Science.gov

Sample records for pgv-1000 thermal-hydraulic analysis

  1. Horizontal steam generator thermal-hydraulics

    SciTech Connect

    Ubra, O.; Doubek, M.

    1995-09-01

    Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. The 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.

  2. Thermal-Hydraulic-Analysis Program

    NASA Technical Reports Server (NTRS)

    Walton, J. T.

    1993-01-01

    ELM computer program is simple computational tool for modeling steady-state thermal hydraulics of flows of propellants through fuel-element-coolant channels in nuclear thermal rockets. Evaluates various heat-transfer-coefficient and friction-factor correlations available for turbulent pipe flow with addition of heat. Comparisons possible within one program. Machine-independent program written in FORTRAN 77.

  3. Thermal-Hydraulic-Analysis Program

    NASA Technical Reports Server (NTRS)

    Walton, J. T.

    1993-01-01

    ELM computer program is simple computational tool for modeling steady-state thermal hydraulics of flows of propellants through fuel-element-coolant channels in nuclear thermal rockets. Evaluates various heat-transfer-coefficient and friction-factor correlations available for turbulent pipe flow with addition of heat. Comparisons possible within one program. Machine-independent program written in FORTRAN 77.

  4. An Approach of Uncertainty Evaluation for Thermal-Hydraulic Analysis

    SciTech Connect

    Katsunori Ogura; Hisashi Ninokata

    2002-07-01

    An approach to evaluate uncertainty systematically for thermal-hydraulic analysis programs is demonstrated. The approach is applied to the Peach Bottom Unit 2 Turbine Trip 2 Benchmark and is validated. (authors)

  5. Development of thermal-hydraulic analysis capabilities for Oyster creek

    SciTech Connect

    Lee, R.B.

    1987-01-01

    GPU Nuclear (GPUN) has been involved in developing analytical methodologies for Oyster Creek plant thermal-hydraulic response simulation for approx. 15 yr. Plant-system-related transient analysis is being accomplished via RETRAN02 MOD4 and loss-of-coolant accident (LOCA) analysis by SAFER-CORECOOL. This paper reviews the developmental process and lessons learned through this process.

  6. An analysis of factors causing the occurrence of off-design thermally induced force effects in the zone of weld joint no. 111-1 in a PGV-1000M steam generator and recommendations on excluding them

    NASA Astrophysics Data System (ADS)

    Bakirov, M. B.; Levchuk, V. I.; Povarov, V. P.; Gromov, A. F.

    2014-08-01

    Inadmissible operational flaws occurring in the critical zones of heat-transfer and mechanical equipment are commonly revealed in all nuclear power plant units both in Russia and abroad. The number of such flaws will only grow in the future because the majority of nuclear power plants have been in operation for a time that is either close to or even exceeds the assigned service life. In this connection, establishing cause-and-effect relations with regard to accelerated incipience and growth of flaws, working out compensating measures aimed at reducing operational damageability, and setting up monitoring of equipment integrity degradation of during operation are becoming the matters of utmost importance. There is a need to introduce new approaches to comprehensive diagnostics of the technical state of important nuclear power plant equipment, including continuous monitoring of its operational damageability and the extent of its loading in the most critical zones. Starting from 2011, such a monitoring system has successfully been used for the Novovoronezh NPP Unit 5 in the zone of weld joint no. 111-1 of steam generator no. 4. Based on the results from operation of this system in 2011-2013, unsteady thermally induced force effects (periodic thermal shocks and temperature abnormalities) were reveled, which had not been considered in the design, and which have an essential influence on the operational loading of this part. Based on an analysis of cause-and-effect relations pertinent to temperature abnormalities connected with technological operations, a set of measures aimed at reducing the thermally induced force loads exerted on pipeline sections was developed, which includes corrections to the process regulations for safe operation and to the operating manuals (involving changes in the algorithms for manipulating with the stop and control valves in the steam generator blowdown system).

  7. Portable Life Support Subsystem Thermal Hydraulic Performance Analysis

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce; Pinckney, John; Conger, Bruce

    2010-01-01

    This paper presents the current state of the thermal hydraulic modeling efforts being conducted for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS). The goal of these efforts is to provide realistic simulations of the PLSS under various modes of operation. The PLSS thermal hydraulic model simulates the thermal, pressure, flow characteristics, and human thermal comfort related to the PLSS performance. This paper presents modeling approaches and assumptions as well as component model descriptions. Results from the models are presented that show PLSS operations at steady-state and transient conditions. Finally, conclusions and recommendations are offered that summarize results, identify PLSS design weaknesses uncovered during review of the analysis results, and propose areas for improvement to increase model fidelity and accuracy.

  8. Portable Life Support Subsystem Thermal Hydraulic Performance Analysis

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce; Pinckney, John; Conger, Bruce

    2010-01-01

    This paper presents the current state of the thermal hydraulic modeling efforts being conducted for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS). The goal of these efforts is to provide realistic simulations of the PLSS under various modes of operation. The PLSS thermal hydraulic model simulates the thermal, pressure, flow characteristics, and human thermal comfort related to the PLSS performance. This paper presents modeling approaches and assumptions as well as component model descriptions. Results from the models are presented that show PLSS operations at steady-state and transient conditions. Finally, conclusions and recommendations are offered that summarize results, identify PLSS design weaknesses uncovered during review of the analysis results, and propose areas for improvement to increase model fidelity and accuracy.

  9. Thermal-Hydraulic Analysis of Supercritical Pressure Light Water Reactors

    SciTech Connect

    Cheng, X.; Schulenberg, T.; Koshizuka, S.; Oka, Y.; Souyri, A.

    2002-07-01

    In the frame of the European project HPLWR, joined by European research institutions, industrial partners and the University of Tokyo, thermal-hydraulic analysis of supercritical pressure light water reactors has been carried out. A thorough literature survey on heat transfer of supercritical fluids indicates a large deficiency in the prediction of the heat transfer coefficient and the onset of heat transfer deterioration under the reactor condition. A CFD code for analysing the thermal-hydraulic behaviour of supercritical fluids was developed. Numerical results show that the heat transfer coefficient, including the heat transfer deterioration region, can be well predicted using this CFD code, at least for circular tube geometries. Such a CFD code is well suitable for understanding the heat transfer mechanism. Based on the numerical results, a new heat transfer correlation has been proposed. For the thermal-hydraulic design of an HPLWR fuel assembly, the subchannel analysis code STAR-SC has been developed with a high numerical efficiency and a high applicability to different kinds of fuel assembly configurations. The results show clearly that design of a HPLWR fuel assembly is a highly challenging task. At the same time, sub-channel analysis provides some important guidelines for the design of a HPLWR fuel assembly. (authors)

  10. THERMAL HYDRAULIC ANALYSIS OF FIRE DIVERTOR

    SciTech Connect

    C.B. bAXI; M.A. ULRICKSON; D.E. DRIMEYER; P. HEITZENROEDER

    2000-10-01

    The Fusion Ignition Research Experiment (FIRE) is being designed as a next step in the US magnetic fusion program. The FIRE tokamak has a major radius of 2 m, a minor radius of 0.525 m, and liquid nitrogen cooled copper coils. The aim is to produce a pulse length of 20 s with a plasma current of 6.6 MA and with alpha dominated heating. The outer divertor and baffle of FIRE are water cooled. The worst thermal condition for the outer divertor and baffle is the baseline D-T operating mode (10 T, 6.6 MA, 20 s) with a plasma exhaust power of 67 MW and a peak heat flux of 20 MW/m{sup 2}. A swirl tape (ST) heat transfer enhancement method is used in the outer divertor cooling channels to increase the heat transfer coefficient and the critical heat flux (CHF). The plasma-facing surface consists of tungsten brush. The finite element (FE) analysis shows that for an inlet water temperature of 30 C, inlet pressure of 1.5 MPa and a flow velocity of 10 m/s, the incident critical heat flux is greater than 30 MW/m{sup 2}. The peak copper temperature is 490 C, peak tungsten temperature is 1560 C, and the pressure drop is less than 0.5 MPa. All these results fulfill the design requirements.

  11. 3D neutronic/thermal-hydraulic coupled analysis of MYRRHA

    SciTech Connect

    Vazquez, M.; Martin-Fuertes, F.

    2012-07-01

    The current tendency in multiphysics calculations applied to reactor physics is the use of already validated computer codes, coupled by means of an iterative approach. In this paper such an approach is explained concerning neutronics and thermal-hydraulics coupled analysis with MCNPX and COBRA-IV codes using a driver program and file exchange between codes. MCNPX provides the neutronic analysis of heterogeneous nuclear systems, both in critical and subcritical states, while COBRA-IV is a subchannel code that can be used for rod bundles or core thermal-hydraulics analysis. In our model, the MCNP temperature dependence of nuclear data is handled via pseudo-material approach, mixing pre-generated cross section data set to obtain the material with the desired cross section temperature. On the other hand, COBRA-IV has been updated to allow for the simulation of liquid metal cooled reactors. The coupled computational tool can be applied to any geometry and coolant, as it is the case of single fuel assembly, at pin-by-pin level, or full core simulation with the average pin of each fuel-assembly. The coupling tool has been applied to the critical core layout of the SCK-CEN MYRRHA concept, an experimental LBE cooled fast reactor presently in engineering design stage. (authors)

  12. Thermal hydraulics analysis of LIBRA-SP target chamber

    SciTech Connect

    Mogahed, E.A.

    1996-12-31

    LIBRA-SP is a conceptual design study of an inertially confined 1000 MWe fusion power reactor utilizing self-pinched light ion beams. There are 24 ion beams which are arranged around the reactor cavity. The reaction chamber is an upright cylinder with an inverted conical roof resembling a mushroom, and a pool floor. The vertical sides of the cylinder are occupied by a blanket zone consisting of many perforated rigid HT-9 ferritic steel tubes called PERITs (PEr-forated RIgid Tube). The breeding/cooling material, liquid lead-lithium, flows through the PERITs, providing protection to the reflector/vacuum chamber so as to make it a lifetime component. The neutronics analysis and cavity hydrodynamics calculations are performed to account for the neutron heating and also to determine the effects of vaporization/condensation processes on the surface heat flux. The steady state nuclear heating distribution at the midplane is used for thermal hydraulics calculations. The maximum surface temperature of the HT-9 is chosen to not exceed 625{degree}C to avoid drastic deterioration of the metal`s mechanical properties. This choice restricts the thermal hydraulics performance of the reaction cavity. The inlet first surface coolant bulk temperature is 370{degree}C, and the heat exchanger inlet coolant bulk temperature is 502{degree}C. 4 refs., 6 figs., 2 tabs.

  13. Thermal hydraulic analysis of the annular flow helium heater design

    SciTech Connect

    Chen, N.C.; Sanders, J.P.

    1982-05-01

    Oak Ridge National Laboratory has conducted Core Support Performance Test (CSPT) by use of an existing facility, Component Flow Test Loop (CFTL), as part of the High Temperature Gas-Cooled Reactor (HTGR) application program. A major objective of the CSPT is to study accelerated corrosion of the core graphite support structure in helium at reactor conditions. Concentration of impurities will be adjusted so that a 6-month test represents the 30-year reactor life. Thermal hydraulic and structural integrity of the graphite specimen, among other things, will be studied at high pressure of 7.24 MPa (1050 psi) and high temperature of 1000/sup 0/C (1832/sup 0/F) in a test vessel. To achieve the required high temperature at the test section, a heater bundle has to be specially designed and properly manufactured. This report presents performance characteristics of the heater that were determined from an analysis based on this design.

  14. Thermal hydraulic limits analysis using statistical propagation of parametric uncertainties

    SciTech Connect

    Chiang, K. Y.; Hu, L. W.; Forget, B.

    2012-07-01

    The MIT Research Reactor (MITR) is evaluating the conversion from highly enriched uranium (HEU) to low enrichment uranium (LEU) fuel. In addition to the fuel element re-design, a reactor power upgraded from 6 MW to 7 MW is proposed in order to maintain the same reactor performance of the HEU core. Previous approach in analyzing the impact of engineering uncertainties on thermal hydraulic limits via the use of engineering hot channel factors (EHCFs) was unable to explicitly quantify the uncertainty and confidence level in reactor parameters. The objective of this study is to develop a methodology for MITR thermal hydraulic limits analysis by statistically combining engineering uncertainties with an aim to eliminate unnecessary conservatism inherent in traditional analyses. This method was employed to analyze the Limiting Safety System Settings (LSSS) for the MITR, which is the avoidance of the onset of nucleate boiling (ONB). Key parameters, such as coolant channel tolerances and heat transfer coefficients, were considered as normal distributions using Oracle Crystal Ball to calculate ONB. The LSSS power is determined with 99.7% confidence level. The LSSS power calculated using this new methodology is 9.1 MW, based on core outlet coolant temperature of 60 deg. C, and primary coolant flow rate of 1800 gpm, compared to 8.3 MW obtained from the analytical method using the EHCFs with same operating conditions. The same methodology was also used to calculate the safety limit (SL) for the MITR, conservatively determined using onset of flow instability (OFI) as the criterion, to verify that adequate safety margin exists between LSSS and SL. The calculated SL is 10.6 MW, which is 1.5 MW higher than LSSS. (authors)

  15. 75 FR 80544 - NUREG-1953, Confirmatory Thermal-Hydraulic Analysis To Support Specific Success Criteria in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... COMMISSION NUREG-1953, Confirmatory Thermal-Hydraulic Analysis To Support Specific Success Criteria in the..., ``Confirmatory Thermal-Hydraulic Analysis to Support Specific Success Criteria in the Standardized Plant Analysis... . SUPPLEMENTARY INFORMATION: NUREG-1953, ``Confirmatory Thermal-Hydraulic Analysis to Support Specific...

  16. The Phebus FP thermal-hydraulic analysis with Melcor

    SciTech Connect

    Akgane, Kikuo; Kiso, Yoshihiro; Fukahori, Takanori; Yoshino, Mamoru

    1995-09-01

    The severe accident analysis code MELCOR, version 1.8.2, has been applied for thermal-hydraulic pre-test analysis of the first test of the Phebus FP program (test FPT-0) to study the best test parameters and the applicability of the code. The Phebus FP program is an in-pile test program which has been planned by the French Commissariate a L`Energie Atomique and the Commission of the European Union. The experiments are being conducted by an international collaboration to study the release and transport of fission products (FPs) under conditions assumed to be the most representative of those that would occur in a severe accident. The Phebus FP test apparatus simulates a test bundle of an in-pile section, the circuit including the steam generator U-tubes and the containment. The FPT-0 test was designed to simulate the heat-up and subsequent fuel bundle degradation after a loss of coolant severe accident, using fresh fuel. Two options for fuel degradation models in MELCOR have been applied to fuel degradation behavior. the first model assumes that fuel debris will be formed immediately after the fuel support fails by cladding relocation due to the candling process. The other is the uncollapsed bare fuel pellets option, in which the fuel pellets remain standing in a columnar shape until the fuel reaches its melting point, even if the cladding has been relocated by candling. The thermal-hydraulic behaviors in the circuit and containment of Phebus FP are discussed herein. Flow velocities in the Phebus FP circuit are high in order to produce turbulent flow in a small diameter test pipe. The MELCOR calculation has shown that the length of the hot leg and steam generator are adequate to attain steam temperatures or 700{degrees}C and 150{degrees}C in the respective outlets. The containment atmosphere temperature and humidity derived by once through integral system calculation show that objective test conditions would be satisfied in the Phebus FP experiment.

  17. Ringhals 2 steam control system reliability/thermal-hydraulic analysis

    SciTech Connect

    Bueter, T.; Freeland, J.; Reiner, R.; Andreychek, T.

    1996-12-31

    This paper evaluates the reliability of the proposed Westinghouse Distributed Processing Family (WDPF) control system and compares it to the reliability of the existing mechanical/ hydraulic control system at the Ringhals 2 nuclear power plant. The probabilities of the postulated failures in the existing control system are contrasted to those that would exist for the WDPF enhanced control and protection system. This paper is limited to a discussion about the reliability that relates to failures that have the potential to cause an overpressure in the moisture separator/reheaters (MSRs) of the Ringhals 2 plant. This power plant was built at a time when the requirements (in Sweden) did not include overpressure relief valves in the MSR. When the plant was originally constructed, the mechanical/ hydraulic control system was designed to be, and was used as, a method to prevent an overpressure condition in the MSR. The control system response time was fast enough to close the MSR inlet lines in the event that one or more discharge line valves was closed or failed closed. The authors also include a thermal-hydraulic analysis of some of the postulated (very low probability) secondary-side transients.

  18. Momentum Integral Network Method for Thermal-Hydraulic Systems Analysis.

    SciTech Connect

    2000-11-20

    EPIPE is used for design or design evaluation of complex large piping systems. The piping systems can be viewed as a network of straight pipe elements (or tangents) and curved elements (pipe bends) interconnected at joints (or nodes) with intermediate supports and anchors. The system may be subject to static loads such as thermal, dead weight, internal pressure, or dynamic loads such as earthquake motions and flow-induced vibrations, or any combination of these. MINET (Momentum Integral NETwork) was developed for the transient analysis of intricate fluid flow and heat transfer networks, such as those found in the balance of plant in power generating facilities. It can be utilized as a stand-alone program or interfaced to another computer program for concurrent analysis. Through such coupling, a computer code limited by either the lack of required component models or large computational needs can be extended to more fully represent the thermal hydraulic system thereby reducing the need for estimating essential transient boundary conditions. The MINET representation of a system is one or more networks of volumes, segments, and boundaries linked together via heat exchangers only, i.e., heat can transfer between networks, but fluids cannot. Volumes are used to represent tanks or other volume components, as well as locations in the system where significant flow divisions or combinations occur. Segments are composed of one or more pipes, pumps, heat exchangers, turbines, and/or valves each represented by one or more nodes. Boundaries are simply points where the network interfaces with the user or another computer code. Several fluids can be simulated, including water, sodium, NaK, and air.

  19. THERMAL HYDRAULIC ANALYSIS OF A GAS TEST LOOP SYSTEM

    SciTech Connect

    Donna Post Guillen; James E. Fisher

    2005-11-01

    This paper discusses thermal hydraulic calculations for a Gas Test Loop (GTL) system designed to provide a high intensity fast-flux irradiation environment for testing fuels and materials for advanced concept nuclear reactors. To assess the performance of candidate reactor fuels, these fuels must be irradiated under actual fast reactor flux conditions and operating environments, preferably in an existing irradiation facility [1]. Potential users of the GTL include the Generation IV Reactor Program, the Advanced Fuel Cycle Initiative and Space Nuclear Programs.

  20. Thermal hydraulic aspects in the analysis of LMFBR disrupted-core situations

    SciTech Connect

    Tentner, A.M.; Wider, H.U.

    1981-01-01

    This paper presents the thermal-hydraulic aspects of current interest in the modeling of LMFBR hypothetical core-disruptive accidents, with special emphasis on the Loss of Flow situations. The models presented have been incorporated in LEVITATE, a code for the analysis of fuel and cladding dynamics under LOF conditions, which has recently become part of the SAS4A code system. The influence of different thermal-hydraulic models on fuel motion is illustrated by a comparison between the results calculated by LEVITATE, the data from the L7-TREAT experiment and the results calculated by SLUMPY. The results calculated by LEVITATE are in fair agreement with the experimentally observed early fuel dispersal. The marginally acceptable energetic events obtained in the analysis of high void-worth LMFBR cores during Loss-of-Flow transients coupled with uncertainties about some of the thermal-hydraulic parameters motivate, among other factors, the need for the design low void-worth LMFBR cores.

  1. Thermal hydraulic analysis of annular fuel-based assemblies

    SciTech Connect

    Kyu Hyun Han; Soon Heung Chang

    2004-07-01

    Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using AMAP combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and AMAP showed good agreements for the pressure drops at the internal subchannels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner subchannels of the seed pins, mass fluxes were high due to the grid form losses in the outer subchannels. About 43% of the heat generated from the seed pin flowed into the inner subchannel and the rest into the outer subchannel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 deg. C. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that inter-channel mixing cannot occur in the inner subchannels, temperatures and enthalpies were higher in the inner subchannels. (authors)

  2. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    SciTech Connect

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.

  3. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    SciTech Connect

    Robert C. O'Brien; Andrew C. Klein; William T. Taitano; Justice Gibson; Brian Myers; Steven D. Howe

    2011-02-01

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  4. The Penn State Nodal Expansion Transient Analysis Technique with thermal-hydraulic feedback

    SciTech Connect

    Borkowski, J.; Bandini, B.; Baratta, A. )

    1989-11-01

    The nuclear engineering department of the Pennsylvania State University has under development a nodal neutron kinetics code. The PEnn State Nodal Expansion TRansient Analysis TEchnique (PENETRATE) performs two-group, three-dimensional nodal kinetics calculations using the nodal expansion method (NEM). The focus of this discussion is its performance in the solution of the Langenbuch-Maurer-Werner light water rector (LMW LWR) problem. This transient requires an accurate model of both control rod motion and coupled thermal-hydraulic feedback.

  5. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki; Hashimoto, Akihiko; Imai, Yasutomo; Ito, Masahiro

    2015-12-01

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  6. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    SciTech Connect

    Ohshima, Hiroyuki; Uwaba, Tomoyuki; Hashimoto, Akihiko; Imai, Yasutomo; Ito, Masahiro

    2015-12-31

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  7. MLTAP. Modular Helium Reactor Plant Transient Thermal-Hydraulic Analysis

    SciTech Connect

    Chan, T.W.; Openshaw, F.L.

    1992-11-06

    MLTAP is an integrated system transient analysis code for modular helium reactor (MHR) plants with superheated steam for Rankine power cycle and/or process heat applications. It is used for normal operational transient analyses as well as design basis/accident condition analyses with forced convection reactor cooling. MLTAP calculates the time-dependent temperatures, pressures, and flow rates for helium primary coolant and steam/water secondary coolant; reactor system and steam system structural temperatures; reactor neutronic behavior; pump, compressor, and steam turbine performance; reactivity control and other plant control systems responses; reactor and plant protection systems responses.

  8. Thermal hydraulic analysis of the TPX plasma facing components

    SciTech Connect

    Baxi, C.B.; Reis, E.E.; Redler, K.M.; Chin, E.E.; Boonstra, R.H.; Schaubel, K.M.; Anderson, P.M.; Hoffman, E.H.

    1995-12-31

    The purpose of the Tokamak Physics Experiment (TPX) is to develop and demonstrate steady state tokamak operating modes that can be extrapolated to reactor conditions. TPX will have a double null divertor with an option to operate in a single null mode. The maximum input power will be 45 MW and the pulse length will be 1,000 s. The major and minor radii will be 2.25 m and 0.5 m respectively. The material of plasma facing components (PFCs) will be carbon fiber composite (CFC). The plasma facing components (PFC) cooling will be provided by water at an inlet pressure of 2 MPa and inlet temperature of 50 C. The heat flux on the PFCs will be less than 0.2 MW/m{sup 2} on line of sight shields to 7.5 MW/m{sup 2} on divertor surfaces. The maximum allowable temperature on the divertor surface is 1,400 C and 600 C on all other PFCs. The attachment method, the type of CFC, the coolant flow velocity and the type of coolant channel is chosen based on the surface heat flux. In areas of highest heat flux, heat transfer augmentation will be used to obtain a safety margin of at least 2 on critical heat flux. An extensive thermal flow analysis has been performed to calculate the temperatures and pressure drops in the PFCs. A number of R and D programs are also in progress to verify the analysis and to obtain additional data when required. The total coolant flow rate requirement is estimated to be about 50 m{sup 3}/min (12,000 gpm) and the maximum pressure drop is estimated to be less than 1 MPa.

  9. Maine Yankee steam generator tube sleeving thermal-hydraulic and safety analysis impacts

    SciTech Connect

    Rousseau, K.R.; Palmer, S.; Harvey, R.C.; Bergeron, P.A.

    1996-11-01

    This paper discusses the impact of the complete plugging and sleeving campaign at Maine Yankee on the thermal-hydraulic analysis. A discussion of the hydraulic resistance calculations associated with the plugging and sleeving is provided. Finally, the impact on the plant safety analyses is provided, considering the changes in the hydraulic resistance of the steam generator tubes and the associated impact on reactor coolant system flow rate including asymmetry, steam generator overall heat transfer capability (UA), LOCA, reactor coolant pump coastdown, and Reactor Protection System trip setpoints.

  10. Spent nuclear fuel vacuum drying thermal-hydraulic analysis and dynamic model development status report

    SciTech Connect

    Irwin, J.J.; Ogden, D.M., Westinghouse Hanford

    1996-08-28

    This report summarizes preliminary thermal hydraulic scoping analysis and model development associated with the K Basin spent fuel MCO draining and vacuum drying system. The purpose of the draining and drying system is to remove all free water from the interior of the MCO, baskets, and fuel prior to back filling with inert gas and transfer to the hot conditioning process. Dominant physical processes and parameters are delineated and related quantitatively. Minimum dynamic modeling capability required to simulate the process of transporting heat to the residual water on the fuel and transport of the steam produced from the system by vacuum pumping are defined.

  11. A new thermal hydraulics code coupled to agent for light water reactor analysis

    NASA Astrophysics Data System (ADS)

    Eklund, Matthew Deric

    A new numerical model for coupling a thermal hydraulics method based on the Drift Flux and Homogeneous Equilibrium Mixture (HEM) models, with a deterministic neutronics code system AGENT (Arbitrary Geometry Neutron Transport), is developed. Named the TH thermal hydraulics code, it is based on the mass continuity, momentum, and energy equations integrated with appropriate relations for liquid and vapor phasic velocities. The modified conservation equations are then evaluated in one-dimensional (1D) steady-state conditions for LWR coolant subchannel in the axial direction. This permits faster computation times without sacrificing significant accuracy, as compared to other three-dimensional (3D) codes such as RELAP5/TRACE. AGENT is a deterministic neutronics code system based on the Method of Characteristics to solve the 2D/3D neutron transport equation in current and future reactor systems. The coupling scheme between the TH and AGENT codes is accomplished by computing the normalized fission rate profile in the LWR fuel elements by AGENT. The normalized fission rate profile is then transferred to the TH thermal hydraulics code for computing the reactor coolant properties. In conjunction with the 1D axial TH code, a separate 1D radial heat transfer model within the TH code is used to determine the average fuel temperature at each node where coolant properties are calculated. These properties then are entered into Scale 6.1, a criticality analysis code, to recalculate fuel pin neutron interaction cross sections based on thermal feedback. With updated fuel neutron interaction cross sections, the fission rate profile is recalculated in AGENT, and the cycle continues until convergence is reached. The TH code and coupled AGENT-TH code are benchmarked against the TRACE reactor analysis software, showing required agreement in evaluating the basic reactor parameters.

  12. Monte Carlo Neutronics and Thermal Hydraulics Analysis of Reactor Cores with Multilevel Grids

    NASA Astrophysics Data System (ADS)

    Bernnat, W.; Mattes, M.; Guilliard, N.; Lapins, J.; Zwermann, W.; Pasichnyk, I.; Velkov, K.

    2014-06-01

    Power reactors are composed of assemblies with fuel pin lattices or other repeated structures with several grid levels, which can be modeled in detail by Monte Carlo neutronics codes such as MCNP6 using corresponding lattice options, even for large cores. Except for fresh cores at beginning of life, there is a varying material distribution due to burnup in the different fuel pins. Additionally, for power states the fuel and moderator temperatures and moderator densities vary according to the power distribution and cooling conditions. Therefore, a coupling of the neutronics code with a thermal hydraulics code is necessary. Depending on the level of detail of the analysis, a very large number of cells with different materials and temperatures must be regarded. The assignment of different material properties to all elements of a multilevel grid is very elaborate and may exceed program limits if the standard input procedure is used. Therefore, an internal assignment is used which overrides uniform input parameters. The temperature dependency of continuous energy cross sections, probability tables for the unresolved resonance region and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. The method is applied with MCNP6 and proven for several full core reactor models. For the coupling of MCNP6 with thermal hydraulics appropriate interfaces were developed for the GRS system code ATHLET for liquid coolant and the IKE thermal hydraulics code ATTICA-3D for gaseous coolant. Examples will be shown for different applications for PWRs with square and hexagonal lattices, fast reactors (SFR) with hexagonal lattices and HTRs with pebble bed and prismatic lattices.

  13. Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP

    NASA Astrophysics Data System (ADS)

    Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio

    1988-09-01

    This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.

  14. Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor

    SciTech Connect

    Hashim, Zaredah Lanyau, Tonny Anak Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi; Azhar, Noraishah Syahirah

    2016-01-22

    The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel’s center and surface, cladding, coolant temperatures as well as DNBR’s values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.

  15. Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor

    NASA Astrophysics Data System (ADS)

    Hashim, Zaredah; Lanyau, Tonny Anak; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi; Azhar, Noraishah Syahirah

    2016-01-01

    The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel's center and surface, cladding, coolant temperatures as well as DNBR's values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.

  16. Thermal hydraulic method for whole core design analysis of an HTGR

    SciTech Connect

    Huning, A. J.; Garimella, S.

    2013-07-01

    A new thermal hydraulic method and initial results are presented for core-wide steady state analysis of prismatic High Temperature Gas-Cooled Reactors (HTGR). The method allows for the complete solution of temperature and coolant mass flow distribution by solving quasi-steady energy balances for the discretized core. Assembly blocks are discretized into unit cells for which the average temperature of each unit cell is determined. Convective heat removal is coupled to the unit cell energy balances by a 1-D axial flow model. The flow model uses established correlations for friction factor and Nusselt number. Bypass flow is explicitly calculated by using an initial guess for mass flow distribution and determining the exit pressure of each flow channel. The mass flow distribution is updated until a uniform core exit pressure condition is reached. Results are obtained for the MHTGR-350 with emphasis on the change in thermal hydraulic parameters due to various steady state power profiles and bypass gap widths. Steady state temperature distribution and its variations are discussed. (authors)

  17. 75 FR 69140 - NUREG-1953, Confirmatory Thermal-Hydraulic Analysis To Support Specific Success Criteria in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... COMMISSION NUREG-1953, Confirmatory Thermal-Hydraulic Analysis To Support Specific Success Criteria in the...- Hydraulic Analysis to Support Specific Success Criteria in the Standardized Plant Analysis Risk Models...-Hydraulic Analysis to Support Specific Success Criteria in the Standardized Plant Analysis Risk...

  18. Neutronic and thermal-hydraulic analysis of fission molybdenum-99 production at Tehran Research Reactor using LEU plate targets.

    PubMed

    Abedi, Ebrahim; Ebrahimkhani, Marzieh; Davari, Amin; Mirvakili, Seyed Mohammad; Tabasi, Mohsen; Maragheh, Mohammad Ghannadi

    2016-12-01

    Efficient and safe production of molybdenum-99 ((99)Mo) radiopharmaceutical at Tehran Research Reactor (TRR) via fission of LEU targets is studied. Neutronic calculations are performed to evaluate produced (99)Mo activity, core neutronic safety parameters and also the power deposition values in target plates during a 7 days irradiation interval. Thermal-hydraulic analysis has been also carried out to obtain thermal behavior of these plates. Using Thermal-hydraulic analysis, it can be concluded that the safety parameters are satisfied in the current study. Consequently, the present neutronic and thermal-hydraulic calculations show efficient (99)Mo production is accessible at significant activity values in TRR current core configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. KUGEL: a thermal, hydraulic, fuel performance, and gaseous fission product release code for pebble bed reactor core analysis

    SciTech Connect

    Shamasundar, B.I.; Fehrenbach, M.E.

    1981-05-01

    The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations.

  20. ATHOS: a computer program for thermal-hydraulic analysis of steam generators. Volume 2. Programmer's manual

    SciTech Connect

    Singhal, A.K.; Keeton, L.W.; Przekwas, A.J.; Weems, J.S.

    1982-10-01

    ATHOS (Analysis of the Thermal Hydraulics of Steam Generators) is a computer code developed by CHAM of North America Incorporated, under the contract RP 1066-1 from the Electric Power Research Institute, Palo Alto, California. ATHOS supercedes the earlier code URSULA2. ATHOS is designed for three-dimensional, steady-state and transient analyses of PWR steam generators. The current version of the code has been checked out for: three different configurations of the recirculating-type U-tube steam generators; the homogeneous and algebraic-slip flow models; and full and part load operating conditions. The description of ATHOS is divided into the following four volumes: Volume 1, Mathematical and Physical Models and Methods of Solution; Volume 2, Programmer's Manual; Volume 3, User's Manual; and Volume 4, Applications. The code's possible uses, capabilities and limitations are described in Volume 1 as well as in Volume 3.

  1. Thermal-Hydraulics Sensitivity Analysis of the Pellet Bed Reactor for Nuclear Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Morley, Nicholas J.; El-Genk, Mohamed S.

    1994-07-01

    A thermal-hydraulic analysis of the Pellet Bed Reactor (PeBR) for nuclear thermal propulsion is performed to determine the sensitivity of the core conditions to varying the operating and core design parameters. Using the hot frit porosity profile that is optimized to reduce the peak fuel temperature in the core, various core inlet and bed parameters are varied to determine there effects on the fuel temperature and pressure drop across the core. These parameters include the inlet temperature and mass flow rate of the hydrogen propellant, average porosity of the core bed, the porosity of the hot frit, and local porosity reduction in a small segment of the hot frit (local frit blockage).

  2. Thermal-hydraulic post-test analysis of OECD LOFT LP-FP-2 experiment

    SciTech Connect

    Pena, J.J. ); Enciso, S. ); Reventos, F. )

    1992-04-01

    An assessment of RELAP5/MOD2 and SCDAP/MOD1 against the OECD LOFT experiment LP-FP-2 is presented. LP-FP-2 studies the hypothetical release of fission products and their transport following a large-break LOCA scenario. The report comprises a general description of the LP-FP-2 experiment, a summary of thermal-hydraulic data, a simulation of the LP-FP-2 experiment, results of the RELAP5/MOD2 base calculation, the RELAP5/MOD2 sensitivity analysis, the SCDAP/MOD1 nodalization for an LP-FP-2 experiment, the results of the SCDAP/MOD1 calculation, and the summary and conclusions.

  3. BWR transient analysis using neutronic / thermal hydraulic coupled codes including uncertainty quantification

    SciTech Connect

    Hartmann, C.; Sanchez, V.; Tietsch, W.; Stieglitz, R.

    2012-07-01

    The KIT is involved in the development and qualification of best estimate methodologies for BWR transient analysis in cooperation with industrial partners. The goal is to establish the most advanced thermal hydraulic system codes coupled with 3D reactor dynamic codes to be able to perform a more realistic evaluation of the BWR behavior under accidental conditions. For this purpose a computational chain based on the lattice code (SCALE6/GenPMAXS), the coupled neutronic/thermal hydraulic code (TRACE/PARCS) as well as a Monte Carlo based uncertainty and sensitivity package (SUSA) has been established and applied to different kind of transients of a Boiling Water Reactor (BWR). This paper will describe the multidimensional models of the plant elaborated for TRACE and PARCS to perform the investigations mentioned before. For the uncertainty quantification of the coupled code TRACE/PARCS and specifically to take into account the influence of the kinetics parameters in such studies, the PARCS code has been extended to facilitate the change of model parameters in such a way that the SUSA package can be used in connection with TRACE/PARCS for the U and S studies. This approach will be presented in detail. The results obtained for a rod drop transient with TRACE/PARCS using the SUSA-methodology showed clearly the importance of some kinetic parameters on the transient progression demonstrating that the coupling of a best-estimate coupled codes with uncertainty and sensitivity tools is very promising and of great importance for the safety assessment of nuclear reactors. (authors)

  4. Thermal Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Water: Performance and Stability

    NASA Astrophysics Data System (ADS)

    Lisowski, Darius D.

    This experimental study investigated the thermal hydraulic behavior and boiling mechanisms present in a scaled reactor cavity cooling system (RCCS). The experimental facility reflects a ¼ scale model of one conceptual design for decay heat removal in advanced GenIV nuclear reactors. Radiant heaters supply up to 25 kW/m2 onto a three parallel riser tube and cooling panel test section assembly, representative of a 5° sector model of the full scale concept. Derived similarity relations have preserved the thermal hydraulic flow patterns and integral system response, ensuring relevant data and similarity among scales. Attention will first be given to the characterization of design features, form and heat losses, nominal behavior, repeatability, and data uncertainty. Then, tests performed in single-phase have evaluated the steady-state behavior. Following, the transition to saturation and subsequent boiling allowed investigations onto four parametric effects at two-phase flow and will be the primary focus area of remaining analysis. Baseline conditions at two-phase flow were defined by 15.19 kW of heated power and 80% coolant inventory, and resulted in semi-periodic system oscillations by the mechanism of hydrostatic head fluctuations. Void generation was the result of adiabatic expansion of the fluid due to a reduction in hydrostatic head pressure, a phenomena similar to flashing. At higher powers of 17.84 and 20.49 kW, this effect was augmented, creating large flow excursions that followed a smooth and sinusoidal shaped path. Stabilization can occur if the steam outflow condition incorporates a nominal restriction, as it will serve to buffer the short time scale excursions of the gas space pressure and dampen oscillations. The influences of an inlet restriction, imposed by an orifice plate, introduced subcooling boiling within the heated core and resulted in chaotic interactions among the parallel risers. The penultimate parametric examined effects of boil-off and

  5. COBRA-SFS: A thermal-hydraulic analysis code for spent fuel storage and transportation casks

    SciTech Connect

    Michener, T.E.; Rector, D.R.; Cuta, J.M.; Dodge, R.E.; Enderlin, C.W.

    1995-09-01

    COBRA-SFS is a general thermal-hydraulic analysis computer code for prediction of material temperatures and fluid conditions in a wide variety of systems. The code has been validated for analysis of spent fuel storage systems, as part of the Commercial Spent Fuel Management Program of the US Department of Energy. The code solves finite volume equations representing the conservation equations for mass, moment, and energy for an incompressible single-phase heat transfer fluid. The fluid solution is coupled to a finite volume solution of the conduction equation in the solid structure of the system. This document presents a complete description of Cycle 2 of COBRA-SFS, and consists of three main parts. Part 1 describes the conservation equations, constitutive models, and solution methods used in the code. Part 2 presents the User Manual, with guidance on code applications, and complete input instructions. This part also includes a detailed description of the auxiliary code RADGEN, used to generate grey body view factors required as input for radiative heat transfer modeling in the code. Part 3 describes the code structure, platform dependent coding, and program hierarchy. Installation instructions are also given for the various platform versions of the code that are available.

  6. Multi-Function Waste Tank Facility thermal hydraulic analysis for Title II design

    SciTech Connect

    Cramer, E.R.

    1994-11-10

    The purpose of this work was to provide the thermal hydraulic analysis for the Multi-Function Waste Tank Facility (MWTF) Title II design. Temperature distributions throughout the tank structure were calculated for subsequent use in the structural analysis and in the safety evaluation. Calculated temperatures of critical areas were compared to design allowables. Expected operating parameters were calculated for use in the ventilation system design and in the environmental impact documentation. The design requirements were obtained from the MWTF Functional Design Criteria (FDC). The most restrictive temperature limit given in the FDC is the 200 limit for the haunch and dome steel and concrete. The temperature limit for the rest of the primary and secondary tanks and concrete base mat and supporting pad is 250 F. Also, the waste should not be allowed to boil. The tank geometry was taken from ICF Kaiser Engineers Hanford drawing ES-W236A-Z1, Revision 1, included here in Appendix B. Heat removal rates by evaporation from the waste surface were obtained from experimental data. It is concluded that the MWTF tank cooling system will meet the design temperature limits for the design heat load of 700,000 Btu/h, even if cooling flow is lost to the annulus region, and temperatures change very slowly during transients due to the high heat capacity of the tank structure and the waste. Accordingly, transients will not be a significant operational problem from the viewpoint of meeting the specified temperature limits.

  7. Thermal-hydraulics and safety analysis of sectored compact reactor for lunar surface power

    SciTech Connect

    Schriener, T. M.; El-Genk, M. S.

    2012-07-01

    The liquid NaK-cooled, fast-neutron spectrum, Sectored Compact Reactor (SCoRe-N 5) concept has been developed at the Univ. of New Mexico for lunar surface power applications. It is loaded with highly enriched UN fuel pins in a triangular lattice, and nominally operates at exit and inlet coolant temperatures of 850 K and 900 K. This long-life reactor generates up to 1 MWth continuously for {>=} 20 years. To avoid a single point failure in reactor cooling, the core is divided into 6 sectors that are neutronically and thermally coupled, but hydraulically independent. This paper performs a 3-D the thermal-hydraulic analysis of SCoRe--N 5 at nominal operation temperatures and a power level of 1 MWth. In addition, the paper investigates the potential of continuing reactor operation at a lower power in the unlikely event that one sector in the core experiences a loss of coolant (LOC). Redesigning the core with a contiguous steel matrix enhances the cooling of the sector experiencing a LOC. Results show that with a core sector experiencing a LOC, SCORE-N 5 could continue operating safely at a reduced power of 166.6 kWth. (authors)

  8. Thermal/hydraulic analysis research program. Quarterly report, April-June 1983. Volume 2. [PWR

    SciTech Connect

    Thompson, S.L.

    1983-09-01

    The RELAP5 independent assessment project at Sandia National Laboratories is part of a multi-faceted effort sponsored by the NRC to determine the ability of various system codes to predict the detailed thermal; hydraulic response of LWRs during accident and off-normal conditions. The version used for the FY 1982 assessment project was RELAP5/MOD1/CYCLE14, the latest publicly released version available at the time this project was begun. The RELAP5 code is being assessed at SNLA against test data from various integral and separate effects experimental test facilities. At the request of the NRC contract monitor, the FY 1983 project was expanded to include TRAC-PF1 and RELAP5 plant analyses. A design-basis 200% cold leg break accident for the Sequoyah UHI plant had been analyzed at Sandia for a different NRC project; the analysis began on the TRAC-PD2 code and was completed with the TRAC-PF1 code, using a detailed fine nodalization, particularly in the 3-D vessel.

  9. Independent assessment of MELCOR as a severe accident thermal-hydraulic/source term analysis tool

    SciTech Connect

    Madni, I.K.

    1995-11-01

    MELCOR is a fully integrated computer code that models all phases of the progression of severe accidents in light water reactor (LWR) nuclear power plants and is being developed for the US Nuclear Regulatory Commission (NRC) by Sandia National Laboratories. Brookhaven National Laboratory (BNL) has a program with the NRC called MELCOR Verification, Benchmarking, and Applications, the aim of which is to provide independent assessment of MELCOR as a severe accident thermal-hydraulic/source term analysis tool. The scope of this program is to perform quality control verification on all released versions of MELCOR, to benchmark MELCOR against more mechanistic codes and experimental data from severe fuel damage tests, and to evaluate the ability of MELCOR to simulate long-term severe accident transients in commercial LWRs, by applying the code to model both boiling water reactors and pressurized water reactors. Under this program, BNL provided input to the NRC-sponsored MELCOR Peer Review and is currently contributing to the MELCOR Cooperative Assessment Program (MCAP). A summary of MELCOR assessment efforts at BNL and their contribution to NRC goals with respect to MELCOR is presented.

  10. Independent assessment of MELCOR as a severe accident thermal-hydraulic/source term analysis tool

    SciTech Connect

    Madni, I.K.; Eltawila, F.

    1994-01-01

    MELCOR is a fully integrated computer code that models all phases of the progression of severe accidents in light water reactor nuclear power plants, and is being developed for the US Nuclear Regulatory Commission (NRC) by Sandia National Laboratories (SNL). Brookhaven National Laboratory (BNL) has a program with the NRC called ``MELCOR Verification, Benchmarking, and Applications,`` whose aim is to provide independent assessment of MELCOR as a severe accident thermal-hydraulic/source term analysis tool. The scope of this program is to perform quality control verification on all released versions of MELCOR, to benchmark MELCOR against more mechanistic codes and experimental data from severe fuel damage tests, and to evaluate the ability of MELCOR to simulate long-term severe accident transients in commercial LWRs, by applying the code to model both BWRs and PWRs. Under this program, BNL provided input to the NRC-sponsored MELCOR Peer Review, and is currently contributing to the MELCOR Cooperative Assessment Program (MCAP). This paper presents a summary of MELCOR assessment efforts at BNL and their contribution to NRC goals with respect to MELCOR.

  11. Subchannel thermal-hydraulic analysis at AP600 low-flow steam-line-break conditions

    SciTech Connect

    Morita, T.; Olson, C.A.; Sung, Y.X.; Connelley, J.F. Jr.; Novendstern, E.H.; Kapil, S.; Rosenthal, P.W.

    1995-12-01

    The AP600 reactor core approaches buoyancy-dominated flow at the departure from nucleate boiling (DNB)-limiting period of a postulated steam-line--break accident. The reactor core has a highly skewed power distribution at this time due to the conservative assumption of a withdrawn rod cluster control assembly (stuck rod). Under such conditions, strong buoyancy-induced core cross flow occurs, and coupled nuclear and thermal-hydraulic interactions become important. To analyze the transient, Westinghouse Electric Corporation has coupled THINC-IV with a neutronic code (ANC). Applicability of the THINC-IV subchannel code to the low-flow conditions with a steep radial power gradient is verified with existing rod bundle test results. The code predictions are in excellent agreement with the test data. The coupled codes provide a realistic three-dimensional simulation of core power by considering core flow distributions and the resultant enthalpy distributions in neutronic feedback. The safety analysis using the coupled code demonstrates that the DNB design basis is met during the postulated steam-line-break accident.

  12. Thermal-hydraulic analysis of a cylindrical blanket module using ATHENA code

    SciTech Connect

    Hwang, J.G.; Herring, J.S.; Carlson, K.E.; Ransom, V.H.

    1981-01-01

    ATHENA (Advanced Thermal-Hydraulic Energy Network Analyzer) is a new computer code for thermal-hydraulic analyses of many energy systems. Multiple-loop and multiple-fluid capabilities have been emphasized during the code development. A pilot version of ATHENA has incorporated a fusion kinetic package to model the effect of first wall temperature variation on the reactor conditions. The capability has been demonstrated by analyzing the performance under various conditions of a cylindrical fusion blanket module. The results have shown the viability of using ATHENA for fusion reactor design and safety analyses.

  13. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    NASA Technical Reports Server (NTRS)

    Walton, James T.

    1992-01-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code.

  14. Thermal-hydraulic analysis for changing feedwater check valve leakage rate testing methodology

    SciTech Connect

    Fuller, R.; Harrell, J.

    1996-12-01

    The current design and testing requirements for the feedwater check valves (FWCVs) at the Grand Gulf Nuclear Station are established from original licensing requirements that necessitate extremely restrictive air testing with tight allowable leakage limits. As a direct result of these requirements, the original high endurance hard seats in the FWCVs were modified with elastomeric seals to provide a sealing surface capable of meeting the stringent air leakage limits. However, due to the relatively short functional life of the elastomeric seals compared to the hard seats, the overall reliability of the sealing function actually decreased. This degraded performance was exhibited by frequent seal failures and subsequent valve repairs. The original requirements were based on limited analysis and the belief that all of the high energy feedwater vaporized during the LOCA blowdown. These phenomena would have resulted in completely voided feedwater lines and thus a steam environment within the feedwater leak pathway. To challenge these criteria, a comprehensive design basis accident analysis was developed using the RELAP5/MOD3.1 thermal-hydraulic code. Realistic assumptions were used to more accurately model the post-accident fluid conditions within the feedwater system. The results of this analysis demonstrated that no leak path exists through the feedwater lines during the reactor blowdown phase and that sufficient subcooled water remains in various portions of the feedwater piping to form liquid water loop seals that effectively isolate this leak path. These results provided the bases for changing the leak testing requirements of the FWCVs from air to water. The analysis results also established more accurate allowable leakage limits, determined the real effective margins associated with the FWCV safety functions, and led to design changes that improved the overall functional performance of the valves.

  15. Thermal-hydraulic analysis of an annular fuel element: The Achilles' heel of the particle bed reactor

    SciTech Connect

    Dibben, M.J.; Tuttle, R.F. )

    1993-01-20

    The low pressure nuclear thermal propulsion (LPNTP) concept offers significant improvements in rocket engine specific impulse over rockets employment chemical propulsion. This study investigated a parametric thermal-hydraulic analysis of an annular fueld element, also referred to as a fuel pipe, using the computer code ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer). The fuelpipe is an annular particle bed fuel element of the reactor with radially inward flow of hydrogen through the element. In this study, the outlet temperature of the hydrogen is parametrically related to key effects, including the reactor power at two different pressure drops, the effect of power coupling for in-core testing, and the effect of hydrogen flow rates. Results show that the temperature is linearly related to the reactor power, but not to pressure drop, and that cross flow inside the fuelpipe occurs at approximately 0.3 percent of the radial flow rates.

  16. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  17. Overview of the use of ATHENA for thermal-hydraulic analysis of systems with lead-bismuth coolant

    SciTech Connect

    C. B. Davis; A. S. Shieh

    2000-04-02

    The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work.

  18. Overview of the Use of ATHENA for Thermal-Hydraulic Analysis of Systems with Lead-Bismuth Coolant

    SciTech Connect

    Davis, Cliff Bybee; Shieh, Arthur Shan Luk

    2000-04-01

    The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work.

  19. Thermal hydraulic design analysis of ternary carbide fueled square-lattice honeycomb nuclear rocket engine

    SciTech Connect

    Furman, Eric M.; Anghaie, Samim

    1999-01-22

    A computational analysis is conducted to determine the optimum thermal-hydraulic design parameters for a square-lattice honeycomb nuclear rocket engine core that will incorporate ternary carbide based uranium fuels. Recent studies at the Innovative Nuclear Space Power and Propulsion Institute (INSPI) have demonstrated the feasibility of processing solid solution, ternary carbide fuels such as (U, Zr, Nb)C, (U, Zr, Ta)C, (U, Zr, Hf)C and (U, Zr, W)C. The square-lattice honeycomb design provides high strength and is amenable to the processing complexities of these ultrahigh temperature fuels. A parametric analysis is conducted to examine how core geometry, fuel thickness and the propellant flow area effect the thermal performance of the nuclear rocket engine. The principal variables include core size (length and diameter) and fuel element dimensions. The optimum core configuration requires a balance between high specific impulse and thrust level performance, and maintaining the temperature and strength limits of the fuel. A nuclear rocket engine simulation code is developed and used to examine the system performance as well as the performance of the main reactor core components. The system simulation code was originally developed for analysis of NERVA-Derivative and Pratt and Whitney XNR-2000 nuclear thermal rockets. The code is modified and adopted to the square-lattice geometry of the new fuel design. Thrust levels ranging from 44,500 to 222,400 N (10,000 to 50,000 lbf) are considered. The average hydrogen exit temperature is kept at 2800 K, which is well below the melting point of these fuels. For a nozzle area ratio of 300 and a thrust chamber pressure of 4.8 Mpa (700 psi), the specific impulse is 930 s. Hydrogen temperature and pressure distributions in the core and the fuel maximum temperatures are calculated.

  20. Thermal hydraulic design analysis of ternary carbide fueled square-lattice honeycomb nuclear rocket engine

    NASA Astrophysics Data System (ADS)

    Furman, Eric M.; Anghaie, Samim

    1999-01-01

    A computational analysis is conducted to determine the optimum thermal-hydraulic design parameters for a square-lattice honeycomb nuclear rocket engine core that will incorporate ternary carbide based uranium fuels. Recent studies at the Innovative Nuclear Space Power and Propulsion Institute (INSPI) have demonstrated the feasibility of processing solid solution, ternary carbide fuels such as (U, Zr, Nb)C, (U, Zr, Ta)C, (U, Zr, Hf)C and (U, Zr, W)C. The square-lattice honeycomb design provides high strength and is amenable to the processing complexities of these ultrahigh temperature fuels. A parametric analysis is conducted to examine how core geometry, fuel thickness and the propellant flow area effect the thermal performance of the nuclear rocket engine. The principal variables include core size (length and diameter) and fuel element dimensions. The optimum core configuration requires a balance between high specific impulse and thrust level performance, and maintaining the temperature and strength limits of the fuel. A nuclear rocket engine simulation code is developed and used to examine the system performance as well as the performance of the main reactor core components. The system simulation code was originally developed for analysis of NERVA-Derivative and Pratt & Whitney XNR-2000 nuclear thermal rockets. The code is modified and adopted to the square-lattice geometry of the new fuel design. Thrust levels ranging from 44,500 to 222,400 N (10,000 to 50,000 lbf) are considered. The average hydrogen exit temperature is kept at 2800 K, which is well below the melting point of these fuels. For a nozzle area ratio of 300 and a thrust chamber pressure of 4.8 Mpa (700 psi), the specific impulse is 930 s. Hydrogen temperature and pressure distributions in the core and the fuel maximum temperatures are calculated.

  1. Neutronics and thermal hydraulic analysis of TRIGA Mark II reactor using MCNPX and COOLOD-N2 computer code

    NASA Astrophysics Data System (ADS)

    Tiyapun, K.; Wetchagarun, S.

    2017-06-01

    The neutronic analysis of TRIGA Mark II reactor has been performed. A detailed model of the reactor core was conducted including standard fuel elements, fuel follower control rods, and irradiation devices. As the approach to safety nuclear design are based on determining the criticality (keff), reactivity worth, reactivity excess, hot rod power factor and power peaking of the reactor, the MCNPX code had been used to calculate the nuclear parameters for different core configuration designs. The thermal-hydraulic model has been developed using COOLOD-N2 for steady state, using the nuclear parameters and power distribution results from MCNPX calculation. The objective of the thermal-hydraulic model is to determine the thermal safety margin and to ensure that the fuel integrity is maintained during steady state as well as during abnormal condition at full power. The hot channel fuel centerline temperature, fuel surface temperature, cladding surface temperature, the departure from nucleate boiling (DNB) and DNB ratio were determined. The good agreement between experimental data and simulation concerning reactor criticality proves the reliability of the methodology of analysis from neutronic and thermal hydraulic perspective.

  2. Computational Fluid Dynamics in Support of the SNS Liquid Mercury Thermal-Hydraulic Analysis

    SciTech Connect

    Siman-Tov, M.; Wendel, M.W.; Yoder, G.L.

    1999-11-14

    Experimental and computational thermal-hydraulic research is underway to support the liquid mercury target design for the Spallation Neutron Source (SNS) facility. The SNS target will be subjected to internal nuclear heat generation that results from pulsed proton beam collisions with the mercury nuclei. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots and diminished heat removal from the target structure. Computational fluid dynamics (CFD) models are being used as a part of this research. Recent improvements to the 3D target model include the addition of the flow adapter which joins the inlet/outlet coolant pipes to the target body and an updated heat load distribution at the new baseline proton beam power level of 2 MW. Two thermal-hydraulic experiments are planned to validate the CFD model.

  3. CFX Analysis of the CANDU Moderator Thermal-Hydraulics in the Stern Lab. Test Facility

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung Tae

    2014-06-01

    A numerical calculation with the commercial CFD code CFX is conducted for a test facility simulating the CANDU moderator thermal-hydraulics. Two kinds of moderator thermal-hydraulic tests at Stern Laboratories Inc. were performed in the full geometric configuration of the CANDU moderator circulating vessel, which is called a Calandria, housing a matrix of horizontal rod bundles simulating the Calandria tubes. The first of these tests is the pressure drop measurement of a cross flow in the horizontal rod bundles. The other is the local temperature measurement on the cross section of the horizontal cylinder vessel simulating the Calandria. In the present study the full geometric details of the Calandria are incorporated in the grid generation of the computational domain to which the boundary conditions for each experiment are applied. The numerical solutions are reviewed and compared with the available test data.

  4. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    SciTech Connect

    Strydom, Gerhard; Bostelmann, F.

    2015-09-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on

  5. Thermal hydraulic behavior and efficiency analysis of an all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Xiong, Binyu; Zhao, Jiyun; Tseng, K. J.; Skyllas-Kazacos, Maria; Lim, Tuti Mariana; Zhang, Yu

    2013-11-01

    Vanadium redox flow batteries (VRBs) are very competitive for large-capacity energy storage in power grids and in smart buildings due to low maintenance costs, high design flexibility, and long cycle life. Thermal hydraulic modeling of VRB energy storage systems is an important issue and temperature has remarkable impacts on the battery efficiency, the lifetime of material and the stability of the electrolytes. In this paper, a lumped model including auxiliary pump effect is developed to investigate the VRB temperature responses under different operating and surrounding environmental conditions. The impact of electrolyte flow rate and temperature on the battery electrical characteristics and efficiencies are also investigated. A one kilowatt VRB system is selected to conduct numerical simulations. The thermal hydraulic model is benchmarked with experimental data and good agreement is found. Simulation results show that pump power is sensitive to hydraulic design and flow rates. The temperature in the stack and tanks rises up about 10 °C under normal operating conditions for the stack design and electrolyte volume selected. An optimal flow rate of around 90 cm3 s-1 is obtained for the proposed battery configuration to maximize battery efficiency. The models developed in this paper can also be used for the development of a battery control strategy to achieve satisfactory thermal hydraulic performance and maximize energy efficiency.

  6. Thermal-hydraulic analysis of the liquid mercury target for the national spallation neutron source

    SciTech Connect

    Siman-Tov, M.; Wendel, M.W.; Haines, J.R.; Rogers, M.

    1997-04-01

    The National Spallation Neutron Source (NSNS) is a high-energy, accelerator-based spallation neutron source being designed by a multi-laboratory team led by Oak Ridge National Laboratory (ORNL) to achieve very high fluxes of neutrons for scientific experiments. The NSNS is proposed to have a 1 MW beam of high-energy ({approximately}1 GeV) protons upgradable to 5 MW and operating at 60 Hz with a pulse duration of 0.5 {mu}s. Peak steady-state power density in the target is about 640 MW/m{sup 3} for 1 MW, whereas the pulse instantaneous peak power density is as high as 22,000 GW/m{sup 3}. The local peak temperature rise for a single pulse over it`s time-averaged value is only 6{degrees}C, but the rate of this temperature rise during the pulse is extremely fast ({approximately}12 million {degrees}C/s). In addition to the resulting thermal shock and materials compatibility concerns, key feasibility issues for the target are related to its thermal-hydraulic performance. These include proper flow distribution, flow reversals and stagnation zones, possible {open_quotes}hot spots{close_quotes}, cooling of the beam {open_quotes}window{close_quotes}, and the challenge of mitigating the effects of thermal shock through possible injection of helium bubbles. An analytic approach was used on the PC spreadsheet EXCEL to evaluate target design options and to determine the global T/H parameters in the current concept. The general computational fluid dynamics (CFD) code CFX was used to simulate the detailed time-averaged two-dimensional thermal and flow distributions in the liquid mercury. In this paper, an overview of the project and the results of this preliminary work are presented. Heat transfer characteristics of liquid mercury under wetting and non-wetting conditions are discussed, and future directions of the program in T/H analysis and R&D are outlined.

  7. Thermal hydraulic analysis/data comparisons of two U-tube steam generators using the ATHOS3 code

    SciTech Connect

    Keeton, L.W.; Habchi, S.D.; Singhal, A.K.; Srikantiah, G.

    1987-01-01

    This paper describes numerical simulations of two full-scale, U-Tube steam generators of the Westinghouse Model 51-type. The selected generators are instrumented and operated by Electricite de France (EdF) at the Bugey-4 and Tricastin-1 power plants. The computer code used is ATHOS3, which is designed for three-dimensional, two-phase, steady-state and transient thermal-hydraulic analysis of U-Tube I (UTSG) and Once-Through (OTSG) steam generators. The purpose of the study is to verify the ATHOS3 code.

  8. ATHOS: a computer program for thermal-hydraulic analysis of steam generators. Volume 3. User's manual. [PWR

    SciTech Connect

    Singhal, A.K.; Keeton, L.W.; Przekwas, A.J.; Weems, J.S.

    1982-10-01

    ATHOS (Analysis of the Thermal Hydraulics of Steam Generators) is a computer code developed by CHAM of North America Incorporated, under the contract RP 1066-1 from the Electric Power Research Institute, Palo Alto, California. ATHOS supersedes the earlier code URSULA2. ATHOS is designed for three-dimensional, steady state and transient analyses of PWR steam generators. The current version of the code has been checked out for: three different configurations of the recirculating-type U-tube steam generators; the homogeneous and algebraic-slip flow models; and full and part load operating conditions.

  9. Code System to Perform Neutronic and Thermal-Hydraulic Subchannel Analysis from Converged Coarse-Mesh Nodal Solutions.

    SciTech Connect

    SALINA, E.

    2000-06-14

    Version 00 NORMA-FP is an auxiliary program which can perform a neutronic and thermal-hydraulic subchannel analysis, starting from global core calculations carried out by both PSR-471/NORMA or PSR-492/QUARK codes. Detailed flux and power distributions inside homogenized nodes are computed by a two-stage bivariate interpolation method, upon separation of the axial variable for which an analytical solution is adopted. The actual heterogeneous structure of a node is accounted for by fuel rod power factors computed as functions of burnup, burnup-weighted coolant density, and instantaneous coolant density.

  10. Thermal hydraulic codes for LWR safety analysis - present status and future perspective

    SciTech Connect

    Staedtke, H.

    1997-07-01

    The aim of the present paper is to give a review on the current status and future perspective of present best-estimate Thermal Hydraulic codes. Reference is made to internationally well-established codes which have reached a certain state of maturity. The first part of the paper deals with the common basic code features with respect to the physical modelling and their numerical methods used to describe complex two-phase flow and heat transfer processes. The general predictive capabilities are summarized identifying some remaining code deficiencies and their underlying limitations. The second part discusses various areas including physical modelling, numerical techniques and informatic structure where the codes could be substantially improved.

  11. 2D Thermal Hydraulic Analysis and Benchmark in Support of HFIR LEU Conversion using COMSOL

    SciTech Connect

    Freels, James D; Bodey, Isaac T; Lowe, Kirk T; Arimilli, Rao V

    2010-09-01

    The research documented herein was funded by a research contract between the Research Reactors Division (RRD) of Oak Ridge National Laboratory (ORNL) and the University of Tennessee, Knoxville (UTK) Mechanical, Aerospace and Biomedical Engineering Department (MABE). The research was governed by a statement of work (SOW) which clearly defines nine specific tasks. This report is outlined to follow and document the results of each of these nine specific tasks. The primary goal of this phase of the research is to demonstrate, through verification and validation methods, that COMSOL is a viable simulation tool for thermal-hydraulic modeling of the High Flux Isotope Reactor (HFIR) core. A secondary goal of this two-dimensional phase of the research is to establish methodology and data base libraries that are also needed in the full three-dimensional COMSOL simulation to follow. COMSOL version 3.5a was used for all of the models presented throughout this report.

  12. COBRA-SFS thermal-hydraulic analysis code for spent fuel storage and transportation casks: Models and methods

    DOE PAGES

    Michener, Thomas E.; Rector, David R.; Cuta, Judith M.

    2017-09-01

    COBRA-SFS, a thermal-hydraulics code developed for steady-state and transient analysis of multi-assembly spent-fuel storage and transportation systems, has been incorporated into the Used Nuclear Fuel-Storage, Transportation and Disposal Analysis Resource and Data System tool as a module devoted to spent fuel package thermal analysis. This paper summarizes the basic formulation of the equations and models used in the COBRA-SFS code, showing that COBRA-SFS fully captures the important physical behavior governing the thermal performance of spent fuel storage systems, with internal and external natural convection flow patterns, and heat transfer by convection, conduction, and thermal radiation. Of particular significance is themore » capability for detailed thermal radiation modeling within the fuel rod array.« less

  13. RELAP5-3D thermal hydraulic analysis of the target cooling system in the SPES experimental facility

    NASA Astrophysics Data System (ADS)

    Giardina, M.; Castiglia, F.; Buffa, P.; Palermo, G.; Prete, G.

    2014-11-01

    The SPES (Selective Production of Exotic Species) experimental facility, under construction at the Italian National Institute of Nuclear Physics (INFN) Laboratories of Legnaro, Italy, is a second generation Isotope Separation On Line (ISOL) plant for advanced nuclear physic studies. The UCx target-ion source system works at temperature of about 2273 K, producing a high level of radiation (105 Sv/h), for this reason a careful risk analysis for the target chamber is among the major safety issues. In this paper, the obtained results of thermofluid-dynamics simulations of accidental transients in the SPES target cooling system are reported. The analysis, performed by using the RELAP5-3D 2.4.2 qualified thermal-hydraulic system code, proves good safety performance of this system during different accidental conditions.

  14. ATHOS3: a computer program for thermal-hydraulic analysis of steam generators. Volume 2. Programmer's manual

    SciTech Connect

    Keeton, L.W.; Singhal, A.K.

    1986-07-01

    This is the programmer's manual for the ATHOS3 code. ATHOS3 is a computer code for three-dimensional, steady-state and transient analyses of PWR steam generators. It has been developed by upgrading an earlier code, ATHOS (Analysis of the Thermal Hydraulics of Steam Generators). The ATHOS3 code is designed for three-dimensional, steady-state and transient analyses of PWR steam generators. ATHOS3 has several additional capabilities, including a much improved and generalized geometry pre-processor module, and has been developed in a fully upwards-compatible manner from the predecessor ATHOS code. For the convenience of new users, the ATHOS3 code is documented in four self-contained volumes, i.e. no reference to the earlier ATHOS volumes is necessary. Furthermore, for the benefit of old (i.e. ATHOS code) users, it may be stated that the new (ATHOS3) documentation has been produced by updating and modifying the earlier documentation.

  15. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 2, User's manual

    SciTech Connect

    Rector, D.R.; Cuta, J.M.; Lombardo, N.J.; Michener, T.E.; Wheeler, C.L.

    1986-11-01

    COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations; however, the transient capability has not yet been validated. This volume contains the input instructions for COBRA-SFS and an auxiliary radiation exchange factor code, RADX-1. It is intended to aid the user in becoming familiar with the capabilities and modeling conventions of the code.

  16. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 1, Mathematical models and solution method

    SciTech Connect

    Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

    1986-11-01

    COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations: however, the transient capability has not yet been validated. This volume describes the finite-volume equations and the method used to solve these equations. It is directed toward the user who is interested in gaining a more complete understanding of these methods.

  17. Feasibility study Part I - Thermal hydraulic analysis of LEU target for {sup 99}Mo production in Tajoura reactor

    SciTech Connect

    Bsebsu, F.M.; Abotweirat, F. E-mail: abutweirat@yahoo.com; Elwaer, S.

    2008-07-15

    The Renewable Energies and Water Desalination Research Center (REWDRC), Libya, will implement the technology for {sup 99}Mo isotope production using LEU foil target, to obtain new revenue streams for the Tajoura nuclear research reactor and desiring to serve the Libyan hospitals by providing the medical radioisotopes. Design information is presented for LEU target with irradiation device and irradiation Beryllium (Be) unit in the Tajoura reactor core. Calculated results for the reactor core with LEU target at different level of power are presented for steady state and several reactivity induced accident situations. This paper will present the steady state thermal hydraulic design and transient analysis of Tajoura reactor was loaded with LEU foil target for {sup 99}Mo production. The results of these calculations show that the reactor with LEU target during the several cases of transient are in safe and no problems will occur. (author)

  18. Preliminary LOCA analysis of the westinghouse small modular reactor using the WCOBRA/TRAC-TF2 thermal-hydraulics code

    SciTech Connect

    Liao, J.; Kucukboyaci, V. N.; Nguyen, L.; Frepoli, C.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using the WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)

  19. An analysis of the proposed MITR-III core to establish thermal-hydraulic limits at 10 MW. Final report

    SciTech Connect

    Harling, O.K.; Lanning, D.D.; Bernard, J.A.; Meyer, J.E.; Henry, A.F.

    1997-06-01

    The 5 MW Massachusetts Institute of Technology Research Reactor (MITR-II) is expected to operate under a new license beginning in 1999. Among the options being considered is an upgrade in the heat removal system to allow operation at 10 MW. The purpose of this study is to predict the Limiting Safety System Settings and Safety Limits for the upgraded reactor (MITR-III). The MITR Multi-Channel Analysis Code was written to analyze the response of the MITR system to a series of anticipated transients in order to determine the Limiting Safety System Settings and Safety Limits under various operating conditions. The MIT Multi-Channel Analysis Code models the primary and secondary systems, with special emphasis placed on analyzing the thermal-hydraulic conditions in the core. The code models each MITR fuel element explicitly in order to predict the behavior of the system during flow instabilities. The results of the code are compared to experimental data from MITR-II and other sources. New definitions are suggested for the Limiting Safety System Settings and Safety Limits. MITR Limit Diagrams are included for three different heat removal system configurations. It is concluded that safe, year-round operating at 10 MW is possible, given that the primary and secondary flow rates are both increased by approximately 40%.

  20. ATHOS3: a computer program for thermal-hydraulic analysis of steam generators. Volume 3. User's manual

    SciTech Connect

    Keeton, L.W.; Singhal, A.K.

    1986-07-01

    This is the user's manual for the ATHOS3 computer code. ATHOS3 is a computer code for three-dimensional, steady-state and transient analyses of PWR steam generators. It has been developed by upgrading an earlier code, ATHOS (Analysis of the Thermal Hydraulics of Steam Generators). Both ATHOS and ATHOS3 have been developed by CHAM of North America, Inc., under the contract RP1066-1 from the Electric Power Research Institute. ATHOS3 supercedes ATHOS and all other intermediate versions of the code. ATHOS3 has several additional capabilities, including a much improved and generalized geometry pre-processor module, and has been developed in a fully upwards-compatible manner from the predecessor ATHOS code. For the convenience of new users, the ATHOS3 code is documented in four self-contained volumes, i.e., no reference to the earlier ATHOS volumes is necessary. Furthermore, for the benefit of old (i.e., ATHOS code) users, it may be stated that the new (ATHOS3) documentation has been produced by updating and modifying the earlier documentation.

  1. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi

    2013-01-01

    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein

  2. Analysis of the OECD/NRC BWR Turbine Trip Transient Benchmark with the Coupled Thermal-Hydraulics and Neutronics Code TRAC-M/PARCS

    SciTech Connect

    Lee, Deokjung; Downar, Thomas J.; Ulses, Anthony; Akdeniz, Bedirhan; Ivanov, Kostadin N.

    2004-10-15

    An analysis of the Peach Bottom Unit 2 Turbine Trip 2 (TT2) experiment has been performed using the U.S. Nuclear Regulatory Commission coupled thermal-hydraulics and neutronics code TRAC-M/PARCS. The objective of the analysis was to assess the performance of TRAC-M/PARCS on a BWR transient with significance in two-phase flow and spatial variations of the neutron flux. TRAC-M/PARCS results are found to be in good agreement with measured plant data for both steady-state and transient phases of the benchmark. Additional analyses of four fictitious extreme scenarios are performed to provide a basis for code-to-code comparisons and comprehensive testing of the thermal-hydraulics/neutronics coupling. The obtained results of sensitivity studies on the effect of direct moderator heating on transient simulation indicate the importance of this modeling aspect.

  3. Helical coil thermal hydraulic model

    NASA Astrophysics Data System (ADS)

    Caramello, M.; Bertani, C.; De Salve, M.; Panella, B.

    2014-11-01

    A model has been developed in Matlab environment for the thermal hydraulic analysis of helical coil and shell steam generators. The model considers the internal flow inside one helix and its associated control volume of water on the external side, both characterized by their inlet thermodynamic conditions and the characteristic geometry data. The model evaluates the behaviour of the thermal-hydraulic parameters of the two fluids, such as temperature, pressure, heat transfer coefficients, flow quality, void fraction and heat flux. The evaluation of the heat transfer coefficients as well as the pressure drops has been performed by means of the most validated literature correlations. The model has been applied to one of the steam generators of the IRIS modular reactor and a comparison has been performed with the RELAP5/Mod.3.3 code applied to an inclined straight pipe that has the same length and the same elevation change between inlet and outlet of the real helix. The predictions of the developed model and RELAP5/Mod.3.3 code are in fairly good agreement before the dryout region, while the dryout front inside the helical pipes is predicted at a lower distance from inlet by the model.

  4. RDS - A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    SciTech Connect

    Salim, Mohd Faiz; Roslan, Ridha; Ibrahim, Mohd Rizal Mamat

    2014-02-12

    Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges.

  5. RDS - A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    NASA Astrophysics Data System (ADS)

    Salim, Mohd Faiz; Roslan, Ridha; Ibrahim, Mohd Rizal Mamat @

    2014-02-01

    Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges.

  6. Verification of a three-dimensional nodal transient neutronics routine for the TRAC-PF1/MOD3 thermal-hydraulic system analysis code

    SciTech Connect

    Bandini, B.R.; Ivanov, K.N.; Baratta, A.J.; Steinke, R.G.

    1998-07-01

    The verification of a three-dimensional nodal transient neutronics routine in the TRAC-PF1/MOD3 Version 1.0 thermal-hydraulic system analysis computer code is discussed. This neutronics algorithm is based on a fully implicit transient version of the well-known nodal expansion method. Results from running TRAC-PF1/MOD3 with this new neutronics routine were compared with the results of running two established neutronics/thermal-hydraulic space-time codes. HERMITE and ARROTTA. The transient chosen of this code verification was a rapid ejection of an off-center control rod in a Westinghouse pressurized water reactor, which is initially at hot standby. This severe prompt-critical transient provides a stringent test of TRAC-PF1/MOD3`s new multidimensional neutronics routine and its coupling to the existing thermal-hydraulic solution methodology. Because of its speed, the transient tests only the fuel rod heat conduction coupling and not the coolant thermal-hydraulic coupling. Acceptable agreement as obtained among the results from TRAC-PF1/MOD3, HERMITE, and ARROTTA during all phases of this transient. Agreement was in the areas of time dependence of total-core and peak-assembly powers, as well as the time dependence of the core-average and peak-assembly fuel temperatures. In addition, comparison of several steady-state calculations that provide initial conditions for the transient analysis showed acceptable agreement in the calculated eigenvalues and normalized assembly-power distributions.

  7. TRAC-BF1 thermal-hydraulic, ANSYS stress analysis for core shroud cracking phenomena

    SciTech Connect

    Shoop, U.; Feltus, M.A.; Baratta, A.J.

    1996-12-31

    The U.S. Nuclear Regulatory Commission sent Generic Letter 94-03 informing all licensees about the intergranular stress corrosion cracking (IGSCC) of core shrouds found in both Dresden unit I and Quad Cities unit 1. The letter directed all licensees to perform safety analysis of their boiling water reactor (BWR) units. Two transients of special concern for the core shroud safety analysis include the main steam line break (MSLB) and recirculation line break transient.

  8. Statistical Safety Evaluation of BWR Turbine Trip Scenario Using Coupled Neutron Kinetics and Thermal Hydraulics Analysis Code SKETCH-INS/TRACE5.0

    NASA Astrophysics Data System (ADS)

    Ichikawa, Ryoko; Masuhara, Yasuhiro; Kasahara, Fumio

    The Best Estimate Plus Uncertainty (BEPU) method has been prepared for the regulatory cross-check analysis at Japan Nuclear Energy Safety Organization (JNES) on base of the three-dimensional neutron-kinetics/thermal- hydraulics coupled code SKETCH-INS/TRACE5.0. In the preparation, TRACE5.0 is verified against the large-scale thermal-hydraulic tests carried out with NUPEC facility. These tests were focused on the pressure drop of steam-liquid two phase flow and void fraction distribution. From the comparison of the experimental data with other codes (RELAP5/MOD3.3 and TRAC-BF1), TRACE5.0 was judged better than other codes. It was confirmed that TRACE5.0 has high reliability for thermal hydraulics behavior and are used as a best-estimate code for the statistical safety evaluation. Next, the coupled code SKETCH-INS/TRACE5.0 was applied to turbine trip tests performed at the Peach Bottom-2 BWR4 Plant. The turbine trip event shows the rapid power peak due to the voids collapse with the pressure increase. The analyzed peak value of core power is better simulated than the previous version SKETCH-INS/TRAC-BF1. And the statistical safety evaluation using SKETCH-INS/TRACE5.0 was applied to the loss of load transient for examining the influence of the choice of sampling method.

  9. Simulation of the passive condensation cooling tank of the PASCAL test facility using the component thermal-hydraulic analysis code CUPID

    SciTech Connect

    Cho, H. K.; Lee, S. J.; Kang, K. H.; Yoon, H. Y.

    2012-07-01

    For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been being developed. In the present study, the CUPID code was applied for the simulation of the PASCAL (PAFS Condensing Heat Removal Assessment Loop) test facility constructed with an aim of validating the cooling and operational performance of the PAFS (Passive Auxiliary Feedwater System). The PAFS is one of the advanced safety features adopted in the APR+ (Advanced Power Reactor +), which is intended to completely replace the conventional active auxiliary feedwater system. This paper presents the preliminary simulation results of the PASCAL facility performed with the CUPID code in order to verify its applicability to the thermal-hydraulic phenomena inside the system. A standalone calculation for the passive condensation cooling tank was performed by imposing a heat source boundary condition and the transient thermal-hydraulic behaviors inside the system, such as the water level, temperature and velocity, were qualitatively investigated. The simulation results verified that the natural circulation and boiling phenomena in the water pool can be well reproduced by the CUPID code. (authors)

  10. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 3, Validation assessments

    SciTech Connect

    Lombardo, N.J.; Cuta, J.M.; Michener, T.E.; Rector, D.R.; Wheeler, C.L.

    1986-12-01

    This report presents the results of the COBRA-SFS (Spent Fuel Storage) computer code validation effort. COBRA-SFS, while refined and specialized for spent fuel storage system analyses, is a lumped-volume thermal-hydraulic analysis computer code that predicts temperature and velocity distributions in a wide variety of systems. Through comparisons of code predictions with spent fuel storage system test data, the code's mathematical, physical, and mechanistic models are assessed, and empirical relations defined. The six test cases used to validate the code and code models include single-assembly and multiassembly storage systems under a variety of fill media and system orientations and include unconsolidated and consolidated spent fuel. In its entirety, the test matrix investigates the contributions of convection, conduction, and radiation heat transfer in spent fuel storage systems. To demonstrate the code's performance for a wide variety of storage systems and conditions, comparisons of code predictions with data are made for 14 runs from the experimental data base. The cases selected exercise the important code models and code logic pathways and are representative of the types of simulations required for spent fuel storage system design and licensing safety analyses. For each test, a test description, a summary of the COBRA-SFS computational model, assumptions, and correlations employed are presented. For the cases selected, axial and radial temperature profile comparisons of code predictions with test data are provided, and conclusions drawn concerning the code models and the ability to predict the data and data trends. Comparisons of code predictions with test data demonstrate the ability of COBRA-SFS to successfully predict temperature distributions in unconsolidated or consolidated single and multiassembly spent fuel storage systems.

  11. ELM - A SIMPLE TOOL FOR THERMAL-HYDRAULIC ANALYSIS OF SOLID-CORE NUCLEAR ROCKET FUEL ELEMENTS

    NASA Technical Reports Server (NTRS)

    Walton, J. T.

    1994-01-01

    ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  12. ELM - A SIMPLE TOOL FOR THERMAL-HYDRAULIC ANALYSIS OF SOLID-CORE NUCLEAR ROCKET FUEL ELEMENTS

    NASA Technical Reports Server (NTRS)

    Walton, J. T.

    1994-01-01

    ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  13. Developmental assessment of the multidimensional component in RELAP5 for Savannah River Site thermal hydraulic analysis

    SciTech Connect

    Hanson, R.G.; Johnson, E.C.; Carlson, K.E.; Chou, C.Y.; Davis, C.B.; Martin, R.P.; Riemke, R.A.; Wagner, R.J.

    1992-07-01

    This report documents ten developmental assessment problems which were used to test the multidimensional component in RELAP5/MOD2.5, Version 3w. The problems chosen were a rigid body rotation problem, a pure radial symmetric flow problem, an r-[theta] symmetric flow problem, a fall problem, a rest problem, a basic one-dimensional flow test problem, a gravity wave problem, a tank draining problem, a flow through the center problem, and coverage analysis using PIXIE. The multidimensional code calculations are compared to analytical solutions and one-dimensional code calculations. The discussion section of each problem contains information relative to the code's ability to simulate these problems.

  14. Thermal-hydraulic analysis of N Reactor graphite and shield cooling system performance

    SciTech Connect

    Low, J.O.; Schmitt, B.E.

    1988-02-01

    A series of bounding (worst-case) calculations were performed using a detailed hydrodynamic RELAP5 model of the N Reactor graphite and shield cooling system (GSCS). These calculations were specifically aimed to answer issues raised by the Westinghouse Independent Safety Review (WISR) committee. These questions address the operability of the GSCS during a worst-case degraded-core accident that requires the GDCS to mitigate the consequences of the accident. An accident scenario previously developed was designed as the hydrogen-mitigation design-basis accident (HMDBA). Previous HMDBA heat transfer analysis,, using the TRUMP-BD code, was used to define the thermal boundary conditions that the GSDS may be exposed to. These TRUMP/HMDBA analysis results were used to define the bounding operating conditions of the GSCS during the course of an HMDBA transient. Nominal and degraded GSCS scenarios were investigated using RELAP5 within or at the bounds of the HMDBA transient. 10 refs., 42 figs., 10 tabs.

  15. Developmental assessment of the multidimensional component in RELAP5 for Savannah River Site thermal hydraulic analysis

    SciTech Connect

    Hanson, R.G.; Johnson, E.C.; Carlson, K.E.; Chou, C.Y.; Davis, C.B.; Martin, R.P.; Riemke, R.A.; Wagner, R.J.

    1992-07-01

    This report documents ten developmental assessment problems which were used to test the multidimensional component in RELAP5/MOD2.5, Version 3w. The problems chosen were a rigid body rotation problem, a pure radial symmetric flow problem, an r-{theta} symmetric flow problem, a fall problem, a rest problem, a basic one-dimensional flow test problem, a gravity wave problem, a tank draining problem, a flow through the center problem, and coverage analysis using PIXIE. The multidimensional code calculations are compared to analytical solutions and one-dimensional code calculations. The discussion section of each problem contains information relative to the code`s ability to simulate these problems.

  16. Design and thermal-hydraulic analysis of tokamak divertor armor tiles

    SciTech Connect

    Sharpe, J.P.; Carter, T.A.; Bourham, M.A.; Gilligan, J.G.

    1995-12-31

    A prototype divertor armor tile design has been investigated using water-cooled ATJ graphite tiles fitted to a copper heat sink. Two-dimensional steady-state and 1-D time dependent heat transfer codes were developed to determine thermal design characteristics. A steady-state heat flux of 5 MW/m{sup 2} and a transient disruption load of 140 MJ/m{sup 2} over 100 {micro}s were assumed for an ITER-type device operating in a radiative divertor configuration. For a tile fitted to the heat sink by a bonded-pin mechanism, the optimal armor thickness was determined to be 1.0 cm, with a 2.2 cm diameter coolant channel. The maximum steady state and disruption temperatures of the tile were determined to be 1,760 K and 4,800 K, respectively. LOCA analysis yielded that a 7 second response time would be needed after loss-of-coolant in the armor tile. The design is predicted to survive approximately 6 disruptions before tile replacement would be necessary.

  17. Statistically based uncertainty analysis for ranking of component importance in the thermal-hydraulic safety analysis of the Advanced Neutron Source Reactor

    SciTech Connect

    Wilson, G.E.

    1992-01-01

    The Analytic Hierarchy Process (AHP) has been used to help determine the importance of components and phenomena in thermal-hydraulic safety analyses of nuclear reactors. The AHP results are based, in part on expert opinion. Therefore, it is prudent to evaluate the uncertainty of the AHP ranks of importance. Prior applications have addressed uncertainty with experimental data comparisons and bounding sensitivity calculations. These methods work well when a sufficient experimental data base exists to justify the comparisons. However, in the case of limited or no experimental data the size of the uncertainty is normally made conservatively large. Accordingly, the author has taken another approach, that of performing a statistically based uncertainty analysis. The new work is based on prior evaluations of the importance of components and phenomena in the thermal-hydraulic safety analysis of the Advanced Neutron Source Reactor (ANSR), a new facility now in the design phase. The uncertainty during large break loss of coolant, and decay heat removal scenarios is estimated by assigning a probability distribution function (pdf) to the potential error in the initial expert estimates of pair-wise importance between the components. Using a Monte Carlo sampling technique, the error pdfs are propagated through the AHP software solutions to determine a pdf of uncertainty in the system wide importance of each component. To enhance the generality of the results, study of one other problem having different number of elements is reported, as are the effects of a larger assumed pdf error in the expert ranks. Validation of the Monte Carlo sample size and repeatability are also documented.

  18. ATHOS3 code analysis of tube plugging effects on the thermal-hydraulic characteristics of a once-through steam generator

    SciTech Connect

    Keeton, L.W.; Singhal, A.K.; Irani, A.

    1987-01-01

    The effects of tube plugging on local and global thermal-hydraulic parameters are analyzed for a full-scale once-through steam generator (Three-Mile Island Unit 1A). A three-dimensional analysis has been performed, by considering all pertinent geometric details, including the presence of an open tube-free lane in the generator. Three test cases have been analyzed by using the ATHOS3 computer code. First, a normal unit is simulated, and then the same unit with about 8% plugged tubes is simulated by using the same computational grid. Finally, the plugged-tube case is analyzed with a finer grid. In all calculations, the algebraic-slip flow model, based on a drift-flux formulation, has been used with the assumption of thermal equilibrium between steam and water. The calculations indicate that, although the plugged tubes to not have any major effect on the overall thermal-hydraulic parameters, they do induce severe non-uniformities in the flow field. For example, over a small circumferential sector, wet steam is predicted to be exiting radially to the steam outlet. Further numerical and experimental investigations are recommended for the verification of such details.

  19. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    SciTech Connect

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.

  20. Transient thermal, hydraulic, and mechanical analysis of a counter flow offset strip fin intermediate heat exchanger using an effective porous media approach

    NASA Astrophysics Data System (ADS)

    Urquiza, Eugenio

    This work presents a comprehensive thermal hydraulic analysis of a compact heat exchanger using offset strip fins. The thermal hydraulics analysis in this work is followed by a finite element analysis (FEA) to predict the mechanical stresses experienced by an intermediate heat exchanger (IHX) during steady-state operation and selected flow transients. In particular, the scenario analyzed involves a gas-to-liquid IHX operating between high pressure helium and liquid or molten salt. In order to estimate the stresses in compact heat exchangers a comprehensive thermal and hydraulic analysis is needed. Compact heat exchangers require very small flow channels and fins to achieve high heat transfer rates and thermal effectiveness. However, studying such small features computationally contributes little to the understanding of component level phenomena and requires prohibitive computational effort using computational fluid dynamics (CFD). To address this issue, the analysis developed here uses an effective porous media (EPM) approach; this greatly reduces the computation time and produces results with the appropriate resolution [1]. This EPM fluid dynamics and heat transfer computational code has been named the Compact Heat Exchanger Explicit Thermal and Hydraulics (CHEETAH) code. CHEETAH solves for the two-dimensional steady-state and transient temperature and flow distributions in the IHX including the complicating effects of temperature-dependent fluid thermo-physical properties. Temperature- and pressure-dependent fluid properties are evaluated by CHEETAH and the thermal effectiveness of the IHX is also calculated. Furthermore, the temperature distribution can then be imported into a finite element analysis (FEA) code for mechanical stress analysis using the EPM methods developed earlier by the University of California, Berkeley, for global and local stress analysis [2]. These simulation tools will also allow the heat exchanger design to be improved through an

  1. Incorporation of a Helical Tube Heat Transfer Model in the MARS Thermal Hydraulic Systems Analysis Code for the T/H Analyses of the SMART Reactor

    SciTech Connect

    Young Jin Lee; Bub Dong Chung; Jong Chull Jo; Hho Jung Kim; Un Chul Lee

    2004-07-01

    SMART is a medium sized integral type advanced pressurized water reactor currently under development at KAERI. The steam generators of SMART are designed with helically coiled tubes and these are designed to produce superheated steam. The helical shape of the tubes can induce strong centrifugal effect on the secondary coolant as it flows inside the tubes. The presence of centrifugal effect is expected to enhance the formation of cross-sectional circulation flows within the tubes that will increase the overall heat transfer. Furthermore, the centrifugal effect is expected to enhance the moisture separation and thus make it easier to produce superheated steam. MARS is a best-estimate thermal-hydraulic systems analysis code with multi-phase, multi-dimensional analysis capability. The MARS code was produced by restructuring and merging the RELAP5 and the COBRA-TF codes. However, MARS as well as most other best-estimate systems analysis codes in current use lack the detailed models needed to describe the thermal hydraulics of helically coiled tubes. In this study, the heat transfer characteristics and relevant correlations for both the tube and shell sides of helical tubes have been investigated, and the appropriate models have been incorporated into the MARS code. The newly incorporated helical tube heat transfer package is available to the MARS users via selection of the appropriate option in the input. A performance analysis on the steam generator of SMART under full power operation was carried out using the modified MARS code. The results of the analysis indicate that there is a significant improvement in the code predictability. (authors)

  2. ATHOS: a computer program for thermal-hydraulic analysis of steam generators. Volume 1. Mathematical and physical models and method of solution. [PWR

    SciTech Connect

    Singhal, A.K.; Keeton, L.W.; Spalding, D.B.; Srikantiah, G.S.

    1982-10-01

    ATHOS (Analysis of the Thermal Hydraulics of Steam Generators) is a computer code developed by CHAM of North America Incorporated, under the contract RP 1066-1 from the Electric Power Research Institute, Palo Alto, California. ATHOS supersedes the earlier code URSULA2. ATHOS is designed for three-dimensional, steady state and transient analyses of PWR steam generators. The current version of the code has been checked out for: three different configurations of the recirculating-type U-tube steam generators; the homogeneous and algebraic-slip flow models; and full and part load operating conditions. The description of ATHOS is divided into four volumes. Volume 1 includes the mathematical and physical models and method of solution.

  3. Thermal hydraulic analysis of China fusion engineering test reactor during thermal quenching by comparative approach of Relap5 and THEATRe codes

    NASA Astrophysics Data System (ADS)

    Khan, Salah Ud-Din; Song, Yuntao; Khan, Shahab Ud-Din

    2016-10-01

    Thermal quenching in Tokamak reactor is the most obvious phenomenon happens during plasma disruption conditions. The current research is focused on the thermal behavior of different parameters of China fusion engineering test reactor (CFETR) including reactor power, pressure and mass flow rate conditions. The analysis was performed by two thermal hydraulic codes, i.e. THEATRe and Relap5. During the first phase of research, thermal quenching behavior and trends that can be possible during the reactor operation was performed. In the next phase, nodalization diagram of THEATRe and Relap5 codes were developed. The listed parameters were calculated and analyzed for the safety aspects of the reactor. The main objective of the research was to analyze the blanket system of CFETR (Tokamak) for safety concerns during disruption condition. The research will be extended to other components for safe operation of reactor as well.

  4. Three Mile Island Unit 1 Main Steam Line Break Three-Dimensional Neutronics/Thermal-Hydraulics Analysis: Application of Different Coupled Codes

    SciTech Connect

    D'Auria, Francesco; Moreno, Jose Luis Gago; Galassi, Giorgio Maria; Grgic, Davor; Spadoni, Antonino

    2003-05-15

    A comprehensive analysis of the double ended main steam line break (MSLB) accident assumed to occur in the Babcock and Wilcox Three Mile Island Unit 1 (TMI-1) has been carried out at the Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione of the University of Pisa, Italy, in cooperation with the University of Zagreb, Croatia. The overall activity has been completed within the framework of the participation in the Organization for Economic Cooperation and Development-Committee on the Safety of Nuclear Installations-Nuclear Science Committee pressurized water reactor MSLB benchmark.Thermal-hydraulic system codes (various versions of Relap5), three-dimensional (3-D) neutronics codes (Parcs, Quabbox, and Nestle), and one subchannel code (Cobra) have been adopted for the analysis. Results from the following codes (or code versions) are assumed as reference:1. Relap5/mod3.2.2, beta version, coupled with the 3-D neutron kinetics Parcs code parallel virtual machine (PVM) coupling2. Relap5/mod3.2.2, gamma version, coupled with the 3-D neutron kinetics Quabbox code (direct coupling)3. Relap5/3D code coupled with the 3-D neutron kinetics Nestle code.The influence of PVM and of direct coupling is also discussed.Boundary and initial conditions of the system, including those relevant to the fuel status, have been supplied by Pennsylvania State University in cooperation with GPU Nuclear Corporation (the utility, owner of TMI) and the U.S. Nuclear Regulatory Commission. The comparison among the results obtained by adopting the same thermal-hydraulic nodalization and the coupled code version is discussed in this paper.The capability of the control rods to recover the accident has been demonstrated in all the cases as well as the capability of all the codes to predict the time evolution of the assigned transient. However, one stuck control rod caused some 'recriticality' or 'return to power' whose magnitude is largely affected by boundary and initial conditions.

  5. Neutronic and thermal-hydraulic analysis of new irradiation channels inside the Moroccan TRIGA Mark II research reactor core.

    PubMed

    Chham, E; El Bardouni, T; Benaalilou, K; Boukhal, H; El Bakkari, B; Boulaich, Y; El Younoussi, C; Nacir, B

    2016-10-01

    This study was conducted to improve the capacity of radioisotope production in the Moroccan TRIGA Mark II research reactor, which is considered as one of the most important applications of research reactors. The aim of this study is to enhance the utilization of TRIGA core in the field of neutron activation and ensure an economic use of the fuel. The main idea was to create an additional irradiation channel (IC) inside the core. For this purpose, three new core configurations are proposed, which differ according to the IC position in the core. Thermal neutron flux distribution and other neutronic safety parameters such as power peaking factors, excess reactivity, and control rods worth reactivity were calculated using the Monte Carlo N-Particle Transport (MCNP) code and neutron cross-section library based on ENDF/B-VII evaluation. The calculated thermal flux in the central thimble (CT) and in the added IC for the reconfigured core is compared with the thermal flux in the CT of the existing core, which is taken as a reference. The results show that all the obtained fluxes in CTs are very close to the reference value, while a remarkable difference is observed between the fluxes in the new ICs and reference. This difference depends on the position of IC in the reactor core. To demonstrate that the Moroccan TRIGA reactor could safely operate at 2MW, with new configurations based on new ICs, different safety-related thermal-hydraulic parameters were investigated. The PARET model was used in this study to verify whether the safety margins are met despite the new modifications of the core. The results show that it is possible to introduce new ICs safely in the reactor core, because the obtained values of the parameters are largely far from compromising the safety of the reactor.

  6. Process management using component thermal-hydraulic function classes

    DOEpatents

    Morman, J.A.; Wei, T.Y.C.; Reifman, J.

    1999-07-27

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

  7. Process management using component thermal-hydraulic function classes

    DOEpatents

    Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques

    1999-01-01

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  8. GCFR thermal-hydraulic experiments

    SciTech Connect

    Schlueter, G.; Baxi, C.B.; Dalle Donne, M.; Gat, U.; Fenech, H.; Hanson, D.; Hudina, M.

    1980-01-01

    The thermal-hydraulic experimental studies performed and planned for the Gas-Cooled Fast Reactor (GCFR) core assemblies are described. The experiments consist of basic studies performed to obtain correlations, and bundle experiments which provide input for code validation and design verification. These studies have been performed and are planned at European laboratories, US national laboratories, Universities in the US, and at General Atomic Company

  9. Process management using component thermal-hydraulic function classes

    SciTech Connect

    Morman, James A.; Wei, Thomas Y.C.; Reifman, Jaques

    1997-12-01

    A process management expert system for a nuclear, chemical or other process is effective following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. The search process is based upon mass, momentum and energy conservation principles so that qualitative thermal-hydraulic fundamental principles are satisfied for new system configurations. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  10. Validation of the MULCH-II code for thermal-hydraulic safety analysis of the MIT research reactor conversion to LEU.

    SciTech Connect

    Ko, Y. C.; Hu, L. W.; Olson, A. P.; Dunn, F. E.; Nuclear Engineering Division; MIT

    2007-01-01

    An in-house thermal hydraulics code was developed for the steady-state and loss of primary flow analysis of the MIT Research Reactor (MITR). This code is designated as MULti-CHannel-II or MULCH-II. The MULCH-II code is being used for the MITR LEU conversion design study. Features of the MULCH-II code include a multi-channel analysis, the capability to model the transition from forced to natural convection during a loss of primary flow transient, and the ability to calculate safety limits and limiting safety system settings for licensing applications. This paper describes the validation of the code against PLTEMP/ANL 3.0 for steady-state analysis, and against RELAP5-3D for loss of primary coolant transient analysis. Coolant temperature measurements obtained from loss of primary flow transients as part of the MITR-II startup testing were also used for validating this code. The agreement between MULCH-II and the other computer codes is satisfactory.

  11. Validation of the MULCH-II code for thermal-hydraulic safety analysis of the MIT research reactor conversion to LEU

    SciTech Connect

    Ko, Y.-C.; Hu, L.-W. Olson, Arne P.; Dunn, Floyd E.

    2008-07-15

    An in-house thermal hydraulics code was developed for the steady-state and loss of primary flow analysis of the MIT Research Reactor (MITR). This code is designated as MULti-CHannel-II or MULCH-II. The MULCH-II code is being used for the MITR LEU conversion design study. Features of the MULCH-II code include a multi-channel analysis, the capability to model the transition from forced to natural convection during a loss of primary flow transient, and the ability to calculate safety limits and limiting safety system settings for licensing applications. This paper describes the validation of the code against PLTEMP/ANL 3.0 for steady-state analysis, and against RELAP5-3D for loss of primary coolant transient analysis. Coolant temperature measurements obtained from loss of primary flow transients as part of the MITR-II startup testing were also used for validating this code. The agreement between MULCH-II and the other computer codes is satisfactory. (author)

  12. Nonlinear sensitivity and uncertainty analysis in support of the blowdown heat transfer program. [Test 177 at Thermal-Hydraulic Test Facility

    SciTech Connect

    Ronen, Y.; Bjerke, M.A.; Cacuci, D.G.; Barhen, J.

    1980-11-01

    A nonlinear uncertainty analysis methodology based on the use of first and second order sensitivity coefficients is presented. As a practical demonstration, an uncertainty analysis of several responses of interest is performed for Test 177, which is part of a series of tests conducted at the Thermal-Hydraulic Test Facility (THTF) of the ORNL Engineering Technology Division Pressurized Water Reactor-Blowdown Heat Transfer (PWR-BDHT) program. These space- and time-dependent responses are: mass flow rate, temperature, pressure, density, enthalpy, and water qualtiy - in several volumetric regions of the experimental facility. The analysis shows that, over parts of the transient, the responses behave as linear functions of the input parameters; in these cases, their standard deviations are of the same order of magnitude as those of the input parameters. Otherwise, the responses exhibit nonlinearities and their standard deviations are considerably larger. The analysis also shows that the degree of nonlinearity of the responses is highly dependent on their volumetric locations.

  13. The STAT7 Code for Statistical Propagation of Uncertainties In Steady-State Thermal Hydraulics Analysis of Plate-Fueled Reactors

    SciTech Connect

    Dunn, Floyd E.; Hu, Lin-wen; Wilson, Erik

    2016-12-01

    The STAT code was written to automate many of the steady-state thermal hydraulic safety calculations for the MIT research reactor, both for conversion of the reactor from high enrichment uranium fuel to low enrichment uranium fuel and for future fuel re-loads after the conversion. A Monte-Carlo statistical propagation approach is used to treat uncertainties in important parameters in the analysis. These safety calculations are ultimately intended to protect against high fuel plate temperatures due to critical heat flux or departure from nucleate boiling or onset of flow instability; but additional margin is obtained by basing the limiting safety settings on avoiding onset of nucleate boiling. STAT7 can simultaneously analyze all of the axial nodes of all of the fuel plates and all of the coolant channels for one stripe of a fuel element. The stripes run the length of the fuel, from the bottom to the top. Power splits are calculated for each axial node of each plate to determine how much of the power goes out each face of the plate. By running STAT7 multiple times, full core analysis has been performed by analyzing the margin to ONB for each axial node of each stripe of each plate of each element in the core.

  14. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    SciTech Connect

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

  15. ATHOS3: a computer program for thermal-hydraulic analysis of steam generators. Volume 1. Mathematical and physical models and method of solution

    SciTech Connect

    Keeton, L.W.; Singhal, A.K.; Srikantiah, G.S.

    1986-07-01

    The mathematical and physical models as well as the method of solution are presented for ATHOS3. ATHOS3 is a computer code for three-dimensional, steady-state and transient analyses of PWR steam generators. It has been developed by upgrading an earlier code, ATHOS (Analysis of the Thermal Hydraulics of Steam Generators). Both ATHOS and ATHOS3 have been developed by CHAM of North America, Inc., under the contract RP1066-1 from the Electric Power Research Institute. ATHOS3 supercedes ATHOS and all other intermediate versions of the code. ATHOS3 has several additional capabilities, including a much improved and generalized geometry pre-processor module, and has been developed in a fully upwards-compatible manner from the predecessor ATHOS code. For the convenience of new users, the ATHOS3 code is documented in four self-contained volumes, i.e. no reference to the earlier ATHOS volumes is necessary. Furthermore, for the benefit of old (i.e. ATHOS code) users, it may be stated that the new (ATHOS3) documentation has been produced by updating and modifying the earlier documentation.

  16. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    SciTech Connect

    Corradin, Michael; Anderson, M.; Muci, M.; Hassan, Yassin; Dominguez, A.; Tokuhiro, Akira; Hamman, K.

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  17. The IAEA Coordinated Research Program on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis: Description of the Benchmark Test Cases and Phases

    SciTech Connect

    Frederik Reitsma; Gerhard Strydom; Bismark Tyobeka; Kostadin Ivanov

    2012-10-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The uncertainties in the HTR analysis tools are today typically assessed with sensitivity analysis and then a few important input uncertainties (typically based on a PIRT process) are varied in the analysis to find a spread in the parameter of importance. However, one wish to apply a more fundamental approach to determine the predictive capability and accuracies of coupled neutronics/thermal-hydraulics and depletion simulations used for reactor design and safety assessment. Today there is a broader acceptance of the use of uncertainty analysis even in safety studies and it has been accepted by regulators in some cases to replace the traditional conservative analysis. Finally, there is also a renewed focus in supplying reliable covariance data (nuclear data uncertainties) that can then be used in uncertainty methods. Uncertainty and sensitivity studies are therefore becoming an essential component of any significant effort in data and simulation improvement. In order to address uncertainty in analysis and methods in the HTGR community the IAEA launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modelling early in 2012. The project is built on the experience of the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity, but focuses specifically on the peculiarities of HTGR designs and its simulation requirements. Two benchmark problems were defined with the prismatic type design represented by the MHTGR-350 design from General Atomics (GA) while a 250 MW modular pebble bed design, similar to the INET (China) and indirect-cycle PBMR (South Africa) designs are also included. In the paper more detail on the benchmark cases, the different specific phases and tasks and the latest

  18. LMR thermal hydraulics calculations in the US

    SciTech Connect

    Dunn, F.E.; Malloy, D.J.; Mohr, D.

    1987-04-27

    A wide range of thermal hydraulics computer codes have been developed by various organizations in the US. These codes cover an extensive range of purposes from within-assembly-wise pin temperature calculations to plant wide transient analysis. The codes are used for static analysis, for analysis of protected anticipated transients, and for analysis of a wide range of unprotected transients for the more recent inherently safe LMR designs. Some of these codes are plant-specific codes with properties of a specific plant built into them. Other codes are more general and can be applied to a number of plants or designs. These codes, and the purposes for which they have been used, are described.

  19. Thermal hydraulics development for CASL

    SciTech Connect

    Lowrie, Robert B

    2010-12-07

    This talk will describe the technical direction of the Thermal-Hydraulics (T-H) Project within the Consortium for Advanced Simulation of Light Water Reactors (CASL) Department of Energy Innovation Hub. CASL is focused on developing a 'virtual reactor', that will simulate the physical processes that occur within a light-water reactor. These simulations will address several challenge problems, defined by laboratory, university, and industrial partners that make up CASL. CASL's T-H efforts are encompassed in two sub-projects: (1) Computational Fluid Dynamics (CFD), (2) Interface Treatment Methods (ITM). The CFD subproject will develop non-proprietary, scalable, verified and validated macroscale CFD simulation tools. These tools typically require closures for their turbulence and boiling models, which will be provided by the ITM sub-project, via experiments and microscale (such as DNS) simulation results. The near-term milestones and longer term plans of these two sub-projects will be discussed.

  20. Modeling and analysis of thermal-hydraulic response of uranium-aluminum reactor fuel plates under transient heatup conditions

    SciTech Connect

    Navarro-Valenti, S.; Kim, S.H.; Georgevich, V.

    1995-09-01

    The purpose of this paper is to describe the analysis performed to predict the thermal behavior of fuel miniplates under rapid transient heatup conditions. The possibility of explosive boiling was considered, and it was concluded that the heating rates are not large enough for explosive boiling to occur. However, transient boiling effects were pronounced. Because of the complexity of transient pool boiling and the unavailability of experimental data for the situations studied, an approximation was made that predicted the data very well within the uncertainties present. If pool boiling from the miniplates had been assumed to be steady during the heating pulse, the experimental data would have been greatly overestimated. This fact demonstrates the importance of considering the transient nature of heat transfer in the analysis of reactivity excursion accidents. An additional contribution of the present work is that it provided data on highly subcooled steady nulceate boiling from the cooling portion of the thermocouple traces.

  1. Predictive 1-D thermal-hydraulic analysis of the prototype HTS current leads for the ITER correction coils

    NASA Astrophysics Data System (ADS)

    Heller, R.; Bauer, P.; Savoldi, L.; Zanino, R.; Zappatore, A.

    2016-12-01

    We present an analysis of the prototype high-temperature superconducting (HTS) current leads (CLs) for the ITER correction coils, which will operate at 10 kA. A copper heat exchanger (HX) of the meander-flow type is included in the CL design and covers the temperature range between room temperature and 65 K, whereas the HTS module, where Bi-2223 stacked tapes are positioned on the outer surface of a stainless steel hollow cylindrical support, covers the temperature range between 65 K and 4.5 K. The HX is cooled by gaseous helium entering at 50 K, whereas the HTS module is cooled by conduction from the cold end of the CL. We use the CURLEAD code, developed some years ago and now supplemented by a new set of correlations for the helium friction factor and heat transfer coefficient in the HX, recently derived using Computational Fluid Dynamics. Our analysis is aimed first of all at a "blind" design-like prediction of the CL performance, for both steady state and pulsed operation. In particular, the helium mass flow rate needed to guarantee the target temperature at the HX-HTS interface, the temperature profile, and the pressure drop across the HX will be computed. The predictive capabilities of the CURLEAD model are then assessed by comparison of the simulation results with experimental data obtained in the test of the prototype correction coil CLs at ASIPP, whose results were considered only after the simulations were performed.

  2. THE THREE DIMENSIONAL THERMAL HYDRAULIC CODE BAGIRA.

    SciTech Connect

    KALINICHENKO,S.D.; KOHUT,P.; KROSHILIN,A.E.; KROSHILIN,V.E.; SMIRNOV,A.V.

    2003-05-04

    BAGIRA - a thermal-hydraulic program complex was primarily developed for using it in nuclear power plant simulator models, but is also used as a best-estimate analytical tool for modeling two-phase mixture flows. The code models allow consideration of phase transients and the treatment of the hydrodynamic behavior of boiling and pressurized water reactor circuits. It provides the capability to explicitly model three-dimensional flow regimes in various regions of the primary and secondary circuits such as, the mixing regions, circular downcomer, pressurizer, reactor core, main primary loops, the steam generators, the separator-reheaters. In addition, it is coupled to a severe-accident module allowing the analysis of core degradation and fuel damage behavior. Section II will present the theoretical basis for development and selected results are presented in Section III. The primary use for the code complex is to realistically model reactor core behavior in power plant simulators providing enhanced training tools for plant operators.

  3. Modeling and analysis of thermal-hydraulic response of uranium- aluminum reactor fuel plates under transient heatup conditions

    SciTech Connect

    Navarro-Valenti, S.; Kim, S.H.; Georgevich, V.; Taleyarkhan, R.P.; Fuketa, T.; Soyama, Kk.; Ishijima, K.; Kodaira, T.

    1995-12-31

    A 3-D model to predict the thermal behavior of ANS (Advanced Neutron Source) fuel miniplates has been developed. Possibility of explosive boiling was considered, and it was concluded that the heating rates (existant in NSRR tests) are not large enough for this to occur. However, transient boiling effects were pronounced. Because of the complexity of transient pool boiling and the unavailability of experimental data for the situations studied, an approximation was made that predicted the data very well within the uncertainties present. If pool boiling from the miniplates had been assumed to be steady during the heating pulse, the experimental data would have been greatly overestimated. This shows the importance of considering the transient nature of heat transfer in analysis of reactivity excursion accidents. An additional contribution of this work is that it provided data on highly subcooled steady nucleate boiling from the cooling portion of the thermocouple traces.

  4. Recent improvements to steady-state thermal-hydraulic analysis of research reactors in the RERTR Program at ANL.

    SciTech Connect

    Olson, A. P.; Kalimullah; Feldman, E. E.; Nuclear Engineering Division

    2006-01-01

    Recent reactor conversion studies in the RERTR Program have required expansion or revision of modeling capabilities for steady state thermalhydraulic analysis. For example, some reactors operate in laminar flow, necessitating new correlations for Nusselt number and for friction loss. Others have single-sided heating of edge channels. And some have geometrical details that require new modeling approaches to either simulate or validate. Computational fluid dynamics was compared with the 2-dimensional approximation to heat flow used by the PLTEMP/ANL V3.0 code. A very systematic approach to hot channel factors is implemented. A closed-form solution is now used in flat-plate geometry to improve both speed and accuracy of the solution. Direct heating to clad and coolant is now included. The Groenveld table lookup method is now available for determination of CHF. Flow excursion prediction is updated. All of these improvements have been incorporated in the PLTEMP/ANL V3.0 code.

  5. BEACON/MOD: a computer program for thermal-hydraulic analysis of nuclear reactor containments - user's manual

    SciTech Connect

    Broadus, C.R.; Doyle, R.J.; James, S.W.; Lime, J.F.; Mings, W.J.

    1980-04-01

    The BEACON code is a best-estimate, advanced containment code designed to perform a best-estimate analysis of the flow of a mixture of air, water, and steam in a nuclear reactor containment system under loss-of-coolant accident conditions. The code can simulate two-component, two-phase fluid flow in complex geometries using a combination of two-dimensional, one-dimensional, and lumped-parameter representations for the various parts of the system. The current version of BEACON, which is designated BEACON/MOD3, contains mass and heat transfer models for wall film and wall conduction. It is suitable for the evaluation of short-term transients in dry-containment systems. This manual describes the models employed in BEACON/MOD3 and specifies code implementation requirements. It provides application information for input data preparation and for output data interpretation.

  6. Verification and Validation of the PLTEMP/ANL Code for Thermal-Hydraulic Analysis of Experimental and Test Reactors

    SciTech Connect

    Kalimullah, M.; Olson, Arne P.; Feldman, E. E.; Hanan, N.; Dionne, B.

    2015-04-07

    The document compiles in a single volume several verification and validation works done for the PLTEMP/ANL code during the years of its development and improvement. Some works that are available in the open literature are simply referenced at the outset, and are not included in the document. PLTEMP has been used in conversion safety analysis reports of several US and foreign research reactors that have been licensed and converted. A list of such reactors is given. Each chapter of the document deals with the verification or validation of a specific model. The model verification is usually done by comparing the code with hand calculation, Microsoft spreadsheet calculation, or Mathematica calculation. The model validation is done by comparing the code with experimental data or a more validated code like the RELAP5 code.

  7. In-Containment Thermal-hydraulic and Aerosol Behaviour during Severe Accidents: Analysis of the PHEBUS-FPT2 Experiment

    SciTech Connect

    Herranz, Luis E.; Fontanet, Joan; Vela-Garcia, Monica

    2006-07-01

    Ongoing work in the area of development and validation of severe accident computer codes, is and will be highly valuable when dealing with safety analysis of some designs of Generation III, III+ and, even, Generation IV. In the experiment PHEBUS-FPT2 a realistic source of nuclear aerosols was generated in the core and transported through a mock-up of the primary circuit up to a containment vessel where weak condensing conditions were imposed in a largely unsaturated atmosphere. By using CONTAIN 2.0, MELCOR 1.8.5 and ASTEC 1.1, the experimental scenario has been modeled. All the codes share similar characteristics and approached the experimental scenario in a quite simple way. The same assumptions have been made and the only major difference has been the three-cell nodalization of the vessel in the case of ASTEC 1.1 (a single cell was used in CONTAIN and MELCOR). No major code-to-code differences have stemmed from the different meshing schemes used in the vessel modeling. However, some minor differences have been observed between ASTEC and the American codes in variables like gas temperature or settled mass. The agreement of code estimates with available data can be said to be acceptable. Slight discrepancies found in steam partial pressure seem to indicate that codes over-estimated steam condensation rate during the first 2000 s. Potential uncertainties in surface temperature could well explain this. Overall evolution of airborne aerosols has been satisfactorily predicted. However, all the codes noticeably overestimate sedimentation. Sensitivity studies carried out on particles size, shape and density have indicated that uncertainties on those variables cannot justify the magnitude of the deviation found. (authors)

  8. COBRA-NC: a thermal hydraulics code for transient analysis of nuclear reactor components. Volume 2. COBRA-NC numerical solution methods

    SciTech Connect

    Thurgood, M.J.; George, T.L.; Wheeler, C.L.

    1986-04-01

    The COBRA-NC computer program has been developed to predict the thermal-hydraulic response of nuclear reactor components to thermal-hydraulic transients. The code solves the multicomponent, compressible three-dimensional, two-fluid, three-field equations for two-phase flow. The three fields are the vapor field, the continuous liquid field, and the liquid drop field. The code has been used to model flow and heat transfer within the reactor core, the reactor vessel, the steam generators, and in the nuclear containment. This volume describes the finite-volume equations and the numerical solution methods used to solve these equations. It is directed toward the user who is interested in gaining a more complete understanding of the numerical methods used to obtain a solution to the hydrodynamic equations.

  9. Current and anticipated uses of thermal hydraulic codes in Korea

    SciTech Connect

    Kim, Kyung-Doo; Chang, Won-Pyo

    1997-07-01

    In Korea, the current uses of thermal hydraulic codes are categorized into 3 areas. The first application is in designing both nuclear fuel and NSSS. The codes have usually been introduced based on the technology transfer programs agreed between KAERI and the foreign vendors. Another area is in the supporting of the plant operations and licensing by the utility. The third category is research purposes. In this area assessments and some applications to the safety issue resolutions are major activities using the best estimate thermal hydraulic codes such as RELAP5/MOD3 and CATHARE2. Recently KEPCO plans to couple thermal hydraulic codes with a neutronics code for the design of the evolutionary type reactor by 2004. KAERI also plans to develop its own best estimate thermal hydraulic code, however, application range is different from KEPCO developing code. Considering these activities, it is anticipated that use of the best estimate hydraulic analysis code developed in Korea may be possible in the area of safety evaluation within 10 years.

  10. Coupled 3D-neutronics / thermal-hydraulics analysis of an unprotected loss-of-flow accident for a 3600 MWth SFR core

    SciTech Connect

    Sun, K.; Chenu, A.; Mikityuk, K.; Krepel, J.; Chawla, R.

    2012-07-01

    The core behaviour of a large (3600 MWth) sodium-cooled fast reactor (SFR) is investigated in this paper with the use of a coupled TRACE/PARCS model. The SFR neutron spectrum is characterized by several performance advantages, but also leads to one dominating neutronics drawback - a positive sodium void reactivity. This implies a positive reactivity effect when sodium coolant is removed from the core. In order to evaluate such feedback in terms of the dynamics, a representative unprotected loss-of-flow (ULOF) transient, i.e. flow run-down without SCRAM in which sodium boiling occurs, is analyzed. Although analysis of a single transient cannot allow general conclusions to be drawn, it does allow better understanding of the underlying physics and can lead to proposals for improving the core response during such an accident. The starting point of this study is the reference core design considered in the framework of the Collaborative Project on the European Sodium Fast Reactor (CP-ESFR). To reduce the void effect, the core has been modified by introducing an upper sodium plenum (along with a boron layer) and by reducing the core height-to-diameter ratio. For the ULOF considered, a sharp increase in core power results in melting of the fuel in the case of the reference core. In the modified core, a large dryout leads to melting of the clad. It seems that, for the hypothetical event considered, fuel failure cannot be avoided with just improvement of the neutronics design; therefore, thermal-hydraulics optimization has been considered. An innovative assembly design is proposed to prevent sodium vapour blocking the fuel channel. This results in preventing a downward propagation of the sodium boiling to the core center, thus limiting it to the upper region. Such a void map introduces a negative coolant density reactivity feedback, which dominates the total reactivity change. As a result, the power level and the fuel temperature are effectively reduced, and a large dryout

  11. COBRA-NC: a thermal hydraulics code for transient analysis of nuclear reactor components. Volume 4. Users' manual for containment analysis

    SciTech Connect

    Wheeler, C.L.; Thurgood, M.J.; Guidotti, T.E.; DeBellis, D.E.

    1986-08-01

    COBRA-NC is a digital computer program written in FORTRAN IV that simulates the response of nuclear reactor components and systems to thermal-hydraulic transients. The code solves the multicomponent, compressible, three-dimensional, two-fluid, three-field equations for two-phase flow. The three velocity fields are the vapor/gas field, the continuous liquid field, and the liquid drop field. This volume of the manual provides the user with an explanation of the input required to simulate the response of multicompartment nuclear containment systems to postulated loss-of-coolant accidents that result in the release of steam, water, and/or noncondensable gases into the containment.

  12. Thermal-hydraulic interfacing code modules for CANDU reactors

    SciTech Connect

    Liu, W.S.; Gold, M.; Sills, H.

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  13. Virginia power thermal-hydraulic methods

    SciTech Connect

    Anderson, R.C.; Harrell, J.R.; Basehore, K.L.

    1987-01-01

    Virginia Power Company operates two nuclear units at Surry and another pair at North Anna, with rated thermal powers of 2441 and 2893 MW, respectively. In support of the operation of these units, the nuclear safety analysis group is required to perform departure from nucleate boiling ratio (DNBR) calculations. In order to perform DNBR in-house analyses, Virginia Power acquired the COBRA IIIc/MIT thermal-hydraulic (T/H) code in the mid-1970s. The COBRA code is used primarily to evaluate reload core designs. Additional applications include peaking factor evaluation and may include transient reanalysis. More recently, in an effort gain DNBR margin by taking credit for excessive conservatism in the methodology for treating key uncertainties, Virginia Power submitted a topical report that described a proposed statistical combination of those uncertainties. In an alternate approach to gain DNBR margin, Virginia Power submitted a topical report that describes the qualification of the proprietary WRB-1 DNBR correlation in COBRA. These reports have been combined in a recent North Anna submittal. The margin gain was used to support reanalysis of key DNBR events with more conservative assumptions, thus reducing the likelihood of future reload violations. Upon NRC approval, this submittal will greatly streamline the reload verification process, while providing core design flexibility and relaxing operational restrictions for North Anna.

  14. COBRA-NC: a thermal-hydraulic code for transient analysis of nuclear reactor components. Equations and constitutive models. Volume 1

    SciTech Connect

    Wheeler, C.L.; Thurgood, M.J.; Guidotti, T.E.; DeBellis, D.E.

    1986-05-01

    COBRA-NC is a digital computer program written in FORTRAN IV that simulates the response of nuclear reactor components and systems to thermal-hydraulic transients. The code solves the multicomponent, compressible, three-dimensional, two-fluid, three-field equations for two-phase flow. The three velocity fields are the vapor/gas field, the continuous liquid field, and the liquid drop field. The code has been used to model flow and heat transfer within the reactor core, the reactor vessel, the steam generators, and in the nuclear containment. The conservation equations, equations of state, and physical models that are common to all applications are presented in this volume of the code documentation.

  15. Views on the future of thermal hydraulic modeling

    SciTech Connect

    Ishii, M.

    1997-07-01

    It is essential for the U.S. NRC to sustain the highest level of the thermal-hydraulics and reactor safety research expertise and continuously improve their accident analysis capability. Such expertise should span over four different areas which are strongly related to each other. These are: (1) Reactor Safety Code Development, (2) Two-phase Flow Modeling, (3) Instrumentation and Fundamental Experimental Research, and (4) Separate Effect and Integral Test. The NRC is already considering a new effort in the area of advanced thermal-hydraulics effort. Its success largely depends on the availability of a significantly improved two-phase flow formulation and constitutive relations supported by detailed experimental data. Therefore, it is recommended that the NRC start significant research efforts in the areas of two-phase flow modeling, instrumentation, basic and separate effect experiments which should be pursued systematically and with clearly defined objectives. It is desirable that some international program is developed in this area. This paper is concentrated on those items in the thermal-hydraulic area which eventually determine the quality of future accident analysis codes.

  16. 10. Floor Layout of Thermal Hydraulics Laboratory, from The Thermal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Floor Layout of Thermal Hydraulics Laboratory, from The Thermal Hydraulics Laboratory at Hanford. General Electric Company, Hanford Atomic Products Operation, Richland, Washington, 1961. - D-Reactor Complex, Deaeration Plant-Refrigeration Buildings, Area 100-D, Richland, Benton County, WA

  17. Neutronics and steady-state thermal hydraulics analysis for the HEU, mixed HEU-LEU and the first full LEU cores of WWR-SM reactor at INP AS RUZ

    SciTech Connect

    Baytelesov, S.A.; Dosimbaev, A.A.; Kungurov, F.R.; Salikhbaev, U.S.

    2008-07-15

    The WWR-SM reactor at the Institute of Nuclear Physics of the Academy of Sciences (INP AS) in Uzbekistan is preparing for the conversion from HEU (36%) fuel to LEU (19.8%) fuel. During this conversion, the HEU fuel assemblies (IRT-3M FA) being discharged at the end of each cycle will be replaced by LEU fuel assemblies (IRT-4M FA); this gradual conversion requires 9 cycles. Conversion to LEU without loss of performance for the present experimental program requires the size of the core to increase from 18 to 20 fuel assemblies and the power of the reactor to increase from 10 to 11 MW. The safety analysis report for this conversion process has been prepared. This paper presents the methods and results for the neutronics analysis (burnup, power distributions and shutdown margin), the steady-state thermal hydraulics analysis and the kinetics parameters for the HEU, all mixed and the first full LEU cores. (author)

  18. Scaling approach and thermal-hydraulic analysis in the reactor cavity cooling system of a high temperature gas -cooled reactor and thermal-jet mixing in a sodium fast reactor

    NASA Astrophysics Data System (ADS)

    Omotowa, Olumuyiwa A.

    This dissertation develops and demonstrates the application of the top-down and bottom-up scaling methodologies to thermal-hydraulic flows in the reactor cavity cooling system (RCCS) of the high temperature gas reactor (HTGR) and upper plenum of the sodium fast reactor (SFR), respectively. The need to integrate scaled separate effects and integral tests was identified. Experimental studies and computational tools (CFD) have been integrated to guide the engineering design, analysis and assessment of this scaling methods under single and two-phase flow conditions. To test this methods, two applicable case studies are considered, and original contributions are noted. Case 1: "Experimental Study of RCCS for the HTGR". Contributions include validation of scaling analysis using the top-down approach as guide to a ¼-scale integral test facility. System code, RELAP5, was developed based on the derived scaling parameters. Tests performed included system sensitivity to decay heat load and heat sink inventory variations. System behavior under steady-state and transient scenarios were predicted. Results show that the system has the capacity to protect the cavity walls from over-heating during normal operations and provide a means for decay heat removal under accident scenarios. A full width half maximum statistical method was devised to characterize the thermal-hydraulics of the non-linear two-phase oscillatory behavior. This facilitated understanding of the thermal hydraulic coupling of the loop segments of the RCCS, the heat transfer, and the two-phase flashing flow phenomena; thus the impact of scaling overall. Case 2: "Computational Studies of Thermal Jet Mixing in SFR". In the pool-type SFR, susceptible regions to thermal striping are the upper instrumentation structure and the intermediate heat exchanger (IHX). We investigated the thermal mixing above the core to UIS and the potential impact due to poor mixing. The thermal mixing of dual-jet flows at different

  19. GEYSER/TONUS: A coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    SciTech Connect

    Petit, M.; Durin, M.; Gauvain, J.

    1995-09-01

    In many countries, the safety requirements for future light water reactors include accounting for severe accidents in the design process. As far as the containment is concerned, the design must now include mitigation features to limit the pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. In this context, new needs appear for the modeling of the thermal hydraulics inside the containment. It requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. Moreover, the effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled, as for example hydrogen stratification and condensation. To model such a complex situation, the use of multi-dimensional computer codes seems to be necessary in case of large volumes. The aim of the GEYSER/TONUS computer code is to fulfill this need. This code is currently under development at CEA in Saclay. It will allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, as the objective is to be able to treat complete scenarios. Physical models of classical lumped parameters codes will adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows, thanks to its modular conception, to construct sophisticated applications based upon it.

  20. Upgrading the HFIR Thermal-Hydraulic Legacy Code Using COMSOL

    SciTech Connect

    Bodey, Isaac T; Arimilli, Rao V; Freels, James D

    2010-01-01

    Modernization of the High Flux Isotope Reactor (HFIR) thermal-hydraulic (TH) design and safety analysis capability is an important step in preparation for the conversion of the HFIR core from a high enriched uranium (HEU) fuel to a low enriched uranium (LEU) fuel. Currently, an important part of the HFIR TH analysis is based on the legacy Steady State Heat Transfer Code (SSHTC), which adds much conservatism to the safety analysis. The multi-dimensional multi-physics capabilities of the COMSOL environment allow the analyst to relax the number and magnitude of conservatisms, imposed by the SSHTC, to present a more physical model of the TH aspect of the HFIR.

  1. Thermal hydraulics in undergraduate nuclear engineering education

    SciTech Connect

    Theofanous, T.G.

    1986-01-01

    The intense safety-related research efforts of the seventies in reactor thermal hydraulics have brought about the recognition of the subject as one of the cornerstones of nuclear engineering. Many nuclear engineering departments responded by building up research programs in this area, and mostly as a consequence, educational programs, too. Whether thermal hydraulics has fully permeated the conscience of nuclear engineering, however, remains yet to be seen. The lean years that lie immediately ahead will provide the test. The purpose of this presentation is to discuss the author's own educational activity in undergraduate nuclear engineering education over the past 10 yr or so. All this activity took place at Purdue's School of Nuclear Engineering. He was well satisfied with the results and expects to implement something similar at the University of California in Santa Barbara in the near future.

  2. Thermal hydraulic behavior evaluation of tank A-101

    SciTech Connect

    Ogden, D.M.

    1996-03-27

    This report describes a new evaluation conducted to help understand the thermal-hydraulic behavior of tank A-101. Prior analysis of temperature data indicated that the dome space and upper waste layer was slowly increasing in temperature increases are due to increasing ambient temperatures and termination of forced ventilation. However, this analysis also indicates that other dome cooling processes are slowly decreasing, or some slow increase in heating is occurring at the waste surface. Dome temperatures are not decreasing at the rate expected as a forced ventilation termination effects are accounted for.

  3. Thermal-hydraulic modeling needs for passive reactors

    SciTech Connect

    Kelly, J.M.

    1997-07-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.

  4. Review of computational thermal-hydraulic modeling

    SciTech Connect

    Keefer, R.H.; Keeton, L.W.

    1995-12-31

    Corrosion of heat transfer tubing in nuclear steam generators has been a persistent problem in the power generation industry, assuming many different forms over the years depending on chemistry and operating conditions. Whatever the corrosion mechanism, a fundamental understanding of the process is essential to establish effective management strategies. To gain this fundamental understanding requires an integrated investigative approach that merges technology from many diverse scientific disciplines. An important aspect of an integrated approach is characterization of the corrosive environment at high temperature. This begins with a thorough understanding of local thermal-hydraulic conditions, since they affect deposit formation, chemical concentration, and ultimately corrosion. Computational Fluid Dynamics (CFD) can and should play an important role in characterizing the thermal-hydraulic environment and in predicting the consequences of that environment,. The evolution of CFD technology now allows accurate calculation of steam generator thermal-hydraulic conditions and the resulting sludge deposit profiles. Similar calculations are also possible for model boilers, so that tests can be designed to be prototypic of the heat exchanger environment they are supposed to simulate. This paper illustrates the utility of CFD technology by way of examples in each of these two areas. This technology can be further extended to produce more detailed local calculations of the chemical environment in support plate crevices, beneath thick deposits on tubes, and deep in tubesheet sludge piles. Knowledge of this local chemical environment will provide the foundation for development of mechanistic corrosion models, which can be used to optimize inspection and cleaning schedules and focus the search for a viable fix.

  5. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    SciTech Connect

    Akimoto, Hajime; Kukita; Ohnuki, Akira

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  6. Thermal hydraulics of steam generator sludge

    SciTech Connect

    Ulke, A.; Goldberg, I.

    1990-12-31

    Experimental and analytical studies of thermal hydraulic processes in commercial steam generator tube sheet sludge have been previously reported. That work was performed because the authors believed that tubing corrosion occurs when the sludge deposit becomes too deep for the liquid to penetrate freely, leading to formation of a liquid deficient region with high chemical concentrations on the tube surface. The primary objective of this work is to determine analytically the extent of liquid penetration into porous sludge. The secondary objectives are determinations of liquid saturation and chemical concentration profiles along the sludge covered tube length. The method described in this paper differs from those used in previous works in that it allows specification of porosity and permeability as a function of distance into the sludge and, also, in some of the auxiliary equations used.

  7. Proceedings of the OECD/CSNI workshop on transient thermal-hydraulic and neutronic codes requirements

    SciTech Connect

    Ebert, D.

    1997-07-01

    This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items to be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.

  8. Simulation of the PBF-Candu test with coupled thermal-hydraulic and fuel thermo-mechanical responses

    SciTech Connect

    Baschuk, J. J.

    2012-07-01

    During a large loss-of-coolant accident (LLOCA), the fuel sheath temperature is influenced by thermal-hydraulic and thermo-mechanical phenomena. The thermal-hydraulic phenomena include the heat transfer from the sheath to the coolant and surroundings. Thermo-mechanical phenomena, such as creep and thermal expansion, influence the size of the fuel-to-sheath gap, and thus the heat transfer from the fuel to the sheath. Therefore, coupling the thermal-hydraulic and thermo-mechanical analysis of an LLOCA would result in more accurate predictions of sheath temperature. This is illustrated by comparing the sheath temperature predictions from coupled and decoupled simulations of the PBF-Candu Test with experimental measurements. The codes CATHENA and ELOCA were used for the thermal-hydraulic and thermo-mechanical analysis, respectively. The predicted sheath temperatures from both the coupled and decoupled simulations were higher than the measured values. However, after the initial power pulse, when the fuel-to-sheath gap was calculated as being opened, the sheath temperatures predicted by the coupled simulation were closer to the experimental measurements. Thus, under conditions of an open fuel-to-sheath gap, a coupled thermal-hydraulic and thermo-mechanical analysis can improve predictions of sheath temperatures. (authors)

  9. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    SciTech Connect

    Richard, Joshua; Galloway, Jack; Fensin, Michael; Trellue, Holly

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from the combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.

  10. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    DOE PAGES

    Richard, Joshua; Galloway, Jack; Fensin, Michael; ...

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore » combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less

  11. Assessment of the thermal-hydraulic technology of the transition phase of a core-disruptive accident in a LMFBR

    SciTech Connect

    Greene, G.A.; Ginsberg, T.; Kazimi, M.S.

    1982-11-01

    The technology of thermal hydraulic aspects of the transition phase accident sequence in liquid metal fast breeder reactors has been reviewed. Previous analyses of the transition phase accident sequence have been reviewed and the current understanding of major thermal hydraulic phenomenology has been assessed. As a result of the foregoing, together with a scoping analysis of the transition phase accident sequence, major transition phase issues have been defined and research needs have been identified. The major conclusion of transition phase scoping analysis is that fuel dispersal cannot be relied upon to rule out the possibility of recriticalities during this stage of the accident.

  12. Assessment of uncertainties of the models used in thermal-hydraulic computer codes

    NASA Astrophysics Data System (ADS)

    Gricay, A. S.; Migrov, Yu. A.

    2015-09-01

    The article deals with matters concerned with the problem of determining the statistical characteristics of variable parameters (the variation range and distribution law) in analyzing the uncertainty and sensitivity of calculation results to uncertainty in input data. A comparative analysis of modern approaches to uncertainty in input data is presented. The need to develop an alternative method for estimating the uncertainty of model parameters used in thermal-hydraulic computer codes, in particular, in the closing correlations of the loop thermal hydraulics block, is shown. Such a method shall feature the minimal degree of subjectivism and must be based on objective quantitative assessment criteria. The method includes three sequential stages: selecting experimental data satisfying the specified criteria, identifying the key closing correlation using a sensitivity analysis, and carrying out case calculations followed by statistical processing of the results. By using the method, one can estimate the uncertainty range of a variable parameter and establish its distribution law in the above-mentioned range provided that the experimental information is sufficiently representative. Practical application of the method is demonstrated taking as an example the problem of estimating the uncertainty of a parameter appearing in the model describing transition to post-burnout heat transfer that is used in the thermal-hydraulic computer code KORSAR. The performed study revealed the need to narrow the previously established uncertainty range of this parameter and to replace the uniform distribution law in the above-mentioned range by the Gaussian distribution law. The proposed method can be applied to different thermal-hydraulic computer codes. In some cases, application of the method can make it possible to achieve a smaller degree of conservatism in the expert estimates of uncertainties pertinent to the model parameters used in computer codes.

  13. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    SciTech Connect

    Hirano, Masashi

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  14. Thermal hydraulic characteristics study of prototype NET and CEA cable-in-conduit conductors (CICCs)

    SciTech Connect

    Maekawa, Ryuji

    1995-10-31

    The thermal hydraulic characteristics of low temperature helium in a Cable-in-Conduit Conductor (CICC) significantly affects the overall design and performance of the associated large scale superconducting magnet system. It is essential to understand the transient and steady state behavior of the helium in the conductor. Throughout the development of CICCs, the reduction of flow impedance has been one of the key factors to improving the overall pressure drop. The newly developed CICC for the ITER project has a hybrid cooling scheme: a central channel that is surrounded by bundles, for which the thermal hydraulic characteristics are not well understood. This thesis describes an experimental and analytical investigation of thermal hydraulic characteristics of low temperature helium in conventional and hybrid CICCS. Pressure drop measurements for both NET and CEA conductors have been conducted, using low temperature helium and liquid nitrogen to obtain a range of Reynolds numbers. The results are correlated with classical friction factor and Reynolds number analysis. The flow impedance reduction of the CEA conductor is described by measures of a developed flow model. Thermally induced flow in the CEA conductor has been studied with an inductive heating method. The induced velocity in the central channel is measured by a Pitot tube with steady state Reynolds number up to {approximately}7000. The transient pressure wave propagation has been recorded with pressure transducers placed equally along the conductor. The supercritical helium temperature in the central channel has been measured with the thermometer probe. However, the reduction of the central channel area significantly affects the overall thermal hydraulic characteristics of the conductor. The results suggest the importance of the central channel. A transient heat transfer experiment studied the.transverse heat transfer mechanism in the CEA conductor. The temperatures in the central channel and bundle region

  15. Thermal-hydraulics design comparisons for the tandem mirror hybrid reactor blanket

    SciTech Connect

    Wong, C.P.C.; Yang, Y.S.; Schultz, K.R.

    1980-09-01

    The Tandem Mirror Hybrid Reactor (TMHR) is a cylindrical reactor, and the fertile materials and tritium breeding fuel elements can be arranged with radial or axial orientation in the blanket module. Thermal-hydraulics performance comparisons were made between plate, axial rod and radial rod fuel geometrices. The three configurations result in different coolant/void fractions and different clad/structure fractions. The higher void fraction in the two rod designs means that these blankets will have to be thicker than the plate design blanket in order to achieve the same level of nuclear interactions. Their higher structural fractions will degrade the uranium breeding ratio and energy multiplication factor of the design. One difficulty in the thermal-hydraulics analysis of the plate design was caused by the varying energy multiplication of the blanket during the lifetime of the plate which forced the use of designs that operated in the transition flow regime at some point during life. To account for this, an approach was adopted from Gas Cooled Fast Reactor (GCFR) experience for the pressure drop calculation and the corresponding heat transfer coefficient that was used for the film drop thermal calculation. Because of the superior nuclear performance, the acceptable thermal-hydraulic characteristics and the mechanical design feasibility, the plate geometry concept was chosen for the reference gas-cooled TMHR blanket design.

  16. An assessment of the CORCON-MOD3 code. Part 1: Thermal-hydraulic calculations

    SciTech Connect

    Strizhov, V.; Kanukova, V.; Vinogradova, T.; Askenov, E.; Nikulshin, V.

    1996-09-01

    This report deals with the subject of CORCON-Mod3 code validation (thermal-hydraulic modeling capability only) based on MCCI (molten core concrete interaction) experiments conducted under different programs in the past decade. Thermal-hydraulic calculations (i.e., concrete ablation, melt temperature, melt energy, concrete temperature, and condensible and non-condensible gas generation) were performed with the code, and compared with the data from 15 experiments, conducted at different scales using both simulant (metallic and oxidic) and prototypic melt materials, using different concrete types, and with and without an overlying water pool. Sensitivity studies were performed in a few cases involving, for example, heat transfer from melt to concrete, condensed phase chemistry, etc. Further, special analysis was performed using the ACE L8 experimental data to illustrate the differences between the experimental and the reactor conditions, and to demonstrate that with proper corrections made to the code, the calculated results were in better agreement with the experimental data. Generally, in the case of dry cavity and metallic melts, CORCON-Mod3 thermal-hydraulic calculations were in good agreement with the test data. For oxidic melts in a dry cavity, uncertainties in heat transfer models played an important role for two melt configurations--a stratified geometry with segregated metal and oxide layers, and a heterogeneous mixture. Some discrepancies in the gas release data were noted in a few cases.

  17. Thermal hydraulic feasibility assessment for the Spent Nuclear Fuel Project

    SciTech Connect

    Heard, F.J.; Cramer, E.R.; Beaver, T.R.; Thurgood, M.J.

    1996-01-01

    A series of scoping analyses have been completed investigating the thermal-hydraulic performance and feasibility of the Spent Nuclear Fuel Project (SNFP) Integrated Process Strategy (IPS). The SNFP was established to develop engineered solutions for the expedited removal, stabilization, and storage of spent nuclear fuel from the K Basins at the U.S. Department of Energy`s Hanford Site in Richland, Washington. The subject efforts focused on independently investigating, quantifying, and establishing the governing heat production and removal mechanisms for each of the IPS operations and configurations, obtaining preliminary results for comparison with and verification of other analyses, and providing technology-based recommendations for consideration and incorporation into the design bases for the SNFP. The goal was to develop a series fo thermal-hydraulic models that could respond to all process and safety-related issues that may arise pertaining to the SNFP. A series of sensitivity analyses were also performed to help identify those parameters that have the greatest impact on energy transfer and hence, temperature control. It is anticipated that the subject thermal-hydraulic models will form the basis for a series of advanced and more detailed models that will more accurately reflect the thermal performance of the IPS and alleviate the necessity for some of the more conservative assumptions and oversimplifications, as well as form the basis for the final process and safety analyses.

  18. Subchannel thermal-hydraulic modeling of an APT tungsten target rod bundle

    SciTech Connect

    Hamm, L.L.; Shadday, M.A. Jr.

    1997-09-01

    The planned target for the Accelerator Production of Tritium (APT) neutron source consists of an array of tungsten rod bundles through which D{sub 2}O coolant flows axially. Here, a scoping analysis of flow through an APT target rod bundle was conducted to demonstrate that lateral cross-flows are important, and therefore subchannel modeling is necessary to accurately predict thermal-hydraulic behavior under boiling conditions. A local reactor assembly code, FLOWTRAN, was modified to model axial flow along the rod bundle as flow through three concentric heated annular passages.

  19. INL Experimental Program Roadmap for Thermal Hydraulic Code Validation

    SciTech Connect

    Glenn McCreery; Hugh McIlroy

    2007-09-01

    Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role of expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments related

  20. Development of an integrated thermal-hydraulics capability incorporating RELAP5 and PANTHER neutronics code

    SciTech Connect

    Page, R.; Jones, J.R.

    1997-07-01

    Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation tools is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell `B` Loss of offsite power fault transient.

  1. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

    SciTech Connect

    D. S. Lucas

    2004-10-01

    A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com.

  2. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    SciTech Connect

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  3. Specifications for a coupled neutronics thermal-hydraulics SFR test case

    NASA Astrophysics Data System (ADS)

    Tassone, A.; Smirnov, A. D.; Tikhomirov, G. V.

    2017-01-01

    Coupling neutronics/thermal-hydraulics calculations for the design of nuclear reactors are a growing trend in the scientific community. This approach allows to properly represent the mutual feedbacks between the neutronic distribution and the thermal-hydraulics properties of the materials composing the reactor, details which are often lost when separate analysis are performed. In this work, a test case for a generation IV sodium-cooled fast reactor (SFR), based on the ASTRID concept developed by CEA, is proposed. Two sub-assemblies (SA) characterized by different fuel enrichment and layout are considered. Specifications for the test case are provided including geometrical data, material compositions, thermo-physical properties and coupling scheme details. Serpent and ANSYS-CFX are used as reference in the description of suitable inputs for the performing of the benchmark, but the use of other code combinations for the purpose of validation of the results is encouraged. The expected outcome of the test case are the axial distribution of volumetric power generation term (q‴), density and temperature for the fuel, the cladding and the coolant.

  4. Thermal-Hydraulic Analyses Of The LS-VHTR

    SciTech Connect

    Cliff B. Davis; Grant L. Hawkes

    2006-06-01

    Thermal-hydraulic analyses were performed to evaluate the safety characteristics of the Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR). A one-dimensional model of the LS-VHTR was developed using the RELAP5-3D computer program. The thermal calculations from the one-dimensional model of a fuel block were benchmarked against a multi-dimensional finite element model. The RELAP5-3D model was used to simulate a transient initiated by loss of forced convection in which the Reactor Vessel Auxiliary Cooling System (RVACS) passively removed decay heat. Parametric calculations were performed to investigate the effects of various parameters, including bypass flow fraction, coolant channel diameter, and the coolant outlet temperature. Additional parametric calculations investigated the effects of an enhanced RVACS design, failure to scram, and radial/axial conduction in the core.

  5. 78 FR 8202 - Meeting of the Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy and Reactor Fuels; Notice of Meeting The Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy and Reactor Fuels will hold a meeting...

  6. Numerical simulation of thermal-hydraulic generators running in a single regime

    NASA Astrophysics Data System (ADS)

    Chioreanu, Nicolae; Mitran, Tudor; Rus, Alexandru; Beles, Horia

    2014-06-01

    The paper presents the basis for the design of thermal-hydraulic generators running in a single regime. The thermal-hydraulic generators in a single regime running represent an absolute novelty worldwide (a pioneer invention). Based on the methodology concerning this subject, the design calculus for an experimental model was developed.

  7. Thermal Hydraulic Effect of Fuel Plate Surface Roughness

    SciTech Connect

    Donna Post Guillen; Timothy S. Yoder

    2008-09-01

    This study presents surface roughness measurements characteristic of the pre-film layer applied to a typical Advanced Test Reactor (ATR) fuel plate. This data is used to estimate the friction factor for thermal hydraulic flow calculations of a Gas Test Loop (GTL) system proposed for incorporation into ATR to provide a fast neutron flux environment for the testing of nuclear fuels and materials. To attain the required neutron flux, the design includes booster fuel plates clad with the same aluminum alloy as the ATR driver fuel and cooled with water supplied by the ATR primary coolant pumps. The objectives of this study are to: (1) determine the surface roughness of the protective boehmite layer applied to the ATR driver fuel prior to reactor operations in order to specify the machining tolerances for the surface finish on simulated booster fuel plates in a GTL hydraulic flow test model, and (2) assess the consequent thermal hydraulic impact due to surface roughness on the coolability of the booster fuel with a similar pre-film layer applied. While the maximum roughness of this coating is specified to be 1.6 µm (63 microinches), no precise data on the actual roughness were available. A representative sample coupon autoclaved with the ATR driver fuel to produce the pre-film coating was analyzed using optical profilometry. Measurements yielded a mean surface roughness of 0.53 µm (21 microinches). Results from a sensitivity study show that a ±15% deviation from the mean measured surface finish would have a minimal effect on coolant temperature, coolant flow rate, and fuel temperature. However, frictional losses from roughnesses greater than 1.5 µm (~60 microinches) produce a marked decrease in flow rate, causing fuel and coolant temperatures to rise sharply.

  8. Thermal-hydraulic-structural behavior of the EBR-II IHX for overpower transients

    SciTech Connect

    Mohr, D.; Chang, L.K.; Lee, M.J.; Feldman, E.E.

    1982-01-01

    A detailed study has been made of the effects of the Operational Reliability Testing (ORT) program on major plant components of the Experimental Breeder Reactor No. II (EBR-II). This paper describes the integrated thermal-hydraulic-structural analyses conducted for the intermediate heat exchanger (IHX) with the aid of the NATDEMO, THTB, and ANSYS codes. An extensive analysis revealed the stress limiting area to be the junction between the upper head and upper tube sheet. The analyses indicate, however, that the EBR-II IHX, the major plant component most affected by the ORT program, will be able to withstand the thermal stress and accumulated fatigue damage during the lifetime of the plant including the ORT program.

  9. APT target/blanket design and thermal hydraulics

    SciTech Connect

    Cappiello, M.; Pitcher, E.; Pasamehmetoglu, K.

    1999-04-01

    The Accelerator Production of Tritium (APT) Target/Blanket (T/B) system is comprised of an assembly of tritium producing modules supported by control, heat removal, shielding and retargeting systems. The T/B assembly produces tritium using a high-energy proton beam, a tungsten/lead spallation neutron source and {sup 3}He gas as the tritium producing feedstock. For the nominal production mode, protons are accelerated to an energy of 1030 MeV at a current of 100 mA and are directed onto the T/B assembly. The protons are expanded using a raster/expansion system to illuminate a 0.19m by 1.9m beam spot on the front face of a centrally located tungsten neutron source. A surrounding lead blanket produces additional neutrons from scattered high-energy particles. The tungsten neutron source consists of nested, Inconel-718 clad tungsten cylinders assembled in horizontal Inconel-718 tubes. Each tube contains up to 6 cylinders with annular flow channel gaps of 0.102 cm. These horizontal tubes are manifolded into larger diameter vertical inlet and outlet pipes, which provide coolant. The horizontal and vertical tubes make up a structure similar to that of rungs on a ladder. The entire tungsten neutron source consists of 11 such ladders separated into two modules, one containing five ladders and the other six. Ladders are separated by a 0.3 m void region to increase nucleon leakage. The peak thermal-hydraulic conditions in the tungsten neutron source occur in the second ladder from the front. Because tungsten neutron source design has a significant number of parallel flow channels, the limiting thermal-hydraulic parameter is the onset of significant void (OSV) rather than critical heat flux (CHF). A blanket region surrounds the tungsten neutron source. The lateral blanket region is approximately 120 cm thick and 400 cm high. Blanket material consists of lead, {sup 3}He gas, aluminum, and light-water coolant. The blanket region is subdivided into rows based on the local power

  10. Inert Matrix Fuel Neutronic, Thermal-Hydraulic, and Transient Behavior in a Light Water Reactor

    SciTech Connect

    Jon Carmack; Michael Todoscow; Mitchell K. Meyer; Kemal O. Pasamehmetoglu

    2005-05-01

    Currently, commercial power reactors in the United States operate on a once-through or open cycle, with the spent nuclear fuel eventually destined for long-term storage in a geologic repository. Since the fissile and transuranic (TRU) elements in the spent nuclear fuel present a proliferation risk, limit the repository capacity, and are the major contributors to the long-term toxicity and dose from the repository, methods and systems are needed to reduce the amount of TRU that will eventually require long-term storage. An option to achieve a reduction in the amount, and modify the isotopic composition of TRU requiring geological disposal is ‘burning’ the TRU in commercial light water reactors (LWRs) and/or fast reactors. Fuel forms under consideration for TRU destruction in light water reactors (LWRs) include mixed-oxide (MOX), advanced mixed-oxide, and inert matrix fuels. Fertile-free inert matrix fuel (IMF) has been proposed for use in many forms and studied by several researchers. IMF offers several advantages relative to MOX, principally it provides a means for reducing the TRU in the fuel cycle by burning the fissile isotopes and transmuting the minor actinides while producing no new TRU elements from fertile isotopes. This paper will present and discuss the results of a four-bundle, neutronic, thermal-hydraulic, and transient analyses of proposed inert matrix materials in comparison with the results of similar analyses for reference UOX fuel bundles. The results of this work are to be used for screening purposes to identify the general feasibility of utilizing specific inert matrix fuel compositions in existing and future light water reactors. Compositions identified as feasible using the results of these analyses still require further detailed neutronic, thermal-hydraulic, and transient analysis study coupled with rigorous experimental testing and qualification.

  11. Current and anticipated uses of the thermal hydraulics codes at the NRC

    SciTech Connect

    Caruso, R.

    1997-07-01

    The focus of Thermal-Hydraulic computer code usage in nuclear regulatory organizations has undergone a considerable shift since the codes were originally conceived. Less work is being done in the area of {open_quotes}Design Basis Accidents,{close_quotes}, and much more emphasis is being placed on analysis of operational events, probabalistic risk/safety assessment, and maintenance practices. All of these areas need support from Thermal-Hydraulic computer codes to model the behavior of plant fluid systems, and they all need the ability to perform large numbers of analyses quickly. It is therefore important for the T/H codes of the future to be able to support these needs, by providing robust, easy-to-use, tools that produce easy-to understand results for a wider community of nuclear professionals. These tools need to take advantage of the great advances that have occurred recently in computer software, by providing users with graphical user interfaces for both input and output. In addition, reduced costs of computer memory and other hardware have removed the need for excessively complex data structures and numerical schemes, which make the codes more difficult and expensive to modify, maintain, and debug, and which increase problem run-times. Future versions of the T/H codes should also be structured in a modular fashion, to allow for the easy incorporation of new correlations, models, or features, and to simplify maintenance and testing. Finally, it is important that future T/H code developers work closely with the code user community, to ensure that the code meet the needs of those users.

  12. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    SciTech Connect

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  13. Experimental Results of Pebble Beds Thermal Hydraulic Characteristics

    SciTech Connect

    Rimkevicius, S.; Uspuras, E.

    2006-07-01

    The purpose of this paper is to present the results of the experimental investigation of the thermal hydraulic characteristics for two types of test sections - thin annular pebble beds (i.e. spheres dumped in thin annular slots) and pebble beds placed between cylinders. The experimental results of heat transfer from the spheres and from a cylinder, as well as hydraulic drag for both types of test sections are presented in this paper. The results of performed experiments in the case of thin annular pebble beds demonstrated that maximum heat transfer and hydraulic drag is at the relative width of the annular slot K equal to 1.07 and 1.75 of spheres diameter. The heat transfer in internal layers at these values of K is equal to the heat transfer in the internal layers of large (unlimited) rhombic packing. The results of the experimental investigation of pebble beds between cylinders demonstrated that the randomly arranged pebble bed is preferable to the regular rhombic structure from the point of view of design simplicity, heat transfer from the cylinder and drag coefficient. (authors)

  14. PRATHAM: Parallel Thermal Hydraulics Simulations using Advanced Mesoscopic Methods

    SciTech Connect

    Joshi, Abhijit S; Jain, Prashant K; Mudrich, Jaime A; Popov, Emilian L

    2012-01-01

    At the Oak Ridge National Laboratory, efforts are under way to develop a 3D, parallel LBM code called PRATHAM (PaRAllel Thermal Hydraulic simulations using Advanced Mesoscopic Methods) to demonstrate the accuracy and scalability of LBM for turbulent flow simulations in nuclear applications. The code has been developed using FORTRAN-90, and parallelized using the message passing interface MPI library. Silo library is used to compact and write the data files, and VisIt visualization software is used to post-process the simulation data in parallel. Both the single relaxation time (SRT) and multi relaxation time (MRT) LBM schemes have been implemented in PRATHAM. To capture turbulence without prohibitively increasing the grid resolution requirements, an LES approach [5] is adopted allowing large scale eddies to be numerically resolved while modeling the smaller (subgrid) eddies. In this work, a Smagorinsky model has been used, which modifies the fluid viscosity by an additional eddy viscosity depending on the magnitude of the rate-of-strain tensor. In LBM, this is achieved by locally varying the relaxation time of the fluid.

  15. High-Fidelity Coupled Monte-Carlo/Thermal-Hydraulics Calculations

    NASA Astrophysics Data System (ADS)

    Ivanov, Aleksandar; Sanchez, Victor; Ivanov, Kostadin

    2014-06-01

    Monte Carlo methods have been used as reference reactor physics calculation tools worldwide. The advance in computer technology allows the calculation of detailed flux distributions in both space and energy. In most of the cases however, those calculations are done under the assumption of homogeneous material density and temperature distributions. The aim of this work is to develop a consistent methodology for providing realistic three-dimensional thermal-hydraulic distributions by coupling the in-house developed sub-channel code SUBCHANFLOW with the standard Monte-Carlo transport code MCNP. In addition to the innovative technique of on-the fly material definition, a flux-based weight-window technique has been introduced to improve both the magnitude and the distribution of the relative errors. Finally, a coupled code system for the simulation of steady-state reactor physics problems has been developed. Besides the problem of effective feedback data interchange between the codes, the treatment of temperature dependence of the continuous energy nuclear data has been investigated.

  16. Current and anticipated uses of thermal-hydraulic codes in NFI

    SciTech Connect

    Tsuda, K.; Takayasu, M.

    1997-07-01

    This paper presents the thermal-hydraulic codes currently used in NFI for the LWR fuel development and licensing application including transient and design basis accident analyses of LWR plants. The current status of the codes are described in the context of code capability, modeling feature, and experience of code application related to the fuel development and licensing. Finally, the anticipated use of the future thermal-hydraulic code in NFI is briefly given.

  17. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    SciTech Connect

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

    2009-10-01

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  18. Thermal hydraulic calculations to support increase in operating power in McClellen Nuclear Radiation Center(MNRC) TRIGA reactor.

    SciTech Connect

    Jensen, R. T.

    1998-05-05

    The RELAP5/Mod3.1 computer program has been used to successfully perform thermal-hydraulic analyses to support the Safety Analysis for increasing the MNRC reactor from 1.0 MW to 2.0 MW. The calculation results show the reactor to have operating margin for both the fuel temperature and critical heat flux limits. The calculated maximum fuel temperature of 705 C is well below the 750 C operating limit. The critical heat flux ratio was calculated to be 2.51.

  19. Numerical Modeling of a Thermal-Hydraulic Loop and Test Section Design for Heat Transfer Studies in Supercritical Fluids

    NASA Astrophysics Data System (ADS)

    McGuire, Daniel

    A numerical tool for the simulation of the thermal dynamics of pipe networks with heat transfer has been developed with the novel capability of modeling supercritical fluids. The tool was developed to support the design and deployment of two thermal-hydraulic loops at Carleton University for the purpose of heat transfer studies in supercritical and near-critical fluids. First, the system was characterized based on its defining features; the characteristic length of the flow path is orders of magnitude larger than the other characteristic lengths that define the system's geometry; the behaviour of the working fluid in the supercritical thermodynamic state. An analysis of the transient thermal behaviour of the model's domains is then performed to determine the accuracy and range of validity of the modeling approach for simulating the transient thermal behaviour of a thermal-hydraulic loop. Preliminary designs of three test section geometries, for the purpose of heat transfer studies, are presented in support of the overall design of the Carleton supercritical thermal-hydraulic loops. A 7-rod-bundle, annular and tubular geometries are developed with support from the new numerical tool. Materials capable of meeting the experimental requirements while operating in supercritical water are determined. The necessary geometries to satisfy the experimental goals are then developed based on the material characteristics and predicted heat transfer behaviour from previous simulation results. An initial safety analysis is performed on the test section designs, where they are evaluated against the ASME Boiler, Pressure Vessel, and Pressure Piping Code standard, required for safe operation and certification.

  20. AP600 design certification thermal hydraulics testing and analysis

    SciTech Connect

    Hochreiter, L.E.; Piplica, E.J.

    1995-09-01

    Westinghouse Electric Corporation, in conjunction with the Department of Energy and the Electric Power Research Institute, have been developing an advanced light water reactor design; the AP600. The AP600 is a 1940 Mwt, 600Mwe unit which is similar to a Westinghouse two-loop Pressurized Water Reactor. The accumulated knowledge on reactor design to reduce the capital costs, construction time, and the operational and maintenance cost of the unit once it begins to generate electrical power. The AP600 design goal is to maintain an overall cost advantage over fossil generated electrical power.

  1. Thermal Hydraulic Analysis of a Packed Bed Reactor Fuel Element

    DTIC Science & Technology

    1989-05-25

    phase solution. The second corrector applies the pressure equation again with the updated tempera- tures. At the end of the process three estimates of...node model of a fuel particle is perfortned on the solid phase . The model code is applied to a seri s steady state and transient problems, varying...29 CHAPTER 3 THE GAS PHASE

  2. Thermal hydraulic analysis of the FFTF core using SUPERENERGY-2

    SciTech Connect

    Cramer, E.R.; Basehore, K.L.

    1980-01-01

    SUPERENERGY-2 is the latest steady-state code in the ENERGY series, combining all of the desirable features of the previous ENERGY-I and SUPERENERGY versions in an optimized form. The result is an easily redimensionable, multiassembly code with many user-convenience features, such as automatic noding and a default constitutive package, that help minimize the effort and time associated with setting up large forced-convection problems. Improvements in physical modeling include generalized facial boundary conditions, duct wall gamma heating, and a model for double-ducted assemblies. The latter is used for modeling both multiduct test and absorber assemblies. SUPERENERGY-2 was used to calculate the temperature distribution in the first six rows of the FFTF core.

  3. Investigation of approximations in thermal-hydraulic modeling of core conversions

    SciTech Connect

    Garner, Patrick L.; Hanan, Nelson A.

    2008-07-15

    Neutronics analyses for core conversions are usually fairly detailed, for example representing all 4 flats and all 4 corners of all 6 tubes of all 20 IRT-3M or -4M fuel assemblies in the core of the VVR-SM reactor in Uzbekistan. The coupled neutronics and thermal-hydraulic analysis for safety analysis transients is usually less detailed, for example modeling only a hot and an average fuel plate and the associated coolant. Several of the approximations have been studied using the RELAP5 and PARET computer codes in order to provide assurance that the lack of full detail is not important to the safety analysis. Two specific cases studied are (1) representation of a core of same- type fuel assemblies by a hot and an average assembly each having multiple channels as well as by merely a hot and average channel and (2) modeling a core containing multiple fuel types as the sum of fractional core models for each fuel type. (author)

  4. Leap Frog and Time Step Sub-Cycle Scheme for Coupled Neutronics and Thermal-Hydraulic Codes

    SciTech Connect

    Lu, S.

    2002-07-01

    As the result of the advancing TCP/IP based inter-process communication technology, more and more legacy thermal-hydraulic codes have been coupled with neutronics codes to provide best-estimate capabilities for reactivity related reactor transient analysis. Most of the coupling schemes are based on closely coupled serial or parallel approaches. Therefore, the execution of the coupled codes usually requires significant CPU time, when a complicated system is analyzed. Leap Frog scheme has been used to reduce the run time. The extent of the decoupling is usually determined based on a trial and error process for a specific analysis. It is the intent of this paper to develop a set of general criteria, which can be used to invoke the automatic Leap Frog algorithm. The algorithm will not only provide the run time reduction but also preserve the accuracy. The criteria will also serve as the base of an automatic time step sub-cycle scheme when a sudden reactivity change is introduced and the thermal-hydraulic code is marching with a relatively large time step. (authors)

  5. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    SciTech Connect

    Anh Bui; Nam Dinh; Brian Williams

    2013-09-01

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable

  6. Thermal-hydraulic calculations for the conversion to LEU of a research reactor core

    SciTech Connect

    Grigoriadis, D.; Varvayanni, M.; Catsaros, N.; Stakakis, E.

    2008-07-15

    The thermal-hydraulic analysis performed for the needs of the conversion of the open pool 5MW Greek Research Reactor (GRR-1) to a pure Low Enrichment (LEU) configuration is presented. The methodology was based on a complete set of neutronic calculations performed for the new core configuration, in compliance with pre-defined Operation Limiting Conditions. The hottest channel analysis approach was adopted, and peaking factors were used to account for fabrication or measuring uncertainties. Calculations were carried out using the numerical codes NATCON, PLTEMP and PARET provided by Argonne National Laboratory (ANL). Two main different classes of conditions were considered, namely i) steady state normal operating conditions and ii) transient cases related to accidental events including reactivity feedback effects. For steady state operating conditions the behaviour of the new configuration was examined both for forced and natural convection cooling modes. Transient calculations considered several initiating events including reactivity insertion accidents (slow or fast reactivity insertion) and total or partial loss-of-flow accidents, i.e. in accordance to guidelines provided by the IAEA for research Reactors. (author)

  7. Advanced numerical analyses for complex thermal-hydraulics in nuclear engineering

    SciTech Connect

    Seiichi Koshizuka; Yoshiaki Oka

    2002-07-01

    Complex thermal-hydraulic phenomena in the nuclear engineering have been solved by advanced numerical analyses based on fundamental governing equations excluding experimental correlations. A new method, called Moving Particle Semi-implicit (MPS) method, is developed as one of the advanced methods. Governing equations are discretized to particle dynamics using particle interaction models. Grids are not necessary. Therefore, complex motion of interfaces can be calculated without grid tangling or numerical diffusion. This is advantageous to multi-fluid and multi-phase thermal-hydraulic problems which emerge in the nuclear engineering. The analyzed problems are vapor explosions, molten core-concrete interaction, fluid-structure interaction, nucleate boiling, transient boiling at reactivity initiated accidents, and the critical Weber number for droplet breakup. These examples show that the MPS method is being useful for direct simulation of complex thermal-hydraulics, particularly multi-phase flows, in the nuclear engineering. (authors)

  8. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    SciTech Connect

    Shadid, J.N.; Smith, T.M.; Cyr, E.C.; Wildey, T.M.; Pawlowski, R.P.

    2016-09-15

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.

  9. Oyster Creek fuel thermal margin during core thermal-hydraulic oscillations

    SciTech Connect

    Dougher, J.D.

    1990-01-01

    The Oyster Creek nuclear facility, a boiling water reactor (BWR)-2 plant type, has never experienced core thermal-hydraulic instability. Power oscillations, however, have been observed in other BWR cores both domestically and internationally. Two modes of oscillations have been observed, core wide and regional half-core. During core wide oscillations, the neutron flux in the core oscillates in the radial fundamental mode. During regional half-core oscillations, higher order harmonics in the radial plane result in out-of-phase oscillations with the neutron flux in one half of the core oscillating 180 deg out-of-phase with the neutron flux in the other half of the core. General Design Criteria 12 requires either prevention or detection and suppression of power oscillations which could result in violations of fuel design limits. Analyses performed by General Electric have demonstrated that for large-magnitude oscillations the potential exists for violation of the safety limit minimum critical power ratio (MCPR). However, for plants with a flow-biased neutron flux scram automatic mitigation of oscillations may be provided at an oscillation magnitude below that at which the safety limit is challenged. Plant-specific analysis for Oyster Creek demonstrates that the existing average power range monitor (APRM) system will sense and suppress power oscillations prior to violation of any safety limits.

  10. Thermal hydraulic evaluation of consolidating tank C-106 waste into tank AY-102

    SciTech Connect

    Sathyanarayana, K.

    1996-02-01

    This report describes the thermal hydraulic analysis performed to provide a technical basis in support of consolidation of tank C-106 waste into tank AY-102. Several parametric calculations were performed using the HUB and GOTH computer codes. First, the current heat load of tank AY-102 was determined. Potential quantities of waste transfer from tank C-106 were established to maintain the peak temperatures of consolidated sludge in tank AY-102 to remain within Operating Specification limits. For this purpose, it was shown that active cooling of the tank floor was essential and a secondary ventilation flow of 2,000 cfm should be maintained. Transient calculations were also conducted to evaluate the effects of ambient meteorological cyclic conditions on sludge peak temperature, and loss of ventilation systems. Detailed calculations were also performed to estimate the insulating concrete air channels cooling effectiveness and the resulting peak temperatures for the consolidated sludge in tank AY-102. Calculations are were also performed for a primary and secondary ventilation systems outage, both individually and combined to establish limits on outage duration. Because of its active cooling mode of operation, the secondary ventilation system limits the outage duration.

  11. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    SciTech Connect

    Shadid, J. N.; Smith, T. M.; Cyr, E. C.; Wildey, T. M.; Pawlowski, R. P.

    2016-05-20

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.

  12. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    DOE PAGES

    Shadid, J. N.; Smith, T. M.; Cyr, E. C.; ...

    2016-05-20

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-basedmore » computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less

  13. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    SciTech Connect

    Shadid, J. N.; Smith, T. M.; Cyr, E. C.; Wildey, T. M.; Pawlowski, R. P.

    2016-05-20

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.

  14. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    NASA Astrophysics Data System (ADS)

    Shadid, J. N.; Smith, T. M.; Cyr, E. C.; Wildey, T. M.; Pawlowski, R. P.

    2016-09-01

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier-Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.

  15. 77 FR 9707 - Advisory Committee on Reactor Safeguards Meeting of the ACRS Subcommittee on Thermal-Hydraulics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards Meeting of the ACRS Subcommittee on Thermal-Hydraulics... for the ACRS Subcommittee meeting on Thermal-Hydraulics Phenomena scheduled to be held on February 22...

  16. Survey of thermal-hydraulic models of commercial nuclear power plants

    SciTech Connect

    Determan, J.C.; Hendrix, C.E.

    1992-12-01

    A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC's current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described.

  17. Survey of thermal-hydraulic models of commercial nuclear power plants

    SciTech Connect

    Determan, J.C.; Hendrix, C.E.

    1992-12-01

    A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC`s current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described.

  18. Thermal hydraulic study of the ESPRESSO blanket for a Tandem Mirror Reactor

    SciTech Connect

    Raffray, A.R.; Hoffman, M.A.

    1986-02-01

    This paper deals primarily with the thermal-hydraulic design and some critical thermomechanical aspects of the proposed ESPRESSO blanket for the Tandem Mirror Fusion Reactor. This conceptual design was based on the same physics as used in the MARS study.

  19. A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses

    DOE PAGES

    Hu, Rui

    2016-11-19

    An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less

  20. A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses

    SciTech Connect

    Hu, Rui

    2016-11-19

    An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for a wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.

  1. Supplemental Thermal-Hydraulic Transient Analyses of BR2 in Support of Conversion to LEU Fuel

    SciTech Connect

    Licht, J.; Dionne, B.; Sikik, E.; Van den Branden, G.; Koonen, E.

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The RELAP5/Mod 3.3 code has been used to perform transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. A RELAP5 model of BR2 has been validated against select transient BR2 reactor experiments performed in 1963 by showing agreement with measured cladding temperatures. Following the validation, the RELAP5 model was then updated to represent the current use of the reactor; taking into account core configuration, neutronic parameters, trip settings, component changes, etc. Simulations of the 1963 experiments were repeated with this updated model to re-evaluate the boiling risks associated with the currently allowed maximum heat flux limit of 470 W/cm2 and temporary heat flux limit of 600 W/cm2. This document provides analysis of additional transient simulations that are required as part of a modern BR2 safety analysis report (SAR). The additional simulations included in this report are effect of pool temperature, reduced steady-state flow rate, in-pool loss of coolant accidents, and loss of external cooling. The simulations described in this document have been performed for both an HEU- and LEU-fueled core.

  2. Some computational challenges of developing efficient parallel algorithms for data-dependent computations in thermal-hydraulics supercomputer applications

    SciTech Connect

    Woodruff, S.B.

    1992-01-01

    The Transient Reactor Analysis Code (TRAC), which features a two- fluid treatment of thermal-hydraulics, is designed to model transients in water reactors and related facilities. One of the major computational costs associated with TRAC and similar codes is calculating constitutive coefficients. Although the formulations for these coefficients are local the costs are flow-regime- or data-dependent; i.e., the computations needed for a given spatial node often vary widely as a function of time. Consequently, poor load balancing will degrade efficiency on either vector or data parallel architectures when the data are organized according to spatial location. Unfortunately, a general automatic solution to the load-balancing problem associated with data-dependent computations is not yet available for massively parallel architectures. This document discusses why developers algorithms, such as a neural net representation, that do not exhibit algorithms, such as a neural net representation, that do not exhibit load-balancing problems.

  3. Thermal-hydraulic/heat transfer code development for sphere-pac-fueled LMFBRs. [COBRA-3SP code

    SciTech Connect

    Morris, D.G.

    1980-06-01

    Sphere-pac fuel has received much attention recently in light of the development of proliferation-resistant fuel cycles for the Fast Breeder Reactor Program in the United States. However, for sphere-pac fuel to be a viable alternative to conventional pellet fuel, a means to analyze the thermal behavior of sphere-pac-fueled pin bundles is needed. To meet this need, a thermal-hydraulic/heat transfer computer code has been developed for sphere-pac-fueled fast breeder reactors. The code, COBRA-3SP, is a modified version of COBRA-3M incorporating a three-region sphere-pac fuel pin model which permits fuel restructuring. With COBRA-3SP, steady-state and transient analysis of sphere-pac-fueled pin bundles is possible. The validity of the sphere-pac fuel pin model has been verified using experimental results of irradiated sphere-pac fuel.

  4. Thermal-hydraulic modeling of the Pennsylvania State University Breazeale Nuclear Reactor (PSBR)

    NASA Astrophysics Data System (ADS)

    Chang, Jong E.

    2005-11-01

    Earlier experiments determined that the Pennsylvania State University Breazeale Nuclear Reactor (PSBR) core is cooled, not by an axial flow, but rather by a strong cross flow due to the thermal expansion of the coolant. To further complicate the flow field, a nitrogen-16 (N-16) pump was installed above the PSBR core to mix the exiting core buoyant thermal plume in order to delay the rapid release of radioactive N-16 to the PSBR pool surface. Thus, the interaction between the N-16 jet flow and the buoyancy driven flow complicates the analysis of the flow distribution in the PSBR pool. The main objectives of this study is to model the thermal-hydraulic behavior of the PSBR core and pool. During this study four major things were performed including the Computational Fluid Dynamics (CFD) model for the PSBR pool, the stand-alone fuel rod model for a PSBR fuel rod, the velocity measurements in and around the PSBR core, and the temperature measurements in the PSBR pool. Once the flow field was predicted by the CFD model, the measurement devices were manufactured and calibrated based on the CFD results. The major contribution of this study is to understand and to explain the flow behavior in the PSBR subchannels and pool using the FLOW3D model. The stand-alone dynamic fuel rod model was developed to determine the temperature distribution inside a PSBR fuel rod. The stand-alone fuel rod model was coupled to the FLOW3D model and used to predict the temperature behavior during steady-state and pulsing. The heat transfer models in the stand-alone fuel rod code are used in order to overcome the disadvantage of the CFD code, which does not calculate the mechanical stress, the gap conductance, and the two phase heat transfer. (Abstract shortened by UMI.)

  5. Impact of Pin-by-Pin Thermal-Hydraulic Feedback Modeling on Steady-State Core Characteristics

    SciTech Connect

    Yamamoto, Akio; Ikeno, Tsutomu

    2005-02-15

    In this paper, the effect of a pin-by-pin thermal-hydraulic feedback treatment on the core characteristics at a steady-state condition is investigated using a three-dimensional fine-mesh core calculation code. Currently, advanced nodal codes treat the inside of an assembly as homogeneous, and the temperature distribution inside a node is usually ignored. Namely, the fuel temperature is estimated from the assembly average power density, and the moderator temperature is calculated from the nodewise closed-channel model. However, the validity of a flat temperature distribution inside a node has not yet been investigated, because a three-dimensional pin-by-pin whole-core calculation must be done for comparison. A three-dimensional pin-by-pin nodal-transport code for a pressurized water reactor (PWR) core analysis, SCOPE2, was used in this study since it can directly treat the pin-by-pin feedback effect. A whole-core subchannel analysis code was developed to enhance the thermal-hydraulic capability of SCOPE2. The pin-by-pin feedback models for fuel and moderator temperature were established, and their impact on the core characteristics was investigated in a 3 x 3 multiassembly and the whole PWR core geometries. The calculations showed that modeling of the pin-by-pin temperature distribution revealed a negligible effect on core reactivity and only a slight impact on the radial peaking factor. The difference in the radial peaking factor that is exposed by the pin-by-pin temperature modeling is less than 0.005 in the test calculations.

  6. Condensation heat transfer coefficient with noncondensible gases for heat transfer in thermal hydraulic codes

    SciTech Connect

    Banerjee, S.; Hassan, Y.A.

    1995-09-01

    Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology`s (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values.

  7. Thermal hydraulic simulations, error estimation and parameter sensitivity studies in Drekar::CFD

    SciTech Connect

    Smith, Thomas Michael; Shadid, John N.; Pawlowski, Roger P.; Cyr, Eric C.; Wildey, Timothy Michael

    2014-01-01

    This report describes work directed towards completion of the Thermal Hydraulics Methods (THM) CFD Level 3 Milestone THM.CFD.P7.05 for the Consortium for Advanced Simulation of Light Water Reactors (CASL) Nuclear Hub effort. The focus of this milestone was to demonstrate the thermal hydraulics and adjoint based error estimation and parameter sensitivity capabilities in the CFD code called Drekar::CFD. This milestone builds upon the capabilities demonstrated in three earlier milestones; THM.CFD.P4.02 [12], completed March, 31, 2012, THM.CFD.P5.01 [15] completed June 30, 2012 and THM.CFD.P5.01 [11] completed on October 31, 2012.

  8. Current and anticipated uses of thermal-hydraulic codes in Germany

    SciTech Connect

    Teschendorff, V.; Sommer, F.; Depisch, F.

    1997-07-01

    In Germany, one third of the electrical power is generated by nuclear plants. ATHLET and S-RELAP5 are successfully applied for safety analyses of the existing PWR and BWR reactors and possible future reactors, e.g. EPR. Continuous development and assessment of thermal-hydraulic codes are necessary in order to meet present and future needs of licensing organizations, utilities, and vendors. Desired improvements include thermal-hydraulic models, multi-dimensional simulation, computational speed, interfaces to coupled codes, and code architecture. Real-time capability will be essential for application in full-scope simulators. Comprehensive code validation and quantification of uncertainties are prerequisites for future best-estimate analyses.

  9. Thermal hydraulic characteristics of a prototype CEA cable-in-conduit conductor

    SciTech Connect

    Maekawa, R.; Smith, M.R.; Van Sciver, S.W.

    1996-12-31

    The thermal hydraulic characteristics of a prototype CEA Cable-in-Conduit Conductor (CICC) have been studied in steady state and transient conditions. The supercritical helium velocity in the central channel was measured with a Pitot tube located at the down stream end of the conductor. An inductive heater, located at the center of the conductor, initiated thermally induced transient flow of the helium within the conductor. The induced flow velocity was measured as a function of Reynolds number and heat input. A calorimetric calibration technique was used to estimate the total heat input to the conductor. In a separate part of the experiment, a thermometer array was installed in the central channel to record the helium temperature. The associated reduction of central channel flow area significantly affects the thermal hydraulic characteristics of the conductor.

  10. Results of Coupling a Thermal-Hydraulic Test Loop and University Research Reactor

    SciTech Connect

    Cetiner, Sacit M.; Edwards, Robert M.

    2002-07-01

    The coupling of a university thermal-hydraulic test loop and a simulated reactor is presented. The thermal-hydraulic test loop used in this work is a one-half height scaled version of General Electric's Simplified Boiling Water Reactor (SBWR). The digitally simulated reactor exploits modal neutron kinetics equations up to the first harmonic, and governing equations are not linearized. The preserved nonlinearity makes the simulated reactor behave more realistically, and eigenfunction expansion to the first order lets half of the core be represented independently. A series of experiments are performed with the hybrid system including simulated control rod reactivity insertion/withdrawal, cross-mode interaction, etc. The experimental results are compared with the theoretical expectations. (authors)

  11. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear Research Reactors

    SciTech Connect

    Bodey, Isaac T

    2014-05-01

    Turbulent flow coupled with heat transfer is investigated for a High Flux Isotope Reactor (HFIR) fuel plate. The Reynolds Averaged Navier-Stokes Models are used for fluid dynamics and the transfer of heat from a thermal nuclear fuel plate using the Multi-physics code COMSOL. Simulation outcomes are compared with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. The computational results for the High Flux Isotope Reactor core system provide a more physically accurate simulation of this system by modeling the turbulent flow field in conjunction with the diffusion of thermal energy within the solid and fluid phases of the model domain. Recommendations are made regarding Nusselt number correlations and material properties for future thermal hydraulic modeling efforts

  12. Cold source moderator vessel development for the High Flux Isotope Reactor: Thermal-hydraulic studies

    SciTech Connect

    Williams, P.T.; Lucas, A.T.; Wendel, M.W.

    1998-07-01

    A project is underway at Oak Ridge National Laboratory (ORNL) to design, test, and install a cold neutron source facility in the High Flux Isotope Reactor (HFIR). This new cold source employs supercritical hydrogen at cryogenic temperatures both as the medium for neutron moderation and as the working fluid for removal of internally-generated nuclear heating. The competing design goals of minimizing moderator vessel mass and providing adequate structural integrity for the vessel motivated the requirement of detailed multidimensional thermal-hydraulic analyses of the moderator vessel as a critical design subtask. This paper provides a summary review of the HFIR cold source moderator vessel design and a description of the thermal-hydraulic studies that were carried out to support the vessel development.

  13. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    SciTech Connect

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  14. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  15. Thermal hydraulic modeling of the mock fuel facility

    NASA Astrophysics Data System (ADS)

    Gardner, Jacob

    The major focus of this thesis was to make improved three dimensional models of the Mock Fuel Facility. Three distinct experiment types run with the Mock Fuel Facility (MFF) were the main focus of this thesis. Two of the experiments were modeled and an in-depth analysis of the model results was performed to gain a better understanding of the Mock Fuel Facility. For the third experiment the process of creating a model was begun. There were multiple purposes for the work completed in this thesis. The work was done partially to gain a greater understanding of the UMass Lowell Research Reactor (UMLRR). There is minimal instrumentation within the UMLRR to measure localized temperatures within the UMLRR. It is hoped that the work done in this thesis will provide a basis for future modeling work which will give insight into the temperature profiles within the UMLRR. This work is also being done to gain insight into the capabilities of the COMSOL multiphysics modelling software and evaluate its potential for future modelling work. Finally this work is also being done for its potential as an educational tool. The MFF and COMSOL have potential to be used for experimental lab work by students to learn about computer modeling and validation.

  16. Computational thermal-hydraulic modeling of a steam generator and a boiler simulator autoclave

    SciTech Connect

    Keefer, R.H.; Keeton, L.W.

    1996-12-31

    Corrosion of heat transfer tubing in nuclear steam generators has been a persistent problem in the power generation industry, assuming many different forms over the years depending on chemistry and operating conditions. Whatever the corrosion mechanism, a funding understanding of the process is essential to establish effective management strategies. To gain this fundamental understanding requires an integrated investigative approach that merges technology from many diverse scientific disciplines. An important aspect of an integrated approach is characterization of the corrosive environment at high temperature. This begins with a thorough understanding of local thermal-hydraulic conditions, since they affect deposit formation, chemical concentration, and ultimately corrosion. Computational Fluid Dynamics (CFD) can and should play an important role in characterizing the thermal-hydraulic environment and in predicting the consequences of that environment. The evolution of CFD technology now allows accurate calculation of steam generator thermal-hydraulic conditions and the resulting sludge deposit profiles. Similar calculations are also possible for model boilers, so that tests can be designed to be prototypic of the heat exchanger environment they are supposed to simulate. This paper illustrates the utility of CFD technology by way of examples in each of these two areas. This technology can be further extended to produce more detailed local calculations of the chemical environment in support plate crevices, beneath thick deposits on tubes, and deep in tubesheet sludge. Knowledge of this local chemical environment will provide the foundation for development of mechanistic corrosion models, which can be used to optimize inspection and cleaning schedules and focus the search for a viable fix.

  17. Strategic need for a multi-purpose thermal hydraulic loop for support of advanced reactor technologies

    SciTech Connect

    O'Brien, James E.; Sabharwall, Piyush; Yoon, Su -Jong; Housley, Gregory K.

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation

  18. Resolution of thermal-hydraulic safety and licensing issues for the system 80+{sup {trademark}} design

    SciTech Connect

    Carpentino, S.E.; Ritterbusch, S.E.; Schneider, R.E.

    1995-09-01

    The System 80+{sup {trademark}} Standard Design is an evolutionary Advanced Light Water Reactor (ALWR) with a generating capacity of 3931 MWt (1350 MWe). The Final Design Approval (FDA) for this design was issued by the Nuclear Regulatory Commission (NRC) in July 1994. The design certification by the NRC is anticipated by the end of 1995 or early 1996. NRC review of the System 80+ design has involved several new safety issues never before addressed in a regulatory atmosphere. In addition, conformance with the Electric Power Research Institute (EPRI) ALWR Utility Requirements Document (URD) required that the System 80+ plant address nuclear industry concerns with regard to design, construction, operation and maintenance of nuclear power plants. A large number of these issues/concerns deals with previously unresolved generic thermal-hydraulic safety issues and severe accident prevention and mitigation. This paper discusses the thermal-hydraulic analyses and evaluations performed for the System 80+ design to resolve safety and licensing issues relevant to both the Nuclear Stream Supply System (NSSS) and containment designs. For the NSSS design, the Safety Depressurization System mitigation capability and resolution of the boron dilution concern are described. Examples of containment design issues dealing with containment shell strength, robustness of the reactor cavity walls and hydrogen mixing under severe accident conditions are also provided. Finally, the overall approach used in the application of NRC`s new (NUREG-1465) radiological source term for System 80+ evaluation is described. The robustness of the System 80+ containment design to withstand severe accident consequences was demonstrated through detailed thermal-hydraulic analyses and evaluations. This advanced design to shown to meet NRC severe accident policy goals and ALWR URD requirements without any special design features and unnecessary costs.

  19. Coupled neutronic and thermal-hydraulic code benchmark activities at the International Nuclear Safety Center.

    SciTech Connect

    Podlazov, L. N.

    1998-07-29

    Two realistic benchmark problems are defined and used to assess the performance of coupled thermal-hydraulic and neutronic codes used in simulating dynamic processes in VVER-1000 and RBMK reactor systems. One of the problems simulates a design basis accident involving the ejection of three control and protection system rods from a VVER-1000 reactor. The other is based on a postulated rod withdrawal from an operating RBMK reactor. Preliminary results calculated by various codes are compared. While these results show significant differences, the intercomparisons performed so far provide a basis for further evaluation of code limitations and modeling assumptions.

  20. A parallelization approach to the COBRA-TF thermal-hydraulic subchannel code

    NASA Astrophysics Data System (ADS)

    Ramos, Enrique; Abarca, Agustín; Roman, Jose E.; Miró, Rafael

    2014-06-01

    In order to reduce the response time when simulating large reactors in detail, we have developed a parallel version of the thermal-hydraulic subchannel code COBRA-TF, with standard message passing technology (MPI). The parallelization is oriented to reactor cells, so it is best suited for models consisting of many cells. The generation of the Jacobian is parallelized, in such a way that each processor is in charge of generating the data associated to a subset of cells. Also, the solution of the linear system of equations is done in parallel, using the PETSc toolkit.

  1. Subchannel Thermal Hydraulic Experimental Program (STEP). Volume 2. Void fraction by gamma scattering. Final report. [PWR

    SciTech Connect

    Zielke, L.A.; Grant, K.W.; MacKinnon, J.G.

    1980-08-01

    This volume provides a description of the gamma-scattering technique for the measurement of local void fraction within complex geometries. The technique was applied to measurements in the center subchannel of a 4 x 4 array of electrically heated rods with four heated walls. Over 300 data points were obtained covering thermal-hydraulic conditions typical of light water reactors. Results indicate a large variation of void fraction within the center subchannel and a measured-average void fraction higher than predicted by the COBRA IV computer code.

  2. A practical view of the insights from scaling thermal-hydraulic tests

    SciTech Connect

    Levin, A.E.; McPherson, G.D.

    1995-09-01

    The authors review the broad concept of scaling of thermal-hydraulic test facilities designed to acquire data for application to modeling the behavior of nuclear power plants, especially as applied to the design certification of passive advanced light water reactors. Distortions and uncertainties in the scaling process are described, and the possible impact of these effects on the test data are discussed. A practical approach to the use of data from the facilities is proposed, with emphasis on the insights to be gained from the test results rather than direct application of test results to behavior of a large plant.

  3. Integral and Separate Effects Tests for Thermal Hydraulics Code Validation for Liquid-Salt Cooled Nuclear Reactors

    SciTech Connect

    Peterson, Per

    2012-10-30

    The objective of the 3-year project was to collect integral effects test (IET) data to validate the RELAP5-3D code and other thermal hydraulics codes for use in predicting the transient thermal hydraulics response of liquid salt cooled reactor systems, including integral transient response for forced and natural circulation operation. The reference system for the project is a modular, 900-MWth Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a specific type of Fluoride salt-cooled High temperature Reactor (FHR). Two experimental facilities were developed for thermal-hydraulic integral effects tests (IETs) and separate effects tests (SETs). The facilities use simulant fluids for the liquid fluoride salts, with very little distortion to the heat transfer and fluid dynamics behavior. The CIET Test Bay facility was designed, built, and operated. IET data for steady state and transient natural circulation was collected. SET data for convective heat transfer in pebble beds and straight channel geometries was collected. The facility continues to be operational and will be used for future experiments, and for component development. The CIET 2 facility is larger in scope, and its construction and operation has a longer timeline than the duration of this grant. The design for the CIET 2 facility has drawn heavily on the experience and data collected on the CIET Test Bay, and it was completed in parallel with operation of the CIET Test Bay. CIET 2 will demonstrate start-up and shut-down transients and control logic, in addition to LOFC and LOHS transients, and buoyant shut down rod operation during transients. Design of the CIET 2 Facility is complete, and engineering drawings have been submitted to an external vendor for outsourced quality controlled construction. CIET 2 construction and operation continue under another NEUP grant. IET data from both CIET facilities is to be used for validation of system codes used for FHR modeling, such as RELAP5-3D. A set of

  4. A three-dimensional transient neutronics routine for the TRAC-PF1 reactor thermal hydraulic computer code

    SciTech Connect

    Bandini, B.R.

    1990-05-01

    No present light water reactor accident analysis code employs both high state of the art neutronics and thermal-hydraulics computational algorithms. Adding a modern three-dimensional neutron kinetics model to the present TRAC-PFI/MOD2 code would create a fully up to date pressurized water reactor accident evaluation code. After reviewing several options, it was decided that the Nodal Expansion Method would best provide the basis for this multidimensional transient neutronic analysis capability. Steady-state and transient versions of the Nodal Expansion Method were coded in both three-dimensional Cartesian and cylindrical geometries. In stand-alone form this method of solving the few group neutron diffusion equations was shown to yield efficient and accurate results for a variety of steady-state and transient benchmark problems. The Nodal Expansion Method was then incorporated into TRAC-PFl/MOD2. The combined NEM/TRAC code results agreed well with the EPRI-ARROTTA core-only transient analysis code when modelling a severe PWR control rod ejection accident.

  5. The Thermal Hydraulics of Tube Support Fouling in Nuclear Steam Generators

    SciTech Connect

    Rummens, Helena E.C.; Rogers, J.T.; Turner, C.W.

    2004-12-15

    It is hypothesized that the thermal-hydraulic environment plays a role in the fouling of tube supports in nuclear steam generators. Experiments were performed to simulate the thermal-hydraulic environment near various designs of supports. Pressure loss, local velocity, turbulence intensity, and local void fraction were measured to characterize the effect of the support. Fouling mechanisms specific to supports were inferred from these experimental data and from actual steam generator inspection results. An analytical model was developed to predict the rate of particulate deposition on the supports, to better understand the complex processes involved.This paper presents the following set of tools for assessing the fouling propensity of a given support design: (1) proposed fouling mechanisms, (2) criteria for support fouling propensity, (3) correlation of fouling with parameters such as mass flux and quality, (4) descriptions of experimental tools such as flow visualization and measurement of pressure-loss profiles, and (5) analytical tools.An important conclusion from this and our previous work is that the fouling propensity is greater with broached support plates, both trefoil and quatrefoil, than with lattice bar supports and formed bar supports, in which significant cross flows occur.

  6. Thermal-hydraulic criteria for the APT tungsten neutron source design

    SciTech Connect

    Pasamehmetoglu, K.

    1998-03-01

    This report presents the thermal-hydraulic design criteria (THDC) developed for the tungsten neutron source (TNS). The THDC are developed for the normal operations, operational transients, and design-basis accidents. The requirements of the safety analyses are incorporated into the design criteria, consistent with the integrated safety management and the safety-by-design philosophy implemented throughout the APT design process. The phenomenology limiting the thermal-hydraulic design and the confidence level requirements for each limit are discussed. The overall philosophy of the uncertainty analyses and the confidence level requirements also are presented. Different sets of criteria are developed for normal operations, operational transients, anticipated accidents, unlikely accidents, extremely unlikely accidents, and accidents during TNS replacement. In general, the philosophy is to use the strictest criteria for the high-frequency events. The criteria is relaxed as the event frequencies become smaller. The THDC must be considered as a guide for the design philosophy and not as a hard limit. When achievable, design margins greater than those required by the THDC must be used. However, if a specific event sequence cannot meet the THDC, expensive design changes are not necessary if the single event sequence results in sufficient margin to safety criteria and does not challenge the plant availability or investment protection considerations.

  7. Thermal-Hydraulic Mockup Tests with Two-Phase Thermosyphon for Cold Neutron Source

    SciTech Connect

    Lee, C.H.; Chan, Y.K.; Lee, D.J.; Chang, C.J.; Hong, W.T.

    2002-07-01

    The improvement and utilization promotion project of the Taiwan Research Reactor (TRR-II) is carrying out at the Institute of Nuclear Energy Research (INER). The Cold Neutron Source (CNS) with a two-phase thermosyphon will be installed in the heavy water reactor of TRR-II. The hydrogen cold loop of TRR-II CNS consists of a cylindrical moderator cell, a single transfer tube, and a condenser. The thermal-hydraulic characteristics of a two-phase thermosyphon are investigated against the variations of mass inventory, tube geometry and heat loads. The thermal-hydraulic experiments have been performed using a full-scale mockup loop and a Freon-11 as a working fluid. The scaling approach is that the mass-fluxes of the liquid and the vapor in the Wallis correlation are identical between hydrogen and Freon-11. So, the same density ratio and a scaling heat load are applied to the loop. The flooding limitations as a function of initial Freon-11 inventory, transfer tube diameter, transfer tube geometry, and heat loads are presented. (authors)

  8. Thermal-hydraulic performance of metal foam heat exchangers under dry operating conditions

    DOE PAGES

    Nawaz, Kashif; Bock, Jessica; Jacobi, Anthony M.

    2017-03-14

    High porosity metal foams with novel thermal, mechanical, electrical, and acoustic properties are being more widely adopted for application. Due to their large surface-area-to-volume ratio and complex structure which induces better fluid mixing, boundary layer restarting and wake destruction, they hold promise for heat transfer applications. In this study, the thermal-hydraulic performance of open-cell aluminum metal foam heat exchanger has been evaluated. The impact of flow conditions and metal foam geometry on the heat transfer coefficient and gradient have been investigated. Metal foam heat exchanger with same geometry (face area, flow depth and fin dimensions) consisting of four different typemore » of metal foams have been built for the study. Experiments are conducted in a closed-loop wind tunnel at different flow rate under dry operating condition. Metal foams with a smaller pore size (40 PPI) have a larger heat transfer coefficient compared to foams with a larger pore size (5 PPI). However, foams with larger pores result in relatively smaller pressure gradients. Current thermal-hydraulic modeling practices have been reviewed and potential issues have been identified. Permeability and inertia coefficients are determined and compared to data reported in open literature. Finally, on the basis of the new experimental results, correlations are developed relating the foam characteristics and flow conditions through the friction factor f and the Colburn j factor.« less

  9. Horizontal Steam Generator Thermal-Hydraulics at Various Steady-State Power Levels

    SciTech Connect

    Stevanovic, Vladimir D.; Stosic, Zoran V.; Kiera, Michael; Stoll, Uwe

    2002-07-01

    Three-dimensional computer simulation and analyses of the horizontal steam generator thermal-hydraulics of the WWER 1000 nuclear power plant have been performed for 50% and 75% partial loads, 100% nominal load and 110% over-load. Presented results show water and steam mass flow rate vectors, steam void fraction spatial distribution, recirculation zones, swell level position, water mass inventory on the shell side, and other important thermal-hydraulic parameters. The simulations have been performed with the computer code 3D ANA, based on the 'two-fluid' model approach. Steam-water interface transport processes, as well as tube bundle flow resistance, energy transfer, and steam generation within tube bundles are modelled with {sup c}losure laws{sup .} Applied approach implies non-equilibrium thermal and flow conditions. The model is solved by the control volume procedure, which has been extended in order to take into account the 3D flow of liquid and gas phase. The methodology is validated by comparing numerical and experimental results of real steam generator operational conditions at various power levels of the WWER Novovoronezh, Unit 5. One-dimensional model of the horizontal steam generator has been built with the RELAP 5 standard code on the basis of the multidimensional two-phase flow structure obtained with the 3D ANA code. RELAP 5 and 3D ANA code results are compared, showing acceptable agreement. (authors)

  10. Thermal hydraulic feasibility assessment of the hot conditioning system and process

    SciTech Connect

    Heard, F.J.

    1996-10-10

    The Spent Nuclear Fuel Project was established to develop engineered solutions for the expedited removal, stabilization, and storage of spent nuclear fuel from the K Basins at the U.S. Department of Energy`s Hanford Site in Richland, Washington. A series of analyses have been completed investigating the thermal-hydraulic performance and feasibility of the proposed Hot Conditioning System and process for the Spent Nuclear Fuel Project. The analyses were performed using a series of thermal-hydraulic models that could respond to all process and safety-related issues that may arise pertaining to the Hot Conditioning System. The subject efforts focus on independently investigating, quantifying, and establishing the governing heat production and removal mechanisms, flow distributions within the multi-canister overpack, and performing process simulations for various purge gases under consideration for the Hot Conditioning System, as well as obtaining preliminary results for comparison with and verification of other analyses, and providing technology- based recommendations for consideration and incorporation into the Hot Conditioning System design bases.

  11. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    SciTech Connect

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design.

  12. The U.S. Nuclear Regulatory Commission Thermal-Hydraulic Research Program: Maintaining expertise in a changing environment

    SciTech Connect

    Sheron, B.W.; Shotkin, L.M.; Baratta, A.J.

    1993-04-01

    Throughout the 1970s and early 1980s, the U.S. Nuclear Regulatory Commission`s (NRC`s) thermal-hydraulic research program enjoyed ample funding, sponsored extensive experimental and analytical development programs, and attracted worldwide expertise. With the completion of the major experimental programs and with the promulgation of the revised emergency core-cooling system rule, both the funding and prominence of thermal-hydraulic research at the NRC have declined in recent years. This has led justifiably to the concern by some that the program may no longer have the minimal elements needed to maintain both expertise and world-class status. The purpose of this article is to describe the NRC`s current thermal-hydraulic research program and to show how this program ensures maintenance of a viable, robust research effort and retention of needed expertise and international leadership.

  13. Thermal-hydraulic code qualification: ATHOS2 and data from Bugey 4 and Tricastin 1. Final report. [PWR

    SciTech Connect

    Masiello, P.J.

    1983-02-01

    Measured data from steam generators at the Bugey 4 and Tricastin 1 nuclear power plants operated by Electricite de France (EdF) have been used in the qualification of the ATHOS2 computer code. ATHOS2 is a three-dimensional, two-phase thermal-hydraulic code for the steady-state and transient analysis of recirculating-type steam generators. Predicted data for circulation ratio and secondary fluid temperature just above the tube sheet have been compared with corresponding data measured by EdF during on-site testing of Westinghouse Model 51A (Bugey 4) and 51M (Tricastin 1) steam generators. Comparative analyses have been performed for steady-state operating conditions at five power levels for each plant installation. The transient capabilities of the ATHOS2 code were examined in the simulation of an open-grid (load reject from 100% power) test conducted at Bugey 4. Results show that predicted data for secondary fluid temperature at eight locations just above the tube sheet are typically within 1.5/sup 0/C of measured data.

  14. Advanced neutron source reactor thermal-hydraulic test loop facility description

    SciTech Connect

    Felde, D.K.; Farquharson, G.; Hardy, J.H.; King, J.F.; McFee, M.T.; Montgomery, B.H.; Pawel, R.E.; Power, B.H.; Shourbaji, A.A.; Siman-Tov, M.; Wood, R.J.; Yoder, G.L.

    1994-02-01

    The Thermal-Hydraulic Test Loop (THTL) is a facility for experiments constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory. The ANSR is both cooled and moderated by heavy water and uses uranium silicide fuel. The core is composed of two coaxial fuel-element annuli, each of different diameter. There are 684 parallel aluminum-clad fuel plates (252 in the inner-lower core and 432 in the outer-upper core) arranged in an involute geometry that effectively creates an array of thin rectangular flow channels. Both the fuel plates and the coolant channels are 1.27 mm thick, with a span of 87 mm (lower core), 70 mm (upper core), and 507-mm heated length. The coolant flows vertically upwards at a mass flux of 27 Mg/m{sup 2}s (inlet velocity of 25 m/s) with an inlet temperature of 45{degrees}C and inlet pressure of 3.2 MPa. The average and peak heat fluxes are approximately 6 and 12 MW/m{sup 2}, respectively. The availability of experimental data for both flow excursion (FE) and true critical heat flux (CHF) at the conditions applicable to the ANSR is very limited. The THTL was designed and built to simulate a full-length coolant subchannel of the core, allowing experimental determination of thermal limits under the expected ANSR thermal-hydraulic conditions. For these experimental studies, the involute-shaped fuel plates of the ANSR core with the narrow 1.27-mm flow gap are represented by a narrow rectangular channel. Tests in the THTL will provide both single- and two-phase thermal-hydraulic information. The specific phenomena that are to be examined are (1) single-phase heat-transfer coefficients and friction factors, (2) the point of incipient boiling, (3) nucleate boiling heat-transfer coefficients, (4) two-phase pressure-drop characteristics in the nucleate boiling regime, (5) flow instability limits, and (6) CHF limits.

  15. Thermal-Hydraulic Performance of Cross-Shaped Spiral Fuel in High-Power-Density BWRs

    SciTech Connect

    Conboy, Thomas; Hejzlar, Pavel

    2006-07-01

    Power up-rating of existing nuclear reactors promises to be an area of great study for years to come. One of the major approaches to efficiently increasing power density is by way of advanced fuel design, and cross-shaped spiral-fuel has shown such potential in previous studies. Our work aims to model the thermal-hydraulic consequences of filling a BWR core with these spiral-shaped pins. The helically-wound pins have a cross-section resembling a 4-petaled flower. They fill an assembly in a tight bundle, their dimensions chosen carefully such that the petals of neighboring pins contact each other at their outer-most extent in a self-supporting lattice, absent of grid spacers. Potential advantages of this design raise much optimism from a thermal-hydraulic perspective. These spiral rods possess about 40% larger surface area than traditional rods, resulting in increased cooling and a proportional reduction in average surface heat flux. The thin petal-like extensions help by lowering thermal resistance between the hot central region of the pin and the bulk coolant flow, decreasing the maximum fuel temperature by 200 deg. C according to Finite Element (COSMOS) models. However, COSMOS models also predict a potential problem area at the 'elbow' region of two adjoining petals, where heat flux peaking is twice that along the extensions. Preliminary VIPRE models, which account only for the surface area increase, predict a 22% increase in critical power. It is also anticipated that the spiral twist would provide the flowing coolant with an additional radial velocity component, and likely promote turbulence and mixing within an assembly. These factors are expected to provide further margin for increased power density, and are currently being incorporated into the VIPRE model. The reduction in pressure drop inherent in any core without grid-spacers is also expected to be significant in aiding core stability, though this has not yet been quantified. Spiral-fuel seems to be a

  16. PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code

    SciTech Connect

    Vondy, D.R.

    1981-09-01

    This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity. The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.

  17. A comparison of the CHF between tubes and annuli under PWR thermal-hydraulic conditions

    SciTech Connect

    Herer, C.

    1995-09-01

    Critical Heat Flux (CHF) tests were carried out in three tubes with inside diameters of 8, 13, and 19.2 mm and in two annuli with an inner tube of 9.5 mm and an outer tube of 13 or 19.2 mm. All axial heat flux distributions in the test sections were uniform. The coolant fluid was Refrigerant 12 (Freon-12) under PWR thermal-hydraulic conditions (equivalent water conditions - Pressure: 7 to 20 MPa, Mass Velocity: 1000 to 6000 kg/m2/s, Local Quality: -75% to +45%). The effect of tube diameter is correlated for qualities under 15%. The change from the tube to the annulus configuration is correctly taken into account by the equivalent hydraulic diameter. Useful information is also provided concerning the effect of a cold wall in an annulus.

  18. Simulating HFIR Core Thermal Hydraulics Using 3D-2D Model Coupling

    SciTech Connect

    Travis, Adam R; Freels, James D; Ekici, Kivanc

    2013-01-01

    A model utilizing interdimensional variable coupling is presented for simulating the thermal hydraulic interactions of the High Flux Isotope Reactor (HFIR) core at Oak Ridge National Laboratory (ORNL). The model s domain consists of a single, explicitly represented three-dimensional fuel plate and a simplified two-dimensional coolant channel slice. In simplifying the coolant channel, and thus the number of mesh points in which the Navier-Stokes equations must be solved, the computational cost and solution time are both greatly reduced. In order for the reduced-dimension coolant channel to interact with the explicitly represented fuel plate, however, interdimensional variable coupling must be enacted along all shared boundaries. The primary focus of this paper is in detailing the collection, storage, passage, and application of variables across this interdimensional interface. Comparisons are made showing the general speed-up associated with this simplified coupled model.

  19. COMSOL Simulations for Steady State Thermal Hydraulics Analyses of ORNL s High Flux Isotope Reactor

    SciTech Connect

    Khane, Vaibhav B; Jain, Prashant K; Freels, James D

    2012-01-01

    Simulation models for steady state thermal hydraulics analyses of Oak Ridge National Laboratory s High Flux Isotope Reactor (HFIR) have been developed using the COMSOL Multiphysics simulation software. A single fuel plate and coolant channel of each type of HFIR fuel element was modeled in three dimensions; coupling to adjacent plates and channels was accounted for by using periodic boundary conditions. The standard k- turbulence model was used in simulating turbulent flow with conjugate heat transfer. The COMSOL models were developed to be fully parameterized to allow assessing impacts of fuel fabrication tolerances and uncertainties related to low enriched uranium (LEU) fuel design and reactor operating parameters. Heat source input for the simulations was obtained from separate Monte Carlo N Particle calculations for the axially non-contoured LEU fuel designs at the beginning of the reactor cycle. Mesh refinement studies have been performed to calibrate the models against the pressure drop measured across the HFIR core.

  20. Using parallel processing for coupled BWR core kinetics and thermal hydraulics

    SciTech Connect

    Lu, S.; Baratta, A.J.; Robinson, G.E.; Bandini, B.

    1995-12-31

    The interactions between reactor neutron dynamics and thermal hydraulics constitute one of the most fundamental issues of boiling water reactor (BWR) safety. The interactions occur in the reactor core and can have direct effects on the integrity of fuel cladding and the cooling circuit. In unfavorable cases, such as out-of-phase power oscillations or asymmetric control rod ejection accidents, their consequences can be very severe. Several BWR neutronically coupled out-of phase oscillation incidents have been-reported. During some of the transients, both the corewide in-phase and out-of-phase power oscillations were observed. These incidents suggest a need to develop a transient three-dimensional neutronic modeling capability. The incorporation of a fully three-dimensional modeling of a reactor core into a system transient code such as TRAC allows best-estimate solution of this problem.

  1. Development of a thermal-hydraulics experimental system for high Tc superconductors cooled by liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Hata, K.; Kobayashi, H.; Naruo, Y.; Inatani, Y.; Kato, T.; Futakawa, M.; Kinoshita, K.

    2010-06-01

    A thermal-hydraulics experimental system of liquid hydrogen was developed in order to investigate the forced flow heat transfer characteristics in the various cooling channels for wide ranges of subcoolings, flow velocities, and pressures up to supercritical. A main tank is connected to a sub tank through a hydrogen transfer line with a control valve. A channel heater is located at one end of the transfer line in the main tank. Forced flow through the channel is produced by adjusting the pressure difference between the tanks and the valve opening. The mass flow rate is measured from the weight change of the main tank. For the explosion protection, electrical equipments are covered with a nitrogen gas blanket layer and a remote control system was established. The first cryogenic performance tests confirmed that the experimental system had satisfied with the required performances. The forced convection heat transfer characteristics was successfully measured at the pressure of 0.7 MPa for various flow velocities.

  2. Parallelisation of MONK with Coupling to Thermal Hydraulics and Gamma Heating Calculations for Reactor Physics Applications

    NASA Astrophysics Data System (ADS)

    Richards, Simon D.; Davies, Nigel; Armishaw, Malcolm J.; Dobson, Geoff P.; Wright, George A.

    2014-06-01

    Monte Carlo methods are increasingly being used for whole core reactor physics modelling. We describe a number of recent developments to the MONK nuclear criticality and reactor physics code to implement parallel processing, mesh-dependent burn-up and coupling to both thermal hydraulics and gamma transport codes. Results are presented which demonstrate the e_ects of gamma heating in a MONK calculation coupled to the MCBEND Monte Carlo shielding code. Experimental validation of the mesh-dependent tracking and gamma coupling methods is provided by comparison with the results of the NESSUS experiment. The gamma heating calculated by coupled MONK-MCBEND, and the neutron heating calculated by MONK, both compare well against measurement. Finally results are presented from a parallel MONK calculation of a highly detailed PWR benchmark model, which show encouraging speed-up factors on a small development cluster.

  3. Nuclear thermal-hydraulics education: the Yankee Atomic/University of Lowell experience

    SciTech Connect

    Husain, A.; Brown, G.J.; Yeung, W.S.

    1986-01-01

    This paper summarizes the long and meaningful relationship between the University of Lowell (UL) and Yankee Atomic Electric Company (YAEC) in the area of nuclear thermal hydraulics. The UL has actively interacted with YAEC for many years. Many UL graduates from the nuclear program as well as health physics and other disciplines are employed by YAEC. Furthermore, many students have worked for YAEC on a part-time basis through summer employment or the coop program. Several graduate students have completed their thesis work under the joint direction of UL and YAEC personnel, and some faculty members have had consulting and research contracts with the company. At the same time, YAEC employees have taken advantage of the graduate program offered by UL and have earned advanced degrees. Some YAEC personnel have taught courses at UL and have served on the industrial advisory committees.

  4. Thermal-hydraulic processes involved in loss of residual heat removal during reduced inventory operation

    SciTech Connect

    Fletcher, C.D.; McHugh, P.R.; Naff, S.A.; Johnsen, G.W.

    1991-02-01

    This paper identifies the topics needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that would be used for each cooling mode, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain, core water boil-off, and reflux cooling processes. Important subcategories of the reflux cooling processes include: the initiation of reflux cooling from various plant conditions, the effects of air on reflux cooling, core level depression effects, issues regarding the steam generator secondaries, and the special case of boiler-condenser cooling with once-through steam generators. 25 refs., 6 figs., 1 tab.

  5. MNSR transient analyses and thermal-hydraulic safety margins for HEU and LEU cores using PARET

    SciTech Connect

    Olson, Arne P.; Jonah, S.A.

    2008-07-15

    Thermal-hydraulic performance characteristics of Miniature Neutron Source Reactors under long-term steady-state and transient conditions are investigated. Safety margins and limiting conditions attained during these events are determined. Modeling extensions are presented that enable the PARET/ANL code to realistically track primary loop heatup, heat exchange to the pool, and heat loss from the pool to air over the pool. Comparisons are made of temperature predictions for HEU and LEU fueled cores under transient conditions. Results are obtained using three different natural convection heat transfer correlations: the original (PARET/ANL version 5), Churchill-Chu, and an experiment- based correlation from the China Institute of Atomic Energy (CIAE). The MNSR, either fueled by HEU or by LEU, satisfies the design limits for long-term transient operation. (author)

  6. Thermal Hydraulic Analyses for Coupling High Temperature Gas-Cooled Reactor to Hydrogen Plant

    SciTech Connect

    C.H. Oh; R. Barner; C. B. Davis; S. Sherman; P. Pickard

    2006-08-01

    The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were

  7. Neutron Tomography Using Mobile Neutron Generators for Assessment of Void Distributions in Thermal Hydraulic Test Loops

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Bjelkenstedt, T.; Sundén, E. Andersson; Sjöstrand, H.; Jacobsson-Svärd, S.

    Detailed knowledge of the lateral distribution of steam (void) and water in a nuclear fuel assembly is of great value for nuclear reactor operators and fuel manufacturers, with consequences for both reactor safety and economy of operation. Therefore, nuclear relevant two-phase flows are being studied at dedicated thermal-hydraulic test loop, using two-phase flow systems ranging from simplified geometries such as heated circular pipes to full scale mock-ups of nuclear fuel assemblies. Neutron tomography (NT) has been suggested for assessment of the lateral distribution of steam and water in such test loops, motivated by a good ability of neutrons to penetrate the metallic structures of metal pipes and nuclear fuel rod mock-ups, as compared to e.g. conventional X-rays, while the liquid water simultaneously gives comparatively good contrast. However, these stationary test loops require the measurement setup to be mobile, which is often not the case for NT setups. Here, it is acknowledged that fast neutrons of 14 MeV from mobile neutron generators constitute a viable option for a mobile NT system. We present details of the development of neutron tomography for this purpose at the division of Applied Nuclear Physics at Uppsala University. Our concept contains a portable neutron generator, exploiting the fusion reaction of deuterium and tritium, and a detector with plastic scintillator elements designed to achieveadequate spatial and energy resolution, all mounted in a light-weight frame without collimators or bulky moderation to allow for a mobile instrument that can be moved about the stationary thermal hydraulic test sections. The detector system stores event-to-event pulse-height information to allow for discrimination based on the energy deposition in the scintillator elements.

  8. Interface requirements to couple thermal-hydraulic codes to severe accident codes: ATHLET-CD

    SciTech Connect

    Trambauer, K.

    1997-07-01

    The system code ATHLET-CD is being developed by GRS in cooperation with IKE and IPSN. Its field of application comprises the whole spectrum of leaks and large breaks, as well as operational and abnormal transients for LWRs and VVERs. At present the analyses cover the in-vessel thermal-hydraulics, the early phases of core degradation, as well as fission products and aerosol release from the core and their transport in the Reactor Coolant System. The aim of the code development is to extend the simulation of core degradation up to failure of the reactor pressure vessel and to cover all physically reasonable accident sequences for western and eastern LWRs including RMBKs. The ATHLET-CD structure is highly modular in order to include a manifold spectrum of models and to offer an optimum basis for further development. The code consists of four general modules to describe the reactor coolant system thermal-hydraulics, the core degradation, the fission product core release, and fission product and aerosol transport. Each general module consists of some basic modules which correspond to the process to be simulated or to its specific purpose. Besides the code structure based on the physical modelling, the code follows four strictly separated steps during the course of a calculation: (1) input of structure, geometrical data, initial and boundary condition, (2) initialization of derived quantities, (3) steady state calculation or input of restart data, and (4) transient calculation. In this paper, the transient solution method is briefly presented and the coupling methods are discussed. Three aspects have to be considered for the coupling of different modules in one code system. First is the conservation of masses and energy in the different subsystems as there are fluid, structures, and fission products and aerosols. Second is the convergence of the numerical solution and stability of the calculation. The third aspect is related to the code performance, and running time.

  9. Thermal hydraulic-severe accident code interfaces for SCDAP/RELAP5/MOD3.2

    SciTech Connect

    Coryell, E.W.; Siefken, L.J.; Harvego, E.A.

    1997-07-01

    The SCDAP/RELAP5 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and fission product release during severe accidents. The code is being developed at the Idaho National Engineering Laboratory under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The code is the result of merging the RELAP5, SCDAP, and COUPLE codes. The RELAP5 portion of the code calculates the overall reactor coolant system, thermal-hydraulics, and associated reactor system responses. The SCDAP portion of the code describes the response of the core and associated vessel structures. The COUPLE portion of the code describes response of lower plenum structures and debris and the failure of the lower head. The code uses a modular approach with the overall structure, input/output processing, and data structures following the pattern established for RELAP5. The code uses a building block approach to allow the code user to easily represent a wide variety of systems and conditions through a powerful input processor. The user can represent a wide variety of experiments or reactor designs by selecting fuel rods and other assembly structures from a range of representative core component models, and arrange them in a variety of patterns within the thermalhydraulic network. The COUPLE portion of the code uses two-dimensional representations of the lower plenum structures and debris beds. The flow of information between the different portions of the code occurs at each system level time step advancement. The RELAP5 portion of the code describes the fluid transport around the system. These fluid conditions are used as thermal and mass transport boundary conditions for the SCDAP and COUPLE structures and debris beds.

  10. Thermal-Hydraulic Performance of the TREAT Multi-SERTTA for Reactivity Initiated Accident Experiments

    SciTech Connect

    Jensen, Colby B.; Folsom, Charles P.; Davis, Cliff B.; Woolstenhulme, Nicolas E.; Bess, John D.; O'Brien, Robert C.; Ban, Heng; Wachs, Daniel M.

    2016-08-01

    Experimental testing in the Multi-Static Environment Rodlet Transient Test Apparatus (SERTTA) will lead the rebirth of transient fuel testing in the United States as part of the Accident Tolerant Fuels (ATF) progam. The Multi-SERTTA is comprised of four isolated pressurized environments capable of a wide variety of working fluids and thermal conditions. Ultimately, the TREAT reactor as well as the Multi-SERTTA test vehicle serve the purpose of providing desired thermal-hydraulic boundary conditions to the test specimen. The initial ATF testing in TREAT will focus on reactivity insertion accident (RIA) events using both gas and water environments including typical PWR operating pressures and temperatures. For the water test environment, a test configuration is envisioned using the expansion tank as part of the gas-filled expansion volume seen by the test to provide additional pressure relief. The heat transfer conditions during the high energy power pulses of RIA events remains a subject of large uncertainty and great importance for fuel performance predictions. To support transient experiments, the Multi-SERTTA vehicle has been modeled using RELAP5 with a baseline test specimen composed of UO2 fuel in zircaloy cladding. The modeling results show the influence of the designs of the specimen, vehicle, and transient power pulses. The primary purpose of this work is to provide input and boundary conditions to fuel performance code BISON. Therefore, studies of parameters having influence on specimen performance during RIA transients are presented including cladding oxidation, power pulse magnitude and width, cladding-to-coolant heat fluxes, fuel-to-cladding gap, transient boiling effects (modified CHF values), etc. The results show the great flexibility and capacity of the TREAT Multi-SERTTA test vehicle to provide testing under a wide range of prototypic thermal-hydraulic conditions as never done before.

  11. FY 1993 progress report on the ANS thermal-hydraulic test loop operation and results

    SciTech Connect

    Siman-Tov, M.; Felde, D.K.; Farquharson, G.

    1994-07-01

    The Thermal-Hydraulic Test Loop (THTL) is an experimental facility constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory (ORNL). Highly subcooled heavy-water coolant flows vertically upward at a very high mass flux of almost 27 MG/m{sup 2}-s. In a parallel fuel plate configuration as in the ANSR, the flow is subject to a potential excursive static-flow instability that can very rapidly lead to flow starvation and departure from nucleate boiling (DNB) in the ``hot channel``. The current correlations and experimental data bases for flow excursion (FE) and critical heat flux (CHF) seldom evaluate the specific combination of ANSR operating parameters. The THTL facility was designed and built to provide known thermal-hydraulic (T/H) conditions for a simulated full-length coolant subchannel of the ANS reactor core, thus facilitating experimental determination of FE and CHF thermal limits under expected ANSR T/H conditions. A series of FE tests with water flowing vertically upward was completed over a nominal heat flux range of 6 to 17 MW/m{sup 2}, a mass flux range of 8 to 28 Mg/m{sup 2}-s, an exit pressure range of 1.4 to 2.1 MPa, and an inlet temperature range of 40 to 50 C. FE experiments were also conducted using as ``soft`` a system as possible to secure a true FE phenomena (actual secondary burnout). True DNB experiments under similar conditions were also conducted. To the author`s knowledge, no other FE data have been reported in the literature to date that dover such a combination of conditions of high mass flux, high heat flux, and moderately high pressure.

  12. FY 1995 progress report on the ANS thermal-hydraulic test loop operation and results

    SciTech Connect

    Siman-Tov, M.; Felde, D.K.; Farquharson, G.; McDuffee, J.L.; McFee, M.T.; Ruggles, A.E.; Wendel, M.W.; Yoder, G.L.

    1997-07-01

    The Thermal-Hydraulic Test Loop (THTL) is an experimental facility constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory (ORNL). The THTL facility was designed and built to provide known thermal-hydraulic (T/H) conditions for a simulated full-length coolant subchannel of the ANS reactor core, thus facilitating experimental determination of FE and CHF thermal limits under expected ANSR T/H conditions. Special consideration was given to allow operation of the system in a stiff mode (constant flow) and in a soft mode (constant pressure drop) for proper implementation of true FE and DNB experiments. The facility is also designed to examine other T/H phenomena, including onset of incipient boiling (IB), single-phase heat transfer coefficients and friction factors, and two-phase heat transfer and pressure drop characteristics. Tests will also be conducted that are representative of decay heat levels at both high pressure and low pressure as well as other quasi-equilibrium conditions encountered during transient scenarios. A total of 22 FE tests and 2 CHF tests were performed during FY 1994 and FY 1995 with water flowing vertically upward. Comparison of these data as well as extensive data from other investigators led to a proposed modification to the Saha and Zuber correlation for onset of significant void (OSV), applied to FE prediction. The modification takes into account a demonstrated dependence of the OSV or FE thermal limits on subcooling levels, especially in the low subcooling regime.

  13. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Sessions 17-24

    SciTech Connect

    Block, R.C.; Feiner, F.

    1995-09-01

    Technical papers accepted for presentation at the Seventh International Topical Meeting on Nuclear Reactor Thermal-Hydraulics are included in the present Proceedings. Except for the invited papers in the plenary session, all other papers are contributed papers. The topics of the meeting encompass all major areas of nuclear thermal-hydraulics, including analytical and experimental works on the fundamental mechanisms of fluid flow and heat transfer, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Because of the complex nature of nuclear reactors and power plants, several papers deal with the combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. The participation in the conference by the authors from several countries and four continents makes the Proceedings a comprehensive review of the recent progress in the field of nuclear reactor thermal-hydraulics worldwide. Individual papers have been cataloged separately.

  14. Current and anticipated use of thermal-hydraulic codes for BWR transient and accident analyses in Japan

    SciTech Connect

    Arai, Kenji; Ebata, Shigeo

    1997-07-01

    This paper summarizes the current and anticipated use of the thermal-hydraulic and neutronic codes for the BWR transient and accident analyses in Japan. The codes may be categorized into the licensing codes and the best estimate codes for the BWR transient and accident analyses. Most of the licensing codes have been originally developed by General Electric. Some codes have been updated based on the technical knowledge obtained in the thermal hydraulic study in Japan, and according to the BWR design changes. The best estimates codes have been used to support the licensing calculations and to obtain the phenomenological understanding of the thermal hydraulic phenomena during a BWR transient or accident. The best estimate codes can be also applied to a design study for a next generation BWR to which the current licensing model may not be directly applied. In order to rationalize the margin included in the current BWR design and develop a next generation reactor with appropriate design margin, it will be required to improve the accuracy of the thermal-hydraulic and neutronic model. In addition, regarding the current best estimate codes, the improvement in the user interface and the numerics will be needed.

  15. The effect on stability and thermal hydraulic quenchback of perforating the jacket of a cable-in-conduit conductor

    SciTech Connect

    Dresner, L.

    1994-12-31

    This Paper continues earlier work on the reduction of the quench pressure in a doubler cable-in-conduit conductor achieved by perforating the inner jacket. The present study examines the effect of the perforations on the stability margin and on the onset of thermal hydraulic quenchback.

  16. Investigation of the possibility to use a fine-mesh solver for resolving coupled neutronics and thermal-hydraulics

    SciTech Connect

    Jareteg, K.; Vinai, P.; Demaziere, C.

    2013-07-01

    The development of a fine-mesh coupled neutronic/thermal-hydraulic solver is touched upon in this paper. The reported work investigates the feasibility of using finite volume techniques to discretize a set of conservation equations modeling neutron transport, fluid dynamics, and heat transfer within a single numerical tool. With the long-term objective of developing fine-mesh computing capabilities for a few selected fuel assemblies in a nuclear core, this preliminary study considers an infinite array of a single fuel assembly having a finite height. Thermal-hydraulic conditions close to the ones existing in PWRs are taken as a first test case. The neutronic modeling relies on the diffusion approximation in a multi-energy group formalism, with cross-sections pre-calculated and tabulated at the sub-pin level using a Monte Carlo technique. The thermal-hydraulics is based on the Navier-Stokes equations, complemented by an energy conservation equation. The non-linear coupling terms between the different conservation equations are fully resolved using classical iteration techniques. Early tests demonstrate that the numerical tool provides an unprecedented level of details of the coupled solution estimated within the same numerical tool and thus avoiding any external data transfer, using fully consistent models between the neutronics and the thermal-hydraulics. (authors)

  17. Investigation of the MTC noise estimation with a coupled neutronic/thermal-hydraulic dedicated model - 'Closing the loop'

    SciTech Connect

    Demaziere, C.; Larsson, V.

    2012-07-01

    This paper investigates the reliability of different noise estimators aimed at determining the Moderator Temperature Coefficient (MTC) of reactivity in Pressurized Water Reactors. By monitoring the inherent fluctuations in the neutron flux and moderator temperature, an on-line monitoring of the MTC without perturbing reactor operation is possible. In order to get an accurate estimation of the MTC by noise analysis, the point-kinetic component of the neutron noise and the core-averaged moderator temperature noise have to be used. Because of the scarcity of the in-core instrumentation, the determination of these quantities is difficult, and several possibilities thus exist for estimating the MTC by noise analysis. Furthermore, the effect of feedback has to be negligible at the frequency chosen for estimating the MTC in order to get a proper determination of the MTC. By using an integrated neutronic/thermal- hydraulic model specifically developed for estimating the three-dimensional distributions of the fluctuations in neutron flux, moderator properties, and fuel temperature, different approaches for estimating the MTC by noise analysis can be tested individually. It is demonstrated that a reliable MTC estimation can only be provided if the core is equipped with a sufficient number of both neutron detectors and temperature sensors, i.e. if the core contain in-core detectors monitoring both the axial and radial distributions of the fluctuations in neutron flux and moderator temperature. It is further proven that the effect of feedback is negligible for frequencies higher than 0.1 Hz, and thus the MTC noise estimations have to be performed at higher frequencies. (authors)

  18. TWO-PHASE FLOW STUDIES IN NUCLEAR POWER PLANT PRIMARY CIRCUITS USING THE THREE-DIMENSIONAL THERMAL-HYDRAULIC CODE BAGIRA.

    SciTech Connect

    KOHURT, P. , KALINICHENKO, S.D.; KROSHILIN, A.E.; KROSHILIN, V.E.; SMIRNOV, A.V.

    2006-06-04

    In this paper we present recent results of the application of the thermal-hydraulic code BAGIRA to the analysis of complex two-phase flows in nuclear power plants primary loops. In particular, we performed benchmark numerical simulation of an integral LOCA experiment performed on a test facility modeling the primary circuit of VVER-1000. In addition, we have also analyzed the flow patterns in the VVER-1000 steam generator vessel for stationary and transient operation regimes. For both of these experiments we have compared the numerical results with measured data. Finally, we demonstrate the capabilities of BAGIRA by modeling a hypothetical severe accident for a VVER-1000 type nuclear reactor. The numerical analysis, which modeled all stages of the hypothetical severe accident up to the complete ablation of the reactor cavity bottom, shows the importance of multi-dimensional flow effects.

  19. Simplified modeling of liquid sodium medium with temperature and velocity gradient using real thermal-hydraulic data. Application to ultrasonic thermometry in sodium fast reactor

    NASA Astrophysics Data System (ADS)

    Massacret, N.; Moysan, J.; Ploix, M. A.; Jeannot, J. P.; Corneloup, G.

    2013-01-01

    In the framework of the French R&D program for the Generation IV reactors and specifically for the sodium cooled fast reactors (SFR), studies are carried out on innovative instrumentation methods in order to improve safety and to simplify the monitoring of fundamental physical parameters during reactor operation. The aim of the present work is to develop an acoustic thermometry method to follow up the sodium temperature at the outlet of subassemblies. The medium is a turbulent flow of liquid sodium at 550 °C with temperature inhomogeneities. To understand the effect of disturbance created by this medium, numerical simulations are proposed. A ray tracing code has been developed with Matlabin order to predict acoustic paths in this medium. This complex medium is accurately described by thermal-hydraulic data which are issued from a simulation of a real experiment in Japan. The analysis of these results allows understanding the effects of medium inhomogeneities on the further thermometric acoustic measurement.

  20. Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

    SciTech Connect

    C. B. Davis

    2006-07-01

    The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code’s calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

  1. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 2, Sessions 6-11

    SciTech Connect

    Block, R.C.; Feiner, F.

    1995-09-01

    This document, Volume 2, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  2. Thermal-hydraulic characteristics of a Westinghouse Model 51 steam generator. Volume 2. Appendix A, numerical results. Interim report. [CALIPSOS code numerical data

    SciTech Connect

    Fanselau, R.W.; Thakkar, J.G.; Hiestand, J.W.; Cassell, D.

    1981-03-01

    The Comparative Thermal-Hydraulic Evaluation of Steam Generators program represents an analytical investigation of the thermal-hydraulic characteristics of four PWR steam generators. The analytical tool utilized in this investigation is the CALIPSOS code, a three-dimensional flow distribution code. This report presents the steady state thermal-hydraulic characteristics on the secondary side of a Westinghouse Model 51 steam generator. Details of the CALIPSOS model with accompanying assumptions, operating parameters, and transport correlations are identified. Comprehensive graphical and numerical results are presented to facilitate the desired comparison with other steam generators analyzed by the same flow distribution code.

  3. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 3, Sessions 12-16

    SciTech Connect

    Block, R.C.; Feiner, F.

    1995-09-01

    This document, Volume 3, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, ad the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected abstracts have been indexed separately for inclusion in the Energy Science and Technology Database.

  4. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 1, Sessions 1-5

    SciTech Connect

    Block, R.C.; Feiner, F.

    1995-09-01

    This document, Volume 1, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. Thermal-Hydraulic Design of a Fluoride High-Temperature Demonstration Reactor

    SciTech Connect

    Carbajo, Juan J; Qualls, A L

    2016-01-01

    INTRODUCTION The Fluoride High-Temperature Reactor (FHR) named the Demonstration Reactor (DR) is a novel reactor concept using molten salt coolant and TRIstructural ISOtropic (TRISO) fuel that is being developed at Oak Ridge National Laboratory (ORNL). The objective of the FHR DR is to advance the technology readiness level of FHRs. The FHR DR will demonstrate technologies needed to close remaining gaps to commercial viability. The FHR DR has a thermal power of 100 MWt, very similar to the SmAHTR, another FHR ORNL concept (Refs. 1 and 2) with a power of 125 MWt. The FHR DR is also a small version of the Advanced High Temperature Reactor (AHTR), with a power of 3400 MWt, cooled by a molten salt and also being developed at ORNL (Ref. 3). The FHR DR combines three existing technologies: (1) high-temperature, low-pressure molten salt coolant, (2) high-temperature coated-particle TRISO fuel, (3) and passive decay heat cooling systems by using Direct Reactor Auxiliary Cooling Systems (DRACS). This paper presents FHR DR thermal-hydraulic design calculations.

  6. Theoretical investigation of the thermal hydraulic behaviour of a slab-type liquid metal target

    SciTech Connect

    Dury, T.V.; Smith, B.L.

    1996-06-01

    The thermal hydraulics codes CFDS-FLOW3D and ASTEC have been used to simulate a slabtype design of ESS spallation target. This design is single-skinned, and of tapering form (in the beam direction), with rounded sides in a cross-section through a plane normal to the beam. The coolant fluid used is mercury, under forced circulation, with an inlet temperature of 180{degrees}C. The goal of these computer studies was to understand the behaviour of the coolant flow, and hence to arrive at a design which optimises the heat extraction for a given beam power - in the sense of: (1) minimising the peak local fluid temperature within the target, (2) maintaining an acceptable temperature level and distribution over and through the target outer wall, (3) keeping the overall fluid pressure loss through the complete target to a minimum, (4) staying within the physical limits of overall size required, particularly in the region of primary spallation. Two- and three-dimensional models have been used, with different arrangements and design of internal baffles, and different coolant flow distributions at the target inlet. Nominal total inlet mass flow was 245 kg/s, and a heat deposition profile used which was based on the proton beam energy distribution. This gave a nominal total heat load of 3.23 MW - of which 8.2kW were deposited in the window steel.

  7. Scalable three-dimensional thermal-hydraulic best-estimate code BAGIRA

    SciTech Connect

    Vasenin, V. A.; Krivchikov, M. A.; Kroshilin, V. E.; Kroshilin, A. E.; Roganov, V. A.

    2012-07-01

    The three-dimensional thermal-hydraulic best-estimate code BAGIRA for modeling of multi-phase flows was developed without any artificial physical assumptions or simplifications. The mathematical model is based on numerical approximations of exact three-dimensional equations, including effective multi-dimensional models for turbulent heat and mass transfer. With use of BAGIRA All-Russian Scientific Research Inst. of Nuclear Power Plants (VNIIAES) has developed a full-scope and analytical simulators using BAGIRA for a number of power plants with VVER-1000 and RBMK type design, which are being used in Kalinin, Kursk, Smolensk, Chernobyl, and Bilibino NPPs. The comparison of calculated and experimental results shows that BAGIRA can successfully reproduce the most important processes observed in experiments. BAGIRA is implemented in FORTRAN. It is a relatively complicated code that tends to decompose task by aspects. Such a style is welcoming for extensions, which can be added without code redesign. We would like to present an aspect-oriented mix-in approach for BAGIRA code extension. It allows to make it scalable in number of directions leaving original code base untouched. It is possible to add new effects/units, and even to produce a supercomputer version of the code. The last is a key point today due to availability of low-cost compact supercomputers, which makes building compact NPP simulators possible. (authors)

  8. Thermal-Hydraulic Analyses of the Submersion-Subcritical Safe Space (S and 4) Reactor

    SciTech Connect

    King, Jeffrey C.; El-Genk, Mohamed S.

    2007-01-30

    Detailed thermal-hydraulic analyses of the S and 4 reactor are performed to reduce the maximum fuel temperature of the Submersion-Subcritical Safe Space (S and 4) reactor to below 1300 K. The fuel pellet diameter is reduced from 1.315 cm to 1.25 cm, decreasing the thermal resistance of the pellets and each of the 1.54 cm diameter coolant channels in the reactor core are replaced with several 0.3 cm ID channels to increase the effective heat transfer area and to encourage mixing of the flowing helium-28% xenon coolant. The calculated maximum fuel temperature decreased from more than 1900 K to 1302 K and the relative pressure drop across the reactor core increased from 1.98% to 2.57% of the inlet pressure. Moving the concentric inlet and outlet pipes 1 cm towards the center of the reactor core encouraged more flow through the center region, further reducing the maximum fuel temperature by 14 degrees to 1288 K, with a negligible effect on the core pressure losses.

  9. Test case specifications for coupled neutronics-thermal hydraulics calculation of Gas-cooled Fast Reactor

    NASA Astrophysics Data System (ADS)

    Osuský, F.; Bahdanovich, R.; Farkas, G.; Haščík, J.; Tikhomirov, G. V.

    2017-01-01

    The paper is focused on development of the coupled neutronics-thermal hydraulics model for the Gas-cooled Fast Reactor. It is necessary to carefully investigate coupled calculations of new concepts to avoid recriticality scenarios, as it is not possible to ensure sub-critical state for a fast reactor core under core disruptive accident conditions. Above mentioned calculations are also very suitable for development of new passive or inherent safety systems that can mitigate the occurrence of the recriticality scenarios. In the paper, the most promising fuel material compositions together with a geometry model are described for the Gas-cooled fast reactor. Seven fuel pin and fuel assembly geometry is proposed as a test case for coupled calculation with three different enrichments of fissile material in the form of Pu-UC. The reflective boundary condition is used in radial directions of the test case and vacuum boundary condition is used in axial directions. During these condition, the nuclear system is in super-critical state and to achieve a stable state (which is numerical representation of operational conditions) it is necessary to decrease the reactivity of the system. The iteration scheme is proposed, where SCALE code system is used for collapsing of a macroscopic cross-section into few group representation as input for coupled code NESTLE.

  10. Scaling for integral simulation of thermal-hydraulic phenomena in SBWR during LOCA

    SciTech Connect

    Ishii, M.; Revankar, S.T.; Dowlati, R

    1995-09-01

    A scaling study has been conducted for simulation of thermal-hydraulic phenomena in the Simplified Boiling Water Reactor (SBWR) during a loss of coolant accident. The scaling method consists of a three-level scaling approach. The integral system scaling (global scaling or top down approach) consists of two levels, the integral response function scaling which forms the first level, and the control volume and boundary flow scaling which forms the second level. The bottom up approach is carried out by local phenomena scaling which forms the third level scaling. Based on this scaling study the design of the model facility called Purdue University Multi-Dimensional Integral Test Assembly (PUMA) has been carried out. The PUMA facility has 1/4 height and 1/100 area ratio scaling, corresponding to the volume scaling of 1/400. The PUMA power scaling based on the integral scaling is 1/200. The present scaling method predicts that PUMA time scale will be one-half that of the SBWR. The system pressure for PUMA is full scale, therefore, a prototypic pressure is maintained. PUMA is designed to operate at and below 1.03 MPa (150 psi), which allows it to simulate the prototypic SBWR accident conditions below 1.03 MPa (150 psi). The facility includes models for all components of importance.

  11. Summary of papers on current and anticipated uses of thermal-hydraulic codes

    SciTech Connect

    Caruso, R.

    1997-07-01

    The author reviews a range of recent papers which discuss possible uses and future development needs for thermal/hydraulic codes in the nuclear industry. From this review, eight common recommendations are extracted. They are: improve the user interface so that more people can use the code, so that models are easier and less expensive to prepare and maintain, and so that the results are scrutable; design the code so that it can easily be coupled to other codes, such as core physics, containment, fission product behaviour during severe accidents; improve the numerical methods to make the code more robust and especially faster running, particularly for low pressure transients; ensure that future code development includes assessment of code uncertainties as integral part of code verification and validation; provide extensive user guidelines or structure the code so that the `user effect` is minimized; include the capability to model multiple fluids (gas and liquid phase); design the code in a modular fashion so that new models can be added easily; provide the ability to include detailed or simplified component models; build on work previously done with other codes (RETRAN, RELAP, TRAC, CATHARE) and other code validation efforts (CSAU, CSNI SET and IET matrices).

  12. Incorporating Artificial Neural Networks in the dynamic thermal-hydraulic model of a controlled cryogenic circuit

    NASA Astrophysics Data System (ADS)

    Carli, S.; Bonifetto, R.; Savoldi, L.; Zanino, R.

    2015-09-01

    A model based on Artificial Neural Networks (ANNs) is developed for the heated line portion of a cryogenic circuit, where supercritical helium (SHe) flows and that also includes a cold circulator, valves, pipes/cryolines and heat exchangers between the main loop and a saturated liquid helium (LHe) bath. The heated line mimics the heat load coming from the superconducting magnets to their cryogenic cooling circuits during the operation of a tokamak fusion reactor. An ANN is trained, using the output from simulations of the circuit performed with the 4C thermal-hydraulic (TH) code, to reproduce the dynamic behavior of the heated line, including for the first time also scenarios where different types of controls act on the circuit. The ANN is then implemented in the 4C circuit model as a new component, which substitutes the original 4C heated line model. For different operational scenarios and control strategies, a good agreement is shown between the simplified ANN model results and the original 4C results, as well as with experimental data from the HELIOS facility confirming the suitability of this new approach which, extended to an entire magnet systems, can lead to real-time control of the cooling loops and fast assessment of control strategies for heat load smoothing to the cryoplant.

  13. The THYC three-dimensional thermal-hydraulic codes for rod bundles: Recent developments and tests

    SciTech Connect

    Aubry, S.; Olive, J.; Caremoli, C.; Rascle, P.

    1995-12-01

    Pressurized water reactor (PWR) or liquid-metal fast breeder reactor cores or fuel assemblies, PWR steam generators, condensers, and tubular heat exchangers are basic components of a nuclear power plant that involve two-phase flows in tube or rod bundles. A deep knowledge of the detailed flow patterns on the shell side is necessary to evaluate departure from nucleate boiling (DNB) margins in reactor cores, singularity effects (grids, wire spacers, support plates, and baffles), corrosion on the steam generator tube sheet, bypass effects, and vibration risks. For that purpose, Electricite de France has developed since 1986 a general purpose thermal-HYdraulic Code (THYC) to study three-dimensional single- and two-phase flows in rod or tube bundles (PWR codes, steam generators, condensers, and heat exchangers). It considers the three-dimensional domain to contain two kinds of components: fluid and solids. The THYC model is obtained by space-time averaging of the instantaneous equations (mass, momentum, and energy) of each phase over control volumes including fluid and solids. The physical model of THYC is validated under several French and international experiments for single- and two-phase flows. The THYC is used for the calculation of transients such as steam-line break (coupled with a three-dimensional neutronics code), for DNB predictions, and for various steam generator or condenser studies.

  14. Numerical simulation of thermal-hydraulic processes in the riser chamber of installation for clinker production

    NASA Astrophysics Data System (ADS)

    Borsuk, Grzegorz; Dobrowolski, Bolesław; Nowosielski, Grzegorz; Wydrych, Jacek; Duda, Jerzy

    2016-03-01

    Clinker burning process has a decisive influence on energy consumption and the cost of cement production. A new problem is to use the process of decarbonization of alternative fuels from waste. These issues are particularly important in the introduction of a two-stage combustion of fuel in a rotary kiln without the typical reactor-decarbonizator. This work presents results of numerical studies on thermal-hydraulic phenomena in the riser chamber, which will be designed to burn fuel in the system where combustion air is supplied separately from the clinker cooler. The mathematical model is based on a combination of two methods of motion description: Euler description for the gas phase and Lagrange description for particles. Heat transfer between particles of raw material and gas was added to the numerical calculations. The main aim of the research was finding the correct fractional distribution of particles. For assumed particle distribution on the first stage of work, authors noted that all particles were carried away by the upper outlet to the preheater tower, what is not corresponding to the results of experimental studies. The obtained results of calculations can be the basis for further optimization of the design and operating conditions in the riser chamber with the implementation of the system.

  15. Computational simulation of thermal hydraulic processes in the model LMFBR fuel assembly

    NASA Astrophysics Data System (ADS)

    Bayaskhalanov, M. V.; Merinov, I. G.; Korsun, A. S.; Vlasov, M. N.

    2017-01-01

    The aim of this study was to verify a developed software module on the experimental fuel assembly with partial blockage of the flow section. The developed software module for simulation of thermal hydraulic processes in liquid metal coolant is based on theory of anisotropic porous media with specially developed integral turbulence model for coefficients determination. The finite element method is used for numerical solution. Experimental data for hexahedral assembly with electrically heated smooth cylindrical rods cooled by liquid sodium are considered. The results of calculation obtained with developed software module for a case of corner blockade are presented. The calculated distribution of coolant velocities showed the presence of the vortex flow behind the blockade. Features vortex region are in a good quantitative and qualitative agreement with experimental data. This demonstrates the efficiency of the hydrodynamic unit for developed software module. But obtained radial coolant temperature profiles differ significantly from the experimental in the vortex flow region. The possible reasons for this discrepancy were analyzed.

  16. Methodology of Internal Assessment of Uncertainty and Extension to Neutron Kinetics/Thermal-Hydraulics Coupled Codes

    SciTech Connect

    Petruzzi, A.; D'Auria, F.; Giannotti, W.; Ivanov, K.

    2005-02-15

    The best-estimate calculation results from complex system codes are affected by approximations that are unpredictable without the use of computational tools that account for the various sources of uncertainty.The code with (the capability of) internal assessment of uncertainty (CIAU) has been previously proposed by the University of Pisa to realize the integration between a qualified system code and an uncertainty methodology and to supply proper uncertainty bands each time a nuclear power plant (NPP) transient scenario is calculated. The derivation of the methodology and the results achieved by the use of CIAU are discussed to demonstrate the main features and capabilities of the method.In a joint effort between the University of Pisa and The Pennsylvania State University, the CIAU method has been recently extended to evaluate the uncertainty of coupled three-dimensional neutronics/thermal-hydraulics calculations. The result is CIAU-TN. The feasibility of the approach has been demonstrated, and sample results related to the turbine trip transient in the Peach Bottom NPP are shown. Notwithstanding that the full implementation and use of the procedure requires a database of errors not available at the moment, the results give an idea of the errors expected from the present computational tools.

  17. Current and anticipated uses of thermal-hydraulic codes in Spain

    SciTech Connect

    Pelayo, F.; Reventos, F.

    1997-07-01

    Spanish activities in the field of Applied Thermal-Hydraulics are steadily increasing as the codes are becoming practicable enough to efficiently sustain engineering decision in the Nuclear Power industry. Before reaching this point, a lot of effort has been devoted to achieve this goal. This paper briefly describes this process, points at the current applications and draws conclusions on the limitations. Finally it establishes the applications where the use of T-H codes would be worth in the future, this in turn implies further development of the codes to widen the scope of application and improve the general performance. Due to the different uses of the codes, the applications mainly come from the authority, industry, universities and research institutions. The main conclusion derived from this paper establishes that further code development is justified if the following requisites are considered: (1) Safety relevance of scenarios not presently covered is established. (2) A substantial gain in margins or the capability to use realistic assumptions is obtained. (3) A general consensus on the licensability and methodology for application is reached. The role of Regulatory Body is stressed, as the most relevant outcome of the project may be related to the evolution of the licensing frame.

  18. Thermal-Hydraulics and Electrochemistry of a Boiling Solution in a Porous Sludge Pile A Test Methodology

    SciTech Connect

    R.F. Voelker

    2001-05-03

    When boiling occurs in a pile of porous corrosion products (sludge), chemical species can concentrate. These species can react with the corrosion products and transform the sludge into a rock hard mass and/or create a corrosive environment. In-situ measurements are required to improve the understanding of this process, and the thermal-hydraulic and electrochemical environment in the pile. A test method is described that utilizes a water heated instrumented tube array in an autoclave to perform the in-situ measurements. As a proof of method feasibility, tests were performed in an alkaline phosphate solution. The test data is discussed. Temperature changes and electrochemical potential shifts were used to indicate when chemicals concentrate and if/when the pile hardens. Post-test examinations confirmed hardening occurred. Experiments were performed to reverse the hardening process. A one-dimensional model, utilizing capillary forces, was developed to understand the thermal-hydraulic measurements.

  19. History of the 185-/189-D thermal hydraulics laboratory and its effects on reactor operations at the Hanford Site

    SciTech Connect

    Gerber, M.S.

    1994-09-01

    The 185-D deaeration building and the 189-D refrigeration building were constructed at Hanford during 1943 and 1944. Both buildings were constructed as part of the influent water cooling system for D reactor. The CMS studies eliminated the need for 185-D function. Early gains in knowledge ended the original function of the 189-D building mission. In 1951, 185-D and 189-D were converted to a thermal-hydraulic laboratory. The experiments held in the thermal-hydraulic lab lead to historic changes in Hanford reactor operations. In late 1951, the exponential physics experiments were moved to the 189-D building. In 1958, new production reactor experiments were begun in 185/189-D. In 1959, Plutonium Recycle Test Reactor experiments were added to the 185/189-D facility. By 1960, the 185/189-D thermal hydraulics laboratory was one of the few full service facilities of its type in the nation. During the years 1961--1963 tests continued in the facility in support of existing reactors, new production reactors, and the Plutonium Recycle Test Reactor. In 1969, Fast Flux Test Facility developmental testings began in the facility. Simulations in 185/189-D building aided in the N Reactor repairs in the 1980`s. In 1994 the facility was nominated to the National Register of Historic Places, because of its pioneering role over many years in thermal hydraulics, flow studies, heat transfer, and other reactor coolant support work. During 1994 and 1995 it was demolished in the largest decontamination and decommissioning project thus far in Hanford Site history.

  20. A coupled neutronic/thermal-hydraulic scheme between COBAYA3 and SUBCHANFLOW within the NURESIM simulation platform

    SciTech Connect

    Calleja, M.; Stieglitz, R.; Sanchez, V.; Jimenez, J.; Imke, U.

    2012-07-01

    Multi-scale, multi-physics problems reveal significant challenges while dealing with coupled neutronic/thermal-hydraulic solutions. Current generation of codes applied to Light Water Reactors (LWR) are based on 3D neutronic nodal methods coupled with one or two phase flow thermal-hydraulic system or sub-channel codes. In addition, spatial meshing and temporal schemes are crucial for the proper description of the non-symmetrical core behavior in case of transient and accidents e.g. reactivity insertion accidents. This paper describes the coupling approach between the 3D neutron diffusion code COBAYA3 and the sub-channel code SUBCHANFLOW within SALOME. The coupling is done inside the SALOME open source platform that is characterized by a powerful pre- and post-processing capabilities and a novel functionality for mapping of the neutronic and thermal hydraulic domains. The peculiar functionalities of SALOME and the steps required for the code integration and coupling are presented. The validation of the coupled codes is done based on two benchmarks the PWR MOX/UO{sub 2} RIA and the TMI-1 MSLB benchmark. A discussion of the prediction capability of COBAYA3/SUBCHANFLOW compared to other coupled solutions will be provided too. (authors)

  1. RELAP5 model to simulate the thermal-hydraulic effects of grid spacers and cladding rupture during reflood

    SciTech Connect

    Nithianandan, C.K.; Klingenfus, J.A.; Reilly, S.S.

    1995-09-01

    Droplet breakup at spacer grids and a cladding swelled and ruptured locations plays an important role in the cooling of nuclear fuel rods during the reflooding period of a loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). During the reflood phase, a spacer grid affects the thermal-hydraulic system behavior through increased turbulence, droplet breakup due to impact on grid straps, grid rewetting, and liquid holdup due to grid form losses. Recently, models to simulate spacer grid effects and blockage and rupture effects on system thermal hydraulics were added to the B&W Nuclear Technologies (BWNT) version of the RELAP5/MOD2 computer code. Several FLECHT-SEASET forced reflood tests, CCTF Tests C1-19 and C2-6, SCTF Test S3-15, and G2 Test 561 were simulated using RELAP5/MOD2-B&W to verify the applicability of the model at the cladding swelled and rupture locations. The results demonstrate the importance of modeling the thermal-hydraulic effects due to grids, and clad swelling and rupture to correctly predict the clad temperature response during the reflood phase of large break LOCA. The RELAP5 models and the test results are described in this paper.

  2. Thermal-Hydraulic Simulations of Single Pin and Assembly Sector for IVG- 1M Reactor

    SciTech Connect

    Kraus, A.; Garner, P.; Hanan, N.

    2015-01-15

    Thermal-hydraulic simulations have been performed using computational fluid dynamics (CFD) for the highly-enriched uranium (HEU) design of the IVG.1M reactor at the Institute of Atomic Energy (IAE) at the National Nuclear Center (NNC) in the Republic of Kazakhstan. Steady-state simulations were performed for both types of fuel assembly (FA), i.e. the FA in rows 1 & 2 and the FA in row 3, as well as for single pins in those FA (600 mm and 800 mm pins). Both single pin calculations and bundle sectors have been simulated for the most conservative operating conditions corresponding to the 10 MW output power, which corresponds to a pin unit cell Reynolds number of only about 7500. Simulations were performed using the commercial code STAR-CCM+ for the actual twisted pin geometry as well as a straight-pin approximation. Various Reynolds-Averaged Navier-Stokes (RANS) turbulence models gave different results, and so some validation runs with a higher-fidelity Large Eddy Simulation (LES) code were performed given the lack of experimental data. These singled out the Realizable Two-Layer k-ε as the most accurate turbulence model for estimating surface temperature. Single-pin results for the twisted case, based on the average flow rate per pin and peak pin power, were conservative for peak clad surface temperature compared to the bundle results. Also the straight-pin calculations were conservative as compared to the twisted pin simulations, as expected, but the single-pin straight case was not always conservative with regard to the straight-pin bundle. This was due to the straight-pin temperature distribution being strongly influenced by the pin orientation, particularly near the outer boundary. The straight-pin case also predicted the peak temperature to be in a different location than the twisted-pin case. This is a limitation of the straight-pin approach. The peak temperature pin was in a different location from the peak power pin in every case simulated, and occurred at an

  3. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling

    SciTech Connect

    Travis, Adam R

    2014-05-01

    A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a twodimensional slice oriented perpendicular to the fuel plate s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in SolidWorks. Derivations of the involute construction equations are presented. Geometries were then imported into COMSOL Multiphysics for simulation and modeling. Both models are described in detail so as to highlight their respective attributes in the 3D model, the pursuit of an accurate, reliable, and complete solution; in the coupled model, the intent to simplify the modeling domain as much as possible without affecting significant alterations to the solution. The coupled model was created with the goal of permitting larger portions of the reactor core to be modeled at once without a significant sacrifice to solution integrity. As such, particular care is given to validating incorporated model simplifications. To the greatest extent possible, the decrease in solution time as well as computational cost are quantified versus the effects such gains have on the solution quality. A variant of the coupled model which sufficiently balances these three solution characteristics is presented alongside the more comprehensive 3D model for comparison and validation.

  4. Thermal-hydraulic simulation of mercury target concepts for a pulsed spallation neutron source

    SciTech Connect

    Siman-Tov, M.; Wendel, M.; Haines, J.

    1996-06-01

    The Oak Ridge Spallation Neutron Source (ORSNS) is a high-power, accelerator-based pulsed spallation neutron source being designed by a multi-laboratory team led by Oak Ridge National Laboratory to achieve very high fluxes of neutrons for scientific experiments. The ORSNS is projected to have a 1 MW proton beam upgradable to 5 MW. About 60% of the beam power (1-5 MW, 17-83 kJ/pulse in 0.5 microsec at 60 cps) is deposited in the liquid metal (mercury) target having the dimensions of 65x30x10 cm (about 19.5 liter). Peak steady state power density is about 150 and 785 MW/m{sup 3} for 1 MW and 5 MW beam respectively, whereas peak pulsed power density is as high as 5.2 and 26.1 GW/m{sup 3}, respectively. The peak pulse temperature rise rate is 14 million C/s (for 5 MW beam) whereas the total pulse temperature rise is only 7 C. In addition to thermal shock and materials compatibility, key feasibility issues for the target are related to its thermal-hydraulic performance. This includes proper flow distribution, flow reversals, possible {open_quotes}hot spots{close_quotes} and the challenge of mitigating the effects of thermal shock through possible injection of helium bubbles throughout the mercury volume or other concepts. The general computational fluid dynamics (CFD) code CFDS-FLOW3D was used to simulate the thermal and flow distribution in three preliminary concepts of the mercury target. Very initial CFD simulation of He bubbles injection demonstrates some potential for simulating behavior of He bubbles in flowing mercury. Much study and development will be required to be able to `predict`, even in a crude way, such a complex phenomena. Future direction in both design and R&D is outlined.

  5. Thermal hydraulic design and decay heat removal of a solid target for a spallation neutron source

    NASA Astrophysics Data System (ADS)

    Takenaka, N.; Nio, D.; Kiyanagi, Y.; Mishima, K.; Kawai, M.; Furusaka, M.

    2005-08-01

    Thermal hydraulic design and thermal stress calculations were conducted for a water-cooled solid target irradiated by a MW-class proton beam for a spallation neutron source. Plate type and rod bundle type targets were examined. The thickness of the plate and the diameter of the rod were determined based on the maximum and the wall surface temperature. The thermal stress distributions were calculated by a finite element method (FEM). The neutronics performance of the target is roughly proportional to its average density. The averaged densities of the designed targets were calculated for tungsten plates, tantalum clad tungsten plates, tungsten rods sheathed by tantalum and Zircaloy and they were compared with mercury density. It was shown that the averaged density was highest for the tungsten plates and was high for the tantalum cladding tungsten plates, the tungsten rods sheathed by tantalum and Zircaloy in order. They were higher than or equal to that of mercury for the 1 2 MW proton beams. Tungsten target without the cladding or the sheath is not practical due to corrosion by water under irradiation condition. Therefore, the tantalum cladding tungsten plate already made successfully by HIP and the sheathed tungsten rod are the candidate of high performance solid targets. The decay heat of each target was calculated. It was low enough low compared to that of ISIS for the target without tantalum but was about four times as high as that of ISIS when the thickness of the tantalum cladding was 0.5 mm. Heat removal methods of the decay heat with tantalum were examined. It was shown that a special cooling system was required for the target exchange when tantalum was used for the target. It was concluded that the tungsten rod target sheathed with stainless steel or Zircaloy was the most reliable from the safety considerations and had similar neutronics performance to that of mercury.

  6. Thermal hydraulics of handling FFTF fuel in sodium and argon, comparing test results with calculated

    SciTech Connect

    Guzek, J.C.; Ingham, J.G.

    1980-01-01

    Tests were performed to assess the temperature distributions in FFTF fuel as they are handled in transfer pots, as bare assemblies and in partial fuel pin arrays. The detailed thermal mapping needed for handling FFTF fuel in storage locations, in and out of the reactor, and during transfers in handling machines has been obtained for fuel in stagnant sodium and stagnant atmospheres of argon and helium. Tests also include the thermal assessment of fuel under conditions of forced cooling with argon. The fuel cladding handling thermal limit for preserving reactor test information is 426.7/sup 0/C and in certain instances a local value of 537.9/sup 0/C is allowed for short periods of time. The cladding integrity thermal limit for FFTF fuel is 871.1/sup 0/C. Fuel with a maximum decay heat of 10 kW can be transferred in a sodium filled transfer pot which has been externally conditioned for a high surface emissivity to meet a data preservation thermal limit of 426.7/sup 0/C. The decay heat limit for handling fuel in stagnant argon is less than 1 kW, if data is to be preserved, and forced cooling of a 5 kW decay heat assembly with argon requires a flow of at least .023 CMS (49 SCFM). Results from the electrical tests of prototypic fuel assembly and pin arrays have identified thermal/hydraulic margins of conservatism and have allowed for the meaningful design handling equipment. Analytical thermal models show favorable agreement with the test results. 12 figures.

  7. Thermal-hydraulic model of a solid-oxide fuel cell. [17. 5 watts

    SciTech Connect

    Ahmed, S.; Kumar, R.

    1990-01-01

    A mathematical model has been developed to simulate the electrochemistry and thermal hydraulics in a monolithic solid oxide fuel cell (MSOFC). Dividing a single cell layer into a number of nodes, the model sets up the steady-state heat and mass transfer equations for each node in a cell layer. Based on the average thermal and compositional conditions at each node and a specified cell voltage, the model calculates the Nernst potential and the resultant current, heat generation, and heat removal rates at each node. These calculations yield the temperature and the fuel and oxidant compositions and partial pressure matrices for the entire cell. The simulation also provides related performance data for the fuel cell stack, such as energy efficiency, fuel utilization, and power density. The model can be used to simulate operation with different fuel gases, such as hydrogen, coal gas, and methanol reformate. A mathematical model such as this can be used to examine the effects of changing one or more of the various design variables and to evaluate the effectiveness of fabrication improvements in technology development. In the design phase, the model can be used to determine the size of the stack that will be required for a given power rating and to make design decisions regarding structure-specific parameters, such as the thicknesses of the anode, electrolyte, cathode, and interconnect layers and dimensions of the flow channels in the anode and the cathode. The model can also be helpful to the fuel cell system operator. For example, given a particular stack, the most favorable operating conditions can be determined by determining a priori the effects of altering process variables, such as flow rates and feed conditions. 6 refs., 12 figs., 3 tabs.

  8. W-1 SLSF post-test data analysis. Part 1. Thermal hydraulic analysis. [LMFBR

    SciTech Connect

    Knight, D.D.

    1980-10-01

    Four types of tests were performed: (1) a decay heat transient test, (2) Loss-of-Piping-Integrity (LOPI) tests, (3) Boiling Window Tests (BWT), and (4) a fuel pin dryout and failure test. In addition, preliminary tests were run to check systems performance, instrumentation performance and test section heat balance. The objective of the decay heat test was to determine the decay heat transfer characteristics of fresh fuel pins with subcooled sodium. The objective of the LOPI experiments was to test the thermal behavior of fuel pins with four different fuel conditions subjected to the same transient. The transient was designed to simulate a rapid flow decrease as a result of pipe rupture followed by a reactor scram. The objective of the Boiling Window Tests was to study boiling initiation and progression of boiling within the fuel pin bundle.

  9. The development of a thermal hydraulic feedback mechanism with a quasi-fixed point iteration scheme for control rod position modeling for the TRIGSIMS-TH application

    NASA Astrophysics Data System (ADS)

    Karriem, Veronica V.

    Nuclear reactor design incorporates the study and application of nuclear physics, nuclear thermal hydraulic and nuclear safety. Theoretical models and numerical methods implemented in computer programs are utilized to analyze and design nuclear reactors. The focus of this PhD study's is the development of an advanced high-fidelity multi-physics code system to perform reactor core analysis for design and safety evaluations of research TRIGA-type reactors. The fuel management and design code system TRIGSIMS was further developed to fulfill the function of a reactor design and analysis code system for the Pennsylvania State Breazeale Reactor (PSBR). TRIGSIMS, which is currently in use at the PSBR, is a fuel management tool, which incorporates the depletion code ORIGEN-S (part of SCALE system) and the Monte Carlo neutronics solver MCNP. The diffusion theory code ADMARC-H is used within TRIGSIMS to accelerate the MCNP calculations. It manages the data and fuel isotopic content and stores it for future burnup calculations. The contribution of this work is the development of an improved version of TRIGSIMS, named TRIGSIMS-TH. TRIGSIMS-TH incorporates a thermal hydraulic module based on the advanced sub-channel code COBRA-TF (CTF). CTF provides the temperature feedback needed in the multi-physics calculations as well as the thermal hydraulics modeling capability of the reactor core. The temperature feedback model is using the CTF-provided local moderator and fuel temperatures for the cross-section modeling for ADMARC-H and MCNP calculations. To perform efficient critical control rod calculations, a methodology for applying a control rod position was implemented in TRIGSIMS-TH, making this code system a modeling and design tool for future core loadings. The new TRIGSIMS-TH is a computer program that interlinks various other functional reactor analysis tools. It consists of the MCNP5, ADMARC-H, ORIGEN-S, and CTF. CTF was coupled with both MCNP and ADMARC-H to provide the

  10. Design and Construction of Experiment for Direct Electron Irradiation of Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    SciTech Connect

    Chemerisov, Sergey; Gromov, Roman; Makarashvili, Vakho; Heltemes, Thad; Sun, Zaijing; Wardle, Kent E.; Bailey, James; Quigley, Kevin; Stepinski, Dominique; Vandegrift, George

    2014-10-01

    Argonne is assisting SHINE Medical Technologies in developing SHINE, a system for producing fission-product 99Mo using a D/T-accelerator to produce fission in a non-critical target solution of aqueous uranyl sulfate. We have developed an experimental setup for studying thermal-hydraulics and bubble formation in the uranyl sulfate solution to simulate conditions expected in the SHINE target solution during irradiation. A direct electron beam from the linac accelerator will be used to irradiate a 20 L solution (sector of the solution vessel). Because the solution will undergo radiolytic decomposition, we will be able to study bubble formation and dynamics and effects of convection and temperature on bubble behavior. These experiments will serve as a verification/ validation tool for the thermal-hydraulic model. Utilization of the direct electron beam for irradiation allows homogeneous heating of a large solution volume and simplifies observation of the bubble dynamics simultaneously with thermal-hydraulic data collection, which will complement data collected during operation of the miniSHINE experiment. Irradiation will be conducted using a 30-40 MeV electron beam from the high-power linac accelerator. The total electron-beam power will be 20 kW, which will yield a power density on the order of 1 kW/L. The solution volume will be cooled on the front and back surfaces and central tube to mimic the geometry of the proposed SHINE solution vessel. Also, multiple thermocouples will be inserted into the solution vessel to map thermal profiles. The experimental design is now complete, and installation and testing are in progress.

  11. Thermal-hydraulic design of the target/blanket for the accelerator production of tritium conceptual design

    SciTech Connect

    Willcutt, G.J.E. Jr.; Kapernick, R.J.

    1997-11-01

    A conceptual design was developed for the target/blanket system of an accelerator-based system to produce tritium. The target/blanket system uses clad tungsten rods for a spallation target and clad lead rods as a neutron multiplier in a blanket surrounding the target. The neutrons produce tritium in {sup 3}He, which is contained in aluminum tubes located in the decoupler and blanket regions. This paper presents the thermal-hydraulic design of the target, decoupler, and blanket developed for the conceptual design of the Accelerator Production of Tritium Project, and demonstrates there is adequate margin in the design at full power operation.

  12. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    SciTech Connect

    Langenbuch, S.; Velkov, K.; Lizorkin, M.

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  13. Twenty-third water reactor safety information meeting: Volume 1, plenary session, high burnup fuel behavior, thermal hydraulic research. Proceedings

    SciTech Connect

    Monteleone, S.

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 1, present topics on High Burnup Fuel Behavior, Thermal Hydraulic Research, and Plenary Session topics. Individual papers have been cataloged separately.

  14. Integral Thermal-Hydraulics Tests for the Safety Evaluation of VVER-440/213 Nuclear Reactors and Safety Code Validation

    SciTech Connect

    Szabados, Laszlo

    2004-01-15

    The Paks nuclear power plant is equipped with pressurized water reactors of the VVER-440/213 type. These plants have a number of special features, namely, six-loop primary circuit, horizontal steam generators, loop seal in both hot and cold legs, safety injection tank setpoint pressure higher than secondary pressure, etc. As a consequence of the special design solutions, the transient behavior of such a reactor system is different from the usual pressurized water reactor system behavior. To study the transient behavior of these plants, the PMK-2 integral-type facility, a thermal-hydraulic model of the Paks nuclear power plant, was designed and constructed.A short description of the specific design solutions of the VVER-440/213-type plants is given with the modeling aspects and similarity criteria applied to the design of the PMK-2 facility. Since the startup of the facility in 1985, 48 experiments have been performed primarily in an international framework with the participation of several experts from European and overseas countries to study one- and two-phase natural circulation, loss-of-coolant accidents, special plant transients, and experiments in support of the accident management measures. The results of several experiments illustrate the system effects of special design solutions and the effectiveness of bleed-and-feed accident management measures. A brief commentary on the thermal-hydraulic system code validation is provided, and conclusions are offered.

  15. Thermal-hydraulic design issues and analysis for the ITER (International Thermonuclear Experimental Reactor) divertor

    SciTech Connect

    Koski, J.A.; Watson, R.D. ); Hassanien, A.M. ); Goranson, P.L. . Fusion Engineering Design Center); Salmonson, J.C. . Special Projects)

    1990-01-01

    Critical Heat Flux (CHF), also called burnout, is one of the major design limits for water-cooled divertors in tokamaks. Another important design issue is the correct thermal modeling of the divertor plate geometry where heat is applied to only one side of the plate and highly subcooled flow boiling in internal passages is used for heat removal. This paper discusses analytical techniques developed to address these design issues, and the experimental evidence gathered in support of the approach. Typical water-cooled divertor designs for the International Thermonuclear Experimental Reactor (ITER) are analyzed, and design margins estimated. Peaking of the heat flux at the tube-water boundary is shown to be an important issue, and design concerns which could lead to imposing large design safety margins are identified. The use of flow enhancement techniques such as internal twisted tapes and fins are discussed, and some estimates of the gains in the design margin are presented. Finally, unresolved issues and concerns regarding hydraulic design of divertors are summarized, and some experiments which could help the ITER final design process identified. 23 refs., 10 figs.

  16. ATHOS: a computer program for thermal-hydraulic analysis of steam generators. Volume 4. Applications

    SciTech Connect

    Singhal, A.K.; Keeton, L.W.; Przekwas, A.J.; Weems, J.S.

    1984-08-01

    Purpose of this volume is to consolidate the description of all code qualification and verification applications. These have been divided into five categories: code checkout studies, parametric calculations, simulations of small-scale experiments, model steam generator simulations, and full-scale operating steam generator simulations. Findings can be summarized as follows: Agreement with available experimental data is generally good. Agreement with experimental data is always better when employing the algebraic-slip (rather than homogeneous) flow model. Consistent and plausible trends are found in all parametric studies undertaken. Agreement with experiment is generally not as good for low-power-levl cases (less than 50%). This indicates that further study of empirical correlations is needed, particularly for low-power-level calculations. Several model improvements and further developments are identified and suggested for future implementation.

  17. Thermal-Hydraulic Transient Analysis of a Packed Particle Bed Reactor Fuel Element

    DTIC Science & Technology

    1990-06-01

    B)2 C2 smaller arealargerarea Fm = -Or(FM-raial + FM -axial) w 2 FM-aial 2 pAaial and w 2 FM-radial 2 pAradial 0 = .95 for Inlet Plenum; 1.10 for...of Fluids Engi- neering. Trans. ASME, Vol. 98, Dec 1976. B-6 R. W. Bird , W. E. Stewart, E. N. Lightfoot, Transport Phenomena, John Wiley and Sons, New

  18. A thermal-hydraulic code for transient analysis in a channel with a rod bundle

    SciTech Connect

    Khodjaev, I.D.

    1995-09-01

    The paper contains the model of transient vapor-liquid flow in a channel with a rod bundle of core of a nuclear power plant. The computer code has been developed to predict dryout and post-dryout heat transfer in rod bundles of nuclear reactor core under loss-of-coolant accidents. Economizer, bubble, dispersed-annular and dispersed regimes are taken into account. The computer code provides a three-field representation of two-phase flow in the dispersed-annular regime. Continuous vapor, continuous liquid film and entrained liquid drops are three fields. For the description of dispersed flow regime two-temperatures and single-velocity model is used. Relative droplet motion is taken into account for the droplet-to-vapor heat transfer. The conservation equations for each of regimes are solved using an effective numerical technique. This technique makes it possible to determine distribution of the parameters of flows along the perimeter of fuel elements. Comparison of the calculated results with the experimental data shows that the computer code adequately describes complex processes in a channel with a rod bundle during accident.

  19. Analysis and Down Select of Flow Passages for Thermal Hydraulic Testing of a SNAP Derived Reactor

    NASA Technical Reports Server (NTRS)

    Godfroy, T. J.; Sadasivan, P.; Masterson, S.

    2007-01-01

    As past of the Vision for Space Exploration, man will return to the moon. To enable safe and productive time on the lunar surface will require adequate power resources. To provide the needed power and to give mission planners all landing site possibilities, including a permanently dark crater, a nuclear reactor provides the most options. Designed to be l00kWt providing approx. 25kWe this power plants would be very effective in delivering dependable, site non-specific power to crews or robotic missions on the lunar surface. An affordable reference reactor based upon the successful SNAP program of the 1960's and early 1970's has been designed by Los Alamos National Laboratory that will meet such a requirement. Considering current funding, environmental, and schedule limitations this lunar surface power reactor will be tested using non-nuclear simulators to simulate the heat from fission reactions. Currently a 25kWe surface power SNAP derivative reactor is in the early process of design and testing with collaboration between Los Alamos National Laboratory, Idaho National Laboratory, Glenn Research Center, Marshall Space Flight Center, and Sandia National Laboratory to ensure that this new design is affordable and can be tested using non-nuclear methods as have proven so effective in the past. This paper will discuss the study and down selection of a flow passage concept for a approx. 25kWe lunar surface power reactor. Several different flow passages designs were evaluated using computational fluid dynamics to determine pressure drop and a structural assessment to consider thermal and stress of the passage walls. The reactor design basis conditions are discussed followed by passage problem setup and results for each concept. A recommendation for passage design is made with rationale for selection.

  20. Open cycle OTEC thermal-hydraulic systems analysis and parametric studies

    NASA Astrophysics Data System (ADS)

    Patsons, B.; Bharathan, D.; Althof, J.

    1984-06-01

    An analytic thermohydraulic systems model of the power cycle an seawater supply systems for an open cycle ocean thermal energy conversion (OTEC) plant has been developed that allows ready examination of the effects of system and component operating points on plant size and parasitic power requirements. This paper presents the results of three parametric studies on the effects of system temperature distribution, plant gross electric capacity, and the allowable seawater velocity in the supply and discharge pipes. The paper also briefly discusses the assumptions and equations used in the model and the state-of-the-art component limitations. The model provides a useful tool for an OTEC plant designer to evaluate system trade-offs and define component interactions and performance.

  1. Fundamental approach to TRIGA steady-state thermal-hydraulic CHF analysis.

    SciTech Connect

    Feldman, E.; Nuclear Engineering Division

    2008-03-30

    Methods are investigated for predicting the power at which critical heat flux (CHF) occurs in TRIGA reactors that rely on natural convection for primary flow. For a representative TRIGA reactor, two sets of functions are created. For the first set, the General Atomics STAT code and the more widely-used RELAP5-3D code are each employed to obtain reactor flow rate as a function of power. For the second set, the Bernath correlation, the 2006 Groeneveld table, the Hall and Mudawar outlet correlation, and each of the four PG-CHF correlations for rod bundles are used to predict the power at which CHF occurs as a function of channel flow rate. The two sets of functions are combined to yield predictions of the power at which CHF occurs in the reactor. A combination of the RELAP5-3D code and the 2006 Groeneveld table predicts 67% more CHF power than does a combination of the STAT code and the Bernath correlation. Replacing the 2006 Groeneveld table with the Bernath CHF correlation (while using the RELAP5-3D code flow solution) causes the increase to be 23% instead of 67%. Additional RELAP5-3D flow-versus-power solutions obtained from Reference 1 and presented in Appendix B for four specific TRIGA reactors further demonstrates that the Bernath correlation predicts CHF to occur at considerably lower power levels than does the 2006 Groeneveld table. Because of the lack of measured CHF data in the region of interest to TRIGA reactors, none of the CHF correlations considered can be assumed to provide the definitive CHF power. It is recommended, however, to compare the power levels of the potential limiting rods with the power levels at which the Bernath and 2006 Groeneveld CHF correlations predict CHF to occur.

  2. Analysis and Down Select of Flow Passages for Thermal Hydraulic Testing of a SNAP Derived Reactor

    NASA Technical Reports Server (NTRS)

    Godfroy, T. J.; Sadasivan, P.; Masterson, S.

    2007-01-01

    As past of the Vision for Space Exploration, man will return to the moon. To enable safe and productive time on the lunar surface will require adequate power resources. To provide the needed power and to give mission planners all landing site possibilities, including a permanently dark crater, a nuclear reactor provides the most options. Designed to be l00kWt providing approx. 25kWe this power plants would be very effective in delivering dependable, site non-specific power to crews or robotic missions on the lunar surface. An affordable reference reactor based upon the successful SNAP program of the 1960's and early 1970's has been designed by Los Alamos National Laboratory that will meet such a requirement. Considering current funding, environmental, and schedule limitations this lunar surface power reactor will be tested using non-nuclear simulators to simulate the heat from fission reactions. Currently a 25kWe surface power SNAP derivative reactor is in the early process of design and testing with collaboration between Los Alamos National Laboratory, Idaho National Laboratory, Glenn Research Center, Marshall Space Flight Center, and Sandia National Laboratory to ensure that this new design is affordable and can be tested using non-nuclear methods as have proven so effective in the past. This paper will discuss the study and down selection of a flow passage concept for a approx. 25kWe lunar surface power reactor. Several different flow passages designs were evaluated using computational fluid dynamics to determine pressure drop and a structural assessment to consider thermal and stress of the passage walls. The reactor design basis conditions are discussed followed by passage problem setup and results for each concept. A recommendation for passage design is made with rationale for selection.

  3. Single pin BWR benchmark problem for coupled Monte Carlo - Thermal hydraulics analysis

    SciTech Connect

    Ivanov, A.; Sanchez, V.; Hoogenboom, J. E.

    2012-07-01

    As part of the European NURISP research project, a single pin BWR benchmark problem was defined. The aim of this initiative is to test the coupling strategies between Monte Carlo and subchannel codes developed by different project participants. In this paper the results obtained by the Delft Univ. of Technology and Karlsruhe Inst. of Technology will be presented. The benchmark problem was simulated with the following coupled codes: TRIPOLI-SUBCHANFLOW, MCNP-FLICA, MCNP-SUBCHANFLOW, and KENO-SUBCHANFLOW. (authors)

  4. Thermal-hydraulic analysis of the HL-2M divertor using an homogeneous equilibrium model

    NASA Astrophysics Data System (ADS)

    Lu, Yong; Cai, Lijun; Liu, Yuxiang; Liu, Jian; Yuan, Yinglong; Zheng, Guoyao; Liu, Dequan

    2017-09-01

    The heat flux of the HL-2M divertor would reach 10 MW m-2 or more at the local area when the device operates at high parameters. Subcooled boiling could occur at high thermal load, which would be simulated based on the homogeneous equilibrium model. The results show that the current design of the HL-2M divertor could withstand the local heat flux 10 MW m-2 at a plasma pulse duration of 5 s, inlet coolant pressure of 1.5 MPa and flow velocity of 4 m s-1. The pulse duration that the HL-2M divertor could withstand is closely related to the coolant velocity. In addition, at the time of 2 min after plasma discharge, the flow velocity decreased from 4 m s-1 to 1 m s-1, and the divertor could also be cooled to the initial temperature before the next plasma discharge commences.

  5. Analysis of Anderson Acceleration on a Simplified Neutronics/Thermal Hydraulics System

    SciTech Connect

    Toth, Alex; Kelley, C. T.; Slattery, Stuart R; Hamilton, Steven P; Clarno, Kevin T; Pawlowski, R. P. P.

    2015-01-01

    ABSTRACT A standard method for solving coupled multiphysics problems in light water reactors is Picard iteration, which sequentially alternates between solving single physics applications. This solution approach is appealing due to simplicity of implementation and the ability to leverage existing software packages to accurately solve single physics applications. However, there are several drawbacks in the convergence behavior of this method; namely slow convergence and the necessity of heuristically chosen damping factors to achieve convergence in many cases. Anderson acceleration is a method that has been seen to be more robust and fast converging than Picard iteration for many problems, without significantly higher cost per iteration or complexity of implementation, though its effectiveness in the context of multiphysics coupling is not well explored. In this work, we develop a one-dimensional model simulating the coupling between the neutron distribution and fuel and coolant properties in a single fuel pin. We show that this model generally captures the convergence issues noted in Picard iterations which couple high-fidelity physics codes. We then use this model to gauge potential improvements with regard to rate of convergence and robustness from utilizing Anderson acceleration as an alternative to Picard iteration.

  6. A study of thermal stratification in the cold legs during the subcooled blowdown phase of a loss of coolant accident in the OSU APEX thermal hydraulic testing facility.

    SciTech Connect

    Wachs, D. M.

    1998-11-04

    Thermal stratification, which has been linked to the occurrence of pressurized thermal shock (PTS), is observed to occur during the early stages of simulated loss of coolant accidents (LOCAS) in the Oregon State University Advanced Plant Experiment (OSU APEX) Thermal Hydraulic Test Facility. The OSU APEX Test Facility is a scaled model of the Westinghouse AP600 nuclear power plant. Analysis of the OSU APEX facility data has allowed the determination of an onset criteria for thermal stratification and has provided support for the postulated mechanisms leading to thermal stratification. CFX 4.1, a computational fluid dynamics code, was used to generate a model of the cold legs and the downcomer that described the phenomena occurring within them. Some mixing phenomena were predicted that lead to non-uniformity between the two cold legs attached to the steam generator on the side of the facility containing the Passive Residual Heat Removal (PRHR) injection system. The stratification was found to be two phase and unlikely to be a factor in PTS.

  7. Simplified modeling of liquid sodium medium with temperature and velocity gradient using real thermal-hydraulic data. Application to ultrasonic thermometry in sodium fast reactor

    SciTech Connect

    Massacret, N.; Jeannot, J. P.

    2013-01-25

    In the framework of the French R and D program for the Generation IV reactors and specifically for the sodium cooled fast reactors (SFR), studies are carried out on innovative instrumentation methods in order to improve safety and to simplify the monitoring of fundamental physical parameters during reactor operation. The aim of the present work is to develop an acoustic thermometry method to follow up the sodium temperature at the outlet of subassemblies. The medium is a turbulent flow of liquid sodium at 550 Degree-Sign C with temperature inhomogeneities. To understand the effect of disturbance created by this medium, numerical simulations are proposed. A ray tracing code has been developed with Matlab Copyright-Sign in order to predict acoustic paths in this medium. This complex medium is accurately described by thermal-hydraulic data which are issued from a simulation of a real experiment in Japan. The analysis of these results allows understanding the effects of medium inhomogeneities on the further thermometric acoustic measurement.

  8. Characterization of thermal-hydraulic and ignition phenomena in prototypic, full-length boiling water reactor spent fuel pool assemblies after a complete loss-of-coolant accident.

    SciTech Connect

    Lindgren, Eric Richard; Durbin, Samuel G

    2007-04-01

    The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program provided data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.

  9. LMFBR in-core thermal-hydraulics: the state of the art and US research and development needs

    SciTech Connect

    Khan, E.U.

    1980-04-01

    A detailed critical review is presented of the literature relevant to predicting coolant flow and temperature fields in LMFBR core assemblies for nominal and non-nominal rod bundle geometries and reactor operating conditions. The review covers existing thermal-hydraulic models, computational methods, and experimental data useful for the design of an LMFBR core. The literature search made for this review included publications listed by Nuclear Science Abstracts and Energy Data Base as well as papers presented at key nuclear conferences. Based on this extensive review, the report discusses the accuracy with which the models predict flow and temperature fields in rod assemblies, identifying areas where analytical, experimental, and model development needs exist.

  10. Thermal-hydraulic processes involved in loss of residual heat removal during reduced inventory operation. Revision 1

    SciTech Connect

    Fletcher, C.D.; McHugh, P.R.; Naff, S.A.; Johnsen, G.W.

    1991-02-01

    This paper identifies the topics needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that would be used for each cooling mode, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain, core water boil-off, and reflux cooling processes. Important subcategories of the reflux cooling processes include: the initiation of reflux cooling from various plant conditions, the effects of air on reflux cooling, core level depression effects, issues regarding the steam generator secondaries, and the special case of boiler-condenser cooling with once-through steam generators. 25 refs., 6 figs., 1 tab.

  11. EXPERIMENTAL VERIFICATION OF THE THREE-DIMENSIONAL THERMAL-HYDRAULIC MODELS IN THE BEST-ESTIMATE CODE BAGIRA.

    SciTech Connect

    KALINICHENKO,S.D.KROSHILIN,A.E.KROSHILIN,V.E.SMIRNOV,A.V.KOHUT,P.

    2004-03-15

    In this paper we present verification results of the BAGIRA code that was performed using data from integral thermal-hydraulic experimental test facilities as well as data obtained from operating nuclear power plants. BAGIRA is a three-dimensional numerical best-estimate code that includes non-homogeneous modeling. Special consideration was given to the recently completed experimental data from the PSB-VVER integral test facility (EREC, Electrogorsk, Russia)--a new Russian large-scale four-loop unit, which has been designed to model the primary circuits of VVER-1000 type reactors. It is demonstrated that the code BAGIRA can be used to analyze nuclear reactor behavior under normal and accident conditions.

  12. The development of a preliminary correlation of data on oxide growth on 6061 aluminum under ANS thermal-hydraulic conditions

    SciTech Connect

    Pawel, R.E.; Yoder, G.L.; West, C.D.; Montgomery, B.H.

    1990-06-01

    The corrosion of aluminum alloy 6061 is being studied in a special test loop facility under the range of thermal-hydraulic conditions appropriate for fuel plate operation in the Advanced Neutron Source (ANS) reactor core. Experimental measurements describing the growth of the boehmite (Al{sub 2}O{sub 3}H{sub 2}O) films on the exposed aluminum surfaces are now available for a range of coolant conditions and heat fluxes, and these results have been analyzed to demonstrate the influence of several important experimental variables. A subset of our data base particularly appropriate to the ANS conditions presently anticipated was used to develop a preliminary correlation based on an empirical oxidation model.

  13. Peach Bottom 2 Turbine Trip Simulation Using TRAC-BF1/COS3D, a Best-Estimate Coupled 3-D Core and Thermal-Hydraulic Code System

    SciTech Connect

    Ui, Atsushi; Miyaji, Takamasa

    2004-10-15

    The best-estimate coupled three-dimensional (3-D) core and thermal-hydraulic code system TRAC-BF1/COS3D has been developed. COS3D, based on a modified one-group neutronic model, is a 3-D core simulator used for licensing analyses and core management of commercial boiling water reactor (BWR) plants in Japan. TRAC-BF1 is a plant simulator based on a two-fluid model. TRAC-BF1/COS3D is a coupled system of both codes, which are connected using a parallel computing tool. This code system was applied to the OECD/NRC BWR Turbine Trip Benchmark. Since the two-group cross-section tables are provided by the benchmark team, COS3D was modified to apply to this specification. Three best-estimate scenarios and four hypothetical scenarios were calculated using this code system. In the best-estimate scenario, the predicted core power with TRAC-BF1/COS3D is slightly underestimated compared with the measured data. The reason seems to be a slight difference in the core boundary conditions, that is, pressure changes and the core inlet flow distribution, because the peak in this analysis is sensitive to them. However, the results of this benchmark analysis show that TRAC-BF1/COS3D gives good precision for the prediction of the actual BWR transient behavior on the whole. Furthermore, the results with the modified one-group model and the two-group model were compared to verify the application of the modified one-group model to this benchmark. This comparison shows that the results of the modified one-group model are appropriate and sufficiently precise.

  14. Fundamentals, current state of the development of, and prospects for further improvement of the new-generation thermal-hydraulic computational HYDRA-IBRAE/LM code for simulation of fast reactor systems

    NASA Astrophysics Data System (ADS)

    Alipchenkov, V. M.; Anfimov, A. M.; Afremov, D. A.; Gorbunov, V. S.; Zeigarnik, Yu. A.; Kudryavtsev, A. V.; Osipov, S. L.; Mosunova, N. A.; Strizhov, V. F.; Usov, E. V.

    2016-02-01

    The conceptual fundamentals of the development of the new-generation system thermal-hydraulic computational HYDRA-IBRAE/LM code are presented. The code is intended to simulate the thermalhydraulic processes that take place in the loops and the heat-exchange equipment of liquid-metal cooled fast reactor systems under normal operation and anticipated operational occurrences and during accidents. The paper provides a brief overview of Russian and foreign system thermal-hydraulic codes for modeling liquid-metal coolants and gives grounds for the necessity of development of a new-generation HYDRA-IBRAE/LM code. Considering the specific engineering features of the nuclear power plants (NPPs) equipped with the BN-1200 and the BREST-OD-300 reactors, the processes and the phenomena are singled out that require a detailed analysis and development of the models to be correctly described by the system thermal-hydraulic code in question. Information on the functionality of the computational code is provided, viz., the thermalhydraulic two-phase model, the properties of the sodium and the lead coolants, the closing equations for simulation of the heat-mass exchange processes, the models to describe the processes that take place during the steam-generator tube rupture, etc. The article gives a brief overview of the usability of the computational code, including a description of the support documentation and the supply package, as well as possibilities of taking advantages of the modern computer technologies, such as parallel computations. The paper shows the current state of verification and validation of the computational code; it also presents information on the principles of constructing of and populating the verification matrices for the BREST-OD-300 and the BN-1200 reactor systems. The prospects are outlined for further development of the HYDRA-IBRAE/LM code, introduction of new models into it, and enhancement of its usability. It is shown that the program of development and

  15. Development of ITER Divertor Vertical Target with Annular Flow Concept - I: Thermal-Hydraulic Characteristics of Annular Swirl Tube

    SciTech Connect

    Ezato, K.; Dairaku, M.; Taniguchi, M.; Sato, K.; Suzuki, S.; Akiba, M.; Ibbott, C.; Tivey, R.

    2004-12-15

    Thermal-hydraulic tests for pressurized water in an annular tube with a twist fin have been performed to examine its applicability to high-heat-flux components of the International Thermonuclear Experimental Reactor (ITER) divertor. The annular swirl tube consists of two concentric tubes: an outer smooth tube and an inner tube with an external twist fin to enhance heat transfer of the cooling water in the annulus section between the outer and the inner tubes. Critical heat flux (CHF) tests under one-sided-heating conditions show that the annular swirl tube has as high removal limitation as the conventional swirl tube, the dimensions of which are similar to those of the outer tube of the annular swirl tube. A minimum axial velocity of 7.1 m/s is required for 28 MW/m{sup 2}, the ITER design value. Pressure drops in the annulus section and the end return have been measured. The applicability of the existing correlations for heat transfer and CHF to the annular swirl tube has also been examined.

  16. Evolution of the design methodologies for the next generation of RPV Extensive role of the thermal-hydraulics numerical tools

    SciTech Connect

    Goreaud, Nicolas; Nicaise, Norbert; Stoudt, Roger

    2004-07-01

    The thermal-hydraulic design of the first PWR's was mainly based on an experimental approach, with a large series of test on the main equipment (control rod guide tubes, RPV plenums..), to check its performances. Development of CFD-codes and computers now allows for complex simulations of hydraulic phenomena. Provided adequate qualification, these numerical tools are efficient means to determine hydraulics in given design, and to perform sensitivities for optimization of new designs. Experiments always play their role, first for qualification, and for validation at the last stage of the design. The design of the European Pressurized water Reactor (EPR), is based on both hydraulic calculations and experiments, handled in a complementary approach. This paper describes the effort launched by Framatome-ANP on hydraulic calculations for the Reactor Pressure Vessel (RPV) of the EPR reactor. It concerns 3D-calculations of RPV-inlet including cold legs, RPV-downcomer and lower plenum, RPV-upper plenum up to and including hot legs. It covers normal operating conditions, but also accidental conditions as PTS (Pressurized Thermal Shock) in small break loss of coolant accident (SB-LOCA). Those hydraulic studies have provided numerous useful information for the mechanical design of RPV-internals. (authors)

  17. Evolution of Design Methodologies for Next Generation of Reactor Pressure Vessels and Extensive Role of Thermal-Hydraulic Numerical Tools

    SciTech Connect

    Bellet, Serge; Goreaud, Nicolas; Nicaise, Norbert

    2005-11-15

    The thermal-hydraulic design of the first pressurized water reactors was mainly based on an experimental approach, with a large series of tests on the main equipment [control rod guide tubes, reactor pressure vessel (RPV) plenums, etc.] to check performance.Development of computational fluid dynamics codes and computers now allows for complex simulations of hydraulics phenomena. Provided adequate qualification, these numerical tools are an efficient means to determine hydraulics in the given design and to perform sensitivities for optimization of new designs. Experiments always play their role, first for qualification and then for validation at the last stage of the design. The design of the European Pressurized Water Reactor (EPR), jointly developed by Framatome ANP, Electricite de France (EDF), and the German utilities, is based on both hydraulics calculations and experiments handled in a complementary approach.This paper describes the collective effort launched by Framatome ANP and EDF on hydraulics calculations for the RPV of the EPR. It concerns three-dimensional calculations of RPV inlets, including the cold legs, the RPV downcomer and lower plenum, and the RPV upper plenum up to and including the hot legs. It covers normal operating conditions but also accidental conditions such as pressurized thermal shock in a small-break loss-of-coolant accident. Those hydraulics studies have provided much useful information for the mechanical design of RPV internals.

  18. Scaling of Thermal-Hydraulic Experiments for a Space Rankine Cycle and Selection of a Preconceptual Scaled Experiment Design

    SciTech Connect

    Sulfredge, CD

    2006-01-27

    To assist with the development of a space-based Rankine cycle power system using liquid potassium as the working fluid, a study has been conducted on possible scaled experiments with simulant fluids. This report will consider several possible working fluids and describe a scaling methodology to achieve thermal-hydraulic similarity between an actual potassium system and scaled representations of the Rankine cycle boiler or condenser. The most practical scaling approach examined is based on the selection of perfluorohexane (FC-72) as the simulant. Using the scaling methodology, a series of possible solutions have been calculated for the FC-72 boiler and condenser. The possible scaled systems will then be compared and preconceptual specifications and drawings given for the most promising design. The preconceptual design concept will also include integrating the scaled boiler and scaled condenser into a single experimental loop. All the preconceptual system specifications appear practical from a fabrication and experimental standpoint, but further work will be needed to arrive at a final experiment design.

  19. Coupled calculation of the radiological release and the thermal-hydraulic behavior of a 3-loop PWR after a SGTR by means of the code RELAP5

    SciTech Connect

    Van Hove, W.; Van Laeken, K.; Bartsoen, L.

    1995-09-01

    To enable a more realistic and accurate calculation of the radiological consequences of a SGTR, a fission product transport model was developed. As the radiological releases strongly depend on the thermal-hydraulic transient, the model was included in the RELAP5 input decks of the Belgian NPPs. This enables the coupled calculation of the thermal-hydraulic transient and the radiological release. The fission product transport model tracks the concentration of the fission products in the primary circuit, in each of the SGs as well as in the condenser. This leads to a system of 6 coupled, first order ordinary differential equations with time dependent coefficients. Flashing, scrubbing, atomisation and dry out of the break flow are accounted for. Coupling with the thermal-hydraulic calculation and correct modelling of the break position enables an accurate calculation of the mixture level above the break. Pre- and post-accident spiking in the primary circuit are introduced. The transport times in the FW-system and the SG blowdown system are also taken into account, as is the decontaminating effect of the primary make-up system and of the SG blowdown system. Physical input parameters such as the partition coefficients, half life times and spiking coefficients are explicitly introduced so that the same model can be used for iodine, caesium and noble gases.

  20. Initial-value methods for a simplified subchannel model of thermal-hydraulic behavior

    SciTech Connect

    Nelson, P.; Neil, C.H.

    1980-12-01

    It is shown that many of the numerical difficulties and phenomena encountered in subchannel analysis have counterparts within a simple two-subchannel model, which permits analytic study of these matters. Results are presented that suggest that the reported inability of initial-value techniques for subchannel models to cope with flow-blockage problems may be peculiar to the particular initial-value techniques frequently used.

  1. VVER-440 Containment Thermal Hydraulic Analyses With MELCOR and CONTAIN Codes

    SciTech Connect

    Gromov, Gregory; Lola, Igor; Sholomitsky, Stanislav; Gumenyuk, Dmitry; Shikhabutinov, Valery; Alekseev, Yury; Wagner, K.C.; Dallman, Jack

    2002-07-01

    In support of the analyses for the Rivne Nuclear Power Plant (RNPP) VVER-440/213 (Ukraine) Safety Analysis Report (SAR), detailed MELCOR and CONTAIN models of the containment were developed. The RNPP containment features a bubble condenser tower with air locks and active and passive spray systems. Code input models were developed to accurately represent the containment volumes, room interconnections, structural masses, and the engineering safety features. Although MELCOR 1.8.3 was the primary tool for the SAR containment analysis, comparison calculations were performed using CONTAIN Version 1.12. Consequently, both the response of the VVER-440 containment to limiting design conditions as well as a comparison of the two codes is presented. In the context of SAR requirements, the present application was performed for design basis accidents with conservative assumptions to compare the containment temperature and pressure with design criteria. The peak containment pressure and temperature were evaluated using the most intensive release of the primary and secondary coolant into the hermetic compartments, in particular, for the large break loss of coolant accident and main steam line break. Conservative coolant release data were evaluated using the RELAP5/Mod3.2 SAR model. The selection of the accident scenario, initial and boundary conditions, and the major results are presented. The results of the analyses will be included in the design basis accident analysis chapter of the RNPP SAR. (authors)

  2. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    SciTech Connect

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.

  3. Coupled neutronics and thermal-hydraulics numerical simulations of a Molten Fast Salt Reactor (MFSR)

    NASA Astrophysics Data System (ADS)

    Laureau, A.; Rubiolo, P. R.; Heuer, D.; Merle-Lucotte, E.; Brovchenko, M.

    2014-06-01

    Coupled neutronics and thermalhydraulic numerical analyses of a molten salt fast reactor are presented. These preliminary numerical simulations are carried-out using the Monte Carlo code MCNP and the Computation Fluid Dynamic code OpenFOAM. The main objectives of this analysis performed at steady-reactor conditions are to confirm the acceptability of the current neutronic and thermalhydraulic designs of the reactor, to study the effects of the reactor operating conditions on some of the key MSFR design parameters such as the temperature peaking factor. The effects of the precursor's motion on the reactor safety parameters such as the effective fraction of delayed neutrons have been evaluated.

  4. Solution of a Standard Thermal Hydraulics Problem in a Liquid Metal Subassembly

    SciTech Connect

    Son, Hyoung M.; Suh, Kune Y.

    2006-07-01

    The model subassembly of the BREST-type reactor core consists of a pin bundle of square arrangement. In this bundle there are two zones which differ in the pin diameter and heat production. The model pin bundle contains one spacer grid which is located near the mid-plane of the rod bundle geometry. The working is a eutectic alloy of 22% sodium (Na) plus 78% potassium (K). Three kinds of experiments were performed to observe the thermal and hydraulic behavior of the liquid metal coolant in the BREST core simulator. Results were obtained for the coolant exit temperature distribution, central measuring pin simulator external surface temperature distribution, and coolant velocity distribution over the perimeter of the measuring pin simulator. The experiments were performed five times with increasing pin power ratios. Analysis was performed on the model subassembly of the BREST-type reactor core using a subchannel analysis code MATRA and a computational fluid dynamics code CFX. Calculational results were compared against the experimental data. The experiment revealed that the temperature rise was strongly dependent upon the geometry of the pin simulator. In contrast to the experimental results, the MATRA results were mainly dependent upon the thermal and hydraulic conditions. It was concluded that MATRA requires modifications for the pressure drop correlations that were considered inappropriate for accurately simulating the coolant behavior near the BREST-type grid spacer. Hand calculations were additionally carried out under different assumptions to determine the coolant exit temperature distribution in the pin simulator. First, the hand calculation was performed to find the coolant exit temperature distribution assuming that there is no momentum or energy transfer between subchannels. Second, an assumption was made that the coolant mixing in the subchannel assembly took place instantaneously and the pressure was equilibrated at the channel exit. Since MATRA is based

  5. Assessment of the PIUS physics and thermal-hydraulic experimental data bases

    SciTech Connect

    Boyack, B.E.

    1993-12-31

    The PIUS reactor utilizes simplified, inherent, passive, or other innovative means to accomplish safety functions. Accordingly, the PIUS reactor is subject to the requirements of 10CFR52.47(b)(2)(i)(A). This regulation requires that the applicant adequately demonstrate the performance of each safety feature, interdependent effects among the safety features, and a sufficient data base on the safety features of the design to assess the analytical tools used for safety analysis. Los Alamos has assessed the quality and completeness of the existing and planned data bases used by Asea Brown Boveri to validate its safety analysis codes and other relevant data bases. Only a limited data base of separate effect and integral tests exist at present. This data base is not adequate to fulfill the requirements of 10CFR52.47(b)(2)(i)(A). Asea Brown Boveri has stated that it plans to conduct more separate effect and integral test programs. If appropriately designed and conducted, these test programs have the potential to satisfy most of the data base requirements of 10CFR52.47(b)(2)(i)(A) and remedy most of the deficiencies of the currently existing combined data base. However, the most important physical processes in PIUS are related to reactor shutdown because the PIUS reactor does not contain rodded shutdown and control systems. For safety-related reactor shutdown, PIUS relies on negative reactivity insertions from the moderator temperature coefficient and from boron entering the core from the reactor pool. Asea Brown Boveri has neither developed a direct experimental data base for these important processes nor provided a rationale for indirect testing of these key PIUS processes. This is assessed as a significant shortcoming. In preparing the conclusions of this report, test documentation and results have been reviewed for only one integral test program, the small-scale integral tests conducted in the ATLE facility.

  6. Thermal-hydraulics modeling for prototype testing of the W7-X high heat flux scraper element

    DOE PAGES

    Clark, Emily; Lumsdaine, Arnold; Boscary, Jean; ...

    2017-07-28

    The long-pulse operation of the Wendelstein 7-X (W7-X) stellarator experiment is scheduled to begin in 2020. This operational phase will be equipped with water-cooled plasma facing components to allow for longer pulse durations. Certain simulated plasma scenarios have been shown to produce heat fluxes that surpass the technological limits on the edges of the divertor target elements during steady-state operation. In order to reduce the heat load on the target elements, the addition of a “scraper element” (SE) is under investigation. The SE is composed of 24 water-cooled carbon fiber reinforced carbon composite monoblock units. Multiple full-scale prototypes have beenmore » tested in the GLADIS high heat flux test facility. Previous computational studies revealed discrepancies between the simulations and experimental measurements. In this work, single-phase thermal-hydraulics modeling was performed in ANSYS CFX to identify potential causes for such discrepancies. Possible explanations investigated were the effects of a non-uniform thermal contact resistance and a potential misalignment of the monoblock fibers. And while the difference between the experimental and computational results was not resolved by a non-uniform thermal contact resistance, the computational results provided insight into the potential performance of a W7-X monoblock unit. Circumferential temperature distributions highlighted the expected boiling regions of such a unit. Finally, simulations revealed that modest angles of fiber misalignment in the monoblocks result in asymmetries at the unit edges and provide temperature differences similar to the experimental results.« less

  7. A Methodology for Selecting High Thermal-Hydraulic Performance Fuel Configurations for Tightly Packed Epithermal Core Designs

    SciTech Connect

    Romano, Antonino; Todreas, Neil E.

    2002-07-15

    Cylindrical fuel pins with wires are the design of choice for tightly packed fuel arrays. However, it is important to investigate novel fuel configurations in order to increase the thermal margins. Hence, new fuel designs have been studied for the epithermal option of the light water-cooled IRIS core. These designs are also of potential use in other tightly packed, epithermal advanced core designs.First, design equations have been used to determine number, height, and size of the principal features (clad, gap, fuel cross-sectional area) of the novel fuel configurations under investigation. Then, performance indices have been introduced to relate fuel geometrical characteristics to selected thermal-hydraulic parameters, such as pressure drop, critical heat flux (CHF), fuel centerline temperature, and clad surface temperature and stress distribution. Finally, variously shaped fuel configurations, including cylindrical, triangular, square, and hexagonal, have been ranked according to the performance indicators.The hexagonal fuel pins, both twisted and straight, proved to be good solutions for the epithermal tight core of the light water-cooled IRIS reactor, with performances comparable to those of the cylindrical fuel with wires. In particular, for water-to-fuel ratios {approx}0.33, the twisted hexagonal shape is the preferable design with a reduction of the total pressure drop by 16% and an increase of the CHF margin by 200%, compared to the traditional cylindrical pins with grids. Furthermore, the straight hexagonal shape allows flatter subchannel velocity profiles, wall shear stress, and wall temperature distributions. However, geometric constraints unfortunately do not allow application of the twisted hexagonal shape for smaller water-to-fuel ratios, which is a design regime of more favorable epithermal neutronics performance. In this regime, the cylindrical pins with wires are the solution of choice.

  8. Thermal properties for the thermal-hydraulics analyses of the BR2 maximum nominal heat flux.

    SciTech Connect

    Dionne, B.; Kim, Y. S.; Hofman, G. L.

    2011-05-23

    This memo describes the assumptions and references used in determining the thermal properties for the various materials used in the BR2 HEU (93% enriched in {sup 235}U) to LEU (19.75% enriched in {sup 235}U) conversion feasibility analysis. More specifically, this memo focuses on the materials contained within the pressure vessel (PV), i.e., the materials that are most relevant to the study of impact of the change of fuel from HEU to LEU. This section is regrouping all of the thermal property tables. Section 2 provides a summary of the thermal properties in form of tables while the following sections present the justification of these values. Section 3 presents a brief background on the approach used to evaluate the thermal properties of the dispersion fuel meat and specific heat capacity. Sections 4 to 7 discuss the material properties for the following materials: (i) aluminum, (ii) dispersion fuel meat (UAlx-Al and U-7Mo-Al), (iii) beryllium, and (iv) stainless steel. Section 8 discusses the impact of irradiation on material properties. Section 9 summarizes the material properties for typical operating temperatures. Appendix A elaborates on how to calculate dispersed phase's volume fraction. Appendix B shows the evolution of the BR2 maximum heat flux with burnup.

  9. Thermal Properties for the Thermal-Hydraulics Analyses of the BR2 Maximum Nominal Heat Flux

    SciTech Connect

    Dionne, B.; Bergeron, A.; Licht, J. R.; Kim, Y. S.; Hofman, G. L.

    2015-02-01

    This memo describes the assumptions and references used in determining the thermal properties for the various materials used in the BR2 HEU (93% enriched in 235U) to LEU (19.75% enriched in 235U) conversion feasibility analysis. More specifically, this memo focuses on the materials contained within the pressure vessel (PV), i.e., the materials that are most relevant to the study of impact of the change of fuel from HEU to LEU. Section 2 provides a summary of the thermal properties in the form of tables while the following sections and appendices present the justification of these values. Section 3 presents a brief background on the approach used to evaluate the thermal properties of the dispersion fuel meat and specific heat capacity. Sections 4 to 7 discuss the material properties for the following materials: i) aluminum, ii) dispersion fuel meat (UAlx-Al and U-7Mo-Al), iii) beryllium, and iv) stainless steel. Section 8 discusses the impact of irradiation on material properties. Section 9 summarizes the material properties for typical operating temperatures. Appendix A elaborates on how to calculate dispersed phase’s volume fraction. Appendix B provides a revised methodology for determining the thermal conductivity as a function of burnup for HEU and LEU.

  10. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    SciTech Connect

    Jain, Prashant K; Freels, James D

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  11. Thermal-hydraulic response and iodine transport during a steam generator tube rupture

    SciTech Connect

    Callow, R.A.

    1988-10-01

    Recent reanalyses of the offsite dose consequences following a steam generator tube rupture have identified a possible non-conservatism in original FSAR analyses. Post-trip uncovery of the top of the steam generator U-tubes, in conjunction with a break near the U-tube top, could lead to increased iodine release due to a reduced ''scrubbing'' of the iodine in the primary break fluid by the steam generator secondary liquid. To evaluate this issue, analyses were performed at the Idaho National Engineering Laboratory. The RELAP5 computer code was used to conduct an analysis of the Surry plant to determine whether the post-trip steam generator secondary mixture level was sufficient to maintain continuous coverage of the U-tubes. The results indicated continuous coverage of the U-tubes. The RELAP5 result was supported by a hand calculation. Additional RELAP5 analyses were conducted to determine magnitudes of iodine release for a steam generator tube rupture. Two sensitivity studies were conducted. The amount of iodine released to the atmosphere was strongly dependent on the assumed value of the partition coefficient. The assumption of steam generator U-tube uncovery, on a collapsed liquid level basis, following reactor trip had a minor effect on the amount of released iodine. 17 refs., 28 figs., 5 tabs.

  12. Optimization and Parallelization of the Thermal-Hydraulic Sub-channel Code CTF for High-Fidelity Multi-physics Applications

    SciTech Connect

    Salko, Robert K; Schmidt, Rodney; Avramova, Maria N

    2014-01-01

    assemblies, ~56,000 pins, ~59,000 sub-channels, ~2.8 million thermal-hydraulic (TH) control volumes). Results demonstrate that CTF can now perform full core analysis (not previously possible due to excessively long runtimes and memory requirements) on the order of 20 minutes. This new capability is not only useful to standalone CTF users, but is also being leveraged in support of coupled code multi-physics calculations being done in the CASL program.

  13. INVESTIGATION OF FUNDAMENTAL THERMAL-HYDRAULIC PHENOMENA IN ADVANCED GAS-COOLED REACTORS

    SciTech Connect

    INVESTIGATION OF FUNDAMENTAL THERMAL-HYDRAULIC PHE

    2006-09-01

    INL LDRD funded research was conducted at MIT to experimentally characterize mixed convection heat transfer in gas-cooled fast reactor (GFR) core channels in collaboration with INL personnel. The GFR for Generation IV has generated considerable interest and is under development in the U.S., France, and Japan. One of the key candidates is a block-core configuration first proposed by MIT, has the potential to operate in Deteriorated Turbulent Heat Transfer (DTHT) regime or in the transition between the DTHT and normal forced or laminar convection regime during post-loss-of-coolant accident (LOCA) conditions. This is contrary to most industrial applications where operation is in a well-defined and well-known turbulent forced convection regime. As a result, important new need emerged to develop heat transfer correlations that make possible rigorous and accurate predictions of Decay Heat Removal (DHR) during post LOCA in these regimes. Extensive literature review on these regimes was performed and a number of the available correlations was collected in: (1) forced laminar, (2) forced turbulent, (3) mixed convection laminar, (4) buoyancy driven DTHT and (5) acceleration driven DTHT regimes. Preliminary analysis on the GFR DHR system was performed and using the literature review results and GFR conditions. It confirmed that the GFR block type core has a potential to operate in the DTHT regime. Further, a newly proposed approach proved that gas, liquid and super critical fluids all behave differently in single channel under DTHT regime conditions, thus making it questionable to extrapolate liquid or supercritical fluid data to gas flow heat transfer. Experimental data were collected with three different gases (nitrogen, helium and carbon dioxide) in various heat transfer regimes. Each gas unveiled different physical phenomena. All data basically covered the forced turbulent heat transfer regime, nitrogen data covered the acceleration driven DTHT and buoyancy driven DTHT

  14. Benchmarking of thermal hydraulic loop models for Lead-Alloy Cooled Advanced Nuclear Energy System (LACANES), phase-I: Isothermal steady state forced convection

    NASA Astrophysics Data System (ADS)

    Cho, Jae Hyun; Batta, A.; Casamassima, V.; Cheng, X.; Choi, Yong Joon; Hwang, Il Soon; Lim, Jun; Meloni, P.; Nitti, F. S.; Dedul, V.; Kuznetsov, V.; Komlev, O.; Jaeger, W.; Sedov, A.; Kim, Ji Hak; Puspitarini, D.

    2011-08-01

    As highly promising coolant for new generation nuclear reactors, liquid Lead-Bismuth Eutectic has been extensively worldwide investigated. With high expectation about this advanced coolant, a multi-national systematic study on LBE was proposed in 2007, which covers benchmarking of thermal hydraulic prediction models for Lead-Alloy Cooled Advanced Nuclear Energy System (LACANES). This international collaboration has been organized by OECD/NEA, and nine organizations - ENEA, ERSE, GIDROPRESS, IAEA, IPPE, KIT/IKET, KIT/INR, NUTRECK, and RRC KI - contribute their efforts to LACANES benchmarking. To produce experimental data for LACANES benchmarking, thermal-hydraulic tests were conducted by using a 12-m tall LBE integral test facility, named as Heavy Eutectic liquid metal loop for integral test of Operability and Safety of PEACER (HELIOS) which has been constructed in 2005 at the Seoul National University in the Republic of Korea. LACANES benchmark campaigns consist of a forced convection (phase-I) and a natural circulation (phase-II). In the forced convection case, the predictions of pressure losses based on handbook correlations and that obtained by Computational Fluid Dynamics code simulation were compared with the measured data for various components of the HELIOS test facility. Based on comparative analyses of the predictions and the measured data, recommendations for the prediction methods of a pressure loss in LACANES were obtained. In this paper, results for the forced convection case (phase-I) of LACANES benchmarking are described.

  15. ORNL rod-bundle heat-transfer test data. Volume 6. Thermal-hydraulic test facility experimental data report for test 3. 05. 5B - double-ended cold-leg break simulation

    SciTech Connect

    Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.; Schwinkendorf, K.N.

    1982-05-18

    Thermal-Hydraulic Test Facility (THTF) Test 3.05.5B was conducted by members of the ORNL PWR Blowdown Heat Transfer Separate-Effects Program on July 3, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.05.5B was designed to provide transient thermal-hydraulics data in rod bundle geometry under reactor accident-type conditions. Reduced instrument responses are presented. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

  16. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    SciTech Connect

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high

  17. COBRA-WC: a version of COBRA for single-phase multiassembly thermal hydraulic transient analysis. [LMFBR

    SciTech Connect

    George, T.L.; Basehore, K.L.; Wheeler, C.L.; Prather, W.A.; Masterson, R.E.

    1980-07-01

    The objective of this report is to provide the user of the COBRA-WC (Whole Core) code a basic understanding of the code operation and capabilities. Included in this manual are the equations solved and the assumptions made in their derivations, a general description of the code capabilities, an explanation of the numerical algorithms used to solve the equations, and input instructions for using the code. Also, the auxiliary programs GEOM and SPECSET are described and input instructions for each are given. Input for COBRA-WC sample problems and the corresponding output are given in the appendices. The COBRA-WC code has been developed from the COBRA-IV-I code to analyze liquid Metal Fast Breeder Reactor (LMFBR) assembly transients. It was specifically developed to analyze a core flow coastdown to natural circulation cooling.

  18. Theory and input requirements for the multidimensional component in RELAP5 for Savannah River Site thermal hydraulic analysis

    SciTech Connect

    Hanson, R.G.; Johnson, E.C.; Carlson, K.E.; Riemke, R.A.; Wagner, R.J.

    1992-07-01

    This report documents the theory and input requirements for the multidimensional component in RELAP5/MOD2.5, Version 3w. The equations in Cartesian and cylindrical coordinates are presented as well as the shallow water terms. The implementation of these equations is then discussed. Finally, the constitutive models and input requirements are then described.

  19. Proceedings of the international workshop on the technology and thermal hydraulics of heavy liquid metals (Hg, Pb, Bi, and their eutectics)

    SciTech Connect

    Appleton, B.R.; Bauer, G.S.

    1996-06-01

    The International Workshop on the Technology and Thermal Hydraulics of Heavy Liquid Metals (Schruns Workshop) was organized to assess the R&D and technology problems associated with designing and building a heavy liquid metal target for a spallation neutron source. The European scientific community is completing a feasibility study for a future, accelerator-based, pulsed spallation neutron source that would deliver a beam power of 5 megawatts (MW) to a target. They have concluded that a liquid metal target is preferable to conventional solid targets for handling the extreme radiation environments, high heat loads, and pulsed power. Similarly, the ORNL has been funded by the DOE to design a high-power, pulsed spallation neutron source that would begin operation at about 1 MW but that could be upgraded to significantly higher powers in the future. Again, the most feasible target design appears to be a liquid metal target. Since the expertise needed to consider these problems resides in a number of disparate disciplines not normally covered by existing conferences, this workshop was organized to bring a small number of scientists and engineers together to assess the opportunities for building such a target. The objectives and goals of the Schruns Workshop were to: review and share existing information on the science and technology of heavy liquid metal systems. Evaluate the opportunities and limitations of materials compatibility, thermal hydraulics and heat transfer, chemical reactions, corrosion, radiation effects, liquid-gas mixtures, systems designs, and circuit components for a heavy liquid metal target. Establish the critical R & D and technology that is necessary to construct a liquid metal target. Explore opportunities for cooperative R & D among members of the international community that could expedite results, and share expertise and resources. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  20. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    SciTech Connect

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  1. The Euratom-Rosatom ERCOSAM-SAMARA projects on containment thermal-hydraulics of current and future LWRs for severe accident management

    SciTech Connect

    Paladino, D.; Guentay, S.; Andreani, M.; Tkatschenko, I.; Brinster, J.; Dabbene, F.; Kelm, S.; Allelein, H. J.; Visser, D. C.; Benz, S.; Jordan, T.; Liang, Z.; Porcheron, E.; Malet, J.; Bentaib, A.; Kiselev, A.; Yudina, T.; Filippov, A.; Khizbullin, A.; Kamnev, M.; Zaytsev, A.; Loukianov, A.

    2012-07-01

    During a postulated severe accident with core degradation, hydrogen would form in the reactor pressure vessel mainly due to high temperatures zirconium-steam reaction and flow together with steam into the containment where it will mix with the containment atmosphere (steam-air). The hydrogen transport into the containment is a safety concern because it can lead to explosive mixtures through the associated phenomena of condensation, mixing and stratification. The ERCOSAM and SAMARA projects, co-financed by the European Union and the Russia, include various experiments addressing accident scenarios scaled down from existing plant calculations to different thermal-hydraulics facilities (TOSQAN, MISTRA, PANDA, SPOT). The tests sequences aim to investigate hydrogen concentration build-up and stratification during a postulated accident and the effect of the activation of Severe Accident Management systems (SAMs), e.g. sprays, coolers and Passive Auto-catalytic Recombiners (PARs). Analytical activities, performed by the project participants, are an essential component of the projects, as they aim to improve and validate various computational methods. They accompany the projects in the various phases; plant calculations, scaling to generic containment and to the different facilities, planning pre-test and post-test simulations are performed. Code benchmark activities on the basis of conceptual near full scale HYMIX facility will finally provide a further opportunity to evaluate the applicability of the various methods to the study of scaling issues. (authors)

  2. Thermal - Hydraulic Behavior of Unsaturated Bentonite and Sand-Bentonite Material as Seal for Nuclear Waste Repository: Numerical Simulation of Column Experiments

    NASA Astrophysics Data System (ADS)

    Ballarini, E.; Graupner, B.; Bauer, S.

    2015-12-01

    For deep geological repositories of high-level radioactive waste (HLRW), bentonite and sand bentonite mixtures are investigated as buffer materials to form a a sealing layer. This sealing layer surrounds the canisters and experiences an initial drying due to the heat produced by HLRW and a successive re-saturation with fluid from the host rock. These complex thermal, hydraulic and mechanical processes interact and were investigated in laboratory column experiments using MX-80 clay pellets as well as a mixture of 35% sand and 65% bentonite. The aim of this study is to both understand the individual processes taking place in the buffer materials and to identify the key physical parameters that determine the material behavior under heating and hydrating conditions. For this end, detailed and process-oriented numerical modelling was applied to the experiments, simulating heat transport, multiphase flow and mechanical effects from swelling. For both columns, the same set of parameters was assigned to the experimental set-up (i.e. insulation, heater and hydration system), while the parameters of the buffer material were adapted during model calibration. A good fit between model results and data was achieved for temperature, relative humidity, water intake and swelling pressure, thus explaining the material behavior. The key variables identified by the model are the permeability and relative permeability, the water retention curve and the thermal conductivity of the buffer material. The different hydraulic and thermal behavior of the two buffer materials observed in the laboratory observations was well reproduced by the numerical model.

  3. Conversion of Molybdenum-99 production process to low enriched uranium: Neutronic and thermal hydraulic analyses of HEU and LEU target plates for irradiation in Pakistan Research Reactor-1

    NASA Astrophysics Data System (ADS)

    Mushtaq, Ahmad; Iqbal, Masood; Bokhari, Ishtiaq Hussain; Mahmood, Tayyab; Muhammad, Atta

    2012-09-01

    Technetium-99m, the daughter product of Molybdenum-99 is the most widely needed radionuclide for diagnostic studies in Pakistan. Molybdenum-99 Production Facility has been established at PINSTECH. Highly enriched uranium (93% 235U) U/Al alloy targets have been irradiated in Pakistan Research Reactor-1 (PARR-1) for the generation of fission Mo-99, while basic dissolution technique is used for separation of Mo-99 from target matrix activity. In line with the international objective of minimizing and eventually eliminating the use of HEU in civil commerce, national and international efforts have been underway to shift the production of medical isotopes from HEU to LEU (LEU; <20% 235U enrichment) targets. To achieve the equivalent amount of 99Mo with LEU targets, approximately 5 times uranium is needed. LEU aluminum uranium dispersion target has been developed, which may replace existing HEU aluminum/uranium alloy targets for production of 99Mo using basic dissolution technique. Neutronic and thermal hydraulic calculations were performed for safe irradiation of targets in the core of PARR-1.

  4. Numerical modeling of the thermal-hydraulic behavior of wire-on-tube condensers operating with HFC-134a using homogeneous equilibrium model: evaluation of some void fraction correlations

    NASA Astrophysics Data System (ADS)

    Guzella, Matheus dos Santos; Cabezas-Gómez, Luben; da Silva, José Antônio; Maia, Cristiana Brasil; Hanriot, Sérgio de Morais

    2016-02-01

    This study presents a numerical evaluation of the influence of some void fraction correlations over the thermal-hydraulic behavior of wire-on-tube condensers operating with HFC-134a. The numerical model is based on finite volume method considering the homogeneous equilibrium model. Empirical correlations are applied to provide closure relations. Results show that the choice of void fraction correlation influences the refrigerant charge and pressure drop calculations, while no influences the heat transfer rate.

  5. Thermal-hydraulics of wave propagation and pressure distribution under hypothetical steam explosion conditions in the ANS reactor

    SciTech Connect

    Taleyarkhan, R.P.; Georgevich, V.; N-Valenit, S.; Kim, S.H.

    1995-09-01

    This paper describes salient aspects of the modeling and analysis framework for evaluation of dynamic loads, wave propagation, and pressure distributions (under hypothetical steam explosion conditions) around key structural boundaries of the Advanced Neutron Source (ANS) reactor core region. A staged approach was followed, using simple thermodynamic models for bounding loads and the CTH code for evaluating realistic estimates in a staged multidimensional framework. Effects of nodalization, melt dispersal into coolant during explosion, single versus multidirectional dissipation, energy level of melt, and rate of energy deposition into coolant were studied. The importance of capturing multidimensional effects that simultaneously account for fluid-structural interactions was demonstrated. As opposed to using bounding loads from thermodynamic evaluations, it was revealed that the ANS reactor system will not be vulnerable to vertically generated missiles that threaten containment if realistic estimates of energetics are used (from CTH calculations for thermally generated steam explosions without significant aluminum ignition).

  6. Benchmark Simulations of the Thermal-Hydraulic Responses during EBR-II Inherent Safety Tests using SAM

    SciTech Connect

    Hu, Rui; Sumner, Tyler S.

    2016-01-01

    An advanced system analysis tool SAM is being developed for fast-running, improved-fidelity, and wholeplant transient analyses at Argonne National Laboratory under DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. As an important part of code development, companion validation activities are being conducted to ensure the performance and validity of the SAM code. This paper presents the benchmark simulations of two EBR-II tests, SHRT-45R and BOP- 302R, whose data are available through the support of DOE-NE’s Advanced Reactor Technology (ART) program. The code predictions of major primary coolant system parameter are compared with the test results. Additionally, the SAS4A/SASSYS-1 code simulation results are also included for a code-to-code comparison.

  7. Benchmark Simulations of the Thermal-Hydraulic Responses during EBR-II Inherent Safety Tests using SAM

    SciTech Connect

    Hu, Rui; Sumner, Tyler S.

    2016-04-17

    An advanced system analysis tool SAM is being developed for fast-running, improved-fidelity, and whole-plant transient analyses at Argonne National Laboratory under DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. As an important part of code development, companion validation activities are being conducted to ensure the performance and validity of the SAM code. This paper presents the benchmark simulations of two EBR-II tests, SHRT-45R and BOP-302R, whose data are available through the support of DOE-NE’s Advanced Reactor Technology (ART) program. The code predictions of major primary coolant system parameter are compared with the test results. Additionally, the SAS4A/SASSYS-1 code simulation results are also included for a code-to-code comparison.

  8. COBRA-SFS (Spent-Fuel Storage) thermal-hydraulic analyses of the CASTOR-1C and REA 2023 BWR storage casks containing consolidated spent fuel

    SciTech Connect

    Rector, D.R.; Cuta, J.M.; Lombardo, N.J.

    1986-12-01

    Consolidation of spent nuclear fuel rods is being considered as one option for more efficient and compact storage of reactor spent fuel assemblies. In this concept, rods from two disassembled spent fuel assemblies will be consolidated in a space originally intended to store a single unconsolidated assembly. The thermal performance of consolidated fuel rods in dry storage, especially in multiassembly storage systems, is one of the major issues that must be addressed prior to implementation. In this study, Pacific Northwest Laboratory researchers performed thermal-hydraulic analyses for both the REA 2023 cask and the CASTOR-1C cask containing either unconsolidated or consolidated BWR spent fuel assemblies. The objective was to determine the effect of consolidating spent fuel assemblies on the temperature distributions within both types of casks. Two major conclusions resulted from this study. First, a lumping technique (combining rods and flow channels), which reduces the number of computational nodes required to model complex multiassembly geometries, could be used for both unconsolidated and consolidated rods with negligible effect on prediction accuracies. Second, with a relatively high thermal conductivity backfill gas (e.g., helium), the predicted peak fuel rod temperature in a canister of consolidated rods generating the same amount of heat as an unconsolidated assembly is essentially the same as the peak temperature in the unconsolidated assembly. In contrast, with a relatively low thermal conductivity backfill gas (e.g., nitrogen), the opposite is true and the predicted peak temperature in a consolidated canister is significantly higher than in an unconsolidated assembly. Therefore, when rods are consolidated, selection of the backfill gas is important in maintaining peak rod temperatures below allowable values for rods with relatively high decay heat generation rates.

  9. Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor

    SciTech Connect

    C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

    2005-06-01

    evaluations determined which configurations and coolants are the most promising from thermal-hydraulic and efficiency points of view. These evaluations also determined which configurations and options do not appear to be feasible at the current time.

  10. Development of a multichannel analysis code for the MITR-III safety analysis

    SciTech Connect

    Hu, Lin-Wen; Bernard, J.A.

    1996-12-31

    This paper describes the development of a MULti-CHannel analysis (MULCH-II) code to be used for the safety analysis of the Massachusetts Institute of Technology Research Reactor (MITR). The code models the primary and the secondary coolant systems with special emphasis on analysis of detailed thermal-hydraulic conditions in the core region. The hot channel is modeled in parallel with the average channels to predict conditions in the core during a flow excursion instability. Fuel and cladding temperatures are calculated under all conditions so that the margin to fuel failure is given in addition to the thermal-hydraulic conditions.

  11. Thermal-Hydraulic Bases for the Safety Limits and Limiting Safety System Settings for HFIR Operation at 100 MW and 468 psig Primary Pressure, Using Specially Selected Fuel Elements

    SciTech Connect

    Rothrock, R.B.

    1998-09-01

    This report summarizes thermal hydraulic analyses performed to support HFIR operation at 100 MW and 468 psig pressure using specially selected fuel elements. The analyses were performed with the HFIR steady state heat transfer code, originally developed during HFIR design. This report addresses the increased core heat removal capability which can be achieved in fuel elements having coolant channel thicknesses that exceed the minimum requirements of the HFIR fuel fabrication specifications. Specific requirements for the minimum value of effective uniform as-built coolant channel thickness are established for fuel elements to be used at 100 MW. The burnout correlation currently used in the steady-state heat transfer code was also compared with more recent experimental results for stability of high-velocity flow in narrow heated channels, and the burnout correlation was found to be conservative with respect to flow stability at typical HFIR hot channel exit conditions at full power.

  12. ORNL rod-bundle heat-transfer test data. Volume 2. Thermal-Hydraulic Test Facility experimental data report for test 3. 03. 6AR - transient film boiling in upflow

    SciTech Connect

    Mullins, C. B.; Felde, D. K.; Sutton, A. G.; Gould, S. S.; Morris, D. G.; Robinson, J. J.

    1982-04-01

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) Test 3.03.6AR. This test was conducted by members of the ORNL Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on May 21, 1980. Objective was to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.03.6AR was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.03.6AR available. Included in the report are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

  13. ORNL rod-bundle heat-transfer test data. Volume 7. Thermal-Hydraulic Test Facility experimental data report for test series 3. 07. 9 - steady-state film boiling in upflow

    SciTech Connect

    Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.

    1982-05-01

    Thermal-Hydraulic Test Facility (THTF) test series 3.07.9 was conducted by members of the Oak Ridge National Laboratory Pressurized-Water Reactor (ORNL-PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on September 11, September 18, and October 1, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small- and large-break loss-of-coolant accidents. Test series 3.07.9 was designed to provide steady-state film boiling data in rod bundle geometry under reactor accident-type conditions. This report presents the reduced instrument responses for THTF test series 3.07.9. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

  14. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems

    SciTech Connect

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01

    The COMMIX-LAR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-lA to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a keg model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The internal aspects of the COMMIX-LAR/P program are presented, covering descriptions of subprograms, variables, and files.

  15. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems

    SciTech Connect

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01

    The COMMIX-1AR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-1A to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a k-[var epsilon] model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The input preparation and execution procedures are presented for the COMMIX-1AR/P program and several postprocessor programs which produce graphical displays of the calculated results.

  16. BODYFIT-1FE: a computer code for three-dimensional steady-state/transient single-phase rod-bundle thermal-hydraulic analysis. Draft report

    SciTech Connect

    Chen, B.C.J.; Sha, W.T.; Doria, M.L.; Schmitt, R.C.; Thompson, J.F.

    1980-11-01

    The governing equations, i.e., conservation equations for mass, momentum, and energy, are solved as a boundary-value problem in space and an initial-value problem in time. BODYFIT-1FE code uses the technique of boundary-fitted coordinate systems where all the physical boundaries are transformed to be coincident with constant coordinate lines in the transformed space. By using this technique, one can prescribe boundary conditions accurately without interpolation. The transformed governing equations in terms of the boundary-fitted coordinates are then solved by using implicit cell-by-cell procedure with a choice of either central or upwind convective derivatives. It is a true benchmark rod-bundle code without invoking any assumptions in the case of laminar flow. However, for turbulent flow, some empiricism must be employed due to the closure problem of turbulence modeling. The detailed velocity and temperature distributions calculated from the code can be used to benchmark and calibrate empirical coefficients employed in subchannel codes and porous-medium analyses.

  17. Thermal-hydraulic analysis of transients in the HELIOS loop including a CICC section representative of the JT-60SA Central Solenoid

    NASA Astrophysics Data System (ADS)

    Carli, S.; Bonifetto, R.; Hoa, C.; Savoldi, L.; Zanino, R.

    2015-12-01

    The HELIOS facility at CEA Grenoble is a supercritical helium (SHe) loop which is being used to investigate the effects on the cryogenic cooling system of the pulsed heat loads which are typical of superconducting tokamak operation. In the standard configuration, the magnet heat load is simulated by electrical heaters wrapped around a section of cryoline. In the present work, the resistively heated section is substituted in the HELIOS model of the 4C code, already validated for the standard configuration of HELIOS, by a sub-size winding structure made of JT-60SA Cable-In-Conduit Conductors (CICCs). The new model is then used to highlight the differences in the circuit behaviour when the heated pipe is substituted by an actual magnet wound with CICCs, checking the representativeness of the control strategies developed for the present HELIOS configuration. The use of CICCs will be shown to produce an intrinsic smoothing of the temperature profiles which is not affecting the capability of the control strategies to smooth the heat loads to the cryoplant.

  18. Power excursion analysis for BWR`s at high burnup

    SciTech Connect

    Diamond, D.J.; Neymoith, L.; Kohut, P.

    1996-03-01

    A study has been undertaken to determine the fuel enthalpy during a rod drop accident and during two thermal-hydraulic transients. The objective was to understand the consequences to high burnup fuel and the sources of uncertainty in the calculations. The analysis was done with RAMONA-4B, a computer code that models the neutron kinetics throughout the core along with the thermal-hydraulics in the core, vessel, and steamline. The results showed that the maximum fuel enthalpy in high burnup fuel will be affected by core design, initial conditions, and modeling assumptions. The important parameters in each of these categories are discussed in the paper.

  19. An analysis of the sliding pressure start-up of SCWR

    SciTech Connect

    Wang, F.; Yang, J.; Li, H.; Zhang, Y.; Zhang, J.; Shan, J.; Gou, J.; Zhang, B.; Chen, C.

    2012-07-01

    In this paper, the preliminary sliding pressure start-up system and scheme of supercritical water-cooled reactor in CGNPC (CGN-SCWR) were proposed. Thermal-hydraulic behavior in start-up procedures was analyzed in detail by employing advanced reactor subchannel analysis software ATHAS. The maximum cladding temperature (MCT for short) and core power of fuel assembly during the whole start-up process were investigated comparatively. The results show that the recommended start-up scheme meets the design requirements from the perspective of thermal-hydraulic. (authors)

  20. RAMONA-4B code for BWR systems analysis

    SciTech Connect

    Cheng, H.S.; Rohatgi, U.S.

    1996-12-31

    The RAMONA-4B code is a coupled thermal-hydraulic, 3D kinetics code for plant transient analyses of a complete Boiling Water Reactor (BWR) system including Reactor Pressure Vessel (RPV), Balance of Plant (BOP) and containment. The complete system representation enables an integrated and coupled systems analysis of a BWR without recourse to prescribed boundary conditions.

  1. Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor (HFIR) using RELAP5 and TEMPEST: Part 2, Interpretation and validation of results

    SciTech Connect

    Ruggles, A.E.; Morris, D.G.

    1989-01-01

    The RELAP5/MOD2 code was used to predict the thermal-hydraulic behavior of the HFIR core during decay heat removal through boiling natural circulation. The low system pressure and low mass flux values associated with boiling natural circulation are far from conditions for which RELAP5 is well exercised. Therefore, some simple hand calculations are used herein to establish the physics of the results. The interpretation and validation effort is divided between the time average flow conditions and the time varying flow conditions. The time average flow conditions are evaluated using a lumped parameter model and heat balance. The Martinelli-Nelson correlations are used to model the two-phase pressure drop and void fraction vs flow quality relationship within the core region. Systems of parallel channels are susceptible to both density wave oscillations and pressure drop oscillations. Periodic variations in the mass flux and exit flow quality of individual core channels are predicted by RELAP5. These oscillations are consistent with those observed experimentally and are of the density wave type. The impact of the time varying flow properties on local wall superheat is bounded herein. The conditions necessary for Ledinegg flow excursions are identified. These conditions do not fall within the envelope of decay heat levels relevant to HFIR in boiling natural circulation. 14 refs., 5 figs., 1 tab.

  2. Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundle: IV Large Paralleled Simulation by the Advanced Two-fluid Model Code

    NASA Astrophysics Data System (ADS)

    Misawa, Takeharu; Yoshida, Hiroyuki; Akimoto, Hajime

    In Japan Atomic Energy Agency (JAEA), the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) has been developed. For thermal design of FLWR, it is necessary to develop analytical method to predict boiling transition of FLWR. Japan Atomic Energy Agency (JAEA) has been developing three-dimensional two-fluid model analysis code ACE-3D, which adopts boundary fitted coordinate system to simulate complex shape channel flow. In this paper, as a part of development of ACE-3D to apply to rod bundle analysis, introduction of parallelization to ACE-3D and assessments of ACE-3D are shown. In analysis of large-scale domain such as a rod bundle, even two-fluid model requires large number of computational cost, which exceeds upper limit of memory amount of 1 CPU. Therefore, parallelization was introduced to ACE-3D to divide data amount for analysis of large-scale domain among large number of CPUs, and it is confirmed that analysis of large-scale domain such as a rod bundle can be performed by parallel computation with keeping parallel computation performance even using large number of CPUs. ACE-3D adopts two-phase flow models, some of which are dependent upon channel geometry. Therefore, analyses in the domains, which simulate individual subchannel and 37 rod bundle, are performed, and compared with experiments. It is confirmed that the results obtained by both analyses using ACE-3D show agreement with past experimental result qualitatively.

  3. FEM (finite element method) thermal modeling and thermal hydraulic performance of an enhanced thermal conductivity UO2/BeO composite fuel

    SciTech Connect

    Zhou, Wenzhong

    2011-03-24

    An enhanced thermal conductivity UO2-BeO composite nuclear fuel was studied. A methodology to generate ANSYS (an engineering simulation software) FEM (Finite Element Method) thermal models of enhanced thermal conductivity oxide nuclear fuels was developed. The results showed significant increase in the fuel thermal conductivities and have good agreement with the measured ones. The reactor performance analysis showed that the decrease in centerline temperature was 250-350K for the UO2-BeO composite fuel, and thus we can improve nuclear reactors' performance and safety, and high-level radioactive waste generation.

  4. Multiphysics methods development for high temperature gas reactor analysis

    NASA Astrophysics Data System (ADS)

    Seker, Volkan

    Multiphysics computational methods were developed to perform design and safety analysis of the next generation Pebble Bed High Temperature Gas Cooled Reactors. A suite of code modules was developed to solve the coupled thermal-hydraulics and neutronics field equations. The thermal-hydraulics module is based on the three dimensional solution of the mass, momentum and energy equations in cylindrical coordinates within the framework of the porous media method. The neutronics module is a part of the PARCS (Purdue Advanced Reactor Core Simulator) code and provides a fine mesh finite difference solution of the neutron diffusion equation in three dimensional cylindrical coordinates. Coupling of the two modules was performed by mapping the solution variables from one module to the other. Mapping is performed automatically in the code system by the use of a common material mesh in both modules. The standalone validation of the thermal-hydraulics module was performed with several cases of the SANA experiment and the standalone thermal-hydraulics exercise of the PBMR-400 benchmark problem. The standalone neutronics module was validated by performing the relevant exercises of the PBMR-268 and PBMR-400 benchmark problems. Additionally, the validation of the coupled code system was performed by analyzing several steady state and transient cases of the OECD/NEA PBMR-400 benchmark problem.

  5. Experimental Study on Thermal-Hydraulics During Start-Up in the Natural Circulation Boiling Water Reactor Concept: Effects of System Pressure and Increasing Heat Flux on the Geysering and Density Wave Oscillation

    SciTech Connect

    Hadid Subki, M.; Masanori Aritomi; Noriyuki Watanabe; Chaiwat Muncharoen

    2002-07-01

    The feasibility study in thermal-hydraulics for the future light water reactor concept is carried out. One of the essential studies is the two-phase flow instability during start-up in the natural circulation boiling water reactor (BWR) concept. It is anticipated that the occurrence of the two-phase flow instabilities during start-up significantly affects the feasibility concept, since it would cause the complexity in raising and maneuvering the power output. The purpose of the current study is to experimentally investigate the driving mechanism of the geysering and density wave oscillation in the natural circulation loop, induced by a range of system operating pressure and increasing heat flux in vertical parallel channels. The pressure range of atmospheric up to about 4 bars, and the input heat flux range of 0 up to 577 kW/m{sup 2} are applied in these experiments. An experimental apparatus of twin boiling upflow channels to simulate natural circulation flow loop has been designed, constructed and operated. The natural circulation in the loop occurs due to the density difference between two-phase region in the channels and the single-phase liquid in the downcomer. The objective of the study is to propose a rational start-up procedure in which the geysering and density wave oscillation can be prevented during startup, according to its system pressure and heat flux. Previous studies have clarified that three (3) kinds of thermo-hydraulics instabilities may occur during start-up in the natural circulation BWR depending on its procedure and reactor configuration, which are (1) geysering induced by condensation, (2) natural circulation induced by hydrostatic head fluctuation in steam separator, and (3) density wave oscillation. (authors)

  6. Study on bubbly flow behavior in natural circulation reactor by thermal-hydraulic simulation tests with SF6-Gas and ethanol liquid

    NASA Astrophysics Data System (ADS)

    Kondo, Yoshiyuki; Suga, Keishi; Hibi, Koki; Okazaki, Toshihiko; Komeno, Toshihiro; Kunugi, Tomoaki; Serizawa, Akimi; Yoneda, Kimitoshi; Arai, Takahiro

    2009-02-01

    An advanced experimental technique has been developed to simulate two-phase flow behavior in a light water reactor (LWR). The technique applies three kinds of methods; (1) use of sulfur-hexafluoride (SF6) gas and ethanol (C2H5OH) liquid at atmospheric temperature and a pressure less than 1.0MPa, where the fluid properties are similar to steam-water ones in the LWR, (2) generation of bubble with a sintering tube, which simulates bubble generation on heated surface in the LWR, (3) measurement of detailed bubble distribution data with a bi-optical probe (BOP), (4) and measurement of liquid velocities with the tracer liquid. This experimental technique provides easy visualization of flows by using a large scale experimental apparatus, which gives three-dimensional flows, and measurement of detailed spatial distributions of two-phase flow. With this technique, we have carried out experiments simulating two-phase flow behavior in a single-channel geometry, a multi-rod-bundle one, and a horizontal-tube-bundle one on a typical natural circulation reactor system. Those experiments have clarified a) a flow regime map in a rod bundle on the transient region between bubbly and churn flow, b) three-dimensional flow behaviour in rod-bundles where inter-subassembly cross-flow occurs, c) bubble-separation behavior with consideration of reactor internal structures. The data have given analysis models for the natural circulation reactor design with good extrapolation.

  7. Neutronics and Thermal Hydraulics Study for Using a Low-Enriched Uranium Core in the Advanced Test Reactor -- 2008 Final Report

    SciTech Connect

    G. S. Chang; M. A. Lillo; R. G. Ambrosek

    2008-06-01

    The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuel cycle burnup comparison analysis. Using the current HEU U 235 enrichment of 93.0 % as a baseline, an analysis was performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff versus effective full power days (EFPDs) between the HEU and the LEU cores. The MCNP ATR 1/8th core model was used to optimize the U 235 loading in the LEU core, such that the differences in K-eff and heat flux profiles between the HEU and LEU cores were minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the ATR reference HEU case study. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm (20 mil). In this work, the proposed LEU (U-10Mo) core conversion case with nominal fuel meat thickness of 0.330 mm (13 mil) and U-235 enrichment of 19.7 wt% is used to optimize the radial heat flux profile by varying the fuel meat thickness from 0.191 mm (7.0 mil) to 0.330 mm (13.0 mil) at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). A 0.8g of Boron-10, a burnable absorber, was added in the inner and outer plates to reduce the initial excess reactivity, and the peak to average ratio of the

  8. Development of Design Technology on Thermal-hydraulic Performance in Tight-lattice Rod Bundles: V-Estimation of Void Fraction

    NASA Astrophysics Data System (ADS)

    Kureta, Masatoshi; Tamai, Hidesada; Yoshida, Hiroyuki; Ohnuki, Akira; Akimoto, Hajime

    An estimation of the void fraction in a tight-lattice rod bundle was needed for the R&D of the Innovative Water Reactor for Flexible Fuel Cycle (FLWR). For this purpose, we measured the void fraction and studied the behaviors of boiling flow. The void fraction was measured by a neutron radiography, a quick-shut-valve technique, and an electro void fraction meter. The data were taken using the 7-, 14-, 19- and 37-rod bundle test sections with the rod gap of 1.0 or 1.3 mm under from atmospheric pressure to 7.2 MPa conditions. A spacer effect test was also carried out. The following estimations were conducted: (1) a similarity of the advanced analysis codes with the 3D void fraction data, (2) the comparisons of the TRAC-BF1 code and a drift-flux model with the 1D data. Followings were made clear: (a) The void fraction becomes lower at the peripheral and higher at the rod gap part of the lower core and at the center of the subchannel of the upper core, (b) the codes calculates the similar distribution to the data, and (c) the TRAC-BF1 and the drift-flux model tends to overestimate the void fraction at the lower quality region, on the other hand at the higher quality, those methods tend to same characteristics to the data. It was confirmed that several special features were existed in the tight-lattice rod bundle but the codes were applicable.

  9. Thermal hydraulics of steam generator sludge

    SciTech Connect

    Ulke, A.

    1991-12-31

    The sludge deposits on top of the tubesheet in commercial steam generators create regions of high susceptibility to tube corrosion. It is believed that the corrosion occurs when the sludge deposit becomes too deep for the liquid to penetrate freely. This leads to liquid deficient regions with high chemical concentrations on the tube surface. A one-dimensional model of two-phase flow in porous media has been developed. The model considers a slab of porous medium on a horizontal non-porous surface, both under water. Heat is transferred from a vertical surface. The vapor, which is generated, flows vertically upward and the liquid is replenished by a counterflow. Under steady state conditions the mass flow rate of liquid equals that of vapor at every point along the flow path. The solution requires a minimum of five equations; continuity and momentum for the liquid and the vapor phases and energy. The momentum equations are extensions of the Darcy equation to the inertial flow regime in porous media. All five equations can be described as first order differential equations. They can be integrated with respect to distance into the sludge pile using the appropriate boundary conditions at the top of the porous slab and the transition point to ``dryout`` or at the bottom of the slab whichever comes first. The conservation of chemical species can be easily incorporated into the above system of equations. A FORTRAN computer program was developed to solve the above set of equations. The solution yields the distribution of the liquid and the vapor velocities and pressures, the heat flux, the liquid saturation and the chemical concentration.

  10. Thermal-Hydraulic-Mechanical (THM) Coupled Simulation of a Generic Site for Disposal of High Level Nuclear Waste in Claystone in Germany: Exemplary Proof of the Integrity of the Geological Barrier

    NASA Astrophysics Data System (ADS)

    Massmann, J.; Ziefle, G.; Jobmann, M.

    2016-12-01

    Claystone is investigated as a potential host rock for the disposal of high level nuclear waste (HLW). In Germany, DBE TECHNOLOGY GmbH, the BGR and the "Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)" are developing an integrated methodology for safety assessment within the R&D project "ANSICHT". One part herein is the demonstration of integrity of the geological barrier to ensure safe containment of radionuclides over 1 million years. The mechanical excavation of an underground repository, the ex­po­si­tion of claystone to at­mos­pheric air, the insertion of backfill, buffer, sealing and supporting material as well as the deposition of heat producing waste constitute a sig­nif­i­cant disturbance of the underground system. A complex interacting scheme of thermal, hydraulic and mechanical (THM) processes can be expected. In this work, the finite element software OpenGeoSys, main­ly de­vel­oped at the "Helmholtz Centre for Environmental Research GmbH (UFZ)", is used to simulate and evaluate several THM coupled effects in the repository surroundings up to the surface over a time span of 1 million years. The numerical setup is based on two generic geological models inspired by the representative geology of potentially suitable regions in North- and South Germany. The results give an insight into the evolution of temperature, pore pressure, stresses as well as deformation and enables statements concerning the extent of the significantly influenced area. One important effect among others is the temperature driven change in the densities of the solid and liquid phase and its influence on the stress field. In a further step, integrity criteria have been quantified, based on specifications of the German federal ministry of the environment. The exemplary numerical evaluation of these criteria demonstrates, how numerical simulations can be used to prove the integrity of the geological barrier and detect potential vulnerabilities. Fig.: Calculated zone of

  11. An approach to model reactor core nodalization for deterministic safety analysis

    NASA Astrophysics Data System (ADS)

    Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-01

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  12. An approach to model reactor core nodalization for deterministic safety analysis

    SciTech Connect

    Salim, Mohd Faiz Samsudin, Mohd Rafie; Mamat Ibrahim, Mohd Rizal; Roslan, Ridha Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-22

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  13. Thermal Analysis of a TREAT Fuel Assembly

    SciTech Connect

    Papadias, Dionissios; Wright, Arthur E.

    2014-07-09

    The objective of this study was to explore options as to reduce peak cladding temperatures despite an increase in peak fuel temperatures. A 3D thermal-hydraulic model for a single TREAT fuel assembly was benchmarked to reproduce results obtained with previous thermal models developed for a TREAT HEU fuel assembly. In exercising this model, and variants thereof depending on the scope of analysis, various options were explored to reduce the peak cladding temperatures.

  14. Peach Bottom Transients Analysis with TRAC/BF1-VALKIN

    SciTech Connect

    Verdu, G.; Miro, R.; Sanchez, A.M.; Rosello, O.; Ginestar, D.; Vidal, V.

    2004-10-15

    The TRAC/BF1-VALKIN code is a new time domain analysis code for studying transients in a boiling water reactor. This code uses the best-estimate code TRAC/BF1 to give an account of the heat transfer and thermal-hydraulic processes and a three-dimensional neutronics module. This module has two options: the MODKIN option that makes use of a modal method based on the assumption that the neutronic flux can be approximately expanded in terms of the dominant lambda modes associated with a static configuration of the reactor core, and the NOKIN option that uses a one-step backward discretization of the neutron diffusion equation. To check the performance of the TRAC/BF1-VALKIN code, the Peach Bottom turbine trip transient has been simulated, because this transient is a dynamically complex event where neutron kinetics is coupled with thermal hydraulics in the reactor primary system, and reactor variables change very rapidly.

  15. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems. Volume 3, Programmer`s guide

    SciTech Connect

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01

    The COMMIX-LAR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-lA to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a keg model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The internal aspects of the COMMIX-LAR/P program are presented, covering descriptions of subprograms, variables, and files.

  16. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems. Volume 2, User`s guide

    SciTech Connect

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01

    The COMMIX-1AR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-1A to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a k-{var_epsilon} model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The input preparation and execution procedures are presented for the COMMIX-1AR/P program and several postprocessor programs which produce graphical displays of the calculated results.

  17. ANALYSIS OF TWO-PHASE FLOW MODELS WITH TWO MOMENTUM EQUATIONS.

    SciTech Connect

    KROSHILIN,A.E.KROSHILIN,V.E.KOHUT,P.

    2004-03-15

    An analysis of the standard system of differential equations describing multi-speed flows of multi-phase media is performed. It is proved that the Cauchy problem, as posed in most best-estimate thermal-hydraulic codes, results in unstable solutions and potentially unreliable description of many physical phenomena. A system of equations, free from instability effects, is developed allowing more rigorous numerical modeling.

  18. The SAS4A/SASSYS-1 Safety Analysis Code System, Version 5

    SciTech Connect

    Fanning, T. H.; Brunett, A. J.; Sumner, T.

    2017-01-01

    The SAS4A/SASSYS-1 computer code is developed by Argonne National Laboratory for thermal, hydraulic, and neutronic analysis of power and flow transients in liquidmetal- cooled nuclear reactors (LMRs). SAS4A was developed to analyze severe core disruption accidents with coolant boiling and fuel melting and relocation, initiated by a very low probability coincidence of an accident precursor and failure of one or more safety systems. SASSYS-1, originally developed to address loss-of-decay-heat-removal accidents, has evolved into a tool for margin assessment in design basis accident (DBA) analysis and for consequence assessment in beyond-design-basis accident (BDBA) analysis. SAS4A contains detailed, mechanistic models of transient thermal, hydraulic, neutronic, and mechanical phenomena to describe the response of the reactor core, its coolant, fuel elements, and structural members to accident conditions. The core channel models in SAS4A provide the capability to analyze the initial phase of core disruptive accidents, through coolant heat-up and boiling, fuel element failure, and fuel melting and relocation. Originally developed to analyze oxide fuel clad with stainless steel, the models in SAS4A have been extended and specialized to metallic fuel with advanced alloy cladding. SASSYS-1 provides the capability to perform a detailed thermal/hydraulic simulation of the primary and secondary sodium coolant circuits and the balance-ofplant steam/water circuit. These sodium and steam circuit models include component models for heat exchangers, pumps, valves, turbines, and condensers, and thermal/hydraulic models of pipes and plena. SASSYS-1 also contains a plant protection and control system modeling capability, which provides digital representations of reactor, pump, and valve controllers and their response to input signal changes.

  19. Preliminary Analysis of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise

    2006-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A simple 1-D thermal model indicates the necessity of natural convection to maintain acceptable temperatures and pressures in the water shield. CFD analysis is done to quantify the natural convection in the shield, and predicts sufficient natural convection to transfer heat through the shield with small temperature gradients. A test program will he designed to experimentally verify the thermal hydraulic performance of the shield, and to anchor the CFD models to experimental results.

  20. TRAC-PF1: an advanced best-estimate computer program for pressurized water reactor analysis

    SciTech Connect

    Liles, D.R.; Mahaffy, J.H.

    1984-02-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos National Laboratory to provide advanced best-estimate predictions of postulated accidents in light water reactors. The TRAC-PF1 program provides this capability for pressurized water reactors and for many thermal-hydraulic experimental facilities. The code features either a one-dimensional or a three-dimensional treatment of the pressure vessel and its associated internals; a two-phase, two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field; flow-regime-dependent constitutive equation treatment; optional reflood tracking capability for both bottom flood and falling-film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions. This report describes the thermal-hydraulic models and the numerical solution methods used in the code. Detailed programming and user information also are provided.

  1. Numerical Analysis of Heat Transfer Test of Supercritical Water in a Tube Using the Three-Dimensional Two-Fluid Model Code

    NASA Astrophysics Data System (ADS)

    Misawa, Takeharu; Yoshida, Hiroyuki; Tamai, Hidesada; Takase, Kazuyuki

    The three-dimensional two-fluid model analysis code ACE-3D is developed in Japan Atomic Energy Agency for the thermal design procedure on two-phase flow thermal-hydraulics of light water-cooled reactors. In order to perform thermal hydraulic analysis of SCWR, ACE-3D is enhanced to supercritical pressure region. As a result, it is confirmed that transient change in subcritical and supercritical pressure region can be simulated smoothly using ACE-3D, that ACE-3D can predict the results of the past heat transfer experiment in the supercritical pressure condition, and that introduction of thermal conductivity effect of the wall restrains fluctuation of wall temperature.

  2. Simulation and System Analysis of Flow Pulsation at Normal and Emergency for Advanced On-line Monitoring and Control of NPP

    SciTech Connect

    Proskouriakov, K.N.; Moukhine, V.S.

    2002-07-01

    In addition to investigation of thermal-hydraulic processes on NPP with use of computer codes the new system analysis of flow pulsation is worked out. System analysis shows that properties of heat rejection circuits of NPP as oscillatory system are not equal the sum of properties of its separate elements but gives the new properties which must be taken into account. Methods have been worked out for calculating and identifying the sources of thermal-hydraulic disturbances are intended to improve the means of early diagnostics of anomalies in the technological process, to forecast their development, to improve the efficiency of overhauling operations and safety in operation, and also to create advanced on-line monitoring and control of NPP. Conception of the control system development presents. Proposal for main topics R and D areas for advanced NPP monitoring, diagnostic and control are identified. (authors)

  3. Advanced multi-dimensional deterministic transport computational capability for safety analysis of pebble-bed reactors

    NASA Astrophysics Data System (ADS)

    Tyobeka, Bismark Mzubanzi

    A coupled neutron transport thermal-hydraulics code system with both diffusion and transport theory capabilities is presented. At the heart of the coupled code is a powerful neutronics solver, based on a neutron transport theory approach, powered by the time-dependent extension of the well known DORT code, DORT-TD. DORT-TD uses a fully implicit time integration scheme and is coupled via a general interface to the thermal-hydraulics code THERMIX-DIREKT, an HTR-specific two dimensional core thermal-hydraulics code. Feedback is accounted for by interpolating multigroup cross sections from pre-generated libraries which are structured for user specified discrete sets of thermal-hydraulic parameters e.g. fuel and moderator temperatures. The coupled code system is applied to two HTGR designs, the PBMR 400MW and the PBMR 268MW. Steady-state and several design basis transients are modeled in an effort to discern with the adequacy of using neutron diffusion theory as against the more accurate but yet computationally expensive neutron transport theory. It turns out that there are small but significant differences in the results from using either of the two theories. It is concluded that diffusion theory can be used with a higher degree of confidence in the PBMR as long as more than two energy groups are used and that the result must be checked against lower order transport solution, especially for safety analysis purposes. The end product of this thesis is a high fidelity, state-of-the-art computer code system, with multiple capabilities to analyze all PBMR safety related transients in an accurate and efficient manner.

  4. The Japanese utilities` expectations for subchannel analysis

    SciTech Connect

    Toba, Akio; Omoto, Akira

    1995-12-01

    Boiling water reactor (BWR) utilities in Japan began to consider the development of a mechanistic model to describe the critical heat transfer conditions in the BWR fuel subchannel. Such a mechanistic model will not only decrease the necessity of tests, but will also help by removing some overly conservative safety margins in thermal hydraulics. With the use of a postdryout heat transfer correlation, new acceptance criteria may be applicable to evaluate the fuel integrity. Mechanistic subchannel analysis models will certainly back up this approach. This model will also be applicable to the analysis of large-size fuel bundles and examination of corrosion behavior.

  5. Development of the FHR advanced natural circulation analysis code and application to FHR safety analysis

    DOE PAGES

    Guo, Z.; Zweibaum, N.; Shao, M.; ...

    2016-04-19

    The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate amore » staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. In conclusion, this paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed.« less

  6. Development of the FHR advanced natural circulation analysis code and application to FHR safety analysis

    SciTech Connect

    Guo, Z.; Zweibaum, N.; Shao, M.; Huddar, L. R.; Peterson, P. F.; Qiu, S.

    2016-04-19

    The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate a staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. In conclusion, this paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed.

  7. Stability analysis of a natural circulation lead-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Lu, Qiyue

    This dissertation is aimed at nuclear-coupled thermal hydraulics stability analysis of a natural circulation lead cooled fast reactor design. The stability concerns arise from the fact that natural circulation operation makes the system susceptible to flow instabilities similar to those observed in boiling water reactors. In order to capture the regional effects, modal expansion method which incorporates higher azimuthal modes is used to model the neutronics part of the system. A reduced order model is used in this work for the thermal-hydraulics. Consistent with the number of heat exchangers (HXs), the reactor core is divided into four equal quadrants. Each quadrant has its corresponding external segments such as riser, plenum, pipes and HX forming an equivalent 1-D closed loop. The local pressure loss along the loop is represented by a lumped friction factor. The heat transfer process in the HX is represented by a model for the coolant temperature at the core inlet that depends on the coolant temperature at the core outlet and the coolant velocity. Additionally, time lag effects are incorporated into this HX model due to the finite coolant speed. A conventional model is used for the fuel pin heat conduction to couple the neutronics and thermal-hydraulics. The feedback mechanisms include Doppler, axial/radial thermal expansion and coolant density effects. These effects are represented by a linear variation of the macroscopic cross sections with the fuel temperature. The weighted residual method is used to convert the governing PDEs to ODEs. Retaining the first and second modes, leads to six ODEs for neutronics, and five ODEs for the thermal-hydraulics in each quadrant. Three models are developed. These are: 1) natural circulation model with a closed coolant flow path but without coupled neutronics, 2) forced circulation model with constant external pressure drop across the heated channels but without coupled neutronics, 3) coupled system including neutronics with

  8. FARO base case post-test analysis by COMETA code

    SciTech Connect

    Annunziato, A.; Addabbo, C.

    1995-09-01

    The paper analyzes the COMETA (Core Melt Thermal-Hydraulic Analysis) post test calculations of FARO Test L-11, the so-called Base Case Test. The FARO Facility, located at JRC Ispra, is used to simulate the consequences of Severe Accidents in Nuclear Power Plants under a variety of conditions. The COMETA Code has a 6 equations two phase flow field and a 3 phases corium field: the jet, the droplets and the fused-debris bed. The analysis shown that the code is able to pick-up all the major phenomena occurring during the fuel-coolant interaction pre-mixing phase.

  9. SAS validation and analysis of in-pile TUCOP experiments

    SciTech Connect

    Morman, J.A.; Tentner, A.M.; Dever, D.J.

    1985-01-01

    The validation of the SAS4A accident analysis code centers on its capability to calculate the wide range of tests performed in the TREAT (Transient Reactor Test Facility) in-pile experiments program. This paper presents the SAS4A analysis of a simulated TUCOP (Transient-Under-Cooled-Over-Power) experiment using seven full-length PFR mixed oxide fuel pins in a flowing sodium loop. Calculations agree well with measured thermal-hydraulic, pin failure time and post-failure fuel motion data. The extent of the agreement confirms the validity of the models used in the SAS4A code to describe TUCOP accidents.

  10. Investigation of Thermal Hydraulics of a Nuclear Reactor Moderator

    NASA Astrophysics Data System (ADS)

    Sarchami, Araz

    A three-dimensional numerical modeling of the thermo hydraulics of Canadian Deuterium Uranium (CANDU) nuclear reactor is conducted. The moderator tank is a Pressurized heavy water reactor which uses heavy water as moderator in a cylindrical tank. The main use of the tank is to bring the fast neutrons to the thermal neutron energy levels. The moderator tank compromises of several bundled tubes containing nuclear rods immersed inside the heavy water. It is important to keep the water temperature in the moderator at sub-cooled conditions, to prevent potential failure due to overheating of the tubes. Because of difficulties in measuring flow characteristics and temperature conditions inside a real reactor moderator, tests are conducted using a scaled moderator in moderator test facility (MTF) by Chalk River Laboratories of Atomic Energy of Canada Limited (CRL, AECL). MTF tests are conducted using heating elements to heat tube surfaces. This is different than the real reactor where nuclear radiation is the source of heating which results in a volumetric heating of the heavy water. The data recorded inside the MTF tank have shown levels of fluctuations in the moderator temperatures and requires in depth investigation of causes and effects. The purpose of the current investigation is to determine the causes for, and the nature of the moderator temperature fluctuations using three-dimensional simulation of MTF with both (surface heating and volumetric heating) modes. In addition, three dimensional simulation of full scale actual moderator tank with volumetric heating is conducted to investigate the effects of scaling on the temperature distribution. The numerical simulations are performed on a 24-processor cluster using parallel version of the FLUENT 12. During the transient simulation, 55 points of interest inside the tank are monitored for their temperature and velocity fluctuations with time.

  11. Thermal-hydraulic limitations on water-cooled limiters

    SciTech Connect

    Cha, Y.S.; Misra, B.

    1984-08-01

    An assessment of the cooling requirements for fusion reactor components, such as the first wall and limiter/divertor, was carried out using pressurized water as the coolant. In order to establish the coolant operating conditions, a survey of the literature on departure from nucleate boiling, critical heat flux, asymmetrical heating and heat transfer augmentation techniques was carried out. The experimental data and the empirical correlations indicate that thermal protection for the fusion reactor components based on current design concepts can be provided with an adequate margin of safety without resorting to either high coolant velocities, excessive coolant pressures, or heat transfer augmentation techniques. If, however, the future designs require heat transfer enhancement techniques, experimental verification would be necessary since no data on heat transfer augmentation techniques exist for complex geometries, especially under asymmetrically heated conditions. Since the data presented herein concern primarily thermal protection, the final design should consider other factors such as thermal stresses, temperature limits, and fatigue.

  12. A hybrid incremental projection method for thermal-hydraulics applications

    NASA Astrophysics Data System (ADS)

    Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Berndt, Markus; Francois, Marianne M.; Stagg, Alan K.; Xia, Yidong; Luo, Hong

    2016-07-01

    A new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya-Babuška-Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie-Chow interpolation or by using a Petrov-Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes, and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.

  13. Detailed thermal-hydraulic computation into a containment building

    SciTech Connect

    Caruso. A.; Flour, I.; Simonin, O.

    1995-09-01

    This paper deals with numerical predictions of the influence of water sprays upon stratifications into a containment building using a two-dimensional two-phase flow code. Basic equations and closure assumptions are briefly presented. A test case in a situation involving spray evaporation is first detailed to illustrate the validation step. Then results are presented for a compressible recirculating flow into a containment building with condensation phenomena.

  14. A hybrid incremental projection method for thermal-hydraulics applications

    DOE PAGES

    Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; ...

    2016-07-01

    In this paper, a new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya–Babuška–Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie–Chow interpolation or by using a Petrov–Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes,more » and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.« less

  15. Thermal-hydraulic performance of convective boiling jet array impingement

    NASA Astrophysics Data System (ADS)

    Jenkins, R.; De Brún, C.; Kempers, R.; Lupoi, R.; Robinson, A. J.

    2016-09-01

    Jet impingement boiling is investigated with regard to heat transfer and pressure drop performance using a novel laser sintered 3D printed jet impingement manifold design. Water was the working fluid at atmospheric pressure with inlet subcooling of 7oC. The convective boiling performance of the impinging jet system was investigated for a flat copper target surface for 2700≤Re≤5400. The results indicate that the heat transfer performance of the impinging jet is independent of Reynolds number for fully developed boiling. Also, the investigation of nozzle to plate spacing shows that low spacing delays the onset of nucleate boiling causing a superheat overshoot that is not observed with larger gaps. However, no sensitivity to the gap spacing was measured once boiling was fully developed. The assessment of the pressure drop performance showed that the design effectively transfers heat with low pumping power requirements. In particular, owing to the insensitivity of the heat transfer to flow rate during fully developed boiling, the coefficient of performance of jet impingement boiling in the fully developed boiling regime deteriorates with increased flow rate due to the increase in pumping power flux.

  16. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

    SciTech Connect

    Lucas, D.S.

    2004-10-03

    This paper covers the basics of the implementation of the control volume method in the context of the Homogeneous Equilibrium Model (HEM)(T/H) code using the conservation equations of mass, momentum, and energy. This primer uses the advection equation as a template. The discussion will cover the basic equations of the control volume portion of the course in the primer, which includes the advection equation, numerical methods, along with the implementation of the various equations via FORTRAN into computer programs and the final result for a three equation HEM code and its validation.

  17. A hybrid incremental projection method for thermal-hydraulics applications

    SciTech Connect

    Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Berndt, Markus; Francois, Marianne M.; Stagg, Alan K.; Xia, Yidong; Luo, Hong

    2016-07-01

    In this paper, a new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya–Babuška–Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie–Chow interpolation or by using a Petrov–Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes, and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.

  18. A hybrid incremental projection method for thermal-hydraulics applications

    SciTech Connect

    Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Berndt, Markus; Francois, Marianne M.; Stagg, Alan K.; Xia, Yidong; Luo, Hong

    2016-07-01

    In this paper, a new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya–Babuška–Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie–Chow interpolation or by using a Petrov–Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes, and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.

  19. Reactor subchannel analysis -- Electric Power Research Institute perspective

    SciTech Connect

    Srikantiah, G.

    1995-12-01

    One of the basic objectives of subchannel flow simulation and analysis effort sponsored by the Electric Power Research Institute was the development of a computer code for subchannel analysis and its verification and validation for applications to reactor thermal margin evaluation under steady and transient conditions. A historical perspective is given of the development of specifications for a reactor core subchannel thermal-hydraulics analysis code for utility applications in the evaluation of reactor safety limits during normal operation and accident scenarios. The subchannel analysis capabilities of the VIPRE-01 code based on the homogeneous equilibrium with the algebraic slip model of two-phase flow are presented. The code, which received a safety evaluation report from the US Nuclear Regulatory Commission in 1986, is in wide use in the utility industry for fuel reload safety analysis, critical heat flux correlation development and testing, thermal margin analysis, and core thermal-hydraulic analysis. A considerable amount of work has been done during the past few years on the development of VIPRE-02, an advanced subchannel analysis code based on the two-fluid model of two-phase flow capable of simulating reactor cores, vessels, and internal structures. The functional specifications, development of VIPRE-02, and current applications for VIPRE-02, such as boiling water reactor mixed fuel core evaluation, are also discussed. Code is also used for PWR`s.

  20. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-3: High Temperature Gas Cooled Reactor Thermal-Hydraulics.

    ERIC Educational Resources Information Center

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical high temperature gas-cooled reactor (HTGR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating its use with a simplified model. The heart of the module…

  1. SAS4A validation and analysis of in-pile TUCOP experiments

    SciTech Connect

    Morman, J.A.; Tentner, A.M.; Dever, D.J.

    1985-01-01

    This paper presents the results of SAS4A analysis for PFR/TREAT experiment L07, a simulated TUCOP accident. This is one of a series of TUCOP tests with different channel conditions at pin failure time and different power burst shapes. While other TUCOP tests such as L6 and L7 have been analyzed with earlier versions of the SAS code, the L07 analysis is the first to use the release version of SAS4A without special modifications, using recommended values of the input variables whenever possible. The PRIMAR-4 thermal-hydraulic model is used to compute the loop characteristics during the test.

  2. Issues affecting advanced passive light-water reactor safety analysis

    SciTech Connect

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-08-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented.

  3. Issues affecting advanced passive light-water reactor safety analysis

    SciTech Connect

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-01-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented.

  4. RELAP5/MOD2 Overview and Developmental. Assessment Results from TMl-1 Plant Transient Analysis

    SciTech Connect

    Lin, J. C.; Tsai, C. C.; Ransom, V. H.; Johnsen, G. W.

    2013-02-01

    RELAP5/MOD2 is a new version of the RELAP5 thermal-hydraulic computer code containing improved modeling features that provide a generic capability for pressurized water reactor transient simulation. The objective of this paper is to provide code users with an overview of the code and to report developmental assessment results obtained from a Three Mile Island Unit One plant transient analysis. The assessment shows that the injection of highly sub-cooled water into a high-pressure primary coolant system does not cause unphysical results or pose a problem for RELAP5/MOD2. (author)

  5. External Events Analysis for LWRS/RISMC Project: Methodology Development and Early Demonstration

    SciTech Connect

    Parisi, Carlo; Prescott, Steven Ralph; Yorg, Richard Alan; Coleman, Justin Leigh; Szilard, Ronaldo Henriques

    2016-02-01

    The ultimate scope of Industrial Application #2 (IA) of the LWRS/RISMC project is a realistic simulation of natural external hazards that impose threat to a NPP. This scope requires the development of a methodology and of a qualified set of tools able to perform advanced risk- informed safety analysis. In particular the methodology should be able to combine results from seismic, flooding and thermal-hydraulic (TH) deterministic calculations with dynamic PRA. This summary presents the key points of methodology being developed and the very first sample application of it to a simple problem (spent fuel pool).

  6. RELAP5/MOD2 overview and developmental assessment results from TMI-1 plant transient analysis

    SciTech Connect

    Lin, J.C.; Tsai, C.C.; Ransom, V.H.; Johnsen, G.W.

    1984-01-01

    RELAP5/MOD2 is a new version of the RELAP5 thermal-hydraulic computer code containing improved modeling features that provide a generic capability for pressurized water reactor transient simulation. Objective of this paper is to provide code users with an overview of the code and to report developmental assessment results obtained from a Three Mile Island Unit One plant transient analysis. The assessment shows that the injection of highly subcooled water into a high-pressure primary coolant system does not cause unphysical results or pose a problem for RELAP5/MOD2.

  7. System diagnostics using qualitative analysis and component functional classification

    DOEpatents

    Reifman, J.; Wei, T.Y.C.

    1993-11-23

    A method for detecting and identifying faulty component candidates during off-normal operations of nuclear power plants involves the qualitative analysis of macroscopic imbalances in the conservation equations of mass, energy and momentum in thermal-hydraulic control volumes associated with one or more plant components and the functional classification of components. The qualitative analysis of mass and energy is performed through the associated equations of state, while imbalances in momentum are obtained by tracking mass flow rates which are incorporated into a first knowledge base. The plant components are functionally classified, according to their type, as sources or sinks of mass, energy and momentum, depending upon which of the three balance equations is most strongly affected by a faulty component which is incorporated into a second knowledge base. Information describing the connections among the components of the system forms a third knowledge base. The method is particularly adapted for use in a diagnostic expert system to detect and identify faulty component candidates in the presence of component failures and is not limited to use in a nuclear power plant, but may be used with virtually any type of thermal-hydraulic operating system. 5 figures.

  8. System diagnostics using qualitative analysis and component functional classification

    DOEpatents

    Reifman, Jaques; Wei, Thomas Y. C.

    1993-01-01

    A method for detecting and identifying faulty component candidates during off-normal operations of nuclear power plants involves the qualitative analysis of macroscopic imbalances in the conservation equations of mass, energy and momentum in thermal-hydraulic control volumes associated with one or more plant components and the functional classification of components. The qualitative analysis of mass and energy is performed through the associated equations of state, while imbalances in momentum are obtained by tracking mass flow rates which are incorporated into a first knowledge base. The plant components are functionally classified, according to their type, as sources or sinks of mass, energy and momentum, depending upon which of the three balance equations is most strongly affected by a faulty component which is incorporated into a second knowledge base. Information describing the connections among the components of the system forms a third knowledge base. The method is particularly adapted for use in a diagnostic expert system to detect and identify faulty component candidates in the presence of component failures and is not limited to use in a nuclear power plant, but may be used with virtually any type of thermal-hydraulic operating system.

  9. Peach Bottom Turbine Trip Simulations with RETRAN Using INER/TPC BWR Transient Analysis Method

    SciTech Connect

    Kao Lainsu; Chiang, Show-Chyuan

    2005-03-15

    The work described in this paper is benchmark calculations of pressurization transient turbine trip tests performed at the Peach Bottom boiling water reactor (BWR). It is part of an overall effort in providing qualification basis for the INER/TPC BWR transient analysis method developed for the Kuosheng and Chinshan plants. The method primarily utilizes an advanced system thermal hydraulics code, RETRAN02/MOD5, for transient safety analyses. Since pressurization transients would result in a strong coupling effect between core neutronic and system thermal hydraulics responses, the INER/TPC method employs the one-dimensional kinetic model in RETRAN with a cross-section data library generated by the Studsvik-CMS code package for the transient calculations. The Peach Bottom Turbine Trip (PBTT) tests, including TT1, TT2, and TT3, have been successfully performed in the plant and assigned as standards commonly for licensing method qualifications for years. It is an essential requirement for licensing purposes to verify integral capabilities and accuracies of the codes and models of the INER/TPC method in simulating such pressurization transients. Specific Peach Bottom plant models, including both neutronics and thermal hydraulics, are developed using modeling approaches and experiences generally adopted in the INER/TPC method. Important model assumptions in RETRAN for the PBTT test simulations are described in this paper. Simulation calculations are performed with best-estimated initial and boundary conditions obtained from plant test measurements. The calculation results presented in this paper demonstrate that the INER/TPC method is capable of calculating accurately the core and system transient behaviors of the tests. Excellent agreement, both in trends and magnitudes between the RETRAN calculation results and the PBTT measurements, shows reliable qualifications of the codes/users/models involved in the method. The RETRAN calculated peak neutron fluxes of the PBTT

  10. Weapons-Grade Plutonium-Thorium PWR Assembly Design and Core Safety Analysis

    SciTech Connect

    Dziadosz, David; Ake, Timothy N.; Saglam, Mehmet; Sapyta, Joe J.

    2004-07-15

    A light water reactor (LWR) fuel assembly design consisting of a blend of weapons-grade plutonium and natural thorium oxides was examined. The design meets current thermal-hydraulic and safety criteria. Such an assembly would have enough reactivity to achieve three cycles of operation. The pin power distribution indicates a fairly level distribution across the assembly, avoiding hot spots near guide tubes, corners, and other sections where excessive power would create significant loss to thermal-hydraulic margins.This work examined a number of physics and core safety analysis parameters that impact the operation and safety of power reactors. Such parameters as moderator coefficients of reactivity, Doppler coefficients, soluble boron worth, control rod worth, prompt neutron lifetime, and delayed-neutron fractions were considered. These in turn were used to examine reactor behavior during a number of operational conditions, transients, and accidents. Such conditions as shutdown from power with one rod stuck out, steam-line break accident, feedwater line break, loss of coolant flow, locked rotor accidents, control rod ejection accidents, and anticipated transients without scram (ATWSs) were examined.The analysis of selected reactor transients demonstrated that it is feasible to license and safely operate a reactor fueled with plutonium-thorium blended fuel. In most cases analyzed, the thorium mixture had less-severe consequences than those for a core comprising low-enriched uranium fuel. In the analyzed cases where the consequences were more severe, they were still within acceptable limits. The ATWS accident condition requires more analysis.

  11. LOFA analysis in helium and Pb-Li circuits of LLCB TBM by FE simulation

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Paritosh; Ranjithkumar, S.; Sharma, Deepak; Danani, Chandan

    2017-04-01

    One of the main ITER objectives is to demonstrate the feasibility of the breeding blanket concepts that would lead to tritium self-sufficiency and the extraction of a high-grade heat for electricity production. India has developed the LLCB TBM to be tested in ITER for the validation of design concepts for tritium breeding blankets relevant DEMO and future power reactor. LLCB concept has the unique features of combination of both solid (lithium titanate as packed pebble bed) and liquid breeders (molten lead lithium). India specific IN-RAFMS is the structural material for TBM. The First Wall is actively cooled by high-pressure helium (He) gas [1]. It is important to validate the design of TBM to withstand various loads acting on it including accident analysis like LOCA, LOFA etc. Detailed thermal-hydraulic simulation studies including LOFA in helium and Pb-Li circuits of LLCB TBM have been performed using Finite Element using ANSYS. These analyses will provide important information about the temperature distribution in different materials used in TBM during steady state and transient condition. Thermal-hydraulic safety requirement has also been envisaged for the initiation the FPPS (Fusion Power Shutdown System) during LOFA. All these analysis will be presented in detail in this paper.

  12. The role of SASSYS-1 in LMR (Liquid Metal Reactor) safety analysis

    SciTech Connect

    Dunn, F.E.; Wei, T.Y.C.

    1988-01-01

    The SASSYS-1 liquid metal reactor systems analysis computer code is currently being used as the principal tool for analysis of reactor plant transients in LMR development projects. These include the IFR and EBR-II Projects at Argonne National Laboratory, the FFTF project at Westinghouse-Hanford, the PRISM project at General Electric, the SAFR project at Rockwell International, and the LSPB project at EPRI. The SASSYS-1 code features a multiple-channel thermal-hydraulics core representation coupled with a point kinetics neutronics model with reactivity feedback, all combined with detailed one-dimensional thermal-hydraulic models of the primary and intermediate heat transport systems, including pipes, pumps, plena, valves, heat exchangers and steam generators. In addition, SASSYS-1 contains detailed models for active and passive shutdown and emergency heat rejection systems and a generalized plant control system model. With these models, SASSYS-1 provides the capability to analyze a wide range of transients, including normal operational transients, shutdown heat removal transients, and anticipated transients without scram events. 26 refs., 16 figs.

  13. Optimization of coupled multiphysics methodology for safety analysis of pebble bed modular reactor

    NASA Astrophysics Data System (ADS)

    Mkhabela, Peter Tshepo

    The research conducted within the framework of this PhD thesis is devoted to the high-fidelity multi-physics (based on neutronics/thermal-hydraulics coupling) analysis of Pebble Bed Modular Reactor (PBMR), which is a High Temperature Reactor (HTR). The Next Generation Nuclear Plant (NGNP) will be a HTR design. The core design and safety analysis methods are considerably less developed and mature for HTR analysis than those currently used for Light Water Reactors (LWRs). Compared to LWRs, the HTR transient analysis is more demanding since it requires proper treatment of both slower and much longer transients (of time scale in hours and days) and fast and short transients (of time scale in minutes and seconds). There is limited operation and experimental data available for HTRs for validation of coupled multi-physics methodologies. This PhD work developed and verified reliable high fidelity coupled multi-physics models subsequently implemented in robust, efficient, and accurate computational tools to analyse the neutronics and thermal-hydraulic behaviour for design optimization and safety evaluation of PBMR concept The study provided a contribution to a greater accuracy of neutronics calculations by including the feedback from thermal hydraulics driven temperature calculation and various multi-physics effects that can influence it. Consideration of the feedback due to the influence of leakage was taken into account by development and implementation of improved buckling feedback models. Modifications were made in the calculation procedure to ensure that the xenon depletion models were accurate for proper interpolation from cross section tables. To achieve this, the NEM/THERMIX coupled code system was developed to create the system that is efficient and stable over the duration of transient calculations that last over several tens of hours. Another achievement of the PhD thesis was development and demonstration of full-physics, three-dimensional safety analysis

  14. Improvement of Predictive Accuracy on Subchannel Analysis Code (NASCA) for Tight-Lattice Rod Bundle Tests - Optimization of UEDA'S Entrainment Model Parameter and Cross Flow Model Parameters

    SciTech Connect

    Hiromasa Chitose; Akitoshi Hotta; Akira Ohnuki; Ken Fujimura

    2006-07-01

    The Reduced-Moderation Water Reactor (RMWR) is being developed at Japan Atomic Energy Agency and demonstration of the core heat removal performance is one of the most important issues. However, operation of the full-scale bundle experiment is difficult technically because the fuel rod bundle size is larger, which consumes huge electricity. Hence, it is expected to develop an analysis code for simulating RMWR core thermal-hydraulic performance with high accuracy. Subchannel analysis is the most powerful technique to resolve the problem. A subchannel analysis code NASCA (Nuclear-reactor Advanced Sub-Channel Analysis code) has been developed to improve capabilities of analyzing transient two-phase flow phenomena, boiling transition (BT) and post BT, and the NASCA code is applicable on the thermal-hydraulic analysis for the current BWR fuel. In the present study, the prediction accuracy of the NASCA code has been investigated using the reduced-scale rod bundle test data, and its applicability on the RMWR has been improved by optimizing the mechanistic constitutive models. (authors)

  15. NGNP Data Management and Analysis System Analysis and Web Delivery Capabilities

    SciTech Connect

    Cynthia D. Gentillon

    2010-09-01

    Projects for the Very High Temperature Reactor Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the very high temperature reactor. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high-temperature and high-fluence environments. In addition, thermal-hydraulic experiments are conducted to validate codes used to assess reactor safety. The Very High Temperature Reactor Technology Development Office has established the NGNP Data Management and Analysis System (NDMAS) at the Idaho National Laboratory to ensure that very high temperature reactor data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities for displaying the data in meaningful ways and for data analysis to identify useful relationships among the measured quantities.

  16. Timing analysis of PWR fuel pin failures

    SciTech Connect

    Jones, K.R.; Wade, N.L.; Katsma, K.R.; Siefken, L.J. ); Straka, M. )

    1992-09-01

    Research has been conducted to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox (B W) design (Oconee) and a Westinghouse (W) four-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin bumup, axial peaking factor, break size, emergency core cooling system availability, and main coolant pump trip on these times. The analysis was performed using the following codes: FRAPCON-2, for the calculation of steady-state fuel behavior; SCDAP/RELAP5/MOD3 and TRACPF1/MOD1, for the calculation of the transient thermal-hydraulic conditions in the reactor system; and FRAP-T6, for the calculation of transient fuel behavior. In addition to the calculation of fuel pin failure timing, this analysis provides a comparison of the predicted results of SCDAP/RELAP5/MOD3 and TRAC-PFL/MOD1 for large-break LOCA analysis. Using SCDAP/RELAP5/MOD3 thermal-hydraulic data, the shortest time intervals calculated between initiation of containment isolation and fuel pin failure are 10.4 seconds and 19.1 seconds for the B W and W plants, respectively. Using data generated by TRAC-PF1/MOD1, the shortest intervals are 10.3 seconds and 29.1 seconds for the B W and W plants, respectively. These intervals are for a double-ended, offset-shear, cold leg break, using the technical specification maximum peaking factor and applied to fuel with maximum design bumup. Using peaking factors commensurate widi actual bumups would result in longer intervals for both reactor designs. This document also contains appendices A through J of this report.

  17. Transient analysis of ”2 inch Direct Vessel Injection line break” in SPES-2 facility by using TRACE code

    NASA Astrophysics Data System (ADS)

    D'Amico, S.; Lombardo, C.; Moscato, I.; Polidori, M.; Vella, G.

    2015-11-01

    In the past few decades a lot of theoretical and experimental researches have been done to understand the physical phenomena characterizing nuclear accidents. In particular, after the Three Miles Island accident, several reactors have been designed to handle successfully LOCA events. This paper presents a comparison between experimental and numerical results obtained for the “2 inch Direct Vessel Injection line break” in SPES-2. This facility is an integral test facility built in Piacenza at the SIET laboratories and simulating the primary circuit, the relevant parts of the secondary circuits and the passive safety systems typical of the AP600 nuclear power plant. The numerical analysis here presented was performed by using TRACE and CATHARE thermal-hydraulic codes with the purpose of evaluating their prediction capability. The main results show that the TRACE model well predicts the overall behaviour of the plant during the transient, in particular it is able to simulate the principal thermal-hydraulic phenomena related to all passive safety systems. The performance of the presented CATHARE noding has suggested some possible improvements of the model.

  18. Stability Analysis of a Uniformly Heated Channel with Supercritical Water

    SciTech Connect

    Ortega Gomez, T.; Class, A.; Schulenberg, T.; Lahey, R.T. Jr.

    2006-07-01

    The thermal-hydraulic stability of a uniformly heated channel at supercritical water pressure has been investigated to help understand the system instability phenomena which may occur in Supercritical Water Nuclear Reactors (SCWR). We have extended the modeling approach often used for Boiling Water Nuclear Reactor (BWR) stability analysis to supercritical pressure operation conditions. We have shown that Ledinegg excursive instabilities and pressure-drop oscillations (PDO) will not occur in supercritical water systems. The linear stability characteristics of a typical uniformly heated channel were computed by evaluating the eigenvalues of the model. An analysis of non-linear instability phenomena was also performed in the time domain and the dynamic bifurcations were evaluated. (authors)

  19. Quantitative uncertainty and sensitivity analysis of a PWR control rod ejection accident

    SciTech Connect

    Pasichnyk, I.; Perin, Y.; Velkov, K.

    2013-07-01

    The paper describes the results of the quantitative Uncertainty and Sensitivity (U/S) Analysis of a Rod Ejection Accident (REA) which is simulated by the coupled system code ATHLET-QUABOX/CUBBOX applying the GRS tool for U/S analysis SUSA/XSUSA. For the present study, a UOX/MOX mixed core loading based on a generic PWR is modeled. A control rod ejection is calculated for two reactor states: Hot Zero Power (HZP) and 30% of nominal power. The worst cases for the rod ejection are determined by steady-state neutronic simulations taking into account the maximum reactivity insertion in the system and the power peaking factor. For the U/S analysis 378 uncertain parameters are identified and quantified (thermal-hydraulic initial and boundary conditions, input parameters and variations of the two-group cross sections). Results for uncertainty and sensitivity analysis are presented for safety important global and local parameters. (authors)

  20. Analysis of IFR driver fuel hot channel factors

    SciTech Connect

    Ku, J.Y.; Chang, L.K.; Mohr, D.

    1994-03-01

    Thermal-hydraulic uncertainty factors for Integral Fast Reactor (IFR) driver fuels have been determined based primarily on the database obtained from the predecessor fuels used in the IFR prototype, Experimental Breeder Reactor II. The uncertainty factors were applied to the channel factors (HCFs) analyses to obtain separate overall HCFs for fuel and cladding for steady-state analyses. A ``semistatistical horizontal method`` was used in the HCFs analyses. The uncertainty factor of the fuel thermal conductivity dominates the effects considered in the HCFs analysis; the uncertainty in fuel thermal conductivity will be reduced as more data are obtained to expand the currently limited database for the IFR ternary metal fuel (U-20Pu-10Zr). A set of uncertainty factors to be used for transient analyses has also been derived.

  1. NGNP Data Management and Analysis System Modeling Capabilities

    SciTech Connect

    Cynthia D. Gentillon

    2009-09-01

    Projects for the very-high-temperature reactor (VHTR) program provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. In addition, thermal-hydraulic experiments are conducted to validate codes used to assess reactor safety. The VHTR Program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities for displaying the data in meaningful ways and identifying relationships among the measured quantities that contribute to their understanding.

  2. MCO Pressurization analysis of spent nuclear fuel transporation and storage

    SciTech Connect

    Ogden, D.M., Westinghouse Hanford

    1996-09-20

    A series of analysis were performed to evaluate the pressurization of the Multi-Canister Overpack (MCO) during the stages of transport, processing and storage for expected operational and off normal events. The study examined both MCO sealing and venting issues. Computer models were developed for the MCO and its transport and storage environments using the GOTH and COBRA-TF computer codes. These thermal- hydraulic models included chemical corrosion and ranged in complexity from simple scoping models to full three-dimensional models. Results of the evaluation indicate that overpressurization of the MCO can occur within hours given the bounding reaction surface area and 3.0 Kg of residual water during shipping or 2.5 Kg of residual water during storage. Overpressurization can be prevented during shipping if the MCO reaction surface area is shown to be less than 80,000 cm{sup 2}. During storage the overpressurization can be prevented by limiting the available water.

  3. Advanced neutron source reactor conceptual safety analysis report, three-element-core design: Chapter 15, accident analysis

    SciTech Connect

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L.; Harrington, R.M.

    1996-02-01

    In order to utilize reduced enrichment fuel, the three-element-core design for the Advanced Neutron Source has been proposed. The proposed core configuration consists of inner, middle, and outer elements, with the middle element offset axially beneath the inner and outer elements, which are axially aligned. The three-element-core RELAP5 model assumes that the reactor hardware is changed only within the core region, so that the loop piping, heat exchangers, and pumps remain as assumed for the two-element-core configuration. To assess the impact of changes in the core region configuration and the thermal-hydraulic steady-state conditions, the safety analysis has been updated. This report gives the safety margins for the loss-of-off-site power and pressure-boundary fault accidents based on the RELAP5 results. AU margins are greater for the three-element-core simulations than those calculated for the two-element core.

  4. The analysis of the OECD/NEA/NSC PBMR-400 benchmark problem using PARCS-DIREKT

    SciTech Connect

    Seker, V.; Downar, T. J.

    2006-07-01

    The OECD/NEA/NSC PBMR-400 benchmark problem was developed to support the validation and verification efforts for the PBMR design. This paper describes the analysis of this problem using the PARCS-DIREKT coupled code system. The benchmark problem involved the use of two different cross-section libraries, one which was generated from a VSOP equilibrium core calculation and has no dependence on core conditions. The second library provides for dependence on five state parameters and was designed for transient analysis. The paper here reports the steady-state cases using the VSOP set of cross-sections. The results are shown to be in good agreement with those of VSOP. Also reported here are the results of the steady-state thermal-hydraulic DIRECKT solution with a given power profile obtained from VSOP equilibrium core calculation. This analysis provides some insight as to the most important parameters in the design of PBMR-400. (authors)

  5. SASSYS analysis of degraded shut-down heat-removal performance in LMFBRs

    SciTech Connect

    Dunn, F.E.; Prohammer, F.G.

    1982-01-01

    The SASSYS LMFBR systems analysis code was developed to analyze the consequences of failures in the hsutdown heat removal system and to determine whether this system can perform its mission adequately even with some of its components inoperable. SASSYS provides a detailed thermal-hydraulic analysis of the reactor core, inlet and outlet coolant plenums, primary and intermediate heat transport systems, steam generators, and emergency heat removal systems for any LMFBR design. One key feature of the code is the sodium boiling model, which can be especially significant in cases where pump power is lost and normal natural circulation heads are insufficient to prevent temporary flow stagnation in part or all of the core. In such cases, boiling in part of the core should provide the driving head to re-establish flow, while at the same time removing enough heat to prevent melting of fuel and clad.

  6. A flooding induced station blackout analysis for a pressurized water reactor using the RISMC toolkit

    DOE PAGES

    Mandelli, Diego; Prescott, Steven; Smith, Curtis; ...

    2015-05-17

    In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code calledmore » NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. The impact of power uprate is determined in terms of both core damage probability and safety margins.« less

  7. A flooding induced station blackout analysis for a pressurized water reactor using the RISMC toolkit

    SciTech Connect

    Mandelli, Diego; Prescott, Steven; Smith, Curtis; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2015-05-17

    In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code called NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. The impact of power uprate is determined in terms of both core damage probability and safety margins.

  8. Multidimensional TMI-1 Main-Steam-Line-Break Analysis Methodology Using TRAC-PF/NEM

    SciTech Connect

    Ivanov, Kostadin N.; Beam, Tara M.; Baratta, Anthony J.; Irani, Ardesar; Trikouros, Nicholas G

    2001-02-15

    A comparison of a point-kinetics calculation and a full three-dimensional thermal-hydraulic/kinetics calculation using TRAC-PF1/NEM is presented. The coupled TRAC-PF1/NEM methodology uses version 5.4 of the TRAC-PF1/MOD2 code, developed by the Los Alamos National Laboratory, and a special kinetics module, developed at The Pennsylvania State University and based on the nodal expansion method. Cross sections are obtained from two-dimensional tables generated using CASMO-3.The results of the analysis show that the point-kinetics calculation is conservative and predicts a return to power. The three-dimensional analysis shows no return to power despite an extended overfeeding of the affected generator with feedwater. The difference is believed to be caused by the inability of the standard point-kinetics method to properly account for the moderator density feedback, local effects, and flux redistribution, which occur during the transient.

  9. Analysis of the SL-1 Accident Using RELAPS5-3D

    SciTech Connect

    Francisco, A.D. and Tomlinson, E. T.

    2007-11-08

    On January 3, 1961, at the National Reactor Testing Station, in Idaho Falls, Idaho, the Stationary Low Power Reactor No. 1 (SL-1) experienced a major nuclear excursion, killing three people, and destroying the reactor core. The SL-1 reactor, a 3 MW{sub t} boiling water reactor, was shut down and undergoing routine maintenance work at the time. This paper presents an analysis of the SL-1 reactor excursion using the RELAP5-3D thermal-hydraulic and nuclear analysis code, with the intent of simulating the accident from the point of reactivity insertion to destruction and vaporization of the fuel. Results are presented, along with a discussion of sensitivity to some reactor and transient parameters (many of the details are only known with a high level of uncertainty).

  10. Entropy analysis on non-equilibrium two-phase flow models

    SciTech Connect

    Karwat, H.; Ruan, Y.Q.

    1995-09-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.

  11. Fourier analysis of iteration schemes for k-eigenvalue transport problems with flux-dependent cross sections

    NASA Astrophysics Data System (ADS)

    Kochunas, Brendan; Fitzgerald, Andrew; Larsen, Edward

    2017-09-01

    A central problem in nuclear reactor analysis is calculating solutions of steady-state k-eigenvalue problems with thermal hydraulic feedback. In this paper we propose and utilize a model problem that permits the theoretical analysis of iterative schemes for solving such problems. To begin, we discuss a model problem (with nonlinear cross section feedback) and its justification. We proceed with a Fourier analysis for source iteration schemes applied to the model problem. Then we analyze commonly-used iteration schemes involving non-linear diffusion acceleration and feedback. For each scheme we show (1) that they are conditionally stable, (2) the conditions that lead to instability, and (3) that traditional relaxation approaches can improve stability. Lastly, we propose a new iteration scheme that theory predicts is an improvement upon the existing methods.

  12. Fatigue-creep lifetime analysis of four advanced central receiver concepts

    NASA Astrophysics Data System (ADS)

    Jones, J.

    1981-01-01

    Four advanced central receiver concepts were analyzed for their fatigue-creep design lifetimes. Using the flux profiles provided by the designers, the thermal hydraulic performance of an individual tube in a receiver panel was ascertained by computer analysis. A linear model of the tube crown strain for the tube on given thermal and structural finite element analyses were performed. The computed stresses and strains were used in evaluation of the creep and fatigue design lifetimes by N-47 and compared to the desired lifetime of 30 years. Three of the four designs met or exceeded the desired lifetime and the fourth met the desired lifetime when the factor of safety incorporated in N-47 was reduced. All four designs were judged adequate for the current level of design effort.

  13. Analysis of core-concrete interaction event with flooding for the Advanced Neutron Source reactor

    SciTech Connect

    Kim, S.H.; Taleyarkhan, R.P.; Georgevich, V.; Navarro-Valenti, S.

    1993-11-01

    This paper discusses salient aspects of the methodology, assumptions, and modeling of various features related to estimation of source terms from an accident involving a molten core-concrete interaction event (with and without flooding) in the Advanced Neutron Source (ANS) reactor at the Oak Ridge National Laboratory. Various containment configurations are considered for this postulated severe accident. Several design features (such as rupture disks) are examined to study containment response during this severe accident. Also, thermal-hydraulic response of the containment and radionuclide transport and retention in the containment are studied. The results are described as transient variations of source terms, which are then used for studying off-site radiological consequences and health effects for the support of the Conceptual Safety Analysis Report for ANS. The results are also to be used to examine the effectiveness of subpile room flooding during this type of severe accident.

  14. RELAP5/MOD2 split reactor vessel model and steamline break analysis

    SciTech Connect

    Petelin, S.; Mavko, B.; Gortnar, O. )

    1993-04-01

    A split reactor vessel model for the RELAP5/ MOD2 computer code is developed in an attempt to realize more realistic predictions of asymmetrical transients in a two-loop nuclear power plant. Based on this split reactor model, coolant mixing processes within the reactor vessel are examined. This study evaluates the model improvements in terms of thermal-hydraulic simulations of the reactor core inlet fluid condition and the consequent core behavior. Furthermore, the split reactor vessel model is introduced into an integral RELAP5/MOD2 power plant model, and a steamline break analysis is performed to determine the influence of the boron concentration in the boron injection tank on accident consequences.

  15. Development of a multiphysics analysis system for sodium-water reaction phenomena in steam generators of sodium-cooled fast reactors

    SciTech Connect

    Uchibori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki

    2015-12-31

    A multiphysics analysis system for sodium-water reaction phenomena in a steam generator of sodium-cooled fast reactors was newly developed. The analysis system consists of the mechanistic numerical analysis codes, SERAPHIM, TACT, and RELAP5. The SERAPHIM code calculates the multicomponent multiphase flow and sodium-water chemical reaction caused by discharging of pressurized water vapor. Applicability of the SERAPHIM code was confirmed through the analyses of the experiment on water vapor discharging in liquid sodium. The TACT code was developed to calculate heat transfer from the reacting jet to the adjacent tube and to predict the tube failure occurrence. The numerical models integrated into the TACT code were verified through some related experiments. The RELAP5 code evaluates thermal hydraulic behavior of water inside the tube. The original heat transfer correlations were corrected for the tube rapidly heated by the reacting jet. The developed system enables evaluation of the wastage environment and the possibility of the failure propagation.

  16. Development of a multiphysics analysis system for sodium-water reaction phenomena in steam generators of sodium-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Uchibori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki

    2015-12-01

    A multiphysics analysis system for sodium-water reaction phenomena in a steam generator of sodium-cooled fast reactors was newly developed. The analysis system consists of the mechanistic numerical analysis codes, SERAPHIM, TACT, and RELAP5. The SERAPHIM code calculates the multicomponent multiphase flow and sodium-water chemical reaction caused by discharging of pressurized water vapor. Applicability of the SERAPHIM code was confirmed through the analyses of the experiment on water vapor discharging in liquid sodium. The TACT code was developed to calculate heat transfer from the reacting jet to the adjacent tube and to predict the tube failure occurrence. The numerical models integrated into the TACT code were verified through some related experiments. The RELAP5 code evaluates thermal hydraulic behavior of water inside the tube. The original heat transfer correlations were corrected for the tube rapidly heated by the reacting jet. The developed system enables evaluation of the wastage environment and the possibility of the failure propagation.

  17. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    SciTech Connect

    Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E.; Tills, J.

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.

  18. Description of TASHA: Thermal Analysis of Steady-State-Heat Transfer for the Advanced Neutron Source Reactor

    SciTech Connect

    Morris, D.G.; Chen, N.C.; Nelson, W.R.; Yoder, G.L.

    1996-10-01

    This document describes the code used to perform Thermal Analysis of Steady-State-Heat-Transfer for the Advanced Neutron Source (ANS) Reactor (TASHA). More specifically, the code is designed for thermal analysis of the fuel elements. The new code reflects changes to the High Flux Isotope Reactor steady-state thermal-hydraulics code. These changes were aimed at both improving the code`s predictive ability and allowing statistical thermal-hydraulic uncertainty analysis to be performed. A significant portion of the changes were aimed at improving the correlation package in the code. This involved incorporating more recent correlations for both single-phase flow and two-phase flow thermal limits, including the addition of correlations to predict the phenomenon of flow excursion. Since the code was to be used in the design of the ANS, changes were made to allow the code to predict limiting powers for a variety of thermal limits, including critical heat flux, flow excursion, incipient boiling, oxide spallation, maximum centerline temperature, and surface temperature equal to the saturation temperature. Statistical uncertainty analysis also required several changes to the code itself as well as changes to the code input format. This report describes these changes in enough detail to allow the reader to interpret code results and also to understand where the changes were made in the code programming. This report is not intended to be a stand alone report for running the code, however, and should be used in concert with the two previous reports published on the original code. Sample input and output files are also included to help accomplish these goals. In addition, a section is included that describes requirements for a new, more modem code that the project planned to develop.

  19. American Nuclear Society eastern regional student conference. Transactions

    SciTech Connect

    Not Available

    1984-01-01

    Fifty-eight abstracts are presented under the following headings: computer applications, safety and economics, fusion, thermal hydraulics, radiation studies, environmental analysis, and reactor design and applications. (DLC)

  20. Safety analysis for operating the Annular Core Research Reactor with Cintichem-type targets installed in the central region of the core

    SciTech Connect

    PARMA JR.,EDWARD J.

    2000-01-01

    Production of the molybdenum-99 isotope at the Annular Core Research Reactor requires highly enriched, uranium oxide loaded targets to be irradiated for several days in the high neutron-flux region of the core. This report presents the safety analysis for the irradiation of up to seven Cintichem-type targets in the central region of the core and compares the results to the Annular Core Research Reactor Safety Analysis Report. A 19 target grid configuration is presented that allows one to seven targets to be irradiated, with the remainder of the grid locations filled with aluminum ''void'' targets. Analyses of reactor, neutronic, thermal hydraulics, and heat transfer calculations are presented. Steady-state operation and accident scenarios are analyzed with the conclusion that the reactor can be operated safely with seven targets in the grid, and no additional risk to the public.

  1. Thermal-hydraulic limitations on water-cooled fusion reactor components

    SciTech Connect

    Cha, Y.S.; Misra, B.

    1986-01-01

    An assessment of the cooling requirements for fusion reactor components, such as the first wall and limiter/divertor, was carried out using pressurized water as the coolant. In order to establish the coolant operating conditions, a survey of the literature on departure from nucleate boiling, critical heat flux, asymmetrical heating and heat transfer augmentation techniques was carried out. The experimental data and the empirical correlations indicate that thermal protection for the fusion reactor components based on conventional design concepts can be provided with an adequate margin of safety without resorting to either high coolant velocities, excessive coolant pressures, or heat transfer augmentation techniques. If, however, the future designs require unconventional shapes or heat transfer enhancement techniques, experimental verification would be necessary since no data on heat transfer augmentation techniques exist for complex geometries, especially under asymmetrically heated conditions. Since the data presented herein are concerned primarily with thermal protection of the reactor components, the final design should consider other factors such as thermal stresses, temperature limits, and fatigue.

  2. Investigations on the thermal-hydraulics of a natural circulation cooled BWR fuel assembly

    SciTech Connect

    Kok, H.V.; Hagen, T.H.J.J. van der; Mudde, R.F.

    1995-09-01

    A scaled natural circulation loop facility has been built after the Dodewaard Boiling Water Reactor, which is the only operating natural circulation cooled BWR in the world. The loop comprises one fuel assembly, a riser with a downcomer and a condenser with a cooling system. Freon-12 is used as a scaling liquid. This paper reports on the first measurements done with this facility. Quantities like the circulation flow, carry-under and the void-fraction have been measured as a function of power, pressure, liquid level, riser length, condensate temperature and friction factors. The behavior of the circulation flow can be understood by considering the driving force. Special attention has been paid to the carry-under, which has been shown to have a very important impact on the dynamics of a natural circulation cooled BWR.

  3. Thermal-hydraulic instabilities in pressure tube graphite - moderated boiling water reactors

    SciTech Connect

    Tsiklauri, G.; Schmitt, B.

    1995-09-01

    Thermally induced two-phase instabilities in non-uniformly heated boiling channels in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to -150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement.

  4. Steady state thermal-hydraulic analyses of the MITICA cooling circuits

    SciTech Connect

    Zaupa, M.; Sartori, E.; Dalla Palma, M.; Fellin, F.; Marcuzzi, D.; Pavei, M.; Rizzolo, A.

    2016-02-15

    Megavolt ITER Injector Concept Advancement is the full scale prototype of the heating and current drive neutral beam injectors for ITER, to be built at Consorzio RFX (Padova). The engineering design of its components is challenging: the total heat loads they will be subjected to (expected between 2 and 19 MW), the high heat fluxes (up to 20 MW/m{sup 2}), and the beam pulse duration up to 1 h, set demanding requirements for reliable active cooling circuits. In support of the design, the thermo-hydraulic behavior of each cooling circuit under steady state condition has been investigated by using one-dimensional models. The final results, obtained considering a number of optimizations for the cooling circuits, show that all the requirements in terms of flow rate, temperature, and pressure drop are properly fulfilled.

  5. Parallelization of the MAAP-A code neutronics/thermal hydraulics coupling

    SciTech Connect

    Froehle, P.H.; Wei, T.Y.C.; Weber, D.P.; Henry, R.E.

    1998-12-31

    A major new feature, one-dimensional space-time kinetics, has been added to a developmental version of the MAAP code through the introduction of the DIF3D-K module. This code is referred to as MAAP-A. To reduce the overall job time required, a capability has been provided to run the MAAP-A code in parallel. The parallel version of MAAP-A utilizes two machines running in parallel, with the DIF3D-K module executing on one machine and the rest of the MAAP-A code executing on the other machine. Timing results obtained during the development of the capability indicate that reductions in time of 30--40% are possible. The parallel version can be run on two SPARC 20 (SUN OS 5.5) workstations connected through the ethernet. MPI (Message Passing Interface standard) needs to be implemented on the machines. If necessary the parallel version can also be run on only one machine. The results obtained running in this one-machine mode identically match the results obtained from the serial version of the code.

  6. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-2: Liquid Metal Fast Breeder Reactors.

    ERIC Educational Resources Information Center

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical liquid metal fast breeder reactor (LMFBR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating the use with a simplified model. The heart of the module is…

  7. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-1: Pressurized Water Reactors.

    ERIC Educational Resources Information Center

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical pressurized water reactor (PWR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating its use with a simplified model. The heart of the module is the PWR…

  8. Test problem for thermal-hydraulics and neutronic coupled calculation fore ALFREAD reactor core

    NASA Astrophysics Data System (ADS)

    Filip, A.; Darie, G.; Saldikov, I. S.; Smirnov, A. D.; Tikhomirov, G. V.

    2017-01-01

    The beginning of a new era of nuclear reactor requires technological advances and also multiples studies. The European Liquid metal cooled Fast breeder Reactor is one of the designs for the generation IV nuclear reactor, selected by ENEA. A pioneer of its time, ELFR needs a demonstrator in order to prove the feasibility of this project and to acquire more data and experience in operating a LFR. For this reason the ALFRED project was started and it is expected to be under operation by the year 2030. This paper has the objective of analyzing the neutronic and thermohydraulics of the ALFRED core by the means of a coupled scheme. The selected code for neutronic simulation is MCNP and the selected code for thermohydraulics is ANSYS.

  9. Flexible parallel implicit modelling of coupled thermal-hydraulic-mechanical processes in fractured rocks

    NASA Astrophysics Data System (ADS)

    Cacace, Mauro; Jacquey, Antoine B.

    2017-09-01

    Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).

  10. Supercritical Water Nuclear Steam Supply System: Innovations In Materials, Neutronics & Thermal-Hydraulics

    SciTech Connect

    Mark Anderson; M.L. Corradini; K. Sridharan; P. WIlson; D. Cho; T.K. Kim; S. Lomperski

    2004-09-02

    In the 1990's supercritical light-water reactors were considered in conceptual designs. A nuclear reactor cooled by supercritical waster would have a much higher thermal efficiency with a once-through direct power cycle, and could be based on standardized water reactor components (light water or heavy water). The theoretical efficiency could be improved by more than 33% over that of other water reactors and could be simplified with higher reliability; e.g., a boiling water reactor without steam separators or dryers.

  11. Model development and calibration for the coupled thermal, hydraulic and mechanical phenomena of the bentonite

    SciTech Connect

    Chijimatsu, M.; Borgesson, L.; Fujita, T.; Jussila, P.; Nguyen, S.; Rutqvist, J.; Jing, L.; Hernelind, J.

    2009-02-01

    In Task A of the international DECOVALEX-THMC project, five research teams study the influence of thermal-hydro-mechanical (THM) coupling on the safety of a hypothetical geological repository for spent fuel. In order to improve the analyses, the teams calibrated their bentonite models with results from laboratory experiments, including swelling pressure tests, water uptake tests, thermally gradient tests, and the CEA mock-up THM experiment. This paper describes the mathematical models used by the teams, and compares the results of their calibrations with the experimental data.

  12. Interface requirements to couple thermal hydraulics codes to severe accident codes: ICARE/CATHARE

    SciTech Connect

    Camous, F.; Jacq, F.; Chatelard, P.

    1997-07-01

    In order to describe with the same code the whole sequence of severe LWR accidents, up to the vessel failure, the Institute of Protection and Nuclear Safety has performed a coupling of the severe accident code ICARE2 to the thermalhydraulics code CATHARE2. The resulting code, ICARE/CATHARE, is designed to be as pertinent as possible in all the phases of the accident. This paper is mainly devoted to the description of the ICARE2-CATHARE2 coupling.

  13. Interface requirements to couple thermal-hydraulic codes to 3D neutronic codes

    SciTech Connect

    Langenbuch, S.; Austregesilo, H.; Velkov, K.

    1997-07-01

    The present situation of thermalhydraulics codes and 3D neutronics codes is briefly described and general considerations for coupling of these codes are discussed. Two different basic approaches of coupling are identified and their relative advantages and disadvantages are discussed. The implementation of the coupling for 3D neutronics codes in the system ATHLET is presented. Meanwhile, this interface is used for coupling three different 3D neutronics codes.

  14. Application of an analytical method for solution of thermal hydraulic conservation equations

    SciTech Connect

    Fakory, M.R.

    1995-09-01

    An analytical method has been developed and applied for solution of two-phase flow conservation equations. The test results for application of the model for simulation of BWR transients are presented and compared with the results obtained from application of the explicit method for integration of conservation equations. The test results show that with application of the analytical method for integration of conservation equations, the Courant limitation associated with explicit Euler method of integration was eliminated. The results obtained from application of the analytical method (with large time steps) agreed well with the results obtained from application of explicit method of integration (with time steps smaller than the size imposed by Courant limitation). The results demonstrate that application of the analytical approach significantly improves the numerical stability and computational efficiency.

  15. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    SciTech Connect

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo

    1995-09-01

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.

  16. Assembly and Thermal Hydraulic Test of a Stainless Steel Sodium-Potassium Circuit

    NASA Technical Reports Server (NTRS)

    Garber, A.; Godfroy, T.; Webster, K.

    2007-01-01

    Early Flight Fission Test Facilities (EFF-TF) team has been tasked by the NASA Marshall Space Flight Center Nuclear Systems Office to design, fabricate, and test an actively pumped alkali metal flow circuit. The system was originally built for use with lithium, but due to a shift in focus, it was redesigned for use with a eutectic mixture of sodium potassium (NaK). Basic circuit components include: reactor segment, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and a spill reservoir. A 37-pin partial-array core (pin and flow path dimensions are the same as those in a full design) was selected for fabrication and test. This paper summarizes the first fill and checkout testing of the Stainless Steel NaK-Cooled Circuit (SNaKC).

  17. Assembly and Thermal Hydraulic Test of a Stainless Steel Sodium-Potassium Circuit

    NASA Technical Reports Server (NTRS)

    Garber, A.; Godfroy, T.; Webster, K.

    2007-01-01

    Early Flight Fission Test Facilities (EFF-TF) team has been tasked by the NASA Marshall Space Flight Center Nuclear Systems Office to design, fabricate, and test an actively pumped alkali metal flow circuit. The system was originally built for use with lithium, but due to a shift in focus, it was redesigned for use with a eutectic mixture of sodium potassium (NaK). Basic circuit components include: reactor segment, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and a spill reservoir. A 37-pin partial-array core (pin and flow path dimensions are the same as those in a full design) was selected for fabrication and test. This paper summarizes the first fill and checkout testing of the Stainless Steel NaK-Cooled Circuit (SNaKC).

  18. Numerical and Experimental Model Studies on Thermal Hydraulic Behavior of FBR Internal Core Catcher Assembly

    SciTech Connect

    Sanjay Kumar Das; Anil Kumar Sharma; Jasmin Sudha, A.; Punitha, G.; Lydia, G.; Somayajulu, P.A.; Murthy, S.S.; Malarvizhi, B.; Gopalakrishnan, V.; Harvey, J.; Kasinathan, N.; Rajan, M.

    2006-07-01

    Core Catcher is provided as an in-vessel core debris retention device to collect, support, cool and maintain in sub-critical configuration, the generated core debris from fuel melting due to certain postulated Beyond Design Basis Events (BDBE) for Fast Breeder Reactor (FBR). This also acts as a barrier to prevent settling of debris on main vessel and keeps its maximum temperature within acceptable creep range. Heat transfer by natural convection in the core catcher assembly has been assessed numerically and through water experiments using geometrically similar configuration. Resistive heating elements are used in experiment as heat source to simulate debris decay heat on core catcher. Series of experiments were carried out for two configurations referred as geometry A and geometry B. The later configuration showed enhanced natural convective heat transfer from the lower plenum of the vessel. Temperatures were monitored at critical positions and compared with numerical evaluation. Numerically evaluated flow fields and isotherms are compared with experimental data for specific steady state temperatures on heat source plate. Numerical results are found to be in good agreement with that obtained from experiments. The combined efforts of numerical and experimental work conclude core catcher assembly with geometry B to be more suitable. (authors)

  19. Thermal-hydraulics of internally heated molten salts and application to the Molten Salt Fast Reactor

    NASA Astrophysics Data System (ADS)

    Fiorina, Carlo; Cammi, Antonio; Luzzi, Lelio; Mikityuk, Konstantin; Ninokata, Hisashi; Ricotti, Marco E.

    2014-04-01

    The Molten Salt Reactors (MSR) are an innovative kind of nuclear reactors and are presently considered in the framework of the Generation IV International Forum (GIF-IV) for their promising performances in terms of low resource utilization, waste minimization and enhanced safety. A unique feature of MSRs is that molten fluoride salts play the distinctive role of both fuel (heat source) and coolant. The presence of an internal heat generation perturbs the temperature field and consequences are to be expected on the heat transfer characteristics of the molten salts. In this paper, the problem of heat transfer for internally heated fluids in a straight circular channel is first faced on a theoretical ground. The effect of internal heat generation is demonstrated to be described by a corrective factor applied to traditional correlations for the Nusselt number. It is shown that the corrective factor can be fully characterized by making explicit the dependency on Reynolds and Prandtl numbers. On this basis, a preliminary correlation is proposed for the case of molten fluoride salts by interpolating the results provided by an analytic approach previously developed at the Politecnico di Milano. The experimental facility and the related measuring procedure for testing the proposed correlation are then presented. Finally, the developed correlation is used to carry out a parametric investigation on the effect of internal heat generation on the main out-of-core components of the Molten Salt Fast Reactor (MSFR), the reference circulating-fuel MSR design in the GIF-IV. The volumetric power determines higher temperatures at the channel wall, but the effect is significant only in case of large diameters and/or low velocities.

  20. A Combined Neutronic-Thermal Hydraulic Model of CERMET NTR Reactor

    SciTech Connect

    Jonathan A. Webb; Brian Gross; William T. Taitano

    2011-02-01

    Abstract. Two different CERMET fueled Nuclear Thermal Propulsion reactors were modeled to determine the optimum coolant channel surface area to volume ratio required to cool a 25,000 lbf rocket engine operating at a specific impulse of 940 seconds. Both reactor concepts were computationally fueled with hexagonal cross section fuel elements having a flat-to-flat distance of 3.51 cm and containing 60 vol.% UO2 enriched to 93wt.%U235 and 40 vol.% tungsten. Coolant channel configuration consisted of a 37 coolant channel fuel element and a 61 coolant channel model representing 0.3 and 0.6 surface area to volume ratios respectively. The energy deposition from decelerating fission products and scattered neutrons and photons was determined using the MCNP monte carlo code and then imported into the STAR-CCM+ computational fluid dynamics code. The 37 coolant channel case was shown to be insufficient in cooling the core to a peak temperature of 3000 K; however, the 61 coolant channel model shows promise for maintaining a peak core temperature of 3000 K, with no more refinements to the surface area to volume ratio. The core was modeled to have a power density of 9.34 GW/m3 with a thrust to weight ratio of 5.7.

  1. Measurements of thermal-hydraulic parameters in liquid-metal-cooled fast-breeder reactors

    SciTech Connect

    Sackett, J.I.

    1983-01-01

    This paper discusses instrumentation for liquid-metal-cooled fast breeder reactors (LMFBR's). Included is instrumentation to measure sodium flow, pressure, temperature, acoustic noise, sodium purity, and leakage. The paper identifies the overall instrumentation requirements for LMFBR's and those aspects of instrumentation which are unique or of special concern to LMFBR systems. It also gives an overview of the status of instrument design and performance.

  2. An approach to modeling coupled thermal-hydraulic-chemical processes in geothermal systems

    USGS Publications Warehouse

    Palguta, Jennifer; Williams, Colin F.; Ingebritsen, Steven E.; Hickman, Stephen H.; Sonnenthal, Eric

    2011-01-01

    Interactions between hydrothermal fluids and rock alter mineralogy, leading to the formation of secondary minerals and potentially significant physical and chemical property changes. Reactive transport simulations are essential for evaluating the coupled processes controlling the geochemical, thermal and hydrological evolution of geothermal systems. The objective of this preliminary investigation is to successfully replicate observations from a series of hydrothermal laboratory experiments [Morrow et al., 2001] using the code TOUGHREACT. The laboratory experiments carried out by Morrow et al. [2001] measure permeability reduction in fractured and intact Westerly granite due to high-temperature fluid flow through core samples. Initial permeability and temperature values used in our simulations reflect these experimental conditions and range from 6.13 × 10−20 to 1.5 × 10−17 m2 and 150 to 300 °C, respectively. The primary mineralogy of the model rock is plagioclase (40 vol.%), K-feldspar (20 vol.%), quartz (30 vol.%), and biotite (10 vol.%). The simulations are constrained by the requirement that permeability, relative mineral abundances, and fluid chemistry agree with experimental observations. In the models, the granite core samples are represented as one-dimensional reaction domains. We find that the mineral abundances, solute concentrations, and permeability evolutions predicted by the models are consistent with those observed in the experiments carried out by Morrow et al. [2001] only if the mineral reactive surface areas decrease with increasing clay mineral abundance. This modeling approach suggests the importance of explicitly incorporating changing mineral surface areas into reactive transport models.

  3. Comparison of Several Thermal Conductivity Constants for Thermal Hydraulic Calculation of Pebble Bed Reactor

    NASA Astrophysics Data System (ADS)

    Irwanto, Dwi; Setiadipura, Topan; Pramutadi, Asril

    2017-07-01

    There are two type of High Temperature Gas Reactor (HTGR), prismatic and pebble bed. Pebble Bed type has unique configuration because the fuels are randomly distributed inside the reactor core. In term of safety features, Pebble Bed Reactor (PBR) is one of the most promising reactor type in avoiding severe nuclear accidents. In order to analyze heat transfer and safety of this reactor type, a computer code is now under development. As a first step, calculation method proposed by Stroh [1] is adopted. An approach has been made to treat randomly distributed pebble balls contains fissile material inside the reactor core as a porous medium. Helium gas act as coolant on the reactor system are carrying heat flowing in the area between the pebble balls. Several parameters and constants are taken into account in the new developed code. Progress of the development of the code especially comparison of several thermal conductivity constants for a certain PBR-case are reported in the present study.

  4. Coupled Neutronics Thermal-Hydraulic Solution of a Full-Core PWR Using VERA-CS

    SciTech Connect

    Clarno, Kevin T; Palmtag, Scott; Davidson, Gregory G; Salko, Robert K; Evans, Thomas M; Turner, John A; Belcourt, Kenneth; Hooper, Russell; Schmidt, Rodney

    2014-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a core simulator called VERA-CS to model operating PWR reactors with high resolution. This paper describes how the development of VERA-CS is being driven by a set of progression benchmark problems that specify the delivery of useful capability in discrete steps. As part of this development, this paper will describe the current capability of VERA-CS to perform a multiphysics simulation of an operating PWR at Hot Full Power (HFP) conditions using a set of existing computer codes coupled together in a novel method. Results for several single-assembly cases are shown that demonstrate coupling for different boron concentrations and power levels. Finally, high-resolution results are shown for a full-core PWR reactor modeled in quarter-symmetry.

  5. Experimental Development and Demonstration of Ultrasonic Measurement Diagnostics for Sodium Fast Reactor Thermal-hydraulics

    SciTech Connect

    Tokuhiro, Akira; Jones, Byron

    2013-09-13

    This research project will address some of the principal technology issues related to sodium-cooled fast reactors (SFR), primarily the development and demonstration of ultrasonic measurement diagnostics linked to effective thermal convective sensing under normatl and off-normal conditions. Sodium is well-suited as a heat transfer medium for the SFR. However, because it is chemically reactive and optically opaque, it presents engineering accessibility constraints relative to operations and maintenance (O&M) and in-service inspection (ISI) technologies that are currently used for light water reactors. Thus, there are limited sensing options for conducting thermohydraulic measurements under normal conditions and off-normal events (maintenance, unanticipated events). Acoustic methods, primarily ultrasonics, are a key measurement technology with applications in non-destructive testing, component imaging, thermometry, and velocimetry. THis project would have yielded a better quantitative and qualitative understanding of the thermohydraulic condition of solium under varied flow conditions. THe scope of work will evaluate and demonstrate ultrasonic technologies and define instrumentation options for the SFR.

  6. Steady state thermal-hydraulic analyses of the MITICA cooling circuits.

    PubMed

    Zaupa, M; Sartori, E; Dalla Palma, M; Fellin, F; Marcuzzi, D; Pavei, M; Rizzolo, A

    2016-02-01

    Megavolt ITER Injector Concept Advancement is the full scale prototype of the heating and current drive neutral beam injectors for ITER, to be built at Consorzio RFX (Padova). The engineering design of its components is challenging: the total heat loads they will be subjected to (expected between 2 and 19 MW), the high heat fluxes (up to 20 MW/m(2)), and the beam pulse duration up to 1 h, set demanding requirements for reliable active cooling circuits. In support of the design, the thermo-hydraulic behavior of each cooling circuit under steady state condition has been investigated by using one-dimensional models. The final results, obtained considering a number of optimizations for the cooling circuits, show that all the requirements in terms of flow rate, temperature, and pressure drop are properly fulfilled.

  7. Steady state thermal-hydraulic analyses of the MITICA cooling circuits

    NASA Astrophysics Data System (ADS)

    Zaupa, M.; Sartori, E.; Dalla Palma, M.; Fellin, F.; Marcuzzi, D.; Pavei, M.; Rizzolo, A.

    2016-02-01

    Megavolt ITER Injector Concept Advancement is the full scale prototype of the heating and current drive neutral beam injectors for ITER, to be built at Consorzio RFX (Padova). The engineering design of its components is challenging: the total heat loads they will be subjected to (expected between 2 and 19 MW), the high heat fluxes (up to 20 MW/m2), and the beam pulse duration up to 1 h, set demanding requirements for reliable active cooling circuits. In support of the design, the thermo-hydraulic behavior of each cooling circuit under steady state condition has been investigated by using one-dimensional models. The final results, obtained considering a number of optimizations for the cooling circuits, show that all the requirements in terms of flow rate, temperature, and pressure drop are properly fulfilled.

  8. Stability analysis of BWR nuclear-coupled thermal-hyraulics using a simple model

    SciTech Connect

    Karve, A.A.; Rizwan-uddin; Dorning, J.J.

    1995-09-01

    A simple mathematical model is developed to describe the dynamics of the nuclear-coupled thermal-hydraulics in a boiling water reactor (BWR) core. The model, which incorporates the essential features of neutron kinetics, and single-phase and two-phase thermal-hydraulics, leads to simple dynamical system comprised of a set of nonlinear ordinary differential equations (ODEs). The stability boundary is determined and plotted in the inlet-subcooling-number (enthalpy)/external-reactivity operating parameter plane. The eigenvalues of the Jacobian matrix of the dynamical system also are calculated at various steady-states (fixed points); the results are consistent with those of the direct stability analysis and indicate that a Hopf bifurcation occurs as the stability boundary in the operating parameter plane is crossed. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter plane to obtain the actual damped and growing oscillations in the neutron number density, the channel inlet flow velocity, and the other phase variables. These indicate that the Hopf bifurcation is subcritical, hence, density wave oscillations with growing amplitude could result from a finite perturbation of the system even where the steady-state is stable. The power-flow map, frequently used by reactor operators during start-up and shut-down operation of a BWR, is mapped to the inlet-subcooling-number/neutron-density (operating-parameter/phase-variable) plane, and then related to the stability boundaries for different fixed inlet velocities corresponding to selected points on the flow-control line. The stability boundaries for different fixed inlet subcooling numbers corresponding to those selected points, are plotted in the neutron-density/inlet-velocity phase variable plane and then the points on the flow-control line are related to their respective stability boundaries in this plane.

  9. Leak-Path Factor Analysis for the Nuclear Materials Storage Facility

    SciTech Connect

    Shaffer, C.; Leonard, M.

    1999-06-13

    Leak-path factors (LPFs) were calculated for the Nuclear Materials Storage Facility (NMSF) located in the Plutonium Facility, Building 41 at the Los Alamos National Laboratory Technical Area 55. In the unlikely event of an accidental fire powerful enough to fail a container holding actinides, the subsequent release of oxides, modeled as PuO{sub 2} aerosols, from the facility and into the surrounding environment was predicted. A 1-h nondestructive assay (NDA) laboratory fire accident was simulated with the MELCOR severe accident analysis code. Fire-driven air movement along with wind-driven air infiltration transported a portion of these actinides from the building. This fraction is referred to as the leak-path factor. The potential effect of smoke aerosol on the transport of the actinides was investigated to verify the validity of neglecting the smoke as conservative. The input model for the NMSF consisted of a system of control volumes, flow pathways, and surfaces sufficient to model the thermal-hydraulic conditions within the facility and the aerosol transport data necessary to simulate the transport of PuO{sub 2} particles. The thermal-hydraulic, heat-transfer, and aerosol-transport models are solved simultaneously with data being exchanged between models. A MELCOR input model was designed such that it would reproduce the salient features of the fire per the corresponding CFAST calculation. Air infiltration into and out of the facility would be affected strongly by wind-driven differential pressures across the building. Therefore, differential pressures were applied to each side of the building according to guidance found in the ASHRAE handbook using a standard-velocity head equation with a leading multiplier to account for the orientation of the wind with the building. The model for the transport of aerosols considered all applicable transport processes, but the deposition within the building clearly was dominated by gravitational settling.

  10. Expert system interaction with existing analysis codes

    SciTech Connect

    Ransom, V.H.; Fink, R.K.; Bertch, W.J.; Callow, R.A.

    1986-01-01

    Coupling expert systems with existing engineering analysis codes is a promising area in the field of artificial intelligence. The added intelligence can provide for easier and less costly use of the code and also reduce the potential for code misuse. This paper will discuss the methods available to allow interaction between an expert system and a large analysis code running on a mainframe. Concluding remarks will identify potential areas of expert system application with specific areas that are being considered in a current research program. The difficulty of interaction between an analysis code and an expert system is due to the incompatibility between the FORTRAN environment used for the analysis code and the AI environment used for the expert system. Three methods, excluding file transfer techniques, are discussed to help overcome this incompatibility. The first method is linking the FORTRAN routines to the LISP environment on the same computer. Various LISP dialects available on mainframes and their interlanguage communication capabilities are discussed. The second method involves network interaction between a LISP machine and a mainframe computer. Comparisons between the linking method and networking are noted. The third method involves the use of an expert system tool that is campatible with a FORTRAN environment. Several available tools are discussed. With the interaction methods identified, several potential application areas are considered. Selection of the specific areas that will be developed for the pilot project and applied to a thermal-hydraulic energy analysis code are noted.

  11. DIANA: A multi-phase, multi-component hydrodynamic model for the analysis of severe accidents in heavy water reactors with multiple-tube assemblies

    SciTech Connect

    Tentner, A.M.

    1994-03-01

    A detailed hydrodynamic fuel relocation model has been developed for the analysis of severe accidents in Heavy Water Reactors with multiple-tube Assemblies. This model describes the Fuel Disruption and Relocation inside a nuclear fuel assembly and is designated by the acronym DIANA. DIANA solves the transient hydrodynamic equations for all the moving materials in the core and treats all the relevant flow regimes. The numerical solution techniques and some of the physical models included in DIANA have been developed taking advantage of the extensive experience accumulated in the development and validation of the LEVITATE (1) fuel relocation model of SAS4A [2, 3]. The model is designed to handle the fuel and cladding relocation in both voided and partially voided channels. It is able to treat a wide range of thermal/ hydraulic/neutronic conditions and the presence of various flow regimes at different axial locations within the same hydrodynamic channel.

  12. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  13. Advanced LMR safety analysis capabilities in the SASSYS-1 and SAS4A computer codes

    SciTech Connect

    Cahalan, J.E.; Tentner, A.M.; Morris, E.E.

    1994-03-01

    This paper provides an overview of recent modeling developments in the SAS4A and SASSYS-1 computer codes. The paper focuses on both phenomenological model descriptions for new thermal, hydraulic, and mechanical modules, and on new applications.

  14. SOMBRERO LOVA Analysis Using CFC NB31 Oxidation Data

    SciTech Connect

    Marshall, Theron; Pawelko, Robert; Anderl, Robert A.; Smolik, Galen R.; Moore, Richard L.; Merrill, Brad

    2004-06-15

    Carbon fiber composites (CFCs) are often suggested as armor material for the first wall of a fusion plasma chamber because of carbon's low atomic number, high thermal conductivity, and high melting point. However, carbon is chemically reactive in air and readily absorbs tritium. Accordingly, it is believed that during a loss-of-vacuum accident (LOVA), the CFC armor will react with the air ingress and release its absorbed tritium. The mobilization of this tritium and the carbon monoxide produced by the CFC-air chemical reaction are both safety concerns. This paper discusses the MELCOR thermal-hydraulic analysis of a simulated LOVA for the SOMBRERO fusion design. The MELCOR analysis is important because it included data from recent oxidation experiments that studied the advanced CFC NB31. A previous MELCOR analysis of a simulated SOMBRERO LOVA event suggested that the ingress of air would aggressively oxidize the CFC. While the current analysis revealed initial first-wall temperatures that exceed those of the prior analyses, the trend reversed 10 h after the onset of the LOVA. The calculated wall temperatures at the back of the blanket for the current analysis were consistently lower than those previously calculated using the older data. Accordingly, the conclusion is that a LOVA event for a fusion design similar to SOMBRERO may not be as grave as once predicted.

  15. Improved Flow Modeling in Transient Reactor Safety Analysis Computer Codes

    SciTech Connect

    Holowach, M.J.; Hochreiter, L.E.; Cheung, F.B.

    2002-07-01

    A method of accounting for fluid-to-fluid shear in between calculational cells over a wide range of flow conditions envisioned in reactor safety studies has been developed such that it may be easily implemented into a computer code such as COBRA-TF for more detailed subchannel analysis. At a given nodal height in the calculational model, equivalent hydraulic diameters are determined for each specific calculational cell using either laminar or turbulent velocity profiles. The velocity profile may be determined from a separate CFD (Computational Fluid Dynamics) analysis, experimental data, or existing semi-empirical relationships. The equivalent hydraulic diameter is then applied to the wall drag force calculation so as to determine the appropriate equivalent fluid-to-fluid shear caused by the wall for each cell based on the input velocity profile. This means of assigning the shear to a specific cell is independent of the actual wetted perimeter and flow area for the calculational cell. The use of this equivalent hydraulic diameter for each cell within a calculational subchannel results in a representative velocity profile which can further increase the accuracy and detail of heat transfer and fluid flow modeling within the subchannel when utilizing a thermal hydraulics systems analysis computer code such as COBRA-TF. Utilizing COBRA-TF with the flow modeling enhancement results in increased accuracy for a coarse-mesh model without the significantly greater computational and time requirements of a full-scale 3D (three-dimensional) transient CFD calculation. (authors)

  16. Improved methodology for integral analysis of advanced reactors employing passive safety

    NASA Astrophysics Data System (ADS)

    Muftuoglu, A. Kursad

    After four decades of experience with pressurized water reactors, a new generation of nuclear plants are emerging. These advanced designs employ passive safety which relies on natural forces, such as gravity and natural circulation. The new concept of passive safety also necessitates improvement in computational tools available for best-estimate analyses. The system codes originally designed for high pressure conditions in the presence of strong momentum sources such as pumps are challenged in many ways. Increased interaction of the primary system with the containment necessitates a tool for integral analysis. This study addresses some of these concerns. An improved tool for integral analysis coupling primary system with containment calculation is also presented. The code package is based on RELAP5 and CONTAIN programs, best-estimate thermal-hydraulics code for primary system analysis and containment code for containment analysis, respectively. The suitability is demonstrated with a postulated small break loss of coolant accident analysis of Westinghouse AP600 plant. The thesis explains the details of the analysis including the coupling model.

  17. Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS

    SciTech Connect

    Brown, C. S.; Zhang, Hongbin

    2016-05-24

    Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surface temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.

  18. Analysis of LOCA Scenarios in the NIST Research Reactor Before and After Fuel Conversion

    SciTech Connect

    Baek, J. S.; Cheng, L. Y.; Diamond, D.

    2015-08-30

    An analysis has been done of hypothetical loss-of-coolant-accidents (LOCAs) in the research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The purpose of the analysis is to determine if the peak clad temperature remains below the Safety Limit, which is the blister temperature for the fuel. The configuration of the NBSR considered in the analysis is that projected for the future when changes will be made so that shutdown pumps do not operate when a LOCA signal is detected. The analysis was done for the present core with high-enriched uranium (HEU) fuel and with the proposed low-enriched uranium (LEU) fuel that would be used when the NBSR is converted from one to the other. The analysis consists of two parts. The first examines how the water would drain from the primary system following a break and the possibility for the loss of coolant from within the fuel element flow channels. This work is performed using the TRACE system thermal-hydraulic code. The second looks at the fuel clad temperature as a function of time given that the water may have drained from many of the flow channels and the water in the vessel is in a quasi-equilibrium state. The temperature behavior is investigated using the three-dimensional heat conduction code HEATING7.3. The results in all scenarios considered for both HEU and LEU fuel show that the peak clad temperature remains below the blister temperature.

  19. Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS

    DOE PAGES

    Brown, C. S.; Zhang, Hongbin

    2016-05-24

    Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less

  20. Nuclear design analysis of square-lattice honeycomb space nuclear rocket engine

    NASA Astrophysics Data System (ADS)

    Widargo, Reza; Anghaie, Samim

    1999-01-01

    The square-lattice honeycomb reactor is designed based on a cylindrical core that is determined to have critical diameter and length of 0.50 m and 0.50 c, respectively. A 0.10-cm thick radial graphite reflector, in addition to a 0.20-m thick axial graphite reflector are used to reduce neutron leakage from the reactor. The core is fueled with solid solution of 93% enriched (U, Zr, Nb)C, which is one of several ternary uranium carbides that are considered for this concept. The fuel is to be fabricated as 2 mm grooved (U, Zr, Nb)C wafers. The fuel wafers are used to form square-lattice honeycomb fuel assemblies, 0.10 m in length with 30% cross-sectional flow area. Five fuel assemblies are stacked up axially to form the reactor core. Based on the 30% void fraction, the width of the square flow channel is about 1.3 mm. The hydrogen propellant is passed through these flow channels and removes the heat from the reactor core. To perform nuclear design analysis, a series of neutron transport and diffusion codes are used. The preliminary results are obtained using a simple four-group cross-section model. To optimize the nuclear design, the fuel densities are varied for each assembly. Tantalum, hafnium and tungsten are considered and used as a replacement for niobium in fuel material to provide water submersion sub-criticality for the reactor. Axial and radial neutron flux and power density distributions are calculated for the core. Results of the neutronic analysis indicate that the core has a relatively fast spectrum. From the results of the thermal hydraulic analyses, eight axial temperature zones are chosen for the calculation of group average cross-sections. An iterative process is conducted to couple the neutronic calculations with the thermal hydraulics calculations. Results of the nuclear design analysis indicate that a compact core can be designed based on ternary uranium carbide square-lattice honeycomb fuel. This design provides a relatively high thrust to weight

  1. Development of high-fidelity multiphysics system for light water reactor analysis

    NASA Astrophysics Data System (ADS)

    Magedanz, Jeffrey W.

    There has been a tendency in recent years toward greater heterogeneity in reactor cores, due to the use of mixed-oxide (MOX) fuel, burnable absorbers, and longer cycles with consequently higher fuel burnup. The resulting asymmetry of the neutron flux and energy spectrum between regions with different compositions causes a need to account for the directional dependence of the neutron flux, instead of the traditional diffusion approximation. Furthermore, the presence of both MOX and high-burnup fuel in the core increases the complexity of the heat conduction. The heat transfer properties of the fuel pellet change with irradiation, and the thermal and mechanical expansion of the pellet and cladding strongly affect the size of the gap between them, and its consequent thermal resistance. These operational tendencies require higher fidelity multi-physics modeling capabilities, and this need is addressed by the developments performed within this PhD research. The dissertation describes the development of a High-Fidelity Multi-Physics System for Light Water Reactor Analysis. It consists of three coupled codes -- CTF for Thermal Hydraulics, TORT-TD for Neutron Kinetics, and FRAPTRAN for Fuel Performance. It is meant to address these modeling challenges in three ways: (1) by resolving the state of the system at the level of each fuel pin, rather than homogenizing entire fuel assemblies, (2) by using the multi-group Discrete Ordinates method to account for the directional dependence of the neutron flux, and (3) by using a fuel-performance code, rather than a Thermal Hydraulics code's simplified fuel model, to account for the material behavior of the fuel and its feedback to the hydraulic and neutronic behavior of the system. While the first two are improvements, the third, the use of a fuel-performance code for feedback, constitutes an innovation in this PhD project. Also important to this work is the manner in which such coupling is written. While coupling involves combining

  2. Analysis of NSTX Upgrade OH Magnet and Center Stack

    SciTech Connect

    A. Zolfaghari, P. Titus, J. Chrzanowski, A. Salehzadeh, F. Dahlgren

    2010-11-30

    The new ohmic heating (OH) coil and center stack for the National Spherical Torus Experiment (NSTX) upgrade are required to meet cooling and structural requirements for operation at the enhanced 1 Tesla toroidal field and 2 MA plasma current. The OH coil is designed to be cooled in the time between discharges by water flowing in the center of the coil conductor. We performed resistive heating and thermal hydraulic analyses to optimize coolant channel size to keep the coil temperature below 100 C and meet the required 20 minute cooling time. Coupled electromagnetic, thermal and structural FEA analyses were performed to determine if the OH coil meets the requirements of the structural design criteria. Structural response of the OH coil to its self-field and the field from other coils was analyzed. A model was developed to analyze the thermal and electromagnetic interaction of centerstack components such as the OH coil, TF inner legs and the Bellville washer preload mechanism. Torsional loads from the TF interaction with the OH and poloidal fields are transferred through the TF flag extensions via a torque transfer coupling to the rest of the tokamak structure. A 3D FEA analysis was performed to qualify this design. The results of these analyses, which will be presented in this paper, have led to the design of OH coil and centerstack components that meet the requirements of the NSTX-upgrade structural design criteria.

  3. Virginia Power's generic main steam-line-break DNBR (departure from nucleate boiling ratio) analysis

    SciTech Connect

    Anderson, R.C.; Harrell, J.R.; Erb, J.O.

    1990-06-01

    Virginia Power operates four nuclear reactors, two units each at the Surry and North Anna Power stations. The original operating licenses were based on acceptable analysis results of the accidents in the final safety analysis report (FSAR). The assumptions of these analyses must be verified on a reload basis. Included in these FSAR accidents is the main steam-line-break (MSLB) event. The plant FSARs describe the MSLB analyses, which is summarized as follows. The plant is assumed to be at hot zero power at end of life, when the moderator temperature coefficient (MTC) is most negative. The MSLB rapidly cools the secondary side, followed by a primary cooldown in one loop. The surge of cold water into the core, coupled with the negative MTC, results in high local power factors, which in turn can result in a violation of the departure from nucleate boiling ratio (DNBR) limit. The three-dimensional power distribution is calculated at several key state points. These distributions are then subjected to core thermal-hydraulic analysis by the COBRA code. The W-3 correlation is used to calculate the state-point DNBRs. Both the physics and the DNBR calculations have been repeated on a reload basis. As a result, Virginia Power has accumulated a reasonably large data base of MSLB DNBRs for both Surry and North Anna. Virginia Power now uses the power peaking factors criterion to verify that the MSLB analysis remains bounding on a reload basis.

  4. An Integrated Analysis of a NERVA Based Nuclear Thermal Propulsion System

    SciTech Connect

    Ludewig, Hans; Cheng, L.-Y.; Ecker, Lynne; Todosow, Michael

    2006-01-20

    This paper presents results and conclusions derived from an integrated analysis of a NERVA based Nuclear Thermal Propulsion (NTP) system. The NTP system is sized to generate a thrust of 70,000 N (15,000 lbf), and have a specific impulse (Isp) of 860 s. This implies a reactor that operates at 350 MWth and has a mixed mean propellant outlet temperature of 2760 K. The integrated analysis will require that self-consistent neutronic/thermal-hydraulic/stress analyses be carried out. The major code packages used in this analysis are MCNP, RELAP, and ANSYS. Results from this analysis indicate that nuclear data will have to be re-generated to cover the wide temperature range, zone loading will be necessary to avoid entering the liquidus region for the fuel, and the effectiveness of the ZrC insulator will have implications for bi-modal applications. These results suggest a path forward in the development of a viable NTP system based on a NERVA reactor should initially concentrate on fuel and structural materials and associated coating development. A series of safety related criticality determinations were carried out addressing water immersion following a launch incident.

  5. Ex-Core CFD Analysis Results for the Prometheus Gas Reactor

    SciTech Connect

    Lorentz, Donald G.

    2007-01-30

    This paper presents the initial nozzle-to-nozzle (N2N) reactor vessel model scoping studies using computational fluid dynamics (CFD) analysis methods. The N2N model has been solved under a variety of different boundary conditions. This paper presents some of the basic hydraulic results from the N2N CFD analysis effort. It also demonstrates how designers were going to apply the analysis results to modify a number of the design features. The initial goals for developing a preliminary CFD N2N model were to establish baseline expectations for pressure drops and flow fields around the reactor core. Analysis results indicated that the averaged reactor vessel pressure drop for all analyzed cases was 46.9 kPa ({approx}6.8 psid). In addition, mass flow distributions to the three core fuel channel regions exhibited a nearly inverted profile to those specified for the in-core thermal/hydraulic design. During subsequent design iterations, the goal would have been to modify or add design features that would have minimized reactor vessel pressure drop and improved flow distribution to the inlet of the core.

  6. Updated pipe break analysis for Advanced Neutron Source Reactor conceptual design

    SciTech Connect

    Wendel, M.W.; Chen, N.C.J.; Yoder, G.L.

    1994-04-01

    The Advanced Neutron Source Reactor (ANSR) is a research reactor to be built at the Oak Ridge National Laboratory that will supply the highest continuous neutron flux levels of any reactor in the world. It uses plate-type fuel with high-mass-flux and highly subcooled heavy water as the primary coolant. The Conceptual Safety Analysis for the ANSR was completed in June 1992. The thermal-hydraulic pipe-break safety analysis (performed with a specialized version of RELAP5/MOD3) focused primarily on double-ended guillotine breaks of the primary piping and some core-damage mitigation options for such an event. Smaller, instantaneous pipe breaks in the cold- and hot-leg piping were also analyzed to a limited extent. Since the initial analysis for the conceptual design was completed, several important changes to the RELAP5 input model have been made reflecting improvements in the fuel grading and changes in the elevation of the primary coolant pumps. Also, a new philosophy for pipe-break safety analysis (similar to that adopted for the New Production Reactor) accentuates instantaneous, limited flow area pipe-break accidents in addition to finite-opening-time, double-ended guillotine breaks of the major coolant piping. This paper discloses the results of the most recent instantaneous pipe-break calculations.

  7. Analysis of the KROTOS KFC test by coupling X-Ray image analysis and MC3D calculations

    SciTech Connect

    Brayer, C.; Charton, A.; Grishchenko, D.; Fouquart, P.; Bullado, Y.; Compagnon, F.; Correggio, P.; Cassiaut-Louis, N.; Piluso, P.

    2012-07-01

    During a hypothetical severe accident sequence in a Pressurized Water Reactor (PWR), the hot molten materials (corium) issuing from the degraded reactor core may generate a steam explosion if they come in contact with water and may damage the structures and threaten the reactor integrity. The SERENA program is an international OECD project that aims at helping the understanding of this phenomenon also called Fuel Coolant Interaction (FCI) by providing data. CEA takes part in this program by performing tests in its KROTOS facility where steam explosions using prototypic corium can be triggered. Data about the different phases in the premixing are extracted from the KROTOS X-Ray radioscopy images by using KIWI software (KROTOS Image analysis of Water-corium Interaction) currently developed by CEA. The MC3D code, developed by IRSN, is a thermal-hydraulic multiphase code mainly dedicated to FCI studies. It is composed of two applications: premixing and explosion. An overall FCI calculation with MC3D requires a premixing calculation followed by an explosion calculation. The present paper proposes an alternative approach in which all the features of the premixing are extracted from the X-Ray pictures using the KIWI software and transferred to an MC3D dataset for a direct simulation of the explosion. The main hypothesis are discussed as well as the first explosion results obtained with MC3D for the KROTOS KFC test. These results are rather encouraging and are analyzed on the basis of comparisons with the experimental data. (authors)

  8. TRACE/PARCS Core Modeling of a BWR/5 for Accident Analysis of ATWS Events

    SciTech Connect

    Cuadra A.; Baek J.; Cheng, L.; Aronson, A.; Diamond, D.; Yarsky, P.

    2013-11-10

    The TRACE/PARCS computational package [1, 2] isdesigned to be applicable to the analysis of light water reactor operational transients and accidents where the coupling between the neutron kinetics (PARCS) and the thermal-hydraulics and thermal-mechanics (TRACE) is important. TRACE/PARCS has been assessed for itsapplicability to anticipated transients without scram(ATWS) [3]. The challenge, addressed in this study, is to develop a sufficiently rigorous input model that would be acceptable for use in ATWS analysis. Two types of ATWS events were of interest, a turbine trip and a closure of main steam isolation valves (MSIVs). In the first type, initiated by turbine trip, the concern is that the core will become unstable and large power oscillations will occur. In the second type,initiated by MSIV closure,, the concern is the amount of energy being placed into containment and the resulting emergency depressurization. Two separate TRACE/PARCS models of a BWR/5 were developed to analyze these ATWS events at MELLLA+ (maximum extended load line limit plus)operating conditions. One model [4] was used for analysis of ATWS events leading to instability (ATWS-I);the other [5] for ATWS events leading to emergency depressurization (ATWS-ED). Both models included a large portion of the nuclear steam supply system and controls, and a detailed core model, presented henceforth.

  9. Analysis of fission product revaporization in a BWR Reactor Coolant System during a station blackout accident

    SciTech Connect

    Yang, J.W.; Schmidt, E.; Cazzoli, E.; Khatib-Rahbar, M.

    1988-01-01

    This paper presents an analysis of fission product revaporization from the Reactor Coolant System (RCS) following the Reactor Pressure Vessel (RPV) failure. The station blackout accident in a BWR Mark I Power Plant was considered. The TRAPMELT3 models for vaporization, chemisorption, and the decay heating of RCS structures and gases were used and extended beyond the RPV failure in the analysis. The RCS flow models based on the density-difference or pressure-difference between the RCS and containment pedestal region were developed to estimate the RCS outflow which carries the revaporized fission product to the containment. A computer code called REVAP was developed for the analysis. The REVAP code was incorporated with the MARCH, TRAPMELT3 and NAUA codes from the Source Term Code Package (STCP) to estimate the impact of revaporization on environmental release. The results show that the thermal-hydraulic conditions between the RCS and the pedestal region are important factors in determining the magnitude of revaporization and subsequent release of the volatile fission product into the environment. 6 refs., 8 figs.

  10. Lead-Cooled Fast Reactor (LFR) Design: Safety, Neutronics, Thermal Hydraulics, Structural Mechanics, Fuel, Core, and Plant Design

    SciTech Connect

    Smith, C

    2010-02-22

    The idea of developing fast spectrum reactors with molten lead (or lead alloy) as a coolant is not a new one. Although initially considered in the West in the 1950s, such technology was not pursued to completion because of anticipated difficulties associated with the corrosive nature of these coolant materials. However, in the Soviet Union, such technology was actively pursued during the same time frame (1950s through the 1980s) for the specialized role of submarine propulsion. More recently, there has been a renewal of interest in the West for such technology, both for critical systems as well as for Accelerator Driven Subcritical (ADS) systems. Meanwhile, interest in the former Soviet Union, primarily Russia, has remained strong and has expanded well beyond the original limited mission of submarine propulsion. This section reviews the past and current status of LFR development.

  11. RELAP5 Simulation of Thermal-Hydraulic Behavior in a CANDU Reactor - Assessments of RD-14 Experiments

    SciTech Connect

    Lee, Sukho; Kim, In-Goo

    2000-04-15

    The critical reactor header break and the thermosiphoning experiments in the RD-14 test facility were simulated with the RELAP5/MOD3.1 code. The RELAP5 code has been developed for best-estimate transient simulation of pressurized water reactors and associated systems, but it has not been assessed for a Canada deuterium uranium (CANDU) reactor. Therefore, this study has been initiated with an aim to identify the code applicability in a CANDU reactor by simulating some of the tests performed in the RD-14 facility. The RD-14 test facility at Whiteshell Nuclear Research Establishment is a full-scale pressurized-water loop. The RD-14 is not a scale model of any particular CANDU reactor. Rather, it possesses many geometric features of a CANDU reactor heat transport system and is capable of operating at conditions similar to those expected to occur in a reactor under normal operation and some postulated accident conditions. In this study, two critical reactor header break tests (B8711 and B8713) and three thermosiphoning tests (T8513, T8515, and T8517) were analyzed with the RELAP5 code. The results were compared with experimental data and those of CATHENA performed by Atomic Energy of Canada Ltd. The RELAP5 analyses demonstrate the code's capability to predict reasonably the main phenomena occurring in the transient, in both the qualitative and the quantitative view. However, some discrepancies after the emergency coolant injection for the critical break case and also related to the behaviors of the mass flow rate and the primary pressure for the thermosiphoning case were observed.

  12. Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-6 test data report : thermal hydraulic results, Rev. 0.

    SciTech Connect

    Lomperski, S.; Farmer, M. T.; Kilsdonk, D.; Aeschlimann, B.

    2011-06-28

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure? (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx} {phi} 30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength is being addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus measures the fracture strength of the crust while it is either at room temperature or above, the latter state being achieved with a heating element placed below the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the sixth water ingression test, designated SSWICS-6. This test investigated the quenching behavior of a fully oxidized PWR corium melt containing 15 wt% siliceous concrete at a system pressure of 1 bar absolute. The report includes a description of the test apparatus, the instrumentation used, plots of the recorded data, and some rudimentary data reduction to obtain an estimate of the heat flux from the corium to the overlying water pool.

  13. Experimental Results for Direct Electron Irradiation of a Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    SciTech Connect

    Chemerisov, Sergey; Gromov, R.; Makarashvili, Vakhtang; Heltemes, Thad; Sun, Zaijing; Wardle, Kent E.; Bailey, James; Stepinski, Dominique; Jerden, James; Vandegrift, George F.

    2015-01-30

    In support of the development of accelerator-driven production of fission product Mo-99 as proposed by SHINE Medical Technologies, a 35 MeV electron linac was used to irradiate depleted-uranium (DU) uranyl sulfate dissolved in pH 1 sulfuric acid at average power densities of 6 kW, 12 kW, and 15 kW. During these irradiations, gas bubbles were generated in the solution due to the radiolytic decomposition of water molecules in the solution. Multiple video cameras were used to record the behavior of bubble generation and transport in the solution. Seven six-channel thermocouples were used to record temperature gradients in the solution from self-heating. Measurements of hydrogen and oxygen concentrations in a helium sweep gas were recorded by a gas chromatograph to estimate production rates during irradiation. These data are being used to validate a computational fluid dynamics (CFD) model of the experiment that includes multiphase flow and a custom bubble injection model for the solution region.

  14. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    SciTech Connect

    Licht, J. R.; Bergeron, A.; Dionne, B.; Van den Branden, G.; Kalcheva, S; Sikik, E; Koonen, E

    2016-09-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water. The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident. A feasibility study for the conversion of the BR2 reactor from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel was previously performed to verify it can operate safely at the same maximum nominal steady-state heat flux. An assessment was also performed to quantify the heat fluxes at which the onset of flow instability and critical heat flux occur for each fuel type. This document updates and expands these results for the current representative core configuration (assuming a fresh beryllium matrix) by evaluating the onset of nucleate boiling (ONB), onset of fully developed nucleate boiling (FDNB), onset of flow instability (OFI) and critical heat flux (CHF).

  15. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed

  16. Development of Data Acquisition System for nuclear thermal hydraulic out-of-pile facility using the graphical programming methods

    SciTech Connect

    Bouaichaoui, Youcef; Berrahal, Abderezak; Halbaoui, Khaled

    2015-07-01

    This paper describes the design of data acquisition system (DAQ) that is connected to a PC and development of a feedback control system that maintains the coolant temperature of the process at a desired set point using a digital controller system based on the graphical programming language. The paper will provide details about the data acquisition unit, shows the implementation of the controller, and present test results. (authors)

  17. Prediction of thermal hydraulic characteristics inside the storage tank of a horizontal condensation heat exchanger using MARS-KS

    NASA Astrophysics Data System (ADS)

    Shin, Byung Soo; Seul, Kwang Won; Do, Kyu Sik; Reactor system evaluation Team

    2012-11-01

    The performance of a horizontal condensation heat exchanger is determined by the condensation heat transfer inside the heat exchanger tubes, convective or boiling heat transfer outside the tubes and flow characteristics in the storage tank. The flow characteristics in the tank are important factors to determine the heat transfer rate outside the tubes. The objective of this work is to develop the method to predict the heat transfer rate outside the tubes properly using MARS-KS code. Two different results from MARS-KS were compared with simplified experimental results in other works to estimate the capacity of MARS-KS. One was by a typical 1D nodalization but another was by a 3D nodalization considering natural circulation in the storage tank. Then, to eliminate the effect of condensation heat transfer inside the tubes, the experimental results on temperature profiles were applied to the inside wall of tubes as boundary conditions. As the result, the 3-D nodalization model had good predictions with experimental results in regard of wall temperature, heat flux and heat transfer coefficients. It was also confirmed that the natural circulation flow was developed inside the storage tank.

  18. Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating

    SciTech Connect

    Sridharan, Kumar; Anderson, Mark; Allen, Todd; Corradini, Michael

    2012-01-30

    The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation on Cr-carbide on the graphite surface. Ni-electroplating dramatically reduced corrosion of alloys, although some diffusion of Fe and Cr were observed occur through the Ni plating. A pyrolytic carbon and SiC (PyC/SiC) CVD coating was also investigated and found to be effective in mitigating corrosion. The KCl-MgCl2 molten salt was less corrosive than FLiNaK fluoride salts for corrosion tests performed at 850oC. Cr dissolution in the molten chloride salt was still observed and consequently Ni-201 and Hastelloy N exhibited the least depth of attack. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (as measured by weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. Because Cr dissolution is an important mechanism of corrosion, molten salt electrochemistry experiments were initiated. These experiments were performed using anodic stripping voltammetry (ASV). Using this technique, the reduction potential of Cr was determined against a Pt quasi-reference electrode as well as against a Ni(II)-Ni reference electrode in molten FLiNaK at 650 oC. The integrated current increased linearly with Cr-content in the salt, providing for a direct assessment of the Cr concentration in a given salt of unknown Cr concentration. To study heat transfer mechanisms in these molten salts over the forced and mixed convection regimes, a forced convective loop was constructed to measure heat transfer coefficients, friction factors and corrosion rates in different diameter tubes in a vertical up flow configuration in the laminar flow regime. Equipment and instrumentation for the forced convective loop was designed, constructed, and tested. These include a high temperature centrifugal pump, mass flow meter, and differential pressure sensing capabilities to an uncertainty of < 2 Pa. The heat transfer coefficient for the KCl-MgCl2 salt was measured in two different diameter channels (0.083 and 0.370Ã). In the 0.083 channel, the experimental heat transfer coefficient was shown to agree with values obtained from heat transfer correlations used for water. In the 0.370 D channel, the experimental heat transfer coefficient data was predictable by either a correlation for mixed convection, or forced convection depending on the value of Gr*/Re. These experiments provided new insights into the construction and operation of molten salt flow systems. The selection of multi-component salts for molten salt flow systems requires knowledge of properties such as melting point, heat capacity, density, and viscosity of these salts. Theoretical models have been developed for the prediction of these properties of multi-component salts.

  19. Predicted thermal-hydraulic characteristics of cable-in-conduit conductor windings during steady-state operation

    SciTech Connect

    Kupiszewski, T.; Christianson, O.R.; Natelson, D.

    1996-12-31

    A finite difference numerical model is developed to simulate steady-state supercritical helium flow and heat transfer within superconducting magnets using double-pancake coils of cable-in-conduit conductor (CICC). The model is implemented in computer programs which calculate global temperature and pressure distributions in winding packs subjected to time-averaged thermal loads. These programs are used to predict nuclear heating effects upon pressure drop and temperature rise along the forced-flow cooled superconductors of magnets in the Toroidal Physics experiment (TPX) tokamak. The authors present results suggesting superconductor temperature margin depends upon how effectively a coil design {open_quotes}surfs{close_quotes} the helium heat capacity {open_quotes}wave{close_quotes} and case-to-coil heat transfer interactions.

  20. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    SciTech Connect

    Licht, J. R.; Bergeron, A.; Dionne, B.; Van den Branden, G.; Kalcheva, S.; Sikik, E.; Koonen, E.

    2015-12-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.