIUM FINISHING PLANT (PFP) DECOMMISSIONING & THE PFP ZONE HANFORD SITE WASHINGTON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOPKINS, A.M.

    2005-02-23

    The Plutonium Finishing Plant (PFP) and associated processing facilities are located in the 200 area of the Hanford Site in Eastern Washington. This area is part of what is now called the Central Plateau. In order to achieve closure of the contaminated facilities and waste sites at Hanford on the Central Plateau (CP), a geographic re-districting of the area into zones has been proposed in the recently published Plan for Central Plateau Closure. One of the 22 zones proposed in the Central Plateau encompasses the PFP and ancillary facilities. Approximately eighty six buildings are included in the PFP Zone. Thismore » paper addresses the approach for the closure of the PFP Zone within the Central Plateau. The PFP complex of buildings forms the bulk of the structures in the PFP Zone. For closure of the above-grade portion of structures within the PFP complex, the approach is to remove them to a state called ''slab-on-grade'' per the criteria contained in PFP End Point Criteria document and as documented in action memoranda. For below-grade portions of the structures (such as below-grade rooms, pipe trenches and underground ducts), the approach is to remove as much residual contamination as practicable and to fill the void spaces with clean fill material such as sand, grout, or controlled density fill. This approach will be modified as planning for the waste sites progresses to ensure that the actions of the PFP decommissioning projects do not negatively impact future planned actions under the CERCLA. Cribs, settling tanks, septic tanks and other miscellaneous below-grade void spaces will either be cleaned to the extent practicable and filled or will be covered with an environmental barrier as determined by further studies and CERCLA decision documents. Currently, between two and five environmental barriers are proposed to be placed over waste sites and remaining building slabs in the PFP Zone.« less

  8. PFP: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data.

    PubMed

    Hawkins, Troy; Chitale, Meghana; Luban, Stanislav; Kihara, Daisuke

    2009-02-15

    Protein function prediction is a central problem in bioinformatics, increasing in importance recently due to the rapid accumulation of biological data awaiting interpretation. Sequence data represents the bulk of this new stock and is the obvious target for consideration as input, as newly sequenced organisms often lack any other type of biological characterization. We have previously introduced PFP (Protein Function Prediction) as our sequence-based predictor of Gene Ontology (GO) functional terms. PFP interprets the results of a PSI-BLAST search by extracting and scoring individual functional attributes, searching a wide range of E-value sequence matches, and utilizing conventional data mining techniques to fill in missing information. We have shown it to be effective in predicting both specific and low-resolution functional attributes when sufficient data is unavailable. Here we describe (1) significant improvements to the PFP infrastructure, including the addition of prediction significance and confidence scores, (2) a thorough benchmark of performance and comparisons to other related prediction methods, and (3) applications of PFP predictions to genome-scale data. We applied PFP predictions to uncharacterized protein sequences from 15 organisms. Among these sequences, 60-90% could be annotated with a GO molecular function term at high confidence (>or=80%). We also applied our predictions to the protein-protein interaction network of the Malaria plasmodium (Plasmodium falciparum). High confidence GO biological process predictions (>or=90%) from PFP increased the number of fully enriched interactions in this dataset from 23% of interactions to 94%. Our benchmark comparison shows significant performance improvement of PFP relative to GOtcha, InterProScan, and PSI-BLAST predictions. This is consistent with the performance of PFP as the overall best predictor in both the AFP-SIG '05 and CASP7 function (FN) assessments. PFP is available as a web service at http://dragon.bio.purdue.edu/pfp/. (c) 2008 Wiley-Liss, Inc.

  9. Fluorescence Ratiometric Assay Strategy for Chemical Transmitter of Living Cells Using H2O2-Sensitive Conjugated Polymers.

    PubMed

    Wang, Yunxia; Li, Shengliang; Feng, Liheng; Nie, Chenyao; Liu, Libing; Lv, Fengting; Wang, Shu

    2015-11-04

    A new water-soluble conjugated poly(fluorene-co-phenylene) derivative (PFP-FB) modified with boronate-protected fluorescein (peroxyfluor-1) via PEG linker has been designed and synthesized. In the presence of H2O2, the peroxyfluor-1 group can transform into green fluorescent fluorescein by deprotecting the boronate protecting groups. In this case, upon selective excitation of PFP-FB backbone at 380 nm, efficient fluorescence resonance energy transfer (FRET) from PFP-FB backbone to fluorescein occurs, and accordingly, the fluorescence color of PFP-FB changes from blue to green. Furthermore, the emission color of PFP-FB and the FRET ratio change in a concentration-dependent manner. By taking advantage of PFP-FB, ratiometric detection of choline and acetylcholine (ACh) through cascade enzymatic reactions and further dynamic monitoring of the choline consumption process of cancer cells have been successfully realized. Thus, this new polymer probe promotes the development of enzymatic biosensors and provides a simpler and more effective way for detecting the chemical transmitter of living cells.

  10. DEACTIVATION AND DECOMMISSIONING ENVIRONMENTAL STRATEGY FOR THE PLUTONIUM FINISHING PLANT COMPLEX, HANFORD NUCLEAR RESERVATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, A.M.; Heineman, R.; Norton, S.

    Maintaining compliance with environmental regulatory requirements is a significant priority in successful completion of the Plutonium Finishing Plant (PFP) Nuclear Material Stabilization (NMS) Project. To ensure regulatory compliance throughout the deactivation and decommissioning of the PFP complex, an environmental regulatory strategy was developed. The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during PFP stabilization, deactivation, and eventual dismantlement. Significant environmental drivers for the PFP Nuclear Material Stabilization Project include the Tri-Party Agreement; the Resource Conservation and Recovery Act of 1976 (RCRA); the Comprehensive Environmental Response, Compensation and Liability Actmore » of 1980 (CERCLA); the National Environmental Policy Act of 1969 (NEPA); the National Historic Preservation Act (NHPA); the Clean Air Act (CAA), and the Clean Water Act (CWA). Recent TPA negotiation s with Ecology and EPA have resulted in milestones that support the use of CERCLA as the primary statutory framework for decommissioning PFP. Milestones have been negotiated to support the preparation of Engineering Evaluations/Cost Analyses for decommissioning major PFP buildings. Specifically, CERCLA EE/CA(s) are anticipated for the following scopes of work: Settling Tank 241-Z-361, the 232-Z Incinerator, , the process facilities (eg, 234-5Z, 242, 236) and the process facility support buildings. These CERCLA EE/CA(s) are for the purpose of analyzing the appropriateness of the slab-on-grade endpoint Additionally, agreement was reached on performing an evaluation of actions necessary to address below-grade structures or other structures remaining after completion of the decommissioning of PFP. Remaining CERCLA actions will be integrated with other Central Plateau activities at the Hanford site.« less

  11. Fabrication of Indocyanine Green and 2H, 3H-perfluoropentane loaded microbubbles for fluorescence and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    He, Yutong; Wu, Qiang; Ma, Rong; Chang, Shufang; Shao, Pengfei; Xu, Ronald

    2016-03-01

    As a near-infrared (NIR) fluorescence dye, Indocyanine Green (ICG) has not gained broader clinical applications, owing to its multiple limitations such as concentration-dependent aggregation, low fluorescence quantum yield, poor physicochemical stability and rapid elimination from the body. In the meanwhile, 2H,3H-perfluoropentane (H-PFP) has been widely studied in ultrasound imaging as a vehicle for targeted delivery of contrast agents and drugs. We synthesized a novel dual-modal fluorescence and ultrasound contrast agent by encapsulating ICG and H-PFP in lipid microbubbles using a liquid-driven coaxial flow focusing (LDCFF) process. Uniform microbubbles with the sizes ranging from 1-10um and great ICG loading efficiency was achieved by this method. Our benchtop experiments showed that ICG/H-PFP microbubbles exhibited less aggregation, increased fluorescence intensity and more stable photostability compared to free ICG aqueous solution. Our phantom experiments demonstrated that ICG/H-PFP microbubbles enhanced the imaging contrasts in fluorescence imaging and ultrasonography. Our animal experiments indicated that ICG/H-PFP microbubbles extended the ICG life time and facilitated dual mode fluorescence and ultrasound imaging in vivo.

  12. Evaluation of the applicability of the dual‐domain mass transfer model in porous media containing connected high‐conductivity channels

    USGS Publications Warehouse

    Liu, Gaisheng; Zheng, Chunmiao; Gorelick, Steven M.

    2007-01-01

    This paper evaluates the dual‐domain mass transfer (DDMT) model to represent transport processes when small‐scale high‐conductivity (K) preferential flow paths (PFPs) are present in a homogenous porous media matrix. The effects of PFPs upon solute transport were examined through detailed numerical experiments involving different realizations of PFP networks, PFP/matrix conductivity contrasts varying from 10:1 to 200:1, different magnitudes of effective conductivities, and a range of molecular diffusion coefficients. Results suggest that the DDMT model can reproduce both the near‐source peak and the downstream low‐concentration spreading observed in the embedded dendritic network when there are large conductivity contrasts between high‐K PFPs and the low‐K matrix. The accuracy of the DDMT model is also affected by the geometry of PFP networks and by the relative significance of the diffusion process in the network‐matrix system.

  13. Year 2 Report: Protein Function Prediction Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, C E

    2012-04-27

    Upon completion of our second year of development in a 3-year development cycle, we have completed a prototype protein structure-function annotation and function prediction system: Protein Function Prediction (PFP) platform (v.0.5). We have met our milestones for Years 1 and 2 and are positioned to continue development in completion of our original statement of work, or a reasonable modification thereof, in service to DTRA Programs involved in diagnostics and medical countermeasures research and development. The PFP platform is a multi-scale computational modeling system for protein structure-function annotation and function prediction. As of this writing, PFP is the only existing fullymore » automated, high-throughput, multi-scale modeling, whole-proteome annotation platform, and represents a significant advance in the field of genome annotation (Fig. 1). PFP modules perform protein functional annotations at the sequence, systems biology, protein structure, and atomistic levels of biological complexity (Fig. 2). Because these approaches provide orthogonal means of characterizing proteins and suggesting protein function, PFP processing maximizes the protein functional information that can currently be gained by computational means. Comprehensive annotation of pathogen genomes is essential for bio-defense applications in pathogen characterization, threat assessment, and medical countermeasure design and development in that it can short-cut the time and effort required to select and characterize protein biomarkers.« less

  14. Tightening up the performance-pay linkage: roles of contingent reward leadership and profit-sharing in the cross-level influence of individual pay-for-performance.

    PubMed

    Han, Joo Hun; Bartol, Kathryn M; Kim, Seongsu

    2015-03-01

    Drawing upon line-of-sight (Lawler, 1990, 2000; Murphy, 1999) as a unifying concept, we examine the cross-level influence of organizational use of individual pay-for-performance (PFP), theorizing that its impact on individual employees' performance-reward expectancy is boosted by the moderating effects of immediate group managers' contingent reward leadership and organizational use of profit-sharing. Performance-reward expectancy is then expected to mediate the interactive effects of individual PFP with contingent reward leadership and profit-sharing on employee job performance. Analyses of cross-organizational and cross-level data from 912 employees in 194 workgroups from 45 companies reveal that organizations' individual PFP was positively related to employees' performance-reward expectancy, which was strengthened when it was accompanied by higher levels of contingent reward leadership and profit-sharing. Also, performance-reward expectancy significantly transmitted the effects of individual PFP onto job performance under higher levels of contingent reward leadership and profit-sharing, thus delineating cross-level mediating and moderating processes by which organizations' individual PFP is linked to important individual-level employee outcomes. Several theoretical and practical implications are discussed. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  15. Effects of and preference for pay for performance: an analogue analysis.

    PubMed

    Long, Robert D; Wilder, David A; Betz, Alison; Dutta, Ami

    2012-01-01

    We examined the effects of 2 payment systems on the rate of check processing and time spent on task by participants in a simulated work setting. Three participants experienced individual pay-for-performance (PFP) without base pay and pay-for-time (PFT) conditions. In the last phase, we asked participants to choose which system they preferred. For all participants, the PFP condition produced higher rates of check processing and more time spent on task than did the PFT condition, but choice of payment system varied both within and across participants.

  16. Update on the Department of Energy's 1994 plutonium vulnerability assessment for the plutonium finishing plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HERZOG, K.R.

    1999-09-01

    A review of the environmental, safety, and health vulnerabilities associated with the continued storage of PFP's inventory of plutonium bearing materials and other SNM. This report re-evaluates the five vulnerabilities identified in 1994 at the PFP that are associated with SNM storage. This new evaluation took a more detailed look and applied a risk ranking process to help focus remediation efforts.

  17. Gait Kinematics in Individuals with Acute and Chronic Patellofemoral Pain.

    PubMed

    Fox, Aaron; Ferber, Reed; Saunders, Natalie; Osis, Sean; Bonacci, Jason

    2018-03-01

    This study aimed to identify the discriminating kinematic gait characteristics between individuals with acute and chronic patellofemoral pain (PFP) and healthy controls. Ninety-eight runners with PFP (39 male, 59 female) and 98 healthy control runners (38 male, 60 female) ran on a treadmill at a self-selected speed while three-dimensional lower limb kinematic data were collected. Runners with PFP were split into acute (n = 25) and chronic (n = 73) subgroups on the basis of whether they had been experiencing pain for less or greater than 3 months, respectively. Principal component analysis and linear discriminant analysis were used to determine the combination of kinematic gait characteristics that optimally separated individuals with acute PFP and chronic PFP and healthy controls. Compared with controls, both the acute and chronic PFP subgroups exhibited greater knee flexion across stance and greater ankle dorsiflexion during early stance. The acute PFP subgroup demonstrated greater transverse plane hip motion across stance compared with healthy controls. In contrast, the chronic PFP subgroup demonstrated greater frontal plane hip motion, greater knee abduction, and reduced ankle eversion/greater ankle inversion across stance when compared with healthy controls. This study identified characteristics that discriminated between individuals with acute and chronic PFP when compared with healthy controls. Certain discriminating characteristics were shared between both the acute and chronic subgroups when compared with healthy controls, whereas others were specific to the duration of PFP.

  18. Pay for performance in thoracic surgery.

    PubMed

    Varela, Gonzalo

    2007-08-01

    In the context of improving the quality of the medical practice, PFP programs have been developed to reward best medical practice. Early studies showed little gain in quality after implementing PFP family practice programs and some unintended consequences, like excluding high-risk patients from medical services when good outcomes were linked to payment. To date, no PFP programs have been implemented in surgical practice, but it is expected that value-based purchasing philosophy will be extended to surgical specialties in the near future. Quality initiatives in surgery can be based on outcome or process measures. Outcomes-focused quality approaches rely on accurate information obtained from multiinstitutional clinical databases for calculation of risk-adjusted models. Primary outcomes such surgical mortality are uncommon in modern thoracic surgery and outcome measures should rely on more prevalent intermediate outcomes such as specific postoperative morbidities or emergency readmission. Process-based quality approaches need to be based on scientific evidence linking process to outcomes. It is our responsibility to develop practice guidelines or international practice consensus to facilitate the parameters to be evaluated in the near future.

  19. Atrophy of the Quadriceps Is Not Isolated to the Vastus Medialis Oblique in Individuals With Patellofemoral Pain.

    PubMed

    Giles, Lachlan S; Webster, Kate E; McClelland, Jodie A; Cook, Jill

    2015-08-01

    Cross-sectional. Objectives To determine if quadriceps atrophy was present in people with patellofemoral pain (PFP), and whether the vastus medialis oblique (VMO) was selectively involved. Despite the lack of research investigating individual quadriceps muscle size in individuals with PFP, it has been suggested that selective atrophy of the VMO relative to the vastus lateralis could be associated with PFP. The quadriceps muscle sizes of 35 participants with PFP (22 with unilateral and 13 with bilateral symptoms) and 35 asymptomatic control participants matched for age and sex were measured using real-time ultrasound. The thicknesses of the VMO, vastus lateralis, vastus medialis, rectus femoris, and vastus intermedius were measured. Paired-samples t tests were used to compare muscle thickness between limbs in those with unilateral PFP, and independent t tests were used to compare muscle thickness between groups with and without PFP. Results In those with unilateral PFP, the thickness of all portions of the quadriceps muscle was statistically smaller in the symptomatic compared to the asymptomatic limb: VMO (P = .038), vastus medialis (P<.001), vastus lateralis (P = .005), vastus intermedius (P = .013), and rectus femoris (P = .045). No difference was found in thickness of any of the portions of the quadriceps on the affected side of people with PFP compared to asymptomatic controls: VMO (P = .148), vastus medialis (P = .474), vastus lateralis (P = .122), vastus intermedius (P = .466), and rectus femoris (P = .508). Atrophy of all portions of the quadriceps muscles is present in the affected limb of people with unilateral PFP. There was no atrophy of the quadriceps in individuals with PFP compared to those without pathology. Selective atrophy of the VMO relative to the vastus lateralis was not identified in people with PFP.

  20. Clot lysis time in platelet-rich plasma: method assessment, comparison with assays in platelet-free and platelet-poor plasmas, and response to tranexamic acid.

    PubMed

    Panes, Olga; Padilla, Oslando; Matus, Valeria; Sáez, Claudia G; Berkovits, Alejandro; Pereira, Jaime; Mezzano, Diego

    2012-01-01

    Fibrinolysis dysfunctions cause bleeding or predisposition to thrombosis. Platelets contain several factors of the fibrinolytic system, which could up or down regulate this process. However, the temporal relationship and relative contributions of plasma and platelet components in clot lysis are mostly unknown. We developed a clot lysis time (CLT) assay in platelet-rich plasma (PRP-CLT, with and without stimulation) and compared it to a similar one in platelet-free plasma (PFP) and to another previously reported test in platelet-poor plasma (PPP). We also studied the differential effects of a single dose of tranexamic acid (TXA) on these tests in healthy subjects. PFP- and PPP-CLT were significantly shorter than PRP-CLT, and the three assays were highly correlated (p < 0.0001). PFP- and PPP-, but more significantly PRP-CLT, were positively correlated with age and plasma PAI-1, von Willebrand factor, fibrinogen, LDL-cholesterol, and triglycerides (p < 0.001). All these CLT assays had no significant correlations with platelet aggregation/secretion, platelet counts, and pro-coagulant tests to explore factor X activation by platelets, PRP clotting time, and thrombin generation in PRP. Among all the studied variables, PFP-CLT was independently associated with plasma PAI-1, LDL-cholesterol, and triglycerides and, additionally, stimulated PRP-CLT was also independently associated with plasma fibrinogen. A single 1 g dose of TXA strikingly prolonged all three CLTs, but in contrast to the results without the drug, the lysis times were substantially shorter in non-stimulated or stimulated PRP than in PFP and PPP. This standardized PRP-CLT may become a useful tool to study the role of platelets in clot resistance and lysis. Our results suggest that initially, the platelets enmeshed in the clot slow down the fibrinolysis process. However, the increased clot resistance to lysis induced by TXA is overcome earlier in platelet-rich clots than in PFP or PPP clots. This is likely explained by the display of platelet pro-fibrinolytic effects. Focused research is needed to disclose the mechanisms for the relationship between CLT and plasma cholesterol and its potential pathophysiologic and clinical relevance.

  1. High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: Is PFP itself a predictor for subsequent ACL injury?

    PubMed Central

    Myer, Gregory D; Ford, Kevin R; Di Stasi, Stephanie L; Foss, Kim D Barber; Micheli, Lyle J; Hewett, Timothy E

    2014-01-01

    Background Identifying risk factors for knee pain and anterior cruciate ligament (ACL) injury can be an important step in the injury prevention cycle. Objective We evaluated two unique prospective cohorts with similar populations and methodologies to compare the incidence rates and risk factors associated with patellofemoral pain (PFP) and ACL injury. Methods The ‘PFP cohort’ consisted of 240 middle and high school female athletes. They were evaluated by a physician and underwent anthropometric assessment, strength testing and three-dimensional landing biomechanical analyses prior to their basketball season. 145 of these athletes met inclusion for surveillance of incident (new) PFP by certified athletic trainers during their competitive season. The ‘ACL cohort’ included 205 high school female volleyball, soccer and basketball athletes who underwent the same anthropometric, strength and biomechanical assessment prior to their competitive season and were subsequently followed up for incidence of ACL injury. A one-way analysis of variance was used to evaluate potential group (incident PFP vs ACL injured) differences in anthropometrics, strength and landing biomechanics. Knee abduction moment (KAM) cut-scores that provided the maximal sensitivity and specificity for prediction of PFP or ACL injury risk were also compared between the cohorts. Results KAM during landing above 15.4 Nm was associated with a 6.8% risk to develop PFP compared to a 2.9% risk if below the PFP risk threshold in our sample. Likewise, a KAM above 25.3 Nm was associated with a 6.8% risk for subsequent ACL injury compared to a 0.4% risk if below the established ACL risk threshold. The ACL-injured athletes initiated landing with a greater knee abduction angle and a reduced hamstrings-to-quadriceps strength ratio relative to the incident PFP group. Also, when comparing across cohorts, the athletes who suffered ACL injury also had lower hamstring/quadriceps ratio than the players in the PFP sample (p<0.05). Conclusions In adolescent girls aged 13.3 years, >15 Nm of knee abduction load during landing is associated with greater likelihood of developing PFP. Also, in girls aged 16.1 years who land with >25 Nm of knee abduction load during landing are at increased risk for both PFP and ACL injury. PMID:24687011

  2. Hip abductor, trunk extensor and ankle plantar flexor endurance in females with and without patellofemoral pain.

    PubMed

    Van Cant, Joachim; Pitance, Laurent; Feipel, Véronique

    2017-01-01

    Previous studies have reported strength deficit in hip abduction, extension and external rotation in females with patellofemoral pain (PFP) when compared with healthy control; however, there is conflicting evidence for a decrease in hip muscle endurance. Therefore, it seems important to evaluate hip muscle endurance in females with PFP. Moreover, trunk extensor and ankle plantar flexor endurance have not yet been evaluate in females with PFP. To compare hip abductor, trunk extensor and ankle plantar flexor endurance between females with and without PFP. Twenty females with PFP (mean age, 21.1 years) and 76 healthy females (mean age, 20.5 years) were recruited. Subject performed three endurance clinical tests: (1) The hip abductor isometric endurance test, (2) The Sorensen test and (3) The heel rise test. Group differences were assessed using an independent t tests, or Mann-Whitney U tests for non-normally distributed data. Subjects with PFP exhibited significantly lower hip abductor, trunk extensor and ankle plantar flexor endurance than healthy controls. On average, subjects with PFP had deficits of 16% in hip abduction, 14% in trunk extension and 26% in ankle plantar flexion. Females with PFP exhibited diminished hip abductor, trunk extensor and ankle plantar flexor endurance compared to healthy controls.

  3. Is Body Composition Associated With An Increased Risk of Developing Anterior Knee Pain in Adolescent Female Athletes?

    PubMed Central

    Barber Foss, Kim D.; Hornsby, Myles; Edwards, Nicholas M.; Myer, Gregory D.; Hewett, Timothy E.

    2012-01-01

    Objective To determine the relationship between relative body composition and body mass to height, anterior knee pain, or patellofemoral pain (PFP) in adolescent female athletes. Background Patellofemoral pain is common in female athletes and has an undefined etiology. The purpose of this study was to examine whether there was an association among higher body mass index (BMI), BMI z-scores, and relative body fat percentage in the development of PFP in an adolescent female athlete population. We hypothesized that female athletes who developed PFP over the course of a competitive basketball season had higher relative body mass or body fat percentage compared with those who did not develop PFP. Methods Fifteen middle school basketball teams that consisted of 248 basketball players (mean age, 12.76 ± 1.13 years; height, 158.43 ± 7.78 cm; body mass, 52.35 ± 12.31 kg; BMI, 20.73 ± 3.88 kg/m2) agreed to participate in this study over the course of 2 basketball seasons, resulting in 262 athlete-seasons. Testing included the completion of the Anterior Knee Pain Scale (AKPS), International Knee Documentation Committee (IKDC) form, standardized history, physician-administered physical examination, maturational estimates, and anthropometrics. Results Of the 262 athlete-seasons monitored, 39 athletes developed PFP over the course of the study. The incidence rate of new PFP was 1.57 per 1000 athlete-exposures. The cumulative incidence of PFP was 14.9%. There was no difference in BMI between those who developed PFP (mean body mass, 20.2 kg/m2; 95% CI, 18.9–21.4) and those who did not develop PFP (mean body mass, 20.8 kg/m2; 95% CI, 20.3–21.3; P > 0.05). Body mass index z-scores were not different between those who developed PFP (mean, 0.3; 95% CI, 0.7–0.6) and those who did not develop PFP (mean, 0.4; 95% CI, 0.3–0.6; P > 0.05). A similar trend was noted in relative body fat percentage, with mean scores of similar ranges in those who developed PFP (mean body fat percentage, 22.2%; 95% CI, 19.4–24.9) to the referent group who did not (mean body fat percentage, 22.9%; 95% CI, 21.8–24.1; P > 0.05). Conclusions Our results do not indicate a relationship between relative body composition or relative body mass to height to the propensity to develop PFP in middle school–aged female basketball players. Although previous data indicate a relationship between higher relative body mass and overall knee injury, these data did not support this association with PFP specifically. These data suggest the underlying etiology of PFP may be neuromuscular in nature. Further research is needed to understand the predictors, etiology, and ultimate prevention of this condition. PMID:22508247

  4. Evaluation of the Magnesium Hydroxide Treatment Process for Stabilizing PFP Plutonium/Nitric Acid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.

    2000-09-28

    This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantifymore » the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.« less

  5. Gait-related intrinsic risk factors for patellofemoral pain in novice recreational runners.

    PubMed

    Thijs, Y; De Clercq, D; Roosen, P; Witvrouw, E

    2008-06-01

    To determine prospectively gait-related intrinsic risk factors for patellofemoral pain (PFP) in a population of novice recreational runners. Prospective cohort study. 102 novice recreational runners (89 women) with no history of knee or lower leg complaints. The standing foot posture of the subjects was examined and plantar pressure measurements during running were collected. The subjects then participated in a 10-week "start to run" programme. During this period all sports injuries were registered by a sports medicine physician. The relationship between the standing foot posture and PFP was investigated and gait-related intrinsic risk factors for PFP were determined. The 17 runners who developed PFP exerted a significantly higher vertical peak force underneath the lateral heel and metatarsals 2 and 3. Logistic regression analysis showed that a significantly higher vertical peak force underneath the second metatarsal and shorter time to the vertical peak force underneath the lateral heel were predictors for PFP. No significant evidence was found for an association between an excessively pronated or supinated foot posture and the development of PFP. The findings suggest that an excessive impact shock during heel strike and at the propulsion phase of running may contribute to an increased risk of developing PFP. The hypothesis that persons at risk for PFP show an altered static foot posture in comparison with non-afflicted persons is not supported by the results of this study.

  6. Mathematical modeling and spectrum analysis of the physiological patello-femoral pulse train produced by slow knee movement.

    PubMed

    Zhang, Y T; Frank, C B; Rangayyan, R M; Bell, G D

    1992-09-01

    Analysis of vibration signals emitted by the knee joint has the potential for the development of a noninvasive procedure for the diagnosis and monitoring of knee pathology. In order to obtain as much information as possible from the power density spectrum of the knee vibration signal, it is necessary to identify the physiological factors (or physiologically relevant parameters) that shape the spectrum. This paper presents a mathematical model for knee vibration signals, in particular the physiological patello-femoral pulse (PFP) train produced by slow knee movement. It demonstrates through the mathematical model that the repetition rate of the physiological PFP train introduces repeated peaks in the power spectrum, and that it affects the spectrum mainly at low frequencies. The theoretical results also show that the spectral peaks at multiples of the PFP repetition rate become more evident when the variance of the interpulse interval (IPI) is small, and that these spectral peaks shift toward higher frequencies with increasing PFP repetition rates. To evaluate the mathematical model, a simulation algorithm was developed, which generates PFP signals with adjustable repetition rate and IPI variance. Signals generated by simulation were seen to possess representative spectral characteristics typically observed in physiological PFP signals. This simulation procedure allows an interactive examination of several factors which affect the PFP train spectrum. Finally, in vivo measurements of physiological PFP signals of normal volunteers are presented. Results of simulations and analysis of signals recorded from human subjects support the mathematical model's prediction that the IPI statistics play a very significant role in determining the low-end power spectrum of the physiological PFP signal.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. CRITICALITY SAFETY CONTROLS AND THE SAFETY BASIS AT PFP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessler, S

    2009-04-21

    With the implementation of DOE Order 420.1B, Facility Safety, and DOE-STD-3007-2007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities', a new requirement was imposed that all criticality safety controls be evaluated for inclusion in the facility Documented Safety Analysis (DSA) and that the evaluation process be documented in the site Criticality Safety Program Description Document (CSPDD). At the Hanford site in Washington State the CSPDD, HNF-31695, 'General Description of the FH Criticality Safety Program', requires each facility develop a linking document called a Criticality Control Review (CCR) to document performance of these evaluations. Chapter 5,more » Appendix 5B of HNF-7098, Criticality Safety Program, provided an example of a format for a CCR that could be used in lieu of each facility developing its own CCR. Since the Plutonium Finishing Plant (PFP) is presently undergoing Deactivation and Decommissioning (D&D), new procedures are being developed for cleanout of equipment and systems that have not been operated in years. Existing Criticality Safety Evaluations (CSE) are revised, or new ones written, to develop the controls required to support D&D activities. Other Hanford facilities, including PFP, had difficulty using the basic CCR out of HNF-7098 when first implemented. Interpretation of the new guidelines indicated that many of the controls needed to be elevated to TSR level controls. Criterion 2 of the standard, requiring that the consequence of a criticality be examined for establishing the classification of a control, was not addressed. Upon in-depth review by PFP Criticality Safety staff, it was not clear that the programmatic interpretation of criterion 8C could be applied at PFP. Therefore, the PFP Criticality Safety staff decided to write their own CCR. The PFP CCR provides additional guidance for the evaluation team to use by clarifying the evaluation criteria in DOE-STD-3007-2007. In reviewing documents used in classifying controls for Nuclear Safety, it was noted that DOE-HDBK-1188, 'Glossary of Environment, Health, and Safety Terms', defines an Administrative Control (AC) in terms that are different than typically used in Criticality Safety. As part of this CCR, a new term, Criticality Administrative Control (CAC) was defined to clarify the difference between an AC used for criticality safety and an AC used for nuclear safety. In Nuclear Safety terms, an AC is a provision relating to organization and management, procedures, recordkeeping, assessment, and reporting necessary to ensure safe operation of a facility. A CAC was defined as an administrative control derived in a criticality safety analysis that is implemented to ensure double contingency. According to criterion 2 of Section IV, 'Linkage to the Documented Safety Analysis', of DOESTD-3007-2007, the consequence of a criticality should be examined for the purposes of classifying the significance of a control or component. HNF-PRO-700, 'Safety Basis Development', provides control selection criteria based on consequence and risk that may be used in the development of a Criticality Safety Evaluation (CSE) to establish the classification of a component as a design feature, as safety class or safety significant, i.e., an Engineered Safety Feature (ESF), or as equipment important to safety; or merely provides defense-in-depth. Similar logic is applied to the CACs. Criterion 8C of DOE-STD-3007-2007, as written, added to the confusion of using the basic CCR from HNF-7098. The PFP CCR attempts to clarify this criterion by revising it to say 'Programmatic commitments or general references to control philosophy (e.g., mass control or spacing control or concentration control as an overall control strategy for the process without specific quantification of individual limits) is included in the PFP DSA'. Table 1 shows the PFP methodology for evaluating CACs. This evaluation process has been in use since February of 2008 and has proven to be simple and effective. Each control identified in the applicable new/revised CSE is evaluated via the table. The results of this evaluation are documented in tables attached to the CCR as an appendix, for each CSE, to the base document.« less

  8. Patellofemoral pain in athletes: clinical perspectives

    PubMed Central

    Halabchi, Farzin; Abolhasani, Maryam; Mirshahi, Maryam; Alizadeh, Zahra

    2017-01-01

    Patellofemoral pain (PFP) is a very common problem in athletes who participate in jumping, cutting and pivoting sports. Several risk factors may play a part in the pathogenesis of PFP. Overuse, trauma and intrinsic risk factors are particularly important among athletes. Physical examination has a key role in PFP diagnosis. Furthermore, common risk factors should be investigated, such as hip muscle dysfunction, poor core muscle endurance, muscular tightness, excessive foot pronation and patellar malalignment. Imaging is seldom needed in special cases. Many possible interventions are recommended for PFP management. Due to the multifactorial nature of PFP, the clinical approach should be individualized, and the contribution of different factors should be considered and managed accordingly. In most cases, activity modification and rehabilitation should be tried before any surgical interventions. PMID:29070955

  9. Proximal mechanics during stair ascent are more discriminate of females with patellofemoral pain than distal mechanics.

    PubMed

    de Oliveira Silva, Danilo; Barton, Christian John; Pazzinatto, Marcella Ferraz; Briani, Ronaldo Valdir; de Azevedo, Fábio Mícolis

    2016-06-01

    Several hypotheses have been proposed to explain the pathomechanisms underlying patellofemoral pain (PFP). Concurrent evaluation of lower limb mechanics in the same PFP population is needed to determine which may be more important to target during rehabilitation. This study aimed to investigate possible differences in rearfoot eversion, hip adduction, and knee flexion during stair ascent; the relationship between these variables; and the discriminatory capability of each in identifying females with PFP. Thirty-six females with PFP and 31 asymptomatic controls underwent three-dimensional kinematic analyses during stair ascent. Between-group comparisons were made for peak rearfoot eversion, hip adduction, and knee flexion. Pearson's correlation coefficients were calculated to evaluate relationships among these parameters. Receiver operating characteristic curves were applied to identify the discriminatory capability of each. Females with PFP ascended stairs with reduced peak knee flexion, greater peak hip adduction and peak rearfoot eversion. Peak hip adduction (>10.6°; sensitivity=67%, specificity=77%) discriminated females with PFP more effectively than rearfoot eversion (>5.0°; sensitivity=58%, specificity=67%). Reduced peak hip adduction was found to be associated with reduced peak knee flexion (r=0.54, p=0.002) in females with PFP. These findings indicate that proximal, local, and distal kinematics should be considered in PFP management, but proximally targeted interventions may be most important. The relationship of reduced knee flexion with reduced hip adduction also indicates a possible compensatory strategy to reduce patellofemoral joint stress, and this may need to be addressed during rehabilitation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. [Personal Futures Planning: Building a Foundation for Individualized Transition Services.

    ERIC Educational Resources Information Center

    Carr, Theresa, Ed.

    1993-01-01

    These two newsletter special issues focus on personal futures planning (PFP) for people with deaf blindness, with emphasis on technical assistance activities involved in implementing a PFP program. PFP guides a team through three phases of activities: (1) developing a "circle of support" for an individual with deaf blindness; (2)…

  11. Validity of Combining History Elements and Physical Examination Tests to Diagnose Patellofemoral Pain.

    PubMed

    Décary, Simon; Frémont, Pierre; Pelletier, Bruno; Fallaha, Michel; Belzile, Sylvain; Martel-Pelletier, Johanne; Pelletier, Jean-Pierre; Feldman, Debbie; Sylvestre, Marie-Pierre; Vendittoli, Pascal-André; Desmeules, François

    2018-04-01

    To assess the validity of diagnostic clusters combining history elements and physical examination tests to diagnose or exclude patellofemoral pain (PFP). Prospective diagnostic study. Orthopedic outpatient clinics, family medicine clinics, and community-dwelling. Consecutive patients (N=279) consulting one of the participating orthopedic surgeons (n=3) or sport medicine physicians (n=2) for any knee complaint. Not applicable. History elements and physical examination tests were obtained by a trained physiotherapist blinded to the reference standard: a composite diagnosis including both physical examination tests and imaging results interpretation performed by an expert physician. Penalized logistic regression (least absolute shrinkage and selection operator) was used to identify history elements and physical examination tests associated with the diagnosis of PFP, and recursive partitioning was used to develop diagnostic clusters. Diagnostic accuracy measures including sensitivity, specificity, positive and negative predictive values, and positive and negative likelihood ratios with associated 95% confidence intervals (CIs) were calculated. Two hundred seventy-nine participants were evaluated, and 75 had a diagnosis of PFP (26.9%). Different combinations of history elements and physical examination tests including the age of participants, knee pain location, difficulty descending stairs, patellar facet palpation, and passive knee extension range of motion were associated with a diagnosis of PFP and used in clusters to accurately discriminate between individuals with PFP and individuals without PFP. Two diagnostic clusters developed to confirm the presence of PFP yielded a positive likelihood ratio of 8.7 (95% CI, 5.2-14.6) and 3 clusters to exclude PFP yielded a negative likelihood ratio of .12 (95% CI, .06-.27). Diagnostic clusters combining common history elements and physical examination tests that can accurately diagnose or exclude PFP compared to various knee disorders were developed. External validation is required before clinical use. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. The Tiger Team Process in the Rebaselining of the Plutonium Finishing Plant (PFP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAILEY, R.W.

    2000-02-01

    This paper will describe the integrated, teaming approach and planning process utilized by the Tiger Team in the development of the IPMP. This paper will also serve to document the benefits derived from this implementation process.

  13. A cationic conjugated polymer and graphene oxide: Application to amplified fluorescence detection of sinapine.

    PubMed

    Zhang, Zhen; Xiang, Xia; Shi, Jianbin; Huang, Fenghong; Xia, Xiaoyang; Zheng, Mingming; Han, Ling; Tang, Hu

    2018-10-05

    An amplified fluorescence strategy is described for the detection of sinapine (SP) by using a cationic conjugated polymer (PFP) and graphene oxide (GO). It is observed that the fluorescein (FAM)-labeled single-stranded DNA (FAM-DNA) is absorbed on the surface of GO if SP is absent. This causes that fluorescence resonance energy transfer (FRET) from PFP to FAM is inefficient when adding PFP into FAM-DNA/GO complex. If SP is added to FAM-DNA/GO complex, FAM-DNA is desorbed from GO surface due to the competitive binding of SP and FAM-DNA toward GO. In this case, FAM-DNA is close to PFP in the presence of PFP through strong electrostatic interaction, leading to the occurrence of efficient FRET. Based on the above phenomenon, we demonstrate a method to amplify fluorescence signal of traditional GO-based SP assay by introducing PFP. In comparison to the use of single GO, the combination of PFP with GO-based strategy displays high turn-on ratio and enhanced sensitivity with a limit of detection as low as 7.3 ng mL -1 for SP detection. Satisfactory results in practical samples are also obtained by the recovery experiments, demonstrating the potential application of cationic conjugated polymer in plant-derived small molecule. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Structural Abnormalities on Magnetic Resonance Imaging in Patients With Patellofemoral Pain: A Cross-sectional Case-Control Study.

    PubMed

    van der Heijden, Rianne A; de Kanter, Janneke L M; Bierma-Zeinstra, Sita M A; Verhaar, Jan A N; van Veldhoven, Peter L J; Krestin, Gabriel P; Oei, Edwin H G; van Middelkoop, Marienke

    2016-09-01

    Structural abnormalities of the patellofemoral joint might play a role in the pathogenesis of patellofemoral pain (PFP), a common knee problem among young and physically active individuals. No previous study has investigated if PFP is associated with structural abnormalities of the patellofemoral joint using high-resolution magnetic resonance imaging (MRI). To investigate the presence of structural abnormalities of the patellofemoral joint on high-resolution MRI in patients with PFP compared with healthy control subjects. Cross-sectional study; Level of evidence, 3. Patients with PFP and healthy control subjects between 14 and 40 years of age underwent high-resolution 3-T MRI. All images were scored using the Magnetic Resonance Imaging Osteoarthritis Knee Score with the addition of specific patellofemoral features. Associations between PFP and the presence of structural abnormalities were analyzed using logistic regression analyses adjusted for age, body mass index (BMI), sex, and sports participation. A total of 64 patients and 70 control subjects were included in the study. Mean ± SD age was 23.2 ± 6.4 years, mean BMI ± SD was 22.9 ± 3.4 kg/m(2), and 56.7% were female. Full-thickness cartilage loss was not present. Minor patellar cartilage defects, patellar bone marrow lesions, and high signal intensity of the Hoffa fat pad were frequently seen in both patients (23%, 53%, and 58%, respectively) and control subjects (21%, 51%, and 51%, respectively). After adjustment for age, BMI, sex, and sports participation, none of the structural abnormalities were statistically significantly associated with PFP. Structural abnormalities of the patellofemoral joint have been hypothesized as a factor in the pathogenesis of PFP, but the study findings suggest that structural abnormalities of the patellofemoral joint on MRI are not associated with PFP. © 2016 The Author(s).

  15. The effect of pain on hip and knee kinematics during running in females with chronic patellofemoral pain.

    PubMed

    Noehren, Brian; Sanchez, Zack; Cunningham, Tom; McKeon, Patrick Owen

    2012-07-01

    Despite the growing recognition of the role of abnormal hip and knee mechanics in patellofemoral pain (PFP), few studies have assessed if or how these mechanics change when the person experiences pain while running. Therefore, the purpose of this study was to determine if the development of pain while running resulted in altered hip and knee kinematics in female runners with PFP as compared to healthy female runners. Thirty female runners (15 PFP, 15 controls) participated in an instrumented gait analysis while running for 30 min at a self-selected pace. Pain and fatigue were recorded every minute while participants ran. Variables of interest included peak hip adduction, hip internal rotation, knee abduction, knee external rotation, pain, and fatigue. There were significant group by pain interactions for hip adduction (p<0.01) and hip internal rotation (p<0.01). The healthy group, who did not develop pain had significant increases in both motions compared to the PFP group, who did develop pain. There was also a trend toward less knee external rotation in the PFP group in presence of pain (p=0.059). No differences were found for knee abduction (p=0.32). A group main effect was found for hip internal rotation (p=0.008) in which the PFP group had significantly larger values. Runners with PFP did not alter their hip mechanics over the course of the run. This may have resulted in repetitive stress to the same aspect of the patellofemoral joint and contributed to the initial development of pain. However, the PFP group did attempt to make a compensation once in pain by reducing knee external rotation. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowarik, S.; Hinderhofer, A.; Wang, C.

    Highly crystalline and stable molecular superlattices are grown with the smallest possible stacking period using monolayers (MLs) of the organic semiconductors pentacene (PEN) and perfluoro-pentacene (PFP). Superlattice reflections in X-ray reflectivity and their energy dependence in resonant soft X-ray reflectivity measurements show that PFP and PEN MLs indeed alternate even though the coherent ordering is lost after ~ 4 ML. The observed lattice spacing of 15.9 Å in the superlattice is larger than in pure PEN and PFP films, presumably because of more upright standing molecules and lack of interdigitation between the incommensurate crystalline PEN and PFP layers. The findingsmore » are important for the development of novel organic quantum optoelectronic devices.« less

  17. Comparison of Surfactants Used to Prepare Aqueous Perfluoropentane Emulsions for Pharmaceutical Applications

    PubMed Central

    Kandadai, Madhuvanthi A.; Mohan, Praveena; Lin, Genyao; Butterfield, Anthony; Skliar, Mikhail; Magda, Jules J.

    2010-01-01

    Perfluoropentane (PFP), a highly hydrophobic, non-toxic, non-carcinogenic fluoroalkane, has generated much interest in biomedical applications, including occlusion therapy and controlled drug delivery. For most of these applications, the dispersion within aqueous media of a large quantity of PFP droplets of the proper size is critically important. Surprisingly, the interfacial tension of PFP against water in the presence of surfactants used to stabilize the emulsion has rarely, if ever, been measured. In this study, we report the interfacial tension of PFP in the presence of surfactants used in previous studies to produce emulsions for biomedical applications: polyethylene oxide-co-polylactic acid (PEO-PLA, and polyethylene oxide-co-poly-ε-caprolactone (PEO-PCL). Since both of these surfactants are uncharged diblock copolymers that rely on the mechanism of steric stabilization, we also investigate for comparison’s sake use of the small molecule cationic surfactant cetyl trimethyl ammonium bromide (CTAB), and the much larger protein surfactant bovine serum albumin (BSA). The results presented here complement previous reports of the PFP droplet size distribution, and will be useful for determining to what extent the interfacial tension value can be used to control the mean PFP droplet size. PMID:20218695

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowarik, S.; Weber, C.; Hinderhofer, A.

    Highly crystalline and stable molecular superlattices are grown with the smallest possible stacking period using monolayers (MLs) of the organic semiconductors pentacene (PEN) and perfluoro-pentacene (PFP). Superlattice reflections in X-ray reflectivity and their energy dependence in resonant soft X-ray reflectivity measurements show that PFP and PEN MLs indeed alternate even though the coherent ordering is lost after ∼ 4 ML. The observed lattice spacing of 15.9 Å in the superlattice is larger than in pure PEN and PFP films, presumably because of more upright standing molecules and lack of interdigitation between the incommensurate crystalline PEN and PFP layers. The findingsmore » are important for the development of novel organic quantum optoelectronic devices.« less

  19. "He Says You're Going To Play the Giant": Ethnographic Perspectives on a Cambodian Arts Class in Philadelphia. Philadelphia Folklore Project Working Papers #8.

    ERIC Educational Resources Information Center

    Westerman, William

    This project began when the Philadelphia Folklore Project (PFP) initiated a residency partnership with the Samuel S. Fleisher Art Memorial in traditional Cambodian arts. The PFP anticipated raising issues that might help in the understanding of the cultural dynamics and elements that were likely to shape and effect the residency. The PFP imagined…

  20. Public-private mix for TB and TB-HIV care in Lagos, Nigeria.

    PubMed

    Daniel, O J; Adedeji Adejumo, O; Abdur-Razzaq, H A; Ngozi Adejumo, E; Salako, A A

    2013-09-01

    Private and public tuberculosis (TB) treatment centres in Lagos State, Nigeria. To assess the contribution of private health care providers to TB and TB-HIV (human immunodeficiency virus) case finding in Lagos State. A retrospective review of programme data submitted to the Lagos State TB and Leprosy Control Programme in 2011 by public, private for-profit (PFP) and private not-for-profit (PNFP) health care providers. A total of 8425 TB cases were notified by 31 private (11 PFP and 20 PNFP) and 99 public health facilities in Lagos State. Overall, the private facilities were responsible for 10.3% (866/8425) of the total TB cases notified. The proportion of TB patients tested for HIV was respectively 86.2%, 53.1% and 96.5% among public, PFP and PNFP facilities. Overall, 22.4% of the TB patients were HIV-positive. The HIV positivity rate among public, PFP and PNFP facilities was respectively 23.8%, 7.8% and 9.9%. Uptake of cotrimoxazole preventive therapy was respectively 69.6%, 25% and 38.2% among public, PFP and PNFP facilities, while that of antiretroviral therapy was respectively 23.8%, 8.3% and 9.1% in public, PFP and PNFP facilities. There is a need to scale up collaboration with the private sector, and particularly PNFP health providers.

  1. Iron L-edge X-ray Absorption Spectroscopy of Oxy-Picket Fence Porphyrin: Experimental Insight into Fe-O2 Bonding

    PubMed Central

    Wilson, Samuel A.; Kroll, Thomas; Decreau, Richard A.; Hocking, Rosalie K.; Lundberg, Marcus; Hedman, Britt; Hodgson, Keith O.; Solomon, Edward I.

    2013-01-01

    The electronic structure of the Fe–O2 center in oxy-hemoglobin and oxy-myoglobin is a long-standing issue in the field of bioinorganic chemistry. Spectroscopic studies have been complicated by the highly delocalized nature of the porphyrin and calculations require interpretation of multi-determinant wavefunctions for a highly covalent metal site. Here, iron L-edge X-ray absorption spectroscopy (XAS), interpreted using a valence bond configuration interaction (VBCI) multiplet model, is applied to directly probe the electronic structure of the iron in the biomimetic Fe–O2 heme complex [Fe(pfp)(1-MeIm)O2] (pfp = meso-tetra(α,α,α,α-o-pivalamidophenyl) porphyrin or TpivPP). This method allows separate estimates of σ-donor, π-donor, and π-acceptor interactions through ligand to metal charge transfer (LMCT) and metal to ligand charge transfer (MLCT) mixing pathways. The L-edge spectrum of [Fe(pfp)(1-MeIm)O2] is further compared to those of [FeII(pfp)(1-MeIm)2], [FeII(pfp)], and [FeIII(tpp)(ImH)2]Cl (tpp = meso-tetraphenylporphyrin) which have FeII S = 0, FeII S = 1 and FeIII S = 1/2 ground states, respectively. These serve as references for the three possible contributions to the ground state of oxy-pfp. The Fe–O2 pfp site is experimentally determined to have both significant σ-donation and a strong π-interaction of the O2 with the iron, with the latter having implications with respect to the spin polarization of the ground state. PMID:23259487

  2. Leveraging the Partnership for Patients' Initiative to Improve Patient Safety and Quality Within the Military Health System.

    PubMed

    King, Heidi B; Kesling, Kimberly; Birk, Carmen; Walker, Theodore; Taylor, Heather; Datena, Michael; Burgess, Brittany; Bower, Lyndsay

    2017-03-01

    Partnership for Patients (PfP) was a national initiative sponsored by the Department of Health and Human Services, Centers for Medicare and Medicaid Services, to reduce preventable hospital acquired conditions (HACs) by 40% and readmissions (within 30 days) by 20%, by the end of 2013 (as compared to the baseline of CY2010). Along with partners across the nation, the Assistant Secretary of Defense for Health Affairs, Dr. Jonathan Woodson, pledged to support PfP in June 2011. Participation of the Military Health System (MHS) in PfP marked the implementation of the first enterprise-wide patient safety initiative. Three phases of the MHS initiative were developed to meet the aims of the national PfP initiative: (1) Planning and Design, (2) Implementation, and (3) Monitoring and Sustainment. The Planning and Design phase focused on the identification of evidence-based practices (Table III); the development of implementation guides; the implementation of various communication, education, and improvement strategies; and the development of methods by which to track progress and share successes. The implementation phase focused on identifying roles and responsibilities across all levels of care; creating, disseminating, and implementing evidence-based practices at participating military treatment facilities; and establishing a structured learning action network. Finally, during the monitoring and sustainment phase, per the guidance of the Agency for Healthcare Research and Quality, an overall HAC rate was developed for quarterly analysis. The HAC rate per 1,000 dispositions (i.e., discharges) was an aggregate of all PfP HACs. Using the HAC rate, the improvement rate was calculated by comparing the current quarter's HAC rate to the baseline (CY2010). This allowed the MHS to track the overall progress across the enterprise. The MHS achieved a number of accomplishments, including a 15.8% cumulative reduction in HACs by the end of 2013, an 11.1% reduction in readmissions, avoided nearly 500 harm events since PfP implementation, and approximately $13.5 million in cost avoidance (on the basis of national cost estimate data available at the beginning of the PfP initiative). The two most critical lessons learned for the MHS during the PfP initiative are (1) continuous leadership engagement and inspection is vital to ensure field workers are engaged with safety and quality expectations and (2) applying a "one-size-fits-all" approach to improve a large delivery system is not effective. In addition, it is most impactful when local military treatment facility-level teams are involved in determining strategies to implement evidence-based standard processes and protocols that reduce variation when integrating practice change into daily operations. The MHS will continue to integrate PfP efforts into improvement activities by leveraging lessons learned from this initiative and determining how they can be applied to other areas of care and/or patient safety and quality initiatives. The Patient Safety Improvement Collaborative has committed to oversee and support the establishment and implementation of ongoing, focused patient safety and quality initiatives across the MHS using a collaborative vision to engage all levels of leadership and staff, and to ensure sustained improvements. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  3. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots

    NASA Astrophysics Data System (ADS)

    Picard, Christine; Bosco, Marco

    2008-01-01

    Several soil microorganisms colonizing roots are known to naturally promote the health of plants by controlling a range of plant pathogens, including bacteria, fungi, and nematodes. The use of theses antagonistic microorganisms, recently named plant-probiotics, to control plant-pathogenic fungi is receiving increasing attention, as they may represent a sustainable alternative to chemical pesticides. Many years of research on plant-probiotic microorganisms (PPM) have indicated that fluorescent pseudomonads producing antimicrobial compounds are largely involved in the suppression of the most widespread soilborne pathogens. Phenotype and genotype analysis of plant-probiotic fluorescent pseudomonads (PFP) have shown considerable genetic variation among these types of strains. Such variability plays an important role in the rhizosphere competence and the biocontrol ability of PFP strains. Understanding the mechanisms by which genotypic and phenotypic diversity occurs in natural populations of PFP could be exploited to choose those agricultural practices which best exploit the indigenous PFP populations, or to isolate new plant-probiotic strains for using them as inoculants. A number of different methods have been used to study diversity within PFP populations. Because different resolutions of the existing microbial diversity can be revealed depending on the approach used, this review first describes the most important methods used for the assessment of fluorescent Pseudomonas diversity. Then, we focus on recent data relating how differences in genotypic and phenotypic diversity within PFP communities can be attributed to geographic location, climate, soil type, soil management regime, and interactions with other soil microorganisms and host plants. It becomes evident that plant-related parameters exert the strongest influence on the genotypic and phenotypic variations in PFP populations.

  4. Adults with patellofemoral pain do not exhibit manifestations of peripheral and central sensitization when compared to healthy pain-free age and sex matched controls – An assessor blinded cross-sectional study

    PubMed Central

    Rathleff, Camilla Rams; Stephenson, Aoife; Mellor, Rebecca; Matthews, Mark; Crossley, Kay; Vicenzino, Bill

    2017-01-01

    Patellofemoral Pain (PFP) is highly prevalent among adults and adolescents. Localized mechanical hyperalgesia around the knee and tibialis anterior have been observed in people with PFP, but limited knowledge of potential manifestations of central sensitisation exists. The aims of this study were to study conditioned pain modulation (CPM) and wide-spread hyperalgesia in adults with PFP. This assessor-blinded cross-sectional study design compared CPM and mechanical pressure pain thresholds (PPT) between 33 adults (23 females) diagnosed with PFP and 32 age and sex matched pain-free controls. The investigator taking the PPT measurements was blinded to which participants had PFP. PPTs were reliably measured using a Somedic hand-held pressure algometer at three sites: 1) The centre of the patella, 2) the tibialis anterior muscle and 3) a remote site on the lateral epicondyle. For the assessment of CPM, experimental pain was induced to the contralateral hand by immersion into a cold water bath (conditioning stimulus), and assessment of PPTs (the test stimulus) was performed before and immediately after the conditioning stimulation. On average, the CPM paradigm induced a significant increase in PPTs across the three sites (6.3–13.5%, P<0.05), however there was no difference in CPM between young adults with PFP compared to the control group, (F(1,189) = 0.39, P = 0.89). There was no difference in mechanical PPTs between the two groups (F(1,189) = 0.03, P = 0.86). Contrary to our a-priori hypothesis, we found no difference in CPM or PPT between young adults with PFP and age and sex matched pain-free controls. PMID:29220355

  5. Patellofemoral morphology is not related to pain using three-dimensional quantitative analysis in an older population: data from the Osteoarthritis Initiative

    PubMed Central

    Drew, Benjamin T.; Bowes, Michael A.; Redmond, Anthony C.; Dube, Bright; Kingsbury, Sarah R.; Conaghan, Philip G.

    2017-01-01

    Abstract Objectives Current structural associations of patellofemoral pain (PFP) are based on 2D imaging methodology with inherent measurement uncertainty due to positioning and rotation. This study employed novel technology to create 3D measures of commonly described patellofemoral joint imaging features and compared these features in people with and without PFP in a large cohort. Methods We compared two groups from the Osteoarthritis Initiative: one with localized PFP and pain on stairs, and a control group with no knee pain; both groups had no radiographic OA. MRI bone surfaces were automatically segmented and aligned using active appearance models. We applied t-tests, logistic regression and linear discriminant analysis to compare 13 imaging features (including patella position, trochlear morphology, facet area and tilt) converted into 3D equivalents, and a measure of overall 3D shape. Results One hundred and fifteen knees with PFP (mean age 59.7, BMI 27.5 kg/m2, female 58.2%) and 438 without PFP (mean age 63.6, BMI 26.9 kg/m2, female 52.9%) were included. After correction for multiple testing, no statistically significant differences were found between groups for any of the 3D imaging features or their combinations. A statistically significant discrimination was noted for overall 3D shape between genders, confirming the validity of the 3D measures. Conclusion Challenging current perceptions, no differences in patellofemoral morphology were found between older people with and without PFP using 3D quantitative imaging analysis. Further work is needed to see if these findings are replicated in a younger PFP population. PMID:28968747

  6. The nutrient content of US household food purchases by store types

    PubMed Central

    Stern, Dalia; Ng, Shu Wen; Popkin, Barry M

    2015-01-01

    Introduction Little is known about where households shop for packaged foods, what foods and beverages they purchase, and the nutrient content of these purchases. The objectives are to describe volume trends and nutrient content (food groups and nutrient profiles) of household packaged foods purchases (PFP) by store-type. Methods Cross-sectional analysis of US households’ food purchases (Nielsen Homescan) from 2000 to 2012 (n=652,023 household-year observations) with survey weights used for national representativeness. Household PFP trends (% volume) by store-type, household purchases of key food and beverage groups based on caloric contribution by store-type, and mean caloric and nutrient densities (sugars, saturated fat and sodium) of household PFP by store-type are analyzed. Data were collected from 2000–2012. Analyses were conducted in 2014–2015. Results The proportion of total volume of household PFP significantly increased from 2000 to 2012 for mass-merchandisers (13.1 to 23.9%), convenience-stores (3.6 to 5.9%) and warehouse-club (6.2 to 9.8%), and significantly decreased for grocery-chains (58.5 to 46.3%) and non-chain grocerys (10.3 to 5.2%). Top common sources of calories (%) from household PFP by food/beverage group include: savory snacks, grain-based desserts and regular soft-drinks. The energy, total sugar, sodium and saturated fat densities of household PFP from mass-merchandisers, warehouse-club and convenience-stores were higher, compared to grocery-stores. Conclusions PFP from stores with poorer nutrient density (more energy, total sugar, sodium and saturated fat-dense), such as warehouse-club, mass-merchandisers and convenience-stores are growing, representing a potential US public health concern. PMID:26437868

  7. Age-related differences in foot mobility in individuals with patellofemoral pain.

    PubMed

    Tan, Jade M; Crossley, Kay M; Vicenzino, Bill; Menz, Hylton B; Munteanu, Shannon E; Collins, Natalie J

    2018-01-01

    Age-related changes in midfoot mobility have the potential to influence success with foot orthoses intervention in people with patellofemoral pain (PFP). The aim of this study was to determine whether older people with PFP demonstrate less foot mobility than younger adults with PFP. One hundred ninety four participants (113 (58%) women, age 32 ± 7 years, BMI 25 ± 4.9 kg/m 2 ) with PFP (≥ 6 weeks duration) were included, with foot mobility quantified using reliable and valid methods. K-means cluster analysis classified participants into three homogenous groups based on age. After cluster formation, univariate analyses of co-variance (covariates: sex, weight) were used to compare midfoot height mobility, midfoot width mobility, and foot mobility magnitude between age groups (significance level 0.05). Cluster analysis revealed three distinct age groups: 18-29 years ( n  = 70); 30-39 years ( n  = 101); and 40-50 years ( n  = 23). There was a significant main effect for age for midfoot height mobility ( p  < 0.001) and foot mobility magnitude ( p  = 0.006). Post-hoc analyses revealed that midfoot height mobility differed across all three groups (moderate to large effect sizes), and that foot mobility magnitude was significantly less in those aged 40-50 years compared to those aged 18-25 years (moderate effect size). There were no significant main effects for age for midfoot width mobility ( p  > 0.05). Individuals with PFP aged 40-50 years have less foot mobility than younger adults with PFP. These findings may have implications for evaluation and treatment of older individuals with PFP.

  8. Patellofemoral morphology is not related to pain using three-dimensional quantitative analysis in an older population: data from the Osteoarthritis Initiative.

    PubMed

    Drew, Benjamin T; Bowes, Michael A; Redmond, Anthony C; Dube, Bright; Kingsbury, Sarah R; Conaghan, Philip G

    2017-12-01

    Current structural associations of patellofemoral pain (PFP) are based on 2D imaging methodology with inherent measurement uncertainty due to positioning and rotation. This study employed novel technology to create 3D measures of commonly described patellofemoral joint imaging features and compared these features in people with and without PFP in a large cohort. We compared two groups from the Osteoarthritis Initiative: one with localized PFP and pain on stairs, and a control group with no knee pain; both groups had no radiographic OA. MRI bone surfaces were automatically segmented and aligned using active appearance models. We applied t-tests, logistic regression and linear discriminant analysis to compare 13 imaging features (including patella position, trochlear morphology, facet area and tilt) converted into 3D equivalents, and a measure of overall 3D shape. One hundred and fifteen knees with PFP (mean age 59.7, BMI 27.5 kg/m2, female 58.2%) and 438 without PFP (mean age 63.6, BMI 26.9 kg/m2, female 52.9%) were included. After correction for multiple testing, no statistically significant differences were found between groups for any of the 3D imaging features or their combinations. A statistically significant discrimination was noted for overall 3D shape between genders, confirming the validity of the 3D measures. Challenging current perceptions, no differences in patellofemoral morphology were found between older people with and without PFP using 3D quantitative imaging analysis. Further work is needed to see if these findings are replicated in a younger PFP population. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology.

  9. Trunk and Lower Extremity Kinematics During Stair Descent in Women With or Without Patellofemoral Pain.

    PubMed

    Schwane, Brandi G; Goerger, Benjamin M; Goto, Shiho; Blackburn, J Troy; Aguilar, Alain J; Padua, Darin A

    2015-07-01

    There is limited evidence indicating the contribution of trunk kinematics to patellofemoral pain (PFP). A better understanding of the interaction between trunk and lower extremity kinematics in this population may provide new avenues for interventions to treat PFP. To compare trunk and lower extremity kinematics between participants with PFP and healthy controls during a stair-descent task. Cross-sectional study. Research laboratory. Twenty women with PFP (age = 22.2 ± 3.1 years, height = 164.5 ± 9.2 cm, mass = 63.5 ± 13.6 kg) and 20 healthy women (age = 21.0 ± 2.6 years, height = 164.5 ± 7.1 cm, mass = 63.8 ± 12.7 kg). Kinematics were recorded as participants performed stair descent at a controlled velocity. Three-dimensional joint displacement of the trunk, hip, and knee during the stance phase of stair descent for the affected leg was measured using a 7-camera infrared optical motion-capture system. Pretest and posttest pain were assessed using a visual analogue scale. Kinematic differences between groups were determined using independent-samples t tests. A 2 × 2 mixed-model analysis of variance (group = PFP, control; time = pretest, posttest) was used to compare knee pain. We observed greater knee internal-rotation displacement for the PFP group (12.8° ± 7.2°) as compared with the control group (8.9° ± 4.4°). No other between-groups differences were observed for the trunk, hip, or other knee variables. We observed no difference in trunk kinematics between groups but did note differences in knee internal-rotation displacement. These findings contribute to the current knowledge of altered movement in those with PFP and provide direction for exercise interventions.

  10. The outcome of hip exercise in patellofemoral pain: A systematic review.

    PubMed

    Thomson, Catherine; Krouwel, Oliver; Kuisma, Raija; Hebron, Clair

    2016-12-01

    Patellofemoral pain (PFP) is one of the most common lower extremity conditions seen in clinical practice. Current evidence shows that there are hip strength deficits, delayed onset and shorter activation of gluteus medius in people with PFP. The aim of this review was to systematically review the literature to investigate the outcome of hip exercise in people with PFP. AMED, CINAHL, Cochrane, EMBASE, PEDro, Pubmed, Science direct and SPORTDiscus databases were searched from inception to November 2014 for RCTs, non-randomised studies and case studies. Two independent reviewers assessed each paper for inclusion and quality. Twenty one papers were identified; eighteen investigating strengthening exercise, two investigating the effect of neuromuscular exercise and one study investigated the effect of hip exercise for the prevention of PFP. Hip and knee strengthening programmes were shown to be equally effective. Limited evidence indicates that the addition of hip exercise to an exercise programme is beneficial. Limited evidence demonstrates that motor skill retraining in a participant group who displayed abnormal hip alignment in running improves pain. The evidence consistently demonstrated that both hip strengthening and neuromuscular exercise has a beneficial effect on pain and function in people with PFP. Strengthening exercise predominantly addressed abductor and external rotator muscle groups. A consensus from PFP researchers for standardisation of methodology is recommended to enable meaningful comparison between trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Isometric strength ratios of the hip musculature in females with patellofemoral pain: a comparison to pain-free controls.

    PubMed

    Magalhães, Eduardo; Silva, Ana Paula M C C; Sacramento, Sylvio N; Martin, RobRoy L; Fukuda, Thiago Y

    2013-08-01

    The purpose of the study was to compare hip agonist-antagonist isometric strength ratios between females with patellofemoral pain (PFP) syndrome and pain-free control group. One hundred and twenty females between 15 and 40 years of age (control group: n = 60; PFP group: n = 60) participated in the study. Hip adductor, abductor, medial rotator, lateral rotator, flexor, and extensor isometric strength were measured using a hand-held dynamometer. Comparisons in the hip adductor/abductor and medial/lateral rotator and flexor/extensor strength ratios were made between groups using independent t-tests. Group comparisons also were made between the anteromedial hip complex (adductor, medial rotator, and flexor musculature) and posterolateral hip complex (abductor, lateral rotator, and extensor musculature). On average, the hip adductor/abductor isometric strength ratio in the PFP group was 23% higher when compared with the control group (p = 0.01). The anteromedial/posterolateral complex ratio also was significantly higher in the PFP group (average 8%; p = 0.04). No significant group differences were found for the medial/lateral rotator ratio and flexor/extensor strength ratios. The results of this study demonstrate that females with PFP have altered hip strength ratios when compared with asymptomatic controls. These strength imbalances may explain the tendency of females with PFP to demonstrate kinematic tendencies that increase loading on the patellofemoral joint (i.e., dynamic knee valgus).

  12. The Effect of Implicit–Explicit Followership Congruence on Benevolent Leadership: Evidence from Chinese Family Firms

    PubMed Central

    Wang, Xiao; Peng, Jian

    2016-01-01

    Benevolent leadership, a traditional Chinese leadership style generated under the influence of Confucianism, has been under growing discussion since its proposal. However, existing research has focused mainly on the consequences of benevolent leadership, and research probing into its antecedents is scarce. To fill such research gap, the current study aims to explore the effect of the congruence between implicit positive followership prototype (PFP) and explicit positive followership trait (PFT) on benevolent leadership. Polynomial regression combined with the response surface methodology was used to test the hypotheses herein. The results, based on a sample of 241 leader–follower dyads from four Chinese family firms, indicated the following: (1) benevolent leadership is higher when leader PFP is congruent with follower PFT than when they are incongruent; (2) in cases of congruence, benevolent leadership is higher when leader PFP and follower PFT are both high rather than low; (3) in the case of incongruence, there is no significant difference for the level of benevolent leadership in two scenarios: “low leader PFP – high follower PFT” and “high leader PFP – low follower PFT”. PMID:27375514

  13. Identification of an organic semiconductor superlattice structure of pentacene and perfluoro-pentacene through resonant and non-resonant X-ray scattering

    DOE PAGES

    Kowarik, S.; Hinderhofer, A.; Wang, C.; ...

    2015-11-30

    Highly crystalline and stable molecular superlattices are grown with the smallest possible stacking period using monolayers (MLs) of the organic semiconductors pentacene (PEN) and perfluoro-pentacene (PFP). Superlattice reflections in X-ray reflectivity and their energy dependence in resonant soft X-ray reflectivity measurements show that PFP and PEN MLs indeed alternate even though the coherent ordering is lost after ~ 4 ML. The observed lattice spacing of 15.9 Å in the superlattice is larger than in pure PEN and PFP films, presumably because of more upright standing molecules and lack of interdigitation between the incommensurate crystalline PEN and PFP layers. The findingsmore » are important for the development of novel organic quantum optoelectronic devices.« less

  14. Neuronal activity during a cued strategy task: Comparison of dorsolateral, orbital and polar prefrontal cortex

    PubMed Central

    Tsujimoto, Satoshi; Genovesio, Aldo; Wise, Steven P.

    2012-01-01

    We compared neuronal activity in the dorsolateral (PFdl), orbital (PFo) and polar (PFp) prefrontal cortex as monkeys performed three tasks. In two tasks, a cue instructed one of two strategies: stay with the previous response or shift to the alternative. Visual stimuli served as cues in one of these tasks; in the other, fluid rewards did so. In the third task, visuospatial cues instructed each response. A delay period followed each cue. As reported previously, PFdl encoded strategies (stay or shift) and responses (left or right) during the cue and delay periods, while PFo encoded strategies and PFp encoded neither strategies nor responses; during the feedback period, all three areas encoded responses, not strategies. Four novel findings emerged from the present analysis. (1) The strategy encoded by PFdl and PFo cells during the cue and delay periods was modality specific. (2) The response encoded by PFdl cells was task- and modality specific during the cue period, but during the delay and feedback periods it became task- and modality general. (3) Although some PFdl and PFo cells responded to or anticipated rewards, we could rule out reward effects for most strategy-and response-related activity. (4) Immediately before feedback, only PFp signaled responses that were correct according to the cued strategy; after feedback, only PFo signaled the response that had been made, whether correct or incorrect. These signals support a role in generating responses by PFdl, assigning outcomes to choices by PFo, and assigning outcomes to cognitive processes by PFp. PMID:22875935

  15. Recreational runners with patellofemoral pain exhibit elevated patella water content.

    PubMed

    Ho, Kai-Yu; Hu, Houchun H; Colletti, Patrick M; Powers, Christopher M

    2014-09-01

    Increased bone water content resulting from repetitive patellofemoral joint overloading has been suggested to be a possible mechanism underlying patellofemoral pain (PFP). To date, it remains unknown whether persons with PFP exhibit elevated bone water content. The purpose of this study was to determine whether recreational runners with PFP exhibit elevated patella water content when compared to pain-free controls. Ten female recreational runners with a diagnosis of PFP (22 to 39years of age) and 10 gender, age, weight, height, and activity matched controls underwent chemical-shift-encoded water-fat magnetic resonance imaging (MRI) to quantify patella water content (i.e., water-signal fraction). Differences in bone water content of the total patella, lateral aspect of the patella, and medial aspect of the patella were compared between groups using independent t tests. Compared with the control group, the PFP group demonstrated significantly greater total patella bone water content (15.4±3.5% vs. 10.3±2.1%; P=0.001), lateral patella water content (17.2±4.2% vs. 11.5±2.5%; P=0.002), and medial patella water content (13.2±2.7% vs. 8.4±2.3%; P<0.001). The higher patella water content observed in female runners with PFP is suggestive of venous engorgement and elevated extracellular fluid. In turn, this may lead to an increase in intraosseous pressure and pain. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Knee crepitus is prevalent in women with patellofemoral pain, but is not related with function, physical activity and pain.

    PubMed

    de Oliveira Silva, Danilo; Pazzinatto, Marcella Ferraz; Priore, Liliam Barbuglio Del; Ferreira, Amanda Schenatto; Briani, Ronaldo Valdir; Ferrari, Deisi; Bazett-Jones, David; Azevedo, Fábio Mícolis de

    2018-06-06

    (i) To assess the reliability of knee crepitus measures, (ii) to investigate the association between knee crepitus and PFP; (iii) to investigate the relationship between knee crepitus with self-reported function, physical activity and pain. Cross-sectional. Laboratory-based study. 165 women with PFP and 158 pain-free women. Knee crepitus test, anterior knee pain scale (AKPS) and self-reported worst knee pain in the last month, knee pain after 10 squats and knee pain after 10 stairs climbing. Knee crepitus clinical test presented high reliability Kappa value for PFP group was 0.860 and for pain-free group was 0.906. There is a significantly greater proportion of those with crepitus in the PFP group than in the pain-free group (OR = 4.19). Knee crepitus had no relationship with function (rpb = 0.03; p = 0.727), physical activity level (rpb = 0.010; p = 0.193), worst pain (rpb = 0.11; p = 0.141), pain climbing stairs (rpb = 0.10; p = 0.194) and pain squatting (rpb = 0.02; p = 0.802). Women who presents knee crepitus have 4 times greater odds to be in a group with PFP compared to those who do not. However, knee crepitus has no relationship with self-reported clinical outcomes of women with PFP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Lower Amplitude of the Hoffmann Reflex in Women With Patellofemoral Pain: Thinking Beyond Proximal, Local, and Distal Factors.

    PubMed

    de Oliveira Silva, Danilo; Magalhães, Fernando Henrique; Faria, Nathálie Clara; Pazzinatto, Marcella Ferraz; Ferrari, Deisi; Pappas, Evangelos; de Azevedo, Fábio Mícolis

    2016-07-01

    To investigate whether vastus medialis (VM) Hoffmann reflexes (H-reflexes) differ on the basis of the presence or absence of patellofemoral pain (PFP) and to assess the capability of VM H-reflex measurements in accurately discriminating between women with and without PFP. Cross-sectional study. Laboratory of biomechanics and motor control. Women (N=30) aged 18 to 35 years were recruited, consisting of 2 groups: women with PFP (n=15) and asymptomatic controls (n=15). Not applicable. Maximum evoked responses were obtained by electrical stimulation applied to the femoral nerve, and peak-to-peak amplitudes of maximal Hoffmann reflex (Hmax) and maximal motor wave (Mmax) ratios were calculated. Independent samples t tests were performed to identify differences between groups, and a receiver operating characteristic curve was constructed to assess the discriminatory capability of VM H-reflex measurements. VM Hmax/Mmax ratios were significantly lower in participants with PFP than in pain-free participants (P=.007). In addition, the VM Hmax/Mmax ratios presented large and balanced discriminatory capability values (sensitivity, 73%; specificity, 67%). This study is the first to show that VM H-reflexes are lower in women with PFP than in asymptomatic controls. Therefore, increasing the excitation of the spinal cord in PFP participants may be essential to maintaining the gains acquired during the rehabilitation programs. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Paper-based silver-nanowire electronic circuits with outstanding electrical conductivity and extreme bending stability.

    PubMed

    Huang, Gui-Wen; Xiao, Hong-Mei; Fu, Shao-Yun

    2014-08-07

    Here a facile, green and efficient printing-filtration-press (PFP) technique is reported for room-temperature (RT) mass-production of low-cost, environmentally friendly, high performance paper-based electronic circuits. The as-prepared silver nanowires (Ag-NWs) are uniformly deposited at RT on a pre-printed paper substrate to form high quality circuits via vacuum filtration and pressing. The PFP circuit exhibits more excellent electrical property and bending stability compared with other flexible circuits made by existing techniques. Furthermore, practical applications of the PFP circuits are demonstrated.

  19. Perception of Physical Fitness and Exercise Self-Efficacy and Its Contribution to the Relationship between Body Dissatisfaction and Physical Fitness in Female Minority Children.

    PubMed

    Flanagan, Emily W; Perry, Arlette C

    2018-06-06

    Body Dissatisfaction (BD) and low physical self-concept and exercise efficacy have been linked to poor physical fitness levels and adverse health outcomes in children. The purpose of this study was to examine the relationship between BD, physical fitness, exercise self-efficacy, and self-Perception of Physical Fitness (PFP) in Latina and Black female children. Twenty-eight Latina and Black children enrolled in an elementary afterschool program, aged 8⁻12, completed surveys evaluating body dissatisfaction, exercise efficacy, PFP, and measures of physical fitness. Subjects exhibited moderate but significant inverse relationships between BD and PFP in strength ( r = −0.459), agility ( r = −0.382), aerobic fitness ( r = −0.354), and flexibility ( r = −0.461) ( p < 0.05 for all). There was a significant negative correlation between exercise efficacy and BD ( r = −4.2; p < 0.05). Power ( r = 0.51) and flexibility ( r = 0.42) were the only physical fitness measures significantly and positively related to children’s PFP ( p < 0.05). A significant medium inverse relationship was also found between BD and aerobic fitness scores ( r = −0.381; p < 0.05). However, after controlling for exercise efficacy or perception of physical fitness, the relationship between BD and aerobic fitness was not significant ( p > 0.05). Findings suggest that positive PFP and positive performance in several physical fitness measures are associated with lower levels of BD in minority female children. Furthermore, evidence suggests exercise efficacy and PFP can mediate the relationship body image and aerobic fitness. These findings suggest that PFP, more so than measured physical fitness, was associated with lower levels of BD in minority female children. These results have important implications for programs designed to improve physical fitness and mental health in minority children.

  20. Isolation and genetic study of p-fluoro-DL-phenylalanine-resistant mutants overproducing beta-phenethyl-alcohol in Saccharomyces cerevisiae.

    PubMed

    Fukuda, K; Watanabe, M; Asano, K; Ouchi, K; Takasawa, S

    1991-12-01

    p-Fluoro-DL-phenylalanine (PFP)-resistant mutants which produce a large amount of beta-phenethyl-alcohol, a rose-like flavor component, were isolated from the isogenic strains X2180-1A and X2180-1B of Saccharomyces cerevisiae. Cells of these mutants accumulated phenylalanine and tryptophan more than 3-fold times that of wild-type cells, while they accumulated less than half the tyrosine. The activity of prephenate dehydrogenase (PDG) (EC 1.3.1.12) was markedly decreased while that of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (EC 4.1.2.15) was increased. Genetic analysis revealed that the mutation occurred at the TYR1 locus, encoding PDG, and that the mutated TYR1 gene, try1-pfp, caused both PFP resistance and beta-phenethyl-alcohol overproduction. This was supported by molecular genetic studies with cloned tyr1-pfp DNA.

  1. [Transcutaneous electrical nervous stimulation in the prognosis of Bell's palsy].

    PubMed

    Sabag-Ruiz, Enrique; Osuna-Bernal, Janeth; Brito-Zurita, Olga Rosa; Gómez-Alcalá, Alejandro Vidal; Ornelas-Aguirre, José Manuel

    2009-01-01

    The peripheral face palsy (PFP) is the commonest acute cranial neuropathy. The PFP has a showy clinical pattern which contrasts with a favorable course. Our objective was to determine the sensitivity and specificity for the nervous excitability test (NET) with transcutaneous electrical nerve stimulation (TENS) and the time required to obtain face symmetry. An analytical cross-sectional study was made in 22 patients with PFP. The goal was the time (days) to obtain face symmetry. The sensitivity and specificity was carried out. A sensitivity and specificity of the NET was of 100 %. The correlation corrected by sex and age between both variables was 0.89. The average in days of recovery was smaller in those with a positive NET (p < 0.05) test. The test of nervous excitability for PFP with TENS is safe and simple to use in primary care and urgencies services.

  2. Perfluoropentacene adsorption on Cu(110)

    NASA Astrophysics Data System (ADS)

    Gall, J.; Zhang, L.; Fu, X.; Zeppenfeld, P.; Sun, L. D.

    2017-09-01

    The adsorption of perfluoropentacene (PFP) on the Cu(110) surface has been investigated using reflectance difference spectroscopy (RDS), low-energy electron diffraction, and low-temperature scanning tunneling microscopy. The PFP molecules within the first monolayer align their long molecular axis exclusively oriented along the [001] azimuthal direction of the Cu substrate. In comparison with the adsorption behavior of pentacene on the same surface, a strong effect of the fluorination regarding the molecular orientation and the intermolecular and molecule-substrate interactions was identified. Furthermore, a two-dimensional gas-solid phase transition accompanied by a reversible azimuthal rotation of the PFP molecules was observed at the beginning of the second monolayer growth. The change of the optical anisotropy associated with this reorientation was used to explore the two-dimensional (2D) condensation as a function of coverage and temperature by RDS, and the 2D heat of condensation in the PFP bilayer on Cu(110) was determined to be 105 meV.

  3. SLIGHTLY IRRADIATED FUEL (SIF) INTERIM DISPOSITION PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NORTON SH

    2010-02-23

    CH2M HILL Plateau Remediation Company (CH2M HILL PRC) is proud to submit the Slightly Irradiated Fuel (SIF) Interim Disposition Project for consideration by the Project Management Institute as Project of the Year for 2010. The SIF Project was a set of six interrelated sub-projects that delivered unique stand-alone outcomes, which, when integrated, provided a comprehensive and compliant system for storing high risk special nuclear materials. The scope of the six sub-projects included the design, construction, testing, and turnover of the facilities and equipment, which would provide safe, secure, and compliant Special Nuclear Material (SNM) storage capabilities for the SIF material.more » The project encompassed a broad range of activities, including the following: Five buildings/structures removed, relocated, or built; Two buildings renovated; Structural barriers, fencing, and heavy gates installed; New roadways and parking lots built; Multiple detection and assessment systems installed; New and expanded communication systems developed; Multimedia recording devices added; and A new control room to monitor all materials and systems built. Project challenges were numerous and included the following: An aggressive 17-month schedule to support the high-profile Plutonium Finishing Plant (PFP) decommissioning; Company/contractor changeovers that affected each and every project team member; Project requirements that continually evolved during design and construction due to the performance- and outcome-based nature ofthe security objectives; and Restrictions imposed on all communications due to the sensitive nature of the projects In spite of the significant challenges, the project was delivered on schedule and $2 million under budget, which became a special source of pride that bonded the team. For years, the SIF had been stored at the central Hanford PFP. Because of the weapons-grade piutonium produced and stored there, the PFP had some of the tightest security on the Hanford nuclear reservation. Workers had to pass through metal detectors when they arrived at the plant and materials leaving the plant had to be scanned for security reasons. Whereas other high-security nuclear materials were shipped from the PFP to Savannah River, S.C. as part ofa Department of Energy (DOE) program to consolidate weapons-grade plutonium, it was determined that the SIF should remain onsite pending disposition to a national repository. Nevertheless, the SIF still requires a high level of security that the PFP complex has always provided. With the 60-year PFP mission of producing and storing plutonium concluded, the environmental cleanup plans for Hanford call for the demolition of the 63-building PFP complex. Consequently, if the SIF remained at PFP it not only would have interfered with the environmental cleanup plans, but would have required $100 million in facility upgrades to meet increased national security requirements imposed after the 9/11 terrorist attacks. A new smaller and more cost-effective area was needed to store this material, which led to the SIF Project. Once the SIF project was successfully completed and the SIF was safely removed from PFP, the existing Protected Area at PFP could be removed, and demolition could proceed more quickly without being encumbered by restrictive security requirements that an active Protected Area requires. The lightened PFP security level brought by safely removing and storing the SIF would also yield lowered costs for deactivation and demolition, as well as reduce overall life-cycle costs.« less

  4. Offline pentafluorophenyl (PFP)-RP prefractionation as an alternative to high-pH RP for comprehensive LC-MS/MS proteomics and phosphoproteomics.

    PubMed

    Grassetti, Andrew V; Hards, Rufus; Gerber, Scott A

    2017-07-01

    Technological advances in liquid chromatography and tandem mass spectrometry (LC-MS/MS) have enabled comprehensive analyses of proteins and their post-translational modifications from cell culture and tissue samples. However, sample complexity necessitates offline prefractionation via a chromatographic method that is orthogonal to online reversed-phase high-performance liquid chromatography (RP-HPLC). This additional fractionation step improves target identification rates by reducing the complexity of the sample as it is introduced to the instrument. A commonly employed offline prefractionation method is high pH reversed-phase (Hi-pH RP) chromatography. Though highly orthogonal to online RP-HPLC, Hi-pH RP relies on buffers that interfere with electrospray ionization. Thus, samples that are prefractionated using Hi-pH RP are typically desalted prior to LC-MS/MS. In the present work, we evaluate an alternative offline prefractionation method, pentafluorophenyl (PFP)-based reversed-phase chromatography. Importantly, PFP prefractionation results in samples that are dried prior to analysis by LC-MS/MS. This reduction in sample handling relative to Hi-pH RP results in time savings and could facilitate higher target identification rates. Here, we have compared the performances of PFP and Hi-pH RP in offline prefractionation of peptides and phosphopeptides that have been isolated from human cervical carcinoma (HeLa) cells. Given the prevalence of isobaric mass tags for peptide quantification, we evaluated PFP chromatography of peptides labeled with tandem mass tags. Our results suggest that PFP is a viable alternative to Hi-pH RP for both peptide and phosphopeptide offline prefractionation.

  5. CURRENT CONCEPTS IN BIOMECHANICAL INTERVENTIONS FOR PATELLOFEMORAL PAIN

    PubMed Central

    Meira, Erik P.

    2016-01-01

    Patellofemoral pain (PFP) has historically been a complex and enigmatic issue. Many of the factors thought to relate to PFP remain after patients' symptoms have resolved making their clinical importance difficult to determine. The tissue homeostasis model proposed by Dye in 2005 can assist with understanding and implementing biomechanical interventions for PFP. Under this model, the goal of interventions for PFP should be to re-establish patellofemoral joint (PFJ) homeostasis through a temporary alteration of load to the offended tissue, followed by incrementally restoring the envelope of function to the baseline level or higher. High levels of PFJ loads, particularly in the presence of an altered PFJ environment, are thought to be a factor in the development of PFP. Clinical interventions often aim to alter the biomechanical patterns that are thought to result in elevated PFJ loads while concurrently increasing the load tolerance capabilities of the tissue through therapeutic exercise. Biomechanics may play a role in PFJ load modification not only when addressing proximal and distal components, but also when considering the involvement of more local factors such as the quadriceps musculature. Biomechanical considerations should consider the entire kinetic chain including the hip and the foot/ankle complex, however the beneficial effects of these interventions may not be the result of long-term biomechanical changes. Biomechanical alterations may be achieved through movement retraining, but the interventions likely need to be task-specific to alter movement patterns. The purpose of this commentary is to describe biomechanical interventions for the athlete with PFP to encourage a safe and complete return to sport. Level of Evidence 5 PMID:27904791

  6. Kinematic and Kinetic Analysis of the Single-Leg Triple Hop Test in Women With and Without Patellofemoral Pain.

    PubMed

    dos Reis, Amir Curcio; Correa, João Carlos Ferrari; Bley, André Serra; Rabelo, Nayra Deise dos Anjos; Fukuda, Thiago Yukio; Lucareli, Paulo Roberto Garcia

    2015-10-01

    Cross-sectional study. To compare the biomechanical strategies of the trunk and lower extremity during the transition period between the first and second hop of a single-leg triple hop test in women with and without patellofemoral pain (PFP). Recent literature has shown that PFP is associated with biomechanical impairments of the lower extremities. A number of studies have analyzed the position of the trunk and lower extremities for functional activities such as walking, squatting, jumping, and the step-down test. However, studies on more challenging activities, such as the single-leg triple hop test, may be more representative of sports requiring jumping movements. Women between 18 and 35 years of age (control group, n = 20; PFP group, n = 20) participated in the study. Three-dimensional kinematic and kinetic data were collected during the transition period between the first and second hops while participants performed the single-leg triple hop test. Compared to the control group, women with PFP exhibited greater (P<.05) anterior and ipsilateral trunk lean, contralateral pelvic drop, hip internal rotation and adduction, and ankle eversion, while exhibiting less hip and knee flexion. A significant difference (P<.05) in time to peak joint angle was also found between groups for all the variables analyzed, except anterior pelvic tilt and hip flexion. In addition, women with PFP exhibited greater (P<.05) hip and knee abductor internal moments. Compared to the control group, women with PFP exhibited altered trunk, pelvis, hip, knee, and ankle kinematics and kinetics.

  7. Strengthening of the Hip and Core Versus Knee Muscles for the Treatment of Patellofemoral Pain: A Multicenter Randomized Controlled Trial

    PubMed Central

    Ferber, Reed; Bolgla, Lori; Earl-Boehm, Jennifer E.; Emery, Carolyn; Hamstra-Wright, Karrie

    2015-01-01

    Context: Patellofemoral pain (PFP) is the most common injury in running and jumping athletes. Randomized controlled trials suggest that incorporating hip and core strengthening (HIP) with knee-focused rehabilitation (KNEE) improves PFP outcomes. However, no randomized controlled trials have, to our knowledge, directly compared HIP and KNEE programs. Objective: To compare PFP pain, function, hip- and knee-muscle strength, and core endurance between KNEE and HIP protocols after 6 weeks of rehabilitation. We hypothesized greater improvements in (1) pain and function, (2) hip strength and core endurance for patients with PFP involved in the HIP protocol, and (3) knee strength for patients involved in the KNEE protocol. Design: Randomized controlled clinical trial. Setting: Four clinical research laboratories in Calgary, Alberta; Chicago, Illinois; Milwaukee, Wisconsin; and Augusta, Georgia. Patients or Other Participants: Of 721 patients with PFP screened, 199 (27.6%) met the inclusion criteria (66 men [31.2%], 133 women [66.8%], age = 29.0 ± 7.1 years, height = 170.4 ± 9.4 cm, weight = 67.6 ± 13.5 kg). Intervention(s): Patients with PFP were randomly assigned to a 6-week KNEE or HIP protocol. Main Outcome Measure(s): Primary variables were self-reported visual analog scale and Anterior Knee Pain Scale measures, which were conducted weekly. Secondary variables were muscle strength and core endurance measured at baseline and at 6 weeks. Results: Compared with baseline, both the visual analog scale and the Anterior Knee Pain Scale improved for patients with PFP in both the HIP and KNEE protocols (P < .001), but the visual analog scale scores for those in the HIP protocol were reduced 1 week earlier than in the KNEE group. Both groups increased in strength (P < .001), but those in the HIP protocol gained more in hip-abductor (P = .01) and -extensor (P = .01) strength and posterior core endurance (P = .05) compared with the KNEE group. Conclusions: Both the HIP and KNEE rehabilitation protocols produced improvements in PFP, function, and strength over 6 weeks. Although outcomes were similar, the HIP protocol resulted in earlier resolution of pain and greater overall gains in strength compared with the KNEE protocol. PMID:25365133

  8. Collaborative Negotiations: A Successful Approach for Negotiation Compliance Milestones for the transition of the PFP Hanford Nuclear Reservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOPKINS, A.M.

    The new approach to negotiations was termed collaborative (win-win) rather than positional (win-lose). Collaborative negotiations were conducted to establish milestones for the decommissioning of the Plutonium Finishing Plant, PFP.

  9. The influence of athletic activity on the plantar fascia in healthy young adults.

    PubMed

    Uzel, Murat; Cetinus, Ercan; Ekerbicer, H Cetin; Karaoguz, Ahmet

    2006-01-01

    Complaints deriving from the plantar fascia are relatively common in athletes. This study aimed to investigate the changes of thickness of plantar fascia via sonography in healthy young adults with different levels of activity. One hundred ten adults with normal body mass index were separated into three groups according to activity level: sedentary (group 1, n = 50), athletic activity less than 7 hours per week (group 2, n = 30), and athletic activity 7 or more hours per week (group 3, n = 30). The thicknesses of the plantar fascia at origin and at a point 5 mm distal to origin were measured via sonography. The mean values of the thickness of the proximal plantar fascia (PFp) and the distal plantar fascia (PFd) in group 1 were similar to those of groups 2 and 3 (p > 0.05). The mean values of PFp and PFd were significantly higher in men than in women (p < 0.05). The mean values of PFp and PFd were similar in left and right feet (p > 0.05). There were moderate positive correlations between PFp and weight, height, and body mass index but no correlation between PFp and amount of athletic activity. The thickness of the plantar fascia at origin did not change with athletic activity at the amateur level. Copyright 2006 Wiley Periodicals, Inc.

  10. Core muscle recruitment pattern during voluntary heel raises is different between patients with patellofemoral pain and healthy individuals.

    PubMed

    Biabanimoghadam, Mana; Motealleh, Alireza; Cowan, Sallie Melissa

    2016-06-01

    Recent studies suggest that the inconsistent outcomes of patellofemoral pain (PFP) treatment may result from the unclear understanding of changes in the structures remote from the knee joint. Due to the crucial influence of core stability on the knee function, this study aimed to evaluate the recruitment pattern of core muscles in individuals with and without PFP. Sixty women aged 18 to 40years, including 30 subjects diagnosed with PFP and 30 healthy controls rose on to their toes as quickly and strongly as possible in response to a sound alarm in standing position. Electromyographic onsets of the transversus abdominis (TrA)/internal oblique (IO), erector spinae (ES), and gluteus medius (GM) muscles were expressed relative to the electromyographic onset of the prime mover (i.e. soleus). Independent t-tests were performed to compare the onsets of each muscle between the groups. The nonparametric Friedman test and the post-hoc of Wilcoxon signed-rank test were used to describe the muscle activation pattern within the groups. The results revealed different recruitment patterns of the core muscles between the groups. In the healthy group the GM and TrA/IO contracted, almost simultaneously, in anticipation of the prime mover contraction (sol). However, in PFP subjects a significant delay in the contraction of TrA/IO changed the pattern of muscle activation. The findings demonstrate that muscular stabilization of spine is altered in the presence of PFP and suggest that treatment techniques aimed at improving core stability could be appropriate in the management of PFP. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Does ownership matter? An overview of systematic reviews of the performance of private for-profit, private not-for-profit and public healthcare providers.

    PubMed

    Herrera, Cristian A; Rada, Gabriel; Kuhn-Barrientos, Lucy; Barrios, Ximena

    2014-01-01

    Ownership of healthcare providers has been considered as one factor that might influence their health and healthcare related performance. The aim of this article was to provide an overview of what is known about the effects on economic, administrative and health related outcomes of different types of ownership of healthcare providers--namely public, private non-for-profit (PNFP) and private for-profit (PFP)--based on the findings of systematic reviews (SR). An overview of systematic reviews was performed. Different databases were searched in order to select SRs according to an explicit comprehensive criterion. Included SRs were assessed to determine their methodological quality. Of the 5918 references reviewed, fifteen SR were included, but six of them were rated as having major limitations, so they weren't incorporated in the analyses. According to the nine analyzed SR, ownership does seem to have an effect on health and healthcare related outcomes. In the comparison of PFP and PNFP providers, significant differences in terms of mortality of patients and payments to facilities have been found, both being higher in PFP facilities. In terms of quality and economic indicators such as efficiency, there are no concluding results. When comparing PNFP and public providers, as well as for PFP and public providers, no clear differences were found. PFP providers seem to have worst results than their PNFP counterparts, but there are still important evidence gaps in the literature that needs to be covered, including the comparison between public and both PFP and PNFP providers. More research is needed in low and middle income countries to understand the impact on and development of healthcare delivery systems.

  12. Effects of Purple-fleshed Sweet Potato (Ipomoera batatas Cultivar Ayamurasaki) Powder Addition on Color and Texture Properties and Sensory Characteristics of Cooked Pork Sausages during Storage

    PubMed Central

    Jin, Sang-Keun; Kim, Yeong-Jung; Park, Jae Hong; Hur, In-Chul; Nam, Sang-Hae; Shin, Daekeun

    2012-01-01

    This study was conducted to evaluate the effects of adding purple-fleshed sweet potato (PFP) powder on the texture properties and sensory characteristics of cooked pork sausage. Sodium nitrite alone and sodium nitrite in combination with PFP were added to five different treatments sausages (CON (control) = 0.01% sodium nitrite, SP25 = 0.005% sodium nitrite and 0.25% purple-fleshed sweet potato powder combination, SP50 = 0.005% sodium nitrite and 0.5% purple-fleshed sweet potato powder combination, PP25 = 0.25% purple-fleshed sweet potato powder, PP50 = 0.5% purple-fleshed sweet potato powder). The sausages were cooked to 74°C, stored at 4°C for 6 wks, and used for chemical analysis, textural properties, and a sensory evaluation on 0, 2, 4 and 6 wks of storage, respectively. Similar CIE a* and b* values were determined in sausages from CON, SP25 and SP50 at the end of storage, and they were higher in CIE a* but lower in CIE b* than that of the PP25 and PP50 sausages. Significant differences were observed for brittleness and hardness when PFP was added to the sausages but were not confirmed after 4 wks of storage. The objective color score was influenced by adding PFP; however, the effect was not dose dependent. In overall acceptability, panelists favored the CON, SP25, SP50, and PP50 sausages but did not prefer PP25 sausages at the end of storage. Therefore, adding PFP to cooked pork sausages improved color and texture properties and sensory characteristics, but further study is needed to determine the proper ratio of sodium nitrite and PFP. PMID:25049698

  13. Effects of Purple-fleshed Sweet Potato (Ipomoera batatas Cultivar Ayamurasaki) Powder Addition on Color and Texture Properties and Sensory Characteristics of Cooked Pork Sausages during Storage.

    PubMed

    Jin, Sang-Keun; Kim, Yeong-Jung; Park, Jae Hong; Hur, In-Chul; Nam, Sang-Hae; Shin, Daekeun

    2012-09-01

    This study was conducted to evaluate the effects of adding purple-fleshed sweet potato (PFP) powder on the texture properties and sensory characteristics of cooked pork sausage. Sodium nitrite alone and sodium nitrite in combination with PFP were added to five different treatments sausages (CON (control) = 0.01% sodium nitrite, SP25 = 0.005% sodium nitrite and 0.25% purple-fleshed sweet potato powder combination, SP50 = 0.005% sodium nitrite and 0.5% purple-fleshed sweet potato powder combination, PP25 = 0.25% purple-fleshed sweet potato powder, PP50 = 0.5% purple-fleshed sweet potato powder). The sausages were cooked to 74°C, stored at 4°C for 6 wks, and used for chemical analysis, textural properties, and a sensory evaluation on 0, 2, 4 and 6 wks of storage, respectively. Similar CIE a* and b* values were determined in sausages from CON, SP25 and SP50 at the end of storage, and they were higher in CIE a* but lower in CIE b* than that of the PP25 and PP50 sausages. Significant differences were observed for brittleness and hardness when PFP was added to the sausages but were not confirmed after 4 wks of storage. The objective color score was influenced by adding PFP; however, the effect was not dose dependent. In overall acceptability, panelists favored the CON, SP25, SP50, and PP50 sausages but did not prefer PP25 sausages at the end of storage. Therefore, adding PFP to cooked pork sausages improved color and texture properties and sensory characteristics, but further study is needed to determine the proper ratio of sodium nitrite and PFP.

  14. The influence of hip abductor muscle performance on dynamic postural stability in females with patellofemoral pain.

    PubMed

    Lee, Szu-Ping; Souza, Richard B; Powers, Christopher M

    2012-07-01

    Hip abductors play an important role in maintaining trunk and pelvis stability during unipedal tasks. The purpose of the study was to compare postural stability between individuals with patellofemoral pain (PFP) and pain-free controls. A secondary purpose was to evaluate the effect of a hip stabilizing brace on postural stability. Twenty females with PFP (27.3±6.3 years) and 19 controls (26.1±4.5 years) participated. Each subject performed a unipedal step-down balance task with the stance leg on a force platform from which center of pressure (COP) excursion was recorded. Quantitative COP excursion patterns (mean and peak displacements) were used as measures of postural stability. For subjects with PFP, postural stability also was quantified following the application of a hip stabilizing brace. Hip abductor strength was significantly lower in PFP group compared to the control group (1.39±0.4 vs. 1.62±0.26 N/kg-BW, p=0.046). Peak and mean medial-lateral COP displacements during the balance task were greater in the PFP group (39.8±6.7 vs. 24.3±3.8 mm, p<0.001; 24.7±16.3 vs. 13.5±4.4 mm, p=0.005). Application of the hip stabilizing brace reduced the peak and mean COP displacement (39.8±6.7 vs. 24.7±4.7 mm, p<0.001; 24.7±16.3 vs. 16.8±15.1 mm, p=0.02). Our results demonstrate that females with PFP exhibit impaired medial-lateral postural stability when compared to control subjects. Application of a hip stabilizing brace significantly improved stability to a level comparable to the controls. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Does Ownership Matter? An Overview of Systematic Reviews of the Performance of Private For-Profit, Private Not-For-Profit and Public Healthcare Providers

    PubMed Central

    Herrera, Cristian A.; Rada, Gabriel; Kuhn-Barrientos, Lucy; Barrios, Ximena

    2014-01-01

    Introduction Ownership of healthcare providers has been considered as one factor that might influence their health and healthcare related performance. The aim of this article was to provide an overview of what is known about the effects on economic, administrative and health related outcomes of different types of ownership of healthcare providers -namely public, private non-for-profit (PNFP) and private for-profit (PFP)- based on the findings of systematic reviews (SR). Methods and Findings An overview of systematic reviews was performed. Different databases were searched in order to select SRs according to an explicit comprehensive criterion. Included SRs were assessed to determine their methodological quality. Of the 5918 references reviewed, fifteen SR were included, but six of them were rated as having major limitations, so they weren't incorporated in the analyses. According to the nine analyzed SR, ownership does seem to have an effect on health and healthcare related outcomes. In the comparison of PFP and PNFP providers, significant differences in terms of mortality of patients and payments to facilities have been found, both being higher in PFP facilities. In terms of quality and economic indicators such as efficiency, there are no concluding results. When comparing PNFP and public providers, as well as for PFP and public providers, no clear differences were found. Conclusion PFP providers seem to have worst results than their PNFP counterparts, but there are still important evidence gaps in the literature that needs to be covered, including the comparison between public and both PFP and PNFP providers. More research is needed in low and middle income countries to understand the impact on and development of healthcare delivery systems. PMID:25437212

  16. Sport specialization's association with an increased risk of developing anterior knee pain in adolescent female athletes.

    PubMed

    Hall, Randon; Barber Foss, Kim; Hewett, Timothy E; Myer, Gregory D

    2015-02-01

    To determine if sport specialization increases the risk of anterior knee pain in adolescent female athletes. Retrospective cohort epidemiology study. Female basketball, soccer, and volleyball players (N = 546) were recruited from a single county public school district in Kentucky consisting of 5 middle schools and 4 high schools. A total of 357 multisport and 189 single-sport (66 basketball, 57 soccer, and 66 volleyball) athlete subjects were included due to their diagnosis of patellofemoral pain (PFP) on physical exam. Testing consisted of a standardized history and physician-administered physical examination to determine the presence of PFP. This study compared self-reported multisport athletes with sport-specialized athletes participating in only 1 sport. The sports-participation data were normalized by sport season, with each sport accounting for 1 season of exposure. Incidence rate ratios and 95% confidence intervals (CI) were calculated and used to determine significant differences between athletes who specialized in sport in early youth and multisport athletes. Specialization in a single sport increased the relative risk of PFP incidence 1.5-fold (95% CI 1.0-2.2, P = .038) for cumulative PFP diagnoses. Specific diagnoses such as Sinding Larsen Johansson/ patellar tendinopathy (95% CI 1.5-10.1, P = .005) and Osgood Schlatter disease (95% CI 1.5-10.1, P = .005) demonstrated a 4-fold greater relative risk in single-sport compared with multisport athletes. Incidence of other specific PFP diagnoses such as fat pad, plica, trauma, pes anserine bursitis, and iliotibial-band tendonitis was not different between single-sport and multisport participants (P > .05). Early sport specialization in female adolescents is associated with increased risk of anterior knee-pain disorders including PFP, Osgood Schlatter, Sinding Larsen-Johansson compared with multisport athletes.

  17. Overview of MAVEN Particle and Fields Package (PFP) Measurements During Observations of Discrete Aurora at Mars by the MAVEN Imaging Ultraviolet Spectrograph (IUVS)

    NASA Astrophysics Data System (ADS)

    Soobiah, Y. I. J.; Espley, J. R.; Connerney, J. E. P.; Gruesbeck, J.; DiBraccio, G. A.; Schneider, N.; Jain, S.; Brain, D.; Andersson, L.; Halekas, J. S.; Lillis, R. J.; McFadden, J. P.; Mitchell, D. L.; Mazelle, C. X.; Deighan, J.; McClintock, W. E.; Ergun, R.; Jakosky, B. M.

    2016-12-01

    NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has observed a variety of aurora at Mars and related processes that impact the escape of the Martian atmosphere. So far MAVEN's Imaging Ultraviolet Spectrograph (IUVS) instrument has observed 1) Diffuse aurora over widespread regions of Mars' northern hemisphere; 2) Discrete aurora that is spatially confined to localized patches around regions of crustal magnetic field; and 3) Proton aurora from the limb brightening of Lyman-α emission. MAVEN's Solar Energetic Particle (SEP) instrument has shown the diffuse aurora to be coincident with outbursts of solar energetic particles and disturbed solar wind and magnetospheric conditions. MAVEN Particle and Fields Package (PFP) Solar Wind Ion Analyzer (SWIA) has shown the limb brightening of Lyman-α to correlate with increased upstream solar wind dynamic pressure as associated with increased penetrating protons. So far a conclusive explanation for the discrete aurora has yet to be determined. This study aims to explore the plasma processes related to discrete Martian aurora in greater detail by presenting an overview of PFP measurements during orbits when IUVS observed discrete aurora at Mars. Initial observations from orbit 1600 of MAVEN has shown the almost side-by-side occurrence of a crustal magnetic field associated current sheet measured by MAVEN's Magnetometer Investigation (MAG) near the Mars terminator and IUVS limb observations of discrete aurora in Mars shadow (similar co-latitudes but separated by nearly 1800 km across longitude). This study includes further analysis of magnetic field current sheets and the particle acceleration/energization to investigate the space plasma processes involved in discrete aurora at Mars.

  18. Plasma-deposited fluorocarbon polymer films on titanium for preventing cell adhesion: a surface finishing for temporarily used orthopaedic implants

    NASA Astrophysics Data System (ADS)

    Finke, B.; Testrich, H.; Rebl, H.; Walschus, U.; Schlosser, M.; Zietz, C.; Staehlke, S.; Nebe, J. B.; Weltmann, K. D.; Meichsner, J.; Polak, M.

    2016-06-01

    The design of a titanium implant surface should ideally support its later application in clinical use. Temporarily used implants have to fulfil requirements different from permanent implants: they should ensure the mechanical stabilization of the bone stock but in trauma surgery they should not be integrated into the bone because they will be removed after fracture healing. Finishing of the implant surface by a plasma-fluorocarbon-polymer (PFP) coating is a possible approach for preventing cell adhesion of osteoblasts. Two different low pressure gas-discharge plasma processes, microwave (MW 2.45 GHz) and capacitively coupled radio frequency (RF 13.56 MHz) plasma, were applied for the deposition of the PFP film using a mixture of the precursor octafluoropropane (C3F8) and hydrogen (H2). The thin films were characterized by x-ray photoelectron spectroscopy, Fourier transform infrared reflection absorption spectroscopy, and water contact angle measurements. Cell culture experiments show that cell adhesion and spreading of MG-63 osteoblasts were clearly reduced or nonexistent on these surfaces, also after 24 h of storage in the cell culture medium. In vivo data demonstrated that the local inflammatory tissue response for the PFP films deposited in MW and RF plasma were comparable to uncoated controls.

  19. Pulsed Flow Pinch

    NASA Astrophysics Data System (ADS)

    Hartman, Charles

    2005-10-01

    Formation of a Pulsed Flow Pinch is discussed, based on 2-D, MHD numerical calculations. The PFP utilizes the observed stable, Btheta magnetic ``bubble'' which propagates from breach to muzzle during the run-down phase of the coaxial Marshall gun. We consider two ways of launching a PFP onto a fiber or cylindrical gas cloud: 1) by propagating the bubble to small radius along an exponentially-decreasing-radius center conductor and, 2) by a radial launch to form reflex PFP's propagating in opposite directions along a fiber. We show that the bubble velocity increases to high values as the radius is decreased making the rise time of Btheta at an axial point very short. A bubble, launched into uniform gas is found to undergo unstable pinching of the front. Results will be presented of calculations of a PFP driven, neutron-producing, snow-plow pinch. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  20. High-sensitivity, high-selectivity detection of chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Pushkarsky, Michael B.; Webber, Michael E.; Macdonald, Tyson; Patel, C. Kumar N.

    2006-01-01

    We report high-sensitivity detection of chemical warfare agents (nerve gases) with very low probability of false positives (PFP). We demonstrate a detection threshold of 1.2ppb (7.7μg/m3 equivalent of Sarin) with a PFP of <1:106 in the presence of many interfering gases present in an urban environment through the detection of diisopropyl methylphosphonate, an accepted relatively harmless surrogate for the nerve agents. For the current measurement time of ˜60s, a PFP of 1:106 corresponds to one false alarm approximately every 23months. The demonstrated performance satisfies most current homeland and military security requirements.

  1. Effects of off-axis elliptical training on reducing pain and improving knee function in individuals with patellofemoral pain

    PubMed Central

    Tsai, Liang-Ching; Lee, Song Joo; Yang, Aaron J.; Ren, Yupeng; Press, Joel M.; Zhang, Li-Qun

    2014-01-01

    Objective To examine whether an off-axis elliptical training program reduces pain and improves knee function in individuals with patellofemoral pain (PFP). Design Controlled laboratory study, pre-test-post-test. Setting University rehabilitation center. Participants Twelve adult subjects with PFP. Interventions Subjects with PFP completed an exercise program consisting of 18 sessions of lower extremity off-axis training using a custom-made elliptical trainer that allows frontal-plane sliding and transverse-plane pivoting of the footplates. Main Outcome Measures Changes in knee pain and function post-training and 6 weeks following training were evaluated using the Knee Injury and Osteoarthritis Outcome Score (KOOS) and International Knee Documentation Committee (IKDC) scores. Lower extremity off-axis control was assessed by pivoting and sliding instability, calculated as the root mean square (RMS) of the footplate pivoting angle and sliding distance during elliptical exercise. Subjects’ single-leg hop distance and proprioception in detecting lower extremity pivoting motion were also evaluated. Results Subjects reported significantly greater KOOS and IKDC scores (increased by 12–18 points) and hop distance (increased by 0.2 m) following training. A significant decrease in the pivoting and sliding RMS was also observed following training. Additionally, subjects with PFP demonstrated improved pivoting proprioception when tested under a minimum-weight-bearing position. Conclusions An off-axis elliptical training program was effective in enhancing lower extremity neuromuscular control on the frontal and transverse planes, reducing pain and improving knee function in persons with PFP. PMID:25591131

  2. Runners with Patellofemoral Pain Exhibit Greater Peak Patella Cartilage Stress Compared to Pain-Free Runners.

    PubMed

    Liao, Tzu-Chieh; Keyak, Joyce H; Powers, Christopher M

    2018-02-27

    The purpose of this study is to determine whether recreational runners with patellofemoral pain (PFP) exhibit greater peak patella cartilage stress compared to pain-free runners. A secondary purpose was to determine the kinematic and/or kinetic predictors of peak patella cartilage stress during running. Twenty-two female recreational runners participated (12 with PFP and 10 pain-free controls). Patella cartilage stress profiles were quantified using subject-specific finite element models simulating the maximum knee flexion angle during stance phase of running. Input parameters to the finite element model included subject-specific patellofemoral joint geometry, quadriceps muscle forces, and lower extremity kinematics in the frontal and transverse planes. Tibiofemoral joint kinematics and kinetics were quantified to determine the best predictor of stress using stepwise regression analysis. Compared to the pain-free runners, those with PFP exhibited greater peak hydrostatic pressure (PFP vs. control, 21.2 ± 5.6 MPa vs. 16.5 ± 4.6 MPa) and maximum shear stress (11.3 ± 4.6 MPa vs. 8.7 ± 2.3 MPa). Knee external rotation was the best predictor of peak hydrostatic pressure and peak maximum shear stress (38% and 25% of variances, respectively) followed by the knee extensor moment (21% and 25% of variances, respectively). Runners with PFP exhibit greater peak patella cartilage stress during running compared to pain-free individuals. The combination of knee external rotation and a high knee extensor moment best predicted elevated peak stress during running.

  3. Current management strategies for patellofemoral pain: an online survey of 99 practising UK physiotherapists.

    PubMed

    Smith, Benjamin E; Hendrick, Paul; Bateman, Marcus; Moffatt, Fiona; Rathleff, Michael Skovdal; Selfe, James; Smith, Toby O; Logan, Pip

    2017-05-08

    Patellofemoral pain (PFP) is considered one of the commonest forms of knee pain. This study aimed to identify how physiotherapists in the United Kingdom (UK) currently manage patellofemoral pain (PFP), particularly in relation to exercise prescription, and response to pain. An anonymous survey was designed with reference to previous surveys and recent systematic reviews. Practising UK physiotherapists who treat patients with PFP were invited to take part via an invitation email sent through professional networks, the 'interactive Chartered Society of Physiotherapy (iCSP)' message board, and social media (Twitter). Descriptive statistics were used to analyse the data. A total of 99 surveys were completed. Responders reported a wide range of management strategies, including a broad selection of type and dose of exercise prescription. The five most common management strategies chosen were: closed chain strengthening exercises (98%); education and advice (96%); open chain strengthening exercises (76%); taping (70%) and stretches (65%). Physiotherapists with a special interest in treating PFP were statistically more likely to manage patients with orthotics (P = 0.02) and bracing (P = 0.01) compared to physiotherapists without a special interest. Approximately 55% would not prescribe an exercise if it was painful. Thirty-one percent of physiotherapists would advise patients not to continue with leisure and/or sporting activity if they experienced any pain. Current UK practice in the management strategies of PFP is variable. Further high quality research on which to inform physiotherapy practice is warranted for this troublesome musculoskeletal condition.

  4. Closing the N-use efficiency gap to achieve food and environmental security.

    PubMed

    Cui, Zhenling; Wang, Guiliang; Yue, Shanchao; Wu, Liang; Zhang, Weifeng; Zhang, Fusuo; Chen, Xinping

    2014-05-20

    To achieve food and environmental security, closing the gap between actual and attainable N-use efficiency should be as important as closing yield gaps. Using a meta-analysis of 205 published studies from 317 study sites, including 1332 observations from rice, wheat, and maize system in China, reactive N (Nr) losses, and total N2O emissions from N fertilization both increased exponentially with increasing N application rate. On the basis of the N loss response curves from the literature meta-analysis, the direct N2O emission, NH3 volatilization, N leaching, and N runoff, and total N2O emission (direct + indirect) were calculated using information from the survey of farmers. The PFP-N (kilogram of harvested product per kilogram of N applied (kg (kg of N)(-1))) for 6259 farmers were relative low with only 37, 23, and 32 kg (kg of N)(-1) for rice, wheat, and maize systems, respectively. In comparison, the PFP-N for highest yield and PFP-N group (refers to fields where the PFP-N was within the 80-100th percentile among those fields that achieved yields within the 80-100th percentile) averaged 62, 42, and 53 kg (kg of N)(-1) for rice, wheat, and maize systems, respectively. The corresponding grain yield would increase by 1.6-2.3 Mg ha(-1), while the N application rate would be reduced by 56-100 kg of N ha(-1) from average farmer field to highest yield and PFP-N group. In return, the Nr loss intensity (4-11 kg of N (Mg of grain)(-1)) and total N2O emission intensity (0.15-0.29 kg of N (Mg of grain)(-1)) would both be reduced significantly as compared to current agricultural practices. In many circumstances, closing the PFP-N gap in intensive cropping systems is compatible with increased crop productivity and reductions in both Nr losses and total N2O emissions.

  5. No Difference on Quantitative Magnetic Resonance Imaging in Patellofemoral Cartilage Composition Between Patients With Patellofemoral Pain and Healthy Controls.

    PubMed

    van der Heijden, Rianne A; Oei, Edwin H G; Bron, Esther E; van Tiel, Jasper; van Veldhoven, Peter L J; Klein, Stefan; Verhaar, Jan A N; Krestin, Gabriel P; Bierma-Zeinstra, Sita M A; van Middelkoop, Marienke

    2016-05-01

    Retropatellar cartilage damage has been suggested as an etiological factor for patellofemoral pain (PFP), a common knee condition among young and physically active individuals. To date, there is no conclusive evidence for an association between cartilage defects and PFP. Nowadays, advanced quantitative magnetic resonance imaging (MRI) techniques enable estimation of cartilage composition. To investigate differences in patellofemoral cartilage composition between patients with PFP and healthy control subjects using quantitative MRI. Cross-sectional study; Level of evidence, 3. Patients with PFP and healthy control subjects underwent 3.0-T MRI including delayed gadolinium-enhanced MRI of cartilage and T1ρ and T2 mapping. Differences in relaxation times of patellofemoral cartilage were compared between groups by linear regression analyses, adjusted for age, body mass index, sex, sports participation, and time of image acquisition. This case-control study included 64 patients and 70 controls. The mean (±SD) age was 23.2 ± 6.4 years and the mean body mass index was 22.9 ± 3.4 kg/m(2); 56.7% were female. For delayed gadolinium-enhanced MRI of cartilage, the mean T1GD relaxation times of patellar (657.8 vs 669.4 ms) and femoral cartilage (661.6 vs 659.8 ms) did not significantly differ between patients and controls. In addition, no significant difference was found in mean T1ρ relaxation times of patellar (46.9 vs 46.0 ms) and femoral cartilage (50.8 vs 50.2 ms) and mean T2 relaxation times of patellar (33.2 vs 32.9 ms) and femoral cartilage (36.7 vs 36.6 ms) between patients and controls. Analysis of prespecified medial and lateral subregions within the patellofemoral cartilage also revealed no significant differences. There was no difference in composition of the patellofemoral cartilage, estimated with multiple quantitative MRI techniques, between patients with PFP and healthy control subjects. However, clinically relevant differences could not be ruled out for T1ρ in the adolescent population. Retropatellar cartilage damage has long been hypothesized as an important factor in the pathogenesis of PFP, but study findings suggest that diminished patellofemoral cartilage composition is not associated with PFP. © 2016 The Author(s).

  6. Agronomic Characteristics Related to Grain Yield and Nutrient Use Efficiency for Wheat Production in China

    PubMed Central

    Zheng, Huaiguo; Xu, Xinpeng

    2016-01-01

    In order to make clear the recent status and trend of wheat (Triticum aestivum L.) production in China, datasets from multiple field experiments and published literature were collected to study the agronomic characteristics related to grain yield, fertilizer application and nutrient use efficiency from the year 2000 to 2011. The results showed that the mean grain yield of wheat in 2000–2011 was 5950 kg/ha, while the N, P2O5 and K2O application rates were 172, 102 and 91 kg/ha on average, respectively. The decrease in N and P2O5 and increase in K2O balanced the nutrient supply and was the main reason for yield increase. The partial factor productivity (PFP, kg grain yield produced per unit of N, P2O5 or K2O applied) values of N (PFP-N), P (PFP-P) and K (PFP-K) were in the ranges of 29.5~39.6, 43.4~74.9 and 44.1~76.5 kg/kg, respectively. While PFP-N showed no significant changes from 2000 to 2010, both PFP-P and PFP-K showed an increased trend over this period. The mean agronomic efficiency (AE, kg grain yield increased per unit of N, P2O5 or K2O applied) values of N (AEN), P (AEP) and K (AEK) were 9.4, 10.2 and 6.5 kg/kg, respectively. The AE values demonstrated marked inter-annual fluctuations, with the amplitude of fluctuation for AEN greater than those for AEP and AEK. The mean fertilizer recovery efficiency (RE, the fraction of nutrient uptake in aboveground plant dry matter to the nutrient of fertilizer application) values of N, P and K in the aboveground biomass were 33.1%, 24.3% and 28.4%, respectively. It was also revealed that different wheat ecological regions differ greatly in wheat productivity, fertilizer application and nutrient use efficiency. In summary, it was suggested that best nutrient management practices, i.e. fertilizer recommendation applied based on soil testing or yield response, with strategies to match the nutrient input with realistic yield and demand, or provided with the 4R’s nutrient management (right time, right rate, right site and right fertilizer) should be adopted widely to improve the yield production and nutrient use efficiency. PMID:27631468

  7. Teacher Attitudes toward Pay for Performance: Evidence from Hillsborough County, Florida. Working Paper 2008-08

    ERIC Educational Resources Information Center

    Jacob, Brian; Springer, Matthew G.

    2008-01-01

    Pay for Performance (PFP) is once again gaining popularity within education. This study examines teacher attitudes toward PFP policies, and how these views vary by teacher experience, subject area specialization, grade level(s) taught, educational background, risk and time preferences, and feelings of efficacy. Data were collected through a…

  8. Comparison of patella bone strain between females with and without patellofemoral pain: a finite element analysis study.

    PubMed

    Ho, Kai-Yu; Keyak, Joyce H; Powers, Christopher M

    2014-01-03

    Elevated bone principal strain (an indicator of potential bone injury) resulting from reduced cartilage thickness has been suggested to contribute to patellofemoral symptoms. However, research linking patella bone strain, articular cartilage thickness, and patellofemoral pain (PFP) remains limited. The primary purpose was to determine whether females with PFP exhibit elevated patella bone strain when compared to pain-free controls. A secondary objective was to determine the influence of patella cartilage thickness on patella bone strain. Ten females with PFP and 10 gender, age, and activity-matched pain-free controls participated. Patella bone strain fields were quantified utilizing subject-specific finite element (FE) models of the patellofemoral joint (PFJ). Input parameters for the FE model included (1) PFJ geometry, (2) elastic moduli of the patella bone, (3) weight-bearing PFJ kinematics, and (4) quadriceps muscle forces. Using quasi-static simulations, peak and average minimum principal strains as well as peak and average maximum principal strains were quantified. Cartilage thickness was quantified by computing the perpendicular distance between opposing voxels defining the cartilage edges on axial plane magnetic resonance images. Compared to the pain-free controls, individuals with PFP exhibited increased peak and average minimum and maximum principal strain magnitudes in the patella. Additionally, patella cartilage thickness was negatively associated with peak minimum principal patella strain and peak maximum principal patella strain. The elevated bone strain magnitudes resulting from reduced cartilage thickness may contribute to patellofemoral symptoms and bone injury in persons with PFP. © 2013 Published by Elsevier Ltd.

  9. Peripheral Facial Palsy in Emergency Department

    PubMed Central

    Ferreira-Penêda, José; Robles, Raquel; Gomes-Pinto, Isabel; Valente, Pedro; Barros-Lima, Nuno; Condé, Artur

    2018-01-01

    Introduction: Peripheral facial palsy (PFP) is commonly diagnosed in every emergency department. Despite being a benign condition in most cases, PFP causes loss in quality of life mostly due to facial dysmorphia. The etiology of PFP remains unknown in most cases, while medical opinion on epidemiology, risk factors and optimal treatment is not consensual. The aim of this study was to review the demographic characteristics of our patients and the medical care administered in our emergency department. Materials and Methods: Emergency episodes occurring in a 4-year period and codified as facial nerve pathology were analyzed. IBM SPSS software was used for statistical analysis. Results: In total, 582 emergency episodes were obtained. Due to inexpressive representation of other causes of PFP in our study, we focused our analyses on the 495 patients who were considered to have idiopathic PFP. There was equal distribution among genders, and all age ranges were affected. There were no clear epidemic phenomena. Hypertension was not a statistically significant risk factor for Bell's palsy. Most patients sought medical care in the early stages of the disease and complained of isolated facial weakness. Most patients had mild-to-moderate symptoms. Previous upper way infections (PUAI) were more frequent among children. There was a statistically significant difference regarding computed tomography (CT) scan requests among specialties. Conclusion: Epidemiologic findings were consistent with most literature on Bell's palsy. Drug therapy is widely used and follows current guidelines. The role of PUAI in the pediatric population must be investigated. Despite evidence of good medical practice, there was an excess of CT scans requested by physicians other than otorhinolaryngologists. PMID:29876329

  10. Evaluation of outcomes of tuberculosis management in private for profit and private-not-for profit directly observed treatment short course facilities in Lagos State, Nigeria.

    PubMed

    Adejumo, Olusola Adedeji; Daniel, Olusoji James; Otesanya, Andrew Folarin; Salisu-Olatunj, Shukrat Olajumoke; Abdur-Razzaq, Husseine A

    2017-01-01

    The engagement of private practitioners in the public-private mix of tuberculosis (TB) management started in 2007 in Lagos State Nigeria. This study compared the treatment outcomes of patients managed at private for profit (PFP) and private not for profit (PNFP) directly observed treatment short course (DOTS) facilities. A retrospective review of treatment cards of TB patients managed between January 1, 2012, and June 30, 2012, in seven PFP and four PNFP DOTS facilities that served as treatment and microscopy center under the Lagos State TB and Leprosy Control Programme (LSTBLCP) at least 2 years before data collection was conducted. A total of 372 treatment cards of TB patients were reviewed, of which 132 (35.5%) and 240 (64.5%) were from PFP and PNFP DOTS facilities, respectively. Treatment success rate was higher among patients managed at PFP (89.4%) DOTS facilities than PNFP (81.3%) DOTS facilities ( P = 0.04). The proportion of patients lost to follow-up (12.5% vs. 8.3%), dead (3.3% vs. 1.5%) and treatment failure (2.5% vs. 0.8%) was higher among patients managed at PNFP DOTS facilities ( P > 0.05). The odds that patients treated at PFP DOTS facilities had treatment success were about four times higher than PNFP DOTS facilities when other variables have been controlled for ( P < 0.05). There is need by the LSTBLCP to engage more private practitioners to increase case detection and improve treatment outcomes of TB patients.

  11. Voices of Peace: A Chronology of the Play for Peace Methodology--An Experiential Community Development Training Model.

    ERIC Educational Resources Information Center

    Leafman, Joan

    Play for Peace (PFP) is an international initiative bringing together children, youth, and organizations from communities in conflict, using cooperative play to create compassion and peace between cultures that have a history of conflict. A 2-year study examined PFP's history and methodology and conducted a program assessment. Data were gathered…

  12. In depth analysis of the quenching of three fluorene-phenylene-based cationic conjugated polyelectrolytes by DNA and DNA bases.

    PubMed

    Davies, Matthew L; Douglas, Peter; Burrows, Hugh D; Martincigh, Bice; Miguel, Maria da Graça; Scherf, Ullrich; Mallavia, Ricardo; Douglas, Alastair

    2014-01-16

    The interaction of three cationic poly {9,9-bis[N,N-(trimethylammonium)hexyl]fluorene-co-1,4-phenylene} polymers with average chain lengths of ∼6, 12, and 100 repeat units (PFP-NR36(I),12(Br),100(Br)) with both double and single stranded, short and long, DNA and DNA bases have been studied by steady state and time-resolved fluorescence techniques. Fluorescence of PFP-NR3 polymers is quenched with high efficiency by DNA (both double and single stranded) and DNA bases. The resulting quenching plots are sigmoidal and are not accurately described by using a Stern-Volmer quenching mechanism. Here, the quenching mechanism is well modeled in terms of an equilibrium in which a PFP-NR3/DNA aggregate complex is formed which brings polymer chains into close enough proximity to allow interchain excitation energy migration and quenching at aggregate or DNA base traps. Such an analysis gives equilibrium constants of 8.4 × 10(6) (±1.2 × 10(6)) M(-1) for short-dsDNA and 8.6 × 10(6) (±1.7 × 10(6)) M(-1) for short-ssDNA with PFP-NR36(I).

  13. Analysis of the cost and efficiency relationship: experience in the Turkish pay for performance system.

    PubMed

    Gok, Mehmet Sahin; Altındağ, Erkut

    2015-06-01

    This paper analyzes the effects of the pay for performance (PFP) system on the efficiencies of public and private hospitals in Turkey. In order to evaluate these effects, we examine the relationship between hospital efficiency and health care costs in Turkey, and address the impact of the PFP system on the efficiencies of public and private hospitals. In an effort to analyze the efficiencies of public and private hospitals, this study uses data envelopment analysis. The Malmquist Productivity Index is also used to analyze the patterns of efficiency change for the study years from 2001 to 2008. This study shows that health care costs and hospital efficiency are negatively correlated for private hospitals, while they are positively correlated for public hospitals. In other words, increased health care costs might reduce efficiency in private hospitals in contrast to public hospitals. Our findings also indicate that average efficiencies of public hospitals tend to increase, particularly during the implementation period of PFP system. The efficiency trend of private hospitals, conversely, decreased in the latter periods of the PFP system. Suggestions for improvement are provided to the health care policy makers regarding the impact of health care reforms on public and private hospitals.

  14. Peripheral Facial Palsy: Does Patients' Religiousness Matter for the Otorhinolaryngologist?

    PubMed

    Lucchetti, Giancarlo; De Rossi, Janaina; Gonçalves, Juliane P B; Lucchetti, Alessandra L Granero

    2016-06-01

    In order to deal with the suffering, a frequent strategy employed by patients is the use of religious beliefs and behaviors. Nevertheless, few studies in otorhinolaryngology have investigated this dimension. Therefore, the present study aims to investigate the role of religiousness on quality of life, mental health, self-esteem and appearance in 116 patients with peripheral facial palsy (PFP). A cross-sectional, single-center study was carried out between 2010 and 2012 in PFP outpatients. We assessed socio-demographic data, PFP characteristics, depression, anxiety, quality of life, self-esteem, appearance and religiosity. A linear regression (adjusted for confounders) was performed to investigate whether religiosity was associated with any outcomes. The present study found that religious attendance, but not other types of religiousness, was related to quality of life and mental health on PFP patients. In addition, ENT patients would like their doctors to ask them about their faith and religion as part of their medical care. These findings give further support to the importance of religious and spiritual beliefs on ENT patients. Otorhinolaryngologists should be aware of the positive and negative aspects of religion and be prepared to address these issues in clinical practice.

  15. Literature Review: Crud Formation at the Liquid/Liquid Interface of TBP-Based Solvent-Extraction Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Casella, Amanda J.

    2016-09-30

    This report summarizes the literature reviewed on crud formation at the liquid:liquid interface of solvent extraction processes. The review is focused both on classic PUREX extraction for industrial reprocessing, especially as practiced at the Hanford Site, and for those steps specific to plutonium purification that were used at the Plutonium Reclamation Facility (PRF) within the Plutonium Finishing Plant (PFP) at the Hanford Site.

  16. An under-met and over-met expectations model of employee reactions to merit raises.

    PubMed

    Schaubroeck, John; Shaw, Jason D; Duffy, Michelle K; Mitra, Atul

    2008-03-01

    The authors developed a model of how raise expectations influence the relationship between merit pay raises and employee reactions and tested it using a sample of hospital employees. Pay-for-performance (PFP) perceptions were consistently related to personal reactions (e.g., pay raise happiness, pay-level satisfaction, and turnover intentions). Merit pay raises were strongly related to reactions only among employees with high raise expectations and high PFP perceptions. The interactive effects of under-met/over-met expectations and PFP perceptions were mediated by the extent to which participants saw the raise as generous and they were happy with the raises they received. The authors discuss the implications of these findings for expectation-fulfillment theories, merit pay research, and the administration of incentives. Copyright 2008 APA

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pool, Karl N.; Minette, Michael J.; Wahl, Jon H.

    On September 28, 2015, debris collected from the PRF (236-Z) canyon floor, Pan J, was observed to exhibit chemical reaction. The material had been transferred from the floor pan to a collection tray inside the canyon the previous Friday. Work in the canyon was stopped to allow Industrial Hygiene to perform monitoring of the material reaction. Canyon floor debris that had been sealed out was sequestered at the facility, a recovery plan was developed, and drum inspections were initiated to verify no additional reactions had occurred. On October 13, in-process drums containing other Pan J material were inspected and showedmore » some indication of chemical reaction, limited to discoloration and degradation of inner plastic bags. All Pan J material was sealed back into the canyon and returned to collection trays. Based on the high airborne levels in the canyon during physical debris removal, ETGS (Encapsulation Technology Glycerin Solution) was used as a fogging/lock-down agent. On October 15, subject matter experts confirmed a reaction had occurred between nitrates (both Plutonium Nitrate and Aluminum Nitrate Nonahydrate (ANN) are present) in the Pan J material and the ETGS fixative used to lower airborne radioactivity levels during debris removal. Management stopped the use of fogging/lock-down agents containing glycerin on bulk materials, declared a Management Concern, and initiated the Potential Inadequacy in the Safety Analysis determination process. Additional drum inspections and laboratory analysis of both reacted and unreacted material are planned. This report compiles the results of many different sample analyses conducted by the Pacific Northwest National Laboratory on samples collected from the Plutonium Reclamation Facility (PRF) floor pans by the CH2MHill’s Plateau Remediation Company (CHPRC). Revision 1 added Appendix G that reports the results of the Gas Generation Rate and methodology. The scope of analyses requested by CHPRC includes the determination of common anions, gamma spectrometry, metals, corrosivity, organics and alpha spectrometry (note: alpha spectrometry was cancelled during the performance of this work with concurrence from CHPRC). Results may help elucidate the components that led to the unexpected reaction in the canyon as well as inform the radiological and hazardous characteristics. The specific anions, gamma emitters, organics and metals requested by CHPRC are provided in the analytical reports sections. The individual analyses were conducted under the Plutonium Finishing Plant (PFP) Floor Pan Evaluation Project Quality Assurance Project Plan (PFP Floor Pan Evaluation QAPP, Revision 0.) developed by PNNL specifically for this project. The final reports for each analysis set are included in this compilation of the results. Each package was reviewed under the PFP Floor Pan Evaluation Project Quality Assurance Project Plan so no additional reviews were conducted in this compilation task. The Gas Generation Rates in Appendix G were conducted under the PNNL “How Do I…” quality assurance program and were NOT conducted under the Plutonium Finishing Plant (PFP) Floor Pan Evaluation Project Quality Assurance Project Plan (PFP Floor Pan Evaluation QAPP, Revision 0.).« less

  18. COLLABORATIVE NEGOTIATIONS A SUCCESSFUL APPROACH FOR NEGOTIATING COMPLIANCE MILESTONES FOR THE TRANSITION OF THE PLUTONIUM FINISHING PLANT (PFP), HANFORD NUCLEAR RESERVATION, AND HANFORD, WASHINGTON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hebdon, J.; Yerxa, J.; Romine, L.

    The Hanford Nuclear Reservation is a former U. S. Department of Energy Defense Production Site. The site is currently listed on the National Priorities List of the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA) and is undergoing cleanup and environmental restoration. The PFP is a former Plutonium metal production facility. The operating mission of the PFP ended with a DOE Headquarters shutdown letter in October of 1996. Generally, the receipt of a shutdown letter initiates the start of Transition (as the first step of Decommissioning) of a facility. The Hanford site is subject to the Hanford Federalmore » Facilities Compliance Act and Consent Order (HFFCCO), an order on consent signed by the DOE, the U. S. Environmental Protection Agency, (EPA) and the Washington Department of Ecology (WDOE). Under the HFFCCO, negotiations for transition milestones begin within six months after the issuance of a shutdown order. In the case of the PFP, the Nuclear Materials disposition and stabilization activities, a DOE responsibility, were necessary as precursor activities to Transition. This situation precipitated a crisis in the negotiations between the agencies, and formal negotiations initiated in 1997 ended in failure. The negotiations reached impasse on several key regulatory and operational issues. The 1997 negotiation was characterized by a strongly positional style. DOE and the regulatory personnel took hard lines early in the negotiations and were unable to move to resolution of key issues after a year and a half. This resulted in unhappy stakeholders, poor publicity and work delays as well as wounded relationships between DOE and the regulatory community. In the 2000-2001 PFP negotiations, a completely different approach was suggested and eventually initiated: Collaborative Negotiations. The collaborative negotiation style resulted in agreement between the agencies on all key issues within 6 months of initiation. All parties were very pleased with the results and all parties were relieved that protracted negotiations sessions were not needed with the new style of working together collaboratively to serve each other's interests. The characteristics of collaborative negotiations included building trust, emphasizing equality of team members, problem solving by the entire team, relying on individual communications and self-management skills. The team found that trust building sessions were key to successfully working through issues. Relationship differences were too often ignored in the past negotiations and were recognized and worked through in the collaborative process.« less

  19. Sub-Saharan Africa Report

    DTIC Science & Technology

    1987-02-11

    effecting the moral and psychological tempering of troops. The delegation toured the country, visiting military units and the Comandante Zhika...34 Authorization for publication in terms of these regulations remains the prerogative of the relevant government departments which can either be approached ...NATURE OF PFP VIEWED Cape Town DIE BÜRGER in Afrikaans 25 Nov 86 p 20 [Editorial: "The PFP and Sanctions"] [Text] While an approaching general

  20. More on Pay-for-Performance: New Developments in the Field Provide Insights for Policymaking. The Progress of Education Reform. Volume 12, Number 5

    ERIC Educational Resources Information Center

    Thompson, Barbara; Baumann, Paul

    2011-01-01

    Whether referred to as "pay-for-performance" (PFP) or "merit pay," attempting to tie educators' compensation to their performance in the classroom and students' performance on high-stakes tests has been a key component of many educator compensation reform efforts in the last five years. This issue looks at PFP systems broadly…

  1. Echogenic Glycol Chitosan Nanoparticles for Ultrasound-Triggered Cancer Theranostics

    PubMed Central

    Min, Hyun Su; You, Dong Gil; Son, Sejin; Jeon, Sangmin; Park, Jae Hyung; Lee, Seulki; Kwon, Ick Chan; Kim, Kwangmeyung

    2015-01-01

    Theranostic nanoparticles hold great promise for simultaneous diagnosis of diseases, targeted drug delivery with minimal toxicity, and monitoring of therapeutic efficacy. However, one of the current challenges in developing theranostic nanoparticles is enhancing the tumor-specific targeting of both imaging probes and anticancer agents. Herein, we report the development of tumor-homing echogenic glycol chitosan-based nanoparticles (Echo-CNPs) that concurrently execute cancer-targeted ultrasound (US) imaging and US-triggered drug delivery. To construct this novel Echo-CNPs, an anticancer drug and bioinert perfluoropentane (PFP), a US gas precursor, were simultaneously encapsulated into glycol chitosan nanoparticles using the oil in water (O/W) emulsion method. The resulting Echo-CNPs had a nano-sized particle structure, composing of hydrophobic anticancer drug/PFP inner cores and a hydrophilic glycol chitosan polymer outer shell. The Echo-CNPs had a favorable hydrodynamic size of 432 nm, which is entirely different from the micro-sized core-empty conventional microbubbles (1-10 μm). Furthermore, Echo-CNPs showed the prolonged echogenicity via the sustained microbubble formation process of liquid-phase PFP at the body temperature and they also presented a US-triggered drug release profile through the external US irradiation. Interestingly, Echo-CNPs exhibited significantly increased tumor-homing ability with lower non-specific uptake by other tissues in tumor-bearing mice through the nanoparticle's enhanced permeation and retention (EPR) effect. Conclusively, theranostic Echo-CNPs are highly useful for simultaneous cancer-targeting US imaging and US-triggered delivery in cancer theranostics. PMID:26681985

  2. Which patellofemoral joint imaging features are associated with patellofemoral pain? Systematic review and meta-analysis.

    PubMed

    Drew, B T; Redmond, A C; Smith, T O; Penny, F; Conaghan, P G

    2016-02-01

    To review the association between patellofemoral joint (PFJ) imaging features and patellofemoral pain (PFP). A systematic review of the literature from AMED, CiNAHL, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, PEDro, EMBASE and SPORTDiscus was undertaken from their inception to September 2014. Studies were eligible if they used magnetic resonance imaging (MRI), computed tomography (CT), ultrasound (US) or X-ray (XR) to compare PFJ features between a PFP group and an asymptomatic control group in people <45 years of age. A pooled meta-analysis was conducted and data was interpreted using a best evidence synthesis. Forty studies (all moderate to high quality) describing 1043 people with PFP and 839 controls were included. Two features were deemed to have a large standardised mean difference (SMD) based on meta-analysis: an increased MRI bisect offset at 0° knee flexion under load (0.99; 95% CI: 0.49, 1.49) and an increased CT congruence angle at 15° knee flexion, both under load (1.40 95% CI: 0.04, 2.76) and without load (1.24; 95% CI: 0.37, 2.12). A medium SMD was identified for MRI patella tilt and patellofemoral contact area. Limited evidence was found to support the association of other imaging features with PFP. A sensitivity analysis showed an increase in the SMD for patella bisect offset at 0° knee flexion (1.91; 95% CI: 1.31, 2.52) and patella tilt at 0° knee flexion (0.99; 95% CI: 0.47, 1.52) under full weight bearing. Certain PFJ imaging features were associated with PFP. Future interventional strategies may be targeted at these features. CRD 42014009503. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. The experience of living with patellofemoral pain—loss, confusion and fear-avoidance: a UK qualitative study

    PubMed Central

    Moffatt, Fiona; Hendrick, Paul; Bateman, Marcus; Rathleff, Michael Skovdal; Selfe, James; Smith, Toby O; Logan, Pip

    2018-01-01

    Objectives To investigate the experience of living with patellofemoral pain (PFP). Design Qualitative study design using semistructured interviews and analysed thematically using the guidelines set out by Braun and Clarke. Setting A National Health Service physiotherapy clinic within a large UK teaching hospital. Participants A convenience sample of 10 participants, aged between 18 and 40 years, with a diagnosis of PFP and on a physiotherapy waiting list, prior to starting physiotherapy. Results Participants offered rich and detailed accounts of the impact and lived experience of PFP, including loss of physical and functional ability; loss of self-identity; pain-related confusion and difficulty making sense of their pain; pain-related fear, including fear-avoidance and ‘damage’ beliefs; inappropriate coping strategies and fear of the future. The five major themes that emerged from the data were: (1) impact on self; (2) uncertainty, confusion and sense making; (3) exercise and activity beliefs; (4) behavioural coping strategies and (5) expectations of the future. Conclusions These findings offer an insight into the lived experience of individuals with PFP. Previous literature has focused on pain and biomechanics, rather than the individual experience, attached meanings and any wider context within a sociocultural perspective. Our findings suggest that future research is warranted into biopsychosocial targeted interventions aimed at the beliefs and pain-related fear for people with PFP. The current consensus that best-evidence treatments consisting of hip and knee strengthening may not be adequate to address the fears and beliefs identified in the current study. Further qualitative research may be warranted on the impact and interpretation of medical terminology commonly used with this patient group, for example, ‘weakness’ and ‘patellar mal-tracking’ and its impact and interpretation by patients. Trial registration number ISRCTN35272486; Pre-results. PMID:29362256

  4. Self-reported Recovery is Associated With Improvement in Localized Hyperalgesia Among Adolescent Females With Patellofemoral Pain: Results From a Cluster Randomized Trial.

    PubMed

    Rathleff, Michael S; Roos, Ewa M; Olesen, Jens L; Rasmussen, Sten; Arendt-Nielsen, Lars

    2016-05-01

    Adolescent females with patellofemoral pain (PFP) have localized (around the knee) and distal (tibialis anterior muscle) hyperalgesia assessed by decreased pressure pain thresholds (PPT). This may have implications for treating PFP as both localized and central pain mechanisms may contribute to the manifestations of pain. The objective of this study was to compare the change in localized and distal hyperalgesia among female adolescents with PFP deeming themselves recovered compared with those not recovered 3 months after patient education with or without exercise therapy. This is an ancillary analysis of a cluster randomized controlled trial investigating the effect of patient education with or without exercise therapy on self-reported recovery in 121 adolescents with PFP. PPTs were measured at 4 sites around the knee and on tibialis anterior in a random subsample of 57 female adolescents. Changes in localized and distal hyperalgesia from baseline to follow-up were compared with self-reported recovery. Adolescents were categorized as recovered if they rated themselves as "completely recovered" or "strongly recovered" on a 7-point Likert scale. Thirty-nine adolescents (68%) were available for follow-up at 3 months and 10 adolescents reported being recovered. Recovered adolescents had a 68 kPa (95% CI, 1, 136; P=0.047) larger improvement in PPT around the knee and a 76 kPa (95% CI, -29, 181; P=0.16) nonsignificant improvement in PPT on the tibialis anterior compared with adolescents not recovered. Female adolescents with PFP who rated themselves as recovered had a larger reduction in localized hyperalgesia compared with those not recovered.

  5. PFP Public Automatic Exchange (PAX) Commercial Grade Item (CGI) Critical Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WHITE, W.F.

    2000-04-04

    This document specifies the critical characteristics for Commercial Grade Items (CGI) procured for use within the safety envelope of PFP's PAX system as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that the equipment must meet in order to properly perform its safety function. There may be several manufacturers or models that meet the critical characteristics for any one item.

  6. Pyrophosphate-Dependent Fructose-6-Phosphate 1-Phosphotransferase Induction and Attenuation of Hsp Gene Expression during Endosperm Modification in Quality Protein Maize1[C][W][OA

    PubMed Central

    Guo, Xiaomei; Ronhovde, Kyla; Yuan, Lingling; Yao, Bo; Soundararajan, Madhavan P.; Elthon, Thomas; Zhang, Chi; Holding, David R.

    2012-01-01

    Quality Protein Maize (QPM) is a hard-endosperm version of the high-lysine opaque2 (o2) maize (Zea mays) mutant, but the genes involved in modification of the soft o2 endosperm are largely unknown. Pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase (PFP) catalyzes the ATP-independent conversion of fructose-6-phosphate to fructose-1,6-bisphosphate in glycolysis. We found a large increase in transcript and protein levels of the α-regulatory subunit of PFP (PFPα) in QPM endosperm. In vitro enzyme assays showed a significant increase in forward PFP activity in developing endosperm extracts of QPM relative to the wild type and o2. An expressed retrogene version of PFPα of unknown function that was not up-regulated in QPM was also identified. The elevated expression levels of a number of ATP-requiring heat shock proteins (Hsps) in o2 endosperm are ameliorated in QPM. PFPα is also coinduced with Hsps in maize roots in response to heat, cold, and the unfolded protein response stresses. We propose that reduced ATP availability resulting from the generalized Hsp response in addition to the reduction of pyruvate, orthophosphate dikinase activity in o2 endosperm is compensated in part by increased PFP activity in QPM. PMID:22158678

  7. Research on a Defects Detection Method in the Ferrite Phase Shifter Cementing Process Based on a Multi-Sensor Prognostic and Health Management (PHM) System.

    PubMed

    Wan, Bo; Fu, Guicui; Li, Yanruoyue; Zhao, Youhu

    2016-08-10

    The cementing manufacturing process of ferrite phase shifters has the defect that cementing strength is insufficient and fractures always appear. A detection method of these defects was studied utilizing the multi-sensors Prognostic and Health Management (PHM) theory. Aiming at these process defects, the reasons that lead to defects are analyzed in this paper. In the meanwhile, the key process parameters were determined and Differential Scanning Calorimetry (DSC) tests during the cure process of resin cementing were carried out. At the same time, in order to get data on changing cementing strength, multiple-group cementing process tests of different key process parameters were designed and conducted. A relational model of cementing strength and cure temperature, time and pressure was established, by combining data of DSC and process tests as well as based on the Avrami formula. Through sensitivity analysis for three process parameters, the on-line detection decision criterion and the process parameters which have obvious impact on cementing strength were determined. A PHM system with multiple temperature and pressure sensors was established on this basis, and then, on-line detection, diagnosis and control for ferrite phase shifter cementing process defects were realized. It was verified by subsequent process that the on-line detection system improved the reliability of the ferrite phase shifter cementing process and reduced the incidence of insufficient cementing strength defects.

  8. Definition and means of maintaining the supply ventilation system seismic shutdown portion of the PFP safety envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keck, R.D.

    1997-01-21

    The purpose of this document is to record the technical evaluation of the Limiting Condition for Operation (LCO) described in the Plutonium Finishing Plant (PFP) Operational Safety Requirements, WHC-SD-CP-OSR- 010, Rev. 0. Kay 1994, Section 3.2.3, `Supply Ventilation System Seismic Shutdown.` This document, with its appendices, provides the following: 1. The system functional requirements for determining system operability (Section 3). 2. Evaluations of equipment to determine the safety boundary for the system (Section 4). 3. A list of annotated drawings which show the safety envelope boundaries (Appendix C). 4. A list of the safety envelope equipment (Appendix B). 5. Functionalmore » requirements for the individual safety envelope equipment, including appropriate setpoints and process parameters (Section 4.1). 6. A list of the operational, maintenance and surveillance procedures necessary to operate and maintain the system equipment within the safety envelope (Sections 5 and 6 and Appendix A).« less

  9. Effects of and Preference for Pay for Performance: An Analogue Analysis

    ERIC Educational Resources Information Center

    Long, Robert D., III; Wilder, David A.; Betz, Alison; Dutta, Ami

    2012-01-01

    We examined the effects of 2 payment systems on the rate of check processing and time spent on task by participants in a simulated work setting. Three participants experienced individual pay-for-performance (PFP) without base pay and pay-for-time (PFT) conditions. In the last phase, we asked participants to choose which system they preferred. For…

  10. Plutonium Finishing Plant (PFP) HVAC System Component Index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DICK, J.D.

    2000-02-28

    The Plutonium Finishing Plant (PFP) WAC System includes sub-systems 25A through 25K. Specific system boundaries and justifications are contained in HNF-SD-CP-SDD-005, ''Definition and Means of Maintaining the Ventilation System Confinement Portion of the PFP Safety Envelope.'' The procurement requirements associated with the system necessitates procurement of some system equipment as Commercial Grade Items in accordance with HNF-PRO-268, ''Control of Purchased Items and Services.'' This document lists safety class and safety significant components for the Heating Ventilation Air Conditioning and specifies the critical characteristics for Commercial Grade Items, as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that themore » equipment must meet in order to properly perform its safety function. There may be several manufacturers or models that meet the critical characteristics for any one item.« less

  11. Cationic Conjugated Polymers-Induced Quorum Sensing of Bacteria Cells.

    PubMed

    Zhang, Pengbo; Lu, Huan; Chen, Hui; Zhang, Jiangyan; Liu, Libing; Lv, Fengting; Wang, Shu

    2016-03-15

    Bacteria quorum sensing (QS) has attracted significant interest for understanding cell-cell communication and regulating biological functions. In this work, we demonstrate that water-soluble cationic conjugated polymers (PFP-G2) can interact with bacteria to form aggregates through electrostatic interactions. With bacteria coated in the aggregate, PFP-G2 can induce the bacteria QS system and prolong the time duration of QS signal molecules (autoinducer-2 (AI-2)) production. The prolonged AI-2 can bind with specific protein and continuously regulate downstream gene expression. Consequently, the bacteria show a higher survival rate against antibiotics, resulting in decreased antimicrobial susceptibility. Also, AI-2 induced by PFP-G2 can stimulate 55.54 ± 12.03% more biofilm in E. coli. This method can be used to understand cell-cell communication and regulate biological functions, such as the production of signaling molecules, antibiotics, other microbial metabolites, and even virulence.

  12. Effectiveness of Manual Therapy for Pain and Self-reported Function in Individuals With Patellofemoral Pain: Systematic Review and Meta-analysis.

    PubMed

    Eckenrode, Brian J; Kietrys, David M; Parrott, J Scott

    2018-05-01

    Study Design Systematic literature review with meta-analysis. Background Management of patellofemoral pain (PFP) may include the utilization of manual therapy (MT) techniques to the patellofemoral joint, surrounding soft tissues, and/or lumbopelvic region. Objectives To determine the effectiveness of MT, used alone or as an adjunct intervention, compared to standard treatment or sham for reducing pain and improving self-reported function in individuals with PFP. Methods An electronic literature search was conducted in the PubMed, Ovid, Cochrane Central Register of Controlled Trials, and CINAHL databases for studies investigating MT for individuals with PFP. Studies published through August 2017 that compared MT (local or remote to the knee), used alone or in combination with other interventions, to control or sham interventions were included. Patient-reported pain and functional outcomes were collected and synthesized. Trials were assessed via the Cochrane risk-of-bias tool, and a meta-analysis of the evidence was performed. Results Nine studies were included in the review, 5 of which were rated as having a low risk of bias. The use of MT, applied to the local knee structure, was associated with favorable short-term changes in self-reported function and pain in individuals with PFP, when compared to a comparison (control or sham) intervention. However, the changes were clinically meaningful only for pain (defined as a 2-cm or 2-point improvement on a visual analog scale or numeric pain-rating scale). The evidence regarding lumbopelvic manipulation was inconclusive for pain improvement in individuals with PFP, based on 3 studies. Conclusion The data from this review cautiously suggest that MT may be helpful in the short term for decreasing pain in patients with PFP. Several studies integrated MT into a comprehensive treatment program. Changes in self-reported function with the inclusion of MT were shown to be significant, but not clinically meaningful. The limitations in the studies performed to date suggest that future research should determine the optimal techniques and dosage of MT and perform longer follow-up to monitor long-term effects. Level of Evidence Therapy, level 1a. J Orthop Sports Phys Ther 2018;48(5):358-371. Epub 6 Jan 2018. doi:10.2519/jospt.2018.7243.

  13. Event-Driven Simulation and Analysis of an Underwater Acoustic Local Area Network

    DTIC Science & Technology

    2010-06-01

    Successful number of data packets % b. PSUP = Successful number of Utility packets % c. PSB = Successful number of byte Tx. % d. PSPRT = Number of sub...g. PFU = Number of failed utilities Tx failures with time log of failure % h. PTO = Number of Time-outs 55 function [PSDP,PSUP, PSB ,PSPRT,PFP,PFSP...transmitted PSB = 0 ; % Number of Bytes transmitted PSPRT = 0; % Number of sub-packets retransmitted PFP = 0; % Number of failed packets event PFSP

  14. Supramolecular separation mechanism of pentafluorophenyl column using ibuprofen and omeprazole as markers: LC-MS and simulation study.

    PubMed

    Hussain, Afzal; AlAjmi, Mohamed F; Ali, Imran

    2018-06-01

    The pentafluorophenyl (PFP) column is emerging as a new advancement in separation science to analyze a wide range of analytes and, thus, its separation mechanism at supramolecular level is significant. We developed a mechanism for the separation of ibuprofen and omeprazole using different combinations (ranging from 50:50 to 60:40) of water-acetonitrile containing 0.1% formic acid as the mobile phase. The column used was Waters Acquity UPLC HSS PFP (75 × 2.1 mm, 1.8 μm). The reverse order of elution was observed in different combinations of the mobile phases. The docking study indicated hydrogen bonding between ibuprofen and PFP stationary phase (binding energy was -11.30 kJ/mol). Separation at PFP stationary phase is controlled by hydrogen bonding along with π-π interactions. This stationary phase may be used to analyze both aromatic and aliphatic analytes. The developed mechanism will be useful to separate various analytes by considering the possible interactions, leading to saving of energy, time and money. In addition, this work will be highly useful in preparative chromatography where separation is the major problem at a large scale. Moreover, the developed LC-MS-QTOF method may be used to analyze ibuprofen and omeprazole in an unknown sample owing to the low value of detection limits. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Sex differences in lower extremity kinematics and patellofemoral kinetics during running.

    PubMed

    Almonroeder, Thomas G; Benson, Lauren C

    2017-08-01

    The incidence of patellofemoral pain (PFP) is 2 times greater in females compared with males of similar activity levels; however, the exact reason for this discrepancy remains unclear. Abnormal mechanics of the hip and knee in the sagittal, frontal, and transverse planes have been associated with an increased risk of PFP. The purpose of this study was to compare the mechanics of the lower extremity in males and females during running in order to better understand the reason(s) behind the sex discrepancy in PFP. Three-dimensional kinematic and kinetic data were collected as male and female participants completed overground running trials at a speed of 4.0 m · s -1 (±5%). Patellofemoral joint stress (PFJS) was estimated using a sagittal plane knee model. The kinematics of the hip and knee in the frontal and transverse planes were also analysed. Male participants demonstrated significantly greater sagittal plane peak PFJS in comparison with the female participants (P < .001, ES = 1.9). However, the female participants demonstrated 3.5° greater peak hip adduction and 3.4° greater peak hip internal rotation (IR). As a result, it appears that the sex discrepancy in PFP is more likely to be related to differences in the kinematics of the hip in the frontal and transverse planes than differences in sagittal plane PFJS.

  16. Microstructural study of codeposited pentacene:perfluoropentacene grown on KCl by TEM techniques

    NASA Astrophysics Data System (ADS)

    Félix, Rocío; Breuer, Tobias; Witte, Gregor; Volz, Kerstin; Gries, Katharina I.

    2017-08-01

    Transmission electron microscopy techniques have been used as a research tool to derive information on structure and orientation of organic semiconductor blends. Within this work, we have studied the structure and morphology of pentacene (PEN, C22H14) and perfluoropentacene (PFP, C22F14) blends grown with [2:1] and [1:2] mixing ratios on KCl substrates. The [2:1] mixture exhibits a uniform layer on the substrate with domains that are rotated in-plane by 90° towards each other. Electron diffraction experiments revealed that these domains are formed by a crystalline mixed phase (consisting of PEN and PFP) and a PEN phase in excess whose lattice parameters are rather similar. By contrast, in the [1:2] blend, two different arrangements were found. The majority of the sample exhibits some spicular fibers on a background layer lying on top of the KCl substrate. The microstructural characterization revealed that these fibers consist of pure PFP in excess while the background layer is formed by the mixed phase. The other arrangement, which is present to a lesser extent, consists of a PFP film that is in direct contact with the KCl substrate. Using electron diffraction experiments, the orientation of the different phases with respect to each other and in some cases relative to the KCl substrate has been determined.

  17. Female PFP patients present alterations in eccentric muscle activity but not the temporal order of activation of the vastus lateralis muscle during the single leg triple hop test.

    PubMed

    Kalytczak, Marcelo Martins; Lucareli, Paulo Roberto Garcia; Dos Reis, Amir Curcio; Bley, André Serra; Biasotto-Gonzalez, Daniela Aparecida; Correa, João Carlos Ferrari; Politti, Fabiano

    2018-04-07

    This study aimed to compare the concentric and eccentric activity and the temporal order of peak activity of the hip and knee muscles between women with patellofemoral pain (PFP) and healthy women during the single leg triple hop test (SLTHT). Electromyographic (EMG) and Kinematic data were collected from 14 healthy women (CG) and 14 women diagnosed with PFP (PFG) during a single session of the single leg triple hop test. Integral surface electromyography (iEMG) data of the hip and knee muscles in eccentric and concentric phases and the length of time that each muscle needed to reach the maximal peak of muscle activity were calculated. The iEMG in the eccentric phase was significantly higher (p < 0.05) than the concentric phase, for the gluteus maximus and gluteus medius muscles (CG and PFG) and for the vastus lateralis muscle (PFG). The vastus lateralis muscle was the first muscle to reach the highest peak of activity in the PFG, and the third to reach this peak in the CG. In the present study, the activity of the vastus lateralis muscle during the eccentric phase of the jump was greater than concentric phase, as a temporal anticipation of its peak in activity among women with PFP. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Polymeric mixed micelles loaded mitoxantrone for overcoming multidrug resistance in breast cancer via photodynamic therapy

    PubMed Central

    Zhao, Yiqiao; Yu, Hua; Zhou, Haiyu; Chen, Meiwan

    2017-01-01

    Mitoxantrone (MIT) is an anticancer agent with photosensitive properties that is commonly used in various cancers. Multidrug resistance (MDR) effect has been an obstacle to using MIT for cancer therapy. Photochemical internalization, on account of photodynamic therapy, has been applied to improve the therapeutic effect of cancers with MDR effect. In this study, an MIT-poly(ε-caprolactone)-pluronic F68-poly(ε-caprolactone)/poly(d,l-lactide-co-glycolide)–poly(ethylene glycol)–poly(d,l-lactide-co-glycolide) (MIT-PFP/PPP) mixed micelles system was applied to reverse the effect of MDR in MCF-7/ADR cells via photochemical reaction when exposed to near-infrared light. MIT-PFP/PPP mixed micelles showed effective interaction with near-infrared light at the wavelength of 660 nm and exerted great cytotoxicity in MCF-7/ADR cells with irradiation. Furthermore, MIT-PFP/PPP mixed micelles could improve reactive oxygen species (ROS) levels, decrease P-glycoprotein activity, and increase the cellular uptake of drugs with improved intracellular drug concentrations, which induced cell apoptosis in MCF-7/ADR cells under irradiation, despite MDR effect, as indicated by the increased level of cleaved poly ADP-ribose polymerase. These findings suggested that MIT-PFP/PPP mixed micelles may become a promising strategy to effectively reverse the MDR effect via photodynamic therapy in breast cancer. PMID:28919756

  19. [Atmospheric emission of PCDD/Fs from modern dry processing cement kilns with preheating in the southwest area, China].

    PubMed

    Zhang, Xiao-Ling; Lu, Yi; Jian, Chuan; Guo, Zhi-Shun; Zhu, Ming-Ji; Deng, Li; Sun, Jing; Zhang, Qin

    2014-01-01

    Six cement kilns were measured for emissions of PCDD/Fs in the Southwest Area, China. The results indicated that the emission levels of PCDD/Fs were 0.0029-0.0062 ng-m(-3) (Average, 0.0043 ng X m(-3)) from cement kilns which did not burn solid waste, and 0.028 ng X m(-3) from co-processing sewage sludge in cement kiln. The levels of PCDD/Fs emissions from cement manufacturing in the Southwest Area were significantly below the national emissions standard (0.1 ng x m(-3)). Emission factors of PCDD/Fs from the six cement kilns varied between 0.0089 and 0.084 microg x t(-1) cement, which were near or below the lowest emission factor reported by UNEP in 2005. Moreover, the emission factor of PCDD/Fs from co-processing sewage sludge in cement kiln was 7.6 times of the average factors from the other five cement kilns. Moreover,congener distribution of PCDD/F in stack gas from the two types of cement kilns was very different. The results showed that modern dry process cement kilns with preheating have lower emissions of PCDD/Fs. This suggested that the product of co-processing solid waste in cement kilns should be largely enhanced in China in future.

  20. Hip rate of force development and strength are impaired in females with patellofemoral pain without signs of altered gluteus medius and maximus morphology.

    PubMed

    Nunes, Guilherme S; Barton, Christian John; Serrão, Fábio Viadanna

    2018-02-01

    To compare rate of force development (RFD) and isometric muscle strength of the hip abductors and extensors; and the thickness and the amount of non-contractile tissue of the gluteus medius and maximus between females with and without patellofemoral pain (PFP). Cross-sectional study. Fifty-four physically active females (27 with PFP and 27 healthy individuals) were studied. Hip muscle isometric strength and RFD was evaluated using isokinetic dynamometry. RFD was measured until 30%, 60%, and 90% of the maximal isometric torque (MIT). Hip muscle morphology was evaluated using ultrasonography. The PFP group possessed slower RFD compared to the control group by 33% for hip abductors until 90%MIT (-0.23%/ms, 95%CI -0.44 to -0.02, ES=0.59); by 51% for hip extensors until 30%MIT (-0.42%/ms, 95%CI -0.66 to -0.18, ES=0.97); and by 55% for hip extensors until 60%MIT (-0.36%/ms, 95%CI -0.60 to -0.12, ES=0.81). The PFP group possessed reduced isometric torque compared to the control group by 10% for hip abduction (-16.0Nm/kg×100, 95% CI -30.2 to -1.9, ES=0.61) and by 15% for hip extension (-30.1Nm/kg×100, 95%CI -51.4 to -8.9, ES=0.76). No significant between group differences for the thickness and the amount of non-contractile tissue of the gluteus medius and maximus were identified. Females with PFP have deficits in isometric strength and RFD in hip abduction and extension. RFD deficits are greater than strength deficits which may highlight their potential importance. Hip muscle strength and RFD deficits do not appear to be explained by muscle thickness or proportion of non-contractile tissue of the gluteal musculature as measured by ultrasound. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Femur rotation and patellofemoral joint kinematics: a weight-bearing magnetic resonance imaging analysis.

    PubMed

    Souza, Richard B; Draper, Christie E; Fredericson, Michael; Powers, Christopher M

    2010-05-01

    Controlled laboratory study using a cross-sectional design. To compare patellofemoral joint kinematics, femoral rotation, and patella rotation between females with patellofemoral pain (PFP) and pain-free controls using weight-bearing kinematic magnetic resonance imaging. Recently, it has been recognized that patellofemoral malalignment may be the result of femoral motion as opposed to patella motion. Fifteen females with PFP and 15 pain-free females between the ages of 18 and 45 years participated in this study. Kinematic imaging of the patellofemoral joint was performed using a vertically open magnetic resonance imaging system. Axial-oblique images were obtained using a fast gradient-echo pulse sequence. Images were acquired at a rate of 1 image per second while subjects performed a single-limb squat. Measures of femur and patella rotation (relative to the image field of view), lateral patella tilt, and lateral patella displacement were made from images obtained at 45 degrees , 30 degrees , 15 degrees , and 0 degrees of knee flexion. Group differences were assessed using a mixed-model analysis of variance with repeated measures. When compared to the control group, females with PFP demonstrated significantly greater lateral patella displacement at all angles evaluated and significantly greater lateral patella tilt at 30 degrees , 15 degrees , and 0 degrees of knee flexion. Similarly, greater medial femoral rotation was observed in the PFP group at 45 degrees , 15 degrees , and 0 degrees of knee flexion when compared to the control group. No group differences in patella rotation were found. Altered patellofemoral joint kinematics in females with PFP appears to be related to excessive medial femoral rotation, as opposed to lateral patella rotation. Our results suggest that the control of femur rotation may be important in restoring normal patellofemoral joint kinematics. J Orthop Sports Phys Ther 2010;40(5):277-285, Epub 12 March 2010. doi:10.2519/jospt.2010.3215.

  2. Impact of digital prosthodontic planning on dental esthetics: Biometric analysis of esthetic parameters.

    PubMed

    Abduo, Jaafar; Bennamoun, Mohammed; Tennant, Marc; McGeachie, John

    2016-01-01

    Improving dental esthetics is a main objective of prosthodontic treatment. Recently, digital diagnostic waxing has been proposed as an alternative to conventional diagnostic waxing; however, the impact on esthetics has not been evaluated. The purpose of this study was to evaluate the impact of diagnostic waxing on biometric esthetic variables and to compare the esthetic outcome achieved by digital waxing with conventional waxing. Three biometric variables were evaluated: perceived frontal proportion (PFP), width/height (W:H) ratio, and symmetry. Maxillary casts of 13 patients were collected. All of them had maxillary anterior teeth that required prosthodontic treatment. Two forms of diagnostic waxing were executed: conventional and digital waxing. Measurements of the esthetic variables were conducted digitally. For the PFP, a frontal image was made and the width of each tooth was measured. Subsequently, the PFP values of the lateral incisor to central incisor and of the canine to central incisor were calculated. In addition, the height and width of each tooth was measured to calculate the W:H ratio. Using the previous measurements, the symmetry between the right and left sides was determined. No consistent or recurrent PFP was detected for any cast. The diagnostic waxing did not alter the PFP of the pretreatment casts. The diagnostic waxing had restored the W:H ratio to what is assumed to be a natural ratio. An improvement in symmetry was detected after the diagnostic waxing and was more prominent after the digital waxing. However, no significant difference was found between the 2 diagnostic waxing methods. The 2 diagnostic waxing methods influenced the esthetic variables of the anterior maxillary teeth and yielded similar outcomes. Digital waxing appears to be a reasonable alternative, but further investigations are needed to ensure its practicality. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Sports Specialization is Associated with An Increased Risk of Developing Anterior Knee Pain in Adolescent Female Athletes

    PubMed Central

    Hall, Randon; Foss, Kim Barber; Hewett, Timothy E.; Myer, Gregory D.

    2014-01-01

    Objectives This study sought to determine if sport specialization increases the risk of anterior knee pain in adolescent female athletes. Design Retrospective cohort epidemiology study. Methods Female basketball, soccer and volleyball players (N=546) were recruited from a single county public school district in Kentucky consisting of five middle schools and four high schools. A total of 357 multi-sport, and 189 single sport (66 basketball, 57 soccer and 66 volleyball) athlete subjects were included due to their diagnosis of patellofemoral pain on physical exam. Testing consisted of completion of a standardized history and physician-administered physical examination to determine the presence of patellofemoral pain (PFP). This study compared self-reported multi-sport athletes with sport specialized athletes participating in only one sport. The sports participation data was normalized by sport season with each sport accounting for one season of exposure. Incidence rate ratios (IRR) and 95% confidence intervals (CI) were calculated and used to determine significant differences between athletes who specialized in sport in early youth and multi-sport athletes. Results Specialization in a single sport increased the relative risk of PFP incidence by 1.5 fold (95% CI 1.0 to 2.2; p=0.038) for cumulative PFP diagnoses. Specific diagnoses such as Sinding Larsen Johansson/patellar tendinopathy (95% CI 1.5 to 10.1; p=0.005) and Osgood Schlatter Disease (95% CI 1.5 to 10.1; p=0.005) demonstrated a four-fold greater relative risk in single sport compared to multiple sport athletes. Other specific PFP diagnoses such as Fat Pad, Plica, Trauma, Pes Anserine Bursitis and IT Band Tendonitis incidence were not different between single sport and multiple sport participants (p>0.05). Conclusion Early sport specialization in female adolescents is associated with increased risk of anterior knee pain disorders including PFP, Osgood Schlatter, Sinding Larsen-Johansson compared to multi-sport athletes. PMID:24622506

  4. Tank 241-Z-361 Sludge Retrieval and Treatment Alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAMPTON, B.K.

    2000-05-24

    The Plutonium Finishing Plant (PFP) Tank 241-Z-361 (Z-361) contains legacy sludge resulting from waste discharges from past missions at PFP. A sketch of the tank is shown in Figure 1. In this view various risers and penetrations are shown along with the sludge level depicted by the horizontal line halfway up the tank, and the ground level depicted by the horizontal line above the tank. The HEPA filter installed for breathing is also shown on one of the risers.

  5. Electronic Information Management for PfP Nations (La gestion electronique des informations pour les pays du PfP)

    DTIC Science & Technology

    2003-04-01

    such repositories containing electronic information sources that can be used for academic research. The Los Alamos Physics Archive, providing access to...Pinfield, Gardner and MacColl. 2002). The first e-print server was the Los Alamos Physics Archive, presently known as arXiv.org, which was created in 1991...by Ginsparg (Ginsparg 1996; Luce 2001; McKiernan 2000) at the Los Alamos National Laboratory, to give access to pre-prints in the domain of high

  6. Patellofemoral pain: Challenging current practice - A case report.

    PubMed

    Smith, Benjamin E; Hendrick, Paul; Logan, Pip

    2016-04-01

    Patellofemoral pain (PFP) is a common problem in young people, with 1 in 6 suffering at any one time. It is unclear which management approach is the optimal method for treating PFP in the long term, with traditional physiotherapy examination focusing on assessing for specific structural dysfunction. A rationale for a different assessment and treatment approach, one that moves the focus away from a biomedical/tissue pathology model towards one directed at the neurophysiology of pain, has been suggested. The patient was a 21 year old male with a 6 year history of PFP with previous failed physiotherapeutic treatment. He reported previous multiple healthcare practitioners' advice to avoid activities that were painful as reasons for being unable to participate in sporting activities. No specific structural testing was performed, such as specific muscle strength, length, foot position, patella movement and position, or movement patterns. Descriptions of tissue based pathology models of pain, e.g. patella mal-tracking, were actively discouraged and challenged. The patient was taught to perform one uncomfortable/painful exercise as part of his rehabilitation programme twice a day. The patient achieved 80% improvement in his symptoms over 7 appointments and a return to physical activity following a 5 month rehabilitation programme purposively designed to elicit pain by means of gradually exercising and loading the tissues. This case report highlights the need for further research into exercise protocols for patients suffering with PFP based upon neurophysiology models of pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem.

    PubMed

    Frausto-Solis, Juan; Liñán-García, Ernesto; Sánchez-Hernández, Juan Paulo; González-Barbosa, J Javier; González-Flores, Carlos; Castilla-Valdez, Guadalupe

    2016-01-01

    A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.

  8. A telemedicine instrument for remote evaluation of tremor: design and initial applications in fatigue and patients with Parkinson's Disease

    PubMed Central

    2011-01-01

    Introduction A novel system that combines a compact mobile instrument and Internet communications is presented in this paper for remote evaluation of tremors. The system presents a high potential application in Parkinson's disease and connects to the Internet through a TCP/IP protocol. Tremor transduction is carried out by accelerometers, and the data processing, presentation and storage were obtained by a virtual instrument. The system supplies the peak frequency (fp), the amplitude (Afp) and power in this frequency (Pfp), the total power (Ptot), and the power in low (1-4 Hz) and high (4-7 Hz) frequencies (Plf and Phf, respectively). Methods The ability of the proposed system to detect abnormal tremors was initially demonstrated by a fatigue study in normal subjects. In close agreement with physiological fundamentals, the presence of fatigue increased fp, Afp, Pfp and Pt (p < 0.05), while the removal of fatigue reduced all the mentioned parameters (p < 0.05). The system was also evaluated in a preliminary in vivo test in parkinsonian patients. Afp, Pfp, Ptot, Plf and Phf were the most accurate parameters in the detection of the adverse effects of this disease (Se = 100%, Sp = 100%), followed by fp (Se = 100%, Sp = 80%). Tests for Internet transmission that realistically simulated clinical conditions revealed adequate acquisition and analysis of tremor signals and also revealed that the user could adequately receive medical recommendations. Conclusions The proposed system can be used in a wide spectrum of telemedicine scenarios, enabling the home evaluation of tremor occurrence under specific medical treatments and contributing to reduce the costs of the assistance offered to these patients. PMID:21306628

  9. Definition and means of maintaining the criticality detectors and alarms portion of the PFP safety envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, W.F.

    The purpose of this document is to provide the definition and means of maintaining the Safety Envelope (SE) related to the Criticality Alarm System (CAS). This document provides amplification of the Limiting Condition for Operation (LCO) described in the Plutonium Finishing Plant (PFP) Operational Safety Requirements (OSR), WHC-SD-CP-OSR-010, Rev. 0, 1994, Section 3.1.2, Criticality Detectors and Alarms. This document, with its appendices, provides the following: (1) System functional requirements for determining system operability (Section 3); (2) A list of annotated system block diagrams which indicate the safety envelope boundaries (Appendix C); (3) A list of the Safety Class 1 andmore » 2 Safety Envelope (SC-1/2 SE) equipment for input into the Master Component Index (Appendix B); (4) Functional requirements for individual SC-1/2 SE components, including appropriate setpoints and process parameters (Section 6 and Appendix A); (5) A list of the operational, maintenance and surveillance procedures necessary to operate and maintain the SC-1/2 SE components as required by the LCO (Section 6 and Appendix A).« less

  10. Acoustic response of cemented granular sedimentary rocks: molecular dynamics modeling.

    PubMed

    García, Xavier; Medina, Ernesto

    2007-06-01

    The effect of cementation processes on the acoustical properties of sands is studied via molecular dynamics simulation methods. We propose numerical methods where the initial uncemented sand is built by simulating the settling process of sediments. Uncemented samples of different porosity are considered by emulating natural mechanical compaction of sediments due to overburden. Cementation is considered through a particle-based model that captures the underlying physics behind the process. In our simulations, we consider samples with different degrees of compaction and cementing materials with distinct elastic properties. The microstructure of cemented sands is taken into account while adding cement at specific locations within the pores, such as grain-to-grain contacts. Results show that the acoustical properties of cemented sands are strongly dependent on the amount of cement, its stiffness relative to the hosting medium, and its location within the pores. Simulation results are in good correspondence with available experimental data and compare favorably with some theoretical predictions for the sound velocity within a range of cement saturation, porosity, and confining pressure.

  11. The influence of silanized nano-SiO{sub 2} on the hydration of cement paste: NMR investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bede, A., E-mail: Andrea.Bede@phys.utcluj.ro; Pop, A.; Ardelean, I.

    2015-12-23

    It is known that by adding a small amount of nanoparticles to the cement-based materials a strong influence on the workability, strength and durability is obtained. These characteristics of the material are fundamentally determined by the hydration process taking place after mixing the cement grains with water. In the present study the influence introduced by the addition of nano-silica with silanized surfaces on the hydration process was investigated using low-field nuclear magnetic resonance (NMR) relaxometry. The cement samples were prepared using gray cement at a water-to-cement ratio of 0.4 and a 5% addition of nanosilica. The surface of the nanoparticlesmore » was modified using a coating of Silane A174. The cement pastes were monitored during their standard curing time of 28 days. It was established that, by using unmodified nanosilica particles, an acceleration of the hydration process takes place as compared with the pure cement paste. On the other side, by adding silanized nanoparticles, the dormancy stage significantly extends and the hydration process is slower. This slowing down process could enhance the mechanical strength of cement based materials as a result of a better compaction of the hydrated samples.« less

  12. Research Of The Influence Of Reftinskii SDPP’S Ash On The Processes Of Cement Stone’S Structure Forming

    NASA Astrophysics Data System (ADS)

    Zimakova, G. A.; Solonina, V. A.; Zelig, M. P.

    2017-01-01

    The article describes the experimental research of cement stone. Cement stone forming involves highly dispersive mineral additive - ground ash. It is stated that the substitution of some part of cement with activated ash leaves cement strength high. This is possible due to the activity of ash in structure forming processes. Activation of ash provides the increase in its puzzolanic activity, complete hydration processes. it is stated that ash grinding leads to a selective crystallization hydrated neoformations. Their morthology is different on outer and inner surfaces of ash spheres. The usage of ash can provide cement economy on condition that rheological characteristics of concrete stay constant. Besides, the usage of ash will improve physical and mechanic characteristics of cement stone and concrete.

  13. Susceptibility to Inhaled Flame-Generated Ultrafine Soot in Neonatal and Adult Rat Lungs

    PubMed Central

    Chan, Jackie K. W.; Fanucchi, Michelle V.; Anderson, Donald S.; Abid, Aamir D.; Wallis, Christopher D.; Dickinson, Dale A.; Kumfer, Benjamin M.; Kennedy, Ian M.; Wexler, Anthony S.; Van Winkle, Laura S.

    2011-01-01

    Over a quarter of the U.S. population is exposed to harmful levels of airborne particulate matter (PM) pollution, which has been linked to development and exacerbation of respiratory diseases leading to morbidity and mortality, especially in susceptible populations. Young children are especially susceptible to PM and can experience altered anatomic, physiologic, and biological responses. Current studies of ambient PM are confounded by the complex mixture of soot, metals, allergens, and organics present in the complex mixture as well as seasonal and temporal variance. We have developed a laboratory-based PM devoid of metals and allergens that can be replicated to study health effects of specific PM components in animal models. We exposed 7-day-old postnatal and adult rats to a single 6-h exposure of fuel-rich ultrafine premixed flame particles (PFPs) or filtered air. These particles are high in polycyclic aromatic hydrocarbons content. Pulmonary cytotoxicity, gene, and protein expression were evaluated at 2 and 24 h postexposure. Neonates were more susceptible to PFP, exhibiting increased lactate dehydrogenase activity in bronchoalveolar lavage fluid and ethidium homodimer-1 cellular staining in the lung in situ as an index of cytotoxicity. Basal gene expression between neonates and adults differed for a significant number of antioxidant, oxidative stress, and proliferation genes and was further altered by PFP exposure. PFP diminishes proliferation marker PCNA gene and protein expression in neonates but not adults. We conclude that neonates have an impaired ability to respond to environmental exposures that increases lung cytotoxicity and results in enhanced susceptibility to PFP, which may lead to abnormal airway growth. PMID:21914721

  14. Susceptibility to inhaled flame-generated ultrafine soot in neonatal and adult rat lungs.

    PubMed

    Chan, Jackie K W; Fanucchi, Michelle V; Anderson, Donald S; Abid, Aamir D; Wallis, Christopher D; Dickinson, Dale A; Kumfer, Benjamin M; Kennedy, Ian M; Wexler, Anthony S; Van Winkle, Laura S

    2011-12-01

    Over a quarter of the U.S. population is exposed to harmful levels of airborne particulate matter (PM) pollution, which has been linked to development and exacerbation of respiratory diseases leading to morbidity and mortality, especially in susceptible populations. Young children are especially susceptible to PM and can experience altered anatomic, physiologic, and biological responses. Current studies of ambient PM are confounded by the complex mixture of soot, metals, allergens, and organics present in the complex mixture as well as seasonal and temporal variance. We have developed a laboratory-based PM devoid of metals and allergens that can be replicated to study health effects of specific PM components in animal models. We exposed 7-day-old postnatal and adult rats to a single 6-h exposure of fuel-rich ultrafine premixed flame particles (PFPs) or filtered air. These particles are high in polycyclic aromatic hydrocarbons content. Pulmonary cytotoxicity, gene, and protein expression were evaluated at 2 and 24 h postexposure. Neonates were more susceptible to PFP, exhibiting increased lactate dehydrogenase activity in bronchoalveolar lavage fluid and ethidium homodimer-1 cellular staining in the lung in situ as an index of cytotoxicity. Basal gene expression between neonates and adults differed for a significant number of antioxidant, oxidative stress, and proliferation genes and was further altered by PFP exposure. PFP diminishes proliferation marker PCNA gene and protein expression in neonates but not adults. We conclude that neonates have an impaired ability to respond to environmental exposures that increases lung cytotoxicity and results in enhanced susceptibility to PFP, which may lead to abnormal airway growth.

  15. Improving plasma actuator performance at low pressure, and an analysis of the pointing capabilities of cubeSats using Plasmonic Force Propulsion (PFP) thrusters

    NASA Astrophysics Data System (ADS)

    Friz, Paul Daniel

    This thesis details the work done on two unrelated projects, plasma actuators, an aerodynamic flow control device, and Plasmonic Force Propulsion (PFP) thrusters, a space propulsion system for small satellites. The first half of the thesis is a paper published in the International Journal of Flow Control on plasma actuators. In this paper the thrust and power consumption of plasma actuators with varying geometries was studied at varying pressure. It was found that actuators with longer buried electrodes produce the most thrust over all and that they substantially improved thrust at low pressure. In particular actuators with 75 mm buried electrodes produced 26% more thrust overall and 34% more thrust at low pressure than the standard 15 mm design. The second half details work done modeling small satellite attitude and reaction control systems in order to compare the use of Plasmonic Force Propulsion thrusters with other state of the art reaction control systems. The model uses bang bang control algorithms and assumes the worst case scenario solar radiation pressure is the only disturbing force. It was found that the estimated 50-500 nN of thrust produced by PFP thrusters would allow the spacecraft which use them extremely high pointing and positioning accuracies (<10-9 degrees and 3 pm). PFP thrusters still face many developmental challenges such as increasing specific impulse which require more research, however, they have great potential to be an enabling technology for future NASA missions such as the Laser Interferometer Space Antenna, and The Stellar Imager.

  16. Relationship between operational variables, fundamental physics and foamed cement properties in lab and field generated foamed cement slurries

    DOE PAGES

    Glosser, D.; Kutchko, B.; Benge, G.; ...

    2016-03-21

    Foamed cement is a critical component for wellbore stability. The mechanical performance of a foamed cement depends on its microstructure, which in turn depends on the preparation method and attendant operational variables. Determination of cement stability for field use is based on laboratory testing protocols governed by API Recommended Practice 10B-4 (API RP 10B-4, 2015). However, laboratory and field operational variables contrast considerably in terms of scale, as well as slurry mixing and foaming processes. Here in this paper, laboratory and field operational processes are characterized within a physics-based framework. It is shown that the “atomization energy” imparted by themore » high pressure injection of nitrogen gas into the field mixed foamed cement slurry is – by a significant margin – the highest energy process, and has a major impact on the void system in the cement slurry. There is no analog for this high energy exchange in current laboratory cement preparation and testing protocols. Quantifying the energy exchanges across the laboratory and field processes provides a basis for understanding relative impacts of these variables on cement structure, and can ultimately lead to the development of practices to improve cement testing and performance.« less

  17. Fluorescent Biosensor for Phosphate Determination Based on Immobilized Polyfluorene-Liposomal Nanoparticles Coupled with Alkaline Phosphatase.

    PubMed

    Kahveci, Zehra; Martínez-Tomé, Maria José; Mallavia, Ricardo; Mateo, C Reyes

    2017-01-11

    This work describes the development of a novel fluorescent biosensor based on the inhibition of alkaline phosphatase (ALP). The biosensor is composed of the enzyme ALP and the conjugated cationic polyfluorene HTMA-PFP. The working principle of the biosensor is based on the fluorescence quenching of this polyelectrolyte by p-nitrophenol (PNP), a product of the hydrolysis reaction of p-nitrophenyl phosphate (PNPP) catalyzed by ALP. Because HTMA-PFP forms unstable aggregates in buffer, with low fluorescence efficiency, previous stabilization of the polyelectrolyte was required before the development of the biosensor. HTMA-PFP was stabilized through its interaction with lipid vesicles to obtain stable blue-emitting nanoparticles (NPs). Fluorescent NPs were characterized, and the ability to be quenched by PNP was evaluated. These nanoparticles were coupled to ALP and entrapped in a sol-gel matrix to produce a biosensor that can serve as a screening platform to identify ALP inhibitors. The components of the biosensor were examined before and after sol-gel entrapment, and the biosensor was optimized to allow the determination of phosphate ion in aqueous medium.

  18. Acute Responses of Strength and Running Mechanics to Increasing and Decreasing Pain in Patients With Patellofemoral Pain.

    PubMed

    Bazett-Jones, David M; Huddleston, Wendy; Cobb, Stephen; O'Connor, Kristian; Earl-Boehm, Jennifer E

    2017-05-01

      Patellofemoral pain (PFP) is typically exacerbated by repetitive activities that load the patellofemoral joint, such as running. Understanding the mediating effects of changes in pain in individuals with PFP might inform injury progression, rehabilitation, or both.   To investigate the effects of changing pain on muscular strength and running biomechanics in those with PFP.   Crossover study.   University research laboratory.   Seventeen participants (10 men, 7 women) with PFP.   Each participant completed knee pain-reducing and pain-inducing protocols in random order. The pain-reducing protocol consisted of 15 minutes of transcutaneous electric nerve stimulation (TENS) around the patella. The pain-inducing protocol was sets of 20 repeated single-legged squats (RSLS). Participants completed RSLS sets until either their pain was within at least 1 cm of their pain during an exhaustive run or they reached 10 sets.   Pain, isometric hip and trunk strength, and running mechanics were assessed before and after the protocols. Dependent variables were pain, normalized strength (abduction, extension, external rotation, lateral trunk flexion), and peak lower extremity kinematics and kinetics in all planes. Pain scores were analyzed using a Friedman test. Strength and mechanical variables were analyzed using repeated-measures analyses of variance. The α level was set at P < .05.   Pain was decreased after the TENS (pretest: 3.10 ± 1.95, posttest: 1.89 ± 2.33) and increased after the RSLS (baseline: 3.10 ± 1.95, posttest: 4.38 ± 2.40) protocols (each P < .05). The RSLS protocol resulted in a decrease in hip-extension strength (baseline: 0.355 ± 0.08 kg/kg, posttest: 0.309 ± 0.09 kg/kg; P < .001). Peak plantar-flexion angle was decreased after RSLS (baseline: -13.97° ± 6.41°, posttest: -12.84° ± 6.45°; P = .003). Peak hip-extension (pretest: -2.31 ± 0.46) and hip-abduction (pretest: -2.02 ± 0.35) moments decreased after both the TENS (extension: -2.15 ± 0.48 Nm/kg, P = .015; abduction: -1.91 ± 0.33 Nm/kg, P = .015) and RSLS (extension: -2.18 ± 0.52 Nm/kg, P = .003; abduction: -1.87 ± 0.36 Nm/kg, P = .039) protocols.   This study presents a novel and effective method of increasing pain in persons with PFP. Functionally increased pain after RSLS coincides with reduced hip-extensor muscle strength and decreased plantar-flexion angle during running. The TENS treatment decreased pain during running in those with PFP but failed to influence strength. Hip moments were reduced by both protocols, which may demonstrate that acute increases or decreases in pain cause runners to change their mechanics.

  19. Substantial global carbon uptake by cement carbonation

    NASA Astrophysics Data System (ADS)

    Xi, Fengming; Davis, Steven J.; Ciais, Philippe; Crawford-Brown, Douglas; Guan, Dabo; Pade, Claus; Shi, Tiemao; Syddall, Mark; Lv, Jie; Ji, Lanzhu; Bing, Longfei; Wang, Jiaoyue; Wei, Wei; Yang, Keun-Hyeok; Lagerblad, Björn; Galan, Isabel; Andrade, Carmen; Zhang, Ying; Liu, Zhu

    2016-12-01

    Calcination of carbonate rocks during the manufacture of cement produced 5% of global CO2 emissions from all industrial process and fossil-fuel combustion in 2013. Considerable attention has been paid to quantifying these industrial process emissions from cement production, but the natural reversal of the process--carbonation--has received little attention in carbon cycle studies. Here, we use new and existing data on cement materials during cement service life, demolition, and secondary use of concrete waste to estimate regional and global CO2 uptake between 1930 and 2013 using an analytical model describing carbonation chemistry. We find that carbonation of cement materials over their life cycle represents a large and growing net sink of CO2, increasing from 0.10 GtC yr-1 in 1998 to 0.25 GtC yr-1 in 2013. In total, we estimate that a cumulative amount of 4.5 GtC has been sequestered in carbonating cement materials from 1930 to 2013, offsetting 43% of the CO2 emissions from production of cement over the same period, not including emissions associated with fossil use during cement production. We conclude that carbonation of cement products represents a substantial carbon sink that is not currently considered in emissions inventories.

  20. The effectiveness of the stabilization/solidification process on the leachability and toxicity of the tannery sludge chromium.

    PubMed

    Montañés, M T; Sánchez-Tovar, R; Roux, M S

    2014-10-01

    A stabilization/solidification (S/S) process by using cement was applied to tannery sludge in order to find a safer way of landfilling this waste. The effects of three parameters on the process effectiveness were analysed in terms of leachate toxicity and chromium retention (%). The parameters studied were the relative amount of added water (30-50 wt.%), cement (10-60 wt.% in the solid components), and the use of three different types of cement (clinker with additions of limestone, with additions of limestone and fly ashes, and with additions of pozzolans). Statistical analysis performed by variance analysis and categorical multifactorial tests reveals that all the studied parameters significantly influence the effectiveness of the process. Results showed that chromium retention decreases as the relative amount of cement and water increases, probably due to additional chromium provided by cement and increased in the porosity of the mixtures. Leachate toxicity showed the same minimum value for mixtures with 30% or 40% cement, depending on the type of cement, showing that clinker is the main material responsible for the process effectiveness, and additives (pozzolans or fly ashes) do not improve it. The volume increase is lower as less sludge is replaced by cement and the relative amount of water decreases, and for the cement without additions of fly ashes or pozzolans. Therefore, the latter seems to be the most appropriate cement in spite of being more expensive. This is due to the fact that the minimum toxicity value is achieved with a lower amount of cement; and moreover, the volume increase in the mixtures is lower, minimizing the disposal cost to a landfill. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Application of the analytic hierarchy process in the performance measurement of colorectal cancer care for the design of a pay-for-performance program in Taiwan.

    PubMed

    Chung, Kuo-Piao; Chen, Li-Ju; Chang, Yao-Jen; Chang, Yun-Jau; Lai, Mei-Shu

    2013-02-01

    To prioritize performance measures for colorectal cancer care to facilitate the implementation of a pay-for-performance (PFP) system. Questionnaires survey. Medical hospitals in Taiwan. Sixty-six medical doctors from 5 November 2009 to 10 December 2009. Analytic hierarchy process (AHP) technique. Main outcome measure(s) Performance measures (two pre-treatment, six treatment related and three monitoring related) were used. Forty-eight doctors responded and returned questionnaires (response rate 72.7%) with surgeons and physicians contributing equally. The most important measure was the proportion of colorectal patients who had pre-operative examinations that included chest X-ray and abdominal ultrasound, computed tomography or MRI (global priority: 0.144), followed by the proportion of stages I-III colorectal cancer patients who had undergone a wide surgical resection documented as 'negative margin' (global priority: 0.133) and the proportion of colorectal cancer patients who had undergone surgery with a pathology report that included information on tumor size and node differentiation (global priority: 0.116). Most participants considered that the best interval for the renewal indicators was 3-5 years (43.75%) followed by 5-10 years (27.08%). To design a PFP program, the AHP method is a useful technique to prioritize performance measures, especially in a highly specialized domain such as colorectal cancer care.

  2. DELIVERY OF WATER-SOLUBLE DRUGS USING ACOUSTICALLY-TRIGGERED, PERFLUOROCARBON DOUBLE EMULSIONS

    PubMed Central

    Fabiilli, Mario L.; Lee, James A.; Kripfgans, Oliver D.; Carson, Paul L.; Fowlkes, J. Brian

    2010-01-01

    Purpose Ultrasound can be used to release a therapeutic payload encapsulated within a perfluorocarbon (PFC) emulsion via acoustic droplet vaporization (ADV), a process whereby the PFC phase is vaporized and the agent is released. ADV-generated microbubbles have been previously used to selectively occlude blood vessels in vivo. The coupling of ADV-generated drug delivery and occlusion has therapeutically, synergistic potentials. Methods Micron-sized, water-in-PFC-in-water (W1/PFC/W2) emulsions were prepared in a two-step process using perfluoropentane (PFP) or perfluorohexane (PFH) as the PFC phase. Fluorescein or thrombin was contained in the W1 phase. Results Double emulsions containing fluorescein in the W1 phase displayed a 5.7±1.4 fold and 8.2±1.3 fold increase in fluorescein mass flux, as measured using a Franz diffusion cell, after ADV for the PFP and PFH emulsions, respectively. Thrombin was stably retained in four out of five double emulsions. For three out of five formulations tested, the clotting time of whole blood decreased, in a statistically significant manner (p < 0.01), when incubated with thrombin-loaded emulsions exposed to ultrasound compared to emulsions not exposed to ultrasound. Conclusions ADV can be used to spatially and temporally control the delivery of water-soluble compounds formulated in PFC double emulsions. Thrombin release could extend the duration of ADV-generated, microbubble occlusions. PMID:20872050

  3. Microwave processing of cement and concrete materials – towards an industrial reality?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttress, Adam, E-mail: adam.buttress@nottingham.ac.uk; Jones, Aled; Kingman, Sam

    2015-02-15

    Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glosser, D.; Kutchko, B.; Benge, G.

    Foamed cement is a critical component for wellbore stability. The mechanical performance of a foamed cement depends on its microstructure, which in turn depends on the preparation method and attendant operational variables. Determination of cement stability for field use is based on laboratory testing protocols governed by API Recommended Practice 10B-4 (API RP 10B-4, 2015). However, laboratory and field operational variables contrast considerably in terms of scale, as well as slurry mixing and foaming processes. Here in this paper, laboratory and field operational processes are characterized within a physics-based framework. It is shown that the “atomization energy” imparted by themore » high pressure injection of nitrogen gas into the field mixed foamed cement slurry is – by a significant margin – the highest energy process, and has a major impact on the void system in the cement slurry. There is no analog for this high energy exchange in current laboratory cement preparation and testing protocols. Quantifying the energy exchanges across the laboratory and field processes provides a basis for understanding relative impacts of these variables on cement structure, and can ultimately lead to the development of practices to improve cement testing and performance.« less

  5. Remote-Reading Safety and Safeguards Surveillance System for 3013 Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lechelt, W. M.; Skorpik, J. R.; Silvers, K. L.

    2002-02-26

    At Hanford's Plutonium Finishing Plant (PFP), plutonium oxide is being loaded into stainless steel containers for long-term storage on the Hanford Site. These containers consist of two weld-sealed stainless steel cylinders nested one within the other. A third container holds the plutonium within the inner cylinder. This design meets the U.S. Department of Energy (DOE) storage standard, DOE-STD- 3013-2000, which anticipates a 50-year storage lifetime. The 3013 standard also requires a container surveillance program to continuously monitor pressure and to assure safeguards are adequate. However, the configuration of the container system makes using conventional measurement and monitoring methods difficult. Tomore » better meet the 3013 monitoring requirements, a team from Fluor Hanford (who manages the PFP), Pacific Northwest National Laboratory (PNNL), and Vista Engineering Technologies, LLC, developed a safer, cost-efficient, remote PFP 3013 container surveillance system. This new surveillance system is a combination of two successfully deployed technologies: (1) a magnetically coupled pressure gauge developed by Vista Engineering and (2) a radio frequency (RF) tagging device developed by PNNL. This system provides continuous, 100% monitoring of critical parameters with the containers in place, as well as inventory controls. The 3013 container surveillance system consists of three main elements: (1) an internal magnetic pressure sensor package, (2) an instrument pod (external electronics package), and (3) a data acquisition storage and display computer. The surveillance system described in this paper has many benefits for PFP and DOE in terms of cost savings and reduced personnel exposure. In addition, continuous safety monitoring (i.e., internal container pressure and temperature) of every container is responsible nuclear material stewardship and fully meets and exceeds DOE's Integrated Surveillance Program requirements.« less

  6. Footwear characteristics are related to running mechanics in runners with patellofemoral pain.

    PubMed

    Esculier, Jean-Francois; Dubois, Blaise; Bouyer, Laurent J; McFadyen, Bradford J; Roy, Jean-Sébastien

    2017-05-01

    Running footwear is known to influence step rate, foot inclination at foot strike, average vertical loading rate (VLR) and peak patellofemoral joint (PFJ) force. However, the association between the level of minimalism of running shoes and running mechanics, especially with regards to these relevant variables for runners with patellofemoral pain (PFP), has yet to be investigated. The objective of this study was to explore the relationship between the level of minimalism of running shoes and habitual running kinematics and kinetics in runners with PFP. Running shoes of 69 runners with PFP (46 females, 23 males, 30.7±6.4years) were evaluated using the Minimalist Index (MI). Kinematic and kinetic data were collected during running on an instrumented treadmill. Principal component and correlation analyses were performed between the MI and its subscales and step rate, foot inclination at foot strike, average VLR, peak PFJ force and peak Achilles tendon force. Higher MI scores were moderately correlated with lower foot inclination (r=-0.410, P<0.001) and lower peak PFJ force (r=-0.412, P<0.001). Moderate correlations also showed that lower shoe mass is indicative of greater step rate (ρ=0.531, P<0.001) and lower peak PFJ force (ρ=-0.481, P<0.001). Greater shoe flexibility was moderately associated with lower foot inclination (ρ=-0.447, P<0.001). Results suggest that greater levels of minimalism are associated with lower inclination angle and lower peak PFJ force in runners with PFP. Thus, this population may potentially benefit from changes in running mechanics associated with the use of shoes with a higher level of minimalism. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Anaerobic power and physical function in strength-trained and non-strength-trained older adults.

    PubMed

    Slade, Jill M; Miszko, Tanya A; Laity, Jennifer H; Agrawal, Subodoh K; Cress, M Elaine

    2002-03-01

    Challenging daily tasks, such as transferring heavy items or rising from the floor, may be dependent on the ability to generate short bursts of energy anaerobically. The purposes of this study were to determine if strength-trained (ST) older adults have higher anaerobic power output compared with non-strength-trained (NST) older adults and to determine the relationship between anaerobic power and performance-based physical function. Thirty-five men and women (age 71.5 +/- 6.4 years, mean +/- SD; NST: n = 18, ST: n = 17) were grouped by training status. Outcome variables included relative anaerobic power (Wingate test), physical function measured with the Continuous Scale Physical Functional Performance Test (CS-PFP, scaled 0 to 100), and anthropometric lean thigh volume (LTV). Analysis of covariance (with age and sex as covariates) was used to determine group differences in the dependent variables listed above. Pearson's r was used to determine the relationship between anaerobic power, CS-PFP total score (TOT), and CS-PFP lower body strength domain score (LBS). The ST group had significantly higher mean anaerobic power (NST 58.9 +/- 16 W/l, ST 96.3 +/- 23 W/l), CS-PFP total (NST 61.2 +/- 13, ST 73.7 +/- 8), and LBS (NST 54.1 +/- 17, ST 70.9 +/- 8) compared with the NST group (p <.05). However, LTV was similar for both groups (NST 3.323 +/- 0.75; ST 3.179 +/- 0.79), which suggests that the ST group had higher muscle quality compared with the NST group. Anaerobic power was significantly related to TOT (r =.611, p =.001) and LBS (r =.650, p =.001). High levels of physical function in ST older adults may in part be explained by higher levels of anaerobic power associated with strength training.

  8. Reliability and Validity of the Hip Stability Isometric Test (HipSIT): A New Method to Assess Hip Posterolateral Muscle Strength.

    PubMed

    Almeida, Gabriel Peixoto Leão; das Neves Rodrigues, Helena Larissa; de Freitas, Bruno Wesley; de Paula Lima, Pedro Olavo

    2017-12-01

    Study Design Cross-sectional study. Background The Hip Stability Isometric Test (HipSIT) evaluates the strength of the hip posterolateral stabilizers in a position that favors greater activation of the gluteus maximus and gluteus medius and lower activation of the tensor fascia lata. Objectives To check the validity and reliability of the HipSIT and to evaluate the HipSIT in women with patellofemoral pain (PFP). Methods The HipSIT was evaluated with a handheld dynamometer. During testing, the participants were sidelying, with their legs positioned at 45° of hip flexion and 90° of knee flexion. Participants were instructed to raise the knee of the upper leg while keeping the upper and lower heels in contact. To establish reliability and validity, 49 women were tested with the HipSIT by 2 different evaluators on day 1, and then again 7 days later. The strength of the hip extensors, abductors, and external rotators was also evaluated. Twenty women with unilateral PFP were also evaluated. Results The HipSIT has excellent intrarater and interrater reliability. The standard error of measurement was 0.01 kgf/kg, and the minimal detectable change was 0.036 kgf/kg. The HipSIT showed good validity in isolated hip abduction, external rotation, and extension (P<.01). Women with PFP showed a 10% deficit in the HipSIT results for the symptomatic limb (P = .01). Conclusion The HipSIT showed excellent interrater and intrarater reliability, moderate to good validity in women, and was able to identify strength deficits in women with PFP. J Orthop Sports Phys Ther 2017;47(12):906-913. Epub 9 Oct 2017. doi:10.2519/jospt.2017.7274.

  9. Payments and quality of care in private for-profit and public hospitals in Greece.

    PubMed

    Kondilis, Elias; Gavana, Magda; Giannakopoulos, Stathis; Smyrnakis, Emmanouil; Dombros, Nikolaos; Benos, Alexis

    2011-09-23

    Empirical evidence on how ownership type affects the quality and cost of medical care is growing, and debate on these topics is ongoing. Despite the fact that the private sector is a major provider of hospital services in Greece, little comparative information on private versus public sector hospitals is available. The aim of the present study was to describe and compare the operation and performance of private for-profit (PFP) and public hospitals in Greece, focusing on differences in nurse staffing rates, average lengths of stay (ALoS), and Social Health Insurance (SHI) payments for hospital care per patient discharged. Five different datasets were prepared and analyzed, two of which were derived from information provided by the National Statistical Service (NSS) of Greece and the other three from data held by the three largest SHI schemes in the country. All data referred to the 3-year period from 2001 to 2003. PFP hospitals in Greece are smaller than public hospitals, with lower patient occupancy, and have lower staffing rates of all types of nurses and highly qualified nurses compared with public hospitals. Calculation of ALoS using NSS data yielded mixed results, whereas calculations of ALoS and SHI payments using SHI data gave results clearly favoring the public hospital sector in terms of cost-efficiency; in all years examined, over all specialties and all SHI schemes included in our study, unweighted ALoS and SHI payments for hospital care per discharge were higher for PFP facilities. In a mixed healthcare system, such as that in Greece, significant performance differences were observed between PFP and public hospitals. Close monitoring of healthcare provision by hospital ownership type will be essential to permit evidence-based decisions on the future of the public/private mix in terms of healthcare provision.

  10. Private sector, for-profit health providers in low and middle income countries: can they reach the poor at scale?

    PubMed

    Tung, Elizabeth; Bennett, Sara

    2014-06-24

    The bottom of the pyramid concept suggests that profit can be made in providing goods and services to poor people, when high volume is combined with low margins. To-date there has been very limited empirical evidence from the health sector concerning the scope and potential for such bottom of the pyramid models. This paper analyzes private for-profit (PFP) providers currently offering services to the poor on a large scale, and assesses the future prospects of bottom of the pyramid models in health. We searched published and grey literature and databases to identify PFP companies that provided more than 40,000 outpatient visits per year, or who covered 15% or more of a particular type of service in their country. For each included provider, we searched for additional information on location, target market, business model and performance, including quality of care. Only 10 large scale PFP providers were identified. The majority of these were in South Asia and most provided specialized services such as eye care. The characteristics of the business models of these firms were found to be similar to non-profit providers studied by other analysts (such as Bhattacharya 2010). They pursued social rather than traditional marketing, partnerships with government, low cost/high volume services and cross-subsidization between different market segments. There was a lack of reliable data concerning these providers. There is very limited evidence to support the notion that large scale bottom of the pyramid models in health offer good prospects for extending services to the poor in the future. In order to be successful PFP providers often require partnerships with government or support from social health insurance schemes. Nonetheless, more reliable and independent data on such schemes is needed.

  11. Arrest of Nuclear Division in Plasmodium through Blockage of Erythrocyte Surface Exposed Ribosomal Protein P2

    PubMed Central

    Das, Sudipta; Basu, Himanish; Korde, Reshma; Tewari, Rita; Sharma, Shobhona

    2012-01-01

    Malaria parasites reside inside erythrocytes and the disease manifestations are linked to the growth inside infected erythrocytes (IE). The growth of the parasite is mostly confined to the trophozoite stage during which nuclear division occurs followed by the formation of cell bodies (schizogony). The mechanism and regulation of schizogony are poorly understood. Here we show a novel role for a Plasmodium falciparum 60S stalk ribosomal acidic protein P2 (PfP2) (PFC0400w), which gets exported to the IE surface for 6–8 hrs during early schizogony, starting around 26–28 hrs post-merozoite invasion. The surface exposure is demonstrated using multiple PfP2-specific monoclonal antibodies, and is confirmed through transfection using PfP2-GFP. The IE surface-exposed PfP2-protein occurs mainly as SDS-resistant P2-homo-tetramers. Treatment with anti-PfP2 monoclonals causes arrest of IEs at the first nuclear division. Upon removal of the antibodies, about 80–85% of synchronized parasites can be released even after 24 hrs of antibody treatment. It has been reported that a tubovesicular network (TVN) is set up in early trophozoites which is used for nutrient import. Anti-P2 monoclonal antibodies cause a complete fragmentation of TVN by 36 hrs, and impairs lipid import in IEs. These may be downstream causes for the cell-cycle arrest. Upon antibody removal, the TVN is reconstituted, and the cell division progresses. Each of the above properties is observed in the rodent malaria parasite species P. yoelii and P. berghei. The translocation of the P2 protein to the IE surface is therefore likely to be of fundamental importance in Plasmodium cell division. PMID:22912579

  12. Private sector, for-profit health providers in low and middle income countries: can they reach the poor at scale?

    PubMed Central

    2014-01-01

    Background The bottom of the pyramid concept suggests that profit can be made in providing goods and services to poor people, when high volume is combined with low margins. To-date there has been very limited empirical evidence from the health sector concerning the scope and potential for such bottom of the pyramid models. This paper analyzes private for-profit (PFP) providers currently offering services to the poor on a large scale, and assesses the future prospects of bottom of the pyramid models in health. Methods We searched published and grey literature and databases to identify PFP companies that provided more than 40,000 outpatient visits per year, or who covered 15% or more of a particular type of service in their country. For each included provider, we searched for additional information on location, target market, business model and performance, including quality of care. Results Only 10 large scale PFP providers were identified. The majority of these were in South Asia and most provided specialized services such as eye care. The characteristics of the business models of these firms were found to be similar to non-profit providers studied by other analysts (such as Bhattacharya 2010). They pursued social rather than traditional marketing, partnerships with government, low cost/high volume services and cross-subsidization between different market segments. There was a lack of reliable data concerning these providers. Conclusions There is very limited evidence to support the notion that large scale bottom of the pyramid models in health offer good prospects for extending services to the poor in the future. In order to be successful PFP providers often require partnerships with government or support from social health insurance schemes. Nonetheless, more reliable and independent data on such schemes is needed. PMID:24961496

  13. Vastus Medialis Hoffmann Reflex Excitability Is Associated With Pain Level, Self-Reported Function, and Chronicity in Women With Patellofemoral Pain.

    PubMed

    de Oliveira Silva, Danilo; Magalhães, Fernando Henrique; Faria, Nathálie Clara; Ferrari, Deisi; Pazzinatto, Marcella Ferraz; Pappas, Evangelos; de Azevedo, Fábio Mícolis

    2017-01-01

    To determine the association between the amplitude of vastus medialis (VM) Hoffmann reflex (H-reflex) and pain level, self-reported physical function, and chronicity of pain in women with patellofemoral pain (PFP). Cross-sectional study. Laboratory of biomechanics and motor control. Women diagnosed with PFP (N=15) aged 18 to 35 years. Not applicable. Data on worst pain level during the previous month, self-reported physical function, and symptom duration (chronicity) were collected from the participants. Maximum evoked responses were obtained by electrical stimulation applied to the femoral nerve and peak-to-peak amplitudes of normalized maximal H-reflexes (maximal Hoffmann reflex/maximal motor wave ratios) of the VM were calculated. A Pearson product-moment correlation matrix (r) was used to explore the relations between the amplitude of VM H-reflex and worst pain during the previous month, self-reported function, and chronicity of pain. Strong negative correlations were found between the amplitude of VM H-reflex and worst pain in the previous month (r=-.71; P=.003) and chronicity (r=-.74; P=.001). A strong positive correlation was found between the amplitude of VM H-reflex and self-reported physical function (r=.62; P=.012). The strong and significant relations reported in this study suggest that women with PFP showing greater VM H-reflex excitability tend to have lower pain, better physical function, and more recent symptoms. Therefore, rehabilitation strategies designed to increase the excitability of the monosynaptic stretch reflex should be considered in the treatment of women with PFP if their effectiveness is demonstrated in future studies. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Combustion derived ultrafine particles induce cytochrome P-450 expression in specific lung compartments in the developing neonatal and adult rat

    PubMed Central

    Chan, Jackie K. W.; Vogel, Christoph F.; Baek, Jaeeun; Kodani, Sean D.; Uppal, Ravi S.; Bein, Keith J.; Anderson, Donald S.

    2013-01-01

    Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAH) and can be a dominant contributor to ultrafine urban particulate matter (PM). Exposure to ultrafine PM is correlated with respiratory infections and asthmatic symptoms in young children. The lung undergoes substantial growth, alveolarization, and cellular maturation within the first years of life, which may be impacted by environmental pollutants such as PM. PAHs in PM can serve as ligands for the aryl hydrocarbon receptor (AhR) that induces expression of certain isozymes in the cytochrome P-450 superfamily, such as CYP1A1 and CYP1B1, localized in specific lung cell types. Although AhR activation and induction has been widely studied, its context within PM exposure and impact on the developing lung is poorly understood. In response, we have developed a replicable ultrafine premixed flame particle (PFP) generating system and used in vitro and in vivo models to define PM effects on AhR activation in the developing lung. We exposed 7-day neonatal and adult rats to a single 6-h PFP exposure and determined that PFPs cause significant parenchymal toxicity in neonates. PFPs contain weak AhR agonists that upregulate AhR-xenobiotic response element activity and expression and are capable inducers of CYP1A1 and CYP1B1 expression in both ages with different spatial and temporal patterns. Neonatal CYP1A1 expression was muted and delayed compared with adults, possibly because of differences in the enzyme maturation. We conclude that the inability of neonates to sufficiently adapt in response to PFP exposure may, in part, explain their susceptibility to PFP and urban ultrafine PM. PMID:23502512

  15. Mortality outcomes in hospitals with public, private not-for-profit and private for-profit ownership in Chile 2001-2010.

    PubMed

    Cid Pedraza, Camilo; Herrera, Cristian A; Prieto Toledo, Lorena; Oyarzún, Felipe

    2015-03-01

    Public, private not-for-profit (PNFP) and private for-profit (PFP) hospitals may have different behaviour and performance in different indicators such as health outcomes, cost-efficiency and quality. Chile has a mixed healthcare system both in financing and service delivery. The public National Health Fund (Fondo Nacional de Salud) covers 76% of the population-poorer and with higher health risks-whereas private health insurers cover 16% of the population-richer and with lower health risks. The aim of the study was to analyse the in-patient mortality outcomes by hospital ownership in Chile. We use hospital discharge data in Chile for the period 2001-10 with a total of 16,205,314 discharges in 20 public, 6 PNFP and 15 PFP hospitals. We analyse in-patient mortality considering all diagnoses and a subsample considering only myocardial infarction and stroke diagnoses. Using a probit regression, we estimate how hospital ownership explains in-patient mortality controlling for other confounding variables like health and socioeconomic status, and hospital characteristics. The discharge condition was reported as death in 3.5% of the public hospitals' discharges, 1.3% in PNFP and 0.7% in PFP. PNFP and PFP hospitals show a lower risk of in-hospital mortality for all diagnoses, myocardial infarction and stroke in comparison with public hospitals. The question about which type of hospital ownership performs better in Chile remains open. Policy decisions regarding health service provision requires more evidence explaining differences by ownership. Better controls for health risk and hospital characteristics are suggested to address these differences in hospital performance. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2015; all rights reserved.

  16. Sculpting with Cement.

    ERIC Educational Resources Information Center

    Olson, Lynn

    1983-01-01

    Cement offers many creative possibilities for school art programs. Instructions are given for sculpting with fiber-cement and sand-cement, as well as for finishing processes and the addition of color. Safety is stressed. (IS)

  17. Environmental Assessment of Different Cement Manufacturing ...

    EPA Pesticide Factsheets

    Due to its high environmental impact and energy intensive production, the cement industry needs to adopt more energy efficient technologies to reduce its demand for fossil fuels and impact on the environment. Bearing in mind that cement is the most widely used material for housing and modern infrastructure, the aim of this paper is to analyse the Emergy and Ecological Footprint of different cement manufacturing processes for a particular cement plant. There are several mitigation measures that can be incorporated in the cement manufacturing process to reduce the demand for fossil fuels and consequently reduce the CO2 emissions. The mitigation measures considered in this paper were the use of alternative fuels and a more energy efficient kiln process. In order to estimate the sustainability effect of the aforementioned measures, Emergy and Ecological Footprint were calculated for four different scenarios. The results show that Emergy, due to the high input mass of raw material needed for clinker production, stays at about the same level. However, for the Ecological Footprint, the results show that by combining the use of alternative fuels together with a more energy efficient kiln process, the environmental impact of the cement manufacturing process can be lowered. The research paper presents an analysis of the sustainability of cement production , a major contributor to carbon emissions, with respect to using alternative fuels and a more efficient kiln. It show

  18. Running-induced patellofemoral pain fluctuates with changes in patella water content.

    PubMed

    Ho, Kai-Yu; Hu, Houchun H; Colletti, Patrick M; Powers, Christopher M

    2014-01-01

    Although increased bone water content resulting from repetitive patellofemoral joint loading has been suggested to be a possible mechanism underlying patellofemoral pain (PFP), there is little data to support this mechanism. The purpose of the current study was to determine whether running results in increases in patella water content and pain and whether 48 hours of rest reduces patella water content and pain to pre-running levels. Ten female runners with a diagnosis of PFP (mean age 25.1 years) participated. Patella water content was quantified using a chemical-shift-encoded water-fat magnetic resonance imaging (MRI) protocol. The visual analog scale (VAS) was used to quantify subjects' pain levels. MRI and pain data were obtained prior to running, immediately following a 40-minute running session, and 48 hours post-running. Pain and patella water content were compared among the 3 time points using one-way ANOVA's with repeated measures. Immediately post-running, persons with PFP reported significant increases in pain and exhibited elevated patella water content. Pain and patella water content decreased to pre-running levels following 48 hours of rest. Our findings suggest that transient changes in patella water content associated with running may, in part, contribute to patellofemoral symptoms.

  19. Land Use Management in the Panama Canal Watershed to Maximize Hydrologic Ecosystem Services Benefits: Explicit Simulation of Preferential Flow Paths in an HPC Environment

    NASA Astrophysics Data System (ADS)

    Regina, J. A.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Cheng, Y.; Zhu, J.

    2017-12-01

    Preferential flow paths (PFP) resulting from biotic and abiotic factors contribute significantly to the generation of runoff in moist lowland tropical watersheds. Flow through PFPs represents the dominant mechanism by which land use choices affect hydrological behavior. The relative influence of PFP varies depending upon land-use management practices. Assessing the possible effects of land-use and landcover change on flows, and other ecosystem services, in the humid tropics partially depends on adequate simulation of PFP across different land-uses. Currently, 5% of global trade passes through the Panama Canal, which is supplied with fresh water from the Panama Canal Watershed. A third set of locks, recently constructed, are expected to double the capacity of the Canal. We incorporated explicit simulation of PFPs in to the ADHydro HPC distributed hydrological model to simulate the effects of land-use and landcover change due to land management incentives on water resources availability in the Panama Canal Watershed. These simulations help to test hypotheses related to the effectiveness of various proposed payments for ecosystem services schemes. This presentation will focus on hydrological model formulation and performance in an HPC environment.

  20. Fire hazard analysis for Plutonium Finishing Plant complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCKINNIS, D.L.

    1999-02-23

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41,more » Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.« less

  1. Optimization and characterization of a cemented ultimate-storage product

    NASA Astrophysics Data System (ADS)

    Brunner, H.

    1981-12-01

    The U- and Pu-containing packaging wastes can be homogeneously cemented after a washing and fragmentation process. Both finely crushed and coarsely fragmented raw wastes yield products with sufficient mechanical stability. The processability limit of the coarsely fragmented raw waste using cement paste or mortar is largely determined by the cellulose content, which is not to exceed 1.3% by weight in the end waste. Of 9 binders studied, the most corrosion-resistant products were obtained with blast-furnace slag cement, whereas poured concrete and Maxit are much less resistant in five-component brine. In the cemented product, hydrolysis of plasticizers (DOP) from plastics (PVC) occurs, leading to release of 2-ethyl-hexanol. This reaction occurs to a much lower degree with blast-furnace slag cement than with all other binders studied. The binder chosen for further tests consists of blast-furnace slag cement, concrete fluidizer and a stabilizer, and is processed at a W/C ratio of 0.43.

  2. Biomechanical comparison of cemented versus non-cemented anterior screw fixation in type II odontoid fractures in the elderly: a cadaveric study.

    PubMed

    Rehousek, Petr; Jenner, Edward; Holton, James; Czyz, Marcin; Capek, Lukas; Henys, Petr; Kulvajtova, Marketa; Krbec, Martin; Skala-Rosenbaum, Jiri

    2018-05-18

    Odontoid process fractures are the most common injuries of the cervical spine in the elderly. Anterior screw stabilization of type II odontoid process fractures improves survival and function in these patients but may be complicated by failure of fixation. The present study aimed to determine whether cement augmentation of a standard anterior screw provides biomechanically superior fixation of type II odontoid fractures in comparison with a non-cemented standard screw. Twenty human cadaveric C2 vertebrae from elderly donors (mean age 83 years) were obtained. Anderson and D'Alonzo type IIa odontoid fracture was created by transverse osteotomy, and fluoroscopy-guided anterior screw fixation was performed. The specimens were divided into two matched groups. The cemented group (n=10) had radiopaque high viscosity polymethylmethacrylate cement injected via Jamshidi needle into the base of the odontoid process. The other group was not augmented. A V-shaped punch was used for loading the odontoid in an anteroposterior direction until failure. The failure state was defined as screw cutout or 5% force decrease. Mean failure load and bending stiffness were calculated. The mean failure load for the cemented group was 352±12 N compared with 168±23 N for the non-cemented group (p<.001). The mean initial stiffness of the non-cemented group was 153±19 N/mm compared with 195±29 N/mm for the cemented group (p<.001) CONCLUSIONS: Cement augmentation of an anterior standard screw fixation of type II odontoid process fractures in elderly patients significantly increased load to failure under anteroposterior load in comparison with non-augmented fixation. This may be a valuable technique to reduce failure of fixation. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Acute Responses of Strength and Running Mechanics to Increasing and Decreasing Pain in Patients With Patellofemoral Pain

    PubMed Central

    Bazett-Jones, David M.; Huddleston, Wendy; Cobb, Stephen; O'Connor, Kristian; Earl-Boehm, Jennifer E.

    2017-01-01

    Context:  Patellofemoral pain (PFP) is typically exacerbated by repetitive activities that load the patellofemoral joint, such as running. Understanding the mediating effects of changes in pain in individuals with PFP might inform injury progression, rehabilitation, or both. Objective:  To investigate the effects of changing pain on muscular strength and running biomechanics in those with PFP. Design:  Crossover study. Setting:  University research laboratory. Patients or Other Participants:  Seventeen participants (10 men, 7 women) with PFP. Intervention(s):  Each participant completed knee pain-reducing and pain-inducing protocols in random order. The pain-reducing protocol consisted of 15 minutes of transcutaneous electric nerve stimulation (TENS) around the patella. The pain-inducing protocol was sets of 20 repeated single-legged squats (RSLS). Participants completed RSLS sets until either their pain was within at least 1 cm of their pain during an exhaustive run or they reached 10 sets. Main Outcome Measure(s):  Pain, isometric hip and trunk strength, and running mechanics were assessed before and after the protocols. Dependent variables were pain, normalized strength (abduction, extension, external rotation, lateral trunk flexion), and peak lower extremity kinematics and kinetics in all planes. Pain scores were analyzed using a Friedman test. Strength and mechanical variables were analyzed using repeated-measures analyses of variance. The α level was set at P < .05. Results:  Pain was decreased after the TENS (pretest: 3.10 ± 1.95, posttest: 1.89 ± 2.33) and increased after the RSLS (baseline: 3.10 ± 1.95, posttest: 4.38 ± 2.40) protocols (each P < .05). The RSLS protocol resulted in a decrease in hip-extension strength (baseline: 0.355 ± 0.08 kg/kg, posttest: 0.309 ± 0.09 kg/kg; P < .001). Peak plantar-flexion angle was decreased after RSLS (baseline: −13.97° ± 6.41°, posttest: −12.84° ± 6.45°; P = .003). Peak hip-extension (pretest: −2.31 ± 0.46) and hip-abduction (pretest: −2.02 ± 0.35) moments decreased after both the TENS (extension: −2.15 ± 0.48 Nm/kg, P = .015; abduction: −1.91 ± 0.33 Nm/kg, P = .015) and RSLS (extension: −2.18 ± 0.52 Nm/kg, P = .003; abduction: −1.87 ± 0.36 Nm/kg, P = .039) protocols. Conclusions:  This study presents a novel and effective method of increasing pain in persons with PFP. Functionally increased pain after RSLS coincides with reduced hip-extensor muscle strength and decreased plantar-flexion angle during running. The TENS treatment decreased pain during running in those with PFP but failed to influence strength. Hip moments were reduced by both protocols, which may demonstrate that acute increases or decreases in pain cause runners to change their mechanics. PMID:28388232

  4. Impedance methodology: A new way to characterize the setting reaction of dental cements.

    PubMed

    Villat, Cyril; Tran, Xuan-Vinh; Tran, V X; Pradelle-Plasse, Nelly; Ponthiaux, Pierre; Wenger, François; Grosgogeat, Brigitte; Colon, Pierre

    2010-12-01

    Impedance spectroscopy is a non-destructive, quantitative method, commonly used nowadays for industrial research on cement and concrete. The aim of this study is to investigate the interest of impedance spectroscopy in the characterization of setting process of dental cements. Two types of dental cements are used in this experiment: a new Calcium Silicate cement Biodentine™ (Septodont, Saint Maur-des Fossés, France) and a glass ionomer cement resin modified or not (Fuji II(®) LC Improved Capsules and Fuji IX(®) GP Fast set Capsules, GC Corp., Tokyo, Japan). The conductivity of the dental cements was determined by impedance spectroscopy measurements carried out on dental cement samples immersed in a 0.1M potassium chloride solution (KCl) in a "like-permeation" cell connected to a potentiostat and a Frequency Response Analyzer. The temperature of the solution is 37°C. From the moment of mixing of powder and liquid, the experiments lasted 2 weeks. The results obtained for each material are relevant of the setting process. For GIC, impedance values are stabilized after 5 days while at least 14 days are necessary for the calcium silicate based cement. In accordance with the literature regarding studies of cements and concrete, impedance spectroscopy can characterize ion mobility, porosity and hardening process of dental hydrogel materials. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Utilization of lime-dried sludge for eco-cement clinker production: effects of different feeding points.

    PubMed

    Cao, Haihua; Liu, Wei; Xu, Jingcheng; Liu, Jia; Huang, Juwen; Huang, Xiangfeng; Li, Guangming

    2018-02-01

    Co-processing lime-dried sludge (LDS) in cement kilns is an appropriate technique to solve the problem of LDS disposal and promote the sustainable development for cement industry. However, there were limited studies that investigated the effects of feeding points on product quality and cement kiln emissions. In this study, simulated experiments were conducted by dividing the feeding points into high-temperature zones (HTZs) and raw mill (RM). Cement quality and major cement kiln emission characteristics were comprehensively investigated. The results showed that in terms of burnability, compressive strength and microstructure, the optimum co-processing amount of LDS were 9 wt% when feeding at RM, while 6% when feeding at HTZs. Meanwhile, the organic emissions of RM samples were mainly low environmental risk compounds of amides and nitrogenous heterocyclic compounds. Inorganic gaseous pollutions of NO X and SO 2 , respectively, were 8.11 mg/g DS and 12.89 mg/g DS, compared with 7.61 mg/g DS and 4.44 mg/g DS for HTZs. However, all the cement kiln emissions concentration were still much lower than standard requirements. Overall, RM had a bigger LDS co-processing capacity and higher, but acceptable, cement kiln emissions. Feeding LDS via RM could dispose larger amounts of sludge and provide more alternative materials for cement manufacturing.

  6. Sustainability of cement kiln co-processing of wastes in India: a pilot study.

    PubMed

    Baidya, Rahul; Ghosh, Sadhan Kumar; Parlikar, Ulhas V

    2017-07-01

    Co-processing in cement kiln achieves effective utilization of the material and energy value present in the wastes, thereby conserving the natural resources by reducing the use of virgin material. In India, a number of multifolded initiatives have been taken that take into account the potential and volume of waste generation. This paper studies the factors which might influence the sustainability of co-processing of waste in cement kilns as a business model, considering the issues and challenges in the supply chain framework in India in view of the four canonical pillars of sustainability. A pilot study on co-processing was carried out in one of the cement plant in India to evaluate the environmental performance, economical performance, operational performance and social performance. The findings will help India and other developing countries to introduce effective supply chain management for co-processing while addressing the issues and challenges during co-processing of different waste streams in the cement kilns.

  7. Process for disposal of aqueous solutions containing radioactive isotopes

    DOEpatents

    Colombo, Peter; Neilson, Jr., Robert M.; Becker, Walter W.

    1979-01-01

    A process for disposing of radioactive aqueous waste solutions whereby the waste solution is utilized as the water of hydration to hydrate densified powdered portland cement in a leakproof container; said waste solution being dispersed without mechanical inter-mixing in situ in said bulk cement, thereafter the hydrated cement body is impregnated with a mixture of a monomer and polymerization catalyst to form polymer throughout the cement body. The entire process being carried out while maintaining the temperature of the components during the process at a temperature below 99.degree. C. The container containing the solid polymer-impregnated body is thereafter stored at a radioactive waste storage dump such as an underground storage dump.

  8. An alternative method for the treatment of waste produced at a dye and a metal-plating industry using natural and/or waste materials.

    PubMed

    Fatta, Despo; Papadopoulos, Achilleas; Stefanakis, Nikos; Loizidou, Maria; Savvides, Chrysanthos

    2004-08-01

    The aim of this study was to develop cost-effective, appropriate solidification technologies for treating hazardous industrial wastes that are currently disposed of in ways that may threaten the quality of local groundwater. One major objective was to use materials other than cement, and preferably materials that are themselves wastes, as the solidification additives, namely using wastes to treat wastes or locally available natural material. This research examines the cement-based and lime-based stabilization/solidification (S/S) techniques applied for waste generated at a metal-plating industry and a dye industry. For the lime-based S/S process the following binder mixtures were used: cement kiln dust/ lime, bentonite/lime and gypsum/lime. For the cement-based S/S process three binder mixtures were used: cement kiln dust/cement, bentonite/cement and gypsum/cement. The leachability of the wastes was evaluated using the toxicity characteristic leaching procedure. The applicability and optimum weight ratio of the binder mixtures were estimated using the unconfined compressive strength test. The optimum ratio mixtures were mixed with waste samples in different ratios and cured for 28 days in order to find the S/S products with the highest strength and lowest leachability at the same time. The results of this work showed that the cement-and lime-based S/S process, using cement kiln dust and bentonite as additives can be effectively used in order to treat industrial waste.

  9. Soft sensor for real-time cement fineness estimation.

    PubMed

    Stanišić, Darko; Jorgovanović, Nikola; Popov, Nikola; Čongradac, Velimir

    2015-03-01

    This paper describes the design and implementation of soft sensors to estimate cement fineness. Soft sensors are mathematical models that use available data to provide real-time information on process variables when the information, for whatever reason, is not available by direct measurement. In this application, soft sensors are used to provide information on process variable normally provided by off-line laboratory tests performed at large time intervals. Cement fineness is one of the crucial parameters that define the quality of produced cement. Providing real-time information on cement fineness using soft sensors can overcome limitations and problems that originate from a lack of information between two laboratory tests. The model inputs were selected from candidate process variables using an information theoretic approach. Models based on multi-layer perceptrons were developed, and their ability to estimate cement fineness of laboratory samples was analyzed. Models that had the best performance, and capacity to adopt changes in the cement grinding circuit were selected to implement soft sensors. Soft sensors were tested using data from a continuous cement production to demonstrate their use in real-time fineness estimation. Their performance was highly satisfactory, and the sensors proved to be capable of providing valuable information on cement grinding circuit performance. After successful off-line tests, soft sensors were implemented and installed in the control room of a cement factory. Results on the site confirm results obtained by tests conducted during soft sensor development. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  10. The effect of lime-dried sewage sludge on the heat-resistance of eco-cement.

    PubMed

    Li, Wen-Quan; Liu, Wei; Cao, Hai-Hua; Xu, Jing-Cheng; Liu, Jia; Li, Guang-Ming; Huang, Juwen

    2016-01-01

    The treatment and disposal of sewage sludge is a growing problem for sewage treatment plants. One method of disposal is to use sewage sludge as partial replacement for raw material in cement manufacture. Although this process has been well researched, little attention has been given to the thermal properties of cement that has had sewage sludge incorporated in the manufacturing process. This study investigated the fire endurance of eco-cement to which lime-dried sludge (LDS) had been added. LDS was added in proportions of 0%, 3%, 6%, 9%, and 12% (by weight) to the raw material. The eco-cement was exposed to 200, 400, or 600 °C for 3 h. The residual strength and the microstructural properties of eco-cement were then studied. Results showed that the eco-cement samples suffered less damage than conventional cement at 600 °C. The microstructural studies showed that LDS incorporation could reduce Ca(OH)(2) content. It was concluded that LDS has the potential to improve the heat resistance of eco-cement products.

  11. Effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions.

    PubMed

    Lv, Dong; Zhu, Tianle; Liu, Runwei; Lv, Qingzhi; Sun, Ye; Wang, Hongmei; Liu, Yu; Zhang, Fan

    2016-09-01

    The effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions were systematically investigated in a cement production line in Beijing. The results show that co-processing the sewage sludge was helpful to reduce NOx emission, which primarily depends on the NH3 amount released from the sewage sludge. Meanwhile, NOx and NH3 concentrations in the flue gas have a negative correlation, and the contribution of feeding the sewage sludge to NOx removal decreased with the increase of injection amount of ammonia water in the SNCR system. Therefore, it is suggested that the injection amount of ammonia water in SNCR system may reduce to cut down the operating costs during co-processing the sewage sludge in cement kiln. In addition, the emission of total PAHs seems to increase with the increased amount of the sewage sludge feeding to the cement kiln. However, the distributions of PAHs were barely changed, and lower molecular weight PAHs were mainly distributed in gaseous phase, accounted for the major portion of PAHs when co-processing sewage sludge in cement kiln. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  13. Predicting protein function and other biomedical characteristics with heterogeneous ensembles

    PubMed Central

    Whalen, Sean; Pandey, Om Prakash

    2015-01-01

    Prediction problems in biomedical sciences, including protein function prediction (PFP), are generally quite difficult. This is due in part to incomplete knowledge of the cellular phenomenon of interest, the appropriateness and data quality of the variables and measurements used for prediction, as well as a lack of consensus regarding the ideal predictor for specific problems. In such scenarios, a powerful approach to improving prediction performance is to construct heterogeneous ensemble predictors that combine the output of diverse individual predictors that capture complementary aspects of the problems and/or datasets. In this paper, we demonstrate the potential of such heterogeneous ensembles, derived from stacking and ensemble selection methods, for addressing PFP and other similar biomedical prediction problems. Deeper analysis of these results shows that the superior predictive ability of these methods, especially stacking, can be attributed to their attention to the following aspects of the ensemble learning process: (i) better balance of diversity and performance, (ii) more effective calibration of outputs and (iii) more robust incorporation of additional base predictors. Finally, to make the effective application of heterogeneous ensembles to large complex datasets (big data) feasible, we present DataSink, a distributed ensemble learning framework, and demonstrate its sound scalability using the examined datasets. DataSink is publicly available from https://github.com/shwhalen/datasink. PMID:26342255

  14. Experimental Evaluation of Cement Replacement Fillers on the Performance of Slurry Seal

    NASA Astrophysics Data System (ADS)

    Fakhri, Mansour; Alrezaei, Hossein Ali; Naji Almasi, Soroush

    2016-10-01

    Reducing the level of roads service is a process that starts from the first day of the operation of road and the slope of deterioration curve of road sustainability becomes faster with the passage of time. After building the road, adopting an economic approach in order to maintain the road is very important. Slurry seal as one type of protective asphalts that works by sealing inactive cracks of the road and increasing skid resistance is the most effective types of restoration with environmentally friendly behaviour. Fillers are responsible for adjusting set time in slurry seal. Cement is the most common filler used in slurry seal. Cements having suitable properties as a filler, has a very energy demanding manufacturing process and a notable amount of energy is used for manufacturing cement in the country annually. On the other hand, manufacturing process and application of cement have increased levels of pollutant gases, followed by significant environmental pollution. So in this study other options as a filler such as hydrated lime, stone powder and the slag from iron melting furnace were compared with two common types of cement (Portland and type-v cement) in the mixtures of slurry seal by wet abrasion and cohesion tests. Results indicated that, in both tests, lime and slag fillers had behaviours close to the cement filler.

  15. Parental feeding practices in Mexican American families: initial test of an expanded measure

    PubMed Central

    2013-01-01

    Background Although obesity rates are high among Latino children, relatively few studies of parental feeding practices have examined Latino families as a separate group. Culturally-based approaches to measurement development can begin to identify parental feeding practices in specific cultural groups. This study used qualitative and quantitative methods to develop and test the Parental Feeding Practices (PFP) Questionnaire for use with Mexican American parents. Items reflected both parent’s use of control over child eating and child-centered feeding practices. Methods In the qualitative phase of the research, 35 Latino parents participated in focus groups. Items for the PFP were developed from focus group discussions, as well as adapted from existing parent feeding practice measures. Cognitive interviews were conducted with 37 adults to evaluate items. In the quantitative phase, mothers and fathers of 174 Mexican American children ages 8–10 completed the PFP and provided demographic information. Anthropometric measures were obtained on family members. Results Confirmatory factor analyses identified four parental feeding practice dimensions: positive involvement in child eating, pressure to eat, use of food to control behavior, and restriction of amount of food. Factorial invariance modeling suggested equivalent factor meaning and item response scaling across mothers and fathers. Mothers and fathers differed somewhat in their use of feeding practices. All four feeding practices were related to child body mass index (BMI) percentiles, for one or both parents. Mothers reporting more positive involvement had children with lower BMI percentiles. Parents using more pressure to eat had children with lower BMI percentiles, while parents using more restriction had children with higher BMI percentiles. Fathers using food to control behavior had children with lower BMI percentiles. Conclusions Results indicate good initial validity and reliability for the PFP. It can be used to increase understanding of parental feeding practices, children’s eating, and obesity among Mexican Americans, a population at high risk of obesity. PMID:23324120

  16. Payments and quality of care in private for-profit and public hospitals in Greece

    PubMed Central

    2011-01-01

    Background Empirical evidence on how ownership type affects the quality and cost of medical care is growing, and debate on these topics is ongoing. Despite the fact that the private sector is a major provider of hospital services in Greece, little comparative information on private versus public sector hospitals is available. The aim of the present study was to describe and compare the operation and performance of private for-profit (PFP) and public hospitals in Greece, focusing on differences in nurse staffing rates, average lengths of stay (ALoS), and Social Health Insurance (SHI) payments for hospital care per patient discharged. Methods Five different datasets were prepared and analyzed, two of which were derived from information provided by the National Statistical Service (NSS) of Greece and the other three from data held by the three largest SHI schemes in the country. All data referred to the 3-year period from 2001 to 2003. Results PFP hospitals in Greece are smaller than public hospitals, with lower patient occupancy, and have lower staffing rates of all types of nurses and highly qualified nurses compared with public hospitals. Calculation of ALoS using NSS data yielded mixed results, whereas calculations of ALoS and SHI payments using SHI data gave results clearly favoring the public hospital sector in terms of cost-efficiency; in all years examined, over all specialties and all SHI schemes included in our study, unweighted ALoS and SHI payments for hospital care per discharge were higher for PFP facilities. Conclusions In a mixed healthcare system, such as that in Greece, significant performance differences were observed between PFP and public hospitals. Close monitoring of healthcare provision by hospital ownership type will be essential to permit evidence-based decisions on the future of the public/private mix in terms of healthcare provision. PMID:21943020

  17. Parental feeding practices in Mexican American families: initial test of an expanded measure.

    PubMed

    Tschann, Jeanne M; Gregorich, Steven E; Penilla, Carlos; Pasch, Lauri A; de Groat, Cynthia L; Flores, Elena; Deardorff, Julianna; Greenspan, Louise C; Butte, Nancy F

    2013-01-17

    Although obesity rates are high among Latino children, relatively few studies of parental feeding practices have examined Latino families as a separate group. Culturally-based approaches to measurement development can begin to identify parental feeding practices in specific cultural groups. This study used qualitative and quantitative methods to develop and test the Parental Feeding Practices (PFP) Questionnaire for use with Mexican American parents. Items reflected both parent's use of control over child eating and child-centered feeding practices. In the qualitative phase of the research, 35 Latino parents participated in focus groups. Items for the PFP were developed from focus group discussions, as well as adapted from existing parent feeding practice measures. Cognitive interviews were conducted with 37 adults to evaluate items. In the quantitative phase, mothers and fathers of 174 Mexican American children ages 8-10 completed the PFP and provided demographic information. Anthropometric measures were obtained on family members. Confirmatory factor analyses identified four parental feeding practice dimensions: positive involvement in child eating, pressure to eat, use of food to control behavior, and restriction of amount of food. Factorial invariance modeling suggested equivalent factor meaning and item response scaling across mothers and fathers. Mothers and fathers differed somewhat in their use of feeding practices. All four feeding practices were related to child body mass index (BMI) percentiles, for one or both parents. Mothers reporting more positive involvement had children with lower BMI percentiles. Parents using more pressure to eat had children with lower BMI percentiles, while parents using more restriction had children with higher BMI percentiles. Fathers using food to control behavior had children with lower BMI percentiles. Results indicate good initial validity and reliability for the PFP. It can be used to increase understanding of parental feeding practices, children's eating, and obesity among Mexican Americans, a population at high risk of obesity.

  18. Treatment Success of Hip and Core or Knee Strengthening for Patellofemoral Pain: Development of Clinical Prediction Rules.

    PubMed

    Earl-Boehm, Jennifer E; Bolgla, Lori A; Emory, Carolyn; Hamstra-Wright, Karrie L; Tarima, Sergey; Ferber, Reed

    2018-06-12

      Patellofemoral pain (PFP) is a common injury that interferes with quality of life and physical activity. Clinical subgroups of patients may exist, one of which is proximal muscle dysfunction.   To develop clinical prediction rules that predict a positive outcome after either a hip and core- or knee-focused strengthening program for individuals with PFP.   Secondary analysis of data from a randomized control trial.   Four university laboratories.   A total of 199 participants with PFP.   Participants were randomly allocated to either a hip and core-focused (n = 111) or knee-focused (n = 88) rehabilitation group for a 6-week program.   Demographics, self-reported knee pain (visual analog scale) and function (Anterior Knee Pain Scale), hip strength, abdominal muscle endurance, and hip range of motion were evaluated at baseline. Treatment success was defined as a decrease in visual analog scale score by ≥2 cm or an increase in the Anterior Knee Pain Scale score by ≥8 points or both. Bivariate relationships between the outcome (treatment success) and the predictor variables were explored, followed by a forward stepwise logistic regression to predict a successful outcome.   Patients with more pain, better function, greater lateral core endurance, and less anterior core endurance were more likely to have a successful outcome after hip and core strengthening (88% sensitivity and 54% specificity). Patients with lower weight, weaker hip internal rotation, stronger hip extension, and greater trunk-extension endurance were more likely to have success after knee strengthening (82% sensitivity and 58% specificity).   The patients with PFP who have more baseline pain and yet maintain a high level of function may experience additional benefit from hip and core strengthening. The clinical prediction rules from this study remain in the developmental phase and should be applied with caution until externally validated.

  19. A Review of Metal Injection Molding- Process, Optimization, Defects and Microwave Sintering on WC-Co Cemented Carbide

    NASA Astrophysics Data System (ADS)

    Shahbudin, S. N. A.; Othman, M. H.; Amin, Sri Yulis M.; Ibrahim, M. H. I.

    2017-08-01

    This article is about a review of optimization of metal injection molding and microwave sintering process on tungsten cemented carbide produce by metal injection molding process. In this study, the process parameters for the metal injection molding were optimized using Taguchi method. Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics through the setting of design parameters. Microwave sintering is a process generally being used in powder metallurgy over the conventional method. It has typical characteristics such as accelerated heating rate, shortened processing cycle, high energy efficiency, fine and homogeneous microstructure, and enhanced mechanical performance, which is beneficial to prepare nanostructured cemented carbides in metal injection molding. Besides that, with an advanced and promising technology, metal injection molding has proven that can produce cemented carbides. Cemented tungsten carbide hard metal has been used widely in various applications due to its desirable combination of mechanical, physical, and chemical properties. Moreover, areas of study include common defects in metal injection molding and application of microwave sintering itself has been discussed in this paper.

  20. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  1. ELIMINATION OF WATER POLLUTION BY RECYCLING CEMENT PLANT KILN DUST

    EPA Science Inventory

    Excessive amounts of alkalies can have deleterious effects upon the process of cement manufacture and the product. Normally much of the alkali present in cement raw materials is volatilized in the cement kiln and condenses on the particles of kiln dust which are carried out of th...

  2. Development of cement solidification process for sodium borate waste generated from PWR plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirofumi Okabe; Tatsuaki Sato; Yuichi Shoji

    2013-07-01

    A cement solidification process for treating sodium borate waste produced in pressurized water reactor (PWR) plants was studied. To obtain high volume reduction and high mechanical strength of the waste, simulated concentrated borate liquid waste with a sodium / boron (Na/B) mole ratio of 0.27 was dehydrated and powdered by using a wiped film evaporator. To investigate the effect of the Na/B mole ratio on the solidification process, a sodium tetraborate decahydrate reagent with a Na/B mole ratio of 0.5 was also used. Ordinary portland cement (OPC) and some additives were used for the solidification. Solidified cement prepared from powderedmore » waste with a Na/B mole ratio 0.24 and having a high silica sand content (silica sand/cement>2) showed to improved uniaxial compressive strength. (authors)« less

  3. CSER 01-008 Canning of Thermally Stabilized Plutonium Oxide Powder in PFP Glovebox HC-21A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ERICKSON, D.G.

    This document presents the analysis performed to support the canning operation in HC-21A. Most of the actual analysis was performed for the operation in HC-18M and HA-20MB, and is documented in HNF-2707 Rev I a (Erickson 2001a). This document will reference Erickson (2001a) as necessary to support the operation in HC-21A. The plutonium stabilization program at the Plutonium Finishing Plant (PFP) uses heat to convert plutonium-bearing materials into dry powder that is chemically stable for long term storage. The stabilized plutonium is transferred into one of several gloveboxes for the canning process, Gloveboxes HC-18M in Room 228'2, HA-20MB in Roommore » 235B, and HC-21A in Room 230B are to be used for this process. This document presents the analysis performed to support the canning operation in HC-21A. Most of the actual analysis was performed for the operation in HC-I8M and HA-20MB, and is documented in HNF-2707 Rev l a (Erickson 2001a). This document will reference Erickson (2001a) as necessary to support the operation in HC-21A. Evaluation of this operation included normal, base cases, and contingencies. The base cases took the normal operations for each type of feed material and added the likely off-normal events. Each contingency is evaluated assuming the unlikely event happens to the conservative base case. Each contingency was shown to meet the double contingency requirement. That is, at least two unlikely, independent, and concurrent changes in process conditions are required before a criticality is possible.« less

  4. The physical properties of accelerated Portland cement for endodontic use.

    PubMed

    Camilleri, J

    2008-02-01

    To investigate the physical properties of a novel accelerated Portland cement. The setting time, compressive strength, pH and solubility of white Portland cement (Lafarge Asland; CEM 1, 52.5 N) and accelerated Portland cement (Proto A) produced by excluding gypsum from the manufacturing process (Aalborg White) and a modified version with 4 : 1 addition of bismuth oxide (Proto B) were evaluated. Proto A set in 8 min. The compressive strength of Proto A was comparable with that of Portland cement at all testing periods (P > 0.05). Additions of bismuth oxide extended the setting time and reduced the compressive strength (P < 0.05). Both cements and storage solution were alkaline. All cements tested increased by >12% of their original weight after immersion in water for 1 day with no further absorption after 28 days. Addition of bismuth oxide increased the water uptake of the novel cement (P < 0.05). The setting time of Portland cement can be reduced by excluding the gypsum during the last stage of the manufacturing process without affecting its other properties. Addition of bismuth oxide affected the properties of the novel cement. Further investigation on the effect that bismuth oxide has on the properties of mineral trioxide aggregate is thus warranted.

  5. Strengthening lightweight concrete

    NASA Technical Reports Server (NTRS)

    Auskern, A.

    1972-01-01

    Polymer absorption by lightweight concretes to improve bonding between cement and aggregate and to increase strength of cement is discussed. Compressive strength of treated cement is compared with strength of untreated product. Process for producing polymers is described.

  6. The cement solidification systems at LANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veazey, G.W.

    1990-01-01

    There are two major cement solidification systems at Los Alamos National Laboratory. Both are focused primarily around treating waste from the evaporator at TA-55, the Plutonium Processing Facility. The evaporator receives the liquid waste stream from TA-55's nitric acid-based, aqueous-processing operations and concentrates the majority of the radionuclides in the evaporator bottoms solution. This is sent to the TA-55 cementation system. The evaporator distillate is sent to the TA-50 facility, where the radionuclides are precipitated and then cemented. Both systems treat TRU-level waste, and so are operated according to the criteria for WIPP-destined waste, but they differ in both cementmore » type and mixing method. The TA-55 systems uses Envirostone, a gypsum-based cement and in-drum prop mixing; the TA-50 systems uses Portland cement and drum tumbling for mixing.« less

  7. Calcium sulfoaluminate cement blended with OPC: A potential binder to encapsulate low-level radioactive slurries of complex chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cau Dit Coumes, Celine; Courtois, Simone; Peysson, Sandrine

    Investigations were carried out in order to solidify in cement a low-level radioactive waste of complex chemistry obtained by mixing two process streams, a slurry produced by ultra-filtration and an evaporator concentrate with a salinity of 600 gxL{sup -1}. Direct cementation with Portland cement (OPC) was not possible due to a very long setting time of cement resulting from borates and phosphates contained in the waste. According to a classical approach, this difficulty could be solved by pre-treating the waste to reduce adverse cement-waste interactions. A two-stage process was defined, including precipitation of phosphates and sulfates at 60 deg. Cmore » by adding calcium and barium hydroxide to the waste stream, and encapsulation with a blend of OPC and calcium aluminate cement (CAC) to convert borates into calcium quadriboroaluminate. The material obtained with a 30% waste loading complied with specifications. However, the pre-treatment step made the process complex and costly. A new alternative was then developed: the direct encapsulation of the waste with a blend of OPC and calcium sulfoaluminate cement (CSA) at room temperature. Setting inhibition was suppressed, which probably resulted from the fact that, when hydrating, CSA cement formed significant amounts of ettringite and calcium monosulfoaluminate hydrate which incorporated borates into their structure. As a consequence, the waste loading could be increased to 56% while keeping acceptable properties at the laboratory scale.« less

  8. Reduction of soil pollution by usingwaste of the limestone in the cement industry

    NASA Astrophysics Data System (ADS)

    Muñoz, M. Cecilia Soto; Robles Castillo, Marcelo; Blanco Fernandez, David; Diaz Gonzalez, Marcos; Naranjo Lamilla, Pedro; Moore Undurraga, Fernando; Pardo Fabregat, Francisco; Vidal, Manuel Miguel Jordan; Bech, Jaume; Roca, Nuria

    2016-04-01

    In the cement manufacturing process (wet) a residue is generated in the flotation process. This builds up causing contamination of soil, groundwater and agricultural land unusable type. In this study to reduce soil and water pollution 10% of the dose of cement was replaced by waste of origin limestone. Concretes were produced with 3 doses of cement and mechanical strengths of each type of concrete to 7, 28 and 90 days were determined. the results indicate that the characteristics of calcareous residue can replace up to 10% of the dose of cement without significant decreases in strength occurs. It is noted that use of the residue reduces the initial resistance, so that the dose of cement should not be less than 200 kg of cement per m3. The results allow recommends the use of limestone waste since it has been observed decrease in soil and water contamination without prejudice construction material Keywords: Soil contamination; Limestone residue; Adding concrete

  9. Nanoparticle-based concretes for the restoration of historical and contemporary buildings: a new way for CO2 reduction in architecture

    NASA Astrophysics Data System (ADS)

    Greco, Enrico; Ciliberto, Enrico; Verdura, Pietro Damiano; Lo Giudice, Elio; Navarra, Giuseppe

    2016-05-01

    The production of the cement is a highly energy-intensive process and contributes to the release of pollutants into the atmosphere due to both the chemical reactions occurring in the kiln and, in most cases, the burning of fossil fuels for power production. So, the reduction of the cement content in a concrete would be indirectly useful to decrease the pollutant emissions in the atmosphere. The results of our investigation indicate that the replacement levels of cement by the 4 % of nanoparticles show a positive increasing of many physical and chemical properties allowing a relevant saving of cement content inside a concrete mixture. The compressive strengths, tensile splitting, propagations of ultrasonic pulses and water permeability tests were investigated on different models and realistic structures by the ISO EN rules. The influence of the nanoparticles on physical and mechanical properties was measured at different ripening times. Both silica and iron oxides make cement pastes harder and accelerated hydration processes of the cements. A remarkable decreasing in water permeability was also observed showing that nanoconcretes can be used as innovative restoration systems for cement-based historical and contemporary artefacts in order to avoid carbonation processes. Moreover, a smaller quantity of cement binder inside the mortar causes relevant positive effects on the reduction of carbon dioxide emission in the atmosphere.

  10. Experimental and Computational Studies of Coupled Geomechanical and Hydrologic Processes in Wellbore Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Mori, H.; Porter, M. L.; Lewis, K. C.; Kelkar, S.

    2013-12-01

    Potential leakage from wells is an important issue in the protection of groundwater resources, CO2 sequestration, and hydraulic fracturing. The first defense in all of these applications is a properly constructed well with adequate Portland cement that effectively isolates the subsurface. The chief threat for such wells is mechanical disruption of the cement, cement/steel, or cement/caprock interfaces. This can occur through wellbore operations that pressurize/depressurize the steel tubing or create temperature transients (e.g., injection, production, hydraulic fracturing, and mechanical testing) as well as reservoir-scale stresses (e.g., filling or depletion of the reservoir) and tectonic stresses (e.g., the mobility of salt). However, there is relatively limited information available on the hydrologic consequences of such processes. Toward this end, we discuss recent experiments and computational models of coupled geomechanical and hydrologic processes in wellbore systems. Triaxial coreflood experiments with tomography were conducted on synthetic wellbore systems including cement-steel, rock-cement and rock-cement-steel composites. The aim of the experiments was to induce stresses through application of axial loads in order to create defects within the cement or at the cement/steel or cement/rock interface. High injection fluid pressures (supercritical CO2 × brine) were applied to the base of the initially impermeable composites. Mechanical failure resulted in creation of permeability, which was measured as a function of time (allowing for the possibility of Portland cement to deform and modify permeability). In addition, fracture patterns were characterized using x-ray tomography. We used the computer code FEHM to study coupled hydrologic and mechanical processes in the near-wellbore environment. The wellbore model was developed as a wedge within a radially symmetric 3D volume. The grid elements consist of the steel casing, the casing-cement interface, the cement, the cement-rock interface, caprock, and reservoir rock. We used a model that is 1 m in radius, and extends 5 m along the wellbore. The model consisted of a lower storage aquifer, a caprock and an upper aquifer that received leaking fluids. We coupled flow and geomechanics using a shear-failure model that represents shear-induced damage and is similar to a Mohr-Coulomb slip mechanism. In this model, damage occurs for any excess shear stress with permeability enhancement a function of stress with a maximum magnitude set by the user. Stresses were induced by application of an elevated constant pressure within the injection reservoir representing a far-field injection process. The initial permeability of the cement was 1 mD and stress-enhanced permeability was limited to an increase by a factor of 10-100. The simulations show that shear-failure modes lead to enhanced permeability of the wellbore system. Continuing work will examine sensitivity of the results to mechanical properties and initial permeability distributions, the impact of relative permeability models, and the development of permeability-stress models including an aperture-opening tensile-failure model.

  11. Reducing cement's CO2 footprint

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  12. From Rocks to Cement. What We Make. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Science Education Center.

    This module deals with the materials used in making concrete hollow blocks. Topics discussed include: (1) igneous, metamorphic, and sedimentary rocks; (2) weathering (the process of breaking down rocks) and its effects on rocks; (3) cement; (4) stages in the manufacturing of Portland cement; and (5) the transformation of cement into concrete…

  13. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: a novel solution to the exothermicity problem.

    PubMed

    Zhou, Huan; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B

    2013-10-01

    There are two interesting features of this paper. First, we report herein a novel microwave assisted technique to prepare phosphate based orthopedic cements, which do not generate any exothermicity during setting. The exothermic reactions during the setting of phosphate cements can cause tissue damage during the administration of injectable compositions and hence a solution to the problem is sought via microwave processing. This solution through microwave exposure is based on a phenomenon that microwave irradiation can remove all water molecules from the alkaline earth phosphate cement paste to temporarily stop the setting reaction while preserving the active precursor phase in the formulation. The setting reaction can be initiated a second time by adding aqueous medium, but without any exothermicity. Second, a special emphasis is placed on using this technique to synthesize magnesium phosphate cements for orthopedic applications with their enhanced mechanical properties and possible uses as drug and protein delivery vehicles. The as-synthesized cements were evaluated for the occurrences of exothermic reactions, setting times, presence of Mg-phosphate phases, compressive strength levels, microstructural features before and after soaking in (simulated body fluid) SBF, and in vitro cytocompatibility responses. The major results show that exposure to microwaves solves the exothermicity problem, while simultaneously improving the mechanical performance of hardened cements and reducing the setting times. As expected, the cements are also found to be cytocompatible. Finally, it is observed that this process can be applied to calcium phosphate cements system (CPCs) as well. Based on the results, this microwave exposure provides a novel technique for the processing of injectable phosphate bone cement compositions. © 2013.

  14. Construction aggregates

    USGS Publications Warehouse

    Nelson, T.I.; Bolen, W.P.

    2007-01-01

    Construction aggregates, primarily stone, sand and gravel, are recovered from widespread naturally occurring mineral deposits and processed for use primarily in the construction industry. They are mined, crushed, sorted by size and sold loose or combined with portland cement or asphaltic cement to make concrete products to build roads, houses, buildings, and other structures. Much smaller quantities are used in agriculture, cement manufacture, chemical and metallurgical processes, glass production and many other products.

  15. Concentrations and patterns of polychlorinated biphenyls at different process stages of cement kilns co-processing waste incinerator fly ash.

    PubMed

    Liu, Guorui; Yang, Lili; Zhan, Jiayu; Zheng, Minghui; Li, Li; Jin, Rong; Zhao, Yuyang; Wang, Mei

    2016-12-01

    Cement kilns can be used to co-process fly ash from municipal solid waste incinerators. However, this might increase emission of organic pollutants like polychlorinated biphenyls (PCBs). Knowledge of PCB concentrations and homolog and congener patterns at different stages in this process could be used to assess the possibility of simultaneously controlling emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and "dioxin-like" compounds. To date, emissions from cement kilns co-processing fly ash from municipal solid waste incinerators have not been analyzed for PCBs. In this study, stack gas and particulate samples from two cement kilns co-processing waste incinerator fly ash were analyzed for PCBs. The average total tri- to deca-chlorinated biphenyl (∑ 3-10 PCB) concentration in the stack gas samples was 10.15ngm -3 . The ∑ 3-10 PCB concentration ranges in particulate samples from different stages were 0.83-41.79ngg -1 for cement kiln 1and0.13-1.69ngg -1 for cement kiln 2. The ∑ 3-10 PCB concentrations were much higher in particulate samples from the suspension pre-heater boiler, humidifier tower, and kiln back-end bag filters than in particulate samples from other stages. For these three stages, PCBs contributed to 15-18% of the total PCB, PCDD/F, and polychlorinated naphthalene toxic equivalents in stack gases and particulate matter. The PCB distributions were similar to those found in other studies for PCDD/Fs and polychlorinated naphthalenes, which suggest that it may be possible to simultaneously control emissions of multiple organic pollutants from cement kilns. Homolog patterns in the particulate samples were dominated by the pentachlorobiphenyls. CB-105, CB-118, and CB-123 were the dominant dioxin-like PCB congeners that formed at the back-end of the cement kiln. A mass balance of PCBs in the cement kilns indicated that the total mass of PCBs in the stack gases and clinker was about half the mass of PCBs in the raw materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Peculiarities of the processes of hydration of binding substances in the arbolite mixture

    NASA Astrophysics Data System (ADS)

    Innokentieva, L. S.; Egorova, A. D.; Emelianova, Z. V.

    2017-09-01

    Cement and sand solution is traditionally used for production of wood concrete. But it is known that impact of water-soluble substances of wood on the hardening cement is shown in the stabilizing effect. The "Cement poisons" consisting generally of the HOCH carbohydrate groups, sedimented on a surface of particles of minerals of cement 3CaO.SiO2 (three-calcic silicate) and 3CaO.Al2O3 (three-calcic aluminate) form the thinnest covers which complicate the course of processes of hydration of cement. Plaster in comparison with cement is less sensitive to extractive substances of wood therefore their combination to wood (including waste of logging and a woodworking) both coniferous and deciduous species is allowed. Composite plaster binding with hongurin as active mineral additive agent are applied at selection of composition of arbolite, at the same time dependences of their physicomechanical properties on characteristics of filler are received.

  17. Early-age monitoring of cement structures using FBG sensors

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Zhou, Zhi; Zhang, Zhichun; Ou, Jinping

    2006-03-01

    With more and more broad applications of the cement-based structures such as neat cement paste, cement mortar and concrete in civil engineering, people hope to find out what their performances should like. The in-service performances of cement-based structures are highly affected by their hardening process during the early-age. But it is still a big problem for traditional sensors to be used to monitor the early curing of cement-based structures due to such disadvantages as difficulties to install sensors inside the concrete, limited measuring points, poor durability and interference of electromagnetic wave and so on. In this paper, according to the sensing properties of the Fiber Bragg Grating sensors and self-characters of the cement-based structures, we have successfully finished measuring and monitoring the early-age inner-strain and temperature changes of the neat cement paste, concrete with and without restrictions, mass concrete structures and negative concrete, respectively. Three types of FBG-based sensors have been developed to monitor the cement-based structures. Besides, the installation techniques and the embedding requirements of FBG sensors in cement-based structures are also discussed. Moreover, such kind of technique has been used in practical structure, 3rd Nanjing Yangtze Bridge, and the results show that FBG sensors are well proper for measuring and monitoring the temperature and strain changes including self-shrinkage, dry shrinkage, plastic shrinkage, temperature expansion, frost heaving and so on inside different cement-based structures. This technique provides us a new useful measuring method on early curing monitoring of cement-based structures and greater understanding of details of their hardening process.

  18. High-sensitivity high-selectivity detection of CWAs and TICs using tunable laser photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Pushkarsky, Michael; Webber, Michael; Patel, C. Kumar N.

    2005-03-01

    We provide a general technique for evaluating the performance of an optical sensor for the detection of chemical warfare agents (CWAs) in realistic environments and present data from a simulation model based on a field deployed discretely tunable 13CO2 laser photoacoustic spectrometer (L-PAS). Results of our calculations show the sensor performance in terms of usable sensor sensitivity as a function of probability of false positives (PFP). The false positives arise from the presence of many other gases in the ambient air that could be interferents. Using the L-PAS as it exists today, we can achieve a detection threshold of about 4 ppb for the CWAs while maintaining a PFP of less than 1:106. Our simulation permits us to vary a number of parameters in the model to provide guidance for performance improvement. We find that by using a larger density of laser lines (such as those obtained through the use of tunable semiconductor lasers), improving the detector noise and maintaining the accuracy of laser frequency determination, optical detection schemes can make possible CWA sensors having sub-ppb detection capability with <1:108 PFP. We also describe the results of a preliminary experiment that verifies the results of the simulation model. Finally, we discuss the use of continuously tunable quantum cascade lasers in L-PAS for CWA and TIC detection.

  19. Long-distance transport of mRNA via parenchyma cells and phloem across the host-parasite junction in Cuscuta.

    PubMed

    David-Schwartz, Rakefet; Runo, Steven; Townsley, Brad; Machuka, Jesse; Sinha, Neelima

    2008-01-01

    It has been shown that the parasitic plant dodder (Cuscuta pentagona) establishes a continuous vascular system through which water and nutrients are drawn. Along with solutes, viruses and proteins, mRNA transcripts are transported from the host to the parasite. The path of the transcripts and their stability in the parasite have yet to be revealed. To discover the route of mRNA transportation, the in situ reverse transcriptase-polymerase chain reaction (RT-PCR) technique was used to locally amplify host transcript within parasitic tissue. The stability of host mRNA molecules was also checked by monitoring specific transcripts along the growing dodder thread. Four mRNAs, alpha and beta subunits of PYROPHOSPHATE (PPi)-DEPENDENT PHOSPHOFRUCTOKINASE (LePFP), the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), and GIBBERELLIC ACID INSENSITIVE (LeGAI), were found to move from host (tomato (Solanum lycopersicum)) to dodder. LePFP mRNA was localized to the dodder parenchyma cells and to the phloem. LePFP transcripts were found in the growing dodder stem up to 30 cm from the tomato-dodder connection. These results suggest that mRNA molecules are transferred from host to parasite via symplastic connections between parenchyma cells, move towards the phloem, and are stable for a long distance in the parasite. This may allow developmental coordination between the parasite and its host.

  20. Point-of-Care Ultrasound: Sonographic Posterior Fat Pad Sign: A Case Report and Brief Literature Review.

    PubMed

    Okumura, Yoshito; Maldonado, Nestor; Lennon, Kyle; McCarty, Bryan; Underwood, Philipp; Nelson, Mathew

    2017-07-01

    Diagnosis of elbow fracture can sometimes be difficult with plain radiography due to overlapping bones, growth plates, and maturing bones in the pediatric population. The radiographic posterior fat pad (PFP) sign is one of the frequently referenced indirect signs of an occult elbow fracture. This sign can be falsely negative if the sign is subtle, and can be falsely positive when the position of the elbow is not flexed at 90 degrees. We discuss a case in which sonographic PFP sign helped to diagnose an elbow fracture. A 57-year-old female presented to the emergency department (ED) after a fall on an outstretched hand. The point-of-care ultrasound (POCUS) was completed identifying an elevated PFP and an anechoic joint fluid collection with innumerous floating hyperechogenic spicules visualized in the olecranon fossa. Diagnosis of a radial head fracture was later confirmed by plain radiograph. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: The increase in use and availability of POCUS in the ED makes this a very practical application. Our ability to rapidly perform the ultrasound of the elbow may allow us a more rapid diagnosis of pathology, as well as provide a way to further triage our patients. With time, it may even allow us to avoid routine use of plain radiography. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A New Biphasic Dicalcium Silicate Bone Cement Implant.

    PubMed

    Zuleta, Fausto; Murciano, Angel; Gehrke, Sergio A; Maté-Sánchez de Val, José E; Calvo-Guirado, José L; De Aza, Piedad N

    2017-07-06

    This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C₂S) cement. Biphasic α´ L + β-C₂S ss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF) and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C₂S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement's surface after soaking in SBF. The cell attachment test showed that α´ L + β-C₂S ss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23) obtained higher bone-to-implant contact (BIC) percentage values (better quality, closer contact) in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic). The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration.

  2. 40 CFR 63.1341 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... product prior to further processing at a portland cement plant. Clinker cooler means equipment into which... a system in a portland cement production process where a dry kiln system is integrated with the raw...

  3. Influence of Cellulosic Fibres on the Physical Properties of Fibre Cement Composites

    NASA Astrophysics Data System (ADS)

    Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.

    2017-10-01

    Nowadays, there are new approaches directing to processing of non-conventional fibre-cement composites for application in the housing construction. Vegetable cellulosic fibres coming from natural resources used as reinforcement in cost-effective and environmental friendly building products are in the spotlight. The applying of natural fibres in cement based composites is narrowly linked to the ecological building sector, where a choice of materials is based on components including recyclable, renewable raw materials and low-resource manufacture techniques. In this paper, two types of cellulosic fibres coming from wood pulp and recycled waste paper with 0.2%; 0.3% and 0.5% of fibre addition into cement mixtures were used. Differences in the physical characteristics (flowability, density, coefficient of thermal conductivity and water absorbability) of 28 days hardened fibre-cement composites are investigated. Addition of cellulosic fibres to cement mixture caused worsening the workability of fresh mixture as well as absorbability of hardened composites due to hydrophilic nature of biomaterial, whereas density and thermal conductivity of manufactured cement based fibre plaster are enhanced. The physical properties of cement plasters based on cellulosic fibres depend on structural, physical characteristics of cellulosic fibres, their nature and processing.

  4. Setting behaviour of luting cements monitored by an ultrasonic method.

    PubMed

    Tsubota, Keishi; Mori, Kentarou; Yasuda, Genta; Kawamoto, Ryo; Yoshida, Takeshi; Yamaguchi, Kanako; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2008-06-01

    The purpose of this study was to monitor the setting behaviour and elastic modulus of luting cements using an ultrasonic device. The ultrasonic equipment comprised a pulser-receiver, transducers and an oscilloscope. The transit time through the cement disk was multiplied by the thickness of the specimen, and the sonic velocity within the material was then calculated. The sonic velocities of the longitudinal and shear waves were used to determine the elastic modulus. Analysis of variance and the Tukey HSD test were used to compare the elastic moduli of the set cements. In the earliest stages of the setting process, most of the ultrasound energy was absorbed by the cements and the sound waves were relatively weak. As the cements hardened, the sound velocities increased and this tendency differed among the luting cements used. The mean elastic moduli of the specimens ranged from 2.9 to 9.9 GPa after 15 min, from 14.4 to 20.3 GPa after 24 h and from 12.1 to 15.9 GPa after 1 month. The setting processes of the luting cements were thus clearly defined by using the present ultrasonic method.

  5. Quantifying the impact of early calcite cementation on the reservoir quality of carbonate rocks: A 3D process-based model

    NASA Astrophysics Data System (ADS)

    Hosa, Aleksandra; Wood, Rachel

    2017-06-01

    The reservoir properties of carbonate rocks are controlled by both deposition and diagenesis. The latter includes the early precipitation of calcite cements, which can exert a strong control on the evolution of subsequent diagenetic pathways. We quantify the impact of early marine cement growth in grainstones on evolving pore space by examining trends in the relationship between cementation and permeability using a 3D process-based model (Calcite3D). The model assumes varying proportions of polycrystalline and monocrystalline grain types, upon which we grow isopachous and syntaxial calcite cement types, respectively. We model two syntaxial cement shapes, compact and elongated, that approximate the geometries of typical rhombohedral calcite forms. Results demonstrate the effect of cement competition: an increasing proportion of monocrystalline grains creates stronger competition and a reduction in the impact of individual grains on final calcite cement volume and porosity. Isopachous cement is effective in closing pore throats and limiting permeability. We also show that the impact of syntaxial cement on porosity occlusion and therefore flow is highly dependent on monocrystalline grain location and the orientation of crystal axes. This demonstrates the importance of diagenetic overprint in controlling the evolution of rock properties, but also that this process can be essentially random. We also show that diagenesis alone can create notable heterogeneity in the permeability of carbonates. While Calcite3D is successful in modelling realistic changes in cement volumes and pore space morphology, modelled permeabilities (0.01 -30D) are above the range reported in reservoir grainstones due to the very high permeability of the initial synthetic sediment deposit (58.9D). Poroperm data generated by Calcite3D, however, exhibits a linear relationship between the logarithms of porosity and permeability with a high coefficient of determination, as observed in natural media.

  6. Low Temperature Processing of Boron Carbide Cement Composite for Tough, Wear Resistant Structures

    DTIC Science & Technology

    1997-12-15

    TITLE AND SUBTITLE Low Temperature Processing of Boron Carbide Cement Composite for Tough, Wear Resistant Structures 6. AUTHOR(S) Kristen J. Law...project has developed a low temperature polymer ceramic composite consisting of boron carbide layers bonded by cement, laminated with polymer...composite have been shown to compare favorably to those of partially sintered boron carbide. Applications for this material have been identified in

  7. Critical elements in implementations of just-in-time management: empirical study of cement industry in Pakistan.

    PubMed

    Qureshi, Muhammad Imran; Iftikhar, Mehwish; Bhatti, Mansoor Nazir; Shams, Tauqeer; Zaman, Khalid

    2013-01-01

    In recent years, inventory management is continuous challenge for all organizations not only due to heavy cost associated with inventory holding, but also it has a great deal to do with the organizations production process. Cement industry is a growing sector of Pakistan's economy which is now facing problems in capacity utilization of their plants. This study attempts to identify the key strategies for successful implementation of just-in-time (JIT) management philosophy on the cement industry of Pakistan. The study uses survey responses from four hundred operations' managers of cement industry in order to know about the advantages and benefits that cement industry have experienced by Just in time (JIT) adoption. The results show that implementing the quality, product design, inventory management, supply chain and production plans embodied through the JIT philosophy which infect enhances cement industry competitiveness in Pakistan. JIT implementation increases performance by lower level of inventory, reduced operations & inventory costs was reduced eliminates wastage from the processes and reduced unnecessary production which is a big challenge for the manufacturer who are trying to maintain the continuous flow processes. JIT implementation is a vital manufacturing strategy that reaches capacity utilization and minimizes the rate of defect in continuous flow processes. The study emphasize the need for top management commitment in order to incorporate the necessary changes that need to take place in cement industry so that JIT implementation can take place in an effective manner.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zee, Ralph; Schindler, Anton; Duke, Steve

    The objective of this project is to conduct research to determine the feasibility of using alternate fuel sources for the production of cement. Successful completion of this project will also be beneficial to other commercial processes that are highly energy intensive. During this report period, we have completed all the subtasks in the preliminary survey. Literature searches focused on the types of alternative fuels currently used in the cement industry around the world. Information was obtained on the effects of particular alternative fuels on the clinker/cement product and on cement plant emissions. Federal regulations involving use of waste fuels weremore » examined. Information was also obtained about the trace elements likely to be found in alternative fuels, coal, and raw feeds, as well as the effects of various trace elements introduced into system at the feed or fuel stage on the kiln process, the clinker/cement product, and concrete made from the cement. The experimental part of this project involves the feasibility of a variety of alternative materials mainly commercial wastes to substitute for coal in an industrial cement kiln in Lafarge NA and validation of the experimental results with energy conversion consideration.« less

  9. Shear bond strength between resin cement and colored zirconia made with metal chlorides.

    PubMed

    Kim, Ga-Hyun; Park, Sang-Won; Lee, Kwangmin; Oh, Gye-Jeong; Lim, Hyun-Pil

    2015-06-01

    Although the application of zirconia in esthetic prostheses has increased, the shear bond strength (SBS) between colored zirconia and resin cement has not been investigated. The purpose of this study was to compare the SBS between resin cement and colored zirconia made with metal chlorides. Sixty-four zirconia specimens were divided into 2 groups: one in which the specimens were bonded with resin cement, including 4-META (4-methacryloxyethyl trimellitic anhydride), and one in which the specimens were bonded with resin cement (SEcure, Sun Medical) after being processed with zirconia primer (Zirconia Liner), including 4-META. Each group was then divided into 4 subgroups depending on the coloring liquid. The subgroups were noncolored (control), commercial coloring liquid VITA In-Ceram 2000 YZ LL1, aqueous chromium chloride solution 0.1 wt%, and aqueous molybdenum chloride solution 0.1 wt%. Composite resin cylinders (Filtek Z250, 3M ESPE) were fabricated and bonded to the surface of the zirconia specimen with resin cement (SEcure). All specimens were stored in 37°C distilled water for 24 hours, and the SBS was measured with a universal testing machine. All data were analyzed statistically with 2-way ANOVA and tested post hoc with the Tukey test (α=.05). Significant differences were observed among the SBS values of the colored zirconia depending on the coloring liquid (P<.001) and whether they were processed with zirconia primer (P<.001). The SBS between colored zirconia and resin cement was significantly higher than that of noncolored zirconia and resin cement in groups processed with zirconia primer (P<.05). Colored zirconia immersed in aqueous molybdenum chloride solution showed a significantly higher SBS. Coloring liquid enhanced the SBS between resin cement and zirconia processed with zirconia primer. In particular, colored zirconia immersed in aqueous molybdenum chloride solution showed the highest SBS. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Sample environment for in situ synchrotron XRD measurements for CO2 interaction with subsurface materials

    NASA Astrophysics Data System (ADS)

    Elbakhshwan, M.; Gill, S.; Weidner, R.; Ecker, L.

    2017-12-01

    Sequestration of CO2 in geological formations requires a deep understanding of its interaction with the cement-casing components in the depleted oil and gas wells. Portland cement is used to seal the wellbores; however it tends to interact with the CO2. Therefore it is critical to investigate the wellbore integrity over long term exposure to CO2. Studies showed that, CO2 leakage is due to the flow through the casing-cement microannulus, cement-cement fractures, or the cement-caprock interface. The objective of this work is to gain a better understanding of the dissolution process of the cement-casing in the CO2 flow channels alongside with the carbonation reactions at the interfaces using XRF, XANES and X-ray tomography techniques. In this study, a synthetic wellbore system, consisting of cement with an embedded rectangular length of steel casing that had grooves to accommodate fluid flow, was used to investigate the casing-cement microannulus through core-flood experiments. The objective of this work is to gain a better understanding of the dissolution process of the cement-casing in the CO2 flow channels alongside with the carbonation reactions at the interfaces using a sample environment designed and built for in situ X-ray diffraction in the National Synchrotron Light Source II (NSLS II). The formation of carbonate phases at cement -fluid and cement-steel/fluid interfaces will be monitored in real time. Samples may be exposed to super critical CO2 at pressures above 1100 psi and temperatures around 50°C. The reaction cell is built from hastealloy to provide corrosion resistance, while the experimental temperature and pressure are controlled with thermocouples and pressure vessel.

  11. Influence of ferrite phase in alite-calcium sulfoaluminate cements

    NASA Astrophysics Data System (ADS)

    Duvallet, Tristana Yvonne Francoise

    Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition. The mechanical data were equivalent to OPC strengths for some compositions with 25% ferrite. This preliminary work constitutes the first research phase of this novel cement and requires additional research for its improvement. Topics for additional research are identified in this dissertation. KEYWORDS: alite, calcium sulfoaluminate, ferrite, low-energy cement, triisopropanolamine.

  12. Influence of Thermal Treatment Conditions on the Properties of Dental Silicate Cements.

    PubMed

    Voicu, Georgeta; Popa, Alexandru Mihai; Badanoiu, Alina Ioana; Iordache, Florin

    2016-02-18

    In this study the sol-gel process was used to synthesize a precursor mixture for the preparation of silicate cement, also called mineral trioxide aggregate (MTA) cement. This mixture was thermally treated under two different conditions (1400 °C/2 h and 1450 °C/3 h) followed by rapid cooling in air. The resulted material (clinker) was ground for one hour in a laboratory planetary mill (v = 150 rot/min), in order to obtain the MTA cements. The setting time and mechanical properties, in vitro induction of apatite formation by soaking in simulated body fluid (SBF) and cytocompatibility of the MTA cements were assessed in this study. The hardening processes, nature of the reaction products and the microstructural characteristics were also investigated. The anhydrous and hydrated cements were characterized by different techniques e.g., X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR) and thermal analysis (DTA-DTG-TG). The setting time of the MTA cement obtained by thermal treatment at 1400 °C/2 h (MTA1) was 55 min and 15 min for the MTA cement obtained at 1450 °C/3 h (MTA2). The compressive strength values were 18.5 MPa (MTA1) and 22.9 MPa (MTA2). Both MTA cements showed good bioactivity (assessed by an in vitro test), good cytocompatibility and stimulatory effect on the proliferation of cells.

  13. Adult and adolescent livestock productive asset transfer programmes to improve mental health, economic stability and family and community relationships in rural South Kivu Province, Democratic Republic of Congo: a protocol of a randomised controlled trial.

    PubMed

    Kohli, Anjalee; Perrin, Nancy A; Remy, Mitima Mpanano; Alfred, Mirindi Bacikenge; Arsene, Kajabika Binkurhorhwa; Nadine, Mwinja Bufole; Heri, Banyewesize Jean; Clovis, Mitima Murhula; Glass, Nancy

    2017-03-14

    People living in poverty have limited access to traditional financial institutions. Microfinance programmes are designed to meet this gap and show promise in improving income, economic productivity and health. Our Congolese-US community academic research partnership developed two livestock productive asset transfer programmes, Pigs for Peace (PFP) and Rabbits for Resilience (RFR), to address the interlinked health, social and economic well-being of individuals, their families and communities. The community-based randomised controlled trials examine the effectiveness of PFP and RFR to improve health, economic stability, and family and community relationships among male and female adults and adolescents living in 10 rural, postconflict villages of eastern Democratic Republic of Congo. PFP participants include adult permanent residents of rural villages; adolescent participants in RFR include male and female adolescents 10-15 years old living in the selected rural villages. Participants were randomised to intervention or delayed control group. Participants in PFP completed baseline interview prior to intervention and follow-up interview at 6, 12 and 18 months postintervention. In RFR, participants completed baseline interview prior to intervention and follow-up interview at 6, 12 and 18 months postbaseline. The primary outcome of both trials, the change in baseline mental health distress at 18 months in the intervention group (adults, adolescents) compared to control group, is used to calculate sample size. The Johns Hopkins Medical Institute Internal Review Board approved this protocol. A committee of respected Congolese educators and community members (due to lack of local ethics review board) approved the study. The findings will provide important information on the potential for community-led sustainable development initiatives to build on traditional livelihood (livestock raising, agriculture) to have a sustained health, economic and social impact on the individual, family and community. NCT02008708, NCT02008695. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Adult and adolescent livestock productive asset transfer programmes to improve mental health, economic stability and family and community relationships in rural South Kivu Province, Democratic Republic of Congo: a protocol of a randomised controlled trial

    PubMed Central

    Kohli, Anjalee; Perrin, Nancy A; Remy, Mitima Mpanano; Alfred, Mirindi Bacikenge; Arsene, Kajabika Binkurhorhwa; Nadine, Mwinja Bufole; Heri, Banyewesize Jean; Clovis, Mitima Murhula; Glass, Nancy

    2017-01-01

    Introduction People living in poverty have limited access to traditional financial institutions. Microfinance programmes are designed to meet this gap and show promise in improving income, economic productivity and health. Our Congolese–US community academic research partnership developed two livestock productive asset transfer programmes, Pigs for Peace (PFP) and Rabbits for Resilience (RFR), to address the interlinked health, social and economic well-being of individuals, their families and communities. The community-based randomised controlled trials examine the effectiveness of PFP and RFR to improve health, economic stability, and family and community relationships among male and female adults and adolescents living in 10 rural, postconflict villages of eastern Democratic Republic of Congo. Methods and analysis PFP participants include adult permanent residents of rural villages; adolescent participants in RFR include male and female adolescents 10–15 years old living in the selected rural villages. Participants were randomised to intervention or delayed control group. Participants in PFP completed baseline interview prior to intervention and follow-up interview at 6, 12 and 18 months postintervention. In RFR, participants completed baseline interview prior to intervention and follow-up interview at 6, 12 and 18 months postbaseline. The primary outcome of both trials, the change in baseline mental health distress at 18 months in the intervention group (adults, adolescents) compared to control group, is used to calculate sample size. Ethics and dissemination The Johns Hopkins Medical Institute Internal Review Board approved this protocol. A committee of respected Congolese educators and community members (due to lack of local ethics review board) approved the study. The findings will provide important information on the potential for community-led sustainable development initiatives to build on traditional livelihood (livestock raising, agriculture) to have a sustained health, economic and social impact on the individual, family and community. Trial registration number NCT02008708, NCT02008695. PMID:28292764

  15. THE COST OF POSITIONAL NEGOTIATIONS VERSUS COLLABORATIVE OR RELATIONAL NEGOTIATIONS FOR NEGOTIATING COMPLIANCE MILESTONES AT HANFORD WA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOPKINS, A.M.

    The Hanford site is subject to the Hanford Federal Facility Agreement and Consent Order (HFFACO), an order on consent signed by the DOE, the U. S. Environmental Protection Agency, (EPA) and the Washington Department of Ecology (WDOE). Under the HFFCCO, negotiations for transition milestones begin within six months after the issuance of a shutdown order. In the case of the PFP, the Nuclear Materials disposition and stabilization activities, a DOE responsibility, were necessary as precursor activities to Transition. This situation precipitated a crisis in the negotiations between the agencies, and formal negotiations initiated in 1997 ended in failure. The negotiationsmore » reached impasse on several key regulatory and operational issues. The 1997 negotiation was characterized by a strongly positional style. DOE and the regulatory personnel took hard lines early in the negotiations and were unable to move to resolution of key issues after a year and a half. This resulted in unhappy stakeholders, poor publicity, and work delays as well as wounded relationships between DOE and the regulatory community. The PFP is a former plutonium metal production facility. The operating mission of the PFP ended with a DOE Headquarters shutdown letter in October of 1996. Generally, the receipt of a shutdown letter initiates the start of Transition (as the first step of Decommissioning) of a facility. In the 2000-2001 PFP negotiations, a completely different approach was suggested and eventually initiated: Collaborative or Relational Negotiations. The relational negotiation style resulted in agreement between the agencies on all key issues within 6 months of initiation. All parties were very pleased with the results and all parties were relieved that protracted negotiations sessions were not needed with the new style of working together collaboratively to serve each other's interests without compromising each party's needs. The characteristics of collaborative negotiations included building trust, emphasizing equality of team members, problem solving by the entire team, relying on individual communications, and self-management skills. A specific example of positional negotiations is given with the resultant increase in cost, duration of negotiations, and lingering questions regarding trust among the parties.« less

  16. Anterior segment changes in rabbits after experimental aqueous replacement with various amounts of different perfluorocarbon liquids.

    PubMed

    Stolba, U; Krepler, K; Velikay, M; Binder, S

    1999-06-01

    We evaluated biomicroscopic and histological effects on the anterior segment in the rabbit eye after temporary aqueous substitution with various amounts (0.2 cc and 0.025 cc) of perfluorodecaline (PFD) and perfluorophenanthrene (PFP). A quantity of 0.2 cc of the two perfluorocarbon (PFC) liquids was exchanged simultaneously with about 50% of the aqueous in 15 rabbit eyes each for periods of 1, 2, or 4 weeks. At these points some eyes were enucleated for histological examination. After 2 and 4 weeks the substances were removed from the remaining eyes, which were then followed up for 8-10 weeks. In an additional 8 eyes, 0.025 cc PFD or PFP was injected and left for 8 weeks. Four eyes received balanced salt solution and served as controls. Beside biomicroscopic evaluation and measurement of the intraocular pressure, endothelial cell counts and corneal pachymetry were performed regularly during follow-up. The postoperative results were well comparable for PFD and PFP eyes. Within the first 2 weeks postoperatively corneal edema with endothelial cell loss was observed in both groups. Thereafter regression of the edema started independently of whether the substances were removed or not. IOP was not elevated at any time. At the end of follow-up central corneal thickness was the same as initially. In the inferior corneal endothelium cell density decreased to 45-50% of that in normals. Histologically, vacuoles in the iris and chamber angle were found inferiorly after 4 weeks. Chamber angle closures were present between 5 and 7 o'clock in those eyes where the PFC liquids had been removed after 2 and 4 weeks. Eyes with 0.025 cc PFD or PFP droplets showed vacuolization of the inferior trabecular meshwork 8 weeks postoperatively that was comparable with eyes which had a 50% aqueous replacement for 4 weeks. Control eyes remained unchanged in all aspects. Anterior segment damage caused by PFC liquids is a contact-dependent effect seen in the early observation period. Experimentally there was no difference between the products used or between 2 and 4 weeks' duration of the tamponade.

  17. The effect of phloretin on human γδ T cells killing colon cancer SW-1116 cells.

    PubMed

    Zhu, Sheng-Ping; Liu, Gang; Wu, Xiao-Ting; Chen, Fu-Xing; Liu, Jun-Quan; Zhou, Zhong-Hai; Zhang, Jian-Fu; Fei, Su-Juan

    2013-01-01

    To explore the effect and mechanism of Phloretin on human γδ T cells killing colon cancer SW-1116 cells. γδ T cells were amplified in vitro from human peripheral blood mononuclear cells through isopentenyl pyrophosphate method (IPP). After cocultured different concentrations of Phloretin with γδ T cells or SW-1116 cells for 48h respectively, MTT assay was used to test the growth curve of these two cells; Flow cytometry to test the expression of Granzyme B (GraB), perforin (PFP), CD107a and IFN-γ of γδ T cells; Lactate dehydrogenase (LDH) release assay to test the cytotoxic activity of the γδ T cells on SW-1116 cells; and Western blot to test the Wnt3a expression of the γδ T cells. After cultured with IPP for ten days, the percentage of γδ T cells increased from 3.31±3.00% to 78.40±10.30%. Compared to the control group, when the concentration of Phloretin increased from 2.35μg/ml to 18.75μg/ml, it could significantly proliferate the γδ T cell growth (P<0.05) and inhibit the growth of SW-1116 cells in dose-response, and the expression of GraB, PFP, CD107a and Wnt3a significantly increased (P<0.05). Significant positive relationships were observed among CD107a and PFP, GraB, cytotoxicity (P<0.05). The percentage of IFN-γ producing γδ T cells treated with Phloretin was significantly higher than control group. Phloretin can enhance the killing effect of γδ T cells on SW-1116 cells; the mechanism may be that Phloretin could proliferate the γδ T cell growth, increase the expression of PFP and GraB, activate the Wnt signaling pathway, and produce higher level of IFN-γ. Indeed CD107a expression probably correlates quite well with antitumor activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Influence of Cements Containing Calcareous Fly Ash as a Main Component Properties of Fresh Cement Mixtures

    NASA Astrophysics Data System (ADS)

    Gołaszewski, Jacek; Kostrzanowska-Siedlarz, Aleksandra; Ponikiewski, Tomasz; Miera, Patrycja

    2017-10-01

    The main goal of presented research was to examine usability of cements containing calcareous fly ash (W) from technological point of view. In the paper the results of tests concerning the influence of CEM II and CEM IV cements containing fly ash (W) on rheological properties, air content, setting times and plastic shrinkage of mortars are presented and discussed. Moreover, compatibility of plasticizers with cements containing fly ash (W) was also studied. Additionally, setting time and hydration heat of cements containing calcareous fly ash (W) were determined. In a broader aspect, the research contributes to promulgation of the possibility of using calcareous fly ash (W) in cement and concrete technology, what greatly benefits the environment protection (utilization of waste fly ash). Calcareous fly ash can be used successfully as the main component of cement. Cements produced by blending with processed fly ash or cements produced by interginding are characterized by acceptable technological properties. In respect to CEM I cements, cements containing calcareous fly ash worsen workability, decrease air content, delay setting time of mixtures. Cements with calcareous fly ash show good compatibility with plasticizers.

  19. Alternative Fuel for Portland Cement Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burnmore » characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted at a full-scale cement plant with alternative fuels to examine their compatibility with the cement production process. Construction and demolition waste, woodchips, and soybean seeds were used as alternative fuels at a full-scale cement production facility. These fuels were co-fired with coal and waste plastics. The alternative fuels used in this trial accounted for 5 to 16 % of the total energy consumed during these burns. The overall performance of the portland cement produced during the various trial burns performed for practical purposes very similar to the cement produced during the control burn. The cement plant was successful in implementing alternative fuels to produce a consistent, high-quality product that increased cement performance while reducing the environmental footprint of the plant. The utilization of construction and demolition waste, woodchips and soybean seeds proved to be viable replacements for traditional fuels. The future use of these fuels depends on local availability, associated costs, and compatibility with a facility's production process.« less

  20. Waste management technology development and demonstration programs at Brookhaven National Laboratory

    NASA Technical Reports Server (NTRS)

    Kalb, Paul D.; Colombo, Peter

    1991-01-01

    Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes were developed from bench scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt pct. nitrate salt, compared with a maximum of about 20 wt pct. for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt pct. incinerator fly ash were formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt pct.

  1. Tick attachment cement - reviewing the mysteries of a biological skin plug system.

    PubMed

    Suppan, Johannes; Engel, Benedikt; Marchetti-Deschmann, Martina; Nürnberger, Sylvia

    2018-05-01

    The majority of ticks in the family Ixodidae secrete a substance anchoring their mouthparts to the host skin. This substance is termed cement. It has adhesive properties and seals the lesion during feeding. The particular chemical composition and the curing process of the cement are unclear. This review summarizes the literature, starting with a historical overview, briefly introducing the different hypotheses on the origin of the adhesive and how the tick salivary glands have been identified as its source. Details on the sequence of cement deposition, the curing process and detachment are provided. Other possible functions of the cement, such as protection from the host immune system and antimicrobial properties, are presented. Histochemical and ultrastructural data of the intracellular granules in the salivary gland cells, as well as the secreted cement, suggest that proteins constitute the main material, with biochemical data revealing glycine to be the dominant amino acid. Applied methods and their restrictions are discussed. Tick cement is compared with adhesives of other animals such as barnacles, mussels and sea urchins. Finally, we address the potential of tick cement for the field of biomaterial research and in particular for medical applications in future. © 2017 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  2. A New Biphasic Dicalcium Silicate Bone Cement Implant

    PubMed Central

    Murciano, Angel; Maté-Sánchez de Val, José E.

    2017-01-01

    This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C2S) cement. Biphasic α´L + β-C2Sss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF) and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C2S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement’s surface after soaking in SBF. The cell attachment test showed that α´L + β-C2Sss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23) obtained higher bone-to-implant contact (BIC) percentage values (better quality, closer contact) in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic). The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration. PMID:28773119

  3. Portland cement hydration and early setting of cement stone intended for efficient paving materials

    NASA Astrophysics Data System (ADS)

    Grishina, A.

    2017-10-01

    Due to the growth of load on automotive roads, modern transportation engineering is in need of efficient paving materials. Runways and most advanced highways require Portland cement concretes. This makes important the studies directed to improvement of binders for such concretes. In the present work some peculiarities of the process of Portland cement hydration and early setting of cement stone with barium hydrosilicate sol were examined. It was found that the admixture of said sol leads to a shift in the induction period to later times without significant change in its duration. The admixture of a modifier with nanoscale barium hydrosilicates increases the degree of hydration of the cement clinker minerals and changes the phase composition of the hydration products; in particular, the content of portlandite and tricalcium silicate decreases, while the amount of ettringite increases. Changes in the hydration processes of Portland cement and early setting of cement stone that are caused by the nanoscale barium hydrosilicates, allow to forecast positive technological effects both at the stage of manufacturing and at the stage of operation. In particular, the formwork age can be reduced, turnover of molds can be increased, formation of secondary ettringite and corrosion of the first type can be eliminated.

  4. Energy efficiency technologies in cement and steel industry

    NASA Astrophysics Data System (ADS)

    Zanoli, Silvia Maria; Cocchioni, Francesco; Pepe, Crescenzo

    2018-02-01

    In this paper, Advanced Process Control strategies aimed at energy efficiency achievement and improvement in cement and steel industry are proposed. A flexible and smart control structure constituted by several functional modules and blocks has been developed. The designed control strategy is based on Model Predictive Control techniques, formulated on linear models. Two industrial control solutions have been developed, oriented to energy efficiency and process control improvement in cement industry clinker rotary kilns (clinker production phase) and in steel industry billets reheating furnaces. Tailored customization procedures for the design of ad hoc control systems have been executed, based on the specific needs and specifications of the analysed processes. The installation of the developed controllers on cement and steel plants produced significant benefits in terms of process control which resulted in working closer to the imposed operating limits. With respect to the previous control systems, based on local controllers and/or operators manual conduction, more profitable configurations of the crucial process variables have been provided.

  5. Micro Mechanics and Microstructures of Major Subsurface Hydraulic Barriers: Shale Caprock vs Wellbore Cement

    NASA Astrophysics Data System (ADS)

    Radonjic, M.; Du, H.

    2015-12-01

    Shale caprocks and wellbore cements are two of the most common subsurface impermeable barriers in the oil and gas industry. More than 60% of effective seals for geologic hydrocarbon bearing formations as natural hydraulic barriers constitute of shale rocks. Wellbore cements provide zonal isolation as an engineered hydraulic barrier to ensure controlled fluid flow from the reservoir to the production facilities. Shale caprocks were deposited and formed by squeezing excess formation water and mineralogical transformations at different temperatures and pressures. In a similar process, wellbore cements are subjected to compression during expandable tubular operations, which lead to a rapid pore water propagation and secondary mineral precipitation within the cement. The focus of this research was to investigate the effect of wellbore cement compression on its microstructure and mechanical properties, as well as a preliminary comparison of shale caprocks and hydrated cement. The purpose of comparative evaluation of engineered vs natural hydraulic barrier materials is to further improve wellbore cement durability when in contact with geofluids. The micro-indentation was utilized to evaluate the change in cement mechanical properties caused by compression. Indentation experiments showed an overall increase in hardness and Young's modulus of compressed cement. Furthermore, SEM imaging and Electron Probe Microanalysis showed mineralogical alterations and decrease in porosity. These can be correlated with the cement rehydration caused by microstructure changes as a result of compression. The mechanical properties were also quantitatively compared to shale caprock samples in order to investigate the similarities of hydraulic barrier features that could help to improve the subsurface application of cement in zonal isolation. The comparison results showed that the poro-mechanical characteristics of wellbore cement appear to be improved when inherent pore sizes are shifted to predominantly nano-scale range as characteristic of pore-size distribution typical for shale rocks. The effect of compression on cement appears to petrophysically alter cement towards the properties of shale caprocks, although the process is achieved much faster than in the case of shale diagenesis over geological times.

  6. Accelerated Biodegradation of Cement by Sulfur-Oxidizing Bacteria as a Bioassay for Evaluating Immobilization of Low-Level Radioactive Waste

    PubMed Central

    Aviam, Orli; Bar-Nes, Gabi; Zeiri, Yehuda; Sivan, Alex

    2004-01-01

    Disposal of low-level radioactive waste by immobilization in cement is being evaluated worldwide. The stability of cement in the environment may be impaired by sulfur-oxidizing bacteria that corrode the cement by producing sulfuric acid. Since this process is so slow that it is not possible to perform studies of the degradation kinetics and to test cement mixtures with increased durability, procedures that accelerate the biodegradation are required. Semicontinuous cultures of Halothiobacillus neapolitanus and Thiomonas intermedia containing thiosulfate as the sole energy source were employed to accelerate the biodegradation of cement samples. This resulted in a weight loss of up to 16% after 39 days, compared with a weight loss of 0.8% in noninoculated controls. Scanning electron microscopy of the degraded cement samples revealed deep cracks, which could be associated with the formation of low-density corrosion products in the interior of the cement. Accelerated biodegradation was also evident from the leaching rates of Ca2+ and Si2+, the major constituents of the cement matrix, and Ca exhibited the highest rate (up to 20 times greater than the control rate) due to the reaction between free lime and the biogenic sulfuric acid. Leaching of Sr2+ and Cs+, which were added to the cement to simulate immobilization of the corresponding radioisotopes, was also monitored. In contrast to the linear leaching kinetics of calcium, silicon, and strontium, the leaching pattern of cesium produced a saturation curve similar to the control curve. Presumably, the leaching of cesium is governed by the diffusion process, whereas the leaching kinetics of the other three ions seems to governed by dissolution of the cement. PMID:15466547

  7. Influence of patellofemoral bracing on pain, knee extensor torque, and gait function in females with patellofemoral pain.

    PubMed

    Powers, Christopher M; Doubleday, Kathryn L; Escudero, Carina

    2008-01-01

    Our purpose was to evaluate the effects of a patellofemoral brace on pain response, knee extensor torque production, and gait function in females with patellofemoral pain (PFP). Sixteen females between the ages of 14 and 46 with diagnosis of PFP participated. Knee extensor torque was measured by using a LIDO isokinetic dynamometer. Pain levels were documented by using the Visual Analog Pain Scale. Stride characteristics during the conditions of free walk, fast walk, ascend stairs, descend stairs, ascend ramp, and descend ramp were obtained with a stride analyzer unit. EMG activity of the vasti musculature was recorded by using indwelling, bipolar, wire electrodes. Knee joint motion was assessed by using a VICON motion analysis system. All testing was performed with and without the Bauerfeind Genutrain P3 patellofemoral brace. There were no significant differences in torque production, pain levels, and stride characteristics between braced and non-braced trials. In addition, there were no significant differences in mean vasti EMG between braced and non-braced trials. When averaged across all conditions, a small but statistically significant increase in knee flexion was found during the braced trials. Although the current study did not find significant improvements in the clinical measures evaluated, 8 of the 16 subjects did experience a decrease in knee pain. This finding suggests that certain patients with PFP may respond favorably to bracing, and criteria must be established to determine which patients would best benefit from such an intervention.

  8. Posterolateral hip muscle strengthening versus quadriceps strengthening for patellofemoral pain: a comparative control trial.

    PubMed

    Khayambashi, Khalil; Fallah, Alireza; Movahedi, Ahmadreza; Bagwell, Jennifer; Powers, Christopher

    2014-05-01

    To compare the efficacy of posterolateral hip muscle strengthening versus quadriceps strengthening in reducing pain and improving health status in persons with patellofemoral pain (PFP). Comparative control trial. Rehabilitation facility. Persons with a diagnosis of PFP (N=36; 18 men, 18 women). Patients were alternately assigned to a posterolateral hip muscle strengthening group (9 men and 9 women) or a quadriceps strengthening group (9 men and 9 women). The posterolateral hip muscle strengthening group performed hip abductor and external rotator strengthening exercises, whereas the quadriceps strengthening group performed quadriceps strengthening exercises (3 times a week for 8wk). Pain (visual analog scale [VAS]) and health status (Western Ontario McMaster Universities Osteoarthritis Index [WOMAC]) were assessed at baseline, postintervention, and 6-month follow-up. Significant improvements in VAS and WOMAC scores were observed in both groups from baseline to postintervention and baseline to 6-month follow-up (P<.001). Improvements in VAS and WOMAC scores in the posterolateral hip exercise group were superior to those in the quadriceps exercise group postintervention and at 6-month follow-up (P<.05). Although both intervention programs resulted in decreased pain and improved function in persons with PFP, outcomes in the posterolateral hip exercise group were superior to the quadriceps exercise group. The superior outcomes obtained in the posterolateral hip exercise group were maintained 6 months postintervention. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Influences of Patellofemoral Pain and Fatigue in Female Dancers during Ballet Jump-Landing.

    PubMed

    Peng, H-T; Chen, W C; Kernozek, T W; Kim, K; Song, C-Y

    2015-08-01

    This study investigated the influence of patellofemoral pain (PFP) and fatigue on lower-extremity joint biomechanics in female dancers during consecutive simple ground échappé. 3-dimensional joint mechanics were analyzed from the no-fatigue to fatigue conditions. 2-way mixed ANOVAs were used to compare the differences of the kinematic and kinetic variables between groups and conditions. Group main effects were seen in increased jump height (p=0.03), peak vertical ground reaction force (p=0.01), knee joint power absorption (p=0.04), and patellofemoral joint stress (PFJS, p=0.04) for PFP group. Fatigue main effects were found for decreased jump height (p<0.01), decreased ankle plantarflexion at initial foot-ground contact (p=0.01), and decreased ankle displacement (p<0.01). Hip external rotation impulse and hip joint stiffness increased (both p<0.01) while knee extension and external rotation moment, and ankle joint power absorption decreased (p<0.01, p=0.02, p<0.01, respectively) after fatigue. The peak PFJS also decreased after fatigue (p<0.01). Female ballet dancers with PFP sustained great ground impact and loads on the knee probably due to higher jump height compared to the controls. All dancers presented diminished knee joint loading for the protective mechanism and endurance of ankle joint musculature required for the dissipation of loads and displayed a distal-to-proximal dissipation strategy after fatigue. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Development of an alternate pathway for materials destined for disposition to WIPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, Georgette Y; Mckerley, Bill; Veazey, Gerald W

    2010-01-01

    The Los Alamos National Laboratory currently has an inventory of process residues that may be viable candidates for disposition to the Waste Isolation Pilot Project (WIPP) located at Carlsbad, New Mexico. A recent 'Attractiveness Level D' exemption allows for the discard of specified intractable materials regardless of the percent plutonium. However, the limits with respect to drum loadings must be met. Cementation is a key component of the aqueous nitrate flowsheet and serves as a 'bleed-off' stream for impurities separated from the plutonium during processing operations. The main 'feed' to the cementation operations are the 'bottoms' from the evaporation process.more » In the majority of cases, the cemented bottoms contain less than the allowed amount per drum for WIPP acceptance. This project would expand the route to WIPP for items that have no defined disposition path, are difficult to process, have been through multiple passes, have no current recovery operations available to recover the plutonium and that are amenable to cementation. This initial work will provide the foundation for a full scale disposition pathway of the candidate materials. Once the pathway has been expanded and a cementation matrix developed, routine discard activities will be initiated.« less

  11. Analysis of rheological properties of bone cements.

    PubMed

    Nicholas, M K D; Waters, M G J; Holford, K M; Adusei, G

    2007-07-01

    The rheological properties of three commercially available bone cements, CMW 1, Palacos R and Cemex ISOPLASTIC, were investigated. Testing was undertaken at both 25 and 37 degrees C using an oscillating parallel plate rheometer. Results showed that the three high viscosity cements exhibited distinct differences in curing rate, with CMW 1 curing in 8.7 min, Palacos R and Cemex ISOPLASTIC in 13 min at 25 degrees C. Furthermore it was found that these curing rates were strongly temperature dependent, with curing rates being halved at 37 degrees C. By monitoring the change of viscosity with time over the entire curing process, the results showed that these cements had differing viscosity profiles and hence exhibit very different handling characteristics. However, all the cements reached the same maximum viscosity of 75 x 10(3) Pa s. Also, the change in elastic/viscous moduli and tan delta with time, show the cements changing from a viscous material to an elastic solid with a clear peak in the viscous modulus during the latter stages of curing. These results give valuable information about the changes in rheological properties for each commercial bone cement, especially during the final curing process.

  12. β-Dicalcium silicate-based cement: synthesis, characterization and in vitro bioactivity and biocompatibility studies.

    PubMed

    Correa, Daniel; Almirall, Amisel; García-Carrodeguas, Raúl; dos Santos, Luis Alberto; De Aza, Antonio H; Parra, Juan; Delgado, José Ángel

    2014-10-01

    β-dicalcium silicate (β-Ca₂ SiO₄, β-C₂ S) is one of the main constituents in Portland cement clinker and many refractory materials, itself is a hydraulic cement that reacts with water or aqueous solution at room/body temperature to form a hydrated phase (C-S-H), which provides mechanical strength to the end product. In the present investigation, β-C₂ S was synthesized by sol-gel process and it was used as powder to cement preparation, named CSiC. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid solutions and human osteoblast cell cultures for various time periods, respectively. The results showed that the sol-gel process is an available synthesis method in order to obtain a pure powder of β-C₂ S at relatively low temperatures without chemical stabilizers. A bone-like apatite layer covered the material surface after soaking in SBF and its compressive strength (CSiC cement) was comparable with that of the human trabecular bone. The extracts of this cement were not cytotoxic and the cell growth and relative cell viability were comparable to negative control. © 2013 Wiley Periodicals, Inc.

  13. Environmental Assessment of Different Cement Manufacturing Processes Based on Emergy and Ecological Footprint Analysis

    EPA Science Inventory

    Due to its high environmental impact and energy intensive production, the cement industry needs to adopt more energy efficient technologies to reduce its demand for fossil fuels and impact on the environment. Bearing in mind that cement is the most widely used material for housin...

  14. 40 CFR 266.112 - Regulation of residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; (3) Cement kilns. Cement kilns must process at least 50% by weight normal cement-production raw... complies with alternative levels defined as the land disposal restriction limits specified in § 268.43 of this chapter for F039 nonwastewaters. In complying with those alternative levels, if an owner or...

  15. 40 CFR 266.112 - Regulation of residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; (3) Cement kilns. Cement kilns must process at least 50% by weight normal cement-production raw... complies with alternative levels defined as the land disposal restriction limits specified in § 268.43 of this chapter for F039 nonwastewaters. In complying with those alternative levels, if an owner or...

  16. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 1: Processing and characterization of MSWI fly ash.

    PubMed

    Aubert, J E; Husson, B; Sarramone, N

    2006-08-25

    This paper is the first of a series of two articles dealing with the processes applied to MSWI fly ash with a view to reusing it safely in cement-based materials. Part 1 presents two stabilization processes and Part 2 deals with the use of the two treated fly ashes (TFA) in mortars. Two types of binder were used: an Ordinary Portland Cement (OPC) containing more than 95% clinker (CEM I 52.5R) and a binary blend cement composed of 70% ground granulated blast furnace slag and 30% clinker (CEM III-B 42.5N). In this first part, two stabilization processes are presented: the conventional process, called "A", based on the washing, phosphation and calcination of the ash, and a modified process, called "B", intended to eliminate metallic aluminum and sulfate contained in the ash. The physical, chemical and mineralogical characteristics of the two TFA were comparable. The main differences observed were those expected, i.e. TFA-B was free of metallic aluminum and sulfate. The mineralogical characterization of the two TFAs highlighted the presence of large amounts of a calcium aluminosilicate phase taking two forms, a crystalline form (gehlenite) and an amorphous form. Hydration studies on pastes containing mixed TFA and calcium hydroxide showed that this phase reacted with calcium hydroxide to form calcium aluminate hydrates. This formation of hydrates was accompanied by a hardening of the pastes. These results are very encouraging for the reuse of such TFA in cement-based materials because they can be considered as pozzolanic additions and could advantageously replace a part of the cement in cement-based materials. Finally, leaching tests were carried out to evaluate the environmental impact of the two TFAs. The elements which were less efficiently stabilized by process A were zinc, cadmium and antimony but, when the results of the leaching tests were compared with the thresholds of the European landfill directive, TFA-A could nevertheless be accepted at landfills for non-hazardous waste. The modifications of the process led to a significant reduction in the stabilization of chromium, selenium and antimony.

  17. Microstructural characterization of catalysis product of nanocement based materials: A review

    NASA Astrophysics Data System (ADS)

    Sutan, Norsuzailina Mohamed; Izaitul Akma Ideris, Nur; Taib, Siti Noor Linda; Lee, Delsye Teo Ching; Hassan, Alsidqi; Kudnie Sahari, Siti; Mohamad Said, Khairul Anwar; Rahman Sobuz, Habibur

    2018-03-01

    Cement as an essential element for cement-based products contributed to negative environmental issues due to its high energy consumption and carbon dioxide emission during its production. These issues create the need to find alternative materials as partial cement replacement where studies on the potential of utilizing silica based materials as partial cement replacement come into picture. This review highlights the effectiveness of microstructural characterization techniques that have been used in the studies that focus on characterization of calcium hydroxide (CH) and calcium silicate hydrate (C-S-H) formation during hydration process of cement-based product incorporating nano reactive silica based materials as partial cement replacement. Understanding the effect of these materials as cement replacement in cement based product focusing on the microstructural development will lead to a higher confidence in the use of industrial waste as a new non-conventional material in construction industry that can catalyse rapid and innovative advances in green technology.

  18. The use of additive ceramic hollow spheres on cement slurry to prevent lost circulation in formation `X' having low pressure fracture

    NASA Astrophysics Data System (ADS)

    Rita, Novia; Mursyidah, Syahindra, Michael

    2018-03-01

    When drilling, if the hydrostatic pressure is higher than formation pressure (fracture pressure) it will cause lost circulation during cementing process. To solve this problem, hydrostatic pressure of slurry can be decreased by lowering the slurry density by using some additives. Ceramic Hollow Spheres (CHS) is lightweight additive. This additive comes with low specific gravity so it can lowered the slurry density. When the low-density slurry used in cementing process, it can prevent low circulation and fractured formation caused by cement itself. Class G cement is used in this experiment with the standard density of this slurry is 15.8 ppg. With the addition of CHS, slurry density lowered to 12.5 ppg. CHS not only used to lower the slurry density, it also used to make the same properties with the standard slurry even the density has been lowered. Both thickening time and compressive strength have not change if the CHS added to the slurry. With addition of CHS, thickening time at 70 Bc reached in 03 hours 12 minutes. For the compressive strength, 2000 psi reached in 07 hours 07 minutes. Addition of CHS can save more time in cementing process of X formation.

  19. Waste-form development for conversion to portland cement at Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veazey, G.W.; Schake, A.R.; Shalek, P.D.

    1996-10-01

    The process used at TA-55 to cement transuranic (TRU) waste has experienced several problems with the gypsum-based cement currently being used. Specifically, the waste form could not reliably pass the Waste Isolation Pilot Plant (WIPP) prohibition for free liquid and the Environmental Protection Agency (EPA)-Toxicity Characteristic Leaching Procedure (TCLP) standard for chromium. This report describes the project to develop a portland cement-based waste form that ensures compliance to these standards, as well as other performance standards consisting of homogeneous mixing, moderate hydration temperature, timely initial set, and structural durability. Testing was conducted using the two most common waste streams requiringmore » cementation as of February 1994, lean residue (LR)- and oxalate filtrate (OX)-based evaporator bottoms (EV). A formulation with a pH of 10.3 to 12.1 and a minimum cement-to-liquid (C/L) ratio of 0.80 kg/l for OX-based EV and 0.94 kg/L for LR-based EV was found to pass the performance standards chosen for this project. The implementation of the portland process should result in a yearly cost savings for raw materials of approximately $27,000 over the gypsum process.« less

  20. Micro-scale experimental study of Microbial-Induced Carbonate Precipitation (MICP) by using microfluidic devices

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Soga, K.; DeJong, J. T.; Kabla, A.

    2017-12-01

    Microbial-induced carbonate precipitation (MICP), one of the bio-mineralization processes, is an innovative subsurface improvement technique for enhancing the strength and stiffness of soils, and controlling their hydraulic conductivity. These macro-scale engineering properties of MICP treated soils controlled by micro-scale factors of the precipitated carbonate, such as its content, amount and distribution in the soil matrix. The precipitation process itself is affected by bacteria amount, reaction kinetics, porous medium geometry and flow distribution in the soils. Accordingly, to better understand the MICP process at the pore scale a new experimental technique that can observe the entire process of MICP at the pore-scale was developed. In this study, a 2-D transparent microfluidic chip made of Polydimethylsiloxane (PDMS) representing the soil matrix was designed and fabricated. A staged-injection MICP treatment procedure was simulated inside the microfluidic chip while continuously monitored using microscopic techniques. The staged-injection MICP treatment procedure started with the injection of bacteria suspension, followed with the bacteria setting for attachment, and then ended with the multiple injections of cementation liquid. The main MICP processes visualized during this procedure included the bacteria transport and attachment during the bacteria injection, the bacteria attachment and growth during the bacteria settling, the bacteria detachment during the cementation liquid injection, the cementation development during the cementation liquid injection, and the cementation development after the completion of cementation liquid injection. It is suggested that the visualization of the main MICP processes using the microfluidic technique can improve understating of the fundamental mechanisms of MICP and consequently help improve the treatment technique for in situ implementation of MICP.

  1. Pressurized storm sewer simulation : model enhancement.

    DOT National Transportation Integrated Search

    1991-01-01

    A modified Pressurized Flow Simulation Model, PFSM, was developed and attached to the Federal Highway Administration, FHWA, Pool Funded PFP-HYDRA Package. Four hydrograph options are available for simulating inflow to a sewer system under surcharge o...

  2. Barnacle cement: a polymerization model based on evolutionary concepts

    PubMed Central

    Dickinson, Gary H.; Vega, Irving E.; Wahl, Kathryn J.; Orihuela, Beatriz; Beyley, Veronica; Rodriguez, Eva N.; Everett, Richard K.; Bonaventura, Joseph; Rittschof, Daniel

    2009-01-01

    Summary Enzymes and biochemical mechanisms essential to survival are under extreme selective pressure and are highly conserved through evolutionary time. We applied this evolutionary concept to barnacle cement polymerization, a process critical to barnacle fitness that involves aggregation and cross-linking of proteins. The biochemical mechanisms of cement polymerization remain largely unknown. We hypothesized that this process is biochemically similar to blood clotting, a critical physiological response that is also based on aggregation and cross-linking of proteins. Like key elements of vertebrate and invertebrate blood clotting, barnacle cement polymerization was shown to involve proteolytic activation of enzymes and structural precursors, transglutaminase cross-linking and assembly of fibrous proteins. Proteolytic activation of structural proteins maximizes the potential for bonding interactions with other proteins and with the surface. Transglutaminase cross-linking reinforces cement integrity. Remarkably, epitopes and sequences homologous to bovine trypsin and human transglutaminase were identified in barnacle cement with tandem mass spectrometry and/or western blotting. Akin to blood clotting, the peptides generated during proteolytic activation functioned as signal molecules, linking a molecular level event (protein aggregation) to a behavioral response (barnacle larval settlement). Our results draw attention to a highly conserved protein polymerization mechanism and shed light on a long-standing biochemical puzzle. We suggest that barnacle cement polymerization is a specialized form of wound healing. The polymerization mechanism common between barnacle cement and blood may be a theme for many marine animal glues. PMID:19837892

  3. Identifying improvement potentials in cement production with life cycle assessment.

    PubMed

    Boesch, Michael Elias; Hellweg, Stefanie

    2010-12-01

    Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending.

  4. Recycling of porcelain tile polishing residue in portland cement: hydration efficiency.

    PubMed

    Pelisser, Fernando; Steiner, Luiz Renato; Bernardin, Adriano Michael

    2012-02-21

    Ceramic tiles are widely used by the construction industry, and the manufacturing process of ceramic tiles generates as a major residue mud derived from the polishing step. This residue is too impure to be reused in the ceramic process and is usually discarded as waste in landfills. But the analysis of the particle size and concentration of silica of this residue shows a potential use in the manufacture of building materials based on portland cement. Tests were conducted on cement pastes and mortars using the addition of 10% and 20% (mass) of the residue. The results of compressive strength in mortars made up to 56 days showed a significant increase in compressive strength greater than 50%. The result of thermogravimetry shows that portlandite is consumed by the cement formed by the silica present in the residue in order to form calcium silicate hydrate and featuring a pozzolanic reaction. This effect improves the performance of cement, contributes to research and application of supplementary cementitious materials, and optimizes the use of portland cement, reducing the environmental impacts of carbon dioxide emissions from its production.

  5. Crystalline phases involved in the hydration of calcium silicate-based cements: Semi-quantitative Rietveld X-ray diffraction analysis.

    PubMed

    Grazziotin-Soares, Renata; Nekoofar, Mohammad H; Davies, Thomas; Hübler, Roberto; Meraji, Naghmeh; Dummer, Paul M H

    2017-08-30

    Chemical comparisons of powder and hydrated forms of calcium silicate cements (CSCs) and calculation of alterations in tricalcium silicate (Ca 3 SiO 5 ) calcium hydroxide (Ca(OH) 2 ) are essential for understanding their hydration processes. This study aimed to evaluate and compare these changes in ProRoot MTA, Biodentine and CEM cement. Powder and hydrated forms of tooth coloured ProRoot MTA, Biodentine and CEM cement were subjected to X-ray diffraction (XRD) analysis with Rietveld refinement to semi-quantitatively identify and quantify the main phases involved in their hydration process. Data were reported descriptively. Reduction in Ca 3 SiO 5 and formation of Ca(OH) 2 were seen after the hydration of ProRoot MTA and Biodentine; however, in the case of CEM cement, no reduction of Ca 3 SiO 5 and no formation of Ca(OH) 2 were detected. The highest percentages of amorphous phases were seen in Biodentine samples. Ettringite was detected in the hydrated forms of ProRoot MTA and CEM cement but not in Biodentine. © 2017 Australian Society of Endodontology Inc.

  6. Effects of Coal Gangue on Cement Grouting Material Properties

    NASA Astrophysics Data System (ADS)

    Liu, J. Y.; Chen, H. X.

    2018-05-01

    The coal gangue is one of the most abundant industrial solid wastes and pollute source of air and water. The use of coal gangue in the production of cement grouting material comforms to the basic state policy of environment protection and the circular using of natural resources. Through coal gangue processing experiment, coal gangue cement grouting materials making test, properties detection of properties and theoretical analysis, the paper studied the effects of coal gangue on the properties of cement grouting materials. It is found that at the range of 600 to 700 °C, the fluidity and the compressive and flexural strengths of the cement grouting materials increase with the rising up of the calcination temperatures of coal gangue. The optimum calcination temperature is around 700 °C. The part substitution of cement by the calcined coal gangue in the cement grouting material will improve the mechanical properties of the cement grouting material, even thought it will decrease its fluidity. The best substitution amount of cement by coal gangue is about 30%. The fluidity and the long term strength of the ordinary silicate cement grouting material is obviously higher than that of the sulphoaluminate cement one as well as that of the silicate-sulphoaluminate complex cement one.

  7. Monitoring the integrity of the cement-metal interface of total joint components in vitro using acoustic emission and ultrasound.

    PubMed

    Davies, J P; Tse, M K; Harris, W H

    1996-08-01

    Debonding of the cement-metal interface of cemented femoral components of total hip arthroplasty has been shown from clinical and autopsy material to be a common occurrence. Experimentally, debonding has been shown to increase markedly the strains in the adjacent cement mantle. Studies of autopsy-retrieved specimens demonstrate that debonding of the cement-metal interface is a key initiating event in loosening of cemented femoral components of total hip arthroplasty. However, both the radiographic and autopsy evidence of cement-metal interfacial debonding exist after the fact, that is, after debonding has occurred. The lack of prospective data showing that debonding does indeed occur under physiologic loading and occurs prior to other forms of failure of fixation leaves uncertain the issue of debonding and its role in initiating loosening of cemented femoral components. Knowing when, where, and to what extent the cement-metal interface debonds is critical information in understanding the process of loosening of cemented femoral components. Such information would contribute to improving the durability of stems and improving cementing techniques. In this study, the two nondestructive techniques of acoustic emission and ultrasonic evaluation of the cement-metal interface of cemented femoral stems of total hip arthroplasty were combined to investigate when, where, and to what extent cement-metal debonding occurred in vitro in simulated femurs loaded physiologically in fatigue in simulated single-leg stance. Debonding of the cement-metal interface of a cemented femoral component in this model was both an initiating event and a major mechanism of compromise of the cement-metal interface. Additional acoustic emission signals arose from cracks that developed in the cement.

  8. Calculus removal on a root cement surface by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Kraft, Johan F.; Vestentoft, Kasper; Christensen, Bjarke H.; Løvschall, Henrik; Balling, Peter

    2008-01-01

    Ultrashort-pulse-laser ablation of dental calculus (tartar) and cement is performed on root surfaces. The investigation shows that the threshold fluence for ablation of calculus is a factor of two to three times smaller than that of a healthy root cement surface. This indicates that ultrashort laser pulses may provide an appropriate tool for selective removal of calculus with minimal damage to the underlying root cement. Future application of an in situ profiling technique allows convenient on-line monitoring of the ablation process.

  9. Cement and concrete

    NASA Technical Reports Server (NTRS)

    Corley, Gene; Haskin, Larry A.

    1992-01-01

    To produce lunar cement, high-temperature processing will be required. It may be possible to make calcium-rich silicate and aluminate for cement by solar heating of lunar pyroxene and feldspar, or chemical treatment may be required to enrich the calcium and aluminum in lunar soil. The effects of magnesium and ferrous iron present in the starting materials and products would need to be evaluated. So would the problems of grinding to produce cement, mixing, forming in vacuo and low gravity, and minimizing water loss.

  10. Development of a General-Purpose Analysis System Based on a Programmable Fluid Processor Final Report CRADA No. TC-2027-01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConaghy, C. F.; Gascoyne, P. R.

    The purpose ofthis project was to develop a general-purpose analysis system based on a programmable fluid processor (PFP). The PFP is an array of electrodes surrounded by fluid reservoirs and injectors. Injected droplets of various reagents are manjpulated and combined on the array by Dielectrophoretic (DEP) forces. The goal was to create a small handheld device that could accomplish the tasks currently undertaken by much larger, time consuming, manual manipulation in the lab. The entire effo1t was funded by DARPA under the Bio-Flips program. MD Anderson Cancer Center was the PI for the DARPA effort. The Bio-Flips program was amore » 3- year program that ran from September 2000 to September 2003. The CRADA was somewhat behind the Bi-Flips program running from June 2001 to June 2004 with a no cost extension to September 2004.« less

  11. Optical detection of chemical warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Webber, Michael E.; Pushkarsky, Michael B.; Patel, C. Kumar N.

    2004-12-01

    We present an analytical model evaluating the suitability of optical absorption based spectroscopic techniques for detection of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in ambient air. The sensor performance is modeled by simulating absorption spectra of a sample containing both the target and multitude of interfering species as well as an appropriate stochastic noise and determining the target concentrations from the simulated spectra via a least square fit (LSF) algorithm. The distribution of the LSF target concentrations determines the sensor sensitivity, probability of false positives (PFP) and probability of false negatives (PFN). The model was applied to CO2 laser based photoacosutic (L-PAS) CWA sensor and predicted single digit ppb sensitivity with very low PFP rates in the presence of significant amount of interferences. This approach will be useful for assessing sensor performance by developers and users alike; it also provides methodology for inter-comparison of different sensing technologies.

  12. Deformation and Heat Transfer on Three Sides Protected Beams under Fire Accident

    NASA Astrophysics Data System (ADS)

    Imran, M.; Liew, M. S.; Garcia, E. M.; Nasif, M. S.; Yassin, A. Y. M.; Niazi, U. M.

    2018-04-01

    Fire accidents are common in oil and gas industry. The application of passive fire protection (PFP) is a costly solution. The PFP is applied only on critical structural members to optimise project cost. In some cases, beams cannot be protected from the top flange in order to accommodate for the placement of pipe supports and grating. It is important to understand the thermal and mechanical response of beam under such condition. This paper discusses the response of steel beam under ISO 834 fire protected, unprotected and three sides protected beams. The model validated against an experimental study. The experimental study has shown good agreement with FE model. The study revealed that the beams protected from three sides heat-up faster compare to fully protected beam showing different temperature gradient. However, the affects load carrying capacity are insignificant under ISO 834 fire.

  13. Utilization of CO2 in High Performance Building and Infrastructure Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeCristofaro, Nicholas

    The overall objective of DE-FE0004222 was to demonstrate that calcium silicate phases, in the form of either naturally-occuring minerals or synthetic compounds, could replace Portland cement in concrete manufacturing. The calcium silicate phases would be reacted with gaseous CO2 to create a carbonated concrete end-product. If successful, the project would offer a pathway to a significant reduction in the carbon footprint associated with the manufacture of cement and its use in concrete (approximately 816 kg of CO2 is emitted in the production of one tonne of Portland cement). In the initial phases of the Technical Evaluation, Rutgers University teamed withmore » Solidia Technologies to demonstrate that natural wollastonite (CaSiO3), milled to a particle size distribution consistent with that of Portland cement, could indeed fit this bill. The use of mineral wollastonite as a cementitious material would potentially eliminate the CO2 emitted during cement production altogether, and store an additional 250 kg of CO2 during concrete curing. However, it was recognized that mineral wollastonite was not available in volumes that could meaningfully impact the carbon footprint associated with the cement and concrete industries. At this crucial juncture, DE-FE0004222 was redirected to use a synthetic version of wollastonite, hereafter referred to as Solidia Cement™, which could be manufactured in conventional cement making facilities. This approach enables the new cementitious material to be made using existing cement industry raw material supply chains, capital equipment, and distribution channels. It would also offer faster and more complete access to the concrete marketplace. The latter phases of the Technical Evaluation, conducted with Solidia Cement made in research rotary kilns, would demonstrate that industrially viable CO2-curing practices were possible. Prototypes of full-scale precast concrete products such as pavers, concrete masonry units, railroad ties, hollow-core slabs, and aerated concrete were produced to verify the utility of the CO2-curing process. These products exhibited a range of part dimensions and densities that were representative of the precast concrete industry. In the subsequent Demonstration of Commercial Development phase, the characteristics and performance of Solidia Cement made at a LafargeHolcim cement plant were established. This Solidia Cement was then used to demonstrate the CO2-curing process within operating concrete plants. Pavers, concrete masonry units and roofing tiles were produced according to ASTM and manufacturer specifications. A number of attractive manufacturing economies were recognized when Solidia Cement-based concrete parts were compared to their Portland cement based counterparts. These include reduced raw materials waste, reduced dependence on admixtures to control efflorescence, shorter curing time to full concrete strength, faster equipment clean-up, reduced equipment maintenance, and improved inventory management. These economies make the adoption of the Solidia Cement / CO2-curing process attractive even in the absence of environmental incentives. The culminating activity of the Demonstration of Commercial Development phase was the conversion of 10% of the manufacturing capacity at a concrete paver and block company from Portland cement-based products to Solidia Cement-based products. The successful completion of the Demonstration of Commercial Development phase clearly illustrated the environmental benefits associated with Solidia Cement and Solidia Concrete technologies. The industrial production of Solidia Cement, as a low-lime alternative to traditional Portland cement, reduces CO2 emissions at the cement kiln from 816 kg of CO2 per tonne of Portland cement clinker to 570 kg per tonne of Solidia Cement clinker. Industrial scale CO2-curing of Solidia Concrete sequestered a net of 183 kg of CO2 per tonne of Solidia Cement used in concrete pavers. Taken together, these two effects reduced the CO2 footprint associated with the production and use of cement in concrete products by over 50% (a reduction of 430 kg of CO2 per tonne of cement). Applied at the first commercial Solidia Concrete manufacturing site, the two effects will combine to reduce the CO2 footprint associated with the production and use of cement by over 10,000 tonnes per year. When applied across the precast concrete industry in the U.S., it is estimated that the CO2 footprint will be reduced by 8.6 million tonnes per year (20 million tonnes of cement used in precast concrete x 430 kg of CO2 per tonne of cement). Applied across the entire concrete industry in the U.S., it is expected that 43 million tonnes of CO2 will be avoided per year (100 million tonnes of cement used in all concrete x 430 kg of CO2 per tonne of cement).« less

  14. The crucial effect of early-stage gelation on the mechanical properties of cement hydrates

    NASA Astrophysics Data System (ADS)

    Ioannidou, Katerina; Kanduč, Matej; Li, Lunna; Frenkel, Daan; Dobnikar, Jure; Del Gado, Emanuela

    2016-07-01

    Gelation and densification of calcium-silicate-hydrate take place during cement hydration. Both processes are crucial for the development of cement strength, and for the long-term evolution of concrete structures. However, the physicochemical environment evolves during cement formation, making it difficult to disentangle what factors are crucial for the mechanical properties. Here we use Monte Carlo and Molecular Dynamics simulations to study a coarse-grained model of cement formation, and investigate the equilibrium and arrested states. We can correlate the various structures with the time evolution of the interactions between the nano-hydrates during the preparation of cement. The novel emerging picture is that the changes of the physicochemical environment, which dictate the evolution of the effective interactions, specifically favour the early gel formation and its continuous densification. Our observations help us understand how cement attains its unique strength and may help in the rational design of the properties of cement and related materials.

  15. The crucial effect of early-stage gelation on the mechanical properties of cement hydrates

    PubMed Central

    Ioannidou, Katerina; Kanduč, Matej; Li, Lunna; Frenkel, Daan; Dobnikar, Jure; Del Gado, Emanuela

    2016-01-01

    Gelation and densification of calcium–silicate–hydrate take place during cement hydration. Both processes are crucial for the development of cement strength, and for the long-term evolution of concrete structures. However, the physicochemical environment evolves during cement formation, making it difficult to disentangle what factors are crucial for the mechanical properties. Here we use Monte Carlo and Molecular Dynamics simulations to study a coarse-grained model of cement formation, and investigate the equilibrium and arrested states. We can correlate the various structures with the time evolution of the interactions between the nano-hydrates during the preparation of cement. The novel emerging picture is that the changes of the physicochemical environment, which dictate the evolution of the effective interactions, specifically favour the early gel formation and its continuous densification. Our observations help us understand how cement attains its unique strength and may help in the rational design of the properties of cement and related materials. PMID:27417911

  16. Experimental research on mathematical modelling and unconventional control of clinker kiln in cement plants

    NASA Astrophysics Data System (ADS)

    Rusu-Anghel, S.

    2017-01-01

    Analytical modeling of the flow of manufacturing process of the cement is difficult because of their complexity and has not resulted in sufficiently precise mathematical models. In this paper, based on a statistical model of the process and using the knowledge of human experts, was designed a fuzzy system for automatic control of clinkering process.

  17. Matrix model of the grinding process of cement clinker in the ball mill

    NASA Astrophysics Data System (ADS)

    Sharapov, Rashid R.

    2018-02-01

    In the article attention is paid to improving the efficiency of production of fine powders, in particular Portland cement clinker. The questions of Portland cement clinker grinding in closed circuit ball mills. Noted that the main task of modeling the grinding process is predicting the granulometric composition of the finished product taking into account constructive and technological parameters used ball mill and separator. It is shown that the most complete and informative characterization of the grinding process in a ball mill is a grinding matrix taking into account the transformation of grain composition inside the mill drum. Shows how the relative mass fraction of the particles of crushed material, get to corresponding fraction. Noted, that the actual task of reconstruction of the matrix of grinding on the experimental data obtained in the real operating installations. On the basis of experimental data obtained on industrial installations, using matrix method to determine the kinetics of the grinding process in closed circuit ball mills. The calculation method of the conversion of the grain composition of the crushed material along the mill drum developed. Taking into account the proposed approach can be optimized processing methods to improve the manufacturing process of Portland cement clinker.

  18. The influence of carbon nanotubes on the properties of water solutions and fresh cement pastes

    NASA Astrophysics Data System (ADS)

    Leonavičius, D.; Pundienė, I.; Girskas, G.; Pranckevičienė, J.; Kligys, M.; Sinica, M.

    2017-10-01

    It is known, that the properties of cement-based materials can be significantly improved by addition of carbon nanotubes (CNTs). The dispersion of CNTs is an important process due to an extremely high specific surface area. This aspect is very relevant and is one of the main factors for the successful use of CNTs in cement-based materials. The influence of CNTs in different amounts (from 0 to 0.5 percent) on the pH values of water solutions and fresh cement pastes, and also on rheological properties, flow characteristics, setting time and EXO reaction of the fresh cement pastes was analyzed in this work. It was found that the increment of the amount of CNTs leads to decreased pH values of water solutions and fresh cement pastes, and also increases viscosity, setting times and EXO peak times of fresh cement pastes.

  19. Hybrid Polyvinyl Alcohol and Cellulose Fiber Pulp Instead of Asbestos Fibers in Cement-Based Composites

    NASA Astrophysics Data System (ADS)

    Shokrieh, M. M.; Mahmoudi, A.; Shadkam, H. R.

    2015-05-01

    The Taguchi method was used to determine the optimum content of a four-parameters cellulose fiber pulp, polyvinyl alcohol (PVA) fibers, a silica fume, and bentonite for cement-based composite sheets. Then cement composite sheets from the hybrid of PVA and the cellulose fiber pulp were manufactured, and their moduli of rapture were determined experimentally. The result obtained showed that cement composites with a hybrid of PVA and cellulose fiber pulp had a higher flexural strength than cellulose-fiber- reinforced cement ones, but this strength was rather similar to that of asbestos-fiber-reinforced cement composites. Also, using the results of flexural tests and an analytical method, the tensile and compressive moduli of the hybrid of PVA and cement sheet were calculated. The hybrid of PVA and cellulose fiber pulp is proposed as an appropriate alternative for substituting asbestos in the Hatschek process.

  20. How mobile are protons in the structure of dental glass ionomer cements?

    PubMed Central

    Benetti, Ana R.; Jacobsen, Johan; Lehnhoff, Benedict; Momsen, Niels C. R.; Okhrimenko, Denis V.; Telling, Mark T. F.; Kardjilov, Nikolay; Strobl, Markus; Seydel, Tilo; Manke, Ingo; Bordallo, Heloisa N.

    2015-01-01

    The development of dental materials with improved properties and increased longevity can save costs and minimize discomfort for patients. Due to their good biocompatibility, glass ionomer cements are an interesting restorative option. However, these cements have limited mechanical strength to survive in the challenging oral environment. Therefore, a better understanding of the structure and hydration process of these cements can bring the necessary understanding to further developments. Neutrons and X-rays have been used to investigate the highly complex pore structure, as well as to assess the hydrogen mobility within these cements. Our findings suggest that the lower mechanical strength in glass ionomer cements results not only from the presence of pores, but also from the increased hydrogen mobility within the material. The relationship between microstructure, hydrogen mobility and strength brings insights into the material's durability, also demonstrating the need and opening the possibility for further research in these dental cements. PMID:25754555

  1. How mobile are protons in the structure of dental glass ionomer cements?

    NASA Astrophysics Data System (ADS)

    Benetti, Ana R.; Jacobsen, Johan; Lehnhoff, Benedict; Momsen, Niels C. R.; Okhrimenko, Denis V.; Telling, Mark T. F.; Kardjilov, Nikolay; Strobl, Markus; Seydel, Tilo; Manke, Ingo; Bordallo, Heloisa N.

    2015-03-01

    The development of dental materials with improved properties and increased longevity can save costs and minimize discomfort for patients. Due to their good biocompatibility, glass ionomer cements are an interesting restorative option. However, these cements have limited mechanical strength to survive in the challenging oral environment. Therefore, a better understanding of the structure and hydration process of these cements can bring the necessary understanding to further developments. Neutrons and X-rays have been used to investigate the highly complex pore structure, as well as to assess the hydrogen mobility within these cements. Our findings suggest that the lower mechanical strength in glass ionomer cements results not only from the presence of pores, but also from the increased hydrogen mobility within the material. The relationship between microstructure, hydrogen mobility and strength brings insights into the material's durability, also demonstrating the need and opening the possibility for further research in these dental cements.

  2. Urea Dependent (15)N NMR-Relaxation Studies on PfP2 Multimers Reveal that the C-Terminal Behaves like an Independent Intrinsically Disordered Peptide.

    PubMed

    Mishra, Pushpa; Hosur, Ramakrishna V

    2015-01-01

    Intrinsically disordered proteins or such domains in globular proteins are believed to be playing important roles in protein functions by virtue of their ability to adapt themselves to requirements of different binding partners and thereby accord high specificity to the interaction. Eukaryotic ribosomal stalk is made up of a supramolecular assembly of P0, P1 and P2 proteins. In Plasmodium falciparum, homo-oligomers of P2 are also seen which seem to be involved in many non-ribosomal functions of the protein in the parasite, and in all of these the protein interacts with different interactors. Here we show by extensive (15)N NMR relaxation studies that the C-terminal stretch of about 45 residues of the protein always remains as a flexible disordered domain, regardless of the state of association of the protein. The relaxation behaviors and the derived rotational correlation times for this portion of the protein are essentially the same in the presence of different concentrations of urea which produce different mixtures of PfP2 oligomers in rapid exchange, whereas the rest of the protein shows substantial variations with urea concentration in the relaxation behaviors. In other words, the C-terminal domain behaves as if it were an independent intrinsically disordered peptide. This would augment the notion that the C-terminal domain of PfP2 would be acting as a scavenger for different interactors depending upon the different functions of the protein inside the parasite.

  3. Hip rotation angle is associated with frontal plane knee joint mechanics during running.

    PubMed

    Sakaguchi, Masanori; Shimizu, Norifumi; Yanai, Toshimasa; Stefanyshyn, Darren J; Kawakami, Yasuo

    2015-02-01

    Inability to control lower extremity segments in the frontal and transverse planes resulting in large knee abduction angle and increased internal knee abduction impulse has been associated with patellofemoral pain (PFP). However, the influence of hip rotation angles on frontal plane knee joint kinematics and kinetics remains unclear. The purpose of this study was to explore how hip rotation angles are related to frontal plane knee joint kinematics and kinetics during running. Seventy runners participated in this study. Three-dimensional marker positions and ground reaction forces were recorded with an 8-camera motion analysis system and a force plate while subjects ran along a 25-m runway at a speed of 4m/s. Knee abduction, hip rotation and toe-out angles, frontal plane lever arm at the knee, internal knee abduction moment and impulse, ground reaction forces and the medio-lateral distance from the ankle joint center to the center of pressure (AJC-CoP) were quantified. The findings of this study indicate that greater hip external rotation angles were associated with greater toe-out angles, longer AJC-CoP distances, smaller internal knee abduction impulses with shorter frontal plane lever arms and greater knee abduction angles. Thus, there appears to exist a conflict between kinematic and kinetic risk factors of PFP, and hip external rotation angle may be a key factor to control frontal plane knee joint kinematics and kinetics. These results may help provide an appropriate manipulation and/or intervention on running style to reduce the risk of PFP. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The role of land use/land cover dependent preferential flow paths in hydrologic response of steep and seasonal tropical catchments

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Ogden, F. L.; Zhu, J.

    2017-12-01

    The hydrologic behavior of steep catchments with saprolitic soils in the humid seasonal tropics varies with land use and cover, even when they have identical topographic index and slope distributions, underlying geology and soils textures. Forested catchments can produce more baseflow during the dry season compared to catchments containing substantial amount of pasture, the so-called "sponge effect". During rainfall events, forested catchments can also exhibit lower peak runoff rates and runoff efficiencies compared to pasture catchments. We hypothesize that hydrologic effects of land use arise from differences in preferential flow paths (PFPs) formed by biotic and abiotic factors in the upper one to two meters of soil and that land use effects on hydrological response are described by the relative amounts of forest and pasture within a catchment. Furthermore, we hypothesize that infiltration measurements at different scales allow estimation of PFP-related parameters. These hypotheses are tested by a model that explicitly simulates PFPs using distinct input parameter sets for forest and pasture. Runoff observations from three catchments with pasture, forest, and a mosaic of subsistence agricultural land covers allow model evaluation. Multiple objective criteria indicate that field measurements of infiltration enable PFP-relevant parameter identification and that pasture and forest end member parameter sets describe much of the observed difference. Analysis of water balance components and comparison between average transient water table depth and vertical PFP flow capacity demonstrate that the interplay of lateral and vertical PFPs contribute to the sponge-effect and can explain differences in peak runoff and runoff efficiency.

  5. Copper-Doped Bioactive Glass as Filler for PMMA-Based Bone Cements: Morphological, Mechanical, Reactivity, and Preliminary Antibacterial Characterization.

    PubMed

    Miola, Marta; Cochis, Andrea; Kumar, Ajay; Arciola, Carla Renata; Rimondini, Lia; Verné, Enrica

    2018-06-06

    To promote osteointegration and simultaneously limit bacterial contamination without using antibiotics, we designed innovative composite cements containing copper (Cu)-doped bioactive glass powders. Cu-doped glass powders were produced by a melt and quenching process, followed by an ion-exchange process in a Cu salt aqueous solution. Cu-doped glass was incorporated into commercial polymethyl methacrylate (PMMA)-based cements with different viscosities. The realized composites were characterized in terms of morphology, composition, leaching ability, bioactivity, mechanical, and antibacterial properties. Glass powders appeared well distributed and exposed on the PMMA surface. Composite cements showed good bioactivity, evidencing hydroxyapatite precipitation on the sample surfaces after seven days of immersion in simulated body fluid. The leaching test demonstrated that composite cements released a significant amount of copper, with a noticeable antibacterial effect toward Staphylococcus epidermidis strain. Thus, the proposed materials represent an innovative and multifunctional tool for orthopedic prostheses fixation, temporary prostheses, and spinal surgery.

  6. Physico-chemical mechanisms involved in the acceleration of the hydration of calcium sulfoaluminate cement by lithium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr; Dhoury, Mélanie; Champenois, Jean-Baptiste

    This work investigates the influence of lithium ions on the hydration at 25 °C of two calcium sulfoaluminate (CSA) cements comprising 0 or 10% gypsum. Small concentrations of lithium salts (LiOH, LiNO{sub 3}) accelerate the early hydration of both CSA cements either in paste or in diluted and stirred suspension. The effect of the lithium cation is much stronger than its counter-ion. Hydration is accelerated by an increase in the lithium concentration up to 30 μmol Li/g of the used CSA cement (with a high ye'elimite content), and then levels off. The postulated mechanism relies on a fast precipitation ofmore » amorphous Li-containing Al(OH){sub 3}, which acts as seeds for accelerating the precipitation of amorphous Al(OH){sub 3} that speeds up the whole hydration process. This process seems to be closely related to the one involved in the acceleration of the hydration of calcium aluminate cement by lithium ions.« less

  7. Effect of Admixtures on the Yield Stresses of Cement Pastes under High Hydrostatic Pressures

    PubMed Central

    Yim, Hong Jae; Kim, Jae Hong; Kwon, Seung Hee

    2016-01-01

    When cement-based materials are transported at a construction site, they undergo high pressures during the pumping process. The rheological properties of the materials under such high pressures are unknown, and estimating the workability of the materials after pumping is a complex problem. Among various influential factors on the rheology of concrete, this study investigated the effect of mineral and chemical admixtures on the high-pressure rheology. A rheometer was fabricated that could measure the rheological properties while maintaining a high pressure to simulate the pumping process. The effects of superplasticizer, silica fume, nanoclay, fly ash, or ground granulated blast furnace slag were investigated when mixed with two control cement pastes. The water-to-cement ratios were 0.35 and 0.50. PMID:28773273

  8. Which is the best predictor of excessive hip internal rotation in women with patellofemoral pain: Rearfoot eversion or hip muscle strength? Exploring subgroups.

    PubMed

    Ferreira, Amanda Schenatto; de Oliveira Silva, Danilo; Briani, Ronaldo Valdir; Ferrari, Deisi; Aragão, Fernando Amâncio; Pazzinatto, Marcella Ferraz; de Azevedo, Fábio Mícolis

    2018-03-26

    Patellofemoral pain (PFP) has been linked to increased patellofemoral joint stress as a result of excessive hip internal rotation. Lower hip strength and/or excessive rearfoot eversion have been used to explain such altered movement pattern; however, it is unknown which one is the best predictor of excessive hip internal rotation. To investigate if peak rearfoot eversion and/or peak concentric hip abductor strength can predict peak hip internal rotation during stair ascent in women with PFP. This cross-sectional study included thirty-seven women with PFP which underwent three-dimensional kinematic analysis during stair ascent and hip abductor strength analysis in an isokinetic dynamometer. A forced entry linear regression model analysis was carried out to determine which independent variables present the best capability to predict the hip internal rotation. Peak concentric hip abductor strength significantly predicted peak hip internal rotation during stair ascent (R 2  = 0.27, p = 0.001). Peak rearfoot eversion did not predict peak hip internal rotation during stair ascent (R 2  < 0.01, p = 0.62). A Post-hoc analysis was conducted to explore if a subgroup with excessive rearfoot eversion would predict hip internal rotation. Based on a previous reported cut-off point, 48.6% of the participants were classified as excessive rearfoot eversion. For the subgroup with excessive rearfoot eversion, peak concentric hip abductor strength and peak rearfoot eversion significantly predicted peak hip internal rotation during stair ascent (R 2  = 0.26, p = 0.02; R 2  = 0.42, p = 0.003, respectively). For non-excessive rearfoot eversion subgroup, peak concentric hip abductor strength significantly predicted peak hip internal rotation during stair ascent (R 2  = 0.53; p < 0.001); and peak rearfoot eversion did not (R 2  = 0.01; p = 0.65). Findings indicate that hip muscle strength seems to be related with hip internal rotation in all women with PFP. Rearfoot eversion seems to be related with hip internal rotation only in a subgroup with excessive rearfoot eversion. Copyright © 2018. Published by Elsevier B.V.

  9. Changes in utilization of health services among poor and rural residents in Uganda: are reforms benefitting the poor?

    PubMed

    Pariyo, George W; Ekirapa-Kiracho, Elizabeth; Okui, Olico; Rahman, Mohammed Hafizur; Peterson, Stefan; Bishai, David M; Lucas, Henry; Peters, David H

    2009-11-12

    Uganda implemented health sector reforms to make services more accessible to the population. An assessment of the likely impact of these reforms is important for informing policy. This paper describes the changes in utilization of health services that occurred among the poor and those in rural areas between 2002/3 and 2005/6 and associated factors. Secondary data analysis was done using the socio-economic component of the Uganda National Household Surveys 2002/03 and 2005/06. The poor were identified from wealth quintiles constructed using an asset based index derived from Principal Components Analysis (PCA). The probability of choice of health care provider was assessed using multinomial logistic regression and multi-level statistical models. The odds of not seeking care in 2005/6 were 1.79 times higher than in 2002/3 (OR = 1.79; 95% CI 1.65 - 1.94). The rural population experienced a 43% reduction in the risk of not seeking care because of poor geographical access (OR = 0.57; 95% CI 0.48 - 0.67). The risk of not seeking care due to high costs did not change significantly. Private for profit providers (PFP) were the major providers of services in 2002/3 and 2005/6. Using PFP as base category, respondents were more likely to have used private not for profit (PNFP) in 2005/6 than in 2002/3 (OR = 2.15; 95% CI 1.58 - 2.92), and also more likely to use public facilities in 2005/6 than 2002/3 (OR = 1.31; 95% CI 1.15 - 1.48). The most poor, females, rural residents, and those from elderly headed households were more likely to use public facilities relative to PFP. Although overall utilization of public and PNFP services by rural and poor populations had increased, PFP remained the major source of care. The odds of not seeking care due to distance decreased in rural areas but cost continued to be an important barrier to seeking health services for residents from poor, rural, and elderly headed households. Policy makers should consider targeting subsidies to the poor and rural populations. Public private partnerships should be broadened to increase access to health services among the vulnerable.

  10. Exercise therapy, patient education, and patellar taping in the treatment of adolescents with patellofemoral pain: a prospective pilot study with 6 months follow-up.

    PubMed

    Rathleff, Michael S; Rathleff, Camilla R; Holden, Sinead; Thorborg, Kristian; Olesen, Jens L

    2018-01-01

    Patellofemoral pain (PFP) is the most common knee condition among adolescents, with a prevalence of 6-7% resulting in reduced function and quality of life. Exercise therapy is recommended for treating PFP, but has only been tested in older adolescents (15-19 years). This pilot study aimed to investigate the adherence to, and clinical effects of, exercise and patient education in young adolescents (12-16 years), with PFP. Twenty adolescents (16 females) with PFP were recruited from a population-based cohort to undergo a 3-month multimodal intervention. This comprised of a 30-min patient education and group-based exercise therapy. Exercises included supervised lower extremity strength exercises three times per week, in addition to similar home-based strength exercises. Outcomes included a 7-point global rating of change scale (ranging from "completely recovered" to "worse than ever"), the Knee injury and Osteoarthritis Outcome Score (KOOS), physical activity scale (PAS), weekly sports participation and health-related quality of life measured by European Quality of Life 5 dimensions Youth (EQ-5DY) and isometric knee and hip muscle strength. Pain was measured on a visual analogue scale (VAS), and satisfaction treatment was measured on a five-point Likert scale ranging from "highly satisfied" to "not satisfied at all". These were collected at 3- and 6-month follow-ups. Adherence to supervised exercise was measured as session attendance, and adolescent self-reported adherence to home-based exercises. Adherence to the exercise therapy was poor, with adolescents participating in a median of 16 (IQR 5.5-25) out of 39 possible supervised training session. Five out of 18 adolescents had a successful outcome after both 3 and 6 months. There were no relevant changes in isometric muscle strength. This was the first study to investigate adherence to, and clinical effects of, exercise therapy and patient education in young adolescents with patellofemoral pain. Adherence to the exercise therapy was low with little to no clinical effects making a full clinical trial impractical. Future studies need to explore how an intervention can be successfully tailored to young adolescents with patellofemoral pain to obtain good adherence while improving pain and function.

  11. Peri-implant stress correlates with bone and cement morphology: Micro-FE modeling of implanted cadaveric glenoids.

    PubMed

    Wee, Hwabok; Armstrong, April D; Flint, Wesley W; Kunselman, Allen R; Lewis, Gregory S

    2015-11-01

    Aseptic loosening of cemented joint replacements is a complex biological and mechanical process, and remains a clinical concern especially in patients with poor bone quality. Utilizing high resolution finite element analysis of a series of implanted cadaver glenoids, the objective of this study was to quantify relationships between construct morphology and resulting mechanical stresses in cement and trabeculae. Eight glenoid cadavers were implanted with a cemented central peg implant. Specimens were imaged by micro-CT, and subject-specific finite element models were developed. Bone volume fraction, glenoid width, implant-cortex distance, cement volume, cement-cortex contact, and cement-bone interface area were measured. Axial loading was applied to the implant of each model and stress distributions were characterized. Correlation analysis was completed across all specimens for pairs of morphological and mechanical variables. The amount of trabecular bone with high stress was strongly negatively correlated with both cement volume and contact between the cement and cortex (r = -0.85 and -0.84, p < 0.05). Bone with high stress was also correlated with both glenoid width and implant-cortex distance. Contact between the cement and underlying cortex may dramatically reduce trabecular bone stresses surrounding the cement, and this contact depends on bone shape, cement amount, and implant positioning. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Investigation of Interrelation between Deformation, Composition and Structural Characteristics of Magnesium Oxychloride Cements

    NASA Astrophysics Data System (ADS)

    Averina, G. F.; Chernykh, T. N.; Kramar, L. Ya

    2017-11-01

    The paper studies the process of volume deformation changes in magnesium cement at its hardening in accordance with its composition and structural peculiarities, which result from the roasting parameters of the raw materials. The study has been carried out with the aim of broadening raw materials sources for production of magnesia cements and construction materials through the use waste products of ore-dressing and processing enterprises. The mineralogical and phase composition of magnesium cements, obtained on the basis of magnesite with high content of impurity minerals from the mine dumps, has been studied by the X-ray phase analysis and derivatography. The roasting of the initial raw materials was carried out at various temperature conditions in order to get cements of different activities. The typical content of hydrated phases has been found for the hardened magnesian stone obtained from cements with different activity degrees. The characteristics of volume deformations developed in the magnesian stone have been described in relation to its phase composition. The influence of low- and high-activity crystals and calcium oxide crystals on the soundness and the structural integrity of magnesian stone has been covered.

  13. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    DOE PAGES

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; ...

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnectionmore » of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is much lower than that of CO2-saturated brine. The study suggests that in deep geological reservoirs the geochemical and geomechanical processes have coupled effects on the wellbore cement fracture evolution and fluid flow along the fracture surfaces.« less

  14. Laboratory-Scale Solidification of Basin F Concentrate, Rocky Mountain Arsenal

    DTIC Science & Technology

    1983-07-01

    follows: ," a. Cement-based processes b. Pozzolanic processes (silicate processes that do not use cement) c. Thermoplastic techniques d. Organic polymer ...ARSENAL 6. AUTHOR(S) MYERST.; THOMPSON.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER ARMY ENG!NEER...SWLP Leachates Organics in EP and SWLP Leachates Leachable Contaminant Densities Qualitative Assessments of Ammonia Gas Release by Solidification

  15. The use of solid wastes as a fuel in the cement industry in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haley, C.A.C.; Chatterton, M.H.

    1985-01-01

    Blue Circle has installed a commercial plant for processing and firing MSW as a fuel in cement kilns. The plant, a world first, has operated successfully since 1979 at Wiltshire, UK. By the end of January 1984, 173,000 tonnes of refuse had been processed.

  16. Optimisation of a two-liquid component pre-filled acrylic bone cement system: a design of experiments approach to optimise cement final properties.

    PubMed

    Clements, James; Walker, Gavin; Pentlavalli, Sreekanth; Dunne, Nicholas

    2014-10-01

    The initial composition of acrylic bone cement along with the mixing and delivery technique used can influence its final properties and therefore its clinical success in vivo. The polymerisation of acrylic bone cement is complex with a number of processes happening simultaneously. Acrylic bone cement mixing and delivery systems have undergone several design changes in their advancement, although the cement constituents themselves have remained unchanged since they were first used. This study was conducted to determine the factors that had the greatest effect on the final properties of acrylic bone cement using a pre-filled bone cement mixing and delivery system. A design of experiments (DoE) approach was used to determine the impact of the factors associated with this mixing and delivery method on the final properties of the cement produced. The DoE illustrated that all factors present within this study had a significant impact on the final properties of the cement. An optimum cement composition was hypothesised and tested. This optimum recipe produced cement with final mechanical and thermal properties within the clinical guidelines and stated by ISO 5833 (International Standard Organisation (ISO), International standard 5833: implants for surgery-acrylic resin cements, 2002), however the low setting times observed would not be clinically viable and could result in complications during the surgical technique. As a result further development would be required to improve the setting time of the cement in order for it to be deemed suitable for use in total joint replacement surgery.

  17. Utilization of flotation wastes of copper slag as raw material in cement production.

    PubMed

    Alp, I; Deveci, H; Süngün, H

    2008-11-30

    Copper slag wastes, even if treated via processes such as flotation for metal recovery, still contain heavy metals with hazardous properties posing environmental risks for disposal. This study reports the potential use of flotation waste of a copper slag (FWCS) as iron source in the production of Portland cement clinker. The FWCS appears a suitable raw material as iron source containing >59% Fe(2)O(3) mainly in the form of fayalite (Fe(2)SiO(4)) and magnetite (Fe(3)O(4)). The clinker products obtained using the FWCS from the industrial scale trial operations over a 4-month period were characterised for the conformity of its chemical composition and the physico-mechanical performance of the resultant cement products was evaluated. The data collected for the clinker products produced using an iron ore, which is currently used as the cement raw material were also included for comparison. The results have shown that the chemical compositions of all the clinker products including those of FWCS are typical of a Portland cement clinker. The mechanical performance of the standard mortars prepared from the FWCS clinkers were found to be similar to those from the iron ore clinkers with the desired specifications for the industrial cements e.g. CEM I type cements. Furthermore, the leachability tests (TCLP and SPLP) have revealed that the mortar samples obtained from the FWCS clinkers present no environmental problems while the FWCS could act as the potential source of heavy metal contamination. These findings suggest that flotation wastes of copper slag (FWCS) can be readily utilised as cement raw material due to its availability in large quantities at low cost with the further significant benefits for waste management/environmental practices of the FWCS and the reduced production and processing costs for cement raw materials.

  18. Effect of Biomineralization Ability on Push-out Strength of Proroot Mineral Trioxide Aggregate, Mineral Trioxide Aggregate Branco, and Calcium Phosphate Cement on Dentin: An In vitro Evaluation.

    PubMed

    Revankar, Vanita D; Prathap, M S; Shetty, K Harish Kumar; Shahul, Azmin; Sahana, K

    2017-11-01

    Biomineralization is a process which leads to the formation of an interfacial layer with tag-like structures at the cement-dentin interface. It is due to interaction of mineral trioxide aggregate (MTA) and Portland cement with dentin in phosphate-buffered solution (PBS). This study is aimed to evaluate the effect of influence of biomineralization process on push-out bond strength of ProRoot MTA (Dentsply Tulsa Dental, Tulsa, OK, USA), MTA Branco (Angelus Soluc¸o˜es Odontolo´gicas, Londrina, PR, Brazil) and calcium phosphate cement (BioGraft CPC). The aim of this study was to evaluate the effect of biomineralization process on the push-out strength of ProRoot MTA, MTA Branco, and CPC after mixing with 0.2% chlorhexidine gluconate solution (0.2% CHX) and 2% lidocaine solution (2% LA) on the bond strength of MTA-dentin. Dentin discs with uniform cavities were restored with ProRoot MTA, MTA Branco, and calcium phosphate cement after mixing with 0.2% CHX solution and 2% lidocaine solution. The samples were uniformly distributed into two groups. Experimental group being immersed in PBS solution and control group being immersed in saline for 2 months. Instron testing machine (Model 4444; Instron Corp., Canton, MA, USA) was used to determine the bond strength. A two-way analysis of variance and post hoc analysis by Bonferroni test. All samples immersed in experimental group displayed a significantly greater resistance to displacement than that observed for the samples in control group ( P < 0.05). MTAs displayed a significantly greater resistance to displacement than calcium phosphate cements. The main conclusion of this study was that the push-out bond strength of the cements, mainly the MTA groups, was positively influenced by the biomineralization process.

  19. Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement.

    PubMed

    Wang, Yan-Shuai; Dai, Jian-Guo; Wang, Lei; Tsang, Daniel C W; Poon, Chi Sun

    2018-01-01

    Inorganic binder-based stabilization/solidification (S/S) of Pb-contaminated soil is a commonly used remediation approach. This paper investigates the influences of soluble Pb species on the hydration process of two types of inorganic binders: ordinary Portland cement (OPC) and magnesium potassium phosphate cement (MKPC). The environmental leachability, compressive strength, and setting time of the cement products are assessed as the primary performance indicators. The mechanisms of Pb involved in the hydration process are analyzed through X-ray diffraction (XRD), hydration heat evolution, and thermogravimetric analyses. Results show that the presence of Pb imposes adverse impact on the compressive strength (decreased by 30.4%) and the final setting time (prolonged by 334.7%) of OPC, but it exerts much less influence on those of MKPC. The reduced strength and delayed setting are attributed to the retarded hydration reaction rate of OPC during the induction period. These results suggest that the OPC-based S/S of soluble Pb mainly depends on physical encapsulation by calcium-silicate-hydrate (CSH) gels. In contrast, in case of MKPC-based S/S process, chemical stabilization with residual phosphate (pyromorphite and lead phosphate precipitation) and physical fixation of cementitious struvite-K are the major mechanisms. Therefore, MKPC is a more efficient and chemically stable inorganic binder for the Pb S/S process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Feasibility study of fluxless brazing cemented carbides to steel

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Sievers, N.

    2017-03-01

    One of the most important brazing processes is the joints between cemented carbides and steel for the tool industry such as in rotary drill hammers or saw blades. Even though this technique has already been used for several decades, defects in the joint can still occur and lead to quality loss. Mostly, the joining process is facilitated by induction heating and the use of a flux to enhance the wetting of the filler alloy on the surface of the steel and cemented carbide in an ambient atmosphere. However, although the use of flux enables successful joining, it also generates voids within the joint, which reduces the strength of the connection while the chemicals within the flux are toxic and polluting. In this feasibility study, a fluxless brazing process is used to examine the joint between cemented carbides and steel for the first time. For this, ultrasound is applied during induction heating to enable the wetting between the liquid filler metal and the surfaces of the cemented carbide and steel. The ultrasound generates cavitations within the liquid filler metal, which remove the oxides from the surface. Several filler metals such as a silver based alloy Ag449, pure Zn, and an AlSi-alloy were used to reduce the brazing temperature and to lower the thermal residual stresses within the joint. As a result, every filler metal successfully wetted both materials and led to a dense connection. The ultrasound has to be applied carefully to prevent a damage of the cemented carbide. In this regard, it was observed that single grains of the cemented carbide broke out and remained in the joint. This positive result of brazing cemented carbides to steel without a flux but using ultrasound, allows future studies to focus on the shear strength of these joints as well as the behavior of the thermally induced residual stresses.

  1. Biomineralization in metakaolin modified cement mortar to improve its strength with lowered cement content.

    PubMed

    Li, Mengmeng; Zhu, Xuejiao; Mukherjee, Abhijit; Huang, Minsheng; Achal, Varenyam

    2017-05-05

    The role of industrial byproduct as supplementary cementitious material to partially replace cement has greatly contributed to sustainable environment. Metakaolin (MK), one of such byproduct, is widely used to partial replacement of cement; however, during cement replacement at high percentage, it may not be a good choice to improve the strength of concrete. Thus, in the present study, biocement, a product of microbially induced carbonate precipitation is utilized in MK-modified cement mortars to improve its compressive strength. Despite of cement replacement with MK as high as 50%, the presented technology improved compressive strength of mortars by 27%, which was still comparable to those mortars with 100% cement. The results proved that biomineralization could be effectively used in reducing cement content without compromising compressive strength of mortars. Biocementation also reduced the porosity of mortars at all ages. The process was characterized by SEM-EDS to observe bacterially-induced carbonate crystals and FTIR spectroscopy to predict responsible bonding in the formation of calcium carbonate. Further, XRD analysis identified bio/minerals formed in the MK-modified mortars. The study also encourages combining biological role in construction engineering to solve hazardous nature of cement and at same time solve the disposal problem of industrial waste for sustainable environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Low force cementation.

    PubMed

    Wilson, P R

    1996-07-01

    The marginal adaptation of full coverage restorations is adversely affected by the introduction of luting agents of various minimum film thicknesses during the cementation process. The increase in the marginal opening may have long-term detrimental effects on the health of both pulpal and periodontal tissues. The purpose of this study was to determine the effects of varying seating forces (2.5, 12.5, 25 N), venting, and cement types on post-cementation marginal elevation in cast crowns. A standardized cement space of 40 microns was provided between a machined gold crown and a stainless steel die. An occlusal vent was placed that could be opened or closed. The post-cementation crown elevation was measured, following the use of two commercially available capsulated dental cements (Phosphacap, and Ketac-cem Applicap). The results indicate that only the combination of Ketac-Cem Applicap and crown venting produced post-cementation crown elevation of less than 20 microns when 12.5 N seating force was used. Higher forces (25 N) and venting were required for comparable seating when using Phosphacap (19 microns). The amount of force required to allow maximum seating of cast crowns appears to be cement specific, and is reduced by effective venting procedures.

  3. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanbeigi, Ali; Lu, Hongyou; Williams, Christopher

    The purpose of this report is to describe international best practices for pre-processing and coprocessing of MSW and sewage sludge in cement plants, for the benefit of countries that wish to develop co-processing capacity. The report is divided into three main sections. Section 2 describes the fundamentals of co-processing, Section 3 describes exemplary international regulatory and institutional frameworks for co-processing, and Section 4 describes international best practices related to the technological aspects of co-processing.

  4. Biodeterioration of the Cement Composites

    NASA Astrophysics Data System (ADS)

    Luptáková, Alena; Eštoková, Adriana; Mačingová, Eva; Kovalčíková, Martina; Jenčárová, Jana

    2016-10-01

    The destruction of natural and synthetic materials is the spontaneous and irreversible process of the elements cycling in nature. It can by accelerated or decelerated by physical, chemical and biological influences. Biological influences are represented by the influence of the vegetation and microorganisms (MO). The destruction of cement composites by different MO through the diverse mechanisms is entitled as the concrete biodeterioration. Several sulphur compounds and species of MO are involved in this complex process. Heterotrophic and chemolithotrophic bacteria together with fungi have all been found in samples of corroding cement composites. The MO involved in the process metabolise the presented sulphur compounds (hydrogen sulphide, elemental sulphur etc.) to sulphuric acid reacting with concrete. When sulphuric acid reacts with a concrete matrix, the first step involves a reaction between the acid and the calcium hydroxide forming calcium sulphate. This is subsequently hydrated to form gypsum, the appearance of which on the surface of concrete pipes takes the form of a white, mushy substance which has no cohesive properties. In the continuing attack, the gypsum would react with the calcium aluminate hydrate to form ettringite, an expansive product. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to biodeterioration. The aim of this work was the study of the cement composites biodeterioration by the bacteria Acidithiobacillus thiooxidans. Experimental works were focused on the comparison of special cement composites and its resistance affected by the activities of used sulphur-oxidising

  5. Probabilistic analysis of the influence of the bonding degree of the stem-cement interface in the performance of cemented hip prostheses.

    PubMed

    Pérez, M A; Grasa, J; García-Aznar, J M; Bea, J A; Doblaré, M

    2006-01-01

    The long-term behavior of the stem-cement interface is one of the most frequent topics of discussion in the design of cemented total hip replacements, especially with regards to the process of damage accumulation in the cement layer. This effect is analyzed here comparing two different situations of the interface: completely bonded and debonded with friction. This comparative analysis is performed using a probabilistic computational approach that considers the variability and uncertainty of determinant factors that directly compromise the damage accumulation in the cement mantle. This stochastic technique is based on the combination of probabilistic finite elements (PFEM) and a cumulative damage approach known as B-model. Three random variables were considered: muscle and joint contact forces at the hip (both for walking and stair climbing), cement damage and fatigue properties of the cement. The results predicted that the regions with higher failure probability in the bulk cement are completely different depending on the stem-cement interface characteristics. In a bonded interface, critical sites appeared at the distal and medial parts of the cement, while for debonded interfaces, the critical regions were found distally and proximally. In bonded interfaces, the failure probability was higher than in debonded ones. The same conclusion may be established for stair climbing in comparison with walking activity.

  6. Combined effects of lithium and borate ions on the hydration of calcium sulfoaluminate cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr; Dhoury, Mélanie; Champenois, Jean-Baptiste

    This work investigates the combined influence of borate and lithium ions on the hydration of two calcium sulfoaluminate (CSA) cements containing 0 or 10 wt% gypsum. On the one hand, borates are known to retard CSA cement hydration due to the rapid precipitation of ulexite. On the other hand, lithium ions accelerate CSA cement hydration thanks to the fast precipitation of Li-containing aluminum hydroxide. When borates and lithium are present simultaneously, these two mechanisms are superimposed. With a gypsum-free cement, a third process is additionally observed: lithium promotes the initial precipitation of a borated AFm phase which is later convertedmore » into a borated AFt phase when hydration accelerates. Lithium salts can counteract the retardation by sodium borate. However, their influence is limited once a sufficient amount of Li-containing Al(OH){sub 3} seeds is formed. For the CSA cements under investigation, the threshold lithium concentration is close to 0.03 mmol/g of cement and similar with or without borate.« less

  7. Geomechanical Behaviors of Laboratory-Formed Non-Cementing Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Seol, Y.

    2015-12-01

    Natural hydrate-bearing sediments (HBS) have been known to exist with non-cementing pore habits, i.e., pore-filling, load-bearing, or patchy type. However, few laboratory studies have been conducted to characterize geomechanical behaviors of non-cementing CH4-HBS, which are of great importance in engineering the process of drilling and gas production in natural hydrate reservoir. In this study, we conducted multi-stage drained triaxial tests on laboratory synthesized CH4-HBS samples, which were formed in sand-clay mixtures (5%wt kaolinite) to have non-cementing habits. Three different effective confining stresses, σ3' = 0.69, 1.38, and 2.76 MPa, were applied on the HBS with the hydrate saturation, Sh, in the range of 0 to ~ 40%. The result confirms that the strength and stiffness of HBS increases with effective confining stress and hydrate saturation. It is also demonstrated that when compared to the cementing HBS, the non-cementing HBS has lower strength and cohesion, owing to less inter-particle adhesion effects from non-cementing hydrate.

  8. Influence of the spatial distribution of cementation on the permeability and mechanical attributes of sedimentary and fault rocks

    NASA Astrophysics Data System (ADS)

    Mozley, P.; Yoon, H.; Williams, R. T.; Goodwin, L. B.

    2015-12-01

    The spatial distribution of pore-filling authigenic minerals (cements) is highly variable and controlled in large part by the mineralogy of the cements and host sediment grains. Two end-member distributions of cements that commonly occur in sedimentary material are: (1) concretionary, in which precipitation occurred in specific zones throughout the sediment, with intervening areas largely uncemented; and (2) grain-rimming, in which precipitation occurred on grain-surfaces relatively uniformly throughout the rock. Concretions form in rocks in which sediment grains have a different composition from the cement, whereas rim cements form in those that have the same composition. Both the mechanical attributes and permeability of a given volume of rock are affected to a much greater extent by grain rimming cements, which have a significant impact on properties at even low abundances. Concretionary cements have little impact on bulk properties until relatively large volumes have precipitated (~80% cemented) and concretions begin to link up. Precipitation of cement in fault zones also impacts both mechanical and hydrologic properties. Cementation will stiffen and strengthen unlithified sediment, thereby controlling the locus of fracturing in protolith or damage zones. Where fracture networks form in fault damage zones, they are initially high permeability elements. However, progressive cementation greatly diminishes fracture permeability, resulting in cyclical permeability variation linked to fault slip. To quantitatively describe the interactions of groundwater flow, permeability, and patterns and abundance of cements, we use pore-scale modeling of coupled fluid flow, reactive transport, and heterogeneous mineral-surface reactions. By exploring the effects of varying distributions of porosity and mineralogy, which impact patterns of cementation, we provide mechanistic explanations of the interactions of coupled processes under various flow and chemistry conditions.

  9. 40 CFR 411.20 - Applicability; description of the leaching subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CEMENT MANUFACTURING POINT SOURCE CATEGORY Leaching Subcategory... manufacturing of cement and in which kiln dust is contacted with water as an integral part of the process or...

  10. A Peridynamic Approach for Nanoscratch Simulation of the Cement Mortar

    NASA Astrophysics Data System (ADS)

    Zhao, Jingjing; Zhang, Qing; Lu, Guangda; Chen, Depeng

    2018-03-01

    The present study develops a peridynamic approach for simulating the nanoscratch procedure on the cement mortar interface. In this approach, the cement and sand are considered as discrete particles with certain mechanical properties on the nanoscale. Besides, the interaction force functions for different components in the interface are represented by combining the van der Waals force and the peridynamic force. The nanoscratch procedures with the indenter moving along certain direction either parallel or perpendicular to the interface are simulated in this paper. The simulation results show the damage evolution processes and the final damage distributions of the cement mortar under different scratching speed and depth of the indenter, indicating that the interface between cement and sand is a weak area.

  11. Effects of self-blood on the molding process of polymethyl methacrylate bone cement.

    PubMed

    Guo, Ying-Jun; Nie, Lin; Zhang, Wen; Mu, Qing

    2014-01-01

    To evaluate whether the self-blood has influence on the molding process of polymethyl methacrylate (PMMA) bone cement, and to make sure whether it is valuable for the clinical practice. An in vitro study was performed to evaluate the prolonging-effect of self-blood on PMMA bone cement. The effect of prolonging was evaluated by the dough time (TD) and operable time (TO). Moreover, hardness test, squeezing value test and peak temperature test were also conducted to complete the evaluation of this program. The self-blood, especially the plasma, could greatly prolong the handling time of PMMA bone cement without affecting its basic characteristics including hardness, leakage level and peak temperature. On the other hand, we found that in some abnormal conditions, for example with hyperlipemia, self-blood though can also prolong the handling time, would cause some side-effects. We report a new effective way to prolong the handling time of PMMA bone cement by adding moderate amount of self-blood. But "individualized medicine" should be noticed because some abnormal conditions like hyperlipemia would cause undesired side-effects.

  12. Influence of nano-dispersive modified additive on cement activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sazonova, Natalya, E-mail: n.a.sazonova@mail.ru; Badenikov, Artem, E-mail: rector@agta.ru; Ivanova, Elizaveta, E-mail: lisik-iva@mail.ru

    2016-01-15

    In the work the influence of single-walled carbon nanotubes (SWCNT) on the cement activity and the processes of structure formation of the hardened cement paste in different periods of hydration are studied. The changes in the kinetic curves of the sample strength growth modified with SWCNT in amount of 0.01 and 0.0005 % are stipulated by the results of differential scanning colorimetry, scanning electronic and ionic microscopy, X-ray-phase analysis. It was found that the nano-modified additive may increase in the axis compressive strength of the system by 1.4–6.3 fold relatively to the reference samples and may reach 179.6 MPa. It maymore » intensify the hydration process of calcium silicates as well as influence on the matrix of hardened cement paste. The studies are conducted on the structural changes in the hardened cement paste, the time periods of increase and decrease of the compressive strength of the samples, the amount of the calcium hydroxide and tobermorite-like gel as well as the degree of hydration C{sub 3}S and β-C{sub 2}S.« less

  13. Comparison of short-term effects of mobilization with movement and Kinesiotaping on pain, function and balance in patellofemoral pain.

    PubMed

    Demirci, Serdar; Kinikli, Gizem Irem; Callaghan, Michael J; Tunay, Volga Bayrakci

    2017-12-01

    The aim of this study was to compare the short-term effects of Mobilization with movement (MWM) and Kinesiotaping (KT) on patients with patellofemoral pain (PFP) respect to pain, function and balance. Thirty-five female patients diagnosed with unilateral PFP were assigned into 2 groups. The first group (n = 18) received two techniques of MWM intervention (Straight Leg-Raise with Traction and Tibial Gliding) while KT was applied to the other group (n = 17). Both groups received 4 sessions of treatment twice a week for a period of 2 weeks with a 6-week-home exercise program. Pain severity, knee range of motion, hamstring flexibility, and physical performance (10-step stair climbing test, timed up and go test), Kujala Patellofemoral Pain Scoring and Y-Balance test were assessed. These outcomes were evaluated before the treatment, 45 min after the initial treatment, at the end of the 4-session-treatment during 2-week period and 6 weeks later in both groups. Both treatment groups had statistically significant improvements on pain, function and balance (p < 0.05). Pain at rest (p = 0.008) and the hamstring muscle flexibility (p = 0.027) were demonstrated significant improvements in favor of MWM group. Our results demonstrated similar results for both treatment techniques in terms of pain, function and balance. The MWM technique with exercise had a short-term favorable effect on pain at rest and hamstring muscle flexibility than the KT technique with exercise in patients with PFP. Level I, therapeutic study. Copyright © 2017 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  14. Adding motor control training to muscle strengthening did not substantially improve the effects on clinical or kinematic outcomes in women with patellofemoral pain: A randomised controlled trial.

    PubMed

    Rabelo, Nayra Deise Dos Anjos; Costa, Leonardo Oliveira Pena; Lima, Bruna Maria de; Dos Reis, Amir Curcio; Bley, André Serra; Fukuda, Thiago Yukio; Lucareli, Paulo Roberto Garcia

    2017-10-01

    Randomized controlled trial. Patients with Patellofemoral pain (PFP) usually present muscular weakness, pain and impaired motor control. Muscle strengthening is an effective treatment strategy for PFP, but the additional benefits of movement control training remain unknown. Therefore, the aim of this study was to compare the effects of movement control training associated with muscle strengthening, with a conventional program of strengthening alone in women with PFP. Thirty-four women were randomly assigned to two groups. The Strengthening group (S group) performed 12 sessions to strengthen the knee and hip muscles. The Movement Control & Strengthening group (MC&S group) performed the same exercises and movement control training of the trunk and lower limbs. Effects of the treatment (i.e., between-group differences) were calculated using linear mixed models. Primary outcomes were function and pain intensity after completion of the treatment protocol. Secondary outcomes were; muscle strength and kinematic outcomes during the step down task after 4 weeks of treatment; and function and pain intensity 3 and 6 months after randomization. The MC&S group did not present significantly better function (MD -2.5 points, 95% CI;-10.7-5.5) or pain (MD -0.3 points, 95% CI;-1.7-1.0) at 4 weeks. There was a small difference in favour of the MC&S group for AKPS scores at 3 months (MD -8.5 points; 95% CI;-16.8 to -0.3). No significant between-group differences were observed for the other outcomes. Movement control training was no more effective than the isolated strengthening protocol, in terms of pain, function, muscle strength, or kinematics. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Recycling of red muds with the extraction of metals and special additions to cement

    NASA Astrophysics Data System (ADS)

    Zinoveev, D. V.; Diubanov, V. G.; Shutova, A. V.; Ziniaeva, M. V.

    2015-01-01

    The liquid-phase reduction of iron oxides from red mud is experimentally studied. It is shown that, in addition to a metal, a slag suitable for utilization in the construction industry can be produced as a result of pyrometallurgical processing of red mud. Portland cement is shown to be produced from this slag with mineral additions and a high-aluminate expansion addition to cement.

  16. Magnesium-phosphate-glass cements with ceramic-type properties

    DOEpatents

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  17. Magnesium phosphate glass cements with ceramic-type properties

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  18. Process for cementing geothermal wells

    DOEpatents

    Eilers, Louis H.

    1985-01-01

    A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight mono- or copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

  19. Cement-based stabilization/solidification of oil refinery sludge: Leaching behavior of alkanes and PAHs.

    PubMed

    Karamalidis, Athanasios K; Voudrias, Evangelos A

    2007-09-05

    Stabilization/solidification is a process widely applied for the immobilization of inorganic constituents of hazardous wastes, especially for metals. Cement is usually one of the most common binders for that purpose. However, limited results have been presented on immobilization of hydrocarbons in cement-based stabilized/solidified petroleum solid waste. In this study, real oil refinery sludge samples were stabilized and solidified with various additions of I42.5 and II42.5 cement (Portland and blended cement, respectively) and subject to leaching. The target analytes were total petroleum hydrocarbons, alkanes and 16 polycyclic aromatic hydrocarbons of the EPA priority pollutant list. The experiments showed that the waste was confined in the cement matrix by macroencapsulation. The rapture of the cement structure led to the increase of leachability for most of the hydrocarbons. Leaching of n-alkanes from II42.5 cement-solidified samples was lower than that from I42.5 solidified samples. Leaching of alkanes in the range of n-C(10) to n-C(27) was lower than that of long chain alkanes (>n-C(27)), regardless the amount of cement addition. Generally, increasing the cement content in the solidified waste samples, increased individual alkane leachability. This indicated that cement addition resulted in destabilization of the waste. Addition of I42.5 cement favored immobilization of anthracene, benzo[a]anthracene, benzo[b]fluoroanthene, benzo[k]fluoroanthene, benzo[a]pyrene and dibenzo[a,h]anthracene. However, addition of II42.5 favored 5 out of 16, i.e., naphthalene, anthracene, benzo[b]fluoroanthene, benzo[k]fluoroanthene and dibenzo[a,h]anthracene.

  20. Investigation on the potential of waste cooking oil as a grinding aid in Portland cement.

    PubMed

    Li, Haoxin; Zhao, Jianfeng; Huang, Yuyan; Jiang, Zhengwu; Yang, Xiaojie; Yang, Zhenghong; Chen, Qing

    2016-12-15

    Although there are several methods for managing waste cooking oil (WCO), a significant result has not been achieved in China. A new method is required for safe WCO management that minimizes the environmental threat. In this context, this work was developed in which cement clinker and gypsum were interground with various WCOs, and their properties, such as grindability, water-cement ratio required to achieve a normal consistency, setting times, compressive strength, contents of calcium hydroxide and ettringite in the hardened paste, microstructure and economic and environmental considerations, were addressed in detail. The results show that, overall, WCO favorably improves cement grinding. WCO prolonged the cement setting times and resulted in longer setting times. Additionally, more remarkable effects were found in cements in which WCO contained more unsaturated fatty acid. WCOs increased the cement strength. However, this enhancement was rated with respect to the WCO contents and components. WCOs decreased the CH and AFt contents in the cement hardened paste. Even the AFt content at later ages was reduced when WCO was used. WCO also densify microstructure of the hardened cement paste. It is economically and environmentally feasible to use WCOs as grinding aids in the cement grinding process. These results contribute to the application of WCOs as grinding aids and to the safe management of WCO. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Lipid oxidation in minced beef meat with added Krebs cycle substrates to stabilise colour.

    PubMed

    Yi, G; Grabež, V; Bjelanovic, M; Slinde, E; Olsen, K; Langsrud, O; Phung, V T; Haug, A; Oostindjer, M; Egelandsdal, B

    2015-11-15

    Krebs cycle substrates (KCS) can stabilise the colour of packaged meat by oxygen reduction. This study tested whether this reduction releases reactive oxygen species that may lead to lipid oxidation in minced meat under two different storage conditions. KCS combinations of succinate and glutamate increased peroxide forming potential (PFP, 1.18-1.32 mmol peroxides/kg mince) and thiobarbituric acid reactive substances (TBARS, 0.30-0.38 mg malondialdehyde (MDA) equivalents/kg mince) under low oxygen storage conditions. Both succinate and glutamate were metabolised. Moreover, under high oxygen (75%) storage conditions, KCS combinations of glutamate, citrate and malate increased PFP (from 1.22 to 1.29 mmol peroxides/kg) and TBARS (from 0.37 to 0.40 mg MDA equivalents/kg mince). Only glutamate was metabolised. The KCS combinations that were added to stabilise colour were metabolised during storage, and acted as pro-oxidants that promoted lipid oxidation in both high and low oxygen conditions. Copyright © 2015. Published by Elsevier Ltd.

  2. [Peripheral facial paralysis: the role of physical medicine and rehabilitation].

    PubMed

    Matos, Catarina

    2011-12-01

    Peripheral facial paralysis (PFP) is a consequence of the peripheral neuronal lesion of the facial nerve (FN). It can be either primary (Bell`s Palsy) or secondary. The classical clinical presentation typically involves both stages of the hemiface. However, there may be other symptoms (ex. xerophthalmia, hyperacusis, phonation and deglutition changes) that one should recall. Clinical evaluation includes rigorous muscle tonus and sensibility search in the FN territory. Some useful instruments allow better objectivity in the patients' evaluation (House-Brackmann System, Facial Grading System, Functional Evaluation). There are clear referral criteria to Physical Medicine and Rehabilitation. Treatment of Bell`s Palsy may include pharmacotherapy, neuromuscular training (NMT), physical methods and surgery. In the NMT field the several treatment techniques are systematized. Therapeutic strategies should be problem-oriented and adjusted to the patient's symptoms and signs. Physical methods are reviewed. In about 15-20 % of patients permanent sequelae subside after 3 months of evolution. PFP is commonly a multidisciplinary condition. Therefore, it is important to review strategies that Physical Medicine and Rehabilitation may offer.

  3. Low threshold Amplified Spontaneous Emission properties in deep blue of poly[(9,9-dioctylfluorene-2,7-dyil)-alt-p-phenylene] thin films

    NASA Astrophysics Data System (ADS)

    Lattante, Sandro; De Giorgi, Maria Luisa; Pasini, Mariacecilia; Anni, Marco

    2017-10-01

    Amongst the different optoelectronic applications of conjugated polymers, the development of new active materials for optically pumped organic lasers is still an open question particularly in the blue-near UV spectral range. We investigate the emission properties of poly[(9,9-dioctylfluorene-2,7-dyil)- alt-p-phenylene] (PFP) neat films under nanosecond pump. We demonstrate that thanks to the introduction of a phenylene moiety between two fluorene units it is possible to obtain Amplified Spontaneous Emission (ASE) with a lower threshold and a blue shifted wavelength with respect to poly(9,9-dioctylfluorene) (PFO). We demonstrate efficient ASE with a minimum threshold as low as 23 μJcm-2 and a minimum ASE wavelength of 436 nm. A maximum net optical gain of about 26 cm-1 is measured at an excitation density of 0.23 mJcm-2. These results make the PFP a good active material for optically pumped deep blue organic lasers.

  4. Prurigo, pruritic folliculitis, and atopic eruption of pregnancy: Facts and controversies.

    PubMed

    Roth, Maria Magdalena; Cristodor, Patricia; Kroumpouzos, George

    2016-01-01

    Prurigo (PP) and pruritic folliculitis of pregnancy (PFP) are poorly characterized entities. Traditionally classified under specific dermatoses of pregnancy, they were reclassified under a new umbrella entity, atopic eruption of pregnancy (AEP), which also includes atopic dermatitis (AD) that can worsen or present for the first time in pregnancy. Still, several aspects of AEP have not been adequately elucidated. It needs to be clarified whether it is the intrinsic ("nonallergic" or "atopiform dermatitis") or extrinsic (immunoglobulin E-associated) AD that is affected by pregnancy. Future studies need to examine the postpartum prognosis of AD that develops for the first time during gestation. A revision of diagnostic criteria of AEP will allow a more accurate estimate of its prevalence, as well as clarification of the relationship between AD and specific dermatoses, such as PP and PFP. In this context, this review discusses the history, epidemiologic data, clinicopathologic features, and management of these entities. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Gas chromatographic-mass spectrometric characterization of thebaol, an opium constituent, and its structural analogs.

    PubMed

    Megutnishvili, Levan; Todua, Nino; Stein, Stephen; Mikaia, Anzor

    2018-05-18

    A GC-MS method is described for the characterization of thebaol, a component of opium poppy. The method includes preliminary sample derivatization to TMS, TBDMS, TFA, PFP and HFB substituted products. Fragmentation of resulting derivatives is unique under electron ionization, and proceeds via consecutive loss of two radicals that violate the "even-electron rule". Peaks of [M-2CH 3 ] +. and [M-C 4 H 9 -CH 3 ] +. ions show maximum intensities in the spectra of trimethyl- and tert-butyldimethylsilyl-thebaols. Elimination of perfluoroalkyl and methyl radicals from M +. is characteristic for TFA, PFP and HFB thebaols. The same fragmentation peculiarity is characteristic for derivatives prepared from related natural compounds containing vicinal 2-methoxyphenol moieties. The unique fragmentation of trialkylsilyl and perfluoroacyl derivatives of thebaol can be successfully used for thebaol determination within complex mixtures. This is part 4 from the series "Analytical derivatives in mass spectrometry", parts 1, 2 and 3 see [1-3]. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site.more » The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile material waste being generated to be managed in a bulk fashion, instead of individual waste packages. This approach negated the need for real-time assay of individual waste packages, greatly improving the efficiency of the cleanup operation. The cleanup and stabilization of the 241-2 Liquid Effluent Treatment Facility reduced radiological risks to the environment and Hanford site workers. It was recognized as a success by regulatory agencies, the media, the DOE-client, and stakeholders. The 241-Z D&D Project demonstrated management excellence in adapting to significant changes in project direction, fostered a safety culture that amassed impressive results on this high-hazard job, maintained excellent communications with the client and stakeholders, and developed and implemented unique cleanup techniques.« less

  7. Influence of lactose addition to gentamicin-loaded acrylic bone cement on the kinetics of release of the antibiotic and the cement properties.

    PubMed

    Frutos, Gloria; Pastor, José Ygnacio; Martínez, Noelia; Virto, María Rosa; Torrado, Susana

    2010-03-01

    The purpose of this study was to characterize a poly(methyl methacrylate) bone cement that was loaded with the antibiotic gentamicin sulphate (GS) and lactose, which served to modulate the release of GS from cement specimens. The release of GS when the cement specimens were immersed in phosphate-buffered saline at 37 degrees Celsius was determined spectrophotometrically. The microstructure, porosity, density, tensile properties and flexural properties of the cements were determined before and after release of GS. A kinetics model of the release of GS from the cement that involved a coupled mechanism based on dissolution/diffusion processes and an initial burst effect was proposed. Dissolution assay results showed that drug elution was controlled by a diffusion mechanism which can be modulated by lactose addition. Density values and mechanical properties (tensile strength, flexural strength, elastic modulus and fracture toughness) were reduced by the increased porosity resulting from lactose addition, but maintained acceptable values for the structural functions of bone cement. The present results suggest that lactose-modified, gentamicin-loaded acrylic bone cements are potential candidates for use in various orthopaedic and dental applications. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. An integrated structural and geochemical study of fracture aperture growth in the Campito Formation of eastern California

    NASA Astrophysics Data System (ADS)

    Doungkaew, N.; Eichhubl, P.

    2015-12-01

    Processes of fracture formation control flow of fluid in the subsurface and the mechanical properties of the brittle crust. Understanding of fundamental fracture growth mechanisms is essential for understanding fracture formation and cementation in chemically reactive systems with implications for seismic and aseismic fault and fracture processes, migration of hydrocarbons, long-term CO2 storage, and geothermal energy production. A recent study on crack-seal veins in deeply buried sandstone of east Texas provided evidence for non-linear fracture growth, which is indicated by non-elliptical kinematic fracture aperture profiles. We hypothesize that similar non-linear fracture growth also occurs in other geologic settings, including under higher temperature where solution-precipitation reactions are kinetically favored. To test this hypothesis, we investigate processes of fracture growth in quartzitic sandstone of the Campito Formation, eastern California, by combining field structural observations, thin section petrography, and fluid inclusion microthermometry. Fracture aperture profile measurements of cemented opening-mode fractures show both elliptical and non-elliptical kinematic aperture profiles. In general, fractures that contain fibrous crack-seal cement have elliptical aperture profiles. Fractures filled with blocky cement have linear aperture profiles. Elliptical fracture aperture profiles are consistent with linear-elastic or plastic fracture mechanics. Linear aperture profiles may reflect aperture growth controlled by solution-precipitation creep, with the aperture distribution controlled by solution-precipitation kinetics. We hypothesize that synkinematic crack-seal cement preserves the elliptical aperture profiles of elastic fracture opening increments. Blocky cement, on the other hand, may form postkinematically relative to fracture opening, with fracture opening accommodated by continuous solution-precipitation creep.

  9. Investigation of fatigue crack growth in acrylic bone cement using the acoustic emission technique.

    PubMed

    Roques, A; Browne, M; Thompson, J; Rowland, C; Taylor, A

    2004-02-01

    Failure of the bone cement mantle has been implicated in the loosening process of cemented hip stems. Current methods of investigating degradation of the cement mantle in vitro often require sectioning of the sample to confirm failure paths. The present research investigates acoustic emission as a passive experimental method for the assessment of bone cement failure. Damage in bone cement was monitored during four point bending fatigue tests through an analysis of the peak amplitude, duration, rise time (RT) and energy of the events emitted from the damage sections. A difference in AE trends was observed during failure for specimens aged and tested in (i) air and (ii) Ringer's solution at 37 degrees C. It was noted that the acoustic behaviour varied according to applied load level; events of higher duration and RT were emitted during fatigue at lower stresses. A good correlation was observed between crack location and source of acoustic emission, and the nature of the acoustic parameters that were most suited to bone cement failure characterisation was identified. The methodology employed in this study could potentially be used as a pre-clinical assessment tool for the integrity of cemented load bearing implants.

  10. Sustainable Blended Cements-Influences of Packing Density on Cement Paste Chemical Efficiency.

    PubMed

    Knop, Yaniv; Peled, Alva

    2018-04-18

    This paper addresses the development of blended cements with reduced clinker amount by partial replacement of the clinker with more environmentally-friendly material (e.g., limestone powders). This development can lead to more sustainable cements with reduced greenhouse gas emission and energy consumption during their production. The reduced clicker content was based on improved particle packing density and surface area of the cement powder by using three different limestone particle diameters: smaller (7 µm, 3 µm) or larger (70 µm, 53 µm) than the clinker particles, or having a similar size (23 µm). The effects of the different limestone particle sizes on the chemical reactivity of the blended cement were studied by X-ray diffraction (XRD), thermogravimetry and differential thermogravimetry (TG/DTG), loss on ignition (LOI), isothermal calorimetry, and the water demand for reaching normal consistency. It was found that by blending the original cement with limestone, the hydration process and the reactivity of the limestone itself were increased by the increased surface area of the limestone particles. However, the carbonation reaction was decreased with the increased packing density of the blended cement with limestone, having various sizes.

  11. Regeneration of paint sludge and reuse in cement concrete

    NASA Astrophysics Data System (ADS)

    Feng, Enqi; Sun, Jitao; Feng, Liming

    2018-06-01

    Paint Sludge (PS) is a hazardous waste. Inappropriate disposal of PS might be harmful to public health and the environment. Various size of Paint Sludge Solid Powder (PSSP) particles have been produced by automatic processing equipment via dewatering, crushing, screening removing Volatile Organic Compounds (VOCs), and etc. Meanwhile, the test results show that PSSP is not a hazardous waste. Both flexural and compressive strength are increased by adding PSSP of polyurethane to cement concrete at a level of below 10% of cement weight. However, the strength has a significant reduction at a level of above 15% of cement weight. The reason for the increase of strength is probably due to a slow coagulation and copolymerization of PSSP and cement. The reduction is likely due to the self-reunion of PSSP.

  12. Effects of Leaching Behavior of Calcium Ions on Compression and Durability of Cement-Based Materials with Mineral Admixtures

    PubMed Central

    Cheng, An; Chao, Sao-Jeng; Lin, Wei-Ting

    2013-01-01

    Leaching of calcium ions increases the porosity of cement-based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing reinforcing steel corrosion. This study investigates the effects of leaching behavior of calcium ions on the compression and durability of cement-based materials. Since the parameters influencing the leaching behavior of cement-based materials are unclear and diverse, this paper focuses on the influence of added mineral admixtures (fly ash, slag and silica fume) on the leaching behavior of calcium ions regarding compression and durability of cemented-based materials. Ammonium nitrate solution was used to accelerate the leaching process in this study. Scanning electron microscopy, X-ray diffraction analysis, and thermogravimetric analysis were employed to analyze and compare the cement-based material compositions prior to and after calcium ion leaching. The experimental results show that the mineral admixtures reduce calcium hydroxide quantity and refine pore structure through pozzolanic reaction, thus enhancing the compressive strength and durability of cement-based materials. PMID:28809247

  13. Diagenetic history of late Oligocene-early Miocene carbonates in East Sabah, Malaysia

    NASA Astrophysics Data System (ADS)

    Zainal Abidin, N. S.; Raymond, R. R.; Bashah, N. S. I.

    2017-10-01

    Limestones are particularly susceptible to drastic early diagenesis modifications, mainly cementation and dissolution. During the early Miocene, a major tectonic deformation has caused a widespread of uplift in Sabah. This has resulted change in depositional environment from deep to shallow marine, which favours the deposition of Gomantong Limestone. This study aims to investigate the diagenetic history of Gomantong Limestone in East Sabah. Thorough understanding of the diagenetic processes may provide data to unravel the tectonic activities which affected the reservoir quality of the carbonates. Combining the data from comprehensive petrographic analysis, and Scanning Electron Microscopy (SEM) of 30 samples, two main cements type were identified. These are microcrystalline cement and Mg-calcite cement of granular and blocky mosaics which are dominantly seen in all samples. The sequence of diagenesis events are determined as (1) micritization; (2) grain scale compaction; (3) cementation (pore-filling); (4) mechanical compaction and cementation infilling fractures and (5) chemical compaction. These diagenetic events are interpreted as reflection of changes in diagenetic environment from shallow marine to deep burial. The massive cementation in the Gomantong Limestone has resulted into a poor reservoir quality.

  14. Study protocol: a mixed methods feasibility study for a loaded self-managed exercise programme for patellofemoral pain.

    PubMed

    Smith, Benjamin E; Hendrick, Paul; Bateman, Marcus; Moffatt, Fiona; Rathleff, Michael Skovdal; Selfe, James; Smith, Toby O; Logan, Pip

    2018-01-01

    Patellofemoral pain (PFP) is one of the most common forms of knee pain in adults under the age of 40, with a prevalence of 23% in the general population. The long-term prognosis is poor, with only one third of people pain-free 1 year after diagnosis. The biomedical model of pain in relation to persistent PFP has recently been called into question. It has been suggested that interventions for chronic musculoskeletal conditions should consider alternative mechanisms of action, beyond muscles and joints. Modern treatment therapies should consider desensitising strategies, with exercises that target movements and activities patients find fearful and painful. High-quality research on exercise prescription in relation to pain mechanisms, not directed at specific tissue pathology, and dose response clearly warrants further investigation. Our primary aim is to establish the feasibility and acceptability of conducting a definitive RCT which will evaluate the clinical and cost-effectiveness of a loaded self-managed exercise programme for people with patellofemoral pain. This is a single-centred, multiphase, sequential, mixed-methods trial that will evaluate the feasibility of running a definitive large-scale randomised controlled trial of a loaded self-managed exercise programme versus usual physiotherapy. Initially, 8-10 participants with a minimum 3-month history of PFP will be recruited from an NHS physiotherapy waiting list and interviewed. Participants will be invited to discuss perceived barriers and facilitators to exercise engagement, and the meaning and impact of PFP. Then, 60 participants will be recruited in the same manner for the main phase of the feasibility trial. A web-based service will randomise patients to a loaded self-managed exercise programme or usual physiotherapy. The loaded self-managed exercise programme is aimed at addressing lower limb knee and hip weakness and is positioned within a framework of reducing fear/avoidance with an emphasis on self-management. Baseline assessment will include demographic data, average pain within the last week (VAS), fear avoidance behaviours, catastrophising, self-efficacy, sport and leisure activity participation, and general quality of life. Follow-up will be 3 and 6 months. The analysis will focus on descriptive statistics and confidence intervals. The qualitative components will follow a thematic analysis approach. This study will evaluate the feasibility of running a definitive large-scale trial on patients with patellofemoral pain, within the NHS in the UK. We will identify strengths and weaknesses of the proposed protocol and the utility and characteristics of the outcome measures. The results from this study will inform the design of a multicentre trial. ISRCTN35272486.

  15. Fluorescence triggering: A general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry.

    PubMed

    Arraud, Nicolas; Gounou, Céline; Turpin, Delphine; Brisson, Alain R

    2016-02-01

    Plasma contains cell-derived extracellular vesicles (EVs) which participate in various physiopathological processes and have potential biomedical applications. Despite intense research activity, knowledge on EVs is limited mainly due to the difficulty of isolating and characterizing sub-micrometer particles like EVs. We have recently reported that a simple flow cytometry (FCM) approach based on triggering the detection on a fluorescence signal enabled the detection of 50× more Annexin-A5 binding EVs (Anx5+ EVs) in plasma than the conventional FCM approach based on light scattering triggering. Here, we present the application of the fluorescence triggering approach to the enumeration and phenotyping of EVs from platelet free plasma (PFP), focusing on CD41+ and CD235a+ EVs, as well as their sub-populations which bind or do not bind Anx5. Higher EV concentrations were detected by fluorescence triggering as compared to light scattering triggering, namely 40× for Anx5+ EVs, 75× for CD41+ EVs, and 15× for CD235a+ EVs. We found that about 30% of Anx5+ EVs were of platelet origin while only 3% of them were of erythrocyte origin. In addition, a majority of EVs from platelet and erythrocyte origin do not expose PS, in contrast to the classical theory of EV formation. Furthermore, the same PFP samples were analyzed fresh and after freeze-thawing, showing that freeze-thawing processes induce an increase, of about 35%, in the amount of Anx5+ EVs, while the other EV phenotypes remain unchanged. The method of EV detection and phenotyping by fluorescence triggering is simple, sensitive and reliable. We foresee that its application to EV studies will improve our understanding on the formation mechanisms and functions of EVs in health and disease and help the development of EV-based biomarkers. © 2015 International Society for Advancement of Cytometry.

  16. Quartz cement in sandstones: a review

    NASA Astrophysics Data System (ADS)

    McBride, Earle F.

    Quartz cement as syntaxial overgrowths is one of the two most abundant cements in sandstones. The main factors that control the amount of quartz cement in sandstones are: framework composition; residence time in the "silica mobility window"; and fluid composition, flow volume and pathways. Thus, the type of sedimentary basin in which a sand was deposited strongly controls the cementation process. Sandstones of rift basins (arkoses) and collision-margin basins (litharenites) generally have only a few percent quartz cement; quartzarenites and other quartzose sandstones of intracratonic, foreland and passive-margin basins have the most quartz cement. Clay and other mineral coatings on detrital quartz grains and entrapment of hydrocarbons in pores retard or prevent cementation by quartz, whereas extremely permeable sands that serve as major fluid conduits tend to sequester the greatest amounts of quartz cement. In rapidly subsiding basins, like the Gulf Coast and North Sea basins, most quartz cement is precipitated by cooling, ascending formation water at burial depths of several kilometers where temperatures range from 60° to 100° C. Cementation proceeds over millions of years, often under changing fluid compositions and temperatures. Sandstones with more than 10% imported quartz cement pose special problems of fluid flux and silica transport. If silica is transported entirely as H 4SiO 4, convective recycling of formation water seems to be essential to explain the volume of cement present in most sandstones. Precipitation from single-cycle, upward-migrating formation water is adequate to provide the volume of cement only if significant volumes of silica are transported in unidentified complexes. Modeling suggests that quartz cementation of sandstones in intracratonic basins is effected by advecting meteoric water, although independent petrographic, isotopic or fluid inclusion data are lacking. Silica for quartz cement comes from both shale and sandstone beds within the depositional basin, including possibly deeply buried rocks undergoing low-grade metamorphism, but the relative importance of potential sources remains controversial and likely differs for different formations. The most likely important silica sources within unmetamorphosed shales include clay transformation (chiefly illitization of smectite), dissolution/pressure solution of detrital grains, and dissolution of opal skeletal grains; the most likely important sources of silica within unmetamorphosed sandstones include pressure solution of detrital quartz grains at grain contacts and at stylolites, feldspar alteration/dissolution, and perhaps carbonate replacement of silicate minerals and the margins of some quartz grains. Silica released by pressure solution in many sandstones post-dates the episode of cementation by quartz; thus, this silica must migrate and cement shallower sandstones in the basin or escape altogether. Some quartz-cemented sandstones are separated vertically from potential silica source beds by a kilometer or more, requiring silica transport over long distances. The similarity of diagenetic sequences in sandstones of different composition and ages apparently is the result of the normal temperature and time-dependent maturation of sediments, organic matter and pore fluids during burial in sedimentary basins. Silica that forms overgrowths is released by one or more diagenetic processes that apparently are controlled by temperature and time. Most cementation by quartz takes place when sandstone beds were in the silica mobility window specific to a particular sedimentary basin. Important secondary controls are introduced by compartmentalized domains produced by faults (e.g., North Sea) or overpressure boundaries (e.g., Gulf Coast Tertiary). Shallow meteoric water precipitates only small amounts of silica cement (generally less than 5% in most fluvial and colian sandstones), except in certain soils and at water tables in high-flux sand aquifers. Soil silcretes are chiefly cemented by opal and microcrystalline quartz, whereas water-table silcretes have abundant normal syntaxial quartz overgrowths. Silica for silcrete cements and replacements comes from quartz, silicate minerals, and locally volcanic glass, in alluvium and bedrock.

  17. Influence of porcelain firing and cementation on the marginal adaptation of metal-ceramic restorations prepared by different methods.

    PubMed

    Kaleli, Necati; Saraç, Duygu

    2017-05-01

    Marginal adaptation plays an important role in the survival of metal-ceramic restorations. Porcelain firings and cementation may affect the adaptation of restorations. Moreover, conventional casting procedures and casting imperfections may cause deteriorations in the marginal adaptation of metal-ceramic restorations. The purpose of this in vitro study was to compare the marginal adaptation after fabrication of the framework, porcelain application, and cementation of metal-ceramic restorations prepared by using the conventional lost-wax technique, milling, direct metal laser sintering (DMLS), and LaserCUSING, a direct process powder-bed system. Alterations in the marginal adaptation of the metal frameworks during the fabrication stages and the precision of fabrication methods were evaluated. Forty-eight metal dies simulating prepared premolar and molar abutment teeth were fabricated to investigate marginal adaptation. They were divided into 4 groups (n=12) according to the fabrication method used (group C serving as the control group: lost-wax method; group M: milling method; group LS: DMLS method; group DP: direct process powder-bed method). Sixty marginal discrepancy measurements were recorded separately on each abutment tooth after fabrication of the framework, porcelain application, and cementation by using a stereomicroscope. Thereafter, each group was divided into 3 subgroups according to the measurements recorded in each fabrication stage: subgroup F (framework), subgroup P (porcelain application), and subgroup C (cementation). Data were statistically analyzed with univariate analysis of variance (followed by 1-way ANOVA and Tamhane T2 test (α=.05). The lowest marginal discrepancy values were observed in restorations prepared by using the direct process powder-bed method, and this was significantly different (P<.001) from the other methods. The highest marginal discrepancy values were recorded after the cementation procedure in all groups. The results showed that the direct process powder-bed method is quite successful in terms of marginal adaptation. The marginal discrepancy increased after porcelain application and cementation. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Fracture Reactivation in Chemically Reactive Rock Systems

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.; Hooker, J. N.

    2013-12-01

    Reactivation of existing fractures is a fundamental process of brittle failure that controls the nucleation of earthquake ruptures, propagation and linkage of hydraulic fractures in oil and gas production, and the evolution of fault and fracture networks and thus of fluid and heat transport in the upper crust. At depths below 2-3 km, and frequently shallower, brittle processes of fracture growth, linkage, and reactivation compete with chemical processes of fracture sealing by mineral precipitation, with precipitation rates similar to fracture opening rates. We recently found rates of fracture opening in tectonically quiescent settings of 10-20 μm/m.y., rates similar to euhedral quartz precipitation under these conditions. The tendency of existing partially or completely cemented fractures to reactivate will vary depending on strain rate, mineral precipitation kinetics, strength contrast between host rock and fracture cement, stress conditions, degree of fracture infill, and fracture network geometry. Natural fractures in quartzite of the Cambrian Eriboll Formation, NW Scotland, exhibit a complex history of fracture formation and reactivation, with reactivation involving both repeated crack-seal opening-mode failure and shear failure of fractures that formed in opening mode. Fractures are partially to completely sealed with crack-seal or euhedral quartz cement or quartz cement fragmented by shear reactivation. Degree of cementation controls the tendency of fractures for later shear reactivation, to interact elastically with adjacent open fractures, and their intersection behavior. Using kinematic, dynamic, and diagenetic criteria, we determine the sequence of opening-mode fracture formation and later shear reactivation. We find that sheared fracture systems of similar orientation display spatially varying sense of slip We attribute these inconsistent directions of shear reactivation to 1) a heterogeneous stress field in this highly fractured rock unit and 2) variations in the degree of fracture cement infill in fractures of same orientation, allowing fractures to reactivate at times when adjacent, more cemented fractures remain dormant. The observed interaction of chemical and mechanical fracture growth and sealing processes in this chemically reactive and heavily deformed rock unit results in a complex fracture network geometry not generally observed in less chemically reactive, shallower crustal environments.

  19. Study on the Carbonation Behavior of Cement Mortar by Electrochemical Impedance Spectroscopy

    PubMed Central

    Dong, Biqin; Qiu, Qiwen; Xiang, Jiaqi; Huang, Canjie; Xing, Feng; Han, Ningxu

    2014-01-01

    A new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable. The carbonation process can be quantitatively accessed by a parameter, which can be obtained by means of the electrochemical impedance spectroscopy (EIS)-based electrochemical model. It has been found that the parameter is a function of carbonation depth and of carbonation time. Thereby, prediction of carbonation depth can be achieved. PMID:28788452

  20. Study on the Carbonation Behavior of Cement Mortar by Electrochemical Impedance Spectroscopy.

    PubMed

    Dong, Biqin; Qiu, Qiwen; Xiang, Jiaqi; Huang, Canjie; Xing, Feng; Han, Ningxu

    2014-01-03

    A new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable. The carbonation process can be quantitatively accessed by a parameter, which can be obtained by means of the electrochemical impedance spectroscopy (EIS)-based electrochemical model. It has been found that the parameter is a function of carbonation depth and of carbonation time. Thereby, prediction of carbonation depth can be achieved.

  1. ONR (Office of Naval Research) Far East Scientific Information Bulletin. Volume 14, Number 2, April-June 1989

    DTIC Science & Technology

    1989-06-01

    tions on either side of the stoichiometric 4V) have been aluminized by using a pack composition. Four factors are considered cementation process. Cyclic...However, in this new applica- tion GPCF is expanding into fiber- (1) Improving CF strength by designing reinforced cements and concretes. Carbon new...called hybrid composite. portland cement matrix. CF provides: (2) Enhancing the energy-absorbing • Chemical inertness to acid and alkali mechanism of

  2. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seungmin, E-mail: lim76@illinois.edu; Mondal, Paramita

    2014-06-01

    The degradation of hydration products of cement is known to cause changes in the micro- and nano-structure, which ultimately drive thermo-mechanical degradation of cement-based composite materials at elevated temperatures. However, a detailed characterization of these changes is still incomplete. This paper presents results of an extensive experimental study carried out to investigate micro- and nano-structural changes that occur due to exposure of cement paste to high temperatures. Following heat treatment of cement paste up to 1000 °C, damage states were studied by compressive strength test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) atomic force microscopy (AFM) and AFM image analysis.more » Using experimental results and research from existing literature, new degradation processes that drive the loss of mechanical properties of cement paste are proposed. The development of micro-cracks at the interface between unhydrated cement particles and paste matrix, a change in C–S–H nano-structure and shrinkage of C–S–H, are considered as important factors that cause the thermal degradation of cement paste. - Highlights: • The thermal degradation of hydration products of cement is characterized at micro- and nano-scale using scanning electron microscopy (SEM) and atomic force microscopy (AFM). • The interface between unhydrated cement particles and the paste matrix is considered the origin of micro-cracks. • When cement paste is exposed to temperatures above 300 ºC, the nano-structure of C-S-H becomes a more loosely packed globular structure, which could be indicative of C-S-H shrinkage.« less

  3. Complexity in modeling of residual stresses and strains during polymerization of bone cement: effects of conversion, constraint, heat transfer, and viscoelastic property changes.

    PubMed

    Gilbert, Jeremy L

    2006-12-15

    Aseptic loosening of cemented joint prostheses remains a significant concern in orthopedic biomaterials. One possible contributor to cement loosening is the development of porosity, residual stresses, and local fracture of the cement that may arise from the in-situ polymerization of the cement. In-situ polymerization of acrylic bone cement is a complex set of interacting processes that involve polymerization reactions, heat generation and transfer, full or partial mechanical constraint, evolution of conversion- and temperature-dependent viscoelastic material properties, and thermal and conversion-driven changes in the density of the cement. Interactions between heat transfer and polymerization can lead to polymerization fronts moving through the material. Density changes during polymerization can, in the presence of mechanical constraint, lead to the development of locally high residual strain energy and residual stresses. This study models the interactions during bone cement polymerization and determines how residual stresses develop in cement and incorporates temperature and conversion-dependent viscoelastic behavior. The results show that the presence of polymerization fronts in bone cement result in locally high residual strain energies. A novel heredity integral approach is presented to track residual stresses incorporating conversion and temperature dependent material property changes. Finally, the relative contribution of thermal- and conversion-dependent strains to residual stresses is evaluated and it is found that the conversion-based strains are the major contributor to the overall behavior. This framework provides the basis for understanding the complex development of residual stresses and can be used as the basis for developing more complex models of cement behavior.

  4. Stress Survival Islet 2, Predominantly Present in Listeria monocytogenes Strains of Sequence Type 121, Is Involved in the Alkaline and Oxidative Stress Responses

    PubMed Central

    Harter, Eva; Wagner, Eva Maria; Zaiser, Andreas; Halecker, Sabrina; Wagner, Martin

    2017-01-01

    ABSTRACT The foodborne pathogen Listeria monocytogenes is able to survive a variety of stress conditions leading to the colonization of different niches like the food processing environment. This study focuses on the hypervariable genetic hot spot lmo0443 to lmo0449 haboring three inserts: the stress survival islet 1 (SSI-1), the single-gene insert LMOf2365_0481, and two homologous genes of the nonpathogenic species Listeria innocua: lin0464, coding for a putative transcriptional regulator, and lin0465, encoding an intracellular PfpI protease. Our prevalence study revealed a different distribution of the inserts between human and food-associated isolates. The lin0464-lin0465 insert was predominantly found in food-associated strains of sequence type 121 (ST121). Functional characterization of this insert showed that the putative PfpI protease Lin0465 is involved in alkaline and oxidative stress responses but not in acidic, gastric, heat, cold, osmotic, and antibiotic stresses. In parallel, deletion of lin0464 decreased survival under alkaline and oxidative stresses. The expression of both genes increased significantly under oxidative stress conditions independently of the alternative sigma factor σB. Furthermore, we showed that the expression of the protease gene lin0465 is regulated by the transcription factor lin0464 under stress conditions, suggesting that lin0464 and lin0465 form a functional unit. In conclusion, we identified a novel stress survival islet 2 (SSI-2), predominantly present in L. monocytogenes ST121 strains, beneficial for survival under alkaline and oxidative stresses, potentially supporting adaptation and persistence of L. monocytogenes in food processing environments. IMPORTANCE Listeria monocytogenes strains of ST121 are known to persist for months and even years in food processing environments, thereby increasing the risk of food contamination and listeriosis. However, the molecular mechanism underlying this remarkable niche-specific adaptation is still unknown. Here, we demonstrate that the genomic islet SSI-2, predominantly present in L. monocytogenes ST121 strains, is beneficial for survival under alkaline and oxidative stress conditions, which are routinely encountered in food processing environments. Our findings suggest that SSI-2 is part of a diverse set of molecular determinants contributing to niche-specific adaptation and persistence of L. monocytogenes ST121 strains in food processing environments. PMID:28625982

  5. Stress Survival Islet 2, Predominantly Present in Listeria monocytogenes Strains of Sequence Type 121, Is Involved in the Alkaline and Oxidative Stress Responses.

    PubMed

    Harter, Eva; Wagner, Eva Maria; Zaiser, Andreas; Halecker, Sabrina; Wagner, Martin; Rychli, Kathrin

    2017-08-15

    The foodborne pathogen Listeria monocytogenes is able to survive a variety of stress conditions leading to the colonization of different niches like the food processing environment. This study focuses on the hypervariable genetic hot spot lmo0443 to lmo0449 haboring three inserts: the stress survival islet 1 (SSI-1), the single-gene insert LMOf2365_0481 , and two homologous genes of the nonpathogenic species Listeria innocua : lin0464 , coding for a putative transcriptional regulator, and lin0465 , encoding an intracellular PfpI protease. Our prevalence study revealed a different distribution of the inserts between human and food-associated isolates. The lin0464-lin0465 insert was predominantly found in food-associated strains of sequence type 121 (ST121). Functional characterization of this insert showed that the putative PfpI protease Lin0465 is involved in alkaline and oxidative stress responses but not in acidic, gastric, heat, cold, osmotic, and antibiotic stresses. In parallel, deletion of lin0464 decreased survival under alkaline and oxidative stresses. The expression of both genes increased significantly under oxidative stress conditions independently of the alternative sigma factor σ B Furthermore, we showed that the expression of the protease gene lin0465 is regulated by the transcription factor lin0464 under stress conditions, suggesting that lin0464 and lin0465 form a functional unit. In conclusion, we identified a novel stress survival islet 2 (SSI-2), predominantly present in L. monocytogenes ST121 strains, beneficial for survival under alkaline and oxidative stresses, potentially supporting adaptation and persistence of L. monocytogenes in food processing environments. IMPORTANCE Listeria monocytogenes strains of ST121 are known to persist for months and even years in food processing environments, thereby increasing the risk of food contamination and listeriosis. However, the molecular mechanism underlying this remarkable niche-specific adaptation is still unknown. Here, we demonstrate that the genomic islet SSI-2, predominantly present in L. monocytogenes ST121 strains, is beneficial for survival under alkaline and oxidative stress conditions, which are routinely encountered in food processing environments. Our findings suggest that SSI-2 is part of a diverse set of molecular determinants contributing to niche-specific adaptation and persistence of L. monocytogenes ST121 strains in food processing environments. Copyright © 2017 Harter et al.

  6. Application of 'Six Sigma{sup TM}' and 'Design of Experiment' for Cementation - Recipe Development for Evaporator Concentrate for NPP Ling AO, Phase II (China) - 12555

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehrmann, Henning; Perdue, Robert

    2012-07-01

    Cementation of radioactive waste is a common technology. The waste is mixed with cement and water and forms a stable, solid block. The physical properties like compression strength or low leach ability depends strongly on the cement recipe. Due to the fact that this waste cement mixture has to fulfill special requirements, a recipe development is necessary. The Six Sigma{sup TM}' DMAIC methodology, together with the Design of experiment (DoE) approach, was employed to optimize the process of a recipe development for cementation at the Ling Ao nuclear power plant (NPP) in China. The DMAIC offers a structured, systematical andmore » traceable process to derive test parameters. The DoE test plans and statistical analysis is efficient regarding the amount of test runs and the benefit gain by getting a transfer function. A transfer function enables simulation which is useful to optimize the later process and being responsive to changes. The DoE method was successfully applied for developing a cementation recipe for both evaporator concentrate and resin waste in the plant. The key input parameters were determined, evaluated and the control of these parameters were included into the design. The applied Six Sigma{sup TM} tools can help to organize the thinking during the engineering process. Data are organized and clearly presented. Various variables can be limited to the most important ones. The Six Sigma{sup TM} tools help to make the thinking and decision process trace able. The tools can help to make data driven decisions (e.g. C and E Matrix). But the tools are not the only golden way. Results from scoring tools like the C and E Matrix need close review before using them. The DoE is an effective tool for generating test plans. DoE can be used with a small number of tests runs, but gives a valuable result from an engineering perspective in terms of a transfer function. The DoE prediction results, however, are only valid in the tested area. So a careful selection of input parameter and their limits for setting up a DoE is very important. An extrapolation of results is not recommended because the results are not reliable out of the tested area. (authors)« less

  7. High resolution cathodoluminescence spectroscopy of carbonate cementation in Khurmala Formation (Paleocene-L. Eocene) from Iraqi Kurdistan Region, Northern Iraq

    NASA Astrophysics Data System (ADS)

    Omer, Muhamed F.; Omer, Dilshad; Zebari, Bahroz Gh.

    2014-12-01

    A combination of high resolution cathodoluminsecnce-spectroscopy (HRS-CL) with spatial electron microprobe analysis and optical microscopy is used to determine paragenesis and history of cementation in the limestones and dolostones of Khurmala Formation which is exposed in many parts of Northern Iraq. Khurmala Formation was subjected to different diagenetic processes such as micritization, compaction, dissolution, neomorphism, pyritization and cementation that occurred during marine to shallow burial stages and culminated during intermediate to deep burial later stages. Five dolomite textures are recognized and classified according to crystal size distribution and crystal-boundary shape. Dolomitization is closely associated with the development of secondary porosity that pre-and postdates dissolution and corrosion; meanwhile such porosity was not noticed in the associated limestones. Microprobe analysis revealed three types of cement, calcite, dolomite and ankerite which range in their luminescence from dull to bright. Cathodoluminescence study indicated four main texture generations. These are (1) unzoned microdolomite of planar and subhedral shape, with syntaxial rim cement of echinoderm that show dull to red luminescence, (2) equant calcite cements filling interparticle pores which shows dull luminescence and weak zonal growth, (3.1) homogenous intrinsic blue stoichiometric calcite with dull luminescence and without activators, (3.2) coarse blocky calcite cement with strong oscillatory zoning and bright orange luminescence which postdates other calcite cements, (4) ankerite cement with red to orange, non-luminescence growth zonation which is the last formed cement.

  8. Physical and mechanical properties of sand stabilized by cement and natural zeolite

    NASA Astrophysics Data System (ADS)

    Salamatpoor, Sina; Jafarian, Yaser; Hajiannia, Alborz

    2018-05-01

    Loose sands are prone to lose their shear strength when being subjected to static or cyclic loads. To this end, there exist several methods to improve the mechanical properties of sands, but the most crucial and viable approach is the one with the lowest harmful environmental impact both in production and recycling processes. In this regard, zeolite as a natural pozzolanic additive offers an eco-friendly improvement in strength parameters of cemented sandy soils. Thereby, in this study, a series of unconfined compressive strength (UCS) tests are conducted to evaluate the mechanical parameters of the zeolite-cemented sand. The results demonstrate a meaningful increase in the UCS of the treated sand samples for replacement of cement by zeolite at an optimum proportion of 40% in specimens with 14 and 28 days curing time. The effectiveness of the improvement process is demonstrated by the strength improvement ratio which was up to be 128% to 209% for the samples with 14 and 28 days curing time, respectively. With regard to the above results, zeolite can be introduced as a promising cement substitute in stabilization of sandy ground including backfills, roadbed, embankments, and other structural filling systems.

  9. Importance of dust storms in the diagenesis of sandstones: a case study, Entrada sandstone in the Ghost Ranch area, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Orhan, Hükmü

    1992-04-01

    The importance of dust storms on geological processes has only been studied recently. Case-hardening, desert-varnish formation, duricrust development, reddening and cementation of sediments and caliche formation, are some important geological processes related to dust storms. Dust storms can also be a major source for cements in aeolian sandstones. The Jurassic aeolian Entrada Formation in the Ghost Ranch area is composed of quartz with minor amounts of feldspar and rock fragments, and is cemented with smectite as grain coatings and calcite and kaolinite as pore fillings. Smectite shows a crinkly and honeycomb-like morphology which points to an authigenic origin. The absence of smectite as framework grains and the presence of partially dissolved grains, coated with smectite and smectite egg-shells, indicate an external source. Clay and fine silt-size particles are believed to be the major source for cements, smectite and calcite in the Entrada Formation. The common association of kaolinite with altered feldspar, and the absence of kaolinite in spots heavily cemented with calcite, lead to the conclusions that the kaolinite formation postdates carbonates and that framework feldspar grains were the source of kaolinite.

  10. The Impact of Thermocycling Process on the Dislodgement Force of Different Endodontic Cements

    PubMed Central

    Saghiri, Mohammad Ali; Asatourian, Armen; Garcia-Godoy, Franklin; Gutmann, James L.; Sheibani, Nader

    2013-01-01

    To evaluate the effects of thermocycling (500 cycles, 5°C/55°C) on the push-out bond strength of calcium silicate based cements including WMTA, Nano-WMTA, and Bioaggregate to root dentin. Forty-eight dentin slices were prepared and divided into 3 groups (n = 16) and filled with Angelus WMTA, Nano-WMTA, or Bioaggregate. After incubation, half of the samples were thermocycled while the other half remained untreated. Push-out bond strength was calculated, and the modes of the bond failures were determined by SEM. The highest bond strength was seen in nonthermocycled Nano-WMTA samples and the lowest in thermocycled Bioaggregate samples. The significant differences between nonthermocycled and thermocycled samples were only noticed in WMTA and Nano-WMTA groups (P < 0.001). The mode of failure for thermocycled samples of all three cements was mostly cohesive. Thermocycling process can drastically affect the push-out bond strength of calcium silicate based cements. The intrastructural damages occurred due to the thermal stresses, causing cohesive failures in set materials. Sealing property of endodontic cements which have experienced the thermal stresses can be jeopardized due to occlusal forces happening in furcation cites. PMID:24063004

  11. Mineralogical Characterization of Navajo Sandstone Iron Oxide Concretions Using QEMSCAN and Reflectance Spectroscopy; Analogue for Martian Diagenetic Processes

    NASA Astrophysics Data System (ADS)

    Potter, S. L.; Chan, M. A.; Petersen, E. U.

    2008-03-01

    The Navajo Sandstone concretions were evaluated to detect mineralogical changes and chemical gradients. Sequential relationships suggest an evolution of phases of cements. The Mars "blueberries" may have a similar evolution of cements.

  12. Influence of Superplasticizer-Microsilica Complex on Cement Hydration, Structure and Properties of Cement Stone

    NASA Astrophysics Data System (ADS)

    Ivanov, I. M.; Kramar, L. Ya; Orlov, A. A.

    2017-11-01

    According to the study results, the influence of complex additives based on microsilica and superplasticizers on the processes of the heat release, hydration, hardening, formation of the structure and properties of cement stone was determined. Calorimetry, derivatography, X-ray phase analysis, electronic microscopy and physical-mechanical methods for analyzing the properties of cement stone were used for the studies. It was established that plasticizing additives, in addition to the main water-reducing and rheological functions, regulate cement solidification and hardening while polycarboxylate superplasticizers even contribute to the formation of a special, amorphized microstructure of cement stone. In a complex containing microsilica and a polycarboxylate superplasticizer the strength increases sharply with a sharp drop in the capillary porosity responsible for the density, permeability, durability, and hence, the longevity of concrete. All this is a weighty argument in favor of the use of microsilica jointly with a polycarboxylate superplasticizer in road concretes operated under aggressive conditions.

  13. Mercury removal from aqueous solutions by zinc cementation.

    PubMed

    Ku, Young; Wu, Ming-Huan; Shen, Yung-Shen

    2002-01-01

    The main purpose of this research is to study the addition effect of the surfactant and other operating factors on the treatment of wastewater containing mercury ions in aqueous solution by cementation with sacrificing metal, zinc. The removal of mercury ions from aqueous solutions by cementation of zinc powder was found to be a function of solution pH and temperature, amount of zinc, concentration of mercury ion, contact time and the addition of several organic surfactants. Cementation of mercury was shown to be a feasible process to achieve a very high degree of mercury removal over a broad operational range within a fairly reasonable contact time. The reaction rate is approximately first order with respect to the concentration of mercury ion in aqueous solution. Among the surfactants used in this study, only the presence of SDS, an anionic surfactant, slightly enhanced the cementation rate of mercury. The presence of CTAB and Triton-X100 retarded the cementation of mercury by zinc.

  14. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns

    NASA Astrophysics Data System (ADS)

    Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie

    2015-06-01

    Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.

  15. Ultrasonic measurement of the effects of light irradiation and presence of water on the polymerization of self-adhesive resin cement.

    PubMed

    Takenaka, Hirotaka; Ouchi, Hajime; Sai, Keiichi; Kawamoto, Ryo; Murayama, Ryosuke; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2015-08-14

    Self-adhesive resin cements are useful in restorations because they reduce the number of clinical steps involved in the restoration process. This study evaluated, using ultrasonic measurements, the influence of light irradiation and the presence of water on the polymerization behavior and elastic modulus of a self-adhesive resin cement. A self-adhesive resin cement (RelyX Unicem 2 Automix) or a resin cement (RelyX ARC) was inserted into a transparent mold on a sample stage, and the presence of water and effect of light-irradiation were evaluated. The transit time of a sonic wave through the cement disk was divided by the specimen thickness to obtain the sonic velocity, and longitudinal and shear waves were used to determine the elastic modulus. When the resin cements were light-irradiated, the sonic velocity rapidly increased and plateaued at 2,500-2,700 m s -1 . When the cements were not irradiated, the rates of increase in the sonic velocity were reduced. When water was applied to the sample stage, the sonic velocity was reduced. The elastic modulus values of the specimens ranged from 9.9 to 15.9 GPa after 24 h. The polymerization behavior of self-adhesive resin cements is affected by the polymerization mode and the presence of water. © 2015 Eur J Oral Sci.

  16. Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel

    NASA Astrophysics Data System (ADS)

    Criado, Maria; Provis, John L.

    2018-06-01

    The pore solutions of alkali-activated slag cements and Portland-based cements are very different in terms of their chemical and redox characteristics, particularly due to the high alkalinity and high sulfide content of alkali-activated slag cement. Therefore, differences in corrosion mechanisms of steel elements embedded in these cements could be expected, with important implications for the durability of reinforced concrete elements. This study assesses the corrosion behaviour of steel embedded in alkali-activated blast furnace slag (BFS) mortars exposed to alkaline solution, alkaline chloride-rich solution, water, and standard laboratory conditions, using electrochemical techniques. White Portland cement (WPC) mortars and blended cement mortars (white Portland cement and blast furnace slag) were also tested for comparative purposes. The steel elements embedded in immersed alkali-activated slag mortars presented very negative redox potentials and high apparent corrosion current values; the presence of sulfide reduced the redox potential, and the oxidation of the reduced sulfur-containing species within the cement itself gave an electrochemical signal that classical electrochemical tests for reinforced concrete durability would interpret as being due to steel corrosion processes. However, the actual observed resistance to chloride-induced corrosion was very high, as measured by extraction and characterisation of the steel at the end of a 9-month exposure period, whereas the steel embedded in white Portland cement mortars was significantly damaged under the same conditions.

  17. Spectroscopic investigation of Ni speciation in hardened cement paste.

    PubMed

    Vespa, M; Dähn, R; Grolimund, D; Wieland, E; Scheidegger, A M

    2006-04-01

    Cement-based materials play an important role in multi-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive wastes. Cement is used to condition and stabilize the waste materials and to construct the engineered barrier systems (container, backfill, and liner materials) of repositories for radioactive waste. In this study, Ni uptake by hardened cement paste has been investigated with the aim of improving our understanding of the immobilization process of heavy metals in cement on the molecular level. X-ray absorption spectroscopy (XAS) coupled with diffuse reflectance spectroscopy (DRS) techniques were used to determine the local environment of Ni in cement systems. The Ni-doped samples were prepared at two different water/cement ratios (0.4, 1.3) and different hydration times (1 hour to 1 year) using a sulfate-resisting Portland cement. The metal loadings and the metal salts added to the system were varied (50 up to 5000 mg/kg; NO3(-), SO4(2-), Cl-). The XAS study showed that for all investigated systems Ni(ll) is predominantly immobilized in a layered double hydroxide (LDH) phase, which was corroborated by DRS measurements. Only a minor extent of Ni(ll) precipitates as Ni-hydroxides (alpha-Ni(OH)2 and beta-Ni(OH)2). This finding suggests that Ni-Al LDH, rather than Ni-hydroxides, is the solubility-limiting phase in the Ni-doped cement system.

  18. Utilization of municipal sewage sludge as additives for the production of eco-cement.

    PubMed

    Lin, Yiming; Zhou, Shaoqi; Li, Fuzhen; Lin, Yixiao

    2012-04-30

    The effects of using dried sewage sludge as additive on cement property in the process of clinker burning were investigated in this paper. The eco-cement samples were prepared by adding 0.50-15.0% of dried sewage sludge to unit raw meal, and then the mixtures were burned at 1450 °C for 2 h. The results indicated that the major components in the eco-cement clinkers were similar to those in ordinary Portland cement. Although the C(2)S phase formation increased with the increase of sewage sludge content, it was also found that the microstructure of the mixture containing 15.0% sewage sludge in raw meal was significantly different and that a larger amount of pores were distributed in the clinker. Moreover, all the eco-cement pastes had a longer initial setting time and final setting time than those of plain cement paste, which increased as the sewage sludge content in the raw meal increased. All the eco-cement pastes had lower early flexural strengths, which increased as the sewage sludge content increased, while the compressive strengths decreased slightly. However, this had no significant effect on all the strengths at later stages. Furthermore, the leaching concentrations of all the types of eco-cement clinkers met the standard of Chinese current regulatory thresholds. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Applications of thermal energy storage in the cement industry

    NASA Technical Reports Server (NTRS)

    Jaeger, F. A.; Beshore, D. G.; Miller, F. M.; Gartner, E. M.

    1978-01-01

    In the manufacture of cement, literally trillions of Btu's are rejected to the environment each year. The purpose of this feasibility study program was to determine whether thermal energy storage could be used to conserve or allow alternative uses of this rejected energy. This study identifies and quantifies the sources of rejected energy in the cement manufacturing process, established use of this energy, investigates various storage system concepts, and selects energy conservation systems for further study. Thermal performance and economic analyses are performed on candidate storage systems for four typical cement plants representing various methods of manufacturing cement. Through the use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 10 to the 13th power Btu/year, or an equivalent on investment of the proposed systems are an incentive for further development.

  20. Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations.

    PubMed

    Liu, Guorui; Zhan, Jiayu; Zheng, Minghui; Li, Li; Li, Chunping; Jiang, Xiaoxu; Wang, Mei; Zhao, Yuyang; Jin, Rong

    2015-12-15

    A pilot study was performed to evaluate formation, distribution and emission of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from cement kilns that co-process fly ash from municipal solid waste incineration (MSWI). Stack gas and particulate samples from multiple stages in the process were collected and analyzed for PCDD/Fs. Stack emissions of PCDD/Fs were below the European Union limit for cement kilns (0.1 ng TEQ m(-3)). PCDD/F concentrations in particulates from the cyclone preheater outlet, suspension preheater boiler, humidifier tower, and back-end bag filter were much higher than in other samples, which suggests that these areas are the major sites of PCDD/F formation. Comparison of PCDD/F homolog and congener profiles from different stages suggested that tetra- and penta-chlorinated furans were mainly formed during cement kiln co-processing of MSWI fly ash. Three lower chlorinated furan congeners, including 2,3,7,8-tetrachlorodibenzofuran, 1,2,3,7,8-pentachlorodibenzo-p-dioxin and 2,3,4,7,8-pentachlorodibenzofuran, were identified as dominant contributors to the toxic equivalents (TEQ) of the PCDD/Fs. The concentration of PCDD/Fs in particulates was correlated with chloride content, which is consistent with its positive effect on PCDD/F formation. This could be mitigated by pretreating the feedstock to remove chloride and metals. Mass balance indicated that cement kilns eliminated about 94% of the PCDD/F TEQ input from the feedstock. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Robot based deposition of WC-Co HVOF coatings on HSS cutting tools as a substitution for solid cemented carbide cutting tools

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Schaak, C.; Biermann, D.; Aßmuth, R.; Goeke, S.

    2017-03-01

    Cemented carbide (hard metal) cutting tools are the first choice to machine hard materials or to conduct high performance cutting processes. Main advantages of cemented carbide cutting tools are their high wear resistance (hardness) and good high temperature strength. In contrast, cemented carbide cutting tools are characterized by a low toughness and generate higher production costs, especially due to limited resources. Usually, cemented carbide cutting tools are produced by means of powder metallurgical processes. Compared to conventional manufacturing routes, these processes are more expensive and only a limited number of geometries can be realized. Furthermore, post-processing and preparing the cutting edges in order to achieve high performance tools is often required. In the present paper, an alternative method to substitute solid cemented carbide cutting tools is presented. Cutting tools made of conventional high speed steels (HSS) were coated with thick WC-Co (88/12) layers by means of thermal spraying (HVOF). The challenge is to obtain a dense, homogenous, and near-net-shape coating on the flanks and the cutting edge. For this purpose, different coating strategies were realized using an industrial robot. The coating properties were subsequently investigated. After this initial step, the surfaces of the cutting tools were ground and selected cutting edges were prepared by means of wet abrasive jet machining to achieve a smooth and round micro shape. Machining tests were conducted with these coated, ground and prepared cutting tools. The occurring wear phenomena were analyzed and compared to conventional HSS cutting tools. Overall, the results of the experiments proved that the coating withstands mechanical stresses during machining. In the conducted experiments, the coated cutting tools showed less wear than conventional HSS cutting tools. With respect to the initial wear resistance, additional benefits can be obtained by preparing the cutting edge by means of wet abrasive jet machining.

  2. Reaction processes and permeability changes during CO2-rich brine flow through fractured Portland cement

    NASA Astrophysics Data System (ADS)

    Abdoulghafour, H.; Luquot, L.; Gouze, P.

    2012-12-01

    So far, cement alteration was principally studied experimentally using batch reactor (with static or renewed fluid). All exhibit similar carbonation mechanisms. The acidic solution, formed by the dissolution of the CO2 into the pore water or directly surrounding the cement sample, diffuses into the cement and induces dissolution reactions of the cement hydrates in particular portlandite and CSH. The calcium released by the dissolution of these calcium bearing phases combining with carbonate ions of the fluid forms calcium carbonates. The cement pH, initially around 13, falls to values where carbonate ion is the most dominant element (pH ~ 9), then CaCO3 phases can precipitate. These studies mainly associate carbonation process with a reduction of porosity and permeability. Indeed an increase of volume (about 10%) is expected during the formation of calcite from portlandite (equation 2) assuming a stoichiometric reaction. Here we investigated the cement alteration mechanisms in the frame of a controlled continuous renewal of CO2-rich fluid in a fracture. This situation is that expected when seepage is activated by the mechanical failure of the cement material that initially seals two layers of distinctly different pressure: the storage reservoir and the aquifer above the caprock, for instance. We study the effect of flow rates from quasi-static flow to higher flow rates for well-connected fractures. In the quasi-static case we observed an extensive conversion of portlandite (Ca(OH)2) to calcite in the vicinity of the fracture similar to that observed in the published batch experiments. Eventually, the fracture was almost totally healed. The experiments with constant flow revealed a different behaviour triggered by the continuous renewing of the reactants and withdrawal of reaction products. We showed that calcite precipitation is more efficient for low flow rate. With intermediate flow rate, we measured that permeability increases slowly at the beginning of the experiment and then remains constant due to calcite precipitation in replacement of CSH and CH into fracture border. With higher flow rate, we measured a constant permeability which can be explained by the development of a highly hydrated Si-rich zone which maintains the initial fracture aperture during all over the experiment while noticeable mass is released from the sample. These preliminary results emphasize that more complex behaviours than that envisaged from batch experiments may take place in the vicinity of flowing fractures. We demonstrated that if only micro-cracks appear in the cement well, carbonation reaction may heal these micro-cracks and mitigate leakage whereas conductive fractures allowing high flow may represent a risk of perennial leakage because the net carbonation process, including the calcite precipitation and its subsequent re-dissolution, is sufficiently to heal the fracture. However, the precipitation of Si-rich amorphous phases may maintain the initial fracture aperture and limit the leakage rate. Keywords: leakage, cement alteration, flow rate, fracture, permeability changes, reaction processes.

  3. Emerging Energy-efficiency and CO{sub 2} Emission-reduction Technologies for Cement and Concrete Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanbeigi, Ali; Price, Lynn; Lin, Elina

    2012-04-06

    Globally, the cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO{sub 2}) emissions. World cement demand and production are increasing significantly, leading to an increase in this industry's absolute energy use and CO{sub 2} emissions. Development of new energy-efficiency and CO{sub 2} emission-reduction technologies and their deployment in the market will be key for the cement industry's mid- and long-term climate change mitigation strategies. This report is an initial effort to compile available information on process description, energy savings, environmental and other benefits, costs, commercialization status, and references for emerging technologies to reduce the cement industry'smore » energy use and CO{sub 2} emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies for the cement industry that have already been commercialized, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on nineteen emerging technologies for the cement industry, with the goal of providing engineers, researchers, investors, cement companies, policy makers, and other interested parties with easy access to a well-structured database of information on these technologies.« less

  4. Residence times of reef-island sediments constrained by post-mortem precipitates

    NASA Astrophysics Data System (ADS)

    Mann, Thomas; Wizemann, André; Kench, Paul; Jompa, Jamaluddin; Westphal, Hildegard

    2017-04-01

    The precipitation of carbonate cements is a rapid process in tropical marine environments. Distinct from calcification, the onset of cementation coincides with the termination of 14C uptake within carbonate-sediment forming organisms. Here we show that this relationship presents new opportunities for examining the temporal lag between organism death and deposition in carbonate systems - the prerequisite for reliable depositional chronologies. We dated skeletal constituents collected from discretely stratified reef-island deposits in Indonesia. In each of the strata, internally least cemented segments of the calcifying green alga Halimeda yield the youngest ages. Complementary mesocosm experiments on cementation rates reveal that post-mortem cement growth initiates within months after transport commences. Continuous pore-filling cementation promptly stabilizes the initially fragile Halimeda skeleton. Furthermore, abrasion experiments show that such cementation significantly increases the durability of segments during transport. Implications of these findings are profound in two respects; first, evaluating residence times of skeletal carbonate constituents based on abrasion features is far from being adequate. Second, the absence of cements within sedimentary Halimeda segments signals that post-mortem transport through the intertidal zone occurred quasi-instantaneously. Radiometric ages from such specimens should minimize the temporal lag between organism death and deposition thus making them reliable indicators of sedimentation in supratidal environments.

  5. Effects of Co-Processing Sewage Sludge in the Cement Kiln on PAHs, Heavy Metals Emissions and the Surrounding Environment.

    PubMed

    Lv, Dong; Zhu, Tianle; Liu, Runwei; Li, Xinghua; Zhao, Yuan; Sun, Ye; Wang, Hongmei; Zhang, Fan; Zhao, Qinglin

    2018-04-08

    To understand the effects of co-processing sewage sludge in the cement kiln on non-criterion pollutants emissions and its surrounding environment, the flue gas from a cement kiln stack, ambient air and soil from the background/downwind sites were collected in the cement plant. Polycyclic aromatic hydrocarbons (PAHs) and heavy metals of the samples were analyzed. The results show that PAHs in flue gas mainly exist in the gas phase and the low molecular weight PAHs are the predominant congener. The co-processing sewage sludge results in the increase in PAHs and heavy metals emissions, especially high molecular weight PAHs and low-volatile heavy metals such as Cd and Pb in the particle phase, while it does not change their compositions and distribution patterns significantly. The concentrations and their distributions of the PAHs and heavy metals between the emissions and ambient air have a positive correlation and the co-processing sewage sludge results in the increase of PAHs and heavy metals concentrations in the ambient air. The PAHs concentration level and their distribution in soil are proportional to those in the particle phase of flue gas, and the co-processing sewage sludge can accelerate the accumulation of the PAHs and heavy metals in the surrounding soil, especially high/middle molecular weight PAHs and low-volatile heavy metals.

  6. Confocal Raman Microscopy: new perspective on the weathering of anhydrous cement

    NASA Astrophysics Data System (ADS)

    Torres-Carrasco, M.; del Campo, A.; de la Rubia, MA; Reyes, E.; Moragues, A.; Fernández, JF

    2017-10-01

    Raman spectroscopy when is combined with Confocal microscopy is a non-destructive technique that allow us to obtain information in cementitious materials. In this study, we present non-destructive image and structural analysis of anhydrous cement with carbonation evidences by Confocal Raman Microscopy (CRM). The results obtained by CRM show a direct relationship between the presence of the weathering processes of an anhydrous cement with the presence of sulphates and surprisingly, with the existence of amorphous carbon in the medium.

  7. Modeling of a self-healing process in blast furnace slag cement exposed to accelerated carbonation

    NASA Astrophysics Data System (ADS)

    Zemskov, Serguey V.; Ahmad, Bilal; Copuroglu, Oguzhan; Vermolen, Fred J.

    2013-02-01

    In the current research, a mathematical model for the post-damage improvement of the carbonated blast furnace slag cement (BFSC) exposed to accelerated carbonation is constructed. The study is embedded within the framework of investigating the effect of using lightweight expanded clay aggregate, which is incorporated into the impregnation of the sodium mono-fluorophosphate (Na-MFP) solution. The model of the self-healing process is built under the assumption that the position of the carbonation front changes in time where the rate of diffusion of Na-MFP into the carbonated cement matrix and the reaction rates of the free phosphate and fluorophosphate with the components of the cement are comparable to the speed of the carbonation front under accelerated carbonation conditions. The model is based on an initial-boundary value problem for a system of partial differential equations which is solved using a Galerkin finite element method. The results obtained are discussed and generalized to a three-dimensional case.

  8. Clay-cement suspensions - rheological and functional properties

    NASA Astrophysics Data System (ADS)

    Wojcik, L.; Izak, P.; Mastalska-Poplawska, J.; Gajek, M.

    2017-01-01

    The piping erosion in soil is highly unexpected in civil engineering. Elimination of such damages is difficult, expensive and time-consuming. One of the possibility is the grouting method. This method is still developed into direction of process automation as well as other useful properties of suspensions. Main way of modernization of the grouting method is connected it with rheology of injection and eventuality of fitting them to specific problems conditions. Very popular and useful became binders based on modified clays (clay-cement suspensions). Important principle of efficiency of the grouting method is using of time-dependent pseudothixotropic properties of the clay-cement suspensions. The pseudo-rheounstability aspect of the suspensions properties should be dedicated and fitted to dynamic changes of soil conditions destructions. Whole process of the modification of the suspension rheology is stimulated by the specific agents. This article contains a description of practical aspects of the rheological parameters managing of the clay-cement suspensions, dedicated to the building damages, hydrotechnic constructions etc.

  9. Reusing pretreated desulfurization slag to improve clinkerization and clinker grindability for energy conservation in cement manufacture.

    PubMed

    Chen, Ying-Liang; Chang, Juu-En; Shih, Pai-Haung; Ko, Ming-Sheng; Chang, Yi-Kuo; Chiang, Li-Choung

    2010-09-01

    The purpose of this study was to combine the physical pretreatments of grinding, sieving, and magnetic-separation processes to reclaim iron-rich materials from the desulfurization slag, and to use the remainder for cement clinker production. The iron-rich materials can be separated out efficiently by grinding for 30 min and sieving with a 0.3 mm mesh. The non-magnetic fraction of the particles smaller than 0.3 mm was in the majority, and proved to be suitable for use as a cement raw material. The raw mixes prepared with a pretreated desulfurization slag had a relatively high reactivity, and the temperature at which alite forms was significantly reduced during the clinkerization process. The clinkers produced with 10% desulfurization slag had a high level of alite and good grindability. Generally, the improvements in clinkerization and clinker grindability are beneficial to energy conservation in cement manufacture. 2010 Elsevier Ltd. All rights reserved.

  10. The influence of temporary cements on dental adhesive systems for luting cementation.

    PubMed

    Ribeiro, José C V; Coelho, Paulo G; Janal, Malvin N; Silva, Nelson R F A; Monteiro, André J; Fernandes, Carlos A O

    2011-03-01

    This study tested the hypothesis that bond strength of total- and self-etching adhesive systems to dentine is not affected by the presence of remnants from either eugenol-containing (EC) or eugenol-free (EF) temporary cements after standardized cleaning procedures. Thirty non-carious human third molars were polished flat to expose dentine surfaces. Provisional acrylic plates were fabricated and cemented either with EC, EF or no temporary cements. All specimens were incubated for 7 days in water at 37°C. The restorations were then taken out and the remnants of temporary cements were mechanically removed with a dental instrument. The dentine surfaces were cleaned with pumice and treated with either total-etching (TE) or self-etching (SE) dental adhesive systems. Atomic force microscopy was used to examine the presence of remnants of temporary cements before and after dentine cleaning procedures. Composite resin build-ups were fabricated and cemented to the bonded dentine surfaces with a resin luting cement. The specimens were then sectioned to obtain 0.9mm(2) beams for microtensile bond strength testing. Fractographic analysis was performed by optical and scanning electron microscopy. ANOVA showed lower mean microtensile bond strength in groups of specimens treated with EC temporary cement than in groups treated with either no cement or an EF cement (p<0.05). Mean microtensile bond strength was lower in groups employing the SE rather than the TE adhesive system (p<0.001). SE samples were also more likely to fail during initial processing of the samples. There was no evidence of interaction between cement and adhesive system effects on tensile strength. Fractographic analysis indicated different primary failure modes for SE and TE bonding systems, at the dentine-adhesive interface and at the resin cement-resin composite interface, respectively. The use of eugenol-containing temporary cements prior to indirect bonding restorations reduce, to a statistically similar extent, the bond strength of both total- and self-etching adhesive systems to dentine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Heavyweight cement concrete with high stability of strength parameters

    NASA Astrophysics Data System (ADS)

    Kudyakov, Konstantin; Nevsky, Andrey; Danke, Ilia; Kudyakov, Aleksandr; Kudyakov, Vitaly

    2016-01-01

    The present paper establishes regularities of basalt fibers distribution in movable cement concrete mixes under different conditions of their preparation and their selective introduction into mixer during the mixing process. The optimum content of basalt fibers was defined as 0.5% of the cement weight, which provides a uniform distribution of fibers in the concrete volume. It allows increasing compressive strength up to 51.2% and increasing tensile strength up to 28.8%. Micro-structural analysis identified new formations on the surface of basalt fibers, which indicates the good adhesion of hardened cement paste to the fibers. Stability of concrete strength parameters has significantly increased with introduction of basalt fibers into concrete mix.

  12. Radon exhalation of hardening concrete: monitoring cement hydration and prediction of radon concentration in construction site.

    PubMed

    Kovler, Konstantin

    2006-01-01

    The unique properties of radon as a noble gas are used for monitoring cement hydration and microstructural transformations in cementitious system. It is found that the radon concentration curve for hydrating cement paste enclosed in the chamber increases from zero (more accurately - background) concentrations, similar to unhydrated cement. However, radon concentrations developed within 3 days in the test chamber containing cement paste were approximately 20 times higher than those of unhydrated cement. This fact proves the importance of microstructural transformations taking place in the process of cement hydration, in comparison with cement grain, which is a time-stable material. It is concluded that monitoring cement hydration by means of radon exhalation method makes it possible to distinguish between three main stages, which are readily seen in the time dependence of radon concentration: stage I (dormant period), stage II (setting and intensive microstructural transformations) and stage III (densification of the structure and drying). The information presented improves our understanding of the main physical mechanisms resulting in the characteristic behavior of radon exhalation in the course of cement hydration. The maximum value of radon exhalation rate observed, when cement sets, can reach 0.6 mBq kg(-1) s(-1) and sometimes exceeds 1.0 mBq kg(-1) s(-1). These values exceed significantly to those known before for cementitious materials. At the same time, the minimum ventilation rate accepted in the design practice (0.5 h(-1)), guarantees that the concentrations in most of the cases will not exceed the action level and that they are not of any radiological concern for construction workers employed in concreting in closed spaces.

  13. Evaluation of the effects of implant materials and designs on thermal necrosis of bone in cemented hip arthroplasty.

    PubMed

    Li, Chaodi; Kotha, Shiva; Mason, James

    2003-01-01

    The exothermic polymerization of bone cement may induce thermal necrosis of bone in cemented hip arthroplasty. A finite element formulation was developed to predict the evolution of the temperature with time in the cemented hip replacement system. The developed method is capable of taking into account both the chemical reaction that generates heat during bone cement polymerization (through a kinetic model) and the physical process of heat conduction (with an energy balance equation). The possibility of thermal necrosis of bone was then evaluated based on the temperature history in the bone and an appropriate damage criterion. Specifically, we evaluate the role of implant materials and designs on the thermal response of the system. Results indicated that the peak temperature at the bone/cement interface with a metal prosthesis was lower than that with a polymer or a composite prosthesis in hip replacement systems. Necrosis of bone was predicted to occur with a polymer or a composite prosthesis while no necrosis was predicted with a metal prosthesis in the simulated conditions. When reinforcing osteoporotic hips with injected bone cement in the cancellous core of the femur, the volume of bone cement implanted is increased which may increase the risk of thermal necrosis of bone. We evaluate whether this risk can be decreased through the use of an insulator to contain the bone cement. No thermal necrosis of bone was predicted with a 3 mm thick polyurethane insulator while more damage is predicted for the use of bone cement without the insulator. This method provides a numerical tool for the quantitative simulation of the thermal behavior of bone-cement-prosthesis designs and for examining and refining new designs computationally.

  14. Experimental study of potential wellbore cement carbonation by various phases of carbon dioxide during geologic carbon sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hun Bok; Um, Wooyong

    2013-08-16

    Hydrated Portland cement was reacted with carbon dioxide (CO2) in supercritical, gaseous, and aqueous phases to understand the potential cement alteration processes along the length of a wellbore, extending from deep CO2 storage reservoir to the shallow subsurface during geologic carbon sequestration. The 3-D X-ray microtomography (XMT) images displayed that the cement alteration was significantly more extensive by CO2-saturated synthetic groundwater than dry or wet supercritical CO2 at high P (10 MPa)-T (50°C) conditions. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) analysis also exhibited a systematic Ca depletion and C enrichment in cement matrix exposed to CO2-saturated groundwater. Integratedmore » XMT, XRD, and SEM-EDS analyses identified the formation of extensive carbonated zone filled with CaCO3(s), as well as the porous degradation front and the outermost silica-rich zone in cement after exposure to CO2-saturated groundwater. The cement alteration by CO2-saturated groundwater for 2-8 months overall decreased the porosity from 31% to 22% and the permeability by an order of magnitude. Cement alteration by dry or wet supercritical CO2 was slow and minor compared to CO2-saturated groundwater. A thin single carbonation zone was formed in cement after exposure to wet supercritical CO2 for 8 months or dry supercritical CO2 for 15 months. Extensive calcite coating was formed on the outside surface of a cement sample after exposure to wet gaseous CO2 for 1-3 months. The chemical-physical characterization of hydrated Portland cement after exposure to various phases of carbon dioxide indicates that the extent of cement carbonation can be significantly heterogeneous depending on CO2 phase present in the wellbore environment. Both experimental and geochemical modeling results suggest that wellbore cement exposure to supercritical, gaseous, and aqueous phases of CO2 during geologic carbon sequestration is unlikely to damage the wellbore integrity because cement alteration by all phases of CO2 is dominated by carbonation reaction. This is consistent with previous field studies of wellbore cement with extensive carbonation after exposure to CO2 for 3 decades. However, XMT imaging indicates that preferential cement alteration by supercritical CO2 or CO2-saturated groundwater can occur along the cement-steel or cement-rock interfaces. This highlights the importance of further investigation of cement degradation along the interfaces of wellbore materials to ensure permanent geologic carbon storage.« less

  15. Lunar cement and lunar concrete

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1991-01-01

    Results of a study to investigate methods of producing cements from lunar materials are presented. A chemical process and a differential volatilization process to enrich lime content in selected lunar materials were identified. One new cement made from lime and anorthite developed compressive strengths of 39 Mpa (5500 psi) for 1 inch paste cubes. The second, a hypothetical composition based on differential volatilization of basalt, formed a mineral glass which was activated with an alkaline additive. The 1 inch paste cubes, cured at 100C and 100 percent humidity, developed compressive strengths in excess of 49 Mpa (7100 psi). Also discussed are tests made with Apollo 16 lunar soil and an ongoing investigation of a proposed dry mix/steam injection procedure for casting concrete on the Moon.

  16. Photoactive glazed polymer-cement composite

    NASA Astrophysics Data System (ADS)

    Baltes, Liana; Patachia, Silvia; Tierean, Mircea; Ekincioglu, Ozgur; Ozkul, Hulusi M.

    2018-04-01

    Macro defect free cements (MDF), a kind of polymer-cement composites, are characterized by remarkably high mechanical properties. Their flexural strengths are 20-30 times higher than those of conventional cement pastes, nearly equal to that of an ordinary steel. The main drawback of MDF cements is their sensitivity to water. This paper presents a method to both diminish the negative impact of water on MDF cements mechanical properties and to enlarge their application by conferring photoactivity. These tasks were solved by glazing MDF cement with an ecological glaze containing nano-particles of TiO2. Efficiency of photocatalytic activity of this material was tested against methylene blue aqueous solution (4.4 mg/L). Influence of the photocatalyst concentration in the glaze paste and of the contact time on the photocatalysis process (efficiency and kinetic) was studied. The best obtained photocatalysis yield was of 97.35%, after 8 h of exposure to 254 nm UV radiation when used an MDF glazed with 10% TiO2 in the enamel paste. Surface of glazed material was characterized by optic microscopy, scratch test, SEM, XRD, and EDS. All these properties were correlated with the aesthetic aspect of the glazed surface aiming to propose using of this material for sustainable construction development.

  17. Evaluation and testing of a lightweight fine aggregate concrete bridge deck in Buchanan County, Iowa : tech transfer summaries.

    DOT National Transportation Integrated Search

    2016-05-01

    Using saturated lightweight fine aggregate (LWFA) in concrete mixtures : can replenish water that is depleted during cement hydration without : influencing the water-to-cement (w/c) ratio. This process, known as : internal curing (IC), can contribute...

  18. In vitro evaluation of marginal adaptation in five ceramic restoration fabricating techniques.

    PubMed

    Ural, Cağri; Burgaz, Yavuz; Saraç, Duygu

    2010-01-01

    To compare in vitro the marginal adaptation of crowns manufactured using ceramic restoration fabricating techniques. Fifty standardized master steel dies simulating molars were produced and divided into five groups, each containing 10 specimens. Test specimens were fabricated with CAD/CAM, heat-press, glass-infiltration, and conventional lost-wax techniques according to manufacturer instructions. Marginal adaptation of the test specimens was measured vertically before and after cementation using SEM. Data were statistically analyzed by one-way ANOVA with Tukey HSD tests (a = .05). Marginal adaptation of ceramic crowns was affected by fabrication technique and cementation process (P < .001). The lowest marginal opening values were obtained with Cerec-3 crowns before and after cementation (P < .001). The highest marginal discrepancy values were obtained with PFM crowns before and after cementation. Marginal adaptation values obtained in the compared systems were within clinically acceptable limits. Cementation causes a significant increase in the vertical marginal discrepancies of the test specimens.

  19. Advantageous new conic cannula for spine cement injection.

    PubMed

    González, Sergio Gómez; Vlad, María Daniela; López, José López; Aguado, Enrique Fernández

    2014-09-01

    Experimental study to characterize the influence of the cannula geometry on both, the pressure drop and the cement flow velocity established along the cannula. To investigate how the new experimental geometry of cannulas can affect the extravertebral injection pressure and the velocity profiles established along the cannula during the injection process. Vertebroplasty procedure is being used to treat vertebral compression fractures. Vertebra infiltration is favored by the use of suitable: (1) syringes or injector devices; (2) polymer or ceramic bone cements; and (3) cannulas. However, the clinical use of ceramic bone cement has been limited due to press-filtering problems. Thus, new approaches concerning the cannula geometry are needed to minimize the press-filtering of calcium phosphate-based bone cements and thereby broaden its possible applications. Straight, conic, and combined conic-straight new cannulas with different proximal and distal both length and diameter ratios were drawn with computer-assisted design software. The new geometries were theoretically analyzed by: (1) Hagen-Poisseuille law; and (2) computational fluid dynamics. Some experimental models were manufactured and tested for extrusion in order to confirm and further advance the theoretical results. The results confirm that the totally conic cannula model, having proximal to distal diameter ratio equal 2, requires the lowest injection pressure. Furthermore, its velocity profile showed no discontinuity at all along the cannula length, compared with other known combined proximal and distal straight cannulas, where discontinuity was produced at the proximal-distal transition zone. The conclusion is that the conic cannulas: (a) further reduced the extravertebral pressure during the injection process; (b) showed optimum fluid flow velocity profiles to minimize filter-pressing problems, especially when ceramic cements are used; and (c) can be easily manufactured. In this sense, the new conic cannulas should favor the use of calcium phosphate bone cements in the spine. N/A.

  20. Neutralization of cement-asbestos waste by melting in an arc-resistance furnace.

    PubMed

    Witek, Jerzy; Kusiorowski, Robert

    2017-11-01

    The paper presents the results of research on asbestos waste disposal by the melting process. The tests were carried out in a laboratory arc-resistance electric furnace. The obtained results showed that the fibrous structure of asbestos contained in cement-asbestos waste was completely destroyed. This led to the formation of new mineral phases without dangerous properties. The melting test was conducted on raw cement-asbestos samples without any additives and with a content of mineral compounds, the aim of which was to support the melting process. The additives were selected among others on the basis of the computer simulation results carried out using FactSage database computing system. The research results indicate that the melting process of asbestos wastes is a potential and interesting method of neutralizing hazardous asbestos waste, which allows for further treatment and material recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The partitioning behavior of trace element and its distribution in the surrounding soil of a cement plant integrated utilization of hazardous wastes.

    PubMed

    Yang, Zhenzhou; Chen, Yan; Sun, Yongqi; Liu, Lili; Zhang, Zuotai; Ge, Xinlei

    2016-07-01

    In the present study, the trace elements partitioning behavior during cement manufacture process were systemically investigated as well as their distribution behaviors in the soil surrounding a cement plant using hazardous waste as raw materials. In addition to the experimental analysis, the thermodynamic equilibrium calculations were simultaneously conducted. The results demonstrate that in the industrial-scale cement manufacture process, the trace elements can be classified into three groups according to their releasing behaviors. Hg is recognized as a highly volatile element, which almost totally partitions into the vapor phase. Co, Cu, Mn, V, and Cr are considered to be non-volatile elements, which are largely incorporated into the clinker. Meanwhile, Cd, Ba, As, Ni, Pb, and Zn can be classified into semi-volatile elements, as they are trapped into clinker to various degrees. Furthermore, the trace elements emitted into the flue gas can be adsorbed onto the fine particles, transport and deposit in the soil, and it is clarified here that the soil around the cement plant is moderately polluted by Cd, slightly polluted by As, Cr, Ba, Zn, yet rarely influenced by Co, Mn, Ni, Cu, Hg, and V elements. It was also estimated that the addition of wastes can efficiently reduce the consumption of raw materials and energy. The deciphered results can thus provide important insights for estimating the environmental impacts of the cement plant on its surroundings by utilizing wastes as raw materials.

  2. Corneal permeability for cement dust: prognosis for occupational safety

    NASA Astrophysics Data System (ADS)

    Kalmykov, R. V.; Popova, D. V.; Kamenskikh, T. G.; Genina, E. A.; Tuchin, V. V.; Bashkatov, A. N.

    2018-02-01

    The high dust content in air of a working zone causes prevalence of pathologies of the anterior segment of the eye of workers of cement production. Therefore, studying of features of cement dust impact on structure of a cornea and development of ways of eye protection from this influence is relevant. In this work experimental studies were carried out with twenty eyes of ten rabbits. OCTtomography was used to monitor the light attenuation coefficient of the cornea in vitro during the permeability of cement dust and/or keratoprotector (Systein Ultra). The permeability coefficients of the cornea for water, cement dust and keratoprotector were measured. A computer model allowing one to analyze the diffusion of these substances in the eye cornea was developed. It was shown that 1) the cement dust falling on the eye cornea caused pronounced dehydration of the tissue (thickness decreasing) and led to the increase of the attenuation coefficient, which could affect the deterioration of the eyesight of workers in the conditions of cement production; 2) the application of the keratoprotector to the eye cornea when exposed by cement dust, slowed significantly the dehydration process and did not cause the increase of the attenuation coefficient that characterized the stabilization of visual functions. At this, the keratoprotector itself did not cause dehydration and led to the decrease of the attenuation coefficient, which could allow it to be used for a long time in the order to protect the organ of vision from the negative effects of cement dust.

  3. Effects of DCPD Cement Chemistry on Degradation Properties and Cytocompatibility: Comparison of MCPM/β-TCP and MCPM/HA Formulations

    PubMed Central

    Alge, Daniel L.; Goebel, W. Scott; Chu, Tien-Min Gabriel

    2013-01-01

    Dicalcium phosphate dihydrate (DCPD) cements are attractive biomaterials for bone repair, and a number of different DCPD cement formulations have been proposed in the literature. In this study we have specifically compared monocalcium phosphate monohydrate (MCPM)/hydroxyapatite (HA) and MCPM/β-tricalcium phosphate (β-TCP) formulations to test the hypothesis that DCPD cement chemistry affects the degradation properties and cytocompatibility of the cement. Using simple in vitro models we found that MCPM/β-TCP formulations degraded primarily by DCPD dissolution, which was associated with a slight pH drop and relatively low mass loss. Cytocompatibility testing of cement conditioned culture media revealed no significant change in cell viability relative to the negative control for all of the MCPM/β-TCP formulations. In contrast, the MCPM/HA formulations were prone to undergo rapid conversion of DCPD to HA, resulting in a sharp pH drop and extensive mass loss. A stoichiometric excess of HA in the cement was found to accelerate the conversion process, and significant cytotoxicity was observed for the MCPM/HA formulations containing excess HA. Collectively, these results show that, although the product of the setting reaction is the same, DCPD cements produced with MCPM/HA and MCPM/β-TCP formulations differ significantly in their degradation properties and cytocompatibility. These differences may have important implications for the selection of a DCPD cement formulation for clinical application. PMID:23428798

  4. Cement-related injuries: review of a series, the National Burn Repository, and the prevailing literature.

    PubMed

    Chung, Joseph Y; Kowal-Vern, Areta; Latenser, Barbara A; Lewis, Robert W

    2007-01-01

    The spectrum of cement-related injuries encompasses contact dermatitis, abrasions, ulcerations, chemical burns, and burns from explosions during the manufacturing process. The purpose of this study was to compile cement-related conditions seen in two burn units (1999-2005), literature case reports and series (1950-2006) and the (1989-2001) National Burn Repository (NBR). There were 3597 admissions in two Midwestern burn units, of which 12 cases (0.8%) were cement burns. They occurred in men, aged 15 to 64 years with a burn range of 0.25 to 10% TBSA, exposure time of 1 to 6 hours, treatment delay of 1 day to 2 weeks, hospitalization (2-14 days). Literature review of 109 cases indicated that cement-related injuries were predominantly seen in men, aged 26 to 45 years; with a cement-exposure time of 1.5 to 4 hours, treatment delay (1 day to 5 weeks), hospitalization (10-33 days), and healing time (2-7 weeks). There were 52,219 burn admissions in the NBR, of which 44 (0.08%) were cement-related burns; 95% were men with a mean age of 41 years, 6% TBSA cement burn and an 8-day hospital stay. The demographic characteristics of the burn units and NBR cases were similar to those in the literature. This preventable injury occurred primarily in the working age male patient and was associated with long healing times. Public awareness and enhanced manufacturer package warnings and education may decrease future cement-related injuries.

  5. Planning Single-Event Nutrition Education: A New Model

    ERIC Educational Resources Information Center

    Brown, Lora Beth

    2011-01-01

    A theoretical model for planning single-event nutrition education contrasts a Practical, Foods, and Positive (PFP) emphasis to an Abstract, Nutrient, and Negative (ANN) focus on nutrition topics. Use of this model makes messages more appealing to consumers and may increase the likelihood that people will apply the nutrition information in their…

  6. Evaluation of the PhunkyFoods Programme. Final Report

    ERIC Educational Resources Information Center

    Teeman, David; Reed, Frances; Bielby, Gill; Scott, Emma; Sims, David

    2008-01-01

    The PhunkyFoods Programme (PFP), launched in 2005 by Purely Nutrition, teaches primary children key messages related to healthy eating and physical exercise in a light hearted and fun manner through art, drama, music, play and practical experience with food. It aims to enhance pupil performance, increase concentration, and improve behaviour,…

  7. 40 CFR 63.1341 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cement. Clinker cooler means equipment into which clinker product leaving the kiln is placed to be cooled... system in a portland cement production process where a dry kiln system is integrated with the raw mill so... construction after May 6, 2009, for purposes of determining the applicability of the kiln, clinker cooler and...

  8. 40 CFR 63.1341 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... other materials to form cement. Clinker cooler means equipment into which clinker product leaving the... kiln or coal mills using exhaust gases from the clinker cooler are not an in-line coal mill. In-line kiln/raw mill means a system in a portland cement production process where a dry kiln system is...

  9. 40 CFR 63.1341 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cement. Clinker cooler means equipment into which clinker product leaving the kiln is placed to be cooled... system in a portland cement production process where a dry kiln system is integrated with the raw mill so... construction after May 6, 2009, for purposes of determining the applicability of the kiln, clinker cooler and...

  10. 40 CFR 63.1341 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... other materials to form cement. Clinker cooler means equipment into which clinker product leaving the... kiln or coal mills using exhaust gases from the clinker cooler are not an in-line coal mill. In-line kiln/raw mill means a system in a portland cement production process where a dry kiln system is...

  11. 2H,3H-decafluoropentane-based nanodroplets: new perspectives for oxygen delivery to hypoxic cutaneous tissues.

    PubMed

    Prato, Mauro; Magnetto, Chiara; Jose, Jithin; Khadjavi, Amina; Cavallo, Federica; Quaglino, Elena; Panariti, Alice; Rivolta, Ilaria; Benintende, Emilio; Varetto, Gianfranco; Argenziano, Monica; Troia, Adriano; Cavalli, Roberta; Guiot, Caterina

    2015-01-01

    Perfluoropentane (PFP)-based oxygen-loaded nanobubbles (OLNBs) were previously proposed as adjuvant therapeutic tools for pathologies of different etiology sharing hypoxia as a common feature, including cancer, infection, and autoimmunity. Here we introduce a new platform of oxygen nanocarriers, based on 2H,3H-decafluoropentane (DFP) as core fluorocarbon. These new nanocarriers have been named oxygen-loaded nanodroplets (OLNDs) since DFP is liquid at body temperature, unlike gaseous PFP. Dextran-shelled OLNDs, available either in liquid or gel formulations, display spherical morphology, ~600 nm diameters, anionic charge, good oxygen carrying capacity, and no toxic effects on human keratinocytes after cell internalization. In vitro OLNDs result more effective in releasing oxygen to hypoxic environments than former OLNBs, as demonstrated by analysis through oxymetry. In vivo, OLNDs effectively enhance oxy-hemoglobin levels, as emerged from investigation by photoacoustic imaging. Interestingly, ultrasound (US) treatment further improves transdermal oxygen release from OLNDs. Taken together, these data suggest that US-activated, DFP-based OLNDs might be innovative, suitable and cost-effective devices to topically treat hypoxia-associated pathologies of the cutaneous tissues.

  12. Separation of Ellagitannin-Rich Phenolics from U.S. Pecans and Chinese Hickory Nuts Using Fused-Core HPLC Columns and Their Characterization.

    PubMed

    Gong, Yi; Pegg, Ronald B

    2017-07-19

    U.S. pecans and Chinese hickory nuts possess a wide array of phenolic constituents with potential health benefits including phenolic acids and proanthocyanidins. Only limited information is available, however, on their compositions. The present study optimized the separation performance and characterized the low-molecular-weight phenolic fractions of these nuts with C18 and pentafluorophenyl (PFP) fused-core LC columns by employing a kinetic approach. Although both types of reversed-phase columns demonstrated similar performance in general, the PFP column furnished greater plate numbers and superior peak shapes for the low-molecular-weight fractions as well as overall separations of ellagic acid derivatives. The high-molecular-weight fraction of pecans, analyzed by a 3-μm HILIC column, possessed more proanthocyanidins than the Chinese hickory nuts with dimers and trimers (31.4 and 18.34 mg/g crude extract, respectively) being present at the greatest levels. Chinese hickory nuts had lower proanthocyanidin content but possessed tetramers and pentamers at 4.46 and 4.01 mg/g crude extract, respectively.

  13. Patellofemoral pain in athletes

    PubMed Central

    Petersen, Wolf; Rembitzki, Ingo; Liebau, Christian

    2017-01-01

    Patellofemoral pain (PFP) is a frequent cause of anterior knee pain in athletes, which affects patients with and without structural patellofemoral joint (PFJ) damage. Most younger patients do not have any structural changes to the PFJ, such as an increased Q angle and a cartilage damage. This clinical entity is known as patellofemoral pain syndrome (PFPS). Older patients usually present with signs of patellofemoral osteoarthritis (PFOA). A key factor in PFPS development is dynamic valgus of the lower extremity, which leads to lateral patellar maltracking. Causes of dynamic valgus include weak hip muscles and rearfoot eversion with pes pronatus valgus. These factors can also be observed in patients with PFOA. The available evidence suggests that patients with PFP are best managed with a tailored, multimodal, nonoperative treatment program that includes short-term pain relief with nonsteroidal anti-inflammatory drugs (NSAIDs), passive correction of patellar maltracking with medially directed tape or braces, correction of the dynamic valgus with exercise programs that target the muscles of the lower extremity, hip, and trunk, and the use of foot orthoses in patients with additional foot abnormalities. PMID:28652829

  14. 2H,3H-Decafluoropentane-Based Nanodroplets: New Perspectives for Oxygen Delivery to Hypoxic Cutaneous Tissues

    PubMed Central

    Jose, Jithin; Khadjavi, Amina; Cavallo, Federica; Quaglino, Elena; Panariti, Alice; Rivolta, Ilaria; Benintende, Emilio; Varetto, Gianfranco; Argenziano, Monica; Troia, Adriano; Cavalli, Roberta; Guiot, Caterina

    2015-01-01

    Perfluoropentane (PFP)-based oxygen-loaded nanobubbles (OLNBs) were previously proposed as adjuvant therapeutic tools for pathologies of different etiology sharing hypoxia as a common feature, including cancer, infection, and autoimmunity. Here we introduce a new platform of oxygen nanocarriers, based on 2H,3H-decafluoropentane (DFP) as core fluorocarbon. These new nanocarriers have been named oxygen-loaded nanodroplets (OLNDs) since DFP is liquid at body temperature, unlike gaseous PFP. Dextran-shelled OLNDs, available either in liquid or gel formulations, display spherical morphology, ~600 nm diameters, anionic charge, good oxygen carrying capacity, and no toxic effects on human keratinocytes after cell internalization. In vitro OLNDs result more effective in releasing oxygen to hypoxic environments than former OLNBs, as demonstrated by analysis through oxymetry. In vivo, OLNDs effectively enhance oxy-hemoglobin levels, as emerged from investigation by photoacoustic imaging. Interestingly, ultrasound (US) treatment further improves transdermal oxygen release from OLNDs. Taken together, these data suggest that US-activated, DFP-based OLNDs might be innovative, suitable and cost-effective devices to topically treat hypoxia-associated pathologies of the cutaneous tissues. PMID:25781463

  15. Effective solidification/stabilisation of mercury-contaminated wastes using zeolites and chemically bonded phosphate ceramics.

    PubMed

    Zhang, Shaoqing; Zhang, Xinyan; Xiong, Ya; Wang, Guoping; Zheng, Na

    2015-02-01

    In this study, two kinds of zeolites materials (natural zeolite and thiol-functionalised zeolite) were added to the chemically bonded phosphate ceramic processes to treat mercury-contaminated wastes. Strong promotion effects of zeolites (natural zeolite and thiol-functionalised zeolite) on the stability of mercury in the wastes were obtained and these technologies showed promising advantages toward the traditional Portland cement process, i.e. using Portland cement as a solidification agent and natural or thiol-functionalised zeolite as a stabilisation agent. Not only is a high stabilisation efficiency (lowered the Toxicity Characteristic Leaching Procedure Hg by above 10%) obtained, but also a lower dosage of solidification (for thiol-functionalised zeolite as stabilisation agent, 0.5 g g(-1) and 0.7 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) and stabilisation agents (for natural zeolite as stabilisation agent, 0.35 g g(-1) and 0.4 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) were used compared with the Portland cement process. Treated by thiol-functionalised zeolite and chemically bonded phosphate ceramic under optimum parameters, the waste containing 1500 mg Hg kg(-1) passed the Toxicity Characteristic Leaching Procedure test. Moreover, stabilisation/solidification technology using natural zeolite and chemically bonded phosphate ceramic also passed the Toxicity Characteristic Leaching Procedure test (the mercury waste containing 625 mg Hg kg(-1)). Moreover, the presence of chloride and phosphate did not have a negative effect on the chemically bonded phosphate ceramic/thiol-functionalised zeolite treatment process; thus, showing potential for future application in treatment of 'difficult-to-manage' mercury-contaminated wastes or landfill disposal with high phosphate and chloride content. © The Author(s) 2015.

  16. Mapping Asbestos-Cement Roofing with Hyperspectral Remote Sensing over a Large Mountain Region of the Italian Western Alps

    PubMed Central

    Frassy, Federico; Candiani, Gabriele; Rusmini, Marco; Maianti, Pieralberto; Marchesi, Andrea; Nodari, Francesco Rota; Via, Giorgio Dalla; Albonico, Carlo; Gianinetto, Marco

    2014-01-01

    The World Health Organization estimates that 100 thousand people in the world die every year from asbestos-related cancers and more than 300 thousand European citizens are expected to die from asbestos-related mesothelioma by 2030. Both the European and the Italian legislations have banned the manufacture, importation, processing and distribution in commerce of asbestos-containing products and have recommended action plans for the safe removal of asbestos from public and private buildings. This paper describes the quantitative mapping of asbestos-cement covers over a large mountainous region of Italian Western Alps using the Multispectral Infrared and Visible Imaging Spectrometer sensor. A very large data set made up of 61 airborne transect strips covering 3263 km2 were processed to support the identification of buildings with asbestos-cement roofing, promoted by the Valle d'Aosta Autonomous Region with the support of the Regional Environmental Protection Agency. Results showed an overall mapping accuracy of 80%, in terms of asbestos-cement surface detected. The influence of topography on the classification's accuracy suggested that even in high relief landscapes, the spatial resolution of data is the major source of errors and the smaller asbestos-cement covers were not detected or misclassified. PMID:25166502

  17. Carbonate and silicate cementation of siliciclastic sediments of the New Jersey shelf (IODP Expedition 313): relation with organic matter diagenesis and submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Pierre, Catherine; Blanc-Valleron, Marie-Madeleine; Boudouma, Omar; Lofi, Johanna

    2017-12-01

    The New Jersey continental shelf extends 150 km off the shoreline. During IODP Expedition 313, siliciclastic deposits of late Eocene to late Pleistocene age were drilled down to 631, 669 and 755 m below seafloor at sites 27A, 28A and 29A respectively in very shallow waters (33.5 to 36 m depth). Pore water salinities display multilayered brackish-salty-brine units 10 to 170 m thick, where low-salinity water is preferentially stored in fine-grained sediments. The sharp boundaries of these buried aquifers are often marked by cemented layers a few centimetres thick. The mineralogy and scanning electron microscope observations of these layers show two phases of cementation by authigenic minerals: (1) the early carbonate cement is frequently associated with pyrite, and (2) the late silicate cement infills the residual porosity. The isotopic compositions of the carbonate cements vary widely: -2.4 < δ18O ‰ VPDB < +2.8; -15.1 < δ13C ‰ VPDB < +15.6. The δ18O values indicate that the carbonate cements precipitated with pore waters comprising variable mixtures of seawater and 18O-depleted fresh water originating from submarine groundwater discharge. The δ13C values of the carbonate cements are related to organic matter diagenesis, providing 13C-depleted dissolved inorganic carbon during bacterial sulphate reduction and anaerobic oxidation of methane, and 13C-rich dissolved inorganic carbon during methanogenesis. The diagenetic cementation processes included chemical weathering of reactive silicate minerals by the CO2-rich pore waters issued from organic matter diagenesis that released bicarbonate, cations and dissolved silica, which were further precipitated as carbonate and silicate cements. The estimated range of temperature (18±4 °C) during carbonate precipitation is consistent with carbonate cementation at moderate burial depths; however, silicate cementation occurred later during diagenesis at deeper burial depths.

  18. The effect of cement on hip stem fixation: a biomechanical study.

    PubMed

    Çelik, Talip; Mutlu, İbrahim; Özkan, Arif; Kişioğlu, Yasin

    2017-06-01

    This study presents the numerical analysis of stem fixation in hip surgery using with/without cement methods since the use of cement is still controversial based on the clinical studies in the literature. Many different factors such as stress shielding, aseptic loosening, material properties of the stem, surgeon experiences etc. play an important role in the failure of the stem fixations. The stem fixation methods, cemented and uncemented, were evaluated in terms of mechanical failure aspects using computerized finite element method. For the modeling processes, three dimensional (3D) femur model was generated from computerized tomography (CT) images taken from a patient using the MIMICS Software. The design of the stem was also generated as 3D CAD model using the design parameters taken from the manufacturer catalogue. These 3D CAD models were generated and combined with/without cement considering the surgical procedure using SolidWorks program and then imported into ANSYS Workbench Software. Two different material properties, CoCrMo and Ti6Al4V, for the stem model and Poly Methyl Methacrylate (PMMA) for the cement were assigned. The material properties of the femur were described according to a density calculated from the CT images. Body weight and muscle forces were applied on the femur and the distal femur was fixed for the boundary conditions. The calculations of the stress distributions of the models including cement and relative movements of the contacts examined to evaluate the effects of the cement and different stem material usage on the failure of stem fixation. According to the results, the use of cement for the stem fixation reduces the stress shielding but increases the aseptic loosening depending on the cement crack formations. Additionally, using the stiffer material for the stem reduces the cement stress but increases the stress shielding. Based on the results obtained in the study, even when taking the disadvantages into account, the cement usage is more suitable for the hip fixations.

  19. Energy release rate analysis on the interface cracks of enamel-cement-bracket fracture using virtual crack closure technique

    NASA Astrophysics Data System (ADS)

    Samshuri, S. F.; Daud, R.; Rojan, M. A.; Mat, F.; Basaruddin, K. S.; Hassan, R.

    2017-10-01

    This paper presents the energy method to evaluate fracture behavior of enamel-cement-bracket system based on cement thickness. Finite element (FE) model of enamel-cement-bracket was constructed by using ANSYS Parametric Design Language (APDL). Three different thickness were used in this study, 0.05, 0.2, and 0.271 mm which assigned as thin, medium and thick for both enamel-cement and cement bracket interface cracks. Virtual crack closure technique (VCCT) was implemented as a simulation method to calculated energy release rate (ERR). Simulation results were obtained for each thickness are discussed by using Griffith’s energy balance approach. ERR for thin thickness are found to be the lowest compared to medium and thick. Peak value of ERR also showed a significant different between medium and thick thickness. Therefore, weakest bonding occurred at low cement thickness because less load required to produce enough energy to detach the bracket. For medium and thick thickness, both increased rapidly in energy value at about the mid-point of the enamel-cement interface. This behavior occurred because of the increasing in mechanical and surface energy when the cracks are increasing. However, result for thick thickness are higher at mid-point compared to thin thickness. In conclusion, fracture behavior of enamel cracking process for medium most likely the safest to avoid enamel fracture and withstand bracket debonding.

  20. Comparative examination of the microstructure and high temperature oxidation performance of NiCrBSi flame sprayed and pack cementation coatings

    NASA Astrophysics Data System (ADS)

    Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Skolianos, S.; Chrissafis, K.; Stergioudis, G.

    2009-01-01

    Coatings formed from NiCrBSi powder were deposited by thermal spray and pack cementation processes on low carbon steel. The microstructure and morphology of the coatings were studied by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Flame sprayed coatings exhibited high porosity and were mechanically bonded to the substrate while pack cementation coatings were more compact and chemically bonded to the substrate. The microhardness and the high temperature oxidation resistance of the coated samples were evaluated by a Vickers microhardness tester and by thermogravimetric measurements (TG), respectively. Pack cementation coatings showed higher hardness and were more protective to high temperature environments than the flame sprayed coatings.

  1. Characterizing the Nano and Micro Structure of Concrete toImprove its Durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.

    2009-01-13

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images of ice inside cement paste and cracking caused by the alkali?silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools aremore » shown on this paper.« less

  2. Characterizing the nano and micro structure of concrete to improve its durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.

    2008-10-22

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images on ice inside cement paste and cracking caused by the alkali-silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools willmore » be shown on this paper.« less

  3. Effect exerted by a radio wave electromagnetic field on the rheological properties of water and portland-cement systems

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Belous, N. Kh.; Rodtsevich, S. P.; Koshevar, V. D.; Shkadretsova, V. G.; Goncharik, S. V.; Chubrik, N. I.; Orlovich, A. I.

    2013-09-01

    We have studied the effect of the regimes of high-frequency (radio wave) electromagnetic treatment of gauging water on the process of structurization and on the technological characteristics of portland-cement systems. It has been established that the radio wave electromagnetic activation of water leads to a reduction in its surface tension, dynamic viscosity, and shear stress, as well as intensifies the formation of coagulation structures in a portlandcement slurry and aids in increasing the mobility of cement-sand mixtures.

  4. PFP Emergency Lighting Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BUSCH, M.S.

    2000-02-02

    NFPA 101, section 5-9 mandates that, where required by building classification, all designated emergency egress routes be provided with adequate emergency lighting in the event of a normal lighting outage. Emergency lighting is to be arranged so that egress routes are illuminated to an average of 1.0 footcandle with a minimum at any point of 0.1 footcandle, as measured at floor level. These levels are permitted to drop to 60% of their original value over the required 90 minute emergency lighting duration after a power outage. The Plutonium Finishing Plant (PFP) has two designations for battery powered egress lights ''Emergencymore » Lights'' are those battery powered lights required by NFPA 101 to provide lighting along officially designated egress routes in those buildings meeting the correct occupancy requirements. Emergency Lights are maintained on a monthly basis by procedure ZSR-12N-001. ''Backup Lights'' are battery powered lights not required by NFPA, but installed in areas where additional light may be needed. The Backup Light locations were identified by PFP Safety and Engineering based on several factors. (1) General occupancy and type of work in the area. Areas occupied briefly during a shiftly surveillance do not require backup lighting while a room occupied fairly frequently or for significant lengths of time will need one or two Backup lights to provide general illumination of the egress points. (2) Complexity of the egress routes. Office spaces with a standard hallway/room configuration will not require Backup Lights while a large room with several subdivisions or irregularly placed rooms, doors, and equipment will require Backup Lights to make egress safer. (3) Reasonable balance between the safety benefits of additional lighting and the man-hours/exposure required for periodic light maintenance. In some plant areas such as building 236-Z, the additional maintenance time and risk of contamination do not warrant having Backup Lights installed in all rooms. Sufficient light for egress is provided by existing lights located in the hallways.« less

  5. Female Adults with Patellofemoral Pain Are Characterized by Widespread Hyperalgesia, Which Is Not Affected Immediately by Patellofemoral Joint Loading.

    PubMed

    Pazzinatto, Marcella Ferraz; de Oliveira Silva, Danilo; Barton, Christian; Rathleff, Michael Skovdal; Briani, Ronaldo Valdir; de Azevedo, Fábio Mícolis

    2016-10-01

    Compare pressure pain thresholds (PPTs) at the knee and a site remote to the knee in female adults with patellofemoral pain (PFP) to pain-free controls before and after a patellofemoral joint (PFJ) loading protocol designed to aggravate symptoms. Cross-sectional study SETTING: Participants were recruited via advertisements in fitness centers, public places for physical activity and universities. Thirty-eight females with patellofemoral pain, and 33 female pain-free controls. All participant performed a novel PFJ loading protocol involving stair negotiation with an extra load equivalent 35% of body mass. PPTs and current knee pain (measured on a visual analogue scale) was assessed before and after the loading protocol. PPTs were measured at four sites around the knee and one remote site on the upper contralateral limb. Females with PFP demonstrated significantly lower PPTs locally and remote to the knee, both before and after the PFJ loading protocol when compared to control group. Following the loading protocol, PPTs at knee were significantly reduced by 0.54 kgf (95%CI = 0.33; 0.74) for quadriceps tendon, 0.38 kgf (95%CI = 0.14; 0.63) for medial patella, and 0.44 kgf (95%CI = 0.18; 0.69) for lateral patella. No significant change in PPT remote to the knee was observed - 0.10 kgf (95%CI = -0.04; 0.24). Female adults with PFP have local and widespread hyperalgesia compared to pain free controls. A novel loading protocol designed to aggravate symptoms, lowers the PPTs locally at the knee but has no effect on PPT on the upper contralateral limb. This suggests widespread hyperalgesia is not affected by acute symptom aggravation. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. CHANGES IN PATELLOFEMORAL JOINT STRESS DURING RUNNING WITH THE APPLICATION OF A PREFABRICATED FOOT ORTHOTIC.

    PubMed

    Almonroeder, Thomas G; Benson, Lauren C; O'Connor, Kristian M

    2015-12-01

    Foot orthotics are commonly utilized in the treatment of patellofemoral pain (PFP) and have shown clinical benefit; however, their mechanism of action remains unclear. Patellofemoral joint stress (PFJS) is thought to be one of the main etiological factors associated with PFP. The primary purpose of this study was to investigate the effects of a prefabricated foot orthotic with 5 ° of medial rearfoot wedging on the magnitude and the timing of the peak PFJS in a group of healthy female recreational athletes. The hypothesis was that there would be significant reduction in the peak patellofemoral joint stress and a delay in the timing of this peak in the orthotic condition. Cross-sectional. Kinematic and kinetic data were collected during running trials in a group of healthy, female recreational athletes. The knee angle and moment data in the sagittal plane were incorporated into a previously developed model to estimate patellofemoral joint stress. The dependent variables of interest were the peak patellofemoral joint stress as well as the percentage of stance at which this peak occurred, as both the magnitude and the timing of the joint loading are thought to be important in overuse running injuries. The peak patellofemoral joint stress significantly increased in the orthotic condition by 5.8% (p=.02, ES=0.24), which does not support the initial hypothesis. However, the orthotic did significantly delay the timing of the peak during the stance phase by 3.8% (p=.002, ES=0.47). The finding that the peak patellofemoral joint stress increased in the orthotic condition did not support the initial hypothesis. However, the finding that the timing of this peak was delayed to later in the stance phase in the orthotic condition did support the initial hypothesis and may be related to the clinical improvements previously reported in subjects with PFP. Level 4.

  7. The effect of targeted treatment on people with patellofemoral pain: a pragmatic, randomised controlled feasibility study.

    PubMed

    Drew, Benjamin T; Conaghan, Philip G; Smith, Toby O; Selfe, James; Redmond, Anthony C

    2017-08-04

    Targeted treatment, matched according to specific clinical criteria e.g. hip muscle weakness, may result in better outcomes for people with patellofemoral pain (PFP). However, to ensure the success of future trials, a number of questions on the feasibility of a targeted treatment need clarification. The aim of the study was to explore the feasibility of matched treatment (MT) compared to usual care (UC) management for a subgroup of people with PFP determined to have hip weakness and to explore the mechanism of effect for hip strengthening. In a pragmatic, randomised controlled feasibility study, 24 participants with PFP (58% female; mean age 29 years) were randomly allocated to receive either MT aimed specifically at hip strengthening, or UC over an eight-week period. The primary outcomes were feasibility outcomes, which included rates of adherence, attrition, eligibility, missing data and treatment efficacy. Secondary outcomes focused on the mechanistic outcomes of the intervention, which included hip kinematics. Conversion to consent (100%), missing data (0%), attrition rate (8%) and adherence to both treatment and appointments (>90%) were deemed successful endpoints. The analysis of treatment efficacy showed that the MT group reported a greater improvement for the Global Rating of Change Scale (62% vs. 9%) and the Anterior Knee Pain Scale (-5.23 vs. 1.18) but no between-group differences for either average or worst pain. Mechanistic outcomes showed a greatest reduction in peak hip internal rotation angle for the MT group (13.1% vs. -2.7%). This feasibility study indicates that a definitive randomised controlled trial investigating a targeted treatment approach is achievable. Findings suggest the mechanism of effect of hip strengthening may be to influence kinematic changes in hip function in the transverse plane. This study was registered retrospectively. ISRCTN74560952 . Registration date: 2017-02-06.

  8. Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial.

    PubMed

    Giles, Lachlan; Webster, Kate E; McClelland, Jodie; Cook, Jill L

    2017-12-01

    Quadriceps strengthening exercises are part of the treatment of patellofemoral pain (PFP), but the heavy resistance exercises may aggravate knee pain. Blood flow restriction (BFR) training may provide a low-load quadriceps strengthening method to treat PFP. Seventy-nine participants were randomly allocated to a standardised quadriceps strengthening (standard) or low-load BFR. Both groups performed 8 weeks of leg press and leg extension, the standard group at 70% of 1 repetition maximum (1RM) and the BFR group at 30% of 1RM. Interventions were compared using repeated-measures analysis of variance for Kujala Patellofemoral Score, Visual Analogue Scale for 'worst pain' and 'pain with daily activity', isometric knee extensor torque (Newton metre) and quadriceps muscle thickness (cm). Subgroup analyses were performed on those participants with painful resisted knee extension at 60°. Sixty-nine participants (87%) completed the study (standard, n=34; BFR, n=35). The BFR group had a 93% greater reduction in pain with activities of daily living (p=0.02) than the standard group. Participants with painful resisted knee extension (n=39) had greater increases in knee extensor torque with BFR than standard (p<0.01). No between-group differences were found for change in Kujala Patellofemoral Score (p=0.31), worst pain (p=0.24), knee extensor torque (p=0.07) or quadriceps thickness (p=0.2). No difference was found between interventions at 6 months. Compared with standard quadriceps strengthening, low load with BFR produced greater reduction in pain with daily living at 8 weeks in people with PFP. Improvements were similar between groups in worst pain and Kujala score. The subgroup with painful resisted knee extension had larger improvements in quadriceps strength from BFR. 12614001164684. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Air Pollutant Emissions Projections for the Cement and Steel Industry in China and the Impact of Emissions Control Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanbeigi, Ali; Khanna, Nina; Price, Lynn

    China’s cement and steel industry accounts for approximately half of the world’s total cement and steel production. These two industries are two of the most energy-intensive and highest carbon dioxide (CO 2)-emitting industries and two of the key industrial contributors to air pollution in China. For example, the cement industry is the largest source of particulate matter (PM) emissions in China, accounting for 40 percent of its industrial PM emissions and 27 percent of its total national PM emissions. The Chinese steel industry contributed to approximately 20 percent of sulfur dioxide (SO 2) emissions and 27 percent of PM emissionsmore » for all key manufacturing industries in China in 2013. In this study, we analyzed and projected the total PM and SO2 emissions from the Chinese cement and steel industry from 2010–2050 under three different scenarios: a Base Case scenario, an Advanced scenario, and an Advanced EOP (end-of-pipe) scenario. We used bottom-up emissions control technologies data and assumptions to project the emissions. In addition, we conducted an economic analysis to estimate the cost for PM emissions reductions in the Chinese cement industry using EOP control technologies, energy efficiency measures, and product change measures. The results of the emissions projection showed that there is not a substantial difference in PM emissions between the Base Case and Advanced scenarios, for both the cement and steel industries. This is mainly because PM emissions in the cement industry caused mainly by production process and not the fuel use. Since our forecast for the cement production in the Base Case and Advanced scenarios are not too different from each other, this results in only a slight difference in PM emissions forecast for these two scenarios. Also, we assumed a similar share and penetration rate of control technologies from 2010 up to 2050 for these two scenarios for the cement and steel industry. However, the Advanced EOP scenario showed significantly lower PM emissions for the cement industry, reaching to 1.7 million tons of PM in 2050, which is less than half of that in the other two scenarios. The Advanced EOP scenario also has the lowest SO2 emissions for the cement industry in China, reaching to 212,000 tons of SO2 in 2050, which is equal to 40 percent of the SO2 emissions in the Advanced scenario and 30 percent of the emissions in the Base Case scenario. The SO2 emission is mainly caused by fuel (coal) burning in cement kiln or steel processes. For the steel industry, the SO2 emissions of the Advanced EOP scenario are significantly lower than the other scenarios, with emissions declining to 323,000 tons in 2050, which is equal to 21 percent and 17 percent of the emissions of Advanced and Base Case scenarios in 2050, respectively. Results of the economic analysis show that for the Chinese cement industry, end-of-pipe PM control technologies have the lowest abatement cost per ton of PM reduced, followed by product change measures and energy efficiency measures, respectively. In summary, in order to meet Chinese national and regional air quality standards, best practice end-of-pipe emissions control technologies must be installed in both cement and steel industry and it must be supplemented by implementation of energy efficiency technologies and reduction of cement and steel production through structural change in industry.« less

  10. MicroCT analysis of a retrieved root restored with a bonded fiber-reinforced composite dowel: a pilot study.

    PubMed

    Lorenzoni, Fabio Cesar; Bonfante, Estevam A; Bonfante, Gerson; Martins, Leandro M; Witek, Lukasz; Silva, Nelson R F A

    2013-08-01

    This evaluation aimed to (1) validate micro-computed tomography (microCT) findings using scanning electron microscopy (SEM) imaging, and (2) quantify the volume of voids and the bonded surface area resulting from fiber-reinforced composite (FRC) dowel cementation technique using microCT scanning technology/3D reconstructing software. A fiberglass dowel was cemented in a condemned maxillary lateral incisor prior to its extraction. A microCT scan was performed of the extracted tooth creating a large volume of data in DICOM format. This set of images was imported to image-processing software to inspect the internal architecture of structures. The outer surface and the spatial relationship of dentin, FRC dowel, cement layer, and voids were reconstructed. Three-dimensional spatial architecture of structures and volumetric analysis revealed that 9.89% of the resin cement was composed of voids and that the bonded area between root dentin and cement was 60.63% larger than that between cement and FRC dowel. SEM imaging demonstrated the presence of voids similarly observed using microCT technology (aim 1). MicroCT technology was able to nondestructively measure the volume of voids within the cement layer and the bonded surface area at the root/cement/FRC interfaces (aim 2). The interfaces at the root dentin/cement/dowel represent a timely and relevant topic where several efforts have been conducted in the past few years to understand their inherent features. MicroCT technology combined with 3D reconstruction allows for not only inspecting the internal arrangement rendered by fiberglass adhesively bonded to root dentin, but also estimating the volume of voids and contacted bond area between the dentin and cement layer. © 2013 by the American College of Prosthodontists.

  11. Interaction of ordinary Portland cement and Opalinus Clay: Dual porosity modelling compared to experimental data

    NASA Astrophysics Data System (ADS)

    Jenni, A.; Gimmi, T.; Alt-Epping, P.; Mäder, U.; Cloet, V.

    2017-06-01

    Interactions between concrete and clays are driven by the strong chemical gradients in pore water and involve mineral reactions in both materials. In the context of a radioactive waste repository, these reactions may influence safety-relevant clay properties such as swelling pressure, permeability or radionuclide retention. Interfaces between ordinary Portland cement and Opalinus Clay show weaker, but more extensive chemical disturbance compared to a contact between low-pH cement and Opalinus Clay. As a consequence of chemical reactions porosity changes occur at cement-clay interfaces. These changes are stronger and may lead to complete pore clogging in the case of low-pH cements. The prediction of pore clogging by reactive transport simulations is very sensitive to the magnitude of diffusive solute fluxes, cement clinker chemistry, and phase reaction kinetics. For instance, the consideration of anion-depleted porosity in clays substantially influences overall diffusion and pore clogging at interfaces. A new concept of dual porosity modelling approximating Donnan equilibrium is developed and applied to an ordinary Portland cement - Opalinus Clay interface. The model predictions are compared with data from the cement-clay interaction (CI) field experiment in the Mt Terri underground rock laboratory (Switzerland), which represent 5 y of interaction. The main observations such as the decalcification of the cement at the interface, the Mg enrichment in the clay detached from the interface, and the S enrichment in the cement detached from the interface, are qualitatively predicted by the new model approach. The model results reveal multiple coupled processes that create the observed features. The quantitative agreement of modelled and measured data can be improved if uncertainties of key input parameters (tortuosities, reaction kinetics, especially of clay minerals) can be reduced.

  12. Tooth surface treatment strategies for adhesive cementation

    PubMed Central

    2017-01-01

    PURPOSE The aim of this study was to evaluate the effect of tooth surface pre-treatment steps on shear bond strength, which is essential for understanding the adhesive cementation process. MATERIALS AND METHODS Shear bond strengths of different cements with various tooth surface treatments (none, etching, priming, or etching and priming) on enamel and dentin of human teeth were measured using the Swiss shear test design. Three adhesives (Permaflo DC, Panavia F 2.0, and Panavia V5) and one self-adhesive cement (Panavia SA plus) were included in this study. The interface of the cement and the tooth surface with the different pre-treatments was analyzed using SEM. pH values of the cements and primers were measured. RESULTS The highest bond strength values for all cements were achieved with etching and primer on enamel (25.6 ± 5.3 - 32.3 ± 10.4 MPa). On dentin, etching and priming produced the highest bond strength values for all cements (8.6 ± 2.9 - 11.7 ± 3.5 MPa) except for Panavia V5, which achieved significantly higher bond strengths when pre-treated with primer only (15.3 ± 4.1 MPa). Shear bond strength values were correlated with the micro-retentive surface topography of enamel and the tag length on dentin except for Panavia V5, which revealed the highest bond strength with primer application only without etching, resulting in short but sturdy tags. CONCLUSION The highest bond strength can be achieved for Panavia F 2.0, Permaflo DC, and Panavia SA plus when the tooth substrate is previously etched and the respective primer is applied. The new cement Panavia V5 displayed low technique-sensitivity and attained significantly higher adhesion of all tested cements to dentin when only primer was applied. PMID:28435616

  13. Silver-Doped Calcium Phosphate Bone Cements with Antibacterial Properties

    PubMed Central

    Rau, J. V.; Fosca, M.; Graziani, V.; Egorov, A. A.; Zobkov, Yu. V.; Fedotov, A. Yu.; Ortenzi, M.; Caminiti, R.; Baranchikov, A. E.; Komlev, V. S.

    2016-01-01

    Calcium phosphate bone cements (CPCs) with antibacterial properties are demanded for clinical applications. In this study, we demonstrated the use of a relatively simple processing route based on preparation of silver-doped CPCs (CPCs-Ag) through the preparation of solid dispersed active powder phase. Real-time monitoring of structural transformations and kinetics of several CPCs-Ag formulations (Ag = 0 wt %, 0.6 wt % and 1.0 wt %) was performed by the Energy Dispersive X-ray Diffraction technique. The partial conversion of β-tricalcium phosphate (TCP) phase into the dicalcium phosphate dihydrate (DCPD) took place in all the investigated cement systems. In the pristine cement powders, Ag in its metallic form was found, whereas for CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, CaAg(PO3)3 was detected and Ag (met.) was no longer present. The CPC-Ag 0 wt % cement exhibited a compressive strength of 6.5 ± 1.0 MPa, whereas for the doped cements (CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt %) the reduced values of the compressive strength 4.0 ± 1.0 and 1.5 ± 1.0 MPa, respectively, were detected. Silver-ion release from CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, measured by the Atomic Emission Spectroscopy, corresponds to the average values of 25 µg/L and 43 µg/L, respectively, rising a plateau after 15 days. The results of the antibacterial test proved the inhibitory effect towards pathogenic Escherichia coli for both CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, better performances being observed for the cement with a higher Ag-content. PMID:27096874

  14. Analysis of the Feasibility of Using Soil from the Municipality of Goytacazes/RJ for Production of Soil-Cement Brick

    NASA Astrophysics Data System (ADS)

    Alexandre, J.; Azevedo, A. R. G.; Theophilo, M. M. D.; Xavier, C. G.; Paes, A. L. C.; Monteiro, S. N.; Margem, F. M.; Azeredo, N. G.

    The use of bricks of soil-cement is proving to be an important constructive methodology due to low environmental impact in the production process of these blocks comparing with conventional bricks are burnt, besides being easy to produce. However during the process of production of bricks, which are compressed, knowledge of the properties of the soil used is critical to the quality and durability of the blocks. The objective of this work is to evaluate the feasibility of using soil from the municipality of Goytacazes for the production of soil-cement bricks. Assays were performed the compaction, liquid limit, plastic limit, particle size analysis, EDX and X-Ray diffraction for later pressed blocks and analyze their compressive strength and water absorption.

  15. In vitro effects of dental cements on hard and soft tissues associated with dental implants.

    PubMed

    Rodriguez, Lucas C; Saba, Juliana N; Chung, Kwok-Hung; Wadhwani, Chandur; Rodrigues, Danieli C

    2017-07-01

    Dental cements for cement-retained restorations are often chosen based on clinician preference for the product's material properties, mixing process, delivery mechanism, or viscosity. The composition of dental cement may play a significant role in the proliferation or inhibition of different bacterial strains associated with peri-implant disease, and the effect of dental cements on host cellular proliferation may provide further insight into appropriate cement material selection. The purpose of this in vitro study was to investigate the cellular host response of bone cells (osteoblasts) and soft tissue cells (gingival fibroblasts) to dental cements. Zinc oxide (eugenol and noneugenol), zinc phosphate, and acrylic resin cements were molded into pellets and directly applied to confluent preosteoblast (cell line MC3T3 E1) or gingival fibroblast cell cultures (cell line HGF) to determine cellular viability after exposure. Controls were defined as confluent cell cultures with no cement exposure. Direct contact cell culture testing was conducted following International Organization for Standardization 10993 methods, and all experiments were performed in triplicate. To compare either the MC3T3 E1 cell line, or the HGF cell line alone, a 1-way ANOVA test with multiple comparisons was used (α=.05). To compare the MC3T3 E1 cell line results and the HGF cell line results, a 2-way ANOVA test with multiple comparisons was used (α=.05). The results of this study illustrated that while both bone and soft tissue cell lines were vulnerable to the dental cement test materials, the soft tissue cell line (human gingival fibroblasts) was more susceptible to reduced cellular viability after exposure. The HGF cell line was much more sensitive to cement exposure. Here, the acrylic resin, zinc oxide (eugenol), and zinc phosphate cements significantly reduced cellular viability after exposure with respect to HGF cells only. Within the limitation of this in vitro cellular study, the results indicated that cell response to various implant cements varied significantly, with osteoblast proliferation much less affected than gingival fibroblast cells. Furthermore, the zinc oxide noneugenol dental cement appeared to affect the cell lines significantly less than the other test cements. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Development and application of multi-functionalized mesoporous silica nanomaterials in intracellular drug delivery and heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Tsai, Chih-Hsiang

    This dissertation presents research on the development of mesoporous silica nanomaterials and their applications on the fields of drug delivery system and heterogeneous catalysis. Mesoporous silica nanoparticles (MSNs) featuring several particular physicochemical properties are of great interest in material science and applied chemistry. With high biocompatibility and large pore size, MSNs have been regarded as a highly promising platform for intracellular controlled release of drugs and biomolecules. On the other hand, the robust silica framework and easy surface functionalization make MSNs decent solid supports for various types of heterogeneous catalysis. A newly developed surfactant-assistant drug delivery system is investigated. A series of biocompatible phosphate monoester surfactant (PMES) containing PMES-MSN were synthesized and well characterized. The formation mechanism of these special radially-aligned mesostructure was systematic studied by TEM technique and carbon nanocasting. We found that the particle size and shape as well as the structural integrity can be tuned by the ratio of aminopropyltrimethoxysilane (APTMS) and PMES. For biological application, the controlled release of the hydrophobic drug, resveratrol, was tested both in solution and in vitro. It showed that the surfactant-containing PMES-MSNs has a loading capacity around 4 times higher than its surfactant-free counterpart. In addition, a sustained release pattern was observed in the PMES-MSNs release system, indicating the feature of surfactant-assistance. The in vitro study in HeLa cells demonstrated that PMES-MSNs can be efficiently endocytosed. We also observed an endosomal escape of PMES-MSNs within the HeLa cells probably due to proton sponge effect and the assistance of PMES. A series of bifunctionalized MSN catalysts with diarylammonium triflate groups (DAT) as active acid sites and pentafluorophenyl groups (PFP) as secondary functional groups for the catalysis of esterification were synthesized and well characterized. We found that the higher PFP to DAT ratio the higher the reactivity. This phenomenon is resulting from the extreme hydrophobicity of PFP groups which help expel the sole byproduct "water" out of the mesopores, pushing the equilibrium reaction to the product end. It has also shown that our DAT/PFP-MSN catalysts can be recycled at least five times with identical yields. A sequential impregnation method was developed to synthesize supported bimetallic Pd-Au@MSN catalysts with homogeneous distribution of metal nanoparticles. The tandem catalysis of aerobic oxidative esterification of primary alcohols was applied to examine the catalytic performance of these bimetallic Pd-Au@MSN catalysts. A synergistic effect was observed in the case of bimetallic catalyst system, in which the reactivity and selectivity are much higher than its counter monometallic catalysts. Catalysts recyclability and reasons for their deactivation were also studied and discussed in Chapter 4.

  17. Multiphasic modelling of bone-cement injection into vertebral cancellous bone.

    PubMed

    Bleiler, Christian; Wagner, Arndt; Stadelmann, Vincent A; Windolf, Markus; Köstler, Harald; Boger, Andreas; Gueorguiev-Rüegg, Boyko; Ehlers, Wolfgang; Röhrle, Oliver

    2015-01-01

    Percutaneous vertebroplasty represents a current procedure to effectively reinforce osteoporotic bone via the injection of bone cement. This contribution considers a continuum-mechanically based modelling approach and simulation techniques to predict the cement distributions within a vertebra during injection. To do so, experimental investigations, imaging data and image processing techniques are combined and exploited to extract necessary data from high-resolution μCT image data. The multiphasic model is based on the Theory of Porous Media, providing the theoretical basis to describe within one set of coupled equations the interaction of an elastically deformable solid skeleton, of liquid bone cement and the displacement of liquid bone marrow. The simulation results are validated against an experiment, in which bone cement was injected into a human vertebra under realistic conditions. The major advantage of this comprehensive modelling approach is the fact that one can not only predict the complex cement flow within an entire vertebra but is also capable of taking into account solid deformations in a fully coupled manner. The presented work is the first step towards the ultimate and future goal of extending this framework to a clinical tool allowing for pre-operative cement distribution predictions by means of numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Audiometric evaluation of an attempt to optimize the fixation of the transducer of a middle-ear implant to the ossicular chain with bone cement.

    PubMed

    Snik, A; Cremers, C

    2004-02-01

    Typically, an implantable hearing device consists of a transducer that is coupled to the ossicular chain and electronics. The coupling is of major importance. The Vibrant Soundbridge (VSB) is such an implantable device; normally, the VSB transducer is fixed to the ossicular chain by means of a special clip that is crimped around the long process of the incus. In addition to crimping, bone cement was used to optimize the fixation in six patients. Long-term results were compared to those of five controls with crimp fixation alone. To assess the effect of bone cement (SerenoCem, Corinthian Medical Ltd, Nottingham, UK) on hearing thresholds, long-term post-surgery thresholds were compared to pre-surgery thresholds. Bone cement did not have any negative effect. Next, to test the hypothesis that aided thresholds might be better with the use of bone cement, aided thresholds were studied. After correction for the severity of hearing loss, only a small difference was found between the two groups at one frequency, viz. 2 kHz. It was concluded that there was no negative effect of using bone cement; however, there is also no reason to use bone cement in VSB users on a regular basis.

  19. Long-Term Behaviour of Fly Ash and Slag Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium.

    PubMed

    Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel

    2017-05-30

    Nowadays, one of the most popular ways to get a more sustainable cement industry is using additions as cement replacement. However, there are many civil engineering applications in which the use of sustainable cements is not extended yet, such as special foundations, and particularly micropiles, even though the standards do not restrict the cement type to use. These elements are frequently exposed to the sulphates present in soils. The purpose of this research is to study the effects in the very long-term (until 600 days) of sulphate attack in the microstructure of micropiles grouts, prepared with ordinary Portland cement, fly ash and slag commercial cements, continuing a previous work, in which these effects were studied in the short-term. The microstructure changes have been analysed with the non-destructive impedance spectroscopy technique, mercury intrusion porosimetry and the "Wenner" resistivity test. The mass variation and the compressive strength have also been studied. The impedance spectroscopy has been the most sensitive technique for following the sulphate attack process. Considering the results obtained, micropiles grouts with slag and fly ash, exposed to an aggressive medium with high content of sulphates, have shown good behaviour in the very long-term (600 days) compared to grouts made with OPC.

  20. Long-Term Behaviour of Fly Ash and Slag Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium

    PubMed Central

    Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel

    2017-01-01

    Nowadays, one of the most popular ways to get a more sustainable cement industry is using additions as cement replacement. However, there are many civil engineering applications in which the use of sustainable cements is not extended yet, such as special foundations, and particularly micropiles, even though the standards do not restrict the cement type to use. These elements are frequently exposed to the sulphates present in soils. The purpose of this research is to study the effects in the very long-term (until 600 days) of sulphate attack in the microstructure of micropiles grouts, prepared with ordinary Portland cement, fly ash and slag commercial cements, continuing a previous work, in which these effects were studied in the short-term. The microstructure changes have been analysed with the non-destructive impedance spectroscopy technique, mercury intrusion porosimetry and the “Wenner” resistivity test. The mass variation and the compressive strength have also been studied. The impedance spectroscopy has been the most sensitive technique for following the sulphate attack process. Considering the results obtained, micropiles grouts with slag and fly ash, exposed to an aggressive medium with high content of sulphates, have shown good behaviour in the very long-term (600 days) compared to grouts made with OPC. PMID:28772958

  1. Cement manufacture and the environment - Part I: Chemistry and technology

    USGS Publications Warehouse

    Van Oss, H. G.; Padovani, A.C.

    2002-01-01

    Hydraulic (chiefly portland) cement is the binding agent in concrete and mortar and thus a key component of a country's construction sector. Concrete is arguably the most abundant of all manufactured solid materials. Portland cement is made primarily from finely ground clinker, which itself is composed dominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process requires approximately 1.7 tons of raw materials perton of clinker produced and yields about 1 ton of carbon dioxide (CO2) emissions, of which calcination of limestone and the combustion of fuels each contribute about half. The overall level of CO2 output makes the cement industry one of the top two manufacturing industry sources of greenhouse gases; however, in many countries, the cement industry's contribution is a small fraction of that from fossil fuel combustion by power plants and motor vehicles. The nature of clinker and the enormous heat requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels, thus providing the opportunity to apply key concepts of industrial ecology, most notably the closing of loops through the use of by-products of other industries (industrial symbiosis). In this article, the chemistry and technology of cement manufacture are summarized. In a forthcoming companion article (part II), some of the environmental challenges and opportunities facing the cement industry are described. Because of the size and scope of the U.S. cement industry, the analysis relies primarily on data and practices from the United States.

  2. Use of zinc phosphate cement as a luting agent for Denzir™ copings: an in vitro study

    PubMed Central

    Söderholm, Karl-Johan M; Mondragon, Eduardo; Garcea, Ileana

    2003-01-01

    Background The clinical success rate with zinc phosphate cemented Procera crowns is high. The objective with this study was to determine whether CADCAM processed and zinc phosphate cemented Denzir copings would perform as well as zinc phosphate cemented Procera copings when tested in vitro in tension. Methods Twelve Procera copings and twenty-four Denzir copings were made. After the copings had been made, twelve of the Denzir copings were sandblasted on their internal surfaces. All copings were then cemented with zinc phosphate cement to carbon steel dies and transferred to water or artificial saliva. Two weeks after cementation, half of the samples were tested. The remaining samples were tested after one year in the storage medium. All tests were done in tension and evaluated with an ANOVA. Results Sandblasted and un-sandblasted Denzir copings performed as well as Procera copings. Storage in water or artificial saliva up to one year did not decrease the force needed to dislodge any of the coping groups. Three copings fractured during testing and one coping developed a crack during testing. The three complete fractures occurred in Procera copings, while the partly cracked coping was a Denzir coping. Conclusion No significant differences existed between the different material groups, and the retentive force increased rather than decreased with time. Fewer fractures occurred in Denzir copings, explained by the higher fracture toughness of the Denzir material. Based on good clinical results with zinc phosphate cemented Procera crowns, we foresee that zinc phosphate cement luted Denzir copings are likely to perform well clinically. PMID:12622874

  3. Analyses of heavy metals in mineral trioxide aggregate and Portland cement.

    PubMed

    Schembri, Matthew; Peplow, George; Camilleri, Josette

    2010-07-01

    Portland cement is used in the construction industry as a binder in concrete. It is manufactured from chalk, limestone, and clay, which are clinkered at very high temperatures and ground with gypsum to form Portland cement. The raw materials and the manufacturing process can result in the inclusion of heavy metals in Portland cement. Portland cement with a four to one addition of bismuth oxide is marketed as mineral trioxide aggregate (MTA), which is used mainly as a dental material. Heavy metal inclusion can be of concern because MTA is in contact with hard and soft tissues. Measurements of arsenic, lead, and chromium in hydrated gray and white Portland cement, ProRoot MTA, and MTA Angelus were conducted with graphite furnace atomic absorption spectrophotometry after acid digestion on the hydrated material. The leaching of the metal ions from the solid material in water and simulated body fluid (SBF) was also determined. All cement types showed high relative values of leached chromium compared with arsenic and lead in both the total metal content and leached species. The gray Portland cement showed the highest total amount of metal. The white Portland and both MTAs had lower values for all the leached metal ions. Both MTAs released more arsenic than the amount specified in ISO 9917-1 (2007). Portland cements and MTAs showed evidence of heavy metals in the acid-soluble form as well as leaching in deionized water and SBF. MTA contained levels of arsenic higher than the safe limit specified by the ISO 9917-1 (2007). Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. The chemical constitution and biocompatibility of accelerated Portland cement for endodontic use.

    PubMed

    Camilleri, J; Montesin, F E; Di Silvio, L; Pitt Ford, T R

    2005-11-01

    To evaluate the biocompatibility of mineral trioxide aggregate and accelerated Portland cement and their eluants by assessing cell metabolic function and proliferation. The chemical constitution of grey and white Portland cement, grey and white mineral trioxide aggregate (MTA) and accelerated Portland cement produced by excluding gypsum from the manufacturing process (Aalborg White) was determined using both energy dispersive analysis with X-ray and X-ray diffraction analysis. Biocompatibility of the materials was assessed using a direct test method where cell proliferation was measured quantitatively using Alamar Blue dye and an indirect test method where cells were grown on material elutions and cell proliferation was assessed using methyltetrazolium assay as recommended by the International standard guidelines, ISO 10993-Part 5 for in vitro testing. The chemical constitution of all the materials tested was similar. Indirect studies of the eluants showed an increase in cell activity after 24 h compared with the control in culture medium (P<0.05). Direct cell contact with the cements resulted in a fall in cell viability for all time points studied (P<0.001). Biocompatibility testing of the cement eluants showed the presence of no toxic leachables from the grey or white MTA, and that the addition of bismuth oxide to the accelerated Portland cement did not interfere with biocompatibility. The new accelerated Portland cement showed similar results. Cell growth was poor when seeded in direct contact with the test cements. However, the elution made up of calcium hydroxide produced during the hydration reaction was shown to induce cell proliferation.

  5. Global CO2 emissions from cement production

    NASA Astrophysics Data System (ADS)

    Andrew, Robbie M.

    2018-01-01

    The global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets and prioritise official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2016 were 1.45±0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2016 were 39.3±2.4 Gt CO2, 66 % of which have occurred since 1990. Emissions in 2015 were 30 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831455.

  6. Well cementing in permafrost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, W.N.

    1979-12-04

    A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of lignosulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious materialmore » which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition fro cementing in a permafrost region of a wellbore.« less

  7. Well cementing in permafrost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, W.N.

    1980-01-01

    A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of ligno-sulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious materialmore » which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition for cementing in a permafrost region of a wellbore.« less

  8. Investigating textural controls on Archie's porosity exponent using process-based, pore-scale modelling

    NASA Astrophysics Data System (ADS)

    Niu, Q.; Zhang, C.

    2017-12-01

    Archie's law is an important empirical relationship linking the electrical resistivity of geological materials to their porosity. It has been found experimentally that the porosity exponent m in Archie's law in sedimentary rocks might be related to the degree of cementation, and therefore m is termed as "cementation factor" in most literatures. Despite it has been known for many years, there is lack of well-accepted physical interpretations of the porosity exponent. Some theoretical and experimental evidences have also shown that m may be controlled by the particle and/or pore shape. In this study, we conduct a pore-scale modeling of the porosity exponent that incorporates different geological processes. The evolution of m of eight synthetic samples with different particle sizes and shapes are calculated during two geological processes, i.e., compaction and cementation. The numerical results show that in dilute conditions, m is controlled by the particle shape. As the samples deviate from dilute conditions, m increases gradually due to the strong interaction between particles. When the samples are at static equilibrium, m is noticeably larger than its values at dilution condition. The numerical simulation results also show that both geological compaction and cementation induce a significant increase in m. In addition, the geometric characteristics of these samples (e.g., pore space/throat size, and their distributions) during compaction and cementation are also calculated. Preliminary analysis shows a unique correlation between the pore size broadness and porosity exponent for all eight samples. However, such a correlation is not found between m and other geometric characteristics.

  9. Solid recovered fuels in the cement industry with special respect to hazardous waste.

    PubMed

    Thomanetz, Erwin

    2012-04-01

    Cements with good technical properties have been produced in Europe since the nineteenth century and are now worldwide standardized high-quality mass products with enormous production numbers. The basic component for cement is the so-called clinker which is produced mainly from raw meal (limestone plus clay plus sands) in a rotary kiln with preheater and progressively with integrated calciner, at temperatures up to 1450 °C. This process requires large amounts of fossil fuels and is CO₂-intensive. But most CO₂ is released by lime decomposition during the burning process. In the 1980s the use of alternative fuels began--firstly in the form of used oil and waste tyres and then increasingly by pre-conditioned materials from commercial waste and from high calorific industrial waste (i.e. solid recovered fuel (SRF))--as well as organic hazardous waste materials such as solvents, pre-conditioned with sawdust. Therefore the cement industry is more and more a competitor in the waste-to-energy market--be it for municipal waste or for hazardous waste, especially concerning waste incineration, but also for other co-incineration plants. There are still no binding EU rules identifying which types of SRF or hazardous waste could be incinerated in cement kilns, but there are some well-made country-specific 'positive lists', for example in Switzerland and Austria. Thus, for proper planning in the cement industry as well as in the waste management field, waste disposal routes should be considered properly, in order to avoid surplus capacities on one side and shortage on the other.

  10. Study on manufacturing method of optical surface with high precision in angle and surface

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Li, Xin; Yu, Ze; Zhao, Bin; Zhang, Xuebin; Sun, Lipeng; Tong, Yi

    2016-10-01

    This paper studied a manufacturing processing of optical surface with high precision in angel and surface. By theoretical analysis of the relationships between the angel precision and surface, the measurement conversion of the technical indicators, optical-cement method application, the optical-cement tooling design, the experiment has been finished successfully, the processing method has been verified, which can be also used in the manufacturing of the optical surface with similar high precision in angle and surface.

  11. A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part I-Theory

    NASA Astrophysics Data System (ADS)

    Tengattini, Alessandro; Das, Arghya; Nguyen, Giang D.; Viggiani, Gioacchino; Hall, Stephen A.; Einav, Itai

    2014-10-01

    This is the first of two papers introducing a novel thermomechanical continuum constitutive model for cemented granular materials. Here, we establish the theoretical foundations of the model, and highlight its novelties. At the limit of no cement, the model is fully consistent with the original Breakage Mechanics model. An essential ingredient of the model is the use of measurable and micro-mechanics based internal variables, describing the evolution of the dominant inelastic processes. This imposes a link between the macroscopic mechanical behavior and the statistically averaged evolution of the microstructure. As a consequence this model requires only a few physically identifiable parameters, including those of the original breakage model and new ones describing the cement: its volume fraction, its critical damage energy and bulk stiffness, and the cohesion.

  12. Alite-ye'elimite cement: Synthesis and mineralogical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Suhua; Snellings, Ruben; Li, Xuerun

    2013-03-15

    Alite-ye'elimite cement is an alternative cement that combines desirable characteristics of calcium sulfoaluminate cements and Portland cement in that it shows improved strength development at early age while retaining high portlandite contents. The key problem in the clinkering process is to produce the alite-ye'elimite phase assemblage so that both phases can co-exist. In this study, a new synthesis method is proposed to achieve the coexistence of alite and ye'elimite consisting of a secondary heat treatment step at 1250 °C after regular Portland clinker firing at 1450 °C. Quantitative X-ray powder diffraction and electron microscopy were used to analyze the phasemore » composition of clinker before and after the secondary heat treatment. The results show that ye'elimite develops during secondary heat treatment of calcium sulphate enriched clinker by reaction of C{sub 3}A and sulphate phases. Additional ferrite is formed as result of rejection of Fe originally in solid solution with C{sub 3}A during ye'elimite formation.« less

  13. Influence of Emulsified Asphalt on the Mechanical Property and Microstructure of Cement-Stabilized Gravel under Freezing and Thawing Cycle Conditions.

    PubMed

    Wang, Yiqi; Tan, Yiqiu; Guo, Meng; Wang, Xinglong

    2017-05-06

    Properties of cement-stabilized gravel modified by emulsified asphalt under freezing and thawing cycle conditions were investigated by adjusting the dosage of cement. Mercury intrusion porosimetry (MIP) and Scanning electron microscopy (SEM) were introduced to analyze the influential mechanism. The results indicate that cement emulsified asphalt stabilized gravel with 5 wt % of cement performed well in both mechanics and frost-resistance. Although the addition of emulsified asphalt would lead to a partial decrease of strength, it can extend the process of strength loss and improve the freezing resistance. The main reason for this is that the permeability can be improved by the filling effects of emulsified asphalt. The frost-heave stress caused by the phase transition of water can also be remitted by emulsified asphalt, the elasticity modulus of which is much lower than the matrix. The generating speed of the micro crack can also be slowed down by emulsified asphalt.

  14. Cathodoluminescence investigations on quartz cement in the sandstones of Khabour Formation from Iraqi Kurdistan Region, Northern Iraq

    NASA Astrophysics Data System (ADS)

    Omer, Muhamed F.; Friis, Henrik

    2014-03-01

    The Ordovician deltaic to shallow marine Khabour Formation in Northern Iraq consists mainly of sandstone with minor siltstone and interbedded shale. The sandstones are pervasively cemented by quartz that resulted in very little preserved primary porosity. Cathodoluminescence and petrographic studies showed that the silica cementation occurred in five successive phases which can be distinguished by their luminescence pattern. The precipitations of two phases have predated the major compaction process while the other phases are younger. The successive phases represent a sequence of changes in silica supply which were classified as very early and early, derived from dissolved biogenic silica that precipitated as opal/microquartz, possibly pre-compactional and of non-luminescent quartz overgrowth type. This was followed by phases whose silica supply derived from pressure solution of quartz, dissolution of feldspar, and hydrothermal fluids related to major thrust fault event. These successive quartz cement phases showed an increase in luminescence and the development of complicated zonation pattern in late-stage quartz cementation.

  15. Westinghouse Cementation Facility of Solid Waste Treatment System - 13503

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Torsten; Aign, Joerg

    2013-07-01

    During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the deliverymore » of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)« less

  16. Effect of PCM on the Hydration Process of Cement-Based Mixtures: A Novel Thermo-Mechanical Investigation.

    PubMed

    Fabiani, Claudia; Pisello, Anna Laura; D'Alessandro, Antonella; Ubertini, Filippo; Cabeza, Luisa F; Cotana, Franco

    2018-05-23

    The use of Phase Change Material (PCM) for improving building indoor thermal comfort and energy saving has been largely investigated in the literature in recent years, thus confirming PCM’s capability to reduce indoor thermal fluctuation in both summer and winter conditions, according to their melting temperature and operation boundaries. Further to that, the present paper aims at investigating an innovative use of PCM for absorbing heat released by cement during its curing process, which typically contributes to micro-cracking of massive concrete elements, therefore compromising their mechanical performance during their service life. The experiments carried out in this work showed how PCM, even in small quantities (i.e., up to 1% in weight of cement) plays a non-negligible benefit in reducing differential thermal increases between core and surface and therefore mechanical stresses originating from differential thermal expansion, as demonstrated by thermal monitoring of cement-based cubes. Both PCM types analyzed in the study (with melting temperatures at 18 and 25 ∘ C) were properly dispersed in the mix and were shown to be able to reduce the internal temperature of the cement paste by several degrees, i.e., around 5 ∘ C. Additionally, such small amount of PCM produced a reduction of the final density of the composite and an increase of the characteristic compressive strength with respect to the plain recipe.

  17. IMPACT OF PHYSICAL AND CHEMICAL MUD CONTAMINATION ON WELLBORE CEMENT- FORMATION SHEAR BOND STRENGTH Authors: Arome Oyibo1 and Mileva Radonjic1 * 1. Craft and Hawkins Department of Petroleum Engineering, 2131 Patrick F. Taylor Hall, Louisiana State University, Baton Rouge, LA 70803, aoyibo1@tigers.lsu.edu, mileva@lsu.edu

    NASA Astrophysics Data System (ADS)

    Oyibo, A. E.

    2013-12-01

    Wellbore cement has been used to provide well integrity through zonal isolation in oil & gas wells and geothermal wells. Cementing is also used to provide mechanical support for the casing and protect the casing from corrosive fluids. Failure of cement could be caused by several factors ranging from poor cementing, failure to completely displace the drilling fluids to failure on the path of the casing. A failed cement job could result in creation of cracks and micro annulus through which produced fluids could migrate to the surface which could lead to sustained casing pressure, contamination of fresh water aquifer and blow out in some cases. In addition, cement failures could risk the release of chemicals substances from hydraulic fracturing into fresh water aquifer during the injection process. To achieve proper cementing, the drilling fluid should be completely displaced by the cement slurry. However, this is hard to achieve in practice, some mud is usually left on the wellbore which ends up contaminating the cement afterwards. The purpose of this experimental study is to investigate the impact of both physical and chemical mud contaminations on cement-formation bond strength for different types of formations. Physical contamination occurs when drilling fluids (mud) dries on the surface of the formation forming a mud cake. Chemical contamination on the other hand occurs when the drilling fluids which is still in the liquid form interacts chemically with the cement during a cementing job. We investigated the impact of the contamination on the shear bond strength and the changes in the mineralogy of the cement at the cement-formation interface to ascertain the impact of the contamination on the cement-formation bond strength. Berea sandstone and clay rich shale cores were bonded with cement cores with the cement-formation contaminated either physically or chemically. For the physically contaminated composite cores, we have 3 different sample designs: clean/not contaminated, scrapped and washed composite cores. Similarly, for the chemically contaminated samples we had 3 different sample designs: 0%, 5% and 10% mud contaminated composite cores. Shear test were performed on the composite cores to determine the shear bond strength and the results suggested that the detrimental impact of the contamination is higher when the cores are physically contaminated i.e. when we have mud cake present at the surface of the wellbore before a cement job is performed. Also, the results showed that shear bond strength is higher for sandstone formations as compared to shale formations. Material characterization analysis was carried out to determine the micro structural changes at the cement-formation interface. The results obtained from the SEM and micro CT images taken at the bond interface confirmed that chemical contamination caused substantial changes in the spatial distribution of minerals that impacted bond strength. Keywords: Cement-Formation bond strength, mud contamination, shale, sandstone and material characterization *Corresponding author

  18. Processing equipment for grinding of building powders

    NASA Astrophysics Data System (ADS)

    Fediuk, R. S.; Ibragimov, R. A.; Lesovik, V. S.; Pak, A. A.; Krylov, V. V.; Poleschuk, M. M.; Stoyushko, N. Y.; Gladkova, N. A.

    2018-03-01

    In the article questions of mechanical grinding up to nanosize of building powder materials are considered. In the process of mechanoactivation of the composite binder, active molecules of cement minerals arise when molecular packets are destroyed in the areas of defects and loosening of the metastable phase during decompensation of intermolecular forces. The process is accompanied by a change in the kinetics of hardening Portland cement. Mechanical processes in the grinding of mineral materials cause, together with an increase in their surface energy, the growth of the isobaric potential of the powders and, accordingly, their chemical activity, which also contributes to high adhesion strength when they come into contact with binders. Thus, a set of measures for mechanical activation allows more fully use the mass of components of the filled cement systems and regulate their properties. At relatively low costs, it is possible to provide an impressive and, importantly, easily repeatable in production conditions result. It is revealed that the use of a vario-planetary mill allows to achieve the best results on grinding the powder building materials.

  19. Grout formulation for disposal of low-level and hazardous waste streams containing fluoride

    DOEpatents

    McDaniel, E.W.; Sams, T.L.; Tallent, O.K.

    1987-06-02

    A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.

  20. Mines and mineral processing facilities in the vicinity of the March 11, 2011, earthquake in northern Honshu, Japan

    USGS Publications Warehouse

    Menzie, W. David; Baker, Michael S.; Bleiwas, Donald I.; Kuo, Chin

    2011-01-01

    U.S. Geological Survey data indicate that the area affected by the March 11, 2011, magnitude 9.0 earthquake and associated tsunami is home to nine cement plants, eight iodine plants, four iron and steel plants, four limestone mines, three copper refineries, two gold refineries, two lead refineries, two zinc refineries, one titanium dioxide plant, and one titanium sponge processing facility. These facilities have the capacity to produce the following percentages of the world's nonfuel mineral production: 25 percent of iodine, 10 percent of titanium sponge (metal), 3 percent of refined zinc, 2.5 percent of refined copper, and 1.4 percent of steel. In addition, the nine cement plants contribute about one-third of Japan's cement annual production. The iodine is a byproduct from production of natural gas at the Miniami Kanto gas field, east of Tokyo in Chiba Prefecture. Japan is the world's second leading (after Chile) producer of iodine, which is processed in seven nearby facilities.

  1. Utilization of Palm Oil Clinker as Cement Replacement Material

    PubMed Central

    Kanadasan, Jegathish; Abdul Razak, Hashim

    2015-01-01

    The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized. PMID:28793748

  2. Utilization of Palm Oil Clinker as Cement Replacement Material.

    PubMed

    Kanadasan, Jegathish; Abdul Razak, Hashim

    2015-12-16

    The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized.

  3. The stress relaxation of cement clinkers under high temperature

    NASA Astrophysics Data System (ADS)

    Wang, Xiufang; Bao, Yiwang; Liu, Xiaogen; Qiu, Yan

    2015-12-01

    The energy consumption of crushing is directly affected by the mechanical properties of cement materials. This research provides a theoretical proof for the mechanism of the stress relaxation of cement clinkers under high temperature. Compression stress relaxation under various high temperatures is discussed using a specially developed load cell, which can measure stress and displacement under high temperatures inside an autoclave. The cell shows that stress relaxation dramatically increases and that the remaining stress rapidly decreases with an increase in temperature. Mechanical experiments are conducted under various temperatures during the cooling process to study the changes in the grinding resistance of the cement clinker with temperature. The effects of high temperature on the load-displacement curve, compressive strength, and elastic modulus of cement clinkers are systematically studied. Results show that the hardening phenomenon of the clinker becomes apparent with a decrease in temperature and that post-peak behaviors manifest characteristics of the transformation from plasticity to brittleness. The elastic modulus and compressive strength of cement clinkers increase with a decrease in temperature. The elastic modulus increases greatly when the temperature is lower than 1000 °C. The compressive strength of clinkers increases by 73.4% when the temperature drops from 1100 to 800 °C.

  4. Phosphate-bonded ceramic–wood composites : R&D project overview and invitation to participate

    Treesearch

    Theodore L. Laufenberg; Matt Aro

    2004-01-01

    We are developing chemically bonded ceramic phosphate binders for the production of biofiber-based composite materials. These binders promise to have better processing and properties than some current cement and polymer resin binder systems. The ceramic phosphate binders (termed Ceramicrete), if used in place of cement and polymers, will significantly reduce the...

  5. Constraining the Texture and Composition of Pore-Filling Cements at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Siebach, K. L.; Grotzinger, J. P.; McLennan, S. M.; Hurowitz, J. A.; Ming, D. W.; Vaniman, D. T.; Rampe, E. B.; Blaney, D. L.; Kah, L. C.

    2015-01-01

    The Mars Science Laboratory (MSL) rover Curiosity has encountered a wide variety of sedimentary rocks deposited in fluvio-lacuestrine sequences at the base of Gale Crater. The presence of sedimentary rocks requires that initial sediments underwent diagenesis and were lithified. Lithification involves sediment compaction, cementation, and re-crystallization (or authigenic) processes. Analysis of the texture and composition of the cement can reveal the environmental conditions when the cements were deposited, enabling better understanding of early environments present within Gale Crater. The first step in lithification is sediment compaction. The Gale crater sediments do not show evidence for extensive compaction prior to cementation; the Sheepbed mudstone in Yellowknife Bay (YKB) has preserved void spaces ("hollow nodules"), indicating that sediments were cemented around the hollow prior to compaction, and conglomerates show imbrication, indicating minimal grain reorganization prior to lithification. Furthermore, assuming the maximum burial depth of these sediments is equivalent to the depth of Gale Crater, the sediments were never under more than 1 kb of pressure, and assuming a 15 C/km thermal gradient in the late Noachian, the maximum temperature of diagenesis would have been approximately 75 C. This is comparable to shallow burial diagenetic conditions on Earth. The cementation and recrystallization components of lithification are closely intertwined. Cementation describes the precipitation of minerals between grains from pore fluids, and recrystallization (or authigenesis) is when the original sedimentary mineral grains are altered into secondary minerals. The presence of authigenic smectites and magnetite in the YKB formation suggests that some recrystallization has taken place. The relatively high percentage of XRD-amorphous material (25-40%) detected by CheMin suggests that this recrystallization may be limited in scope, and therefore may not contribute significantly to the cementing material. However, relatively persistent amorphous components could exist in the Martian environment (e.g. amorphous MgSO4), so recrystallization, including loss of crystallinity, cannot yet be excluded as a method of cementation. In order to describe the rock cementation, both the rock textures and their composition must be considered. Here, we attempt to summarize the current understanding of the textural and compositional aspects of the cement across the rocks analyzed by Curiosity to this point.

  6. Revision Stapedectomy with Necrosis of the Long Process of the Incus: Does the Degree of Necrosis Matter? A Retrospective Clinical Study.

    PubMed

    Ghonim, Mohamed; Shabana, Yousef; Ashraf, Bassem; Salem, Mohamed

    2017-04-01

    To discuss the different modalities for managing necrosis of the long process of the incus in revision stapedectomy on the basis of the degree of necrosis and compare the results with those reported in the literature. Thirty-six patients underwent revision stapedectomy with the necrosis of the long process of the incus from 2009 to 2016. The patients were divided into three groups on the basis of the degree of necrosis. For group A (minimal necrosis), augmentation technique with bone cement was performed. For group B (partial necrosis), the cement plug technique was performed. For group C (sever necrosis), malleus relocation with malleovestibulopexy was performed using reshaped necrosed incus. Air and bone conduction thresholds at frequencies of 500-3000 Hz were reviewed pre- and postoperatively using conventional audiometry. The air-bone gap (ABG) and bone conduction thresholds were measured. Postoperative ABG was reduced to <10 dB in 28 cases (77.8%) and <20 dB in all cases (100%). There was no significant change in postoperative bone conduction thresholds. The mean patient follow-up duration was 23 (range, 18-36) months. The cement plug technique was used in 75% of cases. Managing necrosis of the long process of the incus in revision stapedectomy should be considered according to the degree of necrosis. The cement plug technique is considered to be a reasonable option in most cases. Malleus relocation with malleovestibulopexy is an effective alternative to prosthesis.

  7. Microstructural characterization of dental zinc phosphate cements using combined small angle neutron scattering and microfocus X-ray computed tomography.

    PubMed

    Viani, Alberto; Sotiriadis, Konstantinos; Kumpová, Ivana; Mancini, Lucia; Appavou, Marie-Sousai

    2017-04-01

    To characterize the microstructure of two zinc phosphate cement formulations in order to investigate the role of liquid/solid ratio and composition of powder component, on the developed porosity and, consequently, on compressive strength. X-ray powder diffraction with the Rietveld method was used to study the phase composition of zinc oxide powder and cements. Powder component and cement microstructure were investigated with scanning electron microscopy. Small angle neutron scattering (SANS) and microfocus X-ray computed tomography (XmCT) were together employed to characterize porosity and microstructure of dental cements. Compressive strength tests were performed to evaluate their mechanical performance. The beneficial effects obtained by the addition of Al, Mg and B to modulate powder reactivity were mitigated by the crystallization of a Zn aluminate phase not involved in the cement setting reaction. Both cements showed spherical pores with a bimodal distribution at the micro/nano-scale. Pores, containing a low density gel-like phase, developed through segregation of liquid during setting. Increasing liquid/solid ratio from 0.378 to 0.571, increased both SANS and XmCT-derived specific surface area (by 56% and 22%, respectively), porosity (XmCT-derived porosity increased from 3.8% to 5.2%), the relative fraction of large pores ≥50μm, decreased compressive strength from 50±3MPa to 39±3MPa, and favored microstructural and compositional inhomogeneities. Explain aspects of powder design affecting the setting reaction and, in turn, cement performance, to help in optimizing cement formulation. The mechanism behind development of porosity and specific surface area explains mechanical performance, and processes such as erosion and fluoride release/uptake. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. The Effect of Sodium Hydroxide Molarity on Strength Development of Non-Cement Class C Fly Ash Geopolymer Mortar

    NASA Astrophysics Data System (ADS)

    Wardhono, A.

    2018-01-01

    The use of fly ash as cement replacement material can overcome the environmental issues, especially the global warming problem caused by the greenhouse effect. This is attributed to the CO2 gas produced during the cement manufacturing process, which 1 ton of cement is equivalent to 1 ton CO2. However, the major problem of fly ash is the requirement of activators to activate the polymer reactions. The most common activator used in non-cement or geopolymer material is the combination of sodium hydroxide (NaOH) and sodium silicate. This study aims to identify the effect of NaOH molarity as activator on strength development of non-cement class C fly ash geopolymer mortar. The molarity variations of NaOH were 6 Molar (M), 8M, 10M, 12M, 14M and 15M. The compressive strength test was performed at the age of 3, 7 and 28 days in accordance with ASTM standard, and the specimens were cured at room temperature. The results show that the highest compressive strength was achieved by geopolymer mortar with a molarity of 12M. It exhibits a higher strength to that normal mortar at 28 days. However, the use of NaOH molarity more than 12M tends to decrease the strength of non-cement geopolymer mortar specimens.

  9. An approach to derive some simple empirical equations to calibrate nuclear and acoustic well logging tools.

    PubMed

    Mohammad Al Alfy, Ibrahim

    2018-01-01

    A set of three pads was constructed from primary materials (sand, gravel and cement) to calibrate the gamma-gamma density tool. A simple equation was devised to convert the qualitative cps values to quantitative g/cc values. The neutron-neutron porosity tool measures the qualitative cps porosity values. A direct equation was derived to calculate the porosity percentage from the cps porosity values. Cement-bond log illustrates the cement quantities, which surround well pipes. This log needs a difficult process due to the existence of various parameters, such as: drilling well diameter as well as internal diameter, thickness and type of well pipes. An equation was invented to calculate the cement percentage at standard conditions. This equation can be modified according to varying conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Tensile and Flexural Properties of Cement Composites Reinforced with Flax Nonwoven Fabrics

    PubMed Central

    Claramunt, Josep; Ventura, Heura; Fernández-Carrasco, Lucía J; Ardanuy, Mònica

    2017-01-01

    The aim of this study is to develop a process to produce high-performance cement-based composites reinforced with flax nonwoven fabrics, analyzing the influence of the fabric structure—thickness and entanglement—on mechanical behavior under flexural and tensile loadings. For this purpose, composite with flax nonwoven fabrics with different thicknesses were first prepared and their cement infiltration was evaluated with backscattered electron (BSE) images. The nonwoven fabrics with the optimized thickness were then subjected to a water treatment to improve their stability to humid environments and the fiber-matrix adhesion. For a fixed thickness, the effect of the nonwoven entanglement on the mechanical behavior was evaluated under flexural and direct tension tests. The obtained results indicate that the flax nonwoven fabric reinforcement leads to cement composites with substantial enhancement of ductility. PMID:28772573

  11. Influence of Chemical, Mechanical, and Transport Processes on Wellbore Leakage from Geologic CO2 Storage Reservoirs.

    PubMed

    Carroll, Susan A; Iyer, Jaisree; Walsh, Stuart D C

    2017-08-15

    Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids from the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks. The broader context of this paper is to use our experimentally calibrated chemical, mechanical, and transport model to illustrate when, where, and in what conditions fracture pathways seal in CO 2 storage wells, to reduce their risk to groundwater resources. We do this by defining the amount of cement and the time required to effectively seal the leakage pathways associated with peak and postinjection overpressures, within the context of oil and gas industry standards for leak detection, mitigation, and repairs. Our simulations suggest that for many damage scenarios chemical and mechanical processes lower leakage risk by reducing or sealing fracture pathways. Leakage risk would remain high in wells with a large amount of damage, modeled here as wide fracture apertures, where fast flowing fluids are too dilute for carbonate precipitation and subsurface stress does not compress the altered cement. Fracture sealing is more likely as reservoir pressures decrease during the postinjection phase where lower fluxes aid chemical alteration and mechanical deformation of cement. Our results hold promise for the development of mitigation framework to avoid impacting groundwater resources above any geologic CO 2 storage reservoir by correlating operational pressures and barrier lengths.

  12. Influence of Chemical, Mechanical, and Transport Processes on Wellbore Leakage from Geologic CO 2 Storage Reservoirs

    DOE PAGES

    Carroll, Susan A.; Iyer, Jaisree; Walsh, Stuart D. C.

    2017-07-25

    Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids frommore » the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks. The broader context of this paper is to use our experimentally calibrated chemical, mechanical, and transport model to illustrate when, where, and in what conditions fracture pathways seal in CO 2 storage wells, to reduce their risk to groundwater resources. We do this by defining the amount of cement and the time required to effectively seal the leakage pathways associated with peak and postinjection overpressures, within the context of oil and gas industry standards for leak detection, mitigation, and repairs. Our simulations suggest that for many damage scenarios chemical and mechanical processes lower leakage risk by reducing or sealing fracture pathways. Leakage risk would remain high in wells with a large amount of damage, modeled here as wide fracture apertures, where fast flowing fluids are too dilute for carbonate precipitation and subsurface stress does not compress the altered cement. Fracture sealing is more likely as reservoir pressures decrease during the postinjection phase where lower fluxes aid chemical alteration and mechanical deformation of cement. Our results hold promise for the development of mitigation framework to avoid impacting groundwater resources above any geologic CO 2 storage reservoir by correlating operational pressures and barrier lengths.« less

  13. Influence of Chemical, Mechanical, and Transport Processes on Wellbore Leakage from Geologic CO 2 Storage Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Susan A.; Iyer, Jaisree; Walsh, Stuart D. C.

    Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids frommore » the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks. The broader context of this paper is to use our experimentally calibrated chemical, mechanical, and transport model to illustrate when, where, and in what conditions fracture pathways seal in CO 2 storage wells, to reduce their risk to groundwater resources. We do this by defining the amount of cement and the time required to effectively seal the leakage pathways associated with peak and postinjection overpressures, within the context of oil and gas industry standards for leak detection, mitigation, and repairs. Our simulations suggest that for many damage scenarios chemical and mechanical processes lower leakage risk by reducing or sealing fracture pathways. Leakage risk would remain high in wells with a large amount of damage, modeled here as wide fracture apertures, where fast flowing fluids are too dilute for carbonate precipitation and subsurface stress does not compress the altered cement. Fracture sealing is more likely as reservoir pressures decrease during the postinjection phase where lower fluxes aid chemical alteration and mechanical deformation of cement. Our results hold promise for the development of mitigation framework to avoid impacting groundwater resources above any geologic CO 2 storage reservoir by correlating operational pressures and barrier lengths.« less

  14. Construct Validation of Physical Activity Surveys in Culturally Diverse Older Adults: A Comparison of Four Commonly Used Questionnaires

    ERIC Educational Resources Information Center

    Moore, Delilah S.; Ellis, Rebecca; Allen, Priscilla D.; Cherry, Katie E.; Monroe, Pamela A.; O'Neil, Carol E.; Wood, Robert H.

    2008-01-01

    The purpose of this study was to establish validity evidence of four physical activity (PA) questionnaires in culturally diverse older adults by comparing self-report PA with performance-based physical function. Participants were 54 older adults who completed the Continuous Scale Physical Functional Performance 10-item Test (CS-PFP10), Physical…

  15. Albanian-NATO Relations in the Fight Against International Terrorism

    DTIC Science & Technology

    2012-12-01

    conformity with international standards.258 “The law provides for the coordination among all state institutions, bank sector , insurance companies...5 US-Adriatic Charter-5 AAF Albanian Armed Forces ACT Allied Command of Transformation AII Adriatic-Ionian Initiative AIS ...reform. With the country’s membership in PfP, Albania initiated military and defense- sector reforms in accordance with the program. In 1997

  16. Play for Peace as a Violence Prevention Model: Achieving "Voluntad y Convivencia"

    ERIC Educational Resources Information Center

    Gass, Michael; Gough, Sarah; Armas, Andres; Dolcino, Cristina

    2016-01-01

    Violence prevention is a key focus for many intervention programs, yet little is known about how or why certain programs are able to successfully produce effective prevention efforts. The purpose of this study was to identify the essential elements of the Play for Peace (PFP) program, how it creates change in participants, and how it is…

  17. Intratemporal facial nerve ultrastructure in patients with idiopathic facial paralysis: viral infection evidence study.

    PubMed

    Florez, Rosangela Aló Maluza; Lang, Raquel; Veridiano, Adriano Mora; Zanini, Renato de Oliveira; Calió, Pedro Luiz; Simões, Ricardo Dos Santos; Testa, José Ricardo Gurgel

    2010-01-01

    The etiology of idiopathic peripheral facial palsy (IPFP) is still uncertain; however, some authors suggest the possibility of a viral infection. to analyze the ultrastructure of the facial nerve seeking viral evidences that might provide etiological data. We studied 20 patients with peripheral facial palsy (PFP), with moderate to severe FP, of both genders, between 18-60 years of age, from the Clinic of Facial Nerve Disorders. The patients were broken down into two groups - Study: eleven patients with IPFP and Control: nine patients with trauma or tumor-related PFP. The fragments were obtained from the facial nerve sheath or from fragments of its stumps - which would be discarded or sent to pathology exam during the facial nerve repair surgery. The removed tissue was fixed in 2% glutaraldehyde, and studied under Electronic Transmission Microscopy. In the study group we observed an intense repair cellular activity by increased collagen fibers, fibroblasts containing developed organelles, free of viral particles. In the control group this repair activity was not evident, but no viral particles were observed. There were no viral particles, and there were evidences of intense activity of repair or viral infection.

  18. Does gender influence neuromotor control of the knee and hip?

    PubMed

    Cowan, Sallie M; Crossley, Kay M

    2009-04-01

    Patellofemoral pain (PFP) is a common condition that occurs more frequently in females. Anatomical, hormonal and neuromuscular factors have been proposed to contribute to the increased incidence of PFP in females, with neuromuscular factors considered to be of particular importance. This cross-sectional study aimed to evaluate differences in the neuromotor control of the knee and hip muscles between genders and to investigate whether clinical measures of hip rotation range and strength were associated with EMG measures of hip and thigh motor control. Twenty-nine (16 female and 13 male) asymptomatic participants completed a visual choice reaction-time stair stepping task. EMG activity was recorded from vastus medialis oblique, vastus lateralis, anterior and posterior gluteus medius muscles. In addition hip rotation range of motion and hip external rotation, abduction and trunk strength were assessed. There were no differences in the timing or peak of EMG activation of the vasti or gluteus medius muscle between genders during the stepping task. There were however significant associations between EMG measures of motor control of the vasti and hip strength in both females and males. These findings are suggestive of a link between hip muscle control and vasti neuromotor control.

  19. Authorization basis supporting documentation for plutonium finishing plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.P., Fluor Daniel Hanford

    1997-03-05

    The identification and definition of the authorization basis for the Plutonium Finishing Plant (PFP) facility and operations are essential for compliance to DOE Order 5480.21, Unreviewed Safety Questions. The authorization basis, as defined in the Order, consists of those aspects of the facility design basis, i.e., the structures, systems and components (SSCS) and the operational requirements that are considered to be important to the safety of operations and are relied upon by DOE to authorize operation of the facility. These facility design features and their function in various accident scenarios are described in WHC-SD-CP-SAR-021, Plutonium Finishing Plant Final Safety Analysismore » Report (FSAR), Chapter 9, `Accident Analysis.` Figure 1 depicts the relationship of the Authorization Basis to its components and other information contained in safety documentation supporting the Authorization Basis. The PFP SSCs that are important to safety, collectively referred to as the `Safety Envelope` are discussed in various chapters of the FSAR and in WHC-SD-CP-OSR-010, Plutonium Finishing Plant Operational Safety Requirements. Other documents such as Criticality Safety Evaluation Reports (CSERS) address and support some portions of the Authorization Basis and Safety Envelope.« less

  20. Effect of various fixation parameters on strain development of screw- and cement-retained implant-supported restorations.

    PubMed

    Schittenhelm, Birgit; Karl, Matthias; Graef, Friedrich; Heckmann, Siegfried; Taylor, Thomas

    2013-01-01

    The objective of this study was to quantify the potential effects of screw- and cement-retention on strain development of implant-supported fixed dental prostheses (FDPs). A total of 20 single crowns and 70 three-unit FDPs were fabricated to fit an in vitro model situation with two implants. Using strain gauges attached to the model material adjacent to the implants, strain development of the restorations during fixation was recorded while the parameters cement type (provisional and definitive cement), cementation force (10 N and 100 N), and tightening torque (5 Ncm, 10 Ncm, and 15 Ncm) were varied. MANOVA with Pillai's trace was used for pairwise comparisons between groups (α = .05). Mean absolute strain development ranged from 5.11 µm/m for to 27.26 µm/m for single crowns and from 16.46 µm/m to 689.04 µm/m for multi-unit restorations. Screw-retained single crowns exhibited significantly smaller strain development as compared to cement-retained single crowns (P = .009). The type of cement used seemed to have no effect on strain development of an FDP regardless of the cementation force applied (P = .064 and P = .605). An increase in tightening torque for screw-retained FDPs also had no effect on resulting strain development (P values ranging from .692 to .807). Nonuniform results were found when comparing screw- and cementretention as the retention mechanism for FDPs. Strain development seems to depend predominantly on the accuracy achieved during the fabrication process whereas the retention mechanisms themselves as well as their potential parameters only have a minor effect.

  1. New method for antibiotic release from bone cement (polymethylmethacrylate): Redefining boundaries.

    PubMed

    Carbó-Laso, E; Sanz-Ruiz, P; Del Real-Romero, J C; Ballesteros-Iglesias, Y; Paz-Jiménez, E; Arán-Ais, F; Sánchez-Navarro, M; Pérez-Limiñana, M A; López-Torres, I; Vaquero-Martín, J

    The increasing antimicrobial resistance is promoting the addition of antibiotics with high antistaphylococcal activity to polymethylmethacrylate (PMMA), for use in cement spacers in periprosthetic joint infection. Linezolid and levofloxacin have already been used in in-vitro studies, however, rifampicin has been shown to have a deleterious effect on the mechanical properties of PMMA, because it inhibits PMMA polymerization. The objective of our study was to isolate the rifampicin during the polymerization process using microencapsulation techniques, in order to obtain a PMMA suitable for manufacturing bone cement spacers. Microcapsules of rifampicin were synthesized with alginate and PHBV, using Rifaldin ® . The concentration levels of rifampicin were studied by UV-visible spectrophotometry. Compression, hardness and setting time tests were performed with CMW ® 1 cement samples alone, with non-encapsulated rifampicin and with alginate or PHBV microcapsules. The production yield, efficiency and microencapsulation yield were greater with alginate (P = .0001). The cement with microcapsules demonstrated greater resistance to compression than the cement with rifampicin (91.26±5.13, 91.35±6.29 and 74.04±3.57 MPa in alginate, PHBV and rifampicin, respectively) (P = .0001). The setting time reduced, and the hardness curve of the cement with alginate microcapsules was similar to that of the control. Microencapsulation with alginate is an appropriate technique for introducing rifampicin into PMMA, preserving compression properties and setting time. This could allow intraoperative manufacturing of bone cement spacers that release rifampicin for the treatment of periprosthetic joint infection. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Well completion process for formations with unconsolidated sands

    DOEpatents

    Davies, David K.; Mondragon, III, Julius J.; Hara, Philip Scott

    2003-04-29

    A method for consolidating sand around a well, involving injecting hot water or steam through well casing perforations in to create a cement-like area around the perforation of sufficient rigidity to prevent sand from flowing into and obstructing the well. The cement area has several wormholes that provide fluid passageways between the well and the formation, while still inhibiting sand inflow.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greener, J.M.; Trimble, G.E.; Singer, G.M.

    This paper describes the Opon Gas Field development drilling case history in the Middle Magdalena Basin of north-central Colombia, South America. World class levels of drilling fluid and cementing densities in excess of 22.0 ppg were required to control the extreme pressures encountered. A continuous improvement process is detailed in regard to casing, drilling fluid, cement and related drilling mechanics programs in a severely pressured and environmentally sensitive operation.

  4. Environmental, Human Health and Socio-Economic Effects of Cement Powders: The Multicriteria Analysis as Decisional Methodology.

    PubMed

    Moretti, Laura; Di Mascio, Paola; Bellagamba, Simona

    2017-06-16

    The attention to sustainability-related issues has grown fast in recent decades. The experience gained with these themes reveals the importance of considering this topic in the construction industry, which represents an important sector throughout the world. This work consists on conducting a multicriteria analysis of four cement powders, with the objective of calculating and analysing the environmental, human health and socio-economic effects of their production processes. The economic, technical, environmental and safety performances of the examined powders result from official, both internal and public, documents prepared by the producers. The Analytic Hierarchy Process permitted to consider several indicators (i.e., environmental, human health related and socio-economic parameters) and to conduct comprehensive and unbiased analyses which gave the best, most sustainable cement powder. As assumed in this study, the contribution of each considered parameter to the overall sustainability has a different incidence, therefore the procedure could be used to support on-going sustainability efforts under different conditions. The results also prove that it is not appropriate to regard only one parameter to identify the 'best' cement powder, but several impact categories should be considered and analysed if there is an interest for pursuing different, often conflicting interests.

  5. Treatment of mercury containing waste

    DOEpatents

    Kalb, Paul D.; Melamed, Dan; Patel, Bhavesh R; Fuhrmann, Mark

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  6. Use of MRF residue as alternative fuel in cement production.

    PubMed

    Fyffe, John R; Breckel, Alex C; Townsend, Aaron K; Webber, Michael E

    2016-01-01

    Single-stream recycling has helped divert millions of metric tons of waste from landfills in the U.S., where recycling rates for municipal solid waste are currently over 30%. However, material recovery facilities (MRFs) that sort the municipal recycled streams do not recover 100% of the incoming material. Consequently, they landfill between 5% and 15% of total processed material as residue. This residue is primarily composed of high-energy-content non-recycled plastics and fiber. One possible end-of-life solution for these energy-dense materials is to process the residue into Solid Recovered Fuel (SRF) that can be used as an alternative energy resource capable of replacing or supplementing fuel resources such as coal, natural gas, petroleum coke, or biomass in many industrial and power production processes. This report addresses the energetic and environmental benefits and trade-offs of converting non-recycled post-consumer plastics and fiber derived from MRF residue streams into SRF for use in a cement kiln. An experimental test burn of 118 Mg of SRF in the precalciner portion of the cement kiln was conducted. The SRF was a blend of 60% MRF residue and 40% post-industrial waste products producing an estimated 60% plastic and 40% fibrous material mixture. The SRF was fed into the kiln at 0.9 Mg/h for 24h and then 1.8 Mg/h for the following 48 h. The emissions data recorded in the experimental test burn were used to perform the life-cycle analysis portion of this study. The analysis included the following steps: transportation, landfill, processing and fuel combustion at the cement kiln. The energy use and emissions at each step is tracked for the two cases: (1) The Reference Case, where MRF residue is disposed of in a landfill and the cement kiln uses coal as its fuel source, and (2) The SRF Case, in which MRF residue is processed into SRF and used to offset some portion of coal use at the cement kiln. The experimental test burn and accompanying analysis indicate that using MRF residue to produce SRF for use in cement kilns is likely an advantageous alternative to disposal of the residue in landfills. The use of SRF can offset fossil fuel use, reduce CO2 emissions, and divert energy-dense materials away from landfills. For this test-case, the use of SRF offset between 7700 and 8700 Mg of coal use, reduced CO2 emissions by at least 1.4%, and diverted over 7950 Mg of energy-dense materials away from landfills. In addition, emissions were reduced by at least 19% for SO2, while NOX emissions increased by between 16% and 24%. Changes in emissions of particulate matter, mercury, hydrogen chloride, and total-hydrocarbons were all less than plus or minus 2.2%, however these emissions were not measured at the cement kiln. Co-location of MRFs, SRF production facilities, and landfills can increase the benefits of SRF use even further by reducing transportation requirements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Fixation of a human rib by an intramedullary telescoping splint anchored by bone cement.

    PubMed

    Liovic, Petar; Šutalo, Ilija D; Marasco, Silvana F

    2016-09-01

    A novel concept for rib fixation is presented that involves the use of a bioresorbable polymer intramedullary telescoping splint. Bone cement is used to anchor each end of the splint inside the medullary canal on each side of the fracture site. In this manner, rib fixation is achieved without fixation device protrusion from the rib, making the splint completely intramedullary. Finite element analysis is used to demonstrate that such a splint/cement composite can preserve rib fixation subjected to cough-intensity force loadings. Computational fluid dynamics and porcine rib experiments were used to study the anchor formation process required to complete the fixation.

  8. Immobilization of Fast Reactor First Cycle Raffinate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langley, K. F.; Partridge, B. A.; Wise, M.

    This paper describes the results of work to bring forward the timing for the immobilization of first cycle raffinate from reprocessing fuel from the Dounreay Prototype Fast Reactor (PFR). First cycle raffinate is the liquor which contains > 99% of the fission products separated from spent fuel during reprocessing. Approximately 203 m3 of raffinate from the reprocessing of PFR fuel is held in four tanks at the UKAEA's site at Dounreay, Scotland. Two methods of immobilization of this high level waste (HLW) have been considered: vitrification and cementation. Vitrification is the standard industry practice for the immobilization of first cyclemore » raffinate, and many papers have been presented on this technique elsewhere. However, cementation is potentially feasible for immobilizing first cycle raffinate because the heat output is an order of magnitude lower than typical HLW from commercial reprocessing operations such as that at the Sellafield site in Cumbria, England. In fact, it falls within the upper end of the UK definition of intermediate level waste (ILW). Although the decision on which immobilization technique will be employed has yet to be made, initial development work has been undertaken to identify a suitable cementation formulation using inactive simulant of the raffinate. An approach has been made to the waste disposal company Nirex to consider the disposability of the cemented product material. The paper concentrates on the process development work that is being undertaken on cementation to inform the decision making process for selection of the immobilization method.« less

  9. Leaching behaviour and mechanical properties of copper flotation waste in stabilized/solidified products.

    PubMed

    Mesci, Başak; Coruh, Semra; Ergun, Osman Nuri

    2009-02-01

    This research describes the investigation of a cement-based solidification/stabilization process for the safe disposal of copper flotation waste and the effect on cement properties of the addition of copper flotation waste (CW) and clinoptilolite (C). In addition to the reference mixture, 17 different mixtures were prepared using different proportions of CW and C. Physical properties such as setting time, specific surface area and compressive strength were determined and compared to a reference mixture and Turkish standards (TS). Different mixtures with the copper flotation waste portion ranging from 2.5 to 12.5% by weight of the mixture were tested for copper leachability. The results show that as cement replacement materials especially clinoptilolite had clear effects on the mechanical properties. Substitution of 5% copper flotation waste for Portland cement gave a similar strength performance to the reference mixture. Higher copper flotation waste addition such as 12.5% replacement yielded lower strength values. As a result, copper flotation waste and clinoptilolite can be used as cementitious materials, and copper flotation waste also can be safely stabilized/solidified in a cement-based solidification/stabilization system.

  10. Nanostructured Basaltfiberconcrete Exploitational Characteristics

    NASA Astrophysics Data System (ADS)

    Saraykina, K. A.; Shamanov, V. A.

    2017-11-01

    The article demonstrates that the mass use of basalt fiber concrete (BFC) is constrained by insufficient study of their durability and serviceability in a variety of environments. This research is aimed at the study of the basalt fiber corrosion processes in the cement stone of BFC, the control of the new products structure formation in order to protect the reinforcing fiber from alkaline destruction and thereby improve the exploitational characteristics of the composite. The research result revealed that the modification of basaltfiber concrete by the dispersion of MWNTs contributes to the directional formation of new products in the cement matrix. The HAM additive in basaltfiberconcrete provides for the binding of portlandite to low-basic calcium hydroaluminosilicates, thus reducing the aggressive effect of the cement environment on the reinforcing fibers properties. The complex modification of BFC with nanostructured additives provides for an increase in its durability and exploitational properties (strength, frost resistance and water resistance) due to basalt fiber protection from alkali corrosion on account of the compacting of the contact zone “basalt fiber - cement stone” and designing of the new products structure and morphology of cement matrix over the fiber surface.

  11. Damage of Wood-Concrete Composite subjected to variable hygrometric conditions

    NASA Astrophysics Data System (ADS)

    Loulou, L.; Caré, S.; Le Roy, R.; Bornert, M.

    2010-06-01

    This paper discusses the factors influencing the durability of glued assemblies of wood and cementitious material under variable hygrometric conditions. The composite specimens are composed of cement paste connected to plywood using epoxy glue. The cement paste is subjected to autogeneous shrinkage and the wood is subjected to imbibition test. Plywood is used so that the swelling deformations due to the imbibition process are parallel to the connection plane. Swelling strains in wood are related to the water content measured by gammadensimetry technique. Global strains above and below the glue interface have been measured and have been compared to the free strains. We showed that there are restrained deformations at the glue interface and that the cement paste is damaged. Local strains have been characterized by means of the digital image correlation technique. We showed in particular that the deformations in wood are related to the microstructure of the layers of plywood and that the restrained deformations at the glue interface lead to a bending of the cement paste. In the case of strong adhesion properties, this bending induces cracking in cement paste.

  12. Feasibility of disposing waste glyphosate neutralization liquor with cement rotary kiln.

    PubMed

    Bai, Y; Bao, Y B; Cai, X L; Chen, C H; Ye, X C

    2014-08-15

    The waste neutralization liquor generated during the glyphosate production using glycine-dimethylphosphit process is a severe pollution problem due to its high salinity and organic components. The cement rotary kiln was proposed as a zero discharge strategy of disposal. In this work, the waste liquor was calcinated and the mineralogical phases of residue were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). The mineralogical phases and the strength of cement clinker were characterized to evaluate the influence to the products. The burnability of cement raw meal added with waste liquor and the calorific value of waste liquor were tested to evaluate the influence to the thermal state of the kiln system. The results showed that after the addition of this liquor, the differences of the main phases and the strength of cement clinker were negligible, the burnability of raw meal was improved; and the calorific value of this liquor was 6140 J/g, which made it could be considered as an alternative fuel during the actual production. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Eco-friendly GGBS Concrete: A State-of-The-Art Review

    NASA Astrophysics Data System (ADS)

    Saranya, P.; Nagarajan, Praveen; Shashikala, A. P.

    2018-03-01

    Concrete is the most commonly used material in the construction industry in which cement is its vital ingredient. Although the advantages of concrete are many, there are side effects leading to environmental issues. The manufacturing process of cement emits considerable amount of carbon dioxide (CO2). Therefore is an urgent need to reduce the usage of cement. Ground Granulated Blast furnace Slag (GGBS) is a by-product from steel industry. It has good structural and durable properties with less environmental effects. This paper critically reviews the literatures available on GGBS used in cement concrete. In this paper, the literature available on GGBS are grouped into engineering properties of GGBS concrete, hydraulic action of GGBS in concrete, durability properties of GGBS concrete, self- compacting GGBS concrete and ultrafine GGBS are highlighted. From the review of literature, it was found that the use of GGBS in concrete construction will be eco-friendly and economical. The optimum percentage of replacement of cement by GGBS lies between 40 - 45 % by weight. New materials that can be added in addition to GGBS for getting better strength and durability also highlighted.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kara, Mustafa, E-mail: mustafa.kara@mam.gov.t; Guenay, Esin; Tabak, Yasemin

    Municipal solid waste (MSW) is one of the most important environmental problems arising from rapid urbanization and industrialization. The use of alternative fuels in rotary kilns of cement plants is very important for reducing cost, saving fossil fuels and also eliminating waste materials, accumulated during production or after using these materials. Cement industries has an important potential for supplying preferable solutions to the waste management. Energy recovery from waste is also important for the reduction of CO{sub 2} emissions. This paper presents an investigation of the development of refuse derived fuel (RDF) materials from non-recycling wastes and the determination ofmore » its potential use as an alternative fuel in cement production in Istanbul, Turkey. RDF produced from MSW was analyzed and its effects on cement production process were examined. For this purpose, the produced RDF was mixed with the main fuel (LPG) in ratios of 0%, 5%, 10%, 15% and 20%. Then chemical and mineralogical analyses of the produced clinker were carried out. It is believed that successful results of this study will be a good example for municipalities and cement industries in order to achieve both economic and environmental benefits.« less

  15. Comparison of temperature change among different adhesive resin cement during polymerization process.

    PubMed

    Alkurt, Murat; Duymus, Zeynep Yesil; Gundogdu, Mustafa; Karadas, Muhammet

    2017-01-01

    The aim of this study was to assess the intra-pulpal temperature changes in adhesive resin cements during polymerization. Dentin surface was prepared with extracted human mandibular third molars. Adhesive resin cements (Panavia F 2.0, Panavia SA, and RelyX U200) were applied to the dentin surface and polymerized under IPS e.max Press restoration. K-type thermocouple wire was positioned in the pulpal chamber to measure temperature change ( n = 7). The temperature data were recorded (0.0001 sensible) and stored on a computer every 0.1 second for sixteen minutes. Differences between the baseline temperature and temperatures of various time points (2, 4, 6, 8, 10, 12, 14, and 16 minute) were determined and mean temperature changes were calculated. At various time intervals, the differences in temperature values among the adhesive resin cements were analyzed by two-way ANOVA and post-hoc Tukey honestly test (α = 0.05). Significant differences were found among the time points and resin cements ( P < 0.05). Temperature values of the Pan SA group were significantly higher than Pan F and RelyX ( P < 0.05). Result of the study on self-adhesive and self-etch adhesive resin cements exhibited a safety intra-pulpal temperature change.

  16. Hall versus conventional stainless steel crown techniques: in vitro investigation of marginal fit and microleakage using three different luting agents.

    PubMed

    Erdemci, Zeynep Yalçınkaya; Cehreli, S Burçak; Tirali, R Ebru

    2014-01-01

    This study's purpose was to investigate microleakage and marginal discrepancies in stainless steel crowns (SSCs) placed using conventional and Hall techniques and cemented with three different luting agents. Seventy-eight human primary maxillary second molars were randomly assigned to two groups (N=39), and SSCs were applied either with the Hall or conventional technique. These two groups were further subgrouped according to the material used for crown cementation (N=13 per group). Two specimens in each group were processed for scanning electron microscopy investigation. The extent of microleakage and marginal fit was quantified in millimeters on digitally photographed sections using image analysis software. The data were compared with a two-way independent and a two-way mixed analysis of variance (P=.05). The scores in the Hall group were significantly worse than those in the conventional technique group (P<.05). In both groups, resin cement displayed the lowest extent of microleakage, followed by glass ionomer and polycarboxylate cements (P<.05). Stainless steel crowns applied using the Hall technique displayed higher microleakage scores than those applied using the conventional technique, regardless of the cementation material. When the interaction of the material and technique was assessed, resin cement presented as the best choice for minimizing microleakage in both techniques.

  17. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag--An overview.

    PubMed

    Song, Ha-Won; Saraswathy, Velu

    2006-11-16

    The partial replacement of clinker, the main constituent of ordinary Portland cement by pozzolanic or latent hydraulic industrial by-products such as ground granulated blast furnace slag (GGBFS), effectively lowers the cost of cement by saving energy in the production process. It also reduces CO2 emissions from the cement plant and offers a low priced solution to the environmental problem of depositing industrial wastes. The utilization of GGBFS as partial replacement of Portland cement takes advantage of economic, technical and environmental benefits of this material. Recently offshore, coastal and marine concrete structures were constructed using GGBFS concrete because high volume of GGBFS can contribute to the reduction of chloride ingress. In this paper, the influence of using GGBFS in reinforced concrete structures from the durability aspects such as chloride ingress and corrosion resistance, long term durability, microstructure and porosity of GGBFS concrete has been reviewed and discussed.

  18. Peculiarities of binding composition production in vortex jet mill

    NASA Astrophysics Data System (ADS)

    Zagorodnyuk, L. Kh; Lesovik, V. S.; Sumskoy, D. A.; Elistratkin, M. Yu; Makhortov, D. S.

    2018-03-01

    The article investigates the disintegration of perlite production waste in a vortex jet mill; the regularities of milling were established. Binding compositions were obtained at different ratios of cement vs. perlite sand production waste in the vortex jet mill in various milling regimes. The peculiarities of milling processes were studied, and technological and physicomechanical properties of the binding compositions were determined as well. The microstructure of the cement stones made of activated Portland cement and binding compositions in the vortex jet mill was elucidated by electron microscopy. The open pores of the cement-binding compositions prepared using perlite fillers were found to be filled by newgrowths at different stages of collective growth. The microstructure of the binding compositions is dense due to rationally proportioned composition, effective mineral filler— perlite waste — that creates additional substrates for internal composite microstructure formation, mechanochemical activation of raw mixture, which allows obtaining composites with required properties.

  19. Environmental impact of incineration of calorific industrial waste: rotary kiln vs. cement kiln.

    PubMed

    Vermeulen, Isabel; Van Caneghem, Jo; Block, Chantal; Dewulf, Wim; Vandecasteele, Carlo

    2012-10-01

    Rotary kiln incinerators and cement kilns are two energy intensive processes, requiring high temperatures that can be obtained by the combustion of fossil fuel. In both processes, fossil fuel is often substituted by high or medium calorific waste to avoid resource depletion and to save costs. Two types of industrial calorific waste streams are considered: automotive shredder residue (ASR) and meat and bone meal (MBM). These waste streams are of current high interest: ASR must be diverted from landfill, while MBM can no longer be used for cattle feeding. The environmental impact of the incineration of these waste streams is assessed and compared for both a rotary kiln and a cement kiln. For this purpose, data from an extensive emission inventory is applied for assessing the environmental impact using two different modeling approaches: one focusing on the impact of the relevant flows to and from the process and its subsystems, the other describing the change of environmental impact in response to these physical flows. Both ways of assessing emphasize different aspects of the considered processes. Attention is paid to assumptions in the methodology that can influence the outcome and conclusions of the assessment. It is concluded that for the incineration of calorific wastes, rotary kilns are generally preferred. Nevertheless, cement kilns show opportunities in improving their environmental impact when substituting their currently used fuels by more clean calorific waste streams, if this improvement is not at the expense of the actual environmental impact. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. A biodetrital coral mound complex: Key to early diagenetic processes in the mississippian bangor limestone

    USGS Publications Warehouse

    Haywick, D.W.; Kopaska-Merkel, D. C.; Bersch, M.G.

    2009-01-01

    The Bangor Limestone is a Mississippian (Chesterian) shallow marine carbonate formation exposed over a large portion of the Interior Low Plateaus province of northern Alabama. It is dominated by oolitic grainstone and skeletal wackestone and packstone, but in one outcrop near Moulton, Alabama, the Bangor contains a five m thick, 25 m wide, oolitebiodetrital moundtidal flat succession. This sequence is interpreted as a 4th order sea level cycle. Four petrofacies (oolite, mound, skeletal and mudstone/dolomicrite) and four diagenetic phases (iron oxide, fibrous calcite cement, calcite spar cement and dolomite) are distinguished at the study site. Iron oxide, a minor component, stained and/or coated some ooids, intraclasts and skeletal components in the oolite petrofacies. Many of the allochems were stained prior to secondary cortical growth suggesting a short period of subaerial exposure during oolite sedimentation. The oolite petrofacies also contains minor amounts of fibrous calcite cement, a first generation marine cement, and rare infiltrated micrite that might represent a second phase of marine cement, or a first phase of meteoric cement (i.e., "vadose silt") (Dunham 1969). Intergranular pore space in all four petrofacies is filled with up to three phases of meteoric calcite spar cement. The most complete record of meteoric cementation is preserved within coralline void spaces in the mound petrofacies and indicates precipitation in the following order: (1) non-ferroan scalenohedral spar, (2) ferroan drusy spar (0.1-0.4 wt% Fe2+) and (3) non-ferroan drusy spar. The first scalenohedral phase of meteoric cement is distributed throughout the oolite and mound petrofacies. The ferroan phase of meteoric calcite is a void-filling cement that is abundant in the mound petrofacies and less common in the skeletal and mudstone/dolomicrite petrofacies. Non-ferroan drusy calcite is pervasive throughout the Bangor Limestone at the Moulton study site. Growth of the fourth diagenetic phase, dolomite, was the dominant event in the micrite/dolomicrite petrofacies, particularly just below an irregular surface overlain by a brecciated interval. The irregular surface is interpreted as an exposure surface. Three phases of dolomite occur below the exposure surface. The majority is finely crystalline, anhedral, and enriched in Si4+, criteria which support a supratidal or mixed hypersaline\\meteoric origin. Secondary phases of coarser euhedral non-ferroan and ferroan dolomite are restricted to fenestrae and other voids in the micrite/dolomicrite petrofacies and were precipitated during subsequent meteoric diagenesis. Diagenesis of the Bangor Limestone at the Moulton outcrop was dominated by synsedimentary and very early meteoric processes driven by periods of subaerial exposure. Large voids within the mound petrofacies were particularly important, as they remained open long enough to record a more detailed early meteoric cement stratigraphy that might not be evident in Bangor Limestone outcrops elsewhere in Alabama.

  1. Effect of portland cement (current ASTM C150/AASHTO M85) with limestone and process addition (ASTM C465/AASHTO M327) on the performance of concrete for pavement and bridge decks.

    DOT National Transportation Integrated Search

    2014-02-01

    The Illinois Department of Transportation (IDOT) is making several changes to concrete mix designs, using revisions to : cement specification ASTM C150/AASHTO M85 and ASTM C465/AASHTO M327. These proposed revisions will enable the : use of more susta...

  2. Crucible cast from beryllium oxide and refractory cement is impervious to flux and molten metal

    NASA Technical Reports Server (NTRS)

    Jastrzebski, Z. D.

    1966-01-01

    Crucible from a mixture of a beryllium oxide aggregate and hydraulic refractory cement, and coated with an impervious refractory oxide will not deteriorate in the presence of fused salt- molten metal mixtures such as uranium- magnesium-zinc-halide salt systems. Vessels cast by this process are used in the flux reduction of oxides of thorium and uranium.

  3. Electrosteric stabilization of heteroflocculating suspensions and its application to the processing of self-compacting engineered cementitious composites

    NASA Astrophysics Data System (ADS)

    Kong, Hyun-Joon

    This dissertation investigates a dispersion/stabilization technique to improve the fluidity of heteroflocculating concentrated suspensions, and applies the technique to develop self-compacting Engineered Cementitious Composites (ECC), defined as a cementitious material which compacts without any external consolidation in the fresh state, while exhibiting strain-hardening performance in the hardened state. To meet the criteria of micromechanical design to achieve the ductile performance and processing design to attain high fluidity, this work has focused on preparing cement suspensions with low viscosity and high cohesiveness at a particle loading determined by the micromechanical design. Therefore, the goal of this work is to quantify how to adjust the strong flocculation between cement particles due to electrostatic and van der Waals attractive forces. For this purpose, a strong polyelectrolyte, melamine formaldehyde sulfonate (MFS), to disperse the oppositely-charged particles present in the cement dispersion, is combined with a non-ionic polymer, hydroxypropylmethylcellulose (HPMC). The combination of these two polymers to prevent re-flocculation leads to "complementary electrosteric dispersion/ stabilization". With these polymers, suspensions with the desired fluidity for processing are obtained. To quantify the roles of the two polymers in imparting stability, a heteroflocculating model suspension was developed, which facilitates the control of the interactions typical of cement suspensions, but without irreversible hydration. This model suspension is composed of alumina and silica particles, which bear surface potentials of opposite sign at intermediate pHs, as well as has a comparable magnitude of the Hamaker constant as compared to cement particles. As a result, the model system displays not only van der Waals attraction but also electrostatic attraction between dissimilar particles. Rheological studies of the model system stabilized by MFS and HPMC show behavior identical to that of the cement suspensions, allowing the model system to be used to interpret the role of the stabilizers in altering the system microstructure and fluidity. Finally, the self-compacting performance of fresh ECC mixes made with the electrosterically stabilized fresh matrix mix and the ductile strain-hardening performance of the hardened ECC were demonstrated.

  4. Effect of curing mode on the micro-mechanical properties of dual-cured self-adhesive resin cements.

    PubMed

    Ilie, Nicoleta; Simon, Alexander

    2012-04-01

    Light supplying to luting resin cements is impeded in several clinical situations, causing us to question whether materials can properly be cured to achieve adequately (or adequate) mechanical properties. The aim of this study was therefore to analyse the effect of light on the micro-mechanical properties of eight popular dual-cured self-adhesive resin cements by comparing them with two conventional, also dual-cured, resin cements. Four different curing procedures were applied: auto-polymerisation (dark curing) and light curing (LED unit, Freelight 2, 20 s) by applying the unit directly on the samples' surface, at a distance of 5 and 10 mm. Twenty minutes after curing, the samples were stored for 1 week at 37°C in a water-saturated atmosphere. The micro-mechanical properties-Vickers hardness, modulus of elasticity, creep and elastic/plastic deformation-were measured. Data were analysed with multivariate ANOVA followed by Tukey's test and partial eta-squared statistics (p < 0.05). A very strong influence of the material as well as filler volume and weight on the micro-mechanical properties was measured, whereas the influence of the curing procedure and type of cement-conventional or self-adhesive-was generally low. The influence of light on the polymerisation process was material dependent, with four different behaviour patterns to be distinguished. As a material category, significantly higher micro-mechanical properties were measured for the conventional compared to the self-adhesive resin cements, although this difference was low. Within the self-adhesive resin cements group, the variation in micro-mechanical properties was high. The selection of suitable resin cements should be done by considering, besides its adhesive properties, its micro-mechanical properties and curing behaviour also.

  5. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, III, William R.; Hasanbeigi, Ali; Xu, Tengfang

    2012-12-03

    India’s cement industry is the second largest in the world behind China with annual cement production of 168 Mt in 2010 which accounted for slightly greater than six percent of the world’s annual cement production in the same year. To produce that amount of cement, the industry consumed roughly 700 PJ of fuel and 14.7 TWh of electricity. We identified and analyzed 22 energy efficiency technologies and measures applicable to the processes in the Indian cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives ofmore » energy conservation. Using a bottom-up electricity CSC model and compared to an electricity price forecast the cumulative cost-effective plant-level electricity savings potential for the Indian cement industry for 2010- 2030 is estimated to be 83 TWh, and the cumulative plant-level technical electricity saving potential is 89 TWh during the same period. The grid-level CO2 emissions reduction associated with cost-effective electricity savings is 82 Mt CO2 and the electric grid-level CO2 emission reduction associated with technical electricity saving potential is 88 Mt CO2. Compared to a fuel price forecast, an estimated cumulative cost-effective fuel savings potential of 1,029 PJ with associated CO2 emission reduction of 97 Mt CO2 during 2010-2030 is possible. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Indian cement industry and policy makers about the energy efficiency potential and its associated cost over the next twenty years.« less

  6. Development of Targeted Nanobubbles for Ultrasound Imaging and Ablation of Metastatic Prostate Cancer Lesions

    DTIC Science & Technology

    2013-08-01

    AD_________________ Award Number: W81XWH-12-1-0284 TITLE: Development of Targeted Nanobubbles for...REPORT TYPE Annual 3. DATES COVERED 15 July 2012 - 14 July 2013 4. TITLE AND SUBTITLE Development of Targeted Nanobubbles for Ultrasound...be able to formulate nanodroplets contrast agents with tunable size, PFP content, and shell flexibility to obtain stable and echogenic nanobubbles

  7. Combined aerobic and resistance exercise program improves task performance in patients with heart failure.

    PubMed

    Gary, Rebecca A; Cress, M Elaine; Higgins, Melinda K; Smith, Andrew L; Dunbar, Sandra B

    2011-09-01

    To assess the effects of a home-based aerobic and resistance training program on the physical function of adults with New York Heart Association (NYHA) class II and III patients and systolic heart failure (HF). Randomized controlled trial. Home based. Stable patients (N=24; mean age, 60 ± 10 y; left ventricular ejection fraction, 25% ± 9%; 50% white; 50% women) with New York Heart Association (NYHA) classes II and III (NYHA class III, 58%) systolic heart failure (HF). A 12-week progressive home-based program of moderate-intensity aerobic and resistance exercise. Attention control wait list participants performed light stretching and flexibility exercises. A 10-item performance-based physical function measure, the Continuous Scale Physical Functional Performance test (CS-PFP10), was the major outcome variable and included specific physical activities measured in time to complete a task, weight carried during a task, and distance walked. Other measures included muscle strength, HRQOL (Minnesota Living With Heart Failure Questionnaire, Epworth Sleepiness Scale), functional capacity (Duke Activity Status Index), and disease severity (brain natriuretic peptide) levels. After the exercise intervention, 9 of 10 specific task activities were performed more rapidly, with increased weight carried by exercise participants compared with the attention control wait list group. Exercise participants also showed significant improvements in CS-PFP10 total score (P<.025), upper and lower muscle strength, and HRQOL (P<.001) compared with the attention control wait list group. Adherence rates were 83% and 99% for the aerobic and resistance training, respectively. Patients with stable HF who participate in a moderate-intensity combined aerobic and resistance exercise program may improve performance of routine physical activities of daily living by using a home-based exercise approach. Performance-based measures such as the CS-PFP10 may provide additional insights into physical function in patients with HF that more commonly used exercise tests may not identify. Early detection of subtle changes that may signal declining physical function that are amenable to intervention potentially may slow further loss of function in this patient population. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Crumb waste tire rubber surface modification by plasma polymerization of ethanol and its application on oil-well cement

    NASA Astrophysics Data System (ADS)

    Xiaowei, Cheng; Sheng, Huang; Xiaoyang, Guo; Wenhui, Duan

    2017-07-01

    Crumb waste tire rubber (WTR) was pretreated by oxygen low temperature plasma (LTP) and modified by LTP polymerization process of ethanol monomer to improve the adhesion property with oil-well cement matrix and the mechanical properties of cement. The surface properties of modified crumb WTR and the mechanical properties and structures of modified oil-well cement were investigated by means of contact angle measurement, dispersion test, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), mechanics performance tests, permeability test and scanning electron microscopy (SEM). It was demonstrated that LTP treatment changed both the surface composition and roughness. The contact angle of pretreated crumb WTR dramatically fell from 122° to 34°, and sample with ethanol LPT polymer film decreased even further to 11°. The ATR-FTIR and XPS analysis results demonstrated that hydrophilic groups, such as -COOH, C-OH, and -CHO, were introduced on the WTR surface. The oxygen atomic percent increased from 8.11% to 14.50% and 24.83%. The mechanical properties, porosity and permeability of raw cement were compared to samples modified by untreated crumb WTR, pretreated crumb WTR and ethanol LTP polymerization treated crumb WTR. It was found that after 28 days, the compressive strength of the samples with the untreated crumb WTR decreased to 80% with respect to raw cement. The tensile strength and flexural strength also had a slight reduction compared with the raw cement. On the contrary, after 28 days, the tensile strength of cement modified by LTP polymerization treated WTR increased 11.03% and 13.36%, and the flexural strength increased 9.65% and 7.31%, respectively. A decrease in the compressive strength also occurred but was inconspicuous. A tight interface bonding for ethanol LTP polymerization treated WTR with cement matrix was observed via an SEM image.

  9. Diagenesis and reservoir quality of Bhuban sandstones (Neogene), Titas Gas Field, Bengal Basin, Bangladesh

    NASA Astrophysics Data System (ADS)

    Aminul Islam, M.

    2009-06-01

    This study deals with the diagenesis and reservoir quality of sandstones of the Bhuban Formation located at the Titas Gas Field of Bengal Basin. Petrographic study including XRD, CL, SEM and BSE image analysis and quantitative determination of reservoir properties were carried out for this study. The sandstones are fine to medium-grained, moderately well to well sorted subfeldspathic arenites with subordinate feldspathic and lithic arenites. The diagenetic processes include clay infiltration, compaction and cementation (quartz overgrowth, chlorite, kaolinite, calcite and minor amount of pyrite, dolomite and K-feldspar overgrowth). Quartz is the dominant pore occluding cement and generally occurred as small euhedral crystals, locally as large pyramidal crystals in the primary pores. Pressure solution derived from grain contact is the main contributor of quartz overgrowths. Chlorite occurs as pore-lining and pore filling cement. In some cases, chlorite helps to retain porosity by preventing quartz overgrowth. In some restricted depth interval, pore-occlusion by calcite cement is very much intense. Kaolinite locally developed as vermiform and accelerated the minor porosity loss due to pore-occlusion. Kaolinite/chlorite enhances ineffective microporosity. Kaolinite is a by-product of feldspar leaching in the presence of acidic fluid produced during the maturation of organic matter in the adjacent Miocene or deeper Oligocene source rocks. The relation between diagenesis and reservoir quality is as follows: the initial porosity was decreased by compaction and cementation and then increased by leaching of the metastable grains and dissolution of cement. Good quality reservoir rocks were deposited in fluvial environment and hence quality of reservoir rocks is also environment selective. Porosity and permeability data exhibit good inverse correlation with cement. However, some data points indicate multiple controls on permeability. Reservoir quality is thus controlled by pore occluding cement, textural parameters (grain size, pore size and sorting) and depositional environment. The reservoir finally resumed partly its pre-cementation quality after development of secondary porosity.

  10. Mass transfers induced by flow of CO2 rich-brine through fractured cement: experiment and modeling

    NASA Astrophysics Data System (ADS)

    Habdoulghafour, H.; Luquot, L.; Gouze, P.

    2011-12-01

    Long-term confinement failure is a key issue in the assessment of the confidence levels of CO2 storage. Evaluating the potential for CO2 leakage through wells (casing, cements and interfaces with the cap-rock) is of primary importance for the analysis of latent and short-range risks of confinement failure. Some controversy remains regarding the risk of conventional cements. While some researchers argue that they may fail, EOR oil industry experience suggests the opposite. The issue is non-trivial. Experimental investigations on cement alteration mechanism triggered by CO2-rich brine show that both carbonation and de-carbonation mechanisms may occur and are the dominant mass exchange processes. It is tempting to conclude from the results of batch experiments that cement carbonation tends to decrease porosity and permeability, whereas de-carbonation increases both, but these assumptions must be tested using realistic flow-through experiments. Here we investigated the effect of CO2 rich-brine flowing through fractured portlandite-rich cement plugs. Experiments were carried out under realistic in situ conditions (T=80°C and P=10 MPa). Monitoring the fluid composition at the outlet allows us to measure the rate at which portlandite and CSH are dissolved and Ca-carbonate (calcite) precipitated. The precipitation of carbonate limits the fluid access to the inner part of cement (by diffusion) but, in the condition of forced flow-through CO2-rich brine in the fracture, this carbonate layer is subsequently dissolved as showed by the X-ray micro tomography performed post-mortem. Despite these coupled dissolution-precipitation mechanisms (and the on-going reaction front displacement), the permeability of the fracture remains almost constant during the experiment because the effective aperture controlled by the undissolved fraction of the cement (i.e. silica-rich minerals) is preserved. For the studied conditions, it can be concluded that the flow properties of the fractured cements are conserved, while the chemical and probably the mechanical properties of the cement are deeply modified.

  11. PCDD/PCDF reduction by the co-combustion process.

    PubMed

    Lee, Vinci K C; Cheung, Wai-Hung; McKay, Gordon

    2008-01-01

    A novel process, termed the co-combustion process, has been developed and designed to utilise the thermal treatment of municipal solid waste (MSW) in cement clinker production and reduce PCDD/PCDF emissions. To test the conceptual design; detailed engineering design of the process and equipment was performed and a pilot plant was constructed to treat up to 40 tonnes MSW per day. The novel process features included several units external to the main traditional cement rotary kiln: an external calcinations unit in which the hot gas calcined the limestone thus making significant energy savings for this chemical reaction; the lime generated was used in a second chamber to act as a giant acid gas scrubber to remove SOx and particularly HCl (a source of chloride); an external rotary kiln and secondary combustion unit capable of producing a hot gas at 1200 degrees C; a gas cooler to simulate a boiler turbogenerator set for electricity generation; the incorporation of some of the bottom ash, calcined lime and dust collector solids into the cement clinker. A PCDD/PCDF inventory has been completed for the entire process and measured PCDD/PCDF emissions were 0.001 ng I-TEQ/Nm(3) on average which is 1% of the best practical means [Hong Kong Environmental Protection Department, 2001. A guidance note on the best practicable means for incinerators (municipal waste incineration), BPM12/1] MSW incineration emission limit values.

  12. Environmental, Human Health and Socio-Economic Effects of Cement Powders: The Multicriteria Analysis as Decisional Methodology

    PubMed Central

    Moretti, Laura; Di Mascio, Paola; Bellagamba, Simona

    2017-01-01

    The attention to sustainability-related issues has grown fast in recent decades. The experience gained with these themes reveals the importance of considering this topic in the construction industry, which represents an important sector throughout the world. This work consists on conducting a multicriteria analysis of four cement powders, with the objective of calculating and analysing the environmental, human health and socio-economic effects of their production processes. The economic, technical, environmental and safety performances of the examined powders result from official, both internal and public, documents prepared by the producers. The Analytic Hierarchy Process permitted to consider several indicators (i.e., environmental, human health related and socio-economic parameters) and to conduct comprehensive and unbiased analyses which gave the best, most sustainable cement powder. As assumed in this study, the contribution of each considered parameter to the overall sustainability has a different incidence, therefore the procedure could be used to support on-going sustainability efforts under different conditions. The results also prove that it is not appropriate to regard only one parameter to identify the ‘best’ cement powder, but several impact categories should be considered and analysed if there is an interest for pursuing different, often conflicting interests. PMID:28621754

  13. Heavy metal removal capacity of individual components of permeable reactive concrete

    NASA Astrophysics Data System (ADS)

    Holmes, Ryan R.; Hart, Megan L.; Kevern, John T.

    2017-01-01

    Permeable reactive barriers (PRBs) are a well-known technique for groundwater remediation using industrialized reactive media such as zero-valent iron and activated carbon. Permeable reactive concrete (PRC) is an alternative reactive medium composed of relatively inexpensive materials such as cement and aggregate. A variety of multimodal, simultaneous processes drive remediation of metals from contaminated groundwater within PRC systems due to the complex heterogeneous matrix formed during cement hydration. This research investigated the influence coarse aggregate, portland cement, fly ash, and various combinations had on the removal of lead, cadmium, and zinc in solution. Absorption, adsorption, precipitation, co-precipitation, and internal diffusion of the metals are common mechanisms of removal in the hydrated cement matrix and independent of the aggregate. Local aggregates can be used as the permeable structure also possessing high metal removal capabilities, however calcareous sources of aggregate are preferred due to improved removal with low leachability. Individual adsorption isotherms were linear or curvilinear up, indicating a preferred removal process. For PRC samples, metal saturation was not reached over the range of concentrations tested. Results were then used to compare removal against activated carbon and aggregate-based PRBs by estimating material costs for the remediation of an example heavy metal contaminated Superfund site located in the Midwestern United States, Joplin, Missouri.

  14. Dynamic Analysis of the Temperature and the Concentration Profiles of an Industrial Rotary Kiln Used in Clinker Production.

    PubMed

    Rodrigues, Diulia C Q; Soares, Atílio P; Costa, Esly F; Costa, Andréa O S

    2017-01-01

    Cement is one of the most used building materials in the world. The process of cement production involves numerous and complex reactions that occur under different temperatures. Thus, there is great interest in the optimization of cement manufacturing. Clinker production is one of the main steps of cement production and it occurs inside the kiln. In this paper, the dry process of clinker production is analysed in a rotary kiln that operates in counter flow. The main phenomena involved in clinker production is as follows: free residual water evaporation of raw material, decomposition of magnesium carbonate, decarbonation, formation of C3A and C4AF, formation of dicalcium silicate, and formation of tricalcium silicate. The main objective of this study was to propose a mathematical model that realistically describes the temperature profile and the concentration of clinker components in a real rotary kiln. In addition, the influence of different speeds of inlet gas and solids in the system was analysed. The mathematical model is composed of partial differential equations. The model was implemented in Mathcad (available at CCA/UFES) and solved using industrial input data. The proposal model is satisfactory to describe the temperature and concentration profiles of a real rotary kiln.

  15. Experimental study of the mechanical stabilization of electric arc furnace dust using fluid cement mortars.

    PubMed

    Ledesma, E F; Jiménez, J R; Ayuso, J; Fernández, J M; Brito, J de

    2017-03-15

    This article shows the results of an experimental study carried out in order to determine the maximum amount of electric arc furnace dust (EAFD) that can be incorporated into fluid cement-based mortars to produce mechanically stable monolithic blocks. The leaching performance of all mixes was studied in order to classify them according to the EU Council Decision 2003/33/EC. Two mortars were used as reference and three levels of EAFD incorporation were tested in each of the reference mortars. As the incorporation ratio of EAFD/cement increases, the mechanical strength decreases. This is due to the greater EAFD/cement and water/cement ratios, besides the presence of a double-hydrated hydroxide of Ca and Zn (CaZn 2 (OH) 6 ·2H 2 O) instead of the portlandite phase (Ca(OH) 2 ) in the mixes made with EAFD, as well as non-hydrated tricalcium silicate. A mass ratio of 2:1 (EAFD: cement-based mortar) can be added maintaining a stable mechanical strength. The mechanical stabilization process also reduced the leaching of metals, although it was not able to reduce the Pb concentration below the limit for hazardous waste. The high amount of EAFD mechanically stabilized in this experimental study can be useful to reduce the storage volume required in hazardous waste landfills. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The interaction of zinc oxide-based dental cements with aqueous solutions of potassium fluoride.

    PubMed

    Pawluk, K; Booth, S E; Coleman, N J; Nicholson, J W

    2008-09-01

    The ability of zinc oxide-based dental cements (zinc phosphate and zinc polycarboxylate) to take up fluoride from aqueous solution has been studied. Only zinc phosphate cement was found to take up any measurable fluoride after 5 h exposure to the solutions. The zinc oxide filler of the zinc phosphate also failed to take up fluoride from solution. The key interaction for this uptake was thus shown to involve the phosphate groups of the set cement. However, whether this took the form of phosphate/fluoride exchange, or the formation of oxyfluoro-phosphate groups was not clear. Fluoride uptake followed radicaltime kinetics for about 2 h in some cases, but was generally better modelled by the Elovich equation, dq(t)/dt = alpha exp(-betaq(t)). Values for alpha varied from 3.80 to 2.48 x 10(4), and for beta from 7.19 x 10(-3) to 0.1946, though only beta showed any sort of trend, becoming smaller with increasing fluoride concentration. Fluoride was released from the zinc phosphate cements in processes that were diffusion based up to M(t)/M(infinity) of about 0.4. No further release occurred when specimens were placed in fresh volumes of deionised water. Only a fraction of the fluoride taken up was re-released, demonstrating that most of the fluoride taken up becomes irreversibly bound within the cement.

  17. High-Temperature Self-Healing and Re-Adhering Geothermal Well Cement Composites

    NASA Astrophysics Data System (ADS)

    Pyatina, T.; Sugama, T.; Boodhan, Y.; Nazarov, L.

    2017-12-01

    Self-healing cementitious materials are particularly attractive for the cases where damaged areas are difficult to locate and reach. High-temperature geothermal wells with aggressive environments impose most difficult conditions on cements that must ensure durable zonal isolation under repeated thermal, chemical and mechanical stresses. The present work evaluates matrix and carbon steel (CS) - cement interface self-healing and re-adhering properties of various inorganic cementitious composites under steam, alkali carbonate or brine environments at 270-300oC applicable to geothermal wells. The composite materials included blends based on Ordinary Portland Cement (OPC) and natural zeolites and alkali or phosphate activated composites of Calcium Aluminate Cement (CAC) with fly ash, class F. Class G cement blend with crystalline silica was used as a baseline. Compressive-strength and bond-strength recoveries were examined to evaluate self-healing and re-adhering properties of the composites after repeated crush tests followed by 5-day healing periods in these environments. The optical and scanning electron microscopes, X-ray diffraction, Fourier Transform infrared, Raman spectroscopy and EDX measurements were used to identify phases participating in the strengths recoveries and cracks filling processes. Amorphous silica-rich- and small-size crystalline phases played an important role in the healing of the tested composites in all environments. Possible ways to enhance self-healing properties of cementitious composites under conditions of geothermal wells were identified.

  18. Effect of ceramic thickness and cement shade on the final shade after bonding using the 3D master system: a laboratory study.

    PubMed

    Montero, Javier; Gómez-Polo, Cristina

    2016-06-01

    The final color of a ceramic restoration is influenced by both the ceramic thickness and the cement shade. This study aims to evaluate the color stability according to the 3D Master System of e.max ceramic discs after bonding with different shades of luting agents. A total of 120 e.max.Press 2M1 HT ceramic discs (60 discs of 1-mm thick and 60 discs of 0.5 mm thick) and three different values of Variolink Veneer cement were used (-3, 0, +3) for the cementation process. An Easyshade compact device was used to measure color shade tabs, according to the 3D Master System, on the discs both before and after the cementation protocols. Bivariate and multivariate analyses were carried out with the spss v.21. After bonding with the different luting agents, only 30% remained as 2M1: specifically, 22% of the thinner discs and 37.3% of the thicker discs. In general, the effect of bonding increased the value and the chroma of the shade to a significant extent. Regression analyses revealed that the most significant predictor for all color parameters was cement shade, the thinner disc group bonded with -3 cement being the most unstable subgroup. According to the 3D Master System, the shade of the luting agent was the main predictor of the final color. However, the final color seems to be somewhat unpredictable, at least according to the modulating factors evaluated in the present study.

  19. Phosphoserine-modified calcium phosphate cements: bioresorption and substitution.

    PubMed

    Offer, Liliana; Veigel, Bastian; Pavlidis, Theodoros; Heiss, Christian; Gelinsky, Michael; Reinstorf, Antje; Wenisch, Sabine; Lips, Katrin Susanne; Schnettler, Reinhard

    2011-01-01

    This work reports the effects of phosphoserine addition on the biodegradability of calcium phosphate cements. The characteristics of a phosphoserine-modified calcium phosphate cement without collagen in a large animal model are presented here for the first time. Critical size bone defects in the proximal tibia of 10 sheep were filled with the bone cement, and five sheep with empty defects were included as controls. The sheep were sacrificed after either 10 days or 12 weeks, and bones were processed for histological, histomorphometric and enzyme histochemical analyses as well as transmission electron microscopic examination. After 12 weeks, there was no significant reduction in either the implant or the bone defect cross-sectional area. Different amounts of fibrous tissue were observed around the implant and in the bone defect after 12 weeks. The direct bone-implant contact decreased after 12 weeks (p = 0.034). Although the implanted material properly filled the defect and promoted an initial activation of macrophages and osteoblasts, the resorption and simultaneous substitution did not reach expected levels during the experimental time course. Although other studies have shown that the addition of phosphoserine to calcium phosphate cements that have already been modified with collagen I resulted in an acceleration of cement resorption and bone regeneration, this study demonstrates that phosphoserine-modified calcium phosphate cements without collagen perform poorly in the treatment of bone defects. Efforts to use phosphoserine in the development of new composites should take into consideration the need to improve osteoconduction simultaneously via other means. Copyright © 2010 John Wiley & Sons, Ltd.

  20. Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world.

    PubMed

    Manzello, Derek P; Kleypas, Joan A; Budd, David A; Eakin, C Mark; Glynn, Peter W; Langdon, Chris

    2008-07-29

    Ocean acidification describes the progressive, global reduction in seawater pH that is currently underway because of the accelerating oceanic uptake of atmospheric CO(2). Acidification is expected to reduce coral reef calcification and increase reef dissolution. Inorganic cementation in reefs describes the precipitation of CaCO(3) that acts to bind framework components and occlude porosity. Little is known about the effects of ocean acidification on reef cementation and whether changes in cementation rates will affect reef resistance to erosion. Coral reefs of the eastern tropical Pacific (ETP) are poorly developed and subject to rapid bioerosion. Upwelling processes mix cool, subthermocline waters with elevated pCO(2) (the partial pressure of CO(2)) and nutrients into the surface layers throughout the ETP. Concerns about ocean acidification have led to the suggestion that this region of naturally low pH waters may serve as a model of coral reef development in a high-CO(2) world. We analyzed seawater chemistry and reef framework samples from multiple reef sites in the ETP and found that a low carbonate saturation state (Omega) and trace abundances of cement are characteristic of these reefs. These low cement abundances may be a factor in the high bioerosion rates previously reported for ETP reefs, although elevated nutrients in upwelled waters may also be limiting cementation and/or stimulating bioerosion. ETP reefs represent a real-world example of coral reef growth in low-Omega waters that provide insights into how the biological-geological interface of coral reef ecosystems will change in a high-CO(2) world.

  1. Study of leaching mechanisms of caesium ions incorporated in Ordinary Portland Cement.

    PubMed

    Papadokostaki, Kyriaki G; Savidou, Anastasia

    2009-11-15

    In this work, a study of the leaching kinetics of Cs(+) ions from cement paste solids, containing inactive Cs(2)SO(4), is presented, involving (i) the parallel performance of leaching experiments at two temperatures (30 degrees C and 70 degrees C); (ii) the performance of leaching tests with intermediate changes in temperature between 30 degrees C and 70 degrees C; (iii) the use of specimens of two different thicknesses and (iv) the determination of the distribution of Cs(+) in the cement specimen at various stages of the leaching test. The results of leaching studies at 30 degrees C with cement solids simulating the composition of real radioactive wastes, containing NaNO(3), small amounts of inactive CsNO(3) and traces of (137)Cs(+) are also reported. Concentration profiles of Cs(+) in inactive specimens showed that part of the Cs(+) (20-30%) tends to be immobilized in the matrix, while elution of the readily leachable portion follows Fick's law reasonably well. No immobilized Cs(+) was detected in the samples containing considerable amounts of NaNO(3). Long-term leaching experiments (up to 8 years) revealed acceleration of the elution process (not detectable in short-term tests), attributable to increase in porosity caused by erosion of the cement matrix. Sorption experiments of Cs(+) ions by cement granules indicated that adsorption on cement pore surfaces is not significant. On the other hand, the leaching tests at two different temperatures or with intermediate changes in temperature between 30 degrees C and 70 degrees C, yielded activation energies that indicated a more complicated kinetic behavior.

  2. A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes

    NASA Astrophysics Data System (ADS)

    Azad, Vahid Jafari; Li, Chang; Verba, Circe; Ideker, Jason H.; Isgor, O. Burkan

    2016-07-01

    An interface was developed between COMSOL MultiphysicsTM finite element analysis software and (geo)chemical modeling platform, GEMS, for the reactive-transport modeling of (geo)chemical processes in variably saturated porous media. The two standalone software packages are managed from the interface that uses a non-iterative operator splitting technique to couple the transport (COMSOL) and reaction (GEMS) processes. The interface allows modeling media with complex chemistry (e.g. cement) using GEMS thermodynamic database formats. Benchmark comparisons show that the developed interface can be used to predict a variety of reactive-transport processes accurately. The full functionality of the interface was demonstrated to model transport processes, governed by extended Nernst-Plank equation, in Class H Portland cement samples in high pressure and temperature autoclaves simulating systems that are used to store captured carbon dioxide (CO2) in geological reservoirs.

  3. Evaluation of a setting reaction pathway in the novel composite TiHA-CSD bone cement by FT-Raman and FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Paluszkiewicz, Czesława; Czechowska, Joanna; Ślósarczyk, Anna; Paszkiewicz, Zofia

    2013-02-01

    The aim of this study was to determine a setting reaction pathway in a novel, surgically handy implant material, based on calcium sulfate hemihydrate (CSH) and titanium doped hydroxyapatite (TiHA). The previous studies confirmed superior biological properties of TiHA in comparison to the undoped hydroxyapatite (HA) what makes it highly attractive for future medical applications. In this study the three types of titanium modified HA powders: untreated, calcined at 800 °C, sintered at 1250 °C and CSH were used to produce bone cements. The Fourier Transform-InfraRed (FT-IR) spectroscopy and Raman spectroscopy were applied to evaluate processes taking place during the setting of the studied materials. Our results undoubtedly confirmed that the reaction pathways and the phase compositions differed significantly for set cements and were dependent on the initial heat treatment of TiHA powder. Final materials were multiphase composites consisting of calcium sulfate dihydrate, bassanite, tricalcium phosphate, hydroxyapatite and calcium titanate (perovskite). The FT-IR and Scanning Electron Microscopy (SEM) measurements performed after the incubation of the cement samples in the simulated body fluid (SBF), indicate on high bioactive potential of the obtained bone cements.

  4. Accelerated ageing of blended OPC cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quillin, K.C.; Duerden, S.L.; Majumdar, A.J.

    1994-12-31

    An accelerated experimental technique using high water:cement ratios has been developed to study the long term hydration of blended cements that may be used in a repository for the disposal of radioactive waste. This technique has been used to investigate the hydration reactions of Ordinary Portland Cement (OPC) blended with ground granulated blastfurnace slag (ggbs) or pulverised fuel ash (pfa). The effects of high sulphate-bearing and high carbonate-bearing ground waters on the compounds formed on hydration were investigated. Solid/solution compositional data were collected during the course of the hydration process for periods up to 2 years. Thomsonite, thaumasite, afwillite andmore » a tobermorite-like phase were found in addition to the expected cement hydration products. The pH of the aqueous solution in contact with 60 pfa:40 OPC blends hydrated at 90{degrees}C fell to below 8. This is lower than the value required to inhibit the corrosion of steel canisters in a repository. The pH of the aqueous solution in contact with OPC and 75 ggbs:25 OPC blends remained above 11, although if the ground waters in contact with the OPC/ggbs blends were periodically replaced the pH eventually fell below 10.« less

  5. Real-time synchronous measurement of curing characteristics and polymerization stress in bone cements with a cantilever-beam based instrument

    NASA Astrophysics Data System (ADS)

    Palagummi, Sri Vikram; Landis, Forrest A.; Chiang, Martin Y. M.

    2018-03-01

    An instrumentation capable of simultaneously determining degree of conversion (DC), polymerization stress (PS), and polymerization exotherm (PE) in real time was introduced to self-curing bone cements. This comprises the combination of an in situ high-speed near-infrared spectrometer, a cantilever-beam instrument with compliance-variable feature, and a microprobe thermocouple. Two polymethylmethacrylate-based commercial bone cements, containing essentially the same raw materials but differ in their viscosity for orthopedic applications, were used to demonstrate the applicability of the instrumentation. The results show that for both the cements studied the final DC was marginally different, the final PS was different at the low compliance, the peak of the PE was similar, and their polymerization rates were significantly different. Systematic variation of instrumental compliance for testing reveals differences in the characteristics of PS profiles of both the cements. This emphasizes the importance of instrumental compliance in obtaining an accurate understanding of PS evaluation. Finally, the key advantage for the simultaneous measurements is that these polymerization properties can be correlated directly, thus providing higher measurement confidence and enables a more in-depth understanding of the network formation process.

  6. Evaluation of amorphous magnesium phosphate (AMP) based non-exothermic orthopedic cements.

    PubMed

    Babaie, Elham; Lin, Boren; Goel, Vijay K; Bhaduri, Sarit B

    2016-10-07

    This paper reports for the first time the development of a biodegradable, non-exothermic, self-setting orthopedic cement composition based on amorphous magnesium phosphate (AMP). The occurrence of undesirable exothermic reactions was avoided through using AMP as the solid precursor. The phenomenon of self-setting with optimum rheology is achieved by incorporating a water soluble biocompatible/biodegradable polymer, polyvinyl alcohol (PVA). Additionally, PVA enables a controlled growth of the final phase via a biomimetic process. The AMP powder was synthesized using a precipitation method. The powder, when in contact with the aqueous PVA solution, forms a putty resulting in a nanocrystalline magnesium phosphate phase of cattiite. The as-prepared cement compositions were evaluated for setting times, exothermicity, compressive strength, biodegradation, and microstructural features before and after soaking in SBF, and in vitro cytocompatibility. Since cattiite is relatively unexplored in the literature, a first time evaluation reveals that it is cytocompatible, just like the other phases in the MgO-P 2 O 5 (Mg-P) system. The cement composition prepared with 15% PVA in an aqueous medium achieved clinically relevant setting times, mechanical properties, and biodegradation. Simulated body fluid (SBF) soaking resulted in coating of bobierrite onto the cement particle surfaces.

  7. Developing a More Rapid Test to Assess Sulfate Resistance of Hydraulic Cements

    PubMed Central

    Ferraris, Chiara; Stutzman, Paul; Peltz, Max; Winpigler, John

    2005-01-01

    External sulfate attack of concrete is a major problem that can appear in regions where concrete is exposed to soil or water containing sulfates, leading to softening and cracking of the concrete. Therefore, it is important that materials selection and proportioning of concrete in susceptible regions be carefully considered to resist sulfate attack. American Society for Testing Materials (ASTM) limits the tricalcium aluminate phase in cements when sulfate exposure is of concern. The hydration products of tricalcium aluminate react with the sulfates resulting in expansion and cracking. While ASTM standard tests are available to determine the susceptibility of cements to sulfate attack, these tests require at least 6 months and often up to a year to perform; a delay that hinders development of new cements. This paper presents a new method for testing cement resistance to sulfate attack that is three to five times faster than the current ASTM tests. Development of the procedure was based upon insights on the degradation process by petrographic examination of sulfate-exposed specimens over time. Also key to the development was the use of smaller samples and tighter environmental control. PMID:27308177

  8. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brent Constantz; Randy Seeker; Martin Devenney

    2010-06-30

    Calera's innovative Mineralization via Aqueous Precipitation (MAP) technology for the capture and conversion of CO{sub 2} to useful materials for use in the built environment was further developed and proven in the Phase 1 Department of Energy Grant. The process was scaled to 300 gallon batch reactors and subsequently to Pilot Plant scale for the continuous production of product with the production of reactive calcium carbonate material that was evaluated as a supplementary cementitious material (SCM). The Calera SCM{trademark} was evaluated as a 20% replacement for ordinary portland cement and demonstrated to meet the industry specification ASTM 1157 which ismore » a standard performance specification for hydraulic cement. The performance of the 20% replacement material was comparable to the 100% ordinary portland cement control in terms of compressive strength and workability as measured by a variety of ASTM standard tests. In addition to the performance metrics, detailed characterization of the Calera SCM was performed using advanced analytical techniques to better understand the material interaction with the phases of ordinary portland cement. X-ray synchrotron diffraction studies at the Advanced Photon Source in Argonne National Lab confirmed the presence of an amorphous phase(s) in addition to the crystalline calcium carbonate phases in the reactive carbonate material. The presence of carboaluminate phases as a result of the interaction of the reactive carbonate materials with ordinary portland cement was also confirmed. A Life Cycle Assessment was completed for several cases based on different Calera process configurations and compared against the life cycle of ordinary portland cement. In addition to the materials development efforts, the Calera technology for the production of product using an innovative building materials demonstration plant was developed beyond conceptual engineering to a detailed design with a construction schedule and cost estimate.« less

  9. Leaching Behavior of Heavy Metals from Cement Pastes Using a Modified Toxicity Characteristic Leaching Procedure (TCLP).

    PubMed

    Huang, Minrui; Feng, Huajun; Shen, Dongsheng; Li, Na; Chen, Yingqiang; Shentu, Jiali

    2016-03-01

    As the standard toxicity characteristic leaching procedure (TCLP) can not exhaust the acid neutralizing capacity of the cement rotary kiln co-processing solid wastes products which is particularly important for the assessment of the leaching concentrations of heavy metals. A modified TCLP was proposed. The extent of leaching of heavy metals is low using the TCLP and the leaching performance of the different metals can not be differentiated. Using the modified TCLP, however, Zn leaching was negligible during the first 180 h and then sharply increased (2.86 ± 0.18 to 3.54 ± 0.26 mg/L) as the acidity increased (pH < 6.0). Thus, Zn leaching is enhanced using the modified TCLP. While Pb leached readily during the first 126 h and then leachate concentrations decreased to below the analytical detection limit. To conclude, this modified TCLP is a more suitable method for these cement rotary kiln co-processing products.

  10. Self-healing of early age cracks in cement-based materials by mineralization of carbonic anhydrase microorganism

    PubMed Central

    Qian, Chunxiang; Chen, Huaicheng; Ren, Lifu; Luo, Mian

    2015-01-01

    This research investigated the self-healing potential of early age cracks in cement-based materials incorporating the bacteria which can produce carbonic anhydrase. Cement-based materials specimens were pre-cracked at the age of 7, 14, 28, 60 days to study the repair ability influenced by cracking time, the width of cracks were between 0.1 and 1.0 mm to study the healing rate influenced by width of cracks. The experimental results indicated that the bacteria showed excellent repairing ability to small cracks formed at early age of 7 days, cracks below 0.4 mm was almost completely closed. The repair effect reduced with the increasing of cracking age. Cracks width influenced self-healing effectiveness significantly. The transportation of CO2and Ca2+ controlled the self-healing process. The computer simulation analyses revealed the self-healing process and mechanism of microbiologically precipitation induced by bacteria and the depth of precipitated CaCO3 could be predicted base on valid Ca2+. PMID:26583014

  11. Development of a sorption data base for the cementitious near-field of a repository for radioactive waste

    NASA Astrophysics Data System (ADS)

    Wieland, E.; Bradbury, M. H.; van Loon, L.

    2003-01-01

    The migration of radionuclides within a repository for radioactive waste is retarded due to interaction with the engineered barrier system. Sorption processes play a decisive role in the retardation of radionuclides in the repository environment, and thus, the development of sorption data bases (SDBs) is an important task and an integral part of performance assessment. The methodology applied in the development of a SDB for the cementitious near-field of a repository for long-lived intermediate-level waste is presented in this study. The development of such a SDB requires knowledge of the chemical conditions of the near-field and information on the uptake process of radionuclides by hardened cement paste. The principles upon which the selection of the “best available” laboratory sorption values is based are outlined. The influence of cellulose degradation products, cement additives and cement-derived colloids on the sorption behaviour of radionuclides is addressed in conjunction with the development of the SDB.

  12. Assessment of hydration process and mechanical properties of cemented paste backfill by electrical resistivity measurement

    NASA Astrophysics Data System (ADS)

    Xu, Wenbin; Tian, Xichun; Cao, Peiwang

    2018-04-01

    Cemented paste backfill (CPB) is an emerging mine backfill technique that allows environmentally hazardous tailings to return to the underground openings or stopes, thereby maximising the safety, efficiency and productivity of operation. Uniaxial compressive strength (UCS) is one of the most commonly used parameters for evaluating the mechanical performance of CPB; the prediction of the UCS of CPB structures from early to advanced ages is of great practical importance. This study aims to investigate the predictability of the UCS of CPB during the hydration process based on electrical resistivity (ER) measurement. For this purpose, the samples prepared at different cement-to-tailing ratios and solid contents were subjected to the ER test during the whole hydration process and UCS tests at 3, 7, 28 days of curing periods. The effect of cement-to-tailing ratio and solid content on the ER and UCS of CPB samples was obtained; the UCS values were correlated with the corresponding ER data. Microstructural analysis was also performed on CPB samples to understand the effect of microstructure on the ER data. The result shows that the ER of CPB decreases first and then increases with the speed which is faster in the previous part than the latter. The ER and UCS of CPB samples increased with increasing cement-to-tailing ratio and solid content and curing periods. A logarithmic relationship is established for each mixture in order to predict the UCS of CPB based on ER. Scanning electron microscope analyses have revealed that the microstructure of the CPB changes with the age from the initial floc to honeycomb, and eventually to the compact clumps. The ER properties of CPB samples were highly associated with their respective microstructural properties. The major output of this study is that ER test is effectively capable for a preliminary prediction of the UCS of CPB.

  13. On the free-precession candidate PSR B1828-11: Evidence for increasing deformation

    NASA Astrophysics Data System (ADS)

    Ashton, G.; Jones, D. I.; Prix, R.

    2017-05-01

    We observe that the periodic variations in spin-down rate and beamwidth of the radio pulsar PSR B1828-11 are getting faster. In the context of a free precession model, this corresponds to a decrease in the precession period Pfp. We investigate how a precession model can account for such a decrease in Pfp, in terms of an increase over time in the absolute biaxial deformation (|ɛp| ˜ 10-8) of this pulsar. We perform a Bayesian model comparison against the 'base' precession model (with constant ɛp) developed in Ashton et al., and we obtain decisive odds in favour of a time-varying deformation. We study two types of time variation: (I) a linear drift with a posterior estimate of \\dot{ɛ }_p{˜ }10^{-18} s^{-1} and odds of 1075 compared to the base model, and (II) N discrete positive jumps in ɛp with very similar odds to the linear ɛp drift model. The physical mechanism explaining this behaviour is unclear, but the observation could provide a crucial probe of the interior physics of neutron stars. We also place an upper bound on the rate at which the precessional motion is damped, and translate this into a bound on a dissipative mutual friction-type coupling between the star's crust and core.

  14. Automated electronic monitoring of circuit pressures during continuous renal replacement therapy: a technical report.

    PubMed

    Zhang, Ling; Baldwin, Ian; Zhu, Guijun; Tanaka, Aiko; Bellomo, Rinaldo

    2015-03-01

    Automated electronic monitoring and analysis of circuit pressures during continuous renal replacement therapy (CRRT) has the potential to predict failure and allow intervention to optimise function. Current CRRT machines can measure and store pressure readings for downloading into databases and for analysis. We developed a procedure to obtain such data at intervals of 1 minute and analyse them using the Prismaflex CRRT machine, and we present an example of such analysis. We obtained data on pressures obtained at intervals of 1 minute in a patient with acute kidney injury and sepsis treated with continuous haemofiltration at 2 L/hour of ultrafiltration and a blood flow of 200 mL/minute. Data analysis identified progressive increases in transmembrane pressure (TMP) and prefilter pressure (PFP) from time 0 until 33 hours or clotting. TMP increased from 104 mmHg to 313 mmHg and PFP increased from from 131 mmHg to 185 mmHg. Effluent pressure showed a progressive increase in the negative pressure applied to achieve ultrafiltration from 0 mmHg to -168 mmHg. The inflection point for such changes was also identified. Blood pathway pressures for access and return remained unchanged throughout. Automated electronic monitoring of circuit pressure during CRRT is possible and provides useful information on the evolution of circuit clotting.

  15. Integrated Utilization of Sewage Sludge and Coal Gangue for Cement Clinker Products: Promoting Tricalcium Silicate Formation and Trace Elements Immobilization

    PubMed Central

    Yang, Zhenzhou; Zhang, Yingyi; Liu, Lili; Seetharaman, Seshadri; Wang, Xidong; Zhang, Zuotai

    2016-01-01

    The present study firstly proposed a method of integrated utilization of sewage sludge (SS) and coal gangue (CG), two waste products, for cement clinker products with the aim of heat recovery and environment protection. The results demonstrated that the incremental amounts of SS and CG addition was favorable for the formation of tricalcium silicate (C3S) during the calcinations, but excess amount of SS addition could cause the impediment effect on C3S formation. Furthermore, it was also observed that the C3S polymorphs showed the transition from rhombohedral to monoclinic structure as SS addition was increased to 15 wt %. During the calcinations, most of trace elements could be immobilized especially Zn and cannot be easily leached out. Given the encouraging results in the present study, the co-process of sewage sludge and coal gangue in the cement kiln can be expected with a higher quality of cement products and minimum pollution to the environment. PMID:28773400

  16. Monitoring of hardening and hygroscopic induced strains in a calcium phosphate bone cement using FBG sensor.

    PubMed

    Bimis, A; Karalekas, D; Bouropoulos, N; Mouzakis, D; Zaoutsos, S

    2016-07-01

    This study initially deals with the investigation of the induced strains during hardening stage of a self-setting calcium phosphate bone cement using fiber-Bragg grating (FBG) optical sensors. A complementary Scanning Electron Microscopy (SEM) investigation was also conducted at different time intervals of the hardening period and its findings were related to the FBG recordings. From the obtained results, it is demonstrated that the FBG response is affected by the microstructural changes taking place when the bone cement is immersed into the hardening liquid media. Subsequently, the FBG sensor was used to monitor the absorption process and hygroscopic response of the hardened and dried biocement when exposed to a liquid/humid environment. From the FBG-based calculated hygric strains as a function of moisture concentration, the coefficient of moisture expansion (CME) of the examined bone cement was obtained, exhibiting two distinct linear regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Clinical and histologic evaluation of calcium-phosphate bone cement in interproximal osseous defects in humans: a report in four patients.

    PubMed

    Mellonig, James T; Valderrama, Pilar; Cochran, David L

    2010-04-01

    This study evaluated the clinical and histologic results of a calcium phosphate bone cement in the treatment of human periodontal intraosseous defects. Four patients with chronic advanced periodontitis in whom treatment with complete dentures was planned were recruited. The cement was implanted in one defect per subject with a presurgical probing depth of at least 7 mm and a radiographic bone defect of 4 mm or more. Patients were seen every 2 weeks for periodontal maintenance. At 6 months, clinical measurements were repeated and the tooth was removed en bloc for histologic processing. Results demonstrated that all defects resulted in probing depth reduction and, at three of the four defects, in clinical attachment level gain. However, no site showed periodontal regeneration. There was no new bone formation. New cementum and connective tissue were limited to 0.2 mm or less. Large deposits of the bone cement were noted encapsulated in connective tissue.

  18. Utilization of steel slag for Portland cement clinker production.

    PubMed

    Tsakiridis, P E; Papadimitriou, G D; Tsivilis, S; Koroneos, C

    2008-04-01

    The aim of the present research work is to investigate the possibility of adding steel slag, a by-product of the conversion of iron to steel process, in the raw meal for the production of Portland cement clinker. Two samples of raw meals were prepared, one with ordinary raw materials, as a reference sample ((PC)(Ref)), and another with 10.5% steel slag ((PC)(S/S)). Both raw meals were sintered at 1450 degrees C. The results of chemical and mineralogical analyses as well as the microscopic examination showed that the use of the steel slag did not affect the mineralogical characteristics of the so produced Portland cement clinker. Furthermore, both clinkers were tested by determining the grindability, setting times, compressive strengths and soundness. The hydration products were examined by XRD analysis at 2, 7, 28 and 90 days. The results of the physico-mechanical tests showed that the addition of the steel slag did not negatively affect the quality of the produced cement.

  19. Influence of thermally activated paper sludge on the behaviour of blended cements subjected to saline and non-saline environments.

    PubMed

    García, Rosario; Rubio, Virginia; Vegas, Iñigo; Frías, Moisés

    2009-05-01

    One of the problems to affect Portland cement matrices is low resistance to aggressive agents, due principally to the presence of a high content of portlandite in the hydrated cements. Pozzolanic materials have played an important role in the improving the durability of cement-based materials for decades. This work studies the behaviour of cement mortar matrices blended with 10% calcined paper sludge (source for metakaolinite) and exposed to different environmental conditions (saline and non-saline environments) after 6 and 12 months of exposure. Two cements were studied: an ordinary Portland cement (CEM 1, 42.5R), acting as reference cement, and a blended cement formulated by mixing 90% (by mass) of CEM 1, 42.5R with 10% (by mass) of paper sludge calcined at 700 degrees C for 2 h. The specimens were exposed 1 year to saline and non-saline environments. All the mineralogy samples were studied through X-ray diffraction and scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analyser. The in-depth study on ionic mobility was performed on samples subjected to natural exposure (coast and tableland) for 6 and 12 months. Portland cement was composed of quartz, calcite, calcium hydroxide and tobermorite gels. The pozzolanic cement (10% calcined paper sludge) is of the same composition but a high calcite concentration and barium carbonate. SEM analysis from coastline show deposits of variable composition. The deposits are identified on the surface of different mineral components. The minerals from tableland are much fractured, i.e. calcite and feldspars. Inside the fractures, the deposits and the ions are located and trapped superficially. SEM analysis of control cement Portland and 10% calcined paper sludge shows deposits on quartz and calcite with a very high concentration of Pb, Zn, Cl and barium sulphate. A very porous aspect is due to the presence of the different aggregate types. This porous configuration permits retention of the ion environment. The pozzolanic cement in environments subject to the saline mist favours the retention and transport of ions observed. Something similar also happens with the increase in exposure to outdoor weather. Non-saline samples show temperature changes (ice or thaw cycles). Barium retention is kept on the surface in fracture lines by the gelification processes. In general, it may be inferred that an increase in exposure time increases the diffusion of ions towards test piece interiors. The chemical composition profiles show that the ions present different penetration speeds. The results indicate the better vulnerability of pozzolanic cements from calcined paper sludge in saline and non-saline environments. The cements with a 10% addition of calcined paper sludge favour retention and transport of ion has been observed. Today, projects are centred on a new recycling line for industrial waste of this kind, with special attention on its incorporation in cement manufacture as a pozzolanic material, setting the most appropriate activation conditions of the mineralogical compound in this waste (kaolinite and metakaolinite) and taking them as a starting point for this project. The use of pozzolanic cement with 10% addition of calcined paper sludge is a system which favours ionic retention.

  20. Carbon dioxide capture from a cement manufacturing process

    DOEpatents

    Blount, Gerald C [North Augusta, SC; Falta, Ronald W [Seneca, SC; Siddall, Alvin A [Aiken, SC

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

Top