The upper pennsylvanian pittsburgh coal bed: Resources and mine models
Watson, W.D.; Ruppert, L.F.; Tewalt, S.J.; Bragg, L.J.
2001-01-01
The U.S. Geological Survey recently completed a digital coal resource assessment model of the Upper Pennsylvanian Pittsburgh coal bed, which indicates that after subtracting minedout coal, 16 billion short tons (14 billion tonnes) remain of the original 34 billion short tons (31 billion tonnes) of coal. When technical, environmental, and social restrictions are applied to the remaining Pittsburgh coal model, only 12 billion short tons (11 billion tonnes) are available for mining. Our assessment models estimate that up to 0.61 billion short tons (0.55 billion tonnes), 2.7 billion short tons (2.4 billion tonnes), and 8.5 billion short tons (7.7 billion tonnes) could be available for surface mining, continuous mining, and longwall mining, respectively. This analysis is an example of a second-generation regional coal availability study designed to model recoverability characteristics for all the major coal beds in the United States. ?? 2001 International Association for Mathematical Geology.
Summary and Comparison of the 2016 Billion-Ton Report with the 2011 U.S. Billion-Ton Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-06-01
In terms of the magnitude of the resource potential, the results of the 2016 Billion-Ton Report (BT16) are consistent with the original 2005 Billion-Ton Study (BTS) and the 2011 report, U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry (BT2. An effort was made to reevaluate the potential forestland, agricultural, and waste resources at the roadside, then extend the analysis by adding transportation costs to a biorefinery under specified logistics assumptions to major resource fractions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Jonathan N.; Stokes, Bryce; Dunn, Jennifer
This study is the summation of several analyses to assess the size and benefits of a Billion Ton Bioeconomy, a vision to enable a sustainable market for producing and converting a billion tons of US biomass to bio-based energy, fuels, and products by 2030. Two alternative biomass availability scenarios in 2030, defined as the (i) Business-as-usual (598 million dry tons) and (ii) Billion Ton (1042 million dry tons), establish a range of possible outcomes for the future bioeconomy. The biomass utilized in the current (2014) (365 million dry tons) economy is estimated to displace approximately 2.4% of fossil energy consumptionmore » and avoid 116 million tons of CO 2-equivalent (CO 2e) emissions, whereas the Billion Ton bioeconomy of 2030 could displace 9.5% of fossil energy consumption and avoid as much as 446 million tons of CO 2 equivalent emissions annually. Developing the integrated systems, supply chains, and infrastructure to efficiently grow, harvest, transport, and convert large quantities of biomass in a sustainable way could support the transition to a low-carbon economy. Bio-based activities in the current (2014) economy are estimated to have directly generated more than 48 billion in revenue and 285 000 jobs. Our estimates show that developing biomass resources and addressing current limitations to achieve a Billion Ton bioeconomy could expand direct bioeconomy revenue by a factor of 5 to contribute nearly 259 billion and 1.1 million jobs to the US economy by 2030.« less
Rogers, Jonathan N.; Stokes, Bryce; Dunn, Jennifer; ...
2016-11-21
This study is the summation of several analyses to assess the size and benefits of a Billion Ton Bioeconomy, a vision to enable a sustainable market for producing and converting a billion tons of US biomass to bio-based energy, fuels, and products by 2030. Two alternative biomass availability scenarios in 2030, defined as the (i) Business-as-usual (598 million dry tons) and (ii) Billion Ton (1042 million dry tons), establish a range of possible outcomes for the future bioeconomy. The biomass utilized in the current (2014) (365 million dry tons) economy is estimated to displace approximately 2.4% of fossil energy consumptionmore » and avoid 116 million tons of CO 2-equivalent (CO 2e) emissions, whereas the Billion Ton bioeconomy of 2030 could displace 9.5% of fossil energy consumption and avoid as much as 446 million tons of CO 2 equivalent emissions annually. Developing the integrated systems, supply chains, and infrastructure to efficiently grow, harvest, transport, and convert large quantities of biomass in a sustainable way could support the transition to a low-carbon economy. Bio-based activities in the current (2014) economy are estimated to have directly generated more than 48 billion in revenue and 285 000 jobs. Our estimates show that developing biomass resources and addressing current limitations to achieve a Billion Ton bioeconomy could expand direct bioeconomy revenue by a factor of 5 to contribute nearly 259 billion and 1.1 million jobs to the US economy by 2030.« less
Assessment of coal geology, resources, and reserves in the Montana Powder River Basin
Haacke, Jon E.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Gunderson, Jay A.
2013-01-01
The purpose of this report is to summarize geology, coal resources, and coal reserves in the Montana Powder River Basin assessment area in southeastern Montana. This report represents the fourth assessment area within the Powder River Basin to be evaluated in the continuing U.S. Geological Survey regional coal assessment program. There are four active coal mines in the Montana Powder River Basin assessment area: the Spring Creek and Decker Mines, both near Decker; the Rosebud Mine, near Colstrip; and the Absaloka Mine, west of Colstrip. During 2011, coal production from these four mines totaled approximately 36 million short tons. A fifth mine, the Big Sky, had significant production from 1969-2003; however, it is no longer in production and has since been reclaimed. Total coal production from all five mines in the Montana Powder River Basin assessment area from 1968 to 2011 was approximately 1.4 billion short tons. The Rosebud/Knobloch coal bed near Colstrip and the Anderson, Dietz 2, and Dietz 3 coal beds near Decker contain the largest deposits of surface minable, low-sulfur, subbituminous coal currently being mined in the assessment area. A total of 26 coal beds were identified during this assessment, 18 of which were modeled and evaluated to determine in-place coal resources. The total original coal resource in the Montana Powder River Basin assessment area for the 18 coal beds assessed was calculated to be 215 billion short tons. Available coal resources, which are part of the original coal resource remaining after subtracting restrictions and areas of burned coal, are about 162 billion short tons. Restrictions included railroads, Federal interstate highways, urban areas, alluvial valley floors, state parks, national forests, and mined-out areas. It was determined that 10 of the 18 coal beds had sufficient areal extent and thickness to be evaluated for recoverable surface resources ([Roland (Baker), Smith, Anderson, Dietz 2, Dietz 3, Canyon, Werner/Cook, Pawnee, Rosebud/Knobloch, and Flowers-Goodale]). These 10 coal beds total about 151 billion short tons of the 162 billion short tons of available resource; however, after applying a strip ratio of 10:1 or less, only 39 billion short tons remains of the 151 billion short tons. After mining and processing losses are subtracted from the 39 billion short tons, 35 billion short tons of coal were considered as a recoverable resource. Coal reserves (economically recoverable coal) are the portion of the recoverable coal resource that can be mined, processed, and marketed at a profit at the time of the economic evaluation. The surface coal reserve estimate for the 10 coal beds evaluated for the Montana Powder River assessment area is 13 billion short tons. It was also determined that about 42 billion short tons of underground coal resource exists in the Montana Powder River Basin assessment area; about 34 billion short tons (80 percent) are within 500-1,000 feet of the land surface and another 8 billion short tons are 1,000-2,000 feet beneath the land surface.
The updated billion-ton resource assessment
Anthony Turhollow; Robert Perlack; Laurence Eaton; Matthew Langholtz; Craig Brandt; Mark Downing; Lynn Wright; Kenneth Skog; Chad Hellwinckel; Bryce Stokes; Patricia Lebow
2014-01-01
This paper summarizes the results of an update to a resource assessment, published in 2005, commonly referred to as the Billion-Ton Study (BTS). The updated results are consistent with the 2005 BTS in terms of overall magnitude. The 2005 BTS projected between 860 and 1240 Tg of biomass available in the 2050 timeframe, while the Billion-Ton Update (BT2), for a price of...
M.H. Langholtz; B.J. Stokes; L.M. Eaton
2016-01-01
This product builds on previous efforts, namely the 2005 Billion-Ton Study (BTS) and the 2011 U.S. Billion-Ton Update (BT2).With each report, greater perspective is gained on the potential of biomass resources to contribute to a national energy strategy. Similarly, each successive report introduces new questions regarding commercialization challenges. BTS quantified...
2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langholtz, M. H.; Stokes, B. J.; Eaton, L. M.
This product builds on previous efforts, namely the 2005 Billion-Ton Study (BTS) and the 2011 U.S. Billion-Ton Update (BT2).With each report, greater perspective is gained on the potential of biomass resources to contribute to a national energy strategy. Similarly, each successive report introduces new questions regarding commercialization challenges. BTS quantified the broad biophysical potential of biomass nationally, and BT2 elucidated the potential economic availability of these resources. These reports clearly established the potential availability of up to one billion tons of biomass resources nationally. However, many questions remain, including but not limited to crop yields, climate change impacts, logistical operations,more » and systems integration across production, harvest, and conversion. The present report aims to address many of these questions through empirically modeled energy crop yields, scenario analysis of resources delivered to biorefineries, and the addition of new feedstocks. Volume 2 of the 2016 Billion-Ton Report is expected to be released by the end of 2016. It seeks to evaluate environmental sustainability indicators of select scenarios from volume 1 and potential climate change impacts on future supplies.« less
Regional Feedstock Partnership Summary Report: Enabling the Billion-Ton Vision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, Vance N.; Karlen, Douglas L.; Lacey, Jeffrey A.
2016-07-12
The U.S. Department of Energy (DOE) and the Sun Grant Initiative established the Regional Feedstock Partnership (referred to as the Partnership) to address information gaps associated with enabling the vision of a sustainable, reliable, billion-ton U.S. bioenergy industry by the year 2030 (i.e., the Billion-Ton Vision). Over the past 7 years (2008–2014), the Partnership has been successful at advancing the biomass feedstock production industry in the United States, with notable accomplishments. The Billion-Ton Study identifies the technical potential to expand domestic biomass production to offset up to 30% of U.S. petroleum consumption, while continuing to meet demands for food, feed,more » fiber, and export. This study verifies for the biofuels and chemical industries that a real and substantial resource base could justify the significant investment needed to develop robust conversion technologies and commercial-scale facilities. DOE and the Sun Grant Initiative established the Partnership to demonstrate and validate the underlying assumptions underpinning the Billion-Ton Vision to supply a sustainable and reliable source of lignocellulosic feedstock to a large-scale bioenergy industry. This report discusses the accomplishments of the Partnership, with references to accompanying scientific publications. These accomplishments include advances in sustainable feedstock production, feedstock yield, yield stability and stand persistence, energy crop commercialization readiness, information transfer, assessment of the economic impacts of achieving the Billion-Ton Vision, and the impact of feedstock species and environment conditions on feedstock quality characteristics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Ethan; Zhang, Yi Min; Inman, Daniel J
The 2016 Billion-Ton Report (BT16), Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1, jointly released by the U.S. Department of Energy's Bioenergy Technologies Office (BETO) and Oak Ridge National Laboratory (ORNL), is a pioneering effort to analyze a range of potential environmental effects associated with illustrative near-term and long-term biomass-production scenarios from the 2016 Billion-Ton Report, Volume 1. This chapter of the 2016 Billion-Ton Report, Volume 2, was authored by NREL researchers Ethan Warner, Yimin Zhang, Danny Inman, Annika Eberle, Alberta Carpenter, Garvin Heath, and Dylan Hettinger.
Energy resources of the United States
Theobald, P.K.; Schweinfurth, Stanley P.; Duncan, Donald Cave
1972-01-01
Estimates are made of United States resources of coal, petroleum liquids, natural gas, uranium, geothermal energy, and oil from oil shale. The estimates, compiled by specialists of the U.S. Geological Survey, are generally made on geologic projections of favorable rocks and on anticipated frequency of the energy resource in the favorable rocks. Accuracy of the estimates probably ranges from 20 to 50 percent for identified-recoverable resources to about an order of magnitude for undiscovered-submarginal resources. The total coal resource base in the United States is estimated to be about 3,200 billion tons, of which 200-390 billion tons can be considered in the category identified and recoverable. More than 70 percent of current production comes from the Appalachian basin where the resource base, better known than for the United States as a whole, is about 330 billion tons, of which 22 billion tons is identified and recoverable. Coals containing less than 1 percent sulfur are the premium coals. These are abundant in the western coal fields, but in the Appalachian basin the resource base for low-sulfur coal is estimated to be only a little more than 100 billion tons, of which 12 billion tons is identified and recoverable. Of the many estimates of petroleum liquids and natural-gas resources, those of the U.S. Geological Survey are the largest because, in general, our estimates include the largest proportion of favorable ground for exploration. We estimate the total resource base for petroleum liquids to be about 2,900 billion barrels, of which 52 billion barrels is identified and recoverable. Of the total resource base, some 600 billion barrels is in Alaska or offshore from Alaska, 1,500 billion barrels is offshore from the United States, and 1,300 billion barrels is onshore in the conterminous United States. Identified-recoverable resources of petroleum liquids corresponding to these geographic units are 11, 6, and 36 billion barrels, respectively. The total natural-gas resource of the United States is estimated to be about 6,600 trillion cubic feet, of which 290 trillion cubic feet is identified and recoverable. In geographic units comparable to those for petroleum liquids, the resource bases are 1,400, 3,400, and 2,900 trillion cubic feet, and the identified-recoverable resources are 31, 40, and 220 trillion cubic feet, respectively. Uranium resources in conventional deposits, where uranium is the major product, are estimated at 1,600,000 tons of U3O8, of which 250,000 tons is identified and recoverable. A potential byproduct resource of more than 7 million tons of U3O8, is estimated for phosphate rock, but none of this resource is recoverable under present economic conditions. The resources of heat in potential geothermal energy sources are poorly known. The total resource base for the United States is certainly greater than 10 22 calories, of which only 2.5 ? 10 18 calories can be considered identified and recoverable at present. Oil shale is estimated to contain 26 trillion barrels of oil. None of this resource is economic at present, but if prices increase moderately, 160-600 billion barrels of this oil could be shifted into the identified-recoverable category.
GREEN CHEMISTRY FOR SELECTIRVE OXIDATION PROCESSES
The costs of handling, treating and disposing of wastes generated annually in the United States has reached to 2.2% of gross domestic product, and continued to rise. The chemical manufacturing industry generates more than 1.5 billion tons of hazardous waste and 9 billion tons of ...
Vulnerability of Permafrost Carbon Research Coordination Network
NASA Astrophysics Data System (ADS)
Schuur, E. A.; McGuire, A. D.; Canadell, J.; Harden, J. W.; Kuhry, P.; Romanovsky, V. E.; Turetsky, M. R.; Schädel, C.
2011-12-01
Approximately 1700 Pg (billion tons) of soil carbon are stored in the northern circumpolar permafrost zone, more than twice as much carbon than currently contained in the atmosphere. Permafrost thaw, and the microbial decomposition of previously frozen organic carbon, is considered one of the most likely positive feedbacks from terrestrial ecosystems to the atmosphere in a warmer world. Yet, the rate and form of release is highly uncertain but crucial for predicting the strength and timing of this carbon cycle feedback this century and beyond. Here we report on the formation of a new research coordination network (RCN) whose objective is to link biological C cycle research with well-developed networks in the physical sciences focused on the thermal state of permafrost. We found that published literature in the Science Citation Index identified with the search terms 'permafrost' and 'carbon' have increased dramatically in the last decade. Of total publications including those keywords, 86% were published since 2000, 65% since 2005, and 36% since 2008. Interconnection through this RCN is designed to produce new knowledge through research synthesis that can be used to quantify the role of permafrost carbon in driving climate change in the 21st century and beyond. An expert elicitation conducted as part of the RCN activities revealed that the total effect of carbon release from permafrost zone soils on climate is expected to be up to 30-46 Pg C over the next three decades, reaching 242-324 Pg C by 2100 and potentially up to 551-710 Pg C over the next several centuries under the strongest warming scenario presented to the group. These values, expressed in billions of tons of C in CO2 equivalents, combine the effect of C released both as CO2 and as CH4 by accounting for the greater heat-trapping capacity of CH4. Much of the actual C release by weight is expected to be in the form of CO2, with only about 3.5% of that in the form of CH4. However, the higher global warming potential of CH4 means that almost half of the effect of future permafrost zone carbon emissions on climate forcing was expected by this group to be a result of CH4 emissions from wetlands, lakes, and other oxygen-limited environments where organic matter will be decomposing. These results demonstrate the vulnerability of organic C stored in near surface permafrost to increasing temperatures. Future activities of this network include synthesizing information in formats that can be assimilated by biospheric and climate models, and that will contribute to future assessments of the IPCC.
Biomass and bioethanol production from Miscanthus x giganteus in Arkansas, USA
USDA-ARS?s Scientific Manuscript database
Plants fix about 56 billion tons of CO2 and produce more than 170 billion tons of biomass annually, with cell walls representing about 70% of that biomass. This biomass represents a massive source of stored solar energy. Globally, a major technological goal is cost-effective lignocellulosic ethanol ...
GREEN CHEMISTRY AND ENGINEERING RESEARCH AT THE USEPA, NRMRL
The costs of handling, treating and disposing of wastes generated annually in the U.S. has reach to 2.2% of gross domestic product and continued to rise. The chemical manufacturing industry generates more than 1.5 billion tons of hazardous waste and 9 billion tons of non-hazardou...
Currently, the chemical manufacturing industry generates more than one and a half billion tons of hazardous waste and nine billion tons of non-hazardous waste annually. Roughly one-third of the releases and transfers of chemicals reported through EPA's Toxic Release Inventory (T...
Estimating current and future global urban domestic material consumption
NASA Astrophysics Data System (ADS)
Baynes, Timothy Malcolm; Kaviti Musango, Josephine
2018-06-01
Urban material resource requirements are significant at the global level and these are expected to expand with future urban population growth. However, there are no global scale studies on the future material consumption of urban areas. This paper provides estimates of global urban domestic material consumption (DMC) in 2050 using three approaches based on: current gross statistics; a regression model; and a transition theoretic logistic model. All methods use UN urban population projections and assume a simple ‘business-as-usual’ scenario wherein historical aggregate trends in income and material flow continue into the future. A collation of data for 152 cities provided a year 2000 world average DMC/capita estimate, 12 tons/person/year (±22%), which we combined with UN population projections to produce a first-order estimation of urban DMC at 2050 of ~73 billion tons/year (±22%). Urban DMC/capita was found to be significantly correlated (R 2 > 0.9) to urban GDP/capita and area per person through a power law relation used to obtain a second estimate of 106 billion tons (±33%) in 2050. The inelastic exponent of the power law indicates a global tendency for relative decoupling of direct urban material consumption with increasing income. These estimates are global and influenced by the current proportion of developed-world cities in the global population of cities (and in our sample data). A third method employed a logistic model of transitions in urban DMC/capita with regional resolution. This method estimated global urban DMC to rise from approximately 40 billion tons/year in 2010 to ~90 billion tons/year in 2050 (modelled range: 66–111 billion tons/year). DMC/capita across different regions was estimated to converge from a range of 5–27 tons/person/year in the year 2000 to around 8–17 tons/person/year in 2050. The urban population does not increase proportionally during this period and thus the global average DMC/capita increases from ~12 to ~14 tons/person/year, challenging resource decoupling targets.
Climate and Land Use Controls on Soil Organic Carbon in the Loess Plateau Region of China
Tao, Bo; Chen, Guangsheng; Lu, Chaoqun; Yang, Jia; Pan, Shufen; Wang, Guodong; Li, Shiqing; Tian, Hanqin
2014-01-01
The Loess Plateau of China has the highest soil erosion rate in the world where billion tons of soil is annually washed into Yellow River. In recent decades this region has experienced significant climate change and policy-driven land conversion. However, it has not yet been well investigated how these changes in climate and land use have affected soil organic carbon (SOC) storage on the Loess Plateau. By using the Dynamic Land Ecosystem Model (DLEM), we quantified the effects of climate and land use on SOC storage on the Loess Plateau in the context of multiple environmental factors during the period of 1961–2005. Our results show that SOC storage increased by 0.27 Pg C on the Loess Plateau as a result of multiple environmental factors during the study period. About 55% (0.14 Pg C) of the SOC increase was caused by land conversion from cropland to grassland/forest owing to the government efforts to reduce soil erosion and improve the ecological conditions in the region. Historical climate change reduced SOC by 0.05 Pg C (approximately 19% of the total change) primarily due to a significant climate warming and a slight reduction in precipitation. Our results imply that the implementation of “Grain for Green” policy may effectively enhance regional soil carbon storage and hence starve off further soil erosion on the Loess Plateau. PMID:24788559
Climate and land use controls on soil organic carbon in the loess plateau region of China.
Dang, Yaai; Ren, Wei; Tao, Bo; Chen, Guangsheng; Lu, Chaoqun; Yang, Jia; Pan, Shufen; Wang, Guodong; Li, Shiqing; Tian, Hanqin
2014-01-01
The Loess Plateau of China has the highest soil erosion rate in the world where billion tons of soil is annually washed into Yellow River. In recent decades this region has experienced significant climate change and policy-driven land conversion. However, it has not yet been well investigated how these changes in climate and land use have affected soil organic carbon (SOC) storage on the Loess Plateau. By using the Dynamic Land Ecosystem Model (DLEM), we quantified the effects of climate and land use on SOC storage on the Loess Plateau in the context of multiple environmental factors during the period of 1961-2005. Our results show that SOC storage increased by 0.27 Pg C on the Loess Plateau as a result of multiple environmental factors during the study period. About 55% (0.14 Pg C) of the SOC increase was caused by land conversion from cropland to grassland/forest owing to the government efforts to reduce soil erosion and improve the ecological conditions in the region. Historical climate change reduced SOC by 0.05 Pg C (approximately 19% of the total change) primarily due to a significant climate warming and a slight reduction in precipitation. Our results imply that the implementation of "Grain for Green" policy may effectively enhance regional soil carbon storage and hence starve off further soil erosion on the Loess Plateau.
Demonstrated reserve base for coal in New Mexico. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, G.K.
1995-02-01
The new demonstrated reserve base estimate of coal for the San Juan Basin, New Mexico, is 11.28 billion short tons. This compares with 4.429 billion short tons in the Energy Information Administration`s demonstrated reserve base of coal as of January 1, 1992 for all of New Mexico and 2.806 billion short tons for the San Juan Basin. The new estimate includes revised resource calculations in the San Juan Basin, in San Juan, McKinley, Sandoval, Rio Arriba, Bernalillo and Cibola counties, but does not include the Raton Basin and smaller fields in New Mexico. These estimated {open_quotes}remaining{close_quotes} coal resource quantities, however,more » include significant adjustments for depletion due to past mining, and adjustments for accessibility and recoverability.« less
USA: Economica, Politics, Ideology. Number 6, June 1977
1977-07-07
important factors intensifying the contradictions and increasing the dif- ficulties in the American economy. It coincided with the most severe cyclical...energy resources. Since the beginning of the 1950’s, the energy needs of the United States have increased more rapidly than the domestic production...1.229 billion tons of fuel in 1950 to 2.592 billion tons in 1975; this was an increase of 111 percent. The average rate of increase in consumption
JPRS Report, China, Qiushi Seeking Truth, No. 16, 16 August 1989
1989-10-04
34 they require. Those tertiary students who are referred to as "the fourth generation" cannot compare in political quality, Marxist theoretical...920,000 tons;raw coal , 61.88 million tons; crude oil, 320,000 tons. Although old China was said to be an agricultural country, its highest annual...billion meters; steel by 64 times, to 59.18 million tons; raw coal by 16 times, to 980 million tons; crude oil by 428 times, to 137.05 million tons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grenzeback, L. R.; Brown, A.; Fischer, M. J.
2013-03-01
Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use. After describing federal policy actions that could influencemore » freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efroymson, R. A.; Langholtz, M. H.; Johnson, K. E.
On behalf of all the authors and contributors, it is a great privilege to present the 2016 Billion-Ton Report (BT16), volume 2: Environmental Sustainability Effects of Select Scenarios from volume 1. This report represents the culmination of several years of collaborative effort among national laboratories, government agencies, academic institutions, and industry. BT16 was developed to support the U.S. Department of Energy’s efforts towards national goals of energy security and associated quality of life.
McKelvey, V.E.; Cathcart, J.B.; Altschuler, Z.S.; Swanson, R.W.; Lutz, Katherine
1953-01-01
Most of the worlds phosphate deposits can be grouped into six types: 1) igneous apatite deposits; 2) marine phosphorites; 3) residual phosphorites; 4) river pebble deposits; 5) phosphatized rock; and 6) guano. The igneous apatites and marine phosphorites form deposits measurable in millions or billions of tons; the residual deposits are measurable in thousands or millions; and the other types generally only in thousands of tons. Igneous apatite deposits have been mined on a small scale in New York, New Jersey, and Virginia. Marine phosphorites have been mined in Montana, Idaho, Utah, Wyoming, Arkansas, Tennessee, North Carolina, South Carolina, Georgia, and Florida. Residual phosphorites have been mined in Tennessee, Pennsylvania, and Florida. River pebble has been produced in South Carolina and Florida; phosphatized rock in Tennessee and Florida; and guano in New Mexico and Texas. Present production is limited almost entirely to Florida, Tennessee, Montana, Idaho, and Wyoming. Incomplete but recently partly revised estimates indicate the presence of about 5 billion tons of phosphate deposits in the United States that is minable under present economic conditions. Deposits too lean in quality or thickness to compete with those in the western and southeastern fields probably contain tens of billions of tons.
Mining for metals in society's waste
Smith, Kathleen S.; Plumlee, Geoffrey S.; Hageman, Philip L.
2015-01-01
Metals and minerals are natural resources that human beings have been mining for thousands of years. Contemporary metal mining is dominated by iron ore, copper and gold, with 2 billion tons of iron ore, nearly 20 million tons of copper and 2,000 tons of gold produced every year. Tens to hundreds of tons of other metals that are essential components for electronics, green energy production, and high-technology products are produced annually.
Luppens, James A.; Scott, David C.
2015-01-01
This report presents the final results of the first assessment of both coal resources and reserves for all significant coal beds in the entire Powder River Basin, northeastern Wyoming and southeastern Montana. The basin covers about 19,500 square miles, exclusive of the part of the basin within the Crow and Northern Cheyenne Indian Reservations in Montana. The Powder River Basin, which contains the largest resources of low-sulfur, low-ash, subbituminous coal in the United States, is the single most important coal basin in the United States. The U.S. Geological Survey used a geology-based assessment methodology to estimate an original coal resource of about 1.16 trillion short tons for 47 coal beds in the Powder River Basin; in-place (remaining) resources are about 1.15 trillion short tons. This is the first time that all beds were mapped individually over the entire basin. A total of 162 billion short tons of recoverable coal resources (coal reserve base) are estimated at a 10:1 stripping ratio or less. An estimated 25 billion short tons of that coal reserve base met the definition of reserves, which are resources that can be economically produced at or below the current sales price at the time of the evaluation. The total underground coal resource in coal beds 10–20 feet thick is estimated at 304 billion short tons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grenzeback, L. R.; Brown, A.; Fischer, M. J.
2013-03-01
Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analyticalmore » models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.« less
Kammoun, Mariem; Ghorbel, Imen; Charfeddine, Safa; Kamoun, Lotfi; Gargouri-Bouzid, Radhia; Nouri-Ellouz, Oumèma
2017-09-15
The production of phosphoric acid from phosphate rock leads to an industrial by-product called phosphogypsum (PG). One ton of phosphoric acid generates 5 tons of PG that is frequently stocked near the production units. Several attempts were made to test PG valorization via soil amendment because of its phosphate, sulphate and calcium content. In this study, the use of PG in composting was envisaged. Composts were produced by mixing olive oil wastes and spent coffee grounds. Two concentrations of PG, 10% (A 10 ) and 30% (A 30 ), were tested in composting substrate in addition to control compost without PG (A T ). After 8 months of fermentation, the resulting composts were used in field experiments using nine different treatments conducted to evaluate the potential use of these PG-containing composts in potato plant (cv. Spunta) cultivation. Plants were grown in the field and the different composts (A T , A 10 and A 30 ) were added as fertilizer and compared to commercial compost and cattle manure. During the culture period, a number of physiological (dry weight, chlorophyll content, tuber yield) and biochemical parameters (antioxidant activities, mineral content, starch and protein content) were followed. Similarly, chlorophyll content was measured in plants cultivated on commercial or PG supplemented composts. An increment of 55.17% in potato yield was recorded with the use of A 30 the compost. Collectively, these data reveal the positive impact of the addition of PG in composting which may be adopted as a strategy for PG valorization and its use for the production of high quality edible products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Global soil-climate-biome diagram: linking soil properties to climate and biota
NASA Astrophysics Data System (ADS)
Zhao, X.; Yang, Y.; Fang, J.
2017-12-01
As a critical component of the Earth system, soils interact strongly with both climate and biota and provide fundamental ecosystem services that maintain food, climate, and human security. Despite significant progress in digital soil mapping techniques and the rapidly growing quantity of observed soil information, quantitative linkages between soil properties, climate and biota at the global scale remain unclear. By compiling a large global soil database, we mapped seven major soil properties (bulk density [BD]; sand, silt and clay fractions; soil pH; soil organic carbon [SOC] density [SOCD]; and soil total nitrogen [STN] density [STND]) based on machine learning algorithms (regional random forest [RF] model) and quantitatively assessed the linkage between soil properties, climate and biota at the global scale. Our results demonstrated a global soil-climate-biome diagram, which improves our understanding of the strong correspondence between soils, climate and biomes. Soil pH decreased with greater mean annual precipitation (MAP) and lower mean annual temperature (MAT), and the critical MAP for the transition from alkaline to acidic soil pH decreased with decreasing MAT. Specifically, the critical MAP ranged from 400-500 mm when the MAT exceeded 10 °C but could decrease to 50-100 mm when the MAT was approximately 0 °C. SOCD and STND were tightly linked; both increased in accordance with lower MAT and higher MAP across terrestrial biomes. Global stocks of SOC and STN were estimated to be 788 ± 39.4 Pg (1015 g, or billion tons) and 63 ± 3.3 Pg in the upper 30-cm soil layer, respectively, but these values increased to 1654 ± 94.5 Pg and 133 ± 7.8 Pg in the upper 100-cm soil layer, respectively. These results reveal quantitative linkages between soil properties, climate and biota at the global scale, suggesting co-evolution of the soil, climate and biota under conditions of global environmental change.
Energy production for environmental issues in Turkey
NASA Astrophysics Data System (ADS)
Yuksel, Ibrahim; Arman, Hasan; Halil Demirel, Ibrahim
2017-11-01
Due to the diversification efforts of energy sources, use of natural gas that was newly introduced into Turkish economy, has been growing rapidly. Turkey has large reserves of coal, particularly of lignite. The proven lignite reserves are 8.0 billion tons. The estimated total possible reserves are 30 billion tons. Turkey, with its young population and growing energy demand per person, its fast growing urbanization, and its economic development, has been one of the fast growing power markets of the world for the last two decades. It is expected that the demand for electric energy in Turkey will be 580 billion kWh by the year 2020. Turkey's electric energy demand is growing about 6-8% yearly due to fast economic growing. This paper deals with energy demand and consumption for environmental issues in Turkey.
Weak economy and politics worry US coal operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiscor, S.
2009-01-15
A potential decrease in demand, a new administration, and production constraints have coal operators worried about prospects for 2009. This and other interesting facts are revealed in this 2009 forecast by the journal Coal Age. Results are presented of the survey answered by 69 of the 646 executives contacted, on such questions about expected coal production, coal use, attitude in the coal industry, capital expenditure on types of equipment and productive capacity. Coal Age forecasts a 2.3% decline in coal production in 2009, down to 1.145 billion tons from 1.172 billion tons. 8 figs.
Assessment of coal geology, resources, and reserves in the Southwestern Powder River Basin, Wyoming
Osmonson, Lee M.; Scott, David C.; Haacke, Jon E.; Luppens, James A.; Pierce, Paul E.
2011-01-01
A total of 37 coal beds were identified during this assessment, 23 of which were modeled and evaluated to determine in-place coal resources. The total original coal resource in the Southwestern Powder River Basin assessment area for these 23 coal beds, with no restrictions applied was calculated to be 369 billion short tons. Available coal resources, which are part of the original resource that is accessible for potential mine development after subtracting all restrictions, are about 341 billion short tons (92.4 percent of the total original resource). Approximately 61 percent are at depths between 1,000 and 2,000 ft, with a modeled price of about $30 per short ton. Therefore, the majority of coal resources in the South-western Powder River Basin assessment area are considered sub-economic.
Globally, billions of metric tons of contaminated sediments are present in aquatic systems representing a potentially significant ecological risk. Estimated costs to manage (i.e., remediate and monitor) these sediments are in the billions of U.S. dollars. Biologically-based app...
Tree biomass in the North Central Region.
Gerhard K. Raile; Pamela J. Jakes
1982-01-01
Methods for calculating tree biomass are outlined, and the biomass on commercial forest land is estimated for 11 north-central states. Tree biomass in the North Central Region totals 3.6 billion tons, or 50 tons per commercial forest acre. For all species, total tree biomass is concentrated in growing-stock boles.
Roberts, Justin D; Suckling, Craig A; Peedle, Georgia Y; Murphy, Joseph A; Dawkins, Tony G; Roberts, Michael G
2016-11-17
Gastrointestinal (GI) ischemia during exercise is associated with luminal permeability and increased systemic lipopolysaccharides (LPS). This study aimed to assess the impact of a multistrain pro/prebiotic/antioxidant intervention on endotoxin unit levels and GI permeability in recreational athletes. Thirty healthy participants (25 males, 5 females) were randomly assigned either a multistrain pro/prebiotic/antioxidant (LAB⁴ ANTI ; 30 billion CFU·day -1 containing 10 billion CFU·day -1 Lactobacillus acidophilus CUL-60 (NCIMB 30157), 10 billion CFU·day -1 Lactobacillus acidophillus CUL-21 (NCIMB 30156), 9.5 billion CFU·day -1 Bifidobacterium bifidum CUL-20 (NCIMB 30172) and 0.5 billion CFU·day -1 Bifidobacterium animalis subspecies lactis CUL-34 (NCIMB 30153)/55.8 mg·day -1 fructooligosaccharides/ 400 mg·day -1 α-lipoic acid, 600 mg·day -1 N -acetyl-carnitine); matched pro/prebiotic (LAB⁴) or placebo (PL) for 12 weeks preceding a long-distance triathlon. Plasma endotoxin units (via Limulus amebocyte lysate chromogenic quantification) and GI permeability (via 5 h urinary lactulose (L): mannitol (M) recovery) were assessed at baseline, pre-race and six days post-race. Endotoxin unit levels were not significantly different between groups at baseline (LAB⁴ ANTI : 8.20 ± 1.60 pg·mL -1 ; LAB⁴: 8.92 ± 1.20 pg·mL -1 ; PL: 9.72 ± 2.42 pg·mL -1 ). The use of a 12-week LAB⁴ ANTI intervention significantly reduced endotoxin units both pre-race (4.37 ± 0.51 pg·mL -1 ) and six days post-race (5.18 ± 0.57 pg·mL -1 ; p = 0.03, ηp² = 0.35), but only six days post-race with LAB⁴ (5.01 ± 0.28 pg·mL -1 ; p = 0.01, ηp² = 0.43). In contrast, endotoxin units remained unchanged with PL. L:M significantly increased from 0.01 ± 0.01 at baseline to 0.06 ± 0.01 with PL only ( p = 0.004, ηp² = 0.51). Mean race times (h:min:s) were not statistically different between groups despite faster times with both pro/prebiotoic groups (LAB⁴ ANTI : 13:17:07 ± 0:34:48; LAB⁴: 12:47:13 ± 0:25:06; PL: 14:12:51 ± 0:29:54; p > 0.05). Combined multistrain pro/prebiotic use may reduce endotoxin unit levels, with LAB⁴ ANTI potentially conferring an additive effect via combined GI modulation and antioxidant protection.
The nation’s top 25 construction aggregates producers
Willett, Jason C.
2014-01-01
U.S. production of construction aggregates in 2012 was 2.18 billion short tons valued at $17.6 billion, free on board (f.o.b.) at plant. In 2012, construction aggregates production remained virtually unchanged from the levels of the last two years because of a very slight increase compared with that of 2011 in the production of both construction sand and gravel and crushed stone. The average unit value, which is the f.o.b. at the plant price of a metric ton of material, increased slightly. Construction aggregates production was 36 percent less than and the associated value was 23 percent less than the record highs reported in 2006.
NASA Astrophysics Data System (ADS)
Sharan, S.; Diffenbaugh, N. S.
2010-12-01
Is there a way to find a balance between improving living conditions for the people on the margins and also reducing emissions while limiting our negative impacts on the climate? This is a critical question today because there are many arguments between developed and developing countries about who is responsible for global warming. Developed countries believe that it is the poor countries because they are not educated enough to know about how they are affecting the climate. While the developing countries hold wealthy nations responsible because they are using the most resources. However it is important to acknowledge the fact that if there was no gap in between the developed and developing countries our emissions total would be much higher. This “gap” has been a natural controlling factor in climate change. This is why I wanted to see if I could plot what it would look like if a developing country such as India were to produce emissions that the US or Switzerland or Norway are producing as developed countries. India has a population total of 1.1 billion compared to the US with only 298 million, Switzerland with 7.5 million, and Norway with 4.6 million people. When the population is compared to the emissions output in metric tons, per capita, India produced the least emissions out of these countries, 1.4 tons per person while having the second largest population in the world, while the US produced 19 tons per capita, Switzerland produced 5.6 and Norway produced 8.7 tons per capita in 2006. The emissions rate is growing every year and increases widely and globally. If India was producing emissions that equal Norway, Switzerland and the US the total emissions it would be producing annually would be 9 billion for Norway, 6 billion for Switzerland and 20 billion emissions for the US, all in the year 2006 alone. This shows how the balance between countries with huge populations and very little emission output and average population and high emission out put has created a balance in between the “developed” and developing countries. If India was producing the same amounts of emissions per capita as the it would have a total of 20 billion metric tons of CO2 emissions annually.
Wold, Steven R.; Thomas, Blakemore E.; Waddell, Kidd M.
1997-01-01
The water and salt balance of Great Salt Lake primarily depends on the amount of inflow from tributary streams and the conveyance properties of a causeway constructed during 1957-59 that divides the lake into the south and north parts. The conveyance properties of the causeway originally included two culverts, each 15 feet wide, and the permeable rock-fill material.During 1980-86, the salt balance changed as a result of record high inflow that averaged 4,627,000 acre-feet annually and modifications made to the conveyance properties of the causeway that included opening a 300-foot-wide breach. In this study, a model developed in 1973 by Waddell and Bolke to simulate the water and salt balance of the lake was revised to accommodate the high water-surface altitude and modifications made to the causeway. This study, done by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of State Lands and Forestry, updates the model with monitoring data collected during 1980-86. This report describes the calibration of the model and presents the results of simulations for three hypothetical 10-year periods.During January 1, 1980, to July 31, 1984, a net load of 0.5 billion tons of dissolved salt flowed from the south to the north part of the lake primarily as a result of record inflows. From August 1, 1984, when the breach was opened, to December 31,1986, a net load of 0.3 billion tons of dissolved salt flowed from the north to the south part of the lake primarily as a result of the breach.For simulated inflow rates during a hypothetical 10-year period resulting in the water-surface altitude decreasing from about 4,200 to 4,192 feet, there was a net movement of about 1.0 billion tons of dissolved salt from the south to the north part, and about 1.7 billion tons of salt precipitated in the north part. For simulated inflow rates during a hypothetical 10-year period resulting in a rise in water-surface altitude from about 4,200 to 4,212 feet, there was a net movement of about 0.2 billion tons of dissolved salt from the south to the north part and no salt was precipitated in the north part of the lake.
QUASAR PG1115+080 AND GRAVITATIONAL LENS
NASA Technical Reports Server (NTRS)
2002-01-01
Left: The light from the single quasar PG 1115+080 is split and distorted in this infrared image. PG 1115+080 is at a distance of about 8 billion light years in the constellation Leo, and it is viewed through an elliptical galaxy lens at a distance of 3 billion light years. The NICMOS frame is taken at a wavelength of 1.6 microns and it shows the four images of the quasar (the two on the left are nearly merging) surrounding the galaxy that causes the light to be lensed. The quasar is a variable light source and the light in each image travels a different path to reach the Earth. The time delay of the variations allows the distance scale to be measured directly. The linear streaks on the image are diffraction artifacts in the NICMOS instrument (NASA/Space Telescope Science Institute). Right: In this NICMOS image, the four quasar images and the lens galaxy have been subtracted, revealing a nearly complete ring of infrared light. This ring is the stretched and amplified starlight of the galaxy that contains the quasar, some 8 billion light years away. (NASA/Space Telescope Science Institute). Credit: Christopher D. Impey (University of Arizona)
Molnia, Carol L.; Biewick, Laura; Blake, Dorsey; Tewalt, Susan J.; Carter, M. Devereaux; Gaskill, Charlie
1997-01-01
The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management (BLM), Geological Survey of Wyoming, and U.S. Bureau of Mines (USBM), has produced an estimate of the amount of available coal in an area about 35 miles south of Gillette, Wyo., where the Wyodak coal bed is, in places, more than 100 ft thick. Available coal is the quantity of the total coal resource that is accessible for mine development under current regulatory, land-use, and technologic constraints. This first western coal availability study, of the Hilight 7 1/2-minute quadrangle, indicates that approximately 60 percent (2.7 billion short tons) of the total 4.4 billion tons of coal in-place in the quadrangle is available for development. (There has been no commercial mining in the Hilight quadrangle.) Approximately 67 percent (1.9 billion tons) of the Main Wyodak coal bed is considered available. All tonnage measurements in this report are given in short tons. Coal-development considerations in the quadrangle include dwellings, railroads, pipelines, power lines, wildlife habitat (eagles), alluvial valley floors, cemeteries, and the Hilight oil and gas field and gas plant. Some of these considerations could be mitigated so that surface mining of the coal may proceed; others could not be mitigated and would preclude mining in their vicinity. Other technological constraints that influence the availability of the coal include overburden thickness, coal beds too thin, and areas of clinker.
Are Salps A Silver Bullet Against Global Warming And Ocean Acidification?
NASA Astrophysics Data System (ADS)
Kithil, P. W.
2006-12-01
Oceanic uptake of 25 billion tons CO2 annually introduced into the atmosphere from carbon fuels must be mitigated to prevent further widespread changes in ocean biochemistry and potentially severe anthropogenic climate change. Larry Madin of Woods Hole Oceanographic Institute and his colleagues have measured the carbon sequestration in the excretia produced by dense swarms of Salps of up to 4,000 tons per day over a 100,000 km2 ocean region, equivalent to over 14 thousand tons of CO2 per day. This poses several questions: 1. Given the ocean surface of 372 million km2, does the Madin report imply a potential removal of 20 billion tons of CO2 per year 80% of emissions? 2. What might be the natural limitations on widespread propagation of Salps, and how would these effect the carbon sequestration actually achieved? 3. What mechanism could encourage the propagation of Salps throughout the oceans? Since Salps feast on phytoplankton which require sunlight and sufficient nutrients, we must first reduce the available ocean by perhaps 60% as a seasonal limit on phytoplankton growth and allow 60% further limit for poor nutrient availability and assuming some ocean regions are an unfavorable environment for Salps. Combined, the net ocean area over which Salps could sequester carbon is thus 36%, or 134 million km2. Assuming Madin's values for carbon sequestration are achievable over this ocean region, about 7.2 billion tons of CO2 could be sequestered annually, equal to 29% of mankind's current fossil-fuel CO2 output. This converts to a carbon equivalent of 1.96 billion tons per year. The mechanism we propose to encourage widespread propagation of Salps is forced upwelling using Atmocean's arrays of wave-driven deep ocean pumps to bring up large volumes of cold, nutrient-rich deep ocean to enhance the ocean's primary production, absorbing CO2 and producing oxygen. The pump simply comprises a buoy, flexible tube, cylinder with valve, cable to connect the buoy and cylinder, and solar panel to power communications & provide remote control. Adjacent pumps are connected at the bottom to maintain relative position. If required, periodic seafloor anchoring can maintain absolute position within an ocean basin. Deployment is low cost as the pumps self-deploy when dropped into the ocean from barges. Pumps would not be deployed in ocean shipping channels, regions used by recreational boaters, nor where excessive tides or currents exist. In a global application, 1,340 arrays each 100,000 km2 are needed to cover the 134 million km2 calculated above. Assuming one pump per square km costing 2,000, an investment of 268 billion is needed. Using a five year payback, this investment is recouped if the carbon credit price is 26.80 per ton applied to sequestering 1.96 billion tons per year of carbon. This is not dramatically different from today's carbon credit price of about 15 per ton. Assuming a governmental mandate of carbon sequestration, today's price could easily increase many-fold, making ocean sequestration using forced upwelling economically attractive. Additional benefits of widespread forced upwelling include: 1 Buffering of ocean pH by removing CO2 during photosynthesis; 2 Possible cooling the upper mixed layer upstream from coral reefs to reduce bleaching from ocean hotspots; 3 Possible mitigation of rapid climate change by enhancing the mixing of arctic/Greenland meltwater; 4 Enhancement of wild fish populations; and, 5 Reduced hurricane intensity, achieved by cooling the upper mixed layer upon approach of a tropical storm in high risk regions such as the Gulf of Mexico.
Development of sustainable corn stover harvest strategies for cellulosic ethanol
USDA-ARS?s Scientific Manuscript database
The U.S. EPA identified corn (Zea mays L.) stover as “the most economical agricultural feedstock…to meet the 16 billion gallon cellulosic biofuel requirement.” They estimated that 7.8 billion gallons of ethanol would come from 82 million tons of corn stover by 2022. POET-DSM Advanced Biofuels is con...
Klett, T.R.; Ulmishek, G.F.; Wandrey, C.J.; Agena, Warren F.; Steinshouer, Douglas
2006-01-01
Using a geology-based assessment methodology, the U.S. Geological Survey - Afghanistan Ministry of Mines and Industry Joint Oil and Gas Resource Assessment Team estimated mean volumes of undiscovered petroleum in northern Afghanistan; the resulting estimates are 1.6 billion barrels (0.2 billion metric tons) of crude oil, 16 trillion cubic feet (0.4 trillion cubic meters) of natural gas, and 0.5 billion barrels (0.8 billion metric tons) of natural gas liquids. Most of the undiscovered crude oil is in the Afghan-Tajik Basin and most of the undiscovered natural gas is in the Amu Darya Basin. Four total petroleum systems were identified, and these were subdivided into eight assessment units for the purpose of this resource assessment. The area with the greatest potential for undiscovered natural gas accumulations is in Upper Jurassic carbonate and reef reservoirs beneath an impermeable salt layer in relatively unexplored parts of northern Afghanistan. The Afghan-Tajik Basin has the greatest potential for undiscovered crude oil accumulations, and these are potentially in Cretaceous to Paleogene carbonate reservoir rocks associated with thrust faulting and folding.
Luppens, James A.; Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Rohrbacher, Timothy J.; Ellis, Margaret S.
2008-01-01
The Gillette coalfield, within the Powder River Basin in east-central Wyoming, is the most prolific coalfield in the United States. In 2006, production from the coalfield totaled over 431 million short tons of coal, which represented over 37 percent of the Nation's total yearly production. The Anderson and Canyon coal beds in the Gillette coalfield contain some of the largest deposits of low-sulfur subbituminous coal in the world. By utilizing the abundance of new data from recent coalbed methane development in the Powder River Basin, this study represents the most comprehensive evaluation of coal resources and reserves in the Gillette coalfield to date. Eleven coal beds were evaluated to determine the in-place coal resources. Six of the eleven coal beds were evaluated for reserve potential given current technology, economic factors, and restrictions to mining. These restrictions included the presence of railroads, a Federal interstate highway, cities, a gas plant, and alluvial valley floors. Other restrictions, such as thickness of overburden, thickness of coal beds, and areas of burned coal were also considered. The total original coal resource in the Gillette coalfield for all eleven coal beds assessed, and no restrictions applied, was calculated to be 201 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 164 billion short tons (81 percent of the original coal resource). Recoverable coal, which is the portion of available coal remaining after subtracting mining and processing losses, was determined for a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 77 billion short tons of coal were calculated (48 percent of the original coal resource). Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Gillette coalfield is10.1 billion short tons of coal (6 percent of the original resource total) for the 6 coal beds evaluated.
The Nation's top 25 construction aggregates producers
Willett, Jason Christopher
2013-01-01
U.S. production of construction aggregates in 2011 was 2.17 billion short tons, valued at $17.2 billion, free on board (f.o.b.) at plant. Construction aggregates production decreased by 37 percent, and the associated value decreased by 25 percent, compared with the record highs reported in 2006. In 2011, construction aggregates production increased for the first time since 2006, owing to a very slight increase in the production of both construction sand and gravel and crushed stone. The average unit value, which is the f.o.b. at plant price of a ton of material, increased slightly, but is still less than the average unit value of two years prior.
Roberts, Justin D.; Suckling, Craig A.; Peedle, Georgia Y.; Murphy, Joseph A.; Dawkins, Tony G.; Roberts, Michael G.
2016-01-01
Gastrointestinal (GI) ischemia during exercise is associated with luminal permeability and increased systemic lipopolysaccharides (LPS). This study aimed to assess the impact of a multistrain pro/prebiotic/antioxidant intervention on endotoxin unit levels and GI permeability in recreational athletes. Thirty healthy participants (25 males, 5 females) were randomly assigned either a multistrain pro/prebiotic/antioxidant (LAB4ANTI; 30 billion CFU·day−1 containing 10 billion CFU·day−1 Lactobacillus acidophilus CUL-60 (NCIMB 30157), 10 billion CFU·day−1 Lactobacillus acidophillus CUL-21 (NCIMB 30156), 9.5 billion CFU·day−1 Bifidobacterium bifidum CUL-20 (NCIMB 30172) and 0.5 billion CFU·day−1 Bifidobacterium animalis subspecies lactis CUL-34 (NCIMB 30153)/55.8 mg·day−1 fructooligosaccharides/ 400 mg·day−1 α-lipoic acid, 600 mg·day−1 N-acetyl-carnitine); matched pro/prebiotic (LAB4) or placebo (PL) for 12 weeks preceding a long-distance triathlon. Plasma endotoxin units (via Limulus amebocyte lysate chromogenic quantification) and GI permeability (via 5 h urinary lactulose (L): mannitol (M) recovery) were assessed at baseline, pre-race and six days post-race. Endotoxin unit levels were not significantly different between groups at baseline (LAB4ANTI: 8.20 ± 1.60 pg·mL−1; LAB4: 8.92 ± 1.20 pg·mL−1; PL: 9.72 ± 2.42 pg·mL−1). The use of a 12-week LAB4ANTI intervention significantly reduced endotoxin units both pre-race (4.37 ± 0.51 pg·mL−1) and six days post-race (5.18 ± 0.57 pg·mL−1; p = 0.03, ηp2 = 0.35), but only six days post-race with LAB4 (5.01 ± 0.28 pg·mL−1; p = 0.01, ηp2 = 0.43). In contrast, endotoxin units remained unchanged with PL. L:M significantly increased from 0.01 ± 0.01 at baseline to 0.06 ± 0.01 with PL only (p = 0.004, ηp2 = 0.51). Mean race times (h:min:s) were not statistically different between groups despite faster times with both pro/prebiotoic groups (LAB4ANTI: 13:17:07 ± 0:34:48; LAB4: 12:47:13 ± 0:25:06; PL: 14:12:51 ± 0:29:54; p > 0.05). Combined multistrain pro/prebiotic use may reduce endotoxin unit levels, with LAB4ANTI potentially conferring an additive effect via combined GI modulation and antioxidant protection. PMID:27869661
Multiresource Inventories: Woody Biomass in North Carolina
Noel D. Cost
1986-01-01
North Carolina's 31.2 million acres of land area support 1.7 billion tons of woody biomass. Of this total, 94 percent is on timberland, 3 percent on nonforest areas, and 3 percent on reserved timberland and woodland areas. Over the next two decades, more than 12.8 million tons of woody biomass could be harvested annually from timberland without adversely...
Vulnerability of permafrost carbon research coordination network
NASA Astrophysics Data System (ADS)
Schädel, C.; Schuur, E. A. G.; McGuire, A. D.; Canadell, J. G.; Harden, J.; Kuhry, P.; Romanovsky, V. E.; Turetsky, M. R.
2012-04-01
Approximately 1700 Pg of soil carbon are stored in the northern circumpolar permafrost zone, more than twice as much carbon than currently contained in the atmosphere. Permafrost thaw, and the microbial decomposition of previously frozen organic carbon, is considered one of the most likely positive feedbacks from terrestrial ecosystems to the atmosphere in a warmer world. Yet, the rate and form of release is highly uncertain but crucial for predicting the strength and timing of this carbon cycle feedback this century and beyond. Here we report on the first products of a new research coordination network (RCN) whose objective is to link biological C cycle research with well-developed networks in the physical sciences focused on the thermal state of permafrost. We found that published literature in the Science Citation Index identified with the search terms 'permafrost' and 'carbon' have increased dramatically in the last decade. Of total publications including those keywords, 86% were published since 2000, 65% since 2005, and 36% since 2008. The first RCN activity consisted of an expert elicitation that revealed the total effect of carbon release from permafrost zone soils in climate is expected to be up to 30-46 Pg C over the next three decades, reaching 242-324 Pg C by 2100 and potentially up to 551-710 Pg C over the next several centuries under the strongest warming scenario presented to the group. These values, expressed in billions of tons of C in CO2 equivalents, combine the effect of C released both as CO2 and as CH4 by accounting for the greater heat-trapping capacity of CH4. However, the higher global warming potential of CH4 means that almost half of the effect of future permafrost zone carbon emissions on climate forcing was expected by this group to be a result of CH4 emissions from wetlands, lakes, and other oxygen-limited environments where organic matter will be decomposing. These results demonstrate the vulnerability of organic C stored in near surface permafrost to increasing temperatures. Future activities of this network include synthesizing information in formats that can be assimilated by biospheric and climate models, and that will contribute to future assessments of the IPCC.
Managing the "other" forest: collecting and protecting nontimber forest products
Sally Duncan
2003-01-01
Wild harvest of nontimber forest products (NTFP) contributes to an international commercial trade in plant materialthought to be thousands of tons of raw product valued at billions of dollars. From 1991 through 1998, international trade in pharmaceutical plants alone was valued at over $1 billion, with the United States second only to China in value of...
Litter generated ammonia captured by activated carbon derived from broiler litter
USDA-ARS?s Scientific Manuscript database
In 2011, the production rate of broilers was 8.6 billion with a value of $23.2 billion (USDA 2012). Both CERCLA and EPCRA have reporting requirements for ammonia (NH3) of 100 lb of NH3/d or 18.3 tons/yr, a level that may affect large animal production facilities (NRC 2003). Although USEPA (2009) ha...
Multiresource inventories: woody biomass in Virginia
Noel D. Cost
1988-01-01
Virginia's 25 .. 4 million acres of land area support 1.5 billion J tons of woody biomass. Of this total, 93 percent is on timberland, I 5 percent on reserved timberland and woodland areas, and 2 percent I on nonforest areas. Over the next two decades, more than 9 million I t tons of woody biomass could be harvested annually from timberland I I without adversely...
ERIC Educational Resources Information Center
Henry, David D., III; Muller, Nicholas Z.; Mendelsohn, Robert O.
2011-01-01
The sulfur dioxide (SO[subscript 2]) cap and trade program established in the 1990 Clean Air Act Amendments is celebrated for reducing abatement costs ($0.7 to $2.1 billion per year) by allowing emissions allowances to be traded. Unfortunately, places with high marginal costs also tend to have high marginal damages. Ton-for-ton trading reduces…
Estimating usable resources from historical industry data
Cargill, S.M.; Root, D.H.; Bailey, E.H.
1981-01-01
Historical production statistics are used to predict the quantity of remaining usable resources. The commodities considered are mercury, copper and its byproducts gold and silver, and petroleum; the production and discovery data are for the United States. The results of the study indicate that the cumulative return per unit of effort, herein measured as grade of metal ores and discovery rate of recoverable petroleum, is proportional to a negative power of total effort expended, herein measured as total ore mined and total exploratory wells or footage drilled. This power relationship can be extended to some limiting point (a lower ore grade or a maximum number of exploratory wells or footage), and the apparent quantity of available remaining resource at that limit can be calculated. For mercury ore of grades at and above 0.1 percent, the remaining usable resource in the United States is calculated to be 54 million kg (1,567,000 flasks). For copper ore of grades at and above 0.2 percent, the remaining usable copper resource is calculated to be 270 million metric tons (298 million short tons); remaining resources of its by-products gold and silver are calculated to be 3,656 metric tons (118 million troy ounces) and 64,676 metric tons (2,079 million troy ounces), respectively. The undiscovered recoverable crude oil resource in the conterminous United States, at 3 billion feet of additional exploratory drilling, is calculated to be nearly 37.6 billion barrels; the undiscovered recoverable petroleum resource in the Permian basin of western Texas and southeastern New Mexico, at 300 million feet of additional exploratory drilling or 50,000 additional exploratory wells, is calculated to be about 6.2 billion BOE (barrels of oil equivalent).
Cannon, William F.
1983-01-01
The Iron River 1? x 2? quadrangle contains identified resources of copper and iron. Copper-rich shale beds in the north part of the quadrangle contain 12.2 billion pounds (5.5 billion kilograms) of copper in well-studied deposits including 9.2 billion pounds (4.2 billion kilograms) that are economically minable by 1980 standards. At least several billion pounds of copper probably exist in other parts of the same shale beds, but not enough data are available to measure the amount. A small amount, about 250 million pounds (113 million kilograms), of native copper is known to remain in one abandoned mine, and additional but unknown amounts remain in other abandoned mines. About 13.25 billion tons (12.02 billion metric tons) of banded iron-formation averaging roughly 30 percent iron are known within 500 feet (152.4 meters) of the surface in the Gogebic, Marquette, and Iron River-Crystal Falls districts. A small percentage of that might someday be minable as taconite, but none is now believed to be economic. Some higher grade iron concentrations exist in the same iron-formations. Such material was the basis of former mining of iron in the region, but a poor market for such ore and depletion of many deposits have led to the decline of iron mining in the quadrangle. Iron mines of the quadrangle were not being worked in 1980. Many parts of the quadrangle contain belts of favorable host rocks for mineral deposits. Although deposits are not known in these belts, undiscovered deposits of copper, zinc, lead, silver, uranium, phosphate, nickel, chromium, platinum, gold, and diamonds could exist.
Effect of simulated acid rain on fluorine mobility and the bacterial community of phosphogypsum.
Wang, Mei; Tang, Ya; Anderson, Christopher W N; Jeyakumar, Paramsothy; Yang, Jinyan
2018-06-01
Contamination of soil and water with fluorine (F) leached from phosphogypsum (PG) stacks is a global environmental issue. Millions of tons of PG is produced each year as a by-product of fertilizer manufacture, and in China, weathering is exacerbated by acid rain. In this work, column leaching experiments using simulated acid rain were run to evaluate the mobility of F and the impact of weathering on native bacterial community composition in PG. After a simulated summer rainfall, 2.42-3.05 wt% of the total F content of PG was leached and the F concentration in leachate was above the quality standard for surface water and groundwater in China. Acid rain had no significant effect on the movement of F in PG. A higher concentration of F was observed at the bottom than the top section of PG columns suggesting mobility and reprecipitation of F. Throughout the simulation, the PG was environmentally safe according the TCLP testing. The dominant bacteria in PG were from the Enterococcus and Bacillus genus. Bacterial community composition in PG leached by simulated acid rain (pH 3.03) was more abundant than at pH 6.88. Information on F mobility and bacterial community in PG under conditions of simulated rain is relevant to management of environmental risk in stockpiled PG waste.
Winglets Save Billions of Dollars in Fuel Costs
NASA Technical Reports Server (NTRS)
2010-01-01
The upturned ends now featured on many airplane wings are saving airlines billions of dollars in fuel costs. Called winglets, the drag-reducing technology was advanced through the research of Langley Research Center engineer Richard Whitcomb and through flight tests conducted at Dryden Flight Research Center. Seattle-based Aviation Partners Boeing -- a partnership between Aviation Partners Inc., of Seattle, and The Boeing Company, of Chicago -- manufactures Blended Winglets, a unique design featured on Boeing aircraft around the world. These winglets have saved more than 2 billion gallons of jet fuel to date, representing a cost savings of more than $4 billion and a reduction of almost 21.5 million tons in carbon dioxide emissions.
Energy Information Administration quarterly coal report, October--December 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-05-21
The United States produced just over 1 billion short tons of coal in 1992, 0.4 percent more than in 1991. Most of the 4-million-short-ton increase in coal production occurred west of the Mississippi River, where a record level of 408 million short tons of coal was produced. The amount of coal received by domestic consumers in 1992 totaled 887 million short tons. This was 7 million short tons more than in 1991, primarily due to increased coal demand from electric utilities. The average price of delivered coal to each sector declined by about 2 percent. Coal consumption in 1992 wasmore » 893 million short tons, only 1 percent higher than in 1991, due primarily to a 1-percent increase in consumption at electric utility plants. Consumer coal stocks at the end of 1992 were 163 million short tons, a decrease of 3 percent from the level at the end of 1991, and the lowest year-end level since 1989. US coal exports fell 6 percent from the 1991 level to 103 million short tons in 1992. Less coal was exported to markets in Europe, Asia, and South America, but coal exports to Canada increased 4 million short tons.« less
Federally owned coal and federal lands in the Colorado Plateau region
,
1999-01-01
Federally owned coal plays a major role in the energy supply of the United States. About 1.1 billion tons of coal were produced in the United States in 1997 (U.S. Department of Energy, 1998). About 30 percent of that total, or about 330 million tons, came from Federal lands. Almost all of the Federal coal production is from Wyoming, Montana, and three States in the Colorado Plateau Region—Utah, Colorado, and New Mexico.
Phosphate rock resources of the United States
Cathcart, James Bachelder; Sheldon, Richard Porter; Gulbrandsen, Robert A.
1984-01-01
In 1980, the United States produced about 54 million tons of phosphate rock, or about 40 percent of the world's production, of which a substantial amount was exported, both as phosphate rock and as chemical fertilizer. During the last decade, predictions have been made that easily ruinable, low-cost reserves of phosphate rock would be exhausted, and that by the end of this century, instead of being a major exporter of phosphate rock, the United States might become a net importer. Most analysts today, however, think that exports will indeed decline in the next one or two decades, but that resources of phosphate are sufficient to supply domestic needs for a long time into the future. What will happen in the future depends on the actual availability of low-cost phosphate rock reserves in the United States and in the world. A realistic understanding of future phosphate rock reserves is dependent on an accurate assessment, now, of national phosphate rock resources. Many different estimates of resources exist; none of them alike. The detailed analysis of past resource estimates presented in this report indicates that the estimates differ more in what is being estimated than in how much is thought to exist. The phosphate rock resource classification used herein is based on the two fundamental aspects of a mineral resource(l) the degree of certainty of existence and (2) the feasibility of economic recovery. The comparison of past estimates (including all available company data), combined with the writers' personal knowledge, indicates that 17 billion metric tons of identified, recoverable phosphate rock exist in the United States, of which about 7 billion metric tons are thought to be economic or marginally economic. The remaining 10 billion metric tons, mostly in the Northwestern phosphate district of Idaho, are considered to be subeconomic, ruinable when some increase in the price of phosphate occurs. More than 16 billion metric tons probably exist in the southeastern Coastal Plain phosphate province, principally in Florida and North Carolina and offshore in the shallow Atlantic Ocean from North Carolina to southern Florida. This resource is considered to be hypothetical because it is based on geologic inference combined with sparse drilling data. Total resources of phosphate rock in the United States are sufficient to supply domestic demands for the foreseeable future, provided that drilling is done to confirm hypothetical resources and the chemistry of the deposits is determined. Mining and beneficiation techniques will have to be modified or improved, and new techniques will have to be developed so that these deposits can be profitably exploited.
Assessment of coal geology, resources, and reserves in the northern Wyoming Powder River Basin
Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Rohrbacher, Timothy J.
2010-01-01
The abundance of new borehole data from recent coal bed natural gas development in the Powder River Basin was utilized by the U.S. Geological Survey for the most comprehensive evaluation to date of coal resources and reserves in the Northern Wyoming Powder River Basin assessment area. It is the second area within the Powder River Basin to be assessed as part of a regional coal assessment program; the first was an evaluation of coal resources and reserves in the Gillette coal field, adjacent to and south of the Northern Wyoming Powder River Basin assessment area. There are no active coal mines in the Northern Wyoming Powder River Basin assessment area at present. However, more than 100 million short tons of coal were produced from the Sheridan coal field between the years 1887 and 2000, which represents most of the coal production within the northwestern part of the Northern Wyoming Powder River Basin assessment area. A total of 33 coal beds were identified during the present study, 24 of which were modeled and evaluated to determine in-place coal resources. Given current technology, economic factors, and restrictions to mining, seven of the beds were evaluated for potential reserves. The restrictions included railroads, a Federal interstate highway, urban areas, and alluvial valley floors. Other restrictions, such as depth, thickness of coal beds, mined-out areas, and areas of burned coal, were also considered. The total original coal resource in the Northern Wyoming Powder River Basin assessment area for all 24 coal beds assessed, with no restrictions applied, was calculated to be 285 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 263 billion short tons (92.3 percent of the original coal resource). Recoverable coal, which is that portion of available coal remaining after subtracting mining and processing losses, was determined for seven coal beds with a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 50 billion short tons of recoverable coal was calculated. Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Northern Wyoming Powder River Basin assessment area is 1.5 billion short tons of coal (1 percent of the original resource total) for the seven coal beds evaluated.
Freight in America : a new national picture
DOT National Transportation Integrated Search
2006-01-01
According to new estimates by the Bureau of Transportation Statistics (BTS) of the U.S. Department of Transportations Research and Innovative Technology Administration (RITA) and the Federal Highway Administration (FHWA), over 19 billion tons of f...
Oil, Earth mass and gravitational force.
Moustafa, Khaled
2016-04-01
Fossil fuels are intensively extracted from around the world faster than they are renewed. Regardless of direct and indirect effects of such extractions on climate change and biosphere, another issue relating to Earth's internal structure and Earth mass should receive at least some interest. According to the Energy Information Administration (EIA), about 34 billion barrels of oil (~4.7 trillion metric tons) and 9 billion tons of coal have been extracted in 2014 worldwide. Converting the amounts of oil and coal extracted over the last 3 decades and their respective reserves, intended to be extracted in the future, into mass values suggests that about 355 trillion tons, or ~5.86∗10(-9) (~0.0000000058)% of the Earth mass, would be 'lost'. Although this is a tiny percentage, modeling the potential loss of Earth mass may help figuring out a critical threshold of mass loss that should not be exceeded. Here, I briefly discuss whether such loss would have any potential consequences on the Earth's internal structure and on its gravitational force based on the Newton's law of gravitation that links the attraction force between planets to their respective masses and the distance that separate them. Copyright © 2016 Elsevier B.V. All rights reserved.
Hazardous materials highlights : 2007 Commodity Flow Survey
DOT National Transportation Integrated Search
2011-01-01
Hazardous materials movement through the Nations transportation network in 2007 remained relatively unchanged from 2002 measures, according to data from the 2007 Commodity Flow Survey (CFS), released in 2010. The estimated 2.2 billion tons of haza...
Estimation of potential biomass resource and biogas production from aquatic plants in Argentina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzsimons, R.E.; Laurino, C.N.; Vallejos, R.H.
1982-01-01
The Argentine government's Agua y Energia Electrica is planning to construct a hydroelectric power-generation facility on the middle Parana River, which is already heavily infested with aquatic weeds such as water hyacinth. These species will probably proliferate in the lakes that will be formed by the power project and perhaps seriously interfere with the facility. As a solution to this problem, Argentine biochemists propose mechanical harvesting and anaerobic fermentation of the aquatic plants to produce biogas and fertilizer. According to an evaluation of this potential resource, gross methane production could reach 37-153 billion CF (1.0-4.1 billion m/sup 3/)/yr, and themore » digested residue could provide 60,500-244,000 tons (54,900-221,400 metric tons)/yr of nitrogen, which represents 2-8 times Argentina's current nitrogen fertilizer demand.« less
China cuts energy intensity, but overall energy growth continues, report notes
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-02-01
A new report states that China has cut its energy intensity—defined as energy use per unit of economic output—by 19.1% from 2006 to 2010, reversing the previous upward trend. However, energy use and carbon emissions in the country continue to grow sharply, according to the Climate Policy Initiative's (CPI) Annual Review of Low-Carbon Development in China: 2010, the second of such reports. China nearly hit its goal of a 20% target reduction in energy intensity during that time period, which spanned the country's eleventh Five-Year Period (FYP) for social and economic development, but during that same period energy-related growth in carbon dioxide (CO2) emissions in China increased by 33.6%, from 5.15 billion tons to 6.88 billion tons, said Qi Ye, CPI's Beijing office director, at a 2 February briefing held at the Brookings Institution in Washington, D. C.
Assessing the coal resources of the United States
Gluskoter, Harold J.; Flores, R.M.; Hatch, J.; Kirschbaum, M.A.; Ruppert, L.F.; Warwick, Peter D.
1996-01-01
In 1994, coal production in the United States reached the highest level in history (slightly more than 909 million metric tons or one billion short tons), continuing the upward trend of coal production and utilization that began 34 years ago. Previous assessments of the coal resources of the United States, which were completed as early as 1909, clearly indicated that the total coal resources of the Nation are large and that utilization at the current rate will not soon deplete them.
Kansas coal distribution, resources, and potential for coalbed methane
Brady, L.L.
2000-01-01
100 ft (>30 m)] determined from 32 different coal beds. Strippable coal resources at a depth Kansas has large amounts of bituminous coal both at the surface and in the subsurface of eastern Kansas. Preliminary studies indicate at least 53 billion tons (48 billion MT) of deep coal [>100 ft (>30 m)] determined from 32 different coal beds. Strippable coal resources at a depth < 100 ft (<30 m) total 2.8 billion tons (2.6 billion MT), and this total is determined from 17 coals. Coal beds present in the Cherokee Group (Middle Pennsylvanian) represent most of these coal resource totals. Deep coal beds with the largest resource totals include the Bevier, Mineral, "Aw" (unnamed coal bed), Riverton, and Weir-Pittsburg coals, all within the Cherokee Group. Based on chemical analyses, coals in the southeastern part of the state are generally high volatile A bituminous, whereas coals in the east-central and northeastern part of the state are high-volatile B bituminous coals. The primary concern of coal beds in Kansas for deep mining or development of coalbed methane is the thin nature [<2 ft (0.6 m)] of most coal beds. Present production of coalbed methane is centered mainly in the southern Wilson/northern Montgomery County area of southeastern Kansas where methane is produced from the Mulky, Weir-Pittsburg, and Riverton coals.
Methane in the Upper Silesian Coal Basin (Poland) - problem of reserves and exploitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojcik, A.J.
1995-08-01
The Upper Silesian Coal Basin (USCB) is the best recognized and the most productive coal basin in Poland. The USCB is primarily defined by the extent of Carboniferous coal-bearing formations. The sedimentary fill displays the stratigraphic record of major progressive inversion phases of the entire Moravo-Silesian basin during the late and post-geosynclinal period of the Variscan orogeny. According to the last estimates the coal reserves occurring above the depth limit of 1500 in are as follows: documented reserves - 58 billion tons, prognostic reserves - 46 billion tons, total - 104 billion tons. The coal type is predominantly vitrinitic, andmore » ash content is reported to be in the range of 11-17% and average sulphur content is 1.13%. The rank of USCB coal is largely controlled by complex coalification processes. It ranges from high volatile bituminous B, through medium volatile bituminous to high rank special coal semi anthracite and anthracite. The methane content of coal seams in USCB varies in a very broad range of 0-22 m{sup 3}/t coal (dry, ash free basis). The average gas content increases considerably within the depth range 600-1000 in from 0.99 to 4.68 m{sup 3}/t coal (daf). In deeper horizons it is more or less stable varying within the range of 4.7-7.0 m{sup 3}/t coal (daf). By this estimate, on average, the methane content is about 12,5 m{sup 3}/ton. There are several estimates of coal-bed methane resources in the USCB based on different methods. The resources are as follows: documented deposits in active mines to 1000 m: 370 BCM, undeveloped deposits to 1000 in: 340 BCM, deposit between 1000 and 1500 m: 590 BCM, total: 1300 BCM. The coalbed gas from this basin is primarily composed of saturated hydrocarbons and Nitrogen which amount to 97 volume percent. The rest is dominant by Carbon dioxide and Hydrogen.« less
Murray, Brian C.; Crooks, Stephen; Jenkins, W. Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W.; Kauffman, J. Boone; Marbà, Núria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis
2012-01-01
Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems—marshes, mangroves, and seagrasses—that may be lost with habitat destruction (‘conversion’). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this ‘blue carbon’ can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15–1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3–19% of those from deforestation globally, and result in economic damages of $US 6–42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats. PMID:22962585
Pendleton, Linwood; Donato, Daniel C; Murray, Brian C; Crooks, Stephen; Jenkins, W Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W; Kauffman, J Boone; Marbà, Núria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis
2012-01-01
Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems--marshes, mangroves, and seagrasses--that may be lost with habitat destruction ('conversion'). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this 'blue carbon' can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15-1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3-19% of those from deforestation globally, and result in economic damages of $US 6-42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.
U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downing, Mark; Eaton, Laurence M; Graham, Robin Lambert
2011-08-01
The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence inmore » having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil prices topped $70 per barrel (bbl) and catastrophic hurricanes in the Gulf Coast shut down a significant fraction of U.S. refinery capacity. The following year, oil approached $80 per bbl due to supply concerns, as well as continued political tensions in the Middle East. The Energy Independence and Security Act of 2007 (EISA) was enacted in December of that year. By the end of December 2007, oil prices surpassed $100 per bbl for the first time, and by mid-summer 2008, prices approached $150 per bbl because of supply concerns, speculation, and weakness of the U.S. dollar. As fast as they skyrocketed, oil prices fell, and by the end of 2008, oil prices dropped below $50 per bbl, falling even more a month later due to the global economic recession. In 2009 and 2010, oil prices began to increase again as a result of a weak U.S. dollar and the rebounding of world economies.« less
Sub-Saharan Africa Report No. 2809.
1983-06-13
The fiscal receipts for off-shore oil in fact provide two thirds of the Congo’s finances. In 1982 4.5 million tons were produced. The beginning of...company has spent 40 billion CFA francs on exploration. The pursuit of that effort will depend on the new fiscal terms. In particular with regard...project is expected to cost a total of $48.5 mil- lion, or about 4.8 billion escudos . The Portuguese companies (SOMACO, SOMEC, J. J. Bento Pedroso and
Central Appalachia: Production potential of low-sulfur coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, J.
The vast preponderance of eastern US low sulfur and 1.2-lbs SO{sub 2}/MMBtu compliance coal comes from a relatively small area composed of 14 counties located in eastern Kentucky, southern West Virginia and western Virginia. These 14 counties accounted for 68% of all Central Appalachian coal production in 1989 as well as 85% of all compliance coal shipped to electric utilities from this region. A property-by-property analysis of total production potential in 10 of the 14 counties (Floyd, Knott, Letcher, Harlan, Martin and Pike in Kentucky and Boone, Kanawha, Logan and Mingo in West Virginia) resulted in the following estimates ofmore » active and yet to be developed properties: (1) total salable reserves for all sulfur levels were 5.9 billion tons and (2) 1.2-lbs. SO{sub 2}/MMBtu compliance'' reserves totaled 2.38 billion tons. This potential supply of compliance coal is adequate to meet the expanded utility demand expected under acid rain for the next 20 years. Beyond 2010, compliance supplies will begin to reach depletion levels in some areas of the study region. A review of the cost structure for all active mines was used to categorize the cost structure for developing potential supplies. FOB cash costs for all active mines in the ten counties ranged from $15 per ton to $35 per ton and the median mine cost was about $22 per ton. A total of 47 companies with the ability to produce and ship coal from owned or leased reserves are active in the ten-county region. Identified development and expansion projects controlled by active companies are capable of expanding the region's current production level by over 30 million tons per year over the next twenty years. Beyond this period the issue of reserve depletion for coal of all sulfur levels in the ten county region will become a pressing issue. 11 figs., 12 tabs.« less
Birdwell, Justin E.; Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.
2013-01-01
Using a geology-based assessment methodology, the U.S. Geological Survey estimated a total of 4.285 trillion barrels of oil in-place in the oil shale of the three principal basins of the Eocene Green River Formation. Using oil shale cutoffs of potentially viable (15 gallons per ton) and high grade (25 gallons per ton), it is estimated that between 353 billion and 1.146 trillion barrels of the in-place resource have a high potential for development.
Greenhouse gas release from arctic permafrost: positive feedback to climate warming (Invited)
NASA Astrophysics Data System (ADS)
Walter Anthony, K. M.; Zimov, S. A.
2009-12-01
The release of carbon (C) in the form of greenhouse gases from thawing permafrost is one of the most likely and important positive feedbacks from the land to the atmosphere in a warmer world. Perennially frozen ground, known as permafrost, covers 20 percent of the Earth’s land surface. Recent accounting for C stored as far as 80m beneath the surface in permafrost (950 billion tons) more than doubles previous inventory estimates and is comparable to the current atmospheric CO2 burden of 750 billion tons. Permafrost organic C accumulated over tens of thousands of years. In its frozen state this C is sequestered from the atmosphere, mitigating climate warming. Long term borehole from Siberia and North America attest that permafrost is thawing. A third to half of permafrost is now within a degree to a degree and a half of thawing. In places where permafrost temperature crosses the critical 0°C threshold, ice melts causing thermokarst (ground surface collapse). Thermokarst features such as sink holes, pits, slope failure, mud flows, and the formation, expansion, and drainage of thaw lakes are widespread, up to 90% of the land area in some areas of the Arctic. Dating of features revealed that this process has been going on for the past 10,000 years, since the Earth entered the most recent interglacial warm period. However, satellite records during the past 55 years suggest that permafrost thaw in some regions is accelerating. What will happen to the climate as the rest of the permafrost thaws? When permafrost thaws, organic C is made available to microbes, which rapidly degrade it, producing greenhouse gases such as CO2 and methane (CH4, 25 times the global warming potential of CO2 over 100 years). A particularly important region for greenhouse gas emissions is the Siberian Yedoma Ice Complex (10^6 km2), a Pliestocene-aged permafrost type that contains roughly half of the Arctic’s permafrost C stock. Based on patterns of yedoma degradation during the present interglacial period, estimates of the amount of C remaining in permafrost today, long term field measurements, laboratory incubation experiments, and mass balance calculations of the efficiency of CH4 production from thawed permafrost, we predict that at least 50 billion tons of CH4 (equivalent to 10 times the current atmospheric methane burden) will escape from thermokarst lakes in Siberia as yedoma thaws. More CH4 will be released from the remainder of arctic lakes. Under current projections of warming and thaw in the Arctic (7-8 deg C by 2100), thermokarst will release 0.1-0.2 billion tons CH4 yr-1 by 2100, an order of magnitude more than its current source strength, adding another 20-40% of all human and natural sources of CH4 to the atmosphere. Frozen soils which thaw under aerobic conditions will produce CO2 with projected emissions of ~0.5-1.0 billion tons C yr-1, constituting approximately 10% of modern anthropogenic emission.
Bio-based production of methacrylic acid
USDA-ARS?s Scientific Manuscript database
Methacrylic acid (MAA) is an important industrial chemical commodity, with annual production exceeding 3 million metric tons and a market value surpassing $9 billion. The primary use of MAA is the conversion to ester derivatives, which are further converted into numerous useful polymers. Despite the...
Truck Transport of Hazardous Chemicals : Acetone
DOT National Transportation Integrated Search
1997-03-01
The transport of hazardous materials by all modes is a major concern of the U.S. Department of Transportation. Estimates place the total amount of hazardous materials transported in the U.S. in excess of 1.5 billion tons per year. Highway, water, and...
Truck Transport of Hazardous Chemicals : Isopropanol
DOT National Transportation Integrated Search
1997-12-01
The transport of hazardous materials by all modes is a major concern of the U.S. Department of Transportation. Estimates place the total amount of hazardous materials transported in the U.S. in excess of 1.5 billion tons per year. Highway, water, and...
Analysis of emission data from global commercial aviation : 2004 and 2006
DOT National Transportation Integrated Search
2010-07-14
The global commercial aircraft fleet in 2006 flew 31.26 million flights, burned 188.20 million metric tons of fuel, and covered 38.68 billion kilometers. This activity emitted substantial amounts of fossil-fuel combustion products within the upper tr...
Truck Transport of Hazardous Chemicals : Phosphorus Pentasulfide
DOT National Transportation Integrated Search
1996-08-01
The transport of hazardous materials by all modes is a major concern of the U.S. Department of Transportation. Estimates place the total amount of hazardous materials transported in the U.S. in excess of 1.5 billion tons per year. Highway, water, and...
Truck Transport of Hazardous Chemicals: 1-Butanol
DOT National Transportation Integrated Search
1995-09-01
The transport of hazardous materials by all modes is a major concern of the U.S. Department of Transportation. Estimates place the total amount of hazardous materials transported in the U.S. in excess of 1.5 billion tons per year. Highway, water, and...
Truck Transport of Hazardous Chemicals : Dodecene-1
DOT National Transportation Integrated Search
1996-09-01
The transport of hazardous materials by all modes is a major concern of the U.S. Department of Transportation. Estimates place the total amount of hazardous materials transported in the U.S. in excess of 1.5 billion tons per year. Highway, water, and...
Ebadian, Mahmood; Sokhansanj, Shahabaddine; Webb, Erin
2016-11-23
In this paper, the logistical resources required to develop a bioeconomy based on corn stover in the USA are quantified, including field equipment, storage sites, transportation and handling equipment, workforce, corn growers, and corn lands. These resources are essential to mobilize large quantities of corn stover from corn fields to biorefineries. The logistical resources are estimated over the lifetime of the biorefineries. Seventeen corn-growing states are considered for the logistical resource assessment. Over 6.8 billion gallons of cellulosic ethanol can be produced annually from 108 million dry tons of corn stover in these states. The maximum number of required fieldmore » equipment (i.e., choppers, balers, collectors, loaders, and tractors) is estimated to be 194 110 units with a total economic value of about 26 billion dollars. In addition, 40 780 trucks and flatbed trailers would be required to transport bales from corn fields and storage sites to biorefineries with a total economic value of 4.0 billion dollars. About 88 899 corn growers need to be contracted with an annual net income of over 2.1 billion dollars. About 1903 storage sites would be required to hold 53.1 million dry tons of inventory after the harvest season. These storage sites would take up about 35 320.2 acres and 4077 loaders with an economic value of 0.4 billion dollars would handle this inventory. The total required workforce to run the logistics operations is estimated to be 50 567. Furthermore, the magnitude of the estimated logistical resources demonstrates the economic and social significance of the corn stover bioeconomy in rural areas in the USA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebadian, Mahmood; Sokhansanj, Shahabaddine; Webb, Erin
In this paper, the logistical resources required to develop a bioeconomy based on corn stover in the USA are quantified, including field equipment, storage sites, transportation and handling equipment, workforce, corn growers, and corn lands. These resources are essential to mobilize large quantities of corn stover from corn fields to biorefineries. The logistical resources are estimated over the lifetime of the biorefineries. Seventeen corn-growing states are considered for the logistical resource assessment. Over 6.8 billion gallons of cellulosic ethanol can be produced annually from 108 million dry tons of corn stover in these states. The maximum number of required fieldmore » equipment (i.e., choppers, balers, collectors, loaders, and tractors) is estimated to be 194 110 units with a total economic value of about 26 billion dollars. In addition, 40 780 trucks and flatbed trailers would be required to transport bales from corn fields and storage sites to biorefineries with a total economic value of 4.0 billion dollars. About 88 899 corn growers need to be contracted with an annual net income of over 2.1 billion dollars. About 1903 storage sites would be required to hold 53.1 million dry tons of inventory after the harvest season. These storage sites would take up about 35 320.2 acres and 4077 loaders with an economic value of 0.4 billion dollars would handle this inventory. The total required workforce to run the logistics operations is estimated to be 50 567. Furthermore, the magnitude of the estimated logistical resources demonstrates the economic and social significance of the corn stover bioeconomy in rural areas in the USA.« less
NANO-SCALE PALLADIUM DOPED MAGNESIUM BIMETALLICS FOR DECHLORINATING PCBS
Polychlorinated biphenyls (PCBs) are toxic and recalcitrant pollutants found in rivers; coastal waters and in 500 of the nation's 1598 Superfund waste sites. According to an EPA estimate, the existing 525 million tons of PCB wastes will cost $394 billion to be incinerated, curren...
Assessment of multimodal freight bottlenecks and alleviation strategies for upper Midwest region.
DOT National Transportation Integrated Search
2010-05-01
The freight that passes through the Mississippi Valley Region is high volume and has a substantial impact on the economy of the : region. According to the BTS-sponsored Commodity Flow Survey, trucks carried almost 2.5 billion tons of freight across t...
Mineral resource of the month: steel
Fenton, Michael D.
2007-01-01
About 96 million metric tons of steel was produced in the United States last year — more than any other metal. And the $3.46 billion of iron and steel scrap exported was also the highest of any metal scrap export, helping to reduce the U.S. trade deficit.
Investigate existing non-intrusive (NII) technologies for port cargo inspections.
DOT National Transportation Integrated Search
2011-09-01
"The quantity of cargo handled by United States ports has increased significantly in recent years. Based on : 2004 data, almost 2.7 billion tons of cargo passed through the ports in one year. To protect the U.S., all of this : cargo must be inspected...
Cost Effective Analysis of Recycled Products for Use in Highway Construction.
DOT National Transportation Integrated Search
1998-04-01
Over 4.5 billion of non-hazardous wastes are generated in the United States each year. Out of these wastes over 200 million tons of post consumer waste is generated. The disposal of post consumer waste is the responsibility of municipality and societ...
Development of freight policy analysis tool for northeastern Illinois and the United States.
DOT National Transportation Integrated Search
2010-10-01
Freight transportation is a vital element in the economic prosperity of any country. According to the : nationwide commodity flow survey, over 12 billion tons of goods, valued at more than $11.6 trillion, were moved in : America in the year 2007(Bure...
USDA-ARS?s Scientific Manuscript database
The continued reliance on fossil fuels to supply our chemical feedstock and energy requirements is unsustainable. However, it is estimated that there are greater than 220 billion tons of lignocellulosic biomass available globally which represents a tremendous renewable source for society’s chemical...
During the past 150 years, the mining indstry discharged more than a billion tons of tailings along Lake Superior shorelines and constructed numerous smelters in the watershed. Given the vast size of Lake Superior, were sediment profiles at locations far offshore impacted by near...
Biodegradable bioplastics from food wastes
USDA-ARS?s Scientific Manuscript database
An estimated 1.8 billion tons of waste are created annually from food processing in the US, including the peels, pulp, and pomace (PPP) generated from fruits and vegetables when they are converted into frozen or canned products or pressed into juice. PPP currently is sold as animal feed at low cost,...
A research update for the Stuttgart National Aquaculture Research Center
USDA-ARS?s Scientific Manuscript database
Aquaculture (fish farming) has played an ever-increasing role in providing people with fish, shrimp, and shellfish. Aquaculture is currently the fastest growing sector of global food production and in 2016 totaled 90 million tons valued at $180 billion. The production of food-fish from aquaculture...
U.S. ARMY CORPS OF ENGINEERS ABANDONED MINE LAND REMEDIATION WORKSHOP
Mining activities in the US (not counting coal) produce 1-2 billion tons of mine waste annually. Since many of the ore mines involve sulfide minerals, the production of acid mine drainage (AMD) is a common problem from these abandoned mine sites. The combination of acidity, heavy...
ASSESSING AND MANAGING MERCURY FROM HISTORIC AND CURRENT MINING ACTIVITIES
Mining activities in the US (not counting coal) produce between one and two billion tons of mine waste annually. Since many of the ore mines involve sulfide minerals, the production of acid mine drainage (AMD) is a common problem from these abandoned mine sites. The combination o...
Combating the Sigatoka disease complex on banana
USDA-ARS?s Scientific Manuscript database
Banana is the fourth most important staple food in the world behind rice, wheat and maize, with more than 100 million tons produced annually. Although the majority of bananas produced are consumed locally, banana export is a multi-billion dollar business. Bananas are grown in more than 100 countri...
Rapid Field Measurement of Rubber Content in Russian Dandelion
USDA-ARS?s Scientific Manuscript database
Natural rubber is a critical and strategic raw material for industrial manufacturing and national defense. In 2008, 10 million tons of NR were produced for commercial use, most of it from Hevea brasiliensis in tropical countries. The annual US import deficit for NR is approximately $1 billion. Devel...
A Research Update for the Stuttgart National Aquaculture Research Center
USDA-ARS?s Scientific Manuscript database
Aquaculture (fish farming) has played an ever-increasing role in providing people with fish, shrimp, and shellfish. Aquaculture is currently the fastest growing sector of global food production and in 2014 totaled 80 million tons valued at $140 billion. The production of food-fish from aquaculture...
MERCURY IN STAMP SAND DISCHARGES: IMPLICATIONS FOR LAKE SUPERIOR MERCURY CYCLING
Approximately a half billion tons of waste rock from the extraction of native copper and silver ores was discharged into the Lake Superior basin. Stamping was the method of choice to recover these metals from the surrounding poor rock. This process created large amounts of extre...
How many people can China support?
Mu, G
1999-10-01
Dr. Mu Guangzong, associate professor of the People's University of China, disagrees with the assumption that China can only sustain up to 1.6 billion people. This estimate was concluded by a group of researchers from the Chinese Academy of Sciences and 70 other institutions in their study conducted in the late 1980s. Based on the hypothesis that China can produce 830 million tons of grain at maximum, the researchers concluded that the region is able to support 1.66 billion people (assuming 500-550 kg/person/year). However, Dr. Guangzong says that this assumption seriously underestimates China's capabilities. He says that the country can support up to 2.075 billion people, assuming the land can produce 830 million tons of grain at maximum. A further explanation indicates that in order to live a person needs 213 kg of grain, 25 kg of meat, 10 kg of eggs, 6 kg of vegetables, and 8 kg of vegetable oil and sugar each. All these add up to 390-400 kg of grain. In addition, both per capita consumption figures and land productivity are variables subject to technological advances, and there are other sources of food other than the land resources. However, economic development is not just about feeding the population, it is also about providing decent living standards to them. Thus, control of population growth is still important for the country.
LAND REBORN: TOOLS FOR THE 21ST CENTURY/NATIONAL ASSOCIATION OF ABANDONED MINE LAND PROGRAMS
Mining activities in the US (not counting coal) produce 1-2 billion tons of mine waste annually. Since many of the ore mines involve sulfide minerals, the production of acid mine drainage (AMD) is a common problem from these abandoned mine sites. The combination of acidity, heavy...
Maize kernel evolution:From teosinte to maize
USDA-ARS?s Scientific Manuscript database
Maize is the most productive and highest value commodity in the US and around the world: over 1 billion tons were produced each year in 2013 and 2014. Together, maize, rice and wheat comprise over 60% of the world’s caloric intake, with wide regional variability in the importance of each crop. The i...
Dealing with frost damage and climate change in tree fruit crops
USDA-ARS?s Scientific Manuscript database
Each year, the U.S. produces about 15 million tons of deciduous fruit crops that have a combined value of >$10 billion. Unpredictable cold damage to these nutritionally important crops is a major threat to industry profitability. Over the last six years, cold damage has accounted for almost half o...
Iowa's forest resources in 2000
Joseph T. II Boykin
2003-01-01
Results of the 2000 annual inventory of Iowa show that there are as estimated 2.5 million acres of forest land; 3.2 billion cubic feet of all live volume on timberland; and 87 million dry tons of all live aboveground tree biomass on timberland. Known pathogens and pests in Iowa's forets include oak wilt and gypsy moth.
Griffin, Dale W.; Kellogg, C.A.; Garrison, V.H.; Shinn, E.A.
2002-01-01
By some estimates as much as two billion metric tons of dust are lifted into the Earth's atmosphere every year. Most of this dust is stirred up by storms, the more dramatic of which are aptly named dust storms. But more than mere dirt is carried aloft. Drifting with the suspended dust particles are soil pollutants such as herbicides and pesticides and a significant number of microorganisms-bacteria, viruses and fungi. We can gain some appreciation of how much microbial life is actually floating in our atmosphere by performing a quick calculation. There are typically about one million bacteria per gram of soil, but let's be conservative and suppose there are only 10,000 bacteria per gram of airborne sediment. Assuming a modest one billion metric tons of sediment in the atmosphere, these numbers translate into a quintillion (1018) sediment-borne bacteria moving around the planet each year-enough to form a microbial bridge between Earth and Jupiter. Here we consider what we've learned about the airborne transport of sediment across the globe, and review some of the remarkable studies in this reemerging field that had it origins more than 100 years ago.
Forest biomass and energy-wood potential in the southern United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saucier, J.R.
1993-12-31
Timber resource data were compiled from the most recent USDA Forest Service inventory data for the 12 Southern States from Virginia to Texas. Timber resource inventories traditionally include only trees 5 inches dbh and greater and their volumes to the prevailing merchantable top diameter expressed in cubic feet, board feet, or cords. For this paper, conversion factors were developed to express timber inventories in weight and to expand the inventories to include the crowns of merchantable trees and trees less than 5 inches dbh. By so doing, the total aboveground biomass is estimated for the timberlands in the South. Themore » region contains 185 million acres of timberland. Some 14.6 billion green tons of woody biomass are present on southern timberland -- about 79 tons per acre. When mature stands are harvested, the average acre in the South has 22.2 tons of woody material left in crowns and sapling, and 5.1 tons in cull stems. Thus, an average of 27.3 green tons per acre of potential energy wood are left after conventional harvests. Conversion factors that are presented permit estimates for specific tracts, areas, counties, or states.« less
Nearly simultaneous optical, ultraviolet, and x ray observations of three PG quasars
NASA Technical Reports Server (NTRS)
Kriss, Gerard A.
1990-01-01
Nearly simultaneous optical, ultraviolet, and x ray observations of three low redshift quasars are presented. The EXOSAT x ray spectra span the range of observed spectral indices for quasars from the canonical 0.7 energy index typical of Seyfert galaxies for PG0923+129 (Mrk 705) to the steep spectral indices frequently seen in higher luminosity quasars with an index of 1.58 for PG0844+349 (Ton 951). None of the quasars exhibits any evidence for a soft x ray excess. This is consistent with accretion disk spectra fit to the IR through UV continua of the quasars -- the best fitting disk spectra peak at approximately 6 eV with black hole masses in the range 5 x 10(exp 7) to 1 x 10(exp 9) solar mass and mass accretion rates of approximately 0.1 times the Eddington-limited rate. These rather soft disk spectra are also compatible with the observed optical and ultraviolet line ratios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisholoy Goswami
2005-10-11
The goal of this project is to construct a prototype carbon dioxide sensor that can be commercialized to offer a low-cost, autonomous instrument for long-term, unattended measurements. Currently, a cost-effective CO2 sensor system is not available that can perform cross-platform measurements (ground-based or airborne platforms such as balloon and unmanned aerial vehicle (UAV)) for understanding the carbon sequestration phenomenon. The CO2 sensor would support the research objectives of DOE-sponsored programs such as AmeriFlux and the North American Carbon Program (NACP). Global energy consumption is projected to rise 60% over the next 20 years and use of oil is projected tomore » increase by approximately 40%. The combustion of coal, oil, and natural gas has increased carbon emissions globally from 1.6 billion tons in 1950 to 6.3 billion tons in 2000. This figure is expected to reach 10 billon tons by 2020. It is important to understand the fate of this excess CO2 in the global carbon cycle. The overall goal of the project is to develop an accurate and reliable optical sensor for monitoring carbon dioxide autonomously at least for one year at a point remote from the actual CO2 release site. In Phase I of this project, InnoSense LLC (ISL) demonstrated the feasibility of an ormosil-monolith based Autonomous Sensor for Atmospheric CO2 (ASAC) device. All of the Phase I objectives were successfully met.« less
Yang, Xiaofan; Liu, Huan; Cui, Hongyang; Man, Hanyang; Fu, Mingliang; Hao, Jiming; He, Kebin
2015-07-01
Volatile organic compounds (VOCs) are crucial to control air pollution in major Chinese cities since VOCs are the dominant factor influencing ambient ozone level, and also an important precursor of secondary organic aerosols. Vehicular evaporative emissions have become a major and growing source of VOC emissions in China. This study consists of lab tests, technology evaluation, emissions modeling, policy projections and cost-benefit analysis to draw a roadmap for China for controlling vehicular evaporative emissions. The analysis suggests that evaporative VOC emissions from China's light-duty gasoline vehicles were approximately 185,000 ton in 2010 and would peak at 1,200,000 ton in 2040 without control. The current control strategy implemented in China, as shown in business as usual (BAU) scenario, will barely reduce the long-term growth in emissions. Even if Stage II gasoline station vapor control policies were extended national wide (BAU+extended Stage II), there would still be over 400,000 ton fuel loss in 2050. In contrast, the implementation of on-board refueling vapor recovery (ORVR) on new cars could reduce 97.5% of evaporative VOCs by 2050 (BAU+ORVR/BAU+delayed ORVR). According to the results, a combined Stage II and ORVR program is a comprehensive solution that provides both short-term and long-term benefits. The net cost to achieve the optimal total evaporative VOC control is approximately 62 billion CNY in 2025 and 149 billion CNY in 2050. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiala, E.
1996-12-31
Out of a conversion of 120 billions metric tons of fossil carbon per year 1 billion are traffic related. But this amount is growing steadily. The global automobile density is about 10 automobiles per capita. It grows with 1.7% per year, as fast as the population. The number of automobiles doubles in 25 years. In all groups of developed countries the automobile density increased from 5 to 50 automobiles per capita in less than 50 years so far. Where is the fuel for the 1 billion automobiles of the year 2030 or 2050? Can one reduce this number or whatmore » chances does one have to reduce the adverse consequences? Whatever the number of motor vehicles will be, man will have the chance to reduce fuel consumption and therefore CO{sub 2}-emission together with other emissions considerably.« less
Wisconsin's forest resources in 2001.
John S. Vissage; Gery J. Brand; Manfred E. Mielke
2003-01-01
Results of the 2001 annual inventory of Wisconsin show about 15.8 million acres of forest land, more than 21.6 billion cubic feet of live volume on forest land, and nearly 584 million dry tons of all live aboveground tree biomass on timberland. Gypsy moth, forest tent caterpillar, twolined chestnut borer, bronze birch borer, ash yellows, and white pine blister rust...
Wisconsin's forest resources in 2002.
John S. Vissage; Gary J. Brand; Manfred E. Mielke
2004-01-01
Results of the 2002 annual inventory of Wisconsin show about 16.0 million acres of forest land, over 22.2 billion cubic feet of live volume on forest land, and nearly 598 million dry tons of all live aboveground tree biomass on timberland. Gypsy moth, forest tent caterpillar, twolined chestnut borer, bronze birch borer, ash yellows, and white pine blister rust were...
Forest-Based Biomass Supply Curves for the United States
Kenneth Skog; Jamie Barbour; Marilyn Buford; Dennis Drykstra; Patti Lebow; Pat Miles; Bob Perlack; Bryce Stokes
2013-01-01
Nationwide, county-level supply curves have been estimated for forest-based biomass to evaluate their potential contributions to producing biofuels. This study builds on the estimates of potential supply in the Billion Ton Supply study prepared by the U.S. Department of Agriculture and the U.S. Department of Energy. Forest biomass sources include logging...
Minnesota Forest Resources in 2000.
David E. Haugen; Manfred E. Mielke
2002-01-01
Results of the 2000 annual inventory of Minnesota show over 16.5 million acres of forest land, over 17.6 billion cubic feet of all live volume on timberland, and an estimated 429 million dry tons of all live aboveground tree biomass on timberland. Known pests in Minnesota forests include the forest tent caterpillar, spruce budworm, large aspen tortrix, and introduced...
Cellulose nanomaterials as additives for cementitious materials
Tengfei Fu; Robert J. Moon; Pablo Zavatierri; Jeffrey Youngblood; William Jason Weiss
2017-01-01
Cementitious materials cover a very broad area of industries/products (buildings, streets and highways, water and waste management, and many others; see Fig. 20.1). Annual production of cements is on the order of 4 billion metric tons [2]. In general these industries want stronger, cheaper, more durable concrete, with faster setting times, faster rates of strength gain...
USDA-ARS?s Scientific Manuscript database
Approximately 4.5 billion people are chronically exposed to aflatoxins, these are powerful carcinogens produced by Aspergillus flavus and A. parasiticus. High levels of aflatoxins in crops result in approximately 100 million metric tons of cereals, ¬nuts, root crops and other agricultural products ...
Yahashiri, Atsushi; Jorgenson, Matthew A.; Weiss, David S.
2015-01-01
Bacterial SPOR domains bind peptidoglycan (PG) and are thought to target proteins to the cell division site by binding to “denuded” glycan strands that lack stem peptides, but uncertainties remain, in part because septal-specific binding has yet to be studied in a purified system. Here we show that fusions of GFP to SPOR domains from the Escherichia coli cell-division proteins DamX, DedD, FtsN, and RlpA all localize to septal regions of purified PG sacculi obtained from E. coli and Bacillus subtilis. Treatment of sacculi with an amidase that removes stem peptides enhanced SPOR domain binding, whereas treatment with a lytic transglycosylase that removes denuded glycans reduced SPOR domain binding. These findings demonstrate unequivocally that SPOR domains localize by binding to septal PG, that the physiologically relevant binding site is indeed a denuded glycan, and that denuded glycans are enriched in septal PG rather than distributed uniformly around the sacculus. Accumulation of denuded glycans in the septal PG of both E. coli and B. subtilis, organisms separated by 1 billion years of evolution, suggests that sequential removal of stem peptides followed by degradation of the glycan backbone is an ancient feature of PG turnover during bacterial cell division. Linking SPOR domain localization to the abundance of a structure (denuded glycans) present only transiently during biogenesis of septal PG provides a mechanism for coordinating the function of SPOR domain proteins with the progress of cell division. PMID:26305949
Wisconsin's forest resources in 2004
Charles H. Perry
2006-01-01
Results of the 2000-2004 annual inventory of Wisconsin show about 16.0 million acres of forest land, more than 22.1 billion cubic feet of live volume on forest land, and nearly 593 million dry tons of all live aboveground tree biomass on timberland. Populations of jack pine budworm are increasing, and it remains a significant pest in Wisconsin forests. A complete...
Projections of forest contributions to global carbon cycles
Michael E. Goerndt; Stephen R. Shifley; Patrick D. Miles; Dave Wear; Francisco X. Aguilar
2016-01-01
Forests cover 42 percent of the Northern United States, and collectively they store 13 billion tons of carbon in live trees (29 percent), roots (6 percent), forest floor (9 percent), dead trees (6 percent), and soils (50 percent). About half the biomass of a live tree (dry weight basis) is sequestered carbon (Woodall et al. 2011) - not the largest but the most dynamic...
Wisconsin's forest resources in 2003
John S. Vissage; Gary J. Brand; J.E. Cummings-Carlson,
2005-01-01
Results of the 2003 annual inventory of Wisconsin show about 15.9 million acres of forest land, over 21.9 billion cubic feet of live volume on forest land, and nearly 591 million dry tons of all live aboveground tree biomass on timberland. Gypsy moth, forest tent caterpillar, twolined chestnut borer, bronze birch borer, ash yellows, and oak wilt were among the pests of...
Updating FRCS, the Fuel Reduction Cost Simulator, for national biomass assessments
Dennis Dykstra; Bruce Hartsough; Bryce. Stokes
2009-01-01
In 2005 the USDA and DOE jointly published a report concluding that it would be technically feasible to supply a billion dry tons of biomass annually from farms and forests throughout the United States in support of an emerging bioenergy and bioproducts industry. The report was criticized because it defined "supply" largely in terms of physical availability...
USDA-ARS?s Scientific Manuscript database
The United States (U.S.) is the world’s largest producer of poultry with over eight billion broilers produced yearly. Poultry litter (PL) is a mixture of manure, bedding, feathers, and spilled feed that is a by-product of broiler production. In 2009, the U.S. produced more than 50 million tons of PL...
Preliminary report on the coal resources of the National Petroleum Reserve in Alaska
Martin, G.C.; Callahan, J.E.
1978-01-01
NPR-A, located on the Arctic slope of Northern Alaska, is underlain by a thick sequence of sedimentary rocks of Cretaceous age which attain a thickness of as much as 4600 m (15,000 feet). The bulk of the coal resources occurs in rocks of the Nanushuk Group of Early and Late Cretaceous age. The Nanushuk Group is a wedge-shaped unit of marginal marine and nonmarine rocks that is as thick as 3300 m (11,000 feet) just west of NPR-A. Within the reserve, coal occurs primarily in the middle and thicker portions of this clastic wedge and occurs stratigraphically in the upper half of the section. Specific data on individual coal beds or zones are scarce, and estimates of identified coal resources of about 49.5 billion tons represent a sampling of coal resources too small to give a realistic indication of the potential resources for an area so large. Estimates of undiscovered resources suggest hypothetical resources of between 330 billion and 3.3 trillion tons. The wide range in the undiscovered resource estimates reflects the scarcity and ambiguity of the available data but also suggests the presence of a potentially large coal resource.
A Policy Option To Provide Sufficient Funding For Massive-Scale Sequestration of CO2
NASA Astrophysics Data System (ADS)
Kithil, P. W.
2007-12-01
Global emissions of CO2 now are nearly 30 billion tons per year, and are growing rapidly due to strong economic growth. Atmospheric levels of CO2 have reached 380 ppm and recent reports suggest the rate of increase has gone from 1% per year in the 1990's to 3% per year now - with potential to cross 550ppm in the 2020 decade. Without stabilization of atmospheric CO2 below 550ppm, climate models predict unacceptably higher average temperatures with significant risk of runaway global warming this century. While there is much talk about reducing CO2 emissions by switching to non-fossil energy sources, imposing energy efficiency, and a host of other changes, there are no new large-scale energy sources on the horizon. The options are to impose draconian cuts in fossil energy consumption that will keep us below 550ppm (devastating the global economy) - or to adopt massive-scale sequestration of CO2. Three approaches are feasible: biological ocean sequestration, geologic sequestration, and biological terrestrial sequestration. Biological sequestration is applicable to all CO2 sources, whereas geologic sequestration is limited to fossil-fuel power plants and some large point-source emitters such as cement plants and large industrial facilities. Sequestration provides a direct mechanism for reducing atmospheric levels of CO2, whereas offsetting technologies such as wind power or improved efficiency, reduce the need for more fossil fuels but do not physically remove CO2 from the environment. The primary geologic technique, carbon capture & sequestration (CCS), prevents CO2 from entering the atmosphere but likewise does not reduce existing levels of atmospheric CO2. Biological sequestration (ocean or terrestrial) physically removes CO2 from the atmosphere. Since we cannot shut down our global economy, urgent action is needed to counteract CO2 emissions, and avoid catastrophic climate change. Given the long lead time and/or small impact of offsetting energy sources, sequestration is the only way to achieve near and medium-term reductions in atmospheric CO2 levels. To finance massive-scale sequestration of CO2, we propose the World Trade Organization (WTO) become an active player in the sequestration market. Given the WTO's role as overseer of international trade agreements annually representing 30 trillion in imports and exports of goods and services, it is by far the largest global economic force and therefore offers the broadest economic base. Absent a real solution to CO2 emissions, the global economy - and world trade - will shrink dramatically. The WTO can jumpstart the market for CO2 sequestration by issuing long term contracts to purchase bona fide sequestration-derived CO2 credits. Under this proposal, an initial price of 100 per ton which steps-down by 5% per year could bring forth the sequestration investment needed to achieve upwards of 10 billion tons sequestered CO2 per year by 2025 (seven billion tons from biological ocean sequestration and at least three billion tons from geologic and terrestrial sequestration). Assuming a contract term of 40 years, and a parallel commodity market continues to develop for CO2 credits, at some time in the future the WTO's contractual price will be less than the commodity market price - and the WTO begins to recover its investment. Under one set of assumptions, the net WTO annual subsidy would peak at $86 billion by 2022, equal to an across-the-board WTO tariff on imports and exports of about 1.01%, then become positive a few years later as the market price climbed above WTO's contracted price. Under this proposal, the WTO effectively subsidizes CO2 sequestration in the near to medium term and then recoups its investment and reaps large profits over the long term.
Water and Food in the Twenty-First Century
NASA Astrophysics Data System (ADS)
de Marsily, Ghislain; Abarca-del-Rio, Rodrigo
2016-03-01
In 2000, the World population was 6.2 billion people; it reached 7 billion in 2012 and is expected to reach 9.5 billion (±0.4) in 2050 and 11 billion (±1.5) in 2100, according to the 2012 UN projections (Gerland et al. in Science 346:234-237, 2014). The trend after 2100 is still one of the global demographic growths, but after 2060, Africa is the only continent where the population would still increase. The amount of water consumed annually to produce the food necessary to meet the needs of the populations varies greatly between countries, from about 600 to 2500 m3/year per capita (Zimmer in L'empreinte eau. Les faces cachées d'une ressource vitale. Charles Léopold Meyer, Paris, 2013), depending on their wealth, their food habits, and the percentage of food waste they generate (on average, 30 % of the food produced is wasted). In 2000, the total food production was on the order of 3300 million tons (in cereal equivalents). In 2014, it is estimated that about 0.8 billion inhabitants of the planet suffer from hunger (FAO in World agriculture: towards 2030-2050. FAO, Rome, 2014. http://www.fao.org/docrep/004/Y3557E/y3557e00.HTM) and do not get the nutrition they need to be in good health or, in the case of children, to grow properly (both physically and intellectually). This food deficit was on the order of 40 million tons of cereal equivalents in 2014. The number of inhabitants with a food deficit was about 0.85 billion before the 2008 crisis and was decreasing annually, but it increased abruptly after 2008 up to 1 billion inhabitants and is slowly decreasing now. Assuming a World average water consumption for food of 1300 m3/year per capita in 2000, 1400 m3/year in 2050, and 1500 m3/year in 2100, a volume of water of around 8200 km3/year was needed in 2000, 13,000 km3/year will be needed in 2050, and 16,500 km3/year in 2100 (Marsily in L'eau, un trésor en partage. Dunod, Paris, 2009). Can bioenergy be added to food production? Will that much water be available on Earth, and where will it come from? Is climate change going to modify the answers to these questions? Can severe droughts occur? Can there be conflicts related to a food deficit? Some preliminary answers and scenarios for food production will be given in this paper from a hydrologist's viewpoint.
Doctor Shopping Behavior and the Diversion of Prescription Opioids.
Simeone, Ronald
2017-01-01
"Doctor shopping" as a means of prescription opioid diversion is examined. The number and percentage of prescriptions and morphine-equivalent milligrams diverted in this manner are estimated by state and molecule for the period 2008-2012. Eleven billion prescriptions with unique patient, doctor, and pharmacy identifiers were used to construct diversion "events" that involved between 1 and 6 unique doctors and between 1 and 6 unique pharmacies. Diversion thresholds were established based on the probability of each contingency. A geographically widespread decline occurred between 2008 and 2012. The number of prescriptions diverted fell from approximately 4.30 million (1.75% of all prescriptions) in 2008 to approximately 3.37 million (1.27% of all prescriptions) in 2012, and the number of morphine-equivalent milligrams fell from approximately 6.55 metric tons (2.95% of total metric tons) in 2008 to approximately 4.87 metric tons (2.19% of total metric tons) in 2012. Diversion control efforts have likely been effective. But given increases in opioid-related deaths, opioid-related drug treatment admissions, and the more specific resurgence of heroin-related events, it is clear that additional public health measures are required.
2001-08-01
This simulated natural color ASTER image in the German state of North Rhine Westphalia covers an area of 30 by 36 km, and was acquired on August 26, 2000. On the right side of the image are 3 enormous opencast coalmines. The Hambach opencast coal mine has recently been brought to full output capacity through the addition of the No. 293 giant bucket wheel excavator. This is the largest machine in the world; it is twice as long as a soccer field and as tall as a building with 30 floors. To uncover the 2.4 billion tons of brown coal (lignite) found at Hambach, five years were required to remove a 200-m-thick layer of waste sand and to redeposit it off site. The mine currently yields 30 million tons of lignite annually, with annual capacity scheduled to increase to 40 million tons in coming years. The image is centered at 51 degrees north latitude, 6.4 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA02676
Gas-to-gasoline plant half complete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, B.
New Zealand has reached the midpoint in construction of the world's first commercial natural gas-to-gasoline (GTG) plant. Plans call for mid-1985 mechanical completion of the $1.475 billion GTG project in Motunui; limited production would begin by year-end 1985 with the plant fully on-stream by 1986, yielding about 628,000 tons (570,000 metric tons)/yr or about 14,450 bbl/stream-day of high-octane, low-sulfur gasoline. The process configuration combines for the first time on a commercial scale the ICI low-pressure gas-to-methanol scheme with Mobil's fixed bed zeolite catalyst process for converting methanol to gasoline. The GTG plant will be the world's biggest methanol plant andmore » New Zealand's largest grassroots industrial facility.« less
Aboveground tree biomass on productive forest land in Alaska.
John Yarie; Delbert Mead
1982-01-01
Total aboveground woody biomass of trees on forest land that can produce 1.4 cubic m eters per hectare per year of industrial wood in Alaska is 1.33 billion metric tons green weight. The estimated energy value of the standing woody biomass is 11.9 x 10'5 Btu's. Statewide tables of biomass and energy values for softwoods, hardwoods, and species groups are...
Lenssen, N
1993-01-01
China is emerging as a serious producer of carbon emissions from its burning of coal. China contributes 11% of global carbon emissions, which is still less than its population share. Economic reforms are likely to boost emissions. 33% of all fuel burned in China produces useful energy compared to 50-60% in the USA and Japan. Low prices encourage wasteful use. The Chinese government responds to energy shortages by investing scarce capital in building more mines, power plants, and oil wells. It is unlikely that investing in expanding conventional energy supplies will be a viable solution, regardless of the availability of capital to invest, because air pollution threatens life. Particulate suspension is 14 times greater in China than in the USA. 14% of the country is affected by acid rain. Global warming may be affecting the northern drought prone areas. The solutions must involve greater efficiency. Industrial consumption of energy is more than 66% of energy produced. Energy use for a typical steel or cement factory is 7-75% greater per ton than Western countries, i.e., 55-60% efficiency versus 80% in Europe. The inefficiency is due to poor maintenance and operating procedures and old or obsolete technology. The savings in building a compact, fluorescent light bulb factory is compared to the cost of building coal-fired power plants and transmission facilities. Conservation of heat in northern buildings could be accomplished with boiler improvements, insulation, and double- glazed windows. A $3 billion/year investment could yield a cut in energy demand by nearly 50%. The carbon emissions would be reduced from 1.4 billion tons to 1 billion tons in 2025. Between 1980 and 1985 the energy efficiency program was able to reduce growth in energy from 7% to 4% without slowing growth in industrial production. Since 1985, the government has directed expenditures toward expanding the energy supply, which reduced efficiency expenditures from 10% to 6% of total investment. Alternatives are natural gas or solar, wind, biomass, and geothermal energy. Alternatives are natural gas or solar, wind, biomass, and geothermal energy. International lending agencies must now shift their support to renewable resource development and efficiency improvement and education; an example from industrialized countries would also be very persuasive.
Ship emissions inventory, social cost and eco-efficiency in Shanghai Yangshan port
NASA Astrophysics Data System (ADS)
Song, Su
2014-01-01
This study estimated both the in-port ship emissions inventory (CO2, CH4, N2O, PM10, PM2.5, NOx, SOx, CO, and HC) and the emission associated social cost in Yangshan port of Shanghai. A sophisticated activity-based methodology, supported by the ship-by-ship and real-time data from the modern automatic identification system (AIS), was introduced to obtain accurate estimates of ship emissions. The detailed spatial and temporal emission inventories can be used as input for air quality dispersion modeling in the port and vicinities. The social cost of the emission impact on the Yangshan port coastal regions was then assessed based on the emissions inventories. The social cost covers the impact on human health, the environment, and the climate of the coastal community. Finally, the ship emissions was combined with port's basic operation profiles, i.e. container throughput, ship calls, and port revenue, in an attempt to assess the port's “eco-efficiency”, which indicates the port performance with social-economic and environmental concerns. This study filled the gap of previous studies by providing the AIS-supported activity-based emission inventory to facilitate the social cost-benefit analysis for the emission abatement policies. The result shows that i) the amount of in-port ship emissions of CO2, CH4, N2O, PM10, PM2.5, NOx, SOx, CO, and HC in Yangshan port area was 578,444 tons, 10 tons, 33 tons, 1078 tons (PM10, inducing PM2.5), 859 tons (PM2.5 only), 10,758 tons, 5623 tons, 1136 tons, and 519 tons, respectively, with ii) a total social cost of 287 million; iii) the values of the three parameters of the port eco-efficiency performance were 36,528 per 1,000 TEU throughput, 43,993 per ship call, and 44 million per billion US$ port revenue (4.4% of port revenue), respectively in 2009.
Easing food waste could reduce pressure on natural resources
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-09-01
Calls to reduce food waste and enhance agricultural water efficiency were among the points raised during the 27 August opening session of World Water Week in Stockholm, Sweden. “More than one fourth of all the water we use worldwide is taken to grow over one billion tons of food that nobody eats. That water, together with the billions of dollars spent to grow, ship, package, and purchase the food, is sent down the drain,” said Torgny Holmgren, executive director of the Stockholm International Water Institute, which organizes World Water Week. “Reducing the waste of food is the smartest and most direct route to relieve pressure on water and land resources. It's an opportunity we cannot afford to overlook,” he added.
Consequences of carbon offset payments for the global forest sector
Joseph Buongiorno; Shushuai. Zhu
2013-01-01
Long-term effects of policies to induce carbon storage in forests were projected with the Global Forest Products Model. Offset pay- ments for carbon sequestered in forest biomass of $15â$50/t CO2 e applied in all countries increased CO2 sequestration in world forests by 5â14 billion tons from 2009 to 2030. Limiting implementation to developed countries exported...
2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy (Executive Summary)
Langholtz, Matthew; Stokes, Bryce; Eaton, Laurence
2016-10-01
We report that consumption of renewable energy in the United States is the highest in history, contributing to energy security, greenhouse gas reductions, and other social, economic, and environmental benefits. The largest single source of renewable energy is biomass, representing 3.9 quadrillion of 9.6 quadrillion British thermal units (Btu) in 2015. Biomass includes agricultural and forestry resources, municipal solid waste (MSW), and algae.
The supply chain of CO2 emissions
Davis, Steven J.; Peters, Glen P.; Caldeira, Ken
2011-01-01
CO2 emissions from the burning of fossil fuels are conventionally attributed to the country where the emissions are produced (i.e., where the fuels are burned). However, these production-based accounts represent a single point in the value chain of fossil fuels, which may have been extracted elsewhere and may be used to provide goods or services to consumers elsewhere. We present a consistent set of carbon inventories that spans the full supply chain of global CO2 emissions, finding that 10.2 billion tons CO2 or 37% of global emissions are from fossil fuels traded internationally and an additional 6.4 billion tons CO2 or 23% of global emissions are embodied in traded goods. Our results reveal vulnerabilities and benefits related to current patterns of energy use that are relevant to climate and energy policy. In particular, if a consistent and unavoidable price were imposed on CO2 emissions somewhere along the supply chain, then all of the parties along the supply chain would seek to impose that price to generate revenue from taxes collected or permits sold. The geographical concentration of carbon-based fuels and relatively small number of parties involved in extracting and refining those fuels suggest that regulation at the wellhead, mine mouth, or refinery might minimize transaction costs as well as opportunities for leakage. PMID:22006314
Technical and Economic Assessment of Span-Distributed Loading Cargo Aircraft Concepts
NASA Technical Reports Server (NTRS)
Johnston, W. M.; Muehlbauer, J. C.; Eudaily, R. R.; Farmer, B. T.; Monrath, J. F.; Thompson, S. G.
1976-01-01
A 700,000 kg (1,540,000-lb) aircraft with a cruise Mach number of 0.75 was found to be optimum for the specified mission parameters of a 272 155-kg (600,000-lb) payload, a 5560-km (3000-n.mi.) range, and an annual productivity of 113 billion revenue-ton km (67 billion revenue-ton n. mi.). The optimum 1990 technology level spanloader aircraft exhibited the minimum 15-year life-cycle costs, direct operating costs, and fuel consumption of all candidate versions. Parametric variations of wing sweep angle, thickness ratio, rows of cargo, and cargo density were investigated. The optimum aircraft had two parallel rows of 2.44 x 2.44-m (8 x 8-ft) containerized cargo with a density of 160 kg/cu m (10 lb/ft 3) carried throughout the entire 101-m (331-ft) span of the constant chord, 22-percent thick, supercritical wing. Additional containers or outsized equipment were carried in the 24.4-m (80-ft) long fuselage compartment preceding the wing. Six 284,000-N (64,000-lb) thrust engines were mounted beneath the 0.7-rad (40-deg) swept wing. Flight control was provided by a 36.6-m (120-ft) span canard surface mounted atop the forward fuselage, by rudders on the wingtip verticals and by outboard wing flaperons.
Crop residues as soil amendments and feedstock for bioethanol production.
Lal, R
2008-01-01
Traditional solid fuels account for more than 90% of the energy supply for 3 billion people in developing countries. However, liquid biofuels (e.g., ethanol) are perceived as an important alternative to fossil fuel. Global crop residue production is estimated at about 4 billion Mg for all crops and 3 billion Mg per annum for lignocellulosic residues of cereals. One Mg of corn stover can produce 280L of ethanol, compared with 400L from 1Mg of corn grains; 1Mg of biomass is also equivalent to 18.5GJ of energy. Thus, 3 billion Mg of residues are equivalent to 840 billion L of ethanol or 56x10(9)GJ of energy. However, removal of crop residues exacerbates soil degradation, increases net emission of CO2, and aggravates food insecurity. Increasing the SOC pool by 1 Mg C ha(-1)yr(-1) through residue retention on soil can increase world food grain production by 24-40 million Mg yr(-1), and root/tuber production by 6-11 million Mg yr(-1). Thus, identifying alternate sources of biofuel feedstock (e.g., biofuel plantations, animal waste, municipal sold waste) is a high priority. Establishing biofuel plantations on agriculturally marginal or degraded lands can off-set 3.5-4 Pg Cyr(-1).
NASA Astrophysics Data System (ADS)
Belyashova, N. N.; Shacilov, V. I.; Mikhailova, N. N.; Komarov, I. I.; Sinyova, Z. I.; Belyashov, A. V.; Malakhova, M. N.
- Two chemical calibration explosions, conducted at the former Semipalatinsk nuclear test site in 1998 with charges of 25 tons and 100 tons TNT, have been used for developing travel-time curves and generalized one-dimensional velocity models of the crust and upper mantle of the platform region of Kazakhstan. The explosions were recorded by a number of digital seismic stations, located in Kazakhstan at distances ranging from 0 to 720km. The travel-time tables developed in this paper cover the phases P, Pn, Pg, S, Sn, Lg in a range of 0-740km and the velocity models apply to the crust down to 44km depth and to the mantle down to 120km. A comparison of the compiled travel-time tables with existing travel-time tables of CSE and IASPEI91 is presented.
Economic evaluation on CO₂-EOR of onshore oil fields in China
Wei, Ning; Li, Xiaochun; Dahowski, Robert T.; ...
2015-06-01
Carbon dioxide enhanced oil recovery (CO₂-EOR) and sequestration in depleted oil reservoirs is a plausible option for utilizing anthropogenic CO₂ to increase oil production while storing CO₂ underground. Evaluation of the storage resources and cost of potential CO₂-EOR projects is an essential step before the commencement of large-scale deployment of such activities. In this paper, a hybrid techno-economic evaluation method, including a performance model and cost model for onshore CO₂-EOR projects, has been developed based on previous studies. Total 296 onshore oil fields, accounting for about 70% of total mature onshore oil fields in China, were evaluated by the techno-economicmore » method. The key findings of this study are summarized as follows: (1) deterministic analysis shows there are approximately 1.1 billion tons (7.7 billion barrels) of incremental crude oil and 2.2 billion tons CO₂ storage resource for onshore CO₂-EOR at net positive revenue within the Chinese oil fields reviewed under the given operating strategy and economic assumptions. (2) Sensitivity study highlights that the cumulative oil production and cumulative CO₂ storage resource are very sensitive to crude oil price, CO₂ cost, project lifetime, discount rate and tax policy. High oil price, short project lifetime, low discount rate, low CO₂ cost, and low tax policy can greatly increase the net income of the oil enterprise, incremental oil recovery and CO₂ storage resource. (3) From this techno-economic evaluation, the major barriers to large-scale deployment of CO₂-EOR include complex geological conditions, low API of crude oil, high tax policy, and lack of incentives for the CO₂-EOR project.« less
Economic evaluation on CO₂-EOR of onshore oil fields in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Ning; Li, Xiaochun; Dahowski, Robert T.
Carbon dioxide enhanced oil recovery (CO₂-EOR) and sequestration in depleted oil reservoirs is a plausible option for utilizing anthropogenic CO₂ to increase oil production while storing CO₂ underground. Evaluation of the storage resources and cost of potential CO₂-EOR projects is an essential step before the commencement of large-scale deployment of such activities. In this paper, a hybrid techno-economic evaluation method, including a performance model and cost model for onshore CO₂-EOR projects, has been developed based on previous studies. Total 296 onshore oil fields, accounting for about 70% of total mature onshore oil fields in China, were evaluated by the techno-economicmore » method. The key findings of this study are summarized as follows: (1) deterministic analysis shows there are approximately 1.1 billion tons (7.7 billion barrels) of incremental crude oil and 2.2 billion tons CO₂ storage resource for onshore CO₂-EOR at net positive revenue within the Chinese oil fields reviewed under the given operating strategy and economic assumptions. (2) Sensitivity study highlights that the cumulative oil production and cumulative CO₂ storage resource are very sensitive to crude oil price, CO₂ cost, project lifetime, discount rate and tax policy. High oil price, short project lifetime, low discount rate, low CO₂ cost, and low tax policy can greatly increase the net income of the oil enterprise, incremental oil recovery and CO₂ storage resource. (3) From this techno-economic evaluation, the major barriers to large-scale deployment of CO₂-EOR include complex geological conditions, low API of crude oil, high tax policy, and lack of incentives for the CO₂-EOR project.« less
Bio- and mineral acid leaching of rare earth elements from synthetic phosphogypsum
NASA Astrophysics Data System (ADS)
Hu, Z.; Antonick, P.; Fujita, Y.; Reed, D. W.; Riman, R.; Eslamimanesh, A.; Das, G.; Anderko, A.; Wu, L.; Shivaramaiah, R.; Navrotsky, A.
2017-12-01
Rare earth elements (REE) are critical to many clean energy technologies. However, the lack of U.S. domestic production and the reliance on imported REE put U.S. energy security at risk. Consequently development of new sources is of strategic interest. Global phosphate deposits contain 27 million tons of REE and 38% of these REE end up in phosphogypsum (PG) waste during phosphate fertilizer production. Recovering REE from PG is a first step toward a trash-to-treasure transformation. We studied the leaching of REE from synthetic PG samples containing Y, Nd, or Eu using a suite of lixiviants including spent medium from the growth of the bacterium Gluconobacter oxydans ("biolixiviant"), gluconic acid, common mineral acids (phosphoric and sulfuric), and water. Synthetic PG was used to facilitate the comparison of the different lixiviants; real PG waste is extremely heterogeneous. Gluconic acid was the predominant identified organic acid in the biolixiviant. The leaching efficiency of the acidic lixiviants at the same pH (2.1) or molar concentration as gluconic acid in the biolixiviant (220 mM) were compared and rationalized by thermodynamic simulation using the mixed-solvent electrolyte model. Initial results indicate that the biolixiviant was more effective at leaching the REE than the mineral acids at pH 2.1. At 220 mM acid concentrations, sulfuric acid was the most effective, followed by the biolixiviant. Interestingly, for a given lixiviant, the leaching behavior of the REE differed. This study provides insight into the definition of an efficient lixiviant for leaching REE from phosphate fertilizer production waste.
[Valuation of forest damage cost from SO2 emission: a case study in Hunan Province].
Hao, Jiming; Li, Ji; Duan, Lei; He, Kebin; Dai, Wennan
2002-11-01
Large amount SO2 emission caused serious damage of forest ecosystem in China and calculation of the damage cost is an important issue for policy-making. However, no applicable method was developed to estimate forest damage under different SO2 emission scenarios. Basing on previous field researches on sulfur-related forest impact in China and recent critical load mapping research, this paper presented a model for forest damage calculation by developing a dose-response function that related the damage to cumulative sulfur critical loads. This model was applied to the forests in Hunan, a province in acid rain control zone in China. Results showed that in the business-as-usual case, SO2 emission in Hunan will increase by 120% from 1995 (8.82 mil. ton) to 2020 (19.56 mil. ton), but damage cost will increase by 4.3 times, reaching 6.19 billion RMB in 2020. Results also showed the measures for SO2 control were cost-effective because the marginal damage cost will be about 6000 RMB per ton SO2 in 2020 in BAU case. At current SO2 emission level, marginal benefit will be about 1500 RMB per ton. Uncertainty analysis demonstrated that this model provides reasonable damage estimates and would therefore be applicable in a broad range of policy settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-06-01
Forest biomass is an abundant biomass feedstock that complements the conventional forest use of wood for paper and wood materials. It may be utilized for bioenergy production, such as heat and electricity, as well as for biofuels and a variety of bioproducts, such as industrial chemicals, textiles, and other renewable materials. The resources within the 2016 Billion-Ton Report include primary forest resources, which are taken directly from timberland-only forests, removed from the land, and taken to the roadside.
A Go-to-Market Strategy: Promoting Private Sector Solutions to the Threat of Proliferation
2013-04-01
indicators reveal that these problems, often subsumed under the seemingly innocuous heading of “transnational threats,” are a growing cancer on the...trade is worth an estimated $322 billion annually with 52,356 metric tons of opium, cannabis , cocaine, and amphetamine-type stimulant (ATS...of medical isotopes to the sites that secure the material. 30 Regulators are also now starting to consider another critical component in the
Consumption of materials in the United States, 1900-1995
Matos, G.; Wagner, L.
1998-01-01
The flows of nonfood and nonfuel materials through the economy have significant impact on our lives and the world around us. Growing populations and economies demand more goods, services, and infrastructure. Since the beginning of the twentieth century, the types of materials consumed in the United States have significantly changed. In 1900, on a per-weight basis, almost half of the materials consumed were from renewable resources, such as wood, fibers, and agricultural products, the rest being derived from nonrenewable resources. By 1995, the consumption of renewable resources had declined dramatically, to only 8% of total consumption. During this century, the quantity of materials consumed has grown, from 161 million metric tons in 1900 to 2.8 billion metric tons by 1995, an equivalent of 10 metric tons per person per year. Of all the materials consumed during this century, more than half were consumed in the last 25 years. This paper examines the general historical shifts in materials consumption and presents an analysis of different measurements of materials use and the significance of their trends.
2001-04-06
This is a macro photograph of an etched surface of the Mundrabilla meteorite, a small piece of the approximately 3.9 billion-year-old meteorite that was first discovered in Western Australia in 1911. Two more giant chunks, together weighing about 17 tons, were found in 1966. Researchers can learn much from this natural crystal growth experiment since it has spent several hundred million years cooling, and would be impossible to emulate in a lab. This single slice, taken from a 6 ton piece recovered in 1966, measures only 2 square inches. The macro photograph shows a metallic iron-nickel alloy phase of kamcite (38% Ni) and taenite (6% Ni) at bottom right, bottom left, and top left. The darker material is an iron sulfide (FeS or troilite) with a parallel precipitates of duabreelite (iron chromium sulfide (FeCr2S4).
Trilateral Bridge Rating Criteria.
1982-04-01
and vehicle impact factor (i.e., V= VDES , G - G S , D- dm , I - imS). We take the Mud load as 0.8 times the design values (i.e., M - 0.8 ?S) and set...Artur D Ittek ln TABLE 4.1 SUMMARY OF VALUES USED IN NORMAL CROSSING Symbol Meaning Value VDES Design code vehicle weight 60 tons 9DES Design code gap...a caution crossing we first parametrically increase in vehicle weight or gap size, by V = (1+pv) VDES (5.1a) G = (1+pg) 9DES (5.1b) where 1 V is the
Low-carbon agriculture in South America to mitigate global climate change and advance food security.
Sá, João Carlos de Moraes; Lal, Rattan; Cerri, Carlos Clemente; Lorenz, Klaus; Hungria, Mariangela; de Faccio Carvalho, Paulo Cesar
2017-01-01
The worldwide historical carbon (C) losses due to Land Use and Land-Use Change between 1870 and 2014 are estimated at 148 Pg C (1 Pg=1billionton). South America is chosen for this study because its soils contain 10.3% (160 Pg C to 1-m depth) of the soil organic carbon stock of the world soils, it is home to 5.7% (0.419 billion people) of the world population, and accounts for 8.6% of the world food (491milliontons) and 21.0% of meat production (355milliontons of cattle and buffalo). The annual C emissions from fossil fuel combustion and cement production in South America represent only 2.5% (0.25 Pg C) of the total global emissions (9.8 Pg C). However, South America contributes 31.3% (0.34 Pg C) of global annual greenhouse gas emissions (1.1 Pg C) through Land Use and Land Use Change. The potential of South America as a terrestrial C sink for mitigating climate change with adoption of Low-Carbon Agriculture (LCA) strategies based on scenario analysis method is 8.24 Pg C between 2016 and 2050. The annual C offset for 2016 to 2020, 2021 to 2035, and 2036 to 2050 is estimated at 0.08, 0.25, and 0.28 Pg C, respectively, equivalent to offsetting 7.5, 22.2 and 25.2% of the global annual greenhouse gas emissions by Land Use and Land Use Change for each period. Emission offset for LCA activities is estimated at 31.0% by restoration of degraded pasturelands, 25.6% by integrated crop-livestock-forestry-systems, 24.3% by no-till cropping systems, 12.8% by planted commercial forest and forestation, 4.2% by biological N fixation and 2.0% by recycling the industrial organic wastes. The ecosystem carbon payback time for historical C losses from South America through LCA strategies may be 56 to 188years, and the adoption of LCA can also increase food and meat production by 615Mton or 17.6Mtonyear -1 and 56Mton or 1.6Mtonyear -1 , respectively, between 2016 and 2050. Copyright © 2016 Elsevier Ltd. All rights reserved.
U. S. food and fiber: abundance or austerity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The US exports 40% of its agricultural products, which makes it interdependent with the world's need for food and fiber. World population growth projections indicate that US production will have to more than double to 920 billion metric tons of grain. Developing countries, where most of the world population growth is occurring, must produce a larger share too, but the US has the productive capacity and economic advantage to dominate the feedgrains and oilseed market. Uncertainties about world output of agricultural goods and the effects of an unequal distribution of natural resources and economic wealth are examined in this report,more » which assesses productive capacities and economic policy needs to the year 2020. The report anticipates that the world could be better able to feed 6.1 billion people in 2000 than the 4.3 billion in 1980 if the proper investments are made in agricultural infrastructure, research, and education, and if the economic policies provide appropriate incentives. Underlying this projection are the assumptions that world peace and global weather patterns will continue. 6 figures, 9 tables.« less
Enabling the Billion-Ton Bioeconomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumes, Harry; Csonka, Steve; Sayre, Richard
2016-08-08
The United States is rich in non-food biomass that can fuel the development of a thriving bioeconomy where renewable and sustainable resources power cars and planes instead of petroleum. The transportation and aviation industry is actively seeking ways to reduce its carbon footprint by powering planes with solid municipal waste, woody biomass, purpose-grown crops, and algae. Watch this short video to learn how biomass is being used to make our country greener, provide new employment opportunities, and reduce our dependence on foreign oil.
2005-04-01
Approximately 20 percent of the corn kernel is not utilized in the production of ethanol and other starch based products, such as sweeteners and high - fructose ...under high yields. The amount of corn and soybeans available for ethanol, biodiesel or other bioproducts was calculated by first subtracting amounts...because of increasing demand for animal feed. This evaluation assumes that corn exports rise by another 10 percent in the high corn yield scenarios
Toward an energy efficient community
NASA Astrophysics Data System (ADS)
Horn, M.
1980-10-01
The current oil policy of the OPEC countries means that a substantial oil shortage may be expected in the future. Conservative estimates indicate an oil shortage of 65 billion tons in the year 2000. The results of numerous new studies show that (from the technological point of view) the savings potential is high enough to achieve an absolute decrease in total energy consumption by the year 2000, provided better use is made of secondary energy sources in the form of electric power, gas, and solar heat.
West Europe Report, Science and Technology
1986-03-26
over the loss of Challenger. Aerospace executives feel, however, that a major delay in the American program will help Europe’s program by securing it...8217cubic meter hold volume, 3 m max diameter, and 9 tons empty weight . Its crew will’number four to six astronauts, their missions will last 3 to 4...discussions between Kohl and Mitterrand, Bonn had placed weight on the fact that the Fed- eral Republic would be spending 2.7 billion marks in 10 years
2015-06-03
not focus on other illicit drugs such as heroin, methamphetamines, synthetics, or marijuana that are primarily trafficked across the U.S./Mexico...disruption of the trafficking of more than 132 metric tons of cocaine valued at over $2.6 billion, seizure of over 32,000 pounds of marijuana , $3.5 million...cocaine and 8,500 pounds of marijuana during 22 law enforcement interdictions as part of Operation Unified Resolve, in partnership with regional law
Properties of concrete containing scrap-tire rubber--an overview.
Siddique, Rafat; Naik, Tarun R
2004-01-01
Solid waste management is one of the major environmental concerns in the United States. Over 5 billion tons of non-hazardous solid waste materials are generated in USA each year. Of these, more than 270 million scrap-tires (approximately 3.6 million tons) are generated each year. In addition to this, about 300 million scrap-tires have been stockpiled. Several studies have been carried out to reuse scrap-tires in a variety of rubber and plastic products, incineration for production of electricity, or as fuel for cement kilns, as well as in asphalt concrete. Studies show that workable rubberized concrete mixtures can be made with scrap-tire rubber. This paper presents an overview of some of the research published regarding the use of scrap-tires in portland cement concrete. The benefits of using magnesium oxychloride cement as a binder for rubberized concrete mixtures are also presented. The paper details the likely uses of rubberized concrete.
The public health benefits of insulation retrofits in existing housing in the United States
Levy, Jonathan I; Nishioka, Yurika; Spengler, John D
2003-01-01
Background Methodological limitations make it difficult to quantify the public health benefits of energy efficiency programs. To address this issue, we developed a risk-based model to estimate the health benefits associated with marginal energy usage reductions and applied the model to a hypothetical case study of insulation retrofits in single-family homes in the United States. Methods We modeled energy savings with a regression model that extrapolated findings from an energy simulation program. Reductions of fine particulate matter (PM2.5) emissions and particle precursors (SO2 and NOx) were quantified using fuel-specific emission factors and marginal electricity analyses. Estimates of population exposure per unit emissions, varying by location and source type, were extrapolated from past dispersion model runs. Concentration-response functions for morbidity and mortality from PM2.5 were derived from the epidemiological literature, and economic values were assigned to health outcomes based on willingness to pay studies. Results In total, the insulation retrofits would save 800 TBTU (8 × 1014 British Thermal Units) per year across 46 million homes, resulting in 3,100 fewer tons of PM2.5, 100,000 fewer tons of NOx, and 190,000 fewer tons of SO2 per year. These emission reductions are associated with outcomes including 240 fewer deaths, 6,500 fewer asthma attacks, and 110,000 fewer restricted activity days per year. At a state level, the health benefits per unit energy savings vary by an order of magnitude, illustrating that multiple factors (including population patterns and energy sources) influence health benefit estimates. The health benefits correspond to $1.3 billion per year in externalities averted, compared with $5.9 billion per year in economic savings. Conclusion In spite of significant uncertainties related to the interpretation of PM2.5 health effects and other dimensions of the model, our analysis demonstrates that a risk-based methodology is viable for national-level energy efficiency programs. PMID:12740041
Assessing ocean alkalinity for carbon sequestration
NASA Astrophysics Data System (ADS)
Renforth, Phil; Henderson, Gideon
2017-09-01
Over the coming century humanity may need to find reservoirs to store several trillions of tons of carbon dioxide (CO2) emitted from fossil fuel combustion, which would otherwise cause dangerous climate change if it were left in the atmosphere. Carbon storage in the ocean as bicarbonate ions (by increasing ocean alkalinity) has received very little attention. Yet recent work suggests sufficient capacity to sequester copious quantities of CO2. It may be possible to sequester hundreds of billions to trillions of tons of C without surpassing postindustrial average carbonate saturation states in the surface ocean. When globally distributed, the impact of elevated alkalinity is potentially small and may help ameliorate the effects of ocean acidification. However, the local impact around addition sites may be more acute but is specific to the mineral and technology. The alkalinity of the ocean increases naturally because of rock weathering in which >1.5 mol of carbon are removed from the atmosphere for every mole of magnesium or calcium dissolved from silicate minerals (e.g., wollastonite, olivine, and anorthite) and 0.5 mol for carbonate minerals (e.g., calcite and dolomite). These processes are responsible for naturally sequestering 0.5 billion tons of CO2 per year. Alkalinity is reduced in the ocean through carbonate mineral precipitation, which is almost exclusively formed from biological activity. Most of the previous work on the biological response to changes in carbonate chemistry have focused on acidifying conditions. More research is required to understand carbonate precipitation at elevated alkalinity to constrain the longevity of carbon storage. A range of technologies have been proposed to increase ocean alkalinity (accelerated weathering of limestone, enhanced weathering, electrochemical promoted weathering, and ocean liming), the cost of which may be comparable to alternative carbon sequestration proposals (e.g., $20-100 tCO2-1). There are still many unanswered technical, environmental, social, and ethical questions, but the scale of the carbon sequestration challenge warrants research to address these.
Treatability Studies of Tributyltin in Activated Sludge
1989-12-01
per liter pg/L Picograms per liter ppb Parts per billion RREL Risk Reduction Engineering Laboratory TBT Tributyltin Chloride TKN Total Kjeldahl number...success of tributyltin ( TBT ) compounds in inhibiting the growth of marine organisms has led to their use as pesticides in marine antifouling paints...CONTROL -4- ANALINE 150 E a. 100 zw 50 50 0 1 2 3 4 5 6 7 8 TIME (DAYS) Fig. 6. Inhibition studies of tributyltin . 17 ANILINE (100 mg/I) + TBT (0.05 mg
Policy statement--children, adolescents, substance abuse, and the media.
Strasburger, Victor C
2010-10-01
The causes of adolescent substance use are multifactorial, but the media can play a key role. Tobacco and alcohol represent the 2 most significant drug threats to adolescents. More than $25 billion per year is spent on advertising for tobacco, alcohol, and prescription drugs, and such advertising has been shown to be effective. Digital media are increasingly being used to advertise drugs. In addition, exposure to PG-13- and R-rated movies at an early age may be a major factor in the onset of adolescent tobacco and alcohol use. The American Academy of Pediatrics recommends a ban on all tobacco advertising in all media, limitations on alcohol advertising, avoiding exposure of young children to substance-related (tobacco, alcohol, prescription drugs, illegal drugs) content on television and in PG-13- and R-rated movies, incorporating the topic of advertising and media into all substance abuse-prevention programs, and implementing media education programs in the classroom.
Current Perspective in the International Trade of Medicinal Plants Material: An Update.
Vasisht, Karan; Sharma, Neetika; Karan, Maninder
2016-01-01
The recent years have seen an increased interest in medicinal plants together with the therapeutic use of phytochemicals. Medicinal plants are utilized by the industry for the production of extracts, phytopharmaceuticals, nutraceuticals and cosmeceuticals and their use is expected to grow faster than the conventional drugs. The enormous demand of medicinal plant material has resulted in huge trade both at domestic and international levels. The trade data of medicinal plant material with commodity code HS 1211 (SITC.4, code 292.4) and their derived/related products which are traded under different commodity codes has been acquired from COMTRADE, Trade Map, country reports, technical documents etc for the period 2001 to 2014. The data was analyzed using statistical tools to draw conclusions. The significant features of the global trade; the leading source, consumer, import and export countries; and the striking trends are presented. The trade of the ten key countries and the selected important items is also discussed in detail. The conservative figure of trade of medicinal plants materials and their derived/related products including extracts, essential oils, phytopharmaceuticals, gums, spices used in medicine, tannins for pharmaceutical use, ingredients for cosmetics etc. as calculated from the global export data for the year 2014 is estimated at USD 33 billion. The average global export in medicinal plants under HS 1211 for the fourteen year period was USD 1.92 billion for 601,357 tons per annum and for the year 2014 it stood at 702,813 tons valued at USD 3.60 billion. For the studied period, an annual average growth rate (AAGR) of 2.4% in volumes and 9.2% in values of export was observed. Nearly 30% of the global trade is made up by top two countries of the import and export. China and India from Asia; Egypt and Morocco from Africa; Poland, Bulgaria and Albania from Europe; Chile and Peru from South America are important supply sources. The USA, Japan and Europe are the major consumers of the world.
Huang, Changchun; Zhang, Mingli; Zou, Jun; Zhu, A-Xing; Chen, Xia; Mi, Yin; Wang, Yanhua; Yang, Hao; Li, Yunmei
2015-12-01
Understanding changes in climate and environment on a regional scale can provide useful guidance for regional socio-economic development. The present study characterizes changes in the environment, climate, land use and cover types via in situ observed, statistical data and remote sensing images for Jiangsu Province, China, during the period 1980-2012. Statistical and spatial analyses indicate that the pace of urbanization in southern Jiangsu is more rapid than that in northern Jiangsu. Urbanization (92.7%) results primarily from the loss of farmland. While emissions of pollutants from industrial sources were well controlled, and wastewater, which more frequently derives from urban domestic sources, was found to be increasing. The rates of wastewater to population increased from 0.17±0.017 to 0.32±0.090 (billion ton/million persons) during the two periods of 1980-2000 and 2000-2012. However, the rates of wastewater to Gross Domestic Product (GDP) decreased from 0.26±0.20 to 0.014±0.009 (billion ton/billion Yuan), respectively. The significant increase in scattering radiance and Earth's albedo caused by the urbanization and its process (Pearson correlation coefficient (r) between urban land and scattering radiance=0.86, p<0.0001; r between farmland and scattering radiance=-0.92, p<0.0001) aggravates the warming in the regional scale. This correlation analysis indicates that temperature will decrease with the increase of woodland, grassland and farmland, and will increase with the increase of urbanized and unexploited lands. Added to warming caused by an increase in CO2, land use/cover change and human activities may be the primary reason for the rising temperatures in Jiangsu Province. The change in regional thermal conditions reduces both local humidity and land atmosphere flux exchange. The low atmosphere flux exhange contributes to the spread of atmospheric pollutants and the deposition of atmospheric particles. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kline, K. L.; Eaton, L. M.; Efroymson, R.; Davis, M. R.; Dunn, J.; Langholtz, M. H.
2016-12-01
The federal government, led by the U.S. Department of Energy (DOE), quantified potential U.S. biomass resources for expanded production of renewable energy and bioproducts in the 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy (BT16) (DOE 2016). Volume 1 of the report provides analysis of projected supplies from 2015 to2040. Volume 2 (forthcoming) evaluates changes in environmental indicators for water quality and quantity, carbon, air quality, and biodiversity associated with production scenarios in BT16 volume 1. This presentation will review land-use allocations under the projected biomass production scenarios and the changes in land management that are implied, including drivers of direct and indirect LUC. National and global concerns such as deforestation and displacement of food production are addressed. The choice of reference scenario, input parameters and constraints (e.g., regarding land classes, availability, and productivity) drive LUC results in any model simulation and are reviewed to put BT16 impacts into context. The principal LUC implied in BT16 supply scenarios involves the transition of 25-to-47 million acres (net) from annual crops in 2015 baseline to perennial cover by 2040 under the base case and 3% yield growth case, respectively. We conclude that clear definitions of land parameters and effects are essential to assess LUC. A lack of consistency in parameters and outcomes of historic LUC analysis in the U.S. underscores the need for science-based approaches.
Myers, Donna N.
2002-01-01
People choose to reside, work, and vacation in coastal areas of the Great Lakes because of the lakes' scenic beauty and their historic and cultural features. Great Lakes nearshore areas also constitute a valuable economic resource. Two million anglers added \\$1 billion to the region's economy in 1996. More than 300 million tons of goods were transported out of major Great Lakes ports at a value of \\$3 billion in 1996. A 1998 survey of Lake Erie beaches estimated contributions of $5 million per year to each local economy with a public beach. More than 70 million people yearly visit national, state and provincial parks in the Great Lakes area. Uncontrolled land development, recreational development, invasive species, climate change, water availability, and water-level changes and fluctuations lead a long list of current and potential issues in coastal and nearshore areas. To be effectively addressed, these complex issues require an interdisciplinary approach.
Fuel Cells: Status and Technical/Economic Needs
NASA Technical Reports Server (NTRS)
Rambach, Glenn
1996-01-01
The need for fuel cell and alternative fuels has become increasingly important in that the U.S. spends 1 billion dollars per week to import oil, and is expected to import 80-100 billion per year in oil by the year 2010. These imports account for half of our oil supply. If 20% of the U.S. vehicle fleet were powered by fuel cells there would be: an offset 1.1 million barrels of oil per day; and a reduction of 2 million tons per year of regulated air pollutants. Fueling fuel cells with hydrogen from reformed natural gas results in more than 90% reduction in regulated emissions, and a 70% reduction in CO2, a greenhouse gas. And fueling fuel cells with hydrogen from renewables (wind, solar geothermal, hydro) results in total elimination of all emissions. When fuel cells become commercialized: they will improve America's economic competitiveness; and the regions where they are produced will benefit economically.
Porphyry copper deposit model: Chapter B in Mineral deposit models for resource assessment
Ayuso, Robert A.; Barton, Mark D.; Blakely, Richard J.; Bodnar, Robert J.; Dilles, John H.; Gray, Floyd; Graybeal, Fred T.; Mars, John L.; McPhee, Darcy K.; Seal, Robert R.; Taylor, Ryan D.; Vikre, Peter G.; John, David A.
2010-01-01
This report contains a revised descriptive model of porphyry copper deposits (PCDs), the world's largest source (about 60 percent) and resource (about 65 percent) of copper and a major source of molybdenum, gold and silver. Despite relatively low grades (average 0.44 percent copper in 2008), PCDs have significant economic and societal impacts due to their large size (commonly hundreds of millions to billions of metric tons), long mine lives (decades), and high production rates (billions of kilograms of copper per year). The revised model describes the geotectonic setting of PCDs, and provides extensive regional- to deposit-scale descriptions and illustrations of geological, geochemical, geophysical, and geoenvironmental characteristics. Current genetic theories are reviewed and evaluated, knowledge gaps are identified, and a variety of exploration and assessment guides are presented. A summary is included for users seeking overviews of specific topics.
Estimates of in-place oil shale of various grades in federal lands, Piceance Basin, Colorado
Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.
2010-01-01
The entire oil shale interval in the Piceance Basin is subdivided into seventeen “rich” and “lean” zones that were assessed separately. These zones are roughly time-stratigraphic units consisting of distinctive, laterally continuous sequences of oil shale beds that can be traced throughout much of the Piceance Basin. Several subtotals of the 1.5 trillion barrels total were calculated: (1) about 920 billion barrels (60 percent) exceed 15 gallons per ton (GPT); (2) about 352 billion barrels (23 percent) exceed 25 GPT; (3) more than one trillion barrels (70 percent) underlie Federally-managed lands; and (4) about 689 billion barrels (75 percent) of the 15 GPT total and about 284 billion barrels (19 percent) of the 25 GPT total are under Federal mineral (subsurface) ownership. These 15 and 25 GPT estimates include only those areas where the weighted average of an entire zone exceeds those minimum cutoffs. In areas where the entire zone does not meet the minimum criteria, some oil shale intervals of significant thicknesses could exist within the zone that exceed these minimum cutoffs. For example, a 30-ft interval within an oil shale zone might exceed 25 GPT but if the entire zone averages less than 25 GPT, these resources are not included in the 15 and 25 GPT subtotals, although they might be exploited in the future.
Birdwell, Justin E.; Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.
2015-01-01
A range of geological parameters relevant to mining oil shale have been examined for the Mahogany zone of the Green River Formation in the Piceance Basin, Colorado, and Uinta Basin, Utah, using information available in the U.S. Geological Survey Oil Shale Assessment database. Basinwide discrete and cumulative distributions of resource in-place as a function of (1) oil shale grade, (2) Mahogany zone thickness, (3) overburden thickness, and (4) stripping ratio (overburden divided by zone thickness) were determined for both basins on a per-acre basis, and a resource map showing the areal distribution of these properties was generated. Estimates of how much of the Mahogany zone resource meets various combinations of these parameters were also determined. Of the 191.7 billion barrels of Mahogany zone oil in-place in the Piceance Basin, 32.3 percent (61.8 billion barrels) is associated with oil shale yielding at least 25 gallons of oil per ton (GPT) of rock processed, is covered by overburden 1,000 feet thick or less, and has a stripping ratio of less than 10. In the Uinta Basin, 14.0 percent (29.9 billion barrels) of the 214.5 billion barrels of Mahogany zone oil in-place meets the same overburden and stripping ratio criteria but only for the lower grade cutoff of 15 GPT.
The ocean blues. Navigating the course of population growth.
Sarkar, D
1996-01-01
Oceans and their role in environmental balance are discussed in this article. Coastal waters within 200 miles from land are identified as providing over half the ocean's total biological productivity and supply of nearly all of the world's fish catch. Almost 3.6 billion people live in coastal areas or within 90 miles of coastal waters, which accounts for about 66% of world population. Coastal land areas account for about 8% of the earth's total land area. 8.3 billion people are expected by 2025 to live in coastal areas. 9 of the 10 largest cities in the world are located on coasts. 7 of the 10 largest cities in the US are coastal cities (54% of the US population or 142 million people). Almost all of the marine pollution is derived from land-based sources, such as sewage, nutrients, sediments, litter, and plastics. Mangroves in coastal waters have been reduced by about 50% to about 90,000 sq. miles worldwide. Global consumption of fish is responsible for depleting fish supplies and the loss of mangroves due to aquaculture of shrimp or other seafood. The US National Fisheries Service is cited for its report that 67 of the 156 fish stocks are overexploited. About 1 billion people, mostly in developing countries, rely on fish as their main food source. If imbalances in demand and supply continue, the rising price of fish and seafood will threaten the lives of about 1 billion or more people. Numerous international and national actions have been taken in order to protect supplies and reduce pollution. Sound resource management practices need to be instituted. Small and large fisheries can begin by reducing the 27 million tons of unintentional fish captures and by converting 29 million tons of fish used for animal feed into food for human consumption. Management of US coastal lands in most coastal states, with the exception of California and Rhode Island, is weak. Maryland has adopted a community-level approach for management of the Chesapeake Bay. Other environmental impacts on oceans are attributed to a weakened ozone layer, which reduces phytoplankton, and to greenhouse effects on sea levels. Phytoplankton is key to supplying oxygen, converting excess carbon dioxide into simple sugars for sustaining life, and supporting aquatic life. Overpopulation has a negative impact on oceans and their life.
Chewing gum--facts and fiction: a review of gum-chewing and oral health.
Imfeld, T
1999-01-01
The world market for chewing gum is estimated to be 560,000 tons per year, representing approximately US $5 billion. Some 374 billion pieces of chewing gum are sold worldwide every year, representing 187 billion hours of gum-chewing if each piece of gum is chewed for 30 minutes. Chewing gum can thus be expected to have an influence on oral health. The labeling of sugar-substituted chewing gum as "safe for teeth" or "tooth-friendly" has been proven beneficial to the informed consumer. Such claims are allowed for products having been shown in vivo not to depress plaque pH below 5.7, neither during nor for 30 minutes after the consumption. However, various chewing gum manufacturers have recently begun to make distinct health promotion claims, suggesting, e.g., reparative action or substitution for mechanical hygiene. The aim of this critical review--covering the effects of the physical properties of chewing gum and those of different ingredients both of conventional and of functional chewing gum--is to provide a set of guidelines for the interpretation of such claims and to assist oral health care professionals in counseling patients.
Enabling the Billion-Ton Bioeconomy
Baumes, Harry; Csonka, Steve; Sayre, Richard; Steen, Eric; Kenney, Kevin; Labbe, Nicole
2018-01-16
The United States is rich in non-food âbiomass that can fuel the development of a thriving âbioeconomy where renewable and sustainable resources power cars and planes instead of petroleum. The âtransportation and aviation industry is actively seeking ways to reduce its carbon footprint by powering planes with solid municipal waste, woody biomass, purpose-grown crops, and âalgae. Watch this short video to learn how biomass is being used to make our country greener, provide new employment opportunities, and reduce our dependence on foreign oil.
China’s Expansion into the Middle East and Its Effects on U.S. Foreign Policy
2007-03-01
and gas assessment report assessed that China has more than 102 billion tons of oil resources, only 26% of onshore oil have been verified which...Reserves Source: Oil and Gas Journal Volume 101.49 December 22, 2003, pp. 43-4732 D. U.S. STANCE REGARDING CHINESE ENERGY SECURITY POLICIES There have...Tu rke y So uth A fric a Ta iw an Gr ee ce Reporting Country B ar re ls (b bl )/D ay 2003 2004 2005 Table 4. Top Ten Iranian Crude Oil Export
Feasibility of lunar Helium-3 mining
NASA Astrophysics Data System (ADS)
Kleinschneider, Andreas; Van Overstraeten, Dmitry; Van der Reijnst, Roy; Van Hoorn, Niels; Lamers, Marvin; Hubert, Laurent; Dijk, Bert; Blangé, Joey; Hogeveen, Joel; De Boer, Lennaert; Noomen, Ron
With fossil fuels running out and global energy demand increasing, the need for alternative energy sources is apparent. Nuclear fusion using Helium-3 may be a solution. Helium-3 is a rare isotope on Earth, but it is abundant on the Moon. Throughout the space community lunar Helium-3 is often cited as a major reason to return to the Moon. Despite the potential of lunar Helium-3 mining, little research has been conducted on a full end-to-end mission. This abstract presents the results of a feasibility study conducted by students from Delft University of Technology. The goal of the study was to assess whether a continuous end-to-end mission to mine Helium-3 on the Moon and return it to Earth is a viable option for the future energy market. The set requirements for the representative end-to-end mission were to provide 10% of the global energy demand in the year 2040. The mission elements have been selected with multiple trade-offs among both conservative and novel concepts. A mission architecture with multiple decoupled elements for each transportation segment (LEO, transfer, lunar surface) was found to be the best option. It was found that the most critical element is the lunar mining operation itself. To supply 10% of the global energy demand in 2040, 200 tons of Helium-3 would be required per year. The resulting regolith mining rate would be 630 tons per second, based on an optimistic concentration of 20 ppb Helium-3 in lunar regolith. Between 1,700 to 2,000 Helium-3 mining vehicles would be required, if using University of Wisconsin’s Mark III miner. The required heating power, if mining both day and night, would add up to 39 GW. The resulting power system mass for the lunar operations would be in the order of 60,000 to 200,000 tons. A fleet of three lunar ascent/descent vehicles and 22 continuous-thrust vehicles for orbit transfer would be required. The costs of the mission elements have been spread out over expected lifetimes. The resulting profits from Helium-3 fusion were calculated using a predicted minimum energy price in 2040 of 30.4 Euro/MWh. Annual costs are between 427.7 to 1,347.9 billion Euro, with annual expected profit ranging from -724.0 to 260.0 billion Euro. Due to the large scale of the mission, it has also been evaluated for providing 0.1% and 1% of the global energy demand in 2040. For 1%, the annual costs are 45.6 to 140.3 billion Euro and the expected annual profits are -78.0 to 23.1 billion Euro. For 0.1%, the annual costs are 7.7 to 20.5 billion Euro. The annual expected profits are -14.3 to -0.8 billion Euro. Feasibility has been addressed in three aspects. Technically, the mission is extremely challenging and complex. However, most required technologies exist or could be developed within a reasonable time span. From a political and legal perspective, the current international treaties hardly provide any framework for a lunar mining operation. Financially, the mission only produces a net profit in the best case, and only for medium- to large-scale operations, which require a very large initial investment. To make lunar Helium-3 usage possible, further research should concentrate on the mining operation and costs of fusion plants, as their impact by far outranks all other mission elements. Different transportation concepts may be investigated nevertheless. Many - not only technical - challenges concerning Helium-3 mining are still to be addressed. Although only a starting point for further investigations, this study shows that, despite popular claims, lunar Helium-3 is unsuitable to provide a significant percentage of the global energy demand in 2040.
Blasing, T. J. [CDIAC, Oak Ridge National Laboratory (ORNL); Marland, Gregg [CDIAC, Oak Ridge National Laboratory (ORNL); Broniak, Christine [Oregon State University, Corvallis, Oregon
2004-07-01
The data from which these carbon-emissions estimates were derived are values of fuel consumed: in billions of cubic feet, for natural gas; in millions of barrels, for petroleum products; and in thousands of short tons, for coal. The resulting emissions estimates are expressed as teragrams of carbon. A teragram is 1012 grams, or 106 metric tons. To convert from carbon to carbon dioxide, multiply by 44/12 (=3.67). Data are available for over 30 different petroleum products, with the exact breakdown varying somewhat from year to year. These products have been treated separately here until the final step of the estimation, at which time CO2 emissions were summed and attributed to liquid petroleum products. These fuel-consumption data are available from the Energy Information Administration of the U.S. Department of Energy. They are published in the Monthly Energy Review, and are available electronically from the Energy Information Administration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, S.; Vyas, A.; Johnson, L.
2011-02-22
This paper presents projections of motor vehicles, oil demand, and carbon dioxide (CO{sub 2}) emissions for India through the year 2040. The populations of highway vehicles and two-wheelers are projected under three different scenarios on the basis of economic growth and average household size in India. The results show that by 2040, the number of highway vehicles in India would be 206-309 million. The oil demand projections for the Indian transportation sector are based on a set of nine scenarios arising out of three vehicle-growth and three fuel-economy scenarios. The combined effects of vehicle-growth and fuel-economy scenarios, together with themore » change in annual vehicle usage, result in a projected demand in 2040 by the transportation sector in India of 404-719 million metric tons (8.5-15.1 million barrels per day). The corresponding annual CO{sub 2} emissions are projected to be 1.2-2.2 billion metric tons.« less
Extraction of Water from Polar Lunar Permafrost with Microwaves - Dielectric Property Measurements
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Kaukler, William
2009-01-01
Remote sensing indicates the presence of hydrogen rich regions associated with the lunar poles. The logical hypothesis is that there is cryogenically trapped water ice located in craters at the lunar poles. Some of the craters have been in permanent darkness for a billion years. The presence of water at the poles as well as other scientific advantages of a polar base, have influenced NASA plans for the lunar outpost. The lunar outpost has water and oxygen requirements on the order of 1 ton per year scaling up to as much as 10 tons per year. Microwave heating of the frozen permafrost has unique advantages for water extraction. Proof of principle experiments have successfully demonstrated that microwaves will couple to the cryogenic soil in a vacuum and the sublimed water vapor can be successfully captured on a cold trap. The dielectric properties of lunar soil will determine the hardware requirements for extraction processes. Microwave frequency dielectric property measurements of lunar soil simulant have been measured.
Extraction of Water from Lunar Permafrost
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Kaukler, William
2009-01-01
Remote sensing indicates the presence of hydrogen rich regions associated with the lunar poles. The logical hypothesis is that there is cryogenically trapped water ice located in craters at the lunar poles. Some of the craters have been in permanent darkness for a billion years. The presence of water at the poles as well as other scientific advantages of a polar base, have influenced NASA plans for the lunar outpost. The lunar outpost has water and oxygen requirements on the order of 1 ton per year scaling up to as much as 5 tons per year. Microwave heating of the frozen permafrost has unique advantages for water extraction. Proof of principle experiments have successfully demonstrated that microwaves will couple to the cryogenic soil in a vacuum and the sublimed water vapor can be successfully captured on a cold trap. Dielectric property measurements of lunar soil simulant have been measured. Microwave absorption and attenuation in lunar soil simulant has been correlated with measured dielectric properties. Future work will be discussed.
Poultry production's environmental impact on water quality.
Pope, C W
1991-05-01
Poultry meat and eggs are rapidly becoming the major source of animal protein in the diets of American consumers. Such expansion has resulted in a similar increase in waste management problems. The national production of broilers and mature chickens was 5.68 billion, 242 million turkeys, 31 million ducks, and 69 trillion table eggs in 1989 based on the USDA National Statistics Survey. Annual production of fecal waste from poultry flocks was 8.8 million tons on a dry weight basis plus more than 106,000 metric tons of broiler hatchery waste. Add to this 37 million dead birds and condemnations at processing plants (figures are also from USDA for 1989 based on USDA National Statistics Survey). When all this waste is added together, the task of keeping the environment clean becomes monumental. The following waste management practices can and must take care of these poultry industry waste products: sanitary land fills, rendering facilities, extrusion machinery, compost plants, lagoons or holding tanks, and land application techniques.
NASA Technical Reports Server (NTRS)
Burks, Geoffrey S.; Bartko, Frank; Shull, J. Michael; Stocke, John T.; Sachs, Elise R.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Harms, Richard J.; Massa, Derck
1994-01-01
The ultraviolet (1150 - 2850 A) spectra of a number of active galactic nuclei (AGNs) observed with the Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) have been used to study the properties of the Galactic halo. The objects that served as probes are 3C 273, PKS 0454-220, Pg 1211+143, CSO 251, Ton 951, and PG 1351+640. The equivalent widths of certain interstellar ions have been measured, with special attention paid to the C IV/C II and Si IV/Si II ratios. These ratios have been intercompared, and the highest values are found in the direction of 3C 273, where C IV/C II = 1.2 and Si IV/Si II greater than 1. These high ratios may be due to a nearby supernova remnant, rather than to ionized gas higher up in the Galactic halo. Our data give some support to the notion that QSO metal-line systems may arise from intervening galaxies which contain high supernova rates, galactic fountains, and turbulent mixing layers.
Cocker, Mark D.; Orris, Greta J.; Dunlap, Pamela; Lipin, Bruce R.; Ludington, Steve; Ryan, Robert J.; Słowakiewicz, Mirosław; Spanski, Gregory T.; Wynn, Jeff; Yang, Chao
2017-08-03
Undiscovered potash resources in the Pripyat Basin, Belarus, and Dnieper-Donets Basin, Ukraine, were assessed as part of a global mineral resource assessment led by the U.S. Geological Survey (USGS). The Pripyat Basin (in Belarus) and the Dnieper-Donets Basin (in Ukraine and southern Belarus) host stratabound and halokinetic Upper Devonian (Frasnian and Famennian) and Permian (Cisuralian) potash-bearing salt. The evaporite basins formed in the Donbass-Pripyat Rift, a Neoproterozoic continental rift structure that was reactivated during the Late Devonian and was flooded by seawater. Though the rift was divided, in part by volcanic deposits, into the separate Pripyat and Dnieper-Donets Basins, both basins contain similar potash‑bearing evaporite sequences. An Early Permian (Cisuralian) sag basin formed over the rift structure and was also inundated by seawater resulting in another sequence of evaporite deposition. Halokinetic activity initiated by basement faulting during the Devonian continued at least into the Permian and influenced potash salt deposition and structural evolution of potash-bearing salt in both basins.Within these basins, four areas (permissive tracts) that permit the presence of undiscovered potash deposits were defined by using geological criteria. Three tracts are permissive for stratabound potash-bearing deposits and include Famennian (Upper Devonian) salt in the Pripyat Basin, and Famennian and Cisuralian (lower Permian) salt in the Dnieper-Donets Basin. In addition, a tract was delineated for halokinetic potash-bearing Famennian salt in the Dnieper-Donets Basin.The Pripyat Basin is the third largest source of potash in the world, producing 6.4 million metric tons of potassium chloride (KCl) (the equivalent of about 4.0 million metric tons of potassium oxide or K2O) in 2012. Potash production began in 1963 in the Starobin #1 mine, near the town of Starobin, Belarus, in the northwestern corner of the basin. Potash is currently produced from six potash mines in the Starobin area. Published reserves in the Pripyat Basin area are about 7.3 billion metric tons of potash ore (about 1.3 billion metric tons of K2O) mostly from potash-bearing salt horizons in the Starobin and Petrikov mine areas. The 15,160-square-kilometer area of the Pripyat Basin underlain by Famennian potash-bearing salt contains as many as 60 known potash-bearing salt horizons. Rough estimates of the total mineral endowment associated with stratabound Famennian salt horizons in the Pripyat Basin range from 80 to 200 billion metric tons of potash-bearing salt that could contain 15 to 30 billion metric tons of K2O.Parameters (including the number of economic potash horizons, grades, and depths) for these estimates are not published so the estimates are not easily confirmed. Historically, reserves have been estimated above a depth of 1,200 meters (m) (approximately the depths of conventional underground mining). Additional undiscovered K2O resources could be significantly greater in the remainder of the Fammenian salt depending on the extents and grades of the 60 identified potash horizons above the USGS assessment depth of 3,000 m in the remainder of the tract. Increasing ambient temperatures with increasing depths in the eastern parts of the Pripyat Basin may require a solution mining process which is aided by higher temperatures.No resource or reserve data have been published and little is known about stratabound Famennian and Frasnian salt in the Dnieper-Donets Basin. These Upper Devonian salt units dip to the southeast and extend to depths of 15–19 kilometers (km) or greater. The tract of stratabound Famennian salt that lies above a depth of 3 km, the depth above which potash is technically recoverable by solution mining, underlies an area of about 15,600 square kilometers (km2). If Upper Devonian salt units in the Dnieper-Donets Basin contain potash-bearing strata similar to salt of the same age in the Pripyat Basin, then the stratabound Famennian tract in the Dnieper-Donets Basin could contain significant undiscovered potash resources.The Cisuralian evaporite sequence in the Dnieper-Donets Basin consists of 10 evaporite cycles with the upper 3 cycles containing potash-bearing salt (mainly as sylvite and carnallite) in several subbasins and polyhalite in the sulfate bearing parts of the identified tract. The area of the Cisuralian tract is 62,700 km2. Potash-bearing cycles are as much as 40 m thick. One subbasin is reported to contain 794 million metric tons of “raw or crude” potash-bearing salt which could contain 50 to 150 million metric tons of K2O, depending on the grade. Undiscovered potash resources in the remainder of this permissive tract may be significantly greater. Depths to the Permian salt range from less than 100 to about 1,500 m.Undiscovered resources of halokinetic potash-bearing salt in the Dnieper-Donets Basin were assessed quantitatively for this study by using the standard USGS three-part form of mineral resource assessment (Singer, 2007a; Singer and Menzie, 2010). Delineation of the permissive tract was based on distributions of mapped halokinetic salt structures. This tract contains at least 248 diapiric salt structures with a total area of 7,840 km2 that occupies approximately 8 percent of the basin area. The vertical extent of these salt structures is hundreds of meters to several kilometers. This assessment estimated that a total mean of 11 undiscovered deposits contain an arithmetic mean estimate of about 840 million metric tons of K2O in the halokinetic salt structures of the Dnieper-Donets Basin for which the probabilistic estimate was made.
Wang, Shijin; Li, Cunfang; Yang, Lizhu
2018-06-26
The decoupling effect between economic growth and energy structure was quantitatively analyzed from 1999 to 2014 across China. The results showed it existed weak decoupling effects in most regions. Based on the analysis of the influence of energy structure on carbon intensity, using scenario simulation methods and Markov chain modeling, the carbon intensity was predicted for China in 2020. The impact of energy structure adjustment on the carbon intensity to meet China's carbon target by 18 possible scenarios are calculated. Furthermore, the peak value of carbon emissions was also calculated in 2030. The results showed that the carbon intensity predicted for China in 2020 can be achieved regardless of whether the energy structure was adjusted or not when energy saving and carbon reduction policies maintained with economic growth at 6-7%. Moreover, given fixed energy structure growth, for each 1% of economic growth, the carbon intensity will decrease by about 3.5%. Given fixed economic growth, the decrease of energy intensity will be greater if the control of energy consumption is stronger. The effect of energy structure adjustment on the decreasing of carbon intensity will be 4% higher under constraints than without constraints. On average, the contribution of energy structure adjustment to achieving the carbon intensity target was calculated as 4% higher than that with constraints. In addition, given relatively fixed economic growth at 6-7%, the peak value of carbon emission in 2030 was calculated as 13.209 billion tons with constraints and 14.38 billion tons without constraints.
Zhu, Jing; Liu, Jian-Guo; Hu, Jian-Xin; Yi, Shan
2016-05-01
Socio-economic analysis (SEA) plays an important role in decision-making on risk management actions for certain chemicals under Multilateral Environmental Agreements (MEAs) in developing countries. This paper showed the first holistic and quantitative SEA case study on that by developing a country-specific SEA framwork and methodologies and applying the case of HBCD phase-out in China under the Stockholm Convention on Persistent Organic Pollutants (POPs). The study indicates that, under the possible scenarios of 10 years and 5 years , the economic costs of HBCD phase-out in China would be between 9.032 and 19.021 billion RMB. Although the total economic costs seems to be significant, it would only have a marginal impact on the house building industry with a likely cost increase by about 0.07‰-0.14‰. Meanwhile, the HBCD phase-out may render significant environmental and health benefits, including about 23-29 tons of HBCD release prevented to the environment, 1.142-1.469 million tons of potentially HBCD contained hazardous wastes avoided, along with significant reduction from 58% up to almost 100% in local environmental concentrations of HBCD, and about 0.0996-0.128 million workers at risk avoided and at least 3.067-4.033 billion RMB of the health care savings. While the scenario of phasing out HBCD over 10 years would be less costly than the scenario of that over 5 years, the later scenario suggested much greater environmental and health benefits for China. Copyright © 2015 Elsevier Ltd. All rights reserved.
Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.
Ancora, Maria Pia; Zhang, Lei; Wang, Shuxiao; Schreifels, Jeremy; Hao, Jiming
2015-07-01
Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments. Copyright © 2015. Published by Elsevier B.V.
Freight Wing Trailer Aerodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Sean; Bigatel, Patrick
2004-10-17
Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck,more » require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.« less
Huang, Runze; Riddle, Matthew; Graziano, Diane; ...
2015-05-08
Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Runze; Riddle, Matthew; Graziano, Diane
Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less
NASA Astrophysics Data System (ADS)
Hansen, Norm
2004-05-01
The Antimatter Economy will bring every country into the 21st century without destroying our environment and turn the Star Trek dream into reality by using antimatter from comets. At the April 2002 joint meeting of the American Physical Society and American Astronomical Society, I announced that comets were composed of antimatter, there were 109 antimatter elements, and the Periodic Table of Elements had been updated to include the antimatter elements. When matter and antimatter come together, energy is produce according to Einstein's equation of mass times the speed of light squared or E = mc2. Antimatter energy creates incredible opportunities for humanity. People in spacecraft will travel to the moon in hours, planets in days, and stars in weeks. Antimatter power will replace fossil plants and produce hydrogen from off-peak electrical power. Hydrogen will supplant gas in cars, trucks, and other vehicles. The billions of ton of coal, billions of barrels of oil, and trillions of cubic feet of natural gas will be used to make trillions of dollars of products to bring countries into the 21st century. Within this millennium, the Worlds Gross National Product will increase from 30 trillion to 3,000 trillion plus 1,500 trillion from space commercialization bringing the Total Gross National Product to 4,500 trillion. Millions of businesses and billions of jobs will be created. However, the real benefits will come from taking billions of people out of poverty and empowering them to pursue their dreams of life, liberty and pursuit of happiness. Please visit www.AntimatterEnergy.com.
Human Population Influence on the Planet
NASA Astrophysics Data System (ADS)
Pimentel, D.
2004-12-01
The continued expansion of the human population, now at 6.3 billion projected to reach 12 billion by 2050, is using, destroying, and polluting the very Earth's resources that support human life. Currently the World Health Organization reports that more than 3 billion people are malnourished - largest number ever. Contributing to the malnourishment problem is soil erosion that results in the loss of about 75 billion tons of soil from agriculture each year. More than 99% of all food for the world comes from the land - less than 1% from the oceans and other aquatic ecosystems. Yet agricultural cropland is being abandoned because of soil erosion and salinization and the rapid spread of human settlements. Water is essential for all life and agriculture is the major consumer accounting for more than 70% of freshwater used. Already water shortages are critical in the U.S. and worldwide. Thus far, abundant fossil fuels are supporting the expansion of agricultural productivity as well as industry and transport growth. Yet credible evidence suggests that the supplies of oil and natural gas especially are rapidly diminishing. The development of renewable energy is behind schedule and when developed will only supply only about half of current energy used. If we do not work towards a relative balance between human numbers and essential natural resources, humans will suffer. Human health, productivity and well being, now and for future generations, require the continued availability of our basic resources - soil, water, foods, and energy.
Reappraisal of hydrocarbon biomarkers in Archean rocks
French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.
2015-01-01
Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The US loses about five billion tons of soil a year from erosion, and scientists estimate that from 20 to 50% of world cropland suffers from excessive erosion. The effect of erosion is a loss in both land and water productivity. When combined with the problems of overpopulation, overgrazing, and deforestation, the environmental impacts are very serious. There are some signs that countries are beginning to adopt conservation tilling techniques, but even cooperative government programs in the US such as the 1983 Payment-in-Kind (PIK) program have had only partial success because of expanded production on marginal farmlands. 20 reference 5more » figures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaidle, Joshua A; Talmadge, Michael S; Biddy, Mary J
The United States has the potential to sustainably produce over 1 billion dry tons of nonfood biomass per year by 2030. While conversion of this biomass into fuels has garnished significant attention, these renewable feedstocks can also be converted into valuable chemicals. Analogous to petroleum refining, the coproduction of fuels and chemicals from biomass enables more complete utilization of the feedstock and supports the growth of a bio-economy by improving biorefinery economics. This chapter provides an overview of biomass thermolysis and gasification technologies, highlights existing and future chemical production opportunities, and elaborates on specific challenges associated with product separation andmore » purification.« less
ERIC Educational Resources Information Center
Baird, Stephen L.
2004-01-01
The technological literacy standards were developed to act as a beacon for educators to guide them in their quest to develop a population of technically literate citizens who possess the skills, abilities, and knowledge necessary to actively and constructively participate in the democratic, technologically dependent society of the United States.…
Bituminous coal production in the Appalachian Basin; past, present, and future
Milici, R.C.
1999-01-01
This report on Appalachian basin coal production consists of four maps and associated graphs and tables, with links to the basic data that were used to construct the maps. Plate 1 shows the time (year) of maximum coal production, by county. For illustration purposes, the years of maximum production are grouped into decadal units. Plate 2 shows the amount of coal produced (tons) during the year of maximum coal production for each county. Plate 3 illustrates the cumulative coal production (tons) for each county since about the beginning of the 20th century. Plate 4 shows 1996 annual production by county. During the current (third) cycle of coal production in the Appalachian basin, only seven major coal-producing counties (those with more than 500 million tons cumulative production), including Greene County, Pa.; Boone, Kanawha, Logan, Mingo, and Monongalia Counties, W.Va.; and Pike County, Ky., exhibit a general increase in coal production. Other major coal-producing counties have either declined to a small percentage of their maximum production or are annually maintaining a moderate level of production. In general, the areas with current high coal production have large blocks of coal that are suitable for mining underground with highly efficient longwall methods, or are occupied by very large scale, relatively low cost surface mining operations. The estimated cumulative production for combined bituminous and anthracite coal is about 100 billion tons or less for the Appalachian basin. In general, it is anticipated that the remaining resources will be progressively of lower quality, will cost more to mine, and will become economical only as new technologies for extraction, beneficiation, and consumption are developed, and then only if prices for coal increase.
Life cycle assessment on food waste and its application in China
NASA Astrophysics Data System (ADS)
Gao, Si; Bao, Jingling; Liu, Xiaojie; Stenmarck, Asa
2018-01-01
Food waste causes tremendous problems in terms of environment and economy, twined with big social influence, thus studies on food waste are essential and meanwhile very complicated According to Food and Agriculture Organization of the United Nations (FAO), 1.3 billion ton/year of food are wasted globally, which has a total carbon footprint of 4.4 GtCO2 eq per year with a cost of USD 411 billion. According to statistics, China has roughly 195 million tons food waste per year, which is huge. Life Cycle Assessment (LCA), which is an internationally standardized method by ISO for assessment of product and process, has been applied in food sectors to evaluate the different environmental influence, energy use etc. This paper analyzed some of the LCA application on the different parts of the food supply chain (production, post-harvest handling, the storage and transportation, processing, the retail, and consumption) where food waste is generated and on the food waste disposal stage, looked into what has been studied in the context of China, and gave recommendations for LCA application for Chinese food waste problems: 1) More application of LCA on food waste should be made on the early stage of the food cycle rather than just the kitchen waste; 2) Besides global warming potentials, other environmental influences should be studied more at the same time; 3) Food waste treatment can be studied using LCA broadly considering mixture with other substrates and using different recycling methods; 4) LCA based on a local context with local data/inventory are strongly needed; 5) further more detailed studies to support an elevated food waste management, such as food waste profile can be developed.
Van Demark, Robert E; Smith, Vanessa J S; Fiegen, Anthony
2018-02-01
Health care in the United States is both expensive and wasteful. The cost of health care in the United States continues to increase every year. Health care spending for 2016 is estimated at $3.35 trillion. Per capita spending ($10,345 per person) is more than twice the average of other developed countries. The United States also leads the world in solid waste production (624,700 metric tons of waste in 2011). The health care industry is second only to the food industry in annual waste production. Each year, health care facilities in the United States produce 4 billion pounds of waste (660 tons per day), with as much as 70%, or around 2.8 billion pounds, produced directly by operating rooms. Waste disposal also accounts for up to 20% of a hospital's annual environmental services budget. Since 1992, waste production by hospitals has increased annually by a rate of at least 15%, due in part to the increased usage of disposables. Reduction in operating room waste would decrease both health care costs and potential environmental hazards. In 2015, the American Association for Hand Surgery along with the American Society for Surgery of the Hand, American Society for Peripheral Nerve Surgery, and the American Society of Reconstructive Microsurgery began the "Lean and Green" surgery project to reduce the amount of waste generated by hand surgery. We recently began our own "Lean and Green" project in our institution. Using "minor field sterility" surgical principles and Wide Awake Local Anesthesia No Tourniquet (WALANT), both surgical costs and surgical waste were decreased while maintaining patient safety and satisfaction. As the current reimbursement model changes from quantity to quality, "Lean and Green" surgery will play a role in the future health care system. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Alaska coal geology, resources, and coalbed methane potential
Flores, Romeo M.; Stricker, Gary D.; Kinney, Scott A.
2004-01-01
Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines in these two provinces. Alaskan coal resources have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. The identified resources are near existing and planned infrastructure to promote development, transportation, and marketing of this low-sulfur coal. The relatively short distances to countries in the west Pacific Rim make them more exportable to these countries than to the lower 48 States of the United States. Another untapped but potential resource of large magnitude is coalbed methane, which has been estimated to total 1,000 trillion cubic feet (28 trillion cubic meters) by T.N. Smith 1995, Coalbed methane potential for Alaska and drilling results for the upper Cook Inlet Basin: Intergas, May 15 - 19, 1995, Tuscaloosa, University of Alabama, p. 1 - 21.
Stabilization Wedges and the Management of Global Carbon for the next 50 years
Socolow, Robert
2018-05-24
More than 40 years after receiving a Ph.D. in physics, I am still working on problems where conservation laws matter. In particular, for the problems I work on now, the conservation of the carbon atom matters. I will tell the saga of an annual flow of 8 billion tons of carbon associated with the global extraction of fossil fuels from underground. Until recently, it was taken for granted that virtually all of this carbon will move within weeks through engines of various kinds and then into the atmosphere. For compelling environmental reasons, I and many others are challenging this complacent view, asking whether the carbon might wisely be directed elsewhere. To frame this and similar discussions, Steve Pacala and I introduced the 'stabilization wedge' in 2004 as a useful unit for discussing climate stabilization. Updating the definition, a wedge is the reduction of CO2 emissions by one billion tons of carbon per year in 2057, achieved by any strategy generated as a result of deliberate attention to global carbon. Each strategy uses already commercialized technology, generally at much larger scale than today. Implementing seven wedges should enable the world to achieve the interim goal of emitting no more CO2 globally in 2057 than today. This would place humanity, approximately, on a path to stabilizing CO2 at less than double the pre-industrial concentration, and it would put those at the helm in the following 50 years in a position to drive CO2 emissions to a net of zero in the following 50 years. Arguably, the tasks of the two half-centuries are comparably difficult.
The potential radiological impact from a Brazilian phosphate facility.
Glória dos Reis, Rócio; da Costa Lauria, Dejanira
2014-10-01
In the semiarid region of Brazil, a facility for the production of phosphoric acid for fertilizer is in the last stages of the planning phase. The raw feedstock of Santa Quiteria has a very high level of uranium associated with the phosphate in form of apatite. The reaction by which phosphoric acid is produced generates phosphogypsum (PG) as a by-product. The ratio of phosphogypsum to phosphoric acid is approximately 5 to 1. After all of the phosphate has been extracted and processed, it is expected that some 37 million tons of phosphogypsum will be produced, containing 13 Bq/g of (226)Ra and 11 Bq/g of (210)Pb. To assess the potential impact of this PG stack on the surrounding inhabitants, a generic impact assessment was performed using a modeling approach. We estimated the amount and shape of the residue stack and used computational codes for assessing the radiological impact in a prospective risk assessment. A hypothetical farmer scenario was used to calculate two potential doses, one near the site boundary and another directly over the stack piles after the project is shut down. Using a conservative approach, the potential public dose was estimated to be 2.8 mSv/y. This study identified the rainfall erosion index, dissolution rate of PG, radionuclide distribution coefficients and fish consumption rate as parameters where improved information could enhance the quality of the dose assessment. The disposal and shape of the stack is of major concern, since the PG erosion might be the main pathway for the environmental contamination; therefore, studies should be carried out to determine a suitable shape and disposal of the stack. Furthermore, containment barriers should be evaluated for their potential to reduce or avoid environmental contamination by runoff. In addition, the onsite public dose underscores the importance of a planning for remediation of the area after the plant is shut down to assure that neither the public nor the environmental health will be affected by the presence of the PG stack. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bufoni, André Luiz; Oliveira, Luciano Basto; Rosa, Luiz Pinguelli
2015-09-01
This study illustrates the financial analyses for demonstration and assessment of additionality presented in the project design (PDD) and enclosed documents of the 431 large Clean Development Mechanisms (CDM) classified as the 'waste handling and disposal sector' (13) over the past ten years (2004-2014). The expected certified emissions reductions (CER) of these projects total 63.54 million metric tons of CO2eq, where eight countries account for 311 projects and 43.36 million metric tons. All of the projects declare themselves 'not financially attractive' without CER with an estimated sum of negative results of approximately a half billion US$. The results indicate that WM benchmarks and indicators are converging and reducing in variance, and the sensitivity analysis reveals that revenues have a greater effect on the financial results. This work concludes that an extensive financial database with simple standards for disclosure would greatly diminish statement problems and make information more comparable, reducing the risk and capital costs of WM projects. Copyright © 2015 Elsevier Ltd. All rights reserved.
2017-12-08
This LASCO C2 image, taken 8 January 2002, shows a widely spreading coronal mass ejection (CME) as it blasts more than a billion tons of matter out into space at millions of kilometers per hour. The C2 image was turned 90 degrees so that the blast seems to be pointing down. An EIT 304 Angstrom image from a different day was enlarged and superimposed on the C2 image so that it filled the occulting disk for effect. Credit: NASA/GSFC/SOHO/ESA To learn more go to the SOHO website: sohowww.nascom.nasa.gov/home.html To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php
Impact of alcohol fuel production on agricultural markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardiner, W.H.
1986-01-01
Production of alcohol from biomass feedstocks, such as corn, was given Federal and State support which resulted in alcohol production rising from 20 million gallons in 1979 to 430 million gallons in 1984. This study estimates the impacts of alcohol production from corn on selected agricultural markets. The tool of analysis was a three region (United States, the European Community and the rest of the world) econometric model of the markets for corn, soybeans, soybean meal, soybean oil, wheat and corn byproduct feeds. Three alternative growth paths for alcohol production (totalling 1.1, 2.0, and 3.0 billion gallons) were analyzed withmore » the model in the context of three different trade environments. The results of this analysis indicate that alcohol production of 1.1 billion gallons by 1980 would have caused moderate adjustments to commodity markets while 3.0 billion gallons would have caused major adjustments. Corn prices rose sharply with increased alcohol production as did wheat prices but to a somewhat lesser extent. The substitution of corn for soybeans on the supply side was not sufficient to offset the demand depressing effects of corn byproduct feeds on soybean meal which translated into slightly lower soybean prices. A quota limiting imports of corn gluten feed into the EC to three million tons annually would cause reductions in export earnings for corn millers.« less
Environmental, health, and safety effects of engineered nanomaterials: challenges and research needs
NASA Astrophysics Data System (ADS)
Fairbrother, Howard
2010-04-01
The number of technologies and consumer products that incorporate engineered nanomaterials (ENMs) has grown rapidly. Indeed, ENMs such as carbon nanotubes and nano-silver, are revolutionizing many commercial technologies and have already been incorporated into more than 800 commercial products, including polymer composites, cell phone batteries, sporting equipment and cosmetics. The global market for ENMs has grown steadily from 7.5 billion in 2003 to 12.7 billion in 2008. Over the next five years, their market value is expected to exceed $27 billion. This surge in demand has been responsible for a corresponding increase in the annual production rates of ENMs. For example, Bayer anticipates that single and multi-walled carbon nanotubes (SWNT and MWNT) production rates will reach 3,000 tons/yr by 2012. Inevitably, some of these synthetic materials will enter the environment either from incidental release during manufacture and transport, or following use and disposal. Consequently, intense scientific research is now being directed towards understanding the environmental, health and safety (EHS) risks posed by ENMs. I will highlight some of the key research challenges and needs in this area, include (i) developing structure-property relationships that will enable physicochemical properties of ENMs to be correlated with environmentally relevant behavior (e.g. colloidal properties, toxicity), (ii) determining the behavior of nanoproducts, and (iii) developing analytical techniques capable of detecting and quantifying the concentration of ENMs in the environment.
Immersion Freezing of Coal Combustion Ash Particles from the Texas Panhandle
NASA Astrophysics Data System (ADS)
Whiteside, C. L.; Tobo, Y.; Mulamba, O.; Brooks, S. D.; Mirrielees, J.; Hiranuma, N.
2017-12-01
Coal combustion aerosol particles contribute to the concentrations of ice-nucleating particles (INPs) in the atmosphere. Especially, immersion freezing can be considered as one of the most important mechanisms for INP formation in supercooled tropospheric clouds that exist at temperatures between 0°C and -38°C. The U.S. contains more than 550 operating coal-burning plants consuming 7.2 x 108 metric tons of coal (in 2016) to generate a total annual electricity of >2 billion MW-h, resulting in the emission of at least 4.9 x 105 metric tons of PM10 (particulate matter smaller than 10 µm in diameter). In Texas alone, 19 combustion plants generate 0.15 billion MW-h electricity and >2.4 x 104 metric tons of PM10. Here we present the immersion freezing behavior of combustion fly ash and bottom ash particles collected in the Texas Panhandle region. Two types of particulate samples, namely <45 µm sieved bottom ash (B_Ash_TX_PH) and <45 µm sieved fly ash (F_Ash_TX_PH), were prepared. Afterwards, their immersion freezing abilities were measured using the Cryogenic Refrigerator Applied to Freezing Test (CRAFT) system covering the heterogeneous freezing temperature down to -30 °C. The results were generated and are reported through two metrics, frozen fraction, ffrozen(T), and ice nucleation active site density per unit mass, nm(T) as a function of temperature. Our preliminary results show that an onset increase in ffrozen(T) for B_Ash_TX_PH (ffrozen) occurred as high as at -15°C, whereas the onset for F_Ash_TX_PH is at -18°C. Secondly, B_Ash_TX_PH exhibited a higher nm(-20 °C) of 105 g-1 than that of F_Ash_TX_PH ( 5 x 103 g-1). On the other hand, previous studies on different combustion ash samples have reported that the opposite trend (i.e., ice nucleation efficiency of fly ash is greater than that of bottom ash; Grawe et al., 2016, ACP; Umo et al., 2015, ACP). We will discuss possible reasons for the observed differences. In addition, the results of complementary physico-chemical analyses via X-ray diffraction technique, Raman microscopy and scanning electron microscopy on both ash types will also be presented to relate the crystallographic and chemical properties to their ice nucleation abilities.
Could organic matter have been preserved on Mars for 3.5 billion years?
Kanavarioti, A; Mancinelli, R L
1990-03-01
3.5 billion years (byr) ago, when it is thought that Mars and Earth had similar climates, biological evolution on Earth had made considerable progress, such that life was abundant. It is therefore surmised that prior to this time period the advent of chemical evolution and subsequent origin of life occurred on Earth and may have occurred on Mars. Analysis for organic compounds in the soil buried beneath the Martian surface may yield useful information regarding the occurrence of chemical evolution and possibly biological evolution. Calculations based on the stability of amino acids lead to the conclusion that remnants of these compounds, if they existed on Mars 3.5 byr ago, might have been preserved buried beneath the surface oxidizing layer. For example, if phenylalanine, an amino acid of average stability, existed on Mars 3.5 byr ago, then 1.6% would remain buried today, or 25 pg-2.5 ng of C g-1 Martian soil may exist from remnants of meteoritic and cometary bombardment, assuming that 1% of the organics survived impact.
Water requirements of the iron and steel industry
Walling, Faulkner B.; Otts, Louis Ethelbert
1967-01-01
Twenty-nine steel plants surveyed during 1957 and 1958 withdrew from various sources about 1,400 billion gallons of water annually and produced 40.8 million tons of ingot steel. This is equivalent to about 34,000 gallons of water per ton of steel. Fifteen iron ore mines and fifteen ore concentration plants together withdrew annually about 89,000 million gallons to produce 15 million tons of iron ore concentrate, or 5,900 gallons per ton of concentrate. About 97 percent of the water used in the steel plants came from surface sources, 2.2 percent was reclaimed sewage, and 1.2 percent was ground water. Steel plants supplied about 96 percent of their own water requirements, although only three plants used self-supplied water exclusively. Water used by the iron ore mines and concentration plants was also predominantly self supplied from surface source. Water use in the iron and steel industry varied widely and depended on the availability of water, age and condition of plants and equipment, kinds of processes, and plant operating procedures. Gross water use in integrated steel plants ranged from 11,200 to 110,000 gallons per ton of steel ingots, and in steel processing plants it ranged from 4,180 to 26,700 gallons per ton. Water reuse also varied widely from 0 to 18 times in integrated steel plants and from 0 to 44 times in steel processing plants. Availability of water seemed to be the principal factor in determining the rate of reuse. Of the units within steel plants, a typical (median) blast furnace required 20,500 gallons of water per ton of pig iron. At the 1956-60 average rate of pig iron consumption, this amounts to about 13,000 gallons per ton of steel ingots or about 40 percent of that required by a typical integrated steel plant 33,200 gallons per ton. Different processes of iron ore concentration are devised specifically for the various kinds of ore. These processes result in a wide range of water use from 124 to 11,300 gallons of water per ton of iron ore concentrate. Water use in concentration plants is related to the physical state of the ore. The data in this report indicate that grain size of the ore is the most important factor; the very fine grained taconite and jasper required the greatest amount of water. Reuse was not widely practiced in the iron ore industry.Consumption of water by integrated steel plants ranged from 0 to 2,010 gallons per ton of ingot steel and by steel processing plants from 120 to 3,420 gallons per ton. Consumption by a typical integrated steel plant was 681 gallons per ton of ingot steel, about 1.8 percent of the intake and about 1 percent of the gross water use. Consumption by a typical steel processing plant was 646 gallons per ton, 18 percent of the intake, and 3.2 percent of the gross water use. The quality of available water was found not to be a critical factor in choosing the location of steel plants, although changes in equipment and in operating procedures are necessary when poor-quality water is used. The use of saline water having a concentration of dissolved solids as much as 10,400 ppm (parts per million) was reported. This very saline water was used for cooling furnaces and for quenching slag. In operations such as rolling steel in which the water comes into contact with the steel being processed, better quality water is used, although water containing as much as 3,410 ppm dissolved solids has been used for this purpose. Treatment of water for use in the iron and steel industry was not widely practiced. Disinfection and treatment for scale and corrosion control were the most frequently used treatment methods.
Multibeam Data and Socio-Economic Issues in West-Central San Francisco Bay, California
Chin, John L.; Carlson, Paul R.; Wong, Florence L.; Cacchione, David A.
1998-01-01
San Francisco Bay is the largest estuary on the conterminous U.S. Pacific Coast and is one of the world's largest natural harbors. It is a biologically productive and diverse environment. San Francisco Bay has a maritime economy that annually generates over $7.5 billion, handles 50 million tons of cargo, and involves thousands of jobs. Recent investigations by the USGS in this estuary help address both socio-economic and scientific issues: *Trimming pinnacles may prevent a calamitous oil spill. *Can San Francisco Bay accept more dredge spoil? *Bay floor biological habitats are quite varied. *How thick and how variable is the sediment fill in central San Francisco Bay?
Yun, Yang; Gao, Rui; Yue, Huifeng; Liu, Xiaofang; Li, Guangke; Sang, Nan
2017-02-15
The total accumulative stockpiles of gangue in China comprise 4.5billion metric tons, and approximately 659million tons of additional gangue are generated per year. Considering the stacking characteristics are highly heterogeneous, the potential cancer risks from the presence of polycyclic aromatic hydrocarbons (PAHs) remain elusive. This study aimed to determine whether PAH-containing soil around coal gangue stacking areas poses a potential cancer risk and contributes to cancer cell metastasis. The results indicate that eighteen PAHs, primarily originated from coal gangue, exhibited distance variations from the coal gangues to the downstream villages, and the abandoned colliery posed increased potential carcinogenic risks for humans as a result of long-term stacking of coal gangue. Furthermore, soil samples stimulated HepG2 cell migration and invasion in a PAH-dependent manner, and the action was involved in PPARγ-mediated epithelial to mesenchymal transition (EMT) modulation. These findings highlight the potential cancer risk of PAH-containing soil samples around coal gangue stacking areas, and identify important biomarkers underlying the risk and targets preventing the outcomes in polluted areas. Copyright © 2016 Elsevier B.V. All rights reserved.
Plans moving to tap Rocky Mountain and Eastern US coal for innovative projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-02-18
Energy Transition Corp. is conducting a study for W.R. Grace and Co. to determine the feasibility of using coal-derived methanol and liquefied carbon dioxide to transport coal in a proposed $500 million coal slurry pipeline from northwestern Colorado to an as-yet unchosen destination. If, as expected, the study shows that the three products can be separated upon delivery, and if suitable synthetic fuels legislation is passed, Grace would decide whether to proceed with the project, which would use technology developed by Koppers Co., Inc., to produce 5000 tons/day of fuel-grade methanol. Permitting and construction would probably take at least fivemore » years. With funding by the US Department of Energy for the initial stages, the Ashland Synthetic Fuels Inc./Airco Energy Co., Inc., Breckenridge Project will plan an H-Coal process plant that will convert 18,000 tons/day of coal to about 50,000 bbl/day of liquid hydrocarbons. The site will be Addison in Breckenridge County, Ky., and the project will probably use high-sulfur Illinois basin coal. The design and construction of the $1.5 billion commercial plant would require about 6.5 yr.« less
In situ carbonation of peridotite for CO2 storage
Kelemen, Peter B.; Matter, Jürg
2008-01-01
The rate of natural carbonation of tectonically exposed mantle peridotite during weathering and low-temperature alteration can be enhanced to develop a significant sink for atmospheric CO2. Natural carbonation of peridotite in the Samail ophiolite, an uplifted slice of oceanic crust and upper mantle in the Sultanate of Oman, is surprisingly rapid. Carbonate veins in mantle peridotite in Oman have an average 14C age of ≈26,000 years, and are not 30–95 million years old as previously believed. These data and reconnaissance mapping show that ≈104 to 105 tons per year of atmospheric CO2 are converted to solid carbonate minerals via peridotite weathering in Oman. Peridotite carbonation can be accelerated via drilling, hydraulic fracture, input of purified CO2 at elevated pressure, and, in particular, increased temperature at depth. After an initial heating step, CO2 pumped at 25 or 30 °C can be heated by exothermic carbonation reactions that sustain high temperature and rapid reaction rates at depth with little expenditure of energy. In situ carbonation of peridotite could consume >1 billion tons of CO2 per year in Oman alone, affording a low-cost, safe, and permanent method to capture and store atmospheric CO2.
Utilities and manufacturers: Pioneering partnerships and their lessons for the 21st century
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartsch, C.; DeVaul, D.
1994-12-31
Manufacturers who, in partnership with utilities, improved their production process through energy efficiency and waste minimization strategies are discussed. Frequently these investments changed the corporate culture and resulted in a commitment to continuous improvement that may ensure the industrialists adapt to a rapidly evolving marketplace. The Northeast-Midwest Institute`s work to record these case studies developed out of the observation that older manufacturing facilities too often are run until no longer competitive, then closed, and new plants are built somewhere else - increasingly overseas. Unemployment, poverty, and cycles of economic and social deterioration too often follow if a new economic basemore » cannot be created. At the same time, inefficient industrial plants tend to emit large quantities of waste materials; industry produces more than 600 million tons of hazardous wastes and approximately 13 billion tons of solid wastes each year. To help identify how to avoid such pitfalls, the Institute sought out manufacturers who modernized successfully. Case studies are presented that show that utilities often are instrumental in catalyzing change in their industrial partners. In fact, much can be gained from utilities and industries working together. Many manufacturers need technical and financial assistance to maintain peak productivity.« less
The use of expanded clay dust in paint manufacturing
NASA Astrophysics Data System (ADS)
Sverguzova, S. V.; Sapronova, Zh A.; Starostina, Yu L.; Belovodskiy, E. A.
2018-01-01
Production increase of useful products is accompanied by the formation and the accumulation of the vast amounts of industrial wastes, the bulk of which is not involved in the recycling processes. An example of such wastes is dust bag filters of ceramsite production. At the large enterprises, the volume of its formation can reach 7-8 tons of dust per day, which is 10-15% of feedstock mass. The studies on the use of ceramsite production dust as filler pigment in the composition of organic mixed primer of red-brown color are carried out in this work. For comparison, red iron oxide pigment (Pg FGM) was used. The results showed that, primer with the use of expanded clay dust is characterized by the short drying time and meets all regulatory requirements.
Malcolm, R.L.; Durum, W.H.
1976-01-01
The organic carbon load during 1969-70 of each of the six rivers in this study is substantial. The 3.4-billion-kilogram (3.7-million-ton) and 47-million-kilogram (52-thousandton) annual organic carbon loads of the Mississippi River and the Brazos River (Tex.), respectively, were approximately equally distributed between dissolved and suspended phases, whereas the 725-million-kilogram (79.8-million-ton) organic load of the Missouri River was primarily in the suspended phase. The major portion of the 6.4-million-kilogram (7.3 thousand-ton) and the 19-million-kilogram (21-thousand-ton) organic carbon loads of the Sopchoppy River (Fla.) and the Neuse River (N.C.), respectively, was in the dissolved phase. DOC (dissolved organic carbon) concentrations in most rivers were usually less than 8 milligrams per litre. SOC (suspended organic carbon) concentrations fluctuated markedly with discharge, ranging between 1 and 14 percent, by weight, in sediment of most rivers. DOC concentrations were found to be independent of discharge, whereas SOC and SIC (suspended inorganic carbon) concentrations were positively correlated with discharge. Seasonal fluctuations in DOC and SOC were exhibited by the Missouri, Neuse, Ohio, and Brazos Rivers, but both SOC and DOC concentrations were relatively constant throughout the year in the Mississippi and Sopchoppy Rivers. The carbon-nitrogen ratio in the sediment phase of all river waters averaged less than 8 1 as compared with 12:1 or greater for most soils. This high nitrogen content shows a nitrogen enrichment of the stream sediment over that in adjacent soils, which suggests that different decomposition and humification processes are operating in streams than in the soils. The abundance of organic material in the dissolved and suspended phase of all river waters in this study indicate a large capacity factor for various types of organic reactivity within all streams and the quantitative importance of organic constituents in relation to the water quality of rivers and streams.
Governance of urban transitions: towards sustainable resource efficient urban infrastructures
NASA Astrophysics Data System (ADS)
Swilling, Mark; Hajer, Maarten
2017-12-01
The transition to sustainable resource efficient cities calls for new governance arrangements. The awareness that the doubling of the global urban population will result in unsustainable levels of demand for natural resources requires changes in the existing socio-technical systems. Domestic material consumption could go up from 40 billion tons in 2010, to 89 billion tons by 2050. While there are a number of socio-technical alternatives that could result in significant improvements in the resource efficiency of urban systems in developed and developing countries (specifically bus-rapid transit, district energy systems and green buildings), we need to rethink the urban governance arrangements to get to this alternative pathway. We note modes of urban governance have changed over the past century as economic and urban development paradigms have shifted at the national and global levels. This time round we identify cities as leading actors in the transition to more sustainable modes of production and consumption as articulated in the Sustainable Development Goals. This has resulted in a surge of urban experimentation across all world regions, both North and South. Building on this empirically observable trend we suggest this can also be seen as a building block of a new urban governance paradigm. An ‘entrepreneurial urban governance’ is proposed that envisages an active and goal-setting role for the state, but in ways that allows broader coalitions of urban ‘agents of change’ to emerge. This entrepreneurial urban governance fosters and promotes experimentation rather than suppressing the myriad of such initiatives across the globe, and connects to global city networks for systemic learning between cities. Experimentation needs to result in a contextually appropriate balance between economic, social, technological and sustainable development. A full and detailed elaboration of the arguments and sources for this article can be found in chapter 6 of Swilling M et al 2017 Resource Requirements of Future Urbanization (Paris: International Resource Panel).
DOE Office of Scientific and Technical Information (OSTI.GOV)
David J. Muth, Jr.; Matthew H. Langholtz; Eric C. D. Tan
The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advancesmore » in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the conversion facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muth, jr., David J.; Langholtz, Matthew H.; Tan, Eric
2014-03-31
The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advancesmore » in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the conversion facility.« less
China's battle to save the environment.
Nash, N
1989-01-01
By the year 2000 a Great Green Wall of forests may be crossing the country from northwest to northeast, a total of 53 million hectares of green protection from encroaching deserts and erosion, stretching through 12 provinces to increase the nation's forest cover, which now stands at a mere 12.7% of China's territory. Soils have been degraded to a critical level only within the past 150 years. At present, about one-sixth of the total land is affected by erosion. In 1988 more than 11 million hectares of farmland, one-tenth of the total sown acreage, suffered from severe drought. Another 7.5 million hectares of crops were flooded, and grain output has been dropping steadily. China is now importing more than 1 billion tons of food staples to feed its population. In all big cities including the capital Beijing, sulphur dioxide and dust levels in the atmosphere surpass the norm set by the State. The most seriously polluted city in China is Benxi, situated in Liaoning Province, which contains some 420 factories. Shanghai has become a preview of what is in store for many Chinese cities unless urgent anti-pollution measures are designed and implemented. Much of the city's municipal and industrial wastes are simply flushed untreated into rivers and shallow coastal waters. Some 34 billion tons of municipal and industrial wastes are flushed into China's rivers and streams every year. A highly lauded forest farm in Sichuan Province credits afforestation with increased precipitation in the dry season, reduced soil erosion, and a halt to the flooding of some 10 rivers in the region. Many of China's 32,000 species of higher plants are endangered; and similarly, many of the nation's 2200 species of birds and animals, like the giant panda, are threatened with extinction. The country's gigantic population remains the key problem as well as the key to its solution.
NASA Astrophysics Data System (ADS)
Welle, Paul D.; Mauter, Meagan S.
2017-09-01
This work introduces a generalizable approach for estimating the field-scale agricultural yield losses due to soil salinization. When integrated with regional data on crop yields and prices, this model provides high-resolution estimates for revenue losses over large agricultural regions. These methods account for the uncertainty inherent in model inputs derived from satellites, experimental field data, and interpreted model results. We apply this method to estimate the effect of soil salinity on agricultural outputs in California, performing the analysis with both high-resolution (i.e. field scale) and low-resolution (i.e. county-scale) data sources to highlight the importance of spatial resolution in agricultural analysis. We estimate that soil salinity reduced agricultural revenues by 3.7 billion (1.7-7.0 billion) in 2014, amounting to 8.0 million tons of lost production relative to soil salinities below the crop-specific thresholds. When using low-resolution data sources, we find that the costs of salinization are underestimated by a factor of three. These results highlight the need for high-resolution data in agro-environmental assessment as well as the challenges associated with their integration.
The Chicxulub impact at the K-Pg boundary - search for traces of the projectile
NASA Astrophysics Data System (ADS)
Deutsch, A.
2012-04-01
One of the most interesting problems in the context of the end-Cretaceous Chicxulub impact is the question after the whererabouts of the main mass of the projectile. The nature of this >10 km-sized Chicxulub projectile was constrained by an anomaly in the chromium isotope 54 in the K-Pg deposit at Stevens Klint, Denmark, to a carbonaceous chondrite of type CM2 [1]. About 1.5 % of the estimated mass of the projectile has been detected world-wide in the K-Pg boundary layer; mainly in the form of platinum group elements (PGE) as well as other siderophile elements (Ni, Co ... ). A contamination by or even a major contribution of other "projectile" elements to the K-Pg event bed was rarely proposed. The few examples in the literature (cf. compilation in [2, 3]) used rare earth elements (REE) distribution patterns that are slightly inconsistent with REE patterns typical for the upper continental crust (UCC). Ejecta consisting of UCC target rocks is expected to form the overwhelming mass of the ejecta. In most K-Pg layers, however, the ejecta is diluted or even totally masked by a component of more local origin and with features of high-energy deposition mechanisms. Numerical models [4] indicate a deposition of >500km3 projectile material, corresponding to >2 x 10exp9 tons of mainly silica, iron, and magnesium in the K-Pg event bed. Detecting the "meteoritic" origin of these major elements, however, in a matrix of siliceous detritus, is practically impossible. Recent LA-ICP-MS analyses show that siliceous impact spherules - hydrated glass or altered to chlorite - in the Chicxulub event bed at various locations (e.g., Shell Creek, La Lajilla, La Popa) have REE patterns that are flat and un-fractionated, corresponding quite well to a typical CI-pattern. The REE abundances are chondritic to sub-chondritic. Mixing calculations indicate that the maximum REE contribution of UCC material to the REE budget of these spherules is on the order of 2 %, but usually much less. These flat REE patterns cannot originate from any known alteration process; they truly reflect a "meteoritic" component in the spherules. Accepting this fact, a certain amount of the siliceous host material (i.e., the spherules) must consist also of projectile material. Depending on the sampling site, the spherules with the flat REE distribution patterns amount to between 10 and ~70 vol% of the Chicxulub event bed. The widespread occurrence of this projectile matter in the K-Pg event bed reconciles observations with impact models [4]. Ref. [1] Trinquier A. et al. (2006) EPSL 241, 780-788. [2] Smit J. (1999) Ann. Rev. Earth Planet. Sci. 27, 75-113. [3] Schulte P. et al. (2010) Science 327, 1214-1218. [4] Artemieva N. and Morgan J. (2009) Icarus 201, 768-780.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.
2017-01-01
Since the 1960s, scientists have conjectured that water icecould survive in the cold, permanently shadowed craters located at the Moons poles Clementine (1994), Lunar Prospector (1998),Chandrayaan-1 (2008), and Lunar Reconnaissance Orbiter (LRO) and Lunar CRater Observation and Sensing Satellite(LCROSS) (2009) lunar probes have provided data indicating the existence of large quantities of water ice at the lunar poles The Mini-SAR onboard Chandrayaan-1discovered more than 40 permanently shadowed craters near the lunar north pole that are thought to contain 600 million metric tons of water ice. Using neutron spectrometer data, the Lunar Prospector science team estimated a water ice content (1.5 +-0.8 wt in the regolith) found in the Moons polar cold trap sand estimated the total amount of water at both poles at 2 billion metric tons Using Mini-RF and spectrometry data, the LRO LCROSS science team estimated the water ice content in the regolith in the south polar region to be 5.6 +-2.9 wt. On the basis of the above scientific data, it appears that the water ice content can vary from 1-10 wt and the total quantity of LPI at both poles can range from 600 million to 2 billion metric tons NTP offers significant benefits for lunar missions and can take advantage of the leverage provided from using LDPs when they become available by transitioning to LANTR propulsion. LANTR provides a variablethrust and Isp capability, shortens burn times and extends engine life, and allows bipropellant operation The combination of LANTR and LDP has performance capability equivalent to that of a hypothetical gaseousfuel core NTR (effective Isp 1575 s) and can lead to a robust LTS with unique mission capabilities that include short transit time crewed cargo transports and routine commuter flights to the Moon The biggest challenge to making this vision a reality will be the production of increasing amounts of LDP andthe development of propellant depots in LEO, LLO and LPO. An industry-operated, privately financed venture, with NASA as its initial customer, might provide a possible blueprint for future development and operation With industry interested in developing cislunar space and commerce, and competitive forces at work, the timeline for developing this capability could well be accelerated, quicker than any of us can imagine, and just the beginning of things to come.
Selective logging in the Brazilian Amazon.
Asner, Gregory P; Knapp, David E; Broadbent, Eben N; Oliveira, Paulo J C; Keller, Michael; Silva, Jose N
2005-10-21
Amazon deforestation has been measured by remote sensing for three decades. In comparison, selective logging has been mostly invisible to satellites. We developed a large-scale, high-resolution, automated remote-sensing analysis of selective logging in the top five timber-producing states of the Brazilian Amazon. Logged areas ranged from 12,075 to 19,823 square kilometers per year (+/-14%) between 1999 and 2002, equivalent to 60 to 123% of previously reported deforestation area. Up to 1200 square kilometers per year of logging were observed on conservation lands. Each year, 27 million to 50 million cubic meters of wood were extracted, and a gross flux of approximately 0.1 billion metric tons of carbon was destined for release to the atmosphere by logging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2008-10-01
The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2008-10-01
The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Wisconsin. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Wisconsin to be $1.1 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,476 million gallons.
Aerobiology and the global transport of desert dust
Kellogg, Christina A.; Griffin, Dale W.
2006-01-01
Desert winds aerosolize several billion tons of soil-derived dust each year, including concentrated seasonal pulses from Africa and Asia. These transoceanic and transcontinental dust events inject a large pulse of microorganisms and pollen into the atmosphere and could therefore have a role in transporting pathogens or expanding the biogeographical range of some organisms by facilitating long-distance dispersal events. As we discuss here, whether such dispersal events are occurring is only now beginning to be investigated. Huge dust events create an atmospheric bridge over land and sea, and the microbiota contained within them could impact downwind ecosystems. Such dispersal is of interest because of the possible health effects of allergens and pathogens that might be carried with the dust.
Small bugs, big business: the economic power of the microbe.
Demain, A L
2000-10-01
The versatility of microbial biosynthesis is enormous. The most industrially important primary metabolites are the amino acids, nucleotides, vitamins, solvents, and organic acids. Millions of tons of amino acids are produced each year with a total multibillion dollar market. Many synthetic vitamin production processes are being replaced by microbial fermentations. In addition to the multiple reaction sequences of fermentations, microorganisms are extremely useful in carrying out biotransformation processes. These are becoming essential to the fine chemical industry in the production of single-isomer intermediates. Microbially produced secondary metabolites are extremely important to our health and nutrition. As a group, they have tremendous economic importance. The antibiotic market amounts to almost 30 billion dollars and includes about 160 antibiotics and derivatives such as the beta-lactam peptide antibiotics, the macrolide polyketide erythromycin, tetracyclines, aminoglycosides and others. Other important pharmaceutical products produced by microrganisms are hypocholesterolemic agents, enzyme inhibitors, immunosuppressants and antitumor compounds, some having markets of over 1 billion dollars per year. Agriculturally important secondary metabolites include coccidiostats, animal growth promotants, antihelmintics and biopesticides. The modern biotechnology industry has made a major impact in the business world, biopharmaceuticals (recombinant protein drugs, vaccines and monoclonal antibodies) having a market of 15 billion dollars. Recombinant DNA technology has also produced a revolution in agriculture and has markedly increased markets for microbial enzymes. Molecular manipulations have been added to mutational techniques as means of increasing titers and yields of microbial procresses and in discovery of new drugs. Today, microbiology is a major participant in global industry. The best is yet to come as microbes move into the environmental and energy sectors.
Wu, Guoyao; Fanzo, Jessica; Miller, Dennis D; Pingali, Prabhu; Post, Mark; Steiner, Jean L; Thalacker-Mercer, Anna E
2014-08-01
The Food and Agriculture Organization of the United Nations estimates that 843 million people worldwide are hungry and a greater number suffer from nutrient deficiencies. Approximately one billion people have inadequate protein intake. The challenge of preventing hunger and malnutrition will become even greater as the global population grows from the current 7.2 billion people to 9.6 billion by 2050. With increases in income, population, and demand for more nutrient-dense foods, global meat production is projected to increase by 206 million tons per year during the next 35 years. These changes in population and dietary practices have led to a tremendous rise in the demand for food protein, especially animal-source protein. Consuming the required amounts of protein is fundamental to human growth and health. Protein needs can be met through intakes of animal and plant-source foods. Increased consumption of food proteins is associated with increased greenhouse gas emissions and overutilization of water. Consequently, concerns exist regarding impacts of agricultural production, processing and distribution of food protein on the environment, ecosystem, and sustainability. To address these challenging issues, the New York Academy of Sciences organized the conference "Frontiers in Agricultural Sustainability: Studying the Protein Supply Chain to Improve Dietary Quality" to explore sustainable innovations in food science and programming aimed at producing the required quality and quantity of protein through improved supply chains worldwide. This report provides an extensive discussion of these issues and summaries of the presentations from the conference. © 2014 New York Academy of Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, Stephen; Williams, Alison; Chan, Peter
This paper presents estimates of the key impacts of Federal energy and water conservation standards adopted from 1987 through 2015. The standards for consumer products and commercial and industrial equipment include those set by legislation as well as standards adopted by DOE through rulemaking. In 2015, the standards saved an estimated 4.49 quads of primary energy, which is equivalent to 5% of total U.S. energy consumption. The savings in operating costs for households and businesses totaled $63.4 billion. The average household saved $320 in operating costs as a result of residential appliance standards. The estimated reduction in CO2 emissions associatedmore » with the standards in 2015 was 238 million metric tons, which is equivalent to 4.3% of total U.S. CO2 emissions. The estimated cumulative energy savings over the period 1990-2090 amount to 216.9 quads. Accounting for the increased upfront costs of more-efficient products and the operating cost (energy and water) savings over the products’ lifetime, the standards have a cumulative net present value (NPV) of consumer benefit of between $1,627 billion and $1,887 billion, using 7 percent and 3 percent discount rates, respectively. The water conservation standards, together with energy conservation standards that also save water, reduced water use by 1.9 trillion gallons in 2015 and estimated cumulative water savings by 2090 amount to 55 trillion gallons. The estimated consumer savings in 2015 from reduced water use amounted to $12 billon.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, Stephen; Williams, Alison; Chan, Peter
This paper presents estimates of the key impacts of Federal energy and water conservation standards adopted from 1987 through 2013. The standards for consumer products and commercial and industrial equipment include those set by legislation as well as standards adopted by DOE through rulemaking. In 2013, the standards saved an estimated 4.05 quads of primary energy, which is equivalent to 4% of total U.S. energy consumption. The savings in operating costs for households and businesses totaledmore » $56 billion. The average household saved $$361 in operating costs as a result of residential and plumbing product standards. The estimated reduction in CO{sub 2} emissions associated with the standards in 2013 was 218 million metric tons, which is equivalent to 4% of total U.S. CO{sub 2} emissions. The estimated cumulative energy savings over the period 1990-2090 amount to 181 quads. Accounting for the increased upfront costs of more-efficient products and the operating cost (energy and water) savings over the products’ lifetime, the standards have a past and projected cumulative net present value (NPV) of consumer benefit of between $$1,271 billion and $1,487 billion, using 7 percent and 3 percent discount rates, respectively. The water conservation standards, together with energy conservation standards that also save water, reduced water use by 1.9 trillion gallons in 2013, and will achieve cumulative water savings by 2090 of 55 trillion gallons. The estimated consumer savings in 2013 from reduced water use amounted to $16 billon.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, Stephen; Williams, Alison; Chan, Peter
This paper presents estimates of the key impacts of Federal energy and water conservation standards adopted from 1987 through 2012. The standards for consumer products and commercial and industrial equipment include those set by legislation as well as standards adopted by DOE through rulemaking. In 2012, the standards saved an estimated 3.6 quads of primary energy, which is equivalent to 3% of total U.S. energy consumption. The savings in operating costs for households and businesses totaled $51.4 billion. The average household saved $347 in operating costs as a result of residential and plumbing product standards. The estimated reduction in CO2more » emissions associated with the standards in 2012 was 198 million metric tons, which is equivalent to 3% of total U.S. CO2 emissions. The estimated cumulative energy savings over the period 1990-2070 amount to 179 quads. Accounting for the increased upfront costs of more-efficient products and the operating cost (energy and water) savings over the products’ lifetime, the standards have a past and projected cumulative net present value (NPV) of consumer benefit of between $1,104 billion and $1,390 billion, using 7 percent and 3 percent discount rates, respectively. The water conservation standards, together with energy conservation standards that also save water, reduced water use by 1.8 trillion gallons in 2012, and will achieve cumulative water savings by 2040 of 54 trillion gallons. The estimated consumer savings in 2012 from reduced water use amounted to $13 billon.« less
Miao, Weijie; Huang, Xin; Song, Yu
2017-06-01
Air pollution is severe in China, and pollutants such as PM 2.5 and surface O 3 may cause major damage to human health and crops, respectively. Few studies have considered the health effects of PM 2.5 or the loss of crop yields due to surface O 3 using model-simulated air pollution data in China. We used gridded outputs from the WRF-Chem model, high resolution population data, and crop yield data to evaluate the effects on human health and crop yield in mainland China. Our results showed that outdoor PM 2.5 pollution was responsible for 1.70-1.99 million cases of all-cause mortality in 2006. The economic costs of these health effects were estimated to be 151.1-176.9 billion USD, of which 90% were attributed to mortality. The estimated crop yield losses for wheat, rice, maize, and soybean were approximately 9, 4.6, 0.44, and 0.34 million tons, respectively, resulting in economic losses of 3.4 billion USD. The total economic losses due to ambient air pollution were estimated to be 154.5-180.3 billion USD, accounting for approximately 5.7%-6.6% of the total GDP of China in 2006. Our results show that both population health and staple crop yields in China have been significantly affected by exposure to air pollution. Measures should be taken to reduce emissions, improve air quality, and mitigate the economic loss. Copyright © 2016. Published by Elsevier B.V.
The economic prospects of cellulosic biomass for biofuel production
NASA Astrophysics Data System (ADS)
Kumarappan, Subbu
Alternative fuels for transportation have become the focus of intense policy debate and legislative action due to volatile oil prices, an unstable political environment in many major oil producing regions, increasing global demand, dwindling reserves of low-cost oil, and concerns over global warming. A major potential source of alternative fuels is biofuels produced from cellulosic biomass, which have a number of potential benefits. Recognizing these potential advantages, the Energy Independence and Security Act of 2007 has mandated 21 billion gallons of cellulosic/advanced biofuels per year by 2022. The United States needs 220-300 million tons of cellulosic biomass per year from the major sources such as agricultural residues, forestry and mill residues, herbaceous resources, and waste materials (supported by Biomass Crop Assistance Program) to meet these biofuel targets. My research addresses three key major questions concerning cellulosic biomass supply. The first paper analyzes cellulosic biomass availability in the United States and Canada. The estimated supply curves show that, at a price of 100 per ton, about 568 million metric tons of biomass is available in the United States, while 123 million metric tons is available in Canada. In fact, the 300 million tons of biomass required to meet EISA mandates can be supplied at a price of 50 per metric ton or lower. The second paper evaluates the farmers' perspective in growing new energy crops, such as switchgrass and miscanthus, in prime cropland, in pasture areas, or on marginal lands. My analysis evaluates how the farmers' returns from energy crops compare with those from other field crops and other agricultural land uses. The results suggest that perennial energy crops yielding at least 10 tons per acre annually will be competitive with a traditional corn-soybean rotation if crude oil prices are high (ranging from 88-178 per barrel over 2010-2019). If crude oil prices are low, then energy crops will not be competitive with existing crops, and additional subsidy support would be required. Among the states in the eastern half of US, the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, and Virginia are found to be economically more suitable to cultivate perennial energy crops. The third paper estimates the optimal feedstock composition of annual and perennial feedstocks from a biorefinery's perspective. The objective function of the optimization model is to minimize the cumulative costs covering harvesting, transport, storage, and GHG costs, of biomass procurement over a biorefinery's productive period of 20 years subject to various constraints on land availability, feedstock availability, processing capacity, contracting needs and storage. The results suggest that the economic tradeoff is between higher production costs for dedicated energy crops and higher collection and transport costs for agricultural residues; the delivered costs of biomass drives the results. These tradeoffs are reflected in optimal spatial planting pattern as preferred by the biorefinery: energy crops are grown in fields closer to the biorefinery and agricultural residues can be sourced from fields farther away from the biorefinery. The optimization model also provides useful insights into the price premiums paid for annual and perennial feedstocks. For the parameters used in the case study, the energy crop price premium ranges from 2 to 8 per ton for fields located within a 10 mile radius. For agricultural residues, the price premiums range from 5 to 16 per ton within a 10-20 mile radius.
The green, blue and grey water footprint of crops and derived crop products
NASA Astrophysics Data System (ADS)
Mekonnen, M. M.; Hoekstra, A. Y.
2011-01-01
This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment is global and improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc min grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the water footprint network. Considering the water footprints of primary crops, we see that global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals} (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1, while this is 121 m3 GJ-1 for maize. The global water footprint related to crop production in the period 1996-2005 was 7404 billion cubic meters per year (78% green, 12% blue, 10% grey). A large total water footprint was calculated for wheat (1087 Gm3 yr-1), rice (992 Gm3 yr-1) and maize (770 Gm3 yr-1). Wheat and rice have the largest blue water footprints, together accounting for 45% of the global blue water footprint. At country level, the total water footprint was largest for India (1047 Gm3 yr-1), China (967 Gm3 yr-1) and the USA (826 Gm3 yr-1). A relatively large total blue water footprint as a result of crop production is observed in the Indus River Basin (117 Gm3 yr-1) and the Ganges River Basin (108 Gm3 yr-1). The two basins together account for 25% of the blue water footprint related to global crop production. Globally, rain-fed agriculture has a water footprint of 5173 Gm3 yr-1 (91% green, 9% grey); irrigated agriculture has a water footprint of 2230 Gm3 yr-1 (48% green, 40% blue, 12% grey).
The green, blue and grey water footprint of crops and derived crop products
NASA Astrophysics Data System (ADS)
Mekonnen, M. M.; Hoekstra, A. Y.
2011-05-01
This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1, while this is 121 m3 GJ-1 for maize. The global water footprint related to crop production in the period 1996-2005 was 7404 billion cubic meters per year (78 % green, 12 % blue, 10 % grey). A large total water footprint was calculated for wheat (1087 Gm3 yr-1), rice (992 Gm3 yr-1) and maize (770 Gm3 yr-1). Wheat and rice have the largest blue water footprints, together accounting for 45 % of the global blue water footprint. At country level, the total water footprint was largest for India (1047 Gm3 yr-1), China (967 Gm3 yr-1) and the USA (826 Gm3 yr-1). A relatively large total blue water footprint as a result of crop production is observed in the Indus river basin (117 Gm3 yr-1) and the Ganges river basin (108 Gm3 yr-1). The two basins together account for 25 % of the blue water footprint related to global crop production. Globally, rain-fed agriculture has a water footprint of 5173 Gm3 yr-1 (91 % green, 9 % grey); irrigated agriculture has a water footprint of 2230 Gm3 yr-1 (48 % green, 40 % blue, 12 % grey).
Purification for the XENONnT dark matter experiment
NASA Astrophysics Data System (ADS)
Brown, Ethan; Xenon Collaboration
2017-01-01
The XENON1T experiment uses 3.5 tons of liquid xenon in a cryogenic detector to search for dark matter. Its upgrade, XENONnT, will similarly house 7.5 tons of liquid xenon. Operation of these large detectors requires continual purification of the xenon in an external purifier, and the need for less than part per billion level oxygen in the xenon, coupled with the large quantity of xenon to be purified, places high demands on the rate of flow through this purification system. Building on the success of the XENON10 and XENON100 experiments, XENON1T circulates gaseous xenon through heated getters at a rate of up to 100 SLPM, pushing commercial pumps to their limits moving this large quantity of gas without interruption for several years. Two upgrades are considered for XENONnT. A custom high-capacity magnetic piston pump based on the one developed for the EXO200 experiment has been scaled up to support the high demands of this much larger experiment. Additionally, a liquid phase circulation and purification system that purifies the cryogenic liquid directly is being developed, which takes advantage of the much smaller volumetric flow demands of liquid relative to gas. The implementation of both upgrades will be presented. Supported by the National Science Foundation.
Potential for reducing air pollution from oil refineries.
Karbassi, A R; Abbasspour, M; Sekhavatjou, M S; Ziviyar, F; Saeedi, M
2008-10-01
Islamic Republic of Iran has to invest 95 billion US$ for her new oil refineries to the year 2045. At present, the emission factors for CO(2), NO( x ) and SO(2) are 3.5, 4.2 and 119 times higher than British refineries, respectively. In order to have a sustainable development in Iranian oil refineries, the government has to set emission factors of European Community as her goal. At present CO(2) per Gross Domestic Production (GDP) in the country is about 2.7 kg CO(2) as 1995's USD value that should be reduced to 1.25 kg CO(2)/GDP in the year 2015. Total capital investment for such reduction is estimated at 346 million USD which is equal to 23 USD/ton of CO(2). It is evident that mitigation of funds set by Clean Development Mechanism (3 to 7 USD/tons of CO(2)) is well below the actual capital investment needs. Present survey shows that energy efficiency promotion potential in all nine Iranian oil refineries is about 165,677 MWh/year through utilization of more efficient pumps and compressors. Better management of boilers in all nine refineries will lead to a saving of 273 million m(3) of natural gas per year.
Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools
NASA Astrophysics Data System (ADS)
Seto, K. C.; Guneralp, B.; Hutyra, L.
2012-12-01
Urban land cover change threatens biodiversity and affects ecosystem productivity through loss of habitat, biomass, and carbon storage. Yet, despite projections that world urban populations will increase to 4.3 billion by 2030, little is known about future locations, magnitudes, and rates of urban expansion. Here we develop the first global probabilistic forecasts of urban land cover change and explore the impacts on biodiversity hotspots and tropical carbon biomass. If current trends in population density continue, then by 2030, urban land cover will expand between 800,000 and 3.3 million km2, representing a doubling to five-fold increase from the global urban land cover in 2000. This would result in considerable loss of habitats in key biodiversity hotspots, including the Guinean forests of West Africa, Tropical Andes, Western Ghats and Sri Lanka. Within the pan-tropics, loss in forest biomass from urban expansion is estimated to be 1.38 PgC (0.05 PgC yr-1), equal to approximately 5% of emissions from tropical land use change. Although urbanization is often considered a local issue, the aggregate global impacts of projected urban expansion will require significant policy changes to affect future growth trajectories to minimize global biodiversity and forest carbon losses.
The Chesapeake Bay impact structure
Powars, David S.; Edwards, Lucy E.; Gohn, Gregory S.; Horton, J. Wright
2015-10-28
About 35 million years ago, during late Eocene time, a 2-mile-wide asteroid or comet smashed into Earth in what is now the lower Chesapeake Bay in Virginia. The oceanic impact vaporized, melted, fractured, and (or) displaced the target rocks and sediments and sent billions of tons of water, sediments, and rocks into the air. Glassy particles of solidified melt rock rained down as far away as Texas and the Caribbean. Models suggest that even up to 50 miles away the velocity of the intensely hot air blast was greater than 1,500 miles per hour, and ground shaking was equivalent to an earthquake greater than magnitude 8.0 on the Richter scale. Large tsunamis affected most of the North Atlantic basin. The Chesapeake Bay impact structure is among the 20 largest known impact structures on Earth.
Roadmap for Agriculture Biomass Feedstock Supply in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Richard Hess; Thomas D. Foust; Reed Hoskinson
2003-11-01
The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the researchmore » and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be accomplished in a sustainable manner • Feedstock Infrastructure – An integrated feedstock supply system must be developed and implemented that can serve the feedstock needs of the biorefinery at the cost, quality, and consistency of the set targets • System Profitability – Economic profitability and sustainability need to be ensured for all required participants in the feedstock supply system. For each step in the biomass supply process—production, harvesting and collection, storage, preprocessing, system integration, and transportation—this roadmap addresses the current technical situations, performance targets, technical barriers, R&D needs, and R&D priorities to overcome technical barriers and achieve performance targets. Crop residue biomass is an attractive starting feedstock, which shows the best near-term promise as a biorefinery feedstock. Because crop residue is a by-product of grain production, it is an abundant, underutilized, and low cost biomass resource. Corn stover and cereal straw are the two most abundant crop residues available in the United States. Therefore, this roadmap focuses primarily on the R&D needed for using these biomass sources as viable biorefinery feedstocks. However, achieving the goal of 1 billion dry tons of lignocellulosic feedstock will require the use of other biomass sources such as dedicated energy crops. In the long term, the R&D needs identified in this roadmap will need to accommodate these other sources of biomass as well.« less
Birdwell, Justin E.; Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.; Dietrich, John D.
2014-01-01
A recent U.S. Geological Survey analysis of the Green River Formation of the Piceance Basin in western Colorado shows that about 920 and 352 billion barrels of oil are potentially recoverable from oil shale resources using oil-yield cutoffs of 15 and 25 gallons per ton (GPT), respectively. This represents most of the high-grade oil shale in the United States. Much of this rich oil shale is found in the dolomitic Parachute Creek Member of the Green River Formation and is associated with the saline minerals nahcolite and halite, or in the interval where these minerals have been leached by groundwater. The remaining high-grade resource is located primarily in the underlying illitic Garden Gulch Member of the Green River Formation. Of the 352 billion barrels of potentially recoverable oil resources in high-grade (≥25 GPT) oil shale, the relative proportions present in the illitic interval, non-saline R-2 zone, saline-mineral interval, leached interval (excluding leached Mahogany zone), and Mahogany zone were 3.1, 4.5, 36.6, 23.9, and 29.9 percent of the total, respectively. Only 2 percent of high-grade oil shale is present in marginal areas where saline minerals were never deposited.
Realizing Mitigation Efficiency of European Commercial Forests by Climate Smart Forestry.
Yousefpour, Rasoul; Augustynczik, Andrey Lessa Derci; Reyer, Christopher P O; Lasch-Born, Petra; Suckow, Felicitas; Hanewinkel, Marc
2018-01-10
European temperate and boreal forests sequester up to 12% of Europe's annual carbon emissions. Forest carbon density can be manipulated through management to maximize its climate mitigation potential, and fast-growing tree species may contribute the most to Climate Smart Forestry (CSF) compared to slow-growing hardwoods. This type of CSF takes into account not only forest resource potentials in sequestering carbon, but also the economic impact of regional forest products and discounts both variables over time. We used the process-based forest model 4 C to simulate European commercial forests' growth conditions and coupled it with an optimization algorithm to simulate the implementation of CSF for 18 European countries encompassing 68.3 million ha of forest (42.4% of total EU-28 forest area). We found a European CSF policy that could sequester 7.3-11.1 billion tons of carbon, projected to be worth 103 to 141 billion euros in the 21st century. An efficient CSF policy would allocate carbon sequestration to European countries with a lower wood price, lower labor costs, high harvest costs, or a mixture thereof to increase its economic efficiency. This policy prioritized the allocation of mitigation efforts to northern, eastern and central European countries and favored fast growing conifers Picea abies and Pinus sylvestris to broadleaves Fagus sylvatica and Quercus species.
The U.S. Geological Survey Energy Resources Program
,
2006-01-01
The United States uses tremendous amounts of geologic energy resources. In 2004 alone, the United States consumed more than 7.4 billion barrels of oil, 21.9 trillion cubic feet of natural gas, and 1.1 billion short tons of coal. Forecasts indicate the Nation's need for energy resources will continue to grow, raising several questions: How much domestic and foreign petroleum resources are available to meet the growing energy demands of the Nation and world? Does the United States have coal deposits of sufficient quantity and quality to meet demand over the next century? What other geologic energy resources can be added to the U.S. energy mix? How do the occurrence and use of energy resources affect environmental quality and human health? Unbiased information from robust scientific studies is needed for sound energy policy and resource management decisions addressing these issues. The U.S. Geological Survey Energy Resources Program provides impartial, scientifically robust information to advance the understanding of geologically based energy resources including: petroleum (oil, natural gas, natural gas liquids), coal, gas hydrates, geothermal resources, oil shale, oil sands, uranium, and heavy oil and natural bitumen. This information can be used to contribute to plans for a secure energy future and to facilitate evaluation and responsible use of resources.
NASA Astrophysics Data System (ADS)
Boken, V.; Tenkorang, F.
2012-04-01
Nebraska is one of the eight main corn (maize) belt states of the United States. Maize is the major crop of Nebraska with an average annual production of about 38 million tons (about 12% of U.S. production), which contributes billions of dollars to the state's economy. The yield of maize has increased significantly over the past century - from 1.6 t/ha in 1900 to 10.4 t/ha in 2010. While the majority of maize (about 40%) is currently used for animal feed and ethanol production, only about six percent is exported. It is estimated that about one billion people accounting for about 15% population of the world live in chronic hunger because of low agricultural productivity and drought. Most of these people depend on the U.S. for grains including maize. If a greater quantity of maize is diverted to ethanol production, considerably less quantity of maize would be available for export to developing countries where it could be used for human consumption and to mitigate hunger and improve food security. This paper presents analysis of maize production in Nebraska for the past three decades and examines how its commercialization for ethanol production has affected its exports in the face of drought at an international level.
Loss estimates for a Puente Hills blind-thrust earthquake in Los Angeles, California
Field, E.H.; Seligson, H.A.; Gupta, N.; Gupta, V.; Jordan, T.H.; Campbell, K.W.
2005-01-01
Based on OpenSHA and HAZUS-MH, we present loss estimates for an earthquake rupture on the recently identified Puente Hills blind-thrust fault beneath Los Angeles. Given a range of possible magnitudes and ground motion models, and presuming a full fault rupture, we estimate the total economic loss to be between $82 and $252 billion. This range is not only considerably higher than a previous estimate of $69 billion, but also implies the event would be the costliest disaster in U.S. history. The analysis has also provided the following predictions: 3,000-18,000 fatalities, 142,000-735,000 displaced households, 42,000-211,000 in need of short-term public shelter, and 30,000-99,000 tons of debris generated. Finally, we show that the choice of ground motion model can be more influential than the earthquake magnitude, and that reducing this epistemic uncertainty (e.g., via model improvement and/or rejection) could reduce the uncertainty of the loss estimates by up to a factor of two. We note that a full Puente Hills fault rupture is a rare event (once every ???3,000 years), and that other seismic sources pose significant risk as well. ?? 2005, Earthquake Engineering Research Institute.
Continuous flux of dissolved black carbon from a vanished tropical forest biome
NASA Astrophysics Data System (ADS)
Dittmar, T.; Rezende, C. E.; Manecki, M.; Niggemann, J.; Coelho Ovalle, A. R.; Bernardes, M. C.
2012-04-01
Humans have extensively used fire as a tool to shape Earth's vegetation. One of the biggest events in this context was the destruction of Brazilian's Atlantic forest, once among the largest tropical forest biomes on Earth. We estimate that the slash-and-burn practice produced 200 to 500 million tons of black carbon from the 1850' to 1973. The fate of this charred organic matter is unknown. Here we show continuous runoff of dissolved black carbon from the cleared forest biome, more than 35 years after the widespread burning of the forest ended. During the 11-year observation period (1997-2008) of this study, on average 0.04 to 0.08 tons of dissolved black carbon were annually exported per square kilometer land. We estimate an annual runoff of 48,000 to 97,000 tons dissolved black carbon from the former Atlantic forest biome. Dissolved black carbon was mobilized by water percolating through the soil during the rainy season. During base flow conditions, dissolved organic carbon (DOC) did not contain black carbon, whereas at peak flow up to 6% of DOC was combustion-derived. If runoff was the only removal mechanism of black carbon from soils, even the highly condensed and presumably refractory component of black carbon would have a half-life of only 440 to 2300 years in the soil. In areas with higher precipitation, stronger runoff and consequently a shorter half-life can be expected. In the deep ocean, dissolved black carbon is virtually inert on this time scale. The disappearance of the Atlantic forest provides a worst-case scenario for tropical forests worldwide, most of which are cleared at increasing rate. Because of the comparably fast mobilization of dissolved black carbon from soils and its resistivity in the deep ocean, an increase of black carbon production on land may alter the size of the global pool of >12 Pg carbon of thermally altered DOC in the ocean on the long term.
Skatrud-Mickelson, Monica; Adachi-Mejia, Anna M; MacKenzie, Todd A; Sutherland, Lisa A
2012-06-01
Marketing on television showcases less-healthful options, with emerging research suggesting movies promote similar products. Given the obesity epidemic, understanding advertising to youth should be a public health imperative. The objective of this study was to estimate youth impressions to food and beverages delivered through movies. Impressions were calculated by dividing US receipts annually into average movie ticket prices, then multiplying this by the number of brand appearances. Examination by ratings, product types and ages were conducted by Spearman rank correlation coefficient tests. Youth in the USA saw over 3 billion food, beverage or food-retail establishment (FRE) impressions on average, annually from 1996 to 2005. Those aged 12-18 viewed over half of all impressions, with PG-13-rated movies containing 61.5% of impressions. There were no significant trends in brand appearances by food, beverage or FRE impressions over the decade, although there was a decreasing trend in R-rated impressions for both foods (P< 0.01) and beverages (P< 0.01), but not FREs (P= 0.08). Movies promote billions of food and beverage impressions annually to youth. Given the public health crisis of obesity, future research should further investigate these trends, as well as the potential association of these unhealthy exposures in youth.
Skatrud-Mickelson, Monica; Adachi-Mejia, Anna M.; MacKenzie, Todd A.; Sutherland, Lisa A.
2012-01-01
Background Marketing on television showcases less-healthful options, with emerging research suggesting movies promote similar products. Given the obesity epidemic, understanding advertising to youth should be a public health imperative. The objective of this study was to estimate youth impressions to food and beverages delivered through movies. Methods Impressions were calculated by dividing US receipts annually into average movie ticket prices, then multiplying this by the number of brand appearances. Examination by ratings, product types and ages were conducted by Spearman rank correlation coefficient tests. Results Youth in the USA saw over 3 billion food, beverage or food–retail establishment (FRE) impressions on average, annually from 1996 to 2005. Those aged 12–18 viewed over half of all impressions, with PG-13-rated movies containing 61.5% of impressions. There were no significant trends in brand appearances by food, beverage or FRE impressions over the decade, although there was a decreasing trend in R-rated impressions for both foods (P< 0.01) and beverages (P< 0.01), but not FREs (P= 0.08). Conclusions Movies promote billions of food and beverage impressions annually to youth. Given the public health crisis of obesity, future research should further investigate these trends, as well as the potential association of these unhealthy exposures in youth. PMID:22076600
Uncovering the Recycling Potential of "New" WEEE in China.
Zeng, Xianlai; Gong, Ruying; Chen, Wei-Qiang; Li, Jinhui
2016-02-02
Newly defined categories of WEEE have increased the types of China's regulated WEEE from 5 to 14. Identification of the amounts and valuable-resource components of the "new" WEEE generated is critical to solving the e-waste problem, for both governmental policy decisions and recycling enterprise expansions. This study first estimates and predicts China's new WEEE generation for the period of 2010-2030 using material flow analysis and the lifespan model of the Weibull distribution, then determines the amounts of valuable resources (e.g., base materials, precious metals, and rare-earth minerals) encased annually in WEEE, and their dynamic transfer from in-use stock to waste. Main findings include the following: (i) China will generate 15.5 and 28.4 million tons WEEE in 2020 and 2030, respectively, and has already overtaken the U.S. to become the world's leading producer of e-waste; (ii) among all the types of WEEE, air conditioners, desktop personal computers, refrigerators, and washing machines contribute over 70% of total WEEE by weight. The two categories of EEE-electronic devices and electrical appliances-each contribute about half of total WEEE by weight; (iii) more and more valuable resources have been transferred from in-use products to WEEE, significantly enhancing the recycling potential of WEEE from an economic perspective; and (iv) WEEE recycling potential has been evolving from ∼16 (10-22) billion US$ in 2010, to an anticipated ∼42 (26-58) billion US$ in 2020 and ∼73.4 (44.5-103.4) billion US$ by 2030. All the obtained results can improve the knowledge base for closing the loop of WEEE recycling, and contribute to governmental policy making and the recycling industry's business development.
The potential role of a carbon tax in U.S. fiscal reform
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKibbin, Warwick; The Brookings Institution, Washington, DC; Morris, Adele
This paper examines fiscal reform options in the United States with an intertemporal computable general equilibrium model of the world economy called G-Cubed. Six policy scenarios explore two overarching issues: (1) the effects of a carbon tax under alternative assumptions about the use of the resulting revenue, and (2) the effects of alternative measures that could be used to reduce the budget deficit. We examine a simple excise tax on the carbon content of fossil fuels in the U.S. energy sector starting immediately at $15 per metric ton of carbon dioxide (CO2) and rising at 4 percent above inflation eachmore » year through 2050. We investigate policies that allow the revenue from the illustrative carbon tax to reduce the long run federal budget deficit or the marginal tax rates on labor and capital income. We also compare the carbon tax to other means of reducing the deficit by the same amount. We find that the carbon tax will raise considerable revenue: $80 billion at the outset, rising to $170 billion in 2030 and $310 billion by 2050. It also significantly reduces U.S. CO2 emissions by an amount that is largely independent of the use of the revenue. By 2050, annual CO2 emissions fall by 2.5 billion metric tons (BMT), or 34 percent, relative to baseline, and cumulative emissions fall by 40 BMT through 2050. The use of the revenue affects both broad economic impacts and the composition of GDP across consumption, investment and net exports. In most scenarios, the carbon tax lowers GDP slightly, reduces investment and exports, and increases imports. The effect on consumption varies across policies and can be positive if households receive the revenue as a lump sum transfer. Using the revenue for a capital tax cut, however, is significantly different than the other policies. In that case, investment booms, employment rises, consumption declines slightly, imports increase, and overall GDP rises significantly relative to baseline through about 2040. Thus, a tax reform that uses a carbon tax to reduce capital taxes would achieve two goals: reducing CO2 emissions significantly and expanding short-run employment and the economy. We examine three ways to reduce the deficit by an equal amount. We find that raising marginal tax rates on labor income has advantages over raising tax rates on capital income or establishing a carbon tax. A labor tax increase leaves GDP close to its baseline, reduces consumption very slightly and expands net exports slightly. Investment remains essentially unchanged. In contrast, a capital tax increase causes a significant and persistent drop in investment and much larger reductions in GDP. A carbon tax falls between the two: it lowers GDP more than a labor tax increase because it reduces investment. However, its effects on investment and GDP are more moderate than the capital tax increase, and it also significantly reduces CO2 emissions. A carbon tax thus offers a way to help reduce the deficit and improve the environment, and do so with minimal disturbance to overall economic activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efroymson, Rebecca Ann; Langholtz, Matthew H.
With the goal of understanding environmental effects of a growing bioeconomy, the U.S. Department of Energy (DOE), national laboratories, and U.S. Forest Service research laboratories, together with academic and industry collaborators, undertook a study to estimate environmental effects of potential biomass production scenarios in the United States, with an emphasis on agricultural and forest biomass. Potential effects investigated include changes in soil organic carbon (SOC), greenhouse gas (GHG) emissions, water quality and quantity, air emissions, and biodiversity. Effects of altered land-management regimes were analyzed based on select county-level biomass-production scenarios for 2017 and 2040 taken from the 2016 Billion-Ton Report:more » Advancing Domestic Resources for a Thriving Bioeconomy (BT16), volume 1, which assumes that the land bases for agricultural and forestry would not change over time. The scenarios reflect constraints on biomass supply (e.g., excluded areas; implementation of management practices; and consideration of food, feed, forage, and fiber demands and exports) that intend to address sustainability concerns. Nonetheless, both beneficial and adverse environmental effects might be expected. To characterize these potential effects, this research sought to estimate where and under what modeled scenarios or conditions positive and negative environmental effects could occur nationwide. The report also includes a discussion of land-use change (LUC) (i.e., land management change) assumptions associated with the scenario transitions (but not including analysis of indirect LUC [ILUC]), analyses of climate sensitivity of feedstock productivity under a set of potential scenarios, and a qualitative environmental effects analysis of algae production under carbon dioxide (CO2) co-location scenarios. Because BT16 biomass supplies are simulated independent of a defined end use, most analyses do not include benefits from displacing fossil fuels or other products, with the exception of including a few illustrative cases on potential reductions in GHG emissions and fossil energy consumption associated with using biomass supplies for fuel, power, heat, and chemicals.« less
Ishida, Hiroaki; Garcia-Herrero, Alicia; Vogel, Hans J
2014-12-01
Gram-negative bacteria such as Escherichia coli are surrounded by two membranes with a thin peptidoglycan (PG)-layer located in between them in the periplasmic space. The outer membrane protein A (OmpA) is a 325-residue protein and it is the major protein component of the outer membrane of E. coli. Previous structure determinations have focused on the N-terminal fragment (residues 1-171) of OmpA, which forms an eight stranded transmembrane β-barrel in the outer membrane. Consequently it was suggested that OmpA is composed of two independently folded domains in which the N-terminal β-barrel traverses the outer membrane and the C-terminal domain (residues 180-325) adopts a folded structure in the periplasmic space. However, some reports have proposed that full-length OmpA can instead refold in a temperature dependent manner into a single domain forming a larger transmembrane pore. Here, we have determined the NMR solution structure of the C-terminal periplasmic domain of E. coli OmpA (OmpA(180-325)). Our structure reveals that the C-terminal domain folds independently into a stable globular structure that is homologous to the previously reported PG-associated domain of Neisseria meningitides RmpM. Our results lend credence to the two domain structure model and a PG-binding function for OmpA, and we could indeed localize the PG-binding site on the protein through NMR chemical shift perturbation experiments. On the other hand, we found no evidence for binding of OmpA(180-325) with the TonB protein. In addition, we have also expressed and purified full-length OmpA (OmpA(1-325)) to study the structure of the full-length protein in micelles and nanodiscs by NMR spectroscopy. In both membrane mimetic environments, the recombinant OmpA maintains its two domain structure that is connected through a flexible linker. A series of temperature-dependent HSQC experiments and relaxation dispersion NMR experiments detected structural destabilization in the bulge region of the periplasmic domain of OmpA above physiological temperatures, which may induce dimerization and play a role in triggering the previously reported larger pore formation. Copyright © 2014 Elsevier B.V. All rights reserved.
Soil erosion and the global carbon budget.
Lal, R
2003-07-01
Soil erosion is the most widespread form of soil degradation. Land area globally affected by erosion is 1094 million ha (Mha) by water erosion, of which 751 Mha is severely affected, and 549 Mha by wind erosion, of which 296 Mha is severely affected. Whereas the effects of erosion on productivity and non-point source pollution are widely recognized, those on the C dynamics and attendant emission of greenhouse gases (GHGs) are not. Despite its global significance, erosion-induced carbon (C) emission into the atmosphere remains misunderstood and an unquantified component of the global carbon budget. Soil erosion is a four-stage process involving detachment, breakdown, transport/redistribution and deposition of sediments. The soil organic carbon (SOC) pool is influenced during all four stages. Being a selective process, erosion preferentially removes the light organic fraction of a low density of <1.8 Mg/m(3). A combination of mineralization and C export by erosion causes a severe depletion of the SOC pool on eroded compared with uneroded or slightly eroded soils. In addition, the SOC redistributed over the landscape or deposited in depressional sites may be prone to mineralization because of breakdown of aggregates leading to exposure of hitherto encapsulated C to microbial processes among other reasons. Depending on the delivery ratio or the fraction of the sediment delivered to the river system, gross erosion by water may be 75 billion Mg, of which 15-20 billion Mg are transported by the rivers into the aquatic ecosystems and eventually into the ocean. The amount of total C displaced by erosion on the earth, assuming a delivery ratio of 10% and SOC content of 2-3%, may be 4.0-6.0 Pg/year. With 20% emission due to mineralization of the displaced C, erosion-induced emission may be 0.8-1.2 Pg C/year on the earth. Thus, soil erosion has a strong impact on the global C cycle and this component must be considered while assessing the global C budget. Adoption of conservation-effective measures may reduce the risks of C emission and sequester C in soil and biota.
Economic drivers of mineral supply
Wagner, Lorie A.; Sullivan, Daniel E.; Sznopek, John L.
2003-01-01
The debate over the adequacy of future supplies of mineral resources continues in light of the growing use of mineral-based materials in the United States. According to the U.S. Geological Survey, the quantity of new materials utilized each year has dramatically increased from 161 million tons2 in 1900 to 3.2 billion tons in 2000. Of all the materials used during the 20th century in the United States, more than half were used in the last 25 years. With the Earth?s endowment of natural resources remaining constant, and increased demand for resources, economic theory states that as depletion approaches, prices rise. This study shows that many economic drivers (conditions that create an economic incentive for producers to act in a particular way) such as the impact of globalization, technological improvements, productivity increases, and efficient materials usage are at work simultaneously to impact minerals markets and supply. As a result of these economic drivers, the historical price trend of mineral prices3 in constant dollars has declined as demand has risen. When price is measured by the cost in human effort, the price trend also has been almost steadily downward. Although the United States economy continues its increasing mineral consumption trend, the supply of minerals has been able to keep pace. This study shows that in general supply has grown faster than demand, causing a declining trend in mineral prices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Runze; Riddle, Matthew; Graziano, Diane
Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM), and AM has been increasingly adopted by aircraft component manufacturers for lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integrates engineering criteria, life-cycle environmental data, aircraft fleet stockmore » and fuel use models under different AM adoption scenarios. Estimated fleet-wide life-cycle primary energy savings at most reach 70-173 million GJ/year in 2050, with cumulative savings of 1.2–2.8 billion GJ. Associated cumulative GHG emission reductions were estimated at 92.1–215.0 million metric tons. In addition, thousands of tons of aluminum, titanium and nickel alloys could be potentially saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
About 1.5 billion tons of hazardous materials per year are moved in the US by truck, rail, barge, and air. The Hazardous Materials Transportation Act was the first attempt at a comprehensive Federal scheme for regulation. This hearing looks at the Secretary of Transportation's implementation of the statute for oversight and reauthorization responsibilities. Testimony was heard from 16 witnesses, representatives of Chemical Manufacturers Association, the American Trucking Association, the Association of American Railroads, the Department of Transportation, the Environmental Protection Agency, the Environmental Policy Institute, Office of Technology Assessment, Hazardous Materials Advisory Council, National Tank Truck Carriers, Federal Emergency Managementmore » Agency, National Paint and Coatings Association, and a representative from Ohio.« less
Global agriculture and carbon trade-offs
Johnson, Justin Andrew; Runge, Carlisle Ford; Senauer, Benjamin; Foley, Jonathan; Polasky, Stephen
2014-01-01
Feeding a growing and increasingly affluent world will require expanded agricultural production, which may require converting grasslands and forests into cropland. Such conversions can reduce carbon storage, habitat provision, and other ecosystem services, presenting difficult societal trade-offs. In this paper, we use spatially explicit data on agricultural productivity and carbon storage in a global analysis to find where agricultural extensification should occur to meet growing demand while minimizing carbon emissions from land use change. Selective extensification saves ∼6 billion metric tons of carbon compared with a business-as-usual approach, with a value of approximately $1 trillion (2012 US dollars) using recent estimates of the social cost of carbon. This type of spatially explicit geospatial analysis can be expanded to include other ecosystem services and other industries to analyze how to minimize conflicts between economic development and environmental sustainability. PMID:25114254
Atmospheric Movement of Microorganisms in Clouds of Desert Dust and Implications for Human Health
Griffin, Dale W.
2007-01-01
Billions of tons of desert dust move through the atmosphere each year. The primary source regions, which include the Sahara and Sahel regions of North Africa and the Gobi and Takla Makan regions of Asia, are capable of dispersing significant quantities of desert dust across the traditionally viewed oceanic barriers. While a considerable amount of research by scientists has addressed atmospheric pathways and aerosol chemistry, very few studies to determine the numbers and types of microorganisms transported within these desert dust clouds and the roles that they may play in human health have been conducted. This review is a summary of the current state of knowledge of desert dust microbiology and the health impact that desert dust and its microbial constituents may have in downwind environments both close to and far from their sources. PMID:17630335
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, W.J.; DeMaris, P.J.; Bauer, R.A.
One of the largest deposits of low-sulfur coal in the Illinois Basin is in the so-called Hornsby District of Christian, Macoupin, and Montgomery Counties. An estimated resource of 1.17 billion tons of Herrin (No. 6) Coal, containing less than 2.5% sulfur, occurs here. Although the Hornsby deposit is thick, lies at moderate depth, and is close to market and labor supply, it has been barely touched by mining. The primary deterrent to mining this high-quality product has been fear of unstable roof conditions. Low-sulfur Hornsby coal contains about 1.5% less ash and 2% more moisture than does adjacent high-sulfur coal.more » The lower ash content probably reflects scarcity of pyrite. The reason for the difference in moisture content is unknown. High- and low-sulfur coal are nearly identical in heating value.« less
Atmospheric movement of microorganisms in clouds of desert dust and implications for human health
Griffin, Dale W.
2007-01-01
Billions of tons of desert dust move through the atmosphere each year. The primary source regions, which include the Sahara and Sahel regions of North Africa and the Gobi and Takla Makan regions of Asia, are capable of dispersing significant quantities of desert dust across the traditionally viewed oceanic barriers. While a considerable amount of research by scientists has addressed atmospheric pathways and aerosol chemistry, very few studies to determine the numbers and types of microorganisms transported within these desert dust clouds and the roles that they may play in human health have been conducted. This review is a summary of the current state of knowledge of desert dust microbiology and the health impact that desert dust and its microbial constituents may have in downwind environments both close to and far from their sources.
Gigantic Rolling Wave Captured on the Sun [hd video
2017-12-08
A corona mass ejection (CME) erupted from just around the edge of the sun on May 1, 2013, in a gigantic rolling wave. CMEs can shoot over a billion tons of particles into space at over a million miles per hour. This CME occurred on the sun’s limb and is not headed toward Earth. The video, taken in extreme ultraviolet light by NASA’s Solar Dynamics Observatory (SDO), covers about two and a half hours. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Gigantic Rolling Wave Captured on the Sun
2017-12-08
A coronal mass ejection (CME) erupted from just around the edge of the sun on May 1, 2013, in a gigantic rolling wave. CMEs can shoot over a billion tons of particles into space at over a million miles per hour. This CME occurred on the sun’s limb and is not headed toward Earth. The video (seen here: bit.ly/103whUl), taken in extreme ultraviolet light by NASA’s Solar Dynamics Observatory (SDO), covers about two and a half hours. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Global agriculture and carbon trade-offs.
Johnson, Justin Andrew; Runge, Carlisle Ford; Senauer, Benjamin; Foley, Jonathan; Polasky, Stephen
2014-08-26
Feeding a growing and increasingly affluent world will require expanded agricultural production, which may require converting grasslands and forests into cropland. Such conversions can reduce carbon storage, habitat provision, and other ecosystem services, presenting difficult societal trade-offs. In this paper, we use spatially explicit data on agricultural productivity and carbon storage in a global analysis to find where agricultural extensification should occur to meet growing demand while minimizing carbon emissions from land use change. Selective extensification saves ∼ 6 billion metric tons of carbon compared with a business-as-usual approach, with a value of approximately $1 trillion (2012 US dollars) using recent estimates of the social cost of carbon. This type of spatially explicit geospatial analysis can be expanded to include other ecosystem services and other industries to analyze how to minimize conflicts between economic development and environmental sustainability.
Atmospheric movement of microorganisms in clouds of desert dust and implications for human health.
Griffin, Dale W
2007-07-01
Billions of tons of desert dust move through the atmosphere each year. The primary source regions, which include the Sahara and Sahel regions of North Africa and the Gobi and Takla Makan regions of Asia, are capable of dispersing significant quantities of desert dust across the traditionally viewed oceanic barriers. While a considerable amount of research by scientists has addressed atmospheric pathways and aerosol chemistry, very few studies to determine the numbers and types of microorganisms transported within these desert dust clouds and the roles that they may play in human health have been conducted. This review is a summary of the current state of knowledge of desert dust microbiology and the health impact that desert dust and its microbial constituents may have in downwind environments both close to and far from their sources.
2014-04-18
CAPE CANAVERAL, Fla. - A blinding flash of light under the Falcon 9 rocket signals engine ignition and liftoff of the SpaceX-3 mission from Space Launch Complex 40 on Cape Canaveral Air Force Station, sending the Dragon resupply spacecraft on its way to the International Space Station. Launch was during an instantaneous window at 3:25 p.m. EDT. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Tony Gray
Hypothetical Rejuvenated Planets Artist Concept
2015-06-25
This artist's concept shows a hypothetical "rejuvenated" planet -- a gas giant that has reclaimed its youthful infrared glow. NASA's Spitzer Space Telescope found tentative evidence for one such planet around a dead star, or white dwarf, called PG 0010+280 (depicted as white dot in illustration). When planets are young, they are warm and toasty due to internal heat left over from their formation. Planets cool over time -- until they are possibly rejuvenated. The theory goes that this Jupiter-like planet, which orbits far from its star, would accumulate some of the material sloughed off by its star as the star was dying. The material would cause the planet to swell in mass. As the material fell onto the planet, it would heat up due to friction and glow with infrared light. The final result would be an old planet, billions of years in age, radiating infrared light as it did in its youth. Spitzer detected an excess infrared light around the white dwarf PG 0010+280. Astronomers aren't sure where the light is coming from, but one possibility is a rejuvenated planet. Future observations may help solve the mystery. A Jupiter-like planet is about ten times the size of a white dwarf. White dwarfs are about the size of Earth, so one white dwarf would easily fit into the Great Red Spot on Jupiter! http://photojournal.jpl.nasa.gov/catalog/PIA19346
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, T. S.; Birky, A.; Gohlke, David
Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies Offices of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy invest in early-stage research of advanced batteries and electrification, engines and fuels, materials, and energy-efficient mobility systems; hydrogen production, delivery, and storage; and fuel cell technologies. This report documents the estimated benefits of successful development and implementation of advanced vehicle technologies. It presents a comparison of a scenario with completely successful implementation of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies (the Program Success case) to a future in whichmore » there is no contribution after Fiscal Year 2017 by the VTO or FCTO to these technologies (the No Program case). Benefits were attributed to individual program technology areas, which included FCTO research and development and the VTO programs of electrification, advanced combustion engines and fuels, and materials technology. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 24% to 30% higher than in the No Program case, while fuel economy for on-road medium- and heavy-duty vehicle stock could be as much as 13% higher. The resulting petroleum savings in 2035 were estimated to be as high as 1.9 million barrels of oil per day, and reductions in greenhouse gas emissions were estimated to be as high as 320 million metric tons of carbon dioxide equivalent per year. Projections of light-duty vehicle adoption indicate that although advanced-technology vehicles may be somewhat more expensive to purchase, the fuel savings result in a net reduction of consumer cost. In 2035, reductions in annual fuel expenditures for vehicles (both light- and heavy-duty) are projected to range from $86 billion to $109 billion (2015$), while the projected increase in new vehicle expenditures in the same year ranges from $6 billion to $24 billion (2015$).« less
NASA Astrophysics Data System (ADS)
Haines, S. S.; Varela, B. A.; Thamke, J.; Hawkins, S. J.; Gianoutsos, N. J.; Tennyson, M. E.
2017-12-01
Water is used for several stages of oil and gas production, in particular for hydraulic fracturing that is typically used during production of petroleum from low-permeability shales and other rock types (referred to as "continuous" petroleum accumulations). Proppant, often sand, is also consumed during hydraulic fracturing. Water is then produced from the reservoir along with the oil and gas, representing either a disposal consideration or a possible source of water for further petroleum development or other purposes. The U.S. Geological Survey (USGS) has developed an approach for regional-scale estimation of these water and proppant quantities in order to provide an improved understanding of possible impacts and to help with planning and decision-making. Using the new methodology, the USGS has conducted a quantitative assessment of water and proppant requirements, and water production volumes, associated with associated with possible future production of undiscovered petroleum resources in the Bakken and Three Forks Formations, Williston Basin, USA. This water and proppant assessment builds directly from the 2013 USGS petroleum assessment for the Bakken and Three Forks Formations. USGS petroleum assessments incorporate all available geologic and petroleum production information, and include the definition of assessment units (AUs) that specify the geographic regions and geologic formations for the assessment. The 2013 petroleum assessment included 5 continuous AUs for the Bakken Formation and one continuous AU for the Three Forks Formation. The assessment inputs are defined probabilistically, and a Monte Carlo approach provides outputs that include uncertainty bounds. We can summarize the assessment outputs with the mean values of the associated distributions. The mean estimated total volume of water for well drilling and cement for all six continuous AUs is 5.9 billion gallons, and the mean estimated volume of water for hydraulic fracturing for all AUs is 164.3 billion gallons. The mean estimated quantity of proppant for hydraulic fracturing is 101.3 million tons. Summing over all of the AUs, the mean estimated total flowback water volume is 9.9 billion gallons and the mean estimated total produced water is 414.5 billion gallons.
Biomass resources in California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiangco, V.M.; Sethi, P.S.
1993-12-31
The biomass resources in California which have potential for energy conversion were assessed and characterized through the project funded by the California Energy Commission and the US Department of Energy`s Western Regional Biomass Energy Program (WRBEP). The results indicate that there is an abundance of biomass resources as yet untouched by the industry due to technical, economic, and environmental problems, and other barriers. These biomass resources include residues from field and seed crops, fruit and nut crops, vegetable crops, and nursery crops; food processing wastes; forest slash; energy crops; lumber mill waste; urban wood waste; urban yard waste; livestock manure;more » and chaparral. The estimated total potential of these biomass resource is approximately 47 million bone dry tons (BDT), which is equivalent to 780 billion MJ (740 trillion Btu). About 7 million BDT (132 billion MJ or 124 trillion Btu) of biomass residue was used for generating electricity by 66 direct combustion facilities with gross capacity of about 800 MW. This tonnage accounts for only about 15% of the total biomass resource potential identified in this study. The barriers interfering with the biomass utilization both in the on-site harvesting, collection, storage, handling, transportation, and conversion to energy are identified. The question whether these barriers present significant impact to biomass {open_quotes}availability{close_quotes} and {open_quotes}sustainability{close_quotes} remains to be answered.« less
Remediation of uranium in-situ leaching area at Straz Pod Ralskem, Czech Republic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vokal, Vojtech; Muzak, Jiri; Ekert, Vladimir
2013-07-01
A large-scale development in exploration and production of uranium ores in the Czech Republic was done in the 2nd half of the 20. century. Many uranium deposits were discovered in the territory of the Czech Republic. One of the most considerable deposits in the Czech Republic is the site Hamr na Jezere - Straz pod Ralskem where both mining methods - the underground mining and the acidic in-situ leaching - were used. The extensive production of uranium led to widespread environmental impacts and contamination of ground waters. Over the period of 'chemical' leaching of uranium (ca. 32 years), a totalmore » of more than 4 million tons of sulphuric acid and other chemicals have been injected into the ground. Most of the products (approx. 99.5 %) of the acids reactions with the rocks are located in the Cenomanian aquifer. The contamination of Cenomanian aquifer covers the area larger then 27 km{sup 2}. The influenced volume of groundwater is more than 380 million m{sup 3}. The total amount of dissolved SO{sub 4}{sup 2-} is about 3.6 million tons. After 1990 a large-scale environmental program was established and the Czech government decided to liquidate the ISL Mine and start the remediation in 1996. The remediation consists of contaminated groundwater pumping, removing of the contaminants and discharging or reinjection of treated water. Nowadays four main remedial technological installations with sufficient capacity for reaching of the target values of remedial parameters in 2037 are used - the 'Station for Acid Solutions Liquidation No. One', the 'Mother liquor reprocessing' station, the 'Neutralization and Decontamination Station NDS 6' and the 'Neutralization and Decontamination Station NDS 10'. It is expected that the amount of withdrawn contaminants will vary from 80 000 to 120 000 tons per year. Total costs of all remediation activities are expected to be in excess of 2 billion EUR. (authors)« less
PTBA Coal Briquette Development Project: A status report, March 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purba, A.C.; Supriyanto, H.; Djamal, T.S.
1995-12-31
Indonesia has a vast coal reserved amounted around 36 Billion Tons (As May 1993), of which more than 98% located in two big islands: Sumatera & Kalimantan. Indonesian Energy Policy, set up in 1976 were shifting the National Energy Mix to encourage the use of other alternative energy for fulfilling the domestic energy demand. Coal, as it was available in enormous reserve become the most suitable alternative fuel. Indonesian coal mining industry was then gaining a big momentum for its resurrection since it was for long had been overlooked. As the result of reconstruction of old mines, expanding the currentmore » mines and the opening of new mines by foreign investor (Contractors) in Kalimantan, since 1986, ten years after the set up of New National Energy Policy or 45 years after peak production level in the past, 2 million tons of coal production was regained. Afterward the coal production of Indonesian coal mine industry are increasing in an exponential rate of growth. With more than 29 million tons of coal produced in 1994, Indonesia will continue to play greater role in the world coal export market in the future. It is projected that by the year of 1998, Indonesia will rank the 3rd as the world coal exporter next to Australia and South African with around 14% of world market share. In this paper, author would only like to report the current status of Indonesian Coal Briquette Industry of which PT Tambang Batubara Bukit Asam (Persero), PTBA, the state owned coal mining company was being appointed to pioneer the establishment of the first coal briquette industry in Indonesia. Process Technology that being compared here in this paper were based on the technical compliance to specification set by government and the techno-economic evaluation. Due to limitations and constrains, all aspects concerning the project will only be discussed in an overview.« less
John, David A.; Seal, Robert R.; Polyak, Désirée E.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.
2017-12-19
Rhenium is one of the rarest elements in Earth’s continental crust; its estimated average crustal abundance is less than 1 part per billion. Rhenium is a metal that has an extremely high melting point and a heat-stable crystalline structure. More than 80 percent of the rhenium consumed in the world is used in high-temperature superalloys, especially those used to make turbine blades for jet aircraft engines. Rhenium’s other major application is in platinum-rhenium catalysts used in petroleum refining.Rhenium rarely occurs as a native element or as its own sulfide mineral; most rhenium is present as a substitute for molybdenum in molybdenite. Annual world mine production of rhenium is about 50 metric tons. Nearly all primary rhenium production (that is, rhenium produced by mining rather than through recycling) is as a byproduct of copper mining, and about 80 percent of the rhenium obtained through mining is recovered from the flue dust produced during the roasting of molybdenite concentrates from porphyry copper deposits. Molybdenite in porphyry copper deposits can contain hundreds to several thousand grams per metric ton of rhenium, although the estimated rhenium grades of these deposits range from less than 0.1 gram per metric ton to about 0.6 gram per metric ton.Continental-arc porphyry copper-(molybdenum-gold) deposits supply most of the world’s rhenium production and have large inferred rhenium resources. Porphyry copper mines in Chile account for about 55 percent of the world’s mine production of rhenium; rhenium is also recovered from porphyry copper deposits in the United States, Armenia, Kazakhstan, Mexico, Peru, Russia, and Uzbekistan. Sediment-hosted strata-bound copper deposits in Kazakhstan (of the sandstone type) and in Poland (of the reduced-facies, or Kupferschiefer, type) account for most other rhenium produced by mining. These types of deposits also have large amounts of identified rhenium resources. The future supply of rhenium is likely to depend largely on the capacity of the specialized processing facilities needed to recover rhenium from molybdenite concentrates.The environmental consequences of rhenium recovery are closely linked to the consequences of mining large porphyry copper and strata-bound copper deposits; no additional environmental impact from recovery of rhenium from these deposits has been identified. No information is available regarding the potential toxic effects of rhenium on humans, partly because of the low natural abundance of rhenium.
Conesa, Juan A; Ortuño, Nuria; Abad, Esteban; Rivera-Austrui, Joan
2016-11-15
The aim of the present work was to assess the emission of different persistent organic pollutants from a cement plant over a period of one year, under normal operational conditions. Thus, a long-term sampling device was installed in the clinker kiln stack of the cement plant. The factory uses petroleum coke as primary fuel, but also alternative fuels such as solid recovered fuel (SRF), automotive shredder residue (ASR), sewage sludge, waste tires, and meat and bone meal (MBM) wastes, with an energy substitution level of about 40%. Both PCDD/Fs (together with dl-PCBs) and PBDD/Fs were continuously sampled, with a total of ten samples collected in 2-4week periods. Also, PAHs were sampled during one-week periods, in order to evaluate their emissions in three different samples. The emission levels throughout the year were much lower than the set legal limits in all substances, being <10pgI-TEQ/Nm(3) in the case of PCDD/Fs. The data obtained allowed calculation of updated emission factors for the cement sector, which were 8.5ng I-TEQ/ton clinker for PCDD/Fs and 3.2ng WHO-TEQ/ton clinker for PCBs. With respect to the congener distribution, 2,3,7,8-TCDF accounts for 60 to 68% of the total toxicity for PCDD/Fs, and in PBDD/F emissions, a clear predominance of octa-substituted species (both dioxin and furan) was found. Copyright © 2016 Elsevier B.V. All rights reserved.
Space Based Measurements for Atmospheric Carbon Dioxide: a New Tool for Monitoring Our Environment
NASA Technical Reports Server (NTRS)
Crisp, David
2015-01-01
Fossil fuel combustion, deforestation, and other human activities are now adding almost 40 billion tons of carbon dioxide (CO2) to the atmosphere each year. Interestingly, as these emissions have increased over time, natural "sinks" in land biosphere and oceans have absorbed roughly half of this CO2, reducing the rate of atmospheric buildup by a half. Measurements of the increasing acidity (pH) of seawater indicate that the ocean absorbs one quarter of this CO2. Another quarter is apparently being absorbed by the land biosphere, but the identity and location of these natural land CO2 "sinks" are still unknown. The existing ground-based greenhouse gas monitoring network provides an accurate record of the atmospheric buildup, but still does not have the spatial resolution or coverage needed to identify or quantify CO2 sources and sinks.
The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wongnate, T.; Sliwa, D.; Ginovska, B.
2016-05-19
Methyl-coenzyme M reductase (MCR), the rate-limiting enzyme in methanogenesis and anaerobic methane oxidation, is responsible for the production of over one billion tons of methane per year. The mechanism of methane synthesis is unknown, with the two leading proposals involving either a methyl-nickel(III) (Mechanism I) or methyl radical/Ni(II)-thiolate (Mechanism II) intermediate(s). When the reaction between the active Ni(I) enzyme with substrates was studied by transient kinetic, spectroscopic and computational methods, formation of an EPR-silent Ni(II)-thiolate intermediate was positively identified by magnetic circular dichroism spectroscopy. There was no evidence for an EPR-active methyl-Ni(III) species. Temperature-dependent transient kinetic studies revealed that themore » activation energy for the initial catalytic step closely matched the value computed by density functional theory for Mechanism II. Thus, our results demonstrate that biological methane synthesis occurs by generation of a methyl radical.« less
Mortality and greenhouse gas impacts of biomass and petroleum energy futures in Africa.
Bailis, Robert; Ezzati, Majid; Kammen, Daniel M
2005-04-01
We analyzed the mortality impacts and greenhouse gas (GHG) emissions produced by household energy use in Africa. Under a business-as-usual (BAU) scenario, household indoor air pollution will cause an estimated 9.8 million premature deaths by the year 2030. Gradual and rapid transitions to charcoal would delay 1.0 million and 2.8 million deaths, respectively; similar transitions to petroleum fuels would delay 1.3 million and 3.7 million deaths. Cumulative BAU GHG emissions will be 6.7 billion tons of carbon by 2050, which is 5.6% of Africa's total emissions. Large shifts to the use of fossil fuels would reduce GHG emissions by 1 to 10%. Charcoal-intensive future scenarios using current practices increase emissions by 140 to 190%; the increase can be reduced to 5 to 36% using currently available technologies for sustainable production or potentially reduced even more with investment in technological innovation.
The coming revolution in planetology
NASA Technical Reports Server (NTRS)
Okeefe, J. A.
1985-01-01
Current ideas about the moon appear to be mistaken on two fundamental points. First, at least within certain large classes of lunar craters, internal origin (i.e., some form of volcanism) predominates over impact; this result raises questions about the reality of the 'era of violent bombardment'. Second, the origin of tektites by meteoritic impact on the earth cannot be reconciled with physical principles and is to be abandoned. The only viable alternative is origin by lunar volcanism, which implies the following: continuance of (rare) explosive lunar volcanism to the present time; existence of silicic lunar volcanism and of small patches of silicic rock at the lunar surface; a body of rock in the lunar interior, probably at great depth, which is closely similar to the earth's mantle and which contains billions of tons of volatiles, probably including hydrogen; and origin of the moon from the earth after the formation of the earth's core.
2014-04-18
CAPE CANAVERAL, Fla. - Remote-controlled and sound-activated cameras placed around the perimeter of the pad by media organizations capture images of the SpaceX Falcon 9 rocket as it rises off Space Launch Complex 40 at Cape Canaveral Air Force Station, sending the Dragon resupply spacecraft on its way to the International Space Station. Liftoff was during an instantaneous window at 3:25 p.m. EDT. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Tony Gray and Tim Terry
PRE-ORE POTASSIUM METASOMATISM, CREEDE MINING DISTRICT, COLORADO.
Bethke, P.M.; Rye, R.O.; Barton, P.B.
1985-01-01
Rhyolitic welded-tuff wallrocks of the epithermal base and precious metal veins of the Creede district were pervasively altered by the addition of more than two billion metric tons of potassium some 1. 5-2 million years before mineralization. Sodium, calcium and magnesium were strongly depleted, yielding a nearly binary quartz plus potassium feldspar assemblage containing as much as 13 weight percent K//2O. This large-scale metasomatism, originally noted by Steven and Rattle (1965), took place progressively by initial alteration of plagioclase phenocrysts to orthoclase or microcline followed by alteration of the groundmass feldspar to orthoclase and gradual change of the sanidine phenocrysts to more Or-rich compositions. Oxygen isotope and chemical studies show that the metasomatism resulted from the interaction of the tuffs with deeply circulating heated ground water and suggest that the potassium metasomatism of rhyolitic rocks is the facies equivalent of propylitization of volcanic rocks of more basic composition.
2014-04-18
CAPE CANAVERAL, Fla. - An image of SpaceX CEO and chief designer Elon Musk is displayed in the NASA Press Site news auditorium at Kennedy Space Center in Florida during a SpaceX-3 post-launch news conference. Musk participated in the conference by telephone. SpaceX-3 launched at 3:25 p.m. EDT aboard a Falcon 9 rocket carrying a Dragon capsule from Space Launch Complex 40 on Cape Canaveral Air Force Station. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Kim Shiflett
Geology and energy resources of the Sand Butte Rim NW Quadrangle, Sweetwater County, Wyoming
Roehler, Henry W.
1979-01-01
The Sand Butte Rim NW 71-minute quadrangle occupies 56 square miles of an arid, windy, sparsely vegetated area of ridges and valleys on the east flank of the Rock Springs uplift in southwest Wyoming. The area is underlain by a succession of sedimentary rocks, about 20,000 feet thick, that includes 28 formations ranging in age from Cambrian to Tertiary. Upper Cretaceous and lower Tertiary formations crop out and dip 3?-6? southeast. They are unfaulted and generally homoclinal, but a minor anticlinal nose is present. Older rocks in the subsurface are faulted and folded. Coal resources are estimated to be nearly I billion short tons of subbituminous coal, in beds more than 2.5 feet thick, under less than 3,000 feet of overburden, in the Fort Union Formation of Paleocene age and the Lance and Almond Formations of Cretaceous age.
NASA Astrophysics Data System (ADS)
McKisson, R. L.; Grantham, L. F.; Guon, J.; Recht, H. L.
1983-02-01
Results of an estimate of the waste management costs of the commercial high level waste from a 3000 metric ton per year reprocessing plant show that the judicious use of the ceramic waste form can save about $2 billion during a 20 year operating campaign relative to the use of the glass waste form. This assumes PWR fuel is processed and the waste is encapsulated in 0.305-m-diam canisters with ultimate emplacement in a BWIP-type horizontal-borehole repository. Waste loading and waste form density are the driving factors in that the low waste loading (25%) and relatively low density (3.1 g cu cm) characteristic of the glass form require several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 cu cm.
2014-04-18
CAPE CANAVERAL, Fla. - Muddy water standing on the pad surface contributes to the formation of a dark exhaust cloud around the Falcon 9 rocket at Space Launch Complex 40 on Cape Canaveral Air Force Station as the SpaceX-3 mission lifts off, sendng the Dragon resupply spacecraft on its way to the International Space Station. Launch was during an instantaneous window at 3:25 p.m. EDT. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Tony Gray and Tim Terry
When Walls Talk, Buildings Can Be Made Better
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Nora
What if your building could “tell” you how to save money? PNNL is inventing systems to turn buildings from passive users of energy into active participants in the power system—making the buildings we work or live in “work” for us instead. We’re researching how buildings can respond intelligently to the natural environment, evolving grid conditions and dynamic occupant demands—not simply bracing for those external factors. Why do buildings matter to our energy future? Senior Engineer Nora Wang says it’s because buildings account for 75 percent of U.S. electricity consumption and 40 percent of our nation’s energy use overall. That equatesmore » to $430 billion in energy bills every year. Powering U.S. buildings contributes more than 2,200 million metric tons of carbon dioxide to the atmosphere annually—more than the total emissions of Russia and Canada combined.« less
Ramaswamy, N S
1994-03-01
In fifty developing countries, which contain half of the total human population of the world, there is a heavy dependence on draught animals as an energy source. These animals are used for agriculture operations in 52% of cultivated areas of the world, as well as for hauling 25 million carts. This situation is likely to continue for at least another fifty years. The work performed annually by these draught animals would require 20 million tons of petroleum, valued at US$6 billion, if it were performed by motorized vehicles. The poor working conditions of these animals often adversely affect their productivity. The application of improved technology and better management (i.e. through better feed and health services, and improved design of agricultural implements and carts) could considerably improve the welfare of these animals. Improved systems would generate sufficient benefits for the economy to justify the required investment. High priority should therefore be given to draught animal power in the economic development agenda.
Material Utilization of Organic Residues.
Peinemann, Jan Christoph; Pleissner, Daniel
2018-02-01
Each year, 1.3 billion tons of food waste is generated globally. This waste traces back to industrial and agricultural producers, bakeries, restaurants, and households. Furthermore, lignocellulosic materials, including grass clippings, leaves, bushes, shrubs, and woods, appear in large amounts. Depending on the region, organic waste is either composted, burned directly, or converted into biogas. All of the options set aside the fact that organic residues are valuable resources containing carbohydrates, lipids, proteins, and phosphorus. Firstly, it is clear that avoidance of organic residues is imperative. However, the residues that accumulate nonetheless should be utilized by material means before energy production is targeted. This review presents different processes for the microbial utilization of organic residues towards compounds that are of great importance for the bioeconomy. The focus thereby is on the challenges coming along with downstream processing when the utilization of organic residues is carried out decentralized. Furthermore, a future process for producing lactic acid from organic residues is sketched.
Antimicrobial silver: An unprecedented anion effect
Swathy, J. R.; Sankar, M. Udhaya; Chaudhary, Amrita; Aigal, Sahaja; Anshup; Pradeep, T.
2014-01-01
Silver is an indispensable metal but its use has to be minimised for sustainable growth. Much of the silver lost during use is unrecoverable; an example being its use as an antimicrobial agent, a property known since ages. While developing methods to create an affordable drinking water purifier especially for the developing world, we discovered that 50 parts per billion (ppb) of Ag+ released continuously from silver nanoparticles confined in nanoscale cages is enough to cause antimicrobial activity in conditions of normal water. Here we show that the antibacterial and antiviral activities of Ag+ can be enhanced ~1,000 fold, selectively, in presence of carbonate ions whose concentration was maintained below the drinking water norms. The protective layers of the organisms were affected during the carbonate-assisted antimicrobial activity. It is estimated that ~1,300 tons of silver can be saved annually using this new way to enhance its antimicrobial activity. PMID:25418185
Oil shale as an energy source in Israel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fainberg, V.; Hetsroni, G.
1996-01-01
Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis ofmore » the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.« less
Oil shale and nahcolite resources of the Piceance Basin, Colorado
,
2010-01-01
This report presents an in-place assessment of the oil shale and nahcolite resources of the Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin is one of three large structural and sedimentary basins that contain vast amounts of oil shale resources in the Green River Formation of Eocene age. The other two basins, the Uinta Basin of eastern Utah and westernmost Colorado, and the Greater Green River Basin of southwest Wyoming, northwestern Colorado, and northeastern Utah also contain large resources of oil shale in the Green River Formation, and these two basins will be assessed separately. Estimated in-place oil is about 1.5 trillion barrels, based on Fischer a ssay results from boreholes drilled to evaluate oil shale, making it the largest oil shale deposit in the world. The estimated in-place nahcolite resource is about 43.3 billion short tons.
Hydrology of area 52, Rocky Mountain coal province Wyoming, Colorado, Idaho, and Utah
Lowham, H.W.; Peterson, D.A.; Larson, L.R.; Zimmerman, E.A.; Ringen, B.H.; Mora, K.L.
1985-01-01
This report is one of a series designed to characterize the hydrology of drainage basins within coal provinces, nationwide. Area 52 (in the Rocky Mountain Coal Province) includes the Green River Basin upstream from the Yampa River, and the Bear River upstream from the Bear Lake - a total of 23,870 sq mi. Area 52 contains over 3 billion tons of strippable coal, most of which is located in the arid and semiarid plains. The report represents a summary of results of the water resources investigations of the U.S. Geological Survey, carried out in cooperation with State and other Federal agencies. More than 40 individual topics are discussed in a brief text that is accompanied by maps, graphs, photographs, and other illustrations. Primary topics in the report are: general features, resources and economy, surface-water quantity and quality, and groundwater. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bufoni, André Luiz, E-mail: bufoni@facc.ufrj.br; Oliveira, Luciano Basto; Rosa, Luiz Pinguelli
Highlights: • Projects are not financially attractive without registration as CDMs. • WM benchmarks and indicators are converging and reducing in variance. • A sensitivity analysis reveal that revenue has more of an effect on the financial results. • Results indicate that an extensive database would reduce WM project risk and capital costs. • Disclosure standards would make information more comparable worldwide. - Abstract: This study illustrates the financial analyses for demonstration and assessment of additionality presented in the project design (PDD) and enclosed documents of the 431 large Clean Development Mechanisms (CDM) classified as the ‘waste handling and disposalmore » sector’ (13) over the past ten years (2004–2014). The expected certified emissions reductions (CER) of these projects total 63.54 million metric tons of CO{sub 2}eq, where eight countries account for 311 projects and 43.36 million metric tons. All of the projects declare themselves ‘not financially attractive’ without CER with an estimated sum of negative results of approximately a half billion US$. The results indicate that WM benchmarks and indicators are converging and reducing in variance, and the sensitivity analysis reveals that revenues have a greater effect on the financial results. This work concludes that an extensive financial database with simple standards for disclosure would greatly diminish statement problems and make information more comparable, reducing the risk and capital costs of WM projects.« less
Manganese nodule resources in the northeastern equatorial Pacific
McKelvey, V.E.; Wright, Nancy A.; Rowland, Robert W.
1979-01-01
Recent publication of maps at scale 1:1,000,000 of the northeastern equatorial Pacific region showing publicly available information on the nickel plus copper content of manganese nodules has made it possible to outline the prime area between the Clarion and Clipperton fracture zones which has been the focus of several recent scientific and commercial studies. The area, defined as that in which the nodules contain more than 1.8 percent nickel plus copper, is about 2o5 million km2. The available evidence suggests that about half of it contains nodules in concentration (reported in wet weight units) greater than 5 kg/m2 and averaging 11.9 kg/m2. If we assume that 20 percent of the nodules in this area of 1.25 million km2 are recoverable, its potential recoverable resources are about 2.1 billion dry metric tons of nodules averaging about 25 percent Mn, 1.3 percent Ni, 1.0 percent Cu, 0.22 percent Co, and 0.05 percent Mo—enough to support about 27 mining operations each producing an average of 75 million metric tons of nodules over their lifetimes. Estimates based on other plausible assumptions would be higher or lower, but of the same order of magnitude. Thus it seems probable that the magnitude of the potentially recoverable nodule resources of the Clarion-Clipperton prime area—the most promising now known—is at most in the range of several tens of the average-size operations postulated.
Joseph, Aneeta Mary; Snellings, Ruben; Van den Heede, Philip; Matthys, Stijn
2018-01-01
Huge amounts of waste are being generated, and even though the incineration process reduces the mass and volume of waste to a large extent, massive amounts of residues still remain. On average, out of 1.3 billion tons of municipal solid wastes generated per year, around 130 and 2.1 million tons are incinerated in the world and in Belgium, respectively. Around 400 kT of bottom ash residues are generated in Flanders, out of which only 102 kT are utilized here, and the rest is exported or landfilled due to non-conformity to environmental regulations. Landfilling makes the valuable resources in the residues unavailable and results in more primary raw materials being used, increasing mining and related hazards. Identifying and employing the right pre-treatment technique for the highest value application is the key to attaining a circular economy. We reviewed the present pre-treatment and utilization scenarios in Belgium, and the advancements in research around the world for realization of maximum utilization are reported in this paper. Uses of the material in the cement industry as a binder and cement raw meal replacement are identified as possible effective utilization options for large quantities of bottom ash. Pre-treatment techniques that could facilitate this use are also discussed. With all the research evidence available, there is now a need for combined efforts from incineration and the cement industry for technical and economic optimization of the process flow. PMID:29337887
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muth, David J.; Bryden, Kenneth Mark; Nelson, R. G.
This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States for bioenergy production. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform the sustainable agricultural residue removal assessment. Soil type represents the base spatialmore » unit for this study and is modeled using a national soil survey database at the 10–100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time. This biomass resource has the potential for producing over 68 billion liters of cellulosic biofuels.« less
Fuel miles and the blend wall: costs and emissions from ethanol distribution in the United States.
Strogen, Bret; Horvath, Arpad; McKone, Thomas E
2012-05-15
From 1991 to 2009, U.S. production of ethanol increased 10-fold, largely due to government programs motivated by climate change, energy security, and economic development goals. As low-level ethanol-gasoline blends have not consistently outperformed ethanol-free gasoline in vehicle performance or tailpipe emissions, national-level economic and environmental goals could be accomplished more efficiently by concentrating consumption of gasoline containing 10% ethanol (i.e., E10) near producers to minimize freight activity. As the domestic transportation of ethanol increased 10-fold in metric ton-kilometers (t-km) from 2000 to 2009, the portion of t-km potentially justified by the E10 blend wall increased from less than 40% to 80%. However, we estimate 10 billion t-km took place annually from 2004 to 2009 for reasons other than the blend wall. This "unnecessary" transportation resulted in more than $240 million in freight costs, 90 million L of diesel consumption, 300,000 metric tons of CO(2)-e emissions, and 440 g of human intake of PM(2.5). By 2009, the marginal savings from enabling Iowa to surpass E10 would have exceeded 2.5 g CO(2)-e/MJ and $0.12/gallon of ethanol, as the next-closest customer was 1600 km away. The use of a national network model enables estimation of marginal transportation impacts from subnational policies, and benefits from policies encouraging concentrated consumption of renewable fuels.
Sustainable asphalt pavement: Application of slaughterhouse waste oil and fly ash in asphalt binder
NASA Astrophysics Data System (ADS)
Sanchez Ramos, Jorge Luis
Increasing energy costs, lack of sufficient natural resources and the overwhelming demand for petroleum has stimulated the development of alternative binders to modify or replace petroleum-based asphalt binders. In the United States, the petroleum-based asphalt binder is mainly used to produce the Hot Mix Asphalt (HMA). There are approximately 4000 asphalt plants that make 500 million tons of asphalt binder valued at roughly 3 billion/year. The instability of the world's oil market has pushed oil prices to more than 80 per barrel in 2012, which increased the cost of asphalt binder up to $570 per ton. Therefore, there is a timely need to find alternative sustainable resources to the asphalt binder. This paper investigates the possibility of the partial replacement of the asphalt binder with slaughterhouse waste and/or fly ash. In order to achieve this objective, the asphalt binder is mixed with different percentages of waste oil and/or fly ash. In order to investigate the effect of these additives to the performance of the asphalt binder, a complete performance grade test performed on multiple samples. The results of the performance grade tests are compared with a control sample to observe how the addition of the waste oil and/or fly ash affects the sample. Considering the increasing cost and demand of asphalt, the use of slaughterhouse waste oil and/or fly ash as a partial replacement may result in environmental and monetary improvements in the transportation sector.
The Impact of Livestock Grazing on US Rangeland Productive Capacity from 1981 to 2009
NASA Astrophysics Data System (ADS)
Washington-Allen, R. A.; Kulawardhana, R. W.; Reeves, M. C.; Mitchell, J. E.
2010-12-01
Humans have appropriated an estimated 20% of global net primary productivity (NPP) and 38% of this population is dependant on the $900 billion yr-1 in ecosystem services from drylands that cover 41% of the terrestrial surface. Commercial and subsistence livestock (cattle, sheep, and goats) grazing is embedded in this appropriation and has been implicated in dryland degradation. However, the extent of dryland degradation is unknown with estimates ranging from 10 - 80%. As a solution to this problem, we derived rangeland above-ground biomass or the forage available for grazing from a 1981 - 2009 time-series of 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) NPP and 8-km Advanced Very High Resolution Radiometer Global Inventory Modeling and Mapping Studies (AVHRR-GIMMS) annual summed normalized difference vegetation index (NDVI) data. We derived the forage required by livestock (cattle, sheep, and goats) at the county and state spatial scales from annual agricultural census records that were collected by the United States Department of Agriculture’s National Agricultural Statistics Service (USDA-NASS) from 1981 - 2009. We found that in 2002 US rangelands covered some 257 million ha and that grazing livestock reached 216 million tons of biomass appropriated though only an estimated 149 million tons were available in the US. Consequently, the percentage US rangeland impacted by livestock appropriation of NPP (distributed at the state spatial scale) was 19%. This hotspot was primarily located in southwestern Arizona.
Interactive Terascale Particle Visualization
NASA Technical Reports Server (NTRS)
Ellsworth, David; Green, Bryan; Moran, Patrick
2004-01-01
This paper describes the methods used to produce an interactive visualization of a 2 TB computational fluid dynamics (CFD) data set using particle tracing (streaklines). We use the method introduced by Bruckschen et al. [2001] that pre-computes a large number of particles, stores them on disk using a space-filling curve ordering that minimizes seeks, and then retrieves and displays the particles according to the user's command. We describe how the particle computation can be performed using a PC cluster, how the algorithm can be adapted to work with a multi-block curvilinear mesh, and how the out-of-core visualization can be scaled to 296 billion particles while still achieving interactive performance on PG hardware. Compared to the earlier work, our data set size and total number of particles are an order of magnitude larger. We also describe a new compression technique that allows the lossless compression of the particles by 41% and speeds the particle retrieval by about 30%.
Carbon balance of South Asia constrained by passenger aircraft CO2 measurements
NASA Astrophysics Data System (ADS)
Patra, P. K.; Niwa, Y.; Schuck, T. J.; Brenninkmeijer, C. A. M.; Machida, T.; Matsueda, H.; Sawa, Y.
2011-02-01
Quantifying the fluxes of carbon dioxide (CO2) between the atmosphere and terrestrial ecosystems in all their diversity, across the continents, is important and urgent for implementing effective mitigating policies. Whereas much is known for Europe and North America for instance, in comparison, South Asia, with 1.6 billion inhabitants and considerable CO2 fluxes, remained terra incognita in this respect. We use regional measurements of atmospheric CO2 aboard a Lufthansa passenger aircraft between Frankfurt (Germany) and Chennai (India) at cruise altitude, in addition to the existing network sites for 2008, to estimate monthly fluxes for 64-regions using Bayesian inversion and transport model simulations. The applicability of the model's transport parameterization is confirmed using SF6, CH4 and N2O simulations for the CARIBIC datasets. The annual carbon flux obtained by including the aircraft data is twice as large as the fluxes simulated by a terrestrial ecosystem model that was applied to prescribe the fluxes used in the inversions. It is shown that South Asia sequestered carbon at a rate of 0.37±0.20 Pg C yr-1 (1Pg C = 1015 g of carbon in CO2) for the years 2007 and 2008. The seasonality and the strength of the calculated monthly fluxes are successfully validated using independent measurements of vertical CO2 profiles over Delhi and spatial variations at cruising altitude over Asia aboard Japan Airlines passenger aircraft.
Carbon balance of South Asia constrained by passenger aircraft CO2 measurements
NASA Astrophysics Data System (ADS)
Patra, P. K.; Niwa, Y.; Schuck, T. J.; Brenninkmeijer, C. A. M.; Machida, T.; Matsueda, H.; Sawa, Y.
2011-05-01
Quantifying the fluxes of carbon dioxide (CO2) between the atmosphere and terrestrial ecosystems in all their diversity, across the continents, is important and urgent for implementing effective mitigating policies. Whereas much is known for Europe and North America for instance, in comparison, South Asia, with 1.6 billion inhabitants and considerable CO2 fluxes, remained terra incognita in this respect. We use regional measurements of atmospheric CO2 aboard a Lufthansa passenger aircraft between Frankfurt (Germany) and Chennai (India) at cruise altitude, in addition to the existing network sites for 2008, to estimate monthly fluxes for 64-regions using Bayesian inversion and transport model simulations. The applicability of the model's transport parameterization is confirmed using SF6, CH4 and N2O simulations for the CARIBIC datasets. The annual amplitude of carbon flux obtained by including the aircraft data is twice as large as the fluxes simulated by a terrestrial ecosystem model that was applied to prescribe the fluxes used in the inversions. It is shown that South Asia sequestered carbon at a rate of 0.37 ± 0.20 Pg C yr-1 (1 Pg C = 1015 g of carbon in CO2) for the years 2007 and 2008. The seasonality and the strength of the calculated monthly fluxes are successfully validated using independent measurements of vertical CO2 profiles over Delhi and spatial variations at cruising altitude over Asia aboard Japan Airlines passenger aircraft.
Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools.
Seto, Karen C; Güneralp, Burak; Hutyra, Lucy R
2012-10-02
Urban land-cover change threatens biodiversity and affects ecosystem productivity through loss of habitat, biomass, and carbon storage. However, despite projections that world urban populations will increase to nearly 5 billion by 2030, little is known about future locations, magnitudes, and rates of urban expansion. Here we develop spatially explicit probabilistic forecasts of global urban land-cover change and explore the direct impacts on biodiversity hotspots and tropical carbon biomass. If current trends in population density continue and all areas with high probabilities of urban expansion undergo change, then by 2030, urban land cover will increase by 1.2 million km(2), nearly tripling the global urban land area circa 2000. This increase would result in considerable loss of habitats in key biodiversity hotspots, with the highest rates of forecasted urban growth to take place in regions that were relatively undisturbed by urban development in 2000: the Eastern Afromontane, the Guinean Forests of West Africa, and the Western Ghats and Sri Lanka hotspots. Within the pan-tropics, loss in vegetation biomass from areas with high probability of urban expansion is estimated to be 1.38 PgC (0.05 PgC yr(-1)), equal to ∼5% of emissions from tropical deforestation and land-use change. Although urbanization is often considered a local issue, the aggregate global impacts of projected urban expansion will require significant policy changes to affect future growth trajectories to minimize global biodiversity and vegetation carbon losses.
Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools
Seto, Karen C.; Güneralp, Burak; Hutyra, Lucy R.
2012-01-01
Urban land-cover change threatens biodiversity and affects ecosystem productivity through loss of habitat, biomass, and carbon storage. However, despite projections that world urban populations will increase to nearly 5 billion by 2030, little is known about future locations, magnitudes, and rates of urban expansion. Here we develop spatially explicit probabilistic forecasts of global urban land-cover change and explore the direct impacts on biodiversity hotspots and tropical carbon biomass. If current trends in population density continue and all areas with high probabilities of urban expansion undergo change, then by 2030, urban land cover will increase by 1.2 million km2, nearly tripling the global urban land area circa 2000. This increase would result in considerable loss of habitats in key biodiversity hotspots, with the highest rates of forecasted urban growth to take place in regions that were relatively undisturbed by urban development in 2000: the Eastern Afromontane, the Guinean Forests of West Africa, and the Western Ghats and Sri Lanka hotspots. Within the pan-tropics, loss in vegetation biomass from areas with high probability of urban expansion is estimated to be 1.38 PgC (0.05 PgC yr−1), equal to ∼5% of emissions from tropical deforestation and land-use change. Although urbanization is often considered a local issue, the aggregate global impacts of projected urban expansion will require significant policy changes to affect future growth trajectories to minimize global biodiversity and vegetation carbon losses. PMID:22988086
NASA Astrophysics Data System (ADS)
Loisel, J.; Harden, J. W.; Hugelius, G.
2017-12-01
What are the most important soil services valued by land stewards and planners? Which soil-data metrics can be used to quantify each soil service? What are the steps required to quantitatively index the baseline value of soil services and their vulnerability under different land-use and climate change scenarios? How do we simulate future soil service pathways (or trajectories) under changing management regimes using process-based ecosystem models? What is the potential cost (economic, social, and other) of soil degradation under these scenarios? How sensitive or resilient are soil services to prescribed management practices, and how does sensitivity vary over space and time? We are bringing together a group of scientists and conservation organizations to answer these questions by launching Soil Banker, an open and flexible tool to quantify soil services that can be used at any scale, and by any stakeholder. Our overarching goals are to develop metrics and indices to quantify peatland soil ecosystem services, monitor change of these services, and guide management. This paper describes our methodology applied to peatlands and presents two case studies (Indonesia and Patagonia) demonstrating how Peatland Soil Banker can be deployed as an accounting tool of peatland stocks, a quantitative measure of peatland health, and as a projection of peatland degradation or enhancement under different land-use cases. Why peatlands? They store about 600 billion tons of carbon that account for ⅓ of the world's soil carbon. Peatlands have dynamic GHG exchanges of CO2, CH4, and NOx with the atmosphere, which plays a role in regulating global climate; studies indicate that peatland degradation releases about 2-3 billion tons of CO2 to the atmosphere annually. These ecosystems also provide local and regional ecosystem services: they constitute important components of the N and P cycles, store about 10% of the world's freshwater and buffer large fluxes of freshwater on an annual basis; they also support much biodiversity, including iconic species such as the orangutan in Indonesia and the guanaco in Chile. While these ecosystem services have been recognized in many sectors and a voluntary standard for a peatland carbon market is emerging, peatland services have not been systematically quantified, or accounted for, at the global level.
Hettinger, Robert D.; Roberts, L.N.R.; Biewick, L.R.H.; Kirschbaum, M.A.
1996-01-01
EXECUTIVE SUMMARY This report on the coal resources of the Kaiparowits Plateau, Utah is a contribution to the U.S. Geological Survey's (USGS) 'National Coal Resource Assessment' (NCRA), a five year effort to identify and characterize the coal beds and coal zones that could potentially provide the fuel for the Nation's coal-derived energy during the first quarter of the twenty-first century. For purposes of the NCRA study, the Nation is divided into regions. Teams of geoscientists, knowledgeable about each region, are developing the data bases and assessing the coal within each region. The five major coal-producing regions of the United States under investigation are: (1) the Appalachian Basin; (2) the Illinois Basin; (3) the Gulf of Mexico Coastal Plain; (4) the Powder River Basin and the Northern Great Plains; and (5) the Rocky Mountains and the Colorado Plateau. Six areas containing coal deposits in the Rocky Mountain and Colorado Plateau Region have been designated as high priority because of their potential for development. This report on the coal resources of the Kaiparowits Plateau is the first of the six to be completed. The coal quantities reported in this study are entirely 'resources' and represent, as accurately as the data allow, all the coal in the ground in beds greater than one foot thick. These resources are qualified and subdivided by thickness of coal beds, depth to the coal, distance from known data points, and inclination (dip) of the beds. The USGS has not attempted to estimate coal 'reserves' for this region. Reserves are that subset of the resource that could be economically produced at the present time. The coal resources are differentiated into 'identified' and 'hypothetical' following the standard classification system of the USGS (Wood and others, 1983). Identified resources are those within three miles of a measured thickness value, and hypothetical resources are further than three miles from a data point. Coal beds in the Kaiparowits Plateau are laterally discontinuous relative to many other coal bearing regions of the United States. That is, they end more abruptly and are more likely to fragment or split into thinner beds. Because of these characteristics, the data from approximately 160 drill holes and 40 measured sections available for use in this study are not sufficient to determine what proportion of the resources is technologically and economically recoverable. The Kaiparowits Plateau contains an original resource of 62 billion short tons of coal in the ground. Original resource is defined to include all coal beds greater than one foot thick in the area studied. None of the resource is recoverable by surface mining. However, the total resource figure must be regarded with caution because it does not reflect geologic, technological, land-use, and environmental restrictions that may affect the availability and the recoverability of the coal. At least 32 billion tons of coal are unlikely to be mined in the foreseeable future because the coal beds are either too deep, too thin to mine, inclined at more than 12?, or in beds that are too thick to be completely recovered in underground mining. The estimated balance of 30 billion tons of coal resources does not reflect land use or environmental restrictions, does not account for coal that would be bypassed due to mining of adjacent coal beds, does not consider the amount of coal that must remain in the ground for roof support, and does not take into consideration the continuity of beds for mining. Although all of these factors will reduce the amount of coal that could be recovered, there is not sufficient data available to estimate recoverable coal resources. For purposes of comparison, studies of coal resources in the eastern United States have determined that less than 10 percent of the original coal resource, in the areas studied, could be mined economically at today's prices (Rohrbacher and others, 1994).
NASA Astrophysics Data System (ADS)
Briggs, V. A.; Sogade, J.; Minsley, B.; Lambert, M.; Coles, D.; Repert, P.; Morgan, F.; Rossabi, J.; Riha, B.
2003-12-01
The purpose of this study is to image contaminant plumes of tetrachloroethylene (PCE) and Trichloroethylene (TCE) in a subsurface environment. PCE and TCE have been used in the metals fabrication industry since the start of the second word war and subsequently millions of tons of these chemicals have been released in to the environment. Once in the water supply these contaminants are difficult to remove and can be toxic at the part per billion level. Remediation at the source of many of these contaminated sites, in the form of vapour extraction, can effectively remove alot of the chemicals but without techniques to delineate the size and shape of the contaminated zone, or to monitor the effectiveness of the remediation effort, it is difficult to quantify the remediation success. Using complex resistivity methods it is possible to determine the spatial extent and concentration of these chemicals due to their effect on the pore space chemistry. Even at parts per billion the contaminantas can significantly alter the IP signature enabling detection. Data were collected from a site in South Carolina where these chemcals are known to have been released in large quantities from the 1950's through to the 1980's. Induced Polarization data were measured in a multi-borehole environment to ensure good data coverage. Data is inverted using a 3D finite difference bi-conjugate gradient method and correlated to ground truth boreholes within the region of interest.
NASA Astrophysics Data System (ADS)
Qi, J.
2015-12-01
There is no question that human must produce additional 70% food to feed the new 2.2 billion of people on the planet by 2050, but the question is where to grow the additional food. The demand for the additional food lies not only in producing the basic resources needed to sustain a healthy lifestyle, but also from a changing diet, especially in rapidly developing countries in the dryland regions around the world. It is forecast that this demand for meat will require an additional 0.2 billion tons per year by 2050, which is almost a doubling of present meat consumption. These new demands create mounting pressures on agriculture and pastoral ecosystems and the reported trajectory of warmer and drier climate in the future increases uncertainties in food security, adding further stresses to the already stressed nations in the Asian dryland belt. Different approaches are being either proposed or practiced in the region but the question is whether or not the current practices are sustainable or optimal in addressing the emerging issues. Given the complexity and interplay among the food, water and energy, what are alternatives to ensure a sustainable trajectory of regional development to meet the new food demand? This presentation reviews existing practices and proposes alternative solutions, by specifically examining the trade-offs between different ecosystem services that drylands in Asian may provide. Preliminary analysis suggested that the current trajectory of meat and milk production is likely not on a sustainable pathway.
Ozone Induced Premature Mortality and Crop Yield Loss in China
NASA Astrophysics Data System (ADS)
Lin, Y.; Jiang, F.; Wang, H.
2017-12-01
Exposure to ambient ozone is a major risk factor for health impacts such as chronic obstructive pulmonary disease (COPD) and cause damage to plant and agricultural crops. But these impacts were usually evaluated separately in earlier studies. We apply Community Multi-scale Air Quality model to simulate the ambient O3 concentration at a resolution of 36 km×36 km across China. Then, we follow Global Burden of Diseases approach and AOT40 (i.e., above a threshold of 40 ppb) metric to estimate the premature mortalities and yield losses of major grain crops (i.e., winter wheat, rice and corn) across China due to surface ozone exposure, respectively. Our results show that ozone exposure leads to nearly 67,700 premature mortalities and 145 billion USD losses in 2014. The ozone induced yield losses of all crop production totaled 78 (49.9-112.6)million metric tons, worth 5.3 (3.4-7.6)billion USD, in China. The relative yield losses ranged from 8.5-14% for winter wheat, 3.9-15% for rice, and 2.2-5.5% for maize. We can see that the top four health affected provinces (Sichuan, Henan, Shandong, Jiangsu) are also ranking on the winter wheat and rice crop yield loss. Our results provide further evidence that surface ozone pollution is becoming urgent air pollution in China, and have important policy implications for China to alleviate the impacts of air pollution.
46 CFR 52.01-100 - Openings and compensation (modifies PG-32 through PG-39, PG-42 through PG-55).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Openings and compensation (modifies PG-32 through PG-39, PG-42 through PG-55). 52.01-100 Section 52.01-100 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-100 Openings and compensation (modifies PG-32 through PG-39, PG-42...
46 CFR 52.01-100 - Openings and compensation (modifies PG-32 through PG-39, PG-42 through PG-55).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Openings and compensation (modifies PG-32 through PG-39, PG-42 through PG-55). 52.01-100 Section 52.01-100 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-100 Openings and compensation (modifies PG-32 through PG-39, PG-42...
46 CFR 52.01-100 - Openings and compensation (modifies PG-32 through PG-39, PG-42 through PG-55).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Openings and compensation (modifies PG-32 through PG-39, PG-42 through PG-55). 52.01-100 Section 52.01-100 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-100 Openings and compensation (modifies PG-32 through PG-39, PG-42...
46 CFR 52.01-100 - Openings and compensation (modifies PG-32 through PG-39, PG-42 through PG-55).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Openings and compensation (modifies PG-32 through PG-39, PG-42 through PG-55). 52.01-100 Section 52.01-100 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-100 Openings and compensation (modifies PG-32 through PG-39, PG-42...
46 CFR 52.01-100 - Openings and compensation (modifies PG-32 through PG-39, PG-42 through PG-55).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Openings and compensation (modifies PG-32 through PG-39, PG-42 through PG-55). 52.01-100 Section 52.01-100 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-100 Openings and compensation (modifies PG-32 through PG-39, PG-42...
Fierro, S; Viñoles, C; Olivera-Muzante, J
2016-04-01
To determine estrous, ovarian and reproductive responses after different prostaglandin (PG)-based protocols, ewes were assigned to groups PG10, PG12, PG14 or PG16 (twoPG injections administered 10, 12, 14 or 16 days apart; respectively). Experiment I (n=132) was conducted to evaluate the estrous response, ovulation rate (OR), conception and fertility. Experiment II (n=24) was conducted to evaluate ovarian follicle growth, steroid concentrations and the interval from the second PG injection to estrus (PG-estrus) and ovulation (PG-ovulation). Estrous response was less with the PG16 (P<0.05) treatment, and the extent of estrous synchrony was greater with the PG10 and PG12 treatments. Ovarian follicle growth and the intervals for the variables PG-estrus, PG-ovulation and OR were similar among groups (P>0.05). From 8 to 4 days before estrus, progesterone (P4) concentrations were greater for the PG14 and PG16 than for the PG10 and PG12 (P<0.05) groups. There were more days where concentrations of P4 were above 3.18 nmol/L with the PG14 and PG16 than PG10 and PG12 (P<0.05) treatments. Use of the PG14 and PG16 treatments resulted in greater estradiol (E2) at estrus and 12h later than use of the PG10 and PG12 treatments. A positive correlation was observed between the duration of the luteal phase and maximum E2 concentrations, and between duration of the luteal phase and days with E2 concentrations above 10 pmol/L. Conception and fertility were greater with use of the PG14 compared with PG10 and PG12 (P<0.05) treatments. The administration of two PG injections 10, 12, 14 or 16 days apart resulted in different durations of the luteal phase that were positively associated with E2 concentrations and the reproductive outcome. The shorter luteal phases were associated with greater synchrony in time of estrus. The intervals for the variables PG-estrus, PG-ovulation and OR were similar among groups. Copyright © 2016 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-10-01
... partially protected waters— EC01MR91.010 where— X=1.0 long tons/sq. ft. (10.9 metric tons/sq. meter). Y=1.1 long tons/sq. ft. (12.0 metric tons/sq. meter). Z=1.25 long tons/sq. ft. (13.7 metric tons/sq. meter.... meter). Y=1.7 long tons/sq. ft. (18.6 metric tons/sq. meter). Z=1.9 long tons/sq. ft. (20.8 metric tons...
Coal resources available for development; a methodology and pilot study
Eggleston, Jane R.; Carter, M. Devereux; Cobb, James C.
1990-01-01
Coal accounts for a major portion of our Nation's energy supply in projections for the future. A demonstrated reserve base of more than 475 billion short tons, as the Department of Energy currently estimates, indicates that, on the basis of today's rate of consumption, the United States has enough coal to meet projected energy needs for almost 200 years. However, the traditional procedures used for estimating the demonstrated reserve base do not account for many environmental and technological restrictions placed on coal mining. A new methodology has been developed to determine the quantity of coal that might actually be available for mining under current and foreseeable conditions. This methodology is unique in its approach, because it applies restrictions to the coal resource before it is mined. Previous methodologies incorporated restrictions into the recovery factor (a percentage), which was then globally applied to the reserve (minable coal) tonnage to derive a recoverable coal tonnage. None of the previous methodologies define the restrictions and their area and amount of impact specifically. Because these restrictions and their impacts are defined in this new methodology, it is possible to achieve more accurate and specific assessments of available resources. This methodology has been tested in a cooperative project between the U.S. Geological Survey and the Kentucky Geological Survey on the Matewan 7.5-minute quadrangle in eastern Kentucky. Pertinent geologic, mining, land-use, and technological data were collected, assimilated, and plotted. The National Coal Resources Data System was used as the repository for data, and its geographic information system software was applied to these data to eliminate restricted coal and quantify that which is available for mining. This methodology does not consider recovery factors or the economic factors that would be considered by a company before mining. Results of the pilot study indicate that, of the estimated original 986.5 million short tons of coal resources in Kentucky's Matewan quadrangle, 13 percent has been mined, 2 percent is restricted by land-use considerations, and 23 percent is restricted by technological considerations. This leaves an estimated 62 percent of the original resource, or approximately 612 million short tons available for mining. However, only 44 percent of this available coal (266 million short tons) will meet current Environmental Protection Agency new-source performance standards for sulfur emissions from electric generating plants in the United States. In addition, coal tonnage lost during mining and cleaning would further reduce the amount of coal actually arriving at the market.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James J.; Trabucchi, Chiara; Patton , Lindene
2010-03-01
This paper explores how the flawed, widely held public policy view of an ever growing risk associated with long-term carbon dioxide (CO2) storage profoundly influences the public policy dialogue about how to best address the long term risk profile for geologic storage. In order to accomplish this, the authors present evidence from the rapidly emerging science and engineering of CO2 storage which demonstrates that, with proper site characterization and sound operating practices, retention of stored CO2 will increase with time thus invalidating the premise of an ever growing risk. The authors focus on key issues of fit, interplay, and scalabilitymore » associated with a trust fund funded by a hypothetical $1/tonCO2 tipping fee for each ton of CO2 stored in the United States under WRE450 and WRE550 climate policies. The authors conclude there is no intrinsic value in creating a trust fund predicated solely on collecting a fixed fee that is not mapped to site-specific risk profiles. If left to grow unchecked, a trust fund that is predicated on a constant stream of annual payments unrelated to the site’s risk profile could result in the accumulation of hundreds of billions to more than a trillion dollars in real terms contributing to significant opportunity cost of capital. Further, rather than mitigating the financial consequences of long-term CCS risks, this analysis suggests a blanket $1/tonCO2 tipping fee may increase the probability and frequency of long-term risk by eliminating financial incentives for sound operating behavior and site selection criteria – contribute to moral hazard. At a minimum, effective use of a trust fund requires: (1) strong oversight regarding site selection and fund management, and (2) a clear process by which the fund is periodically valued and funds collected are mapped to the risk profile of the pool of covered CCS sites. Without appropriate checks and balances, there is no a priori reason to believe that the amount of funds held in trust will map to the actual amount of funds needed to address long-term care expenses and delimited compensatory damages. For this reason, the authors conclude that the financing of a trust fund or other risk management instrument should be based on a site delimited estimate of future expected financial consequences rather than on the random adoption of a fixed funding stream, e.g., a blanket $1/ton , because it ‘sounds’ reasonable.« less
NASA Astrophysics Data System (ADS)
Mohlotsane, Pascalina; Owusu-Sekyere, Enoch; Jordaan, Henry
2017-04-01
A significant amount of water is used in food production. The current increase in demand for food and impact of climate change place much pressure on the available water resources. South Africa is soon approaching complete utilisation of its available surface water, with irrigated agriculture accountable for about 63% of the country's available water use. This poses a threat to food security. Wheat is the largest winter cereal crop produced in South Africa, approximately 80% of this wheat is used to produce Bread. Bread consumption in South Africa is estimated at 2.8 billion loaves per annum. About 62 loaves of bread are consumed per person per annum with noticeable differences in preferences. Therefore, it is important to account for the amount of water used along the wheat-bread production chain. In this paper, we examined water footprint along the wheat-bread value chain. The water footprint concept provides an appropriate framework for analysis to find the link between the consumption of agricultural goods and the use of water resources. The paper employed the Global Water Footprint Standard approach to calculating the volumetric green, blue and grey water footprint along the wheat-bread value chain. Our findings reveal that wheat production at the farm level accounts for 99.95 percent of the total water footprint of the bread, while processing and wholesale levels only account for 0.56 per cent. Our findings highlight the importance of effective and efficient water use at the farm level for wheat production. Specifically, the total water footprint of wheat bread is 937.42m3.ton-1. The green water component was found to be 190.59m3.ton-1 and that of blue water was 745.28 m3.ton-1. Grey water footprint accounted for only 1.55 m3.ton-1. The results indicate that the amount of water used at farm level is the largest contributor to the total water footprint of bread. Given the blue water scarcity situation in South Africa, it is very critical for wheat producers to pay particular attention to the large blue water usage in order to be sustainable in their production. Economically, we found that value added to water as it moves along the wheat-bread value chain varies from one stage to another. More value is added to water at the farm level, relative to the milling and bakery levels. Hence, we recommend that the economic dimension of water utilisation should be considered in the production decision of food producers.
Goldfarb, Richard J.; Berger, Byron R.; George, Micheal W.; Seal, Robert R.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.
2017-12-19
Tellurium (Te) is a very rare element that averages only 3 parts per billion in Earth’s upper crust. It shows a close association with gold and may be present in orebodies of most gold deposit types at levels of tens to hundreds of parts per million. In large-tonnage mineral deposits, such as porphyry copper and seafloor volcanogenic massive sulfide deposits, sulfide minerals may contain hundreds of parts per million tellurium, although the orebodies likely have overall concentrations of 0.1 to 1.0 parts per million tellurium. Tellurium is presently recovered as a primary ore from only two districts in the world; these are the gold-tellurium epithermal vein deposits located adjacent to one another at Dashuigou and Majiagou (Sichuan Province) in southwestern China, and the epithermal-like mineralization at the Kankberg deposit in the Skellefteå VMS district of Västerbotten County, Sweden. Combined, these two groups of deposits account for about 15 percent (about 70 metric tons) of the annual global production of between 450 and 470 metric tons of tellurium. Most of the world’s tellurium, however, is produced as a byproduct of the mining of porphyry copper deposits. These deposits typically yield concentrations of 1 to 4 percent tellurium in the anode slimes recovered during copper refining. Present production of tellurium from the United States is solely from the anode slimes at ASARCO LLC’s copper refinery in Amarillo, Texas, and may total about 50 metric tons per year. The main uses of tellurium are in photovoltaic solar cells and as an additive to copper, lead, and steel alloys in various types of machinery. The environmental data available regarding the mining of tellurium are limited; most concerns to date have focused on the more-abundant metals present in the large-tonnage deposits from which tellurium is recovered as a byproduct. Global reserves of tellurium are estimated to be 24,000 metric tons, based on the amount of tellurium likely contained in global copper reserves and on a 50 percent recovery rate from refinery anode slimes during the commonly used electrolytic process, also known as solvent extraction-electrolytic refining. If the more economical solvent-leach process—a process that does not recover tellurium—is increasingly used in the future to recover lower grades of copper from porphyry and other large-tonnage deposits, then additional high-grade tellurium-rich gold deposits may become new primary sources for tellurium, particularly epithermal vein deposits associated with alkaline magmatism.
Energy-efficient drinking water disinfection for greenhouse gas mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadgil, A.J.; Greene, D.M.; Rosenfeld, A.
Anecdotal evidence suggests that approximately one billion people worldwide use cookstoves to boil their drinking water. About half of this population is in China. Some populations (e.g. Jakarta) spend 1% of their GDP on boiling drinking water. Impoverished and/or ignorant populations not yet boiling their drinking water will do so when they can both afford it and understand the risks of unsafe drinking water. A recently developed water disinfection technology (UV Waterworks) can produce safe drinking water while earning tradable carbon credits (or credit as a clean development mechanism) when implemented as part of national energy, health, and carbon emissionsmore » trading policy, UV Waterworks uses approximately 6,000 times less energy than boiling over a biomass cookstove. Each unit that replaces boiling may save up to 175 or 300 tons/year of carbon-equivalent GHG emissions, depending on if it replaces sustainably harvested biomass (SHB) or non-SHB. For the approximately 500M Chinese boiling their drinking water over biomass (assumed SHB), this suggests a technical potential (that is, potential under the limiting case of 100% market adoption) of saving 87M tons/year of carbon-equivalent non-CO{sub 2} GHG emissions. The energy savings and corresponding emissions reductions will vary with cookstove fuels and stove efficiency: non-SHB and kerosene represent the most and least GHG-producing cookstove fuels, respectively, among those readily available to the populations of interest. The authors bracket the global technical potential for carbon emission reductions resulting from implementation of UV Waterworks, and estimate the value of tradable carbon credits earned from these reductions.« less
China's water shortage could shake world food security.
Brown, L R; Halweil, B
1998-01-01
This report indicates the global concern about China's water shortages and describes basin supplies, global availability of grain, and reasons for water losses. There is little precise data on how land productivity will be affected by declines in irrigation. Reports from the "China Daily" indicate that the 1995 grain harvest in Shandong province declined by 2.7 million tons (food for 9 million people) due to water failures of the Yellow River. A delegate at the 1998 National People's Congress pointed out that rural villages nationwide had shortages of 30 billion cu. m and losses of 20 million tons of grain production. About 70% of grain harvests rely on irrigation. Water demand for residential use and industrial use is likely to increase and compete with farm use. One unlikely option is to divert irrigation water to cities as needed and import grain. The entire agricultural, energy, and industrial economies need to be made more water efficient. Agriculture will need to produce more water efficient crops and livestock products and less water intensive energy supplies. Another alternative is to divert water from one location to another. Water pricing could reinforce efficiency of use. Use of composting toilets could reduce human residential water demand. Urban capacity building should rely on separate industrial and residential wastewater systems. Investing in technologies for industry can reduce water demand among paper and steel producers. The fastest growing grain market is in North Africa and the Middle East. Trends in principal grain exporting countries with 85% of global exports indicate no growth in grain production for export since 1980.
The green operating room: simple changes to reduce cost and our carbon footprint.
Wormer, Blair A; Augenstein, Vedra A; Carpenter, Christin L; Burton, Patrick V; Yokeley, William T; Prabhu, Ajita S; Harris, Beth; Norton, Sujatha; Klima, David A; Lincourt, Amy E; Heniford, B Todd
2013-07-01
Generating over four billion pounds of waste each year, the healthcare system in the United States is the second largest contributor of trash with one-third produced by operating rooms. Our objective is to assess improvement in waste reduction and recycling after implementation of a Green Operating Room Committee (GORC) at our institution. A surgeon and nurse-initiated GORC was formed with members from corporate leadership, nursing, anesthesia, and OR staff. Initiatives for recycling opportunities, reduction of energy and water use as well as solid waste were implemented and the results were recorded. Since formation of GORC in 2008, our OR has diverted 6.5 tons of medical waste. An effort to recycle all single-use devices was implemented with annual solid waste reduction of approximately 12,860 lbs. Disposable OR foam padding was replaced with reusable gel pads at greater than $50,000 per year savings. Over 500 lbs of previously discarded batteries were salvaged from the OR and donated to charity or redistributed in the hospital ($9,000 annual savings). A "Power Down" initiative to turn off all anesthesia and OR lights and equipment not in use resulted in saving $33,000 and 234.3 metric tons of CO2 emissions reduced per year. Converting from soap to alcohol-based waterless scrub demonstrated a potential saving of 2.7 million liters of water annually. Formation of an OR committee dedicated to ecological initiatives can provide a significant opportunity to improve health care's impact on the environment and save money.
Burden shifting of water quantity and quality stress from megacity Shanghai
NASA Astrophysics Data System (ADS)
Zhao, Xu; Liu, Junguo; Yang, Hong; Duarte, Rosa; Tillotson, Martin R.; Hubacek, Klaus
2016-09-01
Much attention has been paid to burden shifting of CO2 emissions from developed regions to developing regions through trade. However, less discussed is that trade also acts as a mechanism enabling wealthy consumers to shift water quantity and quality stress to their trading partners. In this study, we investigate how Shanghai, the largest megacity in China, draws water resources from all over China and outsources its pollution through virtual quantity and quality water flows associated with trade. The results show that Shanghai's consumption of goods and services in 2007 led to 11.6 billion m3 of freshwater consumption, 796 thousand tons of COD, and 16.2 thousand tons of NH3-N in discharged wastewater. Of this, 79% of freshwater consumption, 82.9% of COD and 82.5% of NH3-N occurred in other Chinese Provinces which provide goods and services to Shanghai. Thirteen Provinces with severe and extreme water quantity stress accounted for 60% of net virtual water import to Shanghai, while 19 Provinces experiencing water quality stress endured 79% of net COD outsourcing and 75.5% of net NH3-N outsourcing from Shanghai. In accordance with the three "redlines" recently put forward by the Chinese central government to control water pollution and cap total water use in all provinces, we suggest that Shanghai should share its responsibility for reducing water quantity and quality stress in its trading partners through taking measures at provincial, industrial, and consumer levels. In the meantime, Shanghai needs to enhance demand side management by promoting low water intensity consumption.
Conditions to generate Steam Fog Occurred around the Chungju Lake in the South Korea
NASA Astrophysics Data System (ADS)
Byungwoo, J.
2017-12-01
We have collected the field observation data of the steam fog occurred around the Chungju Lake in the South Korea for 3 years(2014 2016) and analyzed conditions in which the steam fog occurred. The Chungju Lake is an artificial lake made by the Chungju Dam with a water storage of 2.7 billion tons, which is the second largest in South Korea. The Chungju Dam have discharged water of the average 2.2 million tons downstream to produce electricity per day. The drainage water heats downstream of the Chungju dam and the air above water surface of downstream of that. When the warm, humid air above the downstream water mixed with cold air mass, it caused "steam fog" around the downstream of Chungju lake regardless of amount of the discharged water. The condition that promote the generation of steam fog in autumn and winter is as follows: (1) cloudless night with light winds below 1.5 m/s. (2) The differences between the temperature of discharged water from the Chungju Dam and the air temperature above the discharged water varied from 3° to 15° in autumn, from 15° to 20° in winter respectively. (3) When stream fog was generated, sensible heat flux ranged in autumn from 5 to 15 W/m2, in winter from 15 to 20 W/m2 respectively. Latent heat flux ranged in autumn from 15 to 20 W/m2, in winter from 10 to 15 W/m2 respectively.
Li, Huizhen; Zeng, Eddy Y; You, Jing
2014-05-01
To feed an ever-growing population, it is necessary to take all measures to increase crop yields, including the use of pesticides. It has long been a difficult task to boost agricultural production and simultaneously minimize the impact of pesticide application on the environment, particularly in China, a developing country with more than 1.3 billion people. China has recently become the world's leading producer and consumer of pesticides, with production and consumption reaching 265 tons and 179 tons, respectively, in 2011, and a national average pesticide application dosage of more than 14 kg/ha. The large quantities of pesticides applied in agricultural fields have resulted in serious environmental deterioration. Organochlorine pesticides, such as dichloro-diphenyl-trichloroethane and hexachlorohexane, have become ubiquitous in the environment of China, with spatial distributions in soils and aquatic systems similar to their historic application patterns in different geographic regions: southeast > central > northwest. Pollution by current-use pesticides, for example, organophosphates and pyrethroids, has also been of great concern. To mitigate pesticide pollution in China, a significant reduction in pesticide inputs into the environment is mandatory. This can be accomplished only with joint efforts by the government, professionals, and citizens in combination with rigorous enforcement of laws and regulations, training of farmers in pesticide knowledge and environmental awareness, and technological innovation for producing low-risk pesticides and developing efficient application approaches. Restoring contaminated sites is also an urgent task. Finally, food security and environmental pollution are not problems for a sole country, and international cooperation and communication are necessary. © 2014 SETAC.
Environmental and economic vision of plasma treatment of waste in Makkah
NASA Astrophysics Data System (ADS)
Galaly, Ahmed Rida; van Oost, Guido
2017-10-01
An environmental and economic assessment of the development of a plasma-chemical reactor equipped with plasma torches for the environmentally friendly treatment of waste streams by plasma is outlined with a view to the chemical and energetic valorization of the sustainability in the Kingdom of Saudi Arabia (KSA). This is especially applicable in the pilgrimage season in the city of Makkah, which is a major challenge since the amount of waste was estimated at about 750 thousand tons through Arabic Year 1435H (2015), and is growing at a rate of 3%-5% annually. According to statistics, the value of waste in Saudi Arabia ranges between 8 and 9 billion EUR. The Plasma-Treatment Project (PTP) encompasses the direct plasma treatment of all types of waste (from source and landfill), as well as an environmental vision and economic evaluation of the use of the gas produced for fuel and electricity production in KSA, especially in the pilgrimage season in the holy city Makkah. The electrical power required for the plasma-treatment process is estimated at 5000 kW (2000 kW used for the operation of the system and 3000 kW sold), taking into account the fact that: (1) the processing capacity of solid waste is 100 tons per day (2) and the sale of electricity amounts to 23.8 MW at 0.18 EUR per kWh. (3) The profit from the sale of electricity per year is estimated at 3.27 million EUR and the estimated profit of solid-waste treatment amounts to 6 million EUR per year and (4) the gross profit per ton of solid waste totals 8 million EUR per year. The present article introduces the first stage of the PTP, in Makkah in the pilgrimage season, which consists of five stages: (1) study and treatment of waste streams, (2) slaughterhouse waste treatment, (3) treatment of refuse-derived fuel, (4) treatment of car tires and (5) treatment of slag (the fifth stage associated with each stage from the four previous stages).
Three Essays in Energy and Environmental Economics
NASA Astrophysics Data System (ADS)
Brehm, Paul A.
Chapter 1: We exploit a federal oil lease lottery to examine how markets correct for initial misallocation. Lottery participants included oil companies, as well as individuals without the capital or expertise to drill for oil. In the absence of reallocation, we expect less drilling on leases won by individuals. We find that leases won by firms and individuals have similar short- and long-term outcomes, suggesting that secondary markets rapidly and efficiently correct for misallocation to individuals. However, the small subset of parcels with nearby oil production have 50% less drilling when they are won by firms. We develop a simple model to demonstrate how information asymmetry adversely affects firms to a greater degree. Because individuals have larger gains from trade, they are less likely to have their decision to trade affected by asymmetric information and are more likely to trade with a nearby producing firm. Chapter 2: Between 2007 and 2013 the natural gas price dramatically declined, in large part due to hydraulic fracturing. Lower natural gas prices induced switching from coal generation to natural gas generation; I find 2013 carbon emissions fell by 14,700 tons/hour as a result. Lower prices also incentivized new investment in natural gas capacity. The more efficient capital stock led to an additional decrease of 2,100 tons/hour in 2013. I estimate 65-85% of this new capacity was constructed because of lower gas prices. Using a social cost of carbon of 35/ton, I value the total decrease at roughly 5.1 billion. Chapter 3: We examine the relationship between airfares and oil prices in the Australian airline industry. We find pass-through rates in excess of 100% that vary depending on the amount of competition on a route. We also find evidence that different types of products can have heterogeneous pass-through structures--pass-through rates on non-stop routes are more responsive to competition than on one-stop routes. Our results have important implications for environmental policy in industries with imperfect competition and differentiated products.
46 CFR 52.01-95 - Design (modifies PG-16 through PG-31 and PG-100).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Design (modifies PG-16 through PG-31 and PG-100). 52.01-95 Section 52.01-95 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-95 Design (modifies PG-16 through PG-31 and PG-100). (a) Requirements. Boilers required to be designe...
46 CFR 52.01-95 - Design (modifies PG-16 through PG-31 and PG-100).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Design (modifies PG-16 through PG-31 and PG-100). 52.01-95 Section 52.01-95 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-95 Design (modifies PG-16 through PG-31 and PG-100). (a) Requirements. Boilers required to be designe...
Youth exposure to alcohol use and brand appearances in popular contemporary movies.
Dal Cin, Sonya; Worth, Keilah A; Dalton, Madeline A; Sargent, James D
2008-12-01
To describe alcohol use and alcohol brand appearances in popular movies and estimate adolescents' exposure to this alcohol-related content. Nationally representative, random-digit dialed survey in the United States and content analysis of alcohol depictions in the top 100 US box office hits each year from 1998 to 2002 and 34 top movies from early 2003. A total of 6522 US adolescents aged 10-14 years. Frequency of alcohol use and brand appearances in movies by Motion Picture Association of America (MPAA) rating. Estimated exposure to minutes of movie alcohol use and brand appearances among US adolescents in this age group. Most movies (83%, including 56.6% of G/PG-rated movies) depicted alcohol use and 52% (including 19.2% of G/PG movies) contained at least one alcohol brand appearance, which consisted of branded use by an actor 30.3% of the time. These movies exposed the average US adolescent 10-14 years of age to 5.6 [95% confidence interval (CI) 5.4, 5.7] hours of movie alcohol use and 243.8 (95% CI 238, 250) alcohol brand appearances (5 billion in total), mainly from youth-rated movies. Exposure to movie alcohol content was significantly higher among African American youth than youth of other races. Alcohol use and brand appearances are portrayed frequently in popular US movies (which are distributed world-wide). Children and adolescents in the United States are exposed to hours of alcohol use depictions and numerous brand appearances in movies and most of this exposure is from movies rated for this segment of the population.
Youth Exposure to Alcohol Use and Brand Appearances in Popular Contemporary Movies
DAL CIN, Sonya; WORTH, Keilah A.; DALTON, Madeline A.; SARGENT, James D.
2010-01-01
Aims To describe alcohol use and alcohol brand appearances in popular movies and estimate adolescents’ exposure to this alcohol-related content. Design and setting Nationally representative, random-digit dialed survey in the United States and content analysis of alcohol depictions in the top 100 U.S. box office hits each year from 1998 to 2002 and 34 top movies from early 2003. Participants 6522 U.S. adolescents aged 10-14. Measurements Frequency of alcohol use and brand appearances in movies by Motion Picture Association of America (MPAA) rating. Estimated exposure to minutes of movie alcohol use and brand appearances among U.S. adolescents in this age group. Findings Most movies (83%, including 57% of G/PG-rated movies) depicted alcohol use and 52% (including 19% of G/PG movies) contained at least one alcohol brand appearance, which consisted of branded use by an actor 30% of the time. These movies exposed the average U.S. adolescent 10-14 years of age to 5.6 (95% CI 5.4,5.7) hours of movie alcohol use and 244 (95% CI 238,250) alcohol brand appearances (5 billion in total), mostly from youth-rated movies. Exposure to movie alcohol content was significantly higher among African American youth than youth of other races. Conclusions Alcohol use and brand appearances are frequently portrayed in popular U.S. movies (which are distributed worldwide). Children and adolescents in the U.S. are exposed to hours of alcohol use depictions and numerous brand appearances in movies and most of this exposure is from movies rated for this segment of the population. PMID:18705684
Sediment transport in the Snake and Clearwater rivers in the vicinity of Lewiston, Idaho
Jones, Michael L.; Seitz, Harold R.
1980-01-01
During the period 1972-79, the bedload in the Clearwater River ranged from about 50,000 tons (45,000 metric tons) per year in 1972 and 1974 to about 1,000 tons (910 metric tons) per year in the drought years of 1973 and 1977. Suspended-sediment load at the same location ranged from about 1,000,000 tons (910,000 metric tons) per year to about 50,000 tons (45,000 metric tons) per year for the same respective years. In the Snake River, bedload ranged from about 200,000 tons (180,000 metric tons) per year for 1972 and 1974 to about 10,000 tons (9,100 metric tons) per year in 1973; bedload was too low for determination in 1977. Suspended-sediment load ranged from about 5,000,000 tons (4,500,000 metric tons) per year in 1974 to about 50,000 tons (45,000 metric tons) per year in 1977. Bedload thus ranged from about 2 to 10 percent of suspended load and average about 5 percent. For either river, bedload particle size was bimodal. Modes were in the medium- to coarse-sand range and in the very coarse-gravel range. Suspended-sediment particle size was generally finer than sand.
NASA Astrophysics Data System (ADS)
Tong, X.; Yue, Y.; Fensholt, R.; Brandt, M.
2017-12-01
China's ecological restoration projects are considered as "mega-engineering" activities and the most ambitious afforestation and conservation projects in human history. The highly sensitive and vulnerable karst ecosystem in Southwest China is one of the largest exposed carbonate rock areas (more than 0.54 million km2) in the world. Accelerating desertification has been reported during the last half century, caused by the increasing intensity of human exploitation of natural resources. As a result, vast karst areas (approximately 0.12 million km2) previously covered by vegetation and soil were turned into a rocky landscape. To combat this severe form of land degradation, more than 19 billion USD have been invested in mitigation initiatives since the end of the 1990s. The costs of mega-engineering as a climate change mitigation measure are however only justified if ecosystem properties can be affected at large scales. Here we study the carbon balance of the karst regions of 8 Chinese provinces over four decades, using optical and passive microwave satellite data, supported by statistical data on project implementations. We find that most areas experiencing losses in aboveground biomass carbon are located in areas with a high standing biomass ( 95 Mg C ha-1), whereas areas with a carbon gain are mostly located in regions with a low standing biomass ( 45 Mg C ha-1). However, the overall gains in carbon stocks overbalance the losses, with an average gross loss of -0.8 Pg C and a gross gain of +2.4 Pg C (1980s to 2016), resulting in a net gain of 1.6 Pg C. Areas of carbon gains are widespread and spatially coherent with conservation projects implemented after 2001, whereas areas of carbon losses show that ongoing degradation is still happening in the western parts of the karst regions. We conclude that the impact of conservation projects on the carbon balance of China's karst ecoregions is remarkable, but biomass carbon losses caused by ongoing degradation can not be ignored.
NASA Astrophysics Data System (ADS)
Takahashi, Taro; Sutherland, Stewart C.; Wanninkhof, Rik; Sweeney, Colm; Feely, Richard A.; Chipman, David W.; Hales, Burke; Friederich, Gernot; Chavez, Francisco; Sabine, Christopher; Watson, Andrew; Bakker, Dorothee C. E.; Schuster, Ute; Metzl, Nicolas; Yoshikawa-Inoue, Hisayuki; Ishii, Masao; Midorikawa, Takashi; Nojiri, Yukihiro; Körtzinger, Arne; Steinhoff, Tobias; Hoppema, Mario; Olafsson, Jon; Arnarson, Thorarinn S.; Tilbrook, Bronte; Johannessen, Truls; Olsen, Are; Bellerby, Richard; Wong, C. S.; Delille, Bruno; Bates, N. R.; de Baar, Hein J. W.
2009-04-01
A climatological mean distribution for the surface water pCO 2 over the global oceans in non-El Niño conditions has been constructed with spatial resolution of 4° (latitude) ×5° (longitude) for a reference year 2000 based upon about 3 million measurements of surface water pCO 2 obtained from 1970 to 2007. The database used for this study is about 3 times larger than the 0.94 million used for our earlier paper [Takahashi et al., 2002. Global sea-air CO 2 flux based on climatological surface ocean pCO 2, and seasonal biological and temperature effects. Deep-Sea Res. II, 49, 1601-1622]. A time-trend analysis using deseasonalized surface water pCO 2 data in portions of the North Atlantic, North and South Pacific and Southern Oceans (which cover about 27% of the global ocean areas) indicates that the surface water pCO 2 over these oceanic areas has increased on average at a mean rate of 1.5 μatm y -1 with basin-specific rates varying between 1.2±0.5 and 2.1±0.4 μatm y -1. A global ocean database for a single reference year 2000 is assembled using this mean rate for correcting observations made in different years to the reference year. The observations made during El Niño periods in the equatorial Pacific and those made in coastal zones are excluded from the database. Seasonal changes in the surface water pCO 2 and the sea-air pCO 2 difference over four climatic zones in the Atlantic, Pacific, Indian and Southern Oceans are presented. Over the Southern Ocean seasonal ice zone, the seasonality is complex. Although it cannot be thoroughly documented due to the limited extent of observations, seasonal changes in pCO 2 are approximated by using the data for under-ice waters during austral winter and those for the marginal ice and ice-free zones. The net air-sea CO 2 flux is estimated using the sea-air pCO 2 difference and the air-sea gas transfer rate that is parameterized as a function of (wind speed) 2 with a scaling factor of 0.26. This is estimated by inverting the bomb 14C data using Ocean General Circulation models and the 1979-2005 NCEP-DOE AMIP-II Reanalysis (R-2) wind speed data. The equatorial Pacific (14°N-14°S) is the major source for atmospheric CO 2, emitting about +0.48 Pg-C y -1, and the temperate oceans between 14° and 50° in the both hemispheres are the major sink zones with an uptake flux of -0.70 Pg-C y -1 for the northern and -1.05 Pg-C y -1 for the southern zone. The high-latitude North Atlantic, including the Nordic Seas and portion of the Arctic Sea, is the most intense CO 2 sink area on the basis of per unit area, with a mean of -2.5 tons-C month -1 km -2. This is due to the combination of the low pCO 2 in seawater and high gas exchange rates. In the ice-free zone of the Southern Ocean (50°-62°S), the mean annual flux is small (-0.06 Pg-C y -1) because of a cancellation of the summer uptake CO 2 flux with the winter release of CO 2 caused by deepwater upwelling. The annual mean for the contemporary net CO 2 uptake flux over the global oceans is estimated to be -1.6±0.9 Pg-C y -1, which includes an undersampling correction to the direct estimate of -1.4±0.7 Pg-C y -1. Taking the pre-industrial steady-state ocean source of 0.4±0.2 Pg-C y -1 into account, the total ocean uptake flux including the anthropogenic CO 2 is estimated to be -2.0±1.0 Pg-C y -1 in 2000.
Long time management of fossil fuel resources to limit global warming and avoid ice age onsets
NASA Astrophysics Data System (ADS)
Shaffer, Gary
2009-02-01
There are about 5000 billion tons of fossil fuel carbon in accessible reserves. Combustion of all this carbon within the next few centuries would force high atmospheric CO2 content and extreme global warming. On the other hand, low atmospheric CO2 content favors the onset of an ice age when changes in the Earth's orbit lead to low summer insolation at high northern latitudes. Here I present Earth System Model projections showing that typical reduction targets for fossil fuel use in the present century could limit ongoing global warming to less than one degree Celcius above present. Furthermore, the projections show that combustion pulses of remaining fossil fuel reserves could then be tailored to raise atmospheric CO2 content high and long enough to parry forcing of ice age onsets by summer insolation minima far into the future. Our present interglacial period could be extended by about 500,000 years in this way.
Agricultural Baseline (BL0) scenario of the 2016 Billion-Ton Report
Davis, Maggie R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000181319328); Hellwinkel, Chad [University of Tennessee, APAC] (ORCID:0000000173085058); Eaton, Laurence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000312709626); Langholtz, Matthew H [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000281537154); Turhollow, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000228159350); Brandt, Craig [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000214707379); Myers, Aaron [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000320373827)
2016-07-13
Scientific reason for data generation: to serve as the reference case for the BT16 volume 1 agricultural scenarios. The agricultural baseline runs from 2015 through 2040; a starting year of 2014 is used. Date the data set was last modified: 02/12/2016 How each parameter was produced (methods), format, and relationship to other data in the data set: simulation was developed without offering a farmgate price to energy crops or residues (i.e., building on both the USDA 2015 baseline and the agricultural census data (USDA NASS 2014). Data generated are .txt output files by year, simulation identifier, county code (1-3109). Instruments used: POLYSYS (version POLYS2015_V10_alt_JAN22B) supplied by the University of Tennessee APAC The quality assurance and quality control that have been applied: • Check for negative planted area, harvested area, production, yield and cost values. • Check if harvested area exceeds planted area for annuals. • Check FIPS codes.
Blood safety--a focus on plasma derivatives in Mainland China.
Zhu, Y M
2007-01-01
Plasma derivative production in Mainland China can be encapsulated by two figures: 50 years of history and 5000 tons of annually processed source plasma. Demands for albumin, immunoglobulinin and main clotting factors can barely be met, despite a relatively low average usage among China's population of 1.3 billion. The tragedy of contamination among plasma donors in Henan province in the early 1990's has left shadows on the safety of the plasma derivative industry. However, during the last ten years the Chinese government has made great strides forward. The regulation of the entire operation has been strengthened, from law and standard setting and upholding to stricter licensing regulations for plasma centers and fractionators. Public concerns in blood safety are gradually being relieved, and confidence is returning. Nevertheless, the plasma donors and hemophilia patients infected a decade ago by infected blood or plasma products represent a set of severe social and medical problems that the government and society must still deal with.
US energy for the rest of the century, 1984 edition
NASA Astrophysics Data System (ADS)
Gustaferro, J. F.
1984-07-01
The U.S. energy consumption and supply for two years 1983 and 2000 is presented. In 1983 the United States consumed about 70.5 quadrillion British thermal units of energy. A U.S. energy consumption of about 84 quadrillion British thermal units in the year 2000 is projected. The 84 quadrillion British thermal units consists of 13 million barrels per day of petroleum, 18 trillion cubic feet of natural gas and 3.5 trillion kilowatt hours of electricity. Coal production is projected at 1,405 million tons which includes exports. The data presented in the 1984 forecast over the spectrum of U.S. energy requirements and focus on the end use of energy operational purposes, e.g., highway transportation, space heating, lighting, and construction. Data on fuel consumption by types and energy content for 1983 and as projected for the year 2000 is provided. End users of energy in the United States currently spend $441 billion annually for energy. This includes direct taxes.
Kostyukevich, Yury; Vlaskin, Mikhail; Borisova, Ludmila; Zherebker, Alexander; Perminova, Irina; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene
2018-02-01
Recent research has revealed that more than 1.3 billion tons of food is wasted globally every year. The disposal of such huge biomass has become a challenge. In the present paper, we report the production of the bio-oil by hydrothermal liquefaction of three classes of food waste: meat, cheese and fruits. The highest yield of the bio-oil was observed for meat (∼60%) and cheese (∼75%), while for fruits, it was considerably low (∼10%). The molecular composition of the obtained bio-oil was investigated using ultrahigh resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry and was found to be similar to that obtained from algae. Several thousand heteroatom compounds (N, N 2 , ON 2 , etc. classes) were reliably identified from each sample. It was found that bio-oils produced from meat and cheese have many compounds (∼90%) with common molecular formulas, while bio-oil produced from fruits differs considerably (∼30% of compounds are unique).
2014-04-18
CAPE CANAVERAL, Fla. - Participating in a SpaceX-3 post-launch news conference in the NASA Press Site television auditorium at Kennedy Space Center in Florida are, from left, William Gersteinmeier, NASA associate administrator for Human Exploration and Operations, and Hans Koenigsmann, SpaceX vice president of Mission Assurance. SpaceX CEO and chief designer Elon Musk participated in the conference by telephone. SpaceX-3 launched at 3:25 p.m. EDT aboard a Falcon 9 rocket carrying a Dragon capsule from Space Launch Complex 40 on Cape Canaveral Air Force Station. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Kim Shiflett
2014-04-18
CAPE CANAVERAL, Fla. - Participating in a SpaceX-3 post-launch news conference in the NASA Press Site television auditorium at Kennedy Space Center in Florida are, from left, Michael Curie, NASA Public Affairs, William Gersteinmeier, NASA associate administrator for Human Exploration and Operations, and Hans Koenigsmann, SpaceX vice president of Mission Assurance. SpaceX CEO and chief designer Elon Musk participated in the conference by telephone. SpaceX-3 launched at 3:25 p.m. EDT aboard a Falcon 9 rocket carrying a Dragon capsule from Space Launch Complex 40 on Cape Canaveral Air Force Station. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Kim Shiflett
Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans
NASA Astrophysics Data System (ADS)
Coutinho, Felipe H.; Silveira, Cynthia B.; Gregoracci, Gustavo B.; Thompson, Cristiane C.; Edwards, Robert A.; Brussaard, Corina P. D.; Dutilh, Bas E.; Thompson, Fabiano L.
2017-07-01
Marine viruses are key drivers of host diversity, population dynamics and biogeochemical cycling and contribute to the daily flux of billions of tons of organic matter. Despite recent advancements in metagenomics, much of their biodiversity remains uncharacterized. Here we report a data set of 27,346 marine virome contigs that includes 44 complete genomes. These outnumber all currently known phage genomes in marine habitats and include members of previously uncharacterized lineages. We designed a new method for host prediction based on co-occurrence associations that reveals these viruses infect dominant members of the marine microbiome such as Prochlorococcus and Pelagibacter. A negative association between host abundance and the virus-to-host ratio supports the recently proposed Piggyback-the-Winner model of reduced phage lysis at higher host densities. An analysis of the abundance patterns of viruses throughout the oceans revealed how marine viral communities adapt to various seasonal, temperature and photic regimes according to targeted hosts and the diversity of auxiliary metabolic genes.
Monitoring industrial contaminants release to Russian Arctic rivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
Reports suggest that over 100 billion metric tons of mixed industrial wastes have been dumped or disposed of in the Northern and Arctic regions of the former Soviet Union in crude landfill facilities or directly into rivers. GERG has undertaken studies in two of the principal river systems transporting contaminants from large watersheds to the Arctic Ocean and Kara Seas, and has obtained samples of sediment and biota for analysis. In the current phase of the study, 20 surficial sediments down each of the axis of the Ob and Yenisey Rivers into the Kara Sea were analyzed for industrially derivedmore » trace organic compounds (hydrocarbons, pesticides, PCBs) and trace metals. Twenty sediments from the two rivers were subjected to high resolution OCIMS analysis for dioxins, furans, and coplanar PCBs to determine the concentrations of these industrial pollutants. In addition, similar analyses were conducted on 10 tissue samples (fish and other invertebrate animals) down the axis of each river.« less
Rhein-Knudsen, Nanna; Ale, Marcel Tutor; Meyer, Anne S.
2015-01-01
Agar, alginate, and carrageenans are high-value seaweed hydrocolloids, which are used as gelation and thickening agents in different food, pharmaceutical, and biotechnological applications. The annual global production of these hydrocolloids has recently reached 100,000 tons with a gross market value just above US$ 1.1 billion. The techno-functional properties of the seaweed polysaccharides depend strictly on their unique structural make-up, notably degree and position of sulfation and presence of anhydro-bridges. Classical extraction techniques include hot alkali treatments, but recent research has shown promising results with enzymes. Current methods mainly involve use of commercially available enzyme mixtures developed for terrestrial plant material processing. Application of seaweed polysaccharide targeted enzymes allows for selective extraction at mild conditions as well as tailor-made modifications of the hydrocolloids to obtain specific functionalities. This review provides an update of the detailed structural features of κ-, ι-, λ-carrageenans, agars, and alginate, and a thorough discussion of enzyme assisted extraction and processing techniques for these hydrocolloids. PMID:26023840
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yilmaz, A.O.
Total coal reserve (hard coal + lignite) in the world is 984 billion tons. While hard coal constitutes 52% of the total reserve, lignite constitutes 48% of it. Turkey has only 0.1% of world hard coal reserve and 1.5% of world lignite reserves. Turkey has 9th order in lignite reserve, 8th order in lignite production, and 12th order in total coal (hard coal and lignite) consumption. While hard coal production meets only 13% of its consumption, lignite production meets lignite consumption in Turkey. Sixty-five percent of produced hard coal and 78% of produced lignite are used for electricity generation. Lignitesmore » are generally used for electricity generation due to their low quality. As of 2003, total installed capacity of Turkey was 35,587 MW, 19% (6,774 MW) of which is produced from coal-based thermal power plants. Recently, use of natural gas in electricity generation has increased. While the share of coal in electricity generation was about 50% for 1986, it is replaced by natural gas today.« less
Ravindran, Rajeev; Jaiswal, Amit Kumar
2016-01-01
Lignocellulose is a generic term used to describe plant biomass. It is the most abundant renewable carbon resource in the world and is mainly composed of lignin, cellulose and hemicelluloses. Most of the food and food processing industry waste are lignocellulosic in nature with a global estimate of up to 1.3 billion tons/year. Lignocellulose, on hydrolysis, releases reducing sugars which is used for the production of bioethanol, biogas, organic acids, enzymes and biosorbents. However, structural conformation, high lignin content and crystalline cellulose hinder its use for value addition. Pre-treatment strategies facilitate the exposure of more cellulose and hemicelluloses for enzymatic hydrolysis. The present article confers about the structure of lignocellulose and how it influences enzymatic degradation emphasising the need for pre-treatments along with a comprehensive analysis and categorisation of the same. Finally, this article concludes with a detailed discussion on microbial/enzymatic inhibitors that arise post pre-treatment and strategies to eliminate them. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rhein-Knudsen, Nanna; Ale, Marcel Tutor; Meyer, Anne S
2015-05-27
Agar, alginate, and carrageenans are high-value seaweed hydrocolloids, which are used as gelation and thickening agents in different food, pharmaceutical, and biotechnological applications. The annual global production of these hydrocolloids has recently reached 100,000 tons with a gross market value just above US$ 1.1 billion. The techno-functional properties of the seaweed polysaccharides depend strictly on their unique structural make-up, notably degree and position of sulfation and presence of anhydro-bridges. Classical extraction techniques include hot alkali treatments, but recent research has shown promising results with enzymes. Current methods mainly involve use of commercially available enzyme mixtures developed for terrestrial plant material processing. Application of seaweed polysaccharide targeted enzymes allows for selective extraction at mild conditions as well as tailor-made modifications of the hydrocolloids to obtain specific functionalities. This review provides an update of the detailed structural features of κ-, ι-, λ-carrageenans, agars, and alginate, and a thorough discussion of enzyme assisted extraction and processing techniques for these hydrocolloids.
Molecular characterization of the TonB2 protein from the fish pathogen Vibrio anguillarum
LÓPEZ, Claudia S.; PEACOCK, R. Sean; CROSA, Jorge H.; VOGEL, Hans J.
2011-01-01
In the fish pathogen Vibrio anguillarum the TonB2 protein is essential for the uptake of the indigenous siderophore anguibactin. Here we describe deletion mutants and alanine replacements affecting the final six amino acids of TonB2. Deletions of more than two amino acids of the TonB2 C-terminus abolished ferric-anguibactin transport, whereas replacement of the last three residues resulted in a protein with wild-type transport properties. We have solved the high-resolution solution structure of the TonB2 C-terminal domain by NMR spectroscopy. The core of this domain (residues 121–206) has an αββαβ structure, whereas residues 76–120 are flexible and extended. This overall folding topology is similar to the Escherichia coli TonB C-terminal domain, albeit with two differences: the β4 strand found at the C-terminus of TonB is absent in TonB2, and loop 3 is extended by 9 Å (0.9 nm) in TonB2. By examining several mutants, we determined that a complete loop 3 is not essential for TonB2 activity. Our results indicate that the β4 strand of E. coli TonB is not required for activity of the TonB system across Gram-negative bacterial species. We have also determined, through NMR chemical-shift-perturbation experiments, that the E. coli TonB binds in vitro to the TonB box from the TonB2-dependent outer membrane transporter FatA; moreover, it can substitute in vivo for TonB2 during ferric-anguibactin transport in V. anguillarum. Unexpectedly, TonB2 did not bind in vitro to the FatA TonB-box region, suggesting that additional factors may be required to promote this interaction. Overall our results indicate that TonB2 is a representative of a different class of TonB proteins. PMID:18973471
Going Outside the TonB Box: Identification of Novel FepA-TonB Interactions In Vivo.
Gresock, Michael G; Postle, Kathleen
2017-05-15
In Gram-negative bacteria, the cytoplasmic membrane protein TonB transmits energy derived from proton motive force to energize transport of important nutrients through TonB-dependent transporters in the outer membrane. Each transporter consists of a beta barrel domain and a lumen-occluding cork domain containing an essential sequence called the TonB box. To date, the only identified site of transporter-TonB interaction is between the TonB box and residues ∼158 to 162 of TonB. While the mechanism of ligand transport is a mystery, a current model based on site-directed spin labeling and molecular dynamics simulations is that, following ligand binding, the otherwise-sequestered TonB box extends into the periplasm for recognition by TonB, which mediates transport by pulling or twisting the cork. In this study, we tested that hypothesis with the outer membrane transporter FepA using in vivo photo-cross-linking to explore interactions of its TonB box and determine whether additional FepA-TonB interaction sites exist. We found numerous specific sites of FepA interaction with TonB on the periplasmic face of the FepA cork in addition to the TonB box. Two residues, T32 and A33, might constitute a ligand-sensitive conformational switch. The facts that some interactions were enhanced in the absence of ligand and that other interactions did not require the TonB box argued against the current model and suggested that the transport process is more complex than originally conceived, with subtleties that might provide a mechanism for discrimination among ligand-loaded transporters. These results constitute the first study on the dynamics of TonB-gated transporter interaction with TonB in vivo IMPORTANCE The TonB system of Gram-negative bacteria has a noncanonical active transport mechanism involving signal transduction and proteins integral to both membranes. To achieve transport, the cytoplasmic membrane protein TonB physically contacts outer membrane transporters such as FepA. Only one contact between TonB and outer membrane transporters has been identified to date: the TonB box at the transporter amino terminus. The TonB box has low information content, raising the question of how TonB can discriminate among multiple different TonB-dependent transporters present in the bacterium if it is the only means of contact. Here we identified several additional sites through which FepA contacts TonB in vivo , including two neighboring residues that may explain how FepA signals to TonB that ligand has bound. Copyright © 2017 American Society for Microbiology.
Insight from TonB Hybrid Proteins into the Mechanism of Iron Transport through the Outer Membrane▿
Kaserer, Wallace A.; Jiang, Xiaoxu; Xiao, Qiaobin; Scott, Daniel C.; Bauler, Matthew; Copeland, Daniel; Newton, Salete M. C.; Klebba, Phillip E.
2008-01-01
We created hybrid proteins to study the functions of TonB. We first fused the portion of Escherichia coli tonB that encodes the C-terminal 69 amino acids (amino acids 170 to 239) of TonB downstream from E. coli malE (MalE-TonB69C). Production of MalE-TonB69C in tonB+ bacteria inhibited siderophore transport. After overexpression and purification of the fusion protein on an amylose column, we proteolytically released the TonB C terminus and characterized it. Fluorescence spectra positioned its sole tryptophan (W213) in a weakly polar site in the protein interior, shielded from quenchers. Affinity chromatography showed the binding of the TonB C-domain to other proteins: immobilized TonB-dependent (FepA and colicin B) and TonB-independent (FepAΔ3-17, OmpA, and lysozyme) proteins adsorbed MalE-TonB69C, revealing a general affinity of the C terminus for other proteins. Additional constructions fused full-length TonB upstream or downstream of green fluorescent protein (GFP). TonB-GFP constructs had partial functionality but no fluorescence; GFP-TonB fusion proteins were functional and fluorescent. The activity of the latter constructs, which localized GFP in the cytoplasm and TonB in the cell envelope, indicate that the TonB N terminus remains in the inner membrane during its biological function. Finally, sequence analyses revealed homology in the TonB C terminus to E. coli YcfS, a proline-rich protein that contains the lysin (LysM) peptidoglycan-binding motif. LysM structural mimicry occurs in two positions of the dimeric TonB C-domain, and experiments confirmed that it physically binds to the murein sacculus. Together, these findings infer that the TonB N terminus remains associated with the inner membrane, while the downstream region bridges the cell envelope from the affinity of the C terminus for peptidoglycan. This architecture suggests a membrane surveillance model of action, in which TonB finds occupied receptor proteins by surveying the underside of peptidoglycan-associated outer membrane proteins. PMID:18390658
Schramski, John R.; Gattie, David K.; Brown, James H.
2015-01-01
Earth is a chemical battery where, over evolutionary time with a trickle-charge of photosynthesis using solar energy, billions of tons of living biomass were stored in forests and other ecosystems and in vast reserves of fossil fuels. In just the last few hundred years, humans extracted exploitable energy from these living and fossilized biomass fuels to build the modern industrial-technological-informational economy, to grow our population to more than 7 billion, and to transform the biogeochemical cycles and biodiversity of the earth. This rapid discharge of the earth’s store of organic energy fuels the human domination of the biosphere, including conversion of natural habitats to agricultural fields and the resulting loss of native species, emission of carbon dioxide and the resulting climate and sea level change, and use of supplemental nuclear, hydro, wind, and solar energy sources. The laws of thermodynamics governing the trickle-charge and rapid discharge of the earth’s battery are universal and absolute; the earth is only temporarily poised a quantifiable distance from the thermodynamic equilibrium of outer space. Although this distance from equilibrium is comprised of all energy types, most critical for humans is the store of living biomass. With the rapid depletion of this chemical energy, the earth is shifting back toward the inhospitable equilibrium of outer space with fundamental ramifications for the biosphere and humanity. Because there is no substitute or replacement energy for living biomass, the remaining distance from equilibrium that will be required to support human life is unknown. PMID:26178196
Schramski, John R; Gattie, David K; Brown, James H
2015-08-04
Earth is a chemical battery where, over evolutionary time with a trickle-charge of photosynthesis using solar energy, billions of tons of living biomass were stored in forests and other ecosystems and in vast reserves of fossil fuels. In just the last few hundred years, humans extracted exploitable energy from these living and fossilized biomass fuels to build the modern industrial-technological-informational economy, to grow our population to more than 7 billion, and to transform the biogeochemical cycles and biodiversity of the earth. This rapid discharge of the earth's store of organic energy fuels the human domination of the biosphere, including conversion of natural habitats to agricultural fields and the resulting loss of native species, emission of carbon dioxide and the resulting climate and sea level change, and use of supplemental nuclear, hydro, wind, and solar energy sources. The laws of thermodynamics governing the trickle-charge and rapid discharge of the earth's battery are universal and absolute; the earth is only temporarily poised a quantifiable distance from the thermodynamic equilibrium of outer space. Although this distance from equilibrium is comprised of all energy types, most critical for humans is the store of living biomass. With the rapid depletion of this chemical energy, the earth is shifting back toward the inhospitable equilibrium of outer space with fundamental ramifications for the biosphere and humanity. Because there is no substitute or replacement energy for living biomass, the remaining distance from equilibrium that will be required to support human life is unknown.
Air impacts from three alternatives for producing JP-8 jet fuel.
Kositkanawuth, Ketwalee; Gangupomu, Roja Haritha; Sattler, Melanie L; Dennis, Brian H; MacDonnell, Frederick M; Billo, Richard; Priest, John W
2012-10-01
To increase U.S. petroleum energy independence, the University of Texas at Arlington (UT Arlington) has developed a direct coal liquefaction process which uses a hydrogenated solvent and a proprietary catalyst to convert lignite coal to crude oil. This sweet crude can be refined to form JP-8 military jet fuel, as well as other end products like gasoline and diesel. This paper presents an analysis of air pollutants resulting from using UT Arlington's liquefaction process to produce crude and then JP-8, compared with 2 alternative processes: conventional crude extraction and refining (CCER), and the Fischer-Tropsch process. For each of the 3 processes, air pollutant emissions through production of JP-8 fuel were considered, including emissions from upstream extraction/ production, transportation, and conversion/refining. Air pollutants from the direct liquefaction process were measured using a LandTEC GEM2000 Plus, Draeger color detector tubes, OhioLumex RA-915 Light Hg Analyzer, and SRI 8610 gas chromatograph with thermal conductivity detector. According to the screening analysis presented here, producing jet fuel from UT Arlington crude results in lower levels of pollutants compared to international conventional crude extraction/refining. Compared to US domestic CCER, the UTA process emits lower levels of CO2-e, NO(x), and Hg, and higher levels of CO and SO2. Emissions from the UT Arlington process for producing JP-8 are estimated to be lower than for the Fischer-Tropsch process for all pollutants, with the exception of CO2-e, which were high for the UT Arlington process due to nitrous oxide emissions from crude refining. When comparing emissions from conventional lignite combustion to produce electricity, versus UT Arlington coal liquefaction to make JP-8 and subsequent JP-8 transport, emissions from the UT Arlington process are estimated to be lower for all air pollutants, per MJ of power delivered to the end user. The United States currently imports two-thirds of its crude oil, leaving its transportation system especially vulnerable to disruptions in international crude supplies. At current use rates, U.S. coal reserves (262 billion short tons, including 23 billion short tons lignite) would last 236 years. Accordingly, the University of Texas at Arlington (UT Arlington) has developed a process that converts lignite to crude oil, at about half the cost of regular crude. According to the screening analysis presented here, producing jet fuel from UT Arlington crude generates lower levels of pollutants compared to international conventional crude extraction/refining (CCER).
14 CFR Sec. 19-5 - Air transport traffic and capacity elements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... passenger-miles CFD * 210 Revenue cargo tons enplaned CFD * 217 Enplaned freight M 219 Enplaned mail M 230 Revenue tons transported CFD * 237 Transported freight S 239 Transported mail S 240 Revenue ton-miles CFD * 241 Revenue ton-miles passenger CFD * 247 Revenue ton-miles freight CFD * 249 Revenue ton-miles mail...
14 CFR 19-5 - Air transport traffic and capacity elements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... passenger-miles CFD * 210 Revenue cargo tons enplaned CFD * 217 Enplaned freight M 219 Enplaned mail M 230 Revenue tons transported CFD * 237 Transported freight S 239 Transported mail S 240 Revenue ton-miles CFD * 241 Revenue ton-miles passenger CFD * 247 Revenue ton-miles freight CFD * 249 Revenue ton-miles mail...
14 CFR Sec. 19-5 - Air transport traffic and capacity elements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... passenger-miles CFD * 210 Revenue cargo tons enplaned CFD * 217 Enplaned freight M 219 Enplaned mail M 230 Revenue tons transported CFD * 237 Transported freight S 239 Transported mail S 240 Revenue ton-miles CFD * 241 Revenue ton-miles passenger CFD * 247 Revenue ton-miles freight CFD * 249 Revenue ton-miles mail...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Gen; Kobayashi, Takeshi; Takeda, Yoshie
Highlights: • Proteoglycan from salmon nasal cartridge (SNC-PG) promoted wound healing in fibroblast monolayers. • SNC-PG stimulated both cell proliferation and cell migration. • Interaction between chondroitin sulfate-units and CD44 is responsible for the effect. - Abstract: Proteoglycans (PGs) are involved in various cellular functions including cell growth, adhesion, and differentiation; however, their physiological roles are not fully understood. In this study, we examined the effect of PG purified from salmon nasal cartilage (SNC-PG) on wound closure using tissue-cultured cell monolayers, an in vitro wound-healing assay. The results indicated that SNC-PG significantly promoted wound closure in NIH/3T3 cell monolayers bymore » stimulating both cell proliferation and cell migration. SNC-PG was effective in concentrations from 0.1 to 10 μg/ml, but showed much less effect at higher concentrations (100–1000 μg/ml). The effect of SNC-PG was abolished by chondroitinase ABC, indicating that chondroitin sulfates (CSs), a major component of glycosaminoglycans (GAGs) in SNC-PG, are crucial for the SNC-PG effect. Furthermore, chondroitin 6-sulfate (C-6-S), a major CS of SNC-PG GAGs, could partially reproduce the SNC-PG effect and partially inhibit the binding of SNC-PG to cells, suggesting that SNC-PG exerts its effect through an interaction between the GAGs in SNC-PG and the cell surface. Neutralization by anti-CD44 antibodies or CD44 knockdown abolished SNC-PG binding to the cells and the SNC-PG effect on wound closure. These results suggest that interactions between CS-rich GAG-chains of SNC-PG and CD44 on the cell surface are responsible for the SNC-PG effect on wound closure.« less
Death of the TonB Shuttle Hypothesis.
Gresock, Michael G; Savenkova, Marina I; Larsen, Ray A; Ollis, Anne A; Postle, Kathleen
2011-01-01
A complex of ExbB, ExbD, and TonB couples cytoplasmic membrane (CM) proton motive force (pmf) to the active transport of large, scarce, or important nutrients across the outer membrane (OM). TonB interacts with OM transporters to enable ligand transport. Several mechanical models and a shuttle model explain how TonB might work. In the mechanical models, TonB remains attached to the CM during energy transduction, while in the shuttle model the TonB N terminus leaves the CM to deliver conformationally stored potential energy to OM transporters. Previous studies suggested that TonB did not shuttle based on the activity of a GFP-TonB fusion that was anchored in the CM by the GFP moiety. When we recreated the GFP-TonB fusion to extend those studies, in our hands it was proteolytically unstable, giving rise to potentially shuttleable degradation products. Recently, we discovered that a fusion of the Vibrio cholerae ToxR cytoplasmic domain to the N terminus of TonB was proteolytically stable. ToxR-TonB was able to be completely converted into a proteinase K-resistant conformation in response to loss of pmf in spheroplasts and exhibited an ability to form a pmf-dependent formaldehyde crosslink to ExbD, both indicators of its location in the CM. Most importantly, ToxR-TonB had the same relative specific activity as wild-type TonB. Taken together, these results provide conclusive evidence that TonB does not shuttle during energy transduction. We had previously concluded that TonB shuttles based on the use of an Oregon Green(®) 488 maleimide probe to assess periplasmic accessibility of N-terminal TonB. Here we show that the probe was permeant to the CM, thus permitting the labeling of the TonB N-terminus. These former results are reinterpreted in the context that TonB does not shuttle, and suggest the existence of a signal transduction pathway from OM to cytoplasm.
Death of the TonB Shuttle Hypothesis
Gresock, Michael G.; Savenkova, Marina I.; Larsen, Ray A.; Ollis, Anne A.; Postle, Kathleen
2011-01-01
A complex of ExbB, ExbD, and TonB couples cytoplasmic membrane (CM) proton motive force (pmf) to the active transport of large, scarce, or important nutrients across the outer membrane (OM). TonB interacts with OM transporters to enable ligand transport. Several mechanical models and a shuttle model explain how TonB might work. In the mechanical models, TonB remains attached to the CM during energy transduction, while in the shuttle model the TonB N terminus leaves the CM to deliver conformationally stored potential energy to OM transporters. Previous studies suggested that TonB did not shuttle based on the activity of a GFP–TonB fusion that was anchored in the CM by the GFP moiety. When we recreated the GFP–TonB fusion to extend those studies, in our hands it was proteolytically unstable, giving rise to potentially shuttleable degradation products. Recently, we discovered that a fusion of the Vibrio cholerae ToxR cytoplasmic domain to the N terminus of TonB was proteolytically stable. ToxR–TonB was able to be completely converted into a proteinase K-resistant conformation in response to loss of pmf in spheroplasts and exhibited an ability to form a pmf-dependent formaldehyde crosslink to ExbD, both indicators of its location in the CM. Most importantly, ToxR–TonB had the same relative specific activity as wild-type TonB. Taken together, these results provide conclusive evidence that TonB does not shuttle during energy transduction. We had previously concluded that TonB shuttles based on the use of an Oregon Green® 488 maleimide probe to assess periplasmic accessibility of N-terminal TonB. Here we show that the probe was permeant to the CM, thus permitting the labeling of the TonB N-terminus. These former results are reinterpreted in the context that TonB does not shuttle, and suggest the existence of a signal transduction pathway from OM to cytoplasm. PMID:22016747
Weck, Melanie N; Brenner, Hermann
2008-08-15
Helicobacter pylori is a major risk factor for chronic atrophic gastritis (CAG). A large variety of definitions of CAG have been used in epidemiologic studies in the past. The aim of this work was to systematically review and summarize estimates of the association between H. pylori infection and CAG according to the various definitions of CAG. Articles on the association between H. pylori infection and CAG published until July 2007 were identified. Separate meta-analyses were carried out for studies defining CAG based on gastroscopy with biopsy, serum pepsinogen I (PG I) only, the pepsinogen I/pepsinogen II ratio (PG I/PG II ratio) only, or a combination of PG I and the PG I/PG II ratio. Numbers of identified studies and summary odds ratios (OR) (95% confidence intervals) were as follows: gastroscopy with biopsy: n = 34, OR = 6.4 (4.0-10.1); PG I only: n = 13, OR = 0.9 (0.7-1.2); PG I/PG II ratio: n = 8, OR = 7.2 (3.1-16.8); combination of PG I and the PG I/PG II ratio: n = 20, OR = 5.7 (4.4-7.5). Studies with CAG definitions based on gastroscopy with biopsy or the PG I/PG II ratio (alone or in combination with PG I) yield similarly strong associations of H. pylori with CAG. The association is missed entirely in studies where CAG is defined by PG I only. (c) 2008 Wiley-Liss, Inc.
Enabling Decisive Strategic Maneuver for the Army Beyond 2010
1999-08-01
System and a small Advanced Fire Support System ( AFSS ). In the long run, it might be better to have several vehicles share an AFSS . These are...18 tons M-113APC 9 tons C’OTM 4 tons Flyer w/5 ton AFSS 10 tons Flyer, 5 ton resupply 10 tons Robotic rotorcraft Self ferry All systems were...Task Force Man-portable Air Defense System Manpower and Personnel Integration Micro- Autonomous Vehicles Micro-Electro-Mechanics Micro Electric
Alecu, M; Geleriu, L; Coman, G; Gălăţescu, L
1998-01-01
Serological level of interleukin-1 (IL-1), Interleukin-2 (IL-2), Interleukin-6 (IL-6) and tumour necrosis factor (TNF) alpha was investigated in 26 patients with scleroderma, divided into three lots, by the extension and the progress of the disease. Determinations were performed by ELISA in attack and in remission (after treatment with prednison). Normal values: IL-1 (0-5 pg/ml), IL-2 (0-5 pg/ml), IL-6 (5-15 pg/ml), TNF (0-16 pg/ml). Lot A. Results obtained at the first determination showed that IL-1 is elevated in 4 cases (10-15 pg/ml), IL-2 in 5 cases (10-32 pg/ml), IL-6 in 5 cases (15-42 pg/ml) and TNF in 4 cases (18-34 pg/ml). In the second determination IL-1 was increased in 1 case (8 pg/ml), IL-2 in 1 case (9 pg/ml), IL-6 in 2 cases (12 pg/ml) and TNF was normal. Lot B. In the first determination IL-1 was elevated in 5 cases (8-12 pg/ml), IL-2 in 5 cases (10-15 pg/ml), IL-6 in 7 cases (16-20 pg/ml) and TNF was raised in 3 cases (18-25 pg/ml). At the second determination IL-1 showed normal values in all the cases, IL-2 was raised in 2 cases (10 pg/ml), IL-6 in 2 cases (12.15 pg/ml), TNF in 1 case (20 pg/ml). Lot C. In the first determination there were raised values in 4 cases for IL-1 (6-8 pg/ml), 3 cases for IL-2 (10-18 pg/ml), 5 cases for IL-6 (18-20 pg/ml), 2 cases for TNF (20 pg/ml). At the second determination IL-2 was elevated in 1 case (10 pg/ml), IL-6 in 1 case (15 pg/ml). We consider that in scleroderma there is a disturbance of the investigated cytokines due to the activation and involvement of the secretory cells into the pathogenesis of the disease. The increase of the serological levels of IL-1, IL-2, IL-6 and TNF depends on the extension of the lesions and the clinical and biological activity periods of the disease. The absence of the increase of the serological levels does not exclude their activity at the lesional site.
78 FR 69992 - Withdrawal of Approval of New Animal Drug Applications; Carbarsone; Roxarsone
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-22
...) * * * Combinations in Roxarsone in grams per ton grams per ton Indications for use Limitations Sponsor (i) [Reserved...) * * * Combinations in Roxarsone in grams per ton grams per ton Indications for use Limitations Sponsor (i) [Reserved... Roxarsone in grams per ton grams per ton Indications for use Limitations Sponsor (i) [Reserved] (ii) 22.7 to...
Adeniran, A E; Nubi, A T; Adelopo, A O
2017-09-01
Waste characterization is the first step to any successful waste management policy. In this paper, the characterization and the trend of solid waste generated in University of Lagos, Nigeria was carried out using ASTM D5231-92 and Resource Conservation Reservation Authority RCRA Waste Sampling Draft Technical Guidance methods. The recyclable potential of the waste is very high constituting about 75% of the total waste generated. The estimated average daily solid waste generation in Unilag Akoka campus was estimated to be 32.2tons. The solid waste characterization was found to be: polythene bags 24% (7.73tons/day), paper 15% (4.83tons/day), organic matters 15%, (4.83tons/day), plastic 9% (2.90tons/day), inert materials 8% (2.58tons/day), sanitary 7% (2.25tons/day), textile 7% (2.25tons/day), others 6% (1.93tons/day), leather 4% (1.29tons/day) metals 3% (0.97tons/day), glass 2% (0.64tons/day) and e-waste 0% (0.0tons/day). The volume and distribution of polythene bags generated on campus had a positive significant statistical correlation with the distribution of commercial and academic structures on campus. Waste management options to optimize reuse, recycling and reduce waste generation were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Yanqiu; He, Fupo; Ye, Jiandong
2016-12-01
In this study, phosphate-based glass (PG) was used as a sintering aid for freeze-cast porous biphasic calcium phosphate (BCP) ceramic, which was sintered under a lower temperature (1000°C). The phase composition, pore structure, compressive strength, and cytocompatibility of calcium phosphate composite ceramics (PG-BCP) were evaluated. The results indicated that PG additive reacted with calcium phosphate during the sintering process, forming β-Ca2P2O7; the ions of sodium and magnesium from PG partially substituted the calcium sites of β-calcium phosphate in BCP. The PG-BCP showed good cytocompatibility. The pore width of the porous PG-BCP ceramics was around 50μm, regardless of the amount of PG sintering aid. As the content of PG increased from 0wt.% to 15wt.%, the compressive strength of PG-BCP increased from 0.02 MP to 0.28MPa. When the PG additive was 17.5wt.%, the compressive strength of PG-BCP dramatically increased to 5.66MPa. Addition of 15wt.% PG was the critical point for the properties of PG-BCP. PG is considered as an effective sintering aid for freeze-cast porous bioceramics. Copyright © 2016 Elsevier B.V. All rights reserved.
Ruminal and intermediary metabolism of propylene glycol in lactating Holstein cows.
Kristensen, N B; Raun, B M L
2007-10-01
Four lactating Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, and hepatic vein were used in a cross-over design to study the metabolism of propylene glycol (PG). Each cow received 2 treatments: control (no infusion) and infusion of 650 g of PG into the rumen at the time of the morning feeding. Propylene glycol was infused on the day of sampling only. Samples of arterial, portal, and hepatic blood as well as ruminal fluid were obtained at 0.5 h before feeding and at 0.5, 1.5, 2.5, 3.5, 5, 7, 9, and 11 h after feeding. Infusion of PG did not affect ruminal pH or the total concentration of ruminal volatile fatty acids, but did decrease the molar proportion of ruminal acetate. The ruminal concentrations of PG, propanol, and propanal as well as the molar proportion of propionate increased with PG infusion. The plasma concentrations of PG, ethanol, propanol, propanal, glucose, L-lactate, propionate, and insulin increased with PG and the plasma concentrations of acetate and beta-hydroxybutyrate decreased. The net portal flux of PG, propanol, and propanal increased with PG. The hepatic uptake of PG was equivalent to 19% of the intraruminal dose. When cows were dosed with PG, the hepatic extraction of PG was between 0 and 10% depending on the plasma concentration of PG, explaining the slow decrease in arterial PG. The increased net hepatic flux of L-lactate with PG could account for the entire hepatic uptake of PG, which suggests that the primary hepatic pathway for PG is oxidation to l-lactate. The hepatic uptake of propanol increased with PG, but no effects of PG on the net hepatic and net splanchnic flux of glucose were observed. Despite no effect of PG on net portal flux and net hepatic flux of propionate, the net splanchnic flux of propionate increased and the data suggest that propionate produced from hepatic metabolism of propanol is partly released to the blood. The data suggest that PG affects metabolism of the cows by 2 modes of action: 1) increased supply of l-lactate and propionate to gluconeogenesis and 2) insulin resistance of peripheral tissues induced by increased concentrations of PG and propanol as well as a decreased ratio of ketogenic to glucogenic metabolites in arterial blood plasma.
Current land cover in the tropics and its potential for sequestering carbon
NASA Astrophysics Data System (ADS)
Houghton, R. A.; Unruh, J. D.; Lefebvre, P. A.
1993-06-01
Emissions of carbon dioxide and other greenhouse gases from human activity are increasing the concentrations of these gases in the atmosphere. The Earth is expected to warm as a result, with consequences that are potentially highly disruptive to human societies. Reductions in the use of fossil fuels and in rates of deforestation worldwide will reduce emissions of CO2, but atmospheric concentrations will continue to increase unless emissions are reduced by more than 60% (about 4.5 billion tons of carbon annually). Reforestation seems to offer one of the few means for reducing the atmospheric concentration of CO2 over periods as short as human generations. We report here an approach for evaluating the potential for reforestation to help stabilize or even reduce the concentration of CO2 in the atmosphere. Reforestation is defined broadly to include tree plantations, natural regrowth of secondary forests, and the practice of agroforestry. Our premise is that human use of the land has generally reduced woody biomass and that such lands have a potential for reaccumulating carbon if appropriately managed. We used published ground studies together with global vegetation index data from the NOAA 7 satellite to estimate current land cover in tropical regions. Then, superimposing this map of current land cover over maps depicting the distribution of vegetation cover prior to human disturbance, we obtained an estimate of about 3200 X 106 ha in the tropics (almost 60% of the total land area considered) where woody biomass had been decreased, and where carbon might again be sequestered. We calculated the amount of carbon that could be withdrawn from the atmosphere and stored in woody biomass if several management options were implemented. Biomass accumulations were determined from forestry statistics. Application of the data on biomass to the areas suitable for accumulation of carbon yielded an estimate of potential accumulation of 160-170 Pg carbon, an amount equivalent to the accumulation of carbon in the atmosphere since the start of the industrial revolution, or to about 25 years of fossil fuel emissions at current rates. Estimates of both area and potential accumulation of carbon were crude, probably not better than ±50%. They are useful for suggesting the role that tropical lands might play in stabilizing atmospheric concentrations of CO2, but they should not be used to suggest specific management options in individual countries. As maps with higher spatial resolution become available, however, the method should provide more precise estimates overall and in specific locations.
Timm, Kerstin N; Hartl, Johannes; Keller, Markus A; Hu, De-En; Kettunen, Mikko I; Rodrigues, Tiago B; Ralser, Markus; Brindle, Kevin M
2015-12-01
A resonance at ∼181 ppm in the (13) C spectra of tumors injected with hyperpolarized [U-(2) H, U-(13) C]glucose was assigned to 6-phosphogluconate (6PG), as in previous studies in yeast, whereas in breast cancer cells in vitro this resonance was assigned to 3-phosphoglycerate (3PG). These peak assignments were investigated here using measurements of 6PG and 3PG (13) C-labeling using liquid chromatography tandem mass spectrometry (LC-MS/MS) METHODS: Tumor-bearing mice were injected with (13) C6 glucose and the (13) C-labeled and total 6PG and 3PG concentrations measured. (13) C MR spectra of glucose-6-phosphate dehydrogenase deficient (zwf1Δ) and wild-type yeast were acquired following addition of hyperpolarized [U-(2) H, U-(13) C]glucose and again (13) C-labeled and total 6PG and 3PG were measured by LC-MS/MS RESULTS: Tumor (13) C-6PG was more abundant than (13) C-2PG/3PG and the resonance at ∼181 ppm matched more closely that of 6PG. (13) C MR spectra of wild-type and zwf1Δ yeast cells showed a resonance at ∼181 ppm after labeling with hyperpolarized [U-(2) H, U-(13) C]glucose, however, there was no 6PG in zwf1Δ cells. In the wild-type cells 3PG was approximately four-fold more abundant than 6PG CONCLUSION: The resonance at ∼181 ppm in (13) C MR spectra following injection of hyperpolarized [U-(2) H, U-(13) C]glucose originates predominantly from 6PG in EL4 tumors and 3PG in yeast cells. © 2014 Wiley Periodicals, Inc.
Paddock, Ethan; Looker, Helen C; Piaggi, Paolo; Knowler, William C; Krakoff, Jonathan; Chang, Douglas C
2018-06-01
We compared the ability of 1- and 2-h plasma glucose concentrations (1h-PG and 2h-PG, respectively), derived from a 75-g oral glucose tolerance test (OGTT), to predict retinopathy. 1h-PG and 2h-PG concentrations, measured in a longitudinal study of an American Indian community in the southwestern U.S., a population at high risk for type 2 diabetes, were analyzed to assess the usefulness of the 1h-PG to identify risk of diabetic retinopathy (DR). Cross-sectional ( n = 2,895) and longitudinal ( n = 1,703) cohorts were assessed for the prevalence and incidence of DR, respectively, in relation to deciles of 1h-PG and 2h-PG concentrations. Areas under the receiver operating characteristic (ROC) curves for 1h-PG and 2h-PG were compared with regard to predicting DR, as assessed by direct ophthalmoscopy. Prevalence and incidence of DR, based on direct ophthalmoscopy, changed in a similar manner across the distributions of 1h-PG and 2h-PG concentrations. ROC analysis showed that 1h-PG and 2h-PG were of similar value in identifying prevalent and incident DR using direct ophthalmoscopy. 1h-PG cut points of 230 and 173 mg/dL were comparable to 2h-PG cut points of 200 mg/dL (type 2 diabetes) and 140 mg/dL (impaired glucose tolerance), respectively. 1h-PG is a useful predictor of retinopathy risk, has a predictive value similar to that of 2h-PG, and may be considered as an alternative glucose time point during an OGTT. © 2018 by the American Diabetes Association.
Prospects of developing the Shtokman and Prirazlomnoe Fields in the Barents Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubin, I.B.
1994-09-01
Russia, having the world`s largest oil and gas resources on the shelf, exceeding 60 billion tons of hydrocarbons, has hardly begun to develop them. Such a situation developed because more than 95% of the oil and gas resources of the shelf of the Russian Federation are concentrated in arctic and Far Eastern seas with harsh natural and climatic conditions and require large and long-term capital investments. Nine oil and gas fields have been discovered on the shelf of arctic seas, including three unique ones: the Shtokman gas-condensate field in the Barents Sea with gas reserves of category C{sub 1} ofmore » 1.7 trillion m{sup 3} and of category C{sub 2} of 1.3 trillion m{sup 3}, Rusanov gas-condensate field, and the Leningrad gas field in the Kara Sea with estimated natural gas resources up to 4.0 trillion m{sup 3}. Furthermore, an oil field, the Prirazlomnoe, the recoverable reserves of which are estimated to be up to 70 million tons, was discovered in the Perchora Sea. To execute the orders of the government of the Russian Federation, in 1992 the Russian joint-stock company for developing the oil and gas resources of the continental shelf {open_quotes}Rosshelf{close_quotes} was created for exploration of useful resources on the continental shelf, their extraction and transportation, processing, and sale of the products, as well as design, construction, and manufacture of equipment needed for developing the fields on the basis of converting defence enterprises of the northwestern shipbuilding complex and design departments, institutes, organizations, and enterprises related to them.« less
Atmospheric emissions and pollution from the coal-fired thermal power plants in India
NASA Astrophysics Data System (ADS)
Guttikunda, Sarath K.; Jawahar, Puja
2014-08-01
In India, of the 210 GW electricity generation capacity, 66% is derived from coal, with planned additions of 76 GW and 93 GW during the 12th and the 13th five year plans, respectively. Atmospheric emissions from the coal-fired power plants are responsible for a large burden on human health. In 2010-11, 111 plants with an installed capacity of 121 GW, consumed 503 million tons of coal, and generated an estimated 580 ktons of particulates with diameter less than 2.5 μm (PM2.5), 2100 ktons of sulfur dioxides, 2000 ktons of nitrogen oxides, 1100 ktons of carbon monoxide, 100 ktons of volatile organic compounds, and 665 million tons of carbon dioxide. These emissions resulted in an estimated 80,000 to 115,000 premature deaths and 20.0 million asthma cases from exposure to PM2.5 pollution, which cost the public and the government an estimated INR 16,000 to 23,000 crores (USD 3.2 to 4.6 billion). The emissions were estimated for the individual plants and the atmospheric modeling was conducted using CAMx chemical transport model, coupled with plume rise functions and hourly meteorology. The analysis shows that aggressive pollution control regulations such as mandating flue gas desulfurization, introduction and tightening of emission standards for all criteria pollutants, and updating procedures for environment impact assessments, are imperative for regional clean air and to reduce health impacts. For example, a mandate for installation of flue gas desulfurization systems for the operational 111 plants could reduce the PM2.5 concentrations by 30-40% by eliminating the formation of the secondary sulfates and nitrates.
Microbial protein: future sustainable food supply route with low environmental footprint.
Matassa, Silvio; Boon, Nico; Pikaar, Ilje; Verstraete, Willy
2016-09-01
Microbial biotechnology has a long history of producing feeds and foods. The key feature of today's market economy is that protein production by conventional agriculture based food supply chains is becoming a major issue in terms of global environmental pollution such as diffuse nutrient and greenhouse gas emissions, land use and water footprint. Time has come to re-assess the current potentials of producing protein-rich feed or food additives in the form of algae, yeasts, fungi and plain bacterial cellular biomass, producible with a lower environmental footprint compared with other plant or animal-based alternatives. A major driver is the need to no longer disintegrate but rather upgrade a variety of low-value organic and inorganic side streams in our current non-cyclic economy. In this context, microbial bioconversions of such valuable matters to nutritive microbial cells and cell components are a powerful asset. The worldwide market of animal protein is of the order of several hundred million tons per year, that of plant protein several billion tons of protein per year; hence, the expansion of the production of microbial protein does not pose disruptive challenges towards the process of the latter. Besides protein as nutritive compounds, also other cellular components such as lipids (single cell oil), polyhydroxybuthyrate, exopolymeric saccharides, carotenoids, ectorines, (pro)vitamins and essential amino acids can be of value for the growing domain of novel nutrition. In order for microbial protein as feed or food to become a major and sustainable alternative, addressing the challenges of creating awareness and achieving public and broader regulatory acceptance are real and need to be addressed with care and expedience. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
2013-12-01
capacities ranging from 3-330 tons using silica gel or 250-450 tons using zeolite desiccant. Adsorption chillers are also currently manufactured by...Mayekawa (20-100 tons using zeolite desiccant) • Union (10-125 tons using silica gel) Sortech - 2 ton units for residential use • InvenSor - 3 ton
Preparation of Conductive Polymer Graphite (PG) Composites
NASA Astrophysics Data System (ADS)
Munirah Abdullah, Nur; Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Abdullah, M. F. L.
2017-08-01
The preparation of conductive polymer graphite (PG) composites thin film is described. The thickness of the PG composites due to slip casting method was set approximately ~0.1 mm. The optical microscope (OM) and fourier transform infra-red spectroscopy (FTIR) has been operated to distinguish the structure-property relationships scheme of PG composites. It shows that the graphite is homogenously dispersed in polymer matrix composites. The electrical characteristics of the PG composite were measured at room temperature and the electrical conductivity (σ) was discovered with respect of its resistivity (Ω). By achieving conductivity of 103 S/m, it is proven that at certain graphite weight loading (PG20, PG25 and PG30) attributes to electron pathway in PG composites.
40 CFR 63.606 - Performance tests and compliance provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... P2O5 feed rate, metric ton/hr (ton/hr). K = conversion factor, 1000 mg/g (453,600 mg/lb). (2) Method... fluorides, g/metric ton (lb/ton) of equivalent P2O5 feed. Csi = concentration of total fluorides from... Where: Mp = total mass flow rate of phosphorus-bearing feed, metric ton/hr (ton/hr). Rp = P2O5 content...
40 CFR 63.606 - Performance tests and compliance provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... P2O5 feed rate, metric ton/hr (ton/hr). K = conversion factor, 1000 mg/g (453,600 mg/lb). (2) Method... fluorides, g/metric ton (lb/ton) of equivalent P2O5 feed. Csi = concentration of total fluorides from... Where: Mp = total mass flow rate of phosphorus-bearing feed, metric ton/hr (ton/hr). Rp = P2O5 content...
40 CFR 63.626 - Performance tests and compliance provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... affected facility. P = equivalent P2O5 feed rate, metric ton/hr (ton/hr). K = conversion factor, 1000 mg/g... P2O5 stored, metric tons (tons). K = conversion factor, 1000 mg/g (453,600 mg/lb). (ii) Method 13A or... Where: E = emission rate of total fluorides, g/metric ton (lb/ton) of equivalent P2O5 feed. Csi...
40 CFR 63.606 - Performance tests and compliance provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... P2O5 feed rate, metric ton/hr (ton/hr). K = conversion factor, 1000 mg/g (453,600 mg/lb). (2) Method... fluorides, g/metric ton (lb/ton) of equivalent P2O5 feed. Csi = concentration of total fluorides from... Where: Mp = total mass flow rate of phosphorus-bearing feed, metric ton/hr (ton/hr). Rp = P2O5 content...
40 CFR 63.626 - Performance tests and compliance provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... affected facility. P = equivalent P2O5 feed rate, metric ton/hr (ton/hr). K = conversion factor, 1000 mg/g... P2O5 stored, metric tons (tons). K = conversion factor, 1000 mg/g (453,600 mg/lb). (ii) Method 13A or... Where: E = emission rate of total fluorides, g/metric ton (lb/ton) of equivalent P2O5 feed. Csi...
40 CFR 63.626 - Performance tests and compliance provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... affected facility. P = equivalent P2O5 feed rate, metric ton/hr (ton/hr). K = conversion factor, 1000 mg/g... P2O5 stored, metric tons (tons). K = conversion factor, 1000 mg/g (453,600 mg/lb). (ii) Method 13A or... Where: E = emission rate of total fluorides, g/metric ton (lb/ton) of equivalent P2O5 feed. Csi...
Coal supply and cost under technological and environmental uncertainty
NASA Astrophysics Data System (ADS)
Chan, Melissa
This thesis estimates available coal resources, recoverability, mining costs, environmental impacts, and environmental control costs for the United States under technological and environmental uncertainty. It argues for a comprehensive, well-planned research program that will resolve resource uncertainty, and innovate new technologies to improve recovery and environmental performance. A stochastic process and cost (constant 2005) model for longwall, continuous, and surface mines based on current technology and mining practice data was constructed. It estimates production and cost ranges within 5-11 percent of 2006 prices and production rates. The model was applied to the National Coal Resource Assessment. Assuming the cheapest mining method is chosen to extract coal, 250-320 billion tons are recoverable. Two-thirds to all coal resource can be mined at a cost less than 4/mmBTU. If U.S. coal demand substantially increases, as projected by alternate Energy Information Administration (EIA), resources might not last more than 100 years. By scheduling cost to meet EIA projected demand, estimated cost uncertainty increases over time. It costs less than 15/ton to mine in the first 10 years of a 100 year time period, 10-30/ton in the following 50 years, and 15-$90/ton thereafter. Environmental impacts assessed are subsidence from underground mines, surface mine pit area, erosion, acid mine drainage, air pollutant and methane emissions. The analysis reveals that environmental impacts are significant and increasing as coal demand increases. Control technologies recommended to reduce these impacts are backfilling underground mines, surface pit reclamation, substitution of robotic underground mining systems for surface pit mining, soil replacement for erosion, placing barriers between exposed coal and the elements to avoid acid formation, and coalbed methane development to avoid methane emissions during mining. The costs to apply these technologies to meet more stringent environmental regulation scenarios are estimated. The results show that the cost of meeting these regulatory scenarios could increase mining costs two to six times the business as usual cost, which could significantly affect the cost of coal-powered electricity generation. This thesis provides a first estimate of resource availability, mining cost, and environmental impact assessment and cost analysis. Available resource is not completely reported, so the available estimate is lower than actual resource. Mining costs are optimized, so provide a low estimate of potential costs. Environmental impact estimates are on the high end of potential impact that may be incurred because it is assumed that impact is unavoidable. Control costs vary. Estimated cost to control subsidence and surface mine pit impacts are suitable estimates of the cost to reduce land impacts. Erosion control and robotic mining system costs are lower, and methane and acid mine drainage control costs are higher, than they may be in the case that these impacts must be reduced.
Xiu, Hao; Nuruzzaman, Mohammed; Guo, Xiangqian; Cao, Hongzhe; Huang, Jingjia; Chen, Xianghui; Wu, Kunlu; Zhang, Ru; Huang, Yuzhao; Luo, Junli; Luo, Zhiyong
2016-03-04
Despite the importance of WRKY genes in plant physiological processes, little is known about their roles in Panax ginseng C.A. Meyer. Forty-eight unigenes on this species were previously reported as WRKY transcripts using the next-generation sequencing (NGS) technology. Subsequently, one gene that encodes PgWRKY1 protein belonging to subgroup II-d was cloned and functionally characterized. In this study, eight WRKY genes from the NGS-based transcriptome sequencing dataset designated as PgWRKY2-9 have been cloned and characterized. The genes encoding WRKY proteins were assigned to WRKY Group II (one subgroup II-c, four subgroup II-d, and three subgroup II-e) based on phylogenetic analysis. The cDNAs of the cloned PgWRKYs encode putative proteins ranging from 194 to 358 amino acid residues, each of which includes one WRKYGQK sequence motif and one C₂H₂-type zinc-finger motif. Quantitative real-time PCR (qRT-PCR) analysis demonstrated that the eight analyzed PgWRKY genes were expressed at different levels in various organs including leaves, roots, adventitious roots, stems, and seeds. Importantly, the transcription responses of these PgWRKYs to methyl jasmonate (MeJA) showed that PgWRKY2, PgWRKY3, PgWRKY4, PgWRKY5, PgWRKY6, and PgWRKY7 were downregulated by MeJA treatment, while PgWRKY8 and PgWRKY9 were upregulated to varying degrees. Moreover, the PgWRKY genes increased or decreased by salicylic acid (SA), abscisic acid (ABA), and NaCl treatments. The results suggest that the PgWRKYs may be multiple stress-inducible genes responding to both salt and hormones.
Dou, Y.; Rutanhira, H.; Chen, X.; Mishra, A.; Wang, C.; Fletcher, H.M.
2018-01-01
Summary In Porphyromonas gingivalis, the protein PG1660, composed of 174 amino acids, is annotated as an extracytoplasmic function (ECF) sigma factor (RpoE homologue-σ24). Because PG1660 can modulate several virulence factors and responds to environmental signals in P. gingivalis, its genetic properties were evaluated. PG1660 is co-transcribed with its downstream gene PG1659, and the transcription start site was identified as adenine residue 54-nucleotides upstream of the ATG translation start codon. In addition to binding its own promoter, using the purified rPG1660 and RNAP core enzyme from Escherichia coli with the PG1660 promoter DNA as template, the function of PG1660 as a sigma factor was demonstrated in an in vitro transcription assay. Transcriptome analyses of a P. gingivalis PG1660-defective isogenic mutant revealed that under oxidative stress conditions 176 genes including genes involved in secondary metabolism were downregulated more than two-fold compared with the parental strain. The rPG1660 protein also showed the ability to bind to the promoters of the highly downregulated genes in the PG1660-deficient mutant. As the ECF sigma factor PG0162 has a 29% identity with PG1660 and can modulate its expression, the cross-talk between their regulatory networks was explored. The expression profile of the PG0162PG1660-deficient mutant (P. gingivalis FLL356) revealed that the type IX secretion system genes and several virulence genes were downregulated under hydrogen peroxide stress conditions. Taken together, we have confirmed that PG1660 can function as a sigma factor, and plays an important regulatory role in the oxidative stress and virulence regulatory network of P. gingivalis. PMID:29059500
Iron Abundance in the Prototype PG 1159 Star, GW Vir Pulsator PG 1159-035, and Related Objects
NASA Technical Reports Server (NTRS)
Werner, K.; Rauch, T.; Kruk, J. W.; Kurucz, R. L.
2011-01-01
We performed an iron abundance determination of the hot, hydrogen deficient post-AGB star PG 1159-035. which is the prototype of the PG 1159 spectral class and the GW Vir pulsators, and of two related objects (PG 1520+525, PG 1144+005), based on the first detection of Fe VIII lines in stellar photospheres. In another PG 1159 star. PG 1424+535. we detect Fe VII lines. In all four stars, each within T(sub eff) = 110,000-150,000 K, we find a solar iron abundance. This result agrees with our recent abundance analysis of the hottest PG 1159 stars (T(sub eff) = 150,000-200,000 K) that exhibit Fe x lines. On the whole, we find that the PG 1159 stars are not significantly iron deficient, in contrast to previous notions.
40 CFR 1037.645 - In-use compliance with family emission limits (FELs).
Code of Federal Regulations, 2013 CFR
2013-07-01
... different FELs, we may apply a higher FEL within the family than was applied to the vehicle's configuration... of 200 g/ton-mile, 210 g/ton-mile, and 220 g/ton-mile, we may apply a 220 g/ton-mile in-use FEL to vehicles that were originally designated as part of the 200 g/ton-mile or 210 g/ton-mile sub-families. (2...
40 CFR 1037.645 - In-use compliance with family emission limits (FELs).
Code of Federal Regulations, 2012 CFR
2012-07-01
... different FELs, we may apply a higher FEL within the family than was applied to the vehicle's configuration... of 200 g/ton-mile, 210 g/ton-mile, and 220 g/ton-mile, we may apply a 220 g/ton-mile in-use FEL to vehicles that were originally designated as part of the 200 g/ton-mile or 210 g/ton-mile sub-families. (2...
40 CFR 1037.645 - In-use compliance with family emission limits (FELs).
Code of Federal Regulations, 2014 CFR
2014-07-01
... different FELs, we may apply a higher FEL within the family than was applied to the vehicle's configuration... of 200 g/ton-mile, 210 g/ton-mile, and 220 g/ton-mile, we may apply a 220 g/ton-mile in-use FEL to vehicles that were originally designated as part of the 200 g/ton-mile or 210 g/ton-mile sub-families. (2...
He, Fupo; Zhang, Jing; Yang, Fanwen; Zhu, Jixiang; Tian, Xiumei; Chen, Xiaoming
2015-05-01
The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. Copyright © 2015 Elsevier B.V. All rights reserved.
In vivo evidence of TonB shuttling between the cytoplasmic and outer membrane in Escherichia coli.
Larsen, Ray A; Letain, Tracy E; Postle, Kathleen
2003-07-01
Gram-negative bacteria are able to convert potential energy inherent in the proton gradient of the cytoplasmic membrane into active nutrient transport across the outer membrane. The transduction of energy is mediated by TonB protein. Previous studies suggest a model in which TonB makes sequential and cyclic contact with proteins in each membrane, a process called shuttling. A key feature of shuttling is that the amino-terminal signal anchor must quit its association with the cytoplasmic membrane, and TonB becomes associated solely with the outer membrane. However, the initial studies did not exclude the possibility that TonB was artifactually pulled from the cytoplasmic membrane by the fractionation process. To resolve this ambiguity, we devised a method to test whether the extreme TonB amino-terminus, located in the cytoplasm, ever became accessible to the cys-specific, cytoplasmic membrane-impermeant molecule, Oregon Green(R) 488 maleimide (OGM) in vivo. A full-length TonB and a truncated TonB were modified to carry a sole cysteine at position 3. Both full-length TonB and truncated TonB (consisting of the amino-terminal two-thirds) achieved identical conformations in the cytoplasmic membrane, as determined by their abilities to cross-link to the cytoplasmic membrane protein ExbB and their abilities to respond conformationally to the presence or absence of proton motive force. Full-length TonB could be amino-terminally labelled in vivo, suggesting that it was periplasmically exposed. In contrast, truncated TonB, which did not associate with the outer membrane, was not specifically labelled in vivo. The truncated TonB also acted as a control for leakage of OGM across the cytoplasmic membrane. Further, the extent of labelling for full-length TonB correlated roughly with the proportion of TonB found at the outer membrane. These findings suggest that TonB does indeed disengage from the cytoplasmic membrane during energy transduction and shuttle to the outer membrane.
Purification and characterization of tomato polygalacturonase converter.
Pressey, R
1984-10-15
Extracts of ripe tomatoes contain two forms of polygalacturonase (PG I and PG II). A heat-stable component that binds PG II to produce PG I has been isolated from tomato fruit. This component has been named polygalacturonase converter (PG converter). The PG converter has been purified by gel filtration, ion-exchange chromatography and chromatofocusing. It appears to be a protein with a relative molecular mass of 102000. It was readily inactivated by papain and pronase. The converter was labile at alkaline conditions, and treatment of PG I at pH 11 released free PG II. A similar factor with a lower molecular mass was extracted from tomato foliage.
A preliminary report on a zone containing thick lignite beds, Denver Basin, Colorado
Soister, Paul E.
1973-01-01
A zone of lignite beds of Paleocene age in the Denver Formation (Upper Cretaceous and Paleocene) lies about 800-1,500 feet above the well-known and extensively mined coal beds of the Laramie Formation (Upper Cretaceous). The zone is a few hundred to as much as 500 feet thick. Where lignite beds lie within 1,000 feet of the surface, this zone underlies an area about 30 miles wide by about 75 miles long, stretching from just northeast of Denver to several miles south of Calhan. Fifteen mines were operated at various periods between 1874 and 1940 and probably produced a total of less than 100,000 tons of lignite, mostly for local use. From 1874 to 1974, several geologists have reported on this lignite zone or the enclosing beds, but no detailed reports have been written except for one by this writer. Drill holes are the main source of geologic data, owing to poor exposure. There are generally about 3 to 6 lignite beds, and they are mostly about 15 or 20 to a few tens of feet apart. Most or all beds typically contain numerous non-coal partings from a fraction of an inch to several inches thick, so that thickness of lignite beds should be stated as gross thickness and as net lignite thickness; net lignite thickness is generally from 70 to 90 percent of gross thickness. Many partings are composed of kaolin, but others are composed of other clay minerals, siltstone, and sandstone. The lignite beds range generally from 1 or 2 to several feet thick, and some are as much as 10-25 feet thick; the thickest known bed has a maximum thickness of 54.5 feet, with a net lignite thickness of 40 feet. Most lignite beds seem to have fair lateral continuity, and at least some beds are several miles in extent. The thickest known lignite bed was traced for at least 18 miles, from northwest to southeast of Watkins. The lignite is brownish-black to black, weathers, checks, and disintegrates rapidly, and even in drill cores from a few hundred feet in depth the lignite is easily broken by hand pressure. Quality of the lignite is lowered by the non-coal partings and, locally at least, by some small blebs and balls of clay in the lignite itself, especially at the base. Available analyses indicate that the following general figures, on an as-received basis, may be applied to relatively clean lignite from this zone: 6,000-7,000 Btu, 20-35 percent moisture, 8-18 percent ash, and 0.3-0.5 percent sulfur. Rank of the lignite is lignite A as calculated by the formulas of the American Society for Testing and . Materials (ASTM), although some parts, especially of deeper beds, may be as high as subbituminous C coal in rank. Best utilization of the lignite probably would be by gasification, liquefaction, or similar methods, because of the numerous non-coal partings and low quality. The thickest known lignite bed is estimated to contain at least 1.25 billion short tons of lignite. Two methods of roughly estimating the order of magnitude of lignite resources, in beds at least 4 feet thick and within 1,000 feet of the surface in this zone, indicate resources are on the order of 20 billion tons.
Jang, Sun Young
2018-04-01
Traumatic optic neuropathy (TON) refers to optic nerve injury resulting from direct and indirect head and facial trauma. The pathogenesis of indirect TON has not been fully elucidated, and the management of TON remains controversial. In this review article, I review the recent literature regarding TON and discuss how to manage indirect TON.
Uranium oxide fuel cycle analysis in VVER-1000 with VISTA simulation code
NASA Astrophysics Data System (ADS)
Mirekhtiary, Seyedeh Fatemeh; Abbasi, Akbar
2018-02-01
The VVER-1000 Nuclear power plant generates about 20-25 tons of spent fuel per year. In this research, the fuel transmutation of Uranium Oxide (UOX) fuel was calculated by using of nuclear fuel cycle simulation system (VISTA) code. In this simulation, we evaluated the back end components fuel cycle. The back end component calculations are Spent Fuel (SF), Actinide Inventory (AI) and Fission Product (FP) radioisotopes. The SF, AI and FP values were obtained 23.792178 ton/y, 22.811139 ton/y, 0.981039 ton/y, respectively. The obtained value of spent fuel, major actinide, and minor actinide and fission products were 23.8 ton/year, 22.795 ton/year, 0.024 ton/year and 0.981 ton/year, respectively.
Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane
Jordan, Lorne D.; Zhou, Yongyao; Smallwood, Chuck R.; Lill, Yoriko; Ritchie, Ken; Yip, Wai Tak; Newton, Salete M.; Klebba, Phillip E.
2013-01-01
Gram-negative bacteria acquire iron with TonB-dependent uptake systems. The TonB–ExbBD inner membrane complex is hypothesized to transfer energy to outer membrane (OM) iron transporters. Fluorescence microscopic characterization of green fluorescent protein (GFP)-TonB hybrid proteins revealed an unexpected, restricted localization of TonB in the cell envelope. Fluorescence polarization measurements demonstrated motion of TonB in living cells, which likely was rotation. By determining the anisotropy of GFP-TonB in the absence and presence of inhibitors, we saw the dependence of its motion on electrochemical force and on the actions of ExbBD. We observed higher anisotropy for GFP-TonB in energy-depleted cells and lower values in bacteria lacking ExbBD. However, the metabolic inhibitors did not change the anisotropy of GFP-TonB in ΔexbBD cells. These findings demonstrate that TonB undergoes energized motion in the bacterial cell envelope and that ExbBD couples this activity to the electrochemical gradient. The results portray TonB as an energized entity in a regular array underlying the OM bilayer, which promotes metal uptake through OM transporters by a rotational mechanism. PMID:23798405
Validation of circulating BNP level >1000 pg/ml in all-cause mortality: A retrospective study.
Sakamoto, Daisuke; Sakamoto, Shigeru; Kanda, Tsugiyasu
2015-08-01
To determine the primary diseases and prognoses of patients with highly elevated levels of B-type natriuretic peptide (BNP; >1000 pg/ml), with or without heart failure. Medical records and echocardiograms of patients with BNP levels that fell within one of three predetermined categories (>1000 pg/ml, 200-1000 pg/ml and <200 pg/ml) were retrospectively reviewed. There were no significant between-group differences in duration of hospitalization. Patients with BNP levels >1000 pg/ml (n = 103) or 200-1000 pg/ml (n = 100) had significantly worse 3-year survival than those with BNP levels <200 pg/ml (n = 100). The majority of patients (64/103) in the BNP >1000 pg/ml group had heart failure. The main cause of death in patients with other causes of BNP levels >1000 pg/ml (39/103) was community acquired pneumonia. A BNP level >1000 pg/ml has clinical importance in primary care medicine and hospital settings. © The Author(s) 2015.
46 CFR 52.01-135 - Inspection and tests (modifies PG-90 through PG-100).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Inspection and tests (modifies PG-90 through PG-100). 52.01-135 Section 52.01-135 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-135 Inspection and tests (modifies PG-90 through PG-100). (a) Requirements. Inspection and test...
46 CFR 52.01-105 - Piping, valves and fittings (modifies PG-58 and PG-59).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Piping, valves and fittings (modifies PG-58 and PG-59). 52.01-105 Section 52.01-105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-105 Piping, valves and fittings (modifies PG-58 and PG-59). (a) Boiler external piping within...
46 CFR 52.01-140 - Certification by stamping (modifies PG-104 through PG-113).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Certification by stamping (modifies PG-104 through PG-113). 52.01-140 Section 52.01-140 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-140 Certification by stamping (modifies PG-104 through PG-113). (a) All boilers built in...
46 CFR 52.01-135 - Inspection and tests (modifies PG-90 through PG-100).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Inspection and tests (modifies PG-90 through PG-100). 52.01-135 Section 52.01-135 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-135 Inspection and tests (modifies PG-90 through PG-100). (a) Requirements. Inspection and test...
46 CFR 52.01-140 - Certification by stamping (modifies PG-104 through PG-113).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Certification by stamping (modifies PG-104 through PG-113). 52.01-140 Section 52.01-140 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-140 Certification by stamping (modifies PG-104 through PG-113). (a) All boilers built in...
46 CFR 52.01-145 - Manufacturers' data report forms (modifies PG-112 and PG-113).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Manufacturers' data report forms (modifies PG-112 and PG-113). 52.01-145 Section 52.01-145 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-145 Manufacturers' data report forms (modifies PG-112 and PG-113). The manufacturers'...
46 CFR 52.01-145 - Manufacturers' data report forms (modifies PG-112 and PG-113).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Manufacturers' data report forms (modifies PG-112 and PG-113). 52.01-145 Section 52.01-145 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-145 Manufacturers' data report forms (modifies PG-112 and PG-113). The manufacturers'...
46 CFR 52.01-145 - Manufacturers' data report forms (modifies PG-112 and PG-113).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Manufacturers' data report forms (modifies PG-112 and PG-113). 52.01-145 Section 52.01-145 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-145 Manufacturers' data report forms (modifies PG-112 and PG-113). The manufacturers'...
46 CFR 52.01-105 - Piping, valves and fittings (modifies PG-58 and PG-59).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Piping, valves and fittings (modifies PG-58 and PG-59). 52.01-105 Section 52.01-105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-105 Piping, valves and fittings (modifies PG-58 and PG-59). (a) Boiler external piping within...
46 CFR 52.01-140 - Certification by stamping (modifies PG-104 through PG-113).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Certification by stamping (modifies PG-104 through PG-113). 52.01-140 Section 52.01-140 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-140 Certification by stamping (modifies PG-104 through PG-113). (a) All boilers built in...
46 CFR 52.01-140 - Certification by stamping (modifies PG-104 through PG-113).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Certification by stamping (modifies PG-104 through PG-113). 52.01-140 Section 52.01-140 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-140 Certification by stamping (modifies PG-104 through PG-113). (a) All boilers built in...
46 CFR 52.01-135 - Inspection and tests (modifies PG-90 through PG-100).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Inspection and tests (modifies PG-90 through PG-100). 52.01-135 Section 52.01-135 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-135 Inspection and tests (modifies PG-90 through PG-100). (a) Requirements. Inspection and test...
46 CFR 52.01-145 - Manufacturers' data report forms (modifies PG-112 and PG-113).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Manufacturers' data report forms (modifies PG-112 and PG-113). 52.01-145 Section 52.01-145 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-145 Manufacturers' data report forms (modifies PG-112 and PG-113). The manufacturers'...
46 CFR 52.01-105 - Piping, valves and fittings (modifies PG-58 and PG-59).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Piping, valves and fittings (modifies PG-58 and PG-59). 52.01-105 Section 52.01-105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-105 Piping, valves and fittings (modifies PG-58 and PG-59). (a) Boiler external piping within...
46 CFR 52.01-90 - Materials (modifies PG-5 through PG-13).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Materials (modifies PG-5 through PG-13). 52.01-90 Section 52.01-90 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-90 Materials (modifies PG-5 through PG-13). (a) Material subject to stress due to pressure must conform to...
46 CFR 52.01-90 - Materials (modifies PG-5 through PG-13).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Materials (modifies PG-5 through PG-13). 52.01-90 Section 52.01-90 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-90 Materials (modifies PG-5 through PG-13). (a) Material subject to stress due to pressure must conform to...
46 CFR 52.01-140 - Certification by stamping (modifies PG-104 through PG-113).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Certification by stamping (modifies PG-104 through PG-113). 52.01-140 Section 52.01-140 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-140 Certification by stamping (modifies PG-104 through PG-113). (a) All boilers built in...
46 CFR 52.01-135 - Inspection and tests (modifies PG-90 through PG-100).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Inspection and tests (modifies PG-90 through PG-100). 52.01-135 Section 52.01-135 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-135 Inspection and tests (modifies PG-90 through PG-100). (a) Requirements. Inspection and test...
46 CFR 52.01-145 - Manufacturers' data report forms (modifies PG-112 and PG-113).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Manufacturers' data report forms (modifies PG-112 and PG-113). 52.01-145 Section 52.01-145 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-145 Manufacturers' data report forms (modifies PG-112 and PG-113). The manufacturers'...
46 CFR 52.01-90 - Materials (modifies PG-5 through PG-13).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Materials (modifies PG-5 through PG-13). 52.01-90 Section 52.01-90 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-90 Materials (modifies PG-5 through PG-13). (a) Material subject to stress due to pressure must conform to...
Resistance Phenotypes Mediated by Aminoacyl-Phosphatidylglycerol Synthases
Arendt, Wiebke; Hebecker, Stefanie; Jäger, Sonja; Nimtz, Manfred
2012-01-01
The specific aminoacylation of the phospholipid phosphatidylglycerol (PG) with alanine or with lysine catalyzed by aminoacyl-phosphatidylglycerol synthases (aaPGS) was shown to render various organisms less susceptible to antibacterial agents. This study makes use of Pseudomonas aeruginosa chimeric mutant strains producing lysyl-phosphatidylglycerol (L-PG) instead of the naturally occurring alanyl-phosphatidylglycerol (A-PG) to study the resulting impact on bacterial resistance. Consequences of such artificial phospholipid composition were studied in the presence of an overall of seven antimicrobials (β-lactams, a lipopeptide antibiotic, cationic antimicrobial peptides [CAMPs]) to quantitatively assess the effect of A-PG substitution (with L-PG, L-PG and A-PG, increased A-PG levels). For the employed Gram-negative P. aeruginosa model system, an exclusive charge repulsion mechanism does not explain the attenuated antimicrobial susceptibility due to PG modification. Additionally, the specificity of nine orthologous aaPGS enzymes was experimentally determined. The newly characterized protein sequences allowed for the establishment of a significant group of A-PG synthase sequences which were bioinformatically compared to the related group of L-PG synthesizing enzymes. The analysis revealed a diverse origin for the evolution of A-PG and L-PG synthases, as the specificity of an individual enzyme is not reflected in terms of a characteristic sequence motif. This finding is relevant for future development of potential aaPGS inhibitors. PMID:22267511
Tomassen, Monic M M; Barrett, Diane M; van der Valk, Henry C P M; Woltering, Ernst J
2007-01-01
An important aspect of the ripening process of tomato fruit is softening. Softening is accompanied by hydrolysis of the pectin in the cell wall by pectinases, causing loss of cell adhesion in the middle lamella. One of the most significant pectin-degrading enzymes is polygalacturonase (PG). Previous reports have shown that PG in tomato may exist in different forms (PG1, PG2a, PG2b, and PGx) commonly referred to as PG isoenzymes. The gene product PG2 is differentially glycosylated and is thought to associate with other proteins to form PG1 and PGx. This association is thought to modulate its pectin-degrading activity in planta. An 8 kDa protein that is part of the tomato PG1 multiprotein complex has been isolated, purified, and functionally characterized. This protein, designated 'activator' (ACT), belongs to the class of non-specific lipid transfer proteins (nsLTPs). ACT is capable of 'converting' the gene product PG2 into a more active and heat-stable form, which increases PG-mediated pectin degradation in vitro and stimulates PG-mediated tissue breakdown in planta. This finding suggests a new, not previously identified, function for nsLTPs in the modification of hydrolytic enzyme activity. It is proposed that ACT plays a role in the modulation of PG activity during tomato fruit softening.
NASA Astrophysics Data System (ADS)
Kaur, Gagandeep; Gupta, Shuchi; Sachdeva, Ritika; Dharamvir, Keya
2018-05-01
Adsorption of small gas molecules (such as CO and O2) on pristine graphene (PG) and Li-adsorbed graphene (PG-Li) have been investigated using first principles methods within density functional theory (DFT). We also notice that PG-Li has a higher chemical reactivity towards the gas molecules as compared to PG and these molecules have higher adsorption energy on this surface. Moreover, the strong interactions between PG-Li and the adsorbed molecules (as compared to PG and gas molecules) induce dramatic changes to the electronic properties of PG adsorbed with Li and make PG-Li a promising candidate as sensing material for CO and O2 gases.
Zhang, Mei; Zhu, Lin; Cui, Steve W; Wang, Qi; Zhou, Ting; Shen, Hengsheng
2011-01-01
Fractionation and purification of mushroom polysaccharides is a critical process for mushroom clinical application. After a hot-water treatment, the crude Pleurotus geesteranus (PG) was further fractionated into four fractions (PG-1, -2, -3, -4) using gradient precipitation with water and ammonia sulphate. By controlling the initial polymer concentration and ratio of solvents, this process produced PG fractions with high chemical uniformity and narrow Mw distribution without free proteins. Structurally, PG-1 and PG-2 are pure homopolysaccharide mainly composed of glucose; and PG-3 and PG-4 are heteropolysaccharide-protein complexes. PG-2, a high M(w) fraction mainly composed of glucose presented significant cytotoxicity at the concentration of 200 and 100 μg/ml to human breast cancer cells. Here, we report a new mushroom polysaccharides extraction and fractionation method, with which we produced four fractions of PG with PG-2 appearing effective anti-tumour activity. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
Cervone, Felice; De Lorenzo, Giulia; Degrà, Luisa; Salvi, Giovanni; Bergami, Mario
1987-01-01
Homogeneous endo-polygalacturonase (PG) was covalently bound to cyanogen-bromide-activated Sepharose, and the resulting PG-Sepharose conjugate was utilized to purify, by affinity chromatography, a protein from Phaseolus vulgaris hypocotyls that binds to and inhibits PG. Isoelectric focusing of the purified PG-inhibiting protein (PGIP) showed a major protein band that coincided with PG-inhibiting activity. PGIP formed a complex with PG at pH 5.0 and at low salt concentrations. The complex dissociated in 0.5 m Na-acetate and pH values lower than 4.5 or higher than 6.0. Formation of the PG-PGIP complex resulted in complete inhibition of PG activity. PG activity was restored upon dissociation of the complex. The protein exhibited inhibitory activity toward PGs from Colletotrichum lindemuthianum, Fusarium moniliforme and Aspergillus niger. The possible role of PGIP in regulating the activity of fungal PG's and their ability to elicit plant defense reactions are discussed. Images Fig. 3 PMID:16665751
14 CFR 298.61 - Reporting of traffic statistics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... S 140 Revenue passenger-miles CFD* 210 Revenue cargo tons enplaned CFD* 217 Enplaned freight M 219 Enplaned mail M 230 Revenue tons transported CFD* 237 Transported freight S 239 Transported mail S 240 Revenue ton-miles CFD* 241 Revenue ton-miles passenger CFD* 247 Revenue ton-miles freight CFD* 249 Revenue...
14 CFR 298.61 - Reporting of traffic statistics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... S 140 Revenue passenger-miles CFD* 210 Revenue cargo tons enplaned CFD* 217 Enplaned freight M 219 Enplaned mail M 230 Revenue tons transported CFD* 237 Transported freight S 239 Transported mail S 240 Revenue ton-miles CFD* 241 Revenue ton-miles passenger CFD* 247 Revenue ton-miles freight CFD* 249 Revenue...
14 CFR 298.61 - Reporting of traffic statistics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... S 140 Revenue passenger-miles CFD* 210 Revenue cargo tons enplaned CFD* 217 Enplaned freight M 219 Enplaned mail M 230 Revenue tons transported CFD* 237 Transported freight S 239 Transported mail S 240 Revenue ton-miles CFD* 241 Revenue ton-miles passenger CFD* 247 Revenue ton-miles freight CFD* 249 Revenue...
Code of Federal Regulations, 2013 CFR
2013-07-01
... under 100 tons gross (U.S. System) or 2,000 tons gross (International Convention System) engaged in... less than 200 tons gross (U.S. Tonnage “Simplified Measurement System”) and not more than 24 meters (79... means any motor vessel of at least 100 tons gross (U.S. System) or 2,000 tons gross (International...
Code of Federal Regulations, 2012 CFR
2012-07-01
... under 100 tons gross (U.S. System) or 2,000 tons gross (International Convention System) engaged in... less than 200 tons gross (U.S. Tonnage “Simplified Measurement System”) and not more than 24 meters (79... means any motor vessel of at least 100 tons gross (U.S. System) or 2,000 tons gross (International...
46 CFR 52.01-120 - Safety valves and safety relief valves (modifies PG-67 through PG-73).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Safety valves and safety relief valves (modifies PG-67 through PG-73). 52.01-120 Section 52.01-120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-120 Safety valves and safety relief valves (modifies PG-67 through PG-73). (a)...
46 CFR 52.01-120 - Safety valves and safety relief valves (modifies PG-67 through PG-73).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Safety valves and safety relief valves (modifies PG-67 through PG-73). 52.01-120 Section 52.01-120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-120 Safety valves and safety relief valves (modifies PG-67 through PG-73). (a)...
46 CFR 52.01-120 - Safety valves and safety relief valves (modifies PG-67 through PG-73).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Safety valves and safety relief valves (modifies PG-67 through PG-73). 52.01-120 Section 52.01-120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-120 Safety valves and safety relief valves (modifies PG-67 through PG-73). (a)...
46 CFR 52.01-120 - Safety valves and safety relief valves (modifies PG-67 through PG-73).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Safety valves and safety relief valves (modifies PG-67 through PG-73). 52.01-120 Section 52.01-120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-120 Safety valves and safety relief valves (modifies PG-67 through PG-73). (a)...
46 CFR 52.01-120 - Safety valves and safety relief valves (modifies PG-67 through PG-73).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Safety valves and safety relief valves (modifies PG-67 through PG-73). 52.01-120 Section 52.01-120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-120 Safety valves and safety relief valves (modifies PG-67 through PG-73). (a)...
Assessing nutritional status in cancer: role of the Patient-Generated Subjective Global Assessment.
Jager-Wittenaar, Harriët; Ottery, Faith D
2017-09-01
The Scored Patient-Generated Subjective Global Assessment (PG-SGA) is used internationally as the reference method for proactive risk assessment (screening), assessment, monitoring and triaging for interventions in patients with cancer. This review aims to explain the rationale behind and data supporting the PG-SGA, and to provide an overview of recent developments in the utilization of the PG-SGA and the PG-SGA Short Form. The PG-SGA was designed in the context of a paradigm known as 'anabolic competence'. Uniquely, the PG-SGA evaluates the patient's status as a dynamic rather than static process. The PG-SGA has received new attention, particularly as a screening instrument for nutritional risk or deficit, identifying treatable impediments and guiding patients and professionals in triaging for interdisciplinary interventions. The international use of the PG-SGA indicates a critical need for high-quality and linguistically validated translations of the PG-SGA. As a 4-in-1 instrument, the PG-SGA can streamline clinic work flow and improve the quality of interaction between the clinician and the patient. The availability of multiple high-quality language versions of the PG-SGA enables the inclusion of the PG-SGA in international multicenter studies, facilitating meta-analysis and benchmarking across countries.
T lymphocyte activation and cytokine expression in periapical granulomas and radicular cysts.
Ihan Hren, N; Ihan, A
2009-02-01
Radicular cysts (RCs) are periapical lesions resulting in jaw bone destruction. The inflammatory dental periapical granuloma (PG) is considered to be the origin of RC formation; however the mechanism of RC development remains unclear. Cell suspension from the surgically extirpated tissue of 27 RCs and 25 PGs was obtained. Bacteriological analysis of the PG tissue samples was performed in order to define two major groups of PG according to the prevailing causative bacterial infection: the streptococcal PG (PG-S, n=10) and the anaerobe PG (PG-A, n=9) group. The inflammatory response of tissue infiltrating lymphocytes was assessed by following T lymphocyte activation (HLA-DR expression) as well as interferon gamma (IFN-gamma) and interleukin 4 (IL-4) production which were evaluated by the flow cytometry. In comparison to RC both types of PG contained a higher proportion of activated T cells (HLA-DR) and lower proportion of IL-4 producing cells. PG-A tissue contained increased percentage of CD3 cells and increased percentage of T helper 1 (Th1) cells in comparison with PG-S. In RC the IFN-gamma production is higher than in streptococcal PG-S but similar as in PG-A. Tissue infiltration by Th2 cells and IL-4 production is likely to play an etiopathogenic role in RC formation.
Shared Genetic Contributions to Anxiety Disorders and Pathological Gambling in a Male Population
Giddens, Justine L.; Xian, Hong; Scherrer, Jeffrey F.; Eisen, Seth A.; Potenza, Marc N.
2013-01-01
Background Pathological gambling (PG) frequently co-occurs with anxiety disorders. However, the extent to which the co-occurrence is related to genetic or environmental factors across PG and anxiety disorders is not known. Method Data from the Vietnam Twin Registry (n=7869, male twins) were examined in bivariate models to estimate genetic and shared and unique environmental contributions to PG and generalized anxiety disorder (GAD) and PG and panic disorder (PD). Results While both genetic and unique environmental factors contributed individually to PG, GAD, and PD, the best fitting model indicated that the relationship between PG and GAD was attributable predominantly to shared genetic contributions (ra =0.53). In contrast, substantial correlations were observed between both the genetic (ra=0.34) and unique environmental (re =0.31) contributions to PG and PD. Limitations Results may be limited to middle aged males. Conclusions The existence of shared genetic contributions between PG and both GAD and PD suggest that specific genes, perhaps those involved in affect regulation or stress responsiveness, contribute to PG and anxiety disorders. Overlapping environmental contributions to the co-occurrence of PG and PD suggest that common life experiences (e.g., early life trauma) contribute to both PG and PD. Conversely, the data suggest that distinct environmental factors contribute to PG and GAD (e.g., early onset of gambling in PG). Future studies should examine the relationship between PG and anxiety disorders amongst other populations (women, adolescents) to identify specific genetic and environmental influences that account for the manifestation of these disorders and their co-occurrences. PMID:21481943
Shared genetic contributions to anxiety disorders and pathological gambling in a male population.
Giddens, Justine L; Xian, Hong; Scherrer, Jeffrey F; Eisen, Seth A; Potenza, Marc N
2011-08-01
Pathological gambling (PG) frequently co-occurs with anxiety disorders. However, the extent to which the co-occurrence is related to genetic or environmental factors across PG and anxiety disorders is not known. Data from the Vietnam Era Twin Registry (n=7869, male twins) were examined in bivariate models to estimate genetic and shared and unique environmental contributions to PG and generalized anxiety disorder (GAD) and PG and panic disorder (PD). While both genetic and unique environmental factors contributed individually to PG, GAD, and PD, the best fitting model indicated that the relationship between PG and GAD was attributable predominantly to shared genetic contributions (r(A)=0.53). In contrast, substantial correlations were observed between both the genetic (r(A)=0.34) and unique environmental (r(E)=0.31) contributions to PG and PD. Results may be limited to middle aged males. The existence of shared genetic contributions between PG and both GAD and PD suggests that specific genes, perhaps those involved in affect regulation or stress responsiveness, contribute to PG and anxiety disorders. Overlapping environmental contributions to the co-occurrence of PG and PD suggest that common life experiences (e.g., early life trauma) contribute to both PG and PD. Conversely, the data suggest that distinct environmental factors contribute to PG and GAD (e.g., early onset of gambling in PG). Future studies should examine the relationship between PG and anxiety disorders amongst other populations (women and adolescents) to identify specific genetic and environmental influences that account for the manifestation of these disorders and their co-occurrences. Copyright © 2011. Published by Elsevier B.V.
Hydrogen fluoride (HF) substance flow analysis for safe and sustainable chemical industry.
Kim, Junbeum; Hwang, Yongwoo; Yoo, Mijin; Chen, Sha; Lee, Ik-Mo
2017-11-01
In this study, the chemical substance flow of hydrogen fluoride (hydrofluoric acid, HF) in domestic chemical industries in 2014 was analyzed in order to provide a basic material and information for the establishment of organized management system to ensure safety during HF applications. A total of 44,751 tons of HF was made by four domestic companies (in 2014); import amount was 95,984 tons in 2014 while 21,579 tons of HF was imported in 2005. The export amount of HF was 2180 tons, of which 2074 ton (China, 1422 tons, U.S. 524 tons, and Malaysia, 128 tons) was exported for the manufacturing of semiconductors. Based on the export and import amounts, it can be inferred that HF was used for manufacturing semiconductors. The industries applications of 161,123 tons of HF were as follows: manufacturing of basic inorganic chemical substance (27,937 tons), manufacturing of other chemical products such as detergents (28,208 tons), manufacturing of flat display (24,896 tons), and manufacturing of glass container package (22,002 tons). In this study, an analysis of the chemical substance flow showed that HF was mainly used in the semiconductor industry as well as glass container manufacturing. Combined with other risk management tools and approaches in the chemical industry, the chemical substance flow analysis (CSFA) can be a useful tool and method for assessment and management. The current CSFA results provide useful information for policy making in the chemical industry and national systems. Graphical abstract Hydrogen fluoride chemical substance flows in 2014 in South Korea.
Energy requirements for HE-3 mining operations on the Moon
NASA Technical Reports Server (NTRS)
Kulcinski, Gerald L.
1988-01-01
At the present rate of world energy consumption (10 TW-y/y) and allowing for an equilibrium consumption of 20 to 30 TW-y/y in mid 21st century, we will exhaust economically recoverable fossil fuels in the next 50 to 60 years. We will then have to rely on nuclear (fission and fusion) and renewable energy to feed, warm, and protect the world's population. Fusion energy is expected to play an important role in the 21st century and there a 2 billion dollar per year research program to commercialize that energy resource. A serious problem with this is its reliance on the D-T fuel cycle which releases 80 percent of its energy in the form of neutrons. These neutrons cause significant radiation damage and induce large amounts of radioactivity. There is another fusion fuel cycle involving the isotopes of Deuterium and Helium-3 which, if configured properly, releases 1 percent or less of its energy in neutrons. Obviously, such a fuel would be preferred, but there is no large source of He-3 known to satisfy world energy needs. Fortunately, a very large source of He-3 was found on the Moon, implanted over the past 4 billion years by the solar wind. Recent analysis of Apollo and Luna data reveals that over a million tons of He-3 sit on the Moon's surface. The potential energy in this He-3 fuel is 10 times that contained in all the coal, oil, and natural gas on the Earth. The purpose of this paper is to examine the energy required to extract the He-3 from the lunar regolith.
Jenn, Alan; Azevedo, Inês M L; Michalek, Jeremy J
2016-03-01
The United States Corporate Average Fuel Economy (CAFE) standards and Greenhouse Gas (GHG) Emission standards are designed to reduce petroleum consumption and GHG emissions from light-duty passenger vehicles. They do so by requiring automakers to meet aggregate criteria for fleet fuel efficiency and carbon dioxide (CO2) emission rates. Several incentives for manufacturers to sell alternative fuel vehicles (AFVs) have been introduced in recent updates of CAFE/GHG policy for vehicles sold from 2012 through 2025 to help encourage a fleet technology transition. These incentives allow automakers that sell AFVs to meet less-stringent fleet efficiency targets, resulting in increased fleet-wide gasoline consumption and emissions. We derive a closed-form expression to quantify these effects. We find that each time an AFV is sold in place of a conventional vehicle, fleet emissions increase by 0 to 60 t of CO2 and gasoline consumption increases by 0 to 7000 gallons (26,000 L), depending on the AFV and year of sale. Using projections for vehicles sold from 2012 to 2025 from the Energy Information Administration, we estimate that the CAFE/GHG AFV incentives lead to a cumulative increase of 30 to 70 million metric tons of CO2 and 3 to 8 billion gallons (11 to 30 billion liters) of gasoline consumed over the vehicles' lifetimes - the largest share of which is due to legacy GHG flex-fuel vehicle credits that expire in 2016. These effects may be 30-40% larger in practice than we estimate here due to optimistic laboratory vehicle efficiency tests used in policy compliance calculations.
Development of Rice Reprocessing to Strengthen Small Scale Rice Mills in Indramayu West Java
NASA Astrophysics Data System (ADS)
Firdaus, Y. R.; Hasbullah, R.; Djohar, S.
2018-05-01
Small Rice Mill (SRM) has a very important role in rice production of strong institutional relationships to farmers and rice markets. Nevertheless, the rice produced in low quality and changing consumer preferences cause SRM to have difficulty in maintaining the role. Development of a reprocessing business - called Rice to Rice Processing Plant (R2RP) - as a separate business unit will support their role and existence. This study aimed at analyzing the feasibility of R2RP business that integrates SRM and market as an independent business unit and determines mutual partnership pattern. The study was conducted with special reference to West Java Province. The qualitative method used for non-financial aspects analysis includes raw material, market, technical-technological, management and regulation and partnership pattern. The financial aspect used the quantitative method of Net Present Value (NPV), Net Benefit Cost Ratio (Net B/C), Internal Rate of Return (IRR), Payback Period (PP) and Switching Value to check their sensitivity.The results showed R2R business is feasible for non-financially, technical-technological and financial aspects. Technology has evolved to produce various qualities (premium or medium) after the quality of raw materials (low quality or off-grade rice) using profit optimization. Value of the financial parameters was NPV of Rp 137 billion, Net B/C of 5.80, IRR of 84.27 percent and PP of 2.18 years at capacity of 19,800 tons/year with total investment of Rp 30 billion (Rp 13,500/USD). The switching value analysis showed that a decrease in product prices is sensitively influencing the financial feasibility. To strengthen cooperation that enhancing mutually beneficial relationship, R2R assists equipment investment in and buy raw material from SRM at a rational agreed price.
NASA Technical Reports Server (NTRS)
2001-01-01
This simulated natural color ASTER image in the German state of North Rhine Westphalia covers an area of 30 by 36 km, and was acquired on August 26, 2000. On the right side of the image are 3 enormous opencast coalmines. The Hambach opencast coal mine has recently been brought to full output capacity through the addition of the No. 293 giant bucket wheel excavator. This is the largest machine in the world; it is twice as long as a soccer field and as tall as a building with 30 floors. To uncover the 2.4 billion tons of brown coal (lignite) found at Hambach, five years were required to remove a 200-m-thick layer of waste sand and to redeposit it off site. The mine currently yields 30 million tons of lignite annually, with annual capacity scheduled to increase to 40 million tons in coming years.The image is centered at 51 degrees north latitude, 6.4 degrees east longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.Nguyen, Trung T; Barber, Andrew R; Corbin, Kendall; Zhang, Wei
2017-01-01
The worldwide annual production of lobster was 165,367 tons valued over $3.32 billion in 2004, but this figure rose up to 304,000 tons in 2012. Over half the volume of the worldwide lobster production has been processed to meet the rising global demand in diversified lobster products. Lobster processing generates a large amount of by-products (heads, shells, livers, and eggs) which account for 50-70% of the starting material. Continued production of these lobster processing by-products (LPBs) without corresponding process development for efficient utilization has led to disposal issues associated with costs and pollutions. This review presents the promising opportunities to maximize the utilization of LPBs by economic recovery of their valuable components to produce high value-added products. More than 50,000 tons of LPBs are globally generated, which costs lobster processing companies upward of about $7.5 million/year for disposal. This not only presents financial and environmental burdens to the lobster processors but also wastes a valuable bioresource. LPBs are rich in a range of high-value compounds such as proteins, chitin, lipids, minerals, and pigments. Extracts recovered from LPBs have been demonstrated to possess several functionalities and bioactivities, which are useful for numerous applications in water treatment, agriculture, food, nutraceutical, pharmaceutical products, and biomedicine. Although LPBs have been studied for recovery of valuable components, utilization of these materials for the large-scale production is still very limited. Extraction of lobster components using microwave, ultrasonic, and supercritical fluid extraction were found to be promising techniques that could be used for large-scale production. LPBs are rich in high-value compounds that are currently being underutilized. These compounds can be extracted for being used as functional ingredients, nutraceuticals, and pharmaceuticals in a wide range of commercial applications. The efficient utilization of LPBs would not only generate significant economic benefits but also reduce the problems of waste management associated with the lobster industry. This comprehensive review highlights the availability of the global LPBs, the key components in LPBs and their current applications, the limitations to the extraction techniques used, and the suggested emerging techniques which may be promising on an industrial scale for the maximized utilization of LPBs. Graphical abstractLobster processing by-product as bioresource of several functional and bioactive compounds used in various value-added products.
Berkas, W.R.; Femmer, Suzanne R.; Mesko, T.O.; Thompson, B.W.
1987-01-01
The U. S. Department of Agriculture, Soil Conservation Service, in accordance with Public Law 566, is implementing various types of water-land improvement practices in the Little Black River basin in southeastern Missouri. These practices are designed, in part, to decrease the suspended sediment (SS) transport in the basin, decrease flood damage in the basin, and improve drainage in the agricultural area. The general features of the basin, such as geology, groundwater hydrology, soils, land use, water use, and precipitation are described; surface water quantity, quality, and suspended sediment discharge are also described. The aquifers are the Mississippi River valley alluvial aquifer, which can yield about 3,500 gal/min to properly constructed wells, and the Ozark and St. Francois aquifers, which can yield from about 30 to 500 gal/min to properly constructed wells. Soils in the area have formed in loess and cherty residuum in the uplands or have formed in alluvial sediment in the lowlands. About 93% of the estimated 3 billion gal/year of water used in the basin is for crop irrigation. The average monthly precipitation varies slightly throughout the year, with an average annual precipitation of about 47 inches. Water quality data were collected at seven stations. Specific conductance values ranged from 50 to 400 microsiemens/cm at 25 C. Water temperatures ranged from 0.0 C in the winter to 33.5 C in summer. pH values ranged from 6.4 to 8.5 units. Dissolved oxygen concentrations ranged from 2.2 to 12.8 ml/l. Total nitrogen concentrations ranged from 0.13 to 2.20 ml/l as nitrogen, with organic nitrogen as the most abundant form. Phosphorus concentrations ranged from zero to 0.29 ml/l as phosphorus. Bacterial counts were largest during storm runoff in the basin with livestock waste as the significant contributor. For the period from October 1, 1980, to September 30, 1984, the average annual SS discharge ranged from 2,230 tons/yr in the headwater areas to 27,800 tons/yr at the most downstream station. The average annual SS yield ranged from 59.6 to 85.9 tons/sq mi. (Author 's abstract)
1946-08-01
magnesium and lljs of zinc in the fully heat treated condition were .37.0 tons/in»2, 40.1 tons/in.2 aid Gji respectively and for the alloy with 4>» of...heat treated condition were 37.0 tons/in.2,» 40.1 tons/in.2 and Gji respectively, and for the 4ilill alloy. 40.4 tons/in.2 44.5 tons/in.2 and 2J5
TonB-dependent ligand trapping in the BtuB transporter.
Mills, Allan; Le, Hai-Tuong; Duong, Franck
2016-12-01
TonB-dependent transporters are β-barrel outer membrane proteins occluded by a plug domain. Upon ligand binding, these transporters extend a periplasmic motif termed the TonB box. The TonB box permits the recruitment of the inner membrane protein complex TonB-ExbB-ExbD, which drives import of ligands in the cell periplasm. It is unknown precisely how the plug domain is moved aside during transport nor have the intermediate states between TonB recruitment and plug domain movement been characterized biochemically. Here we employ nanodiscs, native gel electrophoresis, and scintillation proximity assays to determine the binding kinetics of vitamin B 12 to BtuB. The results show that ligand-bound BtuB recruits a monomer of TonB (TonB ∆1-31 ), which in turn increases retention of vitamin B 12 within the transporter. The TonB box and the extracellular residue valine 90 that forms part of the vitamin B 12 binding site are essential for this event. These results identify a novel step in the TonB-dependent transport process. They show that TonB binding to BtuB trap the ligand, possibly until the ExbB-ExbD complex is activated or recruited to ensure subsequent transport. Copyright © 2016 Elsevier B.V. All rights reserved.
On the structure of an aqueous propylene glycol solution.
Rhys, Natasha H; Gillams, Richard J; Collins, Louise E; Callear, Samantha K; Lawrence, M Jayne; McLain, Sylvia E
2016-12-14
Using a combination of neutron diffraction and empirical potential structure refinement computational modelling, the interactions in a 30 mol. % aqueous solution of propylene glycol (PG), which govern both the hydration and association of this molecule in solution, have been assessed. From this work it appears that PG is readily hydrated, where the most prevalent hydration interactions were found to be through both the PG hydroxyl groups but also alkyl groups typically considered hydrophobic. Hydration interactions of PG dominate the solution over PG self-self interactions and there is no evidence of more extensive association. This hydration behavior for PG in solutions suggests that the preference of PG to be hydrated rather than to be self-associated may translate into a preference for PG to bind to lipids rather than itself, providing a potential explanation for how PG is able to enhance the apparent solubility of drug molecules in vivo.
On the structure of an aqueous propylene glycol solution
NASA Astrophysics Data System (ADS)
Rhys, Natasha H.; Gillams, Richard J.; Collins, Louise E.; Callear, Samantha K.; Lawrence, M. Jayne; McLain, Sylvia E.
2016-12-01
Using a combination of neutron diffraction and empirical potential structure refinement computational modelling, the interactions in a 30 mol. % aqueous solution of propylene glycol (PG), which govern both the hydration and association of this molecule in solution, have been assessed. From this work it appears that PG is readily hydrated, where the most prevalent hydration interactions were found to be through both the PG hydroxyl groups but also alkyl groups typically considered hydrophobic. Hydration interactions of PG dominate the solution over PG self-self interactions and there is no evidence of more extensive association. This hydration behavior for PG in solutions suggests that the preference of PG to be hydrated rather than to be self-associated may translate into a preference for PG to bind to lipids rather than itself, providing a potential explanation for how PG is able to enhance the apparent solubility of drug molecules in vivo.
Fabrication and Vibration Results of 30-cm Pyrolytic Graphite Ion Optics
NASA Technical Reports Server (NTRS)
DePano, Michael K.; Hart, Stephen L.; Hanna, Andrew A.; Schneider, Analyn C.
2004-01-01
Boeing Electron Dynamic Devices, Inc. is currently developing pyrolytic graphite (PG) grids designed to operate on 30-cm NSTAR-type thrusters for the Carbon Based Ion Optics (CBIO) program. The PG technology effort of the CBIO program aims to research PG as a flightworthy material for use in dished ion optics by designing, fabricating, and performance testing 30-cm PG grids. As such, PG grid fabrication results will be discussed as will PG design considerations and how they must differ from the NSTAR molybdenum grid design. Surface characteristics and surface processing of PG will be explored relative to effects on voltage breakdown. Part of the CBIO program objectives is to understand the erosion of PG due to Xenon ion bombardment. Discussion of PG and CC sputter yields will be presented relative to molybdenum. These sputter yields will be utilized in the life modeling of carbon-based grids. Finally, vibration results of 30-cm PG grids will be presented and compared to a first-order model generated at Boeing EDD. Performance testing results of the PG grids will not be discussed in this paper as it has yet to be completed.
Simone, G; Paradiso, A; Cirillo, R; Mangia, A; Rella, G; Wiesel, S; Petroni, S; De Benedictis, G; De Lena, M
1991-01-01
Recently, a method similar to ER.ICA has been proposed for the progesterone receptor (PgR) using two monoclonal antibodies, JZB39 and KD68, specific for human PgR and characterized by a molecular weight of 95 and 120 Kd, respectively. A series of 73 breast cancer patients was studied with regards to ER and PgR using both immunocytochemical (ICA) and biochemical (DCC) assays. Results showed no substantial differences between the two methods when considering common clinical-pathological parameters. Overall agreement between ICA and DCC methods was found: 79% for PgR and 78% for ER. A slight quantitative correlation was also observed between the "score values" of the ICA method and the Fmol content of ER and PgR using the Brave-Pearson test (r = 0.49 for PgR; r = 0.43 for ER). Specificity of PgR.ICA method was 77% for PgR and 72% for ER; sensitivity was 82% and 83%, respectively. The ICA method is a reliable technique to assess PgR presence as well as ER. Further studies are necessary to evaluate the prognostic role of nuclear PgR.
NASA Astrophysics Data System (ADS)
Guo, Yuan; Zeng, Xiaoqing; Yuan, Haiyan; Huang, Yunmei; Zhao, Yanmei; Wu, Huan; Yang, Jidong
2017-08-01
In this study, a novel method for chiral recognition of phenylglycinol (PG) enantiomers was proposed. Firstly, water-soluble N-acetyl-L-cysteine (NALC)-capped CdTe quantum dots (QDs) were synthesized and experiment showed that the fluorescence intensity of the reaction system slightly enhancement when added PG enantiomers to NALC-capped CdTe quantum dots (QDs), but the R-PG and S-PG could not be distinguished. Secondly, when there was Ag+ presence in the reaction system, the experiment result was extremely interesting, the PG enantiomers cloud make NALC-capped CdTe QDs produce different fluorescence signal, in which the fluorescence of S-PG + Ag+ + NALC-CdTe system was significantly enhanced, and the fluorescence of R-PG + Ag+ + NALC-CdTe system was markedly decreased. Thirdly, all the enhanced and decreased of the fluorescence intensity were directly proportional to the concentration of R-PG and S-PG in the linearly range 10- 5-10- 7 mol·L- 1, respectively. So, the new method for simultaneous determination of the PG enantiomers was built too. The experiment result of the method was satisfactory with the detection limit of PG can reached 10- 7 mol·L- 1 and the related coefficient of S-PG and R-PG are 0.995 and 0.980, respectively. The method was highly sensitive, selective and had wider detection range compared with other methods.
Gawroński, Wojciech; Sobiecka, Joanna
2015-11-22
Medical care in disabled sports is crucial both as prophylaxis and as ongoing medical intervention. The aim of this paper was to present changes in the quality of medical care over the consecutive Paralympic Games (PG). The study encompassed 31 paralympians: Turin (11), Vancouver (12), and Sochi (8) competing in cross-country skiing, alpine skiing, biathlon and snowboarding. The first, questionnaire-based, part of the study was conducted in Poland before the PG. The athletes assessed the quality of care provided by physicians, physiologists, dieticians, and physiotherapists, as well as their cooperation with the massage therapist and the psychologist. The other part of the study concerned the athletes' health before leaving for the PG, as well as their diseases and injuries during the PG. The quality of medical care was poor before the 2006 PG, but satisfactory before the subsequent PG. Only few athletes made use of psychological support, assessing it as poor before the 2006 PG and satisfactory before the 2010 and 2014 PG. The athletes' health condition was good during all PG. The health status of cross-country skiers was confirmed by a medical fitness certificate before all PG, while that of alpine skiers only before the 2014 PG. There were no serious diseases; training injuries precluded two athletes from participation. The quality of medical care before the PG was poor, however, became satisfactory during the actual PG. The resulting ad hoc pattern deviates from the accepted standards in medical care in disabled sports.
Yu, M; Qi, R; Chen, C; Yin, J; Ma, S; Shi, W; Wu, Y; Ge, J; Jiang, Y; Tang, L; Xu, Y; Li, Y
2017-02-01
The aims of this study were to develop an effective oral vaccine against enterotoxigenic Escherichia coli (ETEC) infection and to design new and more versatile mucosal adjuvants. Genetically engineered Lactobacillus casei strains expressing F4 (K88) fimbrial adhesin FaeG (rLpPG-2-FaeG) and either co-expressing heat-labile enterotoxin A (LTA) subunit with an amino acid mutation associated with reduced virulence (LTAK63) and a heat-labile enterotoxin B (LTB) subunit of E. coli (rLpPG-2-LTAK63-co-LTB) or fused-expressing LTAK63 and LTB (rLpPG-2-LTAK63-fu-LTB) were constructed. The immunogenicity of rLpPG-2-FaeG in conjunction with rLpPG-2-LTAK63-co-LTB or rLpPG-2-LTAK63-fu-LTB as an orally administered mucosal adjuvant in mice was evaluated. Results showed that the levels of FaeG-specific serum IgG and mucosal sIgA, as well as the proliferation of lymphocytes, were significantly higher in mice orally co-administered rLpPG-2-FaeG and rLpPG-2-LTAK63-fu-LTB compared with those administered rLpPG-2-FaeG alone, and were lower than those co-administered rLpPG-2-FaeG and rLpPG-2-LTAK63-co-LTB. Moreover, effective protection was observed after challenge with F4+ ETEC strain CVCC 230 in mice co-administered rLpPG-2-FaeG and rLpPG-2-LTAK63-co-LTB or rLpPG-2-FaeG and rLpPG-2-LTAK63-fu-LTB group compared with those that received rLpPG-2-FaeG alone. rLpPG-2-FaeG showed greater immunogenicity in combination with LTAK63 and LTB as molecular adjuvants. Recombinant Lactobacillus provides a promising platform for the development of vaccines against F4+ ETEC infection. © 2016 The Society for Applied Microbiology.
Hubbert's Peak, The Coal Question, and Climate Change
NASA Astrophysics Data System (ADS)
Rutledge, D.
2008-12-01
The United Nations Intergovernmental Panel on Climate Change (IPCC) makes projections in terms of scenarios that include estimates of oil, gas, and coal production. These scenarios are defined in the Special Report on Emissions Scenarios or SRES (Nakicenovic et al., 2000). It is striking how different these scenarios are. For example, total oil production from 2005 to 2100 in the scenarios varies by 5:1 (Appendix SRES Version 1.1). Because production in some of the scenarios has not peaked by 2100, this ratio would be comparable to 10:1 if the years after 2100 were considered. The IPCC says "... the resultant 40 SRES scenarios together encompass the current range of uncertainties of future GHG [greenhouse gas] emissions arising from different characteristics of these models ..." (Nakicenovic et al., 2000, Summary for Policy Makers). This uncertainty is important for climate modeling, because it is larger than the likely range for the temperature sensitivity, which the IPCC gives as 2.3:1 (Gerard Meehl et al., 2007, the Fourth Assessment Report, Chapter 10, Global Climate Projections, p. 799). The uncertainty indicates that we could improve climate modeling if we could make a better estimate of future oil, gas, and coal production. We start by considering the two major fossil-fuel regions with substantial exhaustion, US oil and British coal. It turns out that simple normal and logistic curve fits to the cumulative production for these regions give quite stable projections for the ultimate production. By ultimate production, we mean total production, past and future. For US oil, the range for the fits for the ultimate is 1.15:1 (225- 258 billion barrels) for the period starting in 1956, when King Hubbert made his prediction of the peak year of US oil production. For UK coal, the range is 1.26:1 for the period starting in 1905, at the time of a Royal Commission on coal supplies. We extend this approach to find fits for world oil and gas production, and by a regional analysis, for world coal production. For world oil and gas production, the fit for the ultimate is 640Gtoe (billion metric tons of oil equivalent). This is somewhat larger than the sum of cumulative production and reserves, 580Gtoe. Because future discoveries are not included in the reserves, it is to be expected that our fit would be larger. On the other hand, there have been large increases in OPEC reserves that have not been subject to outside audit, so it is not clear how close the two numbers should be. For world coal, the sum of the fits for regional ultimate production is 660Gt (billion metric tons). This is considerably less than the sum of cumulative production and reserves, 1,100Gt, but it is consistent with the British experience, where until recently, reserves were a large multiple of future production. The projection is that we will have consumed half of the ultimate world oil, gas, and coal production by 2019. This means that the current intense development of alternative sources of energy can be justified independently of climate considerations. When these projections are converted to carbon equivalents, the projected future emissions from burning oil, gas, and coal from 2005 on are 520GtC. The projected emissions for the 2005-2100 period are smaller than for any of the 40 SRES scenarios. This suggests that future scenarios should take exhaustion into account. These projections, if correct, are good news for climate change.
The use of prostaglandins in controlling estrous cycle of the ewe: a review.
Fierro, Sergio; Gil, Jorge; Viñoles, Carolina; Olivera-Muzante, Julio
2013-02-01
This review considers the use of prostaglandin F(2α) and its synthetic analogues (PG) for controlling the estrous cycle of the ewe. Aspects such as phase of the estrus cycle, PG analogues, PG doses, ovarian follicle development pattern, CL formation, progesterone synthesis, ovulation rate, sperm transport, embryo quality, and fertility rates after PG administration are reviewed. Furthermore, protocols for estrus synchronization and their success in timed AI programs are discussed. Based on available information, the ovine CL is refractory to PG treatment for up to 2 days after ovulation. All PG analogues are effective when an appropriate dose is given; in that regard, there is a positive association between the dose administered and the proportion of ewes detected in estrus. Follicular response after PG is dependent on the phase of the estrous cycle at treatment. Altered sperm transport and low pregnancy rates are generally reported. However, reports on alteration of the steroidogenic capacity of preovulatory follicles, ovulation rate, embryo quality, recovery rates, and prolificacy, are controversial. Although various PG-based protocols can be used for estrus synchronization, a second PG injection improves estrus response when the stage of the estrous cycle at the first injection is unknown. The estrus cycle after PG administration has a normal length. Prostaglandin-based protocols for timed AI achieved poor reproductive outcomes, but increasing the interval between PG injections might increase pregnancy rates. Attempts to improve reproductive outcomes have been directed to provide a synchronized LH surge: use of different routes of AI (cervical or intrauterine), different PG doses, and increased intervals between PG injections. Finally we present our point of view regarding future perspectives on the use of PG in programs of controlled sheep reproduction. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Xiaoling; Zhang, Yue; Wei, Song; Huang, Jie
2013-03-01
The effects of different hydrolysis methods on peptidoglycan (PG) were assessed in terms of their impact on the innate immunity and disease resistance of Pacific white shrimp, Litop enaeus vannamei. PG derived from Bifidobacterium thermophilum was prepared in the laboratory and processed with lysozyme and protease under varying conditions to produce several different PG preparations. A standard shrimp feed was mixed with 0.05% PG preparations to produce a number of experimental diets for shrimp. The composition, concentration, and molecular weight ranges of the soluble PG were analyzed. Serum phenoloxidase and acid phosphatase activity in the shrimp were determined on Days 6—31 of the experiment. The protective activity of the PG preparations was evaluated by exposing shrimp to white spot syndrome virus (WSSV). Data on the composition of the PG preparations indicated that preparations hydrolyzed with lysozyme for 72 h had more low-molecular-weight PG than those treated for 24 h, and hydrolysis by protease enhanced efficiency of hydrolysis compared to lysozyme. SDS-PAGE showed changes in the molecular weight of the soluble PG produced by the different hydrolysis methods. Measurements of serum phenoloxidase and acid phosphatase activity levels in the shrimp indicated that the PG preparations processed with enzymes were superior to the preparation which had not undergone hydrolysis in enhancing the activity of the two serum enzymes. In addition, the preparation containing more low-molecular-weight PG enhanced the resistance of the shrimp to WSSV, whereas no increased resistance was observed for preparations containing less low-molecular-weight PG. These findings suggest that the immunity-enhancing activity of PG is related to its molecular weight and that increasing the quantity of low-molecular-weight PG can fortify the effect of immunity enhancement.
Heterogeneity of Loss Aversion in Pathological Gambling.
Takeuchi, Hideaki; Kawada, Ryosaku; Tsurumi, Kosuke; Yokoyama, Naoto; Takemura, Ariyoshi; Murao, Takuro; Murai, Toshiya; Takahashi, Hidehiko
2016-12-01
Pathological gambling (PG) is characterized by continual repeated gambling behavior despite negative consequences. PG is considered to be a disorder of altered decision-making under risk, and behavioral economics tools were utilized by studies on decision-making under risk. At the same time, PG was suggested to be a heterogeneous disorder in terms of personality traits as well as risk attitude. We aimed to examine the heterogeneity of PG in terms of loss aversion, which means that a loss is subjectively felt to be larger than the same amount of gain. Thirty-one male PG subjects and 26 male healthy control (HC) subjects underwent a behavioral economics task for estimation of loss aversion and personality traits assessment. Although loss aversion in PG subjects was not significantly different from that in HC subjects, distributions of loss aversion differed between PG and HC subjects. HC subjects were uniformly classified into three levels (low, middle, high) of loss aversion, whereas PG subjects were mostly classified into the two extremes, and few PG subjects were classified into the middle range. PG subjects with low and high loss aversion showed a significant difference in anxiety, excitement-seeking and craving intensity. Our study suggested that PG was a heterogeneous disorder in terms of loss aversion. This result might be useful for understanding cognitive and neurobiological mechanisms and the establishment of treatment strategies for PG.
Fermi-LAT high-z active galactic nuclei and the extragalactic background light
NASA Astrophysics Data System (ADS)
Armstrong, Thomas; Brown, Anthony M.; Chadwick, Paula M.
2017-10-01
Observations of distant gamma-ray sources are hindered by the presence of the extragalactic background light (EBL). In order to understand the physical processes that result in the observed spectrum of sources, it is imperative that a good understanding of the EBL is included. In this work, an investigation into the imprint of the EBL on the observed spectra of high-redshift Fermi-LAT active galactic nuclei is presented. By fitting the spectrum below ˜10 GeV, an estimation of the unabsorbed intrinsic source spectrum is obtained; by applying this spectrum to data up to 300 GeV, it is then possible to derive a scaling factor for different EBL models. A second approach uses five sources (PKS 0426-380, 4C +55.17, Ton 116, PG 1246+586 and RBS 1432) that were found to exhibit very high energy (VHE) emission (Eγ > 100 GeV). Through Monte Carlo simulations, it is shown that the observation of VHE photons, despite the large distances of these objects, is consistent with current EBL models. Many of these sources would be observable with the upcoming ground-based observatory, the Cherenkov Telescope Array, leading to a better understanding of the EBL.
Lai, Senchao; Xie, Zhiyong; Song, Tianli; Tang, Jianhui; Zhang, Yingyi; Mi, Wenying; Peng, Jinhu; Zhao, Yan; Zou, Shichun; Ebinghaus, Ralf
2015-05-01
Nine organophosphate esters (OPEs) in airborne particles were measured during a cruise campaign over the northern South China Sea (SCS) from September to October 2013. The concentration of the total OPEs (∑OPEs) was 47.1-160.9 pg m(-3), which are lower than previous measurements in marine atmosphere environments. Higher OPE concentrations were observed in terrestrially influenced samples, suggesting that OPE concentrations were significantly influenced by air mass transport. Chlorinated OPEs were the dominant OPEs, accounting for 65.8-83.7% of the ∑OPEs. Tris-(2-chloroethyl) phosphate (TCEP) was the predominant OPE compound in the samples (45.0±12.1%), followed by tris-(1-chloro-2-propyl) phosphates (TCPPs) (28.8±8.9%). Dry particle-bound deposition fluxes ranged from 8.2 to 27.8 ng m(-2) d(-1) for the ∑OPEs. Moreover, the dry deposition input of the ∑OPEs was estimated to be 4.98 ton y(-1) in 2013 in a vast area of northern SCS. About half of the input was found to relate to air masses originating from China. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mines in the Four Corners anticipate growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchsbaum, L.
2008-02-15
Productive mines in the southwest deplete reserves, while the government drags its heels on new power projects. Production in Arizona and New Mexico has fallen 18% over the last four years to 34.1 million tons. With Chevron Mining's McKinley mine rapidly depleting its reserves the industry will continue to contract. In the last three years at least three large mines in the Four Corners have terminated operations. Three others remain captive operations: BHP Billiton's San Juan Underground and Navajo Surface operations and Peabody Energy's Kayenta surface mine. In 2006 the Black Mesa mine stopped producing coal. These four mines aremore » isolated from the national railways. Peabody's new El Segundo surface mine near Grants, NM is increasing production. If the planned $3 billion Desert Rock coal-fired power plant is built this will present a new market for the Navajo mine. The article gives details about the state of the aforementioned mines and of the new King II coal mine on the northern periphery of the San Juan basin and discusses the state of plans for the Desert Rock Energy Project. 5 photos.« less
Anderson, Erik; Addy, Min; Ma, Huan; Chen, Paul; Ruan, Roger
2016-12-01
In the U.S., the total amount of municipal solid waste is continuously rising each year. Millions of tons of solid waste and scum are produced annually that require safe and environmentally sound disposal. The availability of a zero-cost energy source like municipal waste scum is ideal for several types of renewable energy technologies. However, the way the energy is produced, distributed and valued also contributes to the overall process sustainability. An economic screening method was developed to compare the potential energy and economic value of three waste-to-energy technologies; incineration, anaerobic digestion, and biodiesel. A St. Paul, MN wastewater treatment facility producing 3175 "wet" kilograms of scum per day was used as a basis of the comparison. After applying all theoretically available subsidies, scum to biodiesel was shown to have the greatest economic potential, valued between $491,949 and $610,624/year. The incineration of scum yielded the greatest reclaimed energy potential at 29billion kilojoules/year. Copyright © 2016 Elsevier Ltd. All rights reserved.
Climate, Health, Agricultural and Economic Impacts of Tighter Vehicle-Emission Standards
NASA Technical Reports Server (NTRS)
Shindell, Drew; Faluvegi, Greg; Walsh, Michael; Anenberg, Susan C.; VanDingen, Rita; Muller, Nicholas Z.; Austin, Jeff; Koch, Dorothy; Milly, George
2011-01-01
Non-CO2 air pollutants from motor vehicles have traditionally been controlled to protect air quality and health, but also affect climate. We use global composition climate modelling to examine the integrated impacts of adopting stringent European on-road vehicle-emission standards for these pollutants in 2015 in many developing countries. Relative to no extra controls, the tight standards lead to annual benefits in 2030 and beyond of 120,000-280,000 avoided premature air pollution-related deaths, 6.1-19.7 million metric tons of avoided ozone-related yield losses of major food crops, $US0.6-2.4 trillion avoided health damage and $US1.1-4.3 billion avoided agricultural damage, and mitigation of 0.20 (+0.14/-0.17) C of Northern Hemisphere extratropical warming during 2040-2070. Tighter vehicle-emission standards are thus extremely likely to mitigate short-term climate change in most cases, in addition to providing large improvements in human health and food security. These standards will not reduce CO2 emissions, however, which is required to mitigate long-term climate change.
2014-04-18
CAPE CANAVERAL, Fla. - Media representatives participate in a post-launch news conference in the NASA Press Site news auditorium at Kennedy Space Center in Florida following the SpaceX-3 launch. On the dais are, from left, Michael Curie, NASA Public Affairs, William Gersteinmeier, NASA associate administrator for Human Exploration and Operations, and Hans Koenigsmann, SpaceX vice president of Mission Assurance. SpaceX CEO and chief designer Elon Musk participated in the conference by telephone. SpaceX-3 launched at 3:25 p.m. EDT aboard a Falcon 9 rocket carrying a Dragon capsule from Space Launch Complex 40 on Cape Canaveral Air Force Station. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Kim Shiflett
Safe disposal of surplus plutonium
NASA Astrophysics Data System (ADS)
Gong, W. L.; Naz, S.; Lutze, W.; Busch, R.; Prinja, A.; Stoll, W.
2001-06-01
About 150 tons of weapons grade and weapons usable plutonium (metal, oxide, and in residues) have been declared surplus in the USA and Russia. Both countries plan to convert the metal and oxide into mixed oxide fuel for nuclear power reactors. Russia has not yet decided what to do with the residues. The US will convert residues into a ceramic, which will then be over-poured with highly radioactive borosilicate glass. The radioactive glass is meant to provide a deterrent to recovery of plutonium, as required by a US standard. Here we show a waste form for plutonium residues, zirconia/boron carbide (ZrO 2/B 4C), with an unprecedented combination of properties: a single, radiation-resistant, and chemically durable phase contains the residues; billion-year-old natural analogs are available; and criticality safety is given under all conceivable disposal conditions. ZrO 2/B 4C can be disposed of directly, without further processing, making it attractive to all countries facing the task of plutonium disposal. The US standard for protection against recovery can be met by disposal of the waste form together with used reactor fuel.
Recycled diesel carbon nanoparticles for nanostructured battery anodes
NASA Astrophysics Data System (ADS)
Chen, Yuming; Liu, Chang; Sun, Xiaoxuan; Ye, Han; Cheung, Chunshun; Zhou, Limin
2015-02-01
Considerable attention has been devoted to using rational nanostructure design to address critical carbonaceous anode material issues for next-generation lithium-ion batteries (LIBs). However, the fabrication of nanostructured carbonaceous anode materials often involves complex processes and expensive starting materials. Diesel engine is an important source of nanostructured carbon particles with diameters ranging 20 nm-60 nm suspended in air, resulting in a serious scourge of global climate and a series of diseases such as lung cancer, asthma, and cardiovascular disease. Here, we show that diesel carbon nanoparticles collected from diesel engines can be chemically activated to create a porous structure. The resulting nanostructured carbon electrodes have a high specific capacity of 936 mAh g-1 after 40 cycles at 0.05 A/g, and excellent cycle stability while retaining a capacity of ∼210 mAh g-1 after 1200 cycles at 5 A/g. As recycled diesel carbon nanoparticles are readily available due to the several billion tons of diesel fuel consumed every year by diesel engines, their use represents an exciting source for nanostructured carbonaceous anode materials for high-performance LIBs and improves our environment and health.
Quantitative assessment of urban and industrial symbiosis in Kawasaki, Japan.
Van Berkel, Rene; Fujita, Tsuyoshi; Hashimoto, Shizuka; Fujii, Minoru
2009-03-01
Colocated firms can achieve environmental benefit and competitive advantage from exchanging physical resources (known as industrial symbiosis) with each other or with residential areas (referenced here as urban symbiosis). Past research illustrated that economic and environmental benefits appear self-evident, although detailed quantification has only been attempted of symbioses for energy and water utilities. This article provides a complimentary case studyfor Kawasaki, Japan. The 14 documented symbioses connect steel, cement, chemical, and paperfirms and their spin-off recycling businesses. Seven key material exchanges divert annually at least 565 000 tons of waste from incineration or landfill. Four of these collectively present an estimated economic opportunity of 13.3 billion JPY (approximately 130 million USD) annually. Five symbioses involve utilization of byproduct and two sharing of utilities. The others are traditional or new recycling industries that do not specifically benefit from geographic proximity. The synergistic effect of urban and industrial symbiosis is unique. The legislative framework for a recycling-oriented society has contributed to realization of the symbioses, as has the availability of government subsidies through the Eco-Town program.
Ball and chain: the global burden of lead poisoning.
Dissanayake, Vinodinee; Erickson, Timothy B
2012-07-01
Lead, the 82nd element in our periodic table, has accompanied humankind throughout the millennia of our history and development. As a ubiquitous heavy metal, lead is used in multiple applications and nine billion tons continue to be extracted globally every year. Although the United States has succeeded in limiting lead exposure among its own citizens by banning the use of lead in gasoline and household paint, while instituting improved working conditions for those who are exposed to lead in the workplace, the battle against lead is not won. In addition, it continues to plague the rest of the world today; the United States has played an increasing role in the world's exposure to lead and plans to stop are currently stalled. The year 2011 marked the centennial celebration of the life's work of Dr. Alice Hamilton in exposing lead poisoning among industrial workers in Chicago, Illinois. Her legacy provides us with the opportunity to look back and reevaluate our leaded history in the US. It also reminds us that there is more to be done to mitigate lead poisoning both domestically and in the developing world.
Chemistry and Photochemistry at the Surface of Urban Road Dust and Photoactive Minerals
NASA Astrophysics Data System (ADS)
Styler, S. A.; Abou-Ghanem, M.; Wickware, B.
2017-12-01
Each year, over a billion tons of dust are released into the atmosphere from arid regions. After its emission, dust can undergo efficient long-range transport to urban centres, where it can interact with local pollution sources. Another source of dust in urban regions is road dust resuspension, which is the largest anthropogenic source of primary particulate matter in both Canada and the United States. Since dust contains light-absorbing components, including iron- and titanium-containing minerals, dust-catalyzed photochemical processes have the potential to influence both the lifetime of pollutants present at the dust surface and the composition of the surrounding atmosphere. To date, most studies of dust photochemistry have focused on TiO2-mediated processes, and no studies have explored trace gas uptake at the surface of road dust. Here, we present first results from aerosol and coated-wall flow tube investigations of ozone uptake at the surface of a suite of titanium-containing minerals and road dust collected in Edmonton, Alberta. Together, this work represents a significant advance in our understanding of chemistry and photochemistry at realistic environmental interfaces.
[Even cigarette butts can impact environment and health: preliminary considerations].
Martino, Gianrocco; Gorini, Giuseppe; Chellini, Elisabetta
2013-01-01
In Italy, every year about 72 billion of cigarette butts are thrown away in the environment. Cigarette butts represent 50% of the wastes of urban areas (parks, roads) in the world, and 40% of Mediterranean Sea wastes. In particular, total polluting load is constituted of 1,872 Bq millions of Polonium-210, assuming 75 mBq per cigarette butt, and 1,800 tons of volatile organic compounds. As a matter of fact, according to several surveys, cigarette butts are considered by smokers and non-smokers as a common and acceptable waste in the environment. In 2008, European Union issued a Directive on wastes considering the «extended producer responsibility» (i.e., every industry is liable for costs of collection, transport and disposal of its own products). In October 2012, the Italian Parliament proposed a bill that classifies cigarette butts as special wastes in the frame of this responsibility. It could be interesting in the future to follow the legislative process of that bill in the Italian Parliament in order to show how strong it will be supported.
NASA Astrophysics Data System (ADS)
Adiwijaya; Hamada, H.; Sagawa, Y.; Yamamoto, D.
2017-11-01
Generally, in the concrete industry, several billion tons of fresh water are annually used for mixing water, curing water and cleaning water. Nevertheless, the utilization of seawater in the concrete industry is prohibited, because it increases the risk of corrosion of steel bars in concrete. This study presents strength characteristics and porosity of seawater mixed concrete and tap water mixed concrete incorporating Ground Granulated Blast-Furnace Slag (GGBS) with water-binder ratio (W/B) of 40%, 50% and 60%. The influence of seawater mixing, GGBS and curing conditions such as tap water curing (TC), seawater curing (SC) and air curing (AC) on the strength and porosity of concrete were evaluated. Based on investigation result, it was shown that there is no significant influence of seawater mixing in improving strength of GGBS concrete up to 365 days in TC and SC. Effectiveness of seawater-mixing on strength enhancement of GGBS concrete is larger in air curing than in water curing. Porosity of seawater-mixed concrete is decreased compared to tap water-mixed concrete in all curing conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torrens, I.M.; Stenzel, W.C.
Independent power producers will build a substantial fraction of expected new coal-fired power generation in developing countries over the coming decades. To reduce perceived risk and obtain financing for their projects, they are currently building and plan to continue to build subcritical coal-fired plants with generating efficiency below 40%. Up-to-date engineering assessment leads to the conclusion that supercritical generating technology, capable of efficiencies of up to 45%, can produce electricity at a lower total cost than conventional plants. If such plants were built in Asia over the coming decades, the savings in carbon dioxide emissions over their lifetime would bemore » measured in billions of tons. IPPs perceive supercritical technology as riskier and higher cost than conventional technology. The truth needs to be confirmed by discussions with additional experienced power engineering companies. Better communication among the interested parties could help to overcome the IPP perception issue. Governments working together with industry might be able to identify creative financing arrangements which can encourage the use of more efficient pulverized clean coal technologies, while awaiting the commercialization of advanced clean coal technologies like gasification combined cycle and pressurized fluidized bed combustion.« less
Terrestrial vegetation redistribution and carbon balance under climate change
Lucht, Wolfgang; Schaphoff, Sibyll; Erbrecht, Tim; Heyder, Ursula; Cramer, Wolfgang
2006-01-01
Background Dynamic Global Vegetation Models (DGVMs) compute the terrestrial carbon balance as well as the transient spatial distribution of vegetation. We study two scenarios of moderate and strong climate change (2.9 K and 5.3 K temperature increase over present) to investigate the spatial redistribution of major vegetation types and their carbon balance in the year 2100. Results The world's land vegetation will be more deciduous than at present, and contain about 125 billion tons of additional carbon. While a recession of the boreal forest is simulated in some areas, along with a general expansion to the north, we do not observe a reported collapse of the central Amazonian rain forest. Rather, a decrease of biomass and a change of vegetation type occurs in its northeastern part. The ability of the terrestrial biosphere to sequester carbon from the atmosphere declines strongly in the second half of the 21st century. Conclusion Climate change will cause widespread shifts in the distribution of major vegetation functional types on all continents by the year 2100. PMID:16930462
Chai, Hann-Juang; Kiew, Lik-Voon; Chin, Yunni; Norazit, Anwar; Mohd Noor, Suzita; Lo, Yoke-Lin; Looi, Chung-Yeng; Lau, Yeh-Siang; Lim, Tuck-Meng; Wong, Won-Fen; Abdullah, Nor Azizan; Abdul Sattar, Munavvar Zubaid; Johns, Edward J; Chik, Zamri; Chung, Lip-Yong
2017-01-01
Poly-l-glutamic acid (PG) has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier. 3 H-deoxycytidine-labeled PGs (17 or 41 kDa) and 3 H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido) fluorescein (fluoresceinyl glycine amide)-labeled PG (PG-AF). To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF). In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr) presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular tissues at 2 and 6 h after an intravenous administration. In the diabetic (oxidative stress-induced) kidneys, 41 kDa PG-Tr showed the greatest renal accumulation of 8-fold higher than the free compound 24 h post dose. Meanwhile, the synthesized PG-AEBSF was found to inhibit intracellular nicotinamide adenine dinucleotide phosphate oxidase (a reactive oxygen species generator) at an efficiency that is comparable to that of free AEBSF. This indicates the preservation of the anti-oxidative stress properties of AEBSF in the conjugated state. The favorable accumulation property of 41 kDa PG in normal and oxidative stress-induced kidneys, along with its capabilities in conserving the pharmacological properties of the conjugated renal protective drugs, supports its role as a potential renal targeting drug carrier.
Figueroa, Melania; Alderman, Stephen; Garvin, David F.; Pfender, William F.
2013-01-01
Puccinia graminis causes stem rust, a serious disease of cereals and forage grasses. Important formae speciales of P. graminis and their typical hosts are P. graminis f. sp. tritici (Pg-tr) in wheat and barley, P. graminis f. sp. lolii (Pg-lo) in perennial ryegrass and tall fescue, and P. graminis f. sp. phlei-pratensis (Pg-pp) in timothy grass. Brachypodium distachyon is an emerging genetic model to study fungal disease resistance in cereals and temperate grasses. We characterized the P. graminis-Brachypodium pathosystem to evaluate its potential for investigating incompatibility and non-host resistance to P. graminis. Inoculation of eight Brachypodium inbred lines with Pg-tr, Pg-lo or Pg-pp resulted in sporulating lesions later accompanied by necrosis. Histological analysis of early infection events in one Brachypodium inbred line (Bd1-1) indicated that Pg-lo and Pg-pp were markedly more efficient than Pg-tr at establishing a biotrophic interaction. Formation of appressoria was completed (60–70% of germinated spores) by 12 h post-inoculation (hpi) under dark and wet conditions, and after 4 h of subsequent light exposure fungal penetration structures (penetration peg, substomatal vesicle and primary infection hyphae) had developed. Brachypodium Bd1-1 exhibited pre-haustorial resistance to Pg-tr, i.e. infection usually stopped at appressorial formation. By 68 hpi, only 0.3% and 0.7% of the Pg-tr urediniospores developed haustoria and colonies, respectively. In contrast, development of advanced infection structures by Pg-lo and Pg-pp was significantly more common; however, Brachypodium displayed post-haustorial resistance to these isolates. By 68 hpi the percentage of urediniospores that only develop a haustorium mother cell or haustorium in Pg-lo and Pg-pp reached 8% and 5%, respectively. The formation of colonies reached 14% and 13%, respectively. We conclude that Brachypodium is an apt grass model to study the molecular and genetic components of incompatiblity and non-host resistance to P. graminis. PMID:23441218
Chai, Hann-Juang; Kiew, Lik-Voon; Chin, Yunni; Norazit, Anwar; Mohd Noor, Suzita; Lo, Yoke-Lin; Looi, Chung-Yeng; Lau, Yeh-Siang; Lim, Tuck-Meng; Wong, Won-Fen; Abdullah, Nor Azizan; Abdul Sattar, Munavvar Zubaid; Johns, Edward J; Chik, Zamri; Chung, Lip-Yong
2017-01-01
Background and purpose Poly-l-glutamic acid (PG) has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier. Experimental approach 3H-deoxycytidine-labeled PGs (17 or 41 kDa) and 3H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido) fluorescein (fluoresceinyl glycine amide)-labeled PG (PG-AF). To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF). Results In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr) presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular tissues at 2 and 6 h after an intravenous administration. In the diabetic (oxidative stress-induced) kidneys, 41 kDa PG-Tr showed the greatest renal accumulation of 8-fold higher than the free compound 24 h post dose. Meanwhile, the synthesized PG-AEBSF was found to inhibit intracellular nicotinamide adenine dinucleotide phosphate oxidase (a reactive oxygen species generator) at an efficiency that is comparable to that of free AEBSF. This indicates the preservation of the anti-oxidative stress properties of AEBSF in the conjugated state. Conclusion/Implications The favorable accumulation property of 41 kDa PG in normal and oxidative stress-induced kidneys, along with its capabilities in conserving the pharmacological properties of the conjugated renal protective drugs, supports its role as a potential renal targeting drug carrier. PMID:28144140
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polf, J; McCleskey, M; Brown, S
2014-06-01
Purpose: Recent studies have suggested that the characteristics of prompt gammas (PG) emitted during proton beam irradiation are advantageous for determining beam range during treatment delivery. The purpose of this work was to determine the feasibility of determining the proton beam range from PG data measured with a prototype Compton camera (CC) during proton beam irradiation. Methods: Using a prototype multi-stage CC the PG emission from a water phantom was measured during irradiation with clinical proton therapy beams. The measured PG emission data was used to reconstruct an image of the PG emission using a backprojection reconstruction algorithm. One dimensionalmore » (1D) profiles extracted from the PG images were compared to: 1) PG emission data measured at fixed depths using collimated high purity Germanium and Lanthanum Bromide detectors, and 2) the measured depth dose profiles of the proton beams. Results: Comparisons showed that the PG emission profiles reconstructed from CC measurements agreed very well with the measurements of PG emission as a function of depth made with the collimated detectors. The distal falloff of the measured PG profile was between 1 mm to 4 mm proximal to the distal edge of the Bragg peak for proton beam ranges from 4 cm to 16 cm in water. Doses of at least 5 Gy were needed for the CC to measure sufficient data to image the PG profile and localize the distal PG falloff. Conclusion: Initial tests of a prototype CC for imaging PG emission during proton beam irradiation indicated that measurement and reconstruction of the PG profile was possible. However, due to limitations of the operational parameters (energy range and count rate) of the current CC prototype, doses of greater than a typical treatment dose (∼2 Gy) were needed to measure adequate PG signal to reconstruct viable images. Funding support for this project provided by a grant from DoD.« less
Han, Xiaozhe; LaRosa, Karen B; Kawai, Toshihisa; Taubman, Martin A
2014-01-03
Porphyromonas gingivalis (Pg) is one of a constellation of oral organisms associated with human chronic periodontitis. While adaptive immunity to periodontal pathogen proteins has been investigated and is an important component of periodontal bone resorption, the effect of periodontal pathogen DNA in eliciting systemic and mucosal antibody and modulating immune responses has not been investigated. Rowett rats were locally injected with whole genomic Pg DNA in alum. Escherichia coli (Ec) genomic DNA, Fusobacterium nucleatum (Fn) genomic DNA, and saline/alum injected rats served as controls. After various time points, serum IgG and salivary IgA antibody to Ec, Fn or Pg were detected by ELISA. Serum and salivary antibody reactions with Pg surface antigens were determined by Western blot analyses and the specific antigen was identified by mass spectrometry. Effects of genomic DNA immunization on Pg bacterial colonization and experimental periodontal bone resorption were also evaluated. Sera from Pg DNA, Ec DNA and Fn DNA-injected rats did not react with Ec or Fn bacteria. Serum IgG antibody levels to Pg and Pg surface extracts were significantly higher in animals immunized with Pg DNA as compared to the control groups. Rats injected with Pg DNA demonstrated a strong serum IgG and salivary IgA antibody reaction solely to Pg fimbrillin (41kDa), the major protein component of Pg fimbriae. In the Pg DNA-immunized group, the numbers of Pg bacteria in oral cavity and the extent of periodontal bone resorption were significantly reduced after Pg infection. This study suggests that infected hosts may select specific genes from whole genomic DNA of the periodontal pathogen for transcription and presentation. The results indicate that the unique gene selected can initiate a host protective immune response to the parent bacterium. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ben-Simhon, Zohar; Judeinstein, Sylvie; Nadler-Hassar, Talia; Trainin, Taly; Bar-Ya'akov, Irit; Borochov-Neori, Hamutal; Holland, Doron
2011-11-01
Anthocyanins are the major pigments responsible for the pomegranate (Punica granatum L.) fruit skin color. The high variability in fruit external color in pomegranate cultivars reflects variations in anthocyanin composition. To identify genes involved in the regulation of anthocyanin biosynthesis pathway in the pomegranate fruit skin we have isolated, expressed and characterized the pomegranate homologue of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1), encoding a WD40-repeat protein. The TTG1 protein is a regulator of anthocyanins and proanthocyanidins (PAs) biosynthesis in Arabidopsis, and acts by the formation of a transcriptional regulatory complex with two other regulatory proteins: bHLH and MYB. Our results reveal that the pomegranate gene, designated PgWD40, recovered the anthocyanin, PAs, trichome and seed coat mucilage phenotype in Arabidopsis ttg1 mutant. PgWD40 expression and anthocyanin composition in the skin were analyzed during pomegranate fruit development, in two accessions that differ in skin color intensity and timing of appearance. The results indicate high positive correlation between the total cyanidin derivatives quantity (red pigments) and the expression level of PgWD40. Furthermore, strong correlation was found between the steady state levels of PgWD40 transcripts and the transcripts of pomegranate homologues of the structural genes PgDFR and PgLDOX. PgWD40, PgDFR and PgLDOX expression also correlated with the expression of pomegranate homologues of the regulatory genes PgAn1 (bHLH) and PgAn2 (MYB). On the basis of our results we propose that PgWD40 is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development and that expression of PgWD40, PgAn1 and PgAn2 in the pomegranate fruit skin is required to regulate the expression of downstream structural genes involved in the anthocyanin biosynthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yu-Sheng, E-mail: dissertlin@yahoo.com.tw; Yang, Cheng-Hsu, E-mail: yangch@adm.cgmh.org.tw; Chu, Chi-Ming, E-mail: chuchiming@ndmctsgh.edu.tw
Purpose: The severity of residual stenosis (RS) sometimes cannot be accurately measured by angiography during central vein intervention. This study evaluated the role of pullback pressure measurement during central vein stenosis (CVS) intervention. Methods: A retrospective review enrolled 94 consecutive dialysis patients who underwent CVS interventions but not stenting procedures. Patients were classified into 2 groups by either angiography or pressure gradient (PG) criteria, respectively. Groups divided by angiographic result were successful group (RS {<=}30 %) and acceptable group (50 % {>=} RS > 30 %), while groups divided by PG were low PG group (PG {<=}5 mmHg) and highmore » PG group (PG >5 mmHg). Baseline characteristics and 12-month patency rates between the groups were analyzed. Results: The angiography results placed 63 patients in the successful group and 31 patients in the acceptable group. The patency rate at 12 month was not statistically different (P = 0.167). When the patients were reclassified by the postintervention pullback PG, the patency rate at 12 months was significant (P = 0.048). Further analysis in groups redivided by different combinations of RS and PG criteria identified significant differences in the group with both RS {<=}30 % and PG {<=}5 mmHg compared with those with either RS >30 % (P = 0.047) or PG >5 mmHg (P = 0.027). In addition, there was a significant difference between those with both RS {<=}30 % and PG {<=}5 mmHg compared with those with both RS >30 % and PG >5 mmHg (P = 0.027). Conclusion: Postintervention PG can better predict long-term outcomes after angioplasty for CVS in nonstented dialysis patients than angiography.« less
Gawroński, Wojciech; Sobiecka, Joanna
2015-01-01
Medical care in disabled sports is crucial both as prophylaxis and as ongoing medical intervention. The aim of this paper was to present changes in the quality of medical care over the consecutive Paralympic Games (PG). The study encompassed 31 paralympians: Turin (11), Vancouver (12), and Sochi (8) competing in cross-country skiing, alpine skiing, biathlon and snowboarding. The first, questionnaire-based, part of the study was conducted in Poland before the PG. The athletes assessed the quality of care provided by physicians, physiologists, dieticians, and physiotherapists, as well as their cooperation with the massage therapist and the psychologist. The other part of the study concerned the athletes’ health before leaving for the PG, as well as their diseases and injuries during the PG. The quality of medical care was poor before the 2006 PG, but satisfactory before the subsequent PG. Only few athletes made use of psychological support, assessing it as poor before the 2006 PG and satisfactory before the 2010 and 2014 PG. The athletes’ health condition was good during all PG. The health status of cross-country skiers was confirmed by a medical fitness certificate before all PG, while that of alpine skiers only before the 2014 PG. There were no serious diseases; training injuries precluded two athletes from participation. The quality of medical care before the PG was poor, however, became satisfactory during the actual PG. The resulting ad hoc pattern deviates from the accepted standards in medical care in disabled sports. PMID:26834868
Johnson, Zariel I; Doolittle, Alexandra C; Snuggs, Joseph W; Shapiro, Irving M; Le Maitre, Christine L; Risbud, Makarand V
2017-10-20
Intervertebral disc degeneration (IDD) causes chronic back pain and is linked to production of proinflammatory molecules by nucleus pulposus (NP) and other disc cells. Activation of tonicity-responsive enhancer-binding protein (TonEBP)/NFAT5 by non-osmotic stimuli, including proinflammatory molecules, occurs in cells involved in immune response. However, whether inflammatory stimuli activate TonEBP in NP cells and whether TonEBP controls inflammation during IDD is unknown. We show that TNF-α, but not IL-1β or LPS, promoted nuclear enrichment of TonEBP protein. However, TNF-α-mediated activation of TonEBP did not cause induction of osmoregulatory genes. RNA sequencing showed that 8.5% of TNF-α transcriptional responses were TonEBP-dependent and identified genes regulated by both TNF-α and TonEBP. These genes were over-enriched in pathways and diseases related to inflammatory response and inhibition of matrix metalloproteases. Based on RNA-sequencing results, we further investigated regulation of novel TonEBP targets CXCL1 , CXCL2 , and CXCL3 TonEBP acted synergistically with TNF-α and LPS to induce CXCL1 -proximal promoter activity. Interestingly, this regulation required a highly conserved NF-κB-binding site but not a predicted TonE, suggesting cross-talk between these two members of the Rel family. Finally, analysis of human NP tissue showed that TonEBP expression correlated with canonical osmoregulatory targets TauT/SLC6A6 , SMIT/SLC5A3 , and AR/AKR1B1 , supporting in vitro findings that the inflammatory milieu during IDD does not interfere with TonEBP osmoregulation. In summary, whereas TonEBP participates in the proinflammatory response to TNF-α, therapeutic strategies targeting this transcription factor for treatment of disc disease must spare osmoprotective, prosurvival, and matrix homeostatic activities. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Production of Phloroglucinol, a Platform Chemical, in Arabidopsis using a Bacterial Gene.
Abdel-Ghany, Salah E; Day, Irene; Heuberger, Adam L; Broeckling, Corey D; Reddy, Anireddy S N
2016-12-07
Phloroglucinol (1,3,5-trihydroxybenzene; PG) and its derivatives are phenolic compounds that are used for various industrial applications. Current methods to synthesize PG are not sustainable due to the requirement for carbon-based precursors and co-production of toxic byproducts. Here, we describe a more sustainable production of PG using plants expressing a native bacterial or a codon-optimized synthetic PhlD targeted to either the cytosol or chloroplasts. Transgenic lines were analyzed for the production of PG using gas and liquid chromatography coupled to mass spectroscopy. Phloroglucinol was produced in all transgenic lines and the line with the highest PhlD transcript level showed the most accumulation of PG. Over 80% of the produced PG was glycosylated to phlorin. Arabidopsis leaves have the machinery to glycosylate PG to form phlorin, which can be hydrolyzed enzymatically to produce PG. Furthermore, the metabolic profile of plants with PhlD in either the cytosol or chloroplasts was altered. Our results provide evidence that plants can be engineered to produce PG using a bacterial gene. Phytoproduction of PG using a bacterial gene paves the way for further genetic manipulations to enhance the level of PG with implications for the commercial production of this important platform chemical in plants.
Improvements in BTS estimation of ton-miles
DOT National Transportation Integrated Search
2004-08-01
Ton-miles (one ton of freight shipped one mile) is the primary physical measure of freight transportation output. This paper describes improved measurements of ton-miles for air, truck, rail, water, and pipeline modes. Each modal measure contains a d...
Emission inventory and provincial distribution of short-chain chlorinated paraffins in China.
Zhang, Boya; Zhao, Bu; Xu, Chun; Zhang, Jianbo
2017-03-01
Chlorinated paraffins (CPs) are used as flame retardants, plasticizers, and metalworking fluids, which have varying contents of toxic short-chain chlorinated paraffins (SCCPs). Based on the study of several relevant production and consumption sectors, this paper classifies the consumption of CPs among sectors and provides an emission inventory and the provincial emission distribution of SCCPs in China in 2010-2014 based on the consumption patterns and emission factors of each sector. The total emissions of SCCPs in China in 2014 were 3083.88tons, with emissions to the atmosphere and water accounting for 894.81tons and 2189.07tons, respectively. The largest emission source was from metalworking fluids, with total emissions of 2459.12tons, of which 756.65tons went to the atmosphere and 1702.47tons to water. Our results show that SCCP emissions were mainly concentrated in the eastern, more developed regions and that Jiangsu Province was the biggest producer in China, with total emissions of 1853.06tons, of which 562.61tons were to the atmosphere and 1290.46tons to water. Copyright © 2016 Elsevier B.V. All rights reserved.
Chloride loading in the South Fork of the Shenandoah River, Virginia, U.S.A.
NASA Astrophysics Data System (ADS)
Sherwood, W. Cullen
1989-09-01
Loading trends and sources of CI- in the South Fork of the Shenandoah River, Virginia were analyzed for the period 1929 1982. CI- has increased from approximately 2 mg/L (2,776 tons/yr) to over 10 mg/L (14,256 tons/yr). Natural CI- is estimated to be 1.01 mg/L (1,388 tons/yr) with precipitation providing 0.99 mg/L and rocks 0.02 mg/L. From 1929 to 1949 CI- concentrations were relatively constant and independent of discharge, conforming to the Type II curve of Davis and Zobrist (1978), indicative of natural or relatively uncontaminated streams. Since 1952 CI- concentrations increased exponentially as river discharge decreases conforming to the Type I curve of Davis and Zobrist for polluted streams. Since 1965 anthropogenic CI- loading at 12,868 tons/yr has remained relatively constant. Four major sources contribute 92.2 percent (11,871 tons/yr) of the anthropogenic CI-: (1) deicing salts—4,149 tons/yr, (2) domestic sewage—3,015 tons/yr, (3) livestock and poultry wastes—2,458 tons/yr, and (4) commercial fertilizers—2,249 tons/yr.
Mechanistic insights into porous graphene membranes for helium separation and hydrogen purification
NASA Astrophysics Data System (ADS)
Wei, Shuxian; Zhou, Sainan; Wu, Zhonghua; Wang, Maohuai; Wang, Zhaojie; Guo, Wenyue; Lu, Xiaoqing
2018-05-01
Porous graphene (PG) and nitrogen-substituted PG monolayers of 3N-PG and 6N-PG were designed as effective membranes for the separation of He and H2 over Ne, Ar, N2, CO, and CH4 by using density functional theory. Results showed that PG and 3N-PG exhibited suitable pore sizes and relatively high stabilities for He and H2 separation. PG and 3N-PG membranes also presented excellent He and H2 selectivities over Ne, Ar, N2, CO and CH4 at a wide temperature range. 6N-PG membrane exerted unexceptionable permeances of the studied gases, especially He and H2, which could remarkably improve the separation efficiency of He and H2. Analyses on the most stable adsorption configurations and maximum adsorption energies indicated weak Van der Waals interactions between the gases and the three PG-based membranes. Microscopic permeation process analyses based on the minimum energy pathway, energy profiles, and electron density isosurfaces elucidated the remarkable selectivities of He over Ne/CO/N2/Ar/CH4 and H2 over CO/N2/CH4 and the high permeances of He and H2 passing through the three PG-based membranes. This work not only highlighted the potential use of the three PG-based membranes for He separation and H2 purification but also provided a superior alternative strategy to design and screen membrane materials for gas separation.
Paddock, Ethan; Hohenadel, Maximilian G; Piaggi, Paolo; Vijayakumar, Pavithra; Hanson, Robert L; Knowler, William C; Krakoff, Jonathan; Chang, Douglas C
2017-09-01
Elevated 2-h plasma glucose concentration (2 h-PG) during a 75 g OGTT predict the development of type 2 diabetes mellitus. However, 1-h plasma glucose concentration (1 h-PG) is associated with insulin secretion and may be a better predictor of type 2 diabetes. We aimed to investigate the association between 1 h-PG and 2 h-PG using gold standard methods for measuring insulin secretion and action. We also compared 1 h-PG and 2 h-PG as predictors of type 2 diabetes mellitus. This analysis included adult volunteers without diabetes, predominantly Native Americans of Southwestern heritage, who were involved in a longitudinal epidemiological study from 1965 to 2007, with a baseline OGTT that included measurement of 1 h-PG. Group 1 (n = 716) underwent an IVGTT and hyperinsulinaemic-euglycaemic clamp for measurement of acute insulin response (AIR) and insulin-stimulated glucose disposal (M), respectively. Some members of Group 1 (n = 490 of 716) and members of a second, larger, group (Group 2; n = 1946) were followed-up to assess the development of type 2 diabetes (median 9.0 and 12.8 years follow-up, respectively). Compared with 2 h-PG (r = -0.281), 1 h-PG (r = -0.384) was more closely associated with AIR, whereas, compared with 1 h-PG (r = -0.340), 2 h-PG (r = -0.408) was more closely associated with M. Measures of 1 h-PG and 2 h-PG had similar abilities to predict type 2 diabetes, which did not change when both were included in the model. A 1 h-PG cut-off of 9.3 mmol/l provided similar levels of sensitivity and specificity as a 2 h-PG cut-off of 7.8 mmol/l; the latter is used to define impaired glucose tolerance, a recognised predictor of type 2 diabetes mellitus. The 1 h-PG was associated with important physiological predictors of type 2 diabetes and was as effective as 2 h-PG for predicting type 2 diabetes mellitus. The 1 h-PG is, therefore, an alternative method of identifying individuals with an elevated risk of type 2 diabetes mellitus.
Products Derived from Thinning Two Hardwood Timber Stands in the Appalachians
E. Paul Craft; John E. Baumgras
1978-01-01
Two sample plots in poletimber-small sawtimber stands of Allegheny hardwoods were thinned to improve crop-tree spacing. Thinning produced nearly 35 tons per acre of wood fiber, including 13 tons of sawable boltwood, 3-l/2 tons of standard sawlogs, 18 tons of pulpwood, and 1 ton of fuelwood. Nearly 3,700 board feet of lumber and cants were produced from the sawbolts and...
Pouillart, P; Madgelenat, H; Jouve, M; Palangie, T; Garcia-Giralt, E; Bretaudeau, B; Polijcak, M; Asselain, B
1982-01-01
102 patients with disseminated breast cancer entered this retrospective study. An estrogen receptor (ER) assay was realized in 91 patients and a progesterone receptor (PgR) assay in 90 cases; 44 per cent of the patients were considered as ER+ and 29 per cent as PgR+; 56 per cent were considered as ER- PgR-. The objective response rate to cytotoxic chemotherapy after 4 months of treatment was 66 per cent for ER-, 73 per cent for ER+, 67 per cent for PgR- and 74 per cent for PgR+. However, the mean duration of response was significantly shorter for ER- patients, and no difference appeared between PgR+ and PgR- patients. The acturial survival curves demonstrated a favorable prognostic significance of ER+ as compared to ER- p = 0,03), but the difference was slightly more significant for PgR+ as compared to PgR- (p = 0,008). The prognostic significance of PgR in patients with advanced breast cancer treated with cytotoxic chemotherapy does not appear to be related to the sensitivity to this treatment.
Mikecz, Katalin; Glant, Tibor T.; Markovics, Adrienn; Rosenthal, Kenneth S.; Kurko, Julia; Carambula, Roy E.; Cress, Steve; Steiner, Harold L.; Zimmerman, Daniel H.
2017-01-01
Rheumatoid arthritis (RA) is an autoimmune joint disease maintained by aberrant immune responses involving CD4+ T helper (Th)1 and Th17 cells. In this study, we tested the therapeutic efficacy of Ligand Epitope Antigen Presentation System (LEAPS™) vaccines in two Th1 cell-driven mouse models of RA, cartilage proteoglycan (PG)-induced arthritis (PGIA) and PG G1-domain-induced arthritis (GIA). The immunodominant PG peptide PG70 was attached to a DerG or J immune cell binding peptide, and the DerG-PG70 and J-PG70 LEAPS vaccines were administered to the mice after the onset of PGIA or GIA symptoms. As indicated by significant decreases in visual and histopathological scores of arthritis, the DerG-PG70 vaccine inhibited disease progression in both PGIA and GIA, while the J-PG70 vaccine was ineffective. Splenic CD4+ cells from DerG-PG70-treated mice were diminished in Th1 and Th17 populations but enriched in Th2 and regulatory T (Treg) cells. In vitro spleen cell-secreted and serum cytokines from DerG-PG70-treated mice demonstrated a shift from a pro-inflammatory to an anti-inflammatory/regulatory profile. DerG-PG70 peptide tetramers preferentially bound to CD4+ T-cells of GIA spleen cells. We conclude that the DerG-PG70 vaccine (now designated CEL-4000) exerts its therapeutic effect by interacting with CD4+ cells, which results in an antigen-specific down-modulation of pathogenic T-cell responses in both the PGIA and GIA models of RA. Future studies will need to determine the potential of LEAPS vaccination to provide disease suppression in patients with RA. PMID:28583308
Embryos aggregation improves development and imprinting gene expression in mouse parthenogenesis.
Bai, Guang-Yu; Song, Si-Hang; Wang, Zhen-Dong; Shan, Zhi-Yan; Sun, Rui-Zhen; Liu, Chun-Jia; Wu, Yan-Shuang; Li, Tong; Lei, Lei
2016-04-01
Mouse parthenogenetic embryonic stem cells (PgESCs) could be applied to study imprinting genes and are used in cell therapy. Our previous study found that stem cells established by aggregation of two parthenogenetic embryos at 8-cell stage (named as a2 PgESCs) had a higher efficiency than that of PgESCs, and the paternal expressed imprinting genes were observably upregulated. Therefore, we propose that increasing the number of parthenogenetic embryos in aggregation may improve the development of parthenogenetic mouse and imprinting gene expression of PgESCs. To verify this hypothesis, we aggregated four embryos together at the 4-cell stage and cultured to the blastocyst stage (named as 4aPgB). qPCR detection showed that the expression of imprinting genes Igf2, Mest, Snrpn, Igf2r, H19, Gtl2 in 4aPgB were more similar to that of fertilized blastocyst (named as fB) compared to 2aPgB (derived from two 4-cell stage parthenogenetic embryos aggregation) or PgB (single parthenogenetic blastocyst). Post-implantation development of 4aPgB extended to 11 days of gestation. The establishment efficiency of GFP-a4 PgESCs which derived from GFP-4aPgB is 62.5%. Moreover, expression of imprinting genes Igf2, Mest, Snrpn, notably downregulated and approached the level of that in fertilized embryonic stem cells (fESCs). In addition, we acquired a 13.5-day fetus totally derived from GFP-a4 PgESCs with germline contribution by 8-cell under zona pellucida (ZP) injection. In conclusion, four embryos aggregation improves parthenogenetic development, and compensates imprinting genes expression in PgESCs. It implied that a4 PgESCs could serve as a better scientific model applied in translational medicine and imprinting gene study. © 2016 Japanese Society of Developmental Biologists.
Laube, Beth L.; Afshar-Mohajer, Nima; Koehler, Kirsten; Chen, Gang; Lazarus, Philip; Collaco, Joseph M.; McGrath-Morrow, Sharon A.
2017-01-01
Objective To determine the effect of an acute (1 week) and chronic (3 weeks) exposure to E-cigarette (E-cig) emissions on mucociliary clearance (MCC) in murine lungs. Methods C57BL/6 male mice (age 10.5 ±2.4 weeks) were exposed for 20min/day to E-cigarette aerosol generated by a Joyetech 510-T® E-cig containing either 0% nicotine (N)/propylene glycol (PG) for 1 week (n = 6), or 3 weeks (n = 9), or 2.4% N/PG for one week (n = 6), or 3 weeks (n = 9), followed by measurement of MCC. Control mice (n = 15) were not exposed to PG alone, or N/PG. MCC was assessed by gamma camera following aspiration of 99mtechnetium aerosol and was expressed as the amount of radioactivity removed from both lungs over 6 hours (MCC6hrs). Venous blood was assayed for cotinine levels in control mice and in mice exposed for 3-weeks to PG alone and N/PG. Results MCC6hrs in control mice and in mice acutely exposed to PG alone and N/PG was similar, averaging (±1 standard deviation) 8.6±5.2%, 7.5±2.8% and 11.2±5.9%, respectively. In contrast, chronic exposure to PG alone stimulated MCC6hrs (17.2 ±8.0)% and this stimulation was significantly blunted following chronic exposure to N/PG (8.7 ±4.6)% (p < .05). Serum cotinine levels were <0.5ng/ml in control mice and in mice exposed to PG alone, whereas, N/PG exposed mice averaged 14.6 ± 12.0 ng/ml. Conclusions In this murine model, a chronic, daily, 20 min-exposure to N/PG, but not an acute exposure, slowed MCC, compared to exposure to PG alone and led to systemic absorption of nicotine. PMID:28651446
40 CFR 60.73 - Emission monitoring.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the applicable standard (kg/metric ton, lb/ton). The conversion factor shall be established by...., kg/metric ton per ppm (lb/ton per ppm). The conversion factor shall be reestablished during any... continuous monitoring system for measuring nitrogen oxides (NOX). The pollutant gas mixtures under...
40 CFR 60.73 - Emission monitoring.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the applicable standard (kg/metric ton, lb/ton). The conversion factor shall be established by...., kg/metric ton per ppm (lb/ton per ppm). The conversion factor shall be reestablished during any... continuous monitoring system for measuring nitrogen oxides (NOX). The pollutant gas mixtures under...
40 CFR 60.73 - Emission monitoring.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the applicable standard (kg/metric ton, lb/ton). The conversion factor shall be established by...., kg/metric ton per ppm (lb/ton per ppm). The conversion factor shall be reestablished during any... continuous monitoring system for measuring nitrogen oxides (NOX). The pollutant gas mixtures under...
40 CFR 60.73 - Emission monitoring.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the applicable standard (kg/metric ton, lb/ton). The conversion factor shall be established by...., kg/metric ton per ppm (lb/ton per ppm). The conversion factor shall be reestablished during any... continuous monitoring system for measuring nitrogen oxides (NOX). The pollutant gas mixtures under...
NASA Astrophysics Data System (ADS)
Kuassivi; Bonanno, A.; Ferlet, R.
2005-11-01
We report the detection of pulsations in the far ultraviolet (FUV) light curves of PG 1219+534, PG 1605+072 and PG 1613+426 obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) in time tagged mode (TTAG). Exposures of the order of a few ksec were sufficient to observe the main frequencies of PG 1219+534 and PG 1605+072 and confirm the detection of a pulsation mode at the surface of PG 1613+426 as reported from ground. For the first time we derive time resolved spectroscopic FUSE data of a sdB pulsator (PG 1605+072) and comment on its line profile variation diagram (lpv diagram). We observe the phase shift between the maximum luminosity and the maximum radius to be consistent with the model of an adiabatic pulsator. We also present evidence that the line broadening previously reported is not caused by rotation but is rather an observational bias due to the rapid Doppler shift of the lines with 17 km s-1 amplitude. Thus our observations do not support the previous claim that PG 1605+072 is (or will evolve into) an unusually fast rotating degenerate dwarf. These results demonstrate the asteroseismological potential of the FUSE satellite which should be viewed as another powerful means of investigating stellar pulsations, along with the MOST and COROT missions.
TDRSS Onboard Navigation System (TONS) flight qualification experiment
NASA Technical Reports Server (NTRS)
Gramling, C. J.; Hart, R. C.; Folta, D. C.; Long, A. C.
1994-01-01
The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing an operational Tracking and Data Relay Satellite (TDRS) System (TDRSS) Onboard Navigation System (TONS) to provide realtime, autonomous, high-accuracy navigation products to users of TDRSS. A TONS experiment was implemented on the Explorer Platform/Extreme Ultraviolet Explorer (EP/EUVE) spacecraft, launched June 7, 1992, to flight qualify the TONS operational system using TDRSS forward-link communications services. This paper provides a detailed evaluation of the flight hardware, an ultrastable oscillator (USO) and Doppler extractor (DE) card in one of the TDRSS user transponders and the ground-based prototype flight software performance, based on the 1 year of TONS experiment operation. The TONS experiment results are used to project the expected performance of the TONS 1 operational system. TONS 1 processes Doppler data derived from scheduled forward-link S-band services using a sequential estimation algorithm enhanced by a sophisticated process noise model to provide onboard orbit and frequency determination and time maintenance. TONS 1 will be the prime navigation system on the Earth Observing System (EOS)-AM1 spacecraft, currently scheduled for launch in 1998. Inflight evaluation of the USO and DE short-term and long-term stability indicates that the performance is excellent. Analysis of the TONS prototype flight software performance indicates that realtime onboard position accuracies of better than 25 meters root-mean-square are achievable with one tracking contact every one to two orbits for the EP/EUVE 525-kilometer altitude, 28.5 degree inclination orbit. The success of the TONS experiment demonstrates the flight readiness of TONS to support the EOS-AM1 mission.
Gastric mucosal status in populations with a low prevalence of Helicobacter pylori in Indonesia.
Miftahussurur, Muhammad; Nusi, Iswan Abbas; Akil, Fardah; Syam, Ari Fahrial; Wibawa, I Dewa Nyoman; Rezkitha, Yudith Annisa Ayu; Maimunah, Ummi; Subsomwong, Phawinee; Parewangi, Muhammad Luthfi; Mariadi, I Ketut; Adi, Pangestu; Uchida, Tomohisa; Purbayu, Herry; Sugihartono, Titong; Waskito, Langgeng Agung; Hidayati, Hanik Badriyah; Lusida, Maria Inge; Yamaoka, Yoshio
2017-01-01
In Indonesia, endoscopy services are limited and studies about gastric mucosal status by using pepsinogens (PGs) are rare. We measured PG levels, and calculated the best cutoff and predictive values for discriminating gastric mucosal status among ethnic groups in Indonesia. We collected gastric biopsy specimens and sera from 233 patients with dyspepsia living in three Indonesian islands. When ≥5.5 U/mL was used as the best cutoff value of Helicobacter pylori antibody titer, 8.6% (20 of 233) were positive for H. pylori infection. PG I and II levels were higher among smokers, and PG I was higher in alcohol drinkers than in their counterparts. PG II level was significantly higher, whereas PG I/II ratios were lower in H. pylori-positive than in H. pylori-negative patients. PG I/II ratios showed a significant inverse correlation with the inflammation and atrophy scores of the antrum. The best cutoff values of PG I/II were 4.05 and 3.55 for discriminating chronic and atrophic gastritis, respectively. PG I, PG II, and PG I/II ratios were significantly lower in subjects from Bangli than in those from Makassar and Surabaya, and concordant with the ABC group distribution; however, group D (H. pylori negative/PG positive) was the lowest in subjects from Bangli. In conclusion, validation of indirect methods is necessary before their application. We confirmed that serum PG level is a useful biomarker determining chronic gastritis, but a modest sensitivity for atrophic gastritis in Indonesia. The ABC method should be used with caution in areas with a low prevalence of H. pylori.
1984-05-14
of coarse fodders, including 40,000 tons of hay, 50,000 tons of haylage and 40,000 tons of straw; a total of 185,000 tons of succulent fodders...Significant resources are allocated for the building of storage facilities and for silage and haylage structures. Capital investments for acquiring
Estimation of the annual flow and stock of marine debris in South Korea for management purposes.
Jang, Yong Chang; Lee, Jongmyoung; Hong, Sunwook; Mok, Jin Yong; Kim, Kyoung Shin; Lee, Yun Jeong; Choi, Hyun-Woo; Kang, Hongmook; Lee, Sukhui
2014-09-15
The annual flow and stock of marine debris in the Sea of Korea was estimated by summarizing previous survey results and integrating them with other relevant information to underpin the national marine debris management plan. The annual inflow of marine debris was estimated to be 91,195 tons [32,825 tons (36% of the total) from sources on land and 58,370 tons (64%) from ocean sources]. As of the end of 2012, the total stock of marine debris on all South Korean coasts (12,029 tons), the seabed (137,761 tons), and in the water column (2451 tons) was estimated to be 152,241 tons. In 2012, 42,595 tons of marine debris was collected from coasts, seabeds, and the water column. This is a very rare case study that estimated the amount of marine debris at a national level, the results of which provide essential information for the development of efficient marine debris management policies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Deposition and simulation of sediment transport in the Lower Susquehanna River reservoir system
Hainly, R.A.; Reed, L.A.; Flippo, H.N.; Barton, G.J.
1995-01-01
The Susquehanna River drains 27,510 square miles in New York, Pennsylvania, and Maryland and is the largest tributary to the Chesapeake Bay. Three large hydroelectric dams are located on the river, Safe Harbor (Lake Clarke) and Holtwood (Lake Aldred) in southern Pennsylvania, and Conowingo (Conowingo Reservoir) in northern Maryland. About 259 million tons of sediment have been deposited in the three reservoirs. Lake Clarke contains about 90.7 million tons of sediment, Lake Aldred contains about 13.6 million tons, and Conowingo Reservoir contains about 155 million tons. An estimated 64.8 million tons of sand, 19.7 million tons of coal, 112 million tons of silt, and 63.3 million tons of clay are deposited in the three reservoirs. Deposition in the reservoirs is variable and ranges from 0 to 30 feet. Chemical analyses of sediment core samples indicate that the three reservoirs combined contain about 814,000 tons of organic nitrogen, 98,900 tons of ammonia as nitrogen, 226,000 tons of phosphorus, 5,610,000 1tons of iron, 2,250,000 tons of aluminum, and about 409,000 tons of manganese. Historical data indicate that Lake Clarke and Lake Aldred have reached equilibrium, and that they no longer store sediment. A comparison of cross-sectional data from Lake Clarke and Lake Aldred with data from Conowingo Reservoir indicates that Conowingo Reservoir will reach equilibrium within the next 20 to 30 years. As the Conowingo Reservoir fills with sediment and approaches equilibrium, the amount of sediment transported to the Chesapeake Bay will increase. The most notable increases will take place when very high flows scour the deposited sediment. Sediment transport through the reservoir system was simulated with the U.S. Army Corps of Engineers' HEC-6 computer model. The model was calibrated with monthly sediment loads for calendar year 1987. Calibration runs with options set for maximum trap efficiency and a "natural" particle-size distribution resulted in an overall computed trap efficiency of 34 percent for 1987, much less than the measured efficiency of 71 percent.
Dubald, M; Barakate, A; Mandaron, P; Mache, R
1993-11-01
Exopolygalacturonase (exoPG) is a pectin-degrading enzyme abundant in maize pollen. Using immunochemistry and in situ hybridization it is shown that in addition to its presence in pollen, exoPG is also present in sporophytic tissues, such as the tapetum and mesophyll cells. The enzyme is located in the cytoplasm of pollen and of some mesophyll cells. In other mesophyll cells, the tapetum and the pollen tube, exoPG is located in the cell wall. The measurement of enzyme activity shows that exoPG is ubiquitous in the vegetative organs. These results suggest a general function for exoPG in cell wall edification or degradation. ExoPG is encoded by a closely related multigene family. The regulation of the expression of one of the exoPG genes was analyzed in transgenic tobacco. Reporter GUS activity was detected in anthers, seeds and stems but not in leaves or roots of transgenic plants. This strongly suggests that the ubiquitous presence of exoPG in maize is the result of the expression of different exoPG genes.
Status of food irradiation in the world
NASA Astrophysics Data System (ADS)
Kume, Tamikazu; Furuta, Masakazu; Todoriki, Setsuko; Uenoyama, Naoki; Kobayashi, Yasuhiko
2009-03-01
The status of food irradiation in the world in 2005 was investigated using published data, a questionnaire survey and direct visits. The results showed that the quantity of irradiated foods in the world in 2005 was 405,000 ton and comprised 1,86,000 ton (46%) for disinfection of spices and dry vegetables, 82,000 ton (20%) for disinfestation of grains and fruits, 32,000 ton (8%) for disinfection of meat and fish, 88,000 ton (22%) for sprout inhibition of garlic and potato, and 17,000 ton (4%) of other food items that included health foods, mushroom, honey, etc. Commercial food irradiation is increasing significantly in Asia, but decreasing in EU.
Role of TonB1 in pyoverdine-mediated signaling in Pseudomonas aeruginosa.
Shirley, Matt; Lamont, Iain L
2009-09-01
Pyoverdines are siderophores secreted by Pseudomonas aeruginosa. Uptake of ferripyoverdine in P. aeruginosa PAO1 occurs via the FpvA receptor protein and requires the energy-transducing protein TonB1. Interaction of (ferri)pyoverdine with FpvA activates pyoverdine gene expression in a signaling process involving the cytoplasmic-membrane-spanning anti-sigma factor FpvR and the sigma factor PvdS. Here, we show that mutation of a region of FpvA that interacts with TonB1 (the TonB box) prevents this signaling process, as well as inhibiting bacterial growth in the presence of the iron-chelating compound ethylenediamine-di(o-hydroxy-phenylacetic acid). Signaling via wild-type FpvA was also eliminated in strains lacking TonB1 but was unaffected in strains lacking either (or both) of two other TonB proteins in P. aeruginosa, TonB2 and TonB3. An absence of pyoverdine-mediated signaling corresponded with proteolysis of PvdS. These data show that interactions between FpvA and TonB1 are required for (ferri)pyoverdine signal transduction, as well as for ferripyoverdine transport, consistent with a mechanistic link between the signaling and transport functions of FpvA.
Role of TonB1 in Pyoverdine-Mediated Signaling in Pseudomonas aeruginosa▿
Shirley, Matt; Lamont, Iain L.
2009-01-01
Pyoverdines are siderophores secreted by Pseudomonas aeruginosa. Uptake of ferripyoverdine in P. aeruginosa PAO1 occurs via the FpvA receptor protein and requires the energy-transducing protein TonB1. Interaction of (ferri)pyoverdine with FpvA activates pyoverdine gene expression in a signaling process involving the cytoplasmic-membrane-spanning anti-sigma factor FpvR and the sigma factor PvdS. Here, we show that mutation of a region of FpvA that interacts with TonB1 (the TonB box) prevents this signaling process, as well as inhibiting bacterial growth in the presence of the iron-chelating compound ethylenediamine-di(o-hydroxy-phenylacetic acid). Signaling via wild-type FpvA was also eliminated in strains lacking TonB1 but was unaffected in strains lacking either (or both) of two other TonB proteins in P. aeruginosa, TonB2 and TonB3. An absence of pyoverdine-mediated signaling corresponded with proteolysis of PvdS. These data show that interactions between FpvA and TonB1 are required for (ferri)pyoverdine signal transduction, as well as for ferripyoverdine transport, consistent with a mechanistic link between the signaling and transport functions of FpvA. PMID:19592589