NASA Astrophysics Data System (ADS)
Ren, Qianyu; Li, Junhong; Hong, Yingping; Jia, Pinggang; Xiong, Jijun
2017-09-01
A new demodulation algorithm of the fiber-optic Fabry-Perot cavity length based on the phase generated carrier (PGC) is proposed in this paper, which can be applied in the high-temperature pressure sensor. This new algorithm based on arc tangent function outputs two orthogonal signals by utilizing an optical system, which is designed based on the field-programmable gate array (FPGA) to overcome the range limit of the original PGC arc tangent function demodulation algorithm. The simulation and analysis are also carried on. According to the analysis of demodulation speed and precision, the simulation of different numbers of sampling points, and measurement results of the pressure sensor, the arc tangent function demodulation method has good demodulation results: 1 MHz processing speed of single data and less than 1% error showing practical feasibility in the fiber-optic Fabry-Perot cavity length demodulation of the Fabry-Perot high-temperature pressure sensor.
Distributed optical fiber vibration sensing using phase-generated carrier demodulation algorithm
NASA Astrophysics Data System (ADS)
Yu, Zhihua; Zhang, Qi; Zhang, Mingyu; Dai, Haolong; Zhang, Jingjing; Liu, Li; Zhang, Lijun; Jin, Xing; Wang, Gaifang; Qi, Guang
2018-05-01
A novel optical fiber-distributed vibration-sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase-generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson interferometry to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000 m sensing fiber and demodulated correctly. The spatial resolution is 10 m, and the noise level of the Φ-OTDR system we proposed is about 10-3 rad/\\surd {Hz}, and the signal-to-noise ratio is about 30.34 dB.
NASA Astrophysics Data System (ADS)
Rao, Wei; Niu, Siliang; Zhang, Nan; Cao, Chunyan; Hu, Yongmin
2011-09-01
This paper presents a demodulation scheme using phase-generated carrier (PGC) for a fiber Fabry-Pérot interferometric (FFPI) sensor with high finesse. The FFPI is constructed by a polarization maintaining fiber ring resonator with dual-coupler (PMDC-FRR), which can eliminate the polarization induced fading phenomenon. Compared with the former phase demodulation methods, the PGC scheme in this paper does not assume a two-beam interferometric approximation for the Fabry-Pérot cavity, and can work at arbitrary value of finesse in theory. Two PMDC-FRRs with reflective coefficients of 0.5 and 0.9 are made in experiments for demodulation. Both the single-frequency and the wideband signals are successfully demodulated from the transmission intensities using the PGC demodulation scheme. The experimental results demonstrate that the PGC demodulation scheme is feasible for the FFPI sensor with high finesse. The effects of the reflective coefficient and the intensity loss to the finesse are also discussed.
Simple lock-in detection technique utilizing multiple harmonics for digital PGC demodulators.
Duan, Fajie; Huang, Tingting; Jiang, Jiajia; Fu, Xiao; Ma, Ling
2017-06-01
A simple lock-in detection technique especially suited for digital phase-generated carrier (PGC) demodulators is proposed in this paper. It mixes the interference signal with rectangular waves whose Fourier expansions contain multiple odd or multiple even harmonics of the carrier to recover the quadrature components needed for interference phase demodulation. In this way, the use of a multiplier is avoided and the efficiency of the algorithm is improved. Noise performance with regard to light intensity variation and circuit noise is analyzed theoretically for both the proposed technique and the traditional lock-in technique, and results show that the former provides a better signal-to-noise ratio than the latter with proper modulation depth and average interference phase. Detailed simulations were conducted and the theoretical analysis was verified. A fiber-optic Michelson interferometer was constructed and the feasibility of the proposed technique is demonstrated.
Research on signal demodulation technology of Mach-Zehnder optical fiber sensor vibration system
NASA Astrophysics Data System (ADS)
Liu, Juncheng; Cheng, Pengshen; Hu, Tong
2017-08-01
Mach-Zehnder (M-Z) interferometer is frequently used in optical fiber vibration system. And signal demodulation technology plays an important role in the signal processing of M-Z optical fiber vibration system. In order to accurately get the phase information of the vibration signals, the signal demodulation technique based on M-Z interference principle is studied. In this paper, by analyzing the principles of 3 × 3 fiber coupler homodyne demodulation method and phase-generating carrier (PGC) technology, the advantages and disadvantages of the two demodulation methods for different vibration signal are presented. Then the method of judging signal strength is proposed. The correlation between the demodulation effects and strength of the perturbation signals is analyzed. Finally, the simulation experiments are carried out to compare the demodulation effects of the two demodulation methods, the results demonstrate that PGC demodulation technology has great advantages in weak signals, and the 3 × 3 fiber coupler is more suitable for strong signals.
NASA Astrophysics Data System (ADS)
Chen, Xinwei; He, Shengnan; Li, Dandan; Wang, Kai; Fan, Yan'en; Wu, Shuai
2014-11-01
We present an optical fiber voltage sensor by Michelsion interferometer (MI) employing a Fabry-Perot (F-P) interferometer and the DC phase tracking (DCPT) signal processing method. By mounting a MI fabricated by an optical fiber coupler on a piezoelectric (PZT) transducer bar, a dynamic strain would be generated to change the optical path difference (OPD) of the interferometer when the measured voltage was applied on the PZT. Applying an F-P interferometer to demodulate the optical intensity variation output of the MI, the voltage can be obtained. The experiment results show that the relationship between the optical intensity variation and the voltage applied on the PZT is approximately linear. Furthermore, the phase generate carrier (PGC) algorithm was applied to demodulate the output of the sensor also.
Distributed vibration fiber sensing system based on Polarization Diversity Receiver
NASA Astrophysics Data System (ADS)
Zhang, Junan; Jiang, Peng; Hu, Zhengliang; Hu, Yongming
2016-10-01
In this paper, we propose a distributed vibration fiber sensing system based on Polarization Diversity Receiver(PDR). We use Acoustic Optical Modulator(AOM) to generate pulse light and an unbalanced M-Z interferometer to generate two pulse light with a certain time delay in the same period. As the pulse lights propagating in fibers, the Backward Rayleigh scattering lights will interfere with each other. The vibration on the fiber will change the length and refractive index of fiber which results in the change of the phase of the interference signal. Hence, one arm of the M-Z interferometer is modulated by a sinusoidal phase-generated carrier(PGC) signal, and PGC demodulation algorithm has been used to acquire phase information from the Backward Rayleigh scattering lights. In order to overcome the influence of polarization-induced fading and enhance Signal Noise Ratio(SNR), we set a PDR before the photo detector. The Polarization Diversity Receiver segregates the interfere light into two lights with orthogonal states of polarization. Hence, there is always one channel has a better interfere light signal. The experiments are presented to verify the effectiveness of the distributed vibration fiber sensing system proposed.
Demodulation algorithm for optical fiber F-P sensor.
Yang, Huadong; Tong, Xinglin; Cui, Zhang; Deng, Chengwei; Guo, Qian; Hu, Pan
2017-09-10
The demodulation algorithm is very important to improving the measurement accuracy of a sensing system. In this paper, the variable step size hill climbing search method will be initially used for the optical fiber Fabry-Perot (F-P) sensing demodulation algorithm. Compared with the traditional discrete gap transformation demodulation algorithm, the computation is greatly reduced by changing step size of each climb, which could achieve nano-scale resolution, high measurement accuracy, high demodulation rates, and large dynamic demodulation range. An optical fiber F-P pressure sensor based on micro-electro-mechanical system (MEMS) has been fabricated to carry out the experiment, and the results show that the resolution of the algorithm can reach nano-scale level, the sensor's sensitivity is about 2.5 nm/KPa, which is similar to the theoretical value, and this sensor has great reproducibility.
Yang, Yuan; Quan, Nannan; Bu, Jingjing; Li, Xueping; Yu, Ningmei
2016-09-26
High order modulation and demodulation technology can solve the frequency requirement between the wireless energy transmission and data communication. In order to achieve reliable wireless data communication based on high order modulation technology for visual prosthesis, this work proposed a Reed-Solomon (RS) error correcting code (ECC) circuit on the basis of differential amplitude and phase shift keying (DAPSK) soft demodulation. Firstly, recognizing the weakness of the traditional DAPSK soft demodulation algorithm based on division that is complex for hardware implementation, an improved phase soft demodulation algorithm for visual prosthesis to reduce the hardware complexity is put forward. Based on this new algorithm, an improved RS soft decoding method is hence proposed. In this new decoding method, the combination of Chase algorithm and hard decoding algorithms is used to achieve soft decoding. In order to meet the requirements of implantable visual prosthesis, the method to calculate reliability of symbol-level based on multiplication of bit reliability is derived, which reduces the testing vectors number of Chase algorithm. The proposed algorithms are verified by MATLAB simulation and FPGA experimental results. During MATLAB simulation, the biological channel attenuation property model is added into the ECC circuit. The data rate is 8 Mbps in the MATLAB simulation and FPGA experiments. MATLAB simulation results show that the improved phase soft demodulation algorithm proposed in this paper saves hardware resources without losing bit error rate (BER) performance. Compared with the traditional demodulation circuit, the coding gain of the ECC circuit has been improved by about 3 dB under the same BER of [Formula: see text]. The FPGA experimental results show that under the condition of data demodulation error with wireless coils 3 cm away, the system can correct it. The greater the distance, the higher the BER. Then we use a bit error rate analyzer to measure BER of the demodulation circuit and the RS ECC circuit with different distance of two coils. And the experimental results show that the RS ECC circuit has about an order of magnitude lower BER than the demodulation circuit when under the same coils distance. Therefore, the RS ECC circuit has more higher reliability of the communication in the system. The improved phase soft demodulation algorithm and soft decoding algorithm proposed in this paper enables data communication that is more reliable than other demodulation system, which also provide a significant reference for further study to the visual prosthesis system.
A digitally implemented preambleless demodulator for maritime and mobile data communications
NASA Astrophysics Data System (ADS)
Chalmers, Harvey; Shenoy, Ajit; Verahrami, Farhad B.
The hardware design and software algorithms for a low-bit-rate, low-cost, all-digital preambleless demodulator are described. The demodulator operates under severe high-noise conditions, fast Doppler frequency shifts, large frequency offsets, and multipath fading. Sophisticated algorithms, including a fast Fourier transform (FFT)-based burst acquisition algorithm, a cycle-slip resistant carrier phase tracker, an innovative Doppler tracker, and a fast acquisition symbol synchronizer, were developed and extensively simulated for reliable burst reception. The compact digital signal processor (DSP)-based demodulator hardware uses a unique personal computer test interface for downloading test data files. The demodulator test results demonstrate a near-ideal performance within 0.2 dB of theory.
Fringe pattern demodulation with a two-frame digital phase-locked loop algorithm.
Gdeisat, Munther A; Burton, David R; Lalor, Michael J
2002-09-10
A novel technique called a two-frame digital phase-locked loop for fringe pattern demodulation is presented. In this scheme, two fringe patterns with different spatial carrier frequencies are grabbed for an object. A digital phase-locked loop algorithm tracks and demodulates the phase difference between both fringe patterns by employing the wrapped phase components of one of the fringe patterns as a reference to demodulate the second fringe pattern. The desired phase information can be extracted from the demodulated phase difference. We tested the algorithm experimentally using real fringe patterns. The technique is shown to be suitable for noncontact measurement of objects with rapid surface variations, and it outperforms the Fourier fringe analysis technique in this aspect. Phase maps produced withthis algorithm are noisy in comparison with phase maps generated with the Fourier fringe analysis technique.
NASA Astrophysics Data System (ADS)
Jiang, Peng; Ma, Lina; Hu, Zhengliang; Hu, Yongming
2016-07-01
The inline time division multiplexing (TDM) fiber Fabry-Pérot (FFP) sensor array based on fiber Bragg gratings (FBGs) is attractive for many applications. But the intrinsic multi-reflection (MR) induced crosstalk limits applications especially those needing high resolution. In this paper we proposed an expandable method for MR-induced crosstalk reduction. The method is based on complexing-exponent synthesis using the phase-generated carrier (PGC) scheme and the special common character of the impulse responses. The method could promote demodulation stability simultaneously with the reduction of MR-induced crosstalk. A polarization-maintaining 3-TDM experimental system with an FBG reflectivity of about 5 % was set up to validate the method. The experimental results showed that crosstalk reduction of 13 dB and 15 dB was achieved for sensor 2 and sensor 3 respectively when a signal was applied to the first sensor and crosstalk reduction of 8 dB was achieved for sensor 3 when a signal was applied to sensor 2. The demodulation stability of the applied signal was promoted as well. The standard deviations of the amplitude distributions of the demodulated signals were reduced from 0.0046 to 0.0021 for sensor 2 and from 0.0114 to 0.0044 for sensor 3. Because of the convenience of the linear operation of the complexing-exponent and according to the common character of the impulse response we found, the method can be effectively extended to the array with more TDM channels if the impulse response of the inline FFP sensor array with more TDM channels is derived. It offers potential to develop a low-crosstalk inline FFP sensor array using the PGC interrogation technique with relatively high reflectivity FBGs which can guarantee enough light power received by the photo-detector.
Fringe pattern demodulation with a two-dimensional digital phase-locked loop algorithm.
Gdeisat, Munther A; Burton, David R; Lalor, Michael J
2002-09-10
A novel technique called a two-dimensional digital phase-locked loop (DPLL) for fringe pattern demodulation is presented. This algorithm is more suitable for demodulation of fringe patterns with varying phase in two directions than the existing DPLL techniques that assume that the phase of the fringe patterns varies only in one direction. The two-dimensional DPLL technique assumes that the phase of a fringe pattern is continuous in both directions and takes advantage of the phase continuity; consequently, the algorithm has better noise performance than the existing DPLL schemes. The two-dimensional DPLL algorithm is also suitable for demodulation of fringe patterns with low sampling rates, and it outperforms the Fourier fringe analysis technique in this aspect.
Zhang, Baolin; Tong, Xinglin; Hu, Pan; Guo, Qian; Zheng, Zhiyuan; Zhou, Chaoran
2016-12-26
Optical fiber Fabry-Perot (F-P) sensors have been used in various on-line monitoring of physical parameters such as acoustics, temperature and pressure. In this paper, a wavelet phase extracting demodulation algorithm for optical fiber F-P sensing is first proposed. In application of this demodulation algorithm, search range of scale factor is determined by estimated cavity length which is obtained by fast Fourier transform (FFT) algorithm. Phase information of each point on the optical interference spectrum can be directly extracted through the continuous complex wavelet transform without de-noising. And the cavity length of the optical fiber F-P sensor is calculated by the slope of fitting curve of the phase. Theorical analysis and experiment results show that this algorithm can greatly reduce the amount of computation and improve demodulation speed and accuracy.
NASA Astrophysics Data System (ADS)
Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng
2018-01-01
Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.
Jiang, Junfeng; Wang, Shaohua; Liu, Tiegen; Liu, Kun; Yin, Jinde; Meng, Xiange; Zhang, Yimo; Wang, Shuang; Qin, Zunqi; Wu, Fan; Li, Dingjie
2012-07-30
A demodulation algorithm based on absolute phase recovery of a selected monochromatic frequency is proposed for optical fiber Fabry-Perot pressure sensing system. The algorithm uses Fourier transform to get the relative phase and intercept of the unwrapped phase-frequency linear fit curve to identify its interference-order, which are then used to recover the absolute phase. A simplified mathematical model of the polarized low-coherence interference fringes was established to illustrate the principle of the proposed algorithm. Phase unwrapping and the selection of monochromatic frequency were discussed in detail. Pressure measurement experiment was carried out to verify the effectiveness of the proposed algorithm. Results showed that the demodulation precision by our algorithm could reach up to 0.15kPa, which has been improved by 13 times comparing with phase slope based algorithm.
Low cost coherent demodulation for mobile satellite terminals
NASA Technical Reports Server (NTRS)
Dutta, Santanu; Henely, Steven J.
1993-01-01
This paper describes some low cost approaches to coherent BPSK demodulation for mobile satellite receivers. The specific application is an Inmarsat-C Land Mobile Earth Station (LMES), but the techniques are applicable to any PSK demodulator. The techniques discussed include combined sampling and quadrature downconversion with a single A/D and novel DSP algorithms for carrier acquisition offering both superior performance and economy of DSP resources. The DSP algorithms run at 5.7 MIPS, and the entire DSP subsystem, built with commercially available parts, costs under $60 at quantity-10,000.
NASA Astrophysics Data System (ADS)
Li, Xinhua; Song, Zhenyu; Zhan, Yongjie; Wu, Qiongzhi
2009-12-01
Since the system capacity is severely limited, reducing the multiple access interfere (MAI) is necessary in the multiuser direct-sequence code division multiple access (DS-CDMA) system which is used in the telecommunication terminals data-transferred link system. In this paper, we adopt an adaptive multistage parallel interference cancellation structure in the demodulator based on the least mean square (LMS) algorithm to eliminate the MAI on the basis of overviewing various of multiuser dectection schemes. Neither a training sequence nor a pilot signal is needed in the proposed scheme, and its implementation complexity can be greatly reduced by a LMS approximate algorithm. The algorithm and its FPGA implementation is then derived. Simulation results of the proposed adaptive PIC can outperform some of the existing interference cancellation methods in AWGN channels. The hardware setup of mutiuser demodulator is described, and the experimental results based on it demonstrate that the simulation results shows large performance gains over the conventional single-user demodulator.
Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Wu, Fan
2013-08-15
A demodulation algorithm based on the birefringence dispersion characteristics for a polarized low-coherence interferometer is proposed. With the birefringence dispersion parameter taken into account, the mathematical model of the polarized low-coherence interference fringes is established and used to extract phase shift information between the measured coherence envelope center and the zero-order fringe, which eliminates the interferometric 2 π ambiguity of locating the zero-order fringe. A pressure measurement experiment using an optical fiber Fabry-Perot pressure sensor was carried out to verify the effectiveness of the proposed algorithm. The experiment result showed that the demodulation precision was 0.077 kPa in the range of 210 kPa, which was improved by 23 times compared to the traditional envelope detection method.
NASA Astrophysics Data System (ADS)
Wang, Wei; Hu, Zhengliang; Ma, Mingxiang; Lin, Huizu; Hu, Yongming
2014-03-01
A fiber Bragg grating based (FBG-based) Fabry-Perot (FP) sensor system utilizing multiple reflections between two strong FBGs with different reflectiveties to enhance the sensitivity is proposed. The different interference signals are obtained by using different multiple-path-matched Michelson interferometers (MIs). The system is lighted by the ultra-narrow line width erbium-doped fiber ring laser and the signal is demodulated by phase-generated carrier (PGC) scheme. The method to choose the optimal parameters of the FBG-based asymmetric FP sensor and the different matching MIs is analyzed. The experimental results show that each matching MI can steadily enhance the sensitivity of the demodulated signal in the bandwidth of 80-8000 Hz. The sensitivity of the system can be enhanced about 19.1 dB when the light reflects nine times between the two FBGs. Further more, this system can be used to extend the dynamic range and the effective working bandwidth and so on.
NASA Astrophysics Data System (ADS)
Zhang, Xueliang; Meng, Zhou; Hu, Zhengliang; Yang, Huayong; Song, Zhangqi; Hu, Yongming
2008-12-01
A polarization maintaining fiber (PMF) magnetic field sensor based on a digital phase generated carrier (PGC) technology is presented. A magnetic sensor constructed with two magnetostrictive strips attached on the sensing fiber is joined in the sensing arm of a fiber Michelson interferometer. The fiber optic interferometric system is made of all PMF, which inhibits the polarization-induced signal fading. The light source is a fiber laser which can be modulated directly. The PGC metnod is used to demodulate magnetic field signal avoiding phase induced interferometric signal fading, and ensure the sensing partto be all fiber structure. A fiber optic magnetic field sensor with appreciate size for the fiber optic hydrophone towed array is obtained, which can be used to sense the enviromental magnetic field along the sensing direction.This sensor is a good choice for the directional angle measurement through sensing the Earth magnetic field in the array shape measurement of a fiber optic hydrophone towed array.
A wide range real-time synchronous demodulation system for the dispersion interferometer on HL-2M
NASA Astrophysics Data System (ADS)
Wu, Tongyu; Zhang, Wei; Yin, Zejie
2017-09-01
A real-time synchronous demodulation system has been developed for the dispersion interferometer on a HL-2M tokamak. The system is based on the phase extraction method which uses a ratio of modulation amplitudes. A high-performance field programmable gate array with pipeline process capabilities is used to realize the real time synchronous demodulation algorithm. A fringe jump correction algorithm is applied to follow the fast density changes of the plasma. By using the Peripheral Component Interconnect Express protocol, the electronics can perform real-time density feedback with a temporal resolution of 100 ns. Some experimental results presented show that the electronics can obtain a wide measurement range of 2.28 × 1022 m-2 with high precision.
Chen, Chia-Wei; Chow, Chi-Wai; Liu, Yang; Yeh, Chien-Hung
2017-10-02
Recently even the low-end mobile-phones are equipped with a high-resolution complementary-metal-oxide-semiconductor (CMOS) image sensor. This motivates using a CMOS image sensor for visible light communication (VLC). Here we propose and demonstrate an efficient demodulation scheme to synchronize and demodulate the rolling shutter pattern in image sensor based VLC. The implementation algorithm is discussed. The bit-error-rate (BER) performance and processing latency are evaluated and compared with other thresholding schemes.
Analysis of the principal component algorithm in phase-shifting interferometry.
Vargas, J; Quiroga, J Antonio; Belenguer, T
2011-06-15
We recently presented a new asynchronous demodulation method for phase-sampling interferometry. The method is based in the principal component analysis (PCA) technique. In the former work, the PCA method was derived heuristically. In this work, we present an in-depth analysis of the PCA demodulation method.
Accelerating EPI distortion correction by utilizing a modern GPU-based parallel computation.
Yang, Yao-Hao; Huang, Teng-Yi; Wang, Fu-Nien; Chuang, Tzu-Chao; Chen, Nan-Kuei
2013-04-01
The combination of phase demodulation and field mapping is a practical method to correct echo planar imaging (EPI) geometric distortion. However, since phase dispersion accumulates in each phase-encoding step, the calculation complexity of phase modulation is Ny-fold higher than conventional image reconstructions. Thus, correcting EPI images via phase demodulation is generally a time-consuming task. Parallel computing by employing general-purpose calculations on graphics processing units (GPU) can accelerate scientific computing if the algorithm is parallelized. This study proposes a method that incorporates the GPU-based technique into phase demodulation calculations to reduce computation time. The proposed parallel algorithm was applied to a PROPELLER-EPI diffusion tensor data set. The GPU-based phase demodulation method reduced the EPI distortion correctly, and accelerated the computation. The total reconstruction time of the 16-slice PROPELLER-EPI diffusion tensor images with matrix size of 128 × 128 was reduced from 1,754 seconds to 101 seconds by utilizing the parallelized 4-GPU program. GPU computing is a promising method to accelerate EPI geometric correction. The resulting reduction in computation time of phase demodulation should accelerate postprocessing for studies performed with EPI, and should effectuate the PROPELLER-EPI technique for clinical practice. Copyright © 2011 by the American Society of Neuroimaging.
Discrete-Time Demodulator Architectures for Free-Space Broadband Optical Pulse-Position Modulation
NASA Technical Reports Server (NTRS)
Gray, A. A.; Lee, C.
2004-01-01
The objective of this work is to develop discrete-time demodulator architectures for broadband optical pulse-position modulation (PPM) that are capable of processing Nyquist or near-Nyquist data rates. These architectures are motivated by the numerous advantages of realizing communications demodulators in digital very large scale integrated (VLSI) circuits. The architectures are developed within a framework that encompasses a large body of work in optical communications, synchronization, and multirate discrete-time signal processing and are constrained by the limitations of the state of the art in digital hardware. This work attempts to create a bridge between theoretical communication algorithms and analysis for deep-space optical PPM and modern digital VLSI. The primary focus of this work is on the synthesis of discrete-time processing architectures for accomplishing the most fundamental functions required in PPM demodulators, post-detection filtering, synchronization, and decision processing. The architectures derived are capable of closely approximating the theoretical performance of the continuous-time algorithms from which they are derived. The work concludes with an outline of the development path that leads to hardware.
On-board multicarrier demodulator for mobile applications using DSP implementation
NASA Astrophysics Data System (ADS)
Yim, W. H.; Kwan, C. C. D.; Coakley, F. P.; Evans, B. G.
1990-11-01
This paper describes the design and implementation of an on-board multicarrier demodulator using commercial digital signal processors. This is for use in a mobile satellite communication system employing an up-link SCPC/FDMA scheme. Channels are separated by a flexible multistage digital filter bank followed by a channel multiplexed digital demodulator array. The cross/dot product design approach of error detector leads to a new QPSK frequency control algorithm that allows fast acquisition without special preamble pattern. Timing correction is performed digitally using an extended stack of polyphase sub-filters.
A proposed technique for the Venus balloon telemetry and Doppler frequency recovery
NASA Technical Reports Server (NTRS)
Jurgens, R. F.; Divsalar, D.
1985-01-01
A technique is proposed to accurately estimate the Doppler frequency and demodulate the digitally encoded telemetry signal that contains the measurements from balloon instruments. Since the data are prerecorded, one can take advantage of noncausal estimators that are both simpler and more computationally efficient than the usual closed-loop or real-time estimators for signal detection and carrier tracking. Algorithms for carrier frequency estimation subcarrier demodulation, bit and frame synchronization are described. A Viterbi decoder algorithm using a branch indexing technique has been devised to decode constraint length 6, rate 1/2 convolutional code that is being used by the balloon transmitter. These algorithms are memory efficient and can be implemented on microcomputer systems.
High Rate Digital Demodulator ASIC
NASA Technical Reports Server (NTRS)
Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew
1998-01-01
The architecture of High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation in other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA's Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an over-view of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.
NASA Astrophysics Data System (ADS)
Helm, Anton; Vieira, Jorge; Silva, Luis; Fonseca, Ricardo
2016-10-01
Laser-driven accelerators gained an increased attention over the past decades. Typical modeling techniques for laser wakefield acceleration (LWFA) are based on particle-in-cell (PIC) simulations. PIC simulations, however, are very computationally expensive due to the disparity of the relevant scales ranging from the laser wavelength, in the micrometer range, to the acceleration length, currently beyond the ten centimeter range. To minimize the gap between these despair scales the ponderomotive guiding center (PGC) algorithm is a promising approach. By describing the evolution of the laser pulse envelope separately, only the scales larger than the plasma wavelength are required to be resolved in the PGC algorithm, leading to speedups in several orders of magnitude. Previous work was limited to two dimensions. Here we present the implementation of the 3D version of a PGC solver into the massively parallel, fully relativistic PIC code OSIRIS. We extended the solver to include periodic boundary conditions and parallelization in all spatial dimensions. We present benchmarks for distributed and shared memory parallelization. We also discuss the stability of the PGC solver.
NASA Astrophysics Data System (ADS)
Feng, Zhipeng; Chu, Fulei; Zuo, Ming J.
2011-03-01
Energy separation algorithm is good at tracking instantaneous changes in frequency and amplitude of modulated signals, but it is subject to the constraints of mono-component and narrow band. In most cases, time-varying modulated vibration signals of machinery consist of multiple components, and have so complicated instantaneous frequency trajectories on time-frequency plane that they overlap in frequency domain. For such signals, conventional filters fail to obtain mono-components of narrow band, and their rectangular decomposition of time-frequency plane may split instantaneous frequency trajectories thus resulting in information loss. Regarding the advantage of generalized demodulation method in decomposing multi-component signals into mono-components, an iterative generalized demodulation method is used as a preprocessing tool to separate signals into mono-components, so as to satisfy the requirements by energy separation algorithm. By this improvement, energy separation algorithm can be generalized to a broad range of signals, as long as the instantaneous frequency trajectories of signal components do not intersect on time-frequency plane. Due to the good adaptability of energy separation algorithm to instantaneous changes in signals and the mono-component decomposition nature of generalized demodulation, the derived time-frequency energy distribution has fine resolution and is free from cross term interferences. The good performance of the proposed time-frequency analysis is illustrated by analyses of a simulated signal and the on-site recorded nonstationary vibration signal of a hydroturbine rotor during a shut-down transient process, showing that it has potential to analyze time-varying modulated signals of multi-components.
Investigation on a fiber optic accelerometer based on FBG-FP interferometer
NASA Astrophysics Data System (ADS)
Lin, Chongyu; Luo, Hong; Xiong, Shuidong; Li, Haitao
2014-12-01
A fiber optic accelerometer based on fiber Bragg grating Fabry-Perot (FBG-FP) interferometer is presented. The sensor is a FBG-FP cavity which is formed with two weak fiber Bragg gratings (FBGs) in a single-mode fiber. The reflectivity of the two FBGs is 9.42% and 7.74% respectively, and the fiber between them is 10 meters long. An optical demodulation system was set up to analyze the reflected light of FBG-FP cavity. Acceleration signals of different frequencies and intensities were demodulated correctly and stably by the system. Based on analyzing the optical spectrum of weak FBG based FBG-FP cavity, we got the equivalent length of FBG-FP cavity. We used a path-matching Michelson interferometer (MI) to demodulate the acceleration signal. The visibility of the interference fringe we got was 41%~42% while the theory limit was 50%. This indicated that the difference of interferometer's two arms and the equivalent length of FBG-FP cavity were matched well. Phase generated carrier (PGC) technology was used to eliminate phase fading caused by random phase shift and Faraday rotation mirrors (FRMs) were used to eliminate polarization-induced phase fading. The accelerometer used a compliant cylinder design and its' sensitivity and frequency response were analyzed and simulated based on elastic mechanics. Experiment result showed that the accelerometer had a flat frequency response over the frequency range of 31-630Hz. The sensitivity was about 31dB (0dB=1rad/g) with fluctuation less than 1.5dB.
NASA Astrophysics Data System (ADS)
Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Wu, Fan; Zhao, Bofu; Xue, Lei; Mei, Yunqiao; Wu, Zhenhai
2013-12-01
We present an effective method to compensate the spatial-frequency nonlinearity for polarized low-coherence interferometer with location-dependent dispersion element. Through the use of location-dependent dispersive characteristics, the method establishes the exact relationship between wave number and discrete Fourier transform (DFT) serial number. The jump errors in traditional absolute phase algorithm are also avoided with nonlinearity compensation. We carried out experiments with an optical fiber Fabry-Perot (F-P) pressure sensing system to verify the effectiveness. The demodulated error is less than 0.139kPa in the range of 170kPa when using our nonlinearity compensation process in the demodulation.
Mitigation of time-varying distortions in Nyquist-WDM systems using machine learning
NASA Astrophysics Data System (ADS)
Granada Torres, Jhon J.; Varughese, Siddharth; Thomas, Varghese A.; Chiuchiarelli, Andrea; Ralph, Stephen E.; Cárdenas Soto, Ana M.; Guerrero González, Neil
2017-11-01
We propose a machine learning-based nonsymmetrical demodulation technique relying on clustering to mitigate time-varying distortions derived from several impairments such as IQ imbalance, bias drift, phase noise and interchannel interference. Experimental results show that those impairments cause centroid movements in the received constellations seen in time-windows of 10k symbols in controlled scenarios. In our demodulation technique, the k-means algorithm iteratively identifies the cluster centroids in the constellation of the received symbols in short time windows by means of the optimization of decision thresholds for a minimum BER. We experimentally verified the effectiveness of this computationally efficient technique in multicarrier 16QAM Nyquist-WDM systems over 270 km links. Our nonsymmetrical demodulation technique outperforms the conventional QAM demodulation technique, reducing the OSNR requirement up to ∼0.8 dB at a BER of 1 × 10-2 for signals affected by interchannel interference.
Silicon-photonic interferometric biosensor using active phase demodulation
NASA Astrophysics Data System (ADS)
Marin, Y.; Toccafondo, V.; Velha, P.; Scarano, S.; Tirelli, S.; Nottola, A.; Jeong, Y.; Jeon, H. P.; Minunni, M.; Di Pasquale, F.; Oton, C. J.
2018-02-01
Silicon photonics is becoming a consolidated technology, mainly in the telecom/datacom sector, but with a great potential in the chemical and biomedical sensor market too, mainly due to its CMOS compatibility, which allows massfabrication of huge numbers of miniaturized devices at a very low cost per chip. Integrated photonic sensors, typically based on resonators, interferometers, or periodic structures, are easy to multiplex as the light is confined in optical waveguides. In this work, we present a silicon-photonic sensor capable of measuring refractive index and chemical binding of biomolecules on the surface, using a low-cost phase interrogation scheme. The sensor consists of a pair of balanced Mach-Zehnder interferometers with interaction lengths of 2.5 mm and 22 mm, wound to a sensing area of only 500 μm x500 μm. The phase interrogation is performed with a fixed laser and an active phase demodulation approach based on a phase generated carrier (PGC) technique using a phase demodulator integrated within the chip. No laser tuning is required, and the technique can extract the univocal phase value with no sensitivity fading. The detection only requires a photo-receiver per interferometer, analog-to-digital conversion, and simple processing performed in real-time. We present repeatable and linear refractive index measurements, with a detection limit down to 4.7·10-7 RIU. We also present sensing results on a chemically-functionalized sample, where anti-BSA to BSA (bovine serum albumin) binding curves are clearly visible for concentrations down to 5 ppm. Considering the advantages of silicon photonics, this device has great potential over several applications in the chemical/biochemical sensing industry.
ROSA: Distributed Joint Routing and Dynamic Spectrum Allocation in Cognitive Radio Ad Hoc Networks
2010-03-01
Aug. 1999. [20] I. N. Psaromiligkos and S. N. Batalama. Rapid Combined Synchronization/Demodulation Structures for DS - CDMA Systems - Part II: Finite...Medley. Rapid Combined Synchronization/Demodulation Structures for DS - CDMA Systems - Part I: Algorithmic developments. IEEE Transactions on...multiple access ( CDMA ) [21][20] al- low concurrent co-located communications so that a message from node i to node j can be correctly received even if
NASA Astrophysics Data System (ADS)
Wang, Dai-Hua; Jia, Ping-Gang
2013-05-01
The principle of a fiber optic Fabry-Perot (F-P) accelerometer (FOFPA) system using the laser emission frequency modulated phase generated carrier (FMPGC) demodulation scheme is first described and experimentally demonstrated. The F-P cavity, which is constituted by placing the end face of a gradient-index lens in parallel with the reflector on the inertial mass, directly translates the inertial mass's displacement generated by the measured acceleration into phase shifts of the interference output from the F-P cavity. An FMPGC demodulation scheme based on the arctangent (Arctan) algorithm is adapted to demodulate the phase shifts. The sensing model for the FOFPA system using the FMPGC-Arctan demodulation scheme is established and the sensing characteristics are theoretically analyzed. On these bases, the FOFPA is designed and fabricated and a prototyping system is built and tested. The results indicate that: (1) the nonlinearity of the FOFPA system using the FMPGC-Arctan demodulation scheme is less than 0.58%, (2) the resonant frequency, on-axial sensitivity, and resolution are 393 Hz, 13.11 rad/g, and 450 μ, respectively, and (3) the maximum deviation of the phase sensitivity of the FOFPA within the temperature range of 30 to 80°C is 0.49 dB re 1 rad/g.
Convergence of the Ponderomotive Guiding Center approximation in the LWFA
NASA Astrophysics Data System (ADS)
Silva, Thales; Vieira, Jorge; Helm, Anton; Fonseca, Ricardo; Silva, Luis
2017-10-01
Plasma accelerators arose as potential candidates for future accelerator technology in the last few decades because of its predicted compactness and low cost. One of the proposed designs for plasma accelerators is based on Laser Wakefield Acceleration (LWFA). However, simulations performed for such systems have to solve the laser wavelength which is orders of magnitude lower than the plasma wavelength. In this context, the Ponderomotive Guiding Center (PGC) algorithm for particle-in-cell (PIC) simulations is a potent tool. The laser is approximated by its envelope which leads to a speed-up of around 100 times because the laser wavelength is not solved. The plasma response is well understood, and comparison with the full PIC code show an excellent agreement. However, for LWFA, the convergence of the self-injected beam parameters, such as energy and charge, was not studied before and has vital importance for the use of the algorithm in predicting the beam parameters. Our goal is to do a thorough investigation of the stability and convergence of the algorithm in situations of experimental relevance for LWFA. To this end, we perform simulations using the PGC algorithm implemented in the PIC code OSIRIS. To verify the PGC predictions, we compare the results with full PIC simulations. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement No 653782.
NASA Astrophysics Data System (ADS)
Firla, Marcin; Li, Zhong-Yang; Martin, Nadine; Pachaud, Christian; Barszcz, Tomasz
2016-12-01
This paper proposes advanced signal-processing techniques to improve condition monitoring of operating machines. The proposed methods use the results of a blind spectrum interpretation that includes harmonic and sideband series detection. The first contribution of this study is an algorithm for automatic association of harmonic and sideband series to characteristic fault frequencies according to a kinematic configuration. The approach proposed has the advantage of taking into account a possible slip of the rolling-element bearings. In the second part, we propose a full-band demodulation process from all sidebands that are relevant to the spectral estimation. To do so, a multi-rate filtering process in an iterative schema provides satisfying precision and stability over the targeted demodulation band, even for unsymmetrical and extremely narrow bands. After synchronous averaging, the filtered signal is demodulated for calculation of the amplitude and frequency modulation functions, and then any features that indicate faults. Finally, the proposed algorithms are validated on vibration signals measured on a test rig that was designed as part of the European Innovation Project 'KAStrion'. This rig simulates a wind turbine drive train at a smaller scale. The data show the robustness of the method for localizing and extracting a fault on the main bearing. The evolution of the proposed features is a good indicator of the fault severity.
A parallel-pipelined architecture for a multi carrier demodulator
NASA Astrophysics Data System (ADS)
Kwatra, S. C.; Jamali, M. M.; Eugene, Linus P.
1991-03-01
Analog devices have been used for processing the information on board the satellites. Presently, digital devices are being used because they are economical and flexible as compared to their analog counterparts. Several schemes of digital transmission can be used depending on the data rate requirement of the user. An economical scheme of transmission for small earth stations uses single channel per carrier/frequency division multiple access (SCPC/FDMA) on the uplink and time division multiplexing (TDM) on the downlink. This is a typical communication service offered to low data rate users in commercial mass market. These channels usually pertain to either voice or data transmission. An efficient digital demodulator architecture is provided for a large number of law data rate users. A demodulator primarily consists of carrier, clock, and data recovery modules. This design uses principles of parallel processing, pipelining, and time sharing schemes to process large numbers of voice or data channels. It maintains the optimum throughput which is derived from the designed architecture and from the use of high speed components. The design is optimized for reduced power and area requirements. This is essential for satellite applications. The design is also flexible in processing a group of a varying number of channels. The algorithms that are used are verified by the use of a computer aided software engineering (CASE) tool called the Block Oriented System Simulator. The data flow, control circuitry, and interface of the hardware design is simulated in C language. Also, a multiprocessor approach is provided to map, model, and simulate the demodulation algorithms mainly from a speed view point. A hypercude based architecture implementation is provided for such a scheme of operation. The hypercube structure and the demodulation models on hypercubes are simulated in Ada.
NASA Technical Reports Server (NTRS)
Kwatra, S. C.; Jamali, M. M.; Eugene, Linus P.
1991-01-01
Analog devices have been used for processing the information on board the satellites. Presently, digital devices are being used because they are economical and flexible as compared to their analog counterparts. Several schemes of digital transmission can be used depending on the data rate requirement of the user. An economical scheme of transmission for small earth stations uses single channel per carrier/frequency division multiple access (SCPC/FDMA) on the uplink and time division multiplexing (TDM) on the downlink. This is a typical communication service offered to low data rate users in commercial mass market. These channels usually pertain to either voice or data transmission. An efficient digital demodulator architecture is provided for a large number of law data rate users. A demodulator primarily consists of carrier, clock, and data recovery modules. This design uses principles of parallel processing, pipelining, and time sharing schemes to process large numbers of voice or data channels. It maintains the optimum throughput which is derived from the designed architecture and from the use of high speed components. The design is optimized for reduced power and area requirements. This is essential for satellite applications. The design is also flexible in processing a group of a varying number of channels. The algorithms that are used are verified by the use of a computer aided software engineering (CASE) tool called the Block Oriented System Simulator. The data flow, control circuitry, and interface of the hardware design is simulated in C language. Also, a multiprocessor approach is provided to map, model, and simulate the demodulation algorithms mainly from a speed view point. A hypercude based architecture implementation is provided for such a scheme of operation. The hypercube structure and the demodulation models on hypercubes are simulated in Ada.
Demodulation Algorithms for the Ofdm Signals in the Time- and Frequency-Scattering Channels
NASA Astrophysics Data System (ADS)
Bochkov, G. N.; Gorokhov, K. V.; Kolobkov, A. V.
2016-06-01
We consider a method based on the generalized maximum-likelihood rule for solving the problem of reception of the signals with orthogonal frequency division multiplexing of their harmonic components (OFDM signals) in the time- and frequency-scattering channels. The coherent and incoherent demodulators effectively using the time scattering due to the fast fading of the signal are developed. Using computer simulation, we performed comparative analysis of the proposed algorithms and well-known signal-reception algorithms with equalizers. The proposed symbolby-symbol detector with decision feedback and restriction of the number of searched variants is shown to have the best bit-error-rate performance. It is shown that under conditions of the limited accuracy of estimating the communication-channel parameters, the incoherent OFDMsignal detectors with differential phase-shift keying can ensure a better bit-error-rate performance compared with the coherent OFDM-signal detectors with absolute phase-shift keying.
Modeling of low-finesse, extrinsic fiber optic Fabry-Perot white light interferometers
NASA Astrophysics Data System (ADS)
Ma, Cheng; Tian, Zhipeng; Wang, Anbo
2012-06-01
This article introduces an approach for modeling the fiber optic low-finesse extrinsic Fabry-Pérot Interferometers (EFPI), aiming to address signal processing problems in EFPI demodulation algorithms based on white light interferometry. The main goal is to seek physical interpretations to correlate the sensor spectrum with the interferometer geometry (most importantly, the optical path difference). Because the signal demodulation quality and reliability hinge heavily on the understanding of such relationships, the model sheds light on optimizing the sensor performance.
Simplified paraboloid phase model-based phase tracker for demodulation of a single complex fringe.
He, A; Deepan, B; Quan, C
2017-09-01
A regularized phase tracker (RPT) is an effective method for demodulation of single closed-fringe patterns. However, lengthy calculation time, specially designed scanning strategy, and sign-ambiguity problems caused by noise and saddle points reduce its effectiveness, especially for demodulating large and complex fringe patterns. In this paper, a simplified paraboloid phase model-based regularized phase tracker (SPRPT) is proposed. In SPRPT, first and second phase derivatives are pre-determined by the density-direction-combined method and discrete higher-order demodulation algorithm, respectively. Hence, cost function is effectively simplified to reduce the computation time significantly. Moreover, pre-determined phase derivatives improve the robustness of the demodulation of closed, complex fringe patterns. Thus, no specifically designed scanning strategy is needed; nevertheless, it is robust against the sign-ambiguity problem. The paraboloid phase model also assures better accuracy and robustness against noise. Both the simulated and experimental fringe patterns (obtained using electronic speckle pattern interferometry) are used to validate the proposed method, and a comparison of the proposed method with existing RPT methods is carried out. The simulation results show that the proposed method has achieved the highest accuracy with less computational time. The experimental result proves the robustness and the accuracy of the proposed method for demodulation of noisy fringe patterns and its feasibility for static and dynamic applications.
Is the Image Quality of I-124-PET Impaired by an Automatic Correction of Prompt Gammas?
Preylowski, Veronika; Schlögl, Susanne; Schoenahl, Frédéric; Jörg, Gerhard; Samnick, Samuel; Buck, Andreas K.; Lassmann, Michael
2013-01-01
Objectives The aim of this study is to evaluate the quality of I-124 PET images with and without prompt gamma compensation (PGC) by comparing the recovery coefficients (RC), the signal to noise ratios (SNR) and the contrast to F-18 and Ga-68. Furthermore, the influence of the PGC on the quantification and image quality is evaluated. Methods For measuring the image quality the NEMA NU2-2001 PET/SPECT-Phantom was used containing 6 spheres with a diameter between 10 mm and 37 mm placed in water with different levels of background activity. Each sphere was filled with the same activity concentration measured by an independently cross-calibrated dose calibrator. The “hot” sources were acquired with a full 3D PET/CT (Biograph mCT®, Siemens Medical USA). Acquisition times were 2 min for F-18 and Ga-68, and 10 min for I-124. For reconstruction an OSEM algorithm was applied. For I-124 the images were reconstructed with and without PGC. For the calculation of the RCs the activity concentrations in each sphere were determined; in addition, the influence of the background correction was studied. Results The RCs of Ga-68 are the smallest (79%). I-124 reaches similar RCs (87% with PGC, 84% without PGC) as F-18 (84%). showing that the quantification of I-124 images is similar to F-18 and slightly better than Ga-68. With background activity the contrast of the I-124 PGC images is similar to Ga-68 and F-18 scans. There was lower background activity in the I-124 images without PGC, which probably originates from an overcorrection of the scatter contribution. Consequently, the contrast without PGC was much higher than with PGC. As a consequence PGC should be used for I-124. Conclusions For I-124 there is only a slight influence on the quantification depending on the use of the PGC. However, there are considerable differences with respect to I-124 image quality. PMID:24014105
Chen, Xianglong; Zhang, Bingzhi; Feng, Fuzhou; Jiang, Pengcheng
2017-01-01
The kurtosis-based indexes are usually used to identify the optimal resonant frequency band. However, kurtosis can only describe the strength of transient impulses, which cannot differentiate impulse noises and repetitive transient impulses cyclically generated in bearing vibration signals. As a result, it may lead to inaccurate results in identifying resonant frequency bands, in demodulating fault features and hence in fault diagnosis. In view of those drawbacks, this manuscript redefines the correlated kurtosis based on kurtosis and auto-correlative function, puts forward an improved correlated kurtosis based on squared envelope spectrum of bearing vibration signals. Meanwhile, this manuscript proposes an optimal resonant band demodulation method, which can adaptively determine the optimal resonant frequency band and accurately demodulate transient fault features of rolling bearings, by combining the complex Morlet wavelet filter and the Particle Swarm Optimization algorithm. Analysis of both simulation data and experimental data reveal that the improved correlated kurtosis can effectively remedy the drawbacks of kurtosis-based indexes and the proposed optimal resonant band demodulation is more accurate in identifying the optimal central frequencies and bandwidth of resonant bands. Improved fault diagnosis results in experiment verified the validity and advantage of the proposed method over the traditional kurtosis-based indexes. PMID:28208820
Simple interrogator for optical fiber-based white light Fabry-Perot interferometers.
Yu, Zhihao; Tian, Zhipeng; Wang, Anbo
2017-02-15
In this Letter, we present the design of a simple signal interrogator for optical fiber-based white light Fabry-Perot (F-P) interferometers. With the hardware being composed of only a flat fused silica wafer and a CCD camera, this interrogator translates the spectral interference into a spatial interference pattern, and then demodulates the F-P cavity length with the use of a relatively simple demodulation algorithm. The concept is demonstrated experimentally in a fiber optic sensor with a sapphire wafer as the F-P cavity.
NASA Astrophysics Data System (ADS)
Zhou, Lei; Li, Zhengying; Xiang, Na; Bao, Xiaoyi
2018-06-01
A high speed quasi-distributed demodulation method based on the microwave photonics and the chromatic dispersion effect is designed and implemented for weak fiber Bragg gratings (FBGs). Due to the effect of dispersion compensation fiber (DCF), FBG wavelength shift leads to the change of the difference frequency signal at the mixer. With the way of crossing microwave sweep cycle, all wavelengths of cascade FBGs can be high speed obtained by measuring the frequencies change. Moreover, through the introduction of Chirp-Z and Hanning window algorithm, the analysis of difference frequency signal is achieved very well. By adopting the single-peak filter as a reference, the length disturbance of DCF caused by temperature can be also eliminated. Therefore, the accuracy of this novel method is greatly improved, and high speed demodulation of FBGs can easily realize. The feasibility and performance are experimentally demonstrated using 105 FBGs with 0.1% reflectivity, 1 m spatial interval. Results show that each grating can be distinguished well, and the demodulation rate is as high as 40 kHz, the accuracy is about 8 pm.
NASA Astrophysics Data System (ADS)
Mao, Xuefeng; Tian, Xiaoran; Zhou, Xinlei; Yu, Qingxu
2015-04-01
The characteristics of a fiber-optic Fabry-Perot interferometric acoustic sensor are investigated. An improved phase-generator carrier-demodulation mechanism is proposed for obtaining a high harmonic suppression ratio and stability of the demodulation results. A gold-coated polyethylene terephthalate membrane is used as the sensing diaphragm. By optimizing the parameters and the demodulation algorithm, the signal-to-noise ratio (SNR) and distortion ratio of 50.3 dB and the total harmonic distortion of 0.1% at 114 dB sound pressure level (SPL) (@ 1 kHz) are achieved, respectively. The sensor shows good temperature stability; the variation of the response is within 0.6 dB as the temperature changes from -10°C to 50°C. A sensitivity of 40 mV/Pa at 1 kHz and a frequency response range of 100 Hz to 12.5 kHz are reached, respectively. The SNR of the system is 60 dB (Re. 94 dB SPL). The sensor may be applied to photoacoustic spectrometers as a high-performance acoustic sensor.
Lamberti, A; Vanlanduit, S; De Pauw, B; Berghmans, F
2014-03-24
Fiber Bragg Gratings (FBGs) can be used as sensors for strain, temperature and pressure measurements. For this purpose, the ability to determine the Bragg peak wavelength with adequate wavelength resolution and accuracy is essential. However, conventional peak detection techniques, such as the maximum detection algorithm, can yield inaccurate and imprecise results, especially when the Signal to Noise Ratio (SNR) and the wavelength resolution are poor. Other techniques, such as the cross-correlation demodulation algorithm are more precise and accurate but require a considerable higher computational effort. To overcome these problems, we developed a novel fast phase correlation (FPC) peak detection algorithm, which computes the wavelength shift in the reflected spectrum of a FBG sensor. This paper analyzes the performance of the FPC algorithm for different values of the SNR and wavelength resolution. Using simulations and experiments, we compared the FPC with the maximum detection and cross-correlation algorithms. The FPC method demonstrated a detection precision and accuracy comparable with those of cross-correlation demodulation and considerably higher than those obtained with the maximum detection technique. Additionally, FPC showed to be about 50 times faster than the cross-correlation. It is therefore a promising tool for future implementation in real-time systems or in embedded hardware intended for FBG sensor interrogation.
Performance Optimization Design for a High-Speed Weak FBG Interrogation System Based on DFB Laser.
Yao, Yiqiang; Li, Zhengying; Wang, Yiming; Liu, Siqi; Dai, Yutang; Gong, Jianmin; Wang, Lixin
2017-06-22
A performance optimization design for a high-speed fiber Bragg grating (FBG) interrogation system based on a high-speed distributed feedback (DFB) swept laser is proposed. A time-division-multiplexing sensor network with identical weak FBGs is constituted to realize high-capacity sensing. In order to further improve the multiplexing capacity, a waveform repairing algorithm is designed to extend the dynamic demodulation range of FBG sensors. It is based on the fact that the spectrum of an FBG keeps stable over a long period of time. Compared with the pre-collected spectra, the distorted spectra waveform are identified and repaired. Experimental results show that all the identical weak FBGs are distinguished and demodulated at the speed of 100 kHz with a linearity of above 0.99, and the range of dynamic demodulation is extended by 40%.
Performance Optimization Design for a High-Speed Weak FBG Interrogation System Based on DFB Laser
Yao, Yiqiang; Li, Zhengying; Wang, Yiming; Liu, Siqi; Dai, Yutang; Gong, Jianmin; Wang, Lixin
2017-01-01
A performance optimization design for a high-speed fiber Bragg grating (FBG) interrogation system based on a high-speed distributed feedback (DFB) swept laser is proposed. A time-division-multiplexing sensor network with identical weak FBGs is constituted to realize high-capacity sensing. In order to further improve the multiplexing capacity, a waveform repairing algorithm is designed to extend the dynamic demodulation range of FBG sensors. It is based on the fact that the spectrum of an FBG keeps stable over a long period of time. Compared with the pre-collected spectra, the distorted spectra waveform are identified and repaired. Experimental results show that all the identical weak FBGs are distinguished and demodulated at the speed of 100 kHz with a linearity of above 0.99, and the range of dynamic demodulation is extended by 40%. PMID:28640187
Schmidt, M; Werther, B; Fuerstenau, N; Matthias, M; Melz, T
2001-04-09
A fiber-optic extrinsic Fabry-Perot interferometer strain sensor (EFPI-S) of ls = 2.5 cm sensor length using three-wavelength digital phase demodulation is demonstrated to exhibit <50 pm displacement resolution (<2nm/m strain resolution) when measuring the cross expansion of a PZT-ceramic plate. The sensing (single-mode downlead-) and reflecting fibers are fused into a 150/360 microm capillary fiber where the fusion points define the sensor length. Readout is performed using an improved version of the previously described three-wavelength digital phase demodulation method employing an arctan-phase stepping algorithm. In the resent experiments the strain sensitivity was varied via the mapping of the arctan - lookup table to the 16-Bit DA-converter range from 188.25 k /V (6 Volt range 1130 k ) to 11.7 k /Volt (range 70 k ).
A Synthetic Quadrature Phase Detector/Demodulator for Fourier Transform Transform Spectrometers
NASA Technical Reports Server (NTRS)
Campbell, Joel
2008-01-01
A method is developed to demodulate (velocity correct) Fourier transform spectrometer (FTS) data that is taken with an analog to digital converter that digitizes equally spaced in time. This method makes it possible to use simple low cost, high resolution audio digitizers to record high quality data without the need for an event timer or quadrature laser hardware, and makes it possible to use a metrology laser of any wavelength. The reduced parts count and simplicity implementation makes it an attractive alternative in space based applications when compared to previous methods such as the Brault algorithm.
Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin
2005-03-15
A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented that is based on a Michelson interferometer and combines the methods of low-coherence interference and Fourier transform spectrum. Signals from EFPI and FBG sensors are obtained simultaneously by scanning one arm of a Michelson interferometer, and an algorithm model is established to process the signals and retrieve both the wavelength of the FBG and the cavity length of the EFPI at the same time, which are then used to determine the strain and temperature.
Schmidt, M; Fürstenau, N
1999-05-01
A three-wavelength-based passive quadrature digital phase-demodulation scheme has been developed for readout of fiber-optic extrinsic Fabry-Perot interferometer vibration, acoustic, and strain sensors. This scheme uses a superluminescent diode light source with interference filters in front of the photodiodes and real-time arctan calculation. Quasi-static strain and dynamic vibration sensing with up to an 80-kHz sampling rate is demonstrated. Periodic nonlinearities owing to dephasing with increasing fringe number are corrected for with a suitable algorithm, resulting in significant improvement of the linearity of the sensor characteristics.
Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference.
Park, Hyoung-Jun; Song, Minho
2008-10-29
The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of the wavelength scan range and frequency. A linearity error of about 0.18% against a reference thermocouple thermometer was obtained with the suggested method.
A digitalized silicon microgyroscope based on embedded FPGA.
Xia, Dunzhu; Yu, Cheng; Wang, Yuliang
2012-09-27
This paper presents a novel digital miniaturization method for a prototype silicon micro-gyroscope (SMG) with the symmetrical and decoupled structure. The schematic blocks of the overall system consist of high precision analog front-end interface, high-speed 18-bit analog to digital convertor, a high-performance core Field Programmable Gate Array (FPGA) chip and other peripherals such as high-speed serial ports for transmitting data. In drive mode, the closed-loop drive circuit are implemented by automatic gain control (AGC) loop and software phase-locked loop (SPLL) based on the Coordinated Rotation Digital Computer (CORDIC) algorithm. Meanwhile, the sense demodulation module based on varying step least mean square demodulation (LMSD) are addressed in detail. All kinds of algorithms are simulated by Simulink and DSPbuilder tools, which is in good agreement with the theoretical design. The experimental results have fully demonstrated the stability and flexibility of the system.
A Digitalized Silicon Microgyroscope Based on Embedded FPGA
Xia, Dunzhu; Yu, Cheng; Wang, Yuliang
2012-01-01
This paper presents a novel digital miniaturization method for a prototype silicon micro-gyroscope (SMG) with the symmetrical and decoupled structure. The schematic blocks of the overall system consist of high precision analog front-end interface, high-speed 18-bit analog to digital convertor, a high-performance core Field Programmable Gate Array (FPGA) chip and other peripherals such as high-speed serial ports for transmitting data. In drive mode, the closed-loop drive circuit are implemented by automatic gain control (AGC) loop and software phase-locked loop (SPLL) based on the Coordinated Rotation Digital Computer (CORDIC) algorithm. Meanwhile, the sense demodulation module based on varying step least mean square demodulation (LMSD) are addressed in detail. All kinds of algorithms are simulated by Simulink and DSPbuilder tools, which is in good agreement with the theoretical design. The experimental results have fully demonstrated the stability and flexibility of the system. PMID:23201990
Advanced satellite communication system
NASA Technical Reports Server (NTRS)
Staples, Edward J.; Lie, Sen
1992-01-01
The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.
Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference
Park, Hyoung-Jun; Song, Minho
2008-01-01
The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of the wavelength scan range and frequency. A linearity error of about 0.18% against a reference thermocouple thermometer was obtained with the suggested method. PMID:27873898
Harmonics rejection in pixelated interferograms using spatio-temporal demodulation.
Padilla, J M; Servin, M; Estrada, J C
2011-09-26
Pixelated phase-mask interferograms have become an industry standard in spatial phase-shifting interferometry. These pixelated interferograms allow full wavefront encoding using a single interferogram. This allows the study of fast dynamic events in hostile mechanical environments. Recently an error-free demodulation method for ideal pixelated interferograms was proposed. However, non-ideal conditions in interferometry may arise due to non-linear response of the CCD camera, multiple light paths in the interferometer, etc. These conditions generate non-sinusoidal fringes containing harmonics which degrade the phase estimation. Here we show that two-dimensional Fourier demodulation of pixelated interferograms rejects most harmonics except the complex ones at {-3(rd), +5(th), -7(th), +9(th), -11(th),…}. We propose temporal phase-shifting to remove these remaining harmonics. In particular, a 2-step phase-shifting algorithm is used to eliminate the -3(rd) and +5(th) complex harmonics, while a 3-step one is used to remove the -3(rd), +5<(th), -7(th) and +9(th) complex harmonics. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Dua, Rohit; Watkins, Steve E.
2009-03-01
Strain analysis due to vibration can provide insight into structural health. An Extrinsic Fabry-Perot Interferometric (EFPI) sensor under vibrational strain generates a non-linear modulated output. Advanced signal processing techniques, to extract important information such as absolute strain, are required to demodulate this non-linear output. Past research has employed Artificial Neural Networks (ANN) and Fast Fourier Transforms (FFT) to demodulate the EFPI sensor for limited conditions. These demodulation systems could only handle variations in absolute value of strain and frequency of actuation during a vibration event. This project uses an ANN approach to extend the demodulation system to include the variation in the damping coefficient of the actuating vibration, in a near real-time vibration scenario. A computer simulation provides training and testing data for the theoretical output of the EFPI sensor to demonstrate the approaches. FFT needed to be performed on a window of the EFPI output data. A small window of observation is obtained, while maintaining low absolute-strain prediction errors, heuristically. Results are obtained and compared from employing different ANN architectures including multi-layered feedforward ANN trained using Backpropagation Neural Network (BPNN), and Generalized Regression Neural Networks (GRNN). A two-layered algorithm fusion system is developed and tested that yields better results.
Phase compensation with fiber optic surface profile acquisition and reconstruction system
NASA Astrophysics Data System (ADS)
Bo, En; Duan, Fajie; Feng, Fan; Lv, Changrong; Xiao, Fu; Huang, Tingting
2015-02-01
A fiber-optic sinusoidal phase modulating (SPM) interferometer was proposed for the acquisition and reconstruction of three-dimensional (3-D) surface profile. Sinusoidal phase modulation was induced by controlling the injection current of light source. The surface profile was constructed on the basis of fringe projection. Fringe patterns are vulnerable to external disturbances such as mechanical vibration and temperature fluctuation, which cause phase drift in the interference signal and decrease measuring accuracy. A closed-loop feedback phase compensation system was built. In the subsystem, the initial phase of the interference signal, which was caused by the initial optical path difference between interference arms, could be demodulated using phase generated carrier (PGC) method and counted out using coordinated rotation digital computer (CORDIC) , then a compensation voltage was generated for the PZT driver. The bias value of external disturbances superimposed on fringe patterns could be reduced to about 50 mrad, and the phase stability for interference fringes was less than 6 mrad. The feasibility for real-time profile measurement has been verified.
NASA Astrophysics Data System (ADS)
Trusiak, Maciej; Micó, Vicente; Patorski, Krzysztof; García-Monreal, Javier; Sluzewski, Lukasz; Ferreira, Carlos
2016-08-01
In this contribution we propose two Hilbert-Huang Transform based algorithms for fast and accurate single-shot and two-shot quantitative phase imaging applicable in both on-axis and off-axis configurations. In the first scheme a single fringe pattern containing information about biological phase-sample under study is adaptively pre-filtered using empirical mode decomposition based approach. Further it is phase demodulated by the Hilbert Spiral Transform aided by the Principal Component Analysis for the local fringe orientation estimation. Orientation calculation enables closed fringes efficient analysis and can be avoided using arbitrary phase-shifted two-shot Gram-Schmidt Orthonormalization scheme aided by Hilbert-Huang Transform pre-filtering. This two-shot approach is a trade-off between single-frame and temporal phase shifting demodulation. Robustness of the proposed techniques is corroborated using experimental digital holographic microscopy studies of polystyrene micro-beads and red blood cells. Both algorithms compare favorably with the temporal phase shifting scheme which is used as a reference method.
Aluminum alloy material structure impact localization by using FBG sensors
NASA Astrophysics Data System (ADS)
Zhu, Xiubin
2014-12-01
The aluminum alloy structure impact localization system by using fiber Bragg grating (FBG) sensors and impact localization algorithm was investigated. A four-FBG sensing network was established. And the power intensity demodulation method was initialized employing the narrow-band tunable laser. The wavelet transform was used to weaken the impact signal noise. And the impact signal time difference was extracted to build the time difference localization algorithm. At last, a fiber Bragg grating impact localization system was established and experimentally verified. The experimental results showed that in the aluminum alloy plate with the 500 mm*500 mm*2 mm test area, the maximum and average impact abscissa localization errors were 11 mm and 6.25 mm, and the maximum and average impact ordinate localization errors were 9 mm and 4.25 mm, respectively. The fiber Bragg grating sensors and demodulation system are feasible to realize the aviation aluminum alloy material structure impact localization. The research results provide a reliable method for the aluminum alloy material structure impact localization.
Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang
2015-01-01
Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs’ reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method. PMID:25923938
Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang
2015-04-27
Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs' reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method.
Joint Demodulation of Low-Entropy Narrowband Cochannel Signals
2006-12-01
Linear prediction: A tutorial review,” IEEE Proceedings, vol. 63, pp. 561–580, April 1975. [91] R. G. Brown and P. Y. C. Hwang , Introduction to Random...48 B. SECOND ORDER PREDICTOR . . . . . . . . . . . . . . . . . 49 C. KALMAN FILTER...38 4.1 Prediction algorithm based on the Kalman filter . . . . . . . . . . . . . . . . 52 4.2 self
Abid, Abdulbasit
2013-03-01
This paper presents a thorough discussion of the proposed field-programmable gate array (FPGA) implementation for fringe pattern demodulation using the one-dimensional continuous wavelet transform (1D-CWT) algorithm. This algorithm is also known as wavelet transform profilometry. Initially, the 1D-CWT is programmed using the C programming language and compiled into VHDL using the ImpulseC tool. This VHDL code is implemented on the Altera Cyclone IV GX EP4CGX150DF31C7 FPGA. A fringe pattern image with a size of 512×512 pixels is presented to the FPGA, which processes the image using the 1D-CWT algorithm. The FPGA requires approximately 100 ms to process the image and produce a wrapped phase map. For performance comparison purposes, the 1D-CWT algorithm is programmed using the C language. The C code is then compiled using the Intel compiler version 13.0. The compiled code is run on a Dell Precision state-of-the-art workstation. The time required to process the fringe pattern image is approximately 1 s. In order to further reduce the execution time, the 1D-CWT is reprogramed using Intel Integrated Primitive Performance (IPP) Library Version 7.1. The execution time was reduced to approximately 650 ms. This confirms that at least sixfold speedup was gained using FPGA implementation over a state-of-the-art workstation that executes heavily optimized implementation of the 1D-CWT algorithm.
NASA Astrophysics Data System (ADS)
Degaudenzi, Riccardo; Vanghi, Vieri
1994-02-01
In all-digital Trellis-Coded 8PSK (TC-8PSK) demodulator well suited for VLSI implementation, including maximum likelihood estimation decision-directed (MLE-DD) carrier phase and clock timing recovery, is introduced and analyzed. By simply removing the trellis decoder the demodulator can efficiently cope with uncoded 8PSK signals. The proposed MLE-DD synchronization algorithm requires one sample for the phase and two samples per symbol for the timing loop. The joint phase and timing discriminator characteristics are analytically derived and numerical results checked by means of computer simulations. An approximated expression for steady-state carrier phase and clock timing mean square error has been derived and successfully checked with simulation findings. Synchronizer deviation from the Cramer Rao bound is also discussed. Mean acquisition time for the digital synchronizer has also been computed and checked, using the Monte Carlo simulation technique. Finally, TC-8PSK digital demodulator performance in terms of bit error rate and mean time to lose lock, including digital interpolators and synchronization loops, is presented.
Fang, Simin; Zhou, Sheng; Wang, Xiaochun; Ye, Qingsheng; Tian, Ling; Ji, Jianjun; Wang, Yanqun
2015-01-01
To design and improve signal processing algorithms of ophthalmic ultrasonography based on FPGA. Achieved three signal processing modules: full parallel distributed dynamic filter, digital quadrature demodulation, logarithmic compression, using Verilog HDL hardware language in Quartus II. Compared to the original system, the hardware cost is reduced, the whole image shows clearer and more information of the deep eyeball contained in the image, the depth of detection increases from 5 cm to 6 cm. The new algorithms meet the design requirements and achieve the system's optimization that they can effectively improve the image quality of existing equipment.
NASA Astrophysics Data System (ADS)
Chen, Da-Ming; Xu, Y. F.; Zhu, W. D.
2018-05-01
An effective and reliable damage identification method for plates with a continuously scanning laser Doppler vibrometer (CSLDV) system is proposed. A new constant-speed scan algorithm is proposed to create a two-dimensional (2D) scan trajectory and automatically scan a whole plate surface. Full-field measurement of the plate can be achieved by applying the algorithm to the CSLDV system. Based on the new scan algorithm, the demodulation method is extended from one dimension for beams to two dimensions for plates to obtain a full-field operating deflection shape (ODS) of the plate from velocity response measured by the CSLDV system. The full-field ODS of an associated undamaged plate is obtained by using polynomials with proper orders to fit the corresponding full-field ODS from the demodulation method. A curvature damage index (CDI) using differences between curvatures of ODSs (CODSs) associated with ODSs that are obtained by the demodulation method and the polynomial fit is proposed to identify damage. An auxiliary CDI obtained by averaging CDIs at different excitation frequencies is defined to further assist damage identification. An experiment of an aluminum plate with damage in the form of 10.5% thickness reduction in a damage area of 0.86% of the whole scan area is conducted to investigate the proposed method. Six frequencies close to natural frequencies of the plate and one randomly selected frequency are used as sinusoidal excitation frequencies. Two 2D scan trajectories, i.e., a horizontally moving 2D scan trajectory and a vertically moving 2D scan trajectory, are used to obtain ODSs, CODSs, and CDIs of the plate. The damage is successfully identified near areas with consistently high values of CDIs at different excitation frequencies along the two 2D scan trajectories; the damage area is also identified by auxiliary CDIs.
Vocal Tremor Analysis with the Vocal Demodulator.
ERIC Educational Resources Information Center
Winholtz, William S.; Ramig, Lorraine Olson
1992-01-01
This paper describes the Vocal Demodulator as a new device for analysis of vocal tremor. The Vocal Demodulator produces amplitude-demodulated and frequency-demodulated outputs and measures the frequency and level of low-frequency tremor components in sustained phonation. The paper describes quantification of the demodulation process, validation…
Design and test of a regenerative satellite transmultiplexer
NASA Astrophysics Data System (ADS)
Hung, Kenny King-Ming
1993-05-01
In a multiple access scheme for regenerative satellite communications, the bulk frequency division multiple access (FDMA) uplink signal is demodulated on board the satellite and then remodulated for time division multiplexing (TDM) downlink transmission. Conversion from frequency to time division multiplex format requires that the uplink signal be frequency demultiplexed and each individual carrier be subsequently demodulated. For thin-route application which consists of a large number of channels with fixed data rate, multicarrier demodulation can be accomplished efficiently by a digital transmultiplexer (TMUX) using a fast Fourier transform processor followed by a bank of per-channel processors. A time domain description of the TMUX algorithm is derived which elucidates how the TMUX functions. The per-channel processor performs timing and carrier recovery for optimum and coherent data detection. Timing recovery is necessarily achieved asynchronously by a filter coefficient interpolation. Carrier recovery is performed using an all-digital phase-locked loop. The combination of both timing and carrier loops is investigated for a multi-user system. The performance of the overall system is assessed over a multi-user, additive white Gaussian noise channel for a bit energy to noise power spectral density ratio down to zero dB.
NASA Astrophysics Data System (ADS)
Shoupeng, Song; Zhou, Jiang
2017-03-01
Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry.
Optimal Methods for Classification of Digitally Modulated Signals
2013-03-01
of using a ratio of likelihood functions, the proposed approach uses the Kullback - Leibler (KL) divergence. KL...58 List of Acronyms ALRT Average LRT BPSK Binary Shift Keying BPSK-SS BPSK Spread Spectrum or CDMA DKL Kullback - Leibler Information Divergence...blind demodulation for develop classification algorithms for wider set of signals types. Two methodologies were used : Likelihood Ratio Test
Castillo, Gerardo M.; Nishimoto-Ashfield, Akiko; Banerjee, Aryamitra A.; Landolfi, Jennifer A.; Lyubimov, Alexander V.; Bolotin, Elijah M.
2013-01-01
Purpose Our objective was to develop novel nanocarriers (protected graft copolymer, PGC) that improve the stability of heparin binding EGF (HBEGF) and gastrin and then to use PGC-formulated HBEGF (PGC-HBEGF) and Omeprazole (+/− PGC-gastrin) for normalizing fasting blood glucose (FBG) and improving islet function in diabetic mice. Method HBEGF, PGC-HBEGF, Omeprazole, Omeprazole+PGC-HBEGF, Omeprazole+PGC-gastrin+PGC-HBEGF and epidermal growth factor (EGF)+gastrin were tested in multiple low dose streptozotocin diabetic mice. Results Omeprazole+PGC-HBEGF normalized FBG and is better than EGF+gastrin at improving islet function and decreasing insulitis. Groups treated with Omeprazole, Omeprazole+PGC-HBEGF, or EGF+gastrin have significantly improved islet function versus saline control. All animals that received PGC-HBEGF had significantly reduced islet insulitis versus saline control. Non-FBG was lower for Omeprazole+PGC-gastrin+PGC-HBEGF but Omeprazole+PGC-HBEGF alone showed better FBG and glucose tolerance. Conclusions Omeprazole+PGC-HBEGF provides a sustained exposure to both EGFRA and gastrin, improves islet function, and decreases insulitis in multiple low dose streptozotocin diabetic mice. Although HBEGF or EGF elevates non-FBG, it facilitates a reduction of insulitis and, in the presence of Omeprazole, provides normalization of FBG at the end of treatment. The study demonstrates Omeprazole and PGC-HBEGF is a viable treatment for diabetes. PMID:23793991
Castillo, Gerardo M; Nishimoto-Ashfield, Akiko; Banerjee, Aryamitra A; Landolfi, Jennifer A; Lyubimov, Alexander V; Bolotin, Elijah M
2013-11-01
Our objective was to develop novel nanocarriers (protected graft copolymer, PGC) that improve the stability of heparin binding EGF (HBEGF) and gastrin and then to use PGC-formulated HBEGF (PGC-HBEGF) and Omeprazole (+/- PGC-gastrin) for normalizing fasting blood glucose (FBG) and improving islet function in diabetic mice. HBEGF, PGC-HBEGF, Omeprazole, Omeprazole + PGC-HBEGF, Omeprazole + PGC-gastrin + PGC-HBEGF and epidermal growth factor (EGF) + gastrin were tested in multiple low dose streptozotocin diabetic mice. Omeprazole + PGC-HBEGF normalized FBG and is better than EGF + gastrin at improving islet function and decreasing insulitis. Groups treated with Omeprazole, Omeprazole + PGC-HBEGF, or EGF + gastrin have significantly improved islet function versus saline control. All animals that received PGC-HBEGF had significantly reduced islet insulitis versus saline control. Non-FBG was lower for Omeprazole + PGC-gastrin + PGC-HBEGF but Omeprazole + PGC-HBEGF alone showed better FBG and glucose tolerance. Omeprazole + PGC-HBEGF provides a sustained exposure to both EGFRA and gastrin, improves islet function, and decreases insulitis in multiple low dose streptozotocin diabetic mice. Although HBEGF or EGF elevates non-FBG, it facilitates a reduction of insulitis and, in the presence of Omeprazole, provides normalization of FBG at the end of treatment. The study demonstrates Omeprazole and PGC-HBEGF is a viable treatment for diabetes.
Chang, Ji Suk; Fernand, Vivian; Zhang, Yubin; Shin, Jeho; Jun, Hee-Jin; Joshi, Yagini; Gettys, Thomas W
2012-03-16
PGC-1α is an inducible transcriptional coactivator that regulates cellular energy metabolism and adaptation to environmental and nutritional stimuli. In tissues expressing PGC-1α, alternative splicing produces a truncated protein (NT-PGC-1α) corresponding to the first 267 amino acids of PGC-1α. Brown adipose tissue also expresses two novel exon 1b-derived isoforms of PGC-1α and NT-PGC-1α, which are 4 and 13 amino acids shorter in the N termini than canonical PGC-1α and NT-PGC-1α, respectively. To evaluate the ability of NT-PGC-1α to substitute for PGC-1α and assess the isoform-specific role of NT-PGC-1α, adaptive thermogenic responses of adipose tissue were evaluated in mice lacking full-length PGC-1α (FL-PGC-1(-/-)) but expressing slightly shorter but functionally equivalent forms of NT-PGC-1α (NT-PGC-1α(254)). At room temperature, NT-PGC-1α and NT-PGC-1α(254) were produced from conventional exon 1a-derived transcripts in brown adipose tissue of wild type and FL-PGC-1α(-/-) mice, respectively. However, cold exposure shifted transcription to exon 1b, increasing exon 1b-derived mRNA levels. The resulting transcriptional responses produced comparable increases in energy expenditure and maintenance of core body temperature in WT and FL-PGC-1α(-/-) mice. Moreover, treatment of the two genotypes with a selective β(3)-adrenergic receptor agonist produced similar increases in energy expenditure, mitochondrial DNA, and reductions in adiposity. Collectively, these findings illustrate that the transcriptional and physiological responses to sympathetic input are unabridged in FL-PGC-1α(-/-) mice, and that NT-PGC-1α is sufficient to link β(3)-androgenic receptor activation to adaptive thermogenesis in adipose tissue. Furthermore, the transcriptional shift from exon 1a to 1b supports isoform-specific roles for NT-PGC-1α in basal and adaptive thermogenesis.
Chang, Ji Suk; Jun, Hee-Jin; Park, Minsung
2016-10-01
The transcriptional coactivator PGC-1α plays a central role in hepatic gluconeogenesis. We previously reported that alternative splicing of the PGC-1α gene produces an additional transcript encoding the truncated protein NT-PGC-1α NT-PGC-1α is co-expressed with PGC-1α and highly induced by fasting in the liver. NT-PGC-1α regulates tissue-specific metabolism, but its role in the liver has not been investigated. Thus, the objective of this study was to determine the role of hepatic NT-PGC-1α in the regulation of gluconeogenesis. Adenovirus-mediated expression of NT-PGC-1α in primary hepatocytes strongly stimulated the expression of key gluconeogenic enzyme genes (PEPCK and G6Pase), leading to increased glucose production. To further understand NT-PGC-1α function in hepatic gluconeogenesis in vivo, we took advantage of a previously reported FL-PGC-1α -/- mouse line that lacks full-length PGC-1α (FL-PGC-1α) but retains a slightly shorter and functionally equivalent form of NT-PGC-1α (NT-PGC-1α 254 ). In FL-PGC-1α -/- mice, NT-PGC-1α 254 was induced by fasting in the liver and recruited to the promoters of PEPCK and G6Pase genes. The enrichment of NT-PGC-1α 254 at the promoters was closely associated with fasting-induced increase in PEPCK and G6Pase gene expression and efficient production of glucose from pyruvate during a pyruvate tolerance test in FL-PGC-1α -/- mice. Moreover, FL-PGC-1α -/- primary hepatocytes showed a significant increase in gluconeogenic gene expression and glucose production after treatment with dexamethasone and forskolin, suggesting that NT-PGC-1α 254 is sufficient to stimulate the gluconeogenic program in the absence of FL-PGC-1α Collectively, our findings highlight the role of hepatic NT-PGC-1α in stimulating gluconeogenic gene expression and glucose production. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Dinas, Petros C.; Lahart, Ian M.; Timmons, James A.; Svensson, Per-Arne; Koutedakis, Yiannis; Flouris, Andreas D.; Metsios, George S.
2017-01-01
Background: Exercise may activate a brown adipose-like phenotype in white adipose tissue. The aim of this systematic review was to identify the effects of physical activity on the link between peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1a) and fibronectin type III domain-containing protein 5 (FNDC5) in muscle, circulating Irisin and uncoupling protein one (UCP1) of white adipocytes in humans. Methods: Two databases (PubMed 1966 to 08/2016 and EMBASE 1974 to 08/2016) were searched using an appropriate algorithm. We included articles that examined physical activity and/or exercise in humans that met the following criteria: a) PGC-1a in conjunction with FNDC5 measurements, and b) FNDC5 and/or circulating Irisin and/or UCP1 levels in white adipocytes. Results: We included 51 studies (12 randomised controlled trials) with 2474 participants. Out of the 51 studies, 16 examined PGC-1a and FNDC5 in response to exercise, and only four found increases in both PGC-1a and FNDC5 mRNA and one showed increased FNDC5 mRNA. In total, 22 out of 45 studies that examined circulating Irisin in response to exercise showed increased concentrations when ELISA techniques were used; two studies also revealed increased Irisin levels measured via mass spectrometry. Three studies showed a positive association of circulating Irisin with physical activity levels. One study found no exercise effects on UCP1 mRNA in white adipocytes. Conclusions: The effects of physical activity on the link between PGC-1a, FNDC5 mRNA in muscle and UCP1 in white human adipocytes has attracted little scientific attention. Current methods for Irisin identification lack precision and, therefore, the existing evidence does not allow for conclusions to be made regarding Irisin responses to physical activity. We found a contrast between standardised review methods and accuracy of the measurements used. This should be considered in future systematic reviews. PMID:28620456
NASA Astrophysics Data System (ADS)
Trusiak, M.; Patorski, K.; Tkaczyk, T.
2014-12-01
We propose a fast, simple and experimentally robust method for reconstructing background-rejected optically-sectioned microscopic images using two-shot structured illumination approach. Innovative data demodulation technique requires two grid-illumination images mutually phase shifted by π (half a grid period) but precise phase displacement value is not critical. Upon subtraction of the two frames the input pattern with increased grid modulation is computed. The proposed demodulation procedure comprises: (1) two-dimensional data processing based on the enhanced, fast empirical mode decomposition (EFEMD) method for the object spatial frequency selection (noise reduction and bias term removal), and (2) calculating high contrast optically-sectioned image using the two-dimensional spiral Hilbert transform (HS). The proposed algorithm effectiveness is compared with the results obtained for the same input data using conventional structured-illumination (SIM) and HiLo microscopy methods. The input data were collected for studying highly scattering tissue samples in reflectance mode. In comparison with the conventional three-frame SIM technique we need one frame less and no stringent requirement on the exact phase-shift between recorded frames is imposed. The HiLo algorithm outcome is strongly dependent on the set of parameters chosen manually by the operator (cut-off frequencies for low-pass and high-pass filtering and η parameter value for optically-sectioned image reconstruction) whereas the proposed method is parameter-free. Moreover very short processing time required to efficiently demodulate the input pattern predestines proposed method for real-time in-vivo studies. Current implementation completes full processing in 0.25s using medium class PC (Inter i7 2,1 GHz processor and 8 GB RAM). Simple modification employed to extract only first two BIMFs with fixed filter window size results in reducing the computing time to 0.11s (8 frames/s).
Lai, Ling; Leone, Teresa C.; Zechner, Christoph; Schaeffer, Paul J.; Kelly, Sean M.; Flanagan, Daniel P.; Medeiros, Denis M.; Kovacs, Attila; Kelly, Daniel P.
2008-01-01
Oxidative tissues such as heart undergo a dramatic perinatal mitochondrial biogenesis to meet the high-energy demands after birth. PPARγ coactivator-1 (PGC-1) α and β have been implicated in the transcriptional control of cellular energy metabolism. Mice with combined deficiency of PGC-1α and PGC-1β (PGC-1αβ−/− mice) were generated to investigate the convergence of their functions in vivo. The phenotype of PGC-1β−/− mice was minimal under nonstressed conditions, including normal heart function, similar to that of PGC-1α−/− mice generated previously. In striking contrast to the singly deficient PGC-1 lines, PGC-1αβ−/− mice died shortly after birth with small hearts, bradycardia, intermittent heart block, and a markedly reduced cardiac output. Cardiac-specific ablation of the PGC-1β gene on a PGC-1α-deficient background phenocopied the generalized PGC-1αβ−/− mice. The hearts of the PGC-1αβ−/− mice exhibited signatures of a maturational defect including reduced growth, a late fetal arrest in mitochondrial biogenesis, and persistence of a fetal pattern of gene expression. Brown adipose tissue (BAT) of PGC-1αβ−/− mice also exhibited a severe abnormality in function and mitochondrial density. We conclude that PGC-1α and PGC-1β share roles that collectively are necessary for the postnatal metabolic and functional maturation of heart and BAT. PMID:18628400
NASA Astrophysics Data System (ADS)
Rabin, Sam S.; Ward, Daniel S.; Malyshev, Sergey L.; Magi, Brian I.; Shevliakova, Elena; Pacala, Stephen W.
2018-03-01
This study describes and evaluates the Fire Including Natural & Agricultural Lands model (FINAL) which, for the first time, explicitly simulates cropland and pasture management fires separately from non-agricultural fires. The non-agricultural fire module uses empirical relationships to simulate burned area in a quasi-mechanistic framework, similar to past fire modeling efforts, but with a novel optimization method that improves the fidelity of simulated fire patterns to new observational estimates of non-agricultural burning. The agricultural fire components are forced with estimates of cropland and pasture fire seasonality and frequency derived from observational land cover and satellite fire datasets. FINAL accurately simulates the amount, distribution, and seasonal timing of burned cropland and pasture over 2001-2009 (global totals: 0.434×106 and 2.02×106 km2 yr-1 modeled, 0.454×106 and 2.04×106 km2 yr-1 observed), but carbon emissions for cropland and pasture fire are overestimated (global totals: 0.295 and 0.706 PgC yr-1 modeled, 0.194 and 0.538 PgC yr-1 observed). The non-agricultural fire module underestimates global burned area (1.91×106 km2 yr-1 modeled, 2.44×106 km2 yr-1 observed) and carbon emissions (1.14 PgC yr-1 modeled, 1.84 PgC yr-1 observed). The spatial pattern of total burned area and carbon emissions is generally well reproduced across much of sub-Saharan Africa, Brazil, Central Asia, and Australia, whereas the boreal zone sees underestimates. FINAL represents an important step in the development of global fire models, and offers a strategy for fire models to consider human-driven fire regimes on cultivated lands. At the regional scale, simulations would benefit from refinements in the parameterizations and improved optimization datasets. We include an in-depth discussion of the lessons learned from using the Levenberg-Marquardt algorithm in an interactive optimization for a dynamic global vegetation model.
Shen, Tiansheng; Liu, Yewei; Schneider, Martin F
2012-01-01
The transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) regulates expression of genes for metabolism and muscle fiber type. Recently, a novel splice variant of PGC-1α (NT-PGC-1α, amino acids 1-270) was cloned and found to be expressed in muscle. Here we use Flag-tagged NT-PGC-1α to examine the subcellular localization and regulation of NT-PGC-1α in skeletal muscle fibers. Flag-NT-PGC-1α is located predominantly in the myoplasm. Nuclear NT-PGC-1α can be increased by activation of protein kinase A. Activation of p38 MAPK by muscle activity or of AMPK had no effect on the subcellular distribution of NT-PGC-1α. Inhibition of CRM1-mediated export only caused relatively slow nuclear accumulation of NT-PGC-1α, indicating that nuclear export of NT-PGC-1α may be mediated by both CRM1-dependent and -independent pathways. Together these results suggest that the regulation of NT-PGC-1α in muscle fibers may be very different from that of the full-length PGC-1α, which is exclusively nuclear.
Blechman, Janna; Amir-Zilberstein, Liat; Gutnick, Amos; Ben-Dor, Shifra; Levkowitz, Gil
2011-10-19
The transcriptional coactivator PGC-1α is a key regulator of cellular energy expenditure in peripheral tissues. Recent studies report that PGC-1α-null mice develop late-onset obesity and that the neuronal inactivation of PGC-1α causes increased food intake. However, the exact role of PGC-1α in the CNS remains unclear. Here we show that PGC-1α directly regulates the expression of the hypothalamic neuropeptide oxytocin, a known central regulator of appetite. We developed a unique genetic approach in the zebrafish, allowing us to monitor and manipulate PGC-1α activity in oxytocinergic neurons. We found that PGC-1α is coexpressed with oxytocin in the zebrafish hypothalamus. Targeted knockdown of the zebrafish PGC-1α gene activity caused a marked decrease in oxytocin mRNA levels and inhibited the expression of a transgenic GFP reporter driven by the oxytocin promoter. The effect of PGC-1α loss of function on oxytocin gene activity was rescued by tissue-specific re-expression of either PGC-1α or oxytocin precursor in zebrafish oxytocinergic neurons. PGC-1α activated the oxytocin promoter in a heterologous cell culture system, and overexpression of PGC-1α induced ectopic expression of oxytocin in muscles and neurons. Finally, PGC-1α forms an in vivo complex with the oxytocin promoter in fed but not fasted animals. These findings demonstrate that PGC-1α is both necessary and sufficient for the production of oxytocin, implicating hypothalamic PGC-1α in the direct activation of a hypothalamic hormone known to control energy intake.
PGC-1 Coactivators Regulate MITF and the Tanning Response
Shoag, Jonathan; Haq, Rizwan; Zhang, Mingfeng; Liu, Laura; Rowe, Glenn C.; Jiang, Aihua; Koulisis, Nicole; Farrel, Caitlin; Amos, Christopher I.; Wei, Qingyi; Lee, Jeffrey E.; Zhang, Jiangwen; Kupper, Thomas S.; Qureshi, Abrar A.; Cui, Rutao; Han, Jiali; Fisher, David E.; Arany, Zoltan
2013-01-01
SUMMARY The production of pigment by melanocytes tans the skin and protects against skin cancers. UV-exposed keratinocytes secrete α-MSH, which then activates melanin formation in melanocytes by inducing the microphthalmia-associated transcription factor (MITF). We show that PPAR-γ coactivator (PGC)-1α and PGC-1β are critical components of this melanogenic system in melanocytes. α-MSH signaling strongly induces PGC-1α expression and stabilizes both PGC-1α and PGC-1β proteins. The PGC-1s in turn activate the MITF promoter, and their expression correlates strongly with that of MITF in human melanoma cell lines and biopsy specimens. Inhibition of PGC-1α and PGC-1β blocks the α-MSH-mediated induction of MITF and melanogenic genes. Conversely, overexpression of PGC-1α induces pigment formation in cell culture and transgenic animals. Finally, polymorphism studies reveal expression quantitative trait loci in the PGC-1β gene that correlate with tanning ability and protection from melanoma in humans. These data identify PGC-1 coactivators as regulators of human tanning. PMID:23201126
Bozkaya, Yakup; Doğan, Mutlu; Yazıcı, Ozan; Erdem, Gökmen Umut; Demirci, Nebi Serkan; Zengin, Nurullah
2017-01-01
Alpha-fetoprotein producing gastric carcinoma (AFP-PGC) is a rare cancer for which limited data on the clinicopathological features and treatment modalities exist. The aim of this study was to compare the efficacy of modified docetaxel-cisplatin-5-fluorouracil (mDCF) as the first-line chemotherapy regimen in metastatic AFP-PGC and non-AFP-PGC. The patients diagnosed with metastatic gastric cancer who were given mDCF as first-line therapy were retrospectively reviewed. The patients with a basal serum AFP level over 9 ng/ml were defined as AFP-PGC patients. In total, 169 patients (34 with AFP-PGC and 135 with non-AFP-PGC) were included in this study. AFP-PGC patients had more liver metastases than non-AFP-PGC patients (p < 0.001). A decrease in basal AFP levels after three cycles of chemotherapy was significantly different in AFP-PGC group (p = 0.001). Overall disease control rate was 79.4% (partial response [PR] - 44.1%, stable disease [SD] - 35.3%), and 82.2% (complete response - 3%, PR - 36.2%, SD - 43%) in AFP-PGC and non-AFP-PGC patients, respectively. There was no difference between AFP-PGC and non-AFP-PGC groups in overall and progression-free survival rates (11.3 versus 11.4 months and 7.7 versus 7.1 months, respectively). Rates of grade 3-4 hematologic toxicity were 8.8% and 6.7% for neutropenia in AFP-PGC and non-AFP-PGC group, respectively and 5.9% and 7.4% for anemia. In conclusion, mDCF regimen is well-tolerated with acceptable toxicity outcomes in both AFP-PGC and non-AFP-PGC patients. A statistically significant decrease in AFP levels after mDCF regimen indicate that AFP might be considered as a supplemental marker of response to mDCF chemotherapy in AFP-PGC patients. However, further prospective clinical trials are required in this area. PMID:28273032
Iverson, Chad D; Lucy, Charles A
2014-12-19
Most stationary phases for hydrophilic interaction liquid chromatography (HILIC) and reversed phase liquid chromatography (RPLC) are based on silica. Porous graphitic carbon (PGC) is an attractive alternative to silica-based phases due to its chemical and thermal stability, and unique selectivity. However, native PGC is strongly hydrophobic and in some instances excessively retentive. PGC particles with covalently attached aniline groups (Dimethylaniline-PGC and Aniline-PGC) were synthesized to alter the surface polarity of PGC. First, the diazonium salt of N,N-dimethyl-p-phenylenediamine or 4-nitroaniline was adsorbed onto the PGC surface. The adsorbed salt was reduced with sodium borohydride and (Aniline-PGC only) the nitro group was further reduced with iron powder to the aniline. X-ray photoelectron spectroscopy confirmed the surface functionalities and that these moieties were introduced to the surface at concentrations of 0.9 and 2.1molecules/nm(2), respectively. These modified PGC phases (especially Aniline-PGC) were evaluated as HILIC and reversed phases. The Dimethylaniline-PGC phase displayed only weak HILIC retention of phenolic solutes. In contrast, the Aniline-PGC phase displayed up to nearly a 7-fold increase in HILIC retention vs. an aniline-silica phase and selectivity that differed from 10 other HILIC phases. Introduction of aniline groups to the PGC surface reduced the RPLC retentivity of PGC up to more than 5-fold and improved the separation efficiency up to 6-fold. The chromatographic performance of Aniline-PGC is demonstrated by separations of nucleotides, nucleosides, carboxylic acids, basic pharmaceuticals, and other compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Design and Implementation of Hybrid CORDIC Algorithm Based on Phase Rotation Estimation for NCO
Zhang, Chaozhu; Han, Jinan; Li, Ke
2014-01-01
The numerical controlled oscillator has wide application in radar, digital receiver, and software radio system. Firstly, this paper introduces the traditional CORDIC algorithm. Then in order to improve computing speed and save resources, this paper proposes a kind of hybrid CORDIC algorithm based on phase rotation estimation applied in numerical controlled oscillator (NCO). Through estimating the direction of part phase rotation, the algorithm reduces part phase rotation and add-subtract unit, so that it decreases delay. Furthermore, the paper simulates and implements the numerical controlled oscillator by Quartus II software and Modelsim software. Finally, simulation results indicate that the improvement over traditional CORDIC algorithm is achieved in terms of ease of computation, resource utilization, and computing speed/delay while maintaining the precision. It is suitable for high speed and precision digital modulation and demodulation. PMID:25110750
An extrinsic fiber Fabry-Perot interferometer for dynamic displacement measurement
NASA Astrophysics Data System (ADS)
Pullteap, S.; Seat, H. C.
2015-03-01
A versatile fiber interferometer was proposed for high precision measurement. The sensor exploited a double-cavity within the unique sensing arm of an extrinsic-type fiber Fabry-Perot interferometer to produce the quadrature phase-shifted interference fringes. Interference signal processing was carried out using a modified zero-crossing (fringe) counting technique to demodulate two sets of fringes. The fiber interferometer has been successfully employed for dynamic displacement measurement under different displacement profiles over a range of 0.7 μm to 140 μm. A dedicated computer incorporating the demodulation algorithm was next used to interpret these detected data as well as plot the displacement information with a resolution of λ/64. A commercial displacement sensor was employed for comparison purposes with the experimental data obtained from the fiber interferometer as well as to gauge its performance, resulting in the maximum error of 2.8% over the entire displacement range studied.
An all digital phase locked loop for FM demodulation.
NASA Technical Reports Server (NTRS)
Greco, J.; Garodnick, J.; Schilling, D. L.
1972-01-01
A phase-locked loop designed with all-digital circuitry which avoids certain problems, and a digital voltage controlled oscillator algorithm are described. The system operates synchronously and performs all required digital calculations within one sampling period, thereby performing as a real-time special-purpose computer. The SNR ratio is computed for frequency offsets and sinusoidal modulation, and experimental results verify the theoretical calculations.
PGC-1 Coactivator Activity Is Required for Murine Erythropoiesis
Cui, Shuaiying; Tanabe, Osamu; Lim, Kim-Chew; Xu, H. Eric; Zhou, X. Edward; Lin, Jiandie D.; Shi, Lihong; Schmidt, Lindsay; Campbell, Andrew; Shimizu, Ritsuko; Yamamoto, Masayuki
2014-01-01
Peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC-1α) and PGC-1β have been shown to be intimately involved in the transcriptional regulation of cellular energy metabolism as well as other biological processes, but both coactivator proteins are expressed in many other tissues and organs in which their function is, in essence, unexplored. Here, we found that both PGC-1 proteins are abundantly expressed in maturing erythroid cells. PGC-1α and PGC-1β compound null mutant (Pgc-1c) animals express less β-like globin mRNAs throughout development; consequently, neonatal Pgc-1c mice exhibit growth retardation and profound anemia. Flow cytometry shows that the number of mature erythrocytes is markedly reduced in neonatal Pgc-1c pups, indicating that erythropoiesis is severely compromised. Furthermore, hematoxylin and eosin staining revealed necrotic cell death and cell loss in Pgc-1c livers and spleen. Chromatin immunoprecipitation studies revealed that both PGC-1α and -1β, as well as two nuclear receptors, TR2 and TR4, coordinately bind to the various globin gene promoters. In addition, PGC-1α and -1β can interact with TR4 to potentiate transcriptional activation. These data provide new insights into our understanding of globin gene regulation and raise the interesting possibility that the PGC-1 coactivators can interact with TR4 to elicit differential stage-specific effects on globin gene transcription. PMID:24662048
Recovering Signals from Optical Fiber Interferometric Sensors
1991-06-01
GROUP SUB* GROUp Demodulation-, optical fiber, fi ber optic, sensors, passive -homodyne demodulation, symmetric demodul -ation, asymmetric demodulation...interferomeler without feedback control or modulation ofl th laser itself and without requiring the use of electronics withi -n the interferometer. One of...the 3x3 coupler permits Passive Homodyne Demodulation -of the phase-modulated signals provided by the interferometcr without feedback control or
PGC-1α dictates endothelial function through regulation of eNOS expression
Craige, Siobhan M.; Kröller-Schön, Swenja; Li, Chunying; Kant, Shashi; Cai, Shenghe; Chen, Kai; Contractor, Mayur M.; Pei, Yongmei; Schulz, Eberhard; Keaney, John F.
2016-01-01
Endothelial dysfunction is a characteristic of many vascular related diseases such as hypertension. Peroxisome proliferator activated receptor gamma, coactivator 1α (PGC-1α) is a unique stress sensor that largely acts to promote adaptive responses. Therefore, we sought to define the role of endothelial PGC-1α in vascular function using mice with endothelial specific loss of function (PGC-1α EC KO) and endothelial specific gain of function (PGC-1α EC TG). Here we report that endothelial PGC-1α is suppressed in angiotensin-II (ATII)-induced hypertension. Deletion of endothelial PGC-1α sensitized mice to endothelial dysfunction and hypertension in response to ATII, whereas PGC-1α EC TG mice were protected. Mechanistically, PGC-1α promotes eNOS expression and activity, which is necessary for protection from ATII-induced dysfunction as mice either treated with an eNOS inhibitor (LNAME) or lacking eNOS were no longer responsive to transgenic endothelial PGC-1α expression. Finally, we determined that the orphan nuclear receptor, estrogen related receptor α (ERRα) is required to coordinate the PGC-1α -induced eNOS expression. In conclusion, endothelial PGC-1α expression protects from vascular dysfunction by promoting NO• bioactivity through ERRα induced expression of eNOS. PMID:27910955
Eschbach, Judith; von Einem, Björn; Müller, Kathrin; Bayer, Hanna; Scheffold, Annika; Morrison, Bradley E; Rudolph, K Lenhard; Thal, Dietmar R; Witting, Anke; Weydt, Patrick; Otto, Markus; Fauler, Michael; Liss, Birgit; McLean, Pamela J; Spada, Albert R La; Ludolph, Albert C; Weishaupt, Jochen H; Danzer, Karin M
2015-01-01
Aggregation of α-synuclein (α-syn) and α-syn cytotoxicity are hallmarks of sporadic and familial Parkinson disease (PD), with accumulating evidence that prefibrillar oligomers and protofibrils are the pathogenic species in PD and related synucleinopathies. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a key regulator of mitochondrial biogenesis and cellular energy metabolism, has recently been associated with the pathophysiology of PD. Despite extensive effort on studying the function of PGC-1α in mitochondria, no studies have addressed whether PGC-1α directly influences oligomerization of α-syn or whether α-syn oligomers impact PGC-1α expression. We tested whether pharmacological or genetic activation of PGC-1α or PGC-11α knockdown could modulate the oligomerization of α-syn in vitro by using an α-syn -fragment complementation assay. In this study, we found that both PGC-1α reference gene (RG-PGC-1α) and the central nervous system (CNS)-specific PGC-1α (CNS-PGC-1α) are downregulated in human PD brain, in A30P α-syn transgenic animals, and in a cell culture model for α-syn oligomerization. Importantly, downregulation of both RG-PGC-1α and CNS-PGC-1α in cell culture or neurons from RG-PGC-1α-deficient mice leads to a strong induction of α-syn oligomerization and toxicity. In contrast, pharmacological activation or genetic overexpression of RG-PGC-1α reduced α-syn oligomerization and rescued α-syn-mediated toxicity. Based on our results, we propose that PGC-1α downregulation and α-syn oligomerization form a vicious circle, thereby influencing and/or potentiating each other. Our data indicate that restoration of PGC-1α is a promising approach for development of effective drugs for the treatment of PD and related synucleinopathies. © 2014 American Neurological Association.
Luo, Yun; Zhu, Wenjing; Jia, Jia; Zhang, Chenyu; Xu, Yun
2009-09-01
The peroxisome proliferator activated receptor coactivator 1 alpha (PGC-1alpha) is a nuclear transcriptional coactivator that is widely expressed in the brain areas. Over-expression of PGC-1alpha can protect neuronal cells from oxidant-induced injury. The purpose of the current study is to investigate the role of PGC-1alpha in the oxygen (anoxia) deprivation (OGD) neurons. The PGC-1alpha mRNA and protein level between control and OGD neurons were examined by real-time PCR and Western blot. More PGC-1alpha expression was found in the OGD neurons compared with the normal group. Over-expression of PGC-1alpha suppressed cell apoptosis while inhibition of the PGC-1alpha expression induced cell apoptosis in OGD neurons. Furthermore, increase of PGC-1alpha resulted in activation of N-methyl-D-aspartate (NMDA) receptor, p38, and ERK mitogen-activated protein kinase (MAPK) pathway. The blocking of the NMDA receptor by its antagonists MK-801 reduced PGC-1alpha mRNA expression in OGD neurons, while NMDA itself can directly induce the expression of PGC-1alpha in neuronal cells. At the same time, PD98059 (ERK MAPK inhibitor) and SB203580 (P38 MAPK inhibitor) also prevented the up-regulation of PGC-1alpha in OGD neurons and MK801 can inhibit the expression of P38 and ERK MAPK. These data suggested that the expression of PGC-1alpha was up-regulated in OGD mice cortical neurons, which protected the neurons against OGD injury. Moreover, this effect was correlated to the NMDA receptor and the ERK and P38 MAPK pathway. The protective effect of PGC-1alpha on OGD cortical neurons may be useful for stroke therapy.
Iverson, Chad D; Zhang, Ya; Lucy, Charles A
2015-11-27
Porous graphitic carbon (PGC) is an increasingly popular and attractive phase for HPLC on account of its chemical and thermal stability, and its unique separation mechanism. However, native PGC is strongly hydrophobic and in some instances excessively retentive. As part of our effort to build a library of hydrophilic covalently modified PGC phases, we functionalized PGC with catechol and amide groups by means of aryl diazonium chemistry to produce two new phases. Successful grafting was confirmed by X-ray photoelectron spectroscopy (XPS). Under HILIC conditions, the Catechol-PGC showed up to 5-fold increased retention relative to unmodified PGC and selectivity that differed from four other HILIC phases. Under reversed phase conditions, the Amide-PGC reduced the retentivity of PGC by almost 90%. The chromatographic performance of Catechol-PGC and Amide-PGC is demonstrated by separations of nucleobases, nucleosides, phenols, alkaline pharmaceuticals, and performance enhancing stimulants. These compounds had retention factors (k) ranging from 0.5 to 13. Copyright © 2015 Elsevier B.V. All rights reserved.
Authorship Attribution of Short Messages Using Multimodal Features
2011-03-01
demodulation algorithm, but does say that it has to be able to handle two multipath 27 signals of equal power received at up to 16 µs apart. This...possible with appropriate normalization of the data. The fields of biometrics, image analysis, and handwriting analysis also use diverse feature sets...Methods of Combining Multiple Classifiers and Their Applications to Handwriting Recognition,” IEEE Transactions on Systems, Man, and Cybernetics
Multiple-access relaying with network coding: iterative network/channel decoding with imperfect CSI
NASA Astrophysics Data System (ADS)
Vu, Xuan-Thang; Renzo, Marco Di; Duhamel, Pierre
2013-12-01
In this paper, we study the performance of the four-node multiple-access relay channel with binary Network Coding (NC) in various Rayleigh fading scenarios. In particular, two relay protocols, decode-and-forward (DF) and demodulate-and-forward (DMF) are considered. In the first case, channel decoding is performed at the relay before NC and forwarding. In the second case, only demodulation is performed at the relay. The contributions of the paper are as follows: (1) two joint network/channel decoding (JNCD) algorithms, which take into account possible decoding error at the relay, are developed in both DF and DMF relay protocols; (2) both perfect channel state information (CSI) and imperfect CSI at receivers are studied. In addition, we propose a practical method to forward the relays error characterization to the destination (quantization of the BER). This results in a fully practical scheme. (3) We show by simulation that the number of pilot symbols only affects the coding gain but not the diversity order, and that quantization accuracy affects both coding gain and diversity order. Moreover, when compared with the recent results using DMF protocol, our proposed DF protocol algorithm shows an improvement of 4 dB in fully interleaved Rayleigh fading channels and 0.7 dB in block Rayleigh fading channels.
Petrovic, Natasa; Kis, Adrienn; Feldmann, Helena M; Bjursell, Mikael; Parker, Nadeene; Curtis, Keira; Campbell, Mark; Hu, Ping; Zhang, Dongfang; Litwin, Sheldon E; Zaha, Vlad G; Fountain, Kimberly T; Boudina, Sihem; Jimenez-Linan, Mercedes; Blount, Margaret; Lopez, Miguel; Meirhaeghe, Aline; Bohlooly-Y, Mohammad; Storlien, Leonard; Strömstedt, Maria; Snaith, Michael; Orešič, Matej; Abel, E. Dale; Cannon, Barbara; Vidal-Puig, Antonio
2006-01-01
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1β (PGC-1β) has been implicated in important metabolic processes. A mouse lacking PGC-1β (PGC1βKO) was generated and phenotyped using physiological, molecular, and bioinformatic approaches. PGC1βKO mice are generally viable and metabolically healthy. Using systems biology, we identified a general defect in the expression of genes involved in mitochondrial function and, specifically, the electron transport chain. This defect correlated with reduced mitochondrial volume fraction in soleus muscle and heart, but not brown adipose tissue (BAT). Under ambient temperature conditions, PGC-1β ablation was partially compensated by up-regulation of PGC-1α in BAT and white adipose tissue (WAT) that lead to increased thermogenesis, reduced body weight, and reduced fat mass. Despite their decreased fat mass, PGC1βKO mice had hypertrophic adipocytes in WAT. The thermogenic role of PGC-1β was identified in thermoneutral and cold-adapted conditions by inadequate responses to norepinephrine injection. Furthermore, PGC1βKO hearts showed a blunted chronotropic response to dobutamine stimulation, and isolated soleus muscle fibres from PGC1βKO mice have impaired mitochondrial function. Lack of PGC-1β also impaired hepatic lipid metabolism in response to acute high fat dietary loads, resulting in hepatic steatosis and reduced lipoprotein-associated triglyceride and cholesterol content. Altogether, our data suggest that PGC-1β plays a general role in controlling basal mitochondrial function and also participates in tissue-specific adaptive responses during metabolic stress. PMID:17090215
Naito, Mitsuru; Harumi, Takashi; Kuwana, Takashi
2015-02-01
Production of germline chimaeric chickens by the transfer of cultured primordial germ cells (PGC) is a useful system for germline manipulation. A novel culture system was developed for chicken PGC isolated from embryonic blood. The isolated PGC were cultured on feeder cells derived from chicken embryonic fibroblast. The cultured PGC formed colonies and they proliferated about 300-times during the first 30 days. The cultured PGC retained the ability to migrate to recipient gonads and were also chicken VASA homologue (CVH)-positive. Female PGC were present in the mixed-sex PGC populations cultured for more than 90 days and gave rise to viable offspring efficiently via germline chimaeric chickens. Male cultured PGC were transferred to recipient embryos and produced putative chimaeric chickens. The DNA derived from the cultured PGC was detected in the sperm samples of male putative chimaeric chickens, but no donor derived offspring were obtained. Donor-derived offspring were also obtained from germline chimaeric chickens by the transfer of frozen-thawed cultured PGC. The culture method for PGC developed in the present study is useful for manipulation of the germline in chickens, such as preservation of genetic resources and gene transfer. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wei; Department of cardiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin 150081; Guo, Ting
2011-05-01
Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPAR{gamma}) coactivator-1 alpha (PGC-1{alpha}) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1{alpha} in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1{alpha} expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1{alpha} mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1{alpha} expression while stimulating VSMC migration.more » Mechanistic study showed that suppression of PGC-1{alpha} by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1{alpha} had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1{alpha} decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPAR{gamma} activation by a PPAR{gamma} antagonist GW9662 abolished the suppressive effects of PGC-1{alpha} on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1{alpha} were enhanced by a PPAR{gamma} agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1{alpha} expression. PGC-1{alpha} suppresses PDGF-induced VSMC migration through PPAR{gamma} coactivation and, consequently, p38 MAPK inhibition.« less
Benton, Carley R; Yoshida, Yuko; Lally, James; Han, Xiao-Xia; Hatta, Hideo; Bonen, Arend
2008-09-17
We examined the relationship between PGC-1alpha protein; the monocarboxylate transporters MCT1, 2, and 4; and CD147 1) among six metabolically heterogeneous rat muscles, 2) in chronically stimulated red (RTA) and white tibialis (WTA) muscles (7 days), and 3) in RTA and WTA muscles transfected with PGC-1alpha-pcDNA plasmid in vivo. Among rat hindlimb muscles, there was a strong positive association between PGC-1alpha and MCT1 and CD147, and between MCT1 and CD147. A negative association was found between PGC-1alpha and MCT4, and CD147 and MCT4, while there was no relationship between PGC-1alpha or CD147 and MCT2. Transfecting PGC-1alpha-pcDNA plasmid into muscle increased PGC-1alpha protein (RTA +23%; WTA +25%) and induced the expression of MCT1 (RTA +16%; WTA +28%), but not MCT2 and MCT4. As a result of the PGC-1alpha-induced upregulation of MCT1 and its chaperone CD147 (+29%), there was a concomitant increase in the rate of lactate uptake (+20%). In chronically stimulated muscles, the following proteins were upregulated, PGC-1alpha in RTA (+26%) and WTA (+86%), MCT1 in RTA (+61%) and WTA (+180%), and CD147 in WTA (+106%). In contrast, MCT4 protein expression was not altered in either RTA or WTA muscles, while MCT2 protein expression was reduced in both RTA (-14%) and WTA (-10%). In these studies, whether comparing oxidative capacities among muscles or increasing their oxidative capacities by PGC-1alpha transfection and chronic muscle stimulation, there was a strong relationship between the expression of PGC-1alpha and MCT1, and PGC-1alpha and CD147 proteins. Thus, MCT1 and CD147 belong to the family of metabolic genes whose expression is regulated by PGC-1alpha in skeletal muscle.
Roberts-Wilson, Tiffany K; Reddy, Ramesh N; Bailey, James L; Zheng, Bin; Ordas, Ronald; Gooch, Jennifer L; Price, S Russ
2010-08-01
PGC-1alpha is a transcriptional coactivator that controls energy homeostasis through regulation of glucose and oxidative metabolism. Both PGC-1alpha expression and oxidative capacity are decreased in skeletal muscle of patients and animals undergoing atrophy, suggesting that PGC-1alpha participates in the regulation of muscle mass. PGC-1alpha gene expression is controlled by calcium- and cAMP-sensitive pathways. However, the mechanism regulating PGC-1alpha in skeletal muscle during atrophy remains unclear. Therefore, we examined the mechanism responsible for decreased PGC-1alpha expression using a rodent streptozotocin (STZ) model of chronic diabetes and atrophy. After 21days, the levels of PGC-1alpha protein and mRNA were decreased. We examined the activation state of CREB, a potent activator of PGC-1alpha transcription, and found that phospho-CREB was paradoxically high in muscle of STZ-rats, suggesting that the cAMP pathway was not involved in PGC-1alpha regulation. In contrast, expression of calcineurin (Cn), a calcium-dependent phosphatase, was suppressed in the same muscles. PGC-1alpha expression is regulated by two Cn substrates, MEF2 and NFATc. Therefore, we examined MEF2 and NFATc activity in muscles from STZ-rats. Target genes MRF4 and MCIP1.4 mRNAs were both significantly reduced, consistent with reduced Cn signaling. Moreover, levels of MRF4, MCIP1.4, and PGC-1alpha were also decreased in muscles of CnAalpha-/- and CnAbeta-/- mice without diabetes indicating that decreased Cn signaling, rather than changes in other calcium- or cAMP-sensitive pathways, were responsible for decreased PGC-1alpha expression. These findings demonstrate that Cn activity is a major determinant of PGC-1alpha expression in skeletal muscle during diabetes and possibly other conditions associated with loss of muscle mass.
Calcineurin signaling and PGC-1α expression are suppressed during muscle atrophy due to diabetes
Roberts-Wilson, Tiffany K.; Reddy, Ramesh N.; Bailey, James L.; Zheng, Bin; Ordas, Ronald; Gooch, Jennifer L.; Price, S. Russ
2010-01-01
PGC-1α is a transcriptional coactivator that controls energy homeostasis through regulation of glucose and oxidative metabolism. Both PGC-1α expression and oxidative capacity are decreased in skeletal muscle of patients and animals undergoing atrophy, suggesting that PGC-1α participates in the regulation of muscle mass. PGC-1α gene expression is controlled by calcium- and cAMP-sensitive pathways. However, the mechanism regulating PGC-1α in skeletal muscle during atrophy remains unclear. Therefore, we examined the mechanism responsible for decreased PGC-1α expression using a rodent streptozotocin (STZ) model of chronic diabetes and atrophy. After 21d, the levels of PGC-1α protein and mRNA were decreased. We examined the activation state of CREB, a potent activator of PGC-1α transcription, and found that phospho-CREB was paradoxically high in muscle of STZ-rats, suggesting that the cAMP pathway was not involved in PGC-1α regulation. In contrast, expression of calcineurin (Cn), a calcium-dependent phosphatase, was suppressed in the same muscles. PGC-1α expression is regulated by two Cn substrates, MEF2 and NFATc. Therefore, we examined MEF2 and NFATc activity in muscles from STZ-rats. Target genes MRF4 and MCIP1.4 were both significantly reduced, consistent with reduced Cn signaling. Moreover, levels of MRF4, MCIP1.4, and PGC-1α were also decreased in muscles of CnAα-/- and CnAβ-/- mice without diabetes indicating that decreased Cn signaling, rather than changes in other calcium- or cAMP-sensitive pathways, were responsible for decreased PGC-1α expression. These findings demonstrate that Cn activity is a major determinant of PGC-1α expression in skeletal muscle during diabetes and possibly other conditions associated with loss of muscle mass. PMID:20359506
Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition.
Li, Sikun; Su, Xianyu; Chen, Wenjing; Xiang, Liqun
2009-05-01
Empirical mode decomposition is introduced into Fourier transform profilometry to extract the zero spectrum included in the deformed fringe pattern without the need for capturing two fringe patterns with pi phase difference. The fringe pattern is subsequently demodulated using a standard Fourier transform profilometry algorithm. With this method, the deformed fringe pattern is adaptively decomposed into a finite number of intrinsic mode functions that vary from high frequency to low frequency by means of an algorithm referred to as a sifting process. Then the zero spectrum is separated from the high-frequency components effectively. Experiments validate the feasibility of this method.
ApoE−/− PGC-1α−/− Mice Display Reduced IL-18 Levels and Do Not Develop Enhanced Atherosclerosis
Stein, Sokrates; Lohmann, Christine; Handschin, Christoph; Stenfeldt, Elin; Borén, Jan; Lüscher, Thomas F.; Matter, Christian M.
2010-01-01
Background Atherosclerosis is a chronic inflammatory disease that evolves from the interaction of activated endothelial cells, macrophages, lymphocytes and modified lipoproteins (LDLs). In the last years many molecules with crucial metabolic functions have been shown to prevent important steps in the progression of atherogenesis, including peroxisome proliferator activated receptors (PPARs) and the class III histone deacetylase (HDAC) SIRT1. The PPARγ coactivator 1 alpha (Ppargc1a or PGC-1α) was identified as an important transcriptional cofactor of PPARγ and is activated by SIRT1. The aim of this study was to analyze total PGC-1α deficiency in an atherosclerotic mouse model. Methodology/Principal Findings To investigate if total PGC-1α deficiency affects atherosclerosis, we compared ApoE−/− PGC-1α−/− and ApoE−/− PGC-1α+/+ mice kept on a high cholesterol diet. Despite having more macrophages and a higher ICAM-1 expression in plaques, ApoE−/− PGC-1α−/− did not display more or larger atherosclerotic plaques than their ApoE−/− PGC-1α+/+ littermates. In line with the previously published phenotype of PGC-1α−/− mice, ApoE−/− PGC-1α−/− mice had marked reduced body, liver and epididymal white adipose tissue (WAT) weight. VLDL/LDL-cholesterol and triglyceride contents were also reduced. Aortic expression of PPARα and PPARγ, two crucial regulators for adipocyte differentitation and glucose and lipid metabolism, as well as the expression of some PPAR target genes was significantly reduced in ApoE−/− PGC-1α−/− mice. Importantly, the epididymal WAT and aortic expression of IL-18 and IL-18 plasma levels, a pro-atherosclerotic cytokine, was markedly reduced in ApoE−/− PGC-1α−/− mice. Conclusions/Significance ApoE−/− PGC-1α−/− mice, similar as PGC-1α−/− mice exhibit markedly reduced total body and visceral fat weight. Since inflammation of visceral fat is a crucial trigger of atherogenesis, decreased visceral fat in PGC-1α-deficient mice may explain why these mice do not develop enhanced atherosclerosis. PMID:21042583
Structure and Dynamics of the Liver Receptor Homolog 1-PGC1α Complex.
Mays, Suzanne G; Okafor, C Denise; Tuntland, Micheal L; Whitby, Richard J; Dharmarajan, Venkatasubramanian; Stec, Józef; Griffin, Patrick R; Ortlund, Eric A
2017-07-01
Peroxisome proliferator-activated gamma coactivator 1- α (PGC1 α ) regulates energy metabolism by directly interacting with transcription factors to modulate gene expression. Among the PGC1 α binding partners is liver receptor homolog 1 (LRH-1; NR5A2), an orphan nuclear hormone receptor that controls lipid and glucose homeostasis. Although PGC1 α is known to bind and activate LRH-1, mechanisms through which PGC1 α changes LRH-1 conformation to drive transcription are unknown. Here, we used biochemical and structural methods to interrogate the LRH-1-PGC1 α complex. Purified, full-length LRH-1, as well as isolated ligand binding domain, bound to PGC1 α with higher affinity than to the coactivator, nuclear receptor coactivator-2 (Tif2), in coregulator peptide recruitment assays. We present the first crystal structure of the LRH-1-PGC1 α complex, which depicts several hydrophobic contacts and a strong charge clamp at the interface between these partners. In molecular dynamics simulations, PGC1 α induced correlated atomic motion throughout the entire LRH-1 activation function surface, which was dependent on charge-clamp formation. In contrast, Tif2 induced weaker signaling at the activation function surface than PGC1 α but promoted allosteric signaling from the helix 6/ β -sheet region of LRH-1 to the activation function surface. These studies are the first to probe mechanisms underlying the LRH-1-PGC1 α interaction and may illuminate strategies for selective therapeutic targeting of PGC1 α -dependent LRH-1 signaling pathways. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowell, Rita M.; Department of Neurology, University of Michigan, Ann Arbor, MI 48109; Talati, Pratik
2009-02-06
Recent evidence suggests that the transcriptional coactivator peroxisome proliferator activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) is involved in the pathology of Huntington's Disease (HD). While animals lacking PGC-1{alpha} express lower levels of genes involved in antioxidant defense and oxidative phosphorylation in the brain, little is known about other targets for PGC-1{alpha} in neuronal cells and whether there are ways to pharmacologically target PGC-1{alpha} in neurons. Here, PGC-1{alpha} overexpression in SH-SY5Y neuroblastoma cells upregulated expression of genes involved in mitochondrial function, glucose transport, fatty acid metabolism, and synaptic function. Overexpression also decreased vulnerability to hydrogen peroxide-induced cell death and caspase 3more » activation. Treatment of cells with the histone deacetylase inhibitors (HDACi's) trichostatin A and valproic acid upregulated PGC-1{alpha} and glucose transporter 4 (GLUT4). These results suggest that PGC-1{alpha} regulates multiple pathways in neurons and that HDACi's may be good candidates to target PGC-1{alpha} and GLUT4 in HD and other neurological disorders.« less
Tapia-Rodríguez, Miguel; Esquivelzeta-Rabell, José F; Gutiérrez-Ospina, Gabriel
2012-12-01
The mammalian brain preserves the ability to replace olfactory periglomerular cells (PGC) throughout life. Even though we have detailed a great deal the mechanisms underlying stem and amplifying cells maintenance and proliferation, as well as those modulating migration and differentiation, our knowledge on PGC phenotypic plasticity is at best fragmented and controversial. Here we explored whether chronically reinforced olfactory conditioning influences the phenotype of newborn PGC. Accordingly, olfactory conditioned rats showed increased numbers of GAD 65/67 positive PGC. Because such phenotypic change was not accompanied neither by increments in the total number of PGC, or periglomerular cell nuclei labeled with bromodeoxyuridine, nor by reductions in the number of tyrosine hydroxylase (TH), calbindin (CB) or calretinin (CR) immunoreactive PGC, we speculate that increments in the number of GABAergic PGC occur at the expense of other PGC phenotypes. In any event, these results support that adult newborn PGC phenotype may be subjected to phenotypic plasticity influenced by sensory stimulation. Copyright © 2012 Elsevier B.V. All rights reserved.
Transcriptional dysregulation causes altered modulation of inhibition by haloperidol.
Brady, Lillian J; Bartley, Aundrea F; Li, Qin; McMeekin, Laura J; Hablitz, John J; Cowell, Rita M; Dobrunz, Lynn E
2016-12-01
Many neuropsychiatric and neurodevelopmental disorders such as schizophrenia and autism involve interneuron transcriptional dysregulation. The transcriptional coactivator PGC-1α regulates gene expression in GABAergic interneurons, which are important for regulating hippocampal network activity. Genetic deletion of PGC-1α causes a decrease in parvalbumin expression, similar to what is observed in schizophrenia postmortem tissue. Our lab has previously shown that PGC-1α -/- mice have enhanced GABAergic inhibition onto CA1 pyramidal cells, which increases the inhibition/excitation (I/E) ratio, alters hippocampal circuit function, and impairs hippocampal dependent behavior. The typical antipsychotic haloperidol, a dopamine receptor antagonist with selectivity for D2-like receptors, has previously been shown to increase excitation in the CA1 region of hippocampus. We therefore tested whether haloperidol could normalize the I/E balance in CA1 of PGC-1α -/- mice, potentially improving circuit function and behavior. Surprisingly, we discovered instead that interneuron transcriptional dysregulation caused by loss of PGC-1α alters the effects of haloperidol on hippocampal synaptic transmission and circuit function. Acute administration of haloperidol causes disinhibition in CA1 and decreases the I/E ratio onto CA1 pyramidal cells in slices from PGC-1α +/+ mice, but not PGC-1α -/- mice. The spread of activity in CA1, assessed by voltage sensitive dye imaging, is increased by haloperidol in slices from PGC-1α +/+ mice; however haloperidol decreases the spread of activity in slices from PGC-1α -/- mice. Haloperidol increased the power of hippocampal gamma oscillation in slices from PGC-1α +/+ mice but reduced the power of gamma oscillations in slices from PGC-1α -/- mice. Nest construction, an innate hippocampal-dependent behavior, is inhibited by haloperidol in PGC-1α +/+ mice, but not in PGC-1α -/- mice, which already have impaired nest building. The effects of haloperidol are mimicked and occluded by a D2 receptor antagonist in slices from PGC-1α +/+ mice, and the effects of blocking D2 receptors are lost in slices from PGC-1α -/- mice, although there is no change in D2 receptor transcript levels. Together, our results show that hippocampal inhibitory synaptic transmission, CA1 circuit function, and hippocampal dependent behavior are modulated by the antipsychotic haloperidol, and that these effects of haloperidol are lost in PGC-1α -/- mice. These results have implications for the treatment of individuals with conditions involving PGC-1α deficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
Transcriptional dysregulation causes altered modulation of inhibition by haloperidol
Brady, Lillian J.; Bartley, Aundrea F.; Li, Qin; McMeekin, Laura J.; Hablitz, John J.; Cowell, Rita M.; Dobrunz, Lynn E.
2016-01-01
Many neuropsychiatric and neurodevelopmental disorders such as schizophrenia and autism involve interneuron transcriptional dysregulation. The transcriptional coactivator PGC-1α regulates gene expression in GABAergic interneurons, which are important for regulating hippocampal network activity. Genetic deletion of PGC-1α causes a decrease in parvalbumin expression, similar to what is observed in schizophrenia postmortem tissue. Our lab has previously shown that PGC-1α−/− mice have enhanced GABAergic inhibition onto CA1 pyramidal cells, which increases the inhibition/excitation (I/E) ratio, alters hippocampal circuit function, and impairs hippocampal dependent behavior. The typical antipsychotic haloperidol, a dopamine receptor antagonist with selectivity for D2-like receptors, has previously been shown to increase excitation in the CA1 region of hippocampus. We therefore tested whether haloperidol could normalize the I/E balance in CA1 of PGC-1α−/− mice, potentially improving circuit function and behavior. Surprisingly, we discovered instead that interneuron transcriptional dysregulation caused by loss of PGC-1α alters the effects of haloperidol on hippocampal synaptic transmission and circuit function. Acute administration of haloperidol causes disinhibition in CA1 and decreases the I/E ratio onto CA1 pyramidal cells in slices from PGC-1α+/+ mice, but not PGC-1α−/− mice. The spread of activity in CA1, assessed by voltage sensitive dye imaging, is increased by haloperidol in slices from PGC-1α+/+ mice; however haloperidol decreases the spread of activity in slices from PGC-1α−/− mice. Haloperidol increased the power of hippocampal gamma oscillation in slices from PGC-1α+/+ mice but reduced the power of gamma oscillations in slices from PGC-1α−/− mice. Nest construction, an innate hippocampal-dependent behavior, is inhibited by haloperidol in PGC-1α+/+ mice, but not in PGC-1α−/− mice, which already have impaired nest building. The effects of haloperidol are mimicked and occluded by a D2 receptor antagonist in slices from PGC-1α+/+ mice, and the effects of blocking D2 receptors are lost in slices from PGC-1α−/− mice, although there is no change in D2 receptor transcript levels. Together, our results show that hippocampal inhibitory synaptic transmission, CA1 circuit function, and hippocampal dependent behavior are modulated by the antipsychotic haloperidol, and that these effects of haloperidol are lost in PGC-1α−/− mice. These results have implications for the treatment of individuals with conditions involving PGC-1α deficiency. PMID:27480797
Chen, Yuyan; Li, Chunlei; Zhu, Jianhua; Xie, Wangshi; Hu, Xianjing; Song, Liyan; Zi, Jiachen; Yu, Rongmin
2017-03-01
A polypeptide coded as PGC was isolated from Arca subcrenata muscle using ion exchange, Sephadex G-50 gel chromatography and RP-HPLC. PGC was identified to be a homogeneous compound by Native-PAGE and the purity was more than 98.9% measured by HPLC. The isoelectric point of PGC was determined to be 9.76 by IEF-PAGE. The molecular weight was determined to be 15,973.0Da by ESI-MS/MS. The conformational structure of PGC was characterized by UV-vis, FT-IR and CD spectroscopy. N terminal amino acid sequence of PGC was shown as PSVYDAAAQLTADVKKDLRDSWKVIGGDKKGNGVA by Edman degradation. The results demonstrated that there is a high degree of homology between PGC and the subunit from hemoglobin, and proposed that PGC is the depolymerized polypeptide of Hemoglobin I (HbI) from A. subcrenata. The evaluation of biological activities showed that the diameters of the inhibitory ring of PGC on Escherichia coli and Staphylococcus aureus were 14.5±0.44mm and 16.5±1.15mm, respectively. The IC 50 of inhibition rate for PGC on NO production was 9.60±0.71μg/mL. Therefore, PGC might be developed as one of potential antibacterial and anti-inflammatory agents. Copyright © 2016 Elsevier B.V. All rights reserved.
The Role of PGC-1α in Vascular Regulation: Implications for Atherosclerosis
Kadlec, Andrew O.; Chabowski, Dawid S.; Ait-Aissa, Karima; Gutterman, David D.
2016-01-01
Mitochondrial dysfunction results in high levels of oxidative stress and mitochondrial damage, leading to disruption of endothelial homeostasis. Recent discoveries have clarified several pathways whereby mitochondrial dysregulation contributes to endothelial dysfunction and vascular disease burden. One such pathway centers around PGC-1α, a transcriptional coactivator linked to mitochondrial biogenesis and antioxidant defense, among other functions. Although primarily investigated for its therapeutic potential in obesity and skeletal muscle differentiation, the ability of PGC-1α to alter a multitude of cellular functions has sparked interest in its role in the vasculature. Within this context, recent studies demonstrate that PGC-1α plays a key role in endothelial cell and smooth muscle cell regulation through effects on oxidative stress, apoptosis, inflammation, and cell proliferation. The ability of PGC-1α to impact these parameters is relevant to vascular disease progression, particularly in relation to atherosclerosis. Upregulation of PGC-1α can prevent the development of, and even encourage regression of, atherosclerotic lesions. Therefore, PGC-1α is poised to serve as a promising target in vascular disease. This review details recent findings related to PGC-1α in vascular regulation, regulation of PGC-1α itself, the role of PGC-1α in atherosclerosis, and therapies that target this key protein. PMID:27312223
EMD self-adaptive selecting relevant modes algorithm for FBG spectrum signal
NASA Astrophysics Data System (ADS)
Chen, Yong; Wu, Chun-ting; Liu, Huan-lin
2017-07-01
Noise may reduce the demodulation accuracy of fiber Bragg grating (FBG) sensing signal so as to affect the quality of sensing detection. Thus, the recovery of a signal from observed noisy data is necessary. In this paper, a precise self-adaptive algorithm of selecting relevant modes is proposed to remove the noise of signal. Empirical mode decomposition (EMD) is first used to decompose a signal into a set of modes. The pseudo modes cancellation is introduced to identify and eliminate false modes, and then the Mutual Information (MI) of partial modes is calculated. MI is used to estimate the critical point of high and low frequency components. Simulation results show that the proposed algorithm estimates the critical point more accurately than the traditional algorithms for FBG spectral signal. While, compared to the similar algorithms, the signal noise ratio of the signal can be improved more than 10 dB after processing by the proposed algorithm, and correlation coefficient can be increased by 0.5, so it demonstrates better de-noising effect.
NASA Astrophysics Data System (ADS)
Yim, Wan Hung
Economical operation of future satellite systems for mobile communications can only be fulfilled by using dedicated on-board processing satellites, which would allow both cheap earth terminals and lower space segment costs. With on-board modems and codecs, the up-link and down-link can be optimized separately. An attractive scheme is to use frequency-division multiple access/single chanel per carrier (FDMA/SCPC) on the up-link and time division multiplexing (TDM) on the down-link. This scheme allows mobile terminals to transmit a narrow band, low power signal, resulting in smaller dishes and high power amplifiers (HPA's) with lower output power. On the up-link, there are hundreds to thousands of FDM channels to be demodulated on-board. The most promising approach is the use of all-digital multicarrier demodulators (MCD's), where analog and digital hardware are efficiently shared among channels, and digital signal processing (DSP) is used at an early stage to take advantage of very large scale integration (VLSI) implementation. A MCD consists of a channellizer for separation of frequency division multiplexing (FDM) channels, followed by individual modulators for each channel. Major research areas in MCD's are in multirate DSP, and the optimal estimation for synchronization, which form the basis of the thesis. Complex signal theories are central to the development of structured approaches for the sampling and processing of bandpass signals, which are the foundations in both channellizer and demodulator design. In multirate DSP, polyphase theories replace many ad-hoc, tedious and error-prone design procedures. For example, a polyphase-matrix deep space network frequency and timing system (DFT) channellizer includes all efficient filter bank techniques as special cases. Also, a polyphase-lattice filter is derived, not only for sampling rate conversion, but also capable of sampling phase variation, which is required for symbol timing adjustment in all-digital demodulators. In modulation schemes, a systematic survey is reported, based on two expressions that includes all formats in linear and constant envelope modulation. In synchronization techniques, classifications according to the criterion of statistical optimization, the data dependecy, and the method of parameter extraction, reflect the inherent complexity and performance of numerous existing algorithms. The designs of two new algorithms are presented: a differential decision frequency error detector that is simple and fast; a dual-comb-filter frequency/timing error detector that is targeted at VLSI implementation. The real-time implementation of a complete 4 x 16 kb/s MCD for the T-SAT project is described in detail, which proved many of the structured design concepts developed in this thesis. The requirements of software tools for various levels of simulation in multirate DSP and communications are analyzed. This led to the implementation of a data-flow oriented simulation system, which was used in all research work in the thesis.
The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisele, Petra Sabine; Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich; Furrer, Regula
The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is abundantly expressed in trained muscles and regulates muscle adaptation to endurance exercise. Inversely, mice lacking a functional PGC-1α allele in muscle exhibit reduced muscle functionality and increased inflammation. In isolated muscle cells, PGC-1α and the related PGC-1β counteract the induction of inflammation by reducing the activity of the nuclear factor κB (NFκB). We now tested the effects of these metabolic regulators on inflammatory reactions in muscle tissue of control and muscle-specific PGC-1α/-1β transgenic mice in vivo in the basal state as well as after an acute inflammatory insult. Surprisingly, we observed amore » PGC-1-dependent alteration of the cytokine profile characterized by an increase in anti-inflammatory factors and a strong suppression of the pro-inflammatory interleukin 12 (IL-12). In conclusion, the anti-inflammatory environment in muscle that is promoted by the PGC-1s might contribute to the beneficial effects of these coactivators on muscle function and provides a molecular link underlying the tight mutual regulation of metabolism and inflammation. - Highlights: • Muscle PGC-1s are insufficient to prevent acute systemic inflammation. • The muscle PGC-1s however promote a local anti-inflammatory environment. • This anti-inflammatory environment could contribute to the therapeutic effect of the PGC-1s.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mays, Suzanne G.; Okafor, C. Denise; Tuntland, Micheal L.
Peroxisome proliferator-activated gamma coactivator 1-α (PGC1α) regulates energy metabolism by directly interacting with transcription factors to modulate gene expression. Among the PGC1α binding partners is liver receptor homolog 1 (LRH-1; NR5A2), an orphan nuclear hormone receptor that controls lipid and glucose homeostasis. Although PGC1α is known to bind and activate LRH-1, mechanisms through which PGC1α changes LRH-1 conformation to drive transcription are unknown. Here, we used biochemical and structural methods to interrogate the LRH-1–PGC1α complex. Purified, full-length LRH-1, as well as isolated ligand binding domain, bound to PGC1α with higher affinity than to the coactivator, nuclear receptor coactivator-2 (Tif2), inmore » coregulator peptide recruitment assays. We present the first crystal structure of the LRH-1–PGC1α complex, which depicts several hydrophobic contacts and a strong charge clamp at the interface between these partners. In molecular dynamics simulations, PGC1α induced correlated atomic motion throughout the entire LRH-1 activation function surface, which was dependent on charge-clamp formation. In contrast, Tif2 induced weaker signaling at the activation function surface than PGC1α but promoted allosteric signaling from the helix 6/β-sheet region of LRH-1 to the activation function surface. These studies are the first to probe mechanisms underlying the LRH-1–PGC1α interaction and may illuminate strategies for selective therapeutic targeting of PGC1α-dependent LRH-1 signaling pathways.« less
Frequency guided methods for demodulation of a single fringe pattern.
Wang, Haixia; Kemao, Qian
2009-08-17
Phase demodulation from a single fringe pattern is a challenging task but of interest. A frequency-guided regularized phase tracker and a frequency-guided sequential demodulation method with Levenberg-Marquardt optimization are proposed to demodulate a single fringe pattern. Demodulation path guided by the local frequency from the highest to the lowest is applied in both methods. Since critical points have low local frequency values, they are processed last so that the spurious sign problem caused by these points is avoided. These two methods can be considered as alternatives to the effective fringe follower regularized phase tracker. Demodulation results from one computer-simulated and two experimental fringe patterns using the proposed methods will be demonstrated. (c) 2009 Optical Society of America
Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin
2006-01-20
A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented, which is based on a Michelson interferometer and combines the methods of low-coherence interference and a Fourier-transform spectrum. The parallel demodulation theory is modeled with Fourier-transform spectrum technology, and a signal separation method with an EFPI and FBG is proposed. The design of an optical path difference scanning and sampling method without a reference light is described. Experiments show that the parallel demodulation system has good spectrum demodulation and low-coherence interference demodulation performance. It can realize simultaneous strain and temperature measurements while keeping the whole system configuration less complex.
Optically-sectioned two-shot structured illumination microscopy with Hilbert-Huang processing.
Patorski, Krzysztof; Trusiak, Maciej; Tkaczyk, Tomasz
2014-04-21
We introduce a fast, simple, adaptive and experimentally robust method for reconstructing background-rejected optically-sectioned images using two-shot structured illumination microscopy. Our innovative data demodulation method needs two grid-illumination images mutually phase shifted by π (half a grid period) but precise phase displacement between two frames is not required. Upon frames subtraction the input pattern with increased grid modulation is obtained. The first demodulation stage comprises two-dimensional data processing based on the empirical mode decomposition for the object spatial frequency selection (noise reduction and bias term removal). The second stage consists in calculating high contrast image using the two-dimensional spiral Hilbert transform. Our algorithm effectiveness is compared with the results calculated for the same input data using structured-illumination (SIM) and HiLo microscopy methods. The input data were collected for studying highly scattering tissue samples in reflectance mode. Results of our approach compare very favorably with SIM and HiLo techniques.
NASA Technical Reports Server (NTRS)
Redinbo, Robert
1994-01-01
Fault tolerance features in the first three major subsystems appearing in the next generation of communications satellites are described. These satellites will contain extensive but efficient high-speed processing and switching capabilities to support the low signal strengths associated with very small aperture terminals. The terminals' numerous data channels are combined through frequency division multiplexing (FDM) on the up-links and are protected individually by forward error-correcting (FEC) binary convolutional codes. The front-end processing resources, demultiplexer, demodulators, and FEC decoders extract all data channels which are then switched individually, multiplexed, and remodulated before retransmission to earth terminals through narrow beam spot antennas. Algorithm based fault tolerance (ABFT) techniques, which relate real number parity values with data flows and operations, are used to protect the data processing operations. The additional checking features utilize resources that can be substituted for normal processing elements when resource reconfiguration is required to replace a failed unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Min, E-mail: chenminyx@gmail.com; Yunnan Centers for Diseases Prevention and Control, Kunming 650022; Wang, Yanru
2010-06-11
Energy metabolism and Ca{sup 2+} handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1{alpha}) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1{alpha} in cardiac Ca{sup 2+} signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1{alpha} via adenoviral transduction. Our data shows that overexpressing PGC-1{alpha} improved myocyte contractility without increasing the amplitude of Ca{sup 2+}more » transients, suggesting that myofilament sensitivity to Ca{sup 2+} increased. Interestingly, the decay kinetics of global Ca{sup 2+} transients and Ca{sup 2+} waves accelerated in PGC-1{alpha}-expressing cells, but the decay rate of caffeine-elicited Ca{sup 2+} transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca{sup 2+}-ATPase (SERCA2a), but not Na{sup +}/Ca{sup 2+} exchange (NCX) contribute to PGC-1{alpha}-induced cytosolic Ca{sup 2+} clearance. Furthermore, PGC-1{alpha} induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1{alpha} did not disturb cardiac Ca{sup 2+} homeostasis, because SR Ca{sup 2+} load and the propensity for Ca{sup 2+} waves remained unchanged. These data suggest that PGC-1{alpha} can ameliorate cardiac Ca{sup 2+} cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1{alpha}-calcium handing pathway sheds new light on the role of PGC-1{alpha} in the therapy of cardiac diseases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summermatter, Serge; Troxler, Heinz; Santos, Gesa
2011-04-29
Highlights: {yields} PGC-1{alpha} enhances muscle oxidative capacity. {yields} PGC-1{alpha} promotes concomitantly positive and negative regulators of lipid oxidation. {yields} Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. {yields} Balanced oxidation prevents detrimental acylcarnitine and ROS generation. {yields} Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1{alpha} on metabolic control and generation of insulin desensitizing agentsmore » in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1{alpha} in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1{alpha} induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1{alpha} enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1{alpha} boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1{alpha} coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1{alpha} does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1{alpha} mimic the beneficial effects of endurance training on muscle metabolism in this context.« less
Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program
Hindi, Sajedah M.; Mishra, Vivek; Bhatnagar, Shephali; Tajrishi, Marjan M.; Ogura, Yuji; Yan, Zhen; Burkly, Linda C.; Zheng, Timothy S.; Kumar, Ashok
2014-01-01
Skeletal muscle wasting attributed to inactivity has significant adverse functional consequences. Accumulating evidence suggests that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and TNF-like weak inducer of apoptosis (TWEAK)-Fn14 system are key regulators of skeletal muscle mass in various catabolic states. While the activation of TWEAK-Fn14 signaling causes muscle wasting, PGC-1α preserves muscle mass in several conditions, including functional denervation and aging. However, it remains unknown whether there is any regulatory interaction between PGC-1α and TWEAK-Fn14 system during muscle atrophy. Here we demonstrate that TWEAK significantly reduces the levels of PGC-1α and mitochondrial content (∼50%) in skeletal muscle. Levels of PGC-1α are significantly increased in skeletal muscle of TWEAK-knockout (KO) and Fn14-KO mice compared to wild-type mice on denervation. Transgenic (Tg) overexpression of PGC-1α inhibited progressive muscle wasting in TWEAK-Tg mice. PGC-1α inhibited the TWEAK-induced activation of NF-κB (∼50%) and dramatically reduced (∼90%) the expression of atrogenes such as MAFbx and MuRF1. Intriguingly, muscle-specific overexpression of PGC-1α also prevented the inducible expression of Fn14 in denervated skeletal muscle. Collectively, our study demonstrates that TWEAK induces muscle atrophy through repressing the levels of PGC-1α. Overexpression of PGC-1α not only blocks the TWEAK-induced atrophy program but also diminishes the expression of Fn14 in denervated skeletal muscle.—Hindi, S. M., Mishra, V., Bhatnagar, S., Tajrishi, M. M., Ogura, Y., Yan, Z., Burkly, L. C., Zheng, T. S., Kumar, A. Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program. PMID:24327607
Sun, Tengfen; Liu, Minwen; Li, Yingchun; Wang, Min
2017-10-16
In this paper, we experimentally investigate the performance of crosstalk mitigation for 16-ary quadrature amplitude modulation orthogonal frequency division multiplexing (16QAM-OFDM) signals carrying orbital angular momentum (OAM) multiplexed free-space-optical communication (FSO) links using the pilot assisted Least Square (LS) algorithm. At the demodulating spatial light modulators (SLMs), we launch the distorted phase holograms which have the information of atmospheric turbulence obeying the modified Hill spectrum. And crosstalk can be introduced by these holograms with the experimental verification. The pilot assisted LS algorithm can efficiently improve the quality of system performance, the points of constellations get closer to the reference points and around two orders of magnitude improvement of bit-error rate (BER) is obtained.
Fast fringe pattern phase demodulation using FIR Hilbert transformers
NASA Astrophysics Data System (ADS)
Gdeisat, Munther; Burton, David; Lilley, Francis; Arevalillo-Herráez, Miguel
2016-01-01
This paper suggests the use of FIR Hilbert transformers to extract the phase of fringe patterns. This method is computationally faster than any known spatial method that produces wrapped phase maps. Also, the algorithm does not require any parameters to be adjusted which are dependent upon the specific fringe pattern that is being processed, or upon the particular setup of the optical fringe projection system that is being used. It is therefore particularly suitable for full algorithmic automation. The accuracy and validity of the suggested method has been tested using both computer-generated and real fringe patterns. This novel algorithm has been proposed for its advantages in terms of computational processing speed as it is the fastest available method to extract the wrapped phase information from a fringe pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatazawa, Yukino; Research Fellow of Japan Society for the Promotion of Science, Tokyo; Minami, Kimiko
The expression of the transcriptional coactivator PGC1α is increased in skeletal muscles during exercise. Previously, we showed that increased PGC1α leads to prolonged exercise performance (the duration for which running can be continued) and, at the same time, increases the expression of branched-chain amino acid (BCAA) metabolism-related enzymes and genes that are involved in supplying substrates for the TCA cycle. We recently created mice with PGC1α knockout specifically in the skeletal muscles (PGC1α KO mice), which show decreased mitochondrial content. In this study, global gene expression (microarray) analysis was performed in the skeletal muscles of PGC1α KO mice compared withmore » that of wild-type control mice. As a result, decreased expression of genes involved in the TCA cycle, oxidative phosphorylation, and BCAA metabolism were observed. Compared with previously obtained microarray data on PGC1α-overexpressing transgenic mice, each gene showed the completely opposite direction of expression change. Bioinformatic analysis of the promoter region of genes with decreased expression in PGC1α KO mice predicted the involvement of several transcription factors, including a nuclear receptor, ERR, in their regulation. As PGC1α KO microarray data in this study show opposing findings to the PGC1α transgenic data, a loss-of-function experiment, as well as a gain-of-function experiment, revealed PGC1α’s function in the oxidative energy metabolism of skeletal muscles. - Highlights: • Microarray analysis was performed in the skeletal muscle of PGC1α KO mice. • Expression of genes in the oxidative energy metabolism was decreased. • Bioinformatic analysis of promoter region of the genes predicted involvement of ERR. • PGC1α KO microarray data in this study show the mirror image of transgenic data.« less
Dong, Zhangyong; Wang, Zhenzhong
2015-04-03
Fusarium wilt (Panama disease) caused by Fusarium oxysporum f. sp. cubense (FOC) represents a significant threat to banana (Musa spp.) production. Musa AAB is susceptible to Race 1 (FOC1) and Race 4 (FOC4), while Cavendish Musa AAA is found to be resistant to FOC1 but still susceptible to Race 4. A polygalacturonase (PGC3) was purified from the supernatant of Fusarium oxysporum f. sp. cubense race 4 (FOC4), which is the pathogen of Fusarium wilt. PGC3 had an apparent molecular weight of 45 kDa according to SDS-PAGE. The enzyme hydrolyzed polygalacturonic acid in an exo-manner, as demonstrated by analysis of degradation products. The Km and Vmax values of PGC3 from FOC4 were determined to be 0.70 mg·mL-1 and 101.01 Units·mg·protein-1·min-1, respectively. Two pgc3 genes encoding PGC3 from FOC4 and FOC1, both genes of 1368 bp in length encode 456 amino-acid residues with a predicted signal peptide sequence of 21 amino acids. There are 16 nucleotide sites difference between FOC4-pgc3 and FOC1-pgc3, only leading to four amino acid residues difference. In order to obtain adequate amounts of protein required for functional studies, two genes were cloned into the expression vector pPICZaA and then expressed in Pichia pastoris strains of SMD1168. The recombinant PGC3, r-FOC1-PGC3 and r-FOC4-PGC3, were expressed and purified as active proteins. The optimal PGC3 activity was observed at 50 °C and pH 4.5. Both recombinant PGC3 retained >40% activity at pH 3-7 and >50% activity in 10-50 °C. Both recombinant PGC3 proteins could induce a response but with different levels of tissue maceration and necrosis in banana plants. In sum, our results indicate that PGC3 is an exo-PG and can be produced with full function in P. pastoris.
Regulation of Hepatic ApoC3 Expression by PGC-1β Mediates Hypolipidemic Effect of Nicotinic Acid
Hernandez, Carlos; Molusky, Matthew; Li, Yaqiang; Li, Siming; Lin, Jiandie D.
2010-01-01
SUMMARY Peroxisome-proliferator activated receptor (PPAR) γ coactivator-1β (PGC-1β) is a transcriptional coactivator that induces hypertriglyceridemia in response to dietary fats through activating hepatic lipogenesis and lipoprotein secretion. The expression of PGC-1β is regulated by free fatty acids. Here we show that PGC-1β regulates plasma triglyceride metabolism through stimulating apolipoprotein C3 (APOC3) expression and elevating APOC3 levels in circulation. Remarkably, liver-specific knockdown of APOC3 significantly ameliorates PGC-1β-induced hypertriglyceridemia in mice. Hepatic expression of PGC-1β and APOC3 is reduced in response to acute and chronic treatments with nicotinic acid, a widely prescribed drug for lowering plasma triglycerides. Adenoviral-mediated knockdown of PGC-1β or APOC3 in the liver recapitulates the hypolipidemic effect of nicotinic acid. Proteomic analysis of hepatic PGC-1β transcriptional complex indicates that it stimulates APOC3 expression through coactivating orphan nuclear receptor ERRα and recruiting chromatin-remodeling cofactors. Together, these studies identify PGC-1β as an important regulator of the APOC3 gene cluster and reveal a mechanism through which nicotinic acid achieves its therapeutic effects. PMID:20889132
Regulation of hepatic ApoC3 expression by PGC-1β mediates hypolipidemic effect of nicotinic acid.
Hernandez, Carlos; Molusky, Matthew; Li, Yaqiang; Li, Siming; Lin, Jiandie D
2010-10-06
Peroxisome proliferator-activated receptor (PPAR) γ coactivator-1β (PGC-1β) is a transcriptional coactivator that induces hypertriglyceridemia in response to dietary fats through activating hepatic lipogenesis and lipoprotein secretion. The expression of PGC-1β is regulated by free fatty acids. Here we show that PGC-1β regulates plasma triglyceride metabolism through stimulating apolipoprotein C3 (APOC3) expression and elevating APOC3 levels in circulation. Remarkably, liver-specific knockdown of APOC3 significantly ameliorates PGC-1β-induced hypertriglyceridemia in mice. Hepatic expression of PGC-1β and APOC3 is reduced in response to acute and chronic treatments with nicotinic acid, a widely prescribed drug for lowering plasma triglycerides. Adenoviral-mediated knockdown of PGC-1β or APOC3 in the liver recapitulates the hypolipidemic effect of nicotinic acid. Proteomic analysis of hepatic PGC-1β transcriptional complex indicates that it stimulates APOC3 expression through coactivating orphan nuclear receptor ERRα and recruiting chromatin-remodeling cofactors. Together, these studies identify PGC-1β as an important regulator of the APOC3 gene cluster and reveal a mechanism through which nicotinic acid achieves its therapeutic effects. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Yang-Sub
A time-domain numerical algorithm for solving the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is developed for pulsed, axisymmetric, finite amplitude sound beams in thermoviscous fluids. The KZK equation accounts for the combined effects of diffraction, absorption, and nonlinearity at the same order of approximation. The accuracy of the algorithm is established via comparison with analytical solutions for several limiting cases, and with numerical results obtained from a widely used algorithm for solving the KZK equation in the frequency domain. The time domain algorithm is used to investigate waveform distortion and shock formation in directive sound beams radiated by pulsed circular piston sources. New results include predictions for the entire process of self-demodulation, and for the effect of frequency modulation on pulse envelope distortion. Numerical results are compared with measurements, and focused sources are investigated briefly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yong; Kovach, Amanda; Suino-Powell, Kelly
2008-07-23
The functional interaction between the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) and its coactivator PGC-1{alpha} is crucial for the normal physiology of PPAR{gamma} and its pharmacological response to antidiabetic treatment with rosiglitazone. Here we report the crystal structure of the PPAR{gamma} ligand-binding domain bound to rosiglitazone and to a large PGC-1{alpha} fragment that contains two LXXLL-related motifs. The structure reveals critical contacts mediated through the first LXXLL motif of PGC-1{alpha} and the PPAR{gamma} coactivator binding site. Through a combination of biochemical and structural studies, we demonstrate that the first LXXLL motif is the most potent among all nuclear receptor coactivator motifsmore » tested, and only this motif of the two LXXLL-related motifs in PGC-1{alpha} is capable of binding to PPAR{gamma}. Our studies reveal that the strong interaction of PGC-1{alpha} and PPAR{gamma} is mediated through both hydrophobic and specific polar interactions. Mutations within the context of the full-length PGC-1{alpha} indicate that the first PGC-1{alpha} motif is necessary and sufficient for PGC-1{alpha} to coactivate PPAR{gamma} in the presence or absence of rosiglitazone. These results provide a molecular basis for specific recruitment and functional interplay between PPAR{gamma} and PGC-1{alpha} in glucose homeostasis and adipocyte differentiation.« less
PGC1α: Friend or Foe in Cancer?
Mastropasqua, Francesca; Girolimetti, Giulia; Shoshan, Maria
2018-01-22
The PGC1 family (Peroxisome proliferator-activated receptor γ (PPARγ) coactivators) of transcriptional coactivators are considered master regulators of mitochondrial biogenesis and function. The PGC1α isoform is expressed especially in metabolically active tissues, such as the liver, kidneys and brain, and responds to energy-demanding situations. Given the altered and highly adaptable metabolism of tumor cells, it is of interest to investigate PGC1α in cancer. Both high and low levels of PGC1α expression have been reported to be associated with cancer and worse prognosis, and PGC1α has been attributed with oncogenic as well as tumor suppressive features. Early in carcinogenesis PGC1α may be downregulated due to a protective anticancer role, and low levels likely reflect a glycolytic phenotype. We suggest mechanisms of PGC1α downregulation and how these might be connected to the increased cancer risk that obesity is now known to entail. Later in tumor progression PGC1α is often upregulated and is reported to contribute to increased lipid and fatty acid metabolism and/or a tumor cell phenotype with an overall metabolic plasticity that likely supports drug resistance as well as metastasis. We conclude that in cancer PGC1α is neither friend nor foe, but rather the obedient servant reacting to metabolic and environmental cues to benefit the tumor cell.
Shiraki, Takuma; Sakai, Noriko; Kanaya, Eiko; Jingami, Hisato
2003-03-28
In contrast to the classical nuclear receptors, the constitutive androstane receptor (CAR) is transcriptionally active in the absence of ligand. In the course of searching for the mediator of CAR activation, we found that ligand-independent activation of CAR was achieved in cooperation with the peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha). PGC-1 beta, a PGC-1 alpha homologue, also activated CAR to less of an extent than PGC-1 alpha. Coexpression of the ligand-binding domain of a heterodimerization partner, retinoid X receptor alpha, enhanced the PGC-1 alpha-mediated activation of CAR, although it had a weak effect on the basal activity of CAR in the absence of PGC-1 alpha. Both the N-terminal region, with the LXXLL motif, and the C-terminal region, with a serine/arginine-rich domain (RS domain), in PGC-1 alpha were required for full activation of CAR. Pull-down experiments using recombinant proteins revealed that CAR directly interacted with both the LXXLL motif and the RS domain. Furthermore, we demonstrated that the RS domain of PGC-1 alpha was required for CAR localization at nuclear speckles. These results indicate that PGC-1 alpha mediates the ligand-independent activation of CAR by means of subnuclear targeting through the RS domain of PGC-1 alpha.
PGC1α: Friend or Foe in Cancer?
Mastropasqua, Francesca; Girolimetti, Giulia; Shoshan, Maria
2018-01-01
The PGC1 family (Peroxisome proliferator-activated receptor γ (PPARγ) coactivators) of transcriptional coactivators are considered master regulators of mitochondrial biogenesis and function. The PGC1α isoform is expressed especially in metabolically active tissues, such as the liver, kidneys and brain, and responds to energy-demanding situations. Given the altered and highly adaptable metabolism of tumor cells, it is of interest to investigate PGC1α in cancer. Both high and low levels of PGC1α expression have been reported to be associated with cancer and worse prognosis, and PGC1α has been attributed with oncogenic as well as tumor suppressive features. Early in carcinogenesis PGC1α may be downregulated due to a protective anticancer role, and low levels likely reflect a glycolytic phenotype. We suggest mechanisms of PGC1α downregulation and how these might be connected to the increased cancer risk that obesity is now known to entail. Later in tumor progression PGC1α is often upregulated and is reported to contribute to increased lipid and fatty acid metabolism and/or a tumor cell phenotype with an overall metabolic plasticity that likely supports drug resistance as well as metastasis. We conclude that in cancer PGC1α is neither friend nor foe, but rather the obedient servant reacting to metabolic and environmental cues to benefit the tumor cell. PMID:29361779
Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie; Xi, Zhide
2018-01-01
In order to access the fretting damage of the steam generator tube (SGT), a fast fiber Fabry-Perot (F-P) non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED) was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP) was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT) modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms. PMID:29329225
Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie; Xi, Zhide
2018-01-12
In order to access the fretting damage of the steam generator tube (SGT), a fast fiber Fabry-Perot (F-P) non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED) was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP) was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT) modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms.
Chang, Ji Suk; Huypens, Peter; Zhang, Yubin; Black, Chelsea; Kralli, Anastasia; Gettys, Thomas W
2010-06-04
Peroxisome proliferator-activated receptor gamma co-activator-1alpha (PGC-1alpha) plays a central role in the regulation of cellular energy metabolism and metabolic adaptation to environmental and nutritional stimuli. We recently described a novel, biologically active splice variant of PGC-1alpha (NT-PGC-1alpha, amino acids 1-270) that retains the ability to interact with and transactivate nuclear hormone receptors through its N-terminal transactivation domain. Whereas PGC-1alpha is an unstable nuclear protein sensitive to ubiquitin-mediated targeting to the proteasome, NT-PGC-1alpha is relatively stable and predominantly cytoplasmic, suggesting that its ability to interact with and activate nuclear receptors and transcription factors is dependent upon regulated access to the nucleus. We provide evidence that NT-PGC-1alpha interacts with the nuclear exportin, CRM1, through a specific leucine-rich domain (nuclear export sequence) that regulates its export to the cytoplasm. The nuclear export of NT-PGC-1alpha is inhibited by protein kinase A-dependent phosphorylation of Ser-194, Ser-241, and Thr-256 on NT-PGC-1alpha, which effectively increases its nuclear concentration. Using site-directed mutagenesis to prevent or mimic phosphorylation at these sites, we show that the transcriptional activity of NT-PGC-1alpha is regulated in part through regulation of its subcellular localization. These findings suggest that the function of NT-PGC-1alpha as a transcriptional co-activator is regulated by protein kinase A-dependent inhibition of CRM1-mediated export from the nucleus.
Hatazawa, Yukino; Minami, Kimiko; Yoshimura, Ryoji; Onishi, Takumi; Manio, Mark Christian; Inoue, Kazuo; Sawada, Naoki; Suzuki, Osamu; Miura, Shinji; Kamei, Yasutomi
2016-12-09
The expression of the transcriptional coactivator PGC1α is increased in skeletal muscles during exercise. Previously, we showed that increased PGC1α leads to prolonged exercise performance (the duration for which running can be continued) and, at the same time, increases the expression of branched-chain amino acid (BCAA) metabolism-related enzymes and genes that are involved in supplying substrates for the TCA cycle. We recently created mice with PGC1α knockout specifically in the skeletal muscles (PGC1α KO mice), which show decreased mitochondrial content. In this study, global gene expression (microarray) analysis was performed in the skeletal muscles of PGC1α KO mice compared with that of wild-type control mice. As a result, decreased expression of genes involved in the TCA cycle, oxidative phosphorylation, and BCAA metabolism were observed. Compared with previously obtained microarray data on PGC1α-overexpressing transgenic mice, each gene showed the completely opposite direction of expression change. Bioinformatic analysis of the promoter region of genes with decreased expression in PGC1α KO mice predicted the involvement of several transcription factors, including a nuclear receptor, ERR, in their regulation. As PGC1α KO microarray data in this study show opposing findings to the PGC1α transgenic data, a loss-of-function experiment, as well as a gain-of-function experiment, revealed PGC1α's function in the oxidative energy metabolism of skeletal muscles. Copyright © 2016 Elsevier Inc. All rights reserved.
A novel PGC-1α isoform in brain localizes to mitochondria and associates with PINK1 and VDAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Joungil, E-mail: jochoi@som.umaryland.edu; Veterans Affairs Medical Center, Baltimore, MD 21201; Batchu, Vera Venkatanaresh Kumar
2013-06-14
Highlights: •Novel 35 kDa PGC-1α localizes to mitochondrial inner membrane and matrix in brain. •Mitochondrial localization of 35 kDa PGC-1α depends on VDAC protein. •Mitochondrial localization of 35 kDa PGC-1α depends on membrane potential. •The 35 kDa PGC-1α associates and colocalizes with PINK in brain mitochondria. -- Abstract: Peroxisome proliferator-activated receptor-gamma co-activator 1α (PGC-1α) and PTEN-induced putative kinase 1 (PINK1) are powerful regulators of mitochondrial function. Here, we report that a previously unrecognized, novel 35 kDa PGC-1α isoform localizes to the mitochondrial inner membrane and matrix in brain as determined by protease protection and carbonate extraction assays, as well asmore » by immunoelectron microscopy. Immunoelectron microscopy and import experiments in vitro revealed that 35 kDa PGC-1α colocalizes and interacts with the voltage-dependent anion channel (VDAC), and that its import depends on VDAC. Valinomycin treatment which depolarizes the membrane potential, abolished mitochondrial localization of the 35 kDa PGC-1α. Using blue native-PAGE, co-immunoprecipitation, and immunoelectron microscopy analyses, we found that the 35 kDa PGC-1α binds and colocalizes with PINK1 in brain mitochondria. This is the first report regarding mitochondrial localization of a novel 35 kDa PGC-1α isoform and its association with PINK1, suggesting possible regulatory roles for mitochondrial function in the brain.« less
Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program.
Hindi, Sajedah M; Mishra, Vivek; Bhatnagar, Shephali; Tajrishi, Marjan M; Ogura, Yuji; Yan, Zhen; Burkly, Linda C; Zheng, Timothy S; Kumar, Ashok
2014-03-01
Skeletal muscle wasting attributed to inactivity has significant adverse functional consequences. Accumulating evidence suggests that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and TNF-like weak inducer of apoptosis (TWEAK)-Fn14 system are key regulators of skeletal muscle mass in various catabolic states. While the activation of TWEAK-Fn14 signaling causes muscle wasting, PGC-1α preserves muscle mass in several conditions, including functional denervation and aging. However, it remains unknown whether there is any regulatory interaction between PGC-1α and TWEAK-Fn14 system during muscle atrophy. Here we demonstrate that TWEAK significantly reduces the levels of PGC-1α and mitochondrial content (∼50%) in skeletal muscle. Levels of PGC-1α are significantly increased in skeletal muscle of TWEAK-knockout (KO) and Fn14-KO mice compared to wild-type mice on denervation. Transgenic (Tg) overexpression of PGC-1α inhibited progressive muscle wasting in TWEAK-Tg mice. PGC-1α inhibited the TWEAK-induced activation of NF-κB (∼50%) and dramatically reduced (∼90%) the expression of atrogenes such as MAFbx and MuRF1. Intriguingly, muscle-specific overexpression of PGC-1α also prevented the inducible expression of Fn14 in denervated skeletal muscle. Collectively, our study demonstrates that TWEAK induces muscle atrophy through repressing the levels of PGC-1α. Overexpression of PGC-1α not only blocks the TWEAK-induced atrophy program but also diminishes the expression of Fn14 in denervated skeletal muscle.
Bit-rate transparent DPSK demodulation scheme based on injection locking FP-LD
NASA Astrophysics Data System (ADS)
Feng, Hanlin; Xiao, Shilin; Yi, Lilin; Zhou, Zhao; Yang, Pei; Shi, Jie
2013-05-01
We propose and demonstrate a bit-rate transparent differential phase shift-keying (DPSK) demodulation scheme based on injection locking multiple-quantum-well (MQW) strained InGaAsP FP-LD. By utilizing frequency deviation generated by phase modulation and unstable injection locking state with Fabry-Perot laser diode (FP-LD), DPSK to polarization shift-keying (PolSK) and PolSK to intensity modulation (IM) format conversions are realized. We analyze bit error rate (BER) performance of this demodulation scheme. Experimental results show that different longitude modes, bit rates and seeding power have influences on demodulation performance. We achieve error free DPSK signal demodulation under various bit rates of 10 Gbit/s, 5 Gbit/s, 2.5 Gbit/s and 1.25 Gbit/s with the same demodulation setting.
Performance of field-emitting resonating carbon nanotubes as radio-frequency demodulators
NASA Astrophysics Data System (ADS)
Vincent, P.; Poncharal, P.; Barois, T.; Perisanu, S.; Gouttenoire, V.; Frachon, H.; Lazarus, A.; de Langre, E.; Minoux, E.; Charles, M.; Ziaei, A.; Guillot, D.; Choueib, M.; Ayari, A.; Purcell, S. T.
2011-04-01
We report on a systematic study of the use of resonating nanotubes in a field emission (FE) configuration to demodulate radio frequency signals. We particularly concentrate on how the demodulation depends on the variation of the field amplification factor during resonance. Analytical formulas describing the demodulation are derived as functions of the system parameters. Experiments using AM and FM demodulations in a transmission electron microscope are also presented with a determination of all the pertinent experimental parameters. Finally we discuss the use of CNTs undergoing FE as nanoantennae and the different geometries that could be used for optimization and implementation.
Pseudo-coherent demodulation for mobile satellite systems
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Simon, Marvin K.
1993-01-01
This paper proposes three so-called pseudo-coherent demodulation schemes for use in land mobile satellite channels. The schemes are derived based on maximum likelihood (ML) estimation and detection of an N-symbol observation of the received signal. Simulation results for all three demodulators are presented to allow comparison with the performance of differential PSK (DPSK) and ideal coherent demodulation for various system parameter sets of practical interest.
Wahab, M Farooq; Ibrahim, Mohammed E A; Lucy, Charles A
2013-06-18
Stationary phases for hydrophilic interaction liquid chromatography (HILIC) are predominantly based on silica and polymer supports. We present porous graphitic carbon particles with covalently attached carboxylic acid groups (carboxylate-PGC) as a new HILIC stationary phase. PGC particles were modified by adsorbing the diazonium salt of 4-aminobenzoic acid onto the PGC, followed by reduction of the adsorbed salt with sodium borohydride. The newly developed carboxylate-PGC phase exhibits different selectivity than that of 35 HPLC columns, including bare silica, zwitterionic, amine, reversed, and unmodified PGC phases. Carboxylate-PGC is stable from pH 2.0 to 12.6, yielding reproducible retention even at pH 12.6. Characterization of the new phase is presented by X-ray photoelectron spectroscopy, thermogravimetry, zeta potentials, and elemental analysis. The chromatographic performance of carboxylate-PGC as a HILIC phase is illustrated by separations of carboxylic acids, nucleotides, phenols, and amino acids.
Deshpande, Girish; Spady, Emma; Goodhouse, Joe; Schedl, Paul
2012-01-01
Primordial germ cells (PGC) are the precursors of germline stem cells. In Drosophila, PGC specification is thought to require transcriptional quiescence and three genes, polar granule component (pgc), nanos (nos), and germ cell less (gcl) function to downregulate Pol II transcription. While it is not understood how nos or gcl represses transcription, pgc does so by inhibiting the transcription elongation factor b (P-TEFb), which is responsible for phosphorylating Ser2 residues in the heptad repeat of the C-terminal domain (CTD) of the largest Pol II subunit. In the studies reported here, we demonstrate that nos are a critical regulatory target of pgc. We show that a substantial fraction of the PGCs in pgc embryos have greatly reduced levels of Nos protein and exhibit phenotypes characteristic of nos PGCs. Lastly, restoring germ cell–specific expression of Nos is sufficient to ameliorate the pgc phenotype. PMID:23173091
Deshpande, Girish; Spady, Emma; Goodhouse, Joe; Schedl, Paul
2012-11-01
Primordial germ cells (PGC) are the precursors of germline stem cells. In Drosophila, PGC specification is thought to require transcriptional quiescence and three genes, polar granule component (pgc), nanos (nos), and germ cell less (gcl) function to downregulate Pol II transcription. While it is not understood how nos or gcl represses transcription, pgc does so by inhibiting the transcription elongation factor b (P-TEFb), which is responsible for phosphorylating Ser2 residues in the heptad repeat of the C-terminal domain (CTD) of the largest Pol II subunit. In the studies reported here, we demonstrate that nos are a critical regulatory target of pgc. We show that a substantial fraction of the PGCs in pgc embryos have greatly reduced levels of Nos protein and exhibit phenotypes characteristic of nos PGCs. Lastly, restoring germ cell-specific expression of Nos is sufficient to ameliorate the pgc phenotype.
Baresic, Mario; Salatino, Silvia; Kupr, Barbara
2014-01-01
Skeletal muscle tissue shows an extraordinary cellular plasticity, but the underlying molecular mechanisms are still poorly understood. Here, we use a combination of experimental and computational approaches to unravel the complex transcriptional network of muscle cell plasticity centered on the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a regulatory nexus in endurance training adaptation. By integrating data on genome-wide binding of PGC-1α and gene expression upon PGC-1α overexpression with comprehensive computational prediction of transcription factor binding sites (TFBSs), we uncover a hitherto-underestimated number of transcription factor partners involved in mediating PGC-1α action. In particular, principal component analysis of TFBSs at PGC-1α binding regions predicts that, besides the well-known role of the estrogen-related receptor α (ERRα), the activator protein 1 complex (AP-1) plays a major role in regulating the PGC-1α-controlled gene program of the hypoxia response. Our findings thus reveal the complex transcriptional network of muscle cell plasticity controlled by PGC-1α. PMID:24912679
Ciron, C.; Lengacher, S.; Dusonchet, J.; Aebischer, P.; Schneider, B.L.
2012-01-01
Mitochondrial dysfunction and oxidative stress have been implicated in the etiology of Parkinson's disease. Therefore, pathways controlling mitochondrial activity rapidly emerge as potential therapeutic targets. Here, we explore the neuronal response to prolonged overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), a transcriptional regulator of mitochondrial function, both in vitro and in vivo. In neuronal primary cultures from the ventral midbrain, PGC-1α induces mitochondrial biogenesis and increases basal respiration. Over time, we observe an increasing proportion of the oxygen consumed by neurons which are dedicated to adenosine triphosphate production. In parallel to enhanced oxidative phosphorylation, PGC-1α progressively leads to a decrease in mitochondrial polarization. In the adult rat nigrostriatal system, adeno-associated virus (AAV)-mediated overexpression of PGC-1α induces the selective loss of dopaminergic markers and increases dopamine (DA) catabolism, leading to a reduction in striatal DA content. In addition, PGC-1α prevents the labeling of nigral neurons following striatal injection of the fluorogold retrograde tracer. When PGC-1α is expressed at higher levels following intranigral AAV injection, it leads to overt degeneration of dopaminergic neurons. Finally, PGC-1α overexpression does not prevent nigrostriatal degeneration in pathologic conditions induced by α-synuclein overexpression. Overall, we find that lasting overexpression of PGC-1α leads to major alterations in the metabolic activity of neuronal cells which dramatically impair dopaminergic function in vivo. These results highlight the central role of PGC-1α in the function and survival of dopaminergic neurons and the critical need for maintaining physiological levels of PGC-1α activity. PMID:22246294
The Evolution of Pepsinogen C Genes in Vertebrates: Duplication, Loss and Functional Diversification
Gonçalves, Odete; Wilson, Jonathan Mark
2012-01-01
Background Aspartic proteases comprise a large group of enzymes involved in peptide proteolysis. This collection includes prominent enzymes globally categorized as pepsins, which are derived from pepsinogen precursors. Pepsins are involved in gastric digestion, a hallmark of vertebrate physiology. An important member among the pepsinogens is pepsinogen C (Pgc). A particular aspect of Pgc is its apparent single copy status, which contrasts with the numerous gene copies found for example in pepsinogen A (Pga). Although gene sequences with similarity to Pgc have been described in some vertebrate groups, no exhaustive evolutionary framework has been considered so far. Methodology/Principal Findings By combining phylogenetics and genomic analysis, we find an unexpected Pgc diversity in the vertebrate sub-phylum. We were able to reconstruct gene duplication timings relative to the divergence of major vertebrate clades. Before tetrapod divergence, a single Pgc gene tandemly expanded to produce two gene lineages (Pgbc and Pgc2). These have been differentially retained in various classes. Accordingly, we find Pgc2 in sauropsids, amphibians and marsupials, but not in eutherian mammals. Pgbc was retained in amphibians, but duplicated in the ancestor of amniotes giving rise to Pgb and Pgc1. The latter was retained in mammals and probably in reptiles and marsupials but not in birds. Pgb was kept in all of the amniote clade with independent episodes of loss in some mammalian species. Lineage specific expansions of Pgc2 and Pgbc have also occurred in marsupials and amphibians respectively. We find that teleost and tetrapod Pgc genes reside in distinct genomic regions hinting at a possible translocation. Conclusions We conclude that the repertoire of Pgc genes is larger than previously reported, and that tandem duplications have modelled the history of Pgc genes. We hypothesize that gene expansion lead to functional divergence in tetrapods, coincident with the invasion of terrestrial habitats. PMID:22427897
Pardo, Rosario; Enguix, Natàlia; Lasheras, Jaime; Feliu, Juan E.; Kralli, Anastasia; Villena, Josep A.
2011-01-01
Background Thiazolidinediones, a family of insulin-sensitizing drugs commonly used to treat type 2 diabetes, are thought to exert their effects in part by promoting mitochondrial biogenesis in white adipose tissue through the transcriptional coactivator PGC-1α (Peroxisome Proliferator-Activated Receptor γ Coactivator-1α). Methodology/Principal Findings To assess the role of PGC-1α in the control of rosiglitazone-induced mitochondrial biogenesis, we have generated a mouse model that lacks expression of PGC-1α specifically in adipose tissues (PGC-1α-FAT-KO mice). We found that expression of genes encoding for mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle or fatty acid oxidation, was similar in white adipose tissue of wild type and PGC-1α-FAT-KO mice. Furthermore, the absence of PGC-1α did not prevent the positive effect of rosiglitazone on mitochondrial gene expression or biogenesis, but it precluded the induction by rosiglitazone of UCP1 and other brown fat-specific genes in white adipose tissue. Consistent with the in vivo findings, basal and rosiglitazone-induced mitochondrial gene expression in 3T3-L1 adipocytes was unaffected by the knockdown of PGC-1α but it was impaired when PGC-1β expression was knockdown by the use of specific siRNA. Conclusions/Significance These results indicate that in white adipose tissue PGC-1α is dispensable for basal and rosiglitazone-induced mitochondrial biogenesis but required for the rosiglitazone-induced expression of UCP1 and other brown adipocyte-specific markers. Our study suggests that PGC-1α is important for the appearance of brown adipocytes in white adipose tissue. Our findings also provide evidence that PGC-1β and not PGC-1α regulates basal and rosiglitazone-induced mitochondrial gene expression in white adipocytes. PMID:22087241
Kong, Xingxing; Wang, Rui; Xue, Yuan; Liu, Xiaojun; Zhang, Huabing; Chen, Yong; Fang, Fude; Chang, Yongsheng
2010-01-01
Background Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuins, which are homologs of the yeast Sir2 gene. SIRT3 is the only sirtuin with a reported association with the human life span. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) plays important roles in adaptive thermogenesis, gluconeogenesis, mitochondrial biogenesis and respiration. PGC-1α induces several key reactive oxygen species (ROS)-detoxifying enzymes, but the molecular mechanism underlying this is not well understood. Results Here we show that PGC-1α strongly stimulated mouse Sirt3 gene expression in muscle cells and hepatocytes. Knockdown of PGC-1α led to decreased Sirt3 gene expression. PGC-1α activated the mouse SIRT3 promoter, which was mediated by an estrogen-related receptor (ERR) binding element (ERRE) (−407/−399) mapped to the promoter region. Chromatin immunoprecipitation and electrophoretic mobility shift assays confirmed that ERRα bound to the identified ERRE and PGC-1α co-localized with ERRα in the mSirt3 promoter. Knockdown of ERRα reduced the induction of Sirt3 by PGC-1α in C2C12 myotubes. Furthermore, Sirt3 was essential for PGC-1α-dependent induction of ROS-detoxifying enzymes and several components of the respiratory chain, including glutathione peroxidase-1, superoxide dismutase 2, ATP synthase 5c, and cytochrome c. Overexpression of SIRT3 or PGC-1α in C2C12 myotubes decreased basal ROS level. In contrast, knockdown of mSIRT3 increased basal ROS level and blocked the inhibitory effect of PGC-1α on cellular ROS production. Finally, SIRT3 stimulated mitochondrial biogenesis, and SIRT3 knockdown decreased the stimulatory effect of PGC-1α on mitochondrial biogenesis in C2C12 myotubes. Conclusion Our results indicate that Sirt3 functions as a downstream target gene of PGC-1α and mediates the PGC-1α effects on cellular ROS production and mitochondrial biogenesis. Thus, SIRT3 integrates cellular energy metabolism and ROS generation. The elucidation of the molecular mechanisms of SIRT3 regulation and its physiological functions may provide a novel target for treating ROS-related disease. PMID:20661474
Incompatibility of Trellis-Based NonCoherent SOQPSK Demodulators for Use in FEC Applications
2012-03-12
AFFTC-PA-12071 Incompatibility Of Trellis-Based NonCoherent SOQPSK Demodulators For Use In FEC Applications Erik Perrins AIR FORCE FLIGHT...Feb 12 – Oct 12 4. TITLE AND SUBTITLE Incompatibility Of Trellis-Based NonCoherent SOQPSK Demodulators For Use In FEC Applications 5a...compatibility/incompatibility of trellis-based noncoherent shaped offset quadrature phase shift keying (SOQPSK) demodulators for use in forward
Carbon nanotube nanoradios: The field emission and transistor configurations
NASA Astrophysics Data System (ADS)
Vincent, Pascal; Ayari, Anthony; Poncharal, Philippe; Barois, Thomas; Perisanu, Sorin; Gouttenoire, V.; Purcell, Stephen T.
2012-06-01
In this article, we explore and compare two distinct configurations of the "nanoradio" concept where individual carbon nanotube resonators are the central electromechanical element permitting signal demodulation. The two configurations of singly-clamped field emitters and doubly-clamped field effect transistors are examined which at first glance are quite different, but in fact involve quite similar physical concepts. Amplitude, frequency and digital demodulation are demonstrated and the analytical formulae describing the demodulation are derived as functions of the system parameters. The crucial role played by the mechanical resonance in demodulation is clearly demonstrated. For the field emission configuration we particularly concentrate on how the demodulation depends on the variation of the field amplification factor during resonance and show that amplitude demodulation results in the best transmitted signal. For the transistor configuration the important aspect is the variation of the nanotube conductance as a function of its distance to the gate. In this case frequency demodulation is much more effective and digital signal processing was achieved. The respective strengths and weaknesses of each configuration are discussed throughout the article.
A hybrid demodulation method of fiber-optic Fabry-Perot pressure sensor
NASA Astrophysics Data System (ADS)
Yu, Le; Lang, Jianjun; Pan, Yong; Wu, Di; Zhang, Min
2013-12-01
The fiber-optic Fabry-Perot pressure sensors have been widely applied to measure pressure in oilfield. For multi-well it will take a long time (dozens of seconds) to demodulate downhole pressure values of all wells by using only one demodulation system and it will cost a lot when every well is equipped with one system, which heavily limits the sensor applied in oilfield. In present paper, a new hybrid demodulation method, combining the windowed nonequispaced discrete Fourier Transform (nDFT) method with segment search minimum mean square error estimation (MMSE) method, was developed, by which the demodulation time can be reduced to 200ms, i.e., measuring 10 channels/wells was less than 2s. Besides, experimental results showed the demodulation cavity length of the fiber-optic Fabry-Perot sensor has a maximum error of 0.5 nm and consequently pressure measurement accuracy can reach 0.4% F.S.
17β-estradiol improves hepatic mitochondrial biogenesis and function through PGC1B.
Galmés-Pascual, Bel M; Nadal-Casellas, Antonia; Bauza-Thorbrügge, Marco; Sbert-Roig, Miquel; García-Palmer, Francisco J; Proenza, Ana M; Gianotti, Magdalena; Lladó, Isabel
2017-02-01
Sexual dimorphism in mitochondrial biogenesis and function has been described in many rat tissues, with females showing larger and more functional mitochondria. The family of the peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) plays a central role in the regulatory network governing mitochondrial biogenesis and function, but little is known about the different contribution of hepatic PGC1A and PGC1B in these processes. The aim of this study was to elucidate the role of 17β-estradiol (E2) in mitochondrial biogenesis and function in liver and assess the contribution of both hepatic PGC1A and PGC1B as mediators of these effects. In ovariectomized (OVX) rats (half of which were treated with E2) estrogen deficiency led to impaired mitochondrial biogenesis and function, increased oxidative stress, and defective lipid metabolism, but was counteracted by E2 treatment. In HepG2 hepatocytes, the role of E2 in enhancing mitochondrial biogenesis and function was confirmed. These effects were unaffected by the knockdown of PGC1A, but were impaired when PGC1B expression was knocked down by specific siRNA. Our results reveal a widespread protective role of E2 in hepatocytes, which is explained by enhanced mitochondrial content and oxidative capacity, lower hepatic lipid accumulation, and a reduction of oxidative stress. We also suggest a novel hepatic protective role of PGC1B as a modulator of E2 effects on mitochondrial biogenesis and function supporting activation of PGC1B as a therapeutic target for hepatic mitochondrial disorders. © 2017 Society for Endocrinology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishida, Tamotsu, E-mail: nishida@gene.mie-u.ac.jp; Yamada, Yoshiji
Parkin-interacting substrate (PARIS), a member of the family of Krüppel-associated box (KRAB)-containing zinc-finger transcription factors, is a substrate of the ubiquitin E3 ligase parkin. PARIS represses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), although the underlying mechanisms remain largely unknown. In the present study, we demonstrate that PARIS can be SUMOylated, and its SUMOylation plays a role in the repression of PGC-1a promoter activity. Protein inhibitor of activated STAT y (PIASy) was identified as an interacting protein of PARIS and shown to enhance its SUMOylation. PIASy repressed PGC-1a promoter activity, and this effect was attenuated by PARIS inmore » a manner dependent on its SUMOylation status. Co-expression of SUMO-1 with PIASy completely repressed PGC-1a promoter activity independently of PARIS expression. PARIS-mediated PGC-1a promoter repression depended on the activity of histone deacetylases (HDAC), whereas PIASy repressed the PGC-1a promoter in an HDAC-independent manner. Taken together, these results suggest that PARIS and PIASy modulate PGC-1a gene transcription through distinct molecular mechanisms. -- Highlights: •PARIS can be SUMOylated in vivo and in vitro. •SUMOylation of PARIS functions in the repression of PGC-1a promoter activity. •PIASy interacts with PARIS and enhances its SUMOylation. •PIASy influences PARIS-mediated repression of PGC-1a promoter activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Wenhui; Jiang, Yi; Gao, Ran, E-mail: bitjy@bit.edu.cn
A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.
Identification and characterization of an alternative promoter of the human PGC-1{alpha} gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshioka, Toyo; Inagaki, Kenjiro; Noguchi, Tetsuya, E-mail: noguchi@med.kobe-u.ac.jp
2009-04-17
The transcriptional regulator peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) controls mitochondrial biogenesis and energy homeostasis. Although physical exercise induces PGC-1{alpha} expression in muscle, the underlying mechanism of this effect has remained incompletely understood. We recently identified a novel muscle-enriched isoform of PGC-1{alpha} transcript (designated PGC-1{alpha}-b) that is derived from a previously unidentified first exon. We have now cloned and characterized the human PGC-1{alpha}-b promoter. The muscle-specific transcription factors MyoD and MRF4 transactivated this promoter through interaction with a proximal E-box motif. Furthermore, either forced expression of Ca{sup 2+}- and calmodulin-dependent protein kinase IV (CaMKIV), calcineurin A, or the p38 mitogen-activated proteinmore » kinase (p38 MAPK) kinase MKK6 or the intracellular accumulation of cAMP activated the PGC-1{alpha}-b promoter in cultured myoblasts through recruitment of cAMP response element (CRE)-binding protein (CREB) to a putative CRE located downstream of the E-box. Our results thus reveal a potential molecular basis for isoform-specific regulation of PGC-1{alpha} expression in contracting muscle.« less
CAR Suppresses Hepatic Gluconeogenesis by Facilitating the Ubiquitination and Degradation of PGC1α
Gao, Jie; Yan, Jiong; Xu, Meishu; Ren, Songrong
2015-01-01
The constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1α) are master regulators of drug metabolism and gluconeogenesis, respectively. In supporting the cross talk between drug metabolism and energy metabolism, activation of CAR has been shown to suppress hepatic gluconeogenesis and ameliorate hyperglycemia in vivo, but the underlying molecular mechanism remains elusive. In this study, we demonstrated that CAR suppressed hepatic gluconeogenic gene expression through posttranslational regulation of the subcellular localization and degradation of PGC1α. Activated CAR translocated into the nucleus and served as an adaptor protein to recruit PGC1α to the Cullin1 E3 ligase complex for ubiquitination. The interaction between CAR and PGC1α also led to their sequestration within the promyelocytic leukemia protein-nuclear bodies, where PGC1α and CAR subsequently underwent proteasomal degradation. Taken together, our findings revealed an unexpected function of CAR in recruiting an E3 ligase and targeting the gluconeogenic activity of PGC1α. Both drug metabolism and gluconeogenesis are energy-demanding processes. The negative regulation of PGC1α by CAR may represent a cellular adaptive mechanism to accommodate energy-restricted conditions. PMID:26407237
CAR Suppresses Hepatic Gluconeogenesis by Facilitating the Ubiquitination and Degradation of PGC1α.
Gao, Jie; Yan, Jiong; Xu, Meishu; Ren, Songrong; Xie, Wen
2015-11-01
The constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1α) are master regulators of drug metabolism and gluconeogenesis, respectively. In supporting the cross talk between drug metabolism and energy metabolism, activation of CAR has been shown to suppress hepatic gluconeogenesis and ameliorate hyperglycemia in vivo, but the underlying molecular mechanism remains elusive. In this study, we demonstrated that CAR suppressed hepatic gluconeogenic gene expression through posttranslational regulation of the subcellular localization and degradation of PGC1α. Activated CAR translocated into the nucleus and served as an adaptor protein to recruit PGC1α to the Cullin1 E3 ligase complex for ubiquitination. The interaction between CAR and PGC1α also led to their sequestration within the promyelocytic leukemia protein-nuclear bodies, where PGC1α and CAR subsequently underwent proteasomal degradation. Taken together, our findings revealed an unexpected function of CAR in recruiting an E3 ligase and targeting the gluconeogenic activity of PGC1α. Both drug metabolism and gluconeogenesis are energy-demanding processes. The negative regulation of PGC1α by CAR may represent a cellular adaptive mechanism to accommodate energy-restricted conditions.
2011-01-01
Background Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that affects spinal cord and cortical motor neurons. An increasing amount of evidence suggests that mitochondrial dysfunction contributes to motor neuron death in ALS. Peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α) is a principal regulator of mitochondrial biogenesis and oxidative metabolism. Results In this study, we examined whether PGC-1α plays a protective role in ALS by using a double transgenic mouse model where PGC-1α is over-expressed in an SOD1 transgenic mouse (TgSOD1-G93A/PGC-1α). Our results indicate that PGC-1α significantly improves motor function and survival of SOD1-G93A mice. The behavioral improvements were accompanied by reduced blood glucose level and by protection of motor neuron loss, restoration of mitochondrial electron transport chain activities and inhibition of stress signaling in the spinal cord. Conclusion Our results demonstrate that PGC-1α plays a beneficial role in a mouse model of ALS, suggesting that PGC-1α may be a potential therapeutic target for ALS therapy. PMID:21771318
PGC1α is required for the induction of contact inhibition by suppressing ROS.
Yang, Seungyeon; Hwang, Sunsook; Jang, Jiho; Kim, Minjoong; Gwak, Jihye; Jeong, Seung Min
2018-05-16
Contact inhibition (CI) is an important tumor-suppressive mechanism that arrests cell cycle when cells reach high density. Indeed, CI is aberrantly absent in cancer cells and the dysregulation of this can contribute to tumorigenesis. Previously, it has been shown that reactive oxygen species (ROS) levels are repressed at high cell density, which is required for CI, but no molecular mechanism of this ROS regulation has been reported. Here, we show that PGC1α regulates cell density-dependent CI. PGC1α is markedly induced in response to high cell density and suppresses ROS production. Although cellular ROS levels are progressively decreased with increasing cell density, knockdown of PGC1α results in a defect of density-dependent ROS suppression. Importantly, PGC1α knockdown cells become less sensitive to high cell density and exhibit loss of CI. Mechanistically, PGC1α represses ROS production by inducing mitochondrial SIRT3, and thus SIRT3 overexpression rescues the defects of CI by PGC1α knockdown. These results demonstrate that mitochondrial ROS production is a crucial regulator of cell proliferation and identify a new role of PGC1α in CI. Copyright © 2018 Elsevier Inc. All rights reserved.
The effect of SIRT1 protein knock down on PGC-1α acetylation during skeletal muscle contraction.
Park, Dae Ryoung; Kim, Jeong Seok; Kim, Chang Keun
2014-03-01
The purpose of this study was to investigate the effect of Sirtuin 1 (SIRT1) and General control nonderepressible 5 (GCN5) knock down on peroxisome proliferator- activated receptor gamma coactivator 1-alpha (PGC-1α) deacetylation during electrical stimulated skeletal muscle contraction. Skeletal muscle primary cell were isolated from C57BL/6 mice gastrocnemius and transfected lentiviral SIRT1 and GCN5 shRNA. Knock downed muscle cell were stimulated by electrical stimulation (1Hz, 3min) and collected for PGC-1α deceatylation assays. Immunoprecipitation performed for PGC-1α deacetylation, acetyl-lysine level was measured. Our resulted showed SIRT1 knock down not influenced to PGC-1α deacetylation during electrical stimulation induced muscle contraction while GCN5 knock down decreased PGC-1α deacetylation significantly (p<0.05). This study can be concluded that GCN5 is a critical factor for muscle contraction induced PGC-1α deacetylation.
High accuracy demodulation for twin-grating based sensor network with hybrid TDM/FDM
NASA Astrophysics Data System (ADS)
Ai, Fan; Sun, Qizhen; Cheng, Jianwei; Luo, Yiyang; Yan, Zhijun; Liu, Deming
2017-04-01
We demonstrate a high accuracy demodulation platform with a tunable Fabry-Perot filter (TFF) for twin-grating based fiber optic sensing network with hybrid TDM/FDM. The hybrid TDM/FDM scheme can improve the spatial resolution to centimeter but increases the requirement of high spectrum resolution. To realize the demodulation of the complex twin-grating spectrum, we adopt the TFF demodulation method and compensate the environmental temperature change and nonlinear effect through calibration FBGs. The performance of the demodulation module is tested by a temperature experiment. Spectrum resolution of 1pm is realized with precision of 2.5pm while the environmental temperature of TFF changes 9.3°C.
Signal Processing Equipment and Techniques for Use in Measuring Ocean Acoustic Multipath Structures
1983-12-01
Demodulator 3.4 Digital Demodulator 3.4.1 Number of Bits in the Input A/D Converter Quantization Effects The Demodulator Output Filter Effects of... power caused by ignoring cross spectral term a) First order Butterworth filter b) Second order Butterworth filter 48 3.4 Ordering of e...spectrum 59 3.7 Multiplying D/A Converter input and output spectra a) Input b) Output 60 3.8 Demodulator output spectrum prior to filtering 63
Bogdanov, Alexei A; Mazzanti, Mary; Castillo, Gerardo; Bolotin, Elijah
2012-01-01
Initially developed in 1992 as an MR imaging agent, the family of protected graft copolymers (PGC) is based on a conjugate of polylysine backbone to which methoxypoly(ethylene glycol) (MPEG) chains are covalently linked in a random fasion via N-ε-amino groups. While PGC is relatively simple in terms of its chemcial composition and structure, it has proved to be a versatile platform for in vivo drug delivery. The advantages of poly amino acid backbone grafting include multiple available linking sites for drug and adaptor molecules. The grafting of PEG chains to PGC does not compromise biodegradability and does not result in measurable toxicity or immunogenicity. In fact, the biocompatablility of PGC has resulted in its being one of the few 100% synthetic non-proteinaceous macromolecules that has suceeded in passing the initial safety phase of clinical trials. PGC is capable of long circulation times after injection into the blood stream and as such found use early on as a carrier system for delivery of paramagnetic imaging compounds for angiography. Other PGC types were later developed for use in nuclear medicine and optical imaging applications in vivo. Recent developments in PGC-based drug carrier formulations include the use of zinc as a bridge between the PGC carrier and zinc-binding proteins and re-engineering of the PGC carrier as a covalent amphiphile that is capabe of binding to hydrophobic residues of small proteins and peptides. At present, PGC-based formulations have been developed and tested in various disease models for: 1) MR imaging local blood circulation in stroke, cancer and diabetes; 2) MR and nuclear imaging of blood volume and vascular permeability in inflammation; 3) optical imaging of proteolytic activity in cancer and inflammation; 4) delivery of platinum(II) compounds for treating cancer; 5) delivery of small proteins and peptides for treating diabetes, obesity and myocardial infarction. This review summarizes the experience accumulated by various research groups that chose to use PGC as a drug delivery platform.
Gouspillou, Gilles; Sgarioto, Nicolas; Norris, Brandon; Barbat-Artigas, Sébastien; Aubertin-Leheudre, Mylène; Morais, Jose A.; Burelle, Yan; Taivassalo, Tanja; Hepple, Russell T.
2014-01-01
PGC-1α regulates critical processes in muscle physiology, including mitochondrial biogenesis, lipid metabolism and angiogenesis. Furthermore, PGC-1α was suggested as an important regulator of fiber type determination. However, whether a muscle fiber type-specific PGC-1α content exists, whether PGC-1α content relates to basal levels of mitochondrial content, and whether such relationships are preserved between humans and classically used rodent models are all questions that have been either poorly addressed or never investigated. To address these issues, we investigated the fiber type-specific content of PGC-1α and its relationship to basal mitochondrial content in mouse, rat and human muscles using in situ immunolabeling and histochemical methods on muscle serial cross-sections. Whereas type IIa fibers exhibited the highest PGC-1α in all three species, other fiber types displayed a hierarchy of type IIx>I>IIb in mouse, type I = IIx> IIb in rat, and type IIx>I in human. In terms of mitochondrial content, we observed a hierarchy of IIa>IIx>I>IIb in mouse, IIa >I>IIx> IIb in rat, and I>IIa> IIx in human skeletal muscle. We also found in rat skeletal muscle that type I fibers displayed the highest capillarization followed by type IIa >IIx>IIb. Finally, we found in human skeletal muscle that type I fibers display the highest lipid content, followed by type IIa>IIx. Altogether, our results reveal that (i) the fiber type-specific PGC-1α and mitochondrial contents were only matched in mouse, (ii) the patterns of PGC-1α and mitochondrial contents observed in mice and rats do not correspond to that seen in humans in several respects, and (iii) the classical phenotypes thought to be regulated by PGC-1α do not vary exclusively as a function of PGC-1α content in rat and human muscles. PMID:25121500
NASA Technical Reports Server (NTRS)
Dohi, Tomohiro; Nitta, Kazumasa; Ueda, Takashi
1993-01-01
This paper proposes a new type of coherent demodulator, the unique-word (UW)-reverse-modulation type demodulator, for burst signal controlled by voice operated transmitter (VOX) in mobile satellite communication channels. The demodulator has three individual circuits: a pre-detection signal combiner, a pre-detection UW detector, and a UW-reverse-modulation type demodulator. The pre-detection signal combiner combines signal sequences received by two antennas and improves bit energy-to-noise power density ratio (E(sub b)/N(sub 0)) 2.5 dB to yield 10(exp -3) average bit error rate (BER) when carrier power-to-multipath power ratio (CMR) is 15 dB. The pre-detection UW detector improves UW detection probability when the frequency offset is large. The UW-reverse-modulation type demodulator realizes a maximum pull-in frequency of 3.9 kHz, the pull-in time is 2.4 seconds and frequency error is less than 20 Hz. The performances of this demodulator are confirmed through computer simulations and its effect is clarified in real-time experiments at a bit rate of 16.8 kbps using a digital signal processor (DSP).
Meng, Hui; Liang, Huan Ling; Wong-Riley, Margaret
2007-10-17
Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC- 1alpha) is a coactivator of nuclear receptors and other transcription factors that regulate several metabolic processes, including mitochondrial biogenesis, energy homeostasis, respiration, and gluconeogenesis. PGC-1alpha plays a vital role in stimulating genes that are important to oxidative metabolism and other mitochondrial functions in brown adipose tissue and skeleton muscles, but the significance of PGC-1alpha in the brain remains elusive. The goal of our present study was to determine by means of quantitative immuno-electron microscopy the expression of PGC-1alpha in cultured rat visual cortical neurons under normal conditions as well as after depolarizing stimulation for varying periods of time. Our results showed that: (a) PGC-1alpha was normally located in both the nucleus and the cytoplasm. In the nucleus, PGC-1alpha was associated mainly with euchromatin rather than heterochromatin, consistent with active involvement in transcription. In the cytoplasm, it was associated mainly with free ribosomes. (b) Neuronal depolarization by KCl for 0.5 h induced a significant increase in PGC-1alpha labeling density in both the nucleus and the cytoplasm (P<0.01). The heightened expression continued after 1 and 3 h of depolarizing treatment (P<0.01), but decreased from 5 h onward and returned to baseline level by 10 h. These results indicate that PGC-1alpha responds very early to increased neuronal activity by synthesizing more proteins in the cytoplasm and translocating them to the nucleus for gene activation. PGC-1alpha level in neurons is, therefore, tightly regulated by neuronal activity.
Holloway, Graham P; Gurd, Brendon J; Snook, Laelie A; Lally, Jamie; Bonen, Arend
2010-04-01
We examined in insulin-resistant muscle if, in contrast to long-standing dogma, mitochondrial fatty acid oxidation is increased and whether this is attributed to an increased nuclear content of peroxisome proliferator-activated receptor (PPAR) gamma coactivator (PGC) 1alpha and the adaptations of specific mitochondrial subpopulations. Skeletal muscles from male control and Zucker diabetic fatty (ZDF) rats were used to determine 1) intramuscular lipid distribution, 2) subsarcolemmal and intermyofibrillar mitochondrial morphology, 3) rates of palmitate oxidation in subsarcolemmal and intermyofibrillar mitochondria, and 4) the subcellular localization of PGC1alpha. Electotransfection of PGC1alpha cDNA into lean animals tested the notion that increased nuclear PGC1alpha preferentially targeted subsarcolemmal mitochondria. Transmission electron microscope analysis revealed that in ZDF animals the number (+50%), width (+69%), and density (+57%) of subsarcolemmal mitochondria were increased (P < 0.05). In contrast, intermyofibrillar mitochondria remained largely unchanged. Rates of palmitate oxidation were approximately 40% higher (P < 0.05) in ZDF subsarcolemmal and intermyofibrillar mitochondria, potentially as a result of the increased PPAR-targeted proteins, carnitine palmitoyltransferase-I, and fatty acid translocase (FAT)/CD36. PGC1alpha mRNA and total protein were not altered in ZDF animals; however, a greater (approximately 70%; P < 0.05) amount of PGC1alpha was located in nuclei. Overexpression of PGC1alpha only increased subsarcolemmal mitochondrial oxidation rates. In ZDF animals, intramuscular lipids accumulate in the intermyofibrillar region (increased size and number), and this is primarily associated with increased oxidative capacity in subsarcolemmal mitochondria (number, size, density, and oxidation rates). These changes may result from an increased nuclear content of PGC1alpha, as under basal conditions, overexpression of PGC1alpha appears to target subsarcolemmal mitochondria.
Martin, Ola J; Lai, Ling; Soundarapandian, Mangala M; Leone, Teresa C; Zorzano, Antonio; Keller, Mark P; Attie, Alan D; Muoio, Deborah M; Kelly, Daniel P
2014-02-14
Increasing evidence has shown that proper control of mitochondrial dynamics (fusion and fission) is required for high-capacity ATP production in the heart. Transcriptional coactivators, peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) α and PGC-1β, have been shown to regulate mitochondrial biogenesis in the heart at the time of birth. The function of PGC-1 coactivators in the heart after birth has been incompletely understood. Our aim was to assess the role of PGC-1 coactivators during postnatal cardiac development and in adult hearts in mice. Conditional gene targeting was used in mice to explore the role of PGC-1 coactivators during postnatal cardiac development and in adult hearts. Marked mitochondrial structural derangements were observed in hearts of PGC-1α/β-deficient mice during postnatal growth, including fragmentation and elongation, associated with the development of a lethal cardiomyopathy. The expression of genes involved in mitochondrial fusion (Mfn1, Opa1) and fission (Drp1, Fis1) was altered in the hearts of PGC-1α/β-deficient mice. PGC-lα was shown to directly regulate Mfn1 gene transcription by coactivating the estrogen-related receptor α on a conserved DNA element. Surprisingly, PGC-1α/β deficiency in the adult heart did not result in evidence of abnormal mitochondrial dynamics or heart failure. However, transcriptional profiling demonstrated that PGC-1 coactivators are required for high-level expression of nuclear- and mitochondrial-encoded genes involved in mitochondrial dynamics and energy transduction in the adult heart. These results reveal distinct developmental stage-specific programs involved in cardiac mitochondrial dynamics.
Atalay, Hasan Anıl; Akarsu, Murat; Canat, Lutfi; Ülker, Volkan; Alkan, İlter; Ozkuvancı, Unsal
2017-09-01
To evaluate the impact of poor glycemic control of type 2 diabetes mellitus (T2DM) on serum prostate-specific antigen (PSA) concentrations in men. We performed a prospective analysis of 215 consecutive patients affected by erectile dysfunction (ED). ED was evaluated using the IIEF-5 questionnaire and the poor glycemic control (PGC) of T2DM was assessed according to the HbA1c criteria (International Diabetes Federation). Patients were divided into PGC group (HbA1c ≥ 7%) and control group (CG) (HbA1c < 6%). Correlations between serum HbA1c levels and various variables were evaluated and multivariate logistic regression analyses were carried out to identify variables for PGC. We compared 110 cases to 105 controls men ranging from 44 to 81 years of age, lower PSA concentrations were observed in men with PGC (PGC mean PSA: 0.9 ng/dl, CG mean PSA: 2.1 ng/dl, p < 0.001). Also mean prostate volume was 60% was smaller among men with PGC compared with men with CG (PGC mean prostate volume: 26 ml, CG prostate volume: 43 ml, p < 0.001). A strong negative correlation was found between serum HbA1c levels and serum PSA (p < 0.001 and r = -0.665) concentrations in men with PGC. We also found at the multivariate logistic regression model that PSA, prostate volume and peak systolic velocity were independent predictors of PGC. Our results suggest that there is significant impact of PGC on serum PSA levels in T2DM. Poor glycemic control of type 2 diabetes was associated with lower serum PSA levels and smaller prostate volumes.
Sczelecki, Sarah; Besse-Patin, Aurèle; Abboud, Alexandra; Kleiner, Sandra; Laznik-Bogoslavski, Dina; Wrann, Christiane D; Ruas, Jorge L; Haibe-Kains, Benjamin; Estall, Jennifer L
2014-01-15
Diabetes risk increases significantly with age and correlates with lower oxidative capacity in muscle. Decreased expression of peroxisome proliferator-activated receptor-γ coactivator-1α (Pgc-1α) and target gene pathways involved in mitochondrial oxidative phosphorylation are associated with muscle insulin resistance, but a causative role has not been established. We sought to determine whether a decline in Pgc-1α and oxidative gene expression occurs during aging and potentiates the development of age-associated insulin resistance. Muscle-specific Pgc-1α knockout (MKO) mice and wild-type littermate controls were aged for 2 yr. Genetic signatures of skeletal muscle (microarray and mRNA expression) and metabolic profiles (glucose homeostasis, mitochondrial metabolism, body composition, lipids, and indirect calorimetry) of mice were compared at 3, 12, and 24 mo of age. Microarray and gene set enrichment analysis highlighted decreased function of the electron transport chain as characteristic of both aging muscle and loss of Pgc-1α expression. Despite significant reductions in oxidative gene expression and succinate dehydrogenase activity, young mice lacking Pgc-1α in muscle had lower fasting glucose and insulin. Consistent with loss of oxidative capacity during aging, Pgc-1α and Pgc-1β expression were reduced in aged wild-type mouse muscle. Interestingly, the combination of age and loss of muscle Pgc-1α expression impaired glucose tolerance and led to increased fat mass, insulin resistance, and inflammatory markers in white adipose and liver tissues. Therefore, loss of Pgc-1α expression and decreased mitochondrial oxidative capacity contribute to worsening glucose tolerance and chronic systemic inflammation associated with aging.
Ablation of PGC1 beta prevents mTOR dependent endoplasmic reticulum stress response
Camacho, Alberto; Rodriguez-Cuenca, Sergio; Blount, Margaret; Prieur, Xavier; Barbarroja, Nuria; Fuller, Maria; Hardingham, Giles E.; Vidal-Puig, Antonio
2012-01-01
Mitochondria dysfunction contributes to the pathophysiology of obesity, diabetes, neurodegeneration and ageing. The peroxisome proliferator-activated receptor-gamma coactivator-1β (PGC-1β) coordinates mitochondrial biogenesis and function as well as fatty acid metabolism. It has been suggested that endoplasmic reticulum (ER) stress may be one of the mechanisms linking mitochondrial dysfunction and these pathologies. Here we investigate whether PGC-1β ablation affects the ER stress response induced by specific nutritional and pharmacological challenges in the CNS. By using flow cytometry, western blot, real time PCR and several pharmacological and nutritional interventions in PGC-1β knock out and WT mice, we confirmed that PGC-1β coordinates mitochondria function in brain and reported for the first time that a) ablation of PGC-1β is associated with constitutive activation of mTORC1 pathway associated with increased basal GRP78 protein levels in hypothalamus and cortex of animals fed chow diet; and b) in animals fed chronically with high fat diet (HFD) or high protein diet (HPD), we observed a failure to appropriately induce ER stress response in the absence of PGC-1β, associated with an increase in mTOR pathway phosphorylation. This contrasted with the appropriate upregulation of ER stress response observed in wild type littermates. Additionally, inefficient in vitro induction of ER stress by thapsigargin seems result in apoptotic neuronal cell death in PGC-1β KO. Our data indicate that PGC-1β is required for a neuronal ER response to nutritional stress imposed by HFD and HPD diets and that genetic ablation of PGC-1β might increase the susceptibility to neuronal damage and cell death. PMID:22771762
Simulation of fiber optic liquid level sensor demodulation system
NASA Astrophysics Data System (ADS)
Yi, Cong-qin; Luo, Yun; Zhang, Zheng-ping
Measuring liquid level with high accuracy is an urgent requirement. This paper mainly focus on the demodulation system of fiber-optic liquid level sensor based on Fabry-Perot cavity, design and simulate the demodulation system by the single-chip simulation software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yon-Sik; Hong, Jung-Man; Lim, Sunny
2006-06-09
Mitochondrial dysfunction may cause diabetes or insulin resistance. Peroxisome proliferation-activated receptor-{gamma} (PPAR-{gamma}) coactivator-1 {alpha} (PGC-1{alpha}) increases mitochondrial transcription factor A (Tfam) resulting in mitochondrial DNA content increase. An association between a single nucleotide polymorphism (SNP), G1444A(Gly482Ser), of PGC-1{alpha} coding region and insulin resistance has been reported in some ethnic groups. In this study, we investigated whether a change of glycine to serine at codon 482 of PGC-1{alpha} affected the Tfam promoter activity. The cDNA of PGC-1{alpha} variant bearing either glycine or serine at 482 codon was transfected into Chang human hepatocyte cells. The PGC-1{alpha} protein bearing glycine had impaired coactivatormore » activity on Tfam promoter-mediated luciferase. We analyzed the PGC-1{alpha} genotype G1444A and mitochondrial DNA (mtDNA) copy number from 229 Korean leukocyte genomic DNAs. Subjects with Gly/Gly had a 20% lower amount of peripheral blood mtDNA than did subjects with Gly/Ser and Ser/Ser (p < 0.05). No correlation was observed between diabetic parameters and PGC-1{alpha} genotypes in Koreans. These results suggest that PGC-1{alpha} variants with Gly/Gly at 482nd amino acid may impair the Tfam transcription, a regulatory function of mitochondrial biogenesis, resulting in dysfunctional mtDNA replication.« less
Derbré, Frederic; Gomez-Cabrera, Mari Carmen; Nascimento, Ana Lucia; Sanchis-Gomar, Fabian; Martinez-Bello, Vladimir Essau; Tresguerres, Jesus A F; Fuentes, Teresa; Gratas-Delamarche, Arlette; Monsalve, Maria; Viña, Jose
2012-06-01
Low mitochondriogenesis is critical to explain loss of muscle function in aging and in the development of frailty. The aim of this work was to explain the mechanism by which mitochondriogenesis is decreased in aging and to determine to which extent it may be prevented by exercise training. We used aged rats and compared them with peroxisome proliferator-activated receptor-γ coactivator-1α deleted mice (PGC-1α KO). PGC-1α KO mice showed a significant decrease in the mitochondriogenic pathway in muscle. In aged rats, we found a loss of exercise-induced expression of PGC-1α, nuclear respiratory factor-1 (NRF-1), and of cytochrome C. Thus muscle mitochondriogenesis, which is activated by exercise training in young animals, is not in aged or PGC-1α KO ones. Other stimuli to increase PGC-1α synthesis apart from exercise training, namely cold induction or thyroid hormone treatment, were effective in young rats but not in aged ones. To sum up, the low mitochondrial biogenesis associated with aging may be due to the lack of response of PGC-1α to different stimuli. Aged rats behave as PGC-1α KO mice. Results reported here highlight the role of PGC-1α in the loss of mitochondriogenesis associated with aging and point to this important transcriptional coactivator as a target for pharmacological interventions to prevent age-associated sarcopenia.
Dual demodulation interferometer with two-wave mixing in GaAs photorefractive crystal
NASA Astrophysics Data System (ADS)
Zhenzhen, Zhang; Zhongqing, Jia; Guangrong, Ji; Qiwu, Wang
2018-07-01
A dual demodulation interferometer with two-wave mixing (TWM) in the GaAs photorefractive crystal (PRC) is proposed and experimentally demonstrated. The GaAs PRC has tiny temperature change under high voltage thus not requiring thermoelectric cooler (TEC) to stabilize the temperature, and adaptive to low frequency fluctuation below 200 Hz. The system is an unbalanced TWM interferometer, which could demodulate the phase change both space variation and wavelength shift induced by strain. Two demodulation modes' formulas are provided in theory respectively. Experimental results have been tested and compared with theoretical analysis, demonstrating that it is a practical and flexible system for detection of mechanical vibration or structure health monitoring (SHM) in engineering by selecting different demodulation mode.
Ishidoshiro, K; Chinone, Y; Hasegawa, M; Hazumi, M; Nagai, M; Tajima, O
2012-05-01
We propose an innovative demodulation scheme for coherent detectors used in cosmic microwave background polarization experiments. Removal of non-white noise, e.g., narrow-band noise, in detectors is one of the key requirements for the experiments. A combination of modulation and demodulation is used to extract polarization signals as well as to suppress such noise. Traditional demodulation, which is based on the two-point numerical differentiation, works as a first-order high pass filter for the noise. The proposed demodulation is based on the three-point numerical differentiation. It works as a second-order high pass filter. By using a real detector, we confirmed significant improvements of suppression power for the narrow-band noise. We also found improvement of the noise floor.
On optimal soft-decision demodulation
NASA Technical Reports Server (NTRS)
Lee, L. N.
1975-01-01
Wozencraft and Kennedy have suggested that the appropriate demodulator criterion of goodness is the cut-off rate of the discrete memoryless channel created by the modulation system; the criterion of goodness adopted in this note is the symmetric cut-off rate which differs from the former criterion only in that the signals are assumed equally likely. Massey's necessary condition for optimal demodulation of binary signals is generalized to M-ary signals. It is shown that the optimal demodulator decision regions in likelihood space are bounded by hyperplanes. An iterative method is formulated for finding these optimal decision regions from an initial good quess. For additive white Gaussian noise, the corresponding optimal decision regions in signal space are bounded by hypersurfaces with hyperplane asymptotes; these asymptotes themselves bound the decision regions of a demodulator which, in several examples, is shown to be virtually optimal. In many cases, the necessary condition for demodulator optimality is also sufficient, but a counter example to its general sufficiency is given.
Wavelength-switched phase interrogator for extrinsic Fabry-Perot interferometric sensors.
Xia, Ji; Xiong, Shuidong; Wang, Fuyin; Luo, Hong
2016-07-01
We report on phase interrogation of extrinsic Fabry-Perot interferometric (EFPI) sensors through a wavelength-switched unit with a polarization-maintaining fiber Bragg grating (PMFBG). The measurements at two wavelengths are first achieved in one total-optical path. The reflected peaks of the PMFBG with two natural wavelengths are in mutually perpendicular polarization detection, and they are switched through an electro-optic modulator at a high switching speed of 10 kHz. An ellipse fitting differential cross multiplication (EF-DCM) algorithm is proposed for interrogating the variation of the gap length of the EFPI sensors. The phase demodulation system has been demonstrated to recover a minimum phase of 0.42 μrad/Hz at the test frequency of 100 Hz with a stable intensity fluctuation level of ±0.8 dB. Three EFPI sensors with different cavity lengths are tested at the test frequency of 200 Hz, and the results indicate that the system can achieve the demodulation of EFPI sensors with different cavity lengths stably.
A Comparative Study of Co-Channel Interference Suppression Techniques
NASA Technical Reports Server (NTRS)
Hamkins, Jon; Satorius, Ed; Paparisto, Gent; Polydoros, Andreas
1997-01-01
We describe three methods of combatting co-channel interference (CCI): a cross-coupled phase-locked loop (CCPLL); a phase-tracking circuit (PTC), and joint Viterbi estimation based on the maximum likelihood principle. In the case of co-channel FM-modulated voice signals, the CCPLL and PTC methods typically outperform the maximum likelihood estimators when the modulation parameters are dissimilar. However, as the modulation parameters become identical, joint Viterbi estimation provides for a more robust estimate of the co-channel signals and does not suffer as much from "signal switching" which especially plagues the CCPLL approach. Good performance for the PTC requires both dissimilar modulation parameters and a priori knowledge of the co-channel signal amplitudes. The CCPLL and joint Viterbi estimators, on the other hand, incorporate accurate amplitude estimates. In addition, application of the joint Viterbi algorithm to demodulating co-channel digital (BPSK) signals in a multipath environment is also discussed. It is shown in this case that if the interference is sufficiently small, a single trellis model is most effective in demodulating the co-channel signals.
Universal Decoder for PPM of any Order
NASA Technical Reports Server (NTRS)
Moision, Bruce E.
2010-01-01
A recently developed algorithm for demodulation and decoding of a pulse-position- modulation (PPM) signal is suitable as a basis for designing a single hardware decoding apparatus to be capable of handling any PPM order. Hence, this algorithm offers advantages of greater flexibility and lower cost, in comparison with prior such algorithms, which necessitate the use of a distinct hardware implementation for each PPM order. In addition, in comparison with the prior algorithms, the present algorithm entails less complexity in decoding at large orders. An unavoidably lengthy presentation of background information, including definitions of terms, is prerequisite to a meaningful summary of this development. As an aid to understanding, the figure illustrates the relevant processes of coding, modulation, propagation, demodulation, and decoding. An M-ary PPM signal has M time slots per symbol period. A pulse (signifying 1) is transmitted during one of the time slots; no pulse (signifying 0) is transmitted during the other time slots. The information intended to be conveyed from the transmitting end to the receiving end of a radio or optical communication channel is a K-bit vector u. This vector is encoded by an (N,K) binary error-correcting code, producing an N-bit vector a. In turn, the vector a is subdivided into blocks of m = log2(M) bits and each such block is mapped to an M-ary PPM symbol. The resultant coding/modulation scheme can be regarded as equivalent to a nonlinear binary code. The binary vector of PPM symbols, x is transmitted over a Poisson channel, such that there is obtained, at the receiver, a Poisson-distributed photon count characterized by a mean background count nb during no-pulse time slots and a mean signal-plus-background count of ns+nb during a pulse time slot. In the receiver, demodulation of the signal is effected in an iterative soft decoding process that involves consideration of relationships among photon counts and conditional likelihoods of m-bit vectors of coded bits. Inasmuch as the likelihoods of all the m-bit vectors of coded bits mapping to the same PPM symbol are correlated, the best performance is obtained when the joint mbit conditional likelihoods are utilized. Unfortunately, the complexity of decoding, measured in the number of operations per bit, grows exponentially with m, and can thus become prohibitively expensive for large PPM orders. For a system required to handle multiple PPM orders, the cost is even higher because it is necessary to have separate decoding hardware for each order. This concludes the prerequisite background information. In the present algorithm, the decoding process as described above is modified by, among other things, introduction of an lbit marginalizer sub-algorithm. The term "l-bit marginalizer" signifies that instead of m-bit conditional likelihoods, the decoder computes l-bit conditional likelihoods, where l is fixed. Fixing l, regardless of the value of m, makes it possible to use a single hardware implementation for any PPM order. One could minimize the decoding complexity and obtain an especially simple design by fixing l at 1, but this would entail some loss of performance. An intermediate solution is to fix l at some value, greater than 1, that may be less than or greater than m. This solution makes it possible to obtain the desired flexibility to handle any PPM order while compromising between complexity and loss of performance.
Nierenberg, Andrew A; Ghaznavi, Sharmin A; Sande Mathias, Isadora; Ellard, Kristen K; Janos, Jessica A; Sylvia, Louisa G
2018-05-01
Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) is a protein that regulates metabolism and inflammation by activating nuclear receptors, especially the family of peroxisome proliferator-activated receptors (PPARs). PGC-1 alpha and PPARs also regulate mitochondrial biogenesis, cellular energy production, thermogenesis, and lipid metabolism. Brain energy metabolism may also be regulated in part by the interaction between PGC-1 alpha and PPARs. Because neurodegenerative diseases (Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis) and bipolar disorder have been associated with dysregulated mitochondrial and brain energy metabolism, PGC-1 alpha may represent a potential drug target for these conditions. The purpose of this article is to review the physiology of PGC-1 alpha, PPARs, and the role of PPAR agonists to target PGC-1 alpha to treat neurodegenerative diseases and bipolar disorder. We also review clinical trials of repurposed antidiabetic thiazolidines and anti-triglyceride fibrates (PPAR agonists) for neurodegenerative diseases and bipolar disorder. PGC-1 alpha and PPARs are innovative potential targets for bipolar disorder and warrant future clinical trials. Copyright © 2018. Published by Elsevier Inc.
360-degrees profilometry using strip-light projection coupled to Fourier phase-demodulation.
Servin, Manuel; Padilla, Moises; Garnica, Guillermo
2016-01-11
360 degrees (360°) digitalization of three dimensional (3D) solids using a projected light-strip is a well-established technique in academic and commercial profilometers. These profilometers project a light-strip over the digitizing solid while the solid is rotated a full revolution or 360-degrees. Then, a computer program typically extracts the centroid of this light-strip, and by triangulation one obtains the shape of the solid. Here instead of using intensity-based light-strip centroid estimation, we propose to use Fourier phase-demodulation for 360° solid digitalization. The advantage of Fourier demodulation over strip-centroid estimation is that the accuracy of phase-demodulation linearly-increases with the fringe density, while in strip-light the centroid-estimation errors are independent. Here we proposed first to construct a carrier-frequency fringe-pattern by closely adding the individual light-strip images recorded while the solid is being rotated. Next, this high-density fringe-pattern is phase-demodulated using the standard Fourier technique. To test the feasibility of this Fourier demodulation approach, we have digitized two solids with increasing topographic complexity: a Rubik's cube and a plastic model of a human-skull. According to our results, phase demodulation based on the Fourier technique is less noisy than triangulation based on centroid light-strip estimation. Moreover, Fourier demodulation also provides the amplitude of the analytic signal which is a valuable information for the visualization of surface details.
A FBG pulse wave demodulation method based on PCF modal interference filter
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Xu, Shan; Shen, Ziqi; Zhao, Junfa; Miao, Changyun; Bai, Hua
2016-10-01
Fiber optic sensor embedded in textiles has been a new direction of researching smart wearable technology. Pulse signal which is generated by heart beat contains vast amounts of physio-pathological information about the cardiovascular system. Therefore, the research for textile-based fiber optic sensor which can detect pulse wave has far-reaching effects on early discovery and timely treatment of cardiovascular diseases. A novel wavelength demodulation method based on photonic crystal fiber (PCF) modal interference filter is proposed for the purpose of developing FBG pulse wave sensing system embedded in smart clothing. The mechanism of the PCF modal interference and the principle of wavelength demodulation based on In-line Mach-Zehnder interferometer (In-line MZI) are analyzed in theory. The fabricated PCF modal interferometer has the advantages of good repeatability and low temperature sensitivity of 3.5pm/°C from 25°C to 60°C. The designed demodulation system can achieve linear demodulation in the range of 2nm, with the wavelength resolution of 2.2pm and the wavelength sensitivity of 0.055nm-1. The actual experiments' result indicates that the pulse wave can be well detected by this demodulation method, which is in accordance with the commercial demodulation instrument (SM130) and more sensitive than the traditional piezoelectric pulse sensor. This demodulation method provides important references for the research of smart clothing based on fiber grating sensor embedded in textiles and accelerates the developments of wearable fiber optic sensors technology.
Using the ATL HDI 1000 to collect demodulated RF data for monitoring HIFU lesion formation
NASA Astrophysics Data System (ADS)
Anand, Ajay; Kaczkowski, Peter J.; Daigle, Ron E.; Huang, Lingyun; Paun, Marla; Beach, Kirk W.; Crum, Lawrence A.
2003-05-01
The ability to accurately track and monitor the progress of lesion formation during HIFU (High Intensity Focused Ultrasound) therapy is important for the success of HIFU-based treatment protocols. To aid in the development of algorithms for accurately targeting and monitoring formation of HIFU induced lesions, we have developed a software system to perform RF data acquisition during HIFU therapy using a commercially available clinical ultrasound scanner (ATL HDI 1000, Philips Medical Systems, Bothell, WA). The HDI 1000 scanner functions on a software dominant architecture, permitting straightforward external control of its operation and relatively easy access to quadrature demodulated RF data. A PC running a custom developed program sends control signals to the HIFU module via GPIB and to the HDI 1000 via Telnet, alternately interleaving HIFU exposures and RF frame acquisitions. The system was tested during experiments in which HIFU lesions were created in excised animal tissue. No crosstalk between the HIFU beam and the ultrasound imager was detected, thus demonstrating synchronization. Newly developed acquisition modes allow greater user control in setting the image geometry and scanline density, and enables high frame rate acquisition. This system facilitates rapid development of signal-processing based HIFU therapy monitoring algorithms and their implementation in image-guided thermal therapy systems. In addition, the HDI 1000 system can be easily customized for use with other emerging imaging modalities that require access to the RF data such as elastographic methods and new Doppler-based imaging and tissue characterization techniques.
47 CFR 73.9005 - Compliance requirements for covered demodulator products: Audio.
Code of Federal Regulations, 2010 CFR
2010-10-01
... products: Audio. 73.9005 Section 73.9005 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED....9005 Compliance requirements for covered demodulator products: Audio. Except as otherwise provided in §§ 73.9003(a) or 73.9004(a), covered demodulator products shall not output the audio portions of...
Ruschke, Stefan; Eggers, Holger; Meineke, Jakob; Rummeny, Ernst J.; Karampinos, Dimitrios C.
2018-01-01
Purpose To improve the robustness of existing chemical shift encoding‐based water–fat separation methods by incorporating a priori information of the magnetic field distortions in complex‐based water–fat separation. Methods Four major field contributions are considered: inhomogeneities of the scanner magnet, the shim field, an object‐based field map estimate, and a residual field. The former two are completely determined by spherical harmonic expansion coefficients directly available from the magnetic resonance (MR) scanner. The object‐based field map is forward simulated from air–tissue interfaces inside the field of view (FOV). The missing residual field originates from the object outside the FOV and is investigated by magnetic field simulations on a numerical whole body phantom. In vivo the spatially linear first‐order component of the residual field is estimated by measuring echo misalignments after demodulation of other field contributions resulting in a linear residual field. Gradient echo datasets of the cervical and the ankle region without and with shimming were acquired, where all four contributions were incorporated in the water–fat separation with two algorithms from the ISMRM water–fat toolbox and compared to water–fat separation with less incorporated field contributions. Results Incorporating all four field contributions as demodulation steps resulted in reduced temporal and spatial phase wraps leading to almost swap‐free water–fat separation results in all datasets. Conclusion Demodulating estimates of major field contributions reduces the phase evolution to be driven by only small differences in local tissue susceptibility, which supports the field smoothness assumption of existing water–fat separation techniques. PMID:29424458
NASA Astrophysics Data System (ADS)
He, A.; Quan, C.
2018-04-01
The principal component analysis (PCA) and region matching combined method is effective for fringe direction estimation. However, its mask construction algorithm for region matching fails in some circumstances, and the algorithm for conversion of orientation to direction in mask areas is computationally-heavy and non-optimized. We propose an improved PCA based region matching method for the fringe direction estimation, which includes an improved and robust mask construction scheme, and a fast and optimized orientation-direction conversion algorithm for the mask areas. Along with the estimated fringe direction map, filtered fringe pattern by automatic selective reconstruction modification and enhanced fast empirical mode decomposition (ASRm-EFEMD) is used for Hilbert spiral transform (HST) to demodulate the phase. Subsequently, windowed Fourier ridge (WFR) method is used for the refinement of the phase. The robustness and effectiveness of proposed method are demonstrated by both simulated and experimental fringe patterns.
Overexpression of PGC-1α Influences Mitochondrial Signal Transduction of Dopaminergic Neurons.
Ye, Qinyong; Huang, Wanling; Li, Dongzhu; Si, Erwang; Wang, Juhua; Wang, Yingqing; Chen, Chun; Chen, Xiaochun
2016-08-01
Parkinson's disease (PD) is a common neurodegenerative disease in the elderly. Mitochondrial dysfunction plays an important role in the pathogenesis of PD. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a powerful transcription factor, interacting with multiple transcription factors and widely involving in the regulation of mitochondrial biogenesis, oxidative stress, and other processes. The present study investigated the neuroprotective effects and signal transduction mechanisms of the overexpression of PGC-1α on N-methyl-4-phenylpyridinium ion (MPP(+))-induced mitochondrial damage in SH-SY5Y cell, establishing the cell model of overexpression of PGC-1α and the cell model of PD by using adenoviral vectors and MPP(+). 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide thiazolyl blue (MTT) assay was used to investigate the effects of MPP(+) and adenovirus on the cell viability of SH-SY5Y cells and the cell viability of experimental groups. Western blot and real-time PCR analysis were used to detect the expression of PGC-1α. Flow cytometry and ELISA were used to detect mitochondrial membrane potential and the level of cytochrome C, respectively. The level of intracellular ATP and H2O2 was measured by multifunctional fluorescence microplate. Western blot analysis and real-time PCR were used to observe the expression of estrogen-related receptor α (ERRα), peroxisome proliferator-activated receptor γ (PPARγ), nuclear respiratory factor (NRF)-1, and NRF-2. Confocal fluorescence analysis was used to observe subcellular localization of PGC-1α in SH-SY5Y cells under the intervention of MPP(+). The expression of PGC-1α messenger RNA and protein significantly increased in Adv-PGC-1α + GFP groups, compared with the control and Adv-GFP groups (P < 0.01). The overexpression of PGC-1α could increase mitochondrial membrane potential, reduce the release of mitochondrial cytochrome C, inhibit H2O2 production, and improve the level of ATP in SH-SY5Y cells. The trend of expression of ERRα, PPARγ, and NRF-1 was more consistent with PGC-1α, the most remarkable change is ERRα, but the expression of NRF-2 has no significant changes. Under the gradually increasing concentration of MPP(+), microscale PGC-1α gradually appeared in the cytoplasm of SH-SY5Y cells. The overexpression of PGC-1α can inhibit MPP(+)-induced mitochondrial damage in SH-SY5Y cells, and PGC-1α may realize the neuroprotective effects via the ERRα, PPARγ, and NRF-1 pathway.
PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.
Hatazawa, Yukino; Tadaishi, Miki; Nagaike, Yuta; Morita, Akihito; Ogawa, Yoshihiro; Ezaki, Osamu; Takai-Igarashi, Takako; Kitaura, Yasuyuki; Shimomura, Yoshiharu; Kamei, Yasutomi; Miura, Shinji
2014-01-01
Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA) metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT) 2, branched-chain α-keto acid dehydrogenase (BCKDH), which catabolize BCAA. The expression of BCKDH kinase (BCKDK), which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.
PGC-1α-Mediated Branched-Chain Amino Acid Metabolism in the Skeletal Muscle
Nagaike, Yuta; Morita, Akihito; Ogawa, Yoshihiro; Ezaki, Osamu; Takai-Igarashi, Takako; Kitaura, Yasuyuki; Shimomura, Yoshiharu; Kamei, Yasutomi; Miura, Shinji
2014-01-01
Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA) metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT) 2, branched-chain α-keto acid dehydrogenase (BCKDH), which catabolize BCAA. The expression of BCKDH kinase (BCKDK), which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism. PMID:24638054
Method of differential-phase/absolute-amplitude QAM
Dimsdle, Jeffrey William [Overland Park, KS
2007-07-03
A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.
Method of differential-phase/absolute-amplitude QAM
Dimsdle, Jeffrey William [Overland Park, KS
2008-10-21
A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.
Method of differential-phase/absolute-amplitude QAM
Dimsdle, Jeffrey William [Overland Park, KS
2009-09-01
A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.
Method of differential-phase/absolute-amplitude QAM
Dimsdle, Jeffrey William [Overland Park, KS
2007-07-17
A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.
Method of differential-phase/absolute-amplitude QAM
Dimsdle, Jeffrey William
2007-10-02
A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.
Castillo, Gerardo M.; Reichstetter, Sandra; Bolotin, Elijah M.
2011-01-01
Purpose The purpose of this study is to determine whether a Protected Graft Copolymer (PGC) containing fatty acid can be used as a stabilizing excipient for GLP-1 and whether PGC/GLP-1 given once a week can be an effective treatment for diabetes. Methods To create a PGC excipient, polylysine was grafted with methoxypolyethyleneglycol and fatty acid at the epsilon amino groups. We performed evaluation of 1) the binding of excipient to GLP-1, 2) the DPP IV sensitivity of GLP-1 formulated with PGC as the excipient, 3) the in vitro bio-activity of excipient-formulated GLP-1, 4) the in vivo pharmacokinetics of excipient-formulated GLP-1, and 5) the efficacy of the excipient-formulated GLP-1 in diabetic rats. Results We showed reproducible synthesis of PGC excipient, showed high affinity binding of PGC to GLP-1, slowed protease degradation of excipient-formulated GLP-1, and showed that excipient-formulated GLP-1 induced calcium influx in INS cells. Excipient-formulated GLP-1 stays in the blood for at least 4 days. When excipient-formulated GLP-1 was given subcutaneously once a week to diabetic ZDF rats, a significant reduction of HbA1c compared to control was observed. The reduction is similar to diabetic ZDF rats given exendin twice a day. Conclusions PGC can be an ideal in vivo stabilizing excipient for biologically labile peptides. PMID:21830140
Pineal Gland Calcification in Kurdistan: A Cross-Sectional Study of 480 Roentgenograms.
Mohammed, Kahee A; Adjei Boakye, Eric; Ismail, Honer A; Geneus, Christian J; Tobo, Betelihem B; Buchanan, Paula M; Zelicoff, Alan P
2016-01-01
The goal of this study was to compare the incidence of Pineal Gland Calcification (PGC) by age group and gender among the populations living in the Kurdistan Region-Iraq. This prospective study examined skull X-rays of 480 patients between the ages of 3 and 89 years who sought care at a large teaching public hospital in Duhok, Iraq from June 2014 to November 2014. Descriptive statistics and a binary logistic regression were used for analysis. The overall incidence rate of PGC among the study population was 26.9% with the 51-60 age group and males having the highest incidence. PGC incidence increased after the first decade and remained steady until the age of 60. Thereafter the incidence began to decrease. Logistic regression analysis revealed that both age and gender significantly affected the risk of PGC. After adjusting for age, males were 1.94 (95% CI, 1.26-2.99) times more likely to have PGC compared to females. In addition, a one year increase in age increases the odds of developing PGC by 1.02 (95% CI, 1.01-1.03) units after controlling for the effects of gender. Our analysis demonstrated a close relationship between PGC and age and gender, supporting a link between the development of PGC and these factors. This study provides a basis for future researchers to further investigate the nature and mechanisms underlying pineal gland calcification.
PGC-1α Regulation of Mitochondrial Degeneration in Experimental Diabetic Neuropathy
Choi, Joungil; Chandrasekaran, Krish; Inoue, Tatsuya; Muragundla, Anjaneyulu; Russell, James W.
2014-01-01
Mitochondrial degeneration is considered to play an important role in the development of diabetic peripheral neuropathy in humans. Mitochondrial degeneration and the corresponding protein regulation associated with the degeneration were studied in an animal model of diabetic neuropathy. PGC-1α and its-regulated transcription factors including TFAM and NRF1, which are master regulators of mitochondrial biogenesis, are significantly downregulated in streptozotocin diabetic dorsal root ganglion (DRG) neurons. Diabetic mice develop peripheral neuropathy, loss of mitochondria, decreased mitochondrial DNA content and increased protein oxidation. Importantly, this phenotype is exacerbated in PGC-1α (−/−) diabetic mice, which develop a more severe neuropathy with reduced mitochondrial DNA and a further increase in protein oxidation. PGC-1α (−/−) diabetic mice develop an increase in total cholesterol and triglycerides, and a decrease in TFAM and NRF1 protein levels. Loss of PGC-1α causes severe mitochondrial degeneration with vacuolization in DRG neurons, coupled with reduced state 3 and 4 respiration, reduced expression of oxidative stress response genes and an increase in protein oxidation. In contrast, overexpression of PGC-1α in cultured adult mouse neurons prevents oxidative stress associated with increased glucose levels. The study provides new insights into the role of PGC-1α in mitochondrial regeneration in peripheral neurons and suggests that therapeutic modulation of PGC-1α function may be an attractive approach for treatment of diabetic neuropathy. PMID:24423644
Mu, Xiaoyu; Qi, Weihong; Liu, Yunzhang; Zhou, Jianfeng; Li, Yun; Rong, Xiaozhi; Lu, Ling
2017-08-01
Insulin-like growth factor II (IGF-II) can stimulate myogenesis and is critically involved in skeletal muscle differentiation. The presence of negative regulators of this process, however, is not well explored. Here, we showed that in myoblast cells, IGF-II negatively regulated peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA expression, while constitutive expression of PGC-1α induced myoblast differentiation. These results suggest that the negative regulation of PGC-1α by IGF-II may act as a negative feedback mechanism in IGF-II-induced myogenic differentiation. Reporter assays demonstrated that IGF-II suppresses the basal PGC-1α promoter activity. Blocking the IGF-II signaling pathway increased the endogenous PGC-1α levels. In addition, pharmacological inhibition of PI3 kinase activity prevented the downregulation of PGC-1α but the activation of mTOR was not required for this process. Importantly, further analysis showed that forkhead transcription factor FoxO1 contributes to mediating the effects of IGF-II on PGC-1 promoter activity. These findings indicate that IGF-II reduces PGC-1α expression in skeletal muscle cells through a mechanism involving PI3K-Akt-FoxO1 but not p38 MAPK or Erk1/2 MAPK pathways.
Role of microRNA-130b in placental PGC-1α/TFAM mitochondrial biogenesis pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Shaoning; Teague, April M.; Tryggestad, Jeanie B.
Diabetes during pregnancy is associated with abnormal placenta mitochondrial function and increased oxidative stress, which affect fetal development and offspring long-term health. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis and energy metabolism. The molecular mechanisms underlying the regulation of PGC-1α in placenta in the context of diabetes remain unclear. The present study examined the role of microRNA 130b (miR-130b-3p) in regulating PGC-1α expression and oxidative stress in a placental trophoblastic cell line (BeWo). Prolonged exposure of BeWo cells to high glucose mimicking hyperglycemia resulted in decreased protein abundance of PGC-1α and its downstream factor, mitochondrialmore » transcription factor A (TFAM). High glucose treatment increased the expression of miR-130b-3p in BeWo cells, as well as exosomal secretion of miR-130b-3p. Transfection of BeWo cells with miR-130b-3p mimic reduced the abundance of PGC-1α, whereas inhibition of miR-130b-3p increased PGC-1α expression in response to high glucose, suggesting a role for miR-130b-3p in mediating high glucose-induced down regulation of PGC-1α expression. In addition, miR-130b-3p anti-sense inhibitor increased TFAM expression and reduced 4-hydroxynonenal (4-HNE)-induced production of reactive oxygen species (ROS). Taken together, these findings reveal that miR-130b-3p down-regulates PGC-1α expression in placental trophoblasts, and inhibition of miR-130b-3p appears to improve mitochondrial biogenesis signaling and protect placental trophoblast cells from oxidative stress. - Highlights: • High glucose reduces PGC-1α and TFAM proteins in trophoblast BeWo cells. • miR-130b-3p mediates high glucose-induced decrease in PGC-1α abundance. • Inhibition of miR-130b-3p improves mitochondrial biogenesis signaling. • Inhibition of miR-130b-3p protects trophoblasts against oxidative stress.« less
NASA Astrophysics Data System (ADS)
Shahriar, Md Rifat; Borghesani, Pietro; Randall, R. B.; Tan, Andy C. C.
2017-11-01
Demodulation is a necessary step in the field of diagnostics to reveal faults whose signatures appear as an amplitude and/or frequency modulation. The Hilbert transform has conventionally been used for the calculation of the analytic signal required in the demodulation process. However, the carrier and modulation frequencies must meet the conditions set by the Bedrosian identity for the Hilbert transform to be applicable for demodulation. This condition, basically requiring the carrier frequency to be sufficiently higher than the frequency of the modulation harmonics, is usually satisfied in many traditional diagnostic applications (e.g. vibration analysis of gear and bearing faults) due to the order-of-magnitude ratio between the carrier and modulation frequency. However, the diversification of the diagnostic approaches and applications shows cases (e.g. electrical signature analysis-based diagnostics) where the carrier frequency is in close proximity to the modulation frequency, thus challenging the applicability of the Bedrosian theorem. This work presents an analytic study to quantify the error introduced by the Hilbert transform-based demodulation when the Bedrosian identity is not satisfied and proposes a mitigation strategy to combat the error. An experimental study is also carried out to verify the analytical results. The outcome of the error analysis sets a confidence limit on the estimated modulation (both shape and magnitude) achieved through the Hilbert transform-based demodulation in case of violated Bedrosian theorem. However, the proposed mitigation strategy is found effective in combating the demodulation error aroused in this scenario, thus extending applicability of the Hilbert transform-based demodulation.
Exploring the Role of PGC-1α in Defining Nuclear Organisation in Skeletal Muscle Fibres.
Ross, Jacob A; Pearson, Adam; Levy, Yotam; Cardel, Bettina; Handschin, Christoph; Ochala, Julien
2017-06-01
Muscle fibres are multinucleated cells, with each nucleus controlling the protein synthesis in a finite volume of cytoplasm termed the myonuclear domain (MND). What determines MND size remains unclear. In the present study, we aimed to test the hypothesis that the level of expression of the transcriptional coactivator PGC-1α and subsequent activation of the mitochondrial biogenesis are major contributors. Hence, we used two transgenic mouse models with varying expression of PGC-1α in skeletal muscles. We isolated myofibres from the fast twitch extensor digitorum longus (EDL) and slow twitch diaphragm muscles. We then membrane-permeabilised them and analysed the 3D spatial arrangements of myonuclei. In EDL muscles, when PGC-1α is over-expressed, MND volume decreases; whereas, when PGC-1α is lacking, no change occurs. In the diaphragm, no clear difference was noted. This indicates that PGC-1α and the related mitochondrial biogenesis programme are determinants of MND size. PGC-1α may facilitate the addition of new myonuclei in order to reach MND volumes that can support an increased mitochondrial density. J. Cell. Physiol. 232: 1270-1274, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Nishida, Tamotsu; Yamada, Yoshiji
2016-05-13
Parkin-interacting substrate (PARIS), a member of the family of Krüppel-associated box (KRAB)-containing zinc-finger transcription factors, is a substrate of the ubiquitin E3 ligase parkin. PARIS represses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), although the underlying mechanisms remain largely unknown. In the present study, we demonstrate that PARIS can be SUMOylated, and its SUMOylation plays a role in the repression of PGC-1a promoter activity. Protein inhibitor of activated STAT y (PIASy) was identified as an interacting protein of PARIS and shown to enhance its SUMOylation. PIASy repressed PGC-1a promoter activity, and this effect was attenuated by PARIS in a manner dependent on its SUMOylation status. Co-expression of SUMO-1 with PIASy completely repressed PGC-1a promoter activity independently of PARIS expression. PARIS-mediated PGC-1a promoter repression depended on the activity of histone deacetylases (HDAC), whereas PIASy repressed the PGC-1a promoter in an HDAC-independent manner. Taken together, these results suggest that PARIS and PIASy modulate PGC-1a gene transcription through distinct molecular mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.
Demodulation circuit for AC motor current spectral analysis
Hendrix, Donald E.; Smith, Stephen F.
1990-12-18
A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.
SAW correlator spread spectrum receiver
Brocato, Robert W
2014-04-01
A surface acoustic wave (SAW) correlator spread-spectrum (SS) receiver is disclosed which utilizes a first demodulation stage with a chip length n and a second demodulation stage with a chip length m to decode a transmitted SS signal having a code length l=n.times.m which can be very long (e.g. up to 2000 chips or more). The first demodulation stage utilizes a pair of SAW correlators which demodulate the SS signal to generate an appropriate code sequence at an intermediate frequency which can then be fed into the second demodulation stage which can be formed from another SAW correlator, or by a digital correlator. A compound SAW correlator comprising two input transducers and a single output transducer is also disclosed which can be used to form the SAW correlator SS receiver, or for use in processing long code length signals.
Dwivedi, Shailendra Kumar Dhar; Singh, Nidhi; Kumari, Rashmi; Mishra, Jay Sharan; Tripathi, Sarita; Banerjee, Priyam; Shah, Priyanka; Kukshal, Vandana; Tyagi, Abdul Malik; Gaikwad, Anil Nilkanth; Chaturvedi, Rajnish Kumar; Mishra, Durga Prasad; Trivedi, Arun Kumar; Sanyal, Somali; Chattopadhyay, Naibedya; Ramachandran, Ravishankar; Siddiqi, Mohammad Imran; Bandyopadhyay, Arun; Arora, Ashish; Lundåsen, Thomas; Anakk, Sayee Priyadarshini; Moore, David D.
2011-01-01
Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is induced in energy-starved conditions and is a key regulator of energy homeostasis. This makes PGC-1α an attractive therapeutic target for metabolic syndrome and diabetes. In our effort to identify new regulators of PGC-1α expression, we found that GW4064, a widely used synthetic agonist for the nuclear bile acid receptor [farnesoid X receptor (FXR)] strongly enhances PGC-1α promoter reporter activity, mRNA, and protein expression. This induction in PGC-1α concomitantly enhances mitochondrial mass and expression of several PGC-1α target genes involved in mitochondrial function. Using FXR-rich or FXR-nonexpressing cell lines and tissues, we found that this effect of GW4064 is not mediated directly by FXR but occurs via activation of estrogen receptor-related receptor α (ERRα). Cell-based, biochemical and biophysical assays indicate GW4064 as an agonist of ERR proteins. Interestingly, FXR disruption alters GW4064 induction of PGC-1α mRNA in a tissue-dependent manner. Using FXR-null [FXR knockout (FXRKO)] mice, we determined that GW4064 induction of PGC-1α expression is not affected in oxidative soleus muscles of FXRKO mice but is compromised in the FXRKO liver. Mechanistic studies to explain these differences revealed that FXR physically interacts with ERR and protects them from repression by the atypical corepressor, small heterodimer partner in liver. Together, this interplay between ERRα-FXR-PGC-1α and small heterodimer partner offers new insights into the biological functions of ERRα and FXR, thus providing a knowledge base for therapeutics in energy balance-related pathophysiology. PMID:21493670
Botta, Amy; Laher, Ismail; Beam, Julianne; Decoffe, Daniella; Brown, Kirsty; Halder, Swagata; Devlin, Angela; Gibson, Deanna L; Ghosh, Sanjoy
2013-01-01
PGC-1α, a transcriptional coactivator, controls inflammation and mitochondrial gene expression in insulin-sensitive tissues following exercise intervention. However, attributing such effects to PGC-1α is counfounded by exercise-induced fluctuations in blood glucose, insulin or bodyweight in diabetic patients. The goal of this study was to investigate the role of PGC-1α on inflammation and mitochondrial protein expressions in aging db/db mice hearts, independent of changes in glycemic parameters. In 8-month-old db/db mice hearts with diabetes lasting over 22 weeks, short-term, moderate-intensity exercise upregulated PGC-1α without altering body weight or glycemic parameters. Nonetheless, such a regimen lowered both cardiac (macrophage infiltration, iNOS and TNFα) and systemic (circulating chemokines and cytokines) inflammation. Curiously, such an anti-inflammatory effect was also linked to attenuated expression of downstream transcription factors of PGC-1α such as NRF-1 and several respiratory genes. Such mismatch between PGC-1α and its downstream targets was associated with elevated mitochondrial membrane proteins like Tom70 but a concurrent reduction in oxidative phosphorylation protein expressions in exercised db/db hearts. As mitochondrial oxidative stress was predominant in these hearts, in support of our in vivo data, increasing concentrations of H2O2 dose-dependently increased PGC-1α expression while inhibiting expression of inflammatory genes and downstream transcription factors in H9c2 cardiomyocytes in vitro. We conclude that short-term exercise-induced oxidative stress may be key in attenuating cardiac inflammatory genes and impairing PGC-1α mediated gene transcription of downstream transcription factors in type 2 diabetic hearts at an advanced age.
Xue, Yunxing; Wei, Zhe; Ding, Hanying; Wang, Qiang; Zhou, Zhen; Zheng, Shasha; Zhang, Yujing; Hou, Dongxia; Liu, Yuchen; Zen, Ke; Zhang, Chen-Yu; Li, Jing; Wang, Dongjin; Jiang, Xiaohong
2015-08-01
Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a master regulator of cellular energy metabolism that is associated with many cardiovascular diseases, including atherosclerosis. However, the role and underling regulatory mechanisms of PGC-1α in the pathogenesis of atherosclerosis are not completely understood. Here, we identified the microRNAs that post-transcriptionally regulate PGC-1α production and their roles in the pathogenesis of atherosclerosis. A significant down-regulation of PGC-1α protein was observed in human atherosclerotic vessel samples. Using microarray and bioinformatics analyses, PGC-1α was identified as a common target gene of miR-19b-3p, miR-221-3p and miR-222-3p, which are mainly located in the intima of atherosclerotic vessels. In vitro induction of miR-19b-3p, miR-221-3p and miR-222-3p by the inflammatory cytokines TNFα and IFNγ may affect PGC-1α protein production and consequently result in mitochondrial dysfunction in Human Aortic Endothelial Cells (HAECs). The overexpression of miR-19b-3p, miR-221-3p and miR-222-3p in HAECs caused intracellular ROS accumulation, which led to cellular apoptosis. Taken together, these results demonstrate that PGC-1α plays a protective role against the vascular complications of atherosclerosis. Moreover, the posttranscriptional regulation of PGC-1α by miR-19b/221/222 was unveiled, which provides a novel mechanism in which a panel of microRNAs can modulate endothelial cell apoptosis via the regulation mitochondrial function. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Youssofzadeh, Vahab; Prasad, Girijesh; Naeem, Muhammad; Wong-Lin, KongFatt
2016-01-01
Partial Granger causality (PGC) has been applied to analyse causal functional neural connectivity after effectively mitigating confounding influences caused by endogenous latent variables and exogenous environmental inputs. However, it is not known how this connectivity obtained from PGC evolves over time. Furthermore, PGC has yet to be tested on realistic nonlinear neural circuit models and multi-trial event-related potentials (ERPs) data. In this work, we first applied a time-domain PGC technique to evaluate simulated neural circuit models, and demonstrated that the PGC measure is more accurate and robust in detecting connectivity patterns as compared to conditional Granger causality and partial directed coherence, especially when the circuit is intrinsically nonlinear. Moreover, the connectivity in PGC settles faster into a stable and correct configuration over time. After method verification, we applied PGC to reveal the causal connections of ERP trials of a mismatch negativity auditory oddball paradigm. The PGC analysis revealed a significant bilateral but asymmetrical localised activity in the temporal lobe close to the auditory cortex, and causal influences in the frontal, parietal and cingulate cortical areas, consistent with previous studies. Interestingly, the time to reach a stable connectivity configuration (~250–300 ms) coincides with the deviation of ensemble ERPs of oddball from standard tones. Finally, using a sliding time window, we showed higher resolution dynamics of causal connectivity within an ERP trial. In summary, time-domain PGC is promising in deciphering directed functional connectivity in nonlinear and ERP trials accurately, and at a sufficiently early stage. This data-driven approach can reduce computational time, and determine the key architecture for neural circuit modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong Il; Park, Soo Hyun, E-mail: parksh@chonnam.ac.kr
Highlights: •The pathophysiological role of IL-6 in high glucose-induced podocyte loss. •The novel role of PGC-1α in the development of diabetic nephropathy. •Signaling of IL-6 and PGC-1α in high glucose-induced dysfunction of podocyte. -- Abstract: Podocyte loss, which is mediated by podocyte apoptosis, is implicated in the onset of diabetic nephropathy. In this study, we investigated the involvement of interleukin (IL)-6 in high glucose-induced apoptosis of rat podocytes. We also examined the pathophysiological role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) in this system. High glucose treatment induced not only podocyte apoptosis but also podocyte growth arrest. High glucosemore » treatment also increased IL-6 secretion and activated IL-6 signaling. The high glucose-induced podocyte apoptosis was blocked by IL-6 neutralizing antibody. IL-6 treatment or overexpression induced podocyte apoptosis and growth arrest, and IL-6 siRNA transfection blocked high glucose-induced podocyte apoptosis and growth arrest. Furthermore, high glucose or IL-6 treatment increased PGC-1α expression, and PGC-1α overexpression also induced podocyte apoptosis and growth arrest. PGC-1α siRNA transfection blocked high glucose-induced podocyte apoptosis and growth arrest. Collectively, these findings showed that high glucose promoted apoptosis and cell growth arrest in podocytes via IL-6 signaling. In addition, PGC-1α is involved in podocyte apoptosis and cell growth arrest. Therefore, blocking IL-6 and its downstream mediators such as IL6Rα, gp130 and PGC-1α may attenuate the progression of diabetic nephropathy.« less
Selsby, Joshua T; Morine, Kevin J; Pendrak, Klara; Barton, Elisabeth R; Sweeney, H Lee
2012-01-01
Increased utrophin expression is known to reduce pathology in dystrophin-deficient skeletal muscles. Transgenic over-expression of PGC-1α has been shown to increase levels of utrophin mRNA and improve the histology of mdx muscles. Other reports have shown that PGC-1α signaling can lead to increased oxidative capacity and a fast to slow fiber type shift. Given that it has been shown that slow fibers produce and maintain more utrophin than fast skeletal muscle fibers, we hypothesized that over-expression of PGC-1α in post-natal mdx mice would increase utrophin levels via a fiber type shift, resulting in more slow, oxidative fibers that are also more resistant to contraction-induced damage. To test this hypothesis, neonatal mdx mice were injected with recombinant adeno-associated virus (AAV) driving expression of PGC-1α. PGC-1α over-expression resulted in increased utrophin and type I myosin heavy chain expression as well as elevated mitochondrial protein expression. Muscles were shown to be more resistant to contraction-induced damage and more fatigue resistant. Sirt-1 was increased while p38 activation and NRF-1 were reduced in PGC-1α over-expressing muscle when compared to control. We also evaluated if the use a pharmacological PGC-1α pathway activator, resveratrol, could drive the same physiological changes. Resveratrol administration (100 mg/kg/day) resulted in improved fatigue resistance, but did not achieve significant increases in utrophin expression. These data suggest that the PGC-1α pathway is a potential target for therapeutic intervention in dystrophic skeletal muscle.
On the performance of digital phase locked loops in the threshold region
NASA Technical Reports Server (NTRS)
Hurst, G. T.; Gupta, S. C.
1974-01-01
Extended Kalman filter algorithms are used to obtain a digital phase lock loop structure for demodulation of angle modulated signals. It is shown that the error variance equations obtained directly from this structure enable one to predict threshold if one retains higher frequency terms. This is in sharp contrast to the similar analysis of the analog phase lock loop, where the higher frequency terms are filtered out because of the low pass filter in the loop. Results are compared to actual simulation results and threshold region results obtained previously.
Global optimization of multimode interference structure for ratiometric wavelength measurement
NASA Astrophysics Data System (ADS)
Wang, Qian; Farrell, Gerald; Hatta, Agus Muhamad
2007-07-01
The multimode interference structure is conventionally used as a splitter/combiner. In this paper, it is optimised as an edge filter for ratiometric wavelength measurement, which can be used in demodulation of fiber Bragg grating sensing. The global optimization algorithm-adaptive simulated annealing is introduced in the design of multimode interference structure including the length and width of the multimode waveguide section, and positions of the input and output waveguides. The designed structure shows a suitable spectral response for wavelength measurement and a good fabrication tolerance.
Optimization of an integrated wavelength monitor device
NASA Astrophysics Data System (ADS)
Wang, Pengfei; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Farrell, Gerald
2011-05-01
In this paper an edge filter based on multimode interference in an integrated waveguide is optimized for a wavelength monitoring application. This can also be used as a demodulation element in a fibre Bragg grating sensing system. A global optimization algorithm is presented for the optimum design of the multimode interference device, including a range of parameters of the multimode waveguide, such as length, width and position of the input and output waveguides. The designed structure demonstrates the desired spectral response for wavelength measurements. Fabrication tolerance is also analysed numerically for this structure.
High-temperature fiber-optic Fabry-Perot interferometric sensors.
Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu
2015-05-01
A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.
High-temperature fiber-optic Fabry-Perot interferometric sensors
NASA Astrophysics Data System (ADS)
Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu
2015-05-01
A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.
A reconfigurable multicarrier demodulator architecture
NASA Technical Reports Server (NTRS)
Kwatra, S. C.; Jamali, M. M.
1991-01-01
An architecture based on parallel and pipline design approaches has been developed for the Frequency Division Multiple Access/Time Domain Multiplexed (FDMA/TDM) conversion system. The architecture has two main modules namely the transmultiplexer and the demodulator. The transmultiplexer has two pipelined modules. These are the shared multiplexed polyphase filter and the Fast Fourier Transform (FFT). The demodulator consists of carrier, clock, and data recovery modules which are interactive. Progress on the design of the MultiCarrier Demodulator (MCD) using commercially available chips and Application Specific Integrated Circuits (ASIC) and simulation studies using Viewlogic software will be presented at the conference.
Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice.
Lin, Jiandie; Wu, Pei-Hsuan; Tarr, Paul T; Lindenberg, Katrin S; St-Pierre, Julie; Zhang, Chen-Yu; Mootha, Vamsi K; Jäger, Sibylle; Vianna, Claudia R; Reznick, Richard M; Cui, Libin; Manieri, Monia; Donovan, Mi X; Wu, Zhidan; Cooper, Marcus P; Fan, Melina C; Rohas, Lindsay M; Zavacki, Ann Marie; Cinti, Saverio; Shulman, Gerald I; Lowell, Bradford B; Krainc, Dimitri; Spiegelman, Bruce M
2004-10-01
PGC-1alpha is a coactivator of nuclear receptors and other transcription factors that regulates several metabolic processes, including mitochondrial biogenesis and respiration, hepatic gluconeogenesis, and muscle fiber-type switching. We show here that, while hepatocytes lacking PGC-1alpha are defective in the program of hormone-stimulated gluconeogenesis, the mice have constitutively activated gluconeogenic gene expression that is completely insensitive to normal feeding controls. C/EBPbeta is elevated in the livers of these mice and activates the gluconeogenic genes in a PGC-1alpha-independent manner. Despite having reduced mitochondrial function, PGC-1alpha null mice are paradoxically lean and resistant to diet-induced obesity. This is largely due to a profound hyperactivity displayed by the null animals and is associated with lesions in the striatal region of the brain that controls movement. These data illustrate a central role for PGC-1alpha in the control of energy metabolism but also reveal novel systemic compensatory mechanisms and pathogenic effects of impaired energy homeostasis.
The metabolic co-regulator PGC1α suppresses prostate cancer metastasis
Cortazar, Ana Rosa; Liu, Xiaojing; Urosevic, Jelena; Castillo-Martin, Mireia; Fernández-Ruiz, Sonia; Morciano, Giampaolo; Caro-Maldonado, Alfredo; Guiu, Marc; Zúñiga-García, Patricia; Graupera, Mariona; Bellmunt, Anna; Pandya, Pahini; Lorente, Mar; Martín-Martín, Natalia; Sutherland, James David; Sanchez-Mosquera, Pilar; Bozal-Basterra, Laura; Zabala-Letona, Amaia; Arruabarrena-Aristorena, Amaia; Berenguer, Antonio; Embade, Nieves; Ugalde-Olano, Aitziber; Lacasa-Viscasillas, Isabel; Loizaga-Iriarte, Ana; Unda-Urzaiz, Miguel; Schultz, Nikolaus; Aransay, Ana Maria; Sanz-Moreno, Victoria; Barrio, Rosa; Velasco, Guillermo; Pinton, Paolo; Cordon-Cardo, Carlos; Carracedo, Arkaitz
2016-01-01
Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator PGC1α suppresses prostate cancer progression and metastasis. A metabolic co-regulator data mining analysis unveiled that PGC1α is down-regulated in prostate cancer and associated to disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α activates an Oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis suppression. Importantly, a signature based on the PGC1α-ERRα pathway exhibited prognostic potential in prostate cancer, thus uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment. PMID:27214280
Dnd Is a Critical Specifier of Primordial Germ Cells in the Medaka Fish.
Hong, Ni; Li, Mingyou; Yuan, Yongming; Wang, Tiansu; Yi, Meisheng; Xu, Hongyan; Zeng, Huaqiang; Song, Jianxing; Hong, Yunhan
2016-03-08
Primordial germ cell (PGC) specification occurs early in development. PGC specifiers have been identified in Drosophila, mouse, and human but remained elusive in most animals. Here we identify the RNA-binding protein Dnd as a critical PGC specifier in the medaka fish (Oryzias latipes). Dnd depletion specifically abolished PGCs, and its overexpression boosted PGCs. We established a single-cell culture procedure enabling lineage tracing in vitro. We show that individual blastomeres from cleavage embryos at the 32- and 64-cell stages are capable of PGC production in culture. Importantly, Dnd overexpression increases PGCs via increasing PGC precursors. Strikingly, dnd RNA forms prominent particles that segregate asymmetrically. Dnd concentrates in germ plasm and stabilizes germ plasm RNA. Therefore, Dnd is a critical specifier of fish PGCs and utilizes particle partition as a previously unidentified mechanism for asymmetric segregation. These findings offer insights into PGC specification and manipulation in medaka as a lower vertebrate model. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Hybrid Hard and Soft Decision Decoding of Reed-Solomon Codes for M-ary Frequency-Shift Keying
2010-06-01
Reed-Solomon (RS) coding, Orthogonal signaling, Additive White Gaussian Noise (AWGN), Pulse-Noise Interference (PNI), coherent detection, noncoherent ...Coherent Demodulation of MFSK ....................................................10 2. Noncoherent Demodulation of MFSK...62 V. PERFORMANCE SIMULATION AND ANALYSIS OF MFSK WITH RS ENCODING, HYBRID HD SD DECODING, AND NONCOHERENT DEMODULATION IN AWGN
The modulation and demodulation module of a high resolution MOEMS accelerometer
NASA Astrophysics Data System (ADS)
Jiao, Xufen; Bai, Jian; Lu, Qianbo; Lou, Shuqi
2016-02-01
A MOEMS accelerometer with high precision based on grating interferometer is demonstrated in this paper. In order to increase the signal-to-noise ratio (SNR) and accuracy, a specific modulator and an orthogonal phase-lock demodulator are proposed. Phase modulation is introduced to this accelerometer by applying a sinusoidal signal to a piezoelectric translator (PZT) amounted to the accelerometer. Phase demodulation module consists of a circuit design and a digital design. In the circuit design, the modulated light intensity signal is converted to a voltage signal and processed. In the digital part, the demodulator is mainly composed of a Band Pass Filter, two Phase-Sensitive Detectors, a phase shifter, and two Low Pass Filters based on virtual instrument. Simulation results indicate that this approach can decrease the noise greatly, and the SNR of this demodulator is 50dB and the relative error is less than 4%.
NASA Astrophysics Data System (ADS)
Ito, Kazuhito; Nakagawa, Seiji
2015-07-01
A novel hearing aid system utilizing amplitude-modulated bone-conducted ultrasound (AM-BCU) is being developed for use by profoundly deaf people. However, there is a lack of research on the acoustic aspects of AM-BCU hearing. In this study, acoustic fields in the ear canal under AM-BCU stimulation were examined with respect to the self-demodulation effect of amplitude-modulated signal components generated in the ear canal. We found self-demodulated signals with an audible sound pressure level related to the amplitude-modulated signal components of bone-conducted ultrasonic stimulation. In addition, the increases in the self-demodulated signal levels at low frequencies in the ear canal after occluding the ear canal opening, i.e., the positive occlusion effect, indicate the existence of a pathway by which the self-demodulated signals pass through the aural cartilage and soft tissue, and radiate into the ear canal.
A review of demodulation techniques for amplitude-modulation atomic force microscopy
Harcombe, David M; Ragazzon, Michael R P; Moheimani, S O Reza; Fleming, Andrew J
2017-01-01
In this review paper, traditional and novel demodulation methods applicable to amplitude-modulation atomic force microscopy are implemented on a widely used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflection signal in the presence of sensor noise or additional distinct frequency components. Specifically for modern multifrequency techniques, where higher harmonic and/or higher eigenmode contributions are present in the oscillation signal, the fidelity of the estimates obtained from some demodulation techniques is not guaranteed. To enable a rigorous comparison, the performance metrics tracking bandwidth, implementation complexity and sensitivity to other frequency components are experimentally evaluated for each method. Finally, the significance of an adequate demodulator bandwidth is highlighted during high-speed tapping-mode atomic force microscopy experiments in constant-height mode. PMID:28900596
Volterra series based blind equalization for nonlinear distortions in short reach optical CAP system
NASA Astrophysics Data System (ADS)
Tao, Li; Tan, Hui; Fang, Chonghua; Chi, Nan
2016-12-01
In this paper, we propose a blind Volterra series based nonlinear equalization (VNLE) with low complexity for the nonlinear distortion mitigation in short reach optical carrierless amplitude and phase (CAP) modulation system. The principle of the blind VNLE is presented and the performance of its blind adaptive algorithms including the modified cascaded multi-mode algorithm (MCMMA) and direct detection LMS (DD-LMS) are investigated experimentally. Compared to the conventional VNLE using training symbols before demodulation, it is performed after matched filtering and downsampling, so shorter memory length is required but similar performance improvement is observed. About 1 dB improvement is observed at BER of 3.8×10-3 for 40 Gb/s CAP32 signal over 40 km standard single mode fiber.
Montaux-Lambert, Antoine; Mercère, Pascal; Primot, Jérôme
2015-11-02
An interferogram conditioning procedure, for subsequent phase retrieval by Fourier demodulation, is presented here as a fast iterative approach aiming at fulfilling the classical boundary conditions imposed by Fourier transform techniques. Interference fringe patterns with typical edge discontinuities were simulated in order to reveal the edge artifacts that classically appear in traditional Fourier analysis, and were consecutively used to demonstrate the correction efficiency of the proposed conditioning technique. Optimization of the algorithm parameters is also presented and discussed. Finally, the procedure was applied to grating-based interferometric measurements performed in the hard X-ray regime. The proposed algorithm enables nearly edge-artifact-free retrieval of the phase derivatives. A similar enhancement of the retrieved absorption and fringe visibility images is also achieved.
The role of nNOS and PGC-1α in skeletal muscle cells.
Baldelli, Sara; Lettieri Barbato, Daniele; Tatulli, Giuseppe; Aquilano, Katia; Ciriolo, Maria Rosa
2014-11-15
Neuronal nitric oxide synthase (nNOS) and peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α) are two fundamental factors involved in the regulation of skeletal muscle cell metabolism. nNOS exists as several alternatively spliced variants, each having a specific pattern of subcellular localisation. Nitric oxide (NO) functions as a second messenger in signal transduction pathways that lead to the expression of metabolic genes involved in oxidative metabolism, vasodilatation and skeletal muscle contraction. PGC-1α is a transcriptional coactivator and represents a master regulator of mitochondrial biogenesis by promoting the transcription of mitochondrial genes. PGC-1α can be induced during physical exercise, and it plays a key role in coordinating the oxidation of intracellular fatty acids with mitochondrial remodelling. Several lines of evidence demonstrate that NO could act as a key regulator of PGC-1α expression; however, the link between nNOS and PGC-1α in skeletal muscle remains only poorly understood. In this Commentary, we review important metabolic pathways that are governed by nNOS and PGC-1α, and aim to highlight how they might intersect and cooperatively regulate skeletal muscle mitochondrial and lipid energetic metabolism and contraction. © 2014. Published by The Company of Biologists Ltd.
Popov, Daniil V; Lysenko, Evgeny A; Butkov, Alexey D; Vepkhvadze, Tatiana F; Perfilov, Dmitriy V; Vinogradova, Olga L
2017-03-01
What is the central question of this study? This study was designed to investigate the role of AMPK in the regulation of PGC-1α gene expression via the alternative promoter through a cAMP response element-binding protein-1-dependent mechanism in human skeletal muscle. What is the main finding and its importance? Low-intensity exercise markedly increased the expression of PGC-1α mRNA via the alternative promoter, without increases in ACC Ser79/222 (a marker of AMPK activation) and AMPK Thr172 phosphorylation. A single dose of the AMPK activator metformin indicated that AMPK was not involved in regulating PGC-1α mRNA expression via the alternative promoter in endurance-trained human skeletal muscle. In human skeletal muscle, PGC-1α is constitutively expressed via the canonical promoter. In contrast, the expression of PGC-1α mRNA via the alternative promoter was found to be highly dependent on the intensity of exercise and to contribute largely to the postexercise increase of total PGC-1α mRNA. This study investigated the role of AMPK in regulating PGC-1α gene expression via the alternative promoter through a cAMP response element-binding protein-1-dependent mechanism in human skeletal muscle. AMPK activation and PGC-1α gene expression were assayed in skeletal muscle of nine endurance-trained men before and after low-intensity exercise (38% of maximal oxygen uptake) and with or without administration of a single dose (2 g) of the AMPK activator metformin. Low-intensity exercise markedly and significantly increased (∼100-fold, P < 0.05) the expression of PGC-1α mRNA via the alternative promoter, without increasing ACC Ser79/222 (a marker of AMPK activation) and AMPK Thr172 phosphorylation. Moreover, in contrast to placebo, metformin increased the level of ACC Ser79/222 phosphorylation immediately after exercise (2.6-fold, P < 0.05). However postexercise expression of PGC-1α gene via the alternative promoter was not affected. This study was unable to confirm that AMPK plays a role in regulating PGC-1α gene expression via the alternative promoter in endurance-trained human skeletal muscle. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Ten-Tsao, E-mail: wong20@purdue.edu; Collodi, Paul
2013-01-04
Highlights: Black-Right-Pointing-Pointer We discovered that nanos3 3 Prime UTR prolonged PGC-specific protein expression up to 26 days. Black-Right-Pointing-Pointer Expression of Fgf2 in PGCs significantly increased PGC number at later developmental stages. Black-Right-Pointing-Pointer Expression of Lif in PGCs resulted in a significant disruption of PGC migration. Black-Right-Pointing-Pointer Lif illicited its effect on PGC migration through Lif receptor a. Black-Right-Pointing-Pointer Our approach could be used to achieve prolonged PGC-specific expression of other proteins. -- Abstract: Primordial germ cells (PGCs), specified early in development, proliferate and migrate to the developing gonad before sexual differentiation occurs in the embryo and eventually give rise tomore » spermatogonia or oogonia. In this study, we discovered that nanos3 3 Prime UTR, a common method used to label PGCs, not only directed PGC-specific expression of DsRed but also prolonged this expression up to 26 days post fertilization (dpf) when DsRed-nanos3 3 Prime UTR hybrid mRNAs were introduced into 1- to 2-cell-stage embryos. As such, we employed this knowledge to express zebrafish leukemia inhibitory factor (Lif), basic fibroblast growth factor (Fgf2) and bone morphogenetic protein 4 (Bmp4) in the PGCs and evaluate their effects on PGC development in vivo for over a period of 3 weeks. The results show that expression of Fgf2 significantly increased PGC number at 14- and 21-dpf while Bmp4 resulted in severe ventralization and death of the embryos by 3 days. Expression of Lif resulted in a significant disruption of PGC migration. Mopholino knockdown experiments indicated that Lif illicited its effect on PGC migration through Lif receptor a (Lifra) but not Lifrb. The general approach described in this study could be used to achieve prolonged PGC-specific expression of other proteins to investigate their roles in germ cell and gonad development. The results also indicate that zebrafish PGCs have a mechanism to stabilize and prolong the expression of mRNA that carries nanos3 3 Prime UTR. Understanding this mechanism may make it possible to achieve prolonged RNA expression in other cell types.« less
Gatti, Davide; Galzerano, Gianluca; Laporta, Paolo; Longhi, Stefano; Janner, Davide; Guglierame, Andrea; Belmonte, Michele
2008-07-01
Optimal demodulation of differential phase-shift keying signals at 10 Gbit/s is experimentally demonstrated using a specially designed structured fiber Bragg grating composed by Fabry-Perot coupled cavities. Bit-error-rate measurements show that, as compared with a conventional Gaussian-shaped filter, our demodulator gives approximately 2.8 dB performance improvement.
Degradation in finite-harmonic subcarrier demodulation
NASA Technical Reports Server (NTRS)
Feria, Y.; Townes, S.; Pham, T.
1995-01-01
Previous estimates on the degradations due to a subcarrier loop assume a square-wave subcarrier. This article provides a closed-form expression for the degradations due to the subcarrier loop when a finite number of harmonics are used to demodulate the subcarrier, as in the case of the buffered telemetry demodulator. We compared the degradations using a square wave and using finite harmonics in the subcarrier demodulation and found that, for a low loop signal-to-noise ratio, using finite harmonics leads to a lower degradation. The analysis is under the assumption that the phase noise in the subcarrier (SC) loop has a Tikhonov distribution. This assumption is valid for first-order loops.
Overlap Spectrum Fiber Bragg Grating Sensor Based on Light Power Demodulation
Zhang, Hao; Jiang, Junzhen; Liu, Shuang; Chen, Huaixi; Zheng, Xiaoqian; Qiu, Yishen
2018-01-01
Demodulation is a bottleneck for applications involving fiber Bragg gratings (FBGs). An overlap spectrum FBG sensor based on a light power demodulation method is presented in this paper. The demodulation method uses two chirp FBGs (cFBGs) of which the reflection spectra partially overlap each other. The light power variation of the overlap spectrum can be linked to changes in the measurand, and the sensor function can be realized via this relationship. A temperature experiment showed that the relationship between the overlap power spectrum of the FBG sensor and temperature had good linearity and agreed with the theoretical analysis. PMID:29772793
Waldman, Maayan; Bellner, Lars; Vanella, Luca; Schragenheim, Joseph; Sodhi, Komal; Singh, Shailendra P.; Lin, Daohong; Lakhkar, Anand; Li, Jiangwei; Hochhauser, Edith; Arad, Michael; Darzynkiewicz, Zbigniew; Kappas, Atallah
2016-01-01
Epoxyeicosatrienoic acid (EET) contributes to browning of white adipose stem cells to ameliorate obesity/diabetes and insulin resistance. In the current study, we show that EET altered preadipocyte function, enhanced peroxisome proliferation-activated receptor γ coactivator α (PGC-1α) expression, and increased mitochondrial function in the 3T3-L1 preadipocyte subjected to adipogenesis. Cells treated with EET resulted in an increase, P < 0.05, in PGC-1α and a decrease in mitochondria-derived ROS (MitoSox), P < 0.05. The EET increase in heme oxygenase-1 (HO-1) levels is dependent on activation of PGC-1α as cells deficient in PGC-1α (PGC-1α knockout adipocyte cell) have an impaired ability to express HO-1, P < 0.02. Additionally, adipocytes treated with EET exhibited an increase in mitochondrial superoxide dismutase (SOD) in a PGC-1α-dependent manner, P < 0.05. The increase in PGC-1α was associated with an increase in β-catenin, P < 0.05, adiponectin expression, P < 0.05, and lipid accumulation, P < 0.02. EET decreased heme levels and mitochondria-derived ROS (MitoSox), P < 0.05, compared to adipocytes that were untreated. EET also decreased mesoderm-specific transcript (MEST) mRNA and protein levels (P < 0.05). Adipocyte secretion of EET act in an autocrine/paracrine manner to increase PGC-1α is required for activation of HO-1 expression. This is the first study to dissect the mechanism by which the antiadipogenic and anti-inflammatory lipid, EET, induces the PGC-1α signaling cascade and reprograms the adipocyte phenotype by regulating mitochondrial function and HO-1 expression, leading to an increase in healthy, that is, small, adipocytes and a decrease in adipocyte enlargement and terminal differentiation. This is manifested by an increase in mitochondrial function and an increase in the canonical Wnt signaling cascade during adipocyte proliferation and terminal differentiation. PMID:27224420
NASA Astrophysics Data System (ADS)
Mazali, Italo Odone; Alves, Oswaldo Luiz
2005-01-01
This work reports the preparation of TiO2 by decomposition of a metallo-organic precursor (MOD process) in the pores of an α-NbPO5 glass-ceramic monolith (PGC-NbP) and the study of the TiO2 anatase-rutile transition phase. The impregnation of titanium di-(propoxy)-di-(2-ethylhexanoate) in the PGC-NbP was confirmed by diffuse reflectance infrared spectroscopy. In the restrictive porous environment the decomposition of the metallo-organic compound exhibits a lower initial decomposition temperature but a higher final decomposition temperature, in comparison to the free precursor. The pure TiO2 rutile phase is formed only above 700 °C when the titanium precursor is decomposed outside the pores. The TiO2 anatase obtained inside the PGC-NbP was stabilized up to 750 °C and exhibits a smaller average crystallite size in comparison with the MOD process performed without PGC-NbP. Furthemore, the temperature of the TiO2 anatase-rutile transformation depends on crystallite size, which was provided by XRD and Raman spectroscopy. The precursor impregnation-decomposition cycle revealed a linear mass increment inside PGC-NbP. Micro-Raman spectroscopy shows the presence of a gradient concentration of the TiO2 inside the PGC-NbP. The use of the MOD process in the PGC-NbP pores has several advantages: control of the amount and the nature of the phase formed and preservation of the pore structure of PGC-NbP for subsequent treatments and reactions.
Villareal, Myra O; Matsukawa, Toshiya; Isoda, Hiroko
2018-05-24
L-citrulline has recently been reported as a more effective supplement for promoting intracellular NO production compared to L-arginine. Here, the effect of L-citrulline on skeletal muscle and its influence on exercise performance were investigated. The underlying mechanism of its effect, specifically on the expression of skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), was also elucidated. Six-week-old ICR mice were orally supplemented with L-citrulline (250 mg kg -1 ) daily, and their performance in weight-loaded swimming exercise every other day for 15 days, was evaluated. In addition, mice muscles were weighed and evaluated for the expression of PGC-1α and PGC-1α-regulated genes. Mice orally supplemented with L-citrulline had significantly higher gastrocnemius and biceps femoris muscle mass. Although not statistically significant, L-citrulline prolonged the swimming time to exhaustion. PGC-1α upregulation was associated with vascular endothelial growth factor α (VEGFα) and insulin-like growth factor 1 (IGF1) upregulation. VEGFα and IGF1 are important for angiogenesis and muscle growth, respectively, and are regulated by PGC-1α. Treatment with L-NAME, a nitric oxide synthesis inhibitor, suppressed the L-citrulline-induced PGC-1α upregulation in-vitro. Supplementation with L-citrulline upregulates skeletal muscle PGC-1α levels resulting to higher skeletal muscle weight that improves time to exhaustion during exercise. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Armstrong, Ian S; Memmott, Matthew J; Tonge, Christine M; Arumugam, Parthiban
2018-04-01
Rubidium-82 myocardial perfusion imaging is a well-established technique for assessing myocardial ischemia. With continuing interest on myocardial blood flow (MBF) and myocardial flow reserve (MFR) measurements, there is a requirement to fully appreciate the impact of technical aspects of the process. One such factor for rubidium-82 is prompt gamma compensation (PGC). This study aims to assess the impact of PGC on MBF and MFR calculated from dynamic Rb-82 data. Dynamic rest and stress images were acquired on a Siemens Biograph mCT and reconstructed with and without PGC in 50 patients (29 male). MBF and MFR were measured in the three main coronary territories as well as globally. With PGC, statistically significant reductions in MBF were observed in LAD (-6.9%), LCx (-4.8%), and globally (-6.5%) but only in obese patients. Significant increases in MBF were observed in RCA (+6.4%) in only nonobese patients. In very obese patients, differences of up to 40% in MBF were observed between PGC and non-PGC images. In nearly all cases, similar PGC differences were observed at stress and rest so there were no significant differences in MFR; however, in a small number of very obese patients, differences in excess of 20% were observed. PGC results in statistically significant changes in MBF, with the greatest reductions observed in the LAD and LCx territories of obese patients. In most cases, the impact on stress and rest data is of similar relative magnitudes and changes to MFR are small.
Zorzano, Antonio; Hernández-Alvarez, María Isabel; Palacín, Manuel; Mingrone, Geltrude
2010-01-01
Muscle mitochondrial metabolism is regulated by a number of factors, many of which are responsible for the transcription of nuclear genes encoding mitochondrial proteins such as PPARdelta, PGC-1alpha or PGC-1beta. Recent evidence indicates that proteins participating in mitochondrial dynamics also regulate mitochondrial metabolism. Thus, in cultured cells the mitochondrial fusion protein mitofusin 2 (Mfn2) stimulates respiration, substrate oxidation and the expression of subunits involved in respiratory complexes. Mitochondrial dysfunction has been reported in skeletal muscle of type 2 diabetic patients. Reduced mitochondrial mass and defective activity has been proposed to explain this dysfunction. Alterations in mitochondrial metabolism may be crucial to account for some of the pathophysiological traits that characterize type 2 diabetes. Skeletal muscle of type 2 diabetic patients shows reduced expression of PGC-1alpha, PGC-1beta, and Mfn2. In addition, a differential response to bilio-pancreatic diversion-induced weight loss in non-diabetic and type 2 diabetic patients has been reported. While non-diabetic morbidly obese subjects showed an increased expression of genes encoding Mfn2, PGC-1alpha, PGC-1beta, PPARdelta or SIRT1 in response to bariatric surgery-induced weight loss, no effect was detected in type 2 diabetic patients. These observations suggest the existence of a heritable component responsible for the abnormal control of the expression of genes encoding for modulators of mitochondrial biogenesis/metabolism, and which may participate in the development of the disease. Copyright © 2010 Elsevier B.V. All rights reserved.
PGC-1α buffers ROS-mediated removal of mitochondria during myogenesis.
Baldelli, S; Aquilano, K; Ciriolo, M R
2014-11-06
Mitochondrial biogenesis and mitophagy are recognized as critical processes underlying mitochondrial homeostasis. However, the molecular pathway(s) coordinating the balance between these cellular programs is still poorly investigated. Here, we show an induction of the nuclear and mitochondrial peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α) during myogenesis, which in turn co-activates the transcription of nuclear and mtDNA-encoded mitochondrial genes. We demonstrate that PGC-1α also buffers oxidative stress occurring during differentiation by promoting the expression of antioxidant enzymes. Indeed, by downregulating PGC-1α, we observed an impairment of antioxidants expression, which was accompanied by a significant reactive oxygen species (ROS) burst and increase of oxidative damage to proteins. In parallel, we detected a decrease of mitochondrial mass and function as well as increased mitophagy through the ROS/FOXO1 pathway. Upon PGC-1α downregulation, we found ROS-dependent nuclear translocation of FOXO1 and transcription of its downstream targets including mitophagic genes such as LC3 and PINK1. Such events were significantly reverted after treatment with the antioxidant Trolox, suggesting that PGC-1α assures mitochondrial integrity by indirectly buffering ROS. Finally, the lack of PGC-1α gave rise to a decrease in MYOG and a strong induction of atrophy-related ubiquitin ligases FBXO32 (FBXO32), indicative of a degenerative process. Overall, our results reveal that in myotubes, PGC-1α takes center place in mitochondrial homeostasis during differentiation because of its ability to avoid ROS-mediated removal of mitochondria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpiainen, Satu; Jaervenpaeae, Sanna-Mari; Manninen, Aki
The nutritional state of organisms and energy balance related diseases such as diabetes regulate the metabolism of xenobiotics such as drugs, toxins and carcinogens. However, the mechanisms behind this regulation are mostly unknown. The xenobiotic-metabolizing cytochrome P450 (CYP) 2A5 enzyme has been shown to be induced by fasting and by glucagon and cyclic AMP (cAMP), which mediate numerous fasting responses. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} triggers many of the important hepatic fasting effects in response to elevated cAMP levels. In the present study, we were able to show that cAMP causes a coordinated induction of PGC-1{alpha} and CYP2A5 mRNAsmore » in murine primary hepatocytes. Furthermore, the elevation of the PGC-1{alpha} expression level by adenovirus mediated gene transfer increased CYP2A5 transcription. Co-transfection of Cyp2a5 5' promoter constructs with the PGC-1{alpha} expression vector demonstrated that PGC-1{alpha} is able to activate Cyp2a5 transcription through the hepatocyte nuclear factor (HNF)-4{alpha} response element in the proximal promoter of the Cyp2a5 gene. Chromatin immunoprecipitation assays showed that PGC-1{alpha} binds, together with HNF-4{alpha}, to the same region at the Cyp2a5 proximal promoter. In conclusion, PGC-1{alpha} mediates the expression of CYP2A5 induced by cAMP in mouse hepatocytes through coactivation of transcription factor HNF-4{alpha}. This strongly suggests that PGC-1{alpha} is the major factor mediating the fasting response of CYP2A5.« less
Ng, Chee-Hoe; Basil, Adeline H; Hang, Liting; Tan, Royston; Goh, Kian-Leong; O'Neill, Sharon; Zhang, Xiaodong; Yu, Fengwei; Lim, Kah-Leong
2017-07-01
Despite intensive research, the etiology of Parkinson's disease (PD) remains poorly understood and the disease remains incurable. However, compelling evidence gathered over decades of research strongly support a role for mitochondrial dysfunction in PD pathogenesis. Related to this, PGC-1α, a key regulator of mitochondrial biogenesis, has recently been proposed to be an attractive target for intervention in PD. Here, we showed that silencing of expression of the Drosophila PGC-1α ortholog spargel results in PD-related phenotypes in flies and also seem to negate the effects of AMPK activation, which we have previously demonstrated to be neuroprotective, that is, AMPK-mediated neuroprotection appears to require PGC-1α. Importantly, we further showed that genetic or pharmacological activation of the Drosophila PGC-1α ortholog spargel is sufficient to rescue the disease phenotypes of Parkin and LRRK2 genetic fly models of PD, thus supporting the proposed use of PGC-1α-related strategies for neuroprotection in PD. Copyright © 2017 National Neuroscience Institute. Published by Elsevier Inc. All rights reserved.
Effect of chronic alcohol consumption on Hepatic SIRT1 and PGC-1{alpha} in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieber, Charles S.; Department of Medicine, Mount Sinai School of Medicine, New York, NY; Leo, Maria A.
2008-05-23
The nuclear genes, NAD-dependent deacetylase Sirtuis 1 (SIRT1) and the peroxisome proliferator-activated receptor-{gamma} coactivator1{alpha} (PGC-1{alpha}) are regulators of energy metabolism. Here, we studied the role of alcohol consumption in expression of these sensing molecules. Alcohol significantly reduced hepatic SIRT1 mRNA by 50% and PGC-1{alpha} mRNA by 46% and it significantly inhibited the protein expression of SIRT1 and PGC-1{alpha}, while the transcription factor PPAR-{gamma} remained unchanged. However, when the lipid composition of the alcohol diet was changed by replacing long-chain triglycerides (LCT) with medium chain triglycerides (MCT), SIRT1 and PGC-1{alpha} mRNA were restored to near control levels. This study demonstrates thatmore » alcohol reduces key energy sensing proteins and that replacement of LCT by MCT affects the transcription of these genes. Since there is a pathophysiological link between SIRT1 and PGC-1{alpha} and mitochondrial energy, the implication of the study is that mitochondrial dysfunction due to alcohol abuse can be treated by dietary modifications.« less
Combined Cycle Power Generation Employing Pressure Gain Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holley, Adam
The Phase I program assessed the potential benefit of applying pressure gain combustion (PGC) technology to a natural gas combined cycle power plant. A conceptual design of the PGC integrated gas turbine was generated which was simulated in a detailed system modeling tool. The PGC integrated system was 1.93% more efficient, produced 3.09% more power, and reduced COE by 0.58%. Since the PGC system used had the same fuel flow rate as the baseline system, it also reduced CO 2 emissions by 3.09%. The PGC system did produce more NOx than standard systems, but even with the performanceand cost penaltiesmore » associated with the cleanup system it is better in every measure. This technology benefits all of DOE’s stated program goals to improve plant efficiency, reduce CO 2 production, and reduce COE.« less
Identification of PGC-1α activating constituents in Zingiberaceous crude drugs.
Nishidono, Yuto; Fujita, Takashi; Kawanami, Akira; Nishizawa, Mikio; Tanaka, Ken
2017-10-01
The activity of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) as an index of thermogenesis induced by four Indonesian Zingiberaceous crude drugs, Boesenbergia rotunda, Curcuma longa, Kaempferia galanga, Zingiber montanum, was examined, and GC-MS analyses of extracts of these drugs were performed. The results showed that activation of PGC-1α by K. galanga was high, whereas no activation was shown for the other drugs. Ethyl p-methoxycinnamate and ethyl cinnamate were identified as the PGC-1α activating compounds of K. galanga. Furthermore, study on the structure-activity relationship revealed that ethyl p-methoxycinnamate has the strongest activity among the cinnamic acid derivatives. This suggests that the ester structure and the methoxy group are important factors responsible for the PGC-1α activity. Copyright © 2017 Elsevier B.V. All rights reserved.
Design, modeling, and analysis of multi-channel demultiplexer/demodulator
NASA Technical Reports Server (NTRS)
Lee, David D.; Woo, K. T.
1991-01-01
Traditionally, satellites have performed the function of a simple repeater. Newer data distribution satellite architectures, however, require demodulation of many frequency division multiplexed uplink channels by a single demultiplexer/demodulator unit, baseband processing and routing of individual voice/data circuits, and remodulation into time division multiplexed (TDM) downlink carriers. The TRW MCDD (Multichannel Demultiplexer/Multirate Demodulator) operates on a 37.4 MHz composite input signal. Individual channel data rates are either 64 Kbps or 2.048 Mbps. The wideband demultiplexer divides the input signal into 1.44 MHz segments containing either a single 2.048 Mbps channel or thirty two 64 Kbps channels. In the latter case, the narrowband demultiplexer further divides the single 1.44 MHz wideband channel into thirty two 45 KHz narrowband channels. With this approach the time domain Fast Fourier Transformation (FFT) channelizer processing capacity is matched well to the bandwidth and number of channels to be demultiplexed. By using a multirate demodulator fewer demodulators are required while achieving greater flexibility. Each demodulator can process a wideband channel or thirty two narrowband channels. Either all wideband channels, a mixture of wideband and narrowband channels, or all narrowband channels can be demodulated. The multirate demodulator approach also has lower nonrecurring costs since only one design and development effort is needed. TRW has developed a proof of concept (POC) model which fully demonstrates the signal processing fuctions of MCDD. It is capable of processing either three 2.048 Mbps channels or two 2.048 Mbps channels and thirty two 64 Kbps channels. An overview of important MCDD system engineering issues is presented as well as discussion on some of the Block Oriented System Simulation analyses performed for design verification and selection of operational parameters of the POC model. Systems engineering analysis of the POC model confirmed that the MCDD concepts are not only achievable but also balance the joint goals of minimizing on-board complexity and cost of ground equipment, while retaining the flexibility needed to meet a wide range of system requirements.
Pérez-Schindler, Joaquín; Svensson, Kristoffer; Vargas-Fernández, Elyzabeth; Santos, Gesa; Wahli, Walter; Handschin, Christoph
2014-11-01
Physical activity improves oxidative capacity and exerts therapeutic beneficial effects, particularly in the context of metabolic diseases. The peroxisome proliferator-activated receptor (PPAR) γ coactivator-1α (PGC-1α) and the nuclear receptor PPARβ/δ have both been independently discovered to play a pivotal role in the regulation of oxidative metabolism in skeletal muscle, though their interdependence remains unclear. Hence, our aim was to determine the functional interaction between these two factors in mouse skeletal muscle in vivo. Adult male control mice, PGC-1α muscle-specific transgenic (mTg) mice, PPARβ/δ muscle-specific knockout (mKO) mice and the combination PPARβ/δ mKO + PGC-1α mTg mice were studied under basal conditions and following PPARβ/δ agonist administration and acute exercise. Whole-body metabolism was assessed by indirect calorimetry and blood analysis, while magnetic resonance was used to measure body composition. Quantitative PCR and western blot were used to determine gene expression and intracellular signalling. The proportion of oxidative muscle fibre was determined by NADH staining. Agonist-induced PPARβ/δ activation was only disrupted by PPARβ/δ knockout. We also found that the disruption of the PGC-1α-PPARβ/δ axis did not affect whole-body metabolism under basal conditions. As expected, PGC-1α mTg mice exhibited higher exercise performance, peak oxygen consumption and lower blood lactate levels following exercise, though PPARβ/δ mKO + PGC-1α mTg mice showed a similar phenotype. Similarly, we found that PPARβ/δ was dispensable for PGC-1α-mediated enhancement of an oxidative phenotype in skeletal muscle. Collectively, these results indicate that PPARβ/δ is not an essential partner of PGC-1α in the control of skeletal muscle energy metabolism.
Pérez-Schindler, Joaquín; Svensson, Kristoffer; Vargas-Fernández, Elyzabeth; Santos, Gesa; Wahli, Walter; Handschin, Christoph
2015-01-01
Aims/hypothesis Physical activity improves oxidative capacity and exerts therapeutic beneficial effects, particularly in the context of metabolic diseases. The peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) and the nuclear receptor PPARβ/δ have both been independently discovered to play a pivotal role in the regulation of oxidative metabolism in skeletal muscle, though their interdependence remain unclear. Hence, our aim was to determine the functional interaction between these two factors in mouse skeletal muscle in vivo. Methods Adult male control mice, PGC-1α muscle-specific transgenic (mTg) mice, PPARβ/δ muscle-specific knockout (mKO) mice and the combination PPARβ/δ mKO + PGC-1α mTg were studied under basal conditions and following PPARβ/δ agonist administration and acute exercise. Whole body metabolism was assessed by indirect calorimetry and blood analysis, while magnetic resonance was used to measure body composition. Quantitative PCR and western blot were used to determine gene expression and intracellular signaling. Proportion of oxidative muscle fiber was determined by NADH staining. Results Agonist-induced PPARβ/δ activation was only disrupted by PPARβ/δ knockout. We also found that the disruption of the PGC-1α-PPARβ/δ axis does not affect whole body metabolism under basal conditions. As expected, PGC-1α mTg mice exhibited higher exercise performance, peak oxygen consumption and lower blood lactate levels following exercise, though PPARβ/δ mKO+PGC-1α mTg mice showed a similar phenotype. Similarly, we found that PPARβ/δ was dispensable for PGC-1α-mediated enhancement of an oxidative phenotype in skeletal muscle. Conclusions/interpretation Collectively, these results indicate that PPARβ/δ is not an essential partner of PGC-1α in the control of skeletal muscle energy metabolism. PMID:25116175
Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Yu, Qingxu; Zhou, Xinlei
2011-03-01
Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer (EFPI) have been extensively applied in various industrial and biomedical fields. In this paper, some key improvements of EFPI-based pressure sensors such as the controlled thermal bonding technique, diaphragm-based EFPI sensors, and white light interference technology have been reviewed. Recent progress on signal demodulation method and applications of EFPI-based pressure sensors has been introduced. Signal demodulation algorithms based on the cross correlation and mean square error (MSE) estimation have been proposed for retrieving the cavity length of EFPI. Absolute measurement with a resolution of 0.08 nm over large dynamic range has been carried out. For downhole monitoring, an EFPI and a fiber Bragg grating (FBG) cascade multiplexing fiber-optic sensor system has been developed, which can operate in temperature 300 °C with a good long-term stability and extremely low temperature cross-sensitivity. Diaphragm-based EFPI pressure sensors have been successfully used for low pressure and acoustic wave detection. Experimental results show that a sensitivity of 31 mV/Pa in the frequency range of 100 Hz to 12.7 kHz for aeroacoustic wave detection has been obtained.
Muscle fiber-type conversion in the transgenic pigs with overexpression of PGC1α gene in muscle.
Ying, Fei; Zhang, Liang; Bu, Guowei; Xiong, Yuanzhu; Zuo, Bo
2016-11-25
The peroxisome proliferator-activated receptor gamma, co-activator 1 alpha(PGC1α) effectively induced the biosynthesis of the mitochondria and the energy metabolism, and also regulated the muscle fiber-type shift. Overexpression of PGC1α gene in mice led to higher oxidative muscle fiber composition in muscle. However, no researches about the significant differences of muscle fiber phenotype in pigs after PGC1α overexpression had been reported. The composition of muscle fiber-types which were distinguished by four myosin heavy chain(MYHC) isoforms, can significantly affect the muscle functions. In our study, we generated the transgenic pigs to investigate the effect of overexpression of PGC1α gene on muscle fiber-type conversion. The results showed that the number of oxidative muscle fiber(type1 muscle fiber) was increased and the number of glycolytic muscle fiber(type2b muscle fiber) was decreased in the transgenic pigs. Furthermore, we found that PGC1α overexpression up-regulated the expression of MYHC1 and MYHC2a and down-regulated the expression of MYHC2b.The analysis of genes expression demonstrated the main differentially expressed genes were MSTN, Myog and FOXO1. In conclusion, the overexpression of PGC1α gene can promote the glycolytic muscle fiber transform to the oxidative muscle fiber in pigs. Copyright © 2016 Elsevier Inc. All rights reserved.
Kawakami, Y; Ishihara, M; Saito, T; Fujimoto, T; Adachi, S; Arai, K; Yamaha, E
2012-12-01
Primordial germ cells (PGC) are the only cell type in developing embryos with the potential to transmit genetic information to the next generation. In this study, PGC of Japanese eel (Anguilla japonica) were visualized by injection of mRNA synthesized from a construct carrying the green fluorescent protein (GFP) gene fused to the 3' untranslated region of the Japanese eel nanos gene. We investigated the feasibility of cryopreserving Japanese eel PGC by vitrification of dechorionated whole somite stage embryos. The GFP-labeled PGC were rapidly cooled using liquid nitrogen after exposure to a pretreatment solution containing 1.5 M cryoprotectant (methanol, dimethyl sulfoxide, and glycerol for 10 min and ethylene glycol for 10, 20, and 30 min) and a vitrification solution containing 3 M cryoprotectant and 0.5 M sucrose for 1, 5, and 10 min. Ethylene glycerol is an effective cryoprotectant for embryonic cells and shows no evidence of ice formation after thawing. Vitrified and thawed PGC were transplanted into blastula stage embryos from zebrafish (Danio rerio). The GFP-labeled PGC migrated toward the host gonadal ridge, suggesting maintenance of their normal migration motility. These techniques may assist in achieving inter- and intraspecies germ-line chimers using donor Japanese eel PGC.
Halling, Jens Frey; Ringholm, Stine; Olesen, Jesper; Prats, Clara; Pilegaard, Henriette
2017-10-01
Aging is associated with impaired mitochondrial function, whereas exercise training enhances mitochondrial content and function in part through activation of PGC-1α. Mitochondria form dynamic networks regulated by fission and fusion with profound effects on mitochondrial functions, yet the effects of aging and exercise training on mitochondrial network structure remain unclear. This study examined the effects of aging and exercise training on mitochondrial network structure using confocal microscopy on mitochondria-specific stains in single muscle fibers from PGC-1α KO and WT mice. Hyperfragmentation of mitochondrial networks was observed in aged relative to young animals while exercise training normalized mitochondrial network structure in WT, but not in PGC-1α KO. Mitochondrial fission protein content (FIS1 and DRP1) relative to mitochondrial content was increased with aging in both WT and PGC-1α KO mice, while exercise training lowered mitochondrial fission protein content relative to mitochondrial content only in WT. Mitochondrial fusion protein content (MFN1/2 and OPA1) was unaffected by aging and lifelong exercise training in both PGC-1α KO and WT mice. The present results provide evidence that exercise training rescues aging-induced mitochondrial fragmentation in skeletal muscle by suppressing mitochondrial fission protein expression in a PGC-1α dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.
Del Brutto, Oscar H; Mera, Robertino M; Lama, Julio; Zambrano, Mauricio
2015-03-01
It has been suggested that pineal gland calcifications (PGC) represent a risk factor for stroke; however, information comes from a single retrospective hospital-based registry. We aimed to validate this association in a population-based study conducted in rural Ecuador. Atahualpa residents aged ≥60 years were identified during a door-to-door survey and invited to undergo neuroimaging studies (CT/MRI) for identification and rating PGC and lesions consistent with cerebral infarcts and hemorrhages. Cardiovascular health (CVH) status was assessed according to the American Heart Association criteria, and clinical strokes were identified by the use of a validated field instrument and confirmed by neurologists. Out of 248 participants (mean age 70±8 years, 59% women, 73% with poor CVH), 137 (55%) had PGC and 39 (16%) had strokes (silent in 28 cases). PGC were noted in 61% versus 54% persons with and without stroke, respectively. After adjusting for age, sex and cardiovascular health, logistic and ordinal logistic regression models showed no association between any evidence (p=0.916) or severity (p=0.740) of PGC and stroke. PGC is not associated with stroke in this population of community-dwelling elders, where prevalence of PGC and stroke are similar to those found in other regions. Copyright © 2015 Elsevier B.V. All rights reserved.
Muscle fiber-type conversion in the transgenic pigs with overexpression of PGC1α gene in muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ying, Fei; Zhang, Liang; Bu, Guowei
The peroxisome proliferator-activated receptor gamma, co-activator 1 alpha(PGC1α) effectively induced the biosynthesis of the mitochondria and the energy metabolism, and also regulated the muscle fiber-type shift. Overexpression of PGC1α gene in mice led to higher oxidative muscle fiber composition in muscle. However, no researches about the significant differences of muscle fiber phenotype in pigs after PGC1α overexpression had been reported. The composition of muscle fiber-types which were distinguished by four myosin heavy chain(MYHC) isoforms, can significantly affect the muscle functions. In our study, we generated the transgenic pigs to investigate the effect of overexpression of PGC1α gene on muscle fiber-typemore » conversion. The results showed that the number of oxidative muscle fiber(type1 muscle fiber) was increased and the number of glycolytic muscle fiber(type2b muscle fiber) was decreased in the transgenic pigs. Furthermore, we found that PGC1α overexpression up-regulated the expression of MYHC1 and MYHC2a and down-regulated the expression of MYHC2b.The analysis of genes expression demonstrated the main differentially expressed genes were MSTN, Myog and FOXO1. In conclusion, the overexpression of PGC1α gene can promote the glycolytic muscle fiber transform to the oxidative muscle fiber in pigs.« less
An optimized strain demodulation method for PZT driven fiber Fabry-Perot tunable filter
NASA Astrophysics Data System (ADS)
Sheng, Wenjuan; Peng, G. D.; Liu, Yang; Yang, Ning
2015-08-01
An optimized strain-demodulation-method based on piezo-electrical transducer (PZT) driven fiber Fabry-Perot (FFP) filter is proposed and experimentally demonstrated. Using a parallel processing mode to drive the PZT continuously, the hysteresis effect is eliminated, and the system demodulation rate is increased. Furthermore, an AC-DC compensation method is developed to address the intrinsic nonlinear relationship between the displacement and voltage of PZT. The experimental results show that the actual demodulation rate is improved from 15 Hz to 30 Hz, the random error of the strain measurement is decreased by 95%, and the deviation between the test values after compensation and the theoretical values is less than 1 pm/με.
NASA Astrophysics Data System (ADS)
Lu, En; Ran, Zengling; Peng, Fei; Liu, Zhiwei; Xu, Fuguo
2012-03-01
Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic Fabry-Perot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.
NASA Astrophysics Data System (ADS)
Ran, Zengling; Rao, Yunjiang; Liu, Zhiwei; Xu, Fuguo
2011-05-01
Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic fabry-periot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.
An FPGA-based demodulation system for fiber Bragg grating sensing
NASA Astrophysics Data System (ADS)
Li, Yongqian; He, Haitao; Yao, Guozhen
2010-11-01
This paper introduces the principle of fiber Bragg grating (FBG) sensor, designs and realizes a compact wavelength demodulation system for FBG sensing using a Fabry-Perot (F-P) filter. FPGA is adopted as a main controller to control a D/A converter to produce a sawtooth wave for driving the F-P filter, and to design the data acquisition circuit for collecting the output signals of photoelectric detector. The collected data is processed after transmitting to PC through the data transmission circuit, and then the demodulation of FBG wavelength is completed finally. This compact FBG wavelength demodulation system is expected to have wide applications in on-line monitoring of electric power equipment and large structures.
A novel fiber Bragg grating wavelength demodulation system based on F-P etalon
NASA Astrophysics Data System (ADS)
Yang, Gang; Guo, Jinghong; Xu, Guoliang; Lv, Lidong; Tu, Guojie; Xia, Lan
2014-10-01
This paper designs and implies a high precision FBG demodulation system which based on F-P etalon. In order to reduce the influence of the temperature drift effect, the peristaltic effect, and the nonlinear effect of F-P filter in traditional tunable filter method, F-P etalon is added as dynamical calibration and wavelength reference. Meanwhile segmentation demodulation which uses ASE spectral characteristics is applied to achieve high accuracy of the center wavelength of FBG. The experiment shows that the stability, resolution are 0.65pm, 0.23pm, respectively. Key words: fiber optics; fiber Bragg grating sensor system; tunable Fabry-Perot filter; F-P etalon; spectrum segmentation demodulation
Statistics for demodulation RFI in inverting operational amplifier circuits
NASA Astrophysics Data System (ADS)
Sutu, Y.-H.; Whalen, J. J.
An investigation was conducted with the objective to determine statistical variations for RFI demodulation responses in operational amplifier (op amp) circuits. Attention is given to the experimental procedures employed, a three-stage op amp LED experiment, NCAP (Nonlinear Circuit Analysis Program) simulations of demodulation RFI in 741 op amps, and a comparison of RFI in four op amp types. Three major recommendations for future investigations are presented on the basis of the obtained results. One is concerned with the conduction of additional measurements of demodulation RFI in inverting amplifiers, while another suggests the employment of an automatic measurement system. It is also proposed to conduct additional NCAP simulations in which parasitic effects are accounted for more thoroughly.
Asgarian, Farzad; Sodagar, Amir M
2009-01-01
A novel noncoherent BPSK demodulator is presented for inductively powered biomedical devices. Differential Manchester encoding technique is used and data demodulation is based on pulse width measurement method. In addition to ultra low power consumption, high data rate without increasing the carrier frequency is achieved with the outstanding data-rate-to-carrier-frequency ratio of 100%. The proposed demodulator is especially appropriate for biomedical applications where high speed data transfer is required, e.g., cochlear implants and visual prostheses. The circuit is designed in a 0.18-mum standard CMOS technology and consumes as low as 232 microW@1.8V at a data rate of 10 Mbps.
Wang, Linglan; Yan, Yuchao; Ma, Huilian; Jin, Zhonghe
2016-04-20
New developments are made in the resonant fiber optic gyro (RFOG), which is an optical sensor for the measurement of rotation rate. The digital signal processing system based on the phase modulation technique is capable of detecting the weak frequency difference induced by the Sagnac effect and suppressing the reciprocal noise in the circuit, which determines the detection sensitivity of the RFOG. A new technique based on the sinusoidal wave modulation and square wave demodulation is implemented, and the demodulation curve of the system is simulated and measured. Compared with the past technique using sinusoidal modulation and demodulation, it increases the slope of the demodulation curve by a factor of 1.56, improves the spectrum efficiency of the modulated signal, and reduces the occupancy of the field-programmable gate array resource. On the basis of this new phase modulation technique, the loop is successfully locked and achieves a short-term bias stability of 1.08°/h, which is improved by a factor of 1.47.
[Absorption spectrum of Quasi-continuous laser modulation demodulation method].
Shao, Xin; Liu, Fu-Gui; Du, Zhen-Hui; Wang, Wei
2014-05-01
A software phase-locked amplifier demodulation method is proposed in order to demodulate the second harmonic (2f) signal of quasi-continuous laser wavelength modulation spectroscopy (WMS) properly, based on the analysis of its signal characteristics. By judging the effectiveness of the measurement data, filter, phase-sensitive detection, digital filtering and other processing, the method can achieve the sensitive detection of quasi-continuous signal The method was verified by using carbon dioxide detection experiments. The WMS-2f signal obtained by the software phase-locked amplifier and the high-performance phase-locked amplifier (SR844) were compared simultaneously. The results show that the Allan variance of WMS-2f signal demodulated by the software phase-locked amplifier is one order of magnitude smaller than that demodulated by SR844, corresponding two order of magnitude lower of detection limit. And it is able to solve the unlocked problem caused by the small duty cycle of quasi-continuous modulation signal, with a small signal waveform distortion.
Pro‐arrhythmic atrial phenotypes in incrementally paced murine Pgc1β −/− hearts: effects of age
Valli, Haseeb; Ahmad, Shiraz; Fraser, James A.; Jeevaratnam, Kamalan
2017-01-01
New Findings What is the central question of this study? Can we experimentally replicate atrial pro‐arrhythmic phenotypes associated with important chronic clinical conditions, including physical inactivity, obesity, diabetes mellitus and metabolic syndrome, compromising mitochondrial function, and clarify their electrophysiological basis? What is the main finding and its importance? Electrocardiographic and intracellular cardiomyocyte recording at progressively incremented pacing rates demonstrated age‐dependent atrial arrhythmic phenotypes in Langendorff‐perfused murine Pgc1β −/− hearts for the first time. We attributed these to compromised action potential conduction and excitation wavefronts, whilst excluding alterations in recovery properties or temporal electrophysiological instabilities, clarifying these pro‐arrhythmic changes in chronic metabolic disease. Atrial arrhythmias, most commonly manifesting as atrial fibrillation, represent a major clinical problem. The incidence of atrial fibrillation increases with both age and conditions associated with energetic dysfunction. Atrial arrhythmic phenotypes were compared in young (12–16 week) and aged (>52 week) wild‐type (WT) and peroxisome proliferative activated receptor, gamma, coactivator 1 beta (Ppargc1b)‐deficient (Pgc1β −/−) Langendorff‐perfused hearts, previously used to model mitochondrial energetic disorder. Electrophysiological explorations were performed using simultaneous whole‐heart ECG and intracellular atrial action potential (AP) recordings. Two stimulation protocols were used: an S1S2 protocol, which imposed extrasystolic stimuli at successively decremented intervals following regular pulse trains; and a regular pacing protocol at successively incremented frequencies. Aged Pgc1β −/− hearts showed greater atrial arrhythmogenicity, presenting as atrial tachycardia and ectopic activity. Maximal rates of AP depolarization (dV/dt max) were reduced in Pgc1β −/− hearts. Action potential latencies were increased by the Pgc1β −/− genotype, with an added interactive effect of age. In contrast, AP durations to 90% recovery (APD90) were shorter in Pgc1β −/− hearts despite similar atrial effective recovery periods amongst the different groups. These findings accompanied paradoxical decreases in the incidence and duration of alternans in the aged and Pgc1β −/− hearts. Limiting slopes of restitution curves of APD90 against diastolic interval were correspondingly reduced interactively by Pgc1β −/− genotype and age. In contrast, reduced AP wavelengths were associated with Pgc1β −/− genotype, both independently and interacting with age, through the basic cycle lengths explored, with the aged Pgc1β −/− hearts showing the shortest wavelengths. These findings thus implicate AP wavelength in possible mechanisms for the atrial arrhythmic changes reported here. PMID:28960529
Mitochondrial Effects of PGC-1alpha Silencing in MPP+ Treated Human SH-SY5Y Neuroblastoma Cells
Ye, Qinyong; Chen, Chun; Si, Erwang; Cai, Yousheng; Wang, Juhua; Huang, Wanling; Li, Dongzhu; Wang, Yingqing; Chen, Xiaochun
2017-01-01
The dopaminergic neuron degeneration and loss that occurs in Parkinson’s disease (PD) has been tightly linked to mitochondrial dysfunction. Although the aged-related cause of the mitochondrial defect observed in PD patients remains unclear, nuclear genes are of potential importance to mitochondrial function. Human peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α) is a multi-functional transcription factor that tightly regulates mitochondrial biogenesis and oxidative capacity. The goal of the present study was to explore the potential pathogenic effects of interference by the PGC-1α gene on N-methyl-4-phenylpyridinium ion (MPP+)-induced SH-SY5Y cells. We utilized RNA interference (RNAi) technology to probe the pathogenic consequences of inhibiting PGC-1α in the SH-SY5Y cell line. Remarkably, a reduction in PGC-1α resulted in the reduction of mitochondrial membrane potential, intracellular ATP content and intracellular H2O2 generation, leading to the translocation of cytochrome c (cyt c) to the cytoplasm in the MPP+-induced PD cell model. The expression of related proteins in the signaling pathway (e.g., estrogen-related receptor α (ERRα), nuclear respiratory factor 1 (NRF-1), NRF-2 and Peroxisome proliferator-activated receptor γ (PPARγ)) also decreased. Our finding indicates that small interfering RNA (siRNA) interference targeting the PGC-1α gene could inhibit the function of mitochondria in several capacities and that the PGC-1α gene may modulate mitochondrial function by regulating the expression of ERRα, NRF-1, NRF-2 and PPARγ. Thus, PGC-1α can be considered a potential therapeutic target for PD. PMID:28611589
Yuan, Wei; Ahmad, Shoaib; Najar, Ajaz
2017-01-01
Morin exerts inhibitory effects on hepatic stellate cell (HSC) stimulation which is considered important step for fibrogenesis in liver. These morin-induced inhibitory effects are mediated through enhancement in the expression levels of peroxisome proliferator-activated receptor-γ (PPARγ). PPARγ plays a critical role in inhibition of HSC stimulation. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) acts as a co-activator for PPARγ. Hence, studies directed at examining the influence of morin on PGC-1α may help to understand the mechanisms behind the morin induced suppression of HSC stimulation and liver fibrosis via PPARγ. The current research was therefore designed to examine the effect of morin on the expression levels of PGC-1α in HSCs under in vitro conditions and to attempt to investigate the involved potential mechanisms by western blotting, RT-PCR, and transfection assays. The results revealed that morin increased the expression of PGC-1α and the effects of morin on the expression of PGC-1α were positively associated with the stimulation of adenosine monophosphate-activated protein kinase (AMPK). Additionally, morin enhanced superoxide dimutase-2 (SOD-2) transcript levels as well as the activity via AMPK/PGC-1α axis. Furthermore, PGC-1α was found to suppress α1 (I) collagen transcript levels in HSCs. Taken together, these results revealed that the effect of morin on the enhancement of the expression of PGC-1α is mediated through AMPK pathway which ultimately leads to increase in the activity of PPARγ and SOD-2. PMID:29312518
PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle
Dethlefsen, Maja Munk; Bangsbo, Jens; Pilegaard, Henriette
2017-01-01
The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO) and littermate wildtype (WT) mice performed a single treadmill running bout at either low intensity (LI) for 40 min or moderate intensity (MI) for 20 min. Blood and quadriceps muscles were removed either immediately after exercise or at 3h or 6h into recovery from exercise and from resting controls. In addition PGC-1α KO and littermate WT mice were exercise trained at either low intensity (LIT) for 40 min or at moderate intensity (MIT) for 20 min 2 times pr. day for 5 weeks. In the first and the last week of the intervention period, mice performed a graded running endurance test. Quadriceps muscles were removed before and after the training period for analyses. The acute exercise bout elicited intensity dependent increases in LC3I and LC3II protein and intensity independent decrease in p62 protein in skeletal muscle late in recovery and increased LC3II with exercise training independent of exercise intensity and volume in WT mice. Furthermore, acute exercise and exercise training did not increase LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute and exercise training-induced autophagy in skeletal muscle potentially in a PGC-1α isoform specific manner. PMID:29049322
Drozdova, Polina B.; Tarasov, Oleg V.; Matveenko, Andrew G.; Radchenko, Elina A.; Sopova, Julia V.; Polev, Dmitrii E.; Inge-Vechtomov, Sergey G.; Dobrynin, Pavel V.
2016-01-01
The Peterhof genetic collection of Saccharomyces cerevisiae strains (PGC) is a large laboratory stock that has accumulated several thousands of strains for over than half a century. It originated independently of other common laboratory stocks from a distillery lineage (race XII). Several PGC strains have been extensively used in certain fields of yeast research but their genomes have not been thoroughly explored yet. Here we employed whole genome sequencing to characterize five selected PGC strains including one of the closest to the progenitor, 15V-P4, and several strains that have been used to study translation termination and prions in yeast (25-25-2V-P3982, 1B-D1606, 74-D694, and 6P-33G-D373). The genetic distance between the PGC progenitor and S288C is comparable to that between two geographically isolated populations. The PGC seems to be closer to two bakery strains than to S288C-related laboratory stocks or European wine strains. In genomes of the PGC strains, we found several loci which are absent from the S288C genome; 15V-P4 harbors a rare combination of the gene cluster characteristic for wine strains and the RTM1 cluster. We closely examined known and previously uncharacterized gene variants of particular strains and were able to establish the molecular basis for known phenotypes including phenylalanine auxotrophy, clumping behavior and galactose utilization. Finally, we made sequencing data and results of the analysis available for the yeast community. Our data widen the knowledge about genetic variation between Saccharomyces cerevisiae strains and can form the basis for planning future work in PGC-related strains and with PGC-derived alleles. PMID:27152522
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokokawa, Takumi; Sato, Koji; Iwanaka, Nobumasa
Exercise and caloric restriction (CR) have been reported to have anti-ageing, anti-obesity, and health-promoting effects. Both interventions increase the level of dehydroepiandrosterone (DHEA) in muscle and blood, suggesting that DHEA might partially mediate these effects. In addition, it is thought that either 5′-adenosine monophosphate-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mediates the beneficial effects of exercise and CR. However, the effects of DHEA on AMPK activity and PGC-1α expression remain unclear. Therefore, we explored whether DHEA in myotubes acts as an activator of AMPK and increases PGC-1α. DHEA exposure increased glucose uptake but not the phosphorylation levelsmore » of Akt and PKCζ/λ in C2C12 myotubes. In contrast, the phosphorylation levels of AMPK were elevated by DHEA exposure. Finally, we found that DHEA induced the expression of the genes PGC-1α and GLUT4. Our current results might reveal a previously unrecognized physiological role of DHEA; the activation of AMPK and the induction of PGC-1α by DHEA might mediate its anti-obesity and health-promoting effects in living organisms. - Highlights: • We assessed whether dehydroepiandrosterone (DHEA) activates AMPK and PGC-1α. • DHEA exposure increased glucose uptake in C2C12 myotubes. • The phosphorylation levels of AMPK were elevated by DHEA exposure. • DHEA induced the expression of the genes PGC-1α and GLUT4. • AMPK might mediate the anti-obesity and health-promoting effects of DHEA.« less
Negative regulators of brown adipose tissue (BAT)-mediated thermogenesis.
Sharma, Bal Krishan; Patil, Mallikarjun; Satyanarayana, Ande
2014-12-01
Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. PET-CT scans recently demonstrated the existence of metabolically active BAT in adult humans, which revitalized our interest in BAT. Increasing the amount and/or activity of BAT holds tremendous promise for the treatment of obesity and its associated diseases. PGC1α is the master regulator of UCP1-mediated thermogenesis in BAT. A number of proteins have been identified to influence thermogenesis either positively or negatively through regulating the expression or transcriptional activity of PGC1α. Therefore, BAT activation can be achieved by either inducing the expression of positive regulators of PGC1α or by inhibiting the repressors of the PGC1α/UCP1 pathway. Here, we review the most important negative regulators of PGC1α/UCP1 signaling and their mechanism of action in BAT-mediated thermogenesis. © 2014 Wiley Periodicals, Inc.
The Influence of Unsteadiness on the Analysis of Pressure Gain Combustion Devices
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Kaemming, Tom
2013-01-01
Pressure gain combustion (PGC) has been the object of scientific study for over a century due to its promise of improved thermodynamic efficiency. In many recent application concepts PGC is utilized as a component in an otherwise continuous, normally steady flow system, such as a gas turbine or ram jet engine. However, PGC is inherently unsteady. Failure to account for the effects of this periodic unsteadiness can lead to misunderstanding and errors in performance calculations. This paper seeks to provide some clarity by presenting a consistent method of thermodynamic cycle analysis for a device utilizing PGC technology. The incorporation of the unsteady PGC process into the conservation equations for a continuous flow device is presented. Most importantly, the appropriate method for computing the conservation of momentum is presented. It will be shown that proper, consistent analysis of cyclic conservation principles produces representative performance predictions.
Targeting of MPEG-protected polyamino acid carrier to human E-selectin in vitro.
Kang, H W; Weissleder, R; Bogdanov, A
2002-01-01
Targeted diagnostic agents are expected to have a significant impact in molecular imaging of cell-surface associated markers of proliferation, inflammation and angiogenesis. In this communication, we describe a new class of targeted polyamino acid-based protected graft copolymers (PGC) of poly-(L-lysine) and methyl poly-(ethylene glycol) (PGC) covalently conjugated with a monoclonal antibody fragment, F(ab')(2). We utilized targeted PGC conjugates as carriers of near-infrared indocyanine fluorophores (Cy5.5) for optical imaging of endothelial cell populations expressing IL-1 beta inducible proinflammatory marker E-selectin. We compared two conjugation chemistries, involving either introduction of sulfhydryl group to F(ab')(2), or via direct attachment of the antibody fragment directly to the chemically activated PGC. Both PGC-based targeted agents demonstrated high binding specificity (20-30 fold over non-specific uptake) and were utilized for imaging E-selectin expression on human endothelial cells activated with IL-1 beta.
Synthesis and evaluation of phase detectors for active bit synchronizers
NASA Technical Reports Server (NTRS)
Mcbride, A. L.
1974-01-01
Self-synchronizing digital data communication systems usually use active or phase-locked loop (PLL) bit synchronizers. The three main elements of PLL synchronizers are the phase detector, loop filter, and the voltage controlled oscillator. Of these three elements, phase detector synthesis is the main source of difficulty, particularly when the received signals are demodulated square-wave signals. A phase detector synthesis technique is reviewed that provides a physically realizable design for bit synchronizer phase detectors. The development is based upon nonlinear recursive estimation methods. The phase detector portion of the algorithm is isolated and analyzed.
NASA Technical Reports Server (NTRS)
Stone, M. S.; Mcadam, P. L.; Saunders, O. W.
1977-01-01
The results are presented of a 4 month study to design a hybrid analog/digital receiver for outer planet mission probe communication links. The scope of this study includes functional design of the receiver; comparisons between analog and digital processing; hardware tradeoffs for key components including frequency generators, A/D converters, and digital processors; development and simulation of the processing algorithms for acquisition, tracking, and demodulation; and detailed design of the receiver in order to determine its size, weight, power, reliability, and radiation hardness. In addition, an evaluation was made of the receiver's capabilities to perform accurate measurement of signal strength and frequency for radio science missions.
Multiplexed EFPI sensors with ultra-high resolution
NASA Astrophysics Data System (ADS)
Ushakov, Nikolai; Liokumovich, Leonid
2014-05-01
An investigation of performance of multiplexed displacement sensors based on extrinsic Fabry-Perot interferometers has been carried out. We have considered serial and parallel configurations and analyzed the issues and advantages of the both. We have also extended the previously developed baseline demodulation algorithm for the case of a system of multiplexed sensors. Serial and parallel multiplexing schemes have been experimentally implemented with 3 and 4 sensing elements, respectively. For both configurations the achieved baseline standard deviations were between 30 and 200 pm, which is, to the best of our knowledge, more than an order less than any other multiplexed EFPI resolution ever reported.
The region of CQQQKPQRRP of PGC-1{alpha} interacts with the DNA-binding complex of FXR/RXR{alpha}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanaya, Eiko; Jingami, Hisato
2006-04-14
PGC-1{alpha} co-activates transcription by several nuclear receptors. To study the interaction among PGC-1{alpha}, RXR{alpha}/FXR, and DNA, we performed electrophoresis mobility shift assays. The RXR{alpha}/FXR proteins specifically bound to DNA containing the IR-1 sequence in the absence of ligand. When the fusion protein of GST-PGC-1{alpha} was added to the mixture of RXR{alpha}/FXR/DNA, the ligand-influenced retardation of the mobility was observed. The ligand for RXR{alpha} (9-cis-retinoic acid) was necessary for this retardation, whereas, the ligand for FXR, chenodeoxycholic acid, barely had an effect. The results obtained using truncated PGC-1{alpha} proteins suggested that two regions are necessary for PGC-1{alpha} to interact with themore » DNA-binding complex of RXR{alpha}/FXR. One is the region of the second leucine-rich motif, and the other is that of the amino acid sequence CQQQKPQRRP, present between the second and third leucine-rich motifs. The results obtained with the SPQSS mutation for KPQRR suggested that the basic amino acids are important for the interaction.« less
Poultry genetic resource conservation using primordial germ cells
NAKAMURA, Yoshiaki
2016-01-01
The majority of poultry genetic resources are maintained in situ in living populations. However, in situ conservation of poultry genetic resources always carries the risk of loss owing to pathogen outbreaks, genetic problems, breeding cessation, or natural disasters. Cryobanking of germplasm in birds has been limited to the use of semen, preventing conservation of the W chromosome and mitochondrial DNA. A further challenge is posed by the structure of avian eggs, which restricts the cryopreservation of ova and fertilized embryos, a technique widely used for mammalian species. By using a unique biological property and accessibility of avian primordial germ cells (PGCs), precursor cells for gametes, which temporally circulate in the vasculature during early development, an avian PGC transplantation technique has been established. To date, several techniques for PGC manipulation including purification, cryopreservation, depletion, and long-term culture have been developed in chickens. PGC transplantation combined with recent advanced PGC manipulation techniques have enabled ex situ conservation of poultry genetic resources in their complete form. Here, the updated technologies for avian PGC manipulation are introduced, and then the concept of a poultry PGC-bank is proposed by considering the biological properties of avian PGCs. PMID:27210834
Singular-value demodulation of phase-shifted holograms.
Lopes, Fernando; Atlan, Michael
2015-06-01
We report on phase-shifted holographic interferogram demodulation by singular-value decomposition. Numerical processing of optically acquired interferograms over several modulation periods was performed in two steps: (1) rendering of off-axis complex-valued holograms by Fresnel transformation of the interferograms; and (2) eigenvalue spectrum assessment of the lag-covariance matrix of hologram pixels. Experimental results in low-light recording conditions were compared with demodulation by Fourier analysis, in the presence of random phase drifts.
Structured FBG filters for 10-Gb/s DPSK signal demodulation in single ended applications
NASA Astrophysics Data System (ADS)
Marazzi, L.; Boffi, P.; Parolari, P.; Martinelli, M.; Gatti, D.; Coluccelli, N.; Longhi, S.
2011-05-01
Differential phase-shift keying (DPSK) demodulations operated by a structured fiber Bragg grating (FBG) filter and by a Mach-Zehnder delay interferometer (MZDI) in a single-ended configuration are compared. Experimental measurements at 10 Gb/s demonstrate that a specially designed FBG outperforms an integrated-optic MZDI of ˜4 dB and ˜3.5 dB in back-to-back and after 25-km propagation, respectively. Both demodulators show low polarization sensitivity and signal frequency detuning dependence, but only MZDI operating point requires a thermal control. FBG filter proves an interesting solution for DPSK demodulation in low-cost applications and, moreover, can be designed to match colorless requirements of wave division multiplexed passive optical network (WDM-PON) applications.
Henagan, Tara M; Stewart, Laura K; Forney, Laura A; Sparks, Lauren M; Johannsen, Neil; Church, Timothy S
2014-01-01
PGC1α, a transcriptional coactivator, interacts with PPARs and others to regulate skeletal muscle metabolism. PGC1α undergoes splicing to produce several mRNA variants, with the NTPGC1α variant having a similar biological function to the full length PGC1α (FLPGC1α). CVD is associated with obesity and T2D and a lower percentage of type 1 oxidative fibers and impaired mitochondrial function in skeletal muscle, characteristics determined by PGC1α expression. PGC1α expression is epigenetically regulated in skeletal muscle to determine mitochondrial adaptations, and epigenetic modifications may regulate mRNA splicing. We report in this paper that skeletal muscle PGC1α -1 nucleosome (-1N) position is associated with splice variant NTPGC1α but not FLPGC1α expression. Division of participants based on the -1N position revealed that those individuals with a -1N phased further upstream from the transcriptional start site (UP) expressed lower levels of NTPGC1α than those with the -1N more proximal to TSS (DN). UP showed an increase in body fat percentage and serum total and LDL cholesterol. These findings suggest that the -1N may be a potential epigenetic regulator of NTPGC1α splice variant expression, and -1N position and NTPGC1α variant expression in skeletal muscle are linked to CVD risk. This trial is registered with clinicaltrials.gov, identifier NCT00458133.
Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres.
Lin, Jiandie; Wu, Hai; Tarr, Paul T; Zhang, Chen-Yu; Wu, Zhidan; Boss, Olivier; Michael, Laura F; Puigserver, Pere; Isotani, Eiji; Olson, Eric N; Lowell, Bradford B; Bassel-Duby, Rhonda; Spiegelman, Bruce M
2002-08-15
The biochemical basis for the regulation of fibre-type determination in skeletal muscle is not well understood. In addition to the expression of particular myofibrillar proteins, type I (slow-twitch) fibres are much higher in mitochondrial content and are more dependent on oxidative metabolism than type II (fast-twitch) fibres. We have previously identified a transcriptional co-activator, peroxisome-proliferator-activated receptor-gamma co-activator-1 (PGC-1 alpha), which is expressed in several tissues including brown fat and skeletal muscle, and that activates mitochondrial biogenesis and oxidative metabolism. We show here that PGC-1 alpha is expressed preferentially in muscle enriched in type I fibres. When PGC-1 alpha is expressed at physiological levels in transgenic mice driven by a muscle creatine kinase (MCK) promoter, a fibre type conversion is observed: muscles normally rich in type II fibres are redder and activate genes of mitochondrial oxidative metabolism. Notably, putative type II muscles from PGC-1 alpha transgenic mice also express proteins characteristic of type I fibres, such as troponin I (slow) and myoglobin, and show a much greater resistance to electrically stimulated fatigue. Using fibre-type-specific promoters, we show in cultured muscle cells that PGC-1 alpha activates transcription in cooperation with Mef2 proteins and serves as a target for calcineurin signalling, which has been implicated in slow fibre gene expression. These data indicate that PGC-1 alpha is a principal factor regulating muscle fibre type determination.
Estall, Jennifer L.; Kahn, Mario; Cooper, Marcus P.; Fisher, ffolliott Martin; Wu, Michele K.; Laznik, Dina; Qu, Lishu; Cohen, David E.; Shulman, Gerald I.; Spiegelman, Bruce M.
2009-01-01
OBJECTIVE The peroxisome proliferator–activated receptor-γ coactivator (PGC)-1 family of transcriptional coactivators controls hepatic function by modulating the expression of key metabolic enzymes. Hepatic gain of function and complete genetic ablation of PGC-1α show that this coactivator is important for activating the programs of gluconeogenesis, fatty acid oxidation, oxidative phosphorylation, and lipid secretion during times of nutrient deprivation. However, how moderate changes in PGC-1α activity affect metabolism and energy homeostasis has yet to be determined. RESEARCH DESIGN AND METHODS To identify key metabolic pathways that may be physiologically relevant in the context of reduced hepatic PGC-1α levels, we used the Cre/Lox system to create mice heterozygous for PGC-1α specifically within the liver (LH mice). RESULTS These mice showed fasting hepatic steatosis and diminished ketogenesis associated with decreased expression of genes involved in mitochondrial β-oxidation. LH mice also exhibited high circulating levels of triglyceride that correlated with increased expression of genes involved in triglyceride-rich lipoprotein assembly. Concomitant with defects in lipid metabolism, hepatic insulin resistance was observed both in LH mice fed a high-fat diet as well as in primary hepatocytes. CONCLUSIONS These data highlight both the dose-dependent and long-term effects of reducing hepatic PGC-1α levels, underlining the importance of tightly regulated PGC-1α expression in the maintenance of lipid homeostasis and glucose metabolism. PMID:19366863
Koves, Timothy R; Li, Ping; An, Jie; Akimoto, Takayuki; Slentz, Dorothy; Ilkayeva, Olga; Dohm, G Lynis; Yan, Zhen; Newgard, Christopher B; Muoio, Deborah M
2005-09-30
Peroxisome proliferator-activated receptor-gamma co-activator 1alpha (PGC1alpha) is a promiscuous co-activator that plays a key role in regulating mitochondrial biogenesis and fuel homeostasis. Emergent evidence links decreased skeletal muscle PGC1alpha activity and coincident impairments in mitochondrial performance to the development of insulin resistance in humans. Here we used rodent models to demonstrate that muscle mitochondrial efficiency is compromised by diet-induced obesity and is subsequently rescued by exercise training. Chronic high fat feeding caused accelerated rates of incomplete fatty acid oxidation and accumulation of beta-oxidative intermediates. The capacity of muscle mitochondria to fully oxidize a heavy influx of fatty acid depended on factors such as fiber type and exercise training and was positively correlated with expression levels of PGC1alpha. Likewise, an efficient lipid-induced substrate switch in cultured myocytes depended on adenovirus-mediated increases in PGC1alpha expression. Our results supported a novel paradigm in which a high lipid supply, occurring under conditions of low PGC1alpha, provokes a disconnect between mitochondrial beta-oxidation and tricarboxylic acid cycle activity. Conversely, the metabolic remodeling that occurred in response to PGC1alpha overexpression favored a shift from incomplete to complete beta-oxidation. We proposed that PGC1alpha enables muscle mitochondria to better cope with a high lipid load, possibly reflecting a fundamental metabolic benefit of exercise training.
PGC-1α repression and high fat diet induce age-related macular degeneration-like phenotypes in mice.
Zhang, Meng; Chu, Yi; Mowery, Joseph; Konkel, Brandon; Galli, Susana; Theos, Alexander C; Golestaneh, Nady
2018-06-20
Age-related macular degeneration (AMD) is the major cause of blindness in the elderly in developed countries and its prevalence is increasing with the aging population. AMD initially affects the retinal pigment epithelium (RPE) and gradually leads to secondary photoreceptor degeneration. Recent studies have associated mitochondrial damage with AMD, and we have observed mitochondrial and autophagic dysfunction and repressed peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α in native RPE from AMD donor eyes and their respective induced pluripotent stem cell-derived RPE (AMD RPE-iPSC-RPE). To further investigate the effect of PGC-1α repression we have established a mouse model by feeding PGC-1α + /- mice with high fat diet (HFD) and investigated the RPE and retinal health. Here we show that when mice expressing lower levels of Pgc-1α are exposed to HFD, they present AMD-like abnormalities in RPE and retinal morphology and function. These abnormalities include basal laminar deposits, thickening of Bruch's membrane (BM) with drusen marker-containing deposits, RPE and photoreceptor degeneration, decreased mitochondrial activity, increased ROS levels, decreased autophagy dynamics/ flux, and increased inflammatory response in the RPE/retina. Our study show that the PGC-1α is important in outer retina biology and that PGC-1α + /- mouse fed with HFD is a promising model to study AMD and opens doors for novel treatment strategies in AMD. © 2018. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Weiping, E-mail: weiping.qin@mssm.edu; Department of Medicine, Mount Sinai School of Medicine, NY; Pan, Jiangping
Research highlights: {yields} In rat gastrocnemius muscle, dexamethasone reduced PGC-1{alpha} cellular and nuclear levels without altering mRNA levels for this factor. {yields} Dexamethasone reduced phosphorylating of p38 MAPK, which stabilizes PGC-1{alpha} and promotes its nuclear entry. {yields} Co-administration of testosterone with dexamethasone increased cellular and nuclear levels of PGC-1{alpha} protein without changing its mRNA levels. {yields} Co-administration of testosterone restored p38 MAPK levels to those of controls. -- Abstract: Glucocorticoid-induced muscle atrophy results from muscle protein catabolism and reduced protein synthesis, associated with increased expression of two muscle-specific ubiquitin ligases (MAFbx and MuRF1), and of two inhibitors of protein synthesis,more » REDD1 and 4EBP1. MAFbx, MuRF1, REDD1 and 4EBP1 are up-regulated by the transcription factors FOXO1 and FOXO3A. The transcriptional co-activator PGC-1{alpha} has been shown to attenuate many forms of muscle atrophy and to repress FOXO3A-mediated transcription of atrophy-specific genes. Dexamethasone-induced muscle atrophy can be prevented by testosterone, which blocks up-regulation by dexamethasone of FOXO1. Here, an animal model of dexamethasone-induced muscle atrophy was used to further characterize effects of testosterone to abrogate adverse actions of dexamethasone on FOXO1 levels and nuclear localization, and to determine how these agents affect PGC-1{alpha}, and its upstream activators, p38 MAPK and AMPK. In rat gastrocnemius muscle, testosterone blunted the dexamethasone-mediated increase in levels of FOXO1 mRNA, and FOXO1 total and nuclear protein. Dexamethasone reduced total and nuclear PGC-1{alpha} protein levels in the gastrocnemius; co-administration of testosterone with dexamethasone increased total and nuclear PGC-1{alpha} levels above those present in untreated controls. Testosterone blocked dexamethasone-induced decreases in activity of p38 MAPK in the gastrocnemius muscle. Regulation of FOXO1, PGC-1{alpha} and p38 MAPK by testosterone may represent a novel mechanism by which this agent protects against dexamethasone-induced muscle atrophy.« less
Zhang, Lin; Zhou, Ying; Wu, Wangjun; Hou, Liming; Chen, Hongxing; Zuo, Bo; Xiong, Yuanzhu; Yang, Jinzeng
2017-01-01
Individual skeletal muscles in the animal body are heterogeneous, as each is comprised of different fiber types. Type I muscle fibers are rich with mitochondria, and have high oxidative metabolisms while type IIB fibers have few mitochondria and high glycolytic metabolic capacity. Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a transcriptional co-activator that regulates mitochondrial biogenesis and respiratory function, is implicated in muscle fiber-type switching. Over-expression of PGC-1α in transgenic mice increased the proportion of red/oxidative type I fiber. During pig muscle growth, an increased number of type I fibers can give meat more red color. To explore the roles of PGC-1α in regulation of muscle fiber type conversion, we generated skeletal muscle-specific PGC-1α transgenic mice and pig. Ectopic over-expression of PGC-1α was detected in both fast and slow muscle fibers. The transgenic animals displayed a remarkable amount of red/oxidative muscle fibers in major skeletal muscle tissues. Skeletal muscles from transgenic mice and pigs have increased expression levels of oxidative fiber markers such as MHC1, MHC2x, myoglobin and Tnni1, and decreased expressions of glycolytic fiber genes (MHC2a, MHC2b, CASQ-1 and Tnni2). The genes responsible for the TCA cycle and oxidative phosphorylation, cytochrome coxidase 2 and 4, and citrate synthase were also increased in the transgenic mice and pigs. These results suggested that transgenic over-expressed PGC-1α significantly increased muscle mitochondrial biogenesis, resulting in qualitative changes from glycolytic to oxidative energy generation. The transgenic animals also had elevated levels of PDK4 and PPARγ proteins in muscle tissue, which can lead to increased glycogen deposition and fatty acid oxidation. Therefore, the results support a significant role of PGC-1α in conversion of fast glycolytic fibers to slow and oxidative fiber through enhanced mitochondrial respiration and fatty acid oxidation, and transgenic over-expression of PGC-1α in skeletal muscle leads to more red meat production in pigs.
Demodulator electronics for laser vibrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudzik, G.; Waz, A. T.; Kaczmarek, P. R.
2012-06-13
One of the most important parts of a fiber-laser vibrometer is demodulation electronic section. The distortion, nonlinearity, offset and added noise of measured signal come from electronic circuits and they have direct influence on finale measuring results. Two main parameters of an investigated vibrating object: velocity V(t) and displacement s(t), influence of detected beat signals. They are: the Doppler frequency deviation f(t) and phase shift {phi}(t), respectively. Because of wide range of deviations it is difficult to use just one demodulator. That is the reason why we use three different types of demodulators. The first one is the IQ demodulator,more » which is the most sensitive one and its output is proportional to the displacement. Each IQ channel is sampled simultaneously by an analog to digital converter (ADC) integrated in a digital signal processor (DSP). The output signals from the two FM demodulators are proportional to the frequency deviation of heterodyne signals. They are sensitive directly to the velocity of the object. The main disadvantage of scattered light interferometry system is a ''speckle effect'', appearing in relatively large amplitude fluctuation of a heterodyne signal. To minimize ''speckle effect'' influence on quality of beat signals we applied the automatic gain control (AGC) system. Data acquisition, further signal processing (e.g. vibration frequency spectra) and presentation of results is realized by PC via USB interface.« less
Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak
NASA Astrophysics Data System (ADS)
Tongyu, WU; Wei, ZHANG; Haoxi, WANG; Yan, ZHOU; Zejie, YIN
2018-06-01
A synchronous demodulation system is proposed and deployed for CO2 dispersion interferometer on HL-2A, which aims at high plasma density measurements and real-time feedback control. In order to make sure that the demodulator and the interferometer signal are synchronous in phase, a phase adjustment (PA) method has been developed for the demodulation system. The method takes advantages of the field programmable gate array parallel and pipeline process capabilities to carry out high performance and low latency PA. Some experimental results presented show that the PA method is crucial to the synchronous demodulation system and reliable to follow the fast change of the electron density. The system can measure the line-integrated density with a high precision of 2.0 × 1018 m‑2.
Research on the fault diagnosis of bearing based on wavelet and demodulation
NASA Astrophysics Data System (ADS)
Li, Jiapeng; Yuan, Yu
2017-05-01
As a most commonly-used machine part, antifriction bearing is extensively used in mechanical equipment. Vibration signal analysis is one of the methods to monitor and diagnose the running status of antifriction bearings. Therefore, using wavelet analysis for demising is of great importance in the engineering practice. This paper firstly presented the basic theory of wavelet analysis to study the transformation, decomposition and reconstruction of wavelet. In addition, edition software LabVIEW was adopted to conduct wavelet and demodulation upon the vibration signal of antifriction bearing collected. With the combination of Hilbert envelop demodulation analysis, the fault character frequencies of the demised signal were extracted to conduct fault diagnosis analysis, which serves as a reference for the wavelet and demodulation of the vibration signal in engineering practice.
Code-division multiple-access multiuser demodulator by using quantum fluctuations.
Otsubo, Yosuke; Inoue, Jun-Ichi; Nagata, Kenji; Okada, Masato
2014-07-01
We examine the average-case performance of a code-division multiple-access (CDMA) multiuser demodulator in which quantum fluctuations are utilized to demodulate the original message within the context of Bayesian inference. The quantum fluctuations are built into the system as a transverse field in the infinite-range Ising spin glass model. We evaluate the performance measurements by using statistical mechanics. We confirm that the CDMA multiuser modulator using quantum fluctuations achieve roughly the same performance as the conventional CDMA multiuser modulator through thermal fluctuations on average. We also find that the relationship between the quality of the original information retrieval and the amplitude of the transverse field is somehow a "universal feature" in typical probabilistic information processing, viz., in image restoration, error-correcting codes, and CDMA multiuser demodulation.
Code-division multiple-access multiuser demodulator by using quantum fluctuations
NASA Astrophysics Data System (ADS)
Otsubo, Yosuke; Inoue, Jun-ichi; Nagata, Kenji; Okada, Masato
2014-07-01
We examine the average-case performance of a code-division multiple-access (CDMA) multiuser demodulator in which quantum fluctuations are utilized to demodulate the original message within the context of Bayesian inference. The quantum fluctuations are built into the system as a transverse field in the infinite-range Ising spin glass model. We evaluate the performance measurements by using statistical mechanics. We confirm that the CDMA multiuser modulator using quantum fluctuations achieve roughly the same performance as the conventional CDMA multiuser modulator through thermal fluctuations on average. We also find that the relationship between the quality of the original information retrieval and the amplitude of the transverse field is somehow a "universal feature" in typical probabilistic information processing, viz., in image restoration, error-correcting codes, and CDMA multiuser demodulation.
On optimal soft-decision demodulation. [in digital communication system
NASA Technical Reports Server (NTRS)
Lee, L.-N.
1976-01-01
A necessary condition is derived for optimal J-ary coherent demodulation of M-ary (M greater than 2) signals. Optimality is defined as maximality of the symmetric cutoff rate of the resulting discrete memoryless channel. Using a counterexample, it is shown that the condition derived is generally not sufficient for optimality. This condition is employed as the basis for an iterative optimization method to find the optimal demodulator decision regions from an initial 'good guess'. In general, these regions are found to be bounded by hyperplanes in likelihood space; the corresponding regions in signal space are found to have hyperplane asymptotes for the important case of additive white Gaussian noise. Some examples are presented, showing that the regions in signal space bounded by these asymptotic hyperplanes define demodulator decision regions that are virtually optimal.
Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha.
Handschin, Christoph; Lin, Jiandie; Rhee, James; Peyer, Anne-Kathrin; Chin, Sherry; Wu, Pei-Hsuan; Meyer, Urs A; Spiegelman, Bruce M
2005-08-26
Inducible hepatic porphyrias are inherited genetic disorders of enzymes of heme biosynthesis. The main clinical manifestations are acute attacks of neuropsychiatric symptoms frequently precipitated by drugs, hormones, or fasting, associated with increased urinary excretion of delta-aminolevulinic acid (ALA). Acute attacks are treated by heme infusion and glucose administration, but the mechanisms underlying the precipitating effects of fasting and the beneficial effects of glucose are unknown. We show that the rate-limiting enzyme in hepatic heme biosynthesis, 5-aminolevulinate synthase (ALAS-1), is regulated by the peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha). Elevation of PGC-1alpha in mice via adenoviral vectors increases the levels of heme precursors in vivo as observed in acute attacks. The induction of ALAS-1 by fasting is lost in liver-specific PGC-1alpha knockout animals, as is the ability of porphyrogenic drugs to dysregulate heme biosynthesis. These data show that PGC-1alpha links nutritional status to heme biosynthesis and acute hepatic porphyria.
Acute exercise induces biphasic increase in respiratory mRNA in skeletal muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, Shin-ichi; Kizaki, Takako; Haga, Shukoh
2008-04-04
Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1{alpha} and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1{alpha} protein, but the other was not. Administration of SB203580 (SB), an inhibitor ofmore » p38 MAPK, suppressed the increase in PGC-1{alpha} expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1{alpha} and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions.« less
Hypothalamic PGC-1α Protects Against High Fat Diet Exposure by Regulating ERα
Morselli, Eugenia; Fuente-Martin, Esther; Finan, Brian; Kim, Min; Frank, Aaron; Garcia-Caceres, Cristina; Navas, Carlos Rodriguez; Gordillo, Ruth; Neinast, Michael; Kalainayakan, Sarada P.; Gao, Yuanqing; Yi, Chun-Xia; Hahner, Lisa; Palmer, Biff F.; Tschöp, Matthias H.; Clegg, Deborah J.
2014-01-01
Summary High fat diets (HFD) lead to obesity and inflammation in the central nervous system. Estrogens and Estrogen Receptor alpha (ERα) protect premenopausal females from the metabolic complications of inflammation and obesity related disease. Here we demonstrate that hypothalamic PGC-1α regulates ERα and inflammation in vivo. HFD significantly increased palmitic acid (PA) and sphingolipids in the CNS of males when compared to female mice. PA, in vitro, and HFD, in vivo, reduced PGC-1α and ERα in hypothalamic neurons and astrocytes of male mice and promoted inflammation. PGC-1α depletion with ERα overexpression significantly inhibited PA-induced inflammation, confirming that ERα is a critical determinant of the anti-inflammatory response. Physiologic relevance of ERα-regulated inflammation was demonstrated by reduced myocardial function in male but not female mice following chronic HFD exposure. Our findings show for the first time that HFD/PA reduces PGC-1α and ERα, promoting inflammation and decrements in myocardial function in a sex-specific way. PMID:25373903
Germ Cell-less Promotes Centrosome Segregation to Induce Germ Cell Formation.
Lerit, Dorothy A; Shebelut, Conrad W; Lawlor, Kristen J; Rusan, Nasser M; Gavis, Elizabeth R; Schedl, Paul; Deshpande, Girish
2017-01-24
The primordial germ cells (PGCs) specified during embryogenesis serve as progenitors to the adult germline stem cells. In Drosophila, the proper specification and formation of PGCs require both centrosomes and germ plasm, which contains the germline determinants. Centrosomes are microtubule (MT)-organizing centers that ensure the faithful segregation of germ plasm into PGCs. To date, mechanisms that modulate centrosome behavior to engineer PGC development have remained elusive. Only one germ plasm component, Germ cell-less (Gcl), is known to play a role in PGC formation. Here, we show that Gcl engineers PGC formation by regulating centrosome dynamics. Loss of gcl leads to aberrant centrosome separation and elaboration of the astral MT network, resulting in inefficient germ plasm segregation and aborted PGC cellularization. Importantly, compromising centrosome separation alone is sufficient to mimic the gcl loss-of-function phenotypes. We conclude Gcl functions as a key regulator of centrosome separation required for proper PGC development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Hypothalamic PGC-1α protects against high-fat diet exposure by regulating ERα.
Morselli, Eugenia; Fuente-Martin, Esther; Finan, Brian; Kim, Min; Frank, Aaron; Garcia-Caceres, Cristina; Navas, Carlos Rodriguez; Gordillo, Ruth; Neinast, Michael; Kalainayakan, Sarada P; Li, Dan L; Gao, Yuanqing; Yi, Chun-Xia; Hahner, Lisa; Palmer, Biff F; Tschöp, Matthias H; Clegg, Deborah J
2014-10-23
High-fat diets (HFDs) lead to obesity and inflammation in the central nervous system (CNS). Estrogens and estrogen receptor α (ERα) protect premenopausal females from the metabolic complications of inflammation and obesity-related disease. Here, we demonstrate that hypothalamic PGC-1α regulates ERα and inflammation in vivo. HFD significantly increased palmitic acid (PA) and sphingolipids in the CNS of male mice when compared to female mice. PA, in vitro, and HFD, in vivo, reduced PGC-1α and ERα in hypothalamic neurons and astrocytes of male mice and promoted inflammation. PGC-1α depletion with ERα overexpression significantly inhibited PA-induced inflammation, confirming that ERα is a critical determinant of the anti-inflammatory response. Physiologic relevance of ERα-regulated inflammation was demonstrated by reduced myocardial function in male, but not female, mice following chronic HFD exposure. Our findings show that HFD/PA reduces PGC-1α and ERα, promoting inflammation and decrements in myocardial function in a sex-specific way.
Ji, Xiaohu; Hu, Guixin; Zhang, Qiongyan; Wang, Fengshan; Liu, Chunhui
2016-11-05
Uncovering the biological roles of heparosan oligosaccharides requires a simple and robust method for their separation and identification. We reported on systematic investigations of the retention behaviors of synthetic heparosan oligosaccharides on porous graphitic carbon (PGC) column by HPLC with charged aerosol detection. Oligosaccharides were strongly retained by PGC material in water-acetonitrile mobile phase, and eluted by trifluoroacetic acid occurring as narrow peaks. Addition of small fraction of methanol led to better selectivity of PGC to oligosaccharides than acetonitrile modifier alone, presumably, resulting from displacement of methanol to give different chemical environment at the PGC surface. Van't-Hoff plots demonstrated that retention behaviors highly depended on the column temperature and oligosaccharide moieties. By implementing the optimal MeOH content and temperature, a novel isocratic elution method was successfully developed for baseline resolution and identification of seven heparosan oligosaccharides using PGC-HPLC-CAD/MS. This approach allows for rapid analysis of heparosan oligosaccharides from various sources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Diversity combining in laser Doppler vibrometry for improved signal reliability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dräbenstedt, Alexander
2014-05-27
Because of the speckle nature of the light reflected from rough surfaces the signal quality of a vibrometer suffers from varying signal power. Deep signal outages manifest themselves as noise bursts and spikes in the demodulated velocity signal. Here we show that the signal quality of a single point vibrometer can be substantially improved by diversity reception. This concept is widely used in RF communication and can be transferred into optical interferometry. When two statistically independent measurement channels are available which measure the same motion on the same spot, the probability for both channels to see a signal drop-out atmore » the same time is very low. We built a prototype instrument that uses polarization diversity to constitute two independent reception channels that are separately demodulated into velocity signals. Send and receive beams go through different parts of the aperture so that the beams can be spatially separated. The two velocity channels are mixed into one more reliable signal by a PC program in real time with the help of the signal power information. An algorithm has been developed that ensures a mixing of two or more channels with minimum resulting variance. The combination algorithm delivers also an equivalent signal power for the combined signal. The combined signal lacks the vast majority of spikes that are present in the raw signals and it extracts the true vibration information present in both channels. A statistical analysis shows that the probability for deep signal outages is largely decreased. A 60 fold improvement can be shown. The reduction of spikes and noise bursts reduces the noise in the spectral analysis of vibrations too. Over certain frequency bands a reduction of the noise density by a factor above 10 can be shown.« less
Ding, Jiaxi; Jiang, DeChen; Kurczy, Michael; Nalepka, Jennifer; Dudley, Brian; Merkel, Erin I; Porter, Forbes D; Ewing, Andrew G; Winograd, Nicholas; Burgess, James; Molyneaux, Kathleen
2008-01-01
Background Primordial germ cells (PGCs) are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. Results We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR) resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. Conclusion In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival. PMID:19117526
Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng
2015-07-01
An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay. Copyright © 2015. Published by Elsevier B.V.
A membrane-based subsystem for water-vapor recovery from plant-growth chambers
NASA Technical Reports Server (NTRS)
Ray, R. J.
1992-01-01
Bioregenerative systems--life-support systems to regenerate oxygen, food, and water--are the key to establishing man's permanent presence in space. NASA is investigating the use of plant-growth chambers (PGC's) for space missions and for bases on the moon and Mars. PGC's serve several important purposes, including the following: (1) oxygen and food production; (2) carbon-dioxide removal; and (3) water purification and reuse. The key to the successful development of PGC's is a system to recover and reuse the water vapor that is transpired by the leaves of the growing plants. In this program we propose to develop a simple, reliable, membrane-based system that allows the recovery, purification, and reuse of the transpired water vapor through control of temperature and humidity levels in the PGC. This system has characteristics that make it ideally suited to use in space: (1) minimal power requirements; (2) small volume and mass; (3) simplicity; (4) reliability; and (5) versatility. In Phase 1 we will do the following: (1) develop an accurate, predictive model of our temperature- and humidity-control system, based on parametric tests of membrane modules; and (2) use this model to design systems for selected PGC's. In Phase 2, we will seek to design, fabricate, test, and deliver a breadboard unit to NASA for testing on a PGC.
Pesce, Vito; Nicassio, Luigi; Fracasso, Flavio; Musicco, Clara; Cantatore, Palmiro; Gadaleta, Maria Nicola
2012-04-01
The behavior of the peroxisome proliferator-activated receptor-γ coactivators PGC-1α/PGC-β-dependent mitochondrial biogenesis signaling pathway, as well as the level of some antioxidant enzymes and proteins involved in mitochondrial dynamics in the liver of old rats before and after 2 months of acetyl-L-carnitine (ALCAR) supplementation, was tested. The results reveal that ALCAR treatment is able to reverse the age-associated decline of PGC-1α, PGC-1β, nuclear respiratory factor 1 (NRF-1), mitochondrial transcription factor A (TFAM), nicotinamide adenine dinucleotide (NADH) dehydrogenase subunit 1 (ND1), and cytochrome c oxidase subunit IV (COX IV) protein levels, of mitochondrial DNA (mtDNA) content, and of citrate synthase activity. Moreover, it partially reverses the mitochondrial superoxide dismutase 2 (SOD2) decline and reduces the cellular content of oxidized peroxiredoxins. These data demonstrate that ALCAR treatment is able to promote in the old rat liver a new mitochondrial population that can contribute to the cellular oxidative stress reduction. Furthermore, a remarkable decline of Drp1 and of Mfn2 proteins is reported here for the first time, suggesting a reduced mitochondrial dynamics in aging liver with no effect of ALCAR treatment.
Sundquist, Eric T.; Ackerman, Katherine V.; Bliss, Norman B.; Kellndorfer, Josef M.; Reeves, Matt C.; Rollins, Matthew G.
2009-01-01
This report provides results of a rapid assessment of biological carbon stocks and forest biomass carbon sequestration capacity in the conterminous United States. Maps available from the U.S. Department of Agriculture are used to calculate estimates of current organic carbon storage in soils (73 petagrams of carbon, or PgC) and forest biomass (17 PgC). Of these totals, 3.5 PgC of soil organic carbon and 0.8 PgC of forest biomass carbon occur on lands managed by the U.S. Department of the Interior (DOI). Maps of potential vegetation are used to estimate hypothetical forest biomass carbon sequestration capacities that are 3–7 PgC higher than current forest biomass carbon storage in the conterminous United States. Most of the estimated hypothetical additional forest biomass carbon sequestration capacity is accrued in areas currently occupied by agriculture and development. Hypothetical forest biomass carbon sequestration capacities calculated for existing forests and woodlands are within ±1 PgC of estimated current forest biomass carbon storage. Hypothetical forest biomass sequestration capacities on lands managed by the DOI in the conterminous United States are 0–0.4 PgC higher than existing forest biomass carbon storage. Implications for forest and other land management practices are not considered in this report. Uncertainties in the values reported here are large and difficult to quantify, particularly for hypothetical carbon sequestration capacities. Nevertheless, this rapid assessment helps to frame policy and management discussion by providing estimates that can be compared to amounts necessary to reduce predicted future atmospheric carbon dioxide levels.
Shute, Robert J.; Kreiling, Jodi L.
2016-01-01
The purpose of this study was to determine mitochondrial biogenesis-related mRNA expression, binding of transcription factors to the peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) promoter, and subcellular location of PGC-1α protein in human skeletal muscle following exercise in a hot environment compared with a room temperature environment. Recreationally trained males (n = 11) completed two trials in a temperature- and humidity-controlled environmental chamber. Each trial consisted of cycling in either a hot (H) or room temperature (C) environment (33 and 20°C, respectively) for 1 h at 60% of maximum wattage (Wmax) followed by 3 h of supine recovery at room temperature. Muscle biopsies were taken from the vastus lateralis pre-, post-, and 3 h postexercise. PGC-1α mRNA increased post (P = 0.039)- and 3 h postexercise in C (P = 0.002). PGC-1α, estrogen-related receptor-α (ERRα), and nuclear respiratory factor 1 (NRF-1) mRNA was all lower in H than C post (P = 0.038, P < 0.001, and P = 0.030, respectively)- and 3 h postexercise (P = 0.035, P = 0.007, and P < 0.001, respectively). Binding of cAMP response element-binding protein (CREB) (P = 0.005), myocyte enhancer factor 2 (MEF2) (P = 0.047), and FoxO forkhead box class-O1 (FoxO1) (P = 0.010) to the promoter region of the PGC-1α gene was lower in H than C. Nuclear PGC-1α protein increased postexercise in both H and C (P = 0.029) but was not different between trials (P = 0.602). These data indicate that acute exercise in a hot environment blunts expression of mitochondrial biogenesis-related mRNA, due to decreased binding of CREB, MEF2, and FoxO1 to the PGC-1α promoter. PMID:27445305
Huang, Chi-Chang; Wang, Ting; Tung, Yu-Tang; Lin, Wan-Teng
2016-01-01
The protein deacetylase sirtuin 1 (SIRT1) and activate peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) pathway drives the muscular fiber-type switching, and can directly regulate the biophysiological functions of skeletal muscle. To investigate whether 12-week swimming exercise training modulates the SIRT1/PGC-1α pathway associated proteins expression in rats of different age. Male 3-month-old (3M), 12-month-old (12M) and 18-month-old (18M) Sprague-Dawley rats were used and assigned to sedentary control (C) or 12-week swimming exercise training (E) and divided into six groups: 3MC (n = 8), 12MC (n = 6), 18MC (n = 8), 3ME (n = 8), 12ME (n = 5) and 18ME (n = 6). Body weight, muscle weight, epididymal fat mass and muscle morphology were performed at the end of the experiment. The protein levels of SIRT1, PGC-1α, AMPK and FOXO3a in the gastrocnemius and soleus muscles were examined. The SIRT1, PGC-1α and AMPK levels in the gastrocnemius and soleus muscles were up-regulated in the three exercise training groups than three control groups. The FOXO3a level in the 12ME group significantly increased in the gastrocnemius muscles than 12MC group, but significantly decreased in the soleus muscles. In 3-, 12- and 18-month-old rats with and without exercise, there was a significant main effect of exercise on PGC-1α, AMPK and FOXO3a in the gastrocnemius muscles, and SIRT1, PGC-1α and AMPK in the soleus muscles. Our result suggests that swimming training can regulate the SIRT1/PGC-1α, AMPK and FOXO3a proteins expression of the soleus muscles in aged rats. PMID:27076782
Risk factors of early proximal gastric carcinoma in Chinese diagnosed using WHO criteria.
Fang, Cheng; Huang, Qin; Lu, Lin; Shi, Jiong; Sun, Qi; Xu, Gui Fang; Gold, Jason; Mashimo, Hiroshi; Zou, Xiao Ping
2015-06-01
The incidence of proximal gastric carcinoma (PGC) is rising worldwide for unknown reasons. Herein we compare the risk factors of early PGC with distal gastric carcinoma (DGC) in patients treated at a single tertiary hospital in China. Risk factors of 379 consecutive surgically resected early gastric carcinoma (EGC) diagnosed according to the 2010 World Health Organization criteria were studied by reviewing their medical records and esophagogastroduodenoscopy/biopsy findings and interviewing patients and family members for the patients' history of environmental toxin exposure (ETE), dietary habits, family (FCH) and personal cancer history (PCH) and survival. Differences between PGC (n = 115), DGC (n = 264) and age-matched and gender-matched controls (n = 225) were compared. Proportion of early PGC in all EGC patients was increased significantly (P < 0.05). The independent risk factors for both PGC and DGC identified by multivariate analysis were intake of preserved food and little fruit, and gastric mucosal intestinal metaplasia and atrophy (all P < 0.05). Advanced age (odds ratio [OR] 9.83, P < 0.01), PCH (OR 5.09, P < 0.05), a high body mass index (>24 kg/m(2) ) (OR 2.79, P < 0.01) and ETE (OR 2.31, P < 0.05) were independent risk factors for PGC, but not male gender, tobacco or alcohol abuse, hiatus hernia, gastroesophageal reflux disease or columnar-lined esophagus. In contrast, FCH (OR 2.34, P < 0.01) and Helicobacter pylori infection (OR 2.81, P < 0.001) were independent risk factors for DGC. Independent risk factors for PGC in Chinese patients differ from those of DGC or esophageal adenocarcinoma, supporting the classification of PGC as a separate gastric carcinoma entity in the Chinese populations. © 2015 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.
Elsayed, Eman Tayae; Nassra, Rasha Adel; Naga, Yasmine Salah
2017-10-01
The aim of the current study was to investigate some of the key regulators of mitochondrial oxidative metabolism in ESRD patients on hemodialysis (ESRD/HD) focusing on peroxisome proliferator-activated receptor-γ-coactivator 1α (PGC-1α) gene expression and its relation to ESRD/HD-related cardiovascular diseases (CVD) and mortality in an effort to identify new potential targets for pharmacological interventions. The expression of PGC-1α and one of its downstream genes: COX6C were evaluated in 49 ESRD/HD patients and in 33 age- and sex-matched healthy subjects as controls using quantitative real-time PCR. Malondialdehyde (MDA) was measured using colorimetric method as a marker of oxidative stress. Patients were followed up for 24 months for the development of HD-related cardiovascular complications and mortality. PGC-1α and COX6C expressions were significantly down-regulated in ESRD/HD patients compared to the controls (P ≤ 0.001 for both). Additionally, MDA level was higher in HD patients (P ≤ 0.001). Negative correlation was found between PGC-1α expression and MDA level (P ≤ 0.001). MDA was significantly higher, while PGC-1α expression was significantly lower in HD patients who developed CVD than in patients who did not. By using multivariate logistic regression analysis, it was found that down-regulated PGC-1α expression is independently associated with the development of CVD in HD patients. Our study suggests that ESRD/HD patients might have oxidative mitochondrial dysfunction, which may be partially responsible for CKD-related cardiovascular complications. Pharmacological modulation of PGC-1α might be a promising therapeutic tool to reduce oxidative stress-related complications in ESRD/HD patients.
PGC-1α and fasting-induced PDH regulation in mouse skeletal muscle.
Gudiksen, Anders; Pilegaard, Henriette
2017-04-01
The purpose of the present study was to examine whether lack of skeletal muscle peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 α ) affects the switch in substrate utilization from a fed to fasted state and the fasting-induced pyruvate dehydrogenase (PDH) regulation in skeletal muscle. Skeletal muscle-specific PGC-1 α knockout (MKO) mice and floxed littermate controls were fed or fasted for 24 h. Fasting reduced PDHa activity, increased phosphorylation of all four known sites on PDH-E1 α and increased pyruvate dehydrogenase kinase (PDK4) and sirtuin 3 (SIRT3) protein levels, but did not alter total acetylation of PDH-E1 α Lack of muscle PGC-1 α did not affect the switch from glucose to fat oxidation in the transition from the fed to fasted state, but was associated with lower and higher respiratory exchange ratio (RER) in the fed and fasted state, respectively. PGC-1 α MKO mice had lower skeletal muscle PDH-E1 α , PDK1, 2, 4, and pyruvate dehydrogenase phosphatase (PDP1) protein content than controls, but this did not prevent the fasting-induced increase in PDH-E1 α phosphorylation in PGC-1 α MKO mice. However, lack of skeletal muscle PGC-1 α reduced SIRT3 protein content, increased total lysine PDH-E1 α acetylation in the fed state, and prevented a fasting-induced increase in SIRT3 protein. In conclusion, skeletal muscle PGC-1 α is required for fasting-induced upregulation of skeletal muscle SIRT3 and maintaining high fat oxidation in the fasted state, but is dispensable for preserving the capability to switch substrate during the transition from the fed to the fasted state and for fasting-induced PDH regulation in skeletal muscle. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Pang, Minhui; Yang, Jianwei; Rao, Jiaming; Wang, Haiqing; Zhang, Jiayi; Wang, Shengyong; Chen, Xiongfei; Dong, Xiaomei
2018-02-01
Exercise induces the expression of peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) in skeletal muscle, which promotes the cleavage of fibronectin type III domain-containing protein 5 (FNDC5) to irisin. To explore the relationship between irisin and its regulators, we analyzed the plasma irisin levels and the muscle levels of FNDC5 and PGC-1α after exercise. Male C57BL/6J mice underwent a treadmill exercise (60% of VO 2max ) for 30 min or one hour (h), and blood and gastrocnemius samples were collected before exercise (pre-exercise), immediately after exercise, and during 24-h recovery after 1-h exercise. We found that plasma irisin levels were significantly increased during exercise (P < 0.05), while FNDC5 protein levels were not significantly increased. Moreover, PGC-1α mRNA and protein levels were significantly increased during 30-min exercise, but were decreased during 1-h exercise. After 1-h exercise, the irisin levels peaked at 6 h (20.71 ± 0.25 ng/ml) and decreased to pre-exercise levels by 24 h (15.45 ± 0.27 ng/ml). Likewise, PGC-1α mRNA and protein levels were increased at 1 h and maintained at elevated levels for 6 h; thereafter, the expression levels of PGC1-α protein were decreased to pre-exercise levels at 12 h. Thus, the restoration of PGC-1α expression to the pre-exercise levels was followed by the decrease in plasma irisin levels. By contrast, during 24-h recovery, the expression levels of FNDC5 mRNA and protein were maintained at elevated levels. These results suggest that the coordinated expression of FNDC5 and PGC-1α may contribute to the increased levels of plasma irisin after exercise.
An all-digital phase-locked loop demodulator based on FPGA
NASA Astrophysics Data System (ADS)
Gong, X. F.; Cui, Z. D.
2017-09-01
This paper studied the principle of analogue phase-locked loop demodulation and work process of digital phase-locked loop. It is found that the higher the reference signal frequency is, the smaller the duty ratio of the discriminator output signal is. Carrier detection is achieved by using this relationship. The experimental results indicate that the demodulator based on the principle could realize high-quality transmission of digital signals and could be an effective FM communication mode for studying wireless transmission of digital signals.
Demodulation of messages received with low signal to noise ratio
NASA Astrophysics Data System (ADS)
Marguinaud, A.; Quignon, T.; Romann, B.
The implementation of this all-digital demodulator is derived from maximum likelihood considerations applied to an analytical representation of the received signal. Traditional adapted filters and phase lock loops are replaced by minimum variance estimators and hypothesis tests. These statistical tests become very simple when working on phase signal. These methods, combined with rigorous control data representation allow significant computation savings as compared to conventional realizations. Nominal operation has been verified down to energetic signal over noise of -3 dB upon a QPSK demodulator.
NASA Astrophysics Data System (ADS)
Kirikera, G. R.; Balogun, O.; Krishnaswamy, S.
2008-02-01
A network of Fiber-Bragg Grating (FBG) sensors is developed as part of a Structural Health Monitoring system to identify impact damage. The sensor signals are adaptively demodulated using two-wave mixing (TWM) technology. The signals from multiple FBG sensors are multiplexed into a single TWM demodulator. The FBG sensor network is mounted on a plate, and the structure is subjected to impacts generated by dropping small ball bearings. Impact locations are identified based on time frequency analysis.
Trellis coded multilevel DPSK system with doppler correction for mobile satellite channels
NASA Technical Reports Server (NTRS)
Divsalar, Dariush (Inventor); Simon, Marvin K. (Inventor)
1991-01-01
A trellis coded multilevel differential phase shift keyed mobile communication system. The system of the present invention includes a trellis encoder for translating input signals into trellis codes; a differential encoder for differentially encoding the trellis coded signals; a transmitter for transmitting the differentially encoded trellis coded signals; a receiver for receiving the transmitted signals; a differential demodulator for demodulating the received differentially encoded trellis coded signals; and a trellis decoder for decoding the differentially demodulated signals.
1991-11-01
2 mega joule/m 2 (MJ/m 2 ) curie 3.700000 x E +1 *giga becquerel (GBq) degree (angle) 1.745329 x E -2 radian (rad) degree Farenheit tK = (tp...quantization assigned two quantization values. One value was assigned for demodulation values that was larger than zero and another quantization value to...demodulation values that were smaller than zero (for maximum-likelihood decisions). Logic 0 was assigned for a positive demodulation value and a logic 1 was
NASA Astrophysics Data System (ADS)
Wang, Xuan; Li, Xuebing; Chen, Wenfang; Wang, Rulin; Bian, Wei; Choi, Martin M. F.
2018-06-01
Phosphorus doped graphitic carbon nitride (P-g-C3N4) nanosheets were synthesized by calcination. P-g-C3N4 nanosheets were characterized by XRD, XPS, TEM, fluorescence, ultraviolet-visible absorption and Fourier transform infrared spectroscopy. The fluorescence of the P-g-C3N4 nanosheets was gradually quenched with the increase in the concentration of baicalein at room temperature. The proposed probe was used for the determination of baicalein in the concentration 2.0-30 μM with a detection limit of 53 nM. The quenching mechanism was discussed. The P-g-C3N4 nanosheets have been successfully applied for effective and selective detection of baicalein in human urine samples and blood samples.
Development of an FBG Sensor Array for Multi-Impact Source Localization on CFRP Structures.
Jiang, Mingshun; Sai, Yaozhang; Geng, Xiangyi; Sui, Qingmei; Liu, Xiaohui; Jia, Lei
2016-10-24
We proposed and studied an impact detection system based on a fiber Bragg grating (FBG) sensor array and multiple signal classification (MUSIC) algorithm to determine the location and the number of low velocity impacts on a carbon fiber-reinforced polymer (CFRP) plate. A FBG linear array, consisting of seven FBG sensors, was used for detecting the ultrasonic signals from impacts. The edge-filter method was employed for signal demodulation. Shannon wavelet transform was used to extract narrow band signals from the impacts. The Gerschgorin disc theorem was used for estimating the number of impacts. We used the MUSIC algorithm to obtain the coordinates of multi-impacts. The impact detection system was tested on a 500 mm × 500 mm × 1.5 mm CFRP plate. The results show that the maximum error and average error of the multi-impacts' localization are 9.2 mm and 7.4 mm, respectively.
NASA Technical Reports Server (NTRS)
Chie, C. M.; Su, Y. T.; Lindsey, W. C.; Koukos, J.
1984-01-01
The autonomous and integrated aspects of the operation of the AIRS (Autonomous Integrated Receive System) are discussed from a system operation point of view. The advantages of AIRS compared to the existing SSA receive chain equipment are highlighted. The three modes of AIRS operation are addressed in detail. The configurations of the AIRS are defined as a function of the operating modes and the user signal characteristics. Each AIRS configuration selection is made up of three components: the hardware, the software algorithms and the parameters used by these algorithms. A comparison between AIRS and the wide dynamics demodulation (WDD) is provided. The organization of the AIRS analytical/simulation software is described. The modeling and analysis is for simulating the performance of the PN subsystem is documented. The frequence acquisition technique using a frequency-locked loop is also documented. Doppler compensation implementation is described. The technological aspects of employing CCD's for PN acquisition are addressed.
Fast and accurate read-out of interferometric optical fiber sensors
NASA Astrophysics Data System (ADS)
Bartholsen, Ingebrigt; Hjelme, Dag R.
2016-03-01
We present results from an evaluation of phase and frequency estimation algorithms for read-out instrumentation of interferometric sensors. Tests on interrogating a micro Fabry-Perot sensor made of semi-spherical stimuli-responsive hydrogel immobilized on a single mode fiber end face, shows that an iterative quadrature demodulation technique (IQDT) implemented on a 32-bit microcontroller unit can achieve an absolute length accuracy of ±50 nm and length change accuracy of ±3 nm using an 80 nm SLED source and a grating spectrometer for interrogation. The mean absolute error for the frequency estimator is a factor 3 larger than the theoretical lower bound for a maximum likelihood estimator. The corresponding factor for the phase estimator is 1.3. The computation time for the IQDT algorithm is reduced by a factor 1000 compared to the full QDT for the same accuracy requirement.
Exploiting Concurrent Wake-Up Transmissions Using Beat Frequencies.
Kumberg, Timo; Schindelhauer, Christian; Reindl, Leonhard
2017-07-26
Wake-up receivers are the natural choice for wireless sensor networks because of their ultra-low power consumption and their ability to provide communications on demand. A downside of ultra-low power wake-up receivers is their low sensitivity caused by the passive demodulation of the carrier signal. In this article, we present a novel communication scheme by exploiting purposefully-interfering out-of-tune signals of two or more wireless sensor nodes, which produce the wake-up signal as the beat frequency of superposed carriers. Additionally, we introduce a communication algorithm and a flooding protocol based on this approach. Our experiments show that our approach increases the received signal strength up to 3 dB, improving communication robustness and reliability. Furthermore, we demonstrate the feasibility of our newly-developed protocols by means of an outdoor experiment and an indoor setup consisting of several nodes. The flooding algorithm achieves almost a 100% wake-up rate in less than 20 ms.
NASA Astrophysics Data System (ADS)
Wang, Jianhua; Yang, Yanxi
2018-05-01
We present a new wavelet ridge extraction method employing a novel cost function in two-dimensional wavelet transform profilometry (2-D WTP). First of all, the maximum value point is extracted from two-dimensional wavelet transform coefficient modulus, and the local extreme value points over 90% of maximum value are also obtained, they both constitute wavelet ridge candidates. Then, the gradient of rotate factor is introduced into the Abid's cost function, and the logarithmic Logistic model is used to adjust and improve the cost function weights so as to obtain more reasonable value estimation. At last, the dynamic programming method is used to accurately find the optimal wavelet ridge, and the wrapped phase can be obtained by extracting the phase at the ridge. Its advantage is that, the fringe pattern with low signal-to-noise ratio can be demodulated accurately, and its noise immunity will be better. Meanwhile, only one fringe pattern is needed to projected to measured object, so dynamic three-dimensional (3-D) measurement in harsh environment can be realized. Computer simulation and experimental results show that, for the fringe pattern with noise pollution, the 3-D surface recovery accuracy by the proposed algorithm is increased. In addition, the demodulation phase accuracy of Morlet, Fan and Cauchy mother wavelets are compared.
NASA Astrophysics Data System (ADS)
Chen, Xiaoping; He, Jian; Wang, Fei; Zhang, Peng; Liu, Hongju; Li, Wenjiong
2016-07-01
PGC-1α, a transcriptional co-activator, has been shown mainly to determine the development of oxidative myofibers in skeletal muscle. However, whether PGC-1α functions to regulate the unloaded muscle atrophy and composition of myofiber types keeps unclear. MCK-PGC-1α overexpression transgenic mice (TG) and its wild type littermates (WT) were subjected to hindlimb unloading (HU) and induced unloaded muscle atrophy. After 14 days of HU, the mass of gastrocnemius, soleus, and plantaris muscles in WT mice decreased 17.9%, 28.2%, and 14.8%, respectively (P<0.01), compared with ground weight-bearing control muscles. PGC-1α transgenic mice showed a 14.0% (P<0.05), 20.4% (P<0.01), 11.8% decrease in gastrocnemius, soleus, and plantaris muscles mass after HU. To further confirm the effect of PGC-1α over-expression on the muscle mass loss under HU, change rate of muscle-body weight ratio was calculated, and the results indicated that the reduction of change rate of muscle-body weight ratio in PGC-1α transgenic gastrocnemius and soleus was significantly less than in WT mice (P<0.01). Moreover, in TG mice compared to WT mice there were significantly less reduction rate of slow-twitch myofiber MHC-I and MHC-IIa (MHC-I, -3.0±0.2% vs -14.9±4.2%, p<0.01, MHC-IIa, -3.5±2.7% vs -6.2±3.7%, p<0.01 ), while there was significantly less induction rate of fast-twitch myofiber MHC-IIb (MHC-IIb, +0.6±0.6% vs +3.7±2.9%, p<0.01 ). The real-time PCR and Western blot analysis confirmed that PGC-1α overexpression mice markedly rescued the muscle atrophy and myofiber switching from oxidative to glycolytic associated with a decrease in pSmad3 level after 14 days of HU. Importantly, overexpression of PGC-1α in C2C12 myoblasts protected PGC-1α-transfected myotubes from atrophy in vitro and the effect could be partially blocked by inducing pSmad3 with constitutively activated Smad3(C.A. smad3) transfection. Therefore, this study demonstrated a novel role and mechanism for PGC-1α in maintaining the balance of muscle mass and myofiber type MHCs in unloaded muscle atrophy via suppressing Smad3 activation. This report may prompt a hopeful therapeutic strategy for maintaining muscle mass and fiber type composition in disused muscle atrophies such as space weightlessness- or immobilization-induced muscle atrophy. Acknowledgments This work was supported by the Natural Sciences Foundation of China (31171144, 81272177 and 31171148), the State Key Laboratory Grant of Space Medicine Fundamentals and Application (SMFA13A01), and the National Key Laboratory Grant of Human Factors Engineering (SYFD140051801).
Multichannel Baseband Processor for Wideband CDMA
NASA Astrophysics Data System (ADS)
Jalloul, Louay M. A.; Lin, Jim
2005-12-01
The system architecture of the cellular base station modem engine (CBME) is described. The CBME is a single-chip multichannel transceiver capable of processing and demodulating signals from multiple users simultaneously. It is optimized to process different classes of code-division multiple-access (CDMA) signals. The paper will show that through key functional system partitioning, tightly coupled small digital signal processing cores, and time-sliced reuse architecture, CBME is able to achieve a high degree of algorithmic flexibility while maintaining efficiency. The paper will also highlight the implementation and verification aspects of the CBME chip design. In this paper, wideband CDMA is used as an example to demonstrate the architecture concept.
Nonlinear Demodulation and Channel Coding in EBPSK Scheme
Chen, Xianqing; Wu, Lenan
2012-01-01
The extended binary phase shift keying (EBPSK) is an efficient modulation technique, and a special impacting filter (SIF) is used in its demodulator to improve the bit error rate (BER) performance. However, the conventional threshold decision cannot achieve the optimum performance, and the SIF brings more difficulty in obtaining the posterior probability for LDPC decoding. In this paper, we concentrate not only on reducing the BER of demodulation, but also on providing accurate posterior probability estimates (PPEs). A new approach for the nonlinear demodulation based on the support vector machine (SVM) classifier is introduced. The SVM method which selects only a few sampling points from the filter output was used for getting PPEs. The simulation results show that the accurate posterior probability can be obtained with this method and the BER performance can be improved significantly by applying LDPC codes. Moreover, we analyzed the effect of getting the posterior probability with different methods and different sampling rates. We show that there are more advantages of the SVM method under bad condition and it is less sensitive to the sampling rate than other methods. Thus, SVM is an effective method for EBPSK demodulation and getting posterior probability for LDPC decoding. PMID:23213281
Detector for flow abnormalities in gaseous diffusion plant compressors
Smith, Stephen F.; Castleberry, Kim N.
1998-01-01
A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value.
Detector for flow abnormalities in gaseous diffusion plant compressors
Smith, S.F.; Castleberry, K.N.
1998-06-16
A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value. 6 figs.
Nonlinear demodulation and channel coding in EBPSK scheme.
Chen, Xianqing; Wu, Lenan
2012-01-01
The extended binary phase shift keying (EBPSK) is an efficient modulation technique, and a special impacting filter (SIF) is used in its demodulator to improve the bit error rate (BER) performance. However, the conventional threshold decision cannot achieve the optimum performance, and the SIF brings more difficulty in obtaining the posterior probability for LDPC decoding. In this paper, we concentrate not only on reducing the BER of demodulation, but also on providing accurate posterior probability estimates (PPEs). A new approach for the nonlinear demodulation based on the support vector machine (SVM) classifier is introduced. The SVM method which selects only a few sampling points from the filter output was used for getting PPEs. The simulation results show that the accurate posterior probability can be obtained with this method and the BER performance can be improved significantly by applying LDPC codes. Moreover, we analyzed the effect of getting the posterior probability with different methods and different sampling rates. We show that there are more advantages of the SVM method under bad condition and it is less sensitive to the sampling rate than other methods. Thus, SVM is an effective method for EBPSK demodulation and getting posterior probability for LDPC decoding.
Mitra, Mayurranjan S.; Schilling, Joel D.; Wang, Xiaowei; Jay, Patrick Y.; Huss, Janice M.; Su, Xiong; Finck, Brian N.
2011-01-01
Lipin family proteins (lipin 1, 2, and 3) are bifunctional intracellular proteins that regulate metabolism by acting as coregulators of DNA-bound transcription factors and also dephosphorylate phosphatidate to form diacylglycerol [phosphatidate phosphohydrolase activity] in the triglyceride synthesis pathway. Herein, we report that lipin 1 is enriched in heart and that hearts of mice lacking lipin 1 (fld mice) exhibit accumulation of phosphatidate. We also demonstrate that the expression of the gene encoding lipin 1 (Lpin1) is under the control of the estrogen-related receptors (ERRs) and their coactivator the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). PGC-1α, ERRα, or ERRγ overexpression increased Lpin1 transcription in cultured ventricular myocytes and the ERRs were associated with response elements in the first intron of the Lpin1 gene. Concomitant RNAi-mediated knockdown of ERRα and ERRγ abrogated the induction of lipin 1 expression by PGC-1α overexpression. Consistent with these data, 3-fold overexpression of PGC-1α in intact myocardium of transgenic mice increased cardiac lipin 1 and ERRα/γ expression. Similarly, injection of the β2-adrenergic agonist clenbuterol induced PGC-1α and lipin 1 expression, and the induction in lipin 1 after clenbuterol occurred in a PGC-1α-dependent manner. In contrast, expression of PGC-1α, ERRα, ERRγ, and lipin 1 was down-regulated in failing heart. Cardiac phosphatidic acid phosphohydrolase activity was also diminished, while cardiac phosphatidate content was increased, in failing heart. Collectively, these data suggest that lipin 1 is the principal lipin protein in the myocardium and is regulated in response to physiologic and pathologic stimuli that impact cardiac metabolism. PMID:21549711
Hofer, Annette; Noe, Natalie; Tischner, Christin; Kladt, Nikolay; Lellek, Veronika; Schauß, Astrid; Wenz, Tina
2014-05-01
Previous studies have demonstrated a therapeutic benefit of pharmaceutical PGC-1α activation in cellular and murine model of disorders linked to mitochondrial dysfunction. While in some cases, this effect seems to be clearly associated with boosting of mitochondrial function, additional alterations as well as tissue- and cell-type-specific effects might play an important role. We initiated a comprehensive analysis of the effects of potential PGC-1α-activating drugs and pharmaceutically targeted the PPAR (bezafibrate, rosiglitazone), AMPK (AICAR, metformin) and Sirt1 (resveratrol) pathways in HeLa cells, neuronal cells and PGC-1α-deficient MEFs to get insight into cell type specificity and PGC-1α dependence of their working action. We used bezafibrate as a model drug to assess the effect on a tissue-specific level in a murine model. Not all analyzed drugs activate the PGC pathway or alter mitochondrial protein levels. However, they all affect supramolecular assembly of OXPHOS complexes and OXPHOS protein stability. In addition, a clear drug- and cell-type-specific influence on several cellular stress pathways as well as on post-translational modifications could be demonstrated, which might be relevant to fully understand the action of the analyzed drugs in the disease state. Importantly, the effect on the activation of mitochondrial biogenesis and stress response program upon drug treatment is PGC-1α dependent in MEFs demonstrating not only the pleiotropic effects of this molecule but points also to the working mechanism of the analyzed drugs. The definition of the action spectrum of the different drugs forms the basis for a defect-specific compensation strategy and a future personalized therapeutic approach.
Furimsky, Anna; Vuong, Ngoc; Xu, Hongbin; Kumarathasan, Premkumari; Xu, Min; Weerachatyanukul, Wattana; Bou Khalil, Maroun; Kates, Morris; Tanphaichitr, Nongnuj
2005-03-01
Although Percoll gradient centrifugation has been used routinely to prepare motile human sperm, its use in preparing motile mouse sperm has been limited. Here, we showed that Percoll gradient-centrifuged (PGC) capacitated mouse sperm had markedly higher fertilizing ability (sperm-zona pellucida [ZP] binding and in vitro fertilization) than washed capacitated mouse sperm. We also showed that the lipid profiles of PGC capacitated sperm and washed capacitated sperm differed significantly. The PGC sperm had much lower contents of cholesterol and phospholipids. This resulted in relative enrichment of male germ cell-specific sulfogalactosylglycerolipid (SGG), a ZP-binding ligand, in PGC capacitated sperm, and this would explain, in part, their increased ZP-binding ability compared with that of washed capacitated sperm. Analyses of phospholipid fatty acyl chains revealed that PGC capacitated sperm were enriched in phosphatidylcholine (PC) molecular species containing highly unsaturated fatty acids (HUFAs), with docosahexaenoic acid (DHA; C22: 6n-3) being the predominant HUFA (42% of total hydrocarbon chains of PC). In contrast, the level of PC-HUFAs comprising arachidonic acid (20:4n-6), docosapentaenoic acid (C22:5n-6), and DHA in washed capacitated sperm was only 27%. Having the highest unsaturation degree among all HUFAs in PC, DHA would enhance membrane fluidity to the uppermost. Therefore, membranes of PGC capacitated sperm would undergo fertilization-related fusion events at higher rates than washed capacitated sperm. These results suggested that PGC mouse sperm should be used in fertilization experiments and that SGG and DHA should be considered to be important biomarkers for sperm fertilizing ability.
Shimamoto, Saki; Ijiri, Daichi; Kawaguchi, Mana; Nakashima, Kazuki; Tada, Osamu; Inoue, Hiroki; Ohtsuka, Akira
2017-09-01
Adrenaline changes expression of the genes encoding peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α), which is known as a regulator of muscle size, and atrogin-1/muscle atrophy F-box (MAFbx), which is a muscle-specific ubiquitin ligase. However, the subtype of β-adrenergic receptor (β-AR) involved in regulating these genes in skeletal muscle is not yet well defined. In this study, the effects of intraperitoneal injection of adrenaline and three β 1-3 -AR selective agonists on chick skeletal muscle metabolism were examined, to evaluate the functions of β-AR subtypes. Adrenaline decreased atrogin-1/MAFbx mRNA levels accompanied by an increase in PGC-1α mRNA and protein levels. However, among the three selective agonists, only the β 1 -AR agonist, dobutamine, increased PGC-1α mRNA and protein levels, while the β 2 -AR agonist, clenbuterol, suppressed atrogin-1/MAFbx mRNA levels. In addition, preinjection of the β 1 -AR antagonist, acebutolol, and the β 2 -AR antagonist, butoxamine, inhibited the adrenaline-induced increase in PGC-1α mRNA levels and the decrease in atrogin-1/MAFbx mRNA levels, respectively. Compared with adrenaline administration, the β 3 -AR agonist, BRL37344, decreased PGC-1α mRNA levels and increased atrogin-1/MAFbx mRNA levels. These results suggest that, in chick skeletal muscle, PGC-1α is induced via the β 1 -AR, while atrogin-1/MAFbx is suppressed via the β 2 -AR. Copyright © 2017. Published by Elsevier Inc.
Renal PGC1α May Be Associated with Recovery after Delayed Graft Function.
Drury, Erika R; Zsengeller, Zsuzsanna K; Stillman, Isaac E; Khankin, Eliyahu V; Pavlakis, Martha; Parikh, Samir M
2018-01-01
Delayed renal graft function (DGF) contributes to the determination of length of hospitalization, risk of acute rejection, and graft loss. Existing tools aid the diagnosis of specific DGF etiologies such as antibody-mediated rejection, but markers of recovery have been elusive. The peroxisome proliferator gamma co-activator-1-alpha (PGC1α) is highly expressed in the renal tubule, regulates mitochondrial biogenesis, and promotes recovery from experimental acute kidney injury. We aimed to determine the association between renal allograft PGC1α expression and recovery from delayed graft function. We retrospectively analyzed patients undergoing renal transplantation at a single center from January 1, 2008 to June 30, 2014. PGC1α expression was assessed by immunostaining and ultrastructural characteristics by transmission electron microscopy. Of 34 patients who underwent renal biopsy for DGF within 30 days of transplant, 21 were included for analysis. Low PGC1α expression was associated with a significantly longer time on dialysis after transplant (median of 35.5 vs. 16 days, p < 0.05) and a significantly higher serum creatinine (sCr) at 4 weeks after transplantation among those who discontinued dialysis (5 vs. 1.65 mg/dL, p < 0.0001). Low PGC1α expression was not associated with higher sCr at 12 weeks after transplantation. Ultrastructural characteristics including apical membrane blebbing and necrotic luminal debris were not informative regarding clinical outcomes. These data suggest that higher PGC1α expression is associated with faster and more complete recovery from DGF. Mitochondrial biogenesis may be a therapeutic target for DGF. Larger studies are needed to validate these findings. © 2017 S. Karger AG, Basel.
Wide-band doubler and sine wave quadrature generator
NASA Technical Reports Server (NTRS)
Crow, R. B.
1969-01-01
Phase-locked loop with photoresistive control, which provides both sine and cosine outputs for subcarrier demodulation, serves as a telemetry demodulator signal conditioner with a second harmonic signal for synchronization with the locally generated code.
Reyes-Gordillo, Karina; Shah, Ruchi; Varatharajalu, Ravi; Garige, Mamatha; Leckey, Leslie C.
2016-01-01
Chronic ethanol-induced downregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC1β) affect hepatic lipid oxidation and lipogenesis, respectively, leading to fatty liver injury. Low-ω3 fatty acid (Low-ω3FA) that primarily regulates PGC1α and soy protein (SP) that seems to have its major regulatory effect on PGC1β were evaluated for their protective effects against ethanol-induced hepatosteatosis in rats fed with Lieber-deCarli control or ethanol liquid diets with high or low ω3FA fish oil and soy protein. Low-ω3FA and SP opposed the actions of chronic ethanol by reducing serum and liver lipids with concomitant decreased fatty liver. They also prevented the downregulation of hepatic Sirtuin 1 (SIRT1) and PGC1α and their target fatty acid oxidation pathway genes and attenuated the upregulation of hepatic PGC1β and sterol regulatory element-binding protein 1c (SREBP1c) and their target lipogenic pathway genes via the phosphorylation of 5′ adenosine monophosphate-activated protein kinase (AMPK). Thus, these two novel modulators attenuate ethanol-induced hepatosteatosis and consequent liver injury potentially by regulating the two opposing lipid oxidation and lipogenic pathways. PMID:28074114
The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlomai, Amir, E-mail: amirsh@tasmc.health.gov.il; Institute for Gastroenterology and Liver disease, Tel-Aviv Sourasky Medical Center, 6 Weizmann street, Tel-Aviv; Shaul, Yosef
2009-04-17
Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1{alpha} coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1{alpha} coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4{alpha} and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1{alpha} coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhancedmore » in the presence of PGC-1{alpha}, implying that FOXO1 is a target for PGC-1{alpha} coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.« less
G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy.
White, James P; Wrann, Christiane D; Rao, Rajesh R; Nair, Sreekumaran K; Jedrychowski, Mark P; You, Jae-Sung; Martínez-Redondo, Vicente; Gygi, Steven P; Ruas, Jorge L; Hornberger, Troy A; Wu, Zhidan; Glass, David J; Piao, Xianhua; Spiegelman, Bruce M
2014-11-04
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4-induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise.
Da Cruz, Sandrine; Parone, Philippe A; Lopes, Vanda S; Lillo, Concepción; McAlonis-Downes, Melissa; Lee, Sandra K; Vetto, Anne P; Petrosyan, Susanna; Marsala, Martin; Murphy, Anne N; Williams, David S; Spiegelman, Bruce M; Cleveland, Don W
2012-05-02
The transcriptional coactivator PGC-1α induces multiple effects on muscle, including increased mitochondrial mass and activity. Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, adult-onset neurodegenerative disorder characterized by selective loss of motor neurons and skeletal muscle degeneration. An early event is thought to be denervation-induced muscle atrophy accompanied by alterations in mitochondrial activity and morphology within muscle. We now report that elevation of PGC-1α levels in muscles of mice that develop fatal paralysis from an ALS-causing SOD1 mutant elevates PGC-1α-dependent pathways throughout disease course. Mitochondrial biogenesis and activity are maintained through end-stage disease, accompanied by retention of muscle function, delayed muscle atrophy, and significantly improved muscle endurance even at late disease stages. However, survival was not extended. Therefore, muscle is not a primary target of mutant SOD1-mediated toxicity, but drugs increasing PGC-1α activity in muscle represent an attractive therapy for maintaining muscle function during progression of ALS. Copyright © 2012 Elsevier Inc. All rights reserved.
G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy
White, James P.; Wrann, Christiane D.; Rao, Rajesh R.; Nair, Sreekumaran K.; Jedrychowski, Mark P.; You, Jae-Sung; Martínez-Redondo, Vicente; Gygi, Steven P.; Ruas, Jorge L.; Hornberger, Troy A.; Wu, Zhidan; Glass, David J.; Piao, Xianhua; Spiegelman, Bruce M.
2014-01-01
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4–induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise. PMID:25336758
Neural Networks For Demodulation Of Phase-Modulated Signals
NASA Technical Reports Server (NTRS)
Altes, Richard A.
1995-01-01
Hopfield neural networks proposed for demodulating quadrature phase-shift-keyed (QPSK) signals carrying digital information. Networks solve nonlinear integral equations prior demodulation circuits cannot solve. Consists of set of N operational amplifiers connected in parallel, with weighted feedback from output terminal of each amplifier to input terminals of other amplifiers. Used to solve signal processing problems. Implemented as analog very-large-scale integrated circuit that achieves rapid convergence. Alternatively, implemented as digital simulation of such circuit. Also used to improve phase estimation performance over that of phase-locked loop.
Circuit for Communication over DC Power Line Using High Temperature Electronics
NASA Technical Reports Server (NTRS)
Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor)
2014-01-01
A high temperature communications circuit includes a power conductor for concurrently conducting electrical energy for powering circuit components and transmitting a modulated data signal, and a demodulator for demodulating the data signal and generating a serial bit stream based on the data signal. The demodulator includes an absolute value amplifier for conditionally inverting or conditionally passing a signal applied to the absolute value amplifier. The absolute value amplifier utilizes no diodes to control the conditional inversion or passing of the signal applied to the absolute value amplifier.
Demodulation techniques for the amplitude modulated laser imager
NASA Astrophysics Data System (ADS)
Mullen, Linda; Laux, Alan; Cochenour, Brandon; Zege, Eleonora P.; Katsev, Iosif L.; Prikhach, Alexander S.
2007-10-01
A new technique has been found that uses in-phase and quadrature phase (I/Q) demodulation to optimize the images produced with an amplitude-modulated laser imaging system. An I/Q demodulator was used to collect the I/Q components of the received modulation envelope. It was discovered that by adjusting the local oscillator phase and the modulation frequency, the backscatter and target signals can be analyzed separately via the I/Q components. This new approach enhances image contrast beyond what was achieved with a previous design that processed only the composite magnitude information.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
NASA Astrophysics Data System (ADS)
Liu, Y.; Strum, R.; Stiles, D.; Long, C.; Rakhman, A.; Blokland, W.; Winder, D.; Riemer, B.; Wendel, M.
2018-03-01
We describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. The proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry-Perot sensors for measurement of strains and vibrations.
On-chip WDM mode-division multiplexing interconnection with optional demodulation function.
Ye, Mengyuan; Yu, Yu; Chen, Guanyu; Luo, Yuchan; Zhang, Xinliang
2015-12-14
We propose and fabricate a wavelength-division-multiplexing (WDM) compatible and multi-functional mode-division-multiplexing (MDM) integrated circuit, which can perform the mode conversion and multiplexing for the incoming multipath WDM signals, avoiding the wavelength conflict. An phase-to-intensity demodulation function can be optionally applied within the circuit while performing the mode multiplexing. For demonstration, 4 × 10 Gb/s non-return-to-zero differential phase shift keying (NRZ-DPSK) signals are successfully processed, with open and clear eye diagrams. Measured bit error ratio (BER) results show less than 1 dB receive sensitivity variation for three modes and four wavelengths with demodulation. In the case without demodulation, the average power penalties at 4 wavelengths are -1.5, -3 and -3.5 dB for TE₀-TE₀, TE₀-TE₁ and TE₀-TE₂ mode conversions, respectively. The proposed flexible scheme can be used at the interface of long-haul and on-chip communication systems.
Demodulation method for tilted fiber Bragg grating refractometer with high sensitivity
NASA Astrophysics Data System (ADS)
Pham, Xuantung; Si, Jinhai; Chen, Tao; Wang, Ruize; Yan, Lihe; Cao, Houjun; Hou, Xun
2018-05-01
In this paper, we propose a demodulation method for refractive index (RI) sensing with tilted fiber Bragg gratings (TFBGs). It operates by monitoring the TFBG cladding mode resonance "cut-off wavelengths." The idea of a "cut-off wavelength" and its determination method are introduced. The RI sensitivities of TFBGs are significantly enhanced in certain RI ranges by using our demodulation method. The temperature-induced cross sensitivity is eliminated. We also demonstrate a parallel-double-angle TFBG (PDTFBG), in which two individual TFBGs are inscribed in the fiber core in parallel using a femtosecond laser and a phase mask. The RI sensing range of the PDTFBG is significantly broader than that of a conventional single-angle TFBG. In addition, its RI sensitivity can reach 1023.1 nm/refractive index unit in the 1.4401-1.4570 RI range when our proposed demodulation method is used.
Design of distributed FBG vibration measuring system based on Fabry-Perot tunable filter
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Miao, Changyun; Li, Hongqiang; Gao, Hua; Gan, Jingmeng
2011-11-01
A distributed optical fiber grating wavelength interrogator based on fiber Fabry Perot tunable filter(FFP-TF) was proposed, which could measure dynamic strain or vibration of multi-sensing fiber gratings in one optical fiber by time division way. The wavelength demodulated mathematical model was built, the formulas of system output voltage and sensitivity were deduced and the method of finding static operating point was determined. The wavelength drifting characteristic of FFP-TF was discussed when the center wavelength of FFP-TF was set on the static operating point. A wavelength locking method was proposed by introducing a high-frequency driving voltage signal. A demodulated system was established based on Labview and its demodulated wavelength dynamic range is 290pm in theory. In experiment, by digital filtering applied to the system output data, 100Hz and 250Hz vibration signals were measured. The experiment results proved the feasibility of the demodulated method.
Development of a fiber optic pavement subgrade strain measurement system
NASA Astrophysics Data System (ADS)
Miller, Craig Emerson
2000-11-01
This dissertation describes the development of a fiber optic sensing system to measure strains within the soil subgrade of highway pavements resulting from traffic loads. The motivation to develop such a device include improvements to: (1)all phases of pavement design, (2)theoretical models used to predict pavement performance, and (3)pavement rehabilitation. The design of the sensing system encompasses selecting an appropriate transducer design as well as the development of optimal optical and demodulation systems. The first is spring based, which attempts to match its spring stiffness to that of the soil-data indicate it is not an optimal transducer design. The second transducer implements anchoring plates attached to two telescoping tubes which allows the soil to be compacted to a desired density between the plates to dictate the transducer's behavior. Both transducers include an extrinsic Fabry- Perot cavity to impose the soil strains onto a phase change of the optical signal propagating through the cavity. The optical system includes a low coherence source and allows phase modulation via path length stretching by adding a second interferometer in series with the transducer, resulting in a path matched differential interferometer. A digitally implemented synthetic heterodyne demodulator based on a four step phase stepping algorithm is used to obtain unambiguous soil strain information from the displacement of the Fabry-Perot cavity. The demodulator is calibrated and characterized by illuminating the transducer with a second long coherence source of different wavelength. The transducer using anchoring plates is embedded within cylindrical soil specimens of varying soil types and soil moisture contents. Loads are applied to the specimen and resulting strains are measured using the embedded fiber optic gage and LVDTs attached to the surface of the specimen. This experimental verification is substantiated using a finite element analysis to predict any differences between interior and surface strains in the specimens. The experimental data indicate 2-inch diameter anchoring plates embedded in soil close to its optimum moisture content allow for very accurate soil strain measurements.
NASA Astrophysics Data System (ADS)
Liao, Hao; Lu, Ping; Liu, Li; Liu, Deming; Zhang, Jiangshan
2017-02-01
A phase demodulation method for short-cavity extrinsic Fabry-Perot interferometer (EFPI) based on two orthogonal wavelengths via a tunable optical filter is proposed in this paper. A broadband light is launched into the EFPI sensor and two monochromatic beams with 3dB bandwidth of 0.2nm are selected out from the reflected light of the EFPI sensor. A phase bias is induced between the two interferential signals due to the wavelength difference of the two beams. The wavelength difference will have an affect on the sensitivity of demodulated signal, which has been theoretically and experimentally demonstrated. The maximum sensitivity can be obtained when the phase bias is 0.5π corresponding to the wavelength difference of 1/4 FSR of the EFPI spectrum. The acoustic wave induced phase variation can be interrogated through an optimized differential cross multiplication (DCM) method. A normalization process is induced into the traditional DCM method to eliminate the influence of ambient temperature and pressure fluctuation induced spectrum shift on output signal. This means that, once the wavelength difference is fixed, the wavelength variation of each individual beam will have little influence on the amplitude of demodulated signal. The EFPI sensing head is formed by a 3μm-thick aluminum diaphragm, which has a SNR of more than 53dB. Through the proposed demodulation scheme, a large dynamic range and good linearity is acquired and Q-point drift problem of traditional EFPI sensor can be solved. The demodulation scheme can be applied to other kinds of short-cavity EFPI based acoustic sensors.
Wang, Lizhen; Fan, Hailing; Zhou, Ludan; Wu, Yanjun; Lu, Hongping; Luo, Jing
2018-06-18
To investigate the effect of gestational diabetes mellitus (GDM) on the expression and methylation of PGC-1α and PDX1 in placenta and their effects on fetal glucose metabolism. 20 cases of full-term placenta without pregnancy complications and umbilical cord abnormalities and 20 cases of GDM group were collected. DNA and RNA were isolated from samples of tissue collected from the fetal side of the placenta immediately after delivery. DNA methylation was quantified at 7 CpG sites within the PGC-1α and PDX1 genes using PCR amplification of bisulfite treated DNA and subsequent DNA sequencing. PGC-1α and PDX1 mRNA levels were measured by reverse transcription-quantitative PCR (RT-qPCR). Meanwhile, the placental insulin, blood glucose and HbA1c levels were determined. The fetus birth weight and placental weight in GDM group were significantly higher than those in control group (P < 0.05). Insulin, HbA1c and blood glucose levels in GDM group were significantly higher than those in control group (P < 0.01). Insulin content was positively correlated with newborn birth weight and placental weight while HbA1c and blood glucose were positively correlated with insulin concentration (r = 0.92, P < 0.01, r = 0.85, P < 0.01). The levels of PGC-1α and PDX1 mRNA were lower in the GDM group compared to the control group. The methylation level of PGC-1α gene was higher in the GDM group compared to the control group (P < 0.05). Blood glucose was negatively correlated with the expression of PGC-1α and PDX1 mRNA in the placenta (r = -0.42, P < 0.01, r = -0.49, P < 0.01). The changes of epigenetic modification of PGC-1α gene in pregnant women with gestational diabetes mellitus may be a mechanism of abnormal glucose metabolism in offspring. Copyright © 2018 Elsevier Inc. All rights reserved.
Zheng, Wei; Wen, Meijuan; Zhao, Zhiyuan; Liu, Jie; Wang, Zhaohui; Li, Ziyan
2017-01-01
Water deficit significantly limits dryland rainfed fruit production, so increasing water conservation is crucial for improving fruit productivity in arid and semiarid areas. In this study, we tested two treatments in an apple orchard: 1) PC treatment comprising black plastic mulch (BPM) (in-row) with weed control (inter-row); 2) and PGC treatment comprising BPM (in-row) combined with a summer cover crop (inter-row) of rape (Brassica campestris L.), which was sown in mid-June and was living from July to September. Under PGC, the inter-row soil water storage increased by 17.9% and 11.5% compared with PC after the harvest in 2013 and 2014, respectively, but there was no significant increase in 2015. The evapotranspiration (ET) from the inter-row areas during the cover crop period was lower under PGC than PC in 2013 (19.6%), 2014 (11.3%), and 2015 (13.3%). However, the differences in the total ET from the inter-row areas between the two treatments were not obvious, and the total ET from in-row areas was higher under PGC than PC due to the increased water uptake by apple trees under PGC. The apple yield, water use efficiency during the cover crop period (WUEg) and total water use efficiency (WUE) fluctuated during the experimental years. Compared with PC, the apple yield increased by 14.1%, 18.8%, and 26.7% under PGC in 2013, 2014, and 2015, respectively. In addition, the WUEg was 26.4%, 24.7%, and 32.7% higher under PGC compared with PC in 2013, 2014, and 2015, respectively. Thus, the WUE under PGC was 13.8% and 11.7% higher than that under PC in 2013 and 2014, respectively, but the difference was not significant in 2015 (p = 0.0527). Thus, BPM combined with a summer cover crop is recommended for decreasing the summer ET and promoting apple production in rainfed dryland areas where the rainy season is usually the hot season. PMID:28957428
1.5 °C carbon budget dependent on carbon cycle uncertainty and future non-CO2 forcing.
Mengis, Nadine; Partanen, Antti-Ilari; Jalbert, Jonathan; Matthews, H Damon
2018-04-11
Estimates of the 1.5 °C carbon budget vary widely among recent studies, emphasizing the need to better understand and quantify key sources of uncertainty. Here we quantify the impact of carbon cycle uncertainty and non-CO 2 forcing on the 1.5 °C carbon budget in the context of a prescribed 1.5 °C temperature stabilization scenario. We use Bayes theorem to weight members of a perturbed parameter ensemble with varying land and ocean carbon uptake, to derive an estimate for the fossil fuel (FF) carbon budget of 469 PgC since 1850, with a 95% likelihood range of (411,528) PgC. CO 2 emissions from land-use change (LUC) add about 230 PgC. Our best estimate of the total (FF + LUC) carbon budget for 1.5 °C is therefore 699 PgC, which corresponds to about 11 years of current emissions. Non-CO 2 greenhouse gas and aerosol emissions represent equivalent cumulative CO 2 emissions of about 510 PgC and -180 PgC for 1.5 °C, respectively. The increased LUC, high non-CO 2 emissions and decreased aerosols in our scenario, cause the long-term FF carbon budget to decrease following temperature stabilization. In this scenario, negative emissions would be required to compensate not only for the increasing non-CO 2 climate forcing, but also for the declining natural carbon sinks.
Yoshida, Keita; Hozumi, Akiko; Treen, Nicholas; Sakuma, Tetsushi; Yamamoto, Takashi; Shirae-Kurabayashi, Maki; Sasakura, Yasunori
2017-03-15
The ascidian Ciona intestinalis has a high regeneration capacity that enables the regeneration of artificially removed primordial germ cells (PGCs) from somatic cells. We utilized PGC regeneration to establish efficient methods of germ line mutagenesis with transcription activator-like effector nucleases (TALENs). When PGCs were artificially removed from animals in which a TALEN pair was expressed, somatic cells harboring mutations in the target gene were converted into germ cells, this germ cell population exhibited higher mutation rates than animals not subjected to PGC removal. PGC regeneration enables us to use TALEN expression vectors of specific somatic tissues for germ cell mutagenesis. Unexpectedly, cis elements for epidermis, neural tissue and muscle could be used for germ cell mutagenesis, indicating there are multiple sources of regenerated PGCs, suggesting a flexibility of differentiated Ciona somatic cells to regain totipotency. Sperm and eggs of a single hermaphroditic, PGC regenerated animal typically have different mutations, suggesting they arise from different cells. PGCs can be generated from somatic cells even though the maternal PGCs are not removed, suggesting that the PGC regeneration is not solely an artificial event but could have an endogenous function in Ciona. This study provides a technical innovation in the genome-editing methods, including easy establishment of mutant lines. Moreover, this study suggests cellular mechanisms and the potential evolutionary significance of PGC regeneration in Ciona. Copyright © 2017 Elsevier Inc. All rights reserved.
FPGA based demodulation of laser induced fluorescence in plasmas
NASA Astrophysics Data System (ADS)
Mattingly, Sean W.; Skiff, Fred
2018-04-01
We present a field programmable gate array (FPGA)-based system that counts photons from laser-induced fluorescence (LIF) on a laboratory plasma. This is accomplished with FPGA-based up/down counters that demodulate the data, giving a background-subtracted LIF signal stream that is updated with a new point as each laser amplitude modulation cycle completes. We demonstrate using the FPGA to modulate a laser at 1 MHz and demodulate the resulting LIF data stream. This data stream is used to calculate an LIF-based measurement sampled at 1 MHz of a plasma ion fluctuation spectrum.
NASA Astrophysics Data System (ADS)
Mathews, Sunish; Semenova, Yuliya; Rajan, Ginu; Farrell, Gerald
2009-05-01
A discretely tunable Surface-Stabilized Ferroelectric Liquid Crystal based Lyot Filter, with tuning speeds in the order of microseconds, is demonstrated experimentally as a channel dropper for the demodulation of multiple Fibre Bragg Grating sensors. The 3-stage Lyot Filter designed and experimentally verified can be used together with the high-speed ratiometric wavelength measurement system employing a fibre bend loss edge filter. Such systems can be used for the demodulation of distributed Fibre Bragg Grating sensors employed in applications such as structural monitoring, industrial sensing and haptic telerobotic surgical systems.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Strum, R.; Stiles, D.
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
Liu, Y.; Strum, R.; Stiles, D.; ...
2017-11-20
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nitz, Inke; Ewert, Agnes; Klapper, Maja
2007-02-09
Peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) is a cofactor involved in adaptive thermogenesis, fatty acid oxidation, and gluconeogenesis. Dysfunctions of this protein are likely to contribute to the development of obesity and the metabolic syndrome. This is in part but not definitely confirmed by results of population studies. The aim of this study was to investigate if common genetic variants rs8192678 (Gly482Ser) and rs3736265 (Thr612Met) in the PGC-1{alpha} gene lead to a functional consequence in cofactor activity using peroxisome proliferator-activated receptor-{gamma} 2 (PPAR{gamma}2) as interacting transcription factor. Reporter gene assays in HepG2 cells with wildtype and mutant proteins of both PGC1{alpha}more » and PPAR{gamma}2 (Pro12Ala, rs1801282) using the acyl-CoA-binding protein (ACBP) promoter showed no difference in coactivator activity. This is First study implicating that the Gly482Ser and Thr612Met polymorphisms in PGC-1{alpha} and Pro12Ala polymorphism in PPAR{gamma}2 do not affect the functional integrity of these proteins.« less
Ruan, Hai-Bin; Han, Xuemei; Li, Min-Dian; Singh, Jay Prakash; Qian, Kevin; Azarhoush, Sascha; Zhao, Lin; Bennett, Anton M.; Samuel, Varman T.; Wu, Jing; Yates, John R.; Yang, Xiaoyong
2012-01-01
SUMMARY A major cause of hyperglycemia in diabetic patients is inappropriate hepatic gluconeogenesis. PGC-1α is a master regulator of gluconeogenesis, and its activity is controlled by various post-translational modifications. A small portion of glucose metabolizes through the hexosamine biosynthetic pathway, which leads to O-linked β-N-acetylglucosamine (O-GlcNAc) modification of cytoplasmic and nuclear proteins. Using a proteomic approach, we identified a broad variety of proteins associated with O-GlcNAc transferase (OGT), among which host cell factor C1 (HCF-1) is highly abundant. HCF-1 recruits OGT to O-GlcNAcylate PGC-1α and O-GlcNAcylation facilitates the binding of the deubiquitinase BAP1, thus protecting PGC-1α from degradation and promoting gluconeogenesis. Glucose availability modulates gluconeogenesis through the regulation of PGC-1α O-GlcNAcylation and stability by the OGT/HCF1 complex. Hepatic knockdown of OGT and HCF-1 improves glucose homeostasis in diabetic mice. These findings define the OGT/HCF-1 complex as a glucose sensor and key regulator of gluconeogenesis, shedding light on new strategies for treating diabetes. PMID:22883232
Germline replacement by blastula cell transplantation in the fish medaka.
Li, Mingyou; Hong, Ni; Xu, Hongyan; Song, Jianxing; Hong, Yunhan
2016-07-13
Primordial germ cell (PGC) specification early in development establishes the germline for reproduction and reproductive technologies. Germline replacement (GR) is a powerful tool for conservation of valuable or endangered animals. GR is achievable by germ cell transplantation into the PGC migration pathway or gonads. Blastula cell transplantation (BCT) can also lead to the chimeric germline containing PGCs of both donor and host origins. It has remained largely unknown whether BCT is able to achieve GR at a high efficiency. Here we report efficient GR by BCT into blastula embryos in the fish medaka (Oryzias latipes). Specifically, dnd depletion completely ablated host PGCs and fertility, and dnd overexpression remarkably boosted PGCs in donor blastulae. BCT between normal donor and host produced a germline transmission rate of ~4%. This rate was enhanced up to ~30% upon PGC boosting in donors. Most importantly, BCT between PGC-boosted donors and PGC-ablated hosts led to more than 90% fertility restoration and 100% GR. Therefore, BCT features an extremely high efficiency of fertility recovery and GR in medaka. This finding makes medaka an ideal model to analyze genetic and physiological donor-host compatibilities for BCT-mediated surrogate production and propagation of endangered lower vertebrates and biodiversity.
Germline replacement by blastula cell transplantation in the fish medaka
Li, Mingyou; Hong, Ni; Xu, Hongyan; Song, Jianxing; Hong, Yunhan
2016-01-01
Primordial germ cell (PGC) specification early in development establishes the germline for reproduction and reproductive technologies. Germline replacement (GR) is a powerful tool for conservation of valuable or endangered animals. GR is achievable by germ cell transplantation into the PGC migration pathway or gonads. Blastula cell transplantation (BCT) can also lead to the chimeric germline containing PGCs of both donor and host origins. It has remained largely unknown whether BCT is able to achieve GR at a high efficiency. Here we report efficient GR by BCT into blastula embryos in the fish medaka (Oryzias latipes). Specifically, dnd depletion completely ablated host PGCs and fertility, and dnd overexpression remarkably boosted PGCs in donor blastulae. BCT between normal donor and host produced a germline transmission rate of ~4%. This rate was enhanced up to ~30% upon PGC boosting in donors. Most importantly, BCT between PGC-boosted donors and PGC-ablated hosts led to more than 90% fertility restoration and 100% GR. Therefore, BCT features an extremely high efficiency of fertility recovery and GR in medaka. This finding makes medaka an ideal model to analyze genetic and physiological donor-host compatibilities for BCT-mediated surrogate production and propagation of endangered lower vertebrates and biodiversity. PMID:27406328
NASA Astrophysics Data System (ADS)
Yan, Mengdie; Ma, Yushuang; Zhang, Huanhuan; Ye, Boyong; Dong, Xiaoping
2018-05-01
Highly efficient visible-light-driven protonated g-C3N4 (pg-C3N4)/CdS heterojunctions with different weight ratios of CdS were prepared by treating g-C3N4 with hydrochloric acid and using an in-situ precipitation method. The structure and morphology of heterojunctions were investigated by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption technology. The as-prepared pg-C3N4/CdS heterojunction with 50 wt% of g-C3N4 exhibited much higher photocatalytic activity for photodegradation of methyl orange (MO) than pg-C3N4, CdS and g-C3N4/CdS without protonation as well, which could be contributed to the activation of hydrochloric acid treatment and the improved electron-hole separation due to their overlapping band structure of CdS and pg-C3N4. A possible photocatalytic mechanism of the pg-C3N4/CdS heterojunctions with superoxide radical species as the main active species in photocatalysis was proposed on the basis of experimental results.
Varatharajalu, Ravi; Garige, Mamatha; Leckey, Leslie C; Arellanes-Robledo, Jaime; Reyes-Gordillo, Karina; Shah, Ruchi; Lakshman, M Raj
2014-07-01
Because scavenger receptor class B type 1 is the cholesterol uptake liver receptor, whereas peroxisome proliferator-activated receptor γ coactivator-1β (PGC-1β) and PGC-1α are critical for lipid synthesis and degradation, we investigated the roles of these signaling molecules in the actions of ethanol-polyunsaturated fatty acids and betaine on hepatosteatosis and steatohepatitis. Ethanol-polyunsaturated fatty acid treatment caused the following: i) hepatosteatosis, as evidenced by increased liver cholesterol and triglycerides, lipid score, and decreased serum adiponectin; ii) marked inhibition of scavenger receptor class B type 1 glycosylation, its plasma membrane localization, and its hepatic cholesterol uptake function; and iii) moderate steatohepatitis, as evidenced by histopathological characteristics, increased liver tumor necrosis factor α and IL-6, decreased glutathione, and elevated serum alanine aminotransferase. These actions of ethanol involved up-regulated PGC-1β, sterol regulatory element-binding proteins 1c and 2, acetyl-CoA carboxylase, and HMG-CoA reductase mRNAs/proteins and inactive non-phosphorylated AMP kinase; and down-regulated silence regulator gene 1 and PGC-1α mRNA/proteins and hepatic fatty acid oxidation. Betaine markedly blunted all these actions of ethanol on hepatosteatosis and steatohepatitis. Therefore, we conclude that ethanol-mediated impaired post-translational modification, trafficking, and function of scavenger receptor class B type 1 may account for alcoholic hyperlipidemia. Up-regulation of PGC-1β and lipid synthetic genes and down-regulation of silence regulator gene 1, PGC-1α, adiponectin, and lipid degradation genes account for alcoholic hepatosteatosis. Induction of proinflammatory cytokines and depletion of endogenous antioxidant, glutathione, account for alcoholic steatohepatitis. We suggest betaine as a potential therapeutic agent because it effectively protects against adverse actions of ethanol. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yoon Kyung; Park, Joon Ha; Baek, Yi-Yong
Carbon monoxide (CO), derived by the enzymatic reaction of heme oxygenase (HO), is a cellular regulator of energy metabolism and cytoprotection; however, its underlying mechanism has not been clearly elucidated. Astrocytes pre-exposed to the CO-releasing compound CORM-2 increased mitochondrial biogenesis, mitochondrial electron transport components (cytochrome c, Cyt c; cytochrome c oxidase subunit 2, COX2), and ATP synthesis. The increased mitochondrial function was correlated with activation of AMP-activated protein kinase α and upregulation of HO-1, peroxisome proliferators-activated receptor γ-coactivator-1α (PGC-1α), and estrogen-related receptor α (ERRα). These events elicited by CORM-2 were suppressed by Ca{sup 2+} chelators, a HO inhibitor, and anmore » L-type Ca{sup 2+} channel blocker, but not other Ca{sup 2+} channel inhibitors. Among the HO byproducts, combined CORM-2 and bilirubin treatment effectively increased PGC-1α, Cyt c and COX2 expression, mitochondrial biogenesis, and ATP synthesis, and these increases were blocked by Ca{sup 2+} chelators. Moreover, cerebral ischemia significantly increased HO-1, PGC-1α, and ERRα levels, subsequently increasing Cyt c and COX2 expression, in wild-type mice, compared with HO-1{sup +/−} mice. These results suggest that HO-1-derived CO enhances mitochondrial biogenesis in astrocytes by activating L-type Ca{sup 2+} channel-mediated PGC-1α/ERRα axis, leading to maintenance of astrocyte function and neuroprotection/recovery against damage of brain function. - Highlights: • CORM-pretreated astrocytes induces mitochondrial biogenesis by activating L-type Ca{sup 2+} channel-mediated PGC-1α stabilization. • Cerebral ischemia increased electron transport chain proteins (e.g. Cyt c and COX2), in WT mice, compared with HO-1{sup +/−} mice. • CO/HO-1 pathway increases astrocytic mitochondrial functions via a PGC-1α/ERRα axis.« less
Quan, Wenli; Hu, Yuanlei; Mu, Zixin; Shi, Haitao; Chan, Zhulong
2018-05-31
PYR/PYLs function as ABA receptors and are key regulators during plant drought stress response. Previously we screened drought tolerance of Arabidopsis ABA receptors PYR/PYLs under the control of five different promoters. In this study, we characterized drought stress tolerance of AtPYL5 transgene under the control of one guard cell specific promoter, pGC1. pGC1::AtPYL5 transgenic Arabidopsis exhibited reduced transpiration rate and decreased water loss after drought treatment. Transformation of pGC1::AtPYL5 in Arabidopsis also decreased oxidative stress damage and improved photosynthesis under drought stress condition. These results indicated that pGC1::AtPYL5 construct is effective and might pave new way to develop genetically engineered plants to improve drought stress tolerance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Novel solution-phase structures of gallium-containing pyrogallol[4]arene scaffolds**
Kumari, Harshita; Kline, Steven R.; Wycoff, Wei G.; Paul, Rick L.; Mossine, Andrew V.; Deakyne, Carol A.; Atwood, Jerry L.
2012-01-01
The variations in architecture of gallium-seamed (PgC4Ga) and gallium-zinc-seamed (PgC4GaZn) C-butylpyrogallol[4]arene nanoassemblies in solution (SANS/NMR) versus the solid state (XRD) have been investigated. Rearrangement from the solid-state spheroidal to the solution-phase toroidal shape differentiates the gallium-containing pyrogallol[4]arene nanoassemblies from all other PgCnM nanocapsules studied thus far. Different structural arrangements of the metals and arenes of PgC4Ga versus PgC4GaZn have been deduced from the different toroidal dimensions, C–H proton environments and guest encapsulation of the two toroids. PGAA of mixed-metal hexamers reveals a decrease in gallium-to-metal ratio as the second metal varies from cobalt to zinc. Overall, the combined study demonstrates the versatility of gallium in directing the self-assembly of pyrogallol[4]arenes into novel nanoarchitectures. PMID:22511521
NASA Astrophysics Data System (ADS)
Mirzoyan, Razmik
2018-04-01
The MAGIC collaboration reports the first detection of very-high-energy (VHE; E > 100 GeV) gamma-ray emission from PGC 2402248, also known as 2WHSP J073326.7+515354 (Chang et al. 2016, A & A, 598, A17) with coordinates R.A.: 07:33:26.7 h, Dec: +51:53:54.99 deg. The source is classified as an extreme high-energy peaked BL Lacertae object of unknown redshift, included in the 2WHSP catalog with a synchrotron peak located at 10^17.9 Hz. PGC 2402248 was observed with the MAGIC telescopes from 2018/01/23 to 2018/04/18 (MJD 58141-58226) for about 23 h. The preliminary analysis of these data resulted in the detection of PGC 2402248 with a statistical significance of more than 6 standard deviations.
Mean phase predictor for maximum a posteriori demodulator
NASA Technical Reports Server (NTRS)
Altes, Richard A. (Inventor)
1996-01-01
A system and method for optimal maximum a posteriori (MAP) demodulation using a novel mean phase predictor. The mean phase predictor conducts cumulative averaging over multiple blocks of phase samples to provide accurate prior mean phases, to be input into a MAP phase estimator.
NASA Astrophysics Data System (ADS)
Liu, Bin; Gang, Tie; Wan, Chuhao; Wang, Changxi; Luo, Zhiwei
2015-07-01
Vibro-acoustic modulation technique is a nonlinear ultrasonic method in nondestructive testing. This technique detects the defects by monitoring the modulation components generated by the interaction between the vibration and the ultrasound wave due to the nonlinear material behaviour caused by the damage. In this work, a swept frequency signal was used as high frequency excitation, then the Hilbert transform based amplitude and phase demodulation and synchronous demodulation (SD) were used to extract the modulation information from the received signal, the results were graphed in the time-frequency domain after the short time Fourier transform. The demodulation results were quite different from each other. The reason for the difference was investigated by analysing the demodulation process of the two methods. According to the analysis and the subsequent verification test, it was indicated that the SD method was more proper for the test and a new index called MISD was defined to evaluate the structure quality in the Vibro-acoustic modulation test with swept probing excitation.
A Single Chip VLSI Implementation of a QPSK/SQPSK Demodulator for a VSAT Receiver Station
NASA Technical Reports Server (NTRS)
Kwatra, S. C.; King, Brent
1995-01-01
This thesis presents a VLSI implementation of a QPSK/SQPSK demodulator. It is designed to be employed in a VSAT earth station that utilizes the FDMA/TDM link. A single chip architecture is used to enable this chip to be easily employed in the VSAT system. This demodulator contains lowpass filters, integrate and dump units, unique word detectors, a timing recovery unit, a phase recovery unit and a down conversion unit. The design stages start with a functional representation of the system by using the C programming language. Then it progresses into a register based representation using the VHDL language. The layout components are designed based on these VHDL models and simulated. Component generators are developed for the adder, multiplier, read-only memory and serial access memory in order to shorten the design time. These sub-components are then block routed to form the main components of the system. The main components are block routed to form the final demodulator.
Grating-assisted demodulation of interferometric optical sensors.
Yu, Bing; Wang, Anbo
2003-12-01
Accurate and dynamic control of the operating point of an interferometric optical sensor to produce the highest sensitivity is crucial in the demodulation of interferometric optical sensors to compensate for manufacturing errors and environmental perturbations. A grating-assisted operating-point tuning system has been designed that uses a diffraction grating and feedback control, functions as a tunable-bandpass optical filter, and can be used as an effective demodulation subsystem in sensor systems based on optical interferometers that use broadband light sources. This demodulation method has no signal-detection bandwidth limit, a high tuning speed, a large tunable range, increased interference fringe contrast, and the potential for absolute optical-path-difference measurement. The achieved 40-nm tuning range, which is limited by the available source spectrum width, 400-nm/s tuning speed, and a step resolution of 0.4 nm, is sufficient for most practical measurements. A significant improvement in signal-to-noise ratio in a fiber Fabry-Perot acoustic-wave sensor system proved that the expected fringe contrast and sensitivity increase.
High speed, high performance, portable, dual-channel, optical fiber Bragg grating (FBG) demodulator
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Wang, Pengfei; Zhao, Xilin; Wang, Zhenhua; Yang, Shangming; Cui, Hong-Liang
2009-10-01
A high speed, high performance, portable, dual-channel, optical Fiber Bragg Grating demodulator based on fiber Fabry- Pérot tunable filter (FFP-FT) is reported in this paper. The high speed demodulation can be achieved to detect the dynamical loads of vehicles with speed of 15 mph. However, the drifts of piezoelectric transducer (PZT) in the cavity of FFP-FT dramatically degrade the stability of system. Two schemes are implemented to improve the stability of system. Firstly, a temperature control system is installed to effectively remove the thermal drifts of PZT. Secondly, a scheme of changing the bias voltage of FFP-FT to restrain non-thermal drifts has been realized at lab and will be further developed to an automatic control system based on microcontroller. Although this demodulator is originally used in Weight-In- Motion (WIM) sensing system, it can be extended into other aspects and the schemes presented in this paper will be useful in many applications.
Assessment of factors influencing morale in the elderly.
Loke, Seng Cheong; Abdullah, Siti S; Chai, Sen Tyng; Hamid, Tengku A; Yahaya, Nurizan
2011-01-25
We examined the relationship between morale measured by the Philadelphia Geriatric Morale Scale (PGC) and disability, social support, religiosity, and personality traits. Instruments predicting morale were then tested against PGC domains. The study utilized a cross-sectional survey with a multistage cluster sampling design. Instruments used were disability (disease burden; WHO Disability Score-II, WHODAS-II), social support (Duke Social Support Scale, DUSOCS; Lubben Social Network Scale, LSNS-6; Medical Outcomes Study Social Support Survey, MOS-SSS), religiosity (Revised Intrinsic-Extrinsic Religious Orientation Scale, I/E-R), and personality (Ten-Item Personality Inventory, TIPI). These were plotted as bar charts against PGC, resolved with one-way ANOVA and Kruskal-Wallis tests, then corrected for multiple comparisons. This process was repeated with PGC domains. Contribution of factors was modeled using population attributable risk (PAR) and odds ratios. Effect of confounders such as gender, age, and ethnicity were checked using binary logistic regression. All instruments showed clear relationships with PGC, with WHODAS-II and DUSOCS performing well (ANOVA p<0.001). For PGC domains, attitude toward aging and lonely dissatisfaction trended together, while agitation did not. PAR, odds ratios, and Exp(β) were disability (WHODAS-II: 28.5%, 3.8, 2.8), social support (DUSOCS: 28.0%, 3.4, 2.2), religiosity (I/E-R: 21.6%, 3.2, 2.1), and personality (TIPI: 27.9%, 3.6, 2.4). Combined PAR was 70.9%. Disability, social support, religiosity, and personality strongly influence morale in the elderly. WHODAS-II and DUSOCS perform best in measuring disability and social support respectively.
Schwarz, Neil A; McKinley-Barnard, Sarah K; Spillane, Mike B; Andre, Thomas L; Gann, Joshua J; Willoughby, Darryn S
2016-08-01
The purpose of this study was to investigate the acute messenger (mRNA) expression of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) isoforms, insulin-like growth factor-1Ea (IGF-1Ea), and myostatin in response to 2 resistance exercise intensities. In a uniform-balanced, crossover design, 10 participants performed 2 separate testing sessions involving a lower body resistance exercise component consisting of a lower intensity (50% of 1-repetition maximum; 1RM) protocol and a higher intensity (80% of 1RM) protocol of equal volumes. Muscle samples were obtained at before exercise, 45 min, 3 h, 24 h, and 48 h postexercise. Resistance exercise did not alter total PGC-1α mRNA expression; however, distinct responses of each PGC-1α isoform were observed. The response of each isoform was consistent between sessions, suggesting no effect of resistance exercise intensity on the complex transcriptional expression of the PGC-1α gene. IGF-1Ea mRNA expression significantly increased following the higher intensity session compared with pre-exercise and the lower intensity session. Myostatin mRNA expression was significantly reduced compared with pre-exercise values at all time points with no difference between exercise intensity. Further research is needed to determine the effects of the various isoforms of PGC-1α in human skeletal muscle on the translational level as well as their relation to the expression of IGF-1 and myostatin.
Prmt7 Deficiency Causes Reduced Skeletal Muscle Oxidative Metabolism and Age-Related Obesity.
Jeong, Hyeon-Ju; Lee, Hye-Jin; Vuong, Tuan Anh; Choi, Kyu-Sil; Choi, Dahee; Koo, Sung-Hoi; Cho, Sung Chun; Cho, Hana; Kang, Jong-Sun
2016-07-01
Maintenance of skeletal muscle function is critical for metabolic health and the disruption of which exacerbates many chronic diseases such as obesity and diabetes. Skeletal muscle responds to exercise or metabolic demands by a fiber-type switch regulated by signaling-transcription networks that remains to be fully defined. Here, we report that protein arginine methyltransferase 7 (Prmt7) is a key regulator for skeletal muscle oxidative metabolism. Prmt7 is expressed at the highest levels in skeletal muscle and decreased in skeletal muscles with age or obesity. Prmt7(-/-) muscles exhibit decreased oxidative metabolism with decreased expression of genes involved in muscle oxidative metabolism, including PGC-1α. Consistently, Prmt7(-/-) mice exhibited significantly reduced endurance exercise capacities. Furthermore, Prmt7(-/-) mice exhibit decreased energy expenditure, which might contribute to the exacerbated age-related obesity of Prmt7(-/-) mice. Similarly to Prmt7(-/-) muscles, Prmt7 depletion in myoblasts also reduces PGC-1α expression and PGC-1α-promoter driven reporter activities. Prmt7 regulates PGC-1α expression through interaction with and activation of p38 mitogen-activated protein kinase (p38MAPK), which in turn activates ATF2, an upstream transcriptional activator for PGC-1α. Taken together, Prmt7 is a novel regulator for muscle oxidative metabolism via activation of p38MAPK/ATF2/PGC-1α. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Assessment of Factors Influencing Morale in the Elderly
Loke, Seng Cheong; Abdullah, Siti S.; Chai, Sen Tyng; Hamid, Tengku A.; Yahaya, Nurizan
2011-01-01
Background We examined the relationship between morale measured by the Philadelphia Geriatric Morale Scale (PGC) and disability, social support, religiosity, and personality traits. Instruments predicting morale were then tested against PGC domains. Methods The study utilized a cross-sectional survey with a multistage cluster sampling design. Instruments used were disability (disease burden; WHO Disability Score-II, WHODAS-II), social support (Duke Social Support Scale, DUSOCS; Lubben Social Network Scale, LSNS-6; Medical Outcomes Study Social Support Survey, MOS-SSS), religiosity (Revised Intrinsic-Extrinsic Religious Orientation Scale, I/E-R), and personality (Ten-Item Personality Inventory, TIPI). These were plotted as bar charts against PGC, resolved with one-way ANOVA and Kruskal-Wallis tests, then corrected for multiple comparisons. This process was repeated with PGC domains. Contribution of factors was modeled using population attributable risk (PAR) and odds ratios. Effect of confounders such as gender, age, and ethnicity were checked using binary logistic regression. Results All instruments showed clear relationships with PGC, with WHODAS-II and DUSOCS performing well (ANOVA p<0.001). For PGC domains, attitude toward aging and lonely dissatisfaction trended together, while agitation did not. PAR, odds ratios, and Exp(β) were disability (WHODAS-II: 28.5%, 3.8, 2.8), social support (DUSOCS: 28.0%, 3.4, 2.2), religiosity (I/E-R: 21.6%, 3.2, 2.1), and personality (TIPI: 27.9%, 3.6, 2.4). Combined PAR was 70.9%. Conclusions Disability, social support, religiosity, and personality strongly influence morale in the elderly. WHODAS-II and DUSOCS perform best in measuring disability and social support respectively. PMID:21283551
Expansion of linear range of Pound-Drever-Hall signal.
Miyoki, Shinji; Telada, Souich; Uchiyama, Takashi
2010-10-01
We propose new solutions for expanding the linear signal range between the laser frequency deviation (or mirror position) and the voltage signal derived by the Pound-Drever-Hall (PDH) method for optical Fabry-Perot cavity resonance control. One solution is to perform not in-phase demodulation but near-Q-phase demodulation. Another solution is to take a suitable combination of signals demodulated by odd-harmonic modulation frequencies in the in phase. Although the PDH signal sensitivity will be diminished, the PDH signal linear range can be extended. From a practical standpoint, it is desirable that a sideband frequency for the PDH method is near the FP cavity resonance.
Demodulation System for Fiber Optic Bragg Grating Dynamic Pressure Sensing
NASA Technical Reports Server (NTRS)
Lekki, John D.; Adamovsky, Grigory; Floyd, Bertram
2001-01-01
Fiber optic Bragg gratings have been used for years to measure quasi-static phenomena. In aircraft engine applications there is a need to measure dynamic signals such as variable pressures. In order to monitor these pressures a detection system with broad dynamic range is needed. This paper describes an interferometric demodulator that was developed and optimized for this particular application. The signal to noise ratio was maximized through temporal coherence analysis. The demodulator was incorporated in a laboratory system that simulates conditions to be measured. Several pressure sensor configurations incorporating a fiber optic Bragg grating were also explored. The results of the experiments are reported in this paper.
Wavelength-switched phase interrogator for EFPI sensors with polarization self-calibrated
NASA Astrophysics Data System (ADS)
Xia, Ji; Wang, Fuyin; Luo, Hong; Xiong, Shuidong
2017-10-01
The stability of the demodulation system for extrinsic Fabry-Perot interferometric(EFPI) sensors is significant to dynamic signal recovery. In the wavelength-switched demodulation system, a phase interrogation with a wavelength-switched structure has been presented. Two reflected peaks were in perpendicular polarization direction and switched in the time-domain. However, the operation point of system affected output of the linearly-polarized beams seriously, and the stability of the system decreased and even failed to work. In order to solve this problem, a polarization control unit is added into the system in this paper. The modified demodulation system has been demonstrated to have a higher stability.
Demodulation signal processing in multiphoton imaging
NASA Astrophysics Data System (ADS)
Fisher, Walter G.; Wachter, Eric A.; Piston, David W.
2002-06-01
Multiphoton laser scanning microscopy offers numerous advantages, but sensitivity can be seriously affected by contamination from ambient room light. Typically, this forces experiments to be performed in an absolutely dark room. Since mode-locked lasers are used to generate detectable signals, signal-processing can be used to avoid such problems by taking advantage of the pulsed characteristics of such lasers. Demodulation of the fluorescence signal generated at the mode-locked frequency can result in significant reduction of interference from ambient noise sources. Such demodulation can be readily adapted to existing microscopes by inserting appropriate processor circuitry between the detector and data collection system, yielding a more robust microscope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Dongfan, E-mail: fangdongfan1208@126.com; Sun, Qizhi; Zhao, Xiaoming
A 633 nm laser interferometer has been designed based on a novel concept, which, without the acousto-optic modulator or the demodulator circuit, adopts the fibers to connect all elements except photodetectors and oscilloscope in this system to make it more compact, portable, and efficient. The noteworthy feature is to mathematically compare the two divided interference signals, which have the same phase-shift caused by the electron density but possess the different initial phase and low angular frequencies. It is possible to read the plasma density directly on the oscilloscope by our original mathematic demodulation method without a camera. Based on themore » Abel inversion algorithm, the radial electron density profiles versus time can be obtained by using the multi-chord system. The designed measurable phase shift ranges from 0 to 2π rad corresponding to the maximum line integral of electron density less than 3.5 × 10{sup 17} cm{sup −2}, and the phase accuracy is about 0.017 rad corresponding to the line integral of electron density accuracy of 1 × 10{sup 15} cm{sup −2}. After the construction of eight-chord interferometer, it will provide the detailed time resolved information of the spatial distribution of the electron density in the field-reversed configuration (FRC) plasma target produced by the “Yingguang-1” programmed-discharge device, which is being constructed in the Key Laboratory of Pulsed Power, China Academy of Engineering Physics.« less
Polarization of Narrowband VLF Transmitter Signals as an Ionospheric Diagnostic
NASA Astrophysics Data System (ADS)
Gross, N. C.; Cohen, M. B.; Said, R. K.; Gołkowski, M.
2018-01-01
Very low frequency (VLF, 3-30 kHz) transmitter remote sensing has long been used as a simple yet useful diagnostic for the D region ionosphere (60-90 km). All it requires is a VLF radio receiver that records the amplitude and/or phase of a beacon signal as a function of time. During both ambient and disturbed conditions, the received signal can be compared to predictions from a theoretical model to infer ionospheric waveguide properties like electron density. Amplitude and phase have in most cases been analyzed each as individual data streams, often only the amplitude is used. Scattered field formulation combines amplitude and phase effectively, but does not address how to combine two magnetic field components. We present polarization ellipse analysis of VLF transmitter signals using two horizontal components of the magnetic field. The shape of the polarization ellipse is unchanged as the source phase varies, which circumvents a significant problem where VLF transmitters have an unknown source phase. A synchronized two-channel MSK demodulation algorithm is introduced to mitigate 90° ambiguity in the phase difference between the horizontal magnetic field components. Additionally, the synchronized demodulation improves phase measurements during low-SNR conditions. Using the polarization ellipse formulation, we take a new look at diurnal VLF transmitter variations, ambient conditions, and ionospheric disturbances from solar flares, lightning-ionospheric heating, and lightning-induced electron precipitation, and find differing signatures in the polarization ellipse.
Wallace, Marita A; Hock, M Benjamin; Hazen, Bethany C; Kralli, Anastasia; Snow, Rod J; Russell, Aaron P
2011-01-01
Abstract The striated muscle activator of Rho signalling (STARS) is an actin-binding protein specifically expressed in cardiac, skeletal and smooth muscle. STARS has been suggested to provide an important link between the transduction of external stress signals to intracellular signalling pathways controlling genes involved in the maintenance of muscle function. The aims of this study were firstly, to establish if STARS, as well as members of its downstream signalling pathway, are upregulated following acute endurance cycling exercise; and secondly, to determine if STARS is a transcriptional target of peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) and oestrogen-related receptor-α (ERRα). When measured 3 h post-exercise, STARS mRNA and protein levels as well as MRTF-A and serum response factor (SRF) nuclear protein content, were significantly increased by 140, 40, 40 and 40%, respectively. Known SRF target genes, carnitine palmitoyltransferase-1β (CPT-1β) and jun B proto-oncogene (JUNB), as well as the exercise-responsive genes PGC-1α mRNA and ERRα were increased by 2.3-, 1.8-, 4.5- and 2.7-fold, 3 h post-exercise. Infection of C2C12 myotubes with an adenovirus-expressing human PGC-1α resulted in a 3-fold increase in Stars mRNA, a response that was abolished following the suppression of endogenous ERRα. Over-expression of PGC-1α also increased Cpt-1β, Cox4 and Vegf mRNA by 6.2-, 2.0- and 2.0-fold, respectively. Suppression of endogenous STARS reduced basal Cpt-1β levels by 8.2-fold and inhibited the PGC-1α-induced increase in Cpt-1β mRNA. Our results show for the first time that the STARS signalling pathway is upregulated in response to acute endurance exercise. Additionally, we show in C2C12 myotubes that the STARS gene is a PGC-1α/ERRα transcriptional target. Furthermore, our results suggest a novel role of STARS in the co-ordination of PGC-1α-induced upregulation of the fat oxidative gene, CPT-1β. PMID:21486805
47 CFR 73.9006 - Add-in covered demodulator products.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 73.9006 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES... passed to an output (e.g., where a demodulator add-in card in a personal computer passes such content to an associated software application installed in the same computer), it shall pass such content: (1...
Demodulation Radio Frequency Interference Effects in Operational Amplifier Circuits
NASA Astrophysics Data System (ADS)
Sutu, Yue-Hong
A series of investigations have been carried out to determine RFI effects in analog circuits using monolithic integrated operational amplifiers (op amps) as active devices. The specific RFI effect investigated is how amplitude-modulated (AM) RF signals are demodulated in op amp circuits to produce undesired low frequency responses at AM-modulation frequency. The undesired demodulation responses were shown to be characterized by a second-order nonlinear transfer function. Four representative op amp types investigated were the 741 bipolar op amp, the LM10 bipolar op amp, the LF355 JFET-Bipolar op amp, and the CA081 MOS-Bipolar op amp. Two op amp circuits were investigated. The first circuit was a noninverting unity voltage gain buffer circuit. The second circuit was an inverting op amp configuration. In the second circuit, the investigation includes the effects of an RFI suppression capacitor in the feedback path. Approximately 30 units of each op amp type were tested to determine the statistical variations of RFI demodulation effects in the two op amp circuits. The Nonlinear Circuit Analysis Program, NCAP, was used to simulate the demodulation RFI response. In the simulation, the op amp was replaced with its incremental macromodel. Values of macromodel parameters were obtained from previous investigations and manufacturer's data sheets. Some key results of this work are: (1) The RFI demodulation effects are 10 to 20 dB lower in CA081 and LF355 FET-bipolar op amp than in 741 and LM10 bipolar op amp except above 40 MHz where the LM10 RFI response begins to approach that of CA081. (2) The experimental mean values for 30 741 op amps show that RFI demodulation responses in the inverting amplifier with a 27 pF feedback capacitor were suppressed from 10 to 35 dB over the RF frequency range 0.1 to 150 MHz except at 0.15 MHz where only 3.5 dB suppression was observed. (3) The NCAP program can predict RFI demodulation responses in 741 and LF355 unity gain buffer circuits within 6 and 7 dB respectively for RF frequencies 0.1 to 400 MHz except near the resonant frequencies for the LF355 circuit. (4) The NCAP simulations suggest that the resonances of the LF355 unity gain buffer circuit are related to small parasitic capacitance values of the order of 1 to 5 pF. (5) The NCAP sensitivity analysis indicates that variations in a second-order transfer function are sensitive to some macromodel parameters.
Fu, Yongqing; Li, Xingyuan; Li, Yanan; Yang, Wei; Song, Hailiang
2013-03-01
Chaotic communication has aroused general interests in recent years, but its communication effect is not ideal with the restriction of chaos synchronization. In this paper a new chaos M-ary digital modulation and demodulation method is proposed. By using region controllable characteristics of spatiotemporal chaos Hamilton map in phase plane and chaos unique characteristic, which is sensitive to initial value, zone mapping method is proposed. It establishes the map relationship between M-ary digital information and the region of Hamilton map phase plane, thus the M-ary information chaos modulation is realized. In addition, zone partition demodulation method is proposed based on the structure characteristic of Hamilton modulated information, which separates M-ary information from phase trajectory of chaotic Hamilton map, and the theory analysis of zone partition demodulator's boundary range is given. Finally, the communication system based on the two methods is constructed on the personal computer. The simulation shows that in high speed transmission communications and with no chaos synchronization circumstance, the proposed chaotic M-ary modulation and demodulation method has outperformed some conventional M-ary modulation methods, such as quadrature phase shift keying and M-ary pulse amplitude modulation in bit error rate. Besides, it has performance improvement in bandwidth efficiency, transmission efficiency and anti-noise performance, and the system complexity is low and chaos signal is easy to generate.
Topology of the germ plasm and development of primordial germ cells in inverted amphibian eggs
NASA Technical Reports Server (NTRS)
Wakahara, M.; Neff, A. W.; Malacinski, G. M.
1984-01-01
Inverted Xenopus eggs have reduced numbers of primordial germ cells (PGCs). The extent of the reduction varies from spawning to spawning. Histologic examination revealed that PGC counts were lowest in inverted eggs which displayed the greatest amount of shift in the vegetal mass of large yolk platelets, although the germ plasm itself always remained localized in the egg's original vegetal hemisphere. Even at blastulation the germ plasm continued to be localized in the egg's original vegetal hemisphere. In many cases, however, it was confined to the periphery of the embryo, which probably accounts for the reduced PGC number in some tadpoles. In other cases it may have been dispersed and therefore not detectable in histologic analyses. Although the altered site of involution in inverted embryos did not influence PGC development, subsequent cell movement patterns apparently did. Those embryos which displayed the largest degree of pattern reversal at the tail-bud stage also exhibited the most extreme reduction in PGC numbers. A brief cold shock (4 degrees C, 10 min) prior to first cleavage leads to a further reduction in PGC numbers in inverted embryos, probably as a result of the displacement of the germ plasm away from its original vegetal pole location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Christina T., E-mail: teng1@niehs.nih.gov; Beames, Burton; Alex Merrick, B.
Highlights: • We developed a stable cell line with intact PGC-1α/ERRα axis. • The ERRα repressor, XCT790, down regulates this pathway. • Phytoestrogen, genisten stimulates this pathway. - Abstract: The estrogen-related receptor α (ERRα) and the peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) play critical roles in the control of several physiological functions, including the regulation of genes involved in energy homeostasis. However, little is known about the ability of environmental chemicals to disrupt or modulate this important bioenergetics pathway in humans. The goal of this study was to develop a cell-based assay system with an intact PGC-1α/ERRα axismore » that could be used as a screening assay for detecting such chemicals. To this end, we successfully generated several stable cell lines expressing PGC-1α and showed that the reporter driven by the native ERRα hormone response unit (AAB-Luc) is active in these cell lines and that the activation is PGC-1α-dependent. Furthermore, we show that this activation can be blocked by the ERRα selective inverse agonist, XCT790. In addition, we find that genistein and bisphenol A further stimulate the reporter activity, while kaempferol has minimal effect. These cell lines will be useful for identifying environmental chemicals that modulate this important pathway.« less
Rosa-Caldwell, Megan E; Brown, Jacob L; Lee, David E; Blackwell, Thomas A; Turner, Kyle W; Brown, Lemuel A; Perry, Richard A; Haynie, Wesley S; Washington, Tyrone A; Greene, Nicholas P
2017-09-01
What is the central question of this study? What are the individual and combined effects of muscle-specific peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) overexpression and physical activity during high-fat feeding on glucose and exercise tolerance? What is the main finding and its importance? Our main finding is that muscle-specific PGC-1α overexpression provides no protection against lipid-overload pathologies nor does it enhance exercise adaptations. Instead, physical activity, regardless of PGC-1α content, protects against high-fat diet-induced detriments. Activation of muscle autophagy was correlated with exercise protection, suggesting that autophagy might be a mediating factor for exercise-induced protection from lipid overload. The prevalence of glucose intolerance is alarmingly high. Efforts to promote mitochondrial biogenesis through peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) to mitigate glucose intolerance have been controversial. However, physical activity remains a primary means to alleviate the condition. The aim of this study was to determine the combined effects of muscle-specific overexpression of PGC-1α and physical activity on glucose handling during diet-induced obesity. Wild-type (WT, ∼20) and PGC-1α muscle transgenic (MCK-PGC-1α, ∼20) mice were given a Western diet (WD) at 8 weeks age and allowed to consume food ab libitum throughout the study. At 12 weeks of age, all animals were divided into sedentary (SED) or voluntary wheel running (VWR) interventions. At 7, 11 and 15 weeks of age, animals underwent glucose tolerance tests (GTT) and graded exercise tests (GXT). At 16 weeks of age, tissues were collected. At 11 weeks, the MCK-PGC-1α animals had 50% greater glucose tolerance integrated area under the curve compared with WT. However, at 15 weeks, SED animals also had greater GTT integrated area under the curve compared with VWR, regardless of genotype; furthermore, SED animals demonstrated reduced exercise capacity compared with earlier time points, which was not seen in VWR animals. Voluntary distance run per day was correlated with GTT in VWR-WT, but not VWR-MCK-PGC-1α mice. Voluntary wheel running and genotype independently resulted in a greater LC3II/LC3I ratio, suggesting enhanced autophagosome formation, which was correlated with exercise-induced improvements in GTT. In conclusion, artificially increasing mitochondrial content does not protect from lipid-induced pathologies nor does it augment exercise adaptations. Physical activity ameliorates the effects of lipid overload-induced glucose intolerance, an effect that appears to be related to enhanced activation of autophagy. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Comparison of Fiber Optic Strain Demodulation Implementations
NASA Technical Reports Server (NTRS)
Quach, Cuong C.; Vazquez, Sixto L.
2005-01-01
NASA Langley Research Center is developing instrumentation based upon principles of Optical Frequency-Domain Reflectometry (OFDR) for the provision of large-scale, dense distribution of strain sensors using fiber optics embedded with Bragg gratings. Fiber Optic Bragg Grating technology enables the distribution of thousands of sensors immune to moisture and electromagnetic interference with negligible weight penalty. At Langley, this technology provides a key component for research and development relevant to comprehensive aerospace vehicle structural health monitoring. A prototype system is under development that includes hardware and software necessary for the acquisition of data from an optical network and conversion of the data into strain measurements. This report documents the steps taken to verify the software that implements the algorithm for calculating the fiber strain. Brief descriptions of the strain measurement system and the test article are given. The scope of this report is the verification of software implementations as compared to a reference model. The algorithm will be detailed along with comparison results.
High resolution strain sensor for earthquake precursor observation and earthquake monitoring
NASA Astrophysics Data System (ADS)
Zhang, Wentao; Huang, Wenzhu; Li, Li; Liu, Wenyi; Li, Fang
2016-05-01
We propose a high-resolution static-strain sensor based on a FBG Fabry-Perot interferometer (FBG-FP) and a wavelet domain cross-correlation algorithm. This sensor is used for crust deformation measurement, which plays an important role in earthquake precursor observation. The Pound-Drever-Hall (PDH) technique based on a narrow-linewidth tunable fiber laser is used to interrogate the FBG-FPs. A demodulation algorithm based on wavelet domain cross-correlation is used to calculate the wavelength difference. The FBG-FP sensor head is fixed on the two steel alloy rods which are installed in the bedrock. The reference FBG-FP is placed in a strain-free state closely to compensate the environment temperature fluctuation. A static-strain resolution of 1.6 n(epsilon) can be achieved. As a result, clear solid tide signals and seismic signals can be recorded, which suggests that the proposed strain sensor can be applied to earthquake precursor observation and earthquake monitoring.
Exploiting Concurrent Wake-Up Transmissions Using Beat Frequencies
2017-01-01
Wake-up receivers are the natural choice for wireless sensor networks because of their ultra-low power consumption and their ability to provide communications on demand. A downside of ultra-low power wake-up receivers is their low sensitivity caused by the passive demodulation of the carrier signal. In this article, we present a novel communication scheme by exploiting purposefully-interfering out-of-tune signals of two or more wireless sensor nodes, which produce the wake-up signal as the beat frequency of superposed carriers. Additionally, we introduce a communication algorithm and a flooding protocol based on this approach. Our experiments show that our approach increases the received signal strength up to 3 dB, improving communication robustness and reliability. Furthermore, we demonstrate the feasibility of our newly-developed protocols by means of an outdoor experiment and an indoor setup consisting of several nodes. The flooding algorithm achieves almost a 100% wake-up rate in less than 20 ms. PMID:28933749
Sirtuin signaling controls mitochondrial function in glycogen storage disease type Ia.
Cho, Jun-Ho; Kim, Goo-Young; Mansfield, Brian C; Chou, Janice Y
2018-05-08
Glycogen storage disease type Ia (GSD-Ia) deficient in glucose-6-phosphatase-α (G6Pase-α) is a metabolic disorder characterized by impaired glucose homeostasis and a long-term complication of hepatocellular adenoma/carcinoma (HCA/HCC). Mitochondrial dysfunction has been implicated in GSD-Ia but the underlying mechanism and its contribution to HCA/HCC development remain unclear. We have shown that hepatic G6Pase-α deficiency leads to downregulation of sirtuin 1 (SIRT1) signaling that underlies defective hepatic autophagy in GSD-Ia. SIRT1 is a NAD + -dependent deacetylase that can deacetylate and activate peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), a master regulator of mitochondrial integrity, biogenesis, and function. We hypothesized that downregulation of hepatic SIRT1 signaling in G6Pase-α-deficient livers impairs PGC-1α activity, leading to mitochondrial dysfunction. Here we show that the G6Pase-α-deficient livers display defective PGC-1α signaling, reduced numbers of functional mitochondria, and impaired oxidative phosphorylation. Overexpression of hepatic SIRT1 restores PGC-1α activity, normalizes the expression of electron transport chain components, and increases mitochondrial complex IV activity. We have previously shown that restoration of hepatic G6Pase-α expression normalized SIRT1 signaling. We now show that restoration of hepatic G6Pase-α expression also restores PGC-1α activity and mitochondrial function. Finally, we show that HCA/HCC lesions found in G6Pase-α-deficient livers contain marked mitochondrial and oxidative DNA damage. Taken together, our study shows that downregulation of hepatic SIRT1/PGC-1α signaling underlies mitochondrial dysfunction and that oxidative DNA damage incurred by damaged mitochondria may contribute to HCA/HCC development in GSD-Ia.
Wu, Yifei; Chin, William W; Wang, Yong; Burris, Thomas P
2003-03-07
The activation function 2 (AF-2)-dependent recruitment of coactivator is essential for gene activation by nuclear receptors. We show that the peroxisome proliferator-activated receptor gamma (PPARgamma) (NR1C3) coactivator-1 (PGC-1) requires both the intact AF-2 domain of PPARgamma and the LXXLL domain of PGC-1 for ligand-dependent and ligand-independent interaction and coactivation. Although the AF-2 domain of PPARgamma is absolutely required for PGC-1-mediated coactivation, this coactivator displayed a unique lack of requirement for the charge clamp of the ligand-binding domain of the receptor that is thought to be essential for LXXLL motif recognition. The mutation of a single serine residue adjacent to the core LXXLL motif of PGC-1 led to restoration of the typical charge clamp requirement. Thus, the unique structural features of the PGC-1 LXXLL motif appear to mediate an atypical mode of interaction with PPARgamma. Unexpectedly, we discovered that various ligands display variability in terms of their requirement for the charge clamp of PPARgamma for coactivation by PGC-1. This ligand-selective variable requirement for the charge clamp was coactivator-specific. Thus, distinct structural determinants, which may be unique for a particular ligand, are utilized by the receptor to recognize the coactivator. Our data suggest that even subtle differences in ligand structure are perceived by the receptor and translated into a unique display of the coactivator-binding surface of the ligand-binding domain, allowing for differential recognition of coactivators that may underlie distinct pharmacological profiles observed for ligands of a particular nuclear receptor.
Gum chewing improves swallow frequency and latency in Parkinson patients: a preliminary study.
South, Angela R; Somers, Stephanie M; Jog, Mandar S
2010-04-13
Reduced swallowing frequency affects secretion management in Parkinson disease (PD). Gum chewing increases saliva flow and swallow frequency. This study uses chewing gum to modify swallow frequency and latency between swallows in patients with PD. 1) Assess the frequency and latency of swallow at baseline (BL), during gum chewing (GC), and post gum chewing (PGC) for participants with PD (stage 2-4) nonsymptomatic for prandial dysphagia; and 2) assess carryover after gum is expectorated. Twenty participants were studied across 3 tasks, each of 5 minutes in duration: BL, GC, and PGC. Respiratory and laryngeal signals were continuously recorded using PowerLab (version 5.5.5; ADI Instruments, Castle Hill, Australia). Frequency and latency of swallow events were calculated. Differences (analysis of variance) are reported for frequency (p < 0.000001) and latency (p < 0.000001). Swallow frequency (mean +/- SD) increased during GC (14.95 +/- 3.02) compared with BL (3.1 +/- 2.85) and PGC (7.0 +/- 2.57). Latency in seconds (mean +/- SD) decreased during GC (24.1 +/- 4.174) and increased with BL (131.8 +/- 59.52) and PGC (mean = 60.74 +/- 25.25). Intertask comparisons (t test) found differences in swallow frequency and latency between tasks: BL vs GC (p < 0.0001, p < 0.0001), BL vs PGC (p < 0.0011, p < 0.0009), and GC vs PGC (p < 0.0001, p < 0.0002), respectively. Post hoc analysis showed carryover to 5.317 minutes. Modifying sensorimotor input by chewing gum alters frequency and latency of swallowing and may be an effective strategy for secretion management in Parkinson disease. This study provides Class III evidence that chewing gum increases swallow frequency and decreases latency of swallowing in an experiment in patients with stage 2 to 4 Parkinson disease who are nonsymptomatic for significant prandial dysphagia.
Haralampieva, Deana; Salemi, Souzan; Betzel, Thomas; Dinulovic, Ivana; Krämer, Stefanie D.; Schibli, Roger; Sulser, Tullio; Ametamey, Simon M.
2018-01-01
While many groups demonstrated new muscle tissue formation after muscle precursor cell (MPC) injection, the capacity of these cells to heal muscle damage, for example, sphincter in stress urinary incontinence, in long-term is still limited. Therefore, the first goal of our project was to optimize the functional regenerative potential of hMPC by genetic modification to overexpress human peroxisome proliferator-activated receptor gamma coactivator 1-alpha (hPGC-1α), key regulator of exercise-mediated adaptation. Moreover, we aimed at establishing a feasible methodology for noninvasive PET visualization of implanted cells and their microenvironment in muscle crush injury model. PGC-1α-bioengineered muscles showed enhanced marker expression for myogenesis (α-actinin, MyHC, and Desmin), vascularization (VEGF), neuronal (ACHE), and mitochondrial (COXIV) activity. Consistently, use of hPGC-1α_hMPCs produced significantly increased contractile force one to three weeks postinjury. PET imaging showed distinct differences in radiotracer signals ([18F]Fallypride and [11C]Raclopride (both targeting dopamine 2 receptors (D2R)) and [64Cu]NODAGA-RGD (targeting neovascularization)) between GFP_hMPCs and hD2R_hPGC-1α_hMPCs. After muscle harvesting, inflammation levels were in parallel to radiotracer uptake amount, with significantly lower uptake in hPGC-1α overexpressing samples. In summary, we facilitated early functional muscle tissue regeneration, introducing a novel approach to improve skeletal muscle regeneration. Besides successful tracking of hMPCs in muscle crush injuries, we showed that in high-inflammation areas, the specificity of radioligands might be significantly reduced, addressing a possible bottleneck of neovascularization PET imaging. PMID:29531537
Spargel/dPGC-1 Is a New Downstream Effector in the Insulin–TOR Signaling Pathway in Drosophila
Mukherjee, Subhas; Duttaroy, Atanu
2013-01-01
Insulin and target of rapamycin (TOR) signaling pathways converge to maintain growth so a proportionate body form is attained. Insufficiency in either insulin or TOR results in developmental growth defects due to low ATP level. Spargel is the Drosophila homolog of PGC-1, which is an omnipotent transcriptional coactivator in mammals. Like its mammalian counterpart, Spargel/dPGC-1 is recognized for its role in energy metabolism through mitochondrial biogenesis. An earlier study demonstrated that Spargel/dPGC-1 is involved in the insulin–TOR signaling, but a comprehensive analysis is needed to understand exactly which step of this pathway Spargel/PGC-1 is essential. Using genetic epistasis analysis, we demonstrated that a Spargel gain of function can overcome the TOR and S6K mediated cell size and cell growth defects in a cell autonomous manner. Moreover, the tissue-restricted phenotypes of TOR and S6k mutants are rescued by Spargel overexpression. We have further elucidated that Spargel gain of function sets back the mitochondrial numbers in growth-limited TOR mutant cell clones, which suggests a possible mechanism for Spargel action on cells and tissue to attain normal size. Finally, excess Spargel can ameliorate the negative effect of FoxO overexpression only to a limited extent, which suggests that Spargel does not share all of the FoxO functions and consequently cannot significantly rescue the FoxO phenotypes. Together, our observation established that Spargel/dPGC-1 is indeed a terminal effector in the insulin–TOR pathway operating below TOR, S6K, Tsc, and FoxO. This led us to conclude that Spargel should be incorporated as a new member of this growth-signaling pathway. PMID:23934892
Nandrolone Normalizes Determinants of Muscle Mass and Fiber Type after Spinal Cord Injury
Wu, Yong; Zhao, Jingbo; Zhao, Weidong; Pan, Jiangping; Bauman, William A.
2012-01-01
Abstract Spinal cord injury (SCI) results in atrophy of skeletal muscle and changes from slow oxidative to fast glycolytic fibers, which may reflect reduced levels of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), increased myostatin signaling, or both. In animals, testosterone reduces loss of muscle fiber cross-sectional area and activity of enzymes of energy metabolism. To identify the molecular mechanisms behind the benefits of androgens on paralyzed muscle, male rats were spinal cord transected and treated for 8 weeks with vehicle, testosterone at a physiological replacement dose, or testosterone plus nandrolone, an anabolic steroid. Treatments were initiated immediately after SCI and continued until the day animals were euthanized. In the SCI animals, gastrocnemius muscle mass was significantly increased by testosterone plus nandrolone, but not by testosterone alone. Both treatments significantly reduced nuclear content of Smad2/3 and mRNA levels of activin receptor IIB and follistatin-like 3. Testosterone alone or with nandrolone reversed SCI-induced declines in cellular and nuclear levels of PGC-1α protein and PGC-1α mRNA levels. For PGC-1α target genes, testosterone plus nandrolone partially reversed SCI-induced decreases in levels of proteins without corresponding increases in their mRNA levels. Thus, the findings demonstrate that following SCI, signaling through activin receptors and Smad2/3 is increased, and that androgens suppress activation of this signaling pathway. The findings also indicate that androgens upregulate PGC-1α in paralyzed muscle and promote its nuclear localization, but that these effects are insufficient to fully activate transcription of PGC-1α target genes. Furthermore, the transcription of these genes is not tightly coupled with their translation. PMID:22208735
Apigenin enhances skeletal muscle hypertrophy and myoblast differentiation by regulating Prmt7
Jang, Young Jin; Son, Hyo Jeong; Choi, Yong Min; Ahn, Jiyun; Jung, Chang Hwa; Ha, Tae Youl
2017-01-01
Apigenin, a natural flavone abundant in various plant-derived foods including parsley and celery, has been shown to prevent inflammation and inflammatory diseases. However, the effect of apigenin on skeletal muscle hypertrophy and myogenic differentiation has not previously been elucidated. Here, we investigated the effects of apigenin on quadricep muscle weight and running distance using C57BL/6 mice on an accelerating treadmill. Apigenin stimulated mRNA expression of MHC (myosin heavy chain) 1, MHC2A, and MHC2B in the quadricep muscles of these animals. GPR56 (G protein-coupled receptor 56) and its ligand collagen III were upregulated by apigenin supplementation, together with enhanced PGC-1α, PGC-1α1, PGC-1α4, IGF1, and IGF2 expression. Prmt7 protein expression increased in conjunction with Akt and mTORC1 activation. Apigenin treatment also upregulated FNDC5 (fibronectin type III domain containing 5) mRNA expression and serum irisin levels. Furthermore, apigenin stimulated C2C12 myogenic differentiation and upregulated total MHC, MHC2A, and MHC2B expression. These events were attributable to an increase in Prmt7-p38-myoD expression and Akt and S6K1 phosphorylation. We also observed that Prmt7 regulates both PGC-1α1 and PGC-1α4 expression, resulting in a subsequent increase in GPR56 expression and mTORC1 activation. Taken together, these findings suggest that apigenin supplementation can promote skeletal muscle hypertrophy and myogenic differentiation by regulating the Prmt7-PGC-1α-GPR56 pathway, as well as the Prmt7-p38-myoD pathway, which may contribute toward the prevention of skeletal muscle weakness. PMID:29108230
Apigenin enhances skeletal muscle hypertrophy and myoblast differentiation by regulating Prmt7.
Jang, Young Jin; Son, Hyo Jeong; Choi, Yong Min; Ahn, Jiyun; Jung, Chang Hwa; Ha, Tae Youl
2017-10-03
Apigenin, a natural flavone abundant in various plant-derived foods including parsley and celery, has been shown to prevent inflammation and inflammatory diseases. However, the effect of apigenin on skeletal muscle hypertrophy and myogenic differentiation has not previously been elucidated. Here, we investigated the effects of apigenin on quadricep muscle weight and running distance using C57BL/6 mice on an accelerating treadmill. Apigenin stimulated mRNA expression of MHC (myosin heavy chain) 1, MHC2A, and MHC2B in the quadricep muscles of these animals. GPR56 (G protein-coupled receptor 56) and its ligand collagen III were upregulated by apigenin supplementation, together with enhanced PGC-1α, PGC-1α1, PGC-1α4, IGF1, and IGF2 expression. Prmt7 protein expression increased in conjunction with Akt and mTORC1 activation. Apigenin treatment also upregulated FNDC5 (fibronectin type III domain containing 5) mRNA expression and serum irisin levels. Furthermore, apigenin stimulated C2C12 myogenic differentiation and upregulated total MHC, MHC2A, and MHC2B expression. These events were attributable to an increase in Prmt7-p38-myoD expression and Akt and S6K1 phosphorylation. We also observed that Prmt7 regulates both PGC-1α1 and PGC-1α4 expression, resulting in a subsequent increase in GPR56 expression and mTORC1 activation. Taken together, these findings suggest that apigenin supplementation can promote skeletal muscle hypertrophy and myogenic differentiation by regulating the Prmt7-PGC-1α-GPR56 pathway, as well as the Prmt7-p38-myoD pathway, which may contribute toward the prevention of skeletal muscle weakness.
Bajpeyi, Sudip; Covington, Jeffrey D; Taylor, Erin M; Stewart, Laura K; Galgani, Jose E; Henagan, Tara M
2017-07-01
Endurance exercise has been shown to improve lipid oxidation and increase mitochondrial content in skeletal muscle, two features that have shown dependence on increased expression of the peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α). It is also hypothesized that exercise-related alterations in PGC1α expression occur through epigenetic regulation of nucleosome positioning in association with differential DNA methylation status within the PGC1α promoter. In this study, we show that when primary human myotubes from obese patients with type 2 diabetes are exposed to lipolytic stimulus (palmitate, forskolin, inomycin) in vitro, nucleosome occupancy surrounding the -260 nucleotide (nt) region, a known regulatory DNA methylation site, is reduced. This finding is reproduced in vivo in the vastus lateralis from 11 healthy males after a single, long endurance exercise bout in which participants expended 650 kcal. Additionally, we show a significant positive correlation between fold change of PGC1α messenger RNA expression and -1 nucleosome repositioning away from the -260 nt methylation site in skeletal muscle tissue following exercise. Finally, we found that when exercise participants are divided into high and low responders based on the -260 nt methylation status, the -1 nucleosome is repositioned away from the regulatory -260 nt methylation site in high responders, those exhibiting a significant decrease in -260 nt methylation, but not in low responders. Additionally, high but not low responders showed a significant decrease in intramyocellular lipid content after exercise. These findings suggest a potential target for epigenetic modification of the PGC1α promoter to stimulate the therapeutic effects of endurance exercise in skeletal muscle. Copyright © 2017 Endocrine Society.
Higashida, Kazuhiko; Higuchi, Mitsuru; Terada, Shin
2009-12-01
It has recently been reported that a 4-wk high-fat diet gradually increases skeletal muscle peroxisome proliferator activated receptor (PPAR) gamma coactivator-1alpha (PGC-1alpha) protein content, which has been suggested to regulate GLUT-4 gene transcription. However, it has not been reported that a high-fat diet enhances GLUT-4 mRNA expression and protein content in skeletal muscle, suggesting that an increase in PGC-1alpha protein content is not sufficient to induce muscle GLUT-4 biogenesis in a high-fat fed animal. Therefore, we first evaluated the relationship between PGC-1alpha and GLUT-4 expression in skeletal muscle of rats fed a high-fat diet for 4 wk. The PGC-1alpha protein content in rat epitrochlearis muscle significantly increased by twofold after the 4-wk high-fat diet feeding. However, the high-fat diet had no effect on GLUT-4 protein content and induced a 30% decrease in GLUT-4 mRNA expression in rat skeletal muscle (p<0.05). To clarify the mechanism by which a high-fat diet downregulates GLUT-4 mRNA expression, we next examined the effect of PPARdelta activation, which is known to occur in response to a high-fat diet, on GLUT-4 mRNA expression in L6 myotubes. Incubation with 500 nM GW501516 (PPARdelta activator) for 24 h significantly decreased GLUT-4 mRNA in L6 myotubes. Taken together, these findings suggest that a high-fat diet downregulates GLUT-4 mRNA, possibly through the activation of PPARdelta, despite an increase in PGC-1alpha protein content in rat skeletal muscle, and that a posttranscriptional regulatory mechanism maintains GLUT-4 protein content in skeletal muscle of rats fed a high-fat diet.
Nandrolone normalizes determinants of muscle mass and fiber type after spinal cord injury.
Wu, Yong; Zhao, Jingbo; Zhao, Weidong; Pan, Jiangping; Bauman, William A; Cardozo, Christopher P
2012-05-20
Spinal cord injury (SCI) results in atrophy of skeletal muscle and changes from slow oxidative to fast glycolytic fibers, which may reflect reduced levels of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), increased myostatin signaling, or both. In animals, testosterone reduces loss of muscle fiber cross-sectional area and activity of enzymes of energy metabolism. To identify the molecular mechanisms behind the benefits of androgens on paralyzed muscle, male rats were spinal cord transected and treated for 8 weeks with vehicle, testosterone at a physiological replacement dose, or testosterone plus nandrolone, an anabolic steroid. Treatments were initiated immediately after SCI and continued until the day animals were euthanized. In the SCI animals, gastrocnemius muscle mass was significantly increased by testosterone plus nandrolone, but not by testosterone alone. Both treatments significantly reduced nuclear content of Smad2/3 and mRNA levels of activin receptor IIB and follistatin-like 3. Testosterone alone or with nandrolone reversed SCI-induced declines in cellular and nuclear levels of PGC-1α protein and PGC-1α mRNA levels. For PGC-1α target genes, testosterone plus nandrolone partially reversed SCI-induced decreases in levels of proteins without corresponding increases in their mRNA levels. Thus, the findings demonstrate that following SCI, signaling through activin receptors and Smad2/3 is increased, and that androgens suppress activation of this signaling pathway. The findings also indicate that androgens upregulate PGC-1α in paralyzed muscle and promote its nuclear localization, but that these effects are insufficient to fully activate transcription of PGC-1α target genes. Furthermore, the transcription of these genes is not tightly coupled with their translation.
Phase demodulation method from a single fringe pattern based on correlation with a polynomial form.
Robin, Eric; Valle, Valéry; Brémand, Fabrice
2005-12-01
The method presented extracts the demodulated phase from only one fringe pattern. Locally, this method approaches the fringe pattern morphology with the help of a mathematical model. The degree of similarity between the mathematical model and the real fringe is estimated by minimizing a correlation function. To use an optimization process, we have chosen a polynomial form such as a mathematical model. However, the use of a polynomial form induces an identification procedure with the purpose of retrieving the demodulated phase. This method, polynomial modulated phase correlation, is tested on several examples. Its performance, in terms of speed and precision, is presented on very noised fringe patterns.
High-speed real-time heterodyne interferometry using software-defined radio.
Riobo, L M; Veiras, F E; Gonzalez, M G; Garea, M T; Sorichetti, P A
2018-01-10
This paper describes the design and performance of a phase demodulation scheme based on software-defined radio (SDR), applied in heterodyne interferometry. The phase retrieval is performed in real time by means of a low-cost SDR with a wideband optoelectronic front-end. Compared to other demodulation schemes, the system is quite simpler, versatile, and of lower cost. The performance of the demodulator is demonstrated by measuring the displacement per volt of a thin-film polymeric piezoelectric transducer based on polyvinylidene fluoride for ultrasonic applications. We measured displacements between 3.5 pm and 122 pm with 7% relative uncertainty, in the frequency range from 20 kHz to 1 MHz.
Critical roles of nardilysin in the maintenance of body temperature homoeostasis.
Hiraoka, Yoshinori; Matsuoka, Tatsuhiko; Ohno, Mikiko; Nakamura, Kazuhiro; Saijo, Sayaka; Matsumura, Shigenobu; Nishi, Kiyoto; Sakamoto, Jiro; Chen, Po-Min; Inoue, Kazuo; Fushiki, Tohru; Kita, Toru; Kimura, Takeshi; Nishi, Eiichiro
2014-01-01
Body temperature homoeostasis in mammals is governed centrally through the regulation of shivering and non-shivering thermogenesis and cutaneous vasomotion. Non-shivering thermogenesis in brown adipose tissue (BAT) is mediated by sympathetic activation, followed by PGC-1α induction, which drives UCP1. Here we identify nardilysin (Nrd1 and NRDc) as a critical regulator of body temperature homoeostasis. Nrd1(-/-) mice show increased energy expenditure owing to enhanced BAT thermogenesis and hyperactivity. Despite these findings, Nrd1(-/-) mice show hypothermia and cold intolerance that are attributed to the lowered set point of body temperature, poor insulation and impaired cold-induced thermogenesis. Induction of β3-adrenergic receptor, PGC-1α and UCP1 in response to cold is severely impaired in the absence of NRDc. At the molecular level, NRDc and PGC-1α interact and co-localize at the UCP1 enhancer, where NRDc represses PGC-1α activity. These findings reveal a novel nuclear function of NRDc and provide important insights into the mechanism of thermoregulation.
Hybrid spread spectrum radio system
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2010-02-09
Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.
Improved PLL For FM Demodulator
NASA Technical Reports Server (NTRS)
Kirkham, Harold; Jackson, Shannon P.
1992-01-01
Phase-locked loop (PLL) for frequency demodulator contains improved frequency-to-voltage converter producing less ripple than conventional phase detector. In improved PLL, phase detector replaced by state estimator, implemented by ramp/sample-and-hold circuit. Intended to reduce noise in receiver of frequency-modulated (FM) telemetry link without sacrificing bandwidth. Also applicable to processing received FM signals.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Digital Broadcast... following conditions is true: (i) The party is a bona fide reseller; (ii) The party is a licensed digital... engaged, or about to become engaged, in the lawful retransmission of unencrypted digital terrestrial...
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Yang, Shangming; Fan, Lingling; Wang, Pengfei; Zhao, Xilin; Wang, Zhenhua; Cui, Hong-Liang
2010-04-01
In this paper we report a scheme of low-cost, small-size differential electrical converter to change analog trigger signals into digital trigger signals. This converter successfully resolves the incompatibility between the digital trigger mode of NI (National Instruments) data acquisition card PCI 5105 in Measurement Studio development environment for a demodulator and the requirement from instability of spectra of fiber Bragg grating (FBG) sensors. The instability is caused by intrinsic drifts of FFP-TF inside this high speed demodulator. The obtained results of frequency response about the converter have clearly demonstrated that this method is effective when the frequency of trigger signal is less than 3,000 Hz. This converter can satisfy the current requirements of demodulator based on FFP-TF, since mostly actual working scanning frequency of FFP-TF is less than 1,000 Hz. This method may be recommended to resolve similar problems for other NI customers who have developed their data acquisition system based on Measurement Studio.
Lin, Cheng; Zhu, Yong; Wei, Wei; Zhang, Jie; Tian, Li; Xu, Zu-Wen
2013-05-01
An all-optical quartz-enhanced photoacoustic spectroscopy system, based on the F-P demodulation, for trace gas detection in the open environment was proposed. In quartz-enhanced photoacoustic spectroscopy (QEPAS), an optical fiber Fabry-Perot method was used to replace the conventional electronic demodulation method. The photoacoustic signal was obtained by demodulating the variation of the Fabry-Perot cavity between the quartz tuning fork side and the fiber face. An experimental system was setup. The experiment for detection of water vapour in the open environment was carried on. A normalized noise equivalent absorption coefficient of 2.80 x 10(-7) cm(-1) x W x Hz(-1/2) was achieved. The result demonstrated that the sensitivity of the all-optical quartz-enhanced photoacoustic spectroscopy system is about 2.6 times higher than that of the conventional QEPAS system. The all-optical quartz-enhanced photoacoustic spectroscopy system is immune to electromagnetic interference, safe in flammable and explosive gas detection, suitable for high temperature and high humidity environments and realizable for long distance, multi-point and network sensing.
Multi-scale signed envelope inversion
NASA Astrophysics Data System (ADS)
Chen, Guo-Xin; Wu, Ru-Shan; Wang, Yu-Qing; Chen, Sheng-Chang
2018-06-01
Envelope inversion based on modulation signal mode was proposed to reconstruct large-scale structures of underground media. In order to solve the shortcomings of conventional envelope inversion, multi-scale envelope inversion was proposed using new envelope Fréchet derivative and multi-scale inversion strategy to invert strong contrast models. In multi-scale envelope inversion, amplitude demodulation was used to extract the low frequency information from envelope data. However, only to use amplitude demodulation method will cause the loss of wavefield polarity information, thus increasing the possibility of inversion to obtain multiple solutions. In this paper we proposed a new demodulation method which can contain both the amplitude and polarity information of the envelope data. Then we introduced this demodulation method into multi-scale envelope inversion, and proposed a new misfit functional: multi-scale signed envelope inversion. In the numerical tests, we applied the new inversion method to the salt layer model and SEG/EAGE 2-D Salt model using low-cut source (frequency components below 4 Hz were truncated). The results of numerical test demonstrated the effectiveness of this method.
Noninvasive hemoglobin measurement using dynamic spectrum
NASA Astrophysics Data System (ADS)
Yi, Xiaoqing; Li, Gang; Lin, Ling
2017-08-01
Spectroscopy methods for noninvasive hemoglobin (Hgb) measurement are interfered by individual difference and particular weak signal. In order to address these problems, we have put forward a series of improvement methods based on dynamic spectrum (DS), including instrument design, spectrum extraction algorithm, and modeling approach. The instrument adopts light sources composed of eight laser diodes with the wavelength range from 600 nm to 1100 nm and records photoplethysmography signals at eight wavelengths synchronously. In order to simplify the optical design, we modulate the light sources with orthogonal square waves and design the corresponding demodulation algorithm, instead of adopting a beam-splitting system. A newly designed algorithm named difference accumulation has been proved to be effective in improving the accuracy of dynamic spectrum extraction. 220 subjects are involved in the clinical experiment. An extreme learning machine calibration model between the DS data and the Hgb levels is established. Correlation coefficient and root-mean-square error of prediction sets are 0.8645 and 8.48 g/l, respectively. The results indicate that the Hgb level can be derived by this approach noninvasively with acceptable precision and accuracy. It is expected to achieve a clinic application in the future.
Gong, Bing; Pan, Yong; Vempati, Prashant; Zhao, Wei; Knable, Lindsay; Ho, Lap; Wang, Jun; Sastre, Magdalena; Ono, Kenjiro; Sauve, Anthony A.; Pasinetti, Giulio M.
2013-01-01
Nicotinamide adenine dinucleotide (NAD)+, a coenzyme involved in redox activities in the mitochondrial electron transport chain, has been identified as a key regulator of the lifespan-extending effects, and the activation of NAD+ expression has been linked with a decrease in beta-amyloid (Aβ) toxicity in Alzheimer’s disease (AD). Nicotinamide riboside (NR) is a NAD+ precursor, it promotes peroxisome proliferator-activated receptor-γ coactivator 1 (PGC)-1α expression in the brain. Evidence has shown that PGC-1α is a crucial regulator of Aβ generation because it affects β-secretase (BACE1) degradation. In this study we tested the hypothesis that NR treatment in an AD mouse model could attenuate Aβ toxicity through the activation of PGC-1α-mediated BACE1 degradation. Using the Tg2576 AD mouse model, using in vivo behavioral analyses, biochemistry assays, small hairpin RNA (shRNA) gene silencing and electrophysiological recording, we found (1) dietary treatment of Tg2576 mice with 250 mg/kg/day of NR for 3 months significantly attenuates cognitive deterioration in Tg2576 mice and coincides with an increase in the steady-state levels of NAD+ in the cerebral cortex; (2) application of NR to hippocampal slices (10 µM) for 4 hours abolishes the deficits in long-term potentiation recorded in the CA1 region of Tg2576 mice; (3) NR treatment promotes PGC-1α expression in the brain coinciding with enhanced degradation of BACE1 and the reduction of Aβ production in Tg2576 mice. Further in vitro studies confirmed that BACE1 protein content is decreased by NR treatment in primary neuronal cultures derived from Tg2576 embryos, in which BACE1 degradation was prevented by PGC-1α-shRNA gene silencing; and (4) NR treatment and PGC-1α overexpression enhance BACE1 ubiquitination and proteasomal degradation. Our studies suggest that dietary treatment with NR might benefit AD cognitive function and synaptic plasticity, inpart by promoting PGC-1α-mediated BACE1 ubiquitination and degradation, thus preventing Aβ production in the brain. PMID:23312803
[Impacts of physical exercise on remodeling and hypertrophy of skeletal muscle.
Sakashita, Yoshihiro; Uchida, Takayuki; Nikawa, Takeshi
The skeletal muscle has high sensitivity for the mechanical stress. Because it is enlarged by training, whereas it is easily withered by lack of exercise. When we exercise, skeletal muscle cells per se sense mechanical loading, and muscular remodeling and the muscular hypertrophy occur. It has been revealed that the intracellular signaling through PGC-1α participates in the remodeling of the skeletal muscle, while PGC-1α4, an isoform of PGC-1α, and the dystrophin-glycoprotein complex play important roles in muscular hypertrophy. This review describes the impact of physical exercise gives on the remodeling and hypertrophy of muscle through the signaling.
Complex demodulation in VLBI estimation of high frequency Earth rotation components
NASA Astrophysics Data System (ADS)
Böhm, S.; Brzeziński, A.; Schuh, H.
2012-12-01
The spectrum of high frequency Earth rotation variations contains strong harmonic signal components mainly excited by ocean tides along with much weaker non-harmonic fluctuations driven by irregular processes like the diurnal thermal tides in the atmosphere and oceans. In order to properly investigate non-harmonic phenomena a representation in time domain is inevitable. We present a method, operating in time domain, which is easily applicable within Earth rotation estimation from Very Long Baseline Interferometry (VLBI). It enables the determination of diurnal and subdiurnal variations, and is still effective with merely diurnal parameter sampling. The features of complex demodulation are used in an extended parameterization of polar motion and universal time which was implemented into a dedicated version of the Vienna VLBI Software VieVS. The functionality of the approach was evaluated by comparing amplitudes and phases of harmonic variations at tidal periods (diurnal/semidiurnal), derived from demodulated Earth rotation parameters (ERP), estimated from hourly resolved VLBI ERP time series and taken from a recently published VLBI ERP model to the terms of the conventional model for ocean tidal effects in Earth rotation recommended by the International Earth Rotation and Reference System Service (IERS). The three sets of tidal terms derived from VLBI observations extensively agree among each other within the three-sigma level of the demodulation approach, which is below 6 μas for polar motion and universal time. They also coincide in terms of differences to the IERS model, where significant deviations primarily for several major tidal terms are apparent. An additional spectral analysis of the as well estimated demodulated ERP series of the ter- and quarterdiurnal frequency bands did not reveal any significant signal structure. The complex demodulation applied in VLBI parameter estimation could be demonstrated a suitable procedure for the reliable reproduction of high frequency Earth rotation components and thus represents a qualified tool for future studies of irregular geophysical signals in ERP measured by space geodetic techniques.
Wong, Kari E.; Mikus, Catherine R.; Slentz, Dorothy H.; Seiler, Sarah E.; DeBalsi, Karen L.; Ilkayeva, Olga R.; Crain, Karen I.; Kinter, Michael T.; Kien, C. Lawrence; Stevens, Robert D.
2015-01-01
This study used mice with muscle-specific overexpression of PGC-1α, a transcriptional coactivator that promotes mitochondrial biogenesis, to determine whether increased oxidative potential facilitates metabolic improvements in response to lifestyle modification. MCK-PGC1α mice and nontransgenic (NT) littermates were fed a high-fat diet (HFD) for 10 weeks, followed by stepwise exposures to voluntary wheel running (HFD+Ex) and then 25% caloric restriction with exercise (Ex/CR), each for an additional 10 weeks with continued HFD. Running and CR improved weight and glucose control similarly in MCK-PGC1α and NT mice. Sedentary MCK-PGC1α mice were more susceptible to diet-induced glucose intolerance, and insulin action measured in isolated skeletal muscles remained lower in the transgenic compared with the NT group, even after Ex/CR. Comprehensive profiling of >200 metabolites and lipid intermediates revealed dramatic group-specific responses to the intervention but did not produce a lead candidate that tracked with changes in glucose tolerance irrespective of genotype. Instead, principal components analysis identified a chemically diverse metabolite cluster that correlated with multiple measures of insulin responsiveness. These findings challenge the notion that increased oxidative capacity defends whole-body energy homeostasis and suggest that the interplay between mitochondrial performance, lipotoxicity, and insulin action is more complex than previously proposed. PMID:25422105
4E-BP1 regulates the differentiation of white adipose tissue.
Tsukiyama-Kohara, Kyoko; Katsume, Asao; Kimura, Kazuhiro; Saito, Masayuki; Kohara, Michinori
2013-07-01
4E Binding protein 1 (4E-BP1) suppresses translation initiation. The absence of 4E-BP1 drastically reduces the amount of adipose tissue in mice. To address the role of 4E-BP1 in adipocyte differentiation, we characterized 4E-BP1(-/-) mice in this study. The lack of 4E-BP1 decreased the amount of white adipose tissue and increased the amount of brown adipose tissue. In 4E-BP1(-/-) MEF cells, PPARγ coactivator 1 alpha (PGC-1α) expression increased and exogenous 4E-BP1 expression suppressed PGC-1α expression. The level of 4E-BP1 expression was higher in white adipocytes than in brown adipocytes and showed significantly greater up-regulation in white adipocytes than in brown adipocytes during preadipocyte differentiation into mature adipocytes. The amount of PGC-1α was consistently higher in HB cells (a brown preadipocyte cell line) than in HW cells (a white preadipocyte cell line) during differentiation. Moreover, the ectopic over-expression of 4E-BP1 suppressed PGC-1α expression in white adipocytes, but not in brown adipocytes. Thus, the results of our study indicate that 4E-BP1 may suppress brown adipocyte differentiation and PGC-1α expression in white adipose tissues. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.
Effects of treatment for tobacco dependence on resting cerebral glucose metabolism.
Costello, Matthew R; Mandelkern, Mark A; Shoptaw, Stephen; Shulenberger, Stephanie; Baker, Stephanie K; Abrams, Anna L; Xia, Catherine; London, Edythe D; Brody, Arthur L
2010-02-01
While bupropion HCl and practical group counseling (PGC) are commonly used treatments for tobacco dependence, the effects of these treatments on brain function are not well established. For this study, 54 tobacco-dependent cigarette smokers underwent resting (18)F-fluorodeoxyglucose-positron emission tomography (FDG-PET) scanning before and after 8 weeks of treatment with bupropion HCl, PGC, or pill placebo. Using Statistical Parametric Mapping (SPM 2), changes in cerebral glucose metabolism from before to after treatment were compared between treatment groups and correlations were determined between amount of daily cigarette usage and cerebral glucose metabolism. Compared with placebo, the two active treatments (bupropion HCl and PGC) had reductions in glucose metabolism in the posterior cingulate gyrus. Further analysis suggested that PGC had a greater effect than bupropion HCl on glucose metabolism in this region. We also found positive correlations between daily cigarette use and glucose metabolism in the left occipital gyrus and parietal-temporal junction. There were no significant negative correlations between daily cigarette use and glucose metabolism. Our findings suggest that bupropion HCl and PGC reduce neural activity much as the performance of a goal-oriented task does in the default mode network of the brain, including the posterior cingulate gyrus. Thus, this study supports the theory that active treatments for tobacco dependence move the brain into a more goal-oriented state.
Dietrich, Christoph G; Martin, Ina V; Porn, Anne C; Voigt, Sebastian; Gartung, Carsten; Trautwein, Christian; Geier, Andreas
2007-09-01
Fasting induces numerous adaptive changes in metabolism by several central signaling pathways, the most important represented by the HNF4alpha/PGC-1alpha-pathway. Because HNF4alpha has been identified as central regulator of basolateral bile acid transporters and a previous study reports increased basolateral bile acid uptake into the liver during fasting, we hypothesized that HNF4alpha is involved in fasting-induced bile acid uptake via upregulation of basolateral bile acid transporters. In rats, mRNA of Ntcp, Oatp1, and Oatp2 were significantly increased after 48 h of fasting. Protein expression as determined by Western blot showed significant increases for all three transporters 72 h after the onset of fasting. Whereas binding activity of HNF1alpha in electrophoretic mobility shift assays remained unchanged, HNF4alpha binding activity to the Ntcp promoter was increased significantly. In line with this result, we found significantly increased mRNA expression of HNF4alpha and PGC-1alpha. Functional studies in HepG2 cells revealed an increased endogenous NTCP mRNA expression upon cotransfection with either HNF4alpha, PGC-1alpha, or a combination of both. We conclude that upregulation of the basolateral bile acid transporters Ntcp, Oatp1, and Oatp2 in fasted rats is mediated via the HNF4alpha/PGC-1alpha pathway.
Roberts, Lee D; Ashmore, Tom; McNally, Ben D; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Lindsay, Ross; Siervo, Mario; Williams, Elizabeth A; Murray, Andrew J; Griffin, Julian L
2017-03-01
Exercise is an effective intervention for the prevention and treatment of type 2 diabetes. Skeletal muscle combines multiple signals that contribute to the beneficial effects of exercise on cardiometabolic health. Inorganic nitrate increases exercise efficiency, tolerance, and performance. The transcriptional regulator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) coordinates the exercise-stimulated skeletal muscle fiber-type switch from glycolytic fast-twitch (type IIb) to oxidative slow-twitch (type I) and intermediate (type IIa) fibers, an effect reversed in insulin resistance and diabetes. We found that nitrate induces PGC1α expression and a switch toward type I and IIa fibers in rat muscle and myotubes in vitro. Nitrate induces the release of exercise/PGC1α-dependent myokine FNDC5/irisin and β-aminoisobutyric acid from myotubes and muscle in rats and humans. Both exercise and nitrate stimulated PGC1α-mediated γ-aminobutyric acid (GABA) secretion from muscle. Circulating GABA concentrations were increased in exercising mice and nitrate-treated rats and humans; thus, GABA may function as an exercise/PGC1α-mediated myokine-like small molecule. Moreover, nitrate increased circulating growth hormone levels in humans and rodents. Nitrate induces physiological responses that mimic exercise training and may underlie the beneficial effects of this metabolite on exercise and cardiometabolic health. © 2017 by the American Diabetes Association.
Multi-carrier Communications over Time-varying Acoustic Channels
NASA Astrophysics Data System (ADS)
Aval, Yashar M.
Acoustic communication is an enabling technology for many autonomous undersea systems, such as those used for ocean monitoring, offshore oil and gas industry, aquaculture, or port security. There are three main challenges in achieving reliable high-rate underwater communication: the bandwidth of acoustic channels is extremely limited, the propagation delays are long, and the Doppler distortions are more pronounced than those found in wireless radio channels. In this dissertation we focus on assessing the fundamental limitations of acoustic communication, and designing efficient signal processing methods that cam overcome these limitations. We address the fundamental question of acoustic channel capacity (achievable rate) for single-input-multi-output (SIMO) acoustic channels using a per-path Rician fading model, and focusing on two scenarios: narrowband channels where the channel statistics can be approximated as frequency- independent, and wideband channels where the nominal path loss is frequency-dependent. In each scenario, we compare several candidate power allocation techniques, and show that assigning uniform power across all frequencies for the first scenario, and assigning uniform power across a selected frequency-band for the second scenario, are the best practical choices in most cases, because the long propagation delay renders the feedback information outdated for power allocation based on the estimated channel response. We quantify our results using the channel information extracted form the 2010 Mobile Acoustic Communications Experiment (MACE'10). Next, we focus on achieving reliable high-rate communication over underwater acoustic channels. Specifically, we investigate orthogonal frequency division multiplexing (OFDM) as the state-of-the-art technique for dealing with frequency-selective multipath channels, and propose a class of methods that compensate for the time-variation of the underwater acoustic channel. These methods are based on multiple-FFT demodulation, and are implemented as partial (P), shaped (S), fractional (F), and Taylor series expansion (T) FFT demodulation. They replace the conventional FFT demodulation with a few FFTs and a combiner. The input to each FFT is a specific transformation of the input signal (P,S,F,T), while the combiner performs weighted summation of the FFT outputs. We design an adaptive algorithm of stochastic gradient type to learn the combiner weights for coherent and differentially coherent detection. The algorithm is cast into the framework of multiple receiving elements to take advantage of spatial diversity. Synthetic data, as well as experimental data from the MACE'10 experiment are used to demonstrate the performance of the proposed methods, showing significant improvement over conventional detection techniques with or without inter-carrier interference equalization (5 dB--7 dB on average over multiple hours), as well as improved bandwidth efficiency.
Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier
NASA Astrophysics Data System (ADS)
Liu, Bin; Lin, Jie; Liu, Huan; Ma, Yuan; Yan, Lei; Jin, Peng
2017-01-01
A diaphragm based long cavity Fabry-Perot interferometric fiber acoustic sensor is proposed. The Fabry-Perot cavity is formed by a flat fiber facet and an ultra-thin silver diaphragm with a 6-meter long fiber inserted in the cavity. A narrow-linewidth ring-cavity erbium-doped fiber laser is applied to demodulate the sensing signal in the phase generated carrier algorithm. Experimental results have demonstrated that the phase sensitivity is about -140 dB re 1 rad/μPa at 2 kHz. The noise equivalent acoustic signal level is 60.6 μPa/Hz1/2 and the dynamic range is 65.1 dB-SPL at 2 kHz. The sensor is suitable for sensing of weak acoustic signals.
MIMO-OFDM WDM PON with DM-VCSEL for femtocells application.
Othman, M B; Deng, Lei; Pang, Xiaodan; Caminos, J; Kozuch, W; Prince, K; Yu, Xianbin; Jensen, Jesper Bevensee; Monroy, I Tafur
2011-12-12
We report on experimental demonstration of 2x2 MIMO-OFDM 5.6-GHz radio over fiber signaling over 20 km WDM-PON with directly modulated (DM) VCSELs for femtocells application. MIMO-OFDM algorithms effectively compensate for impairments in the wireless link. Error-free signal demodulation of 64 subcarrier 4-QAM signals modulated at 198.5 Mb/s net data rate is achieved after fiber and 2 m indoor wireless transmission. We report BER of 7x10(-3) at the receiver for 16-QAM signals modulated at 397 Mb/s after 1 m of wireless transmission. Performance dependence on different wireless transmission path lengths, antenna separation, and number of subcarriers have been investigated. © 2011 Optical Society of America
The digital phase-locked loop as a near-optimum FM demodulator.
NASA Technical Reports Server (NTRS)
Kelly, C. N.; Gupta, S. C.
1972-01-01
This paper presents an approach to the optimum digital demodulation of a continuous-time FM signal using stochastic estimation theory. The primary result is a digital phase-locked loop realization possessing performance characteristics that approach those of the analog counterpart. Some practical considerations are presented and simulation results for a first-order message model are presented.
Phase demodulation from a single fringe pattern based on a correlation technique.
Robin, Eric; Valle, Valéry
2004-08-01
We present a method for determining the demodulated phase from a single fringe pattern. This method, based on a correlation technique, searches in a zone of interest for the degree of similarity between a real fringe pattern and a mathematical model. This method, named modulated phase correlation, is tested with different examples.
Massagram, Wansuree; Hafner, Noah M; Park, Byung-Kwan; Lubecke, Victor M; Host-Madsen, Anders; Boric-Lubecke, Olga
2007-01-01
This paper describes the experimental results of the beat-to-beat interval measurement from a quadrature Doppler radar system utilizing arctangent demodulation with DC offset compensation techniques. The comparison in SDNN and in RMSDD of both signals demonstrates the potential of using quadrature Doppler radar for HRV analysis.
The payload/shuttle-data-communication-link handbook
NASA Technical Reports Server (NTRS)
1982-01-01
Communication links between the Orbiter, payloads, and ground are described: end-to-end, hardline, S-band, Ku-band, TDRSS relay, waveforms, premodulation, subcarrier modulation, carrier modulation, transmitter power, antennas, the RF channel, system noise, received signal-to-noise spectral density, carrier-tracking loop, carrier demodulation, subcarrier demodulation, digital data detection, digital data decoding, and tandem link considerations.
Real-time fringe pattern demodulation with a second-order digital phase-locked loop.
Gdeisat, M A; Burton, D R; Lalor, M J
2000-10-10
The use of a second-order digital phase-locked loop (DPLL) to demodulate fringe patterns is presented. The second-order DPLL has better tracking ability and more noise immunity than the first-order loop. Consequently, the second-order DPLL is capable of demodulating a wider range of fringe patterns than the first-order DPLL. A basic analysis of the first- and the second-order loops is given, and a performance comparison between the first- and the second-order DPLL's in analyzing fringe patterns is presented. The implementation of the second-order loop in real time on a commercial parallel image processing system is described. Fringe patterns are grabbed and processed, and the resultant phase maps are displayed concurrently.
NASA Astrophysics Data System (ADS)
Wang, Kuiru; Wang, Bo; Yan, Binbin; Sang, Xinzhu; Yuan, Jinhui; Peng, Gang-Ding
2013-10-01
We present a fiber Bragg grating Fabry-Perot (FBG-FP) sensor using the fast Fourier transform (FFT) demodulation for measuring the absolute strain and differential strain simultaneously. The amplitude and phase characteristics of Fourier transform spectrum have been studied. The relation between the amplitude of Fourier spectrum and the differential strain has been presented. We fabricate the fiber grating FP cavity sensor, and carry out the experiment on the measurement of absolute strain and differential strain. Experimental results verify the demodulation method, and show that this sensor has a good accuracy in the scope of measurement. The demodulating method can expand the number of multiplexed sensors combining with wavelength division multiplexing and time division multiplexing.
Phase-demodulation error of a fiber-optic Fabry-Perot sensor with complex reflection coefficients.
Kilpatrick, J M; MacPherson, W N; Barton, J S; Jones, J D
2000-03-20
The influence of reflector losses attracts little discussion in standard treatments of the Fabry-Perot interferometer yet may be an important factor contributing to errors in phase-stepped demodulation of fiber optic Fabry-Perot (FFP) sensors. We describe a general transfer function for FFP sensors with complex reflection coefficients and estimate systematic phase errors that arise when the asymmetry of the reflected fringe system is neglected, as is common in the literature. The measured asymmetric response of higher-finesse metal-dielectric FFP constructions corroborates a model that predicts systematic phase errors of 0.06 rad in three-step demodulation of a low-finesse FFP sensor (R = 0.05) with internal reflector losses of 25%.
High-sensitivity fiber optic acoustic sensors
NASA Astrophysics Data System (ADS)
Lu, Ping; Liu, Deming; Liao, Hao
2016-11-01
Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.
PWM Switching Frequency Effects on Eddy Current Sensors for Magnetically Suspended Flywheel Systems
NASA Technical Reports Server (NTRS)
Jansen, Ralph; Lebron, Ramon; Dever, Timothy P.; Birchenough, Arthur G.
2003-01-01
A flywheel magnetic bearing (MB) pulse width modulated power amplifier (PWM) configuration is selected to minimize noise generated by the PWMs in the flywheel position sensor system. Two types of noise are addressed: beat frequency noise caused by variations in PWM switching frequencies, and demodulation noise caused by demodulation of high order harmonics of the switching voltage into the MB control band. Beat frequency noise is eliminated by synchronizing the PWM switch frequencies, and demodulation noise is minimized by selection of a switching frequency which does not have harmonics at the carrier frequency of the sensor. The recommended MB PWM system has five synchronized PWMs switching at a non-integer harmonic of the sensor carrier.
Wang, Rui; Chang, Yong-sheng; Fang, Fu-de
2009-12-01
Peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) family is highly expressed in tissues with high energy metabolism. They coactivate transcription factors in regulating genes engaged in processes such as gluconeogenesis, adipose beta-oxydation, lipoprotein synthesis and secretion, mitochondrial biogenesis, and oxidative metabolism. Protein conformation studies demonstrated that they lack DNA binding domains and act as coactivators through physical interaction with transcription factors. PGC1 activity is regulated at transcription level or by multiple covalent chemical modifications such as phosphorylation, methylation and acetylation/deacetylation. Abnormal expression of PGC1 coactivators usually is closely correlated with diseases such as diabetes, obesity, hyperglycemia, hyperlipemia, and arterial and brain neuron necrosis diseases.
Chuang, Kuo-Chih; Liao, Heng-Tseng; Ma, Chien-Ching
2011-01-01
In this work, a fiber Bragg grating (FBG) sensing system which can measure the transient response of out-of-plane point-wise displacement responses is set up on a smart cantilever beam and the feasibility of its use as a feedback sensor in an active structural control system is studied experimentally. An FBG filter is employed in the proposed fiber sensing system to dynamically demodulate the responses obtained by the FBG displacement sensor with high sensitivity. For comparison, a laser Doppler vibrometer (LDV) is utilized simultaneously to verify displacement detection ability of the FBG sensing system. An optical full-field measurement technique called amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to provide full-field vibration mode shapes and resonant frequencies. To verify the dynamic demodulation performance of the FBG filter, a traditional FBG strain sensor calibrated with a strain gauge is first employed to measure the dynamic strain of impact-induced vibrations. Then, system identification of the smart cantilever beam is performed by FBG strain and displacement sensors. Finally, by employing a velocity feedback control algorithm, the feasibility of integrating the proposed FBG displacement sensing system in a collocated feedback system is investigated and excellent dynamic feedback performance is demonstrated. In conclusion, our experiments show that the FBG sensor is capable of performing dynamic displacement feedback and/or strain measurements with high sensitivity and resolution. PMID:22247683
NASA Astrophysics Data System (ADS)
Rerucha, Simon; Sarbort, Martin; Hola, Miroslava; Cizek, Martin; Hucl, Vaclav; Cip, Ondrej; Lazar, Josef
2016-12-01
The homodyne detection with only a single detector represents a promising approach in the interferometric application which enables a significant reduction of the optical system complexity while preserving the fundamental resolution and dynamic range of the single frequency laser interferometers. We present the design, implementation and analysis of algorithmic methods for computational processing of the single-detector interference signal based on parallel pipelined processing suitable for real time implementation on a programmable hardware platform (e.g. the FPGA - Field Programmable Gate Arrays or the SoC - System on Chip). The algorithmic methods incorporate (a) the single detector signal (sine) scaling, filtering, demodulations and mixing necessary for the second (cosine) quadrature signal reconstruction followed by a conic section projection in Cartesian plane as well as (a) the phase unwrapping together with the goniometric and linear transformations needed for the scale linearization and periodic error correction. The digital computing scheme was designed for bandwidths up to tens of megahertz which would allow to measure the displacements at the velocities around half metre per second. The algorithmic methods were tested in real-time operation with a PC-based reference implementation that employed the advantage pipelined processing by balancing the computational load among multiple processor cores. The results indicate that the algorithmic methods are suitable for a wide range of applications [3] and that they are bringing the fringe counting interferometry closer to the industrial applications due to their optical setup simplicity and robustness, computational stability, scalability and also a cost-effectiveness.
Resonant Pulse Combustors: A Reliable Route to Practical Pressure Gain Combustion
NASA Technical Reports Server (NTRS)
Paxson, Dan
2017-01-01
A particular type of pressure gain combustion (PGC) device is described, which is under investigation at GRC. The Resonant Pulse Combustor (RPC) has been largely overlooked due to its theoretically low performance. However, its practical performance is quite competitive with other PGC systems, and its physical simplicity is unmatched.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rangwala, Shamina M.; Li, Xiaoyan; Lindsley, Loren
2007-05-25
Estrogen-related receptor {alpha} (ERR{alpha}) is an important mediator of mitochondrial biogenesis and function. To investigate the transcriptional network controlling these phenomena, we investigated mitochondrial gene expression in embryonic fibroblasts isolated from ERR{alpha} null mice. Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) stimulated mitochondrial gene expression program in control cells, but not in the ERR{alpha} null cells. Interestingly, the induction of levels of mitochondrial oxidative stress protection genes in response to increased PGC-1{alpha} levels was dependent on ERR{alpha}. Furthermore, we found that the PGC-1{alpha}-mediated induction of estrogen-related receptor {gamma} and nuclear respiratory factor 2 (NRF-2), was dependent on the presence of ERR{alpha}.more » Basal levels of NRF-2 were decreased in the absence of ERR{alpha}. The absence of ERR{alpha} resulted in a decrease in citrate synthase enzyme activity in response to PGC-1{alpha} overexpression. Our results indicate an essential role for ERR{alpha} as a key regulator of oxidative metabolism.« less
Xing, Fan; Luan, Yizhao; Cai, Jing; Wu, Sihan; Mai, Jialuo; Gu, Jiayu; Zhang, Haipeng; Li, Kai; Lin, Yuan; Xiao, Xiao; Liang, Jiankai; Li, Yuan; Chen, Wenli; Tan, Yaqian; Sheng, Longxiang; Lu, Bingzheng; Lu, Wanjun; Gao, Mingshi; Qiu, Pengxin; Su, Xingwen; Yin, Wei; Hu, Jun; Chen, Zhongping; Sai, Ke; Wang, Jing; Chen, Furong; Chen, Yinsheng; Zhu, Shida; Liu, Dongbing; Cheng, Shiyuan; Xie, Zhi; Zhu, Wenbo; Yan, Guangmei
2017-01-10
Glioblastoma multiforme (GBM) is among the most aggressive of human cancers. Although differentiation therapy has been proposed as a potential approach to treat GBM, the mechanisms of induced differentiation remain poorly defined. Here, we established an induced differentiation model of GBM using cAMP activators that specifically directed GBM differentiation into astroglia. Transcriptomic and proteomic analyses revealed that oxidative phosphorylation and mitochondrial biogenesis are involved in induced differentiation of GBM. Dibutyryl cyclic AMP (dbcAMP) reverses the Warburg effect, as evidenced by increased oxygen consumption and reduced lactate production. Mitochondrial biogenesis induced by activation of the CREB-PGC1α pathway triggers metabolic shift and differentiation. Blocking mitochondrial biogenesis using mdivi1 or by silencing PGC1α abrogates differentiation; conversely, overexpression of PGC1α elicits differentiation. In GBM xenograft models and patient-derived GBM samples, cAMP activators also induce tumor growth inhibition and differentiation. Our data show that mitochondrial biogenesis and metabolic switch to oxidative phosphorylation drive the differentiation of tumor cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
A pilgrim's progress: Seeking meaning in primordial germ cell migration.
Cantú, Andrea V; Laird, Diana J
2017-10-01
Comparative studies of primordial germ cell (PGC) development across organisms in many phyla reveal surprising diversity in the route of migration, timing and underlying molecular mechanisms, suggesting that the process of migration itself is conserved. However, beyond the perfunctory transport of cellular precursors to their later arising home of the gonads, does PGC migration serve a function? Here we propose that the process of migration plays an additional role in quality control, by eliminating PGCs incapable of completing migration as well as through mechanisms that favor PGCs capable of responding appropriately to migration cues. Focusing on PGCs in mice, we explore evidence for a selective capacity of migration, considering the tandem regulation of proliferation and migration, cell-intrinsic and extrinsic control, the potential for tumors derived from failed PGC migrants, the potential mechanisms by which migratory PGCs vary in their cellular behaviors, and corresponding effects on development. We discuss the implications of a selective role of PGC migration for in vitro gametogenesis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Critical roles of nardilysin in the maintenance of body temperature homoeostasis
Hiraoka, Yoshinori; Matsuoka, Tatsuhiko; Ohno, Mikiko; Nakamura, Kazuhiro; Saijo, Sayaka; Matsumura, Shigenobu; Nishi, Kiyoto; Sakamoto, Jiro; Chen, Po-Min; Inoue, Kazuo; Fushiki, Tohru; Kita, Toru; Kimura, Takeshi; Nishi, Eiichiro
2014-01-01
Body temperature homoeostasis in mammals is governed centrally through the regulation of shivering and non-shivering thermogenesis and cutaneous vasomotion. Non-shivering thermogenesis in brown adipose tissue (BAT) is mediated by sympathetic activation, followed by PGC-1α induction, which drives UCP1. Here we identify nardilysin (Nrd1 and NRDc) as a critical regulator of body temperature homoeostasis. Nrd1−/− mice show increased energy expenditure owing to enhanced BAT thermogenesis and hyperactivity. Despite these findings, Nrd1−/− mice show hypothermia and cold intolerance that are attributed to the lowered set point of body temperature, poor insulation and impaired cold-induced thermogenesis. Induction of β3-adrenergic receptor, PGC-1α and UCP1 in response to cold is severely impaired in the absence of NRDc. At the molecular level, NRDc and PGC-1α interact and co-localize at the UCP1 enhancer, where NRDc represses PGC-1α activity. These findings reveal a novel nuclear function of NRDc and provide important insights into the mechanism of thermoregulation. PMID:24492630
Photoemission studies of fluorine functionalized porous graphitic carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganegoda, Hasitha; Olive, Daniel; Cheng, Lidens
2012-03-01
Porous graphitic carbon (PGC) has unique properties desirable for liquid chromatography applications when used as a stationary phase. The polar retention effect on graphite (PREG) allows efficient separation of polar and non-polar solutes. Perfluorinated hydrocarbons however lack polarizabilty and display strong lipo- and hydrophobicity, hence common lipophilic and hydrophilic analytes have low partition coefficiency in fluorinated stationary phases. Attractive interaction between fluorinated stationary phase and fluorinated analytes results in strong retention compared to non-fluorinated analytes. In order to change the selectivities of PGC, it is necessary to develop a bonded PGC stationary phase. In this study, we have synthesized perfluorinated,more » PGC using hepatadecafluoro-1-iodooctane, under different temperature conditions. Surface functionalization of the raw material was studied using photoelectron spectroscopy (PES). Results indicate the existence of fluorine containing functional groups, -CF, -CF{sub 2} along with an intercalated electron donor species. Multiple oxygen functional groups were also observed, likely due to the presence of oxygen in the starting material. These oxygen species may be responsible for significant modifications to planer and tetrahedral carbon ratios.« less
Roberts, Lee D.; Boström, Pontus; O’Sullivan, John F.; Schinzel, Robert T.; Lewis, Gregory D.; Dejam, Andre; Lee, Youn-Kyoung; Palma, Melinda J.; Calhoun, Sondra; Georgiadi, Anastasia; Chen, Ming-Huei; Ramachandran, Vasan S.; Larson, Martin G.; Bouchard, Claude; Rankinen, Tuomo; Souza, Amanda L.; Clish, Clary B.; Wang, Thomas J.; Estall, Jennifer L.; Soukas, Alexander A.; Cowan, Chad A.; Spiegelman, Bruce M.; Gerszten, Robert E.
2014-01-01
Summary The transcriptional co-activator peroxisome proliferator-activated receptor-gamma co-activator-1 α (PGC-1α) regulates metabolic genes in skeletal muscle, and contributes substantially to the response of muscle to exercise. Muscle specific PGC-1α transgenic expression and exercise both increase the expression of thermogenic genes within white adipose. How the PGC-1α mediated response to exercise in muscle conveys signals to other tissues remains incompletely defined. We employed a metabolic profiling approach to examine metabolites secreted from myocytes with forced expression of PGC-1α, and identified β-aminoisobutyric acid (BAIBA) as a novel small molecule myokine. BAIBA increases the expression of brown adipocyte-specific genes in white adipose tissue and fatty acid β-oxidation in hepatocytes both in vitro and in vivo through a PPARα mediated mechanism, induces a brown adipose-like phenotype in human pluripotent stem cells, and improves glucose homeostasis in mice. In humans, plasma BAIBA concentrations are increased with exercise and inversely associated with metabolic risk factors. BAIBA may thus contribute to exercise-induced protection from metabolic diseases. PMID:24411942
Advanced Optical Fiber Communication Systems.
1993-02-28
feedback (DFB) laser and a fiber Fabry - Perot (FFP) interferometer for optical frequency discrimination. After the photodetector and amplification, a...filter, an envelope detector, and an integrator; these three components function in tandem as a phase demodulator . We have analyzed the nonlinearities...down-converter and FSK demodulator extract the desired video signals. The measured carrier-to-noise ratio (CNR) at the photodiode must be approximately
Wu, Sheng; Deev, Andrei; Palm, Steve L.; Tang, Yongchun; Goddard, William A.
2010-11-30
A frequency modulated spectroscopy system, including a photo-detector, a band-pass filter to filter the output of the photo-detector, and a rectifier to demodulate. The band-pass filter has a relatively high Q factor. With the high Q factor band-pass filter and rectifier, a reference sinusoid is not required for demodulation, resulting in phase-insensitive spectroscopy. Other embodiments are described and claimed.
Dual Brushless Resolver Rate Sensor
NASA Technical Reports Server (NTRS)
Howard, David E. (Inventor)
1997-01-01
A resolver rate sensor is disclosed in which dual brushless resolvers are mechanically coupled to the same output shaft. Diverse inputs are provided to each resolver by providing the first resolver with a DC input and the second resolver with an AC sinusoidal input. A trigonometric identity in which the sum of the squares of the sin and cosine components equal one is used to advantage in providing a sensor of increased accuracy. The first resolver may have a fixed or variable DC input to permit dynamic adjustment of resolver sensitivity thus permitting a wide range of coverage. In one embodiment of the invention the outputs of the first resolver are directly inputted into two separate multipliers and the outputs of the second resolver are inputted into the two separate multipliers, after being demodulated in a pair of demodulator circuits. The multiplied signals are then added in an adder circuit to provide a directional sensitive output. In another embodiment the outputs from the first resolver is modulated in separate modulator circuits and the output from the modulator circuits are used to excite the second resolver. The outputs from the second resolver are demodulated in separate demodulator circuit and added in an adder circuit to provide a direction sensitive rate output.
Curtil, Claire; Enache, Liviu S; Radreau, Pauline; Dron, Anne-Gaëlle; Scholtès, Caroline; Deloire, Alexandre; Roche, Didier; Lotteau, Vincent; André, Patrice; Ramière, Christophe
2014-03-01
Hepatitis B virus (HBV) genome transcription is highly dependent on liver-enriched, metabolic nuclear receptors (NRs). Among others, NR farnesoid X receptor α (FXRα) enhances HBV core promoter activity and pregenomic RNA synthesis. Interestingly, two food-withdrawal-induced FXRα modulators, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and deacetylase SIRT1, have been found to be associated with HBV genomes ex vivo. Whereas PGC-1α induction was shown to increase HBV replication, the effect of SIRT1 on HBV transcription remains unknown. Here, we showed that, in hepatocarcinoma-derived Huh-7 cells, combined activation of FXRα by GW4064 and SIRT1 by activator 3 increased HBV core promoter-controlled luciferase expression by 25-fold, compared with a 10-fold increase with GW4064 alone. Using cell lines differentially expressing FXRα in overexpression and silencing experiments, we demonstrated that SIRT1 activated the core promoter in an FXRα- and PGC-1α-dependent manner. Maximal activation (>150-fold) was observed in FXRα- and PGC-1α-overexpressing Huh-7 cells treated with FXRα and SIRT1 activators. Similarly, in cells transfected with full-length HBV genomes, maximal induction (3.5-fold) of core promoter-controlled synthesis of 3.5-kb RNA was observed in the same conditions of transfection and treatments. Thus, we identified a subnetwork of metabolic factors regulating HBV replication, strengthening the hypothesis that transcription of HBV and metabolic genes is similarly controlled.
Mu, Qing; Yu, Weidong; Zheng, Shuying; Shi, Hongxia; Li, Mei; Sun, Jie; Wang, Di; Hou, Xiaoli; Liu, Ling; Wang, Xinjuan; Zhao, Zhuran; Liang, Rong; Zhang, Xue; Dong, Wei; Zeng, Chaomei; Guo, Jingzhu
2018-03-07
Vitamin A deficiency and mitochondrial dysfunction are both associated with neural differentiation-related disorders, such as Alzheimer's disease (AD) and Down syndrome (DS). The mechanism of vitamin A-induced neural differentiation and the notion that vitamin A can regulate the morphology and function of mitochondria in its induction of neural differentiation through the RIP140/PGC-1α axis are unclear. The aim of this study was to investigate the roles and underlying mechanisms of RIP140/PGC-1α axis in vitamin A-induced neural differentiation. Human neuroblastoma cells (SH-SY5Y) were used as a model of neural stem cells, which were incubated with DMSO, 9-cis-retinoic acid (9-cis-RA), 13-cis-retinoic acid (13-cis-RA) and all-trans-retinoic acid (at-RA). Neural differentiation of SH-SY5Y was evaluated by Sandquist calculation, combined with immunofluorescence and real-time polymerase chain reaction (PCR) of neural markers. Mitochondrial function was estimated by ultrastructure assay using transmission electron microscopy (TEM) combined with the expression of PGC-1α and NEMGs using real-time PCR. The participation of the RA signaling pathway was demonstrated by adding RA receptor antagonists. Vitamin A derivatives are able to regulate mitochondrial morphology and function, and furthermore to induce neural differentiation through the RA signaling pathway. The RIP140/PGC-1α axis is involved in the regulation of mitochondrial function in vitamin A derivative-induced neural differentiation.
Promoting PGC-1α-driven mitochondrial biogenesis is detrimental in pressure-overloaded mouse hearts
Karamanlidis, Georgios; Garcia-Menendez, Lorena; Kolwicz, Stephen C.; Lee, Chi Fung
2014-01-01
Mitochondrial dysfunction in animal models of heart failure is associated with downregulation of the peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α pathway. To test whether PGC-1α is an appropriate therapeutic target for increasing mitochondrial biogenesis and improving function in heart failure, we used a transgenic (TG) mouse model of moderate overexpression of PGC-1α (∼3-fold) in the heart. TG mice had small increases in citrate synthase activity and mitochondria size in the heart without alterations in myocardial energetics or cardiac function at baseline. In vivo dobutamine stress increased fractional shortening in wild-type mice, but this increase was attenuated in TG mice, whereas ex vivo isolated perfused TG hearts demonstrated normal functional and energetic response to high workload challenge. When subjected to pressure overload by transverse aortic constriction (TAC), TG mice displayed a significantly greater acute mortality for both male and female mice; however, long-term survival up to 8 wk was similar between the two groups. TG mice also showed a greater decrease in fractional shortening and a greater increase in left ventricular chamber dimension in response to TAC. Mitochondrial gene expression and citrate synthase activity were mildly increased in TG mice compared with wild-type mice, and this difference was also maintained after TAC. Our data suggest that a moderate level of PGC-1α overexpression in the heart compromises acute survival and does not improve cardiac function during chronic pressure overload in mice. PMID:25172896
Saito, Taiju; Goto-Kazeto, Rie; Arai, Katsutoshi; Yamaha, Etsuro
2008-01-01
Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. PGCs therefore have the potential to be of value for gene banking and cryopreservation, particularly via the production of donor gametes with germ-line chimeras. Currently, it is not clear how many PGCs are required for germ-line differentiation and formation of gonadal structures. In the present study, we achieved complete germ-line replacement between two related teleost species, the pearl danio (Danio albolineatus) and the zebrafish (Danio rerio), with transplantation of a single PGC into each host embryo. We isolated and transplanted a single PGC into each blastula-stage, zebrafish embryo. Development of host germ-line cells was prevented by an antisense dead end morpholino oligonucleotide. In many host embryos, the transplanted donor PGC successfully migrated toward the gonadal anlage without undergoing cell division. At the gonadal anlage, the PGC differentiated to form one normally sized gonad rather than the pair of gonads usually present. Offspring were obtained from natural spawning of these chimeras. Analyses of morphology and DNA showed that the offspring were of donor origin. We extended our study to confirm that transplanted single PGCs of goldfish (Carassius auratus) and loach (Misgurnus anguillicaudatus) can similarly differentiate into sperm in zebrafish host embryos. Our results show that xenogenesis is realistic and practical across species, genus, and family barriers and can be achieved by the transplantation of a single PGC from a donor species.
Higashino, Kosaku; Matsuura, Tetsuya; Suganuma, Katsuyoshi; Yukata, Kiminori; Nishisho, Toshihiko; Yasui, Natsuo
2013-05-20
Spinal cord transection and peripheral nerve transection cause muscle atrophy and muscle fiber type conversion. It is still unknown how spinal cord transection and peripheral nerve transection each affect the differentiation of muscle fiber type conversion mechanism and muscle atrophy. The aim of our study was to evaluate the difference of muscle weight change, muscle fiber type conversion, and Peroxisome proliferator-activated receptor-γ coactivatior-1α (PGC-1α) expression brought about by spinal cord transection and by peripheral nerve transection. Twenty-four Wistar rats underwent surgery, the control rats underwent a laminectomy; the spinal cord injury group underwent a spinal cord transection; the denervation group underwent a sciatic nerve transection. The rats were harvested of the soleus muscle and the TA muscle at 0 week, 1 week and 2 weeks after surgery. Histological examination was assessed using hematoxylin and eosin (H&E) staining and immunofluorescent staing. Western blot was performed with 3 groups. Both sciatic nerve transection and spinal cord transection caused muscle atrophy with the effect being more severe after sciatic nerve transection. Spinal cord transection caused a reduction in the expression of both sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection produced an increase in expression of sMHC protein and PGC-1α protein in the soleus muscle. The results of the expression of PGC-1α were expected in other words muscle atrophy after sciatic nerve transection is less than after spinal cord transection, however muscle atrophy after sciatic nerve transection was more severe than after spinal cord transection. In the conclusion, spinal cord transection diminished the expression of sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection enhanced the expression of sMHC protein and PGC-1α protein in the soleus muscle.
Huang, Tai-Yu; Zheng, Donghai; Houmard, Joseph A; Brault, Jeffrey J; Hickner, Robert C; Cortright, Ronald N
2017-04-01
Peroxisomes are indispensable organelles for lipid metabolism in humans, and their biogenesis has been assumed to be under regulation by peroxisome proliferator-activated receptors (PPARs). However, recent studies in hepatocytes suggest that the mitochondrial proliferator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α) also acts as an upstream transcriptional regulator for enhancing peroxisomal abundance and associated activity. It is unknown whether the regulatory mechanism(s) for enhancing peroxisomal function is through the same node as mitochondrial biogenesis in human skeletal muscle (HSkM) and whether fatty acid oxidation (FAO) is affected. Primary myotubes from vastus lateralis biopsies from lean donors (BMI = 24.0 ± 0.6 kg/m 2 ; n = 6) were exposed to adenovirus encoding human PGC-1α or GFP control. Peroxisomal biogenesis proteins (peroxins) and genes ( PEXs ) responsible for proliferation and functions were assessed by Western blotting and real-time qRT-PCR, respectively. [1- 14 C]palmitic acid and [1- 14 C]lignoceric acid (exclusive peroxisomal-specific substrate) were used to assess mitochondrial oxidation of peroxisomal-derived metabolites. After overexpression of PGC-1α, 1 ) peroxisomal membrane protein 70 kDa (PMP70), PEX19, and mitochondrial citrate synthetase protein content were significantly elevated ( P < 0.05), 2 ) PGC-1α , PMP70 , key PEXs , and peroxisomal β-oxidation mRNA expression levels were significantly upregulated ( P < 0.05), and 3 ) a concomitant increase in lignoceric acid oxidation by both peroxisomal and mitochondrial activity was observed ( P < 0.05). These novel findings demonstrate that, in addition to the proliferative effect on mitochondria, PGC-1α can induce peroxisomal activity and accompanying elevations in long-chain and very-long-chain fatty acid oxidation by a peroxisomal-mitochondrial functional cooperation, as observed in HSkM cells. Copyright © 2017 the American Physiological Society.
Jang, H J; Lee, M O; Kim, S; Kim, T H; Kim, S K; Song, G; Womack, J E; Han, J Y
2013-03-01
The basic functions of DNA methylation include in gene silencing by methylation of specific gene promoters, defense of the host genome from retrovirus, and transcriptional suppression of transgenes. In addition, genomic imprinting, by which certain genes are expressed in a parent-of-origin-specific manner, has been observed in a wide range of plants and animals and has been associated with differential methylation. However, imprinting phenomena of DNA methylation effects have not been revealed in chickens. To analyze whether genomic imprinting occurs in chickens, methyl-DNA immunoprecipitation array analysis was applied across the entire genome of germ cells in early chick embryos. A differentially methylated region (DMR) was detected in the eighth intron of the l-arginine:glycine amidinotransferase (GATM) gene. When the DMR in GATM was analyzed by bisulfite sequencing, the methylation in male primordial germ cells (PGC) of 6-d-old embryos was higher than that in female PGC (57.5 vs. 35.0%). At 8 d, the DMR methylation of GATM in male PGC was 3.7-fold higher than that in female PGC (65.0 vs. 17.5%). Subsequently, to investigate mono- or biallelic expression of the GATM gene during embryo development, we found 2 indel sequences (GTTTAATGC and CAAAAA) within the GATM 3'-untranslated region in Korean Oge (KO) and White Leghorn (WL) chickens. When individual WL and KO chickens were genotyped for indel sequences, 3 allele combinations (homozygous insertion, homozygous deletion, and heterozygotes) were detected in both breeds using a gel shift assay and high-resolution melt assay. The deletion allele was predominant in KO, whereas the insertion allele was predominant in WL. Heterozygous animals were evenly distributed in both breeds (P < 0.01). Despite the different methylation status between male and female PGC, the GATM gene conclusively displayed biallelic expression in PGC as well as somatic embryonic, extraembryonic, and adult chicken tissues.
Bahreinipour, Mohammad-Ali; Joukar, Siyavash; Hovanloo, Fariborz; Najafipour, Hamid; Naderi, Vida; Rajiamirhasani, Alireza; Esmaeili-Mahani, Saeed
2018-06-01
Existing evidence emphasize the role of mitochondrial dysfunction in sarcopenia which is revealed as loss of skeletal muscle mass and neuromuscular junction remodeling. We assessed the effect of low-intensity aerobic training along with blood flow restriction on muscle hypertrophy index, muscle-specific kinase (MuSK), a pivotal protein of the neuromuscular junction and Peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α) in aged male rats. Animals groups were control (CTL), sham (Sh), leg blood flow restriction (BFR), exercise (Ex), sham + exercise (Sh + Ex), and BFR plus exercise (BFR + Ex) groups. The exercise groups were trained with low intensity exercise for 10 weeks. 48 h after the last training session, animals were sacrificed under anesthesia. Soleus and EDL muscles were isolated, hypertrophy index was estimated and MuSK and PGC-1α were measured by western blot method. Hypertrophy index enhanced in soleus and Extensor digitorum longus (EDL) muscles of BFR + Ex group (P < 0.01 versus CTL and Sh groups, and P < 0.001 versus other groups). The MuSK protein of soleus and EDL muscles increased in BFR + Ex group (P < 0.01 and P < 0.001, respectively) in comparison with CTL and Sh groups. In BFR + Ex group, the PGC-1α protein increased in both soleus and EDL (P < 0.001 compared to other groups). Also the PGC-1α of soleus muscle was higher in Ex and Sh + Ex groups versus CTL and Sh groups (P < 0.05). Findings suggest that low endurance exercise plus BFR improves the MuSK and hypertrophy index of both slow and fast muscles of elderly rats probably through the rise of PGC-1α expression. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xuqin; Sun, Tao; Wang, Xiaodong, E-mail: xdwang666@hotmail.com
2013-07-05
Highlights: •TC, a CB2R specific agonist, stimulates SIRT1 activity by PKA/CREB pathway. •TC promotes PGC-1α transcriptional activity by increasing its deacetylation. •TC increases the expression of genes linked to FAO and promotes the rate of FAO. •The effects of TC in FAO are dependent on CB2R. •Suggesting CB2R as a target to treat diseases with lipid dysregulation. -- Abstract: Abnormal fatty acid oxidation has been associated with obesity and type 2 diabetes. At the transcriptional level, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) has been reported to strongly increase the ability of hormone nuclear receptors PPARα and ERRα to drive transcriptionmore » of fatty acid oxidation enzymes. In this study, we report that a specific agonist of the type 2 cannabinoid receptor (CB2R) can lead to fatty acid oxidation through the PGC-1α pathway. We have found that CB2R is expressed in differentiated C2C12 myotubes, and that use of the specific agonist trans-caryophyllene (TC) stimulates sirtuin 1 (SIRT1) deacetylase activity by increasing the phosphorylation of cAMP response element-binding protein (CREB), thus leading to increased levels of PGC-1α deacetylation. This use of TC treatment increases the expression of genes linked to the fatty acid oxidation pathway in a SIRT1/PGC-1α-dependent mechanism and also drastically accelerates the rate of complete fatty acid oxidation in C2C12 myotubes, neither of which occur when CB2R mRNA is knocked down using siRNA. These results reveal that activation of CB2R by a selective agonist promotes lipid oxidation through a signaling/transcriptional pathway. Our findings imply that pharmacological manipulation of CB2R may provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.« less
Plaza-Díaz, Julio; Ruiz-Ojeda, Francisco J.; Aragón-Vela, Jerónimo; Robles-Sanchez, Cándido; Nordsborg, Nikolai B.; Hebberecht, Marina; Salmeron, Luis M.; Huertas, Jesus R.
2017-01-01
We aimed to test whether high-intensity high-volume training (HIHVT) swimming would induce more robust signaling than sprint interval training (SIT) swimming within the m. triceps brachii due to lower metabolic and oxidation. Nine well-trained swimmers performed the two training procedures on separate randomized days. Muscle biopsies from m. triceps brachii and blood samples were collected at three different time points: a) before the intervention (pre), b) immediately after the swimming procedures (post) and c) after 3 h of rest (3 h). Hydroperoxides, creatine kinase (CK), and lactate dehydrogenase (LDH) were quantified from blood samples, and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and the AMPKpTHR172/AMPK ratio were quantified by Western blot analysis. PGC-1α, sirtuin 3 (SIRT3), superoxide-dismutase 2 (SOD2), and vascular endothelial growth factor (VEGF) mRNA levels were also quantified. SIT induced a higher release of LDH (p < 0.01 at all time points) and CK (p < 0.01 at post) than HIHVT, but neither SIT nor HIHVT altered systemic hydroperoxides. Additionally, neither SIRT3 nor SOD2 mRNA levels increased, while PGC-1α transcription increased at 3 h after SIT (p < 0.01) and after HIHVT (p < 0.001). However, PGC-1α protein was higher after HIHVT than after SIT (p < 0.05). Moreover, the AMPKpTHR172/AMPK ratio increased at post after SIT (p < 0.05), whereas this effect was delayed after HIHVT as it increased after 3 h (p < 0.05). In addition, VEGF transcription was higher in response to HIHVT (p < 0.05). In conclusion, SIT induces higher muscular stress than HIHVT without increasing systemic oxidation. In addition, HIHVT may induce more robust oxidative adaptations through PGC-1α and AMPK. PMID:28973039
Casuso, Rafael A; Plaza-Díaz, Julio; Ruiz-Ojeda, Francisco J; Aragón-Vela, Jerónimo; Robles-Sanchez, Cándido; Nordsborg, Nikolai B; Hebberecht, Marina; Salmeron, Luis M; Huertas, Jesus R
2017-01-01
We aimed to test whether high-intensity high-volume training (HIHVT) swimming would induce more robust signaling than sprint interval training (SIT) swimming within the m. triceps brachii due to lower metabolic and oxidation. Nine well-trained swimmers performed the two training procedures on separate randomized days. Muscle biopsies from m. triceps brachii and blood samples were collected at three different time points: a) before the intervention (pre), b) immediately after the swimming procedures (post) and c) after 3 h of rest (3 h). Hydroperoxides, creatine kinase (CK), and lactate dehydrogenase (LDH) were quantified from blood samples, and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and the AMPKpTHR172/AMPK ratio were quantified by Western blot analysis. PGC-1α, sirtuin 3 (SIRT3), superoxide-dismutase 2 (SOD2), and vascular endothelial growth factor (VEGF) mRNA levels were also quantified. SIT induced a higher release of LDH (p < 0.01 at all time points) and CK (p < 0.01 at post) than HIHVT, but neither SIT nor HIHVT altered systemic hydroperoxides. Additionally, neither SIRT3 nor SOD2 mRNA levels increased, while PGC-1α transcription increased at 3 h after SIT (p < 0.01) and after HIHVT (p < 0.001). However, PGC-1α protein was higher after HIHVT than after SIT (p < 0.05). Moreover, the AMPKpTHR172/AMPK ratio increased at post after SIT (p < 0.05), whereas this effect was delayed after HIHVT as it increased after 3 h (p < 0.05). In addition, VEGF transcription was higher in response to HIHVT (p < 0.05). In conclusion, SIT induces higher muscular stress than HIHVT without increasing systemic oxidation. In addition, HIHVT may induce more robust oxidative adaptations through PGC-1α and AMPK.
Intensity-demodulated torsion sensor based on thin-core polarization-maintaining fiber.
Kang, Xuexue; Zhang, Weigang; Zhang, Yanxin; Yang, Jiang; Chen, Lei; Kong, Lingxin; Zhang, Yunshan; Yu, Lin; Yan, Tieyi; Geng, Pengcheng
2018-05-01
An intensity-demodulated torsion sensor is designed and realized, which consists of a polarization ring as the sensing part and a section of thin-core polarization-maintaining fiber as the demodulation part. An intensity map of a sinusoidal change can be obtained at some specific wavelengths, and the experimental results correspond to the theoretical analysis well. The maximum sensitivity is about 0.29 dB/deg at the wavelength of 1584.6 nm, and the minimum sensitivity is about 0.10 dB/deg at the wavelength of 1510.2 nm. Meanwhile, the temperature characteristic is measured in the experiment. More broadly, the proposed structure can be used in an integrated smart device for loose-screw detection in devices in aeronautics and astronautics.
Methodology and method and apparatus for signaling with capacity optimized constellations
NASA Technical Reports Server (NTRS)
Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)
2011-01-01
Communication systems having transmitter, includes a coder configured to receive user bits and output encoded bits at an expanded output encoded bit rate, a mapper configured to map encoded bits to symbols in a symbol constellation, a modulator configured to generate a signal for transmission via the communication channel using symbols generated by the mapper. In addition, the receiver includes a demodulator configured to demodulate the received signal via the communication channel, a demapper configured to estimate likelihoods from the demodulated signal, a decoder that is configured to estimate decoded bits from the likelihoods generated by the demapper. Furthermore, the symbol constellation is a capacity optimized geometrically spaced symbol constellation that provides a given capacity at a reduced signal-to-noise ratio compared to a signal constellation that maximizes d.sub.min.
Direct demodulation method for heavy atom position determination in protein crystallography
NASA Astrophysics Data System (ADS)
Zhou, Liang; Liu, Zhong-Chuan; Liu, Peng; Dong, Yu-Hui
2013-01-01
The first step of phasing in any de novo protein structure determination using isomorphous replacement (IR) or anomalous scattering (AD) experiments is to find heavy atom positions. Traditionally, heavy atom positions can be solved by inspecting the difference Patterson maps. Due to the weak signals in isomorphous or anomalous differences and the noisy background in the Patterson map, the search for heavy atoms may become difficult. Here, the direct demodulation (DD) method is applied to the difference Patterson maps to reduce the noisy backgrounds and sharpen the signal peaks. The real space Patterson search by using these optimized maps can locate the heavy atom positions more accurately. It is anticipated that the direct demodulation method can assist in heavy atom position determination and facilitate the de novo structure determination of proteins.
Gong, Bing; Pan, Yong; Vempati, Prashant; Zhao, Wei; Knable, Lindsay; Ho, Lap; Wang, Jun; Sastre, Magdalena; Ono, Kenjiro; Sauve, Anthony A; Pasinetti, Giulio M
2013-06-01
Nicotinamide adenine dinucleotide (NAD)(+), a coenzyme involved in redox activities in the mitochondrial electron transport chain, has been identified as a key regulator of the lifespan-extending effects, and the activation of NAD(+) expression has been linked with a decrease in beta-amyloid (Aβ) toxicity in Alzheimer's disease (AD). Nicotinamide riboside (NR) is a NAD(+) precursor, it promotes peroxisome proliferator-activated receptor-γ coactivator 1 (PGC)-1α expression in the brain. Evidence has shown that PGC-1α is a crucial regulator of Aβ generation because it affects β-secretase (BACE1) degradation. In this study we tested the hypothesis that NR treatment in an AD mouse model could attenuate Aβ toxicity through the activation of PGC-1α-mediated BACE1 degradation. Using the Tg2576 AD mouse model, using in vivo behavioral analyses, biochemistry assays, small hairpin RNA (shRNA) gene silencing and electrophysiological recording, we found (1) dietary treatment of Tg2576 mice with 250 mg/kg/day of NR for 3 months significantly attenuates cognitive deterioration in Tg2576 mice and coincides with an increase in the steady-state levels of NAD(+) in the cerebral cortex; (2) application of NR to hippocampal slices (10 μM) for 4 hours abolishes the deficits in long-term potentiation recorded in the CA1 region of Tg2576 mice; (3) NR treatment promotes PGC-1α expression in the brain coinciding with enhanced degradation of BACE1 and the reduction of Aβ production in Tg2576 mice. Further in vitro studies confirmed that BACE1 protein content is decreased by NR treatment in primary neuronal cultures derived from Tg2576 embryos, in which BACE1 degradation was prevented by PGC-1α-shRNA gene silencing; and (4) NR treatment and PGC-1α overexpression enhance BACE1 ubiquitination and proteasomal degradation. Our studies suggest that dietary treatment with NR might benefit AD cognitive function and synaptic plasticity, in part by promoting PGC-1α-mediated BACE1 ubiquitination and degradation, thus preventing Aβ production in the brain. Copyright © 2013 Elsevier Inc. All rights reserved.
Siddiqui, Almas; Bhaumik, Dipa; Chinta, Shankar J; Rane, Anand; Rajagopalan, Subramanian; Lieu, Christopher A; Lithgow, Gordon J; Andersen, Julie K
2015-09-16
Following its activation by PINK1, parkin is recruited to depolarized mitochondria where it ubiquitinates outer mitochondrial membrane proteins, initiating lysosomal-mediated degradation of these organelles. Mutations in the gene encoding parkin, PARK2, result in both familial and sporadic forms of Parkinson's disease (PD) in conjunction with reductions in removal of damaged mitochondria. In contrast to what has been reported for other PARK2 mutations, expression of the Q311X mutation in vivo in mice appears to involve a downstream step in the autophagic pathway at the level of lysosomal function. This coincides with increased PARIS expression and reduced expression of a reciprocal signaling pathway involving the master mitochondrial regulator peroxisome proliferator-activated receptor-gamma coactivator (PGC1α) and the lysosomal regulator transcription factor EB (TFEB). Treatment with rapamycin was found to independently restore PGC1α-TFEB signaling in a manner not requiring parkin activity and to abrogate impairment of mitochondrial quality control and neurodegenerative features associated with this in vivo model. Losses in PGC1α-TFEB signaling in cultured rat DAergic cells expressing the Q311X mutation associated with reduced mitochondrial function and cell viability were found to be PARIS-dependent and to be independently restored by rapamycin in a manner requiring TFEB. Studies in human iPSC-derived neurons demonstrate that TFEB induction can restore mitochondrial function and cell viability in a mitochondrially compromised human cell model. Based on these data, we propose that the parkin Q311X mutation impacts on mitochondrial quality control via PARIS-mediated regulation of PGC1α-TFEB signaling and that this can be independently restored via upregulation of TFEB function. Mutations in PARK2 are generally associated with loss in ability to interact with PINK1, impacting on autophagic initiation. Our data suggest that, in the case of at least one parkin mutation, Q311X, detrimental effects are due to inhibition at the level of downstream lysosomal function. Mechanistically, this involves elevations in PARIS protein levels and subsequent effects on PGC1α-TFEB signaling that normally regulates mitochondrial quality control. Treatment with rapamycin independently restores PGC1α-TFEB signaling in a manner not requiring parkin activity and abrogates subsequent mitochondrial impairment and neuronal cell loss. Taken in total, our data suggest that the parkin Q311X mutation impacts on mitochondrial quality control via PARIS-mediated regulation of PGC1α-TFEB signaling and that this can be independently restored via rapamycin. Copyright © 2015 the authors 0270-6474/15/3512833-12$15.00/0.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-12
...; Pennsylvania Game Commission and Pennsylvania Department of Conservation and Natural Resources AGENCY: Fish and...) application and associated draft habitat conservation plan (HCP) from the Pennsylvania Game Commission (PGC... lands. PGC manages 1.4 million acres of State Game Lands, and DCNR manages 2.2 million acres of State...
The Israeli Planning and Grants Committee at the Crossroads: From Shock Absorber to Steering Wheel.
ERIC Educational Resources Information Center
Zadok, Meir
1984-01-01
The Israeli Planning and Grants Committee (PGC) was established in 1974 on the model of the British University Grants Committee, becoming the most powerful and dominant organization in higher education governance. Both government and universities will have to provide the framework of cooperation with the PGC to maintain its present position. (MSE)
The Planning and Grants Committee Annual Report No. 7, Academic Year 1979/80.
ERIC Educational Resources Information Center
Council for Higher Education, Jerusalem (Israel).
Information on Israel's Planning and Grants Committee (PGC) of the Council for Higher Education, the Chairman's Review, and the Director General's Report are presented. It is suggested that the greatest achievements of the PGC in the first six years were to introduce order in budgeting, ensure balanced budgets, prevent deficits, eliminate past…
Receiver Statistics for Cognitive Radios in Dynamic Spectrum Access Networks
2012-02-28
SNR) are employed by many protocols and processes in direct-sequence ( DS ) spread-spectrum packet radio networks, including soft-decision decoding...adaptive modulation protocols, and power adjustment protocols. For DS spread spectrum, we have introduced and evaluated SNR estimators that employ...obtained during demodulation in a binary CDMA receiver. We investigated several methods to apply the proposed metric to the demodulator’s soft-decision
Spectral negentropy based sidebands and demodulation analysis for planet bearing fault diagnosis
NASA Astrophysics Data System (ADS)
Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.
2017-12-01
Planet bearing vibration signals are highly complex due to intricate kinematics (involving both revolution and spinning) and strong multiple modulations (including not only the fault induced amplitude modulation and frequency modulation, but also additional amplitude modulations due to load zone passing, time-varying vibration transfer path, and time-varying angle between the gear pair mesh lines of action and fault impact force vector), leading to difficulty in fault feature extraction. Rolling element bearing fault diagnosis essentially relies on detection of fault induced repetitive impulses carried by resonance vibration, but they are usually contaminated by noise and therefor are hard to be detected. This further adds complexity to planet bearing diagnostics. Spectral negentropy is able to reveal the frequency distribution of repetitive transients, thus providing an approach to identify the optimal frequency band of a filter for separating repetitive impulses. In this paper, we find the informative frequency band (including the center frequency and bandwidth) of bearing fault induced repetitive impulses using the spectral negentropy based infogram. In Fourier spectrum, we identify planet bearing faults according to sideband characteristics around the center frequency. For demodulation analysis, we filter out the sensitive component based on the informative frequency band revealed by the infogram. In amplitude demodulated spectrum (squared envelope spectrum) of the sensitive component, we diagnose planet bearing faults by matching the present peaks with the theoretical fault characteristic frequencies. We further decompose the sensitive component into mono-component intrinsic mode functions (IMFs) to estimate their instantaneous frequencies, and select a sensitive IMF with an instantaneous frequency fluctuating around the center frequency for frequency demodulation analysis. In the frequency demodulated spectrum (Fourier spectrum of instantaneous frequency) of selected IMF, we discern planet bearing fault reasons according to the present peaks. The proposed spectral negentropy infogram based spectrum and demodulation analysis method is illustrated via a numerical simulated signal analysis. Considering the unique load bearing feature of planet bearings, experimental validations under both no-load and loading conditions are done to verify the derived fault symptoms and the proposed method. The localized faults on outer race, rolling element and inner race are successfully diagnosed.
Trellis Tone Modulation Multiple-Access for Peer Discovery in D2D Networks
Lim, Chiwoo; Kim, Sang-Hyo
2018-01-01
In this paper, a new non-orthogonal multiple-access scheme, trellis tone modulation multiple-access (TTMMA), is proposed for peer discovery of distributed device-to-device (D2D) communication. The range and capacity of discovery are important performance metrics in peer discovery. The proposed trellis tone modulation uses single-tone transmission and achieves a long discovery range due to its low Peak-to-Average Power Ratio (PAPR). The TTMMA also exploits non-orthogonal resource assignment to increase the discovery capacity. For the multi-user detection of superposed multiple-access signals, a message-passing algorithm with supplementary schemes are proposed. With TTMMA and its message-passing demodulation, approximately 1.5 times the number of devices are discovered compared to the conventional frequency division multiple-access (FDMA)-based discovery. PMID:29673167
Study of mathematical modeling of communication systems transponders and receivers
NASA Technical Reports Server (NTRS)
Walsh, J. R.
1972-01-01
The modeling of communication receivers is described at both the circuit detail level and at the block level. The largest effort was devoted to developing new models at the block modeling level. The available effort did not permit full development of all of the block modeling concepts envisioned, but idealized blocks were developed for signal sources, a variety of filters, limiters, amplifiers, mixers, and demodulators. These blocks were organized into an operational computer simulation of communications receiver circuits identified as the frequency and time circuit analysis technique (FATCAT). The simulation operates in both the time and frequency domains, and permits output plots or listings of either frequency spectra or time waveforms from any model block. Transfer between domains is handled with a fast Fourier transform algorithm.
High resolution signal-processing method for extrinsic Fabry-Perot interferometric sensors
NASA Astrophysics Data System (ADS)
Xie, Jiehui; Wang, Fuyin; Pan, Yao; Wang, Junjie; Hu, Zhengliang; Hu, Yongming
2015-03-01
In this paper, a signal-processing method for optical fiber extrinsic Fabry-Perot interferometric sensors is presented. It achieves both high resolution and absolute measurement of the dynamic change of cavity length with low sampling points in wavelength domain. In order to improve the demodulation accuracy, the reflected interference spectrum is cleared by Discrete Wavelet Transform and adjusted by the Hilbert transform. Then the cavity length is interrogated by the cross correlation algorithm. The continuous tests show the resolution of cavity length is only 36.7 pm. Moreover, the corresponding resolution of cavity length is only 1 pm on the low frequency range below 420 Hz, and the corresponding power spectrum shows the possibility of detecting the ultra-low frequency signals based on spectra detection.
Trellis Tone Modulation Multiple-Access for Peer Discovery in D2D Networks.
Lim, Chiwoo; Jang, Min; Kim, Sang-Hyo
2018-04-17
In this paper, a new non-orthogonal multiple-access scheme, trellis tone modulation multiple-access (TTMMA), is proposed for peer discovery of distributed device-to-device (D2D) communication. The range and capacity of discovery are important performance metrics in peer discovery. The proposed trellis tone modulation uses single-tone transmission and achieves a long discovery range due to its low Peak-to-Average Power Ratio (PAPR). The TTMMA also exploits non-orthogonal resource assignment to increase the discovery capacity. For the multi-user detection of superposed multiple-access signals, a message-passing algorithm with supplementary schemes are proposed. With TTMMA and its message-passing demodulation, approximately 1.5 times the number of devices are discovered compared to the conventional frequency division multiple-access (FDMA)-based discovery.
Inoue, Takashi; Namiki, Shu
2013-12-02
We find that an adaptive equalizer and a phase-locked loop operating with decision-directed mode exhibit degraded performances when they are used in a digital coherent receiver to demodulate a 16QAM signal with intrinsically distorted constellation, and that the degradation is more significant for the dual-polarization case. We then propose a scheme to correctly demodulate such a distorted 16QAM signal, where the reference constellation and the threshold for the decision are adaptively adjusted such that they fit to the distorted ones. We experimentally confirm the improved performance of the proposed scheme over the conventional one for single-and dual-polarization 16QAM signals with distortion. We also investigate the applicable range of the proposed scheme for the degree of distortion of the signal.
Optical demodulation system for digitally encoded suspension array in fluoroimmunoassay
NASA Astrophysics Data System (ADS)
He, Qinghua; Li, Dongmei; He, Yonghong; Guan, Tian; Zhang, Yilong; Shen, Zhiyuan; Chen, Xuejing; Liu, Siyu; Lu, Bangrong; Ji, Yanhong
2017-09-01
A laser-induced breakdown spectroscopy and fluorescence spectroscopy-coupled optical system is reported to demodulate digitally encoded suspension array in fluoroimmunoassay. It takes advantage of the plasma emissions of assembled elemental materials to digitally decode the suspension array, providing a more stable and accurate recognition to target biomolecules. By separating the decoding procedure of suspension array and adsorption quantity calculation of biomolecules into two independent channels, the cross talk between decoding and label signals in traditional methods had been successfully avoided, which promoted the accuracy of both processes and realized more sensitive quantitative detection of target biomolecules. We carried a multiplexed detection of several types of anti-IgG to verify the quantitative analysis performance of the system. A limit of detection of 1.48×10-10 M was achieved, demonstrating the detection sensitivity of the optical demodulation system.
NASA Astrophysics Data System (ADS)
Valis, Tomas; Tapanes, Edward; Liu, Kexing; Measures, Raymond M.
1991-04-01
A strain sensor embedded in composite materials that is intrinsic, all fiber, local, and phase demodulated is described. It is the combination of these necessary elements that represents an advance in the state of the art. Sensor localization is achieved by using a pair of mirror-ended optical fibers of different lengths that are mechanically coupled up until the desired gauge length for common-mode suppression has been reached. This fiber-optic sensor has been embedded in both thermoset (Kevlar/epoxy and graphite/epoxy) and thermoplastic (graphite/PEEK) composite materials in order to make local strain measurements at the lamina level. The all-fiber system uses a 3 x 3 coupler for phase demodulation. Parameters such as strain sensitivity, transverse strain sensitivity, failure strain, and frequency response are discussed, along with applications.
Georgiades, Nikos P.; Polzik, Eugene S.; Kimble, H. Jeff
1999-02-02
An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100's THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 .mu.m to 1.66 .mu.m for fiber optics can be accomplished with a nearly continuous frequency coverage.
Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop
NASA Astrophysics Data System (ADS)
Wildeman, Sander
2018-06-01
A quantitative synthetic Schlieren imaging (SSI) method based on fast Fourier demodulation is presented. Instead of a random dot pattern (as usually employed in SSI), a 2D periodic pattern (such as a checkerboard) is used as a backdrop to the refractive object of interest. The range of validity and accuracy of this "Fast Checkerboard Demodulation" (FCD) method are assessed using both synthetic data and experimental recordings of patterns optically distorted by small waves on a water surface. It is found that the FCD method is at least as accurate as sophisticated, multi-stage, digital image correlation (DIC) or optical flow (OF) techniques used with random dot patterns, and it is significantly faster. Efficient, fully vectorized, implementations of both the FCD and DIC/OF schemes developed for this study are made available as open source Matlab scripts.
Logue, Mark W; Amstadter, Ananda B; Baker, Dewleen G; Duncan, Laramie; Koenen, Karestan C; Liberzon, Israel; Miller, Mark W; Morey, Rajendra A; Nievergelt, Caroline M; Ressler, Kerry J; Smith, Alicia K; Smoller, Jordan W; Stein, Murray B; Sumner, Jennifer A; Uddin, Monica
2015-01-01
The development of posttraumatic stress disorder (PTSD) is influenced by genetic factors. Although there have been some replicated candidates, the identification of risk variants for PTSD has lagged behind genetic research of other psychiatric disorders such as schizophrenia, autism, and bipolar disorder. Psychiatric genetics has moved beyond examination of specific candidate genes in favor of the genome-wide association study (GWAS) strategy of very large numbers of samples, which allows for the discovery of previously unsuspected genes and molecular pathways. The successes of genetic studies of schizophrenia and bipolar disorder have been aided by the formation of a large-scale GWAS consortium: the Psychiatric Genomics Consortium (PGC). In contrast, only a handful of GWAS of PTSD have appeared in the literature to date. Here we describe the formation of a group dedicated to large-scale study of PTSD genetics: the PGC-PTSD. The PGC-PTSD faces challenges related to the contingency on trauma exposure and the large degree of ancestral genetic diversity within and across participating studies. Using the PGC analysis pipeline supplemented by analyses tailored to address these challenges, we anticipate that our first large-scale GWAS of PTSD will comprise over 10 000 cases and 30 000 trauma-exposed controls. Following in the footsteps of our PGC forerunners, this collaboration—of a scope that is unprecedented in the field of traumatic stress—will lead the search for replicable genetic associations and new insights into the biological underpinnings of PTSD. PMID:25904361
Wong, Kari E; Mikus, Catherine R; Slentz, Dorothy H; Seiler, Sarah E; DeBalsi, Karen L; Ilkayeva, Olga R; Crain, Karen I; Kinter, Michael T; Kien, C Lawrence; Stevens, Robert D; Muoio, Deborah M
2015-05-01
This study used mice with muscle-specific overexpression of PGC-1α, a transcriptional coactivator that promotes mitochondrial biogenesis, to determine whether increased oxidative potential facilitates metabolic improvements in response to lifestyle modification. MCK-PGC1α mice and nontransgenic (NT) littermates were fed a high-fat diet (HFD) for 10 weeks, followed by stepwise exposures to voluntary wheel running (HFD+Ex) and then 25% caloric restriction with exercise (Ex/CR), each for an additional 10 weeks with continued HFD. Running and CR improved weight and glucose control similarly in MCK-PGC1α and NT mice. Sedentary MCK-PGC1α mice were more susceptible to diet-induced glucose intolerance, and insulin action measured in isolated skeletal muscles remained lower in the transgenic compared with the NT group, even after Ex/CR. Comprehensive profiling of >200 metabolites and lipid intermediates revealed dramatic group-specific responses to the intervention but did not produce a lead candidate that tracked with changes in glucose tolerance irrespective of genotype. Instead, principal components analysis identified a chemically diverse metabolite cluster that correlated with multiple measures of insulin responsiveness. These findings challenge the notion that increased oxidative capacity defends whole-body energy homeostasis and suggest that the interplay between mitochondrial performance, lipotoxicity, and insulin action is more complex than previously proposed. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Childs, Andrew J; Kinnell, Hazel L; Collins, Craig S; Hogg, Kirsten; Bayne, Rosemary A L; Green, Samira J; McNeilly, Alan S; Anderson, Richard A
2010-08-01
Primordial germ cells (PGCs) are the embryonic precursors of gametes in the adult organism, and their development, differentiation, and survival are regulated by a combination of growth factors collectively known as the germ cell niche. Although many candidate niche components have been identified through studies on mouse PGCs, the growth factor composition of the human PGC niche has not been studied extensively. Here we report a detailed analysis of the expression of components of the bone morphogenetic protein (BMP) signaling apparatus in the human fetal ovary, from postmigratory PGC proliferation to the onset of primordial follicle formation. We find developmentally regulated and reciprocal patterns of expression of BMP2 and BMP4 and identify germ cells to be the exclusive targets of ovarian BMP signaling. By establishing long-term cultures of human fetal ovaries in which PGCs are retained within their physiological niche, we find that BMP4 negatively regulates postmigratory PGC numbers in the human fetal ovary by promoting PGC apoptosis. Finally, we report expression of both muscle segment homeobox (MSX)1 and MSX2 in the human fetal ovary and reveal a selective upregulation of MSX2 expression in human fetal ovary in response to BMP4, suggesting this gene may act as a downstream effector of BMP-induced apoptosis in the ovary, as in other systems. These data reveal for the first time growth factor regulation of human PGC development in a physiologically relevant context and have significant implications for the development of cultures systems for the in vitro maturation of germ cells, and their derivation from pluripotent stem cells.
Selvakumar, Govindhasamy Pushpavathi; Iyer, Shankar S; Kempuraj, Duraisamy; Raju, Murugesan; Thangavel, Ramasamy; Saeed, Daniyal; Ahmed, Mohammad Ejaz; Zahoor, Harris; Raikwar, Sudhanshu P; Zaheer, Smita; Zaheer, Asgar
2018-01-30
Parkinson's disease (PD) is a progressive neurodegenerative disease affecting over five million individuals worldwide. The exact molecular events underlying PD pathogenesis are still not clearly known. Glia maturation factor (GMF), a neuroinflammatory protein in the brain plays an important role in the pathogenesis of PD. Mitochondrial dysfunctions and oxidative stress trigger apoptosis leading to dopaminergic neuronal degeneration in PD. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α or PPARGC-α) acts as a transcriptional co-regulator of mitochondrial biogenesis and energy metabolism by controlling oxidative phosphorylation, antioxidant activity, and autophagy. In this study, we found that incubation of immortalized rat dopaminergic (N27) neurons with GMF influences the expression of peroxisome PGC-1α and increases oxidative stress, mitochondrial dysfunction, and apoptotic cell death. We show that incubation with GMF reduces the expression of PGC-1α with concomitant decreases in the mitochondrial complexes. Besides, there is increased oxidative stress and depolarization of mitochondrial membrane potential (MMP) in these cells. Further, GMF reduces tyrosine hydroxylase (TH) expression and shifts Bax/Bcl-2 expression resulting in release of cytochrome-c and increased activations of effector caspase expressions. Transmission electron microscopy analyses revealed alteration in the mitochondrial architecture. Our results show that GMF acts as an important upstream regulator of PGC-1α in promoting dopaminergic neuronal death through its effect on oxidative stress-mediated apoptosis. Our current data suggest that GMF is a critical risk factor for PD and suggest that it could be explored as a potential therapeutic target to inhibit PD progression.
Electrical Interaction of Paired Ganglion Cells in the Leech
Eckert, Roger
1963-01-01
The two paired giant ganglion cells (PGC's) found in each ganglion of the leech central nervous system fire synchronously in response to certain sensory input. Polarizing current passed into either of these cells is seen to displace the membrane potentials of both cells, the voltage attenuation between the two somata ranging from 2 to 5 times. This attenuation factor remains unchanged when the direction of the polarizing current is reversed, and remains about the same when the other cell of the pair is directly polarized. When one of the PGC's is partially depolarized with outward current, a repetitive train of impulses is generated. Each spike is followed by a spike in the other cell. Occasionally, a small subspike potential is seen in place of a follower spike. This potential appears to differ in shape and time course from synaptic potentials elicited by afferent input to these cells, and appears rather to be an electrotonic potential derived from the prejunctional impulse in the stimulated PGC. It is proposed that transmission between these cells is electrical, being accomplished by a flow of local circuit current across a non-rectifying junction or connection to the spike-initiating region of the other PGC. PMID:19873553
Molecular cloning of pepsinogens A and C from adult newt (Cynops pyrrhogaster) stomach.
Inokuchi, Tomofumi; Ikuzawa, Masayuki; Yamazaki, Shin; Watanabe, Yukari; Shiota, Koushiro; Katoh, Takuma; Kobayashi, Ken-Ichiro
2013-08-01
The full-length cDNAs of three pepsinogens (Pgs) were cloned from the stomach of newt, Cynops pyrrhogaster, and nucleotide sequences of the full-length cDNAs were determined. Molecular phylogenetic analysis showed that two Pgs, named PgC1 and PgC2, belong to the pepsinogen C group, and one Pg, named PgA, belongs to the pepsinogen A group. The sequences contain an open reading frame (ORF) encoding 385 amino acid residues for PgC1, 383 amino acid residues for PgC2 and 377 amino acid residues for PgA. In addition, all of the three amino acid sequences conserve some unique characteristics such as six cysteine residues and putative active site two aspartic acid residues. All of the pepsinogen mRNAs were detected in the stomach by RT-PCR but not in other organs. Although a slight difference at the time of the start of expression was seen among the three pepsinogen genes, all of them were expressed in the larval stage after hatching. This is the first report on cloning of pepsinogens from urodele stomach. Copyright © 2013 Elsevier Inc. All rights reserved.
Du, Xing; Zhang, Lifan; Li, Xinyu; Pan, Zengxiang; Liu, Honglin; Li, Qifa
2016-11-24
Follicle-stimulating hormone receptor (FSHR) and its intracellular signaling control mammalian follicular development and female infertility. Our previous study showed that FSHR is downregulated during follicular atresia of porcine ovaries. However, its role and regulation in follicular atresia remain unclear. Here, we showed that FSHR knockdown induced porcine granulosa cell (pGC) apoptosis and follicular atresia, and attenuated the levels of intracellular signaling molecules such as PKA, AKT and p-AKT. FSHR was identified as a target of miR-143, a microRNA that was upregulated during porcine follicular atresia. miR-143 enhanced pGC apoptosis by targeting FSHR, and reduced the levels of intracellular signaling molecules. SMAD4, the final molecule in transforming growth factor (TGF)-β signaling, bound to the promoter and induced significant downregulation of miR-143 in vitro and in vivo. Activated TGF-β signaling rescued miR-143-reduced FSHR and intracellular signaling molecules, and miR-143-induced pGC apoptosis. Overall, our findings offer evidence to explain how TGF-β signaling influences and FSHR signaling for regulation of pGC apoptosis and follicular atresia by a specific microRNA, miR-143.
Du, Xing; Zhang, Lifan; Li, Xinyu; Pan, Zengxiang; Liu, Honglin; Li, Qifa
2016-01-01
Follicle-stimulating hormone receptor (FSHR) and its intracellular signaling control mammalian follicular development and female infertility. Our previous study showed that FSHR is downregulated during follicular atresia of porcine ovaries. However, its role and regulation in follicular atresia remain unclear. Here, we showed that FSHR knockdown induced porcine granulosa cell (pGC) apoptosis and follicular atresia, and attenuated the levels of intracellular signaling molecules such as PKA, AKT and p-AKT. FSHR was identified as a target of miR-143, a microRNA that was upregulated during porcine follicular atresia. miR-143 enhanced pGC apoptosis by targeting FSHR, and reduced the levels of intracellular signaling molecules. SMAD4, the final molecule in transforming growth factor (TGF)-β signaling, bound to the promoter and induced significant downregulation of miR-143 in vitro and in vivo. Activated TGF-β signaling rescued miR-143-reduced FSHR and intracellular signaling molecules, and miR-143-induced pGC apoptosis. Overall, our findings offer evidence to explain how TGF-β signaling influences and FSHR signaling for regulation of pGC apoptosis and follicular atresia by a specific microRNA, miR-143. PMID:27882941
Spickermann, Gunnar; Friederich, Fabian; Roskos, Hartmut G; Bolívar, Peter Haring
2009-11-01
We present a 64x48 pixel 2D electro-optical terahertz (THz) imaging system using a photonic mixing device time-of-flight camera as an optical demodulating detector array. The combination of electro-optic detection with a time-of-flight camera increases sensitivity drastically, enabling the use of a nonamplified laser source for high-resolution real-time THz electro-optic imaging.
NASA Technical Reports Server (NTRS)
Omura, J. K.; Simon, M. K.
1982-01-01
A theory is presented for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the linear satellite channel. The underlying principle used is the development of receiver structures based on the maximum-likelihood decision rule. The application of the performance prediction tools, e.g., channel cutoff rate and bit error probability transfer function bounds to these modulation/demodulation techniques.
Iterative demodulation and decoding of coded non-square QAM
NASA Technical Reports Server (NTRS)
Li, L.; Divsalar, D.; Dolinar, S.
2003-01-01
Simulation results show that, with iterative demodulation and decoding, coded NS-8QAM performs 0.5 dB better than standard 8QAM and 0.7 dB better than 8PSK at BER= 10(sup -5), when the FEC code is the (15, 11) Hamming code concatenated with a rate-1 accumulator code, while coded NS-32QAM performs 0.25 dB better than standard 32QAM.
Performance Analysis of the Link-16/JTIDS Waveform With Concatenated Coding
2009-09-01
noncoherent demodulation in terms of both required signal power and throughput. 15. NUMBER OF PAGES 101 14. SUBJECT TERMS Link-16/JTIDS, Reed-Solomon...Pulsed-Noise Interference (PNI), Additive White Gaussian Noise (AWGN), coherent detection, noncoherent detection. 16. PRICE CODE 17. SECURITY...than the existing Link-16/JTIDS waveform in both AWGN and PNI, for both coherent and noncoherent demodulation, in terms of both required signal
NASA Technical Reports Server (NTRS)
1978-01-01
The theoretical background for a coherent demodulator for minimum shift keying signals generated by the advanced data collection/position locating system breadboard is presented along with a discussion of the design concept. Various tests and test results, obtained with the breadboard system described, include evaluation of bit-error rate performance, acquisition time, clock recovery, recycle time, frequency measurement accuracy, and mutual interference.
NASA Astrophysics Data System (ADS)
Wei, Heming; Krishnaswamy, Sridhar
2017-04-01
Damages such as cracking or impact loading in civil, aerospace, and mechanical structures generate transient ultrasonic waves, which can be used to reveal the structural health condition. Hence, it is necessary to find a practical tool based on ultrasonic detection for structural health monitoring. In this work, we describe an intelligent fiber-optic ultrasonic sensing system, which is designed based on a fiber Bragg grating (FBG) and a reflective semiconductor optical amplifier (RSOA) used as an adaptive source, and demodulated by an adaptive photorefractive two wave mixing (TWM) technique without any active compensation of quasi-static strains and temperature. As the wavelength of the FBG shifts due to the excited ultrasonic waves, the wavelength of the optical output from the fiber cavity laser shifts accordingly. With regard to the shift of the FBG reflective spectrum, the adaptivity of the RSOA-based laser is analyzed theoretically and verified by the TWM demodulator. Additionally, due to the response time of the photorefractive crystal, the TWM demodulator is insensitive to low frequency-FBG spectral shift. The results demonstrate that this proposed FBG ultrasonic sensing system has high sensitivity and can respond the ultrasonic waves into the megahertz frequency range, which shows a potential for acoustic emission detection in practical applications.
NASA Astrophysics Data System (ADS)
Yan, Bing-Nan; Liu, Chong-Xin; Ni, Jun-Kang; Zhao, Liang
2016-10-01
In order to grasp the downhole situation immediately, logging while drilling (LWD) technology is adopted. One of the LWD technologies, called acoustic telemetry, can be successfully applied to modern drilling. It is critical for acoustic telemetry technology that the signal is successfully transmitted to the ground. In this paper, binary phase shift keying (BPSK) is used to modulate carrier waves for the transmission and a new BPSK demodulation scheme based on Duffing chaos is investigated. Firstly, a high-order system is given in order to enhance the signal detection capability and it is realized through building a virtual circuit using an electronic workbench (EWB). Secondly, a new BPSK demodulation scheme is proposed based on the intermittent chaos phenomena of the new Duffing system. Finally, a system variable crossing zero-point equidistance method is proposed to obtain the phase difference between the system and the BPSK signal. Then it is determined that the digital signal transmitted from the bottom of the well is ‘0’ or ‘1’. The simulation results show that the demodulation method is feasible. Project supported by the National Natural Science Foundation of China (Grant No. 51177117) and the National Key Science & Technology Special Projects, China (Grant No. 2011ZX05021-005).
NASA Astrophysics Data System (ADS)
Di Vittorio, Alan; Mao, Jiafu; Shi, Xiaoying
2016-04-01
Several climate adaptation and mitigation strategies incorporate land use and land cover change to address global carbon balance and also food, fuel, fiber, and water resource sustainability. However, Land Use and Land Cover Change (LULCC) are not consistent across the CMIP5 model simulations because only the land use input was harmonized. Differences in LULCC impede understanding of global change because such differences can dramatically alter land-atmosphere mass and energy exchange in response to differences in associated use and distribution of land resources. For example, the Community Earth System Model (CESM) overestimates 2005 atmospheric CO2 concentration by 18 ppmv, and we explore the contribution of historical LULCC to this bias in relation to the effects of CO2 fertilization and nitrogen deposition on terrestrial carbon. Using identical land use input, a chronologically referenced LULCC that accounts for pasture, as opposed to the default year-2000 referenced LULCC, increases this bias to 27 ppmv because more forest needs to be cleared for land use. Assuming maximum forest retention for all land conversion reduces the new bias to ~21 ppmv, while minimum forest retention increases the new bias to ~32 ppmv. Corresponding ecosystem carbon changes from the default in 2005 are approximately -28 PgC, -10 PgC, and -43 PgC, respectively. This 33 PgC uncertainty range due to maximizing versus minimizing forest area is 66% of the estimated 50 PgC gain in ecosystem carbon due to CO2 fertilization from 1850-2005, and 150% of the estimated 22 PgC gain due to nitrogen deposition. This range is also similar to the 28 PgC difference generated by changing the LULCC reference year and accounting for pasture. These results indicate that LULCC uncertainty is not only a major driver of bias in simulated atmospheric CO2, but that it could contribute even more to this bias than uncertainty in CO2 fertilization or nitrogen deposition. This highlights the need for more accurate LULCC scenarios in earth system simulations to provide robust historical and future projections of carbon and climate, especially when incorporating climate feedbacks on human and environmental systems. More accurate LULCC scenarios will also improve impact and resource sustainability analyses in the context of climate adaptation and mitigation strategies. These new scenarios will need to be developed and implemented as an integrated process with interdependent land use and land cover to adequately incorporate human and environmental drivers of LULCC.
2010-01-01
dance of pgcA transcripts, consistent with increased expression of pgcA in the adapted strains. One of the mutations doubled the rate of Fe(III) oxide...sequenced bacterial genomes. BMC Genomics 8: 274. Herring, C.D., Raghunathan, A., Honisch, C., Patel, T., Apple- bee , M.K., Joyce, A.R., et al. (2006
MASTER-IAC: bright PSN in PGC1030654
NASA Astrophysics Data System (ADS)
Balanutsa, P.; Lipunov, V.; Lopez, R. Rebolo; Serra-Ricart, M.; Gorbovskoy, E.; Kornilov, V.; Tiurina, N.; Kuznetsov, A.; Gress, O.; Shumkov, V.; Vetrov, K.; Vladimirov, V.; Gorbunov, I.; Zimnukhov, D.; Vlasenko, D.; Kuvshinov, D.
2018-01-01
MASTER-IAC auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 14h 21m 17.5s -06d 37m 36.1s on 2018-01-26.1918UT . The OT unfiltered magnitude is (mlim=19.8) This PSN is in 7.8" from PGC 1030654 (Btc=15.7, also GALEX source).
Reconfigurable firmware-defined radios synthesized from standard digital logic cells
NASA Astrophysics Data System (ADS)
Faisal, Muhammad; Park, Youngmin; Wentzloff, David D.
2011-06-01
This paper presents recent work on reconfigurable all-digital radio architectures. We leverage the flexibility and scalability of synthesized digital cells to construct reconfigurable radio architectures that consume significantly less power than a software defined radio implementing similar architectures. We present two prototypes of such architectures that can receive and demodulate FM and FRS band signals. Moreover, a radio architecture based on a reconfigurable alldigital phase-locked loop for coherent demodulation is presented.
Performance evaluation of a mobile satellite system modem using an ALE method
NASA Technical Reports Server (NTRS)
Ohsawa, Tomoki; Iwasaki, Motoya
1990-01-01
Experimental performance of a newly designed demodulation concept is presented. This concept applies an Adaptive Line Enhancer (ALE) to a carrier recovery circuit, which makes pull-in time significantly shorter in noisy and large carrier offset conditions. This new demodulation concept was actually developed as an INMARSAT standard-C modem, and was evaluated. On a performance evaluation, 50 symbol pull-in time is confirmed under 4 dB Eb/No condition.
Blind ICA detection based on second-order cone programming for MC-CDMA systems
NASA Astrophysics Data System (ADS)
Jen, Chih-Wei; Jou, Shyh-Jye
2014-12-01
The multicarrier code division multiple access (MC-CDMA) technique has received considerable interest for its potential application to future wireless communication systems due to its high data rate. A common problem regarding the blind multiuser detectors used in MC-CDMA systems is that they are extremely sensitive to the complex channel environment. Besides, the perturbation of colored noise may negatively affect the performance of the system. In this paper, a new coherent detection method will be proposed, which utilizes the modified fast independent component analysis (FastICA) algorithm, based on approximate negentropy maximization that is subject to the second-order cone programming (SOCP) constraint. The aim of the proposed coherent detection is to provide robustness against small-to-medium channel estimation mismatch (CEM) that may arise from channel frequency response estimation error in the MC-CDMA system, which is modulated by downlink binary phase-shift keying (BPSK) under colored noise. Noncoherent demodulation schemes are preferable to coherent demodulation schemes, as the latter are difficult to implement over time-varying fading channels. Differential phase-shift keying (DPSK) is therefore the natural choice for an alternative modulation scheme. Furthermore, the new blind differential SOCP-based ICA (SOCP-ICA) detection without channel estimation and compensation will be proposed to combat Doppler spread caused by time-varying fading channels in the DPSK-modulated MC-CDMA system under colored noise. In this paper, numerical simulations are used to illustrate the robustness of the proposed blind coherent SOCP-ICA detector against small-to-medium CEM and to emphasize the advantage of the blind differential SOCP-ICA detector in overcoming Doppler spread.