Sample records for ph elevation due

  1. Update to Millstone 3 elevated pH tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, C.A.; Perock, J.D.; Hudson, M.J.B.

    1995-03-01

    In view of the potential radiological benefits of elevated coolant pH operation, Northwest Utilities (NU), in support of an EPRI-Westinghouse program, agreed to operate the Millstone 3 plant at the start of its second fuel cycle as a demonstration of the effect of elevated coolant pH on out-of-core radiation fields. Operating with an elevated pH is defined as operating with an average lithium concentration of 3.35 ppm, until reaching an end of cycle pH of 7.2 or 7.4. The plant operated during its second and third cycles with an elevated coolant pH. The end of cycle pH during the secondmore » cycle was 7.4, and 7.2 during the third cycle. (During the first cycle, operation was with a coordinated pH of 7.0). Evaluation of the dose rate trends in Millstone 3 after two cycles of elevated coolant pH operation concluded that an elevated coolant pH resulted in a 15 percent lower component dose rate compared to other plants that operated with coordinated pH 6.9. However, due to a possible increase in fuel clad corrosion, operation during cycle 4 was restricted to pH 6.9 coordinated chemistry, with the exception of the last two months during which the pH increased to 7.35. At the end of cycle 4 (EOC4), there was a greater increase in component and crud trap dose rates than expected. This paper reviews the radiological trends in the plant and discusses the potential causes for the increase in the dose rates at EOC4.« less

  2. Cementitious porous pavement in stormwater quality control: pH and alkalinity elevation.

    PubMed

    Kuang, Xuheng; Sansalone, John

    2011-01-01

    A certain level of alkalinity acts as a buffer and maintains the pH value in a stable range in water bodies. With rapid urban development, more and more acidic pollutants flow to watersheds with runoff and drop alkalinity to a very low level and ultimately degrade the water environment. Cementitious porous pavement is an effective tool for stormwater acidic neutralization. When stormwater infiltrates cement porous pavement (CPP) materials, alkalinity and pH will be elevated due to the basic characteristics of cement concrete. The elevated alkalinity will neutralize acids in water bodies and maintain the pH in a stable level as a buffer. It is expected that CPP materials still have a certain capability of alkalinity elevation after years of service, which is important for CPP as an effective tool for stormwater management. However, few previous studies have reported on how CPP structures would elevate runoff alkalinity and pH after being exposed to rainfall-runoff for years. In this study, three groups of CPP specimens, all exposed to rainfall-runoff for 3 years, were used to test the pH and alkalinity elevation properties. It was found that runoff pH values were elevated from 7.4 to the range of 7.8-8.6 after infiltrating through the uncoated specimens, and from 7.4 to 8.5-10.7 after infiltrating through aluminum-coated specimens. Runoff alkalinity elevation efficiencies are 11.5-14.5% for uncoated specimens and 42.2% for coated specimens. The study shows that CPP is an effective passive unit operation for stormwater acid neutralization in our built environment.

  3. The Influence of Marine Microfouling on the Corrosion Behaviour of Passive Materials and Copper Alloys

    DTIC Science & Technology

    2008-01-02

    to organometallic catalysis, acidification of the electrode surface, the combined effects of elevated H20 2 and decreased pH and the production of...Ennoblement in marine waters has been ascribed to depolarization of the oxygen reduction reaction due to organometallic catalysis, acidification of the...organometallic catalysis, acidification of the electrode surface, the combined effects of elevated hydrogen peroxide (H202) and decreased pH and the production

  4. Hepatectomy-Related Hypophosphatemia: A Novel Phosphaturic Factor in the Liver-Kidney Axis

    PubMed Central

    Nomura, Kengo; Miyagawa, Atsumi; Shiozaki, Yuji; Sasaki, Shohei; Kaneko, Ichiro; Ito, Mikiko; Kido, Shinsuke; Segawa, Hiroko; Sano, Mitsue; Fukuwatari, Tsutomu; Shibata, Katsumi

    2014-01-01

    Marked hypophosphatemia is common after major hepatic resection, but the pathophysiologic mechanism remains unknown. We used a partial hepatectomy (PH) rat model to investigate the molecular basis of hypophosphatemia. PH rats exhibited hypophosphatemia and hyperphosphaturia. In renal and intestinal brush-border membrane vesicles isolated from PH rats, Na+-dependent phosphate (Pi) uptake decreased by 50%–60%. PH rats also exhibited significantly decreased levels of renal and intestinal Na+-dependent Pi transporter proteins (NaPi-IIa [NaPi-4], NaPi-IIb, and NaPi-IIc). Parathyroid hormone was elevated at 6 hours after PH. Hyperphosphaturia persisted, however, even after thyroparathyroidectomy in PH rats. Moreover, DNA microarray data revealed elevated levels of nicotinamide phosphoribosyltransferase (Nampt) mRNA in the kidney after PH, and Nampt protein levels and total NAD concentration increased significantly in the proximal tubules. PH rats also exhibited markedly increased levels of the Nampt substrate, urinary nicotinamide (NAM), and NAM catabolites. In vitro analyses using opossum kidney cells revealed that NAM alone did not affect endogenous NaPi-4 levels. However, in cells overexpressing Nampt, the addition of NAM led to a marked decrease in cell surface expression of NaPi-4 that was blocked by treatment with FK866, a specific Nampt inhibitor. Furthermore, FK866-treated mice showed elevated renal Pi reabsorption and hypophosphaturia. These findings indicate that hepatectomy-induced hypophosphatemia is due to abnormal NAM metabolism, including Nampt activation in renal proximal tubular cells. PMID:24262791

  5. The impact of pH inhomogeneities on CHO cell physiology and fed-batch process performance - two-compartment scale-down modelling and intracellular pH excursion.

    PubMed

    Brunner, Matthias; Braun, Philipp; Doppler, Philipp; Posch, Christoph; Behrens, Dirk; Herwig, Christoph; Fricke, Jens

    2017-07-01

    Due to high mixing times and base addition from top of the vessel, pH inhomogeneities are most likely to occur during large-scale mammalian processes. The goal of this study was to set-up a scale-down model of a 10-12 m 3 stirred tank bioreactor and to investigate the effect of pH perturbations on CHO cell physiology and process performance. Short-term changes in extracellular pH are hypothesized to affect intracellular pH and thus cell physiology. Therefore, batch fermentations, including pH shifts to 9.0 and 7.8, in regular one-compartment systems are conducted. The short-term adaption of the cells intracellular pH are showed an immediate increase due to elevated extracellular pH. With this basis of fundamental knowledge, a two-compartment system is established which is capable of simulating defined pH inhomogeneities. In contrast to state-of-the-art literature, the scale-down model is included parameters (e.g. volume of the inhomogeneous zone) as they might occur during large-scale processes. pH inhomogeneity studies in the two-compartment system are performed with simulation of temporary pH zones of pH 9.0. The specific growth rate especially during the exponential growth phase is strongly affected resulting in a decreased maximum viable cell density and final product titer. The gathered results indicate that even short-term exposure of cells to elevated pH values during large-scale processes can affect cell physiology and overall process performance. In particular, it could be shown for the first time that pH perturbations, which might occur during the early process phase, have to be considered in scale-down models of mammalian processes. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Calcium phosphate formation due to pH-induced adsorption/precipitation switching along salinity gradients

    NASA Astrophysics Data System (ADS)

    Oxmann, J. F.; Schwendenmann, L.

    2014-07-01

    Mechanisms governing phosphorus (P) speciation in coastal sediments remain unknown due to the diversity of coastal environments and poor analytical specificity for P phases. We investigated P speciation along salinity gradients comprising diverse ecosystems in a P-enriched estuary. To determine P load effects on P speciation we compared the high P site with a P-unenriched site. To improve analytical specificity, octacalcium phosphate (OCP), authigenic apatite (carbonate fluorapatite; CFAP) and detrital apatite (fluorapatite) were quantitated in addition to Al/Fe-bound P (Al/Fe-P) and Ca-bound P (Ca-P). Sediment pH primarily affected P fractions across ecosystems and independent of the P status. Increasing pH caused a pronounced downstream transition from adsorbed Al/Fe-P to mineral Ca-P. Downstream decline in Al/Fe-P was counterbalanced by the precipitation of Ca-P. This marked upstream-to-downstream switch occurred at near-neutral sediment pH and was enhanced by increased P loads. Accordingly, the site comparison indicated two location-dependent accumulation mechanisms at the P-enriched site, which mainly resulted in elevated Al/Fe-P at pH < 6.6 (upstream; adsorption) and elevated Ca-P at pH > 6.6 (downstream; precipitation). Enhanced Ca-P precipitation by increased loads was also evident from disproportional accumulation of metastable Ca-P (Ca-PMmeta). The average Ca-Pmeta concentration was six-fold, whereas total Ca-P was only twofold higher at the P-enriched site compared to the P-unenriched site. Species concentrations showed that these largely elevated Ca-Pmeta levels resulted from transformation of fertilizer-derived Al/Fe-P to OCP and CFAP due to decreasing acidity from land to the sea. Formation of OCP and CFAP results in P retention in coastal zones, which may lead to substantial inorganic P accumulation by anthropogenic P input in near-shore sediments.

  7. Growth and blood chemistry of ducklings reared on acidified wetlands

    USGS Publications Warehouse

    Rattner, B.A.; Haramis, G.; Linder, G.; Chu, D.

    1985-01-01

    Acid deposition is one factor that may be responsible for the decline of some waterfowl populations. Growth and physiological condition were monitored in captive-reared black ducks (Anas rubripes) exposed for 10-day trials (day 11-20 of life) on control (pH 6.8) and acidified (pH 5.0) man-made emergent wetlands. Impaired growth (body weight, culmen and tarsus length) and increased mortality (50%) were apparent in broods (hen + 4 ducklings) reared on acidified wetIands. Ducklings exbibiting poor growth had reduced hematocrit, plasma protein and cholesterol levels. This subset of birds had elevated plasma uric acid concentration and creatine kinase activity (perhaps due to enhanced protein and nucleotide catabolism). and elevated pIasma K+ levels. Based upon overt appearance, growth and blood chemistry, ducklings exposed to acidified wetlands were concluded to be in poorer condittion than those exposed on circumneutral pH wetlands.

  8. Authigenic apatite and octacalcium phosphate formation due to adsorption-precipitation switching across estuarine salinity gradients

    NASA Astrophysics Data System (ADS)

    Oxmann, J. F.; Schwendenmann, L.

    2015-02-01

    Mechanisms governing phosphorus (P) speciation in coastal sediments remain largely unknown due to the diversity of coastal environments and poor analytical specificity for P phases. We investigated P speciation across salinity gradients comprising diverse ecosystems in a P-enriched estuary. To determine P load effects on P speciation we compared the high P site with a low P site. Octacalcium phosphate (OCP), authigenic apatite (carbonate fluorapatite, CFAP) and detrital apatite (fluorapatite) were quantitated in addition to Al/Fe-bound P (Al/Fe-P) and Ca-bound P (Ca-P). Gradients in sediment pH strongly affected P fractions across ecosystems and independent of the site-specific total P status. We found a pronounced switch from adsorbed Al/Fe-P to mineral Ca-P with decreasing acidity from land to sea. This switch occurred at near-neutral sediment pH and has possibly been enhanced by redox-driven phosphate desorption from iron oxyhydroxides. The seaward decline in Al/Fe-P was counterbalanced by the precipitation of Ca-P. Correspondingly, two location-dependent accumulation mechanisms occurred at the high P site due to the switch, leading to elevated Al/Fe-P at pH < 6.6 (landward; adsorption) and elevated Ca-P at pH > 6.6 (seaward; precipitation). Enhanced Ca-P precipitation by increased P loads was also evident from disproportional accumulation of metastable Ca-P (Ca-Pmeta) at the high P site. Here, sediments contained on average 6-fold higher Ca-Pmeta levels compared with the low P site, although these sediments contained only 2-fold more total Ca-P than the low P sediments. Phosphorus species distributions indicated that these elevated Ca-Pmeta levels resulted from transformation of fertilizer-derived Al/Fe-P to OCP and CFAP in nearshore areas. Formation of CFAP as well as its precursor, OCP, results in P retention in coastal zones and can thus lead to substantial inorganic P accumulation in response to anthropogenic P input.

  9. Neutralisation of an acidic pit lake by alkaline waste products.

    PubMed

    Allard, Bert; Bäckström, Mattias; Karlsson, Stefan; Grawunder, Anja

    2014-01-01

    A former open pit where black shale (alum shale) was excavated during 1942-1965 has been water filled since 1966. The water chemistry was dominated by calcium and sulphate and had a pH of 3.2-3.4 until 1997-1998, when pH was gradually increasing. This was due to the intrusion of leachates from alkaline cement waste deposited close to the lake. A stable pH of around 7.5 was obtained after 6-7 years. The chemistry of the pit lake has changed due to the neutralisation. Concentrations of some dissolved metals, notably zinc and nickel, have gone down, as a result of adsorption/co-precipitation on solid phases (most likely iron and aluminium hydroxides), while other metals, notably uranium and molybdenum, are present at elevated levels. Uranium concentration is reaching a minimum of around pH 6.5 and is increasing at higher pH, which may indicate a formation of neutral and anionic uranyl carbonate species at high pH (and total carbonate levels around 1 mM). Weathering of the water-exposed shale is still in progress.

  10. Species and gamete-specific fertilization success of two sea urchins under near future levels of pCO2

    NASA Astrophysics Data System (ADS)

    Sung, Chan-Gyung; Kim, Tae Won; Park, Young-Gyu; Kang, Seong-Gil; Inaba, Kazuo; Shiba, Kogiku; Choi, Tae Seob; Moon, Seong-Dae; Litvin, Steve; Lee, Kyu-Tae; Lee, Jung-Suk

    2014-09-01

    Since the Industrial Revolution, rising atmospheric CO2 concentration has driven an increase in the partial pressure of CO2 in seawater (pCO2), thus lowering ocean pH. We examined the separate effects of exposure of gametes to elevated pCO2 and low pH on fertilization success of the sea urchin Strongylocentrotus nudus. Sperm and eggs were independently exposed to seawater with pCO2 levels ranging from 380 (pH 7.96-8.3) to 6000 ppmv (pH 7.15-7.20). When sperm were exposed, fertilization rate decreased drastically with increased pCO2, even at a concentration of 450 ppmv (pH range: 7.94 to 7.96). Conversely, fertilization of Hemicentrotus pulcherrimus was not significantly changed even when sperm was exposed to pCO2 concentrations as high as 750 ppmv. Exposure of S. nudus eggs to seawater with high pCO2 did not affect fertilization success, suggesting that the effect of increased pCO2 on sperm is responsible for reduced fertilization success. Surprisingly, this result was not related to sperm motility, which was insensitive to pCO2. When seawater was acidified using HCl, leaving pCO2 constant, fertilization success in S. nudus remained high (> 80%) until pH decreased to 7.3. While further studies are required to elucidate the physiological mechanism by which elevated pCO2 impairs sperm and reduces S. nudus fertilization, this study suggests that in the foreseeable future, sea urchin survival may be threatened due to lower fertilization success driven by elevated pCO2 rather than by decreased pH in seawater.

  11. Effects of acidic deposition on in-lake phosphorus availability: a lesson from lakes recovering from acidification.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Kaňa, Jiří; Norton, Stephen A; Stuchlík, Evžen

    2015-03-03

    Lake water concentrations of phosphorus (P) recently increased in some mountain areas due to elevated atmospheric input of P rich dust. We show that increasing P concentrations also occur during stable atmospheric P inputs in central European alpine lakes recovering from atmospheric acidification. The elevated P availability in the lakes results from (1) increasing terrestrial export of P accompanying elevated leaching of dissolved organic carbon and decreasing phosphate-adsorption ability of soils due to their increasing pH, and (2) decreasing in-lake P immobilization by aluminum (Al) hydroxide due to decreasing leaching of ionic Al from the recovering soils. The P availability in the recovering lakes is modified by the extent of soil acidification, soil composition, and proportion of till and meadow soils in the catchment. These mechanisms explain several conflicting observations of the acid rain effects on surface water P concentrations.

  12. Galápagos coral reef persistence after ENSO warming across an acidification gradient

    NASA Astrophysics Data System (ADS)

    Manzello, D.; Enochs, I.; Bruckner, A.; Renaud, P.; Kolodziej, G.; Budd, D. A.; Carlton, R.; Glynn, P.

    2016-02-01

    Anthropogenic CO2 is causing warming and ocean acidification. Coral reefs are being severely impacted, yet confusion lingers regarding how reefs will respond to these stressors over this century. Since the 1982-1983 El Niño-Southern Oscillation warming event, the persistence of reefs around the Galápagos Islands has differed across an acidification gradient. Reefs disappeared where pH < 8.0 and aragonite saturation state (Ωarag) ≤ 3 and have not recovered, whereas one reef has persisted where pH > 8.0 and Ωarag > 3. Where upwelling is greatest, calcification by massive Porites is higher than predicted by a published relationship with temperature despite high CO2, possibly due to elevated nutrients. However, skeletal P/Ca, a proxy for phosphate exposure, negatively correlates with density (R = - 0.822, p < 0.0001). We propose that elevated nutrients have the potential to exacerbate acidification by depressing coral skeletal densities and further increasing bioerosion already accelerated by low pH.

  13. Assessment of tomato and wine processing solid wastes as soil amendments for biosolarization.

    PubMed

    Achmon, Yigal; Harrold, Duff R; Claypool, Joshua T; Stapleton, James J; VanderGheynst, Jean S; Simmons, Christopher W

    2016-02-01

    Pomaces from tomato paste and wine production are the most abundant fruit processing residues in California. These residues were examined as soil amendments for solarization to promote conditions conducive to soil disinfestation (biosolarization). Simulated biosolarization studies were performed in both aerobic and anaerobic soil environments and soil temperature elevation, pH, and evolution of CO2, H2 and CH4 gases were measured as metrics of soil microbial activity. Tomato pomace amendment induced conditions associated with soil pest inactivation, including elevation of soil temperature by up to 2°C for a duration of 4days under aerobic conditions and a reduction of soil pH from 6.5 to 4.68 under anaerobic conditions. White wine grape pomace amendment showed similar trends but to a lesser extent. Red wine grape pomace was generally less suitable for biosolarization due to significantly lower soil temperature elevations, reduced acidification relative to the other pomaces and induction of methanogenesis in the soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Effect of Elevated CO2 on the Growth and Food Consumption of Juvenile Winter Flounder Pseudopleuronectes Americanus

    EPA Science Inventory

    Increasing levels of atmospheric carbon dioxide are causing changes in seawater chemistry in the world’s oceans. In estuarine waters, atmospheric CO2 exacerbates already declining pH due to high productivity and respiration caused by cultural eutrophication. These two sources o...

  15. Adsorbent materials from paper industry waste materials and their use in Cu(II) removal from water.

    PubMed

    Méndez, A; Barriga, S; Fidalgo, J M; Gascó, G

    2009-06-15

    This paper deals with the removal of Cu(2+) from water using adsorbent materials prepared from paper industry waste materials (one de-inking paper sludge and other sludge from virgin pulp mill). Experimental results showed that de-inking paper sludge leads to mesoporous materials (V(mic)/V(T)=0.13 and 0.14), whereas the sludge from virgin pulp mill produces high microporous adsorbents (V(mic)/V(T)=0.39 and 0.41). Adsorbent materials were then used for Cu(2+) removal from water at acid pH. During water treatment, heavy metals lixiviation from adsorbent materials was not produced. However, important Ca and Mg leaching was observed. Final pH significantly increases after treatment of water with adsorbent materials probably due to their elevated CaCO(3) content. In general, highest Cu(2+) removal was obtained using adsorbent materials from de-inking paper sludge. This result could be due to their higher content in oxygenated surface groups, high average pore diameter, elevated superficial charge density, high CaCO(3) amount and high Ca and Mg exchange content.

  16. Interactive effects of ocean acidification, elevated temperature, and reduced salinity on early-life stages of the pacific oyster.

    PubMed

    Ko, Ginger W K; Dineshram, R; Campanati, Camilla; Chan, Vera B S; Havenhand, Jon; Thiyagarajan, Vengatesen

    2014-09-02

    Ocean acidification (OA) effects on larvae are partially attributed for the rapidly declining oyster production in the Pacific Northwest region of the United States. This OA effect is a serious concern in SE Asia, which produces >80% of the world's oysters. Because climate-related stressors rarely act alone, we need to consider OA effects on oysters in combination with warming and reduced salinity. Here, the interactive effects of these three climate-related stressors on the larval growth of the Pacific oyster, Crassostrea gigas, were examined. Larvae were cultured in combinations of temperature (24 and 30 °C), pH (8.1 and 7.4), and salinity (15 psu and 25 psu) for 58 days to the early juvenile stage. Decreased pH (pH 7.4), elevated temperature (30 °C), and reduced salinity (15 psu) significantly delayed pre- and post-settlement growth. Elevated temperature lowered the larval lipid index, a proxy for physiological quality, and negated the negative effects of decreased pH on attachment and metamorphosis only in a salinity of 25 psu. The negative effects of multiple stressors on larval metamorphosis were not due to reduced size or depleted lipid reserves at the time of metamorphosis. Our results supported the hypothesis that the C. gigas larvae are vulnerable to the interactions of OA with reduced salinity and warming in Yellow Sea coastal waters now and in the future.

  17. Effect of Sustained Elevated Gastric pH Levels on Gefitinib Exposure.

    PubMed

    Tang, Weifeng; Tomkinson, Helen; Masson, Eric

    2017-09-01

    This open-label, randomized, phase 1 crossover study investigated the effect of elevated gastric pH level (>5) on the relative bioavailability and pharmacokinetic profile of the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib. Healthy male volunteers (n = 26) were randomized to gefitinib 250 mg (fasted), either alone on day 1 (unmodified gastric pH) or 1 hour following the second of 2 oral doses of the H 2 -receptor antagonist ranitidine 450 mg (elevated gastric pH). After a 3-week washout period, volunteers crossed to the other treatment. The geometric least-squares (GLS) mean AUC 0-∞ and C max for gefitinib were reduced by 47% and 71%, respectively, under conditions of sustained elevated gastric pH; for both parameters, the 90%CI for the ratio of the GLS means lay below the prespecified lower limit. Median t max was delayed from 5 to 6 hours. Mean t 1/2 was similar under both gastric pH conditions. No serious adverse events were reported. The bioavailability of a single oral gefitinib 250-mg dose was reduced by approximately 50% when gefitinib was administered under conditions of sustained elevated gastric pH. © 2017, The American College of Clinical Pharmacology.

  18. Antacids and dietary supplements with an influence on the gastric pH increase the risk for food sensitization

    PubMed Central

    Pali-Schöll, I.; Herzog, R.; Wallmann, J.; Szalai, K.; Brunner, R.; Lukschal, A.; Karagiannis, P.; Diesner, S. C.; Jensen-Jarolim, E.

    2010-01-01

    Summary Background Elevation of the gastric pH increases the risk for sensitization against food allergens by hindering protein breakdown. This can be caused by acid-suppressing medication like sucralphate, H2-receptor blockers and proton pump inhibitors, as shown in recent murine experimental and human observational studies. Objective The aim of the present study was to assess the sensitization capacity of the dietary supplement base powder and of over-the-counter antacids. Methods Changes of the pH as well as of protein digestion due to base powder or antacids were measured in vitro. To examine the in vivo influence, BALB/c mice were fed codfish extract with one of the acid-suppressing substances. Read-out of antibody levels in the sera, of cytokine levels of stimulated splenocytes and of intradermal skin tests was performed. Results The pH of hydrochloric acid was substantially increased in vitro by base powder as well as antacids in a time- and dose-dependent manner. This elevation hindered the digestion of codfish proteins in vitro. A significant increase in codfish-specific IgE antibodies was found in the groups fed codfish combined with Rennie® Antacidum or with base powder; the latter also showed significantly elevated IgG1 and IgG2a levels. The induction of an anaphylactic immune response was proven by positive results in intradermal skin tests. Conclusions Antacids and dietary supplements influencing the gastric pH increase the risk for sensitization against allergenic food proteins. As these substances are commonly used in the general population without consulting a physician, our data may have a major practical and clinical impact. PMID:20214670

  19. Physiological characterisation of a pH- and calcium-dependent sodium uptake mechanism in the freshwater crustacean, Daphnia magna.

    PubMed

    Glover, Chris N; Wood, Chris M

    2005-03-01

    Daphnia are highly sensitive to sodium metabolism disruption caused by aquatic acidification and ionoregulatory toxicants, due to their finely balanced ion homeostasis. Nine different water chemistries of varying pH (4, 6 and 8) and calcium concentration (0, 0.5 and 1 mmol l(-1)) were used to delineate the mechanism of sodium influx in Daphnia magna. Lowering water pH severely inhibited sodium influx when calcium concentration was high, but transport kinetic analysis revealed a stimulated sodium influx capacity (J(max)) when calcium was absent. At low pH increasing water calcium levels decreased J(max) and raised K(m) (decreased sodium influx affinity), while at high pH the opposite pattern was observed (elevated J(max) and reduced K(m)). These effects on sodium influx were mirrored by changes in whole body sodium levels. Further examination of the effect of calcium on sodium influx showed a severe inhibition of sodium uptake by 100 micromol l(-1) calcium gluconate at both low (50 micromol l(-1)) and high (1000 micromol l(-1)) sodium concentrations. At high sodium concentrations, stimulated sodium influx was noted with elevated calcium levels. These results, in addition to data showing amiloride inhibition of sodium influx (K(i)=180 micromol l(-1)), suggest a mechanism of sodium influx in Daphnia magna that involves the electrogenic 2Na(+)/1H(+) exchanger.

  20. Stimulated Bacterial Growth under Elevated pCO2: Results from an Off-Shore Mesocosm Study

    PubMed Central

    Endres, Sonja; Galgani, Luisa; Riebesell, Ulf; Schulz, Kai-Georg; Engel, Anja

    2014-01-01

    Marine bacteria are the main consumers of freshly produced organic matter. Many enzymatic processes involved in the bacterial digestion of organic compounds were shown to be pH sensitive in previous studies. Due to the continuous rise in atmospheric CO2 concentration, seawater pH is presently decreasing at a rate unprecedented during the last 300 million years but the consequences for microbial physiology, organic matter cycling and marine biogeochemistry are still unresolved. We studied the effects of elevated seawater pCO2 on a natural plankton community during a large-scale mesocosm study in a Norwegian fjord. Nine Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS) were adjusted to different pCO2 levels ranging initially from ca. 280 to 3000 µatm and sampled every second day for 34 days. The first phytoplankton bloom developed around day 5. On day 14, inorganic nutrients were added to the enclosed, nutrient-poor waters to stimulate a second phytoplankton bloom, which occurred around day 20. Our results indicate that marine bacteria benefit directly and indirectly from decreasing seawater pH. During the first phytoplankton bloom, 5–10% more transparent exopolymer particles were formed in the high pCO2 mesocosms. Simultaneously, the efficiency of the protein-degrading enzyme leucine aminopeptidase increased with decreasing pH resulting in up to three times higher values in the highest pCO2/lowest pH mesocosm compared to the controls. In general, total and cell-specific aminopeptidase activities were elevated under low pH conditions. The combination of enhanced enzymatic hydrolysis of organic matter and increased availability of gel particles as substrate supported up to 28% higher bacterial abundance in the high pCO2 treatments. We conclude that ocean acidification has the potential to stimulate the bacterial community and facilitate the microbial recycling of freshly produced organic matter, thus strengthening the role of the microbial loop in the surface ocean. PMID:24941307

  1. Seawater Acidification and Elevated Temperature Affect Gene Expression Patterns of the Pearl Oyster Pinctada fucata

    PubMed Central

    Liu, Wenguang; Huang, Xiande; Lin, Jianshi; He, Maoxian

    2012-01-01

    Oceanic uptake of anthropogenic carbon dioxide results in decrease in seawater pH and increase in temperature. In this study, we demonstrated the synergistic effects of elevated seawater temperature and declined seawater pH on gene expression patterns of aspein, calmodulin, nacrein, she-7-F10 and hsp70 in the pearl oyster Pinctada fucata. Under ‘business-as-usual’ scenarios, four treatments were examined: (1) ambient pH (8.10) and ambient temperature (27°C) (control condition), (2) ambient pH and elevated temperature (+3°C), (3) declined pH (7.70) and ambient temperature, (4) declined pH and elevated temperature. The results showed that under warming and acidic seawater conditions, expression of aspein and calmodulin showed no significant differences among different time point in condition 8.10 T. But the levels of aspein and calmodulin in conditions 8.10 T+3, 7.70 T and 7.70 T+3, and levels of nacrein, she-7-F10 in all the four treatments changed significantly. Low pH and pH×temperature interaction influenced the expression of aspein and calmodulin significantly after hours 48 and 96. Significant effects of low pH and pH×temperature interaction on the expression of nacrein were observed at hour 96. The expression level of she-7-F10 was affected significantly by pH after hours 48 and 96. The expression of hsp70 was significantly affected by temperature, pH, temperature×pH interaction at hour 6, and by temperature×pH interaction at hour 24. This study suggested that declined pH and pH×temperature interaction induced down regulation of calcification related genes, and the interaction between declined seawater pH and elevated temperature caused up regulation of hsp70 in P. facata. These results demonstrate that the declined seawater pH and elevated temperature will impact the physiological process, and potentially the adaptability of P. fucata to future warming and acidified ocean. PMID:22438983

  2. 75 FR 22589 - Preliminary Listing of an Additional Water to Wisconsin's 2008 List of Waters Under Section 303(d...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... to the presence of excessive nutrients, including phosphorus, elevated pH values, as well as the... Wisconsin does not have numeric criterian for phosphorus and WDNR did not believe that the available data..., and that the Bay was not impaired due to phosphorus. WDNR stated that it will continue to monitor...

  3. Gut microbiota and oxalate homeostasis

    PubMed Central

    2017-01-01

    This perspective focuses on how the gut microbiota can impact urinary oxalate excretion in the context of hyperoxaluria, a major risk factor in kidney stone disease. In the genetic disease of Primary Hyperoxaluria Type 1 (PH1), an increased endogenous production of oxalate, due to a deficiency of the liver enzyme alanine-glyoxylate aminotransferase (AGT), results in hyperoxaluria and oxalate kidney stones. The constant elevation in urinary oxalate in PH1 patients ultimately leads to tissue deposition of oxalate, renal failure and death and the only known cure for PH1 is a liver or liver-kidney transplant. The potential impact of a probiotic/therapeutic approach may be clinically significant in PH1 and could also extend to a much larger population of idiopathic oxalate stone formers who comprise ~12% of Americans, individuals with enteric hyperoxaluria, and an emerging population of hyperoxaluric patients who have undergone bariatric surgery and develop kidney stone disease as a consequence. PMID:28217701

  4. Gut microbiota and oxalate homeostasis.

    PubMed

    Hatch, Marguerite

    2017-01-01

    This perspective focuses on how the gut microbiota can impact urinary oxalate excretion in the context of hyperoxaluria, a major risk factor in kidney stone disease. In the genetic disease of Primary Hyperoxaluria Type 1 (PH1), an increased endogenous production of oxalate, due to a deficiency of the liver enzyme alanine-glyoxylate aminotransferase (AGT), results in hyperoxaluria and oxalate kidney stones. The constant elevation in urinary oxalate in PH1 patients ultimately leads to tissue deposition of oxalate, renal failure and death and the only known cure for PH1 is a liver or liver-kidney transplant. The potential impact of a probiotic/therapeutic approach may be clinically significant in PH1 and could also extend to a much larger population of idiopathic oxalate stone formers who comprise ~12% of Americans, individuals with enteric hyperoxaluria, and an emerging population of hyperoxaluric patients who have undergone bariatric surgery and develop kidney stone disease as a consequence.

  5. Effect of ocean acidification on otolith development in larvae of a tropical marine fish

    NASA Astrophysics Data System (ADS)

    Munday, P. L.; Hernaman, V.; Dixson, D. L.; Thorrold, S. R.

    2011-03-01

    Calcification in many invertebrate species is predicted to decline due to ocean acidification. The potential effects of elevated pCO2 and reduced carbonate saturation state on other species, such as fish, are less well understood. Fish otoliths (earbones) are composed of aragonite, and thus, might be susceptible to either the reduced availability of carbonate ions in seawater at low pH, or to changes in extracellular concentrations of bicarbonate and carbonate ions caused by acid-base regulation in fish exposed to high pCO2. We reared larvae of the clownfish Amphiprion percula from hatching to settlement at three pHNBS and pCO2 levels (control: pH 8.15 and 404 μatm CO2; intermediate: pH 7.8 and 1050 μatm CO2; extreme: pH 7.6 and 1721 μatm CO2) to test the possible effects of ocean acidification on otolith development. There was no effect of the intermediate treatment (pH 7.8 and 1050 μatm CO2) on otolith size, shape, symmetry between left and right otoliths, or otolith elemental chemistry, compared with controls. However, in the more extreme treatment (pH 7.6 and 1721 μatm CO2) otolith area and maximum length were larger than controls, although no other traits were affected. Our results support the hypothesis that pH regulation in the otolith endolymph of fish exposed to elevated pCO2 can lead to increased precipitation of CaCO3 in otoliths of larval fish, as proposed by an earlier study, however, our results also show that sensitivity varies considerably among species. Importantly, our results suggest that otolith development in clownfishes is robust to even the more pessimistic changes in ocean chemistry predicted to occur by 2100.

  6. Effect of ocean acidification on otolith development in larvae of a tropical marine fish

    NASA Astrophysics Data System (ADS)

    Munday, P. L.; Hernaman, V.; Dixson, D. L.; Thorrold, S. R.

    2011-06-01

    Calcification in many invertebrate species is predicted to decline due to ocean acidification. The potential effects of elevated CO2 and reduced carbonate saturation state on other species, such as fish, are less well understood. Fish otoliths (earbones) are composed of aragonite, and thus, might be susceptible to either the reduced availability of carbonate ions in seawater at low pH, or to changes in extracellular concentrations of bicarbonate and carbonate ions caused by acid-base regulation in fish exposed to high pCO2. We reared larvae of the clownfish Amphiprion percula from hatching to settlement at three pHNBS and pCO2 levels (control: ~pH 8.15 and 404 μatm CO2; intermediate: pH 7.8 and 1050 μatm CO2; extreme: pH 7.6 and 1721 μatm CO2) to test the possible effects of ocean acidification on otolith development. There was no effect of the intermediate treatment (pH 7.8 and 1050 μatm CO2) on otolith size, shape, symmetry between left and right otoliths, or otolith elemental chemistry, compared with controls. However, in the more extreme treatment (pH 7.6 and 1721 μatm CO2) otolith area and maximum length were larger than controls, although no other traits were significantly affected. Our results support the hypothesis that pH regulation in the otolith endolymph can lead to increased precipitation of CaCO3 in otoliths of larval fish exposed to elevated CO2, as proposed by an earlier study, however, our results also show that sensitivity varies considerably among species. Importantly, our results suggest that otolith development in clownfishes is robust to even the more pessimistic changes in ocean chemistry predicted to occur by 2100.

  7. Factors related to elevated vaginal pH in the first trimester of pregnancy.

    PubMed

    Zodzika, Jana; Rezeberga, Dace; Jermakova, Irina; Vasina, Olga; Vedmedovska, Natalija; Donders, Gilbert

    2011-01-01

    To assess different bacterial and epidemiological factors associations with increased vaginal pH in the pregnant women population during the first trimester. A cross-sectional, observational study. Three outpatient clinics in Riga. From July 2009 until January 2010, 139 unselected consecutive pregnant women at the first prenatal visit. Pregnant women were submitted to an interview, vaginal examination and vaginal specimen collection for pH measurement and native microscopy. Vaginal pH ≥4.5 was considered as elevated. Abnormal bacterial microflora was classified according to Donders. Elevated vaginal pH was significantly associated with bacterial vaginosis (p < 0.001), aerobic vaginitis (p < 0.001) and mixed aerobic vaginitis and bacterial vaginosis flora (p < 0.001) and presence of sperm cells in the smears (p= 0.024). Most cases with sperm were associated with abnormal vaginal flora. Normal lactobacillary morphotypes were more often found in the pH ≤4.4 group (p < 0.001), while leptosomic and short types were found more frequently with increased pH. Elevated vaginal pH is associated with different types of abnormal vaginal flora and the presence of sperm cells. © 2010 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2010 Nordic Federation of Societies of Obstetrics and Gynecology.

  8. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests

    DOE PAGES

    Carrino-Kyker, Sarah R.; Kluber, Laurel A.; Petersen, Sheryl M.; ...

    2016-02-04

    Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, andmore » affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Furthermore, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed.« less

  9. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests.

    PubMed

    Carrino-Kyker, Sarah R; Kluber, Laurel A; Petersen, Sheryl M; Coyle, Kaitlin P; Hewins, Charlotte R; DeForest, Jared L; Smemo, Kurt A; Burke, David J

    2016-03-01

    Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, and affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Thus, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrino-Kyker, Sarah R.; Kluber, Laurel A.; Petersen, Sheryl M.

    Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, andmore » affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Furthermore, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed.« less

  11. Effect of ocean acidification on growth and otolith condition of juvenile scup, Stenotomus chrysops.

    PubMed

    Perry, Dean M; Redman, Dylan H; Widman, James C; Meseck, Shannon; King, Andrew; Pereira, Jose J

    2015-09-01

    Increasing amounts of atmospheric carbon dioxide (CO2) from human industrial activities are causing changes in global ocean carbonate chemistry, resulting in a reduction in pH, a process termed "ocean acidification." It is important to determine which species are sensitive to elevated levels of CO2 because of potential impacts to ecosystems, marine resources, biodiversity, food webs, populations, and effects on economies. Previous studies with marine fish have documented that exposure to elevated levels of CO2 caused increased growth and larger otoliths in some species. This study was conducted to determine whether the elevated partial pressure of CO2 (pCO2) would have an effect on growth, otolith (ear bone) condition, survival, or the skeleton of juvenile scup, Stenotomus chrysops, a species that supports both important commercial and recreational fisheries. Elevated levels of pCO2 (1200-2600 μatm) had no statistically significant effect on growth, survival, or otolith condition after 8 weeks of rearing. Field data show that in Long Island Sound, where scup spawn, in situ levels of pCO2 are already at levels ranging from 689 to 1828 μatm due to primary productivity, microbial activity, and anthropogenic inputs. These results demonstrate that ocean acidification is not likely to cause adverse effects on the growth and survivability of every species of marine fish. X-ray analysis of the fish revealed a slightly higher incidence of hyperossification in the vertebrae of a few scup from the highest treatments compared to fish from the control treatments. Our results show that juvenile scup are tolerant to increases in seawater pCO2, possibly due to conditions this species encounters in their naturally variable environment and their well-developed pH control mechanisms.

  12. Concentration of heavy metals in drinking water of different localities in district east Karachi.

    PubMed

    Jaleel, M A; Noreen, R; Baseer, A

    2001-01-01

    Several heavy metals are present in drinking water that play important roles in the body provided their level remains within the specified range recommended by WHO. But now due to the industrialization and rapid urbanization, the problems of pollution have surfaced. This study was designed to ascertain the contents of some heavy metals and then their variations if any in drinking water in different localities of district East of Karachi, Pakistan. Drinking water samples were collected from different sources and localities of district East of Karachi. The concentration of the heavy metals i.e. Lead, Arsenic, Copper, Iron, Mercury, Chromium, Manganese, Nickel, Cadmium and Zinc were determined by Atomic Absorption Spectrophotometry. PH was estimated by pH meter. Total dissolved solids (TDS) were calculated by formula. These concentrations of heavy metals, pH and TDS were compared with the standards set by WHO. Concentrations of lead and nickel were found to be significantly elevated as compared to WHO recommended levels in all the three sources of water (Piped water, Hand pump water and Tanker water supply). Chromium was found to be raised in hand pump water. Arsenic and Mercury were not detected in any source of water. Copper, iron, manganese, cadmium and zinc were found to be within the safe limits in all the three sources of water. pH was found to be within the range of WHO recommended level in all the three sources of water. TDS was found to be elevated in hand pump water and tanker water. Concentrations of lead and nickel were found to be significantly elevated as compared to WHO recommended levels in all the three sources of water in district East of Karachi.

  13. Sustaining elevated levels of nitrite in the oral cavity through consumption of nitrate-rich beetroot juice in young healthy adults reduces salivary pH.

    PubMed

    Hohensinn, Barbara; Haselgrübler, Renate; Müller, Ulrike; Stadlbauer, Verena; Lanzerstorfer, Peter; Lirk, Gerald; Höglinger, Otmar; Weghuber, Julian

    2016-11-30

    Dietary inorganic nitrate (NO 3 - ) and its reduced forms nitrite (NO 2 - ) and nitric oxide (NO), respectively, are of critical importance for host defense in the oral cavity. High concentrations of salivary nitrate are linked to a lower prevalence of caries due to growth inhibition of cariogenic bacteria. In-vitro studies suggest that the formation of antimicrobial NO results in an increase of the pH preventing erosion of tooth enamel. The purpose of this study was to prove this effect in-vivo. In a randomized clinical study with 46 subjects we investigated whether NO 3 - rich beetroot juice exhibits a protective effect against caries by an increase of salivary pH. Our results show that, in comparison to a placebo group, consumption of beetroot juice that contains 4000 mg/L NO 3 - results in elevated levels of salivary NO 2 - , nitrite NO 3 - , and NO. Furthermore, we determined an increase of the mean pH of saliva from 7.0 to 7.5, confirming the anti-cariogenic effect of the used NO 3 - -rich beetroot juice. Taken together, we have found that NO 3 - -rich beetroot juice holds potential effects against dental caries by preventing acidification of human saliva. C-87-15 (Ethics Commissions of Upper Austria). Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. A Novel Treatment for Acid Mine Drainage Utilizing Reclaimed Limestone Residual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horace K. Moo-Young; Charles E. Ochola

    2004-08-31

    The viability of utilizing Reclaimed Limestone Residual (RLR) to remediate Acid Mine Drainage (AMD) was investigated. Physical and chemical characterization of RLR showed that it is composed of various minerals that contain significant quantities of limestone or calcium bearing compounds that can be exploited for acid neutralization. Acid Neutralization Potential (ANP) test results showed that RLR has a neutralization potential of approximately 83% as calcium carbonate (CaCO{sub 3}). Neutralization tests with most of the heavy metals associated with AMD showed removal efficiencies of over 99%. An unexpected benefit of utilizing RLR was the removal of hexavalent chromium Cr (VI) frommore » the aqueous phase. Due to an elevation in pH by RLR most AMD heavy metals are removed from solution by precipitation as their metal hydroxides. Cr (VI) however is not removed by pH elevation and therefore subsequent ongoing tests to elucidate the mechanism responsible for this reaction were conducted.« less

  15. The O2, pH and Ca2+ Microenvironment of Benthic Foraminifera in a High CO2 World

    PubMed Central

    Glas, Martin S.; Fabricius, Katharina E.; de Beer, Dirk; Uthicke, Sven

    2012-01-01

    Ocean acidification (OA) can have adverse effects on marine calcifiers. Yet, phototrophic marine calcifiers elevate their external oxygen and pH microenvironment in daylight, through the uptake of dissolved inorganic carbon (DIC) by photosynthesis. We studied to which extent pH elevation within their microenvironments in daylight can counteract ambient seawater pH reductions, i.e. OA conditions. We measured the O2 and pH microenvironment of four photosymbiotic and two symbiont-free benthic tropical foraminiferal species at three different OA treatments (∼432, 1141 and 2151 µatm pCO2). The O2 concentration difference between the seawater and the test surface (ΔO2) was taken as a measure for the photosynthetic rate. Our results showed that O2 and pH levels were significantly higher on photosymbiotic foraminiferal surfaces in light than in dark conditions, and than on surfaces of symbiont-free foraminifera. Rates of photosynthesis at saturated light conditions did not change significantly between OA treatments (except in individuals that exhibited symbiont loss, i.e. bleaching, at elevated pCO2). The pH at the cell surface decreased during incubations at elevated pCO2, also during light incubations. Photosynthesis increased the surface pH but this increase was insufficient to compensate for ambient seawater pH decreases. We thus conclude that photosynthesis does only partly protect symbiont bearing foraminifera against OA. PMID:23166810

  16. Attributes of lipid oxidation due to bovine myoglobin, hemoglobin and hemolysate.

    PubMed

    Yin, Jie; Zhang, Wenjing; Richards, Mark P

    2017-11-01

    Bovine hemolysate was purified by size exclusion chromatography, and one high molecular weight protein was detected relative to the hemoglobin (Hb) fraction. Purified Hb promoted lipid oxidation in washed muscle slightly but significantly better than hemolysate, which may have been due to the absence of catalase and peroxiredoxin in the purified Hb. Purified Hb auto-oxidized to metHb more rapidly than Hb in the hemolysate (P<0.05). OxyHb promoted lipid oxidation in washed muscle more effectively compared to oxyMb (P<0.05). This was ascribed to hemin, released from metHb, promoting lipid oxidation more readily than oxidative forms of Mb that retain their protoporphyrin moiety. A 3:1 ratio of Mb:Hb promoted lipid oxidation similarly compared to adding a 1:1 ratio of Mb:Hb to washed muscle. Lipid oxidation products due to Hb-mediated lipid oxidation were elevated 60-fold at pH 6.3 compared to pH 6.7. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. pCO2 and pH regulation of cerebral blood flow

    PubMed Central

    Yoon, SeongHun; Zuccarello, Mario; Rapoport, Robert M.

    2012-01-01

    CO2 serves as one of the fundamental regulators of cerebral blood flow (CBF). It is widely considered that this regulation occurs through pCO2-driven changes in pH of the cerebral spinal fluid (CSF), with elevated and lowered pH causing direct relaxation and contraction of the smooth muscle, respectively. However, some findings also suggest that pCO2 acts independently of and/or in conjunction with altered pH. This action may be due to a direct effect of CSF pCO2 on the smooth muscle as well as on the endothelium, nerves, and astrocytes. Findings may also point to an action of arterial pCO2 on the endothelium to regulate smooth muscle contractility. Thus, the effects of pH and pCO2 may be influenced by the absence/presence of different cell types in the various experimental preparations. Results may also be influenced by experimental parameters including myogenic tone as well as solutions containing significantly altered HCO3− concentrations, i.e., solutions routinely employed to differentiate the effects of pH from pCO2. In sum, it appears that pCO2, independently and in conjunction with pH, may regulate CBF. PMID:23049512

  18. Effect of particle size on calcium release and elevation of pH of endodontic cements.

    PubMed

    Saghiri, Mohammad Ali; Asatourian, Armen; Orangi, Jafar; Lotfi, Mehrdad; Soukup, Jason W; Garcia-Godoy, Franklin; Sheibani, Nader

    2015-06-01

    Elevation of pH and calcium ion release are of great importance in antibacterial activity and the promotion of dental soft and hard tissue healing process. In this study, we evaluated the effect of particle size on the elevation of pH and the calcium ion release from calcium silicate-based dental cements. Twelve plastic tubes were divided into three groups, filled with white mineral trioxide aggregate (WMTA), WMTA plus 1% methylcellulose, and nano-modified WMTA (nano-WMTA), and placed inside flasks containing 10 ml of distilled water. The pH values were measured using a pH sensor 3, 24, 72, and 168 h after setting of the cements. The calcium ion release was measured using an atomic absorption spectrophotometer with same sample preparation method. Data were subjected to two-way analysis of variance (anova) followed by post hoc Tukey tests with significance level of P < 0.05. Nano-WMTA showed significant pH elevation only after 24 h (P < 0.05) compared with WMTA, and after 3, 24, and 72 h compared with WMTA plus 1% methylcellulose (P < 0.05). Nano-WMTA showed significantly higher calcium ion release values compared to the other two groups (P < 0.05). Nano-modification of WMTA remarkably increased the calcium ion release at all time intervals postsetting, which can significantly influence the osteogenic properties of human dental pulp cells and as a consequence enhance mineralized matrix nodule formation to achieve desirable clinical outcomes. However, the increase in pH values mainly occurred during the short time postsetting. Addition of 1% methylcellulose imposed a delay in elevation of pH and calcium ion release by WMTA. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Influence Of Coal Combustion Flue Gas Desulfurization Waste On Element Uptake By Maize (Zea Mays L.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ANNA, KNOX

    2005-01-10

    A greenhouse study was conducted to determine the effect of coal combustion flue gas desulfurization (FGD) waste from a coal combustion electric power facility on element uptake by maize (Zea mays L.). Unweathered FGD was applied to an Orangeburg Series (Typic Paleudult) soil with an initial soil pH salt of 4.90. The FGD was added at 0, 1, 2, 4, 6, 8, and 10 per cent by weight. The test plant, maize, was harvested after 6 weeks of growth. Within 56 days of the FGD application, all rates of FGD significantly increased pH in the soil and the soil leachatemore » above 6.0. The elemental concentration of the maize tissues indicated a characteristic elevation of B, Se, Mo, and As. However, no visual symptoms of toxicity of B or other elements in plants were observed. Increasing level of FGD caused a steady decline in dry weight, with the highest treatment producing plants which had approximately half the biomass of the control plants. Due to elevated concentrations of B and other elements and due to adverse yield effects measured on plants, unweathered FGD would not be a suitable amendment for 6-week old maize on this soil.« less

  20. Effects of acetic acid and arginine on pH elevation and growth of Bacillus licheniformis in an acidified cucumber juice medium

    USDA-ARS?s Scientific Manuscript database

    Bacillus licheniformis has been shown to cause pH elevation in tomato products having an initial pH below 4.6 and metabiotic effects that can lead to the growth of pathogenic bacteria. Because of this, the organism poses a potential risk to acidified vegetable products; however, little is known abou...

  1. A prospective echocardiographic evaluation of pulmonary hypertension in chronic hemodialysis patients in the United States: prevalence and clinical significance.

    PubMed

    Ramasubbu, Kumudha; Deswal, Anita; Herdejurgen, Cheryl; Aguilar, David; Frost, Adaani E

    2010-10-05

    Pulmonary hypertension (PH), a disease which carries substantial morbidity and mortality, has been reported to occur in 25%-45% of dialysis patients. No prospective evaluation of the prevalence or clinical significance of PH in chronic dialysis patients in the United States (US) has been undertaken. Echocardiograms were performed prospectively in chronic hemodialysis patients prior to dialysis at a single dialysis center. PH was defined as a tricuspid regurgitant jet ≥2.5 m/s and "more severe PH" as ≥3.0 m/s. Clinical outcomes recovered were all-cause hospitalizations and death at 12 months. In a cohort of 90 patients, 42 patients (47%) met the definition of PH. Of those, 18 patients (20%) met the definition of more severe PH. At 12 months, mortality was significantly higher in patients with PH (26%) compared with patients without PH (6%). All-cause hospitalizations were similar in patients with PH and without PH. Echocardiographic findings suggesting impaired left ventricular function and elevated pulmonary capillary wedge pressure were significantly associated with PH. This prospective cross-sectional study of a single dialysis unit suggests that PH may be present in nearly half of US dialysis patients and when present is associated with increased mortality. Echocardiographic findings demonstrate an association between elevated filling pressures, elevated pulmonary artery pressures, and higher mortality, suggesting that the PH may be secondary to diastolic dysfunction and compounded by volume overload.

  2. Effects of iron on arsenic speciation and redox chemistry in acid mine water

    USGS Publications Warehouse

    Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R.

    2005-01-01

    Concern about arsenic is increasing throughout the world, including areas of the United States. Elevated levels of arsenic above current drinking-water regulations in ground and surface water can be the result of purely natural phenomena, but often are due to anthropogenic activities, such as mining and agriculture. The current study correlates arsenic speciation in acid mine drainage and mining-influenced water with the important water-chemistry properties Eh, pH, and iron(III) concentration. The results show that arsenic speciation is generally in equilibrium with iron chemistry in low pH AMD, which is often not the case in other natural-water matrices. High pH mine waters and groundwater do not always hold to the redox predictions as well as low pH AMD samples. The oxidation and precipitation of oxyhydroxides deplete iron from some systems, and also affect arsenite and arsenate concentrations through sorption processes. ?? 2004 Elsevier B.V. All rights reserved.

  3. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard)

    NASA Astrophysics Data System (ADS)

    Kotas, Petr; Šantrůčková, Hana; Elster, Josef; Kaštovská, Eva

    2018-03-01

    The unique and fragile High Arctic ecosystems are vulnerable to global climate warming. The elucidation of factors driving microbial distribution and activity in arctic soils is essential for a comprehensive understanding of ecosystem functioning and its response to environmental change. The goals of this study were to investigate microbial biomass and activity, microbial community structure (MCS), and their environmental controls in soils along three elevational transects in the coastal mountains of Billefjorden, central Svalbard. Soils from four different altitudes (25, 275, 525 and 765 m above sea level) were analyzed for a suite of characteristics including temperature regimes, organic matter content, base cation availability, moisture, pH, potential respiration, and microbial biomass and community structure using phospholipid fatty acids (PLFAs). We observed significant spatial heterogeneity of edaphic properties among transects, resulting in transect-specific effects of altitude on most soil parameters. We did not observe any clear elevation pattern in microbial biomass, and microbial activity revealed contrasting elevational patterns between transects. We found relatively large horizontal variability in MCS (i.e., between sites of corresponding elevation in different transects), mainly due to differences in the composition of bacterial PLFAs, but also a systematic altitudinal shift in MCS related to different habitat preferences of fungi and bacteria, which resulted in high fungi-to-bacteria ratios at the most elevated sites. The biological soil crusts on these most elevated, unvegetated sites can host microbial assemblages of a size and activity comparable to those of the arctic tundra ecosystem. The key environmental factors determining horizontal and vertical changes in soil microbial properties were soil pH, organic carbon content, soil moisture and Mg2+ availability.

  4. The physiology of the Tambaqui (Colossoma macropomum) at pH 8.0.

    PubMed

    Wood, Chris M; Gonzalez, R J; Ferreira, Márcio Soares; Braz-Mota, Susana; Val, Adalberto Luis

    2018-05-01

    The Tambaqui is a model neotropical teleost which is of great economic and cultural importance in artisanal fisheries and commercial aquaculture. It thrives in ion-poor, often acidic Amazonian waters and exhibits excellent regulation of physiology down to water pH 4.0. Curiously, however, it is reported to perform poorly in aquaculture at pH 8.0, an only slightly alkaline pH which would be benign for most freshwater fish. In initial experiments with Tambaqui of intermediate size (30-50 g), we found that ammonia excretion rate was unchanged at pH 4, 5, 6, and 7, but elevated after 20-24 h at pH 8, exactly opposite the pattern seen in most teleosts. Subsequent experiments with large Tambaqui (150-300 g) demonstrated that only ammonia, and not urea excretion was increased at pH 8.0, and that the elevation was proportional to a general increase in MO 2 . There was an accompanying elevation in net acidic equivalent excretion and/or basic equivalent uptake which occurred mainly at the gills. Net Na + balance was little affected while Cl - balance became negative, implicating a disturbance of Cl - versus base exchange rather than Na + versus acid exchange. Arterial blood pH increased by 0.2 units at pH 8.0, reflecting combined metabolic and respiratory alkaloses. Most parameters recovered to control levels by 18-24 h after return to pH 6.0. With respect to large Tambaqui, we conclude that a physiology adapted to acidic pH performs inappropriately at moderately alkaline pH. In small Tambaqui (4-15 g), the responses were very different, with an initial inhibition of ammonia excretion rate at pH 8.0 followed by a subsequent restoration of control levels. Elevated ammonia excretion rate occurred only after return to pH 6.0. Furthermore, MO 2 , plasma cortisol, and branchial vH + ATPase activities all declined during pH 8.0 exposure in small Tambaqui, in contrast to the responses in larger fish. Overall, small Tambaqui appear to cope better at pH 8.0, a difference that may correlate with their natural history in the wild.

  5. Rainfall-runoff modeling of the Chapel Branch Creek Watershed using GIS-based rational and SCS-CN methods

    Treesearch

    Elizabeth N. Mihalik; Norm S. Levine; Devendra M. Amatya

    2008-01-01

    Chapel Branch Creek (CBC), located within the Town of Santee adjacent to Lake Marion in Orangeburg County, SC, is listed on the SC 2004 303(d) list of impaired waterbodies due to elevated levels of nitrogen (N), phosphorus (P), chlorophyll-a, and pH. In this study, using a GIS-based approach, two runoff modeling methods, the Rational and SCS-CN methods, have been...

  6. Heavy Metal Contaminated Soil Treatment: Conceptual Development

    DTIC Science & Technology

    1987-02-01

    utilized, particularly for trivalent chromium . ’Breakthrough did eventually occur, due to the coating of the crushed limestone, with only partial...characterizations indicated that several Army installations had elevated total metal concentrations in their soils and Chromium , Cadmium and Lead were the most...2,2000 F) were effective in reducing chromium levels below 1 mg/L in both boiling water and weak acid (pH 5; H2 SO 4) extractions. These extractions were

  7. Temperature Dependent Effects of Elevated CO2 on Shell Composition and Mechanical Properties of Hydroides elegans: Insights from a Multiple Stressor Experiment

    PubMed Central

    Chan, Vera B. S.; Thiyagarajan, Vengatesen; Lu, Xing Wen; Zhang, Tong; Shih, Kaimin

    2013-01-01

    The majority of marine benthic invertebrates protect themselves from predators by producing calcareous tubes or shells that have remarkable mechanical strength. An elevation of CO2 or a decrease in pH in the environment can reduce intracellular pH at the site of calcification and thus interfere with animal’s ability to accrete CaCO3. In nature, decreased pH in combination with stressors associated with climate change may result in the animal producing severely damaged and mechanically weak tubes. This study investigated how the interaction of environmental drivers affects production of calcareous tubes by the serpulid tubeworm, Hydroides elegans. In a factorial manipulative experiment, we analyzed the effects of pH (8.1 and 7.8), salinity (34 and 27‰), and temperature (23°C and 29°C) on the biomineral composition, ultrastructure and mechanical properties of the tubes. At an elevated temperature of 29°C, the tube calcite/aragonite ratio and Mg/Ca ratio were both increased, the Sr/Ca ratio was decreased, and the amorphous CaCO3 content was reduced. Notably, at elevated temperature with decreased pH and reduced salinity, the constructed tubes had a more compact ultrastructure with enhanced hardness and elasticity compared to decreased pH at ambient temperature. Thus, elevated temperature rescued the decreased pH-induced tube impairments. This indicates that tubeworms are likely to thrive in early subtropical summer climate. In the context of climate change, tubeworms could be resilient to the projected near-future decreased pH or salinity as long as surface seawater temperature rise at least by 4°C. PMID:24265732

  8. A prospective echocardiographic evaluation of pulmonary hypertension in chronic hemodialysis patients in the United States: prevalence and clinical significance

    PubMed Central

    Ramasubbu, Kumudha; Deswal, Anita; Herdejurgen, Cheryl; Aguilar, David; Frost, Adaani E

    2010-01-01

    Background Pulmonary hypertension (PH), a disease which carries substantial morbidity and mortality, has been reported to occur in 25%–45% of dialysis patients. No prospective evaluation of the prevalence or clinical significance of PH in chronic dialysis patients in the United States (US) has been undertaken. Methods Echocardiograms were performed prospectively in chronic hemodialysis patients prior to dialysis at a single dialysis center. PH was defined as a tricuspid regurgitant jet ≥2.5 m/s and “more severe PH” as ≥3.0 m/s. Clinical outcomes recovered were all-cause hospitalizations and death at 12 months. Results In a cohort of 90 patients, 42 patients (47%) met the definition of PH. Of those, 18 patients (20%) met the definition of more severe PH. At 12 months, mortality was significantly higher in patients with PH (26%) compared with patients without PH (6%). All-cause hospitalizations were similar in patients with PH and without PH. Echocardiographic findings suggesting impaired left ventricular function and elevated pulmonary capillary wedge pressure were significantly associated with PH. Conclusion This prospective cross-sectional study of a single dialysis unit suggests that PH may be present in nearly half of US dialysis patients and when present is associated with increased mortality. Echocardiographic findings demonstrate an association between elevated filling pressures, elevated pulmonary artery pressures, and higher mortality, suggesting that the PH may be secondary to diastolic dysfunction and compounded by volume overload. PMID:21042428

  9. Environmental salinity modulates the effects of elevated CO2 levels on juvenile hard-shell clams, Mercenaria mercenaria.

    PubMed

    Dickinson, Gary H; Matoo, Omera B; Tourek, Robert T; Sokolova, Inna M; Beniash, Elia

    2013-07-15

    Ocean acidification due to increasing atmospheric CO2 concentrations results in a decrease in seawater pH and shifts in the carbonate chemistry that can negatively affect marine organisms. Marine bivalves such as the hard-shell clam, Mercenaria mercenaria, serve as ecosystem engineers in estuaries and coastal zones of the western Atlantic and, as for many marine calcifiers, are sensitive to the impacts of ocean acidification. In estuaries, the effects of ocean acidification can be exacerbated by low buffering capacity of brackish waters, acidic inputs from freshwaters and land, and/or the negative effects of salinity on the physiology of organisms. We determined the interactive effects of 21 weeks of exposure to different levels of CO2 (~395, 800 and 1500 μatm corresponding to pH of 8.2, 8.1 and 7.7, respectively) and salinity (32 versus 16) on biomineralization, shell properties and energy metabolism of juvenile hard-shell clams. Low salinity had profound effects on survival, energy metabolism and biomineralization of hard-shell clams and modulated their responses to elevated PCO2. Negative effects of low salinity in juvenile clams were mostly due to the strongly elevated basal energy demand, indicating energy deficiency, that led to reduced growth, elevated mortality and impaired shell maintenance (evidenced by the extensive damage to the periostracum). The effects of elevated PCO2 on physiology and biomineralization of hard-shell clams were more complex. Elevated PCO2 (~800-1500 μatm) had no significant effects on standard metabolic rates (indicative of the basal energy demand), but affected growth and shell mechanical properties in juvenile clams. Moderate hypercapnia (~800 μatm PCO2) increased shell and tissue growth and reduced mortality of juvenile clams in high salinity exposures; however, these effects were abolished under the low salinity conditions or at high PCO2 (~1500 μatm). Mechanical properties of the shell (measured as microhardness and fracture toughness of the shells) were negatively affected by elevated CO2 alone or in combination with low salinity, which may have important implications for protection against predators or environmental stressors. Our data indicate that environmental salinity can strongly modulate responses to ocean acidification in hard-shell clams and thus should be taken into account when predicting the effects of ocean acidification on estuarine bivalves.

  10. Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae

    PubMed Central

    Waldbusser, George G.; Hales, Burke; Langdon, Chris J.; Haley, Brian A.; Schrader, Paul; Brunner, Elizabeth L.; Gray, Matthew W.; Miller, Cale A.; Gimenez, Iria; Hutchinson, Greg

    2015-01-01

    Ocean acidification (OA) is altering the chemistry of the world’s oceans at rates unparalleled in the past roughly 1 million years. Understanding the impacts of this rapid change in baseline carbonate chemistry on marine organisms needs a precise, mechanistic understanding of physiological responses to carbonate chemistry. Recent experimental work has shown shell development and growth in some bivalve larvae, have direct sensitivities to calcium carbonate saturation state that is not modulated through organismal acid-base chemistry. To understand different modes of action of OA on bivalve larvae, we experimentally tested how pH, PCO2, and saturation state independently affect shell growth and development, respiration rate, and initiation of feeding in Mytilus californianus embryos and larvae. We found, as documented in other bivalve larvae, that shell development and growth were affected by aragonite saturation state, and not by pH or PCO2. Respiration rate was elevated under very low pH (~7.4) with no change between pH of ~ 8.3 to ~7.8. Initiation of feeding appeared to be most sensitive to PCO2, and possibly minor response to pH under elevated PCO2. Although different components of physiology responded to different carbonate system variables, the inability to normally develop a shell due to lower saturation state precludes pH or PCO2 effects later in the life history. However, saturation state effects during early shell development will carry-over to later stages, where pH or PCO2 effects can compound OA effects on bivalve larvae. Our findings suggest OA may be a multi-stressor unto itself. Shell development and growth of the native mussel, M. californianus, was indistinguishable from the Mediterranean mussel, Mytilus galloprovincialis, collected from the southern U.S. Pacific coast, an area not subjected to seasonal upwelling. The concordance in responses suggests a fundamental OA bottleneck during development of the first shell material affected only by saturation state. PMID:26061095

  11. Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae.

    PubMed

    Waldbusser, George G; Hales, Burke; Langdon, Chris J; Haley, Brian A; Schrader, Paul; Brunner, Elizabeth L; Gray, Matthew W; Miller, Cale A; Gimenez, Iria; Hutchinson, Greg

    2015-01-01

    Ocean acidification (OA) is altering the chemistry of the world's oceans at rates unparalleled in the past roughly 1 million years. Understanding the impacts of this rapid change in baseline carbonate chemistry on marine organisms needs a precise, mechanistic understanding of physiological responses to carbonate chemistry. Recent experimental work has shown shell development and growth in some bivalve larvae, have direct sensitivities to calcium carbonate saturation state that is not modulated through organismal acid-base chemistry. To understand different modes of action of OA on bivalve larvae, we experimentally tested how pH, PCO2, and saturation state independently affect shell growth and development, respiration rate, and initiation of feeding in Mytilus californianus embryos and larvae. We found, as documented in other bivalve larvae, that shell development and growth were affected by aragonite saturation state, and not by pH or PCO2. Respiration rate was elevated under very low pH (~7.4) with no change between pH of ~ 8.3 to ~7.8. Initiation of feeding appeared to be most sensitive to PCO2, and possibly minor response to pH under elevated PCO2. Although different components of physiology responded to different carbonate system variables, the inability to normally develop a shell due to lower saturation state precludes pH or PCO2 effects later in the life history. However, saturation state effects during early shell development will carry-over to later stages, where pH or PCO2 effects can compound OA effects on bivalve larvae. Our findings suggest OA may be a multi-stressor unto itself. Shell development and growth of the native mussel, M. californianus, was indistinguishable from the Mediterranean mussel, Mytilus galloprovincialis, collected from the southern U.S. Pacific coast, an area not subjected to seasonal upwelling. The concordance in responses suggests a fundamental OA bottleneck during development of the first shell material affected only by saturation state.

  12. Elevated vaginal pH in the absence of current vaginal infection, still a challenging obstetrical problem.

    PubMed

    Hantoushzadeh, Sedigheh; Sheikh, Mahdi; Javadian, Pouya; Shariat, Mamak; Amini, Elaheh; Abdollahi, Alireza; Kashanian, Maryam

    2014-04-01

    To assess the association of vaginal pH ≥ 5 in the absence of vaginal infection with systemic inflammation and adverse pregnancy outcome. Four-hundred sixty pregnant women completed the study, upon enrollment Vaginal pH was measured for all women, maternal and umbilical sera were obtained for determining C-reactive protein (CRP) and uric acid levels. Umbilical blood was tested for gas parameters, 1 and 5 min Apgar scores, the need for neonatal resuscitation and neonatal intensive care unit (NICU) admission were recorded. Elevated vaginal pH was significantly associated with preterm birth (odds ratio (OR), 2.23; 95% confidence interval (CI), 1.04-4.76), emergency cesarean section (OR 2.57; 95% CI 1.32-5), neonatal resuscitation in the delivery room (OR 2.85; 95% CI 1.1-7.38), elevated cord base deficit (OR 8.01; 95% CI 1.61-39.81), low cord bicarbonate (OR 4.16, 95% CI 1.33-12.92) and NICU admission (OR 2.02; 95% CI 1.12-3.66). Increased vaginal pH was also significantly associated with maternal leukocytosis, hyperuricemia and elevated CRP levels in maternal and umbilical sera. Elevated vaginal pH in the absence of current vaginal infection still constitutes a risk for adverse pregnancy outcome which is mediated by systemic inflammatory response.

  13. Impact on sediments and water by release of copper from chalcopyrite bearing rock due to acidic mine drainage

    NASA Astrophysics Data System (ADS)

    Shukla, Anoop Kant; Pradhan, Manoj; Tiwari, Onkar Nath

    2018-04-01

    Mining activity causes transition of rock-mass from its original position in earth into open environment. The action of environmental elements such air, water, microorganisms leads to oxidation of minerals which constitute the rock. The oxidation of sulphide minerals in presence of moisture releases acidic mine discharge (AMD). The acidic nature of AMD causes leaching of metals from rock minerals. Dissolution of other minerals may occur upon reaction with AMD. Chalcopyrite (CuFeS2) undergoes oxidation in acidic condition releasing copper among other products. This study reveals contamination of copper in sediment samples and seepage water from the tailing dam of a large copper project in located in central India. Elevation was studied using GIS to ascertain to the topographic elevation of tailing dam area. It was located at relatively high altitude causing seepage to flow away from tailing dam. The seepage water from tailing dam was found to be acidic with mean pH value of 4.0 and elevated copper content. Similarly, sediments from seepage water flow displayed elevated copper concentration. The copper concentration in seepage water was found with a mean value of 10.73 mg/l. The sediments from seepage water flow also displayed elevated copper concentration with mean value of 26.92 g/kg. This indicates impact on sediments by release of copper due to acidic mine drainage.

  14. Carbonic anhydrase inhibitors modify intracellular pH transients and contractions of rat middle cerebral arteries during CO2/HCO3- fluctuations.

    PubMed

    Rasmussen, Jacob K; Boedtkjer, Ebbe

    2018-03-01

    The CO 2 /HCO 3 - buffer minimizes pH changes in response to acid-base loads, HCO 3 - provides substrate for Na + ,HCO 3 - -cotransporters and Cl - /HCO 3 - -exchangers, and H + and HCO 3 - modify vasomotor responses during acid-base disturbances. We show here that rat middle cerebral arteries express cytosolic, mitochondrial, extracellular, and secreted carbonic anhydrase isoforms that catalyze equilibration of the CO 2 /HCO 3 - buffer. Switching from CO 2 /HCO 3 - -free to CO 2 /HCO 3 - -containing extracellular solution results in initial intracellular acidification due to hydration of CO 2 followed by gradual alkalinization due to cellular HCO 3 - uptake. Carbonic anhydrase inhibition decelerates the initial acidification and attenuates the associated transient vasoconstriction without affecting intracellular pH or artery tone at steady-state. Na + ,HCO 3 - -cotransport and Na + /H + -exchange activity after NH 4 + -prepulse-induced intracellular acidification are unaffected by carbonic anhydrase inhibition. Extracellular surface pH transients induced by transmembrane NH 3 flux are evident under CO 2 /HCO 3 - -free conditions but absent when the buffer capacity and apparent H + mobility increase in the presence of CO 2 /HCO 3 - even after the inhibition of carbonic anhydrases. We conclude that (a) intracellular carbonic anhydrase activity accentuates pH transients and vasoconstriction in response to acute elevations of pCO 2 , (b) CO 2 /HCO 3 - minimizes extracellular surface pH transients without requiring carbonic anhydrase activity, and (c) carbonic anhydrases are not rate limiting for acid-base transport across cell membranes during recovery from intracellular acidification.

  15. Impact of Thermal Degradation of Cyanidin-3-O-Glucoside of Haskap Berry on Cytotoxicity of Hepatocellular Carcinoma HepG2 and Breast Cancer MDA-MB-231 Cells

    PubMed Central

    Pace, Eric; Jiang, Yuanyuan; Clemens, Amy; Crossman, Tennille

    2018-01-01

    Cyanidin-3-O-glucoside (C3G), the predominant anthocyanin in haskap berries (Lonicera caerulea L.), possesses antioxidant and many other biological activities. This study investigated the impact of temperature and pH on the degradation of the C3G-rich haskap fraction. The effect of the thermal degradation products on the viability of hepatocellular carcinoma HepG2 and breast cancer MDA-MB-231 cells was also studied in vitro. Using column chromatography, the C3G-rich fraction was isolated from acetone extracts of haskap berries. The C3G stability in these fractions was studied under elevated temperatures (70 °C and 90 °C) at three different pH values (2.5, 4, and 7) by monitoring the concentration of C3G and its major degradation products, protocatechuic acid (PCA) and phloroglucinaldehyde (PGA), using liquid chromatography mass spectrometry. Significant degradation of C3G was observed at elevated temperatures and at neutral pH. Conversely, the PCA and PGA concentration increased at higher pH and temperature. Similar to C3G, neutral pH also has a prominent effect on the degradation of PGA, which is further accelerated by heating. The C3G-rich fraction exhibited dose-dependent inhibitory effects on cell metabolic activity when the HepG2 cells were exposed for 48 h. Interestingly, PGA but not PCA exhibited cytotoxic effects against both MDA-MB-231 and HepG2 cells. The results suggest that thermal food processing of haskap could influence its biological properties due to the degradation of C3G. PMID:29382057

  16. Impact of Thermal Degradation of Cyanidin-3-O-Glucoside of Haskap Berry on Cytotoxicity of Hepatocellular Carcinoma HepG2 and Breast Cancer MDA-MB-231 Cells.

    PubMed

    Pace, Eric; Jiang, Yuanyuan; Clemens, Amy; Crossman, Tennille; Rupasinghe, H P Vasantha

    2018-01-27

    Cyanidin-3 -O -glucoside (C3G), the predominant anthocyanin in haskap berries ( Lonicera caerulea L.), possesses antioxidant and many other biological activities. This study investigated the impact of temperature and pH on the degradation of the C3G-rich haskap fraction. The effect of the thermal degradation products on the viability of hepatocellular carcinoma HepG2 and breast cancer MDA-MB-231 cells was also studied in vitro. Using column chromatography, the C3G-rich fraction was isolated from acetone extracts of haskap berries. The C3G stability in these fractions was studied under elevated temperatures (70 °C and 90 °C) at three different pH values (2.5, 4, and 7) by monitoring the concentration of C3G and its major degradation products, protocatechuic acid (PCA) and phloroglucinaldehyde (PGA), using liquid chromatography mass spectrometry. Significant degradation of C3G was observed at elevated temperatures and at neutral pH. Conversely, the PCA and PGA concentration increased at higher pH and temperature. Similar to C3G, neutral pH also has a prominent effect on the degradation of PGA, which is further accelerated by heating. The C3G-rich fraction exhibited dose-dependent inhibitory effects on cell metabolic activity when the HepG2 cells were exposed for 48 h. Interestingly, PGA but not PCA exhibited cytotoxic effects against both MDA-MB-231 and HepG2 cells. The results suggest that thermal food processing of haskap could influence its biological properties due to the degradation of C3G.

  17. A marine secondary producer respires and feeds more in a high CO2 ocean.

    PubMed

    Li, Wei; Gao, Kunshan

    2012-04-01

    Climate change mediates marine chemical and physical environments and therefore influences marine organisms. While increasing atmospheric CO(2) level and associated ocean acidification has been predicted to stimulate marine primary productivity and may affect community structure, the processes that impact food chain and biological CO(2) pump are less documented. We hypothesized that copepods, as the secondary marine producer, may respond to future changes in seawater carbonate chemistry associated with ocean acidification due to increasing atmospheric CO(2) concentration. Here, we show that the copepod, Centropages tenuiremis, was able to perceive the chemical changes in seawater induced under elevated CO(2) concentration (>1700 μatm, pH<7.60) with avoidance strategy. The copepod's respiration increased at the elevated CO(2) (1000 μatm), associated acidity (pH 7.83) and its feeding rates also increased correspondingly, except for the initial acclimating period, when it fed less. Our results imply that marine secondary producers increase their respiration and feeding rate in response to ocean acidification to balance the energy cost against increased acidity and CO(2) concentration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Foraminiferal calcification and CO2

    NASA Astrophysics Data System (ADS)

    Nooijer, L. D.; Toyofuku, T.; Reichart, G. J.

    2017-12-01

    Ongoing burning of fossil fuels increases atmospheric CO2, elevates marine dissolved CO2 and decreases pH and the saturation state with respect to calcium carbonate. Intuitively this should decrease the ability of CaCO3-producing organisms to build their skeletons and shells. Whereas on geological time scales weathering and carbonate deposition removes carbon from the geo-biosphere, on time scales up to thousands of years, carbonate precipitation increases pCO2 because of the associated shift in seawater carbon speciation. Hence reduced calcification provides a potentially important negative feedback on increased pCO2 levels. Here we show that foraminifera form their calcium carbonate by active proton pumping. This elevates the internal pH and acidifies the direct foraminiferal surrounding. This also creates a strong pCO2 gradient and facilitates the uptake of DIC in the form of carbon dioxide. This finding uncouples saturation state from calcification and predicts that the added carbon due to ocean acidification will promote calcification by these organisms. This unknown effect could add substantially to atmospheric pCO2 levels, and might need to be accounted for in future mitigation strategies.

  19. Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses

    PubMed Central

    2013-01-01

    Background Nonspecific (nonproductive) binding (adsorption) of cellulase by lignin has been identified as a key barrier to reduce cellulase loading for economical sugar and biofuel production from lignocellulosic biomass. Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL) is a relatively new process, but demonstrated robust performance for sugar and biofuel production from woody biomass especially softwoods in terms of yields and energy efficiencies. This study demonstrated the role of lignin sulfonation in enhancing enzymatic saccharification of lignocelluloses – lignosulfonate from SPORL can improve enzymatic hydrolysis of lignocelluloses, contrary to the conventional belief that lignin inhibits enzymatic hydrolysis due to nonspecific binding of cellulase. Results The study found that lignosulfonate from SPORL pretreatment and from a commercial source inhibits enzymatic hydrolysis of pure cellulosic substrates at low concentrations due to nonspecific binding of cellulase. Surprisingly, the reduction in enzymatic saccharification efficiency of a lignocellulosic substrate was fully recovered as the concentrations of these two lignosulfonates increased. We hypothesize that lignosulfonate serves as a surfactant to enhance enzymatic hydrolysis at higher concentrations and that this enhancement offsets its inhibitive effect from nonspecific binding of cellulase, when lignosulfonate is applied to lignocellulosic solid substrates. Lignosulfonate can block nonspecific binding of cellulase by bound lignin on the solid substrates, in the same manner as a nonionic surfactant, to significantly enhance enzymatic saccharification. This enhancement is linearly proportional to the amount of lignosulfonate applied which is very important to practical applications. For a SPORL-pretreated lodgepole pine solid, 90% cellulose saccharification was achieved at cellulase loading of 13 FPU/g glucan with the application of its corresponding pretreatment hydrolysate coupled with increasing hydrolysis pH to above 5.5 compared with only 51% for the control run without lignosulfonate at pH 5.0. The pH-induced lignin surface modification at pH 5.5 further reduced nonspecific binding of cellulase by lignosulfonate. Conclusions The results reported in this study suggest significant advantages for SPORL-pretreatment in terms of reducing water usage and enzyme dosage, and simplifying process integration, i.e., it should eliminate washing of SPORL solid fraction for direct simultaneous enzymatic saccharification and combined fermentation of enzymatic and pretreatment hydrolysates (SSCombF). Elevated pH 5.5 or higher, rather than the commonly believed optimal and widely practiced pH 4.8-5.0, should be used in conducting enzymatic saccharification of lignocelluloses. PMID:23356796

  20. Soil pH determines fungal diversity along an elevation gradient in Southwestern China.

    PubMed

    Liu, Dan; Liu, Guohua; Chen, Li; Wang, Juntao; Zhang, Limei

    2018-01-03

    Fungi play important roles in ecosystem processes, and the elevational pattern of fungal diversity is still unclear. Here, we examined the diversity of fungi along a 1,000 m elevation gradient on Mount Nadu, Southwestern China. We used MiSeq sequencing to obtain fungal sequences that were clustered into operational taxonomic units (OTUs) and to measure the fungal composition and diversity. Though the species richness and phylogenetic diversity of the fungal community did not exhibit significant trends with increasing altitude, they were significantly lower at mid-altitudinal sites than at the base. The Bray-Curtis distance clustering also showed that the fungal communities varied significantly with altitude. A distance-based linear model multivariate analysis (DistLM) identified that soil pH dominated the explanatory power of the species richness (23.72%), phylogenetic diversity (24.25%) and beta diversity (28.10%) of the fungal community. Moreover, the species richness and phylogenetic diversity of the fungal community increased linearly with increasing soil pH (P<0.05). Our study provides evidence that pH is an important predictor of soil fungal diversity along elevation gradients in Southwestern China.

  1. The association between a low urine pH and the components of metabolic syndrome in the Korean population: Findings based on the 2010 Korea National health and nutrition examination survey

    PubMed Central

    Cho, Young Hye; Lee, Sang Yeoup; Jeong, Dong Wook; Choi, Eun Jung; Nam, Kyung Jee; Kim, Yun Jin; Lee, Jeong Gyu; Yi, Yu Hyone; Tak, Young Jin; Cho, Byung Mann; Lee, Soo Bong; Lee, Ka Young

    2014-01-01

    Background: Low urine pH is related to obesity and insulin resistance, which are components of metabolic syndrome (MS). The aim of this study was to identify the relation between a low urine pH and MS after controlled for other covariates including demographic and lifestyle factors in adult Korean population. Materials and Methods: We analyzed data from the 2010 Korea National Health and Nutrition Examination Survey, a cross-sectional and nationally representative survey and 1960 men and 2702 women were included in this study. Study subjects were divided into the group with urine pH <5.5 and the group with urine pH ≥5.5 refer to literature. We then evaluated the association between low urine pH and MS. Results: After adjusting for age, sex, smoking status, drinking status, regular exercise, and blood urea nitrogen level, the odds ratio (OR) for the presence of MS in the group with urine pH <5.5 was 1.350 (95% confidence interval [95% CI]: 1.158-1.573) using the American Heart Association/National Heart, Lung, and Blood Institute criteria or 1.304 (95% CI: 1.082-1.572) using the International Diabetes Federation criteria. Among MS components, elevated fasting glucose (OR: 1.231, 95% CI: 1.058-1.433, P = 0.007) and elevated triglyceride (TG) (OR: 1.389, 95% CI: 1.189-1.623, P < 0.001) showed a significantly high OR. Conclusion: The findings confirmed that low urine pH is associated with MS in the Korean population. Among MS components, elevated fasting glucose and elevated TG showed a significantly high OR. PMID:25364357

  2. Differential modification of seawater carbonate chemistry by major coral reef benthic communities

    NASA Astrophysics Data System (ADS)

    Page, Heather N.; Andersson, Andreas J.; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Lebrato, Mario; Yeakel, Kiley; Davidson, Charlie; D'Angelo, Sydney; Bahr, Keisha D.

    2016-12-01

    Ocean acidification (OA) resulting from uptake of anthropogenic CO2 may negatively affect coral reefs by causing decreased rates of biogenic calcification and increased rates of CaCO3 dissolution and bioerosion. However, in addition to the gradual decrease in seawater pH and Ω a resulting from anthropogenic activities, seawater carbonate chemistry in these coastal ecosystems is also strongly influenced by the benthic metabolism which can either exacerbate or alleviate OA through net community calcification (NCC = calcification - CaCO3 dissolution) and net community organic carbon production (NCP = primary production - respiration). Therefore, to project OA on coral reefs, it is necessary to understand how different benthic communities modify the reef seawater carbonate chemistry. In this study, we used flow-through mesocosms to investigate the modification of seawater carbonate chemistry by benthic metabolism of five distinct reef communities [carbonate sand, crustose coralline algae (CCA), corals, fleshy algae, and a mixed community] under ambient and acidified conditions during summer and winter. The results showed that different communities had distinct influences on carbonate chemistry related to the relative importance of NCC and NCP. Sand, CCA, and corals exerted relatively small influences on seawater pH and Ω a over diel cycles due to closely balanced NCC and NCP rates, whereas fleshy algae and mixed communities strongly elevated daytime pH and Ω a due to high NCP rates. Interestingly, the influence on seawater pH at night was relatively small and quite similar across communities. NCC and NCP rates were not significantly affected by short-term acidification, but larger diel variability in pH was observed due to decreased seawater buffering capacity. Except for corals, increased net dissolution was observed at night for all communities under OA, partially buffering against nighttime acidification. Thus, algal-dominated areas of coral reefs and increased net CaCO3 dissolution may partially counteract reductions in seawater pH associated with anthropogenic OA at the local scale.

  3. Pulmonary hypertension in chronic obstructive pulmonary disease.

    PubMed

    Weitzenblum, Emmanuel; Chaouat, Ari; Kessler, Romain

    2013-01-01

    Pulmonary hypertension (PH) is a common complication of advanced chronic obstructive pulmonary disease (COPD) and is defined by a mean pulmonary artery pressure (PAP) ≥ 25 mm Hg at rest in the supine position. Owing to its frequency, COPD is a common cause of PH; in fact, it is the second most frequent cause of PH, just after left heart diseases. PH is due to the elevation of pulmonary vascular resistance, which is caused by functional and morphological factors, chronic alveolar hypoxia being the most important. In COPD PH is generally mild to moderate, PAP usually ranging between 25 and 35 mm Hg in a stable state of the disease. A small proportion of COPD patients may present a severe or "disproportionate" PH with a resting PAP > 35-40 mm Hg. The prognosis is particularly poor in these patients. In COPD PH worsens during exercise, sleep and severe exacerbations of the disease, and these acute increases in afterload may favour the development of right heart failure. The diagnosis of PH relies on Doppler echocardiography, and right heart catheterization is needed in a minority of patients. Treatment of PH in COPD relies on long-term oxygen therapy (≥ 16h/day) which generally stabilizes or at least attenuates the progression of PH. Vasodilator drugs, which are commonly used in idiopathic pulmonary arterial hypertension, have rarely been used in COPD, and we lack studies in this field. Patients with severe PH should be referred to a specialist PH centre where the possibility of inclusion in a controlled clinical trial should be considered.

  4. Nanoparticle titanium dioxide aqueous interfacial energy can be modified to control phase stability, coarsening, and morphology

    NASA Astrophysics Data System (ADS)

    Finnegan, Michael Patrick

    The effect of solution chemistry on the phase stability, coarsening kinetics and morphology of titanium dioxide (TiO2) nanoparticles is investigated in order to attain efficient production pathways to desired nano-structures with optimal properties. To obtain sample, TiO2 was synthesized via hydrolysis of titanium isopropoxide producing an 85% anatase/15% brookite mixture. The titania was hydrothermally heated in an array of temperatures and pH values for various times. There are distinct phase stability fields for nanoscale titania based on pH alone due to slight interface charging behavior differences among the polymorphs. The mixture transforms to rutile below the pH of zero point of charge (ZPC) and remains anatase above the ZPC. This phenomenon is partially reversible. The solution chemistry also dictates the hydrothermal coarsening mechanism of the anatase polymorph. Ostwald ripening (OR) takes place in basic pH where titania solubility is elevated relative to neutral pH where lower solubility prevents rapid OR but allows for coarsening via oriented attachment (OA) of nanoparticles. This OA event can alter the symmetry of anatase causing unexpected and perhaps technically useful morphologies such as straight and curved nanorods during coarsening.

  5. Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2

    NASA Astrophysics Data System (ADS)

    Bunse, Carina; Lundin, Daniel; Karlsson, Christofer M. G.; Akram, Neelam; Vila-Costa, Maria; Palovaara, Joakim; Svensson, Lovisa; Holmfeldt, Karin; González, José M.; Calvo, Eva; Pelejero, Carles; Marrasé, Cèlia; Dopson, Mark; Gasol, Josep M.; Pinhassi, Jarone

    2016-05-01

    Human-induced ocean acidification impacts marine life. Marine bacteria are major drivers of biogeochemical nutrient cycles and energy fluxes; hence, understanding their performance under projected climate change scenarios is crucial for assessing ecosystem functioning. Whereas genetic and physiological responses of phytoplankton to ocean acidification are being disentangled, corresponding functional responses of bacterioplankton to pH reduction from elevated CO2 are essentially unknown. Here we show, from metatranscriptome analyses of a phytoplankton bloom mesocosm experiment, that marine bacteria responded to lowered pH by enhancing the expression of genes encoding proton pumps, such as respiration complexes, proteorhodopsin and membrane transporters. Moreover, taxonomic transcript analysis showed that distinct bacterial groups expressed different pH homeostasis genes in response to elevated CO2. These responses were substantial for numerous pH homeostasis genes under low-chlorophyll conditions (chlorophyll a <2.5 μg l-1) however, the changes in gene expression under high-chlorophyll conditions (chlorophyll a >20 μg l-1) were low. Given that proton expulsion through pH homeostasis mechanisms is energetically costly, these findings suggest that bacterioplankton adaptation to ocean acidification could have long-term effects on the economy of ocean ecosystems.

  6. Programmatic Life Cycle Environmental Assessment for Smoke/Obscurants. Volume 2. Red, White, and Plasticized White Phosphorus

    DTIC Science & Technology

    1983-07-01

    data on toxic effects of unreacted P4 on soil systems are available. (3) Aquatic systems . Aquatic toxicity data on WP are presented in section IV.f...elevated phosphorus levels in aquatic systems will cause adverse effects . Phosphoric acids may lower water pH in systems with low water hardness. A pH...eutrophication of the system , will cause detrimental effects on the fish population. Fish kills can occur over the winter due to low oxygen levels. The

  7. Electrical Properties of Materials for Elevated Temperature Resistance Strain Gage Application. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1987-01-01

    The objective was to study the electrical resistances of materials that are potentially useful as resistance strain gages at 1000 C. Transition metal carbides and nitrides, boron carbide and silicon carbide were selected for the experimental phase of this research. Due to their low temperature coefficient of resistance and good stability, TiC, ZrC, B sub 4 C and beta-SiC are suggested as good candidates for high temperature resistance strain gage applications.

  8. Convergence and contrast in the community structure of Bacteria, Fungi and Archaea along a tropical elevation-climate gradient.

    PubMed

    Peay, Kabir G; von Sperber, Christian; Cardarelli, Emily; Toju, Hirokazu; Francis, Christopher A; Chadwick, Oliver A; Vitousek, Peter M

    2017-05-01

    Changes in species richness along climatological gradients have been instrumental in developing theories about the general drivers of biodiversity. Previous studies on microbial communities along climate gradients on mountainsides have revealed positive, negative and neutral richness trends. We examined changes in richness and composition of Fungi, Bacteria and Archaea in soil along a 50-1000 m elevation, 280-3280 mm/yr precipitation gradient in Hawai'i. Soil properties and their drivers are exceptionally well understood along this gradient. All three microbial groups responded strongly to the gradient, with community ordinations being similar along axes of environmental conditions (pH, rainfall) and resource availability (nitrogen, phosphorus). However, the form of the richness-climate relationship varied between Fungi (positive linear), Bacteria (unimodal) and Archaea (negative linear). These differences were related to resource-ecology and limiting conditions for each group, with fungal richness increasing most strongly with soil carbon, ammonia-oxidizing Archaea increasing with nitrogen mineralization rate, and Bacteria increasing with both carbon and pH. Reponses to the gradient became increasingly variable at finer taxonomic scales and within any taxonomic group most individual OTUs occurred in narrow climate-elevation ranges. These results show that microbial responses to climate gradients are heterogeneous due to complexity of underlying environmental changes and the diverse ecologies of microbial taxa. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Contrasting elevational diversity patterns for soil bacteria between two ecosystems divided by the treeline.

    PubMed

    Li, Guixiang; Xu, Guorui; Shen, Congcong; Tang, Yong; Zhang, Yuxin; Ma, Keming

    2016-11-01

    Above- and below-ground organisms are closely linked, but how elevational distribution pattern of soil microbes shifting across the treeline still remains unknown. Sampling of 140 plots with transect, we herein investigated soil bacterial distribution pattern from a temperate forest up to a subalpine meadow along an elevational gradient using Illumina sequencing. Our results revealed distinct elevational patterns of bacterial diversity above and below the treeline in responding to changes in soil conditions: a hollow elevational pattern in the forest (correlated with soil temperature, pH, and C:N ratio) and a significantly decreasing pattern in the meadow (correlated with soil pH, and available phosphorus). The bacterial community structure was also distinct between the forest and meadow, relating to soil pH in the forest and soil temperature in the meadow. Soil bacteria did not follow the distribution pattern of herb diversity, but bacterial community structure could be predicted by herb community composition. These results suggest that plant communities have an important influence on soil characteristics, and thus change the elevational distribution of soil bacteria. Our findings are useful for future assessments of climate change impacts on microbial community.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohnen, V.A.; Aneja, V.; Bailey, B.

    The report summarizes the results of the four year field measurement and data analysis program of MCCP. The MCCP is sponsored by the U.S. Environmental Protection Agency as part of the joint U.S. Forest Service-EPA Spruce-Fir Research Cooperative. The objectives of the project have been met and the result is an assessment of principal atmospheric constituents as they impact the high elevation forests of the Eastern U.S. Deposition of SO4(-2), NO3(-), H(+), and NH(4+) in cloud water represents a significant input to forest canopies with elevations greater than 1000m. Cloud water deposition can exceed wet (rain) deposition and may bemore » the dominant process for input of sulfate and nitrate compounds during the growing season in high elevation forests frequently exposed to clouds. Cloud water pH concentrations may be as much as 0.6pH units lower than pH in rain. SO(4+) and NO3(-) concentrations are also higher in cloud water than in precipitation. Ozone data reveals that significant differences exist between ozone concentrations at high elevation and low elevation sites. The primary effect of the difference is to produce higher mean ozone concentrations and longer episodes at the higher elevation sites.« less

  11. Variation in bull beef quality due to ultimate muscle pH is correlated to endopeptidase and small heat shock protein levels.

    PubMed

    Pulford, D J; Dobbie, P; Fraga Vazquez, S; Fraser-Smith, E; Frost, D A; Morris, C A

    2009-09-01

    This study set out to determine if ultimate pH (pH(u)) affected the performance of intracellular small heat shock protein and endopeptidase dynamics in muscle during beef ageing. Longissimus dorsi muscles from 39 Angus or Limousin×Angus bulls were examined to see if pH(u) achieved at 22h post mortem (rigor) affected tenderness and water holding capacity of beef. Samples were segregated into three pH(u) groups termed high (pH>6.3), intermediate (5.73 days post mortem for intermediate pH(u) beef. High levels of alpha β-crystallin (aβC) at 22h post mortem coincided with delayed muscle protein degradation for low pH(u) beef. Our results support the hypothesis that aβC shields myofibrils and buffers against endopeptidase degradation of beef structure during ageing.

  12. Inner-Helmholtz potential development at the hematite (α-Fe 2O 3) (0 0 1) surface

    NASA Astrophysics Data System (ADS)

    Boily, Jean-François; Chatman, Shawn; Rosso, Kevin M.

    2011-08-01

    Electric potentials of the (0 0 1) surface of hematite were measured as a function of pH and ionic strength in solutions of sodium nitrate and oxalic acid using the single-crystal electrode approach. The surface is predominantly charge-neutral in the pH 4-14 range, and develops a positive surface potential below pH 4 due to protonation of μ-OH 0 sites (p K1,1,0,int = -1.32). This site is resilient to deprotonation up to at least pH 14 (-p K-1,1,0,int ≫ 19). The associated Stern layer capacitance of 0.31-0.73 F/m 2 is smaller than typical values of powders, and possibly arises from a lower degree of surface solvation. Acid-promoted dissolution under elevated concentrations of HNO 3 etches the (0 0 1) surface, yielding a convoluted surface populated by -OH20.5+ sites. The resulting surface potential was therefore larger under these conditions than in the absence of dissolution. Oxalate ions also promoted (0 0 1) dissolution. Associated electric potentials were strongly negative, with values as large as -0.5 V, possibly from metal-bonded interactions with oxalate. The hematite surface can also acquire negative potentials in the pH 7-11 range due to surface complexation and/or precipitation of iron species (0.0038 Fe/nm 2) produced from acidic conditions. Oxalate-bearing systems also result in negative potentials in the same pH range, and may include ferric-oxalate surface complexes and/or surface precipitates. All measurements can be modeled by a thermodynamic model that can be used to predict inner-Helmholtz potentials of hematite surfaces.

  13. Coralline algae elevate pH at the site of calcification under ocean acidification.

    PubMed

    Cornwall, Christopher E; Comeau, Steeve; McCulloch, Malcolm T

    2017-10-01

    Coralline algae provide important ecosystem services but are susceptible to the impacts of ocean acidification. However, the mechanisms are uncertain, and the magnitude is species specific. Here, we assess whether species-specific responses to ocean acidification of coralline algae are related to differences in pH at the site of calcification within the calcifying fluid/medium (pH cf ) using δ 11 B as a proxy. Declines in δ 11 B for all three species are consistent with shifts in δ 11 B expected if B(OH) 4 - was incorporated during precipitation. In particular, the δ 11 B ratio in Amphiroa anceps was too low to allow for reasonable pH cf values if B(OH) 3 rather than B(OH) 4 - was directly incorporated from the calcifying fluid. This points towards δ 11 B being a reliable proxy for pH cf for coralline algal calcite and that if B(OH) 3 is present in detectable proportions, it can be attributed to secondary postincorporation transformation of B(OH) 4 - . We thus show that pH cf is elevated during calcification and that the extent is species specific. The net calcification of two species of coralline algae (Sporolithon durum, and Amphiroa anceps) declined under elevated CO 2 , as did their pH cf . Neogoniolithon sp. had the highest pH cf , and most constant calcification rates, with the decrease in pH cf being ¼ that of seawater pH in the treatments, demonstrating a control of coralline algae on carbonate chemistry at their site of calcification. The discovery that coralline algae upregulate pH cf under ocean acidification is physiologically important and should be included in future models involving calcification. © 2017 John Wiley & Sons Ltd.

  14. Temperature and pH effects on feeding and growth of Antarctic krill

    NASA Astrophysics Data System (ADS)

    Saba, G.; Bockus, A.; Fantasia, R. L.; Shaw, C.; Sugla, M.; Seibel, B.

    2016-02-01

    Rapid warming in the Western Antarctic Peninsula (WAP) region is occurring, and is associated with an overall decline in primary, secondary, and higher trophic levels, including Antarctic krill (Euphausia superba), a key species in Antarctic food webs. Additionally, there are predictions that by the end of this century the Southern Ocean will be one of the first regions to be affected by seawater chemistry changes associated with enhanced CO2. Ocean acidification and warming may act synergistically to impair animal performance, which may negatively impact Antarctic krill. We assessed the effects of temperature (ambient temperature, ambient +3 degrees C) and pH (Experiment 1 = 8.0, 7.7; Experiment 2 = 8.0, 7.5, 7.1) on juvenile Antarctic krill feeding and growth (growth increment and intermolt period) during incubation experiments at Palmer Station, Antarctica. Food intake was lower in krill exposed to reduced pH. Krill intermolt period (IMP) was significantly lower in the elevated temperature treatments (16.9 days) compared to those at 0 degrees (22.8 days). Within the elevated temperature treatment, minor increases in IMP occurred in krill exposed reduced pH. Growth increment (GI) was lower with decreased pH at the first molt, and this was exacerbated at elevated temperature. However, differences in GI were eliminated between the first and second molts suggesting potential ability of Antarctic krill to acclimate to changes in temperature and pH. Reductions in juvenile krill growth and feeding under elevated temperature and reduced pH are likely caused by higher demands for internal acid-base regulation or a metabolic suppression. However, the subtlety of these feeding and growth responses leaves an open question as to how krill populations will tolerate prolonged future climate change in the Antarctic.

  15. Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure.

    PubMed

    Guo, Xuejun; Wu, Zhijun; He, Mengchang; Meng, Xiaoguang; Jin, Xin; Qiu, Nan; Zhang, Jing

    2014-07-15

    Antimony is detected in soil and water with elevated concentration due to a variety of industrial applications and mining activities. Though antimony is classified as a pollutant of priority interest by the United States Environmental Protection Agency (USEPA) and Europe Union (EU), very little is known about its environmental behavior and adsorption mechanism. In this study, the adsorption behaviors and surface structure of antimony (III/V) on iron oxides were investigated using batch adsorption techniques, surface complexation modeling (SCM), X-ray photon spectroscopy (XPS) and extended X-ray absorption fine structure spectroscopy (EXAFS). The adsorption isotherms and edges indicated that the affinity of Sb(V) and Sb(III) toward the iron oxides depended on the Sb species, solution pH, and the characteristics of iron oxides. Sb(V) adsorption was favored at acidic pH and decreased dramatically with increasing pH, while Sb(III) adsorption was constant over a broad pH range. When pH is higher than 7, Sb(III) adsorption by goethite and hydrous ferric oxide (HFO) was greater than Sb(V). EXAFS analysis indicated that the majority of Sb(III), either adsorbed onto HFO or co-precipitated by FeCl3, was oxidized into Sb(V) probably due to the involvement of O2 in the long duration of sample preservation. Only one Sb-Fe subshell was filtered in the EXAFS spectra of antimony adsorption onto HFO, with the coordination number of 1.0-1.9 attributed to bidentate mononuclear edge-sharing ((2)E) between Sb and HFO. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Acidic pH stimulates the production of the angiogenic CXC chemokine, CXCL8 (interleukin-8), in human adult mesenchymal stem cells via the extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and NF-kappaB pathways.

    PubMed

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2008-07-01

    Blood vessel injury results in limited oxygen tension and diffusion leading to hypoxia, increased anaerobic metabolism, and elevated production of acidic metabolites that cannot be easily removed due to the reduced blood flow. Therefore, an acidic extracellular pH occurs in the local microenvironment of disrupted bone. The potential role of acidic pH and glu-leu-arg (ELR(+)) CXC chemokines in early events in bone repair was studied in human mesenchymal stem cells (hMSCs) treated with medium of decreasing pH (7.4, 7.0, 6.7, and 6.4). The cells showed a reciprocal increase in CXCL8 (interleukin-8, IL-8) mRNA levels as extracellular pH decreased. At pH 6.4, CXCL8 mRNA was induced >60x in comparison to levels at pH 7.4. hMSCs treated with osteogenic medium (OGM) also showed an increase in CXCL8 mRNA with decreasing pH; although, at a lower level than that seen in cells grown in non-OGM. CXCL8 protein was secreted into the medium at all pHs with maximal induction at pH 6.7. Inhibition of the G-protein-coupled receptor alpha, G(alphai), suppressed CXCL8 levels in response to acidic pH; whereas phospholipase C inhibition had no effect on CXCL8. The use of specific mitogen-activated protein kinase (MAPK) signal transduction inhibitors indicated that the pH-dependent increase in CXCL8 mRNA is due to activation of ERK and p38 pathways. The JNK pathway was not involved. NF-kappaB inhibition resulted in a decrease in CXCL8 levels in hMSCs grown in non-OGM. However, OGM-differentiated hMSCs showed an increase in CXCL8 levels when treated with the NF-kappaB inhibitor PDTC, a pyrrolidine derivative of dithiocarbamate. 2008 Wiley-Liss, Inc.

  17. Strategies for regulation of hemolymph pH in acidic and alkaline water by the larval mosquito Aedes aegypti (L.) (Diptera; Culicidae).

    PubMed

    Clark, Thomas M; Vieira, Marcus A L; Huegel, Kara L; Flury, Dawn; Carper, Melissa

    2007-12-01

    The responses of larval Aedes aegypti to media of pH 4, 7 and 11 provide evidence for pH regulatory strategies. Drinking rates in pH 4 media were elevated 3- to 5-fold above those observed in pH 7 or 11. Total body water was elevated during acute exposure to acidic media. During chronic exposure, total body water was decreased and Malpighian tubule mitochondrial luminosity, quantified using Mitotracker Green FM, increased. Malpighian tubule secretion rates and energy demands thus appear to increase dramatically during acid exposure. In alkaline media, drinking rates were quite low. Larvae in pH 11 media excreted net acid (0.12 nequiv H(+) g(-1) h(-1)) and the pH indicators azolitmin and bromothymol blue revealed that the rectal lumen is acidic in vivo at all ambient pH values. The anal papillae (AP) were found to be highly permeant to acid-base equivalents. Ambient pH influenced the length, and the mass-specific length, of the AP in the presence of NaCl (59.9 mmol l(-1)). In contrast, the length and mass-specific length of AP were not influenced by ambient pH in low NaCl conditions. Mitochondrial luminosity was reduced in AP of larvae reared in acidic media, and was not elevated in alkaline media, relative to that of larvae reared in neutral media. These data suggest that the AP may compromise acid-base balance in acidic media, and may also be an important site of trade-offs between H(+) homeostasis and NaCl uptake in dilute, acidic media.

  18. Anti-hypertensive treatment in pheochromocytoma and paraganglioma: current management and therapeutic features.

    PubMed

    Mazza, Alberto; Armigliato, Michela; Marzola, Maria Cristina; Schiavon, Laura; Montemurro, Domenico; Vescovo, Giorgio; Zuin, Marco; Chondrogiannis, Sotirios; Ravenni, Roberta; Opocher, Giuseppe; Colletti, Patrick M; Rubello, Domenico

    2014-04-01

    Pheochromocytoma (PH) and paraganglioma (PG) are neuroendocrine neoplasms arising from chromaffin cells of the adrenal medulla and the sympathetic ganglia, respectively. Although are unusual cause of hypertension (HT) accounting for at most 0.1-0.2 % of cases, they may lead to severe and potentially lethal hypertensive crisis due to the effects of the released catecholamines. However, both PH and PG may be asymptomatic as ~30 % of subjects are normotensive or have orthostatic hypotension and in these cases the 24 h ambulatory blood pressure (BP) monitoring is an important toll to diagnose and treat HT. HT treatment may be difficult when PH or PG occurs in pregnancy or in the elderly subjects and in these cases a multidisciplinary team is required. When surgical excision is mandatory the perioperative management requires the administration of selective α1-adrenergic blocking agents (i.e., doxazosin, prazosin or terazosin) followed by a β-adrenergic blockade (i.e., propranolol, atenolol). This latter should never be started first because blockade of vasodilatory peripheral β-adrenergic receptors with unopposed α-adrenergic receptor stimulation can lead to a further elevation of BP. Although labetalol is traditionally considered the ideal agent due to its α- and β-adrenergic antagonism, experimental studies do not support its use in this clinical setting. As second regimen, the administration of vasodilators as calcium channel blockers (i.e., nicardipine, nifedipine) may be required to control BP. Oral and sublingual short-acting nifedipine are potentially dangerous in patients with hypertensive emergencies and are not recommend. The latest evidences into the diagnosis and treatment of hypertensive crisis due to PH and PG are reviewed here.

  19. A vertical (pseudodominant) pattern of inheritance in the autosomal recessive disease primary hyperoxaluria type 1: lack of relationship between genotype, enzymic phenotype, and disease severity.

    PubMed

    Hoppe, B; Danpure, C J; Rumsby, G; Fryer, P; Jennings, P R; Blau, N; Schubiger, G; Neuhaus, T; Leumann, E

    1997-01-01

    Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disease caused by a deficiency of alanine:glyoxylate aminotransferase (encoded by the AGXT gene). Primary hyperoxaluria type 1 is characterized by the elevated urinary excretion of oxalate and glycolate, and the deposition of insoluble calcium oxalate in the renal parenchyma and urinary tract. In the present study, we investigated an unusual family containing four affected individuals in two different generations. Based on our genetic, enzymic, metabolic, and clinical analyses, we have come to the following conclusions. First, although the pattern of inheritance of PH1 is usually horizontal (ie, all patients in the same generation), as expected for an autosomal recessive disease, it can sometimes show a vertical (pseudodominant) pattern of inheritance (ie, patients in more than one generation) due to the segregation within a family of three, rather than two, mutant AGXT alleles. Second, affected members of such a family can manifest very different clinical phenotypes both within and between generations. Although the clinical differences between generations might be at least partly due to differences in AGXT genotype, differences can equally occur within the same generation in individuals who possess the same AGXT genotype. Finally, individuals with PH1 at the level of the AGXT genotype might remain asymptomatic and undiagnosed for many years. The consequences of these findings for the clinical management and genetic counseling of families with PH1 are profound and wide-ranging.

  20. Steel slag raises pH of greenhouse substrates

    USDA-ARS?s Scientific Manuscript database

    Dolomitic lime (DL) is the primary liming agent used for increasing pH in peatmoss-based substrates. Steel slag (SS) is a byproduct of the steel manufacturing industry that has been used to elevate field soil pH. The objective of this research was to determine the pH response of a peatmoss-based g...

  1. Variation in gastric pH may determine kiwifruit's effect on functional GI disorder: an in vitro study.

    PubMed

    Donaldson, Bruce; Rush, Elaine; Young, Owen; Winger, Ray

    2014-04-11

    Consumption of kiwifruit is reported to relieve symptoms of functional gastrointestinal (GI) disorder. The effect may be related to the proteases in kiwifruit. This in vitro study aimed to measure protein hydrolysis due to kiwifruit protease under gastric and duodenal conditions. A sequence of experiments incubated meat protein, with and without kiwifruit, with varying concentrations of pepsin and hydrochloric acid, at 37 °C for 60 min over the pH range 1.3-6.2 to simulate gastric digestion. Duodenal digestion was simulated by a further 120 min incubation at pH 6.4. Protein digestion efficiency was determined by comparing Kjeldahl nitrogen in pre- and post-digests. Where acid and pepsin concentrations were optimal for peptic digestion, hydrolysis was 80% effective and addition of kiwifruit made little difference. When pH was increased to 3.1 and pepsin activity reduced, hydrolysis decreased by 75%; addition of kiwifruit to this milieu more than doubled protein hydrolysis. This in vitro study has shown, when gastric pH is elevated, the addition of kiwifruit can double the rate of hydrolysis of meat protein. This novel finding supports the hypothesis that consumption of kiwifruit with a meal can increase the rate of protein hydrolysis, which may explain how kiwifruit relieves functional GI disorder.

  2. Chemokine-Dependent pH Elevation at the Cell Front Sustains Polarity in Directionally Migrating Zebrafish Germ Cells.

    PubMed

    Tarbashevich, Katsiaryna; Reichman-Fried, Michal; Grimaldi, Cecilia; Raz, Erez

    2015-04-20

    Directional cell migration requires cell polarization with respect to the distribution of the guidance cue. Cell polarization often includes asymmetric distribution of response components as well as elements of the motility machinery. Importantly, the function and regulation of most of these molecules are known to be pH dependent. Intracellular pH gradients were shown to occur in certain cells migrating in vitro, but the functional relevance of such gradients for cell migration and for the response to directional cues, particularly in the intact organism, is currently unknown. In this study, we find that primordial germ cells migrating in the context of the developing embryo respond to the graded distribution of the chemokine Cxcl12 by establishing elevated intracellular pH at the cell front. We provide insight into the mechanisms by which a polar pH distribution contributes to efficient cell migration. Specifically, we show that Carbonic Anhydrase 15b, an enzyme controlling the pH in many cell types, including metastatic cancer cells, is expressed in migrating germ cells and is crucial for establishing and maintaining an asymmetric pH distribution within them. Reducing the level of the protein and thereby erasing the pH elevation at the cell front resulted in abnormal cell migration and impaired arrival at the target. The basis for the disrupted migration is found in the stringent requirement for pH conditions in the cell for regulating contractility, for the polarization of Rac1 activity, and hence for the formation of actin-rich structures at the leading edge of the migrating cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Influence of Common Bean (Phaseolus vulgaris) Grown in Elevated CO2 on Apatite Dissolution

    NASA Astrophysics Data System (ADS)

    Olsen, A. A.; Morra, B.

    2016-12-01

    We ran a series of experiments to test the hypothesis that release of plant nutrients contained in apatite will be accelerated by the growth of Langstrath Stringless green bean in the presence of atmospheric CO2 meant to simulate possible future atmospheric conditions due a higher demand of nutrients and growth rate caused by elevated CO2. We hypothesize that elevated atmospheric CO2 will lead to both increased root growth and organic acid exudation. These two traits will lead to improved acquisition of P derived from apatite. Experiments were designed to investigate the effect of these changes on soil mineral weathering using plants grown under two conditions, ambient CO2 (400ppm) and elevated CO2 (1000ppm). Plants were grown in flow-through microcosms consisting of a mixture of quartz and apatite sands. Mini-greenhouses were utilized to control CO2 levels. Plant growth was sustained by a nutrient solution lacking in Ca and P. Calcium and P content of the leachate and plant tissue served as a proxy for apatite dissolution. Plants were harvested biweekly during the eight-week experiment and analyzed for Ca and P to calculate apatite dissolution kinetics. Preliminary results suggest that approximately four times more P and Ca are present in the leachate from experiments containing plants under both ambient and elevated CO2 levels than in abiotic experiments; however, the amounts of both P and Ca released in experiments conducted under both ambient and elevated CO2 levels are similar. Additionally, the amount of P in plant tissue grown under ambient and elevated CO2 conditions is similar. Plants grown in elevated CO2 had a greater root to shoot ratio. The planted microcosms were found to have a lower pH than abiotic controls most likely due to root respiration and exudation of organic acids.

  4. Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps.

    PubMed

    Fang, Jingyun; Zhao, Quan; Fan, Chihhao; Shang, Chii; Fu, Yun; Zhang, Xiangru

    2017-09-01

    When a bromide-containing water is treated by the ultraviolet (UV)/chlorine process, hydroxyl radicals (HO) and halogen radicals such as Cl or Br are formed due to the UV photolysis of free halogens. These reactive species may induce the formation of bromate, which is a probable human carcinogen. Bromate formation in the UV/chlorine process using low pressure (LP) and medium pressure (MP) lamps in the presence of bromide was investigated in the present study. The UV/chlorine process significantly enhanced bromate formation as compared to dark chlorination. The bromate formation was elevated with increasing UV fluence, bromide concentration, and pH values under both LP and MP UV irradiations. It was significantly enhanced at pH 9 compared to those at pH 6 and 7 with MP UV irradiation, while it was slightly enhanced at pH 9 with LP UV. The formation by UV/chlorine process started with the formation of free bromine (HOBr/OBr - ) through the reaction of chlorine and bromide, followed by a subsequent oxidation of free bromine and formation of BrO and bromate by reacting with radicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Charge reversible gold nanoparticles for high efficient absorption and desorption of DNA

    NASA Astrophysics Data System (ADS)

    Wang, Can; Zhuang, Jiaqi; Jiang, Shan; Li, Jun; Yang, Wensheng

    2012-10-01

    Mercaptoundecylamine and mercaptoundecanoic acid co-modified Au nanoparticles were prepared by two-step ligand exchange of 6-mercaptohexanoic acid modified gold nanoparticles. Such particles terminated by appropriate ratios of the amine and carboxyl groups ( R N/C) were identified to show reversible charge on their surface, which were switchable by pH of the solution. The isoelectric point (IEP) of the particles is tunable by changing the ratios of the amine and carboxyl groups on the particle surfaces. The particles can absorb DNA effectively at pH lower than the IEP driven by the direct electrostatic interactions between DNA and the particle surface. When pH of the solutions was elevated to be higher than the IEP, the absorbed DNA can be released almost completely due to the electrostatic repulsion between the particle surface and DNA. With appropriate R N/C ratios of 0.8, the absorption and desorption efficiencies of DNA were 97 and 98 %, respectively, corresponding an extraction efficiency of 95 %. Such particles with reversible surface charges allow the high efficient extraction of DNA by simply changing pH instead of by changing salt concentration in the conventional salt bridge method.

  6. Carbonic Anhydrase Activity Monitored In Vivo by Hyperpolarized 13C-Magnetic Resonance Spectroscopy Demonstrates Its Importance for pH Regulation in Tumors.

    PubMed

    Gallagher, Ferdia A; Sladen, Helen; Kettunen, Mikko I; Serrao, Eva M; Rodrigues, Tiago B; Wright, Alan; Gill, Andrew B; McGuire, Sarah; Booth, Thomas C; Boren, Joan; McIntyre, Alan; Miller, Jodi L; Lee, Shen-Han; Honess, Davina; Day, Sam E; Hu, De-En; Howat, William J; Harris, Adrian L; Brindle, Kevin M

    2015-10-01

    Carbonic anhydrase buffers tissue pH by catalyzing the rapid interconversion of carbon dioxide (CO2) and bicarbonate (HCO3 (-)). We assessed the functional activity of CAIX in two colorectal tumor models, expressing different levels of the enzyme, by measuring the rate of exchange of hyperpolarized (13)C label between bicarbonate (H(13)CO3(-)) and carbon dioxide ((13)CO2), following injection of hyperpolarized H(13)CO3(-), using (13)C-magnetic resonance spectroscopy ((13)C-MRS) magnetization transfer measurements. (31)P-MRS measurements of the chemical shift of the pH probe, 3-aminopropylphosphonate, and (13)C-MRS measurements of the H(13)CO3(-)/(13)CO2 peak intensity ratio showed that CAIX overexpression lowered extracellular pH in these tumors. However, the (13)C measurements overestimated pH due to incomplete equilibration of the hyperpolarized (13)C label between the H(13)CO3(-) and (13)CO2 pools. Paradoxically, tumors overexpressing CAIX showed lower enzyme activity using magnetization transfer measurements, which can be explained by the more acidic extracellular pH in these tumors and the decreased activity of the enzyme at low pH. This explanation was confirmed by administration of bicarbonate in the drinking water, which elevated tumor extracellular pH and restored enzyme activity to control levels. These results suggest that CAIX expression is increased in hypoxia to compensate for the decrease in its activity produced by a low extracellular pH and supports the hypothesis that a major function of CAIX is to lower the extracellular pH. ©2015 American Association for Cancer Research.

  7. Comparison of Ecotoxicological Dose-Response Relationships between Amphibians (Lithobates sylvaticus and Ambystoma maculatum) and Fish (Salmo salar and Salvelinus fontinalis) in the Freshwater Acidification Literature

    NASA Astrophysics Data System (ADS)

    Maxwell, A.; Gooding Lassiter, M.; Greaver, T.

    2016-12-01

    Ecosystem acidification due to increased deposition of oxides of nitrogen (NOX) and sulfur (SOX) has been an issue since the 1970s. Elevated levels of NOX and SOX deposition due to human activity can cause chemical changes in terrestrial and freshwater ecosystems, which may adversely affect biota. Reduced pH is a chemical change that may be caused by elevated deposition; survival is an example of a biological response to chemical changes. Although amphibians have historically been considered relatively tolerant to acidification, most studies have focused on phytoplankton, invertebrates and fish. The goal of this study is to compare ecotoxicological dose-response relationships for amphibians and fish in the freshwater acidification literature from the 1970s to the present. Our data sources were references from the U.S. EPA's 2008 Integrated Science Assessment for Oxides of Nitrogen and Sulfur - Ecological Criteria, references from the Baker et al. 1990 report "Biological effects of changes in surface water acid-base chemistry", and keyword searches in Web of Science limited to 1990 to 2016 to include more recent studies. Fish comprised nearly 50% of the 54 identified species or groupings for which acidification effects are available, and amphibians comprised about 12% of them. Initial data suggest the most common dose-response relationship among commonly studied fish and amphibians was pH versus survival. Amphibians (Lithobates sylvaticus and Ambystoma maculatum) appear more tolerant to acidification than fish (Salmo salar and Salvelinus fontinalis). Although this observation is solely based on the pH versus survival dose-response relationships, other factors may also contribute to differences in tolerance to acidification between amphibians and fish. The views expressed in this abstract are those of the authors and do not necessarily represent the views or policies of the U.S. EPA.

  8. Effects of CO2-driven ocean acidification on early life stages of marine medaka (Oryzias melastigma)

    NASA Astrophysics Data System (ADS)

    Mu, J.; Jin, F.; Wang, J.; Zheng, N.; Cong, Y.

    2015-01-01

    The potential effects of elevated CO2 level and reduced carbonate saturation state in marine environment on fishes and other non-calcified organisms are still poorly known. In present study, we investigated the effects of ocean acidification on embryogenesis and organogenesis of newly hatched larvae of marine medaka (Oryzias melastigma) after 21 d exposure of eggs to different artificially acidified seawater (pH 7.6 and 7.2, respectively), and compared with those in control group (pH 8.2). Results showed that CO2-driven seawater acidification (pH 7.6 and 7.2) had no detectable effect on hatching time, hatching rate, and heart rate of embryos. However, the deformity rate of larvae in pH 7.2 treatment was significantly higher than that in control treatment. The left and right sagitta areas did not differ significantly from each other in each treatment. However, the mean sagitta area of larvae in pH 7.6 treatment was significantly smaller than that in the control (p = 0.024). These results suggest that although marine medaka might be more tolerant of elevated CO2 than some other fishes, the effect of elevated CO2 level on the calcification of otolith is likely to be the most susceptibly physiological process of pH regulation in early life stage of marine medaka.

  9. Chemical and ecotoxicological analyses of sediments and elutriates of contaminated rivers due to e-waste recycling activities using a diverse battery of bioassays.

    PubMed

    Wang, F; Leung, A O W; Wu, S C; Yang, M S; Wong, M H

    2009-07-01

    A multi-trophic, multi-exposure phase assessment approach was applied to characterize the toxicity of sediments collected from two rivers in Guiyu, China, an e-waste recycling centre. Elutriate toxicity tests (bacterium Vibrio fischeri and microalga Selenastrum capricornutum) and whole sediment toxicity test (crustacean Heterocypris incongruens) showed that most sediments exhibited acute toxicity, due to elevated heavy metals and PAHs levels, and low pH caused by uncontrolled acid discharge. The survival rates of crustaceans were negatively (p < 0.05) correlated with total PAHs in sediments (411-1755 mg kg(-1)); EC50s of V. fischeri on the elutriates were significantly correlated with elutriate pH (p < 0.01). Significant (p < 0.05) correlations between the induction of hepatic metallothionein in tilapia (Oreochromis mossambicus) and metal concentrations (Cu, Zn, Pb) in sediments were also observed, when fish were fed with diets containing sediment. The results showed that uncontrolled e-waste recycling activities may bring adverse effects to local aquatic ecosystem.

  10. Stair-Step Pattern of Soil Bacterial Diversity Mainly Driven by pH and Vegetation Types Along the Elevational Gradients of Gongga Mountain, China

    PubMed Central

    Li, Jiabao; Shen, Zehao; Li, Chaonan; Kou, Yongping; Wang, Yansu; Tu, Bo; Zhang, Shiheng; Li, Xiangzhen

    2018-01-01

    Ecological understandings of soil bacterial community succession and assembly mechanism along elevational gradients in mountains remain not well understood. Here, by employing the high-throughput sequencing technique, we systematically examined soil bacterial diversity patterns, the driving factors, and community assembly mechanisms along the elevational gradients of 1800–4100 m on Gongga Mountain in China. Soil bacterial diversity showed an extraordinary stair-step pattern along the elevational gradients. There was an abrupt decrease of bacterial diversity between 2600 and 2800 m, while no significant change at either lower (1800–2600 m) or higher (2800–4100 m) elevations, which coincided with the variation in soil pH. In addition, the community structure differed significantly between the lower and higher elevations, which could be primarily attributed to shifts in soil pH and vegetation types. Although there was no direct effect of MAP and MAT on bacterial community structure, our partial least squares path modeling analysis indicated that bacterial communities were indirectly influenced by climate via the effect on vegetation and the derived effect on soil properties. As for bacterial community assembly mechanisms, the null model analysis suggested that environmental filtering played an overwhelming role in the assembly of bacterial communities in this region. In addition, variation partition analysis indicated that, at lower elevations, environmental attributes explained much larger fraction of the β-deviation than spatial attributes, while spatial attributes increased their contributions at higher elevations. Our results highlight the importance of environmental filtering, as well as elevation-related spatial attributes in structuring soil bacterial communities in mountain ecosystems. PMID:29636740

  11. Aspect has a greater impact on alpine soil bacterial community structure than elevation.

    PubMed

    Wu, Jieyun; Anderson, Barbara J; Buckley, Hannah L; Lewis, Gillian; Lear, Gavin

    2017-03-01

    Gradients in environmental conditions, including climate factors and resource availability, occur along mountain inclines, providing a 'natural laboratory' to explore their combined impacts on microbial distributions. Conflicting spatial patterns observed across elevation gradients in soil bacterial community structure suggest that they are driven by various interacting factors at different spatial scales. Here, we investigated the relative impacts of non-resource (e.g. soil temperature, pH) and resource conditions (e.g. soil carbon and nitrogen) on the biogeography of soil bacterial communities across broad (i.e. along a 1500 m mountain elevation gradient) and fine sampling scales (i.e. along sunny and shady aspects of a mountain ridge). Our analysis of 16S rRNA gene data confirmed that when sampling across distances of < 1000 m, bacterial community composition was more closely related to the aspect of a site than its elevation. However, despite large differences in climate and resource-availability factors across elevation- and aspect-related gradients, bacterial community composition and richness were most strongly correlated with soil pH. These findings highlight the need to incorporate knowledge of multiple factors, including site aspect and soil pH for the appropriate use of elevation gradients as a proxy to explore the impacts of climate change on microbial community composition. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Effects of elevated temperature and mobile phase composition on a novel C18 silica column.

    PubMed

    Lippert, J Andreas; Johnson, Todd M; Lloyd, Jarem B; Smith, Jared P; Johnson, Bryce T; Furlow, Jason; Proctor, Angela; Marin, Stephanie J

    2007-05-01

    A novel polydentate C18 silica column was evaluated at an elevated temperature under acidic, basic, and neutral mobile phase conditions using ACN and methanol as the mobile phase organic modifier. The temperature range was 40-200 degrees C. The mobile phase compositions were from 0 to 80% organic-aqueous v/v and the mobile phase pH levels were between 2 and 12. The maximum operating temperature of the column was affected by the amount and type of organic modifier used in the mobile phase. Under neutral conditions, the column showed good column thermal stability at temperatures ranging between 120 and 200 degrees C in methanol-water and ACN-water solvent systems. At pH 2 and 3, the column performed well up to about 160 degrees C at two fixed ACN-buffer compositions. Under basic conditions at elevated temperatures, the column material deteriorated more quickly, but still remained stable up to 100 degrees C at pH 9 and 60 degrees C at pH 10. The results of this study indicate that this novel C18 silica-based column represents a significant advancement in RPLC column technology with enhanced thermal and pH stability when compared to traditional bonded phase silica columns.

  13. Enzymatic Saccharification of Lignocelluloses Should be Conducted at Elevated pH 5.2-6.2

    Treesearch

    T.Q. Lan; Hongming Lou; J.Y. Zhu

    2013-01-01

    This study revealed that cellulose enzymatic saccharification response curves of lignocellulosic substrates were very different from those of pure cellulosic substrates in terms of optimal pH and pH operating window. The maximal enzymatic cellulose saccharification of lignocellulosic substrates occurs at substrate suspension

  14. Transient alkalinization of the leaf apoplast stiffens the cell wall during onset of chloride salinity in corn leaves.

    PubMed

    Geilfus, Christoph-Martin; Tenhaken, Raimund; Carpentier, Sebastien Christian

    2017-11-17

    During chloride salinity, the pH of the leaf apoplast (pH apo ) transiently alkalizes. There is an ongoing debate about the physiological relevance of these stress-induced pH apo changes. Using proteomic analyses of expanding leaves of corn ( Zea mays L.), we show that this transition in pH apo conveys functionality by (i) adjusting protein abundances and (ii) affecting the rheological properties of the cell wall. pH apo was monitored in planta via microscopy-based ratio imaging, and the leaf-proteomic response to the transient leaf apoplastic alkalinization was analyzed via ultra-high performance liquid chromatography-MS. This analysis identified 1459 proteins, of which 44 exhibited increased abundance specifically through the chloride-induced transient rise in pH apo These elevated protein abundances did not directly arise from high tissue concentrations of Cl - or Na + but were due to changes in the pH apo Most of these proteins functioned in growth-relevant processes and in the synthesis of cell wall-building components such as arabinose. Measurements with a linear-variable differential transducer revealed that the transient alkalinization rigidified ( i.e. stiffened) the cell wall during the onset of chloride salinity. A decrease in t -coumaric and t -ferulic acids indicates that the wall stiffening arises from cross-linkage to cell wall polymers. We conclude that the pH of the apoplast represents a dynamic factor that is mechanistically coupled to cellular responses to chloride stress. By hardening the wall, the increased pH abrogates wall loosening required for cell expansion and growth. We conclude that the transient alkalinization of the leaf apoplast is related to salinity-induced growth reduction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Ocean acidification buffering effects of seagrass in Tampa Bay

    USGS Publications Warehouse

    Yates, Kimberly K.; Moyer, Ryan P.; Moore, Christopher; Tomasko, David A.; Smiley, Nathan A.; Torres-Garcia, Legna; Powell, Christina E.; Chappel, Amanda R.; Bociu, Ioana; Smiley, Nathan; Torres-Garcia, Legna M.; Powell, Christina E.; Chappel, Amanda R.; Bociu, Ioana

    2016-01-01

    The Intergovernmental Panel on Climate Change has identified ocean acidification as a critical threat to marine and estuarine species in ocean and coastal ecosystems around the world. However, seagrasses are projected to benefit from elevated atmospheric pCO2, are capable of increasing seawater pH and carbonate mineral saturation states through photosynthesis, and may help buffer against the chemical impacts of ocean acidification. Additionally, dissolution of carbonate sediments may also provide a mechanism for buffering seawater pH. Long-term water quality monitoring data from the Environmental Protection Commission of Hillsborough County indicates that seawater pH has risen since the 1980‘s as seagrass beds have continued to recover since that time. We examined the role of seagrass beds in maintaining and elevating pH and carbonate mineral saturation state in northern and southern Tampa Bay where the percent of carbonate sediments is low (<3%) and high (>40%), respectively. Basic water quality and carbonate system parameters (including pH, total alkalinity, dissolved inorganic carbon, partial pressure of CO2, and carbonate mineral saturation state) were measured over diurnal time periods along transects (50-100 m) including dense and sparse Thalassia testudinum. seagrass beds, deep edge seagrass, and adjacent bare sand bottom. Seagrass density and productivity, sediment composition and hydrodynamic parameters were also measured, concurrently. Results indicate that seagrass beds locally elevate pH by up to 0.5 pH unit and double carbonate mineral saturation states relative to bare sand habitats. Thus, seagrass beds in Tampa Bay may provide refuge for marine organisms from the impacts of ocean acidification.

  16. Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature.

    PubMed

    Li, Shiguo; Liu, Chuang; Huang, Jingliang; Liu, Yangjia; Zhang, Shuwen; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-01-06

    Ocean acidification and global warming have been shown to significantly affect the physiological performances of marine calcifiers; however, the underlying mechanisms remain poorly understood. In this study, the transcriptome and biomineralization responses of Pinctada fucata to elevated CO2 (pH 7.8 and pH 7.5) and temperature (25 °C and 31 °C) are investigated. Increases in CO2 and temperature induced significant changes in gene expression, alkaline phosphatase activity, net calcification rates and relative calcium content, whereas no changes are observed in the shell ultrastructure. "Ion and acid-base regulation" related genes and "amino acid metabolism" pathway respond to the elevated CO2 (pH 7.8), suggesting that P. fucata implements a compensatory acid-base mechanism to mitigate the effects of low pH. Additionally, "anti-oxidation"-related genes and "Toll-like receptor signaling", "arachidonic acid metabolism", "lysosome" and "other glycan degradation" pathways exhibited responses to elevated temperature (25 °C and 31 °C), suggesting that P. fucata utilizes anti-oxidative and lysosome strategies to alleviate the effects of temperature stress. These responses are energy-consuming processes, which can lead to a decrease in biomineralization capacity. This study therefore is important for understanding the mechanisms by which pearl oysters respond to changing environments and predicting the effects of global climate change on pearl aquaculture.

  17. Simplified correction of B1 inhomogeneity for chemical exchange saturation transfer (CEST) MRI measurement with surface transceiver coil

    NASA Astrophysics Data System (ADS)

    Sun, Phillip Z.; Zhou, Iris Y.; Igarashi, Takahiro; Guo, Yingkun; Xiao, Gang; Wu, Renhua

    2015-03-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute exchangeable protons and local properties such as pH and temperate, yet its susceptibility to field inhomogeneity limits its in vivo applications. Particularly, CEST measurement varies with RF irradiation power, the dependence of which is complex due to concomitant direct RF saturation (RF spillover) effect. Because the volume transmitters provide relatively homogeneous RF field, they have been conventionally used for CEST imaging despite of their elevated specific absorption rate (SAR) and relatively low sensitivity than surface coils. To address this limitation, we developed an efficient B1 inhomogeneity correction algorithm that enables CEST MRI using surface transceiver coils. This is built on recent work that showed the inverse CEST asymmetry analysis (CESTRind) is not susceptible to confounding RF spillover effect. We here postulated that the linear relationship between RF power level and CESTRind can be extended for correcting B1 inhomogeneity induced CEST MRI artifacts. Briefly, we prepared a tissue-like Creatine gel pH phantom and collected multiparametric MRI including relaxation, field map and CEST MRI under multiple RF power levels, using a conventional surface transceiver coil. The raw CEST images showed substantial heterogeneity due to B1 inhomogeneity, with pH contrast to noise ratio (CNR) being 8.8. In comparison, pH MRI CNR of the fieldinhomogeneity corrected CEST MRI was found to be 17.2, substantially higher than that without correction. To summarize, our study validated an efficient field inhomogeneity correction that enables sensitive CEST MRI with surface transceiver, promising for in vivo translation.

  18. Copper speciation in the gill microenvironment of carp (Cyprinus carpio) at various levels of pH.

    PubMed

    Tao, Shu; Long, Aimin; Xu, Fuliu; Dawson, R W

    2002-07-01

    The fish gill microenvironment of Cyprinus carpio under stress of copper exposure was investigated. pH and other parameters including free copper activity, alkalinity, and inorganic and organic carbons in the surrounding water (inspired water) and in the gill microenvironment (expired water) were measured or calculated at various levels of pH and varying total copper concentrations. The chemical equilibrium calculation (from MINEQA2) and complexation modeling (mucus-copper) were coupled to calculate both species distribution. The results indicate that the pH in the fish gill microenvironment was different from that in the surrounding water with a balance point around 6.9. The secretion of both CO(2) and mucus was affected in both linear and nonlinear ways when the fish were exposed to elevated concentrations of copper. The complexation capacity of the gill mucus was characterized by a conditional stability constant (logk(Cu-mucus)) of 5.37 along with a complexation equivalent concentration (L(Cu-mucus)) of 0.96 mmol Cu/mg C. For both the fish microenvironment and the surrounding water, the dominant copper species shifted from Cu(2+) to CuCO(3)(0) and to Cu(OH)(2)(0) when the pH of the surrounding water changed from 6.12 to 8.11. The change in copper speciation in the gill microenvironment is smaller than that in the surrounding water due to the pH buffering capacity of the fish gills.

  19. Soil Dynamics Following Fire in Juncus and Spartina Marshes

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Hinkle, C. Ross

    1992-01-01

    We examined soil changes in the O-5 and 5-15 cm layers for one year after a fire in burned Juncus roemerianus and Spartina bakeri marshes and an unburned Juncus marsh. Each marsh was sampled (N = 25) preburn, immediately postburn, and 1, 3, 6, 9, and 12 months postburn. All marshes were flooded at the time of the fire; water levels declined below the surface by 6 months but reflooded at 12 months after the fire. Soil samples were analyzed for pH, conductivity, organic matter, exchangeable Ca, Mg, and K, available PO4-P, total Kjeldahl nitrogen (TKN), exchangeable NO3-N, NO2-N, and NH4-N. Changes due to burning were most pronounced in the surface (0-5 cm) layer. Soil pH increased 0.16-0.28 units immediately postburn but returned to preburn levels in 1 month. Organic matter increased by 1 month and remained elevated through 9 months after the fire. Calcium, Mg, K, and PO4-P all increased by 1 month after burning, and the increases persisted for 6 to 12 months. Conductivity increased in association with these cations. Burning released ions from organic matter as indicated by the increase in pH, conductivity, Ca, Mg, K, and PO4-P. NH4-N in burned marshes was elevated 6 months and NO3-N 12 months after burning. TKN showed seasonal variations but no clear fire-related changes. Nitrogen species were affected by the seasonally varying water levels as well as fire; these changes differed from those observed in many upland systems.

  20. A new lime material for container substrates

    USDA-ARS?s Scientific Manuscript database

    The primary component in greenhouse potting substrates is sphagnum peatmoss. Substrate solution pH of non-amended peatmoss ranges from 4.0 to 4.5. Ideal pH for most greenhouse floriculture crops ranges from 5.8 to 6.2. Dolomitic lime is most often used to elevate substrate pH in peatmoss-based me...

  1. The Effect of Geraniol on Liver Regeneration Αfter Hepatectomy in Rats

    PubMed Central

    CANBEK, MEDIHA; UYANOGLU, MUSTAFA; CANBEK, SELCUK; CEYHAN, EMRE; OZEN, AHMET; DURMUS, BASAK; TURGAK, OZGE

    2017-01-01

    Geraniol is a monoterpenoid alcohol that has a hepatoprotective effect. We investigated the regenerative effects of geraniol in rats after a 70% partial hepatectomy (PH). Using Wistar albino rats, nine groups were created: Group I was the control group, while the remaining groups received a single intraperitoneal dose of saline, Silymarin, or geraniol after PH. A 70% PH was performed on all groups except for groups II and III. Blood serum samples were obtained for alanine amino transferase (ALT) analysis. Then liver tissues were harvested for histological and real-time polymerase chain reaction (PCR) analyses. Tumor necrosis factor-α (TNFα) and interleukin 6 (IL6) gene expression were examined 24 and 48 h after PH. ALT levels were found to be statistically significantly increased in all PH-treated groups. TNFα and IL6 gene expression levels were elevated in geraniol-treated groups. Histological evaluation revealed a hepatoprotective effect for geraniol-treated groups. Our results suggest that geraniol plays a significant role during liver regeneration, which involves the elevated expression of TNFα and IL6 48 h after PH. PMID:28358702

  2. Diagnosis, Evaluation and Treatment of Pulmonary Arterial Hypertension in Children

    PubMed Central

    Frank, Benjamin S.

    2018-01-01

    Pulmonary Hypertension (PH), the syndrome of elevated pressure in the pulmonary arteries, is associated with significant morbidity and mortality for affected children. PH is associated with a wide variety of potential underlying causes, including cardiac, pulmonary, hematologic and rheumatologic abnormalities. Regardless of the cause, for many patients the natural history of PH involves progressive elevation in pulmonary arterial resistance and pressure, right ventricular dysfunction, and eventually heart failure. In recent years, a number of pulmonary arterial hypertension (PAH)-targeted therapies have become available to reduce pulmonary artery pressure and improve outcome. A growing body of evidence in both the adult and pediatric literature demonstrates enhanced quality of life, functional status, and survival among treated patients. This review provides a description of select etiologies of PH seen in pediatrics and an update on the most recent data pertaining to evaluation and management of children with PH/PAH. The available evidence for specific classes of PAH-targeted therapies in pediatrics is additionally discussed. PMID:29570688

  3. Elevated concentrations of U and co-occurring metals in abandoned mine wastes in a northeastern Arizona Native American community

    DOE PAGES

    Blake, Johanna M.; Avasarala, Sumant; Artyushkova, Kateryna; ...

    2015-07-09

    The chemical interactions of U and co-occurring metals in abandoned mine wastes in a Native American community in northeastern Arizona were investigated using spectroscopy, microscopy and aqueous chemistry. The concentrations of U (67–169 μg L –1) in spring water samples exceed the EPA maximum contaminant limit of 30 μg L –1. Elevated U (6,614 mg kg –1), V (15,814 mg kg –1), and As (40 mg kg –1) concentrations were detected in mine waste solids. Spectroscopy (XPS and XANES) solid analyses identified U (VI), As (-I and III) and Fe (II, III). Linear correlations for the release of U vsmore » V and As vs Fe were observed for batch experiments when reacting mine waste solids with 10 mM ascorbic acid (~pH 3.8) after 264 h. The release of U, V, As, and Fe was at least 4-fold lower after reaction with 10 mM bicarbonate (~pH 8.3). These results suggest that U–V mineral phases similar to carnotite [K 2(UO 2) 2V 2O 8] and As–Fe-bearing phases control the availability of U and As in these abandoned mine wastes. Elevated concentrations of metals are of concern due to human exposure pathways and exposure of livestock currently ingesting water in the area. This study contributes to understanding the occurrence and mobility of metals in communities located close to abandoned mine waste sites.« less

  4. Negative impacts of elevated nitrate on physiological performance are not exacerbated by low pH.

    PubMed

    Gomez Isaza, Daniel F; Cramp, Rebecca L; Franklin, Craig E

    2018-05-15

    Multiple environmental stressors, including nutrient effluents (i.e. nitrates [NO 3 - ]) and altered pH regimes, influence the persistence of freshwater species in anthropogenically disturbed habitats. Independently, nitrate and low pH affect energy allocation by increasing maintenance costs and disrupting oxygen uptake, which ultimately results in impacts upon whole animal performance. However, the interaction between these two stressors has not been characterised. To address this, the effects of nitrate and pH and their interaction on aerobic scope and physiological performance were investigated in the blueclaw crayfish, Cherax destructor. Crayfish were exposed to a 2 × 3 factorial combination, with two pH levels (pH 5.0 and 7.0) and three nitrate concentrations (0, 50 and 100 mg L -1 NO 3 - ). Crayfish were exposed to experimental conditions for 65 days and growth and survival were monitored. Aerobic scope (i.e. maximal - standard oxygen uptake) was measured at six time points (1, 3, 5, 7, 14, and 21 days) during exposure to experimental treatments. Crayfish performance was assessed after 28 days, by measuring chelae strength and whole animal activity capacity via the righting response. Survival was reduced in crayfish exposed to pH 5.0, but there was no exacerbation of this effect by exposure to high nitrate levels. Aerobic scope was compromised by the interaction between low pH and nitrate and resulted in prolonged elevations of standard oxygen uptake rates. Exposure to nitrate alone affected aerobic scope, causing a 59% reduction in maximum oxygen uptake. Reduced aerobic capacity translated to reduced chelae strength and righting capacity. Together, these data show that low pH and elevated nitrate levels reduce aerobic scope and translate to poorer performance in C. destructor, which may have the potential to affect organismal fitness in disturbed habitats. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Stream pH as an abiotic gradient influencing distributions of trout in Pennsylvania streams

    USGS Publications Warehouse

    Kocovsky, P.M.; Carline, R.F.

    2005-01-01

    Elevation and stream slope are abiotic gradients that limit upstream distributions of brook trout Salvelinus fontinalis and brown trout Salmo trutta in streams. We sought to determine whether another abiotic gradient, base-flow pH, may also affect distributions of these two species in eastern North America streams. We used historical data from the Pennsylvania Fish and Boat Commission's fisheries management database to explore the effects of reach elevation, slope, and base-flow pH on distributional limits to brook trout and brown trout in Pennsylvania streams in the Appalachian Plateaus and Ridge and Valley physiographic provinces. Discriminant function analysis (DFA) was used to calculate a canonical axis that separated allopatric brook trout populations from allopatric brown trout populations and allowed us to assess which of the three independent variables were important gradients along which communities graded from allopatric brook trout to allopatric brown trout. Canonical structure coefficients from DFA indicated that in both physiographic provinces, stream base-flow pH and slope were important factors in distributional limits; elevation was also an important factor in the Ridge and Valley Province but not the Appalachian Plateaus Province. Graphs of each variable against the proportion of brook trout in a community also identified apparent zones of allopatry for both species on the basis of pH and stream slope. We hypothesize that pH-mediated interspecific competition that favors brook trout in competition with brown trout at lower pH is the most plausible mechanism for segregation of these two species along pH gradients. Our discovery that trout distributions in Pennsylvania are related to stream base-flow pH has important implications for brook trout conservation in acidified regions. Carefully designed laboratory and field studies will be required to test our hypothesis and elucidate the mechanisms responsible for the partitioning of brook trout and brown trout along pH gradients. ?? Copyright by the American Fisheries Society 2005.

  6. Influence of elevated temperature and acid mine drainage on mortality of the crayfish Cambarus bartonii

    USGS Publications Warehouse

    Hartman, K.J.; Hom, C.D.; Mazik, P.M.

    2010-01-01

    Effects of elevated temperature and acid mine drainage (AMD) on crayfish mortality were investigated in the Stony River, Grant County, West Virginia. During summers 2003 and 2004, four-week in situ bioassays were performed along a thermal and AMD gradient with the native crayfish Cambarus bartonii. Crayfish mortality was analyzed in conjunction with temperature and AMD related variables (pH, specific conductivity). Mortality was significantly higher (48-88%) at sites with high temperatures during 2003 (max = 33.0??C), but no significant differences were observed in 2004 (max = 32.0??C). Temperatures were higher in 2003 than 2004 due to increased discharge from a cooling reservoir flowing into the river. Additionally, duration of high temperature was approximately four days in 2003 as compared with only one day in 2004. No significant relationship between acid mine drainage variables and crayfish mortality was apparent.

  7. Study of the Characteristics of Pulmonary Trunk in Pulmonary Hypertension Secondary to Left Heart Disease Using Pressure-Velocity Loops (PU-Loops).

    PubMed

    Hanya, Shizuo; Yoshii, Kengo; Sugawara, Motoaki

    2017-09-25

    Objectives : Although pulmonary hypertension (PH) caused by left heart disease (PH-LHD) is more common in PH, little is known about its properties of pulmonary artery (PA) in PH-LHD. The purpose of this study was to measure pulmonary regional pulse wave velocity (PWV) and to quantify the magnitude of reflected waves in patients with PH-LHD by the analysis of the pressure-velocity loops (PU-loop). Methods : High-fidelity PA pressure (Pm) and PA velocity (Vm) were measured in 11 subjects with PH-LHD (mean Pm>25 mmHg), 1 subject with atrial septal defect (ASD) without PH and 12 control subjects, using multisensor catheters. PWV was calculated as the slope of the initial part of the PU-loop in early systole. The similarity in the shapes of the pressure and flow velocity waveforms over one PU-loop was quantified as the magnitude of reflected wave by calculating the standard error of the estimate (Sy/x) from linear regression analysis between Pm and corresponding Vm. PWV and Sy/x during a Valsalva maneuver (VM) were also assessed in nine control subjects. Results : The contour of PU-loop was so characteristic between control and PH-LHD. Max. PWV (349 cm/s) was recorded in PH-LHD and min. PWV (111 cm/s) was recorded in ASD. VM increased Pm (12 [7-15] mmHg vs. 50 [18-110] mmHg; p=0.009) and PWV (200 [148-238] cm/s vs. 260 [192-306] cm/s; p=0.009) significantly without significant increase of Sy/x (19.6 [12.7-28.9]% vs. 28.2 [19.3-40.7]%; p=0.079). Although Sy/x was significantly higher in PH-LHD than in control and ASD (31.0 [14.3-36.3]% vs. 17.5 [8.4-28.9]%; p=0.009, ASD: 18.2%) , no significant difference was found in PWV between PH-LHD and control (269 [159-349] cm/s vs. 203 [154-289] cm/s; p=0.089). Conclusions : 1) The magnitude of wave reflection was elevated in PH-LHD significantly as compared with control and ASD. 2) Despite the significant increase in PA-PWV caused by abrupt elevation in Pm during VM in control, chronic elevation in Pm did not increase PA-PWV in PH-LHD significantly. It was hypothesized that the PA constituted a self-regulating system for maintaining the arterial stiffness stable against the chronic elevation in Pm in PH-LHD by a remodeling of increasing proximal pulmonary arterial crosssectional area gradually, which was compatible with the Moens-Korteweg equation. The PU-loop could provide a new simple and conventional method for assessing the pulmonary arterial properties, clinically. (This is a translation of J Jpn Coll Angiol 2016; 56: 45-53.).

  8. Study of the Characteristics of Pulmonary Trunk in Pulmonary Hypertension Secondary to Left Heart Disease Using Pressure–Velocity Loops (PU-Loops)

    PubMed Central

    Hanya, Shizuo; Yoshii, Kengo; Sugawara, Motoaki

    2017-01-01

    Objectives: Although pulmonary hypertension (PH) caused by left heart disease (PH-LHD) is more common in PH, little is known about its properties of pulmonary artery (PA) in PH-LHD. The purpose of this study was to measure pulmonary regional pulse wave velocity (PWV) and to quantify the magnitude of reflected waves in patients with PH-LHD by the analysis of the pressure–velocity loops (PU-loop). Methods: High-fidelity PA pressure (Pm) and PA velocity (Vm) were measured in 11 subjects with PH-LHD (mean Pm>25 mmHg), 1 subject with atrial septal defect (ASD) without PH and 12 control subjects, using multisensor catheters. PWV was calculated as the slope of the initial part of the PU-loop in early systole. The similarity in the shapes of the pressure and flow velocity waveforms over one PU-loop was quantified as the magnitude of reflected wave by calculating the standard error of the estimate (Sy/x) from linear regression analysis between Pm and corresponding Vm. PWV and Sy/x during a Valsalva maneuver (VM) were also assessed in nine control subjects. Results: The contour of PU-loop was so characteristic between control and PH-LHD. Max. PWV (349 cm/s) was recorded in PH-LHD and min. PWV (111 cm/s) was recorded in ASD. VM increased Pm (12 [7–15] mmHg vs. 50 [18–110] mmHg; p=0.009) and PWV (200 [148–238] cm/s vs. 260 [192–306] cm/s; p=0.009) significantly without significant increase of Sy/x (19.6 [12.7–28.9]% vs. 28.2 [19.3–40.7]%; p=0.079). Although Sy/x was significantly higher in PH-LHD than in control and ASD (31.0 [14.3–36.3]% vs. 17.5 [8.4–28.9]%; p=0.009, ASD: 18.2%) , no significant difference was found in PWV between PH-LHD and control (269 [159–349] cm/s vs. 203 [154–289] cm/s; p=0.089). Conclusions: 1) The magnitude of wave reflection was elevated in PH-LHD significantly as compared with control and ASD. 2) Despite the significant increase in PA-PWV caused by abrupt elevation in Pm during VM in control, chronic elevation in Pm did not increase PA-PWV in PH-LHD significantly. It was hypothesized that the PA constituted a self-regulating system for maintaining the arterial stiffness stable against the chronic elevation in Pm in PH-LHD by a remodeling of increasing proximal pulmonary arterial crosssectional area gradually, which was compatible with the Moens–Korteweg equation. The PU-loop could provide a new simple and conventional method for assessing the pulmonary arterial properties, clinically. (This is a translation of J Jpn Coll Angiol 2016; 56: 45–53.) PMID:29147168

  9. Exercise Training in Group 2 Pulmonary Hypertension: Which Intensity and What Modality.

    PubMed

    Arena, Ross; Lavie, Carl J; Borghi-Silva, Audrey; Daugherty, John; Bond, Samantha; Phillips, Shane A; Guazzi, Marco

    2016-01-01

    Pulmonary hypertension (PH) due to left-sided heart disease (LSHD) is a common and disconcerting occurrence. For example, both heart failure (HF) with preserved and reduced ejection fraction (HFpEF and HFrEF) often lead to PH as a consequence of a chronic elevation in left atrial filling pressure. A wealth of literature demonstrates the value of exercise training (ET) in patients with LSHD, which is particularly robust in patients with HFrEF and growing in patients with HFpEF. While the effects of ET have not been specifically explored in the LSHD-PH phenotype (i.e., composite pathophysiologic characteristics of patients in this advanced disease state), the overall body of evidence supports clinical application in this subgroup. Moderate intensity aerobic ET significantly improves peak oxygen consumption, quality of life and prognosis in patients with HF. Resistance ET significantly improves muscle strength and endurance in patients with HF, which further enhance functional capacity. When warranted, inspiratory muscle training and neuromuscular electrical stimulation are becoming recognized as important components of a comprehensive rehabilitation program. This review will provide a detailed account of ET programing considerations in patients with LSHD with a particular focus on those concomitantly diagnosed with PH. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Macrophage bone morphogenic protein receptor 2 depletion in idiopathic pulmonary fibrosis and Group III pulmonary hypertension.

    PubMed

    Chen, Ning-Yuan; D Collum, Scott; Luo, Fayong; Weng, Tingting; Le, Thuy-Trahn; M Hernandez, Adriana; Philip, Kemly; Molina, Jose G; Garcia-Morales, Luis J; Cao, Yanna; Ko, Tien C; Amione-Guerra, Javier; Al-Jabbari, Odeaa; Bunge, Raquel R; Youker, Keith; Bruckner, Brian A; Hamid, Rizwan; Davies, Jonathan; Sinha, Neeraj; Karmouty-Quintana, Harry

    2016-08-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. The development of pulmonary hypertension (PH) is considered the single most significant predictor of mortality in patients with chronic lung diseases. The processes that govern the progression and development of fibroproliferative and vascular lesions in IPF are not fully understood. Using human lung explant samples from patients with IPF with or without a diagnosis of PH as well as normal control tissue, we report reduced BMPR2 expression in patients with IPF or IPF+PH. These changes were consistent with dampened P-SMAD 1/5/8 and elevated P-SMAD 2/3, demonstrating reduced BMPR2 signaling and elevated TGF-β activity in IPF. In the bleomycin (BLM) model of lung fibrosis and PH, we also report decreased BMPR2 expression compared with control animals that correlated with vascular remodeling and PH. We show that genetic abrogation or pharmacological inhibition of interleukin-6 leads to diminished markers of fibrosis and PH consistent with elevated levels of BMPR2 and reduced levels of a collection of microRNAs (miRs) that are able to degrade BMPR2. We also demonstrate that isolated bone marrow-derived macrophages from BLM-exposed mice show reduced BMPR2 levels upon exposure with IL6 or the IL6+IL6R complex that are consistent with immunohistochemistry showing reduced BMPR2 in CD206 expressing macrophages from lung sections from IPF and IPF+PH patients. In conclusion, our data suggest that depletion of BMPR2 mediated by a collection of miRs induced by IL6 and subsequent STAT3 phosphorylation as a novel mechanism participating to fibroproliferative and vascular injuries in IPF. Copyright © 2016 the American Physiological Society.

  11. Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature

    NASA Astrophysics Data System (ADS)

    Li, Shiguo; Liu, Chuang; Huang, Jingliang; Liu, Yangjia; Zhang, Shuwen; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-01-01

    Ocean acidification and global warming have been shown to significantly affect the physiological performances of marine calcifiers; however, the underlying mechanisms remain poorly understood. In this study, the transcriptome and biomineralization responses of Pinctada fucata to elevated CO2 (pH 7.8 and pH 7.5) and temperature (25 °C and 31 °C) are investigated. Increases in CO2 and temperature induced significant changes in gene expression, alkaline phosphatase activity, net calcification rates and relative calcium content, whereas no changes are observed in the shell ultrastructure. “Ion and acid-base regulation” related genes and “amino acid metabolism” pathway respond to the elevated CO2 (pH 7.8), suggesting that P. fucata implements a compensatory acid-base mechanism to mitigate the effects of low pH. Additionally, “anti-oxidation”-related genes and “Toll-like receptor signaling”, “arachidonic acid metabolism”, “lysosome” and “other glycan degradation” pathways exhibited responses to elevated temperature (25 °C and 31 °C), suggesting that P. fucata utilizes anti-oxidative and lysosome strategies to alleviate the effects of temperature stress. These responses are energy-consuming processes, which can lead to a decrease in biomineralization capacity. This study therefore is important for understanding the mechanisms by which pearl oysters respond to changing environments and predicting the effects of global climate change on pearl aquaculture.

  12. Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature

    PubMed Central

    Li, Shiguo; Liu, Chuang; Huang, Jingliang; Liu, Yangjia; Zhang, Shuwen; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-01-01

    Ocean acidification and global warming have been shown to significantly affect the physiological performances of marine calcifiers; however, the underlying mechanisms remain poorly understood. In this study, the transcriptome and biomineralization responses of Pinctada fucata to elevated CO2 (pH 7.8 and pH 7.5) and temperature (25 °C and 31 °C) are investigated. Increases in CO2 and temperature induced significant changes in gene expression, alkaline phosphatase activity, net calcification rates and relative calcium content, whereas no changes are observed in the shell ultrastructure. “Ion and acid-base regulation” related genes and “amino acid metabolism” pathway respond to the elevated CO2 (pH 7.8), suggesting that P. fucata implements a compensatory acid-base mechanism to mitigate the effects of low pH. Additionally, “anti-oxidation”-related genes and “Toll-like receptor signaling”, “arachidonic acid metabolism”, “lysosome” and “other glycan degradation” pathways exhibited responses to elevated temperature (25 °C and 31 °C), suggesting that P. fucata utilizes anti-oxidative and lysosome strategies to alleviate the effects of temperature stress. These responses are energy-consuming processes, which can lead to a decrease in biomineralization capacity. This study therefore is important for understanding the mechanisms by which pearl oysters respond to changing environments and predicting the effects of global climate change on pearl aquaculture. PMID:26732540

  13. Effect of increasing the colloidal calcium phosphate of milk on the texture and microstructure of yogurt.

    PubMed

    Ozcan, T; Horne, D; Lucey, J A

    2011-11-01

    The effect of increasing the colloidal calcium phosphate (CCP) content on the physical, rheological, and microstructural properties of yogurt was investigated. The CCP content of heated (85°C for 30 min) milk was increased by increasing the pH by the addition of alkali (NaOH). Alkalized milk was dialyzed against pasteurized skim milk at approximately 4°C for 72 h to attempt to restore the original pH and soluble Ca content. By adjustment of the milk to pH values 7.45, 8.84, 10.06, and 10.73, the CCP content was increased to approximately 107, 116, 123, and 128%, respectively, relative to the concentration in heated milk. During fermentation of milk, the storage modulus (G') and loss tangent values of yogurts were measured using dynamic oscillatory rheology. Large deformation rheological properties were also measured. The microstructure of yogurt was observed using fluorescence microscopy, and whey separation was determined. Acid-base titration was used to evaluate changes in the CCP content in milk. Total Ca and casein-bound Ca increased with an increase in the pH value of alkalization. During acidification, elevated buffering occurred in milk between pH values 6.7 to 5.2 with an increase in the pH of alkalization. When acidified milk was titrated with alkali, elevated buffering occurred in milk between pH values 5.6 to 6.4 with an increase in the pH of alkalization. The high residual pH of milk after dialysis could be responsible for the decreased contents of soluble Ca in these milks. The pH of gelation was higher in all dialyzed samples compared with the heated control milk, and the gelation pH was higher with an increase in CCP content. The sample with highest CCP content (128%) exhibited gelation at very high pH (6.3), which could be due to alkali-induced CN micellar disruption. The G' values at pH 4.6 were similar in gels with CCP levels up to 116%; at higher CCP levels, the G' values at pH 4.6 greatly decreased. Loss tangent values at pH 5.1 were similar in all samples except in gels with a CCP level of 128%. For dialyzed milk, the whey separation levels were similar in gels made from milk with up to 107% CCP but increased at higher CCP levels. Microstructure of yogurt gels made from milk with 100 to 107% CCP was similar but very large clusters were observed in gels made from milk with higher CCP levels. By dialyzing heated milk against pasteurized milk, we may have retained some heat-induced Ca phosphate on micelles that normally dissolves on cooling because, during dialysis, pasteurized milk provided soluble Ca ions to the heated milk system. Yogurt texture was significantly affected by increasing the casein-bound Ca (and total Ca) content of milk as well as by the alkalization procedure involved in that approach. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Effects of simulated acid rain on soil respiration and its components in a subtropical mixed conifer and broadleaf forest in southern China.

    PubMed

    Liang, Guohua; Hui, Dafeng; Wu, Xiaoying; Wu, Jianping; Liu, Juxiu; Zhou, Guoyi; Zhang, Deqiang

    2016-02-01

    Soil respiration is a major pathway in the global carbon cycle and its response to environmental changes is an increasing concern. Here we explored how total soil respiration (RT) and its components respond to elevated acid rain in a mixed conifer and broadleaf forest, one of the major forest types in southern China. RT was measured twice a month in the first year under four treatment levels of simulated acid rain (SAR: CK, the local lake water, pH 4.7; T1, water pH 4.0; T2, water pH 3.25; and T3, water pH 2.5), and in the second year, RT, litter-free soil respiration (RS), and litter respiration (RL) were measured simultaneously. The results indicated that the mean rate of RT was 2.84 ± 0.20 μmol CO2 m(-2) s(-1) in the CK plots, and RS and RL contributed 60.7% and 39.3% to RT, respectively. SAR marginally reduced (P = 0.08) RT in the first year, but significantly reduced RT and its two components in the second year (P < 0.05). The negative effects were correlated with the decrease in soil microbial biomass and fine root biomass due to soil acidification under the SAR. The temperature coefficients (Q10) of RT and its two components generally decreased with increasing levels of the SAR, but only the decrease of RT and RL was significant (P < 0.05). In addition, the contribution of RL to RT decreased significantly under the SAR, indicating that RL was more sensitive to the SAR than RS. In the context of elevated acid rain, the decline trend of RT in the forests in southern China appears to be attributable to the decline of soil respiration in the litter layer.

  15. Soil properties determine the elevational patterns of base cations and micronutrients in the plant-soil system up to the upper limits of trees and shrubs

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhen; Wang, Xue; Jiang, Yong; Cerdà, Artemi; Yin, Jinfei; Liu, Heyong; Feng, Xue; Shi, Zhan; Dijkstra, Feike A.; Li, Mai-He

    2018-03-01

    To understand whether base cations and micronutrients in the plant-soil system change with elevation, we investigated the patterns of base cations and micronutrients in both soils and plant tissues along three elevational gradients in three climate zones in China. Base cations (Ca, Mg, and K) and micronutrients (Fe, Mn, and Zn) were determined in soils, trees, and shrubs growing at lower and middle elevations as well as at their upper limits on Balang (subtropical, SW China), Qilian (dry temperate, NW China), and Changbai (wet temperate, NE China) mountains. No consistent elevational patterns were found for base cation and micronutrient concentrations in both soils and plant tissues (leaves, roots, shoots, and stem sapwood). Soil pH, soil organic carbon (SOC), total soil nitrogen (TN), the SOC to TN ratio (C : N), and soil extractable nitrogen (NO3- and NH4+) determined the elevational patterns of soil exchangeable Ca and Mg and available Fe, Mn, and Zn. However, the controlling role of soil pH and SOC was not universal as revealed by their weak correlations with soil base cations under tree canopies at the wet temperate mountain and with micronutrients under both tree and shrub canopies at the dry temperate mountain. In most cases, soil base cation and micronutrient availabilities played fundamental roles in determining the base cation and micronutrient concentrations in plant tissues. An exception existed for the decoupling of leaf K and Fe with their availabilities in the soil. Our results highlight the importance of soil physicochemical properties (mainly SOC, C : N, and pH) rather than elevation (i.e., canopy cover and environmental factors, especially temperature), in determining base cation and micronutrient availabilities in soils and subsequently their concentrations in plant tissues.

  16. Ocean acidification effects in the early life-stages of summer flounder, Paralichthys dentatus

    NASA Astrophysics Data System (ADS)

    Chambers, R. C.; Candelmo, A. C.; Habeck, E. A.; Poach, M. E.; Wieczorek, D.; Cooper, K. R.; Greenfield, C. E.; Phelan, B. A.

    2013-08-01

    The limited available evidence about effects of high CO2 and acidification of our oceans on fish suggests that effects will differ across fish species, be subtle, and interact with other stressors. An experimental framework was implemented that includes the use of (1) multiple marine fish species of relevance to the northeastern USA that differ in their ecologies including spawning season and habitat; (2) a wide yet realistic range of environmental conditions (i.e., concurrent manipulation of CO2 levels and water temperatures), and (3) a diverse set of response variables related to fish sensitivity to elevated CO2 levels, water temperatures, and their interactions. This report is on an array of early life-history responses of summer flounder (Paralichthys dentatus), an ecologically and economically important flatfish of this region, to a wide range of pH and CO2 levels. Survival of summer flounder embryos was reduced by 50% below local ambient conditions (7.8 pH, 775 ppm pCO2) when maintained at the intermediate conditions (7.4 pH, 1860 ppm pCO2), and by 75% below local ambient when maintained at the most acidic conditions tested (7.1 pH, 4715 ppm pCO2). This pattern of reduced survival of embryos at higher CO2 levels was consistent among three females used as sources of embryos. Sizes and shapes of larvae were altered by elevated CO2 levels with longer larvae in more acidic waters. This pattern of longer larvae was evident at hatching (although longer hatchlings had less energy reserves) to midway through the larval period. Larvae from the most acidic conditions initiated metamorphosis at earlier ages and smaller sizes than those from more moderate and ambient conditions. Tissue damage was evident in older larvae (age 14 to 28 d post-hatching) from both elevated CO2 levels. Damage included liver sinusoid dilation, focal hyperplasia on the epithelium, separation of the trunk muscle bundles, and dilation of the liver sinusoids and central veins. Cranial-facial features were affected by CO2 levels that changed with ages of larvae. Skeletal elements of larvae from ambient CO2 environments were comparable or smaller than those from elevated CO2 environments when younger (14 d and 21 d post-hatching) but larger at older ages (28 d). The degree of impairment in the early life-stages of summer flounder due to elevated CO2 levels suggests that this species will be challenged by ocean acidification in the near future. Further experimental comparative studies on marine fish are warranted in order to identify the species, life-stages, ecologies, and responses that are most sensitive to increased levels of CO2 and acidity in near-future ocean waters, and a strategy is proposed for achieving these goals.

  17. Resilience to temperature and pH changes in a future climate change scenario in six strains of the polar diatom Fragilariopsis cylindrus

    NASA Astrophysics Data System (ADS)

    Pančić, M.; Hansen, P. J.; Tammilehto, A.; Lundholm, N.

    2015-07-01

    The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5, and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ~ 20-50 % depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37 % compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.

  18. Resilience to temperature and pH changes in a future climate change scenario in six strains of the polar diatom Fragilariopsis cylindrus

    NASA Astrophysics Data System (ADS)

    Pančić, M.; Hansen, P. J.; Tammilehto, A.; Lundholm, N.

    2015-03-01

    The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5 and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ∼20-50% depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37% compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.

  19. Hyperammonaemia and associated factors in unprovoked convulsive seizures: A cross-sectional study.

    PubMed

    Sato, Kenichiro; Arai, Noritoshi; Omori, Aki; Hida, Ayumi; Kimura, Akio; Takeuchi, Sousuke

    2016-12-01

    Hyperammonaemia is frequently observed in patients who have experienced convulsive seizures. Although excessive muscle contraction is presumed to be responsible for the elevated levels of ammonia, the underlying mechanism is poorly understood. The present study aimed to identify the independent factors associated with ammonia elevation using large-scale multivariate analysis. We conducted a cross-sectional study involving 379 adult patients who had been transported to our emergency department and treated for unprovoked convulsive seizures between August 2010 and September 2015. Elevation of venous plasma ammonia levels was set as the primary endpoint, and patients' clinical and laboratory data were obtained. Those with severe liver dysfunction, known hepatic encephalopathy, or convulsions due to cardiovascular or psychogenic causes, and those taking valproate were excluded. Using a cut-off value of 50μg/dL, 183 patients (48.3%) were found to have elevated levels of plasma ammonia. Four factors were identified as independent variables associated with hyperammonaemia following seizures: elevated venous lactate, lowered venous pH, sex (male), and longer duration of convulsion. The results of the present study revealed independent factors associated with hyperammonaemia following unprovoked convulsive seizures in a larger scale and with more plausible statistical analysis. The authors further suggest that the excessive skeletal muscle contraction and/or respiratory failure during/after convulsive seizure may be the primary mechanism of hyperammonaemia. Copyright © 2016. Published by Elsevier Ltd.

  20. The Effect of Geraniol on Liver Regeneration After Hepatectomy in Rats.

    PubMed

    Canbek, Mediha; Uyanoglu, Mustafa; Canbek, Selcuk; Ceyhan, Emre; Ozen, Ahmet; Durmus, Basak; Turgak, Ozge

    2017-01-01

    Geraniol is a monoterpenoid alcohol that has a hepatoprotective effect. We investigated the regenerative effects of geraniol in rats after a 70% partial hepatectomy (PH). Using Wistar albino rats, nine groups were created: Group I was the control group, while the remaining groups received a single intraperitoneal dose of saline, Silymarin, or geraniol after PH. A 70% PH was performed on all groups except for groups II and III. Blood serum samples were obtained for alanine amino transferase (ALT) analysis. Then liver tissues were harvested for histological and real-time polymerase chain reaction (PCR) analyses. Tumor necrosis factor-α (TNFα) and interleukin 6 (IL6) gene expression were examined 24 and 48 h after PH. ALT levels were found to be statistically significantly increased in all PH-treated groups. TNFα and IL6 gene expression levels were elevated in geraniol-treated groups. Histological evaluation revealed a hepatoprotective effect for geraniol-treated groups. Our results suggest that geraniol plays a significant role during liver regeneration, which involves the elevated expression of TNFα and IL6 48 h after PH. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Evaluation of end-tidal CO2 pressure at the anaerobic threshold for detecting and assessing pulmonary hypertension.

    PubMed

    Higashi, Akifumi; Dohi, Yoshihiro; Yamabe, Sayuri; Kinoshita, Hiroki; Sada, Yoshiharu; Kitagawa, Toshiro; Hidaka, Takayuki; Kurisu, Satoshi; Yamamoto, Hideya; Yasunobu, Yuji; Kihara, Yasuki

    2017-11-01

    Cardiopulmonary exercise testing (CPET) is useful for the evaluation of patients with suspected or confirmed pulmonary hypertension (PH). End-tidal carbon dioxide pressure (PETCO 2 ) during exercise is reduced with elevated pulmonary artery pressure. However, the utility of ventilatory parameters such as CPET for detecting PH remains unclear. We conducted a review in 155 patients who underwent right heart catheterization and CPET. Fifty-nine patients had PH [mean pulmonary arterial pressure (mPAP) ≥25 mmHg]. There was an inverse correlation between PETCO 2 at the anaerobic threshold (AT) and mPAP (r = -0.66; P < 0.01). Multiple regression analysis showed that PETCO 2 at the AT was independently associated with an elevated mPAP (P = 0.04). The sensitivity and specificity of CPET for PH were 80 and 86%, respectively, when the cut-off value identified by receiver operating characteristic curve analysis for PETCO 2 at the AT was ≤34.7 mmHg. A combination of echocardiography and CPET improved the sensitivity in detecting PH without markedly reducing specificity (sensitivity 87%, specificity 85%). Evaluation of PETCO 2 at the AT is useful for estimating pulmonary pressure. A combination of CPET and previous screening algorithms for PH may enhance the diagnostic ability of PH.

  2. Glutamic acid leaching of synthetic covellite - A model system combining experimental data and geochemical modeling.

    PubMed

    Barthen, R; Karimzadeh, L; Gründig, M; Grenzer, J; Lippold, H; Franke, K; Lippmann-Pipke, J

    2018-04-01

    For Kupferschiefer mining established pyrometallurgical and acidic bioleaching methods face numerous problems. This is due to the finely grained and dispersed distribution of the copper minerals, the complex mineralogy, comparably low copper content, and the possibly high carbonate and organic content in this ore. Leaching at neutral pH seemed worth a try: At neutral pH the abundant carbonates do not need to be dissolved and therewith would not consume excessive amounts of provided acids. Certainly, copper solubility at neutral pH is reduced compared to an acidic environment; however, if copper complexing ligands would be supplied abundantly, copper contents in the mobile phase could easily reach the required economic level. We set up a model system to study the effect of parameters such as pH, microorganisms, microbial metabolites, and organic ligands on covellite leaching to get a better understanding of the processes in copper leaching at pH ≥ 6. With this model system we could show that glutamic acid and the microbial siderophore desferrioxamine B promote covellite dissolution. Both experimental and modeling data showed that pH is an important parameter in covellite dissolution. An increase of pH from 6 to 9 could elevate copper extraction in the presence of glutamic acid by a factor of five. These results have implications for both development of a biotechnological process regarding metal extraction from Kupferschiefer, and for the interaction of bacterial metabolites with the lithosphere and potential mobilization of heavy metals in alkaline environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Primary producers may ameliorate impacts of daytime CO2 addition in a coastal marine ecosystem

    PubMed Central

    Silbiger, Nyssa J.; Bernatchez, Genevieve; Sorte, Cascade J.B.

    2018-01-01

    Predicting the impacts of ocean acidification in coastal habitats is complicated by bio-physical feedbacks between organisms and carbonate chemistry. Daily changes in pH and other carbonate parameters in coastal ecosystems, associated with processes such as photosynthesis and respiration, often greatly exceed global mean predicted changes over the next century. We assessed the strength of these feedbacks under projected elevated CO2 levels by conducting a field experiment in 10 macrophyte-dominated tide pools on the coast of California, USA. We evaluated changes in carbonate parameters over time and found that under ambient conditions, daytime changes in pH, pCO2, net ecosystem calcification (NEC), and O2 concentrations were strongly related to rates of net community production (NCP). CO2 was added to pools during daytime low tides, which should have reduced pH and enhanced pCO2. However, photosynthesis rapidly reduced pCO2 and increased pH, so effects of CO2 addition were not apparent unless we accounted for seaweed and surfgrass abundances. In the absence of macrophytes, CO2 addition caused pH to decline by ∼0.6 units and pCO2 to increase by ∼487 µatm over 6 hr during the daytime low tide. As macrophyte abundances increased, the impacts of CO2 addition declined because more CO2 was absorbed due to photosynthesis. Effects of CO2addition were, therefore, modified by feedbacks between NCP, pH, pCO2, and NEC. Our results underscore the potential importance of coastal macrophytes in ameliorating impacts of ocean acidification. PMID:29761055

  4. Pulmonary veins in the normal lung and pulmonary hypertension due to left heart disease

    PubMed Central

    Hunt, James M.; Bethea, Brian; Liu, Xiang; Gandjeva, Aneta; Mammen, Pradeep P. A.; Stacher, Elvira; Gandjeva, Marina R.; Parish, Elisabeth; Perez, Mario; Smith, Lynelle; Graham, Brian B.; Kuebler, Wolfgang M.

    2013-01-01

    Despite the importance of pulmonary veins in normal lung physiology and the pathobiology of pulmonary hypertension with left heart disease (PH-LHD), pulmonary veins remain largely understudied. Difficult to identify histologically, lung venous endothelium or smooth muscle cells display no unique characteristic functional and structural markers that distinguish them from pulmonary arteries. To address these challenges, we undertook a search for unique molecular markers in pulmonary veins. In addition, we addressed the expression pattern of a candidate molecular marker and analyzed the structural pattern of vascular remodeling of pulmonary veins in a rodent model of PH-LHD and in lung tissue of patients with PH-LHD obtained at time of placement on a left ventricular assist device. We detected urokinase plasminogen activator receptor (uPAR) expression preferentially in normal pulmonary veins of mice, rats, and human lungs. Expression of uPAR remained elevated in pulmonary veins of rats with PH-LHD; however, we also detected induction of uPAR expression in remodeled pulmonary arteries. These findings were validated in lungs of patients with PH-LHD. In selected patients with sequential lung biopsy at the time of removal of the left ventricular assist device, we present early data suggesting improvement in pulmonary hemodynamics and venous remodeling, indicating potential regression of venous remodeling in response to assist device treatment. Our data indicate that remodeling of pulmonary veins is an integral part of PH-LHD and that pulmonary veins share some key features present in remodeled yet not normotensive pulmonary arteries. PMID:24039255

  5. Primary producers may ameliorate impacts of daytime CO2 addition in a coastal marine ecosystem.

    PubMed

    Bracken, Matthew E S; Silbiger, Nyssa J; Bernatchez, Genevieve; Sorte, Cascade J B

    2018-01-01

    Predicting the impacts of ocean acidification in coastal habitats is complicated by bio-physical feedbacks between organisms and carbonate chemistry. Daily changes in pH and other carbonate parameters in coastal ecosystems, associated with processes such as photosynthesis and respiration, often greatly exceed global mean predicted changes over the next century. We assessed the strength of these feedbacks under projected elevated CO 2 levels by conducting a field experiment in 10 macrophyte-dominated tide pools on the coast of California, USA. We evaluated changes in carbonate parameters over time and found that under ambient conditions, daytime changes in pH, p CO 2 , net ecosystem calcification ( NEC ), and O 2 concentrations were strongly related to rates of net community production ( NCP ). CO 2 was added to pools during daytime low tides, which should have reduced pH and enhanced p CO 2 . However, photosynthesis rapidly reduced p CO 2 and increased pH, so effects of CO 2 addition were not apparent unless we accounted for seaweed and surfgrass abundances. In the absence of macrophytes, CO 2 addition caused pH to decline by ∼0.6 units and p CO 2 to increase by ∼487 µatm over 6 hr during the daytime low tide. As macrophyte abundances increased, the impacts of CO 2 addition declined because more CO 2 was absorbed due to photosynthesis. Effects of CO 2 addition were, therefore, modified by feedbacks between NCP , pH, p CO 2 , and NEC . Our results underscore the potential importance of coastal macrophytes in ameliorating impacts of ocean acidification.

  6. Biochar alters microbial community and carbon sequestration potential across different soil pH.

    PubMed

    Sheng, Yaqi; Zhu, Lizhong

    2018-05-01

    Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO 2 emission. To investigate soil microbial response and CO 2 emission of biochar across different pH levels, comparative incubation studies on CO 2 emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO 2 emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO 2 emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO 2 emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO 2 emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO 2 emission. Copyright © 2017. Published by Elsevier B.V.

  7. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH.

    PubMed

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-07

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.

  8. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH

    NASA Astrophysics Data System (ADS)

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-01

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.

  9. Algae metabolism and organic carbon in sediments determining arsenic mobilisation in ground- and surface water. A field study in Doñana National Park, Spain.

    PubMed

    Kohfahl, Claus; Navarro, Daniel Sánchez-Rodas; Mendoza, Jorge Armando; Vadillo, Iñaki; Giménez-Forcada, Elena

    2016-02-15

    A study has been performed to explore the origin, spatiotemporal behaviour and mobilisation mechanism of the elevated arsenic (As) concentrations found in ground water and drinking ponds of the Doñana National Park, Southern Spain. At a larger scale, 13 piezometers and surface water samples of about 50 artificial drinking ponds and freshwater lagoons throughout the National Park were collected and analysed for major ions, metals and trace elements. At a smaller scale, 5 locations were equipped with piezometers and groundwater was sampled up to 4 times for ambient parameters, major ions, metals, trace elements and iron (Fe) speciation. As was analysed for inorganic and organic speciation. Undisturbed sediment samples were analysed for physical parameters, mineralogy, geochemistry as well as As species. Sediment analyses yielded total As between 0.1 and 18 mg/kg and are not correlated with As concentration in water. Results of the surface- and groundwater sampling revealed elevated concentration of As up to 302 μg/L within a restricted area of the National Park. Results of groundwater sampling reveals strong correlation of As with Fe(2+) pointing to As mobilisation due to reductive dissolution of hydroferric oxides (HFO) in areas of locally elevated amounts of organic matter within the sediments. High As concentrations in surface water ponds are correlated with elevated alkalinity and pH attributed to algae metabolism, leading to As desorption from HFO. The algae metabolism is responsible for the presence of methylated arsenic species in surface water, in contrast to ground water in which only inorganic As species was found. Temporal variations in surface water and groundwater are also related to changes in pH and alkalinity as a result of enhanced algae metabolism in surface water or related to changes in the redox level in the case of groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Treatment of co-mingled benzene, toluene and TCE in groundwater.

    PubMed

    Chen, Liang; Liu, Yulong; Liu, Fei; Jin, Song

    2014-06-30

    This work addressed a hypothetical but practical scenario that includes biological oxidation and reductive dechlorination in treating groundwater containing co-mingled plume of trichloroethene (TCE), benzene and toluene. Groundwater immediately downgradient from the commonly used zero-valent iron (ZVI) has shown alkaline pH (up to 10.7). The elevated pH may influence BTEX compounds (i.e., benzene, toluene, ethyl benzene, and xylenes) biodegradation, which could also be inhibited by elevated concentrations of TCE. Data from this work suggests that the inhibition coefficients (IC) value for 100 μg/L and 500 μg/L of TCE on benzene and toluene degradation are 2.1-2.8 at pH 7.9, and 3.5-6.1 at pH 10.5. For a co-mingled plume, it appears to be more effective to reduce TCE by ZVI before addressing benzene and toluene biodegradation. The ample buffering capacity of most groundwater and the adaptation of benzene and toluene-degrading microbes are likely able to eliminate the adverse influence of pH shifts downgradient from a ZVI-PRB. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Acid tolerance and acid shock response of Escherichia coli O157:H7 and non-O157:H7 isolates provide cross protection to sodium lactate and sodium chloride.

    PubMed

    Garren, D M; Harrison, M A; Russell, S M

    1998-02-01

    The survival of Escherichia coli O157:H7 and non-O157:H7 due to an enhanced acid tolerance response (ATR), and enhanced acid shock response (ASR), or the stationary phase protective system when exposed to lactic acid and the resulting cross protection against increased concentration of sodium chloride and sodium lactate was studied. Escherichia coli O157:H7 isolates (1932 and 009) and a non-O157:H7 strain (ATCC 23716) were grown to stationary phase at 32 degrees C and O157:H7 to one of two treatments in an attempt to either acid shock or acid adapt the survivors. Acid shocked cells were exposed to lactic acid at pH 4.0. Acid-adapted cells were first exposed to a pH of 5.5 and then an acid challenge of pH 4.0. Sodium lactate (10%, 20%, or 30%) or sodium chloride (5%, 10%, or 15%) were added to a minimal glucose medium after the acidification treatment. When acid shocked and acid adapted isolate 932 and strain ATCC 23716 tolerated the elevated levels of sodium lactate, and the strain ATCC 23716 tolerated the elevated levels of sodium chloride. Acid adaption allowed isolate 932 to tolerate higher levels of sodium chloride; however, the acid shocking did not provide the same protection. Neither of the acid treatment provided increased tolerance to sodium chloride for isolate E009. Evidence of cross protection against acid and sodium chloride or acid and sodium lactate in E. coli O157:H7 could point to a need for further evaluation of whether these combinations of preservation means are sufficient to control this pathogen.

  12. Biogeochemistry of the sulfur oxidizer Thiomicrospira thermophila

    NASA Astrophysics Data System (ADS)

    Houghton, J.; Fike, D. A.; Wills, E.; Foustoukos, D.

    2013-12-01

    Near-seafloor hydrothermal environments such as diffuse flow venting or subsurface mixing are characterized by rapidly changing conditions and steep chemical and thermal gradients. Microorganisms living in these environments can take advantage of these changes by switching among metabolic pathways rather than specializing. We present reaction stoichiometry and rates for T. thermophila grown in a closed system both at ambient and elevated pressure (50 bars) that demonstrate substantial metabolic flexibility, shifting between up to 5 different sulfur cycling reactions over a 24 hour period. Based on the stoichiometry between S2O3 consumed and SO4 produced, three reactions are sulfur oxidation and two are disproportionation, which has not previously been demonstrated for Thiomicrospira strains. Reactants include S2O3, elemental S (both polymeric S chains and S8 rings), HS-, and O2, while products include polymeric elemental S, SO4, HS-, and polysulfides. The presence of μmolal concentrations of HS- has been confirmed during the time series only when stoichiometry predicts disproportionation. Production of HS- in the presence of elemental S results in abiotic conversion to polysulfides, keeping the sulfide concentrations low in solution. The transition from oxidation to disproportionation appears to be triggered by a depletion in dissolved oxygen and the rate of reaction is a second order function of S2O3 and O2 concentrations. Growth was tested at conditions spanning their pH tolerance (5.0 - 8.0) using a citrate buffer (pH 5.0), unbuffered media (initial pH 7.0), and Tris buffer (pH 8.0). The highest rates are observed at pH 8.0 with rates decreasing as a function of pH. The lowest rate occurs at pH 5.0 and exhibits pseudo-first order behavior over a 24 hour period, likely due to a long lag and very slow growth. Repeat injections after the culture is acclimated to the experimental conditions result in very high pseudo-first order rates due to rapid consumption of all available thiosulfate prior to oxygen depletion. Results from high-pressure closed system experiments (at 50 bars, buffered at pH 5.0) exhibit comparable rates to the corresponding ambient pressure condition. Future work will address the effect of dissolved O2 on sulfur disproportionation using continuous culturing of T. thermophila at deep-sea pressure conditions (>200 bar).

  13. Nanoparticle-based measurements of pH and O2 dynamics in the rhizosphere of Zostera marina L.: effects of temperature elevation and light-dark transitions.

    PubMed

    Elgetti Brodersen, Kasper; Koren, Klaus; Lichtenberg, Mads; Kühl, Michael

    2016-07-01

    Seagrasses can modulate the geochemical conditions in their immediate rhizosphere through the release of chemical compounds from their below-ground tissue. This is a vital chemical defence mechanism, whereby the plants detoxify the surrounding sediment. Using novel nanoparticle-based optical O2 and pH sensors incorporated in reduced and transparent artificial sediment, we investigated the spatio-temporal dynamics of pH and O2 within the entire rhizosphere of Zostera marina L. during experimental manipulations of light and temperature. We combined such measurements with O2 microsensor measurements of the photosynthetic productivity and respiration of seagrass leaves. We found pronounced pH and O2 microheterogeneity within the immediate rhizosphere of Z. marina, with higher below-ground tissue oxidation capability and rhizoplane pH levels during both light exposure of the leaf canopy and elevated temperature, where the temperature-mediated stimuli of biogeochemical processes seemed to predominate. Low rhizosphere pH microenvironments appeared to correlate with plant-derived oxic microzones stimulating local sulphide oxidation and thus driving local proton generation, although the rhizoplane pH levels generally where much higher than the bulk sediment pH. Our data show that Z. marina can actively alter its rhizosphere pH microenvironment alleviating the local H2 S toxicity and enhancing nutrient availability in the adjacent sediment via geochemical speciation shift. © 2016 John Wiley & Sons Ltd.

  14. Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 2: Geochemical controls on constituent concentrations

    USGS Publications Warehouse

    Cravotta, C.A.

    2008-01-01

    Water-quality data for discharges from 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania reveal complex relations among the pH and dissolved solute concentrations that can be explained with geochemical equilibrium models. Observed values of pH ranged from 2.7 to 7.3 in the coal-mine discharges (CMD). Generally, flow rates were smaller and solute concentrations were greater for low-pH CMD samples; pH typically increased with flow rate. Although the frequency distribution of pH was similar for the anthracite and bituminous discharges, the bituminous discharges had smaller median flow rates; greater concentrations of SO4, Fe, Al, As, Cd, Cu, Ni and Sr; comparable concentrations of Mn, Cd, Zn and Se; and smaller concentrations of Ba and Pb than anthracite discharges with the same pH values. The observed relations between the pH and constituent concentrations can be attributed to (1) dilution of acidic water by near-neutral or alkaline ground water; (2) solubility control of Al, Fe, Mn, Ba and Sr by hydroxide, sulfate, and/or carbonate minerals; and (3) aqueous SO4-complexation and surface-complexation (adsorption) reactions. The formation of AlSO4+ and AlHSO42 + complexes adds to the total dissolved Al concentration at equilibrium with Al(OH)3 and/or Al hydroxysulfate phases and can account for 10-20 times greater concentrations of dissolved Al in SO4-laden bituminous discharges compared to anthracite discharges at pH of 5. Sulfate complexation can also account for 10-30 times greater concentrations of dissolved FeIII concentrations at equilibrium with Fe(OH)3 and/or schwertmannite (Fe8O8(OH)4.5(SO4)1.75) at pH of 3-5. In contrast, lower Ba concentrations in bituminous discharges indicate that elevated SO4 concentrations in these CMD sources could limit Ba concentrations by the precipitation of barite (BaSO4). Coprecipitation of Sr with barite could limit concentrations of this element. However, concentrations of dissolved Pb, Cu, Cd, Zn, and most other trace cations in CMD samples were orders of magnitude less than equilibrium with sulfate, carbonate, and/or hydroxide minerals. Surface complexation (adsorption) by hydrous ferric oxides (HFO) could account for the decreased concentrations of these divalent cations with increased pH. In contrast, increased concentrations of As and, to a lesser extent, Se with increased pH could result from the adsorption of these oxyanions by HFO at low pH and desorption at near-neutral pH. Hence, the solute concentrations in CMD and the purity of associated "ochres" formed in CMD settings are expected to vary with pH and aqueous SO4 concentration, with potential for elevated SO4, As and Se in ochres formed at low pH and elevated Cu, Cd, Pb and Zn in ochres formed at near-neutral pH. Elevated SO4 content of ochres could enhance the adsorption of cations at low pH, but decrease the adsorption of anions such as As. Such information on environmental processes that control element concentrations in aqueous samples and associated precipitates could be useful in the design of systems to reduce dissolved contaminant concentrations and/or to recover potentially valuable constituents in mine effluents.

  15. Self-organization of bacterial communities against environmental pH variation: Controlled chemotactic motility arranges cell population structures in biofilms

    PubMed Central

    Nakayama, Madoka; Shoji, Wataru

    2017-01-01

    As with many living organisms, bacteria often live on the surface of solids, such as foods, organisms, buildings and soil. Compared with dispersive behavior in liquid, bacteria on surface environment exhibit significantly restricted mobility. They have access to only limited resources and cannot be liberated from the changing environment. Accordingly, appropriate collective strategies are necessarily required for long-term growth and survival. However, in spite of our deepening knowledge of the structure and characteristics of individual cells, strategic self-organizing dynamics of their community is poorly understood and therefore not yet predictable. Here, we report a morphological change in Bacillus subtilis biofilms due to environmental pH variations, and present a mathematical model for the macroscopic spatio-temporal dynamics. We show that an environmental pH shift transforms colony morphology on hard agar media from notched ‘volcano-like’ to round and front-elevated ‘crater-like’. We discover that a pH-dependent dose-response relationship between nutritional resource level and quantitative bacterial motility at the population level plays a central role in the mechanism of the spatio-temporal cell population structure design in biofilms. PMID:28253348

  16. Self-organization of bacterial communities against environmental pH variation: Controlled chemotactic motility arranges cell population structures in biofilms.

    PubMed

    Tasaki, Sohei; Nakayama, Madoka; Shoji, Wataru

    2017-01-01

    As with many living organisms, bacteria often live on the surface of solids, such as foods, organisms, buildings and soil. Compared with dispersive behavior in liquid, bacteria on surface environment exhibit significantly restricted mobility. They have access to only limited resources and cannot be liberated from the changing environment. Accordingly, appropriate collective strategies are necessarily required for long-term growth and survival. However, in spite of our deepening knowledge of the structure and characteristics of individual cells, strategic self-organizing dynamics of their community is poorly understood and therefore not yet predictable. Here, we report a morphological change in Bacillus subtilis biofilms due to environmental pH variations, and present a mathematical model for the macroscopic spatio-temporal dynamics. We show that an environmental pH shift transforms colony morphology on hard agar media from notched 'volcano-like' to round and front-elevated 'crater-like'. We discover that a pH-dependent dose-response relationship between nutritional resource level and quantitative bacterial motility at the population level plays a central role in the mechanism of the spatio-temporal cell population structure design in biofilms.

  17. Effects of pH on the production of phosphate and pyrophosphate by matrix vesicles' biomimetics.

    PubMed

    Simão, Ana Maria S; Bolean, Maytê; Hoylaerts, Marc F; Millán, José Luis; Ciancaglini, Pietro

    2013-09-01

    During endochondral bone formation, chondrocytes and osteoblasts synthesize and mineralize the extracellular matrix through a process that initiates within matrix vesicles (MVs) and ends with bone mineral propagation onto the collagenous scaffold. pH gradients have been identified in the growth plate of long bones, but how pH changes affect the initiation of skeletal mineralization is not known. Tissue-nonspecific alkaline phosphatase (TNAP) degrades extracellular inorganic pyrophosphate (PPi), a mineralization inhibitor produced by ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1), while contributing Pi from ATP to initiate mineralization. TNAP and NPP1, alone or combined, were reconstituted in dipalmitoylphosphatidylcholine liposomes to mimic the microenvironment of MVs. The hydrolysis of ATP, ADP, AMP, and PPi was studied at pH 8 and 9 and compared to the data determined at pH 7.4. While catalytic efficiencies in general were higher at alkaline pH, PPi hydrolysis was maximal at pH 8 and indicated a preferential utilization of PPi over ATP at pH 8 versus 9. In addition, all proteoliposomes induced mineral formation when incubated in a synthetic cartilage lymph containing 1 mM ATP as substrate and amorphous calcium phosphate or calcium-phosphate-phosphatidylserine complexes as nucleators. Propagation of mineralization was significantly more efficient at pH 7.5 and 8 than at pH 9. Since a slight pH elevation from 7.4 to 8 promotes considerably more hydrolysis of ATP, ADP, and AMP primarily by TNAP, this small pH change facilitates mineralization, especially via upregulated PPi hydrolysis by both NPP1 and TNAP, further elevating the Pi/PPi ratio, thus enhancing bone mineralization.

  18. The inorganic carbon distribution in Irish coastal waters

    NASA Astrophysics Data System (ADS)

    McGrath, Triona; Cave, Rachel; McGovern, Evin; Kivimae, Caroline

    2014-05-01

    Despite their relatively small surface area, coastal and shelf waters play a crucial role in the global climate through their influence on major biogeochemical cycles. Due to growing concern about ocean acidification as a result of increasing atmospheric CO2 concentrations, measurements of inorganic carbon parameters (dissolved inorganic carbon (DIC), total alkalinity (TA), pH and pCO2) have been made with increasing regularity over the past two decades. While it is clear that open ocean surface waters are acidifying at a fairly uniform rate ( -0.02 pH units per decade), less is known about changes in coastal waters due to the high complexity and spatial variability in these regions. Large spatial and temporal variability in coastal CO2 parameters is mainly due to nutrient inputs, biological activity, upwelling and riverine inputs of alkalinity and inorganic and organic carbon. The inorganic carbon system in Irish coastal waters is presented here, gathered from 9 surveys around the Irish coastline between 2009 and 2013. There are striking contrasts in the CO2 system between different areas, largely attributed to the bedrock composition of the nearby rivers. Freshwater end-member concentrations of TA, calculated from TA-salinity relationships in outer estuarine and nearshore coastal water, were supported by riverine TA data from the Irish Environmental Protection Agency. A large portion of Ireland is covered with limestone bedrock and as a result, many of the rivers have extremely high TA (>5000μmol/kg) due to the carbonate mineral content of the underlying bedrock. While such high TA has resulted in elevated pH and calcium carbonate saturation states in some coastal waters, (e.g. Galway Bay and Dublin Bay), the high TA in other areas was accompanied by particularly high DIC (e.g. River Shannon on the west coast), resulting in lower pH and aragonite/calcite saturation states and even CO2 degassing in the Shannon estuary. Due to non-limestone lithology in many parts of Northern Ireland, rivers and surrounding coastal water have lower TA and hence calcium carbonate saturation states that are directly related to salinity (e.g. Lough Foyle). This study highlights the complexity of the inorganic carbon system in Irish waters and the need for region-specific case studies to be carried out to assess the potential impacts of ocean acidification on coastal ecosystems.

  19. An alkaline follicular fluid fraction induces capacitation and limited release of oviduct epithelium-bound stallion sperm.

    PubMed

    Leemans, Bart; Gadella, Bart M; Stout, Tom A E; Nelis, Hilde; Hoogewijs, Maarten; Van Soom, Ann

    2015-09-01

    Induction of hyperactivated motility is considered essential for triggering the release of oviduct-bound mammalian spermatozoa in preparation for fertilization. In this study, oviduct-bound stallion spermatozoa were exposed for 2 h to: i) pre-ovulatory and ii) post-ovulatory oviductal fluid; iii) 100% and iv) 10% follicular fluid (FF); v) cumulus cells, vi) mature equine oocytes, vii) capacitating and viii) non-capacitating medium. None of these triggered sperm release or hyperactivated motility. Interestingly, native FF was detrimental to sperm viability, an effect that was negated by heat inactivation, charcoal treatment and 30 kDa filtration alone or in combination. Moreover, sperm suspensions exposed to treated FF at pH 7.9 but not pH 7.4 showed Ca(2+)-dependent hypermotility. Fluo-4 AM staining of sperm showed elevated cytoplasmic Ca(2+) in hyperactivated stallion spermatozoa exposed to treated FF at pH 7.9 compared to a modest response in defined capacitating conditions at pH 7.9 and no response in treated FF at pH 7.4. Moreover, 1 h incubation in alkaline, treated FF induced protein tyrosine phosphorylation in 20% of spermatozoa. None of the conditions tested induced widespread release of sperm pre-bound to oviduct epithelium. However, the hyperactivating conditions did induce release of 70-120 spermatozoa per oviduct explant, of which 48% showed protein tyrosine phosphorylation and all were acrosome-intact, but capable of acrosomal exocytosis in response to calcium ionophore. We conclude that, in the presence of elevated pH and extracellular Ca(2+), a heat-resistant, hydrophilic, <30 kDa component of FF can trigger protein tyrosine phosphorylation, elevated cytoplasmic Ca(2+) and hyperactivated motility in stallion sperm, but infrequent release of sperm pre-bound to oviduct epithelium. © 2015 Society for Reproduction and Fertility.

  20. Incubation of premise plumbing water samples on Buffered Charcoal Yeast Extract agar at elevated temperature and pH selects for Legionella pneumophila.

    PubMed

    Veenendaal, Harm R; Brouwer-Hanzens, Anke J; van der Kooij, Dick

    2017-10-15

    Worldwide, over 90% of the notified cases of Legionnaires' disease are caused by Legionella pneumophila. However, the standard culture medium for the detection of Legionella in environmental water samples, Buffered Charcoal Yeast Extract (BCYE) agar of pH 6.9 ± 0.4 with or without antimicrobial agents incubated at 36 ± 1 °C, supports the growth of a large diversity of Legionella species. BCYE agar of elevated pH or/and incubation at elevated temperature gave strongly reduced recoveries of most of 26 L. non-pneumophila spp. tested, but not of L. pneumophila. BCYE agar of pH 7.3 ± 0.1, incubated at 40 ± 0.5 °C (BCYE pH 7.3/40 °C) was tested for selective enumeration of L. pneumophila. Of the L. non-pneumophila spp. tested, only L. adelaidensis and L. londiniensis multiplied under these conditions. The colony counts on BCYE pH 7.3/40 °C of a L. pneumophila serogroup 1 strain cultured in tap water did not differ significantly from those on BCYE pH 6.9/36 °C when directly plated and after membrane filtration and showed repeatability's of 13-14%. By using membrane filtration L. pneumophila was detected in 58 (54%) of 107 Legionella-positive water samples from premise plumbing systems under one or both of these culture conditions. The L. pneumophila colony counts (log-transformed) on BCYE pH 7.3/40 °C were strongly related (r 2  = 0.87) to those on BCYE pH 6.9/36 °C, but differed significantly (p < 0.05) by a mean of - 0.12 ± 0.30 logs. L. non-pneumophila spp. were detected only on BCYE pH 6.9/36 °C in 49 (46%) of the samples. Hence, BCYE pH 7.3/40 °C can facilitate the enumeration of L. pneumophila and their isolation from premise plumbing systems with culturable L. non-pneumophila spp., some of which, e.g. L. anisa, can be present in high numbers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Baseline groundwater quality from 34 wells in Wayne County, Pennsylvania, 2011 and 2013

    USGS Publications Warehouse

    Sloto, Ronald A.

    2014-01-01

    Differences in groundwater chemistry were related to pH. Water with a pH greater than 7.6 generally had low dissolved oxygen concentrations, indicating reducing conditions in the aquifer. These high pH waters also had relatively elevated concentrations of methane, arsenic, boron, bromide, fluoride, lithium, and sodium but low concentrations of copper, nickel, and zinc. Water samples with a pH greater than 7.8 had methane concentrations equal to or greater than 0.04 mg/L.

  2. Effect of Natural Organic Matter on Lincomycin Transport in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Zhao, Y.; Lin, K.; Ding, Y.; Tian, Y.; Li, H.

    2012-12-01

    Antibiotics such as lincomycin are often administered in animal feeding operations and secreted into animal manure, and therefore are becoming contaminants of emerging concerns. Once released into the environment, antibiotics are very likely exposed to natural organic matter (NOM). Considering elevated environmental concentrations of antibiotics and the spreading of antibiotic resistance among microorganisms, understanding antibiotics transport processes becomes very important to assessing environmental impact of pharmaceutical release and protecting human and ecological health. This study aims to investigate how NOM influences the transport of lincomycin in saturated Ottawa sand through column experiments with and without the presence of Na- or Ca-saturated Elliott Soil Humic Acid (ESHA) at three pH levels (i.e., 4, 7, 9). Our preliminary results indicated that at near neutral pH lincomycin was more retained in the presence of 7 mg C/L Na-saturated ESHA compared to the experiments in the deionized water of pH 7. Since the Na-saturated ESHA was less retained compared to lincomycin, it is likely that the ESHA adsorbed on the sand surface facilitated the lincomycin retention due to lincomyin-NOM interaction. Future study will examine the effect of solution pH and the different type of saturating cations (Na or Ca). This study will help better understand the fate and transport of lincomycin in the subsurface environment.

  3. Effects of pH on the Production of Phosphate and Pyrophosphate by Matrix Vesicles' Biomimetics

    PubMed Central

    Simão, Ana Maria S.; Bolean, Maytê; Hoylaerts, Marc F.; Millán, José Luis; Ciancaglini, Pietro

    2013-01-01

    During endochondral bone formation, chondrocytes and osteoblasts synthesize and mineralize the extracellular matrix through a process that initiates within matrix vesicles (MVs) and ends with bone mineral propagation onto the collagenous scaffold. pH gradients have been identified in the growth plate of long bones, but how pH changes affect the initiation of skeletal mineralization is not known. Tissue-nonspecific alkaline phosphatase (TNAP) degrades extracellular inorganic pyrophosphate (ePPi), a mineralization inhibitor produced by ectonucleotide pyrophosphatase/ phosphodiesterase-1 (NPP1), while contributing Pi from ATP to initiate mineralization. TNAP and NPP1, alone or combined, were reconstituted in dipalmitoylphosphatidylcholine (DPPC) liposomes to mimic the microenvironment of MVs. The hydrolysis of ATP, ADP, AMP and PPi was studied at pH 8 and 9 and compared to the data determined at pH 7.4. While catalytic efficiencies in general were higher at alkaline pH, PPi hydrolysis was maximal at pH 8 and indicated a preferential utilization of PPi over ATP, at pH 8 versus 9. In addition, all proteoliposomes induced mineral formation when incubated in a synthetic cartilage lymph (SCL) containing 1 mM ATP as substrate and amorphous calcium phosphate (ACP) or calciumphosphate- phosphatidylserine complexes (PS-CPLX) as nucleators. Propagation of mineralization was significantly more efficient at pHs 7.5 and 8 than at pH 9. Since a slight pH elevation from 7.4 to 8 promotes considerably more hydrolysis of ATP, ADP and AMP primarily by TNAP, this small pH change facilitates mineralization, especially via upregulated PPi hydrolysis by both NPP1 and TNAP, further elevating the Pi/PPi ratio, thus enhancing bone mineralization. PMID:23942722

  4. Pulmonary Hypertension due to Radiofrequency Catheter Ablation (RFCA) for Atrial Fibrillation: The Lungs, the Atrium or the Ventricle?

    PubMed

    Verma, Isha; Tripathi, Hemantkumar; Sikachi, Rutuja Rajanikant; Agrawal, Abhinav

    2016-12-01

    Atrial fibrillation is the most common heart rhythm disorder in United States, characterised by rapid and irregular beating of both the atria resulting in the similar ventricular response. While rate and rhythm control using pharmacological regimens remain the primary management strategies in these patients, radiofrequency catheter ablation (RFCA) is rapidly rising as an alternative modality of treatment. Increase in the incidence of RFCA has shed light on complications associated with this procedure. Pulmonary hypertension (PH) is one of the long-term complications that has been observed postcatheter ablation. There have been multiple mechanisms which have been proposed to explain these elevated pulmonary pressures. These include the involvement of the lungs due to pulmonary vein stenosis, pulmonary vein occlusion and, rarely, pulmonary embolism. Radiofrequency catheter ablation can also lead to scarring of the atrium which can cause left atrial diastolic dysfunction leading to elevated pulmonary pressures. Recently, it was also proposed that elevated pulmonary pressure was related to the unmasking of left ventricular diastolic dysfunction occurring after this procedure. In this article, we review all the mechanisms that are associated with the development of pulmonary hypertension in patients undergoing RCFA for atrial fibrillation and the approach to diagnosis and management of such patients. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  5. Respiratory alkalosis may impair the production of vitamin D and lead to significant morbidity, including the fibromyalgia syndrome.

    PubMed

    Lewis, John M; Fontrier, Toinette H; Coley, J Lynn

    2017-05-01

    Hyperventilation caused by physical and/or psychological stress may lead to significant respiratory alkalosis and an elevated systemic pH. The alkalotic pH may in turn suppress the normal renal release of phosphate into the urine, thereby interrupting the endogenous production of 1,25-dihydroxyvitamin D (calcitriol). This could cause a shortfall in its normal production, leading to a variety of adverse consequences. It might partially explain the pathogenesis of acute mountain sickness, a treatable disease characterized by severe hyperventilation secondary to the hypoxia of high altitude exposure. Milder degrees of hyperventilation due to different forms of stress may produce other conditions which share characteristics with acute mountain sickness. One of these may be the fibromyalgia syndrome, a chronic painful disorder for which no satisfactory treatment exists. Should fibromyalgia and acute mountain sickness have a common etiology, may they also share a common form of treatment? Evidence is presented to support this hypothesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Supraesophageal Reflux: Correlation of Position and Occurrence of Acid Reflux-Effect of Head-of-Bed Elevation on Supine Reflux.

    PubMed

    Scott, David R; Simon, Ronald A

    2015-01-01

    Supraesophageal reflux of gastric contents can contribute to perennial nasopharyngitis, cough, and asthma. However, effective treatment strategies for supraesophageal reflux disease (SERD) remain inadequately defined. The purpose of this study is to assess the prevalence and timing of SERD and to investigate the efficacy of head-of-bed elevation in its treatment. A retrospective chart review of patients seen at Scripps Clinic Division of Allergy, Asthma and Immunology was performed who had undergone overnight nasopharyngeal pH monitoring with a commercially available nasopharyngeal pH-monitoring device, Dx-pH Measurement System from Restech, San Diego, Calif. Subjects with reflux were classified based on the position of reflux as either supine only, upright only, or both supine and upright. In a subset of subjects with supine-only reflux, pH monitoring was compared before and after elevating the head of bed 6 inches. Adequate nasopharyngeal pH-monitoring data were obtained for 235 patients. Reflux was detected in 113 (48%) patients. The pattern of reflux observed was 62 (55%) supine only, 4 (4%) upright only, and 47 (42%) upright and supine. Sequential overnight nasopharyngeal pH monitoring before and after head-of-bed elevation was obtained in 13 individuals with supine-only reflux. Ten subjects demonstrated significant improvement, 8 of whom demonstrated complete resolution of supine reflux with 6 inches of head-of-bed elevation. This study provides new evidence that SERD frequently occurs in the supine position and that 6 inches of head-of-bed elevation is effective in reducing supine SERD. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail.

    PubMed

    Nienhuis, Sarah; Palmer, A Richard; Harley, Christopher D G

    2010-08-22

    As CO(2) levels increase in the atmosphere, so too do they in the sea. Although direct effects of moderately elevated CO(2) in sea water may be of little consequence, indirect effects may be profound. For example, lowered pH and calcium carbonate saturation states may influence both deposition and dissolution rates of mineralized skeletons in many marine organisms. The relative impact of elevated CO(2) on deposition and dissolution rates are not known for many large-bodied organisms. We therefore tested the effects of increased CO(2) levels--those forecast to occur in roughly 100 and 200 years--on both shell deposition rate and shell dissolution rate in a rocky intertidal snail, Nucella lamellosa. Shell weight gain per day in live snails decreased linearly with increasing CO(2) levels. However, this trend was paralleled by shell weight loss per day in empty shells, suggesting that these declines in shell weight gain observed in live snails were due to increased dissolution of existing shell material, rather than reduced production of new shell material. Ocean acidification may therefore have a greater effect on shell dissolution than on shell deposition, at least in temperate marine molluscs.

  8. Impacts of Near-Future Ocean Acidification and Warming on the Shell Mechanical and Geochemical Properties of Gastropods from Intertidal to Subtidal Zones.

    PubMed

    Leung, Jonathan Y S; Connell, Sean D; Nagelkerken, Ivan; Russell, Bayden D

    2017-11-07

    Many marine organisms produce calcareous shells as the key structure for defense, but the functionality of shells may be compromised by ocean acidification and warming. Nevertheless, calcifying organisms may adaptively modify their shell properties in response to these impacts. Here, we examined how reduced pH and elevated temperature affect shell mechanical and geochemical properties of common grazing gastropods from intertidal to subtidal zones. Given the greater environmental fluctuations in the intertidal zone, we hypothesized that intertidal gastropods would exhibit more plastic responses in shell properties than subtidal gastropods. Overall, three out of five subtidal gastropods produced softer shells at elevated temperature, while intertidal gastropods maintained their shell hardness at both elevated pCO 2 (i.e., reduced pH) and temperature. Regardless of pH and temperature, degree of crystallization was maintained (except one subtidal gastropod) and carbonate polymorph remained unchanged in all tested species. One intertidal gastropod produced less soluble shells (e.g., higher calcite/aragonite) in response to reduced pH. In contrast, subtidal gastropods produced only aragonite which has higher solubility than calcite. Overall, subtidal gastropods are expected to be more susceptible than intertidal gastropods to shell dissolution and physical damage under future seawater conditions. The increased vulnerability to shell dissolution and predation could have serious repercussions for their survival and ecological contributions in the future subtidal environment.

  9. Interactive Effects of Seawater Acidification and Elevated Temperature on the Transcriptome and Biomineralization in the Pearl Oyster Pinctada fucata.

    PubMed

    Li, Shiguo; Huang, Jingliang; Liu, Chuang; Liu, Yangjia; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-02-02

    Interactive effects of ocean acidification and ocean warming on marine calcifiers vary among species, but little is known about the underlying mechanisms. The present study investigated the combined effects of seawater acidification and elevated temperature (ambient condition: pH 8.1 × 23 °C, stress conditions: pH 7.8 × 23 °C, pH 8.1 × 28 °C, and pH 7.8 × 28 °C, exposure time: two months) on the transcriptome and biomineralization of the pearl oyster Pinctada fucata, which is an important marine calcifier. Transcriptome analyses indicated that P. fucata implemented a compensatory acid-base mechanism, metabolic depression and positive physiological responses to mitigate the effects of seawater acidification alone. These responses were energy-expensive processes, leading to decreases in the net calcification rate, shell surface calcium and carbon content, and changes in the shell ultrastructure. Elevated temperature (28 °C) within the thermal window of P. fucata did not induce significant enrichment of the sequenced genes and conversely facilitated calcification, which was detected to alleviate the negative effects of seawater acidification on biomineralization and the shell ultrastructure. Overall, this study will help elucidate the mechanisms by which pearl oysters respond to changing seawater conditions and predict the effects of global climate change on pearl aquaculture.

  10. Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi.

    PubMed

    Bach, Lennart T; Mackinder, Luke C M; Schulz, Kai G; Wheeler, Glen; Schroeder, Declan C; Brownlee, Colin; Riebesell, Ulf

    2013-07-01

    Coccolithophores are important calcifying phytoplankton predicted to be impacted by changes in ocean carbonate chemistry caused by the absorption of anthropogenic CO2 . However, it is difficult to disentangle the effects of the simultaneously changing carbonate system parameters (CO2 , bicarbonate, carbonate and protons) on the physiological responses to elevated CO2 . Here, we adopted a multifactorial approach at constant pH or CO2 whilst varying dissolved inorganic carbon (DIC) to determine physiological and transcriptional responses to individual carbonate system parameters. We show that Emiliania huxleyi is sensitive to low CO2 (growth and photosynthesis) and low bicarbonate (calcification) as well as low pH beyond a limited tolerance range, but is much less sensitive to elevated CO2 and bicarbonate. Multiple up-regulated genes at low DIC bear the hallmarks of a carbon-concentrating mechanism (CCM) that is responsive to CO2 and bicarbonate but not to pH. Emiliania huxleyi appears to have evolved mechanisms to respond to limiting rather than elevated CO2 . Calcification does not function as a CCM, but is inhibited at low DIC to allow the redistribution of DIC from calcification to photosynthesis. The presented data provides a significant step in understanding how E. huxleyi will respond to changing carbonate chemistry at a cellular level. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. Precipitation of CaCO3 due to the Uptake of CO2 in Aqueous Solutions - Mechanisms and Rates

    NASA Astrophysics Data System (ADS)

    Dietzel, M.; Purgstaller, B.; Rinder, T.; Niedermayr, A.

    2012-12-01

    In natural and man-made environments the exchange of CO2 between aqueous solutions and the atmosphere frequently induces precipitation of CaCO3 polymorphs. Liberation of gaseous CO2 is well known to induce carbonate formation and extensively studied. In contrast significant gaps of knowledge exist with respect to the combined CO2 uptake and CaCO3 formation, although it is known to be highly valid for many natural and man-made surroundings causing e.g. travertine and scaling in analogy to CO2 liberation. Recently CO2 uptake is also discussed for biomineralization issues and debated for CO2 sequestration by using alkaline residue materials. In the present study CO2 uptake and CaCO3 precipitation mechanisms and rates were experimentally studied by diffusion of CO2 through a polyethylene membrane from an inner to an outer solution containing carbonic acid and CaCl2 (10 mM), respectively. The pH of the outer solution was kept constant between 8.3 and 11.5 by pH stat. technique (25°C). At a critical Ion Activity Product (IAP) CaCO3 is formed in the outer solution. The NaOH titration curve and Ca2+ concentrations reflect CO2 uptake and CaCO3 precipitation rates. To discover the impact of a drift in pH due to CO2 uptake on CaCO3 precipitation hydrogeochemical modeling was applied. XRD, (micro)Raman pattern and SEM imaging reveal the formation of calcite and vaterite at pH 8.3 and 9, whereas at pH > 10 vaterite is additionally formed. However at a given pH the formation of individual CaCO3 polymorphs strongly depends on the CO2 uptake rate (adjusted by membrane thickness), which controls carbonate accumulation in the solution. At elevated pH of the outer solution the uptake rate of CO2 is significantly higher and less time for nucleation of CaCO3 is required compared to lower pH. Surprisingly at the total experimental time of ≈ 20 h the amount of precipitated CaCO3 is similar for all experiments. This can be explained by significant higher CaCO3 precipitation rates at low versus high pH if once a critical IAP is reached. If a drift in pH is permitted the internal Pco2 value can be used as a reliable proxy to evaluate whether uptake of CO2 results in an increase or decrease of IAP with a threshold value of 10-6.15 atm at 25°C (pH ≈ 11). The obtained relationships for CaCO3 formation through CO2 uptake are discussed for selected alkaline environments.

  12. Phosphate and acidosis act synergistically to depress peak power in rat muscle fibers.

    PubMed

    Nelson, Cassandra R; Debold, Edward P; Fitts, Robert H

    2014-11-15

    Skeletal muscle fatigue is characterized by the buildup of H(+) and inorganic phosphate (Pi), metabolites that are thought to cause fatigue by inhibiting muscle force, velocity, and power. While the individual effects of elevated H(+) or Pi have been well characterized, the effects of simultaneously elevating the ions, as occurs during fatigue in vivo, are still poorly understood. To address this, we exposed slow and fast rat skinned muscle fibers to fatiguing levels of H(+) (pH 6.2) and Pi (30 mM) and determined the effects on contractile properties. At 30°C, elevated Pi and low pH depressed maximal shortening velocity (Vmax) by 15% (4.23 to 3.58 fl/s) in slow and 31% (6.24 vs. 4.55 fl/s) in fast fibers, values similar to depressions from low pH alone. Maximal isometric force dropped by 36% in slow (148 to 94 kN/m(2)) and 46% in fast fibers (148 to 80 kN/m(2)), declines substantially larger than what either ion exerted individually. The strong effect on force combined with the significant effect on velocity caused peak power to decline by over 60% in both fiber types. Force-stiffness ratios significantly decreased with pH 6.2 + 30 mM Pi in both fiber types, suggesting these ions reduced force by decreasing the force per bridge and/or increasing the number of low-force bridges. The data indicate the collective effects of elevating H(+) and Pi on maximal isometric force and peak power are stronger than what either ion exerts individually and suggest the ions act synergistically to reduce muscle function during fatigue. Copyright © 2014 the American Physiological Society.

  13. Mobile colloid generation induced by a cementitious plume: mineral surface-charge controls on mobilization.

    PubMed

    Li, Dien; Kaplan, Daniel I; Roberts, Kimberly A; Seaman, John C

    2012-03-06

    Cementitious materials are increasingly used as engineered barriers and waste forms for radiological waste disposal. Yet their potential effect on mobile colloid generation is not well-known, especially as it may influence colloid-facilitated contaminant transport. Whereas previous papers have studied the introduction of cement colloids into sediments, this study examined the influence of cement leachate chemistry on the mobilization of colloids from a subsurface sediment collected from the Savannah River Site, USA. A sharp mobile colloid plume formed with the introduction of a cement leachate simulant. Colloid concentrations decreased to background concentrations even though the aqueous chemical conditions (pH and ionic strength) remained unchanged. Mobile colloids were mainly goethite and to a lesser extent kaolinite. The released colloids had negative surface charges and the mean particle sizes ranged primarily from 200 to 470 nm. Inherent mineralogical electrostatic forces appeared to be the controlling colloid removal mechanism in this system. In the background pH of ~6.0, goethite had a positive surface charge, whereas quartz (the dominant mineral in the immobile sediment) and kaolinite had negative surface charges. Goethite acted as a cementing agent, holding kaolinite and itself onto the quartz surfaces due to the electrostatic attraction. Once the pH of the system was elevated, as in the cementitious high pH plume front, the goethite reversed to a negative charge, along with quartz and kaolinite, then goethite and kaolinite colloids were mobilized and a sharp spike in turbidity was observed. Simulating conditions away from the cementitious source, essentially no colloids were mobilized at 1:1000 dilution of the cement leachate or when the leachate pH was ≤ 8. Extreme alkaline pH environments of cementitious leachate may change mineral surface charges, temporarily promoting the formation of mobile colloids.

  14. Mobilization of natural colloids from an iron oxide-coated sand aquifer--Effect of pH and ionic strength

    USGS Publications Warehouse

    Bunn, Rebecca A.; Magelky, Robin D.; Ryan, Joseph N.; Elimelech, Menachem

    2002-01-01

    Field and laboratory column experiments were performed to assess the effect of elevated pH and reduced ionic strength on the mobilization of natural colloids in a ferric oxyhydroxide-coated aquifer sediment. The field experiments were conducted as natural gradient injections of groundwater amended by sodium hydroxide additions. The laboratory experiments were conducted in columns of undisturbed, oriented sediments and disturbed, disoriented sediments. In the field, the breakthrough of released colloids coincided with the pH pulse breakthrough and lagged the bromide tracer breakthrough. The breakthrough behavior suggested that the progress of the elevated pH front controlled the transport of the mobilized colloids. In the laboratory, about twice as much colloid release occurred in the disturbed sediments as in the undisturbed sediments. The field and laboratory experiments both showed that the total mass of colloid release increased with increasing pH until the concurrent increase in ionic strength limited release. A decrease in ionic strength did not mobilize significant amounts of colloids in the field. The amount of colloids released normalized to the mass of the sediments was similar for the field and the undisturbed laboratory experiments.

  15. Contaminant removal and hydraulic conductivity of laboratory rain garden systems for stormwater treatment.

    PubMed

    Good, J F; O'Sullivan, A D; Wicke, D; Cochrane, T A

    2012-01-01

    In order to evaluate the influence of substrate composition on stormwater treatment and hydraulic effectiveness, mesocosm-scale (180 L, 0.17 m(2)) laboratory rain gardens were established. Saturated (constant head) hydraulic conductivity was determined before and after contaminant (Cu, Zn, Pb and nutrients) removal experiments on three rain garden systems with various proportions of organic topsoil. The system with only topsoil had the lowest saturated hydraulic conductivity (160-164 mm/h) and poorest metal removal efficiency (Cu ≤ 69.0% and Zn ≤ 71.4%). Systems with sand and a sand-topsoil mix demonstrated good metal removal (Cu up to 83.3%, Zn up to 94.5%, Pb up to 97.3%) with adequate hydraulic conductivity (sand: 800-805 mm/h, sand-topsoil: 290-302 mm/h). Total metal amounts in the effluent were <50% of influent amounts for all experiments, with the exception of Cu removal in the topsoil-only system, which was negligible due to high dissolved fraction. Metal removal was greater when effluent pH was elevated (up to 7.38) provided by the calcareous sand in two of the systems, whereas the topsoil-only system lacked an alkaline source. Organic topsoil, a typical component in rain garden systems, influenced pH, resulting in poorer treatment due to higher dissolved metal fractions.

  16. 15-PGDH/15-KETE plays a role in hypoxia-induced pulmonary vascular remodeling through ERK1/2-dependent PAR-2 pathway.

    PubMed

    Wei, Liuping; Yu, Xiufeng; Shi, Hengyuan; Zhang, Bo; Lian, Mingming; Li, Jing; Shen, Tingting; Xing, Yan; Zhu, Daling

    2014-07-01

    We have established that 15-hydroxyeicosatetraenoic acid is an important factor in regulation of pulmonary vascular remodeling (PVR) associated with hypoxia-induced pulmonary hypertension (PH), which is further metabolized by 15-hydroxyprostaglandin dehydrogenase (15-PGDH) to form 15-ketoeicosatetraenoic acid (15-KETE). However, the role of 15-PGDH and 15-KETE on PH has not been identified. The purpose of this study was to investigate whether 15-PGDH/15-KETE pathway regulates hypoxia-induced PVR in PH and to characterize the underlying mechanisms. To accomplish this, Immunohistochemistry, Ultra Performance Liquid Chromatography, Western blot, bromodeoxyuridine incorporation and cell cycle analysis were preformed. Our results showed that the levels of 15-PGDH expression and endogenous 15-KETE were drastically elevated in the lungs of humans with PH and hypoxic PH rats. Hypoxia stimulated pulmonary arterial smooth muscle cell (PASMC) proliferation, which seemed to be due to the increased 15-PGDH/15-KETE. 15-PGDH/15-KETE pathway was also capable of stimulating the cell cycle progression and promoting the cell cycle-related protein expression. Furthermore, 15-KETE-promoted cell cycle progression and proliferation in PASMCs depended on protease-activated receptor 2 (PAR-2). ERK1/2 signaling was likely required for 15-PGDH/15-KETE-induced PAR-2 expression under hypoxia. Our study indicates that 15-PGDH/15-KETE stimulates the cell cycle progression and proliferation of PASMCs involving ERK1/2-mediated PAR-2 expression, and contributes to hypoxia-induced PVR. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Short term exposure to elevated pCO2 and hypoxia affects the cellular homeostasis of grass shrimp, Palaemonetes pugio

    EPA Science Inventory

    Estuarine organisms are adapted to frequent changes in temperature, salinity, pH, and dissolved oxygen (DO) levels. The high productivity of an estuary contributes to large changes in environmental conditions, with organismal respiration enhancing hypoxic zones, and elevating pCO...

  18. Characterization of high elevation central Appalachian wetlands

    Treesearch

    K.E. Francl; W.M. Ford; S.B. and Castleberry

    2004-01-01

    We characterized 20 high elevation wetlands in the central Appalachian Mountains in West Virginia and Maryland, in terms of vegetation, soils, hydrology, and geology. Plant species were distributed along soil chemical (pH, conductivity) and physical (organic matter depth) gradients across sites. Topography and geology appear to explain differences among these wetlands...

  19. Pourbaix Diagrams at Elevated Temperatures A Study of Zinc and Tin

    NASA Astrophysics Data System (ADS)

    Palazhchenko, Olga

    Metals in industrial settings such as power plants are often subjected to high temperature and pressure aqueous environments, where failure to control corrosion compromises worker and environment safety. For instance, zircaloy (1.2-1.7 wt.% Sn) fuel rods are exposed to aqueous 250-310 °C coolant in CANDU reactors. The Pourbaix (EH-pH) diagram is a plot of electrochemical potential versus pH, which shows the domains of various metal species and by inference, corrosion susceptibility. Elevated temperature data for tin +II and tin +IV species were obtained using solid-aqueous phase equilibria with the respective oxides, in a batch vessel with in-situ pH measurement. Solubilities, determined via spectroscopic techniques, were used to calculate equilibrium constants and the Gibbs energies of Sn complexes for E-pH diagram construction. The SnOH3+ and Sn(OH )-5 species were incorporated, for the first time, into the 298.15 K and 358.15 K diagrams, with novel Go values determined at 358.15 K. Key words: Pourbaix diagrams, EH-pH, elevated temperatures, solubility, equilibrium, metal oxides, hydrolysis, redox potential, pH, thermochemical data, tin, zinc, zircaloy, corrosion, passivity.

  20. Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China

    PubMed Central

    Zhang, Yuguang; Cong, Jing; Lu, Hui; Li, Guangliang; Xue, Yadong; Deng, Ye; Li, Hui; Zhou, Jizhong; Li, Diqiang

    2015-01-01

    Understanding biological diversity elevational pattern and the driver factors are indispensable to develop the ecological theories. Elevational gradient may minimize the impact of environmental factors and is the ideal places to study soil microbial elevational patterns. In this study, we selected four typical vegetation types from 1000 to 2800 m above the sea level on the northern slope of Shennongjia Mountain in central China, and analysed the soil bacterial community composition, elevational patterns and the relationship between soil bacterial diversity and environmental factors by using the 16S rRNA Illumina sequencing and multivariate statistical analysis. The results revealed that the dominant bacterial phyla were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Verrucomicrobia, which accounted for over 75% of the bacterial sequences obtained from tested samples, and the soil bacterial operational taxonomic unit (OTU) richness was a significant monotonous decreasing (P < 0.01) trend with the elevational increasing. The similarity of soil bacterial population composition decreased significantly (P < 0.01) with elevational distance increased as measured by the Jaccard and Bray–Curtis index. Canonical correspondence analysis and Mantel test analysis indicated that plant diversity and soil pH were significantly correlated (P < 0.01) with the soil bacterial community. Therefore, the soil bacterial diversity on Shennongjia Mountain had a significant and different elevational pattern, and plant diversity and soil pH may be the key factors in shaping the soil bacterial spatial pattern. PMID:26032124

  1. Destabilization of emulsions by natural minerals.

    PubMed

    Yuan, Songhu; Tong, Man; Wu, Gaoming

    2011-09-15

    This study developed a novel method to destabilize emulsions and recycle oils, particularly for emulsified wastewater treatment. Natural minerals were used as demulsifying agents, two kinds of emulsions collected from medical and steel industry were treated. The addition of natural minerals, including artificial zeolite, natural zeolite, diatomite, bentonite and natural soil, could effectively destabilize both emulsions at pH 1 and 60 °C. Over 90% of chemical oxygen demand (COD) can be removed after treatment. Medical emulsion can be even destabilized by artificial zeolite at ambient temperature. The mechanism for emulsion destabilization by minerals was suggested as the decreased electrostatic repulsion at low pH, the enhanced gathering of oil microdroplets at elevated temperature, and the further decreased surface potential by the addition of minerals. Both flocculation and coalescence were enhanced by the addition of minerals at low pH and elevated temperature. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Digestion products of the PH20 hyaluronidase inhibit remyelination.

    PubMed

    Preston, Marnie; Gong, Xi; Su, Weiping; Matsumoto, Steven G; Banine, Fatima; Winkler, Clayton; Foster, Scott; Xing, Rubing; Struve, Jaime; Dean, Justin; Baggenstoss, Bruce; Weigel, Paul H; Montine, Thomas J; Back, Stephen A; Sherman, Larry S

    2013-02-01

    Oligodendrocyte progenitor cells (OPCs) recruited to demyelinating lesions often fail to mature into oligodendrocytes (OLs) that remyelinate spared axons. The glycosaminoglycan hyaluronan (HA) accumulates in demyelinating lesions and has been implicated in the failure of OPC maturation and remyelination. We tested the hypothesis that OPCs in demyelinating lesions express a specific hyaluronidase, and that digestion products of this enzyme inhibit OPC maturation. Mouse OPCs grown in vitro were analyzed for hyaluronidase expression and activity. Gain of function studies were used to define the hyaluronidases that blocked OPC maturation. Mouse and human demyelinating lesions were assessed for hyaluronidase expression. Digestion products from different hyaluronidases and a hyaluronidase inhibitor were tested for their effects on OPC maturation and functional remyelination in vivo. OPCs demonstrated hyaluronidase activity in vitro and expressed multiple hyaluronidases, including HYAL1, HYAL2, and PH20. HA digestion by PH20 but not other hyaluronidases inhibited OPC maturation into OLs. In contrast, inhibiting HA synthesis did not influence OPC maturation. PH20 expression was elevated in OPCs and reactive astrocytes in both rodent and human demyelinating lesions. HA digestion products generated by the PH20 hyaluronidase but not another hyaluronidase inhibited remyelination following lysolecithin-induced demyelination. Inhibition of hyaluronidase activity lead to increased OPC maturation and promoted increased conduction velocities through lesions. We determined that PH20 is elevated in demyelinating lesions and that increased PH20 expression is sufficient to inhibit OPC maturation and remyelination. Pharmacological inhibition of PH20 may therefore be an effective way to promote remyelination in multiple sclerosis and related conditions. Copyright © 2012 American Neurological Association.

  3. Racemization of aspartic acid and phenylalanine in the sweetener aspartame at 100 degrees C.

    PubMed Central

    Boehm, M F; Bada, J L

    1984-01-01

    The racemization half-lives (i.e., the time required to reach a D/L = 0.33) at pH 6.8 for aspartic acid and phenylalanine in the sweetener aspartame (L-aspartyl-L-phenylalanine methyl ester) were determined to be 13 and 23 hours, respectively, at 100 degrees C. Racemization at this pH does not occur in aspartame but rather in its diketopiperazine decomposition product. Our results indicate that the use of aspartame to sweeten neutral pH foods and beverages that are then heated at elevated temperature could generate D-aspartic acid and D-phenylalanine. The nutritive consequences of these D-amino acids in the human diet are not well established, and thus aspartame should probably not be used as a sweetener when the exposure of neutral pH foods and beverages to elevated temperatures is required. At pH 4, a typical pH of most foods and beverages that might be sweetened with aspartame, the half-lives are 47 hours for aspartic acid and 1200 hours for phenylalanine at 100 degrees C. Racemization at pH 4 takes place in aspartame itself. Although the racemization rates at pH 4 are slow and no appreciable racemization of aspartic acid and phenylalanine should occur during the normal use of aspartame, some food and beverage components could conceivably act as catalysts. Additional studies are required to evaluate whether the use of aspartame as a sugar substitute might not in turn result in an increased human consumption of D-aspartic acid and D-phenylalanine. PMID:6591191

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blake, Johanna M.; Avasarala, Sumant; Artyushkova, Kateryna

    The chemical interactions of U and co-occurring metals in abandoned mine wastes in a Native American community in northeastern Arizona were investigated using spectroscopy, microscopy and aqueous chemistry. The concentrations of U (67–169 μg L –1) in spring water samples exceed the EPA maximum contaminant limit of 30 μg L –1. Elevated U (6,614 mg kg –1), V (15,814 mg kg –1), and As (40 mg kg –1) concentrations were detected in mine waste solids. Spectroscopy (XPS and XANES) solid analyses identified U (VI), As (-I and III) and Fe (II, III). Linear correlations for the release of U vsmore » V and As vs Fe were observed for batch experiments when reacting mine waste solids with 10 mM ascorbic acid (~pH 3.8) after 264 h. The release of U, V, As, and Fe was at least 4-fold lower after reaction with 10 mM bicarbonate (~pH 8.3). These results suggest that U–V mineral phases similar to carnotite [K 2(UO 2) 2V 2O 8] and As–Fe-bearing phases control the availability of U and As in these abandoned mine wastes. Elevated concentrations of metals are of concern due to human exposure pathways and exposure of livestock currently ingesting water in the area. This study contributes to understanding the occurrence and mobility of metals in communities located close to abandoned mine waste sites.« less

  5. Elevational diversity and distribution of ammonia-oxidizing archaea community in meadow soils on the Tibetan Plateau.

    PubMed

    Zhao, Kang; Kong, Weidong; Khan, Ajmal; Liu, Jinbo; Guo, Guangxia; Muhanmmad, Said; Zhang, Xianzhou; Dong, Xiaobin

    2017-09-01

    Unraveling elevational diversity patterns of plants and animals has long been attracting scientific interests. However, whether soil microorganisms exhibit similar elevational patterns remains largely less explored, especially for functional microbial communities, such as ammonia oxidizers. Here, we investigated the diversity and distribution pattern of ammonia-oxidizing archaea (AOA) in meadow soils along an elevation gradient from 4400 m to the grassline at 5100 m on the Tibetan Plateau using terminal restriction fragment length polymorphism (T-RFLP) and sequencing methods by targeting amoA gene. Increasing elevations led to lower soil temperature and pH, but higher nutrients and water content. The results showed that AOA diversity and evenness monotonically increased with elevation, while richness was relatively stable. The increase of diversity and evenness was attributed to the growth inhibition of warm-adapted AOA phylotypes by lower temperature and the growth facilitation of cold-adapted AOA phylotypes by richer nutrients at higher elevations. Low temperature thus played an important role in the AOA growth and niche separation. The AOA community variation was explained by the combined effect of all soil properties (32.6%), and 8.1% of the total variation was individually explained by soil pH. The total AOA abundance decreased, whereas soil potential nitrification rate (PNR) increased with increasing elevations. Soil PNR positively correlated with the abundance of cold-adapted AOA phylotypes. Our findings suggest that low temperature plays an important role in AOA elevational diversity pattern and niche separation, rising the negative effects of warming on AOA diversity and soil nitrification process in the Tibetan region.

  6. Effect of dietary roughage level on chewing activity, ruminal pH, and saliva secretion in lactating Holstein cows.

    PubMed

    Jiang, F G; Lin, X Y; Yan, Z G; Hu, Z Y; Liu, G M; Sun, Y D; Liu, X W; Wang, Z H

    2017-04-01

    Increasing dietary roughage level is a commonly used strategy to prevent subacute ruminal acidosis. We hypothesized that high-roughage diets could promote chewing activity, saliva secretion, and hence more alkaline to buffer rumen pH. To verify the hypothesis, 12 multiparous Holstein cows in mid lactation were randomly allocated to 4 treatments in a triplicated 4 × 4 Latin square experiment with one cow in each treatment surgically fitted with a ruminal cannula. Treatments were diets containing 40, 50, 60, or 70% of roughage on a DM basis. Increasing dietary roughage level decreased DM, CP, OM, starch, and NE L intake, increased ADF intake, and decreased milk yield linearly. Intake of NDF was quite stable across treatments and ranged from 7.8 to 8.1 kg/d per cow. Daily eating time increased linearly with increased roughage level. The increase in eating time was due to increased eating time per meal but not number of meals per day, which was stable and ranged from 8.3 to 8.5 meals per day across treatments. Increasing dietary roughage level had no effect on ruminating time (min/d), the number of ruminating periods (rumination periods per d), and chewing time per ruminating period (min/ruminating period). Ruminating time per kilogram of NDF intake and total chewing time per kilogram of ADF intake were similar across treatments (57.4 and 183.8 min/kg, respectively). Increasing dietary roughage level linearly increased daily total chewing time; linearly elevated the mean, maximum, and minimum ruminal pH; and linearly decreased total VFA concentration and molar proportion of propionate in ruminal fluid. Saliva secretion during eating was increased, the secretion during rumination was unaffected, but the secretion during resting tended to decrease with increased dietary roughage level. As a result, total saliva secretion was not affected by treatments. In conclusion, the results of the present study did not support the concept that high-roughage diets elevated ruminal pH through increased salivary recycling of buffering substrates. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Determining pH at elevated pressure and temperature using in situ ¹³C NMR.

    PubMed

    Surface, J Andrew; Wang, Fei; Zhu, Yanzhe; Hayes, Sophia E; Giammar, Daniel E; Conradi, Mark S

    2015-02-03

    We have developed an approach for determining pH at elevated pressures and temperatures by using (13)C NMR measurements of inorganic carbon species together with a geochemical equilibrium model. The approach can determine in situ pH with precision better than 0.1 pH units at pressures, temperatures, and ionic strengths typical of geologic carbon sequestration systems. A custom-built high pressure NMR probe was used to collect (13)C NMR spectra of (13)C-labeled CO2 reactions with NaOH solutions and Mg(OH)2 suspensions at pressures up to 107 bar and temperatures of 80 °C. The quantitative nature of NMR spectroscopy allows the concentration ratio [CO2]/[HCO3(-)] to be experimentally determined. This ratio is then used with equilibrium constants calculated for the specific pressure and temperature conditions and appropriate activity coefficients for the solutes to calculate the in situ pH. The experimentally determined [CO2]/[HCO3(-)] ratios agree well with the predicted values for experiments performed with three different concentrations of NaOH and equilibration with multiple pressures of CO2. The approach was then applied to experiments with Mg(OH)2 slurries in which the change in pH could track the dissolution of CO2 into solution, rapid initial Mg(OH)2 dissolution, and onset of magnesium carbonate precipitation.

  8. In vitro Characteristics of a Glass Ionomer Cement.

    PubMed

    Driscoll, C L; Green, J D; Beatty, C W; McCaffrey, T V; Marrs, C D

    1998-01-01

    Glass ionomer cements were first described by Wilson and Kent and have been used in dentistry since 1969. It has been recommended for bridging ossicular chain defects, fixation of ossicular chain prosthesis, anchoring of cochlear implants, mastoid obliteration, and repair of tegmen and posterior canal wall defects. The biocompatability and stability of this material over time is vital to its usefulness in neurotologic surgery. The purpose of this study was to assess the stability of a glass ionomer cement in the presence of bacteria and in different pH environments. We demonstrated that bacteria readily adhere to the surface and their presence is associated with accelerated loss of matrix. We found the cement to be susceptible to low pH and to release a visible cloud of debris upon contact with fluid. Calcium concentration in the solution was elevated at all pH levels. Although we are able to demonstrate these findings in vitro the clinical relevance is unclear. There have been several cases of aseptic meningitis possibly due to intracranial release of components of the cement. Until further studies are done use of the cement in contact with cerebral spinal fluid should be avoided. This cement, or a similar material, would be useful in neurotologic surgery but prior to widespread use further testing should be done to assess safety.

  9. Disinfection of Ebola Virus in Sterilized Municipal Wastewater

    PubMed Central

    Fischer, Robert J.; Casson, Leonard W.; de Carvalho, Nathalia Aquino; Haas, Charles N.; Munster, Vincent J.

    2017-01-01

    Concerns have been raised regarding handling of Ebola virus contaminated wastewater, as well as the adequacy of proposed disinfection approaches. In the current study, we investigate the inactivation of Ebola virus in sterilized domestic wastewater utilizing sodium hypochlorite addition and pH adjustment. No viral inactivation was observed in the one-hour tests without sodium hypochlorite addition or pH adjustment. No virus was recovered after 20 seconds (i.e. 4.2 log10 unit inactivation to detection limit) following the addition of 5 and 10 mg L-1 sodium hypochlorite, which resulted in immediate free chlorine residuals of 0.52 and 1.11 mg L-1, respectively. The addition of 1 mg L-1 sodium hypochlorite resulted in an immediate free chlorine residual of 0.16 mg L-1, which inactivated 3.5 log10 units of Ebola virus in 20 seconds. Further inactivation was not evident due to the rapid consumption of the chlorine residual. Elevating the pH to 11.2 was found to significantly increase viral decay over ambient conditions. These results indicate the high susceptibility of the enveloped Ebola virus to disinfection in the presence of free chlorine in municipal wastewater; however, we caution that extension to more complex matrices (e.g. bodily fluids) will require additional verification. PMID:28146555

  10. Disinfection of Ebola Virus in Sterilized Municipal Wastewater.

    PubMed

    Bibby, Kyle; Fischer, Robert J; Casson, Leonard W; de Carvalho, Nathalia Aquino; Haas, Charles N; Munster, Vincent J

    2017-02-01

    Concerns have been raised regarding handling of Ebola virus contaminated wastewater, as well as the adequacy of proposed disinfection approaches. In the current study, we investigate the inactivation of Ebola virus in sterilized domestic wastewater utilizing sodium hypochlorite addition and pH adjustment. No viral inactivation was observed in the one-hour tests without sodium hypochlorite addition or pH adjustment. No virus was recovered after 20 seconds (i.e. 4.2 log10 unit inactivation to detection limit) following the addition of 5 and 10 mg L-1 sodium hypochlorite, which resulted in immediate free chlorine residuals of 0.52 and 1.11 mg L-1, respectively. The addition of 1 mg L-1 sodium hypochlorite resulted in an immediate free chlorine residual of 0.16 mg L-1, which inactivated 3.5 log10 units of Ebola virus in 20 seconds. Further inactivation was not evident due to the rapid consumption of the chlorine residual. Elevating the pH to 11.2 was found to significantly increase viral decay over ambient conditions. These results indicate the high susceptibility of the enveloped Ebola virus to disinfection in the presence of free chlorine in municipal wastewater; however, we caution that extension to more complex matrices (e.g. bodily fluids) will require additional verification.

  11. Stepwise high-throughput virtual screening of Rho kinase inhibitors from natural product library and potential therapeutics for pulmonary hypertension.

    PubMed

    Su, Hao; Yan, Ji; Xu, Jian; Fan, Xi-Zhen; Sun, Xian-Lin; Chen, Kang-Yu

    2015-08-01

    Pulmonary hypertension (PH) is a devastating disease characterized by progressive elevation of pulmonary arterial pressure and vascular resistance due to pulmonary vasoconstriction and vessel remodeling. The activation of RhoA/Rho-kinase (ROCK) pathway plays a central role in the pathologic progression of PH and thus the Rho kinase, an essential effector of the ROCK pathway, is considered as a potential therapeutic target to attenuate PH. In the current study, a synthetic pipeline is used to discover new potent Rho inhibitors from various natural products. In the pipeline, the stepwise high-throughput virtual screening, quantitative structure-activity relationship (QSAR)-based rescoring, and kinase assay were integrated. The screening was performed against a structurally diverse, drug-like natural product library, from which six identified compounds were tested to determine their inhibitory potencies agonist Rho by using a standard kinase assay protocol. With this scheme, we successfully identified two potent Rho inhibitors, namely phloretin and baicalein, with activity values of IC50 = 0.22 and 0.95 μM, respectively. Structural examination suggested that complicated networks of non-bonded interactions such as hydrogen bonding, hydrophobic forces, and van der Waals contacts across the complex interfaces of Rho kinase are formed with the screened compounds.

  12. Simultaneous determination of Ca, Cu, Ni, Zn and Cd binding strengths with fulvic acid fractions by Schubert's method

    USGS Publications Warehouse

    Brown, G.K.; MacCarthy, P.; Leenheer, J.A.

    1999-01-01

    The equilibrium binding of Ca2+, Ni2+, Cd2+, Cu2+ and Zn2+ with unfractionated Suwannee river fulvic acid (SRFA) and an enhanced metal binding subfraction of SRFA was measured using Schubert's ion-exchange method at pH 6.0 and at an ionic strength (??) of 0.1 (NaNO3). The fractionation and subfractionation were directed towards obtaining an isolate with an elevated metal binding capacity or binding strength as estimated by Cu2+ potentiometry (ISE). Fractions were obtained by stepwise eluting an XAD-8 column loaded with SRFA with water eluents of pH 1.0 to pH 12.0. Subfractions were obtained by loading the fraction eluted from XAD-8 at pH 5.0 onto a silica gel column and eluting with solvents of increasing polarity. Schuberts ion exchange method was rigorously tested by measuring simultaneously the conditional stability constants (K) of citric acid complexed with the five metals at pH 3.5 and 6.0. The logK of SRFA with Ca2+, Ni2+, Cd2+, Cu2+ and Zn2+ determined simultaneously at pH 6.0 follow the sequence of Cu2+>Cd2+>Ni2+>Zn2+>Ca2+ while all logK values increased for the enhanced metal binding subfraction and followed a different sequence of Cu2+>Cd2+>Ca2+>Ni2+>Zn2+. Both fulvic acid samples and citric acid exhibited a 1:1 metal to ligand stochiometry under the relatively low metal loading conditions used here. Quantitative 13C nuclear magnetic resonance spectroscopy showed increases in aromaticity and ketone content and decreases in aliphatic carbon for the elevated metal binding fraction while the carboxyl carbon, and elemental nitrogen, phosphorus, and sulfur content did not change. The more polar, elevated metal binding fraction did show a significant increase in molecular weight over the unfractionated SRFA. Copyright (C) 1999 Elsevier Science B.V.

  13. Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigas.

    PubMed

    Timmins-Schiffman, Emma; Coffey, William D; Hua, Wilber; Nunn, Brook L; Dickinson, Gary H; Roberts, Steven B

    2014-11-03

    Ocean acidification as a result of increased anthropogenic CO2 emissions is occurring in marine and estuarine environments worldwide. The coastal ocean experiences additional daily and seasonal fluctuations in pH that can be lower than projected end-of-century open ocean pH reductions. In order to assess the impact of ocean acidification on marine invertebrates, Pacific oysters (Crassostrea gigas) were exposed to one of four different p CO2 levels for four weeks: 400 μatm (pH 8.0), 800 μatm (pH 7.7), 1000 μatm (pH 7.6), or 2800 μatm (pH 7.3). At the end of the four week exposure period, oysters in all four p CO2 environments deposited new shell, but growth rate was not different among the treatments. However, micromechanical properties of the new shell were compromised by elevated p CO2. Elevated p CO2 affected neither whole body fatty acid composition, nor glycogen content, nor mortality rate associated with acute heat shock. Shotgun proteomics revealed that several physiological pathways were significantly affected by ocean acidification, including antioxidant response, carbohydrate metabolism, and transcription and translation. Additionally, the proteomic response to a second stress differed with p CO2, with numerous processes significantly affected by mechanical stimulation at high versus low p CO2 (all proteomics data are available in the ProteomeXchange under the identifier PXD000835). Oyster physiology is significantly altered by exposure to elevated p CO2, indicating changes in energy resource use. This is especially apparent in the assessment of the effects of p CO2 on the proteomic response to a second stress. The altered stress response illustrates that ocean acidification may impact how oysters respond to other changes in their environment. These data contribute to an integrative view of the effects of ocean acidification on oysters as well as physiological trade-offs during environmental stress.

  14. Elevated Incidence of Dental Caries in a Mouse Model of Cystic Fibrosis

    PubMed Central

    Catalán, Marcelo A.; Scott-Anne, Kathleen; Klein, Marlise I.; Koo, Hyun; Bowen, William H.; Melvin, James E.

    2011-01-01

    Background Dental caries is the single most prevalent and costly infectious disease worldwide, affecting more than 90% of the population in the U.S. The development of dental cavities requires the colonization of the tooth surface by acid-producing bacteria, such as Streptococcus mutans. Saliva bicarbonate constitutes the main buffering system which neutralizes the pH fall generated by the plaque bacteria during sugar metabolism. We found that the saliva pH is severely decreased in a mouse model of cystic fibrosis disease (CF). Given the close relationship between pH and caries development, we hypothesized that caries incidence might be elevated in the mouse CF model. Methodology/Principal Findings We induced carious lesions in CF and wildtype mice by infecting their oral cavity with S. mutans, a well-studied cariogenic bacterium. After infection, the mice were fed a high-sucrose diet for 5 weeks (diet 2000). The mice were then euthanized and their jaws removed for caries scoring and bacterial counting. A dramatic increase in caries and severity of lesions scores were apparent in CF mice compared to their wildtype littermates. The elevated incidence of carious lesions correlated with a striking increase in the S. mutans viable population in dental plaque (20-fold increase in CF vs. wildtype mice; p value<0.003; t test). We also found that the pilocarpine-stimulated saliva bicarbonate concentration was significantly reduced in CF mice (16±2 mM vs. 31±2 mM, CF and wildtype mice, respectively; p value<0.01; t test). Conclusions/Significance Considering that bicarbonate is the most important pH buffering system in saliva, and the adherence and survival of aciduric bacteria such as S. mutans are enhanced at low pH values, we speculate that the decrease in the bicarbonate content and pH buffering of the saliva is at least partially responsible for the increased severity of lesions observed in the CF mouse. PMID:21304986

  15. Detection of phosphate transporter genes from arbuscular mycorrhizal fungi in mature tree roots under experimental soil pH manipulation

    DOE PAGES

    Carrino-Kyker, Sarah R.; Kluber, Laurel A.; Coyle, Kaitlin P.; ...

    2016-10-04

    We present the majority of terrestrial plant roots are colonized by arbuscular mycorrhizal (AM) fungi that, in exchange for carbon, provide plants with enhanced nutrient uptake — most notably inorganic phosphate (P i). To mediate the uptake of Pi from the soil, AM fungi possess high affinity inorganic phosphate transporters (PTs). Under laboratory conditions, P i concentrations have been shown to regulate AM fungal-specific PT gene expression. The relationship between PT expression and P i in the field remains unexplored. Here we quantify AM fungal-specific PTs from maple tree roots in situ. In an effort to limit edaphic parameters, rootmore » samples were collected from manipulated forested plots that had elevated soil P i availability, either through direct P i application or elevating pH to lower exchangeable aluminum. The aim of the study was to examine AM fungal-specific PT gene expression both prior to and following soil P i amendment; however, a direct correlation between soil P i concentration and PT gene expression was not observed. PT transcripts were detected to a greater extent under elevated pH and, while our results are confounded by an overall low detection of PT genes (23 % of all samples collected), our findings raise interesting questions regarding the role of soil pH on PT function. In conclusion, our study is a first step in understanding how edaphic properties influence PT expression and plant P acquisition in mature tree roots.« less

  16. Detection of phosphate transporter genes from arbuscular mycorrhizal fungi in mature tree roots under experimental soil pH manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrino-Kyker, Sarah R.; Kluber, Laurel A.; Coyle, Kaitlin P.

    We present the majority of terrestrial plant roots are colonized by arbuscular mycorrhizal (AM) fungi that, in exchange for carbon, provide plants with enhanced nutrient uptake — most notably inorganic phosphate (P i). To mediate the uptake of Pi from the soil, AM fungi possess high affinity inorganic phosphate transporters (PTs). Under laboratory conditions, P i concentrations have been shown to regulate AM fungal-specific PT gene expression. The relationship between PT expression and P i in the field remains unexplored. Here we quantify AM fungal-specific PTs from maple tree roots in situ. In an effort to limit edaphic parameters, rootmore » samples were collected from manipulated forested plots that had elevated soil P i availability, either through direct P i application or elevating pH to lower exchangeable aluminum. The aim of the study was to examine AM fungal-specific PT gene expression both prior to and following soil P i amendment; however, a direct correlation between soil P i concentration and PT gene expression was not observed. PT transcripts were detected to a greater extent under elevated pH and, while our results are confounded by an overall low detection of PT genes (23 % of all samples collected), our findings raise interesting questions regarding the role of soil pH on PT function. In conclusion, our study is a first step in understanding how edaphic properties influence PT expression and plant P acquisition in mature tree roots.« less

  17. Habitat suitability index model for brook trout in streams of the Southern Blue Ridge Province: Surrogate variables, model evaluation, and suggested improvements

    USGS Publications Warehouse

    Schmitt, C.J.; Lemly, A.D.; Winger, P.V.

    1993-01-01

    Data from several sources were collated and analyzed by correlation, regression, and principal components analysis to define surrrogate variables for use in the brook trout (Salvelinus fontinalis) habitat suitability index (HSI) model, and to evaluate the applicability of the model for assessing habitat in high elevation streams of the southern Blue Ridge Province (SBRP). In all data sets examined, pH and alkalinity were highly correlated, and both declined with increasing elevation; however, the magnitude of the decline varied with underlying rock formations and other factors, thereby restricting the utility of elevation as a surrogate for pH. In the data sets that contained biological information, brook trout abundance (as biomass, density, or both) tended to increase with elevation and decrease with the abundance of rainbow trout (Oncorhynchus mykiss), and was not significantly correlated (P >0.05) with the abundance of most benthic macroinvertebrate taxa normally construed as important in the diet of brook trout. Using multiple linear regression, the authors formulated an alternative HSI model A? based on point estimates of gradient, pH, elevation, stream width, and rainbow trout density A? which explained 40 to 50 percent of the variance in brook trout density in 256 stream reaches. Although logically developed, the present U.S. Fish and Wildlife Service HSI model, proposed in 1982, seems deficient in several areas, especially when applied to SBRP streams. The authors recommend that the water quality component in the model be updated and reevaluated, focusing on the differential sensitivities of each life stage, the stochastic nature of the water quality variables, and the possible existence of habitat requirements that differ among brook trout strains.

  18. A Comparison of Coral and Mollusk Calcification Strategies Under Future Ocean Acidification Scenarios

    NASA Astrophysics Data System (ADS)

    Cameron, L.; Reymond, C.; Westfield, I. T.; Mueller-Lundin, F.; Fink, A.; Hardenberg, S.; Westphal, H.; de Beer, D.; Ries, J. B.

    2016-12-01

    Here, we contrast the calcification dynamics of the coral Stylophora pistillata and the scallop Pecten maximus under future ocean acidification scenarios. Specimens were cultured in fully crossed pCO2 (400, 1000, 3000 matm) and temperature (28, 31 °C for corals; 9, 12 °C for scallops) treatments. Net calcification rates were determined from changes in the organisms' buoyant weights between the beginning and end of the experiment. After one month of exposure, proton-sensitive microelectrodes were used to measure pH at the calcification site of both corals and scallops. Net calcification rates of S. pistillata increased linearly with increasing pCO2 at 28 °C, but were near zero in all pCO2 treatments at 31 °C. Under each pCO2 treatment, net calcification rates of S. pistillata were significantly greater at 28 °C than at 31 °C. Net calcification rates of P. maximus decreased linearly with increasing pCO2 at 12 °C, but showed no significant trend with pCO2 at 9 °C. Net calcification rates of P. maximus under each pCO2 were significantly greater at 12 °C than at 9 °C. Microelectrode measurements revealed that regulation of calcification site pH differed substantially between the investigated coral and scallop. The coral exhibited calcifying fluid pH that was elevated relative to seawater pH by 0.3 - 0.5 units under all pCO2 conditions at 28 °C, and by 0.1 - 0.3 under all pCO2 conditions at 31 °C. In contrast, the scallop exhibited extrapallial fluid pH fixed at 7.8 - 8.2 pH units under 400 and 1000 matm pCO2 at both 9 and 12 °C. At 3000 matm pCO2, extrapallial fluid pH decreased to between 7.1 and 7.3 under both temperatures. These results suggest that the investigated coral calcifies more quickly under higher pCO2 by elevating pH of its calcifying fluid, thereby converting the increased DIC to carbonate ions for calcification. However, this ability appears to be impaired under substantially elevated temperatures (31 °C), resulting in conditions unfavorable for calcification. The scallop, in contrast, maintained its extrapallial fluid pH at a relatively constant seawater pH (7.8 - 8.2) under both 400 and 1000 matm pCO2, maintaining conditions favorable for calcification. At 3000 matm pCO2, the scallop appears to lose control of its extrapallial fluid pH, resulting in a substantial pH decline that is unsupportive of calcification.

  19. Sorption processes affecting arsenic solubility in oxidized surface sediments from Tulare Lake Bed, California

    USGS Publications Warehouse

    Gao, S.; Goldberg, S.; Herbel, M.J.; Chalmers, A.T.; Fujii, R.; Tanji, K.K.

    2006-01-01

    Elevated concentrations of arsenic (As) in shallow groundwater in Tulare Basin pose an environmental risk because of the carcinogenic properties of As and the potential for its migration to deep aquifers that could serve as a future drinking water source. Adsorption and desorption are hypothesized to be the major processes controlling As solubility in oxidized surface sediments where arsenate [As(V)] is dominant. This study examined the relationship between sorption processes and arsenic solubility in shallow sediments from the dry Tulare Lake bed by determining sorption isotherms, pH effect on solubility, and desorption-readsorption behavior (hysteresis), and by using a surface complexation model to describe sorption. The sediments showed a high capacity to adsorb As(V). Estimates of the maximum adsorption capacity were 92 mg As kg- 1 at pH 7.5 and 70 mg As kg- 1 at pH 8.5 obtained using the Langmuir adsorption isotherm. Soluble arsenic [> 97% As(V)] did not increase dramatically until above pH 10. In the native pH range (7.5-8.5), soluble As concentrations were close to the lowest, indicating that As was strongly retained on the sediment. A surface complexation model, the constant capacitance model, was able to provide a simultaneous fit to both adsorption isotherms (pH 7.5 and 8.5) and the adsorption envelope (pH effect on soluble As), although the data ranges are one order of magnitude different. A hysteresis phenomenon between As adsorbed on the sediment and As in solution phase was observed in the desorption-readsorption processes and differs from conventional hysteresis observed in adsorption-desorption processes. The cause is most likely due to modification of adsorbent surfaces in sediment samples upon extensive extractions (or desorption). The significance of the hysteresis phenomenon in affecting As solubility and mobility may be better understood by further microscopic studies of As interaction mechanisms with sediments subjected to extensive leaching in natural environments. ?? 2006 Elsevier B.V. All rights reserved.

  20. Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica.

    PubMed

    Cummings, Vonda; Hewitt, Judi; Van Rooyen, Anthony; Currie, Kim; Beard, Samuel; Thrush, Simon; Norkko, Joanna; Barr, Neill; Heath, Philip; Halliday, N Jane; Sedcole, Richard; Gomez, Antony; McGraw, Christina; Metcalf, Victoria

    2011-01-05

    Ocean acidification is a well recognised threat to marine ecosystems. High latitude regions are predicted to be particularly affected due to cold waters and naturally low carbonate saturation levels. This is of concern for organisms utilising calcium carbonate (CaCO(3)) to generate shells or skeletons. Studies of potential effects of future levels of pCO(2) on high latitude calcifiers are at present limited, and there is little understanding of their potential to acclimate to these changes. We describe a laboratory experiment to compare physiological and metabolic responses of a key benthic bivalve, Laternula elliptica, at pCO(2) levels of their natural environment (430 µatm, pH 7.99; based on field measurements) with those predicted for 2100 (735 µatm, pH 7.78) and glacial levels (187 µatm, pH 8.32). Adult L. elliptica basal metabolism (oxygen consumption rates) and heat shock protein HSP70 gene expression levels increased in response both to lowering and elevation of pH. Expression of chitin synthase (CHS), a key enzyme involved in synthesis of bivalve shells, was significantly up-regulated in individuals at pH 7.78, indicating L. elliptica were working harder to calcify in seawater undersaturated in aragonite (Ω(Ar) = 0.71), the CaCO(3) polymorph of which their shells are comprised. The different response variables were influenced by pH in differing ways, highlighting the importance of assessing a variety of factors to determine the likely impact of pH change. In combination, the results indicate a negative effect of ocean acidification on whole-organism functioning of L. elliptica over relatively short terms (weeks-months) that may be energetically difficult to maintain over longer time periods. Importantly, however, the observed changes in L. elliptica CHS gene expression provides evidence for biological control over the shell formation process, which may enable some degree of adaptation or acclimation to future ocean acidification scenarios.

  1. Effects of simulated acid rain on soil fauna community composition and their ecological niches.

    PubMed

    Wei, Hui; Liu, Wen; Zhang, Jiaen; Qin, Zhong

    2017-01-01

    Acid rain is one of the severest environmental issues globally. Relative to other global changes (e.g., warming, elevated atmospheric [CO 2 ], and nitrogen deposition), however, acid rain has received less attention than its due. Soil fauna play important roles in multiple ecological processes, but how soil fauna community responds to acid rain remains less studied. This microcosm experiment was conducted using latosol with simulated acid rain (SAR) manipulations to observe potential changes in soil fauna community under acid rain stress. Four pH levels, i.e., pH 2.5, 3.5, 4.5, and 5.5, and a neutral control of pH 7.0 were set according to the current pH condition and acidification trend of precipitation in southern China. As expected, we observed that the SAR treatments induced changes in soil fauna community composition and their ecological niches in the tested soil; the treatment effects tended to increase as acidity increased. This could be attributable to the environmental stresses (such as acidity, porosity and oxygen supply) induced by the SAR treatments. In addition to direct acidity effect, we propose that potential changes in permeability and movability of water and oxygen in soils induced by acid rain could also give rise to the observed shifts in soil fauna community composition. These are most likely indirect pathways of acid rain to affect belowground community. Moreover, we found that nematodes, the dominating soil fauna group in this study, moved downwards to mitigate the stress of acid rain. This is probably detrimental to soil fauna in the long term, due to the relatively severer soil conditions in the deep than surface soil layer. Our results suggest that acid rain could change soil fauna community and the vertical distribution of soil fauna groups, consequently changing the underground ecosystem functions such as organic matter decomposition and greenhouse gas emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Identification of small RNAs in extracellular vesicles from the commensal yeast Malassezia sympodialis.

    PubMed

    Rayner, Simon; Bruhn, Sören; Vallhov, Helen; Andersson, Anna; Billmyre, R Blake; Scheynius, Annika

    2017-01-04

    Malassezia is the dominant fungus in the human skin mycobiome and is associated with common skin disorders including atopic eczema (AE)/dermatitis. Recently, it was found that Malassezia sympodialis secretes nanosized exosome-like vesicles, designated MalaEx, that carry allergens and can induce inflammatory cytokine responses. Extracellular vesicles from different cell-types including fungi have been found to deliver functional RNAs to recipient cells. In this study we assessed the presence of small RNAs in MalaEx and addressed if the levels of these RNAs differ when M. sympodialis is cultured at normal human skin pH versus the elevated pH present on the skin of patients with AE. The total number and the protein concentration of the released MalaEx harvested after 48 h culture did not differ significantly between the two pH conditions nor did the size of the vesicles. From small RNA sequence data, we identified a set of reads with well-defined start and stop positions, in a length range of 16 to 22 nucleotides consistently present in the MalaEx. The levels of small RNAs were not significantly differentially expressed between the two different pH conditions indicating that they are not influenced by the elevated pH level observed on the AE skin.

  3. Failure of nasogastric omeprazole suspension in pediatric intensive care patients.

    PubMed

    Haizlip, Julie A; Lugo, Ralph A; Cash, Jared J; Vernon, Donald D

    2005-03-01

    To determine the efficacy of nasogastric administration of omeprazole suspension in raising the gastric pH >4 in critically ill pediatric patients and to determine the most appropriate dosing regimen for this indication. Open-label pharmacodynamic study. Twenty-six bed tertiary-care pediatric intensive care unit. Mechanically ventilated children aged 1-18 yrs with an additional risk factor for stress ulcer formation. Continuous gastric pH monitoring was performed during administration and dose titration of omeprazole suspension to achieve the goal of gastric pH >4 for greater than 75% of the dosing interval. Data were collected from 18 patients. Subjects were categorized based on the pharmacologic response to nasogastric administration of 1 mg/kg omeprazole suspension (maximum 20 mg) as rapid (n = 9), late (n = 5), and nonresponders (n = 4). Rapid responders required 0.72 mg/kg per day omeprazole suspension to achieve adequate gastric pH elevation for stress ulcer prophylaxis. Late responders required 1.58 mg/kg per day. Nonresponders did not achieve adequate elevation of gastric pH for stress ulcer prophylaxis. Nasogastric administration of omeprazole suspension has variable efficacy in critically ill pediatric patients. Half of the studied subjects either required significant dose titrations to achieve gastric acid suppression or did not respond to nasogastric administration of omeprazole suspension.

  4. Calibration of diatom-pH-alkalinity methodology for the interpretation of the sedimentary record in Emerald Lake Integrated watershed study. Final report, 6 May 1985-10 October 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, R.W.

    1986-10-10

    The present study was designed to establish quantitative relationships between lake air-equilibrated pH, alkalinity, and diatoms occurring in the surface sediments in high-elevation Sierra Nevada Lakes. These relationships provided the necessary information to develop predictive equations relating lake pH to the composition of surface-sediment diatom assemblages in 27 study lakes. Using the Hustedt diatom pH classification system, Index B of Renberg and Hellberg, and multiple linear regression analysis, two equations were developed which predict lake pH from the relative abundance of sediment diatoms occurring in each of four diatom pH groupings.

  5. Twenty-year inter-annual trends and seasonal variations in precipitation and stream water chemistry at the Bear Brook Watershed in Maine, USA.

    PubMed

    Navrátil, Tomas; Norton, Stephen A; Fernandez, Ivan J; Nelson, Sarah J

    2010-12-01

    Mean annual concentration of SO4(-2) in wet-only deposition has decreased between 1988 and 2006 at the paired watershed study at Bear Brook Watershed in Maine, USA (BBWM) due to substantially decreased emissions of SO(2). Emissions of NO(x) have not changed substantially, but deposition has declined slightly at BBWM. Base cations, NH4+, and Cl(-) concentrations were largely unchanged, with small irregular changes of <1 μeq L(-1) per year from 1988 to 2006. Precipitation chemistry, hydrology, vegetation, and temperature drive seasonal stream chemistry. Low flow periods were typical in June-October, with relatively greater contributions of deeper flow solutions with higher pH; higher concentrations of acid-neutralizing capacity, Si, and non-marine Na; and low concentrations of inorganic Al. High flow periods during November-May were typically dominated by solutions following shallow flow paths, which were characterized by lower pH and higher Al and DOC concentrations. Biological activity strongly controlled NO3- and K(+). They were depressed during the growing season and elevated in the fall. Since 1987, East Bear Brook (EB), the reference stream, has been slowly responding to reduced but still elevated acid deposition. Calcium and Mg have declined fairly steadily and faster than SO4(-2), with consequent acidification (lower pH and higher inorganic Al). Eighteen years of experimental treatment with (NH(4))(2)SO(4) enhanced acidification of West Bear Brook's (WB) watershed. Despite the manipulation, NH4+ concentration remained below detection limits at WB, while leaching of NO3- increased. The seasonal pattern for NO3- concentrations in WB, however, remained similar to EB. Mean monthly concentrations of SO4(-2) have increased in WB since 1989, initially only during periods of high flow, but gradually also during base flow. Increases in mean monthly concentrations of Ca(2+), Mg(2+), and K(+) due to the manipulation occurred from 1989 until about 1995, during the depletion of base cations in shallow flow paths in WB. Progressive depletion of Ca and Mg at greater soil depth occurred, causing stream concentrations to decline to pre-manipulation values. Mean monthly Si concentrations did not change in EB or WB, suggesting that the manipulation had no effect on mineral weathering rates. DOC concentrations in both streams did not exhibit inter- or intra-annual trends.

  6. Microsensor studies on Padina from a natural CO2 seep: implications of morphology on acclimation to low pH.

    PubMed

    Hofmann, Laurie C; Fink, Artur; Bischof, Kai; de Beer, Dirk

    2015-12-01

    Low seawater pH can be harmful to many calcifying marine organisms, but the calcifying macroalgae Padina spp. flourish at natural submarine carbon dioxide seeps where seawater pH is low. We show that the microenvironment created by the rolled thallus margin of Padina australis facilitates supersaturation of CaCO3 and calcifi-cation via photosynthesis-induced elevated pH. Using microsensors to investigate oxygen and pH dynamics in the microenvironment of P. australis at a shallow CO2 seep, we found that, under saturating light, the pH inside the microenvironment (pHME ) was higher than the external seawater (pHSW ) at all pHSW levels investigated, and the difference (i.e., pHME - pHSW ) increased with decreasing pHSW (0.9 units at pHSW 7.0). Gross photosynthesis (Pg ) inside the microenvironment increased with decreasing pHSW , but algae from the control site reached a threshold at pH 6.5. Seep algae showed no pH threshold with respect to Pg within the pHSW range investigated. The external carbonic anhydrase (CA) inhibitor, acetazolamide, strongly inhibited Pg of P. australis at pHSW 8.2, but the effect was diminished under low pHSW (6.4-7.5), suggesting a greater dependence on membrane-bound CA for the dehydration of HCO3 (-) ions during dissolved inorganic carbon uptake at the higher pHSW . In comparison, a calcifying green alga, Halimeda cuneata f. digitata, was not inhibited by AZ, suggesting efficient bicarbonate transport. The ability of P. australis to elevate pHME at the site of calcification and its strong dependence on CA may explain why it can thrive at low pHSW . © 2015 Phycological Society of America.

  7. Fire in the vein: Heroin acidity and its proximal effect on users’ health

    PubMed Central

    Ciccarone, Daniel; Harris, Magdalena

    2016-01-01

    The loss of functioning veins (venous sclerosis) is a root cause of suffering for long-term heroin injectors. In addition to perpetual frustration and loss of pleasure/esteem, venous sclerosis leads to myriad medical consequences including skin infections, for example, abscess, and possibly elevated HIV/HCV risks due to injection into larger jugular and femoral veins. The etiology of venous sclerosis is unknown and users’ perceptions of cause/meaning unexplored. This commentary stems from our hypothesis that venous sclerosis is causally related to heroin acidity, which varies by heroin source-form and preparation. We report pilot study data on first ever in vivo measurements of heroin pH and as well as qualitative data on users’ concerns and perceptions regarding the caustic nature of heroin and its effects. Heroin pH testing in natural settings is feasible and a useful tool for further research. Our preliminary findings, for example, that different heroin source-forms and preparations have a two log difference in acidity, have potentially broad, vital and readily implementable harm reduction implications. PMID:26077143

  8. Fire in the vein: Heroin acidity and its proximal effect on users' health.

    PubMed

    Ciccarone, Daniel; Harris, Magdalena

    2015-11-01

    The loss of functioning veins (venous sclerosis) is a root cause of suffering for long-term heroin injectors. In addition to perpetual frustration and loss of pleasure/esteem, venous sclerosis leads to myriad medical consequences including skin infections, for example, abscess, and possibly elevated HIV/HCV risks due to injection into larger jugular and femoral veins. The etiology of venous sclerosis is unknown and users' perceptions of cause/meaning unexplored. This commentary stems from our hypothesis that venous sclerosis is causally related to heroin acidity, which varies by heroin source-form and preparation. We report pilot study data on first ever in vivo measurements of heroin pH and as well as qualitative data on users' concerns and perceptions regarding the caustic nature of heroin and its effects. Heroin pH testing in natural settings is feasible and a useful tool for further research. Our preliminary findings, for example, that different heroin source-forms and preparations have a two log difference in acidity, have potentially broad, vital and readily implementable harm reduction implications. Copyright © 2015. Published by Elsevier B.V.

  9. Growth and physiological condition of black ducks reared on acidified wetlands

    USGS Publications Warehouse

    Rattner, B.A.; Haramis, G.M.; Chu, D.S.; Bunck, C.M.; Scanes, C.G.

    1987-01-01

    Acid deposition has been identified as one of several possible factors contributing to the decline of some waterfowl populations in North America. In an effort to examine the effects of acidification on black duck (Anas rubripes) recruitment, growth and physiological condition were monitored in ducklings foraging for a 10-day trial (days 10-20 of life) on acidified (pH 5.0) and : circumneutral (pH 6.8) fish-free emergent wetlands. Acidification of these wetlands suppressed phytoplankton and algal growth, and reduced invertebrate biomass. Ducklings maintained on acidified wetlands grew poorly compared with ducklings reared on circumneutral wetlands, as evidenced by lower final body weight and culmen and tarsus length. Plasma growth hormone concentration was elevated and triiodothyronine levels were lower in stunted ducklings, in part substantiating impairment of growth-regulating processes. Ducklings exhibiting poor growth tended to have lower hematocrit, lower plasma protein, glucose, and cholesterol concentrations, and higher uric acid levels, presumably reflecting alterations in metabolism and development due to inanition. These findings suggest that acid deposition may lower food production in wetlands and ultimately impair duckling growth, condition, and survival.

  10. Determinants of Brushite Stone Formation: A Case-Control Study

    PubMed Central

    Siener, Roswitha; Netzer, Linda; Hesse, Albrecht

    2013-01-01

    Purpose The occurrence of brushite stones has increased during recent years. However, the pathogenic factors driving the development of brushite stones remain unclear. Methods Twenty-eight brushite stone formers and 28 age-, sex- and BMI-matched healthy individuals were enrolled in this case-control study. Anthropometric, clinical, 24 h urinary parameters and dietary intake from 7-day weighed food records were assessed. Results Pure brushite stones were present in 46% of patients, while calcium oxalate was the major secondary stone component. Urinary pH and oxalate excretion were significantly higher, whereas urinary citrate was lower in patients as compared to healthy controls. Despite lower dietary intake, urinary calcium excretion was significantly higher in brushite stone patients. Binary logistic regression analysis revealed pH>6.50 (OR 7.296; p = 0.035), calcium>6.40 mmol/24 h (OR 25.213; p = 0.001) and citrate excretion <2.600 mmol/24 h (OR 15.352; p = 0.005) as urinary risk factors for brushite stone formation. A total of 56% of patients exhibited distal renal tubular acidosis (dRTA). Urinary pH, calcium and citrate excretion did not significantly differ between patients with or without dRTA. Conclusions Hypercalciuria, a diminished citrate excretion and an elevated pH turned out to be the major urinary determinants of brushite stone formation. Interestingly, urinary phosphate was not associated with urolithiasis. The increased urinary oxalate excretion, possibly due to decreased calcium intake, promotes the risk of mixed stone formation with calcium oxalate. Neither dietary factors nor dRTA can account as cause for hypercalciuria, higher urinary pH and diminished citrate excretion. Further research is needed to define the role of dRTA in brushite stone formation and to evaluate the hypothesis of an acquired acidification defect. PMID:24265740

  11. Metabolic Response of Dungeness Crab Larvae Exposed to Elevated CO2 and Hypoxia

    NASA Astrophysics Data System (ADS)

    Nichols, Z.; Busch, S.; McElhany, P.

    2015-12-01

    Ocean acidification (OA) and deoxygenation, both resulting from rising atmospheric CO2 levels, are lowering the pH and oxygen levels of global oceans. Assessing the impacts of OA and deoxygenation on harvested species is crucial for guiding resource management with the aim of maintaining healthy and sustainable populations. The Dungeness crab, Cancer magister, is an important species ecologically and economically for the US West Coast. Crabs transition through four main stages: zoea, megalopa, juvenile, and adult. Each stage results in a different morphology and behavior, and as a result, is exposed to various environmental parameters, such as pH and dissolved oxygen (DO). The first two stages exhibit diel vertical migration while the final stages are benthic. Our study focused on the megalopae stage and their metabolic response to OA and hypoxia. We exposed wild-caught megalopae to a pH x DO cross, producing treatment waters with combinations of low or high pH and O2, all maintained at 12˚C. Closed-chamber respirometry was used to compare standard metabolic rates in a common garden setting with high pH/high DO conditions. We predict that the megalopae exposed to the low pH/high DO treatment will have a higher metabolic rate than those exposed to the high pH/high DO treatment. This may be a result of homeostatic processes increasing to return the megalopae's internal pH back to equilibrium. We predict that the high pH/low DO treatment will cause a decrease in metabolism when compared to the high pH/high DO treatment due to the megalopae conserving oxygen in a limiting environment. If results support our hypothesis, they would suggest that OA and hypoxia affects Dungeness crabs in sublethal ways.

  12. Simulated climate change causes immune suppression and protein damage in the crustacean Nephrops norvegicus.

    PubMed

    Hernroth, Bodil; Sköld, Helen Nilsson; Wiklander, Kerstin; Jutfelt, Fredrik; Baden, Susanne

    2012-11-01

    Rising atmospheric carbon dioxide concentration is causing global warming, which affects oceans by elevating water temperature and reducing pH. Crustaceans have been considered tolerant to ocean acidification because of their retained capacity to calcify during subnormal pH. However, we report here that significant immune suppression of the Norway lobster, Nephrops norvegicus, occurs after a 4-month exposure to ocean acidification (OA) at a level predicted for the year 2100 (hypercapnic seawater with a pH lowered by 0.4 units). Experiments carried out at different temperatures (5, 10, 12, 14, 16, and 18°C) demonstrated that the temperature within this range alone did not affect lobster immune responses. In the OA-treatment, hemocyte numbers were reduced by almost 50% and the phagocytic capacity of the remaining hemocytes was inhibited by 60%. The reduction in hemocyte numbers was not due to increased apoptosis in hematopoetic tissue. Cellular responses to stress were investigated through evaluating advanced glycation end products (AGE) and lipid oxidation in lobster hepatopancreata, and OA-treatment was shown to significantly increase AGEs', indicating stress-induced protein alterations. Furthermore, the extracellular pH of lobster hemolymph was reduced by approximately 0.2 units in the OA-treatment group, indicating either limited pH compensation or buffering capacity. The negative effects of OA-treatment on the nephropidae immune response and tissue homeostasis were more pronounced at higher temperatures (12-18°C versus 5°C), which may potentially affect disease severity and spread. Our results signify that ocean acidification may have adverse effects on the physiology of lobsters, which previously had been overlooked in studies of basic parameters such as lobster growth or calcification. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Potential ecotoxicological effects of elevated bicarbonate ion concentrations on marine organisms.

    PubMed

    Gim, Byeong-Mo; Hong, Seongjin; Lee, Jung-Suk; Kim, Nam-Hyun; Kwon, Eun-Mi; Gil, Joon-Woo; Lim, Hyun-Hwa; Jeon, Eui-Chan; Khim, Jong Seong

    2018-05-25

    Recently, a novel method for carbon capture and storage has been proposed, which converts gaseous CO 2 into aqueous bicarbonate ions (HCO 3 - ), allowing it to be deposited into the ocean. This alkalinization method could be used to dispose large amounts of CO 2 without acidifying seawater pH, but there is no information on the potential adverse effects of consequently elevated HCO 3 - concentrations on marine organisms. In this study, we evaluated the ecotoxicological effects of elevated concentrations of dissolved inorganic carbon (DIC) (max 193 mM) on 10 marine organisms. We found species-specific ecotoxicological effects of elevated DIC on marine organisms, with EC50-DIC (causing 50% inhibition) of 11-85 mM. The tentative criteria for protecting 80% of individuals of marine organisms are suggested to be pH 7.8 and 11 mM DIC, based on acidification data previously documented and alkalinization data newly obtained from this study. Overall, the results of this study are useful for providing baseline information on ecotoxicological effects of elevated DIC on marine organisms. More complementary studies are needed on the alkalinization method to determine DIC effects on seawater chemistry and marine organisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Alkaline approach to treating cooling towers for control of Legionella pneumophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    States, S.J.; Conley, L.F.; Towner, S.G.

    1987-08-01

    Earlier field and laboratory studies have shown that Legionella species survive and multiply in the pH range 5.5 to 9.2. Additionally, the technical feasibility of operating cooling towers at elevated alkalinities and pH has previously been documented by published guidelines. The guidelines indicate that these conditions facilitate corrosion control and favor chlorine persistence which enhances the effectiveness of continuous chlorination in biofouling control. This information suggest that control of Legionella species in cooling towers can be accomplished by operating the towers under alkaline conditions. To test this possibility, we collected water samples over a period of months from a hospitalmore » cooling tower. The samples were analyzed for a variety of chemical parameters. Subsamples were pasteurized and inoculated with non-agar-passaged Legionella pneumophila which had been maintained in tap water. Correlation of subsequent Legionella growth with corresponding pH and alkalinity values revealed statistically significant inverse associations. These data support the hypothesis that operating cooling towers outside of the optimal conditions for Legionella growth (e.g., at elevated alkalinities and a pH greater than 9) may be a useful approach to controlling growth in this habitat.« less

  15. Isolation of levoglucosan from pyrolysis oil derived from cellulose

    DOEpatents

    Moens, Luc

    1994-01-01

    High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH).sub.2 is added to adjust the pH to the elevated values, and then Ca(OH).sub.2 is added in an excess amount needed.

  16. Isolation of levoglucosan from pyrolysis oil derived from cellulose

    DOEpatents

    Moens, L.

    1994-12-06

    High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH)[sub 2] is added to adjust the pH to the elevated values, and then Ca(OH)[sub 2] is added in an excess amount needed. 3 figures.

  17. Throwing the dice for the diagnosis of vaginal complaints?

    PubMed

    Schwiertz, Andreas; Taras, David; Rusch, Kerstin; Rusch, Volker

    2006-02-17

    Vaginitis is among the most common conditions women are seeking medical care for. Although these infections can easily be treated, the relapse rate is high. This may be due to inadequate use of the diagnostic potential. We evaluated the misjudgement rate of the aetiology of vaginal complaints. A total of 220 vaginal samples from women with a vaginal complaint were obtained and analysed for numbers of total lactobacilli, H2O2-producing lactobacilli, total aerobic cell counts and total anaerobic cell counts including bifidobacteria, Bacteroides spp., Prevotella spp. Additionally, the presence of Atopobium vaginae, Gardnerella vaginalis, Candida spp. and Trichomonas vaginalis was evaluated by DNA-hybridisation using the PCR and Affirm VPIII Microbial Identification Test, respectively. The participating physicians diagnosed Bacterial vaginosis (BV) as origin of discomfort in 80 cases, candidiasis in 109 cases and mixed infections in 8 cases. However, a present BV, defined as lack of H2O2-lactobacilli, presence of marker organisms, such as G. vaginalis, Bacteroides spp. or Atopobium vaginae, and an elevated pH were identified in only 45 cases of the women examined. Candida spp. were detected in 46 cases. Interestingly, an elevated pH corresponded solely to the presence of Atopobium vaginae, which was detected in 11 cases. Errors in the diagnosis of BV and candida vulvovaginitis (CV) were high. Interestingly, the cases of misjudgement of CV (77%) were more numerous than that of BV (61%). The use of Amsel criteria or microscopy did not reduce the number of misinterpretations. The study reveals that the misdiagnosis of vaginal complaints is rather high.

  18. Variations of uranium concentrations in a multi-aquifer system under the impact of surface water-groundwater interaction

    NASA Astrophysics Data System (ADS)

    Wu, Ya; Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2018-04-01

    Understanding uranium (U) mobility is vital to minimizing its concentrations in potential drinking water sources. In this study, we report spatial-seasonal variations in U speciation and concentrations in a multi-aquifer system under the impact of Sanggan River in Datong basin, northern China. Hydrochemical and H, O, Sr isotopic data, thermodynamic calculations, and geochemical modeling are used to investigate the mechanisms of surface water-groundwater mixing-induced mobilization and natural attenuation of U. In the study site, groundwater U concentrations are up to 30.2 μg/L, and exhibit strong spatial-seasonal variations that are related to pH and Eh values, as well as dissolved Ca2+, HCO3-, and Fe(III) concentrations. For the alkaline aquifers of this site (pH 7.02-8.44), U mobilization is due to the formation and desorption of Ca2UO2(CO3)30 and CaUO2(CO3)32- caused by groundwater Ca2+ elevation via mineral weathering and Na-Ca exchange, incorporated U(VI) release from calcite, and U(IV) oxidation by Fe(OH)3. U immobilization is linked to the adsorption of CaUO2(CO3)32- and UO2(CO3)34- shifted from Ca2UO2(CO3)30 because of HCO3- elevation and Ca2+ depletion, U(VI) co-precipitation with calcite, and U(VI) reduction by adsorbed Fe2+ and FeS. Those results are of great significance for the groundwater resource management of this and similar other surface water-groundwater interaction zones.

  19. Throwing the dice for the diagnosis of vaginal complaints?

    PubMed Central

    Schwiertz, Andreas; Taras, David; Rusch, Kerstin; Rusch, Volker

    2006-01-01

    Backround Vaginitis is among the most common conditions women are seeking medical care for. Although these infections can easily be treated, the relapse rate is high. This may be due to inadequate use of the diagnostic potential. Methods We evaluated the misjudgement rate of the aetiology of vaginal complaints. A total of 220 vaginal samples from women with a vaginal complaint were obtained and analysed for numbers of total lactobacilli, H2O2-producing lactobacilli, total aerobic cell counts and total anaerobic cell counts including bifidobacteria, Bacteroides spp., Prevotella spp. Additionally, the presence of Atopobium vaginae, Gardnerella vaginalis, Candida spp. and Trichomonas vaginalis was evaluated by DNA-hybridisation using the PCR and Affirm VPIII Microbial Identification Test, respectively. Results The participating physicians diagnosed Bacterial vaginosis (BV) as origin of discomfort in 80 cases, candidiasis in 109 cases and mixed infections in 8 cases. However, a present BV, defined as lack of H2O2-lactobacilli, presence of marker organisms, such as G. vaginalis, Bacteroides spp. or Atopobium vaginae, and an elevated pH were identified in only 45 cases of the women examined. Candida spp. were detected in 46 cases. Interestingly, an elevated pH corresponded solely to the presence of Atopobium vaginae, which was detected in 11 cases. Conclusion Errors in the diagnosis of BV and candida vulvovaginitis (CV) were high. Interestingly, the cases of misjudgement of CV (77%) were more numerous than that of BV (61%). The use of Amsel criteria or microscopy did not reduce the number of misinterpretations. The study reveals that the misdiagnosis of vaginal complaints is rather high. PMID:16503990

  20. Coagulation Changes to Systemic Acidosis and Bicarbonate Correction in Swine

    DTIC Science & Technology

    2011-11-01

    carbonate. Total experiment time and time between Base - line, Acidosis, and Acidosis-Corrected varied from pig to pig. y axis describes the pH of the swine...Infusion of HCl reduced arterial pH from 7.4 to 7.1 and also reduced HCO3 , base excess (BE), and PaCO2 (Acidosis, Table 1). In this group, bicarbonate...a decrease in respiration successfully lowered arterial pH to 7.1 ( Acido - sis, Table 2) and significantly elevated PaCO2 and HCO3 and lowered PaO2

  1. Recurrent somnolence in a 17-month-old infant: late-onset ornithine transcarbamylase (OTC) deficiency due to the novel hemizygous mutation c.535C > T (p.Leu179Phe).

    PubMed

    Fantur, Michaela; Karall, Daniela; Scholl-Buergi, Sabine; Häberle, Johannes; Rauchenzauner, Markus; Fruehwirth, Martin

    2013-01-01

    Herein, we describe a case of a now 28-month-old boy who presented at the age of 17 months with four episodes of recurrent vomiting and somnolence during a period of four months with increasing severity. A comprehensive clinical and metabolic evaluation revealed normal blood pH and blood glucose, normal cerebral computed tomography and electroencephalogram but an elevated plasma ammonia concentration, which raised the suspicion of a urea cycle disorder. The combination of elevated urinary orotic acid and plasma glutamine with normal citrulline suggested the diagnosis of ornithine transcarbamylase (OTC) deficiency, which was confirmed by molecular genetic testing revealing the novel hemizygous mutation c.535C > T (p.Leu179Phe) of the OTC gene. After restitution of anabolism by administration of parenteral glucose, substitution of citrulline and detoxification of ammonia with sodium benzoate, the patient recovered rapidly and is in a stable metabolic and neurological state since then. This case underlines that the diagnosis of a urea cycle defect should be considered in the differential diagnosis of recurrent idiopathic vomiting in combination with unexplained neurological symptoms also beyond the neonatal period due to the possibility of mild or atypical late-onset presentation (e.g. OTC deficiency in hemizygous males). Copyright © 2012 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  2. Carbon and nitrogen dynamics across a bedrock-regulated subarctic pH gradient

    NASA Astrophysics Data System (ADS)

    Tomczyk, N.; Heim, E. W.; Sadowsky, J.; Remiszewski, K.; Varner, R. K.; Bryce, J. G.; Frey, S. D.

    2014-12-01

    Bedrock geochemistry has been shown to influence landscape evolution due to nutrient limitation on primary production. There may also be less direct interactions between bedrock-derived chemicals and ecosystem function. Effects of calcium (Ca) and pH on soil carbon (C) and nitrogen (N) cycling have been shown in acid impacted forests o f North America. Understanding intrinsic factors that affect C and nutrient dynamics in subarctic ecosystems has implications for how these ecosystems will respond to a changing climate. How the soil microbial community allocates enzymes to acquire resources from the environment can indicate whether a system is nutrient or energy limited. This study examined whether bedrock geochemistry exerts pressure on nutrient cycles in the overlying soils. In thin, weakly developed soils, bedrock is the primary mineral material and is a source of vital nutrients. Nitrogen (N) and C are not derived from bedrock, but their cycling is still affected by reactions with geologically-derived chemicals. Our study sites near Abisko, Sweden (~68°N) were selected adjacent to five distinct bedrock outcrops (quartzite, slate, carbonate, and two different metasedimenty units). All sites were at a similar elevation (~700 m a.s.l.) and had similar vegetation (subarctic heath). Nutrient concentrations in bedrock and soils were measured in addition to soil microbial biomass and extracellular enzyme activity. We found a statistically significant correlation between soil Ca concentrations and soil pH (r = 0.88, p < 0.01). There were also significant relationships between soil pH and the ratio of C-acquiring to N-acquiring enzyme activity (r = -0.89, p < 0.01), soil pH and soil C-to-N ratio (r = -0.76, p < 0.01), and the ratio of C-acquiring to N-acquiring enzyme activity and soil C-to-N ratio (r = 0.78, p < 0.01). These results suggest that soil Ca concentrations influence C and N cycling dynamics in these soils through their effect on soil pH.

  3. Characterization of phthalocyanine functionalized quantum dots by dynamic light scattering, laser Doppler, and capillary electrophoresis.

    PubMed

    Ramírez-García, Gonzalo; Oluwole, David O; Nxele, Siphesihle Robin; d'Orlyé, Fanny; Nyokong, Tebello; Bedioui, Fethi; Varenne, Anne

    2017-02-01

    In this work, we characterized different phtalocyanine-capped core/shell/shell quantum dots (QDs) in terms of stability, ζ-potential, and size at various pH and ionic strengths, by means of capillary electrophoresis (CE), and compared these results to the ones obtained by laser Doppler electrophoresis (LDE) and dynamic light scattering (DLS). The effect of the phthalocyanine metallic center (Zn, Al, or In), the number (one or four), and nature of substituents (carboxyphenoxy- or sulfonated-) of functionalization on the phthalocyanine physicochemical properties were evaluated. Whereas QDs capped with zinc mono-carboxyphenoxy-phtalocyanine (ZnMCPPc-QDs) remained aggregated in the whole analyzed pH range, even at low ionic strength, QDs capped with zinc tetracarboxyphenoxy phtalocyanine (ZnTPPc-QDs) were easily dispersed in buffers at pH equal to or higher than 7.4. QDs capped with aluminum tetrasulfonated phthalocyanine (AlTSPPc-QDs) and indium tetracarboxyphenoxy phthalocyanines (InTCPPc-QDs) were stable in aqueous suspension only at pH higher than 9.0 due to the presence of functional groups bound to the metallic center of the phthalocyanine. The ζ-potential values determined by CE for all the samples decreased when ionic strength increased, being well correlated with the aggregation of the nanoconjugates at elevated salt concentrations. The use of electrokinetic methodologies has provided insights into the colloidal stability of the photosensitizer-functionalized QDs in physiological relevant solutions and thereby, its usefulness for improving their design and applications for photodynamic therapy. Graphical Abstract Schematic illustration of the phthalocyanine capped QDs nanoconjugates and the capillary electrophoresis methods applied for size and ζ-potential characterization.

  4. Fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes by protein mixtures: the role of inter-foulant-species interaction.

    PubMed

    Wang, Yi-Ning; Tang, Chuyang Y

    2011-08-01

    Protein fouling of nanofiltration (NF), reverse osmosis (RO), and ultrafiltration (UF) membranes by bovine serum albumin (BSA), lysozyme (LYS), and their mixture was investigated under cross-flow conditions. The effect of solution chemistry, membrane properties, and permeate flux level was systematically studied. When the solution pH was within the isoelectric points (IEPs) of the two proteins (i.e., pH 4.7-10.4), the mixed protein system experienced more severe flux decline compared to the respective single protein systems, which may be attributed to the electrostatic attraction between the negatively charged BSA and positively charged LYS molecules. Unlike a typical single protein system, membrane fouling by BSA-LYS mixture was only weakly dependent on solution pH within this pH range, and increased ionic strength was found to enhance the membrane flux as a result of the suppressed BSA-LYS electrostatic attraction. Membrane fouling was likely controlled by foulant-fouled-membrane interaction under severe fouling conditions (elevated flux level and unfavorable solution chemistry that promotes fouling), whereas it was likely dominated by foulant-clean-membrane interaction under mild fouling conditions. Compared to nonporous NF and RO membranes, the porous UF membrane was more susceptible to dramatic flux decline due to the increased risk of membrane pore plugging. This study reveals that membrane fouling by mixed macromolecules may behave very differently from that by typical single foulant system, especially when the inter-foulant-species interaction dominates over the intra-species interaction in the mixed foulant system.

  5. Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content

    PubMed Central

    Mundy, Dorothy I.; Li, Wei Ping; Luby-Phelps, Katherine; Anderson, Richard G. W.

    2012-01-01

    Caveolin-1 is an integral membrane protein of plasma membrane caveolae. Here we report that caveolin-1 collects at the cytosolic surface of lysosomal membranes when cells are serum starved. This is due to an elevation of the intralysosomal pH, since ionophores and proton pump inhibitors that dissipate the lysosomal pH gradient also trapped caveolin-1 on late endosome/lysosomes. Accumulation is both saturable and reversible. At least a portion of the caveolin-1 goes to the plasma membrane upon reversal. Several studies suggest that caveolin-1 is involved in cholesterol transport within the cell. Strikingly, we find that blocking cholesterol export from lysosomes with progesterone or U18666A or treating cells with low concentrations of cyclodextrin also caused caveolin-1 to accumulate on late endosome/lysosomal membranes. Under these conditions, however, live-cell imaging shows cavicles actively docking with lysosomes, suggesting that these structures might be involved in delivering caveolin-1. Targeting of caveolin-1 to late endosome/lysosomes is not observed normally, and the degradation rate of caveolin-1 is not altered by any of these conditions, indicating that caveolin-1 accumulation is not a consequence of blocked degradation. We conclude that caveolin-1 normally traffics to and from the cytoplasmic surface of lysosomes during intracellular cholesterol trafficking. PMID:22238363

  6. Bioelectrochemical sulphate reduction on batch reactors: Effect of inoculum-type and applied potential on sulphate consumption and pH.

    PubMed

    Gacitúa, Manuel A; Muñoz, Enyelbert; González, Bernardo

    2018-02-01

    Microbial electrolysis batch reactor systems were studied employing different conditions, paying attention on the effect that biocathode potential has on pH and system performance, with the overall aim to distinguish sulphate reduction from H 2 evolution. Inocula from pure strains (Desulfovibrio paquesii and Desulfobacter halotolerans) were compared to a natural source conditioned inoculum. The natural inoculum possess the potential for sulphate reduction on serum bottles experiments due to the activity of mutualistic bacteria (Sedimentibacter sp. and Bacteroides sp.) that assist sulphate-reducing bacterial cells (Desulfovibrio sp.) present in the consortium. Electrochemical batch reactors were monitored at two different potentials (graphite-bar cathodes poised at -900 and -400mV versus standard hydrogen electrode) in an attempt to isolate bioelectrochemical sulphate reduction from hydrogen evolution. At -900mV all inocula were able to reduce sulphate with the consortium demonstrating superior performance (SO 4 2- consumption: 25.71gm -2 day -1 ), despite the high alkalinisation of the media. At -400mV only the pure Desulfobacter halotolerans inoculated system was able to reduce sulphate (SO 4 2- consumption: 17.47gm -2 day -1 ) and, in this potential condition, pH elevation was less for all systems, confirming direct (or at least preferential) bioelectrochemical reduction of sulphate over H 2 production. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. In vitro Characteristics of a Glass Ionomer Cement

    PubMed Central

    Driscoll, Colin L. W.; Green, J. Douglas; Beatty, Charles W.; McCaffrey, Thomas V.; Marrs, Christopher D.

    1998-01-01

    Glass ionomer cements were first described by Wilson and Kent and have been used in dentistry since 1969. It has been recommended for bridging ossicular chain defects, fixation of ossicular chain prosthesis, anchoring of cochlear implants, mastoid obliteration, and repair of tegmen and posterior canal wall defects. The biocompatability and stability of this material over time is vital to its usefulness in neurotologic surgery. The purpose of this study was to assess the stability of a glass ionomer cement in the presence of bacteria and in different pH environments. We demonstrated that bacteria readily adhere to the surface and their presence is associated with accelerated loss of matrix. We found the cement to be susceptible to low pH and to release a visible cloud of debris upon contact with fluid. Calcium concentration in the solution was elevated at all pH levels. Although we are able to demonstrate these findings in vitro the clinical relevance is unclear. There have been several cases of aseptic meningitis possibly due to intracranial release of components of the cement. Until further studies are done use of the cement in contact with cerebral spinal fluid should be avoided. This cement, or a similar material, would be useful in neurotologic surgery but prior to widespread use further testing should be done to assess safety. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 9Figure 10Figure 11 PMID:17171062

  8. Painted Goby Larvae under High-CO2 Fail to Recognize Reef Sounds.

    PubMed

    Castro, Joana M; Amorim, M Clara P; Oliveira, Ana P; Gonçalves, Emanuel J; Munday, Philip L; Simpson, Stephen D; Faria, Ana M

    2017-01-01

    Atmospheric CO2 levels have been increasing at an unprecedented rate due to anthropogenic activity. Consequently, ocean pCO2 is increasing and pH decreasing, affecting marine life, including fish. For many coastal marine fishes, selection of the adult habitat occurs at the end of the pelagic larval phase. Fish larvae use a range of sensory cues, including sound, for locating settlement habitat. This study tested the effect of elevated CO2 on the ability of settlement-stage temperate fish to use auditory cues from adult coastal reef habitats. Wild late larval stages of painted goby (Pomatoschistus pictus) were exposed to control pCO2 (532 μatm, pH 8.06) and high pCO2 (1503 μatm, pH 7.66) conditions, likely to occur in nearshore regions subjected to upwelling events by the end of the century, and tested in an auditory choice chamber for their preference or avoidance to nighttime reef recordings. Fish reared in control pCO2 conditions discriminated reef soundscapes and were attracted by reef recordings. This behaviour changed in fish reared in the high CO2 conditions, with settlement-stage larvae strongly avoiding reef recordings. This study provides evidence that ocean acidification might affect the auditory responses of larval stages of temperate reef fish species, with potentially significant impacts on their survival.

  9. Painted Goby Larvae under High-CO2 Fail to Recognize Reef Sounds

    PubMed Central

    Castro, Joana M.; Amorim, M. Clara P.; Oliveira, Ana P.; Gonçalves, Emanuel J.; Munday, Philip L.; Simpson, Stephen D.

    2017-01-01

    Atmospheric CO2 levels have been increasing at an unprecedented rate due to anthropogenic activity. Consequently, ocean pCO2 is increasing and pH decreasing, affecting marine life, including fish. For many coastal marine fishes, selection of the adult habitat occurs at the end of the pelagic larval phase. Fish larvae use a range of sensory cues, including sound, for locating settlement habitat. This study tested the effect of elevated CO2 on the ability of settlement-stage temperate fish to use auditory cues from adult coastal reef habitats. Wild late larval stages of painted goby (Pomatoschistus pictus) were exposed to control pCO2 (532 μatm, pH 8.06) and high pCO2 (1503 μatm, pH 7.66) conditions, likely to occur in nearshore regions subjected to upwelling events by the end of the century, and tested in an auditory choice chamber for their preference or avoidance to nighttime reef recordings. Fish reared in control pCO2 conditions discriminated reef soundscapes and were attracted by reef recordings. This behaviour changed in fish reared in the high CO2 conditions, with settlement-stage larvae strongly avoiding reef recordings. This study provides evidence that ocean acidification might affect the auditory responses of larval stages of temperate reef fish species, with potentially significant impacts on their survival. PMID:28125690

  10. Mesozooplankton community development at elevated CO2 concentrations: results from a mesocosm experiment in an Arctic fjord

    NASA Astrophysics Data System (ADS)

    Niehoff, B.; Schmithüsen, T.; Knüppel, N.; Daase, M.; Czerny, J.; Boxhammer, T.

    2013-03-01

    The increasing CO2 concentration in the atmosphere caused by burning fossil fuels leads to increasing pCO2 and decreasing pH in the world ocean. These changes may have severe consequences for marine biota, especially in cold-water ecosystems due to higher solubility of CO2. However, studies on the response of mesozooplankton communities to elevated CO2 are still lacking. In order to test whether abundance and taxonomic composition change with pCO2, we have sampled nine mesocosms, which were deployed in Kongsfjorden, an Arctic fjord at Svalbard, and were adjusted to eight CO2 concentrations, initially ranging from 185 μatm to 1420 μatm. Vertical net hauls were taken weekly over about one month with an Apstein net (55 μm mesh size) in all mesocosms and the surrounding fjord. In addition, sediment trap samples, taken every second day in the mesocosms, were analysed to account for losses due to vertical migration and mortality. The taxonomic analysis revealed that meroplanktonic larvae (Cirripedia, Polychaeta, Bivalvia, Gastropoda, and Decapoda) dominated in the mesocosms while copepods (Calanus spp., Oithona similis, Acartia longiremis and Microsetella norvegica) were found in lower abundances. In the fjord copepods prevailed for most of our study. With time, abundance and taxonomic composition developed similarly in all mesocosms and the pCO2 had no significant effect on the overall community structure. Also, we did not find significant relationships between the pCO2 level and the abundance of single taxa. Changes in heterogeneous communities are, however, difficult to detect, and the exposure to elevated pCO2 was relatively short. We therefore suggest that future mesocosm experiments should be run for longer periods.

  11. The comparability of oxalate excretion and oxalate:creatinine ratio in the investigation of primary hyperoxaluria: review of data from a referral centre.

    PubMed

    Clifford-Mobley, Oliver; Tims, Christopher; Rumsby, Gill

    2015-01-01

    Urine oxalate measurement is an important investigation in the evaluation of renal stone disease. Primary hyperoxaluria (PH) is a rare inherited metabolic disease characterised by persistently elevated urine oxalate, but the diagnosis may be missed in adults until renal failure has developed. Urine oxalate results were reviewed to compare oxalate:creatinine ratio and oxalate excretion, and to estimate the potential numbers of undiagnosed PH. Urine oxalate results from August 2011 to April 2013 were reviewed. Oxalate excretion and oxalate:creatinine ratio were evaluated for 24 h collections and ratio alone for spot urine samples. Oxalate:creatinine ratio and oxalate excretion were moderately correlated (R=0.63) in 24-h urine collections from patients aged 18 years and above. Sex-related differences were found requiring implementation of male and female reference ranges for oxalate:creatinine ratio. Of samples with both ratio and excretion above the reference range, 7% came from patients with confirmed PH. There were 24 patients with grossly elevated urine oxalate who had not been evaluated for PH. Oxalate:creatinine ratio and oxalate excretion were discordant in many patients, which is likely to be a result of intra-individual variation in creatinine output and imprecision in the collection itself. Some PH patients had urine oxalate within the reference range on occasion, and therefore it is not possible to exclude PH on the finding of a single normal result. A significant number of individuals had urine oxalate results well above the reference range who potentially have undiagnosed PH and are consequently at risk of renal failure. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition.

    PubMed

    Li, Xiaozheng; Mercado, Roel; Kernan, Timothy; West, Alan C; Banta, Scott

    2014-10-01

    Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotroph that is important in biomining and other biotechnological operations. The cells are able to oxidize inorganic iron, but the insolubility and product inhibition by Fe(3+) complicates characterization of these cultures. Here we explore the growth kinetics of A. ferrooxidans in iron-based medium in a pH range from 1.6 to 2.2. It was found that as the pH was increased from 1.6 to 2.0, the maintenance coefficient decreased while both the growth kinetics and maximum cell yield increased in the precipitate-free, low Fe(2+) concentration medium. In higher iron media a similar trend was observed at low pH, but the formation of precipitates at higher pH (2.0) hampered cell growth and lowered the specific growth rate and maximum cell yield. In order to eliminate ferric precipitates, chelating agents were introduced into the medium. Citric acid was found to be relatively non-toxic and did not appear to interfere with iron oxidation at a maximum concentration of 70 mM. Inclusion of citric acid prevented precipitation and A. ferrooxidans growth parameters resumed their trends as a function of pH. The addition of citrate also decreased the apparent substrate saturation constant (KS ) indicating a reduction in the competitive inhibition of growth by ferric ions. These results indicate that continuous cultures of A. ferrooxidans in the presence of citrate at elevated pH will enable enhanced cell yields and productivities. This will be critical as these cells are used in the development of new biotechnological applications such as electrofuel production. © 2014 Wiley Periodicals, Inc.

  13. Effects of Co-Varying Diel-Cycling Hypoxia and pH on Growth in the Juvenile Eastern Oyster, Crassostrea virginica

    PubMed Central

    Keppel, Andrew G.; Breitburg, Denise L.; Burrell, Rebecca B.

    2016-01-01

    Shallow water provides important habitat for many species, but also exposes these organisms to daily fluctuations in dissolved oxygen (DO) and pH caused by cycles in the balance between photosynthesis and respiration that can contribute to repeated, brief periods of hypoxia and low pH (caused by elevated pCO2). The amplitude of these cycles, and the severity and duration of hypoxia and hypercapnia that result, can be increased by eutrophication, and are predicted to worsen with climate change. We conducted laboratory experiments to test the effects of both diel-cycling and constant low DO and pH (elevated pCO2) on growth of the juvenile eastern oyster (Crassostrea virginica), an economically and ecologically important estuarine species. Severe diel-cycling hypoxia (to 0.5 mg O2 L-1) reduced shell growth in juvenile oysters, as did constant hypoxia (1.2 and 2.0 mg O2 L-1), although effects varied among experiments, oyster ages, and exposure durations. Diel-cycling pH reduced growth only in experiments in which calcite saturation state cycled to ≤0.10 and only during the initial weeks of these experiments. In other cases, cycling pH sometimes led to increased growth rates. Comparisons of treatment effects across multiple weeks of exposure, and during a longer post-experiment field deployment, indicated that juvenile oysters can acclimate to, and in some cases compensate for initial reductions in growth. As a result, some ecosystem services dependent on juvenile oyster growth rates may be preserved even under severe cycling hypoxia and pH. PMID:27548256

  14. Phytolacca americana from contaminated and noncontaminated soils of South Korea: Effects of elevated temperature, CO2 and simulated acid rain on plant growth response

    USGS Publications Warehouse

    Kim, Y.-O.; Rodriguez, R.J.; Lee, E.J.; Redman, R.S.

    2008-01-01

    Chemical analyses performed on the invasive weed Phytolacca americana (pokeweed) growing in industrially contaminated (Ulsan) and noncontaminated (Suwon) sites in South Korea indicated that the levels of phenolic compounds and various elements that include some heavy metals (Al, As, B, Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn) were statistically higher in Ulsan soils compared to Suwon soils with Al being the highest (>1,116 mg/l compared to 432 mg/l). Analysis of metals and nutrients (K, Na, Ca, Mg, Cl, NH4, N, P, S) in plant tissues indicated that accumulation occurred dominantly in plant leaves with Al levels being 33.8 times higher in Ulsan plants (PaU) compared to Suwon plants (PaS). The ability of PaU and PaS to tolerate stress was evaluated under controlled conditions by varying atmospheric CO2 and temperature and soil pH. When grown in pH 6.4 soils, the highest growth rate of PaU and PaS plants occurred at elevated (30??C) and non-elevated (25??C) temperatures, respectively. Both PaU and PaS plants showed the highest and lowest growth rates when exposed to atmospheric CO2 levels of 360 and 650 ppm, respectively. The impact of soil pH (2-6.4) on seed germination rates, plant growth, chlorophyll content, and the accumulation of phenolics were measured to assess the effects of industrial pollution and global-warming-related stresses on plants. The highest seed germination rate and chlorophyll content occurred at pH 2.0 for both PaU and PaS plants. Increased pH from 2-5 correlated to increased phenolic compounds and decreased chlorophyll content. However, at pH 6.4, a marked decrease in phenolic compounds, was observed and chlorophyll content increased. These results suggest that although plants from Ulsan and Suwon sites are the same species, they differ in the ability to deal with various stresses. ?? 2008 Springer Science+Business Media, LLC.

  15. Reverse right ventricular structural and extracellular matrix remodeling by estrogen in severe pulmonary hypertension

    PubMed Central

    Nadadur, Rangarajan D.; Umar, Soban; Wong, Gabriel; Eghbali, Mansour; Iorga, Andrea; Matori, Humann; Partow-Navid, Rod

    2012-01-01

    Chronic pulmonary hypertension (PH) leads to right-ventricular failure (RVF) characterized by RV remodeling. Ventricular remodeling is emerging as an important process during heart failure and recovery. Remodeling in RVF induced by PH is not fully understood. Recently we discovered that estrogen (E2) therapy can rescue severe preexisting PH. Here, we focused on whether E2 (42.5 μg·kg−1·day−1, 10 days) can reverse adverse RV structural and extracellular matrix (ECM) remodeling induced by PH using monocrotaline (MCT, 60 mg/kg). RV fibrosis was evident in RVF males. Intact females developed less severe RV remodeling compared with males and ovariectomized (OVX) females. Novel ECM-degrading disintegrin-metalloproteinases ADAM15 and ADAM17 transcripts were elevated ∼2-fold in all RVF animals. E2 therapy reversed RV remodeling in all groups. In vitro, E2 directly inhibited ANG II-induced expression of fibrosis markers as well as the metalloproteinases in cultured cardiac fibroblasts. Estrogen receptor-β agonist diarylpropionitrile (DPN) but not estrogen receptor-α agonist 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) was as effective as E2 in inhibiting expression of these genes. Expression of ECM-interacting cardiac fetal-gene osteopontin (OPN) also increased ∼9-fold in RVF males. Intact females were partially protected from OPN upregulation (∼2-fold) but OVX females were not. E2 reversed OPN upregulation in all groups. Upregulation of OPN was also reversed in vitro by E2. Plasma OPN was elevated in RVF (∼1.5-fold) and decreased to control levels in the E2 group. RVF resulted in elevated Akt phosphorylation, but not ERK, in the RV, and E2 therapy restored Akt phosphorylation. In conclusion, E2 therapy reverses adverse RV remodeling associated with PH by reversing fibrosis and upregulation of novel ECM enzymes ADAM15, ADAM17, and OPN. These effects are likely mediated through estrogen receptor-β. PMID:22628376

  16. Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer

    USGS Publications Warehouse

    Ryan, J.N.; Elimelech, M.; Ard, R.A.; Harvey, R.W.; Johnson, P.R.

    1999-01-01

    Bacteriophage PRD1 and silica colloids were co-injected into sewage- contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.Bacteriophage PRD1 and silica colloids were co-injected into sewage-contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.

  17. The influence of pH on biotite dissolution and alteration kinetics at low temperature

    USGS Publications Warehouse

    Acker, James G.; Bricker, O.P.

    1992-01-01

    Biotite dissolution rates in acidic solutions were determined in fluidized-bed reactors and flowthrough columns. Biotite dissolution rates increased inversely as a linear function of pH in the pH range 3-7, where the rate order n = -0.34. Biotite dissolved incongruently over this pH range, with preferential release of magnesium and iron from the octahedral layer. Release of tetrahedral silicon was much greater at pH 3 than at higher pH. Iron release was significantly enhanced by low pH conditions. Solution compositions from a continuous exposure flow-through column of biotite indicated biotite dissolves incongruently at pH 4, consistent with alteration to a vermiculite-type product. Solution compositions from a second intermittent-flow column exhibited elevated cation release rates upon the initiation of each exposure to solution. The presence of strong oxidizing agents, the mineral surface area, and sample preparation methodology also influenced the dissolution or alteration kinetics of biotite. ?? 1992.

  18. Descriptions of the Animas River-Cement Creek confluence and mixing zone near Silverton, Colorado, during the late summers of 1996 and 1997

    USGS Publications Warehouse

    Schemel, Laurence E.; Cox, Marisa H.

    2005-01-01

    Acidic waters from Cement Creek discharge into the circum-neutral Animas River in a high-elevation region of the San Juan Mountains near Silverton, Colorado. Cement Creek is acidic and enriched in metals and sulfate because it is fed by discharges from abandoned mines and natural mineral deposits. Mixing with the Animas River raises the pH and produces precipitates of iron and aluminum (oxy)hydroxides, which in turn can adsorb other metals. This confluence was studied in 1996 and 1997 to better understand mixing and sorption processes which are common during the neutralization of acidic streams. The photographs in this report show flow braiding and other features that influenced the way the two streams mixed during the late summers of the two years. They also show 'banding' due to incomplete mixing and 'opalescence' due to chemical reactions and the formation of colloidal-size particles in the mixing zone.

  19. The Interactive Effects of Elevated CO2 and Ammonium Enrichment on the Physiological Performances of Saccharina japonica (Laminariales, Phaeophyta)

    NASA Astrophysics Data System (ADS)

    Kang, Jin Woo; Chung, Ik Kyo

    2018-04-01

    Environmental challenges such as ocean acidification and eutrophication influence the physiology of kelp species. We investigated their interactive effects on Saccharina japonica (Laminariales, Phaeophyta) under two pH conditions [Low, 7.50; High (control), 8.10] and three NH4 +concentrations (Low, 4; Medium, 60; High, 120 μM). The degree of variation of pH values in the culture medium and inhibition rate of photosynthetic oxygen evolution by acetazolamide were affected by pH treatments. Relative growth rates, carbon, nitrogen, and the C:N ratio in tissue samples were influenced by higher concentrations of NH4 + . Rates of photosynthetic oxygen evolution were enhanced under elevated CO2 or NH4 +conditions, independently, but these two factors did not show an interactive effect. However, rates of NH4 +uptake were influenced by the interactive effect of increased CO2 under elevated NH4 +treatment. Although ocean acidification and eutrophication states had an impact on physiological performance, chlorophyll fluorescence was not affected by those conditions. Our results indicated that the physiological reactions by this alga were influenced to some extent by a rise in the levels of CO2 and NH4 + . Therefore, we expect that the biomass accumulation of S. japonica may well increase under future scenarios of ocean acidification and eutrophication.

  20. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification.

    PubMed

    Webster, N S; Negri, A P; Botté, E S; Laffy, P W; Flores, F; Noonan, S; Schmidt, C; Uthicke, S

    2016-01-13

    Key calcifying reef taxa are currently threatened by thermal stress associated with elevated sea surface temperatures (SST) and reduced calcification linked to ocean acidification (OA). Here we undertook an 8 week experimental exposure to near-future climate change conditions and explored the microbiome response of the corals Acropora millepora and Seriatopora hystrix, the crustose coralline algae Hydrolithon onkodes, the foraminifera Marginopora vertebralis and Heterostegina depressa and the sea urchin Echinometra sp. Microbial communities of all taxa were tolerant of elevated pCO2/reduced pH, exhibiting stable microbial communities between pH 8.1 (pCO2 479-499 μatm) and pH 7.9 (pCO2 738-835 μatm). In contrast, microbial communities of the CCA and foraminifera were sensitive to elevated seawater temperature, with a significant microbial shift involving loss of specific taxa and appearance of novel microbial groups occurring between 28 and 31 °C. An interactive effect between stressors was also identified, with distinct communities developing under different pCO2 conditions only evident at 31 °C. Microbiome analysis of key calcifying coral reef species under near-future climate conditions highlights the importance of assessing impacts from both increased SST and OA, as combinations of these global stressors can amplify microbial shifts which may have concomitant impacts for coral reef structure and function.

  1. In situ developmental responses of tropical sea urchin larvae to ocean acidification conditions at naturally elevated pCO2 vent sites.

    PubMed

    Lamare, Miles D; Liddy, Michelle; Uthicke, Sven

    2016-11-30

    Laboratory experiments suggest that calcifying developmental stages of marine invertebrates may be the most ocean acidification (OA)-sensitive life-history stage and represent a life-history bottleneck. To better extrapolate laboratory findings to future OA conditions, developmental responses in sea urchin embryos/larvae were compared under ecologically relevant in situ exposures on vent-elevated pCO 2 and ambient pCO 2 coral reefs in Papua New Guinea. Echinometra embryos/larvae were reared in meshed chambers moored in arrays on either venting reefs or adjacent non-vent reefs. After 24 and 48 h, larval development and morphology were quantified. Compared with controls (mean pH (T) = 7.89-7.92), larvae developing in elevated pCO 2 vent conditions (pH (T) = 7.50-7.72) displayed a significant reduction in size and increased abnormality, with a significant correlation of seawater pH with both larval size and larval asymmetry across all experiments. Reciprocal transplants (embryos from vent adults transplanted to control conditions, and vice versa) were also undertaken to identify if adult acclimatization can translate resilience to offspring (i.e. transgenerational processes). Embryos originating from vent adults were, however, no more tolerant to reduced pH. Sea temperature and chlorophyll-a concentrations (i.e. larval nutrition) did not contribute to difference in larval size, but abnormality was correlated with chlorophyll levels. This study is the first to examine the response of marine larvae to OA scenarios in the natural environment where, importantly, we found that stunted and abnormal development observed in situ are consistent with laboratory observations reported in sea urchins, in both the direction and magnitude of the response. © 2016 The Author(s).

  2. Novel putative pharmacological therapies to protect the right ventricle in pulmonary hypertension: a review of current literature

    PubMed Central

    Schulz, Rainer; Sliwa, Karen; Schermuly, Ralph Theo; Lecour, Sandrine

    2017-01-01

    Pulmonary hypertension (PH) is defined by elevated mean pulmonary artery pressure following the pathological remodelling of small pulmonary arteries. An increase in right ventricular (RV) afterload results in RV hypertrophy and RV failure. The pathophysiology of PH, and RV remodelling in particular, is not well understood, thus explaining, at least in part, why current PH therapies have a limited effect. Existing therapies mostly target the pulmonary circulation. Because the remodelled RV fails to support normal cardiac function, patients eventually succumb from RV failure. Developing novel therapies that directly target the function of the RV may therefore benefit patients with PH. In the past decade, several promising studies have investigated novel cardioprotective strategies in experimental models of PH. This review aims to comprehensively discuss and highlight these novel experimental approaches to confer, in the long‐term, greater health benefit in patients with PH. PMID:28099680

  3. Probing the inhibitory potency of epigallocatechin gallate against human γB-crystallin aggregation: Spectroscopic, microscopic and simulation studies

    NASA Astrophysics Data System (ADS)

    Chaudhury, Susmitnarayan; Dutta, Anirudha; Bag, Sudipta; Biswas, Pranandita; Das, Amit Kumar; Dasgupta, Swagata

    2018-03-01

    Aggregation of human ocular lens proteins, the crystallins is believed to be one of the key reasons for age-onset cataract. Previous studies have shown that human γD-crystallin forms amyloid like fibres under conditions of low pH and elevated temperature. In this article, we have investigated the aggregation propensity of human γB-crystallin in absence and presence of epigallocatechin gallate (EGCG), in vitro, when exposed to stressful conditions. We have used different spectroscopic and microscopic techniques to elucidate the inhibitory effect of EGCG towards aggregation. The experimental results have been substantiated by molecular dynamics simulation studies. We have shown that EGCG possesses inhibitory potency against the aggregation of human γB-crystallin at low pH and elevated temperature.

  4. The complex effects of ocean acidification on the prominent N2-fixing cyanobacterium Trichodesmium.

    PubMed

    Hong, Haizheng; Shen, Rong; Zhang, Futing; Wen, Zuozhu; Chang, Siwei; Lin, Wenfang; Kranz, Sven A; Luo, Ya-Wei; Kao, Shuh-Ji; Morel, François M M; Shi, Dalin

    2017-05-05

    Acidification of seawater caused by anthropogenic carbon dioxide (CO 2 ) is anticipated to influence the growth of dinitrogen (N 2 )-fixing phytoplankton, which contribute a large fraction of primary production in the tropical and subtropical ocean. We found that growth and N 2 -fixation of the ubiquitous cyanobacterium Trichodesmium decreased under acidified conditions, notwithstanding a beneficial effect of high CO 2 Acidification resulted in low cytosolic pH and reduced N 2 -fixation rates despite elevated nitrogenase concentrations. Low cytosolic pH required increased proton pumping across the thylakoid membrane and elevated adenosine triphosphate production. These requirements were not satisfied under field or experimental iron-limiting conditions, which greatly amplified the negative effect of acidification. Copyright © 2017, American Association for the Advancement of Science.

  5. Capsaicin pre- and post-treatment on rat monocrotaline pneumotoxicity.

    PubMed

    Katzman, N J; Lai, Y L

    2000-12-31

    Monocrotaline (MCT) produces respiratory dysfunction, pulmonary hypertension (PH), and right ventricular hypertrophy (RVH) in rats. Tachykinins, such as substance P (SP) and neurokinin A (NKA), may mediate these effects. The purpose of this study was to investigate the length of tachykinin depletion (via capsaicin treatment) is needed to prevent (or attenuate) PH and/or RVH. Six groups of rats were injected subcutaneously with saline (3 ml/kg); capsaicin followed by saline or MCT (60 mg/kg); or MCT followed 7, 11, or 14 days later by capsaicin. Capsaicin (cumulative dose, 500 mg/kg) was given over a period of 4-5 days. Respiratory function, pulmonary vascular parameters, lung tachykinin levels, and tracheal neutral endopeptidase (NEP) activity were measured 21 days after MCT or saline injection. Capsaicin significantly decreased lung levels of SP but not NKA. Both capsaicin pretreatment and posttreatment blocked the following MCT-induced alterations: increases in lung SP and airway constriction; decreases in tracheal NEP activity and dynamic respiratory compliance. Administration of capsaicin before or 7 days after MCT blocked MCT-induced PH and RVH. The above data suggest that the early tachykinin-mediated airway dysfunction requires only transient elevated tachykinins, while progression of late tachykinin-mediated effects (PH and RVH) requires elevated tachykinins for more than one week.

  6. Alteration of Oceanic Nitrification Under Elevated Carbon Dioxide Concentrations

    NASA Astrophysics Data System (ADS)

    Beman, J.; Chow, C. E.; Popp, B. N.; Fuhrman, J. A.; Feng, Y.; Hutchins, D. A.

    2008-12-01

    Atmospheric carbon dioxide (CO2) concentrations are increasing exponentially and expected to double by the year 2100. Dissolution of excess CO2 in the upper ocean reduces pH, alters carbonate chemistry, and also represents a potential resource for autotrophic organisms that convert inorganic carbon into biomass--including a broad spectrum of marine microbes. These bacteria and archaea drive global biogeochemical cycles of carbon and nitrogen and constitute the vast majority of biomass in the sea, yet their responses to reduced pH and increased pCO2 remain largely undocumented. Here we show that elevated pCO2 may sharply reduce nitrification rates and populations of nitrifying microorganisms in the ocean. Multiple experiments were performed in the Sargasso Sea and the Southern California Bight under glacial maximum (193 ppm), present day (390 ppm), and projected (750 ppm) pCO2 concentrations, over time scales from hours to multiple days, and at depths of 45 m to 240 m. Measurement of nitrification rates using isotopically-labeled nitrogen showed 2-5 fold reduction under elevated pCO2--as well as an increase under glacial maximum pCO2. Marine Crenarchaeota are likely involved in nitrification as ammonia-oxidizing archaea (AOA) and are among the most abundant microbial groups in the ocean, yet this group decreased by 40-80% under increased pCO2, based on quantification of both 16S rRNA and ammonia monooxygenase (amoA) gene copies. Crenarchaeota also steadily declined over the course of multiple days under elevated pCO2, whereas ammonia-oxidizing (AOB) and nitrite-oxidizing bacteria (NOB) were more variable in their responses or were not detected. These findings suggest that projected increases in pCO2 and subsequent decreases in pH may strongly influence marine biogeochemistry and microbial community structure in the sea.

  7. Effect of water-column pH on sediment-phosphorus release rates in Upper Klamath Lake, Oregon, 2001

    USGS Publications Warehouse

    Fisher, Lawrence H.; Wood, Tamara M.

    2004-01-01

    Sediment-phosphorus release rates as a function of pH were determined in laboratory experiments for sediment and water samples collected from Shoalwater Bay in Upper Klamath Lake, Oregon, in 2001. Aerial release rates for a stable sediment/water interface that is representative of the sediment surface area to water column volume ratio (1:3) observed in the lake and volumetric release rates for resuspended sediment events were determined at three different pH values (8.1, 9.2, 10.2). Ambient water column pH (8.1) was maintained by sparging study columns with atmospheric air. Elevation of the water column pH to 9.2 was achieved through the removal of dissolved carbon dioxide by sparging with carbon dioxide-reduced air, partially simulating water chemistry changes that occur during algal photosynthesis. Further elevation of the pH to 10.2 was achieved by the addition of sodium hydroxide, which doubled average alkalinities in the study columns from about 1 to 2 milliequivalents per liter. Upper Klamath Lake sediments collected from the lake bottom and then placed in contact with lake water, either at a stable sediment/water interface or by resuspension, exhibited an initial capacity to take up soluble reactive phosphorus (SRP) from the water column rather than release phosphorus to the water column. At a higher pH this initial uptake of phosphorus is slowed, but not stopped. This initial phase was followed by a reversal in which the sediments began to release SRP back into the water column. The release rate of phosphorus 30 to 40 days after suspension of sediments in the columns was 0.5 mg/L/day (micrograms per liter per day) at pH 8, and 0.9 mg/L/day at pH 10, indicating that the higher pH increased the rate of phosphorus release by a factor of about two. The highest determined rate of release was approximately 10% (percent) of the rate required to explain the annual internal loading to Upper Klamath Lake from the sediments as calculated from a lake-wide mass balance and observed in total phosphorus data collected at individual locations.

  8. Nitrogen deposition along an elevation gradient in Taiwan

    NASA Astrophysics Data System (ADS)

    Li, Chia-Yi; Cheng, Chih-Hsin

    2017-04-01

    Taiwan is one of the areas that has high nitrogen deposition. The deposition of nitrogen, however, is not homogeneous, but rather is heterogeneous with high spatial and temporal variation. In this study, we evaluated nitrogen deposition along an elevation gradient ranged from 100 m which was closest to the agricultural and industrial areas to 1800 m which was located in the mid-elevation mountainous areas to identify how elevation affects nitrogen deposition under an annual determination. Bulk precipitation was collected using the funnel apparatus mounted on a post 1.5 m above ground level in each study site (n=7), and collected weekly or every other weekly depending on the frequency of rainfall events. Cations (K+, Na+, Ca+2, Mg+2, and NH4+), anions (F-, Cl-, SO4-2, and NO3-), pH and electric conductance (EC) of precipitation water were analyzed. The results indicated a significant trend along the elevation gradient. Volume-weighted mean concentration (μg L-1) and deposition amounts (kg ha-1) of based cations, anions, NH4+, pH and EC decreased with the elevation, whereas hydrogen ion increased with elevation. The mean ratio of NH4+-N/NO3-N for all study sites was 2.87 and no clear elevation trend existed. However, a relatively high ratio of NH4+-N/NO3-N was found in the sites with elevation less than 500 m during the periods between March and May, suggesting the seasonal agricultural input in these sites. Deposition of NH4+-N, NO3-N, and total inorganic N were 12 - 25, 4 - 10, and 16 - 37 kg N ha-1, respectively, during the period from January 2016 to August 2016. Higher nitrogen deposition is expected for the whole 2016 year. High nitrogen deposition poses an ecological threat in Taiwan and more research is warranted to understand how nitrogen deposition could be detrimental to environment.

  9. The Critical Importance of Urinary Concentrating Ability in the Generation of Urinary Carbon Dioxide Tension

    PubMed Central

    Arruda, Jose A. L.; Nascimento, Luiz; Mehta, Pradeep K.; Rademacher, Donald R.; Sehy, John T.; Westenfelder, Christof; Kurtzman, Neil A.

    1977-01-01

    Measurement of urine to blood (U-B) carbon dioxide tension (PCO2) gradient during alkalinization of the urine has been suggested to assess distal H+ secretion. A fact that has not been considered in previous studies dealing with urinary PCO2 is that dissolution of HCO3 in water results in elevation of PCO2 which is directly proportional to the HCO3 concentration. To investigate the interrelationship of urinary HCO3 and urinary acidification, we measured U-B PCO2 in (a) the presence of enhanced H+ secretion and decreased concentrating ability i.e., chronic renal failure (CRF), (b) animals with normal H+ secretion and decreased concentrating ability, Brattleboro (BB) rats, and (c) the presence of both impaired H+ secretion and concentrating ability (LiCl treatment and after release of unilateral ureteral obstruction). At moderately elevated plasma HCO3 levels (30-40 meq/liter), normal rats achieved a highly alkaline urine (urine pH > 7.8) and raised urine HCO3 concentration and U-B PCO2. At similar plasma HCO3 levels, BB rats had a much higher fractional water excretion and failed to raise urine pH, urine HCO3 concentration, and U-B PCO2 normally. At a very high plasma HCO3 (>50 meq/liter), BB rats raised urine pH, urine HCO3 concentration, and U-B PCO2 to the same levels seen in normals. CRF rats failed to raise urine pH, urine HCO3, and U-B PCO2 normally at moderately elevated plasma HCO3 levels; at very high plasma HCO3 levels, CRF rats achieved a highly alkaline urine but failed to raise U-B PCO2. Dogs and patients with CRF were also unable to raise urine pH, urine HCO3 concentration, and U-B PCO2 normally at moderately elevated plasma HCO3 levels. In rats, dogs, and man, U-B PCO2 was directly related to urine HCO3 concentration and inversely related to fractional water excretion. At moderately elevated plasma HCO3 levels, animals with a distal acidification defect failed to raise U-B PCO2; increasing the plasma HCO3 to very high levels resulted in a significant increase in urine HCO3 concentration and U-B PCO2. The observed urinary PCO2 was very close to the PCO2 which would be expected by simple dissolution of a comparable amount of HCO3 in water. These data demonstrate that, in highly alkaline urine, urinary PCO2 is largely determined by concentration of urinary HCO3 and cannot be used as solely indicating distal H+ secretion. PMID:893680

  10. Gypsum addition to soils contaminated by red mud: implications for aluminium, arsenic, molybdenum and vanadium solubility.

    PubMed

    Lehoux, Alizée P; Lockwood, Cindy L; Mayes, William M; Stewart, Douglas I; Mortimer, Robert J G; Gruiz, Katalin; Burke, Ian T

    2013-10-01

    Red mud is highly alkaline (pH 13), saline and can contain elevated concentrations of several potentially toxic elements (e.g. Al, As, Mo and V). Release of up to 1 million m(3) of bauxite residue (red mud) suspension from the Ajka repository, western Hungary, caused large-scale contamination of downstream rivers and floodplains. There is now concern about the potential leaching of toxic metal(loid)s from the red mud as some have enhanced solubility at high pH. This study investigated the impact of red mud addition to three different Hungarian soils with respect to trace element solubility and soil geochemistry. The effectiveness of gypsum amendment for the rehabilitation of red mud-contaminated soils was also examined. Red mud addition to soils caused a pH increase, proportional to red mud addition, of up to 4 pH units (e.g. pH 7 → 11). Increasing red mud addition also led to significant increases in salinity, dissolved organic carbon and aqueous trace element concentrations. However, the response was highly soil specific and one of the soils tested buffered pH to around pH 8.5 even with the highest red mud loading tested (33 % w/w); experiments using this soil also had much lower aqueous Al, As and V concentrations. Gypsum addition to soil/red mud mixtures, even at relatively low concentrations (1 % w/w), was sufficient to buffer experimental pH to 7.5-8.5. This effect was attributed to the reaction of Ca(2+) supplied by the gypsum with OH(-) and carbonate from the red mud to precipitate calcite. The lowered pH enhanced trace element sorption and largely inhibited the release of Al, As and V. Mo concentrations, however, were largely unaffected by gypsum induced pH buffering due to the greater solubility of Mo (as molybdate) at circumneutral pH. Gypsum addition also leads to significantly higher porewater salinities, and column experiments demonstrated that this increase in total dissolved solids persisted even after 25 pore volume replacements. Gypsum addition could therefore provide a cheaper alternative to recovery (dig and dump) for the treatment of red mud-affected soils. The observed inhibition of trace metal release within red mud-affected soils was relatively insensitive to either the percentage of red mud or gypsum present, making the treatment easy to apply. However, there is risk that over-application of gypsum could lead to detrimental long-term increases in soil salinity.

  11. pH-Signaling Transcription Factor AopacC Regulates Ochratoxin A Biosynthesis in Aspergillus ochraceus.

    PubMed

    Wang, Yan; Liu, Fei; Wang, Liuqing; Wang, Qi; Selvaraj, Jonathan Nimal; Zhao, Yueju; Wang, Yun; Xing, Fuguo; Liu, Yang

    2018-05-02

    In Aspergillus and Penicillium species, an essential pH-response transcription factor pacC is involved in growth, pathogenicity, and toxigenicity. To investigate the connection between ochratoxin A (OTA) biosynthesis and ambient pH, the AopacC in Aspergillus ochraceus was functionally characterized using a loss-of-function mutant. The mycelium growth was inhibited under pH 4.5 and 10.0, while the sporulation increased under alkaline condition. A reduction of mycelium growth and an elevation of sporulation was observed in Δ AopacC mutant. Compared to neutral condition, OTA contents were respectively reduced by 71.6 and 79.8% under acidic and alkaline conditions. The expression of AopacC increased with the elevated pH, and deleting AopacC dramatically decreased OTA production and biosynthetic genes Aopks expression. Additionally, the Δ AopacC mutant exhibited attenuated infection ability toward pear fruits. These results suggest that AopacC is an alkaline-induced regulator responsible for growth and OTA biosynthesis in A. ochraceus and this regulatory mechanism might be pH-dependent.

  12. Removal of highly elevated nitrate from drinking water by pH-heterogenized heterotrophic denitrification facilitated with ferrous sulfide-based autotrophic denitrification.

    PubMed

    Huang, Bin; Chi, Guangyu; Chen, Xin; Shi, Yi

    2011-11-01

    The performance of acetic acid-supported pH-heterogenized heterotrophic denitrification (HD) facilitated with ferrous sulfide-based autotrophic denitrification (AD) was investigated in upflow activated carbon-packed column reactors for reliable removal of highly elevated nitrate (42 mg NO(3)-Nl(-1)) in drinking water. The use of acetic acid as substrate provided sufficient internal carbon dioxide to completely eliminate the need of external pH adjustment for HD, but simultaneously created vertically heterogenized pH varying from 4.8 to 7.8 in the HD reactor. After 5-week acclimation, the HD reactor developed a moderate nitrate removal capacity with about one third of nitrate removal occurring in the acidic zone (pH 4.8-6.2). To increase the treatment reliability, acetic acid-supported HD was operated under 10% carbon limitation to remove >85% of nitrate, and ferrous sulfide-based AD was supplementally operated to remove residual nitrate and formed nitrite without excess of soluble organic carbon, nitrite or sulfate in the final effluent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Bone characteristics and metal concentrations in white suckers (Catostomus commersoni) from one neutral and three acidified lakes in Maine

    USGS Publications Warehouse

    Hamilton, Steven J.; Haines, Terry A.

    1989-01-01

    The bone characteristics of white suckers, Catostomus commersoni, from four lakes in Maine were studied in relation to lake water quality and metal concentrations in fish. Green Lake had a neutral pH, high buffering capacity, and low aluminum concentrations, whereas the other three lakes had low pH, low buffering capacity, and elevated aluminum concentrations. The concentrations of aluminum in white suckers did not differ among the four lakes, but concentrations of cadmium, lead, and mercury were greater in fish from the three low-pH lakes. The vertebrae were weaker and more flexible in fish from the low-pH lakes than in those from neutral-pH Green Lake. The inferior mechanical properties of bone in fish from the low-pH lakes were probably a result of the significantly lower proline concentrations in collagen. Low pH of lake water or elevated whole-body concentrations of cadmium, lead, and mercury, either individually or combined, could have caused the inferior mechanical properties of bone of white suckers from the low-pH lakes.

  14. Physiological effects of environmental acidification in the deep-sea urchin Strongylocentrotus fragilis

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.; Lovera, C.; Whaling, P. J.; Buck, K. R.; Pane, E. F.; Barry, J. P.

    2014-03-01

    Anthropogenic CO2 is now reaching depths over 1000 m in the Eastern Pacific, overlapping the Oxygen Minimum Zone (OMZ). Deep-sea animals are suspected to be especially sensitive to environmental acidification associated with global climate change. We have investigated the effects of elevated pCO2 and variable O2 on the deep-sea urchin Strongylocentrotus fragilis, a species whose range of 200-1200 m depth includes the OMZ and spans a pCO2 range of approx. 600-1200 μatm (approx. pH 7.6 to 7.8). Individuals were evaluated during two exposure experiments (1-month and 4 month) at control and three levels of elevated pCO2 at in situ O2 levels of approx. 10% air saturation. A treatment of control pCO2 at 100% air saturation was also included in experiment two. During the first experiment, perivisceral coelomic fluid (PCF) acid-base balance was investigated during a one-month exposure; results show S. fragilis has limited ability to compensate for the respiratory acidosis brought on by elevated pCO2, due in part to low non-bicarbonate PCF buffering capacity. During the second experiment, individuals were separated into fed and fasted experimental groups, and longer-term effects of elevated pCO2 and variable O2 on righting time, feeding, growth, and gonadosomatic index (GSI) were investigated for both groups. Results suggest that the acidosis found during experiment one does not directly correlate with adverse effects during exposure to realistic future pCO2 levels.

  15. Coal fly ash as a source of iron in atmospheric dust.

    PubMed

    Chen, Haihan; Laskin, Alexander; Baltrusaitis, Jonas; Gorski, Christopher A; Scherer, Michelle M; Grassian, Vicki H

    2012-02-21

    Anthropogenic coal fly ash (FA) aerosol may represent a significant source of bioavailable iron in the open ocean. Few measurements have been made that compare the solubility of atmospheric iron from anthropogenic aerosols and other sources. We report here an investigation of iron dissolution for three FA samples in acidic aqueous solutions and compare the solubilities with that of Arizona test dust (AZTD), a reference material for mineral dust. The effects of pH, simulated cloud processing, and solar radiation on iron solubility have been explored. Similar to previously reported results on mineral dust, iron in aluminosilicate phases provides the predominant component of dissolved iron. Iron solubility of FA is substantially higher than of the crystalline minerals comprising AZTD. Simulated atmospheric processing elevates iron solubility due to significant changes in the morphology of aluminosilicate glass, a dominant material in FA particles. Iron is continuously released into the aqueous solution as FA particles break up into smaller fragments. These results suggest that the assessment of dissolved atmospheric iron deposition fluxes and their effect on the biogeochemistry at the ocean surface should be constrained by the source, environmental pH, iron speciation, and solar radiation.

  16. The effect of irradiation in the preservation of pink pepper (Schinus terebinthifolius Raddi)

    NASA Astrophysics Data System (ADS)

    de Souza, Adriana Régia Marques; Arthur, Valter; Nogueira, Danielle Pires

    2012-08-01

    Pink peppers, also known as "pimenta-rosa" and "poivre rose", are the fruit of Schinus terebinthifolius Raddi, a species of pepper cultivated in Brazil, and have great potential for the exploration of uses. In efforts to lengthen the shelf life of this pepper, the purpose of this study was to evaluate the effect of different doses of radiation on its physical composition and color. The pink pepper samples were irradiated with doses of 0, 0.2, 0.4, 0.8 and 1.6 kGy, and the moisture, ash and lipid contents, pH and color were analyzed. The moisture content, lipid content and pH analysis indicated effects due to the irradiation (p>0.05) in which the higher doses resulted in decreases in the attribute. In contrast, there were no significant differences for the ash analysis (p<0.05) among the studied doses. The color of the pink peppers were affected by the irradiation: the parameters a* and b* were the most affected by the intermediate doses (0.2 and 0.8 kGy), which induced their elevation, enhancing the reddish and yellowish colors. Based on the presented data, irradiation is as an alternative preservation process for pink peppers.

  17. Developmental Effects of Ocean Acidification Conditions and Elevated Temperature on Homarus Americanus Larvae

    NASA Astrophysics Data System (ADS)

    Mcveigh, H.; Waller, J. D.

    2016-02-01

    The Gulf of Maine is experiencing a rapid warming in sea surface temperature and a marked decrease in pH. This study aimed to quantify the impact of elevated temperature and acidification on the larval development of the iconic American lobster (Homarus americanus). Experimental conditions were reflective of current and IPCC predicted levels of temperature and pCO2 to be reached by the end of the century. Larvae were measured for growth (carapace length), development time, and survivorship over the larval duration. Treatments of elevated temperatures experienced decreased development time across the larval stages of H. americanus. Consequently mortality increased at a significantly higher rate under elevated temperature. An increase in larval mortality may decrease recruitment to the commercial fishery, thus impacting the most valuable single species in the state of Maine. Furthermore, experimental pCO2 treatments yielded a significantly decreased development time between larval stages II and III, yet did not have a significant impact on carapace length or mortality. This study indicates that warmer temperatures may have a greater influence than decreased pH on larval development and survival. Determining how this species may respond to changing climactic conditions will better inform the sustainability efforts of such a critical marine fishery.

  18. Lethal and sub-lethal effects of elevated CO2 concentrations on marine benthic invertebrates and fish.

    PubMed

    Lee, Changkeun; Hong, Seongjin; Kwon, Bong-Oh; Lee, Jung-Ho; Ryu, Jongseong; Park, Young-Gyu; Kang, Seong-Gil; Khim, Jong Seong

    2016-08-01

    Concern about leakage of carbon dioxide (CO2) from deep-sea storage in geological reservoirs is increasing because of its possible adverse effects on marine organisms locally or at nearby coastal areas both in sediment and water column. In the present study, we examined how elevated CO2 affects various intertidal epibenthic (benthic copepod), intertidal endobenthic (Manila clam and Venus clam), sub-tidal benthic (brittle starfish), and free-living (marine medaka) organisms in areas expected to be impacted by leakage. Acute lethal and sub-lethal effects were detected in the adult stage of all test organisms exposed to varying concentrations of CO2, due to the associated decline in pH (8.3 to 5.2) during 96-h exposure. However, intertidal organisms (such as benthic copepods and clams) showed remarkable resistance to elevated CO2, with the Venus clam being the most tolerant (LpH50 = 5.45). Sub-tidal species (such as brittle starfish [LpH50 = 6.16] and marine medaka [LpH50 = 5.91]) were more sensitive to elevated CO2 compared to intertidal species, possibly because they have fewer defensive capabilities. Of note, the exposure duration might regulate the degree of acute sub-lethal effects, as evidenced by the Venus clam, which showed a time-dependent effect to elevated CO2. Finally, copper was chosen as a model toxic element to find out the synergistic or antagonistic effects between ocean acidification and metal pollution. Combination of CO2 and Cu exposure enhances the adverse effects to organisms, generally supporting a synergistic effect scenario. Overall, the significant variation in the degree to which CO2 adversely affected organisms (viz., working range and strength) was clearly observed, supporting the general concept of species-dependent effects of elevated CO2.

  19. Seasonal Belowground Ecosystem and Eco-enzymatic Responses to Soil pH and Phosphorus Availability in Temperate Hardwood Forests

    NASA Astrophysics Data System (ADS)

    Smemo, K. A.; Deforest, J. L.; Petersen, S. L.; Burke, D.; Hewins, C.; Kluber, L. A.; Kyker, S. R.

    2013-12-01

    Atmospheric acid deposition can increase phosphorus (P) limitation in temperate hardwood forests by increasing N availability, and therefore P demand, and/or by decreasing pH and occluding inorganic P. However, only recently have studies demonstrated that P limitation can occur in temperate forests and very little is known about the temporal aspects of P dynamics in acidic forest soils and how seasonal shifts in nutrient availability and demand influence microbial investment in extracellular enzymes. The objectives of this study were to investigate how P availability and soil pH influence seasonal patterns of nutrient cycling and soil microbial activity in hardwood forests that experience chronic acid deposition. We experimentally manipulated soil pH, P, or both for three years and examined soil treatment responses in fall, winter, spring, early summer, and late summer. We found that site (glaciated versus unglaciated) and treatment had the most significant influence on nutrient pools and cycling. In general, nutrient pools were higher in glaciated soils than unglaciated for measured nutrients, including total C and N (2-3 times higher), extractable inorganic nitrogen, and readily available P. Treatment had no impact on total C and N pools in either region, but did affect other measured nutrients such as ammonium, which was greatest in the elevated pH treatment for both sites. As expected, readily available P pools were highest in the elevated P treatments (3 fold increase in both sites), but raising pH decreased available P pools in the glaciated site. Raising soil pH increased both net N mineralization rates and net P mineralization rates, regardless of site. Nitrification responses were complex, but we observed an overall significant nitrification increase under elevated pH, particularly in the growing season. Extracellular enzyme activity showed more seasonal patterns than site and treatment effects, exhibiting significant growing season activity reductions for all enzymes measured. Phosphatase enzymes did not respond to our treatments and were generally greatest in the unglaciated soils, particularly in winter and spring. Enzyme stoichiometric relationships revealed that soil microbial populations in the glaciated site were consistently less P and N-limited than unglaciated sites but this difference was less pronounced during the growing season. The trajectory of nutrient limitation in response to soil pH and P availability was highly variable, but we observed that enzyme ratios in the early summer were particularly shifted relative to other seasons suggesting that both sites were increasingly P and N-limited during this period. Overall, our results suggest that ecosystem and microbial responses to soil pH and P availability vary with both season and site history and that more spatially and temporally explicit observations are needed to improve our understanding of ecosystem acidification, nutrient limitation, and the cost-benefit relationships of microbial investments in extracellular enzymes.

  20. Intensive cytokine induction in pandemic H1N1 influenza virus infection accompanied by robust production of IL-10 and IL-6.

    PubMed

    Yu, Xuelian; Zhang, Xi; Zhao, Baihui; Wang, Jiayu; Zhu, Zhaokui; Teng, Zheng; Shao, Junjie; Shen, Jiaren; Gao, Ye; Yuan, Zhengan; Wu, Fan

    2011-01-01

    The innate immune system is the first line of defense against viruses by inducing expression of cytokines and chemokines. Many pandemic influenza H1N1 virus [P(H1N1)] infected severe cases occur in young adults under 18 years old who were rarely seriously affected by seasonal influenza. Results regarding host cytokine profiles of P(H1N1) are ambivalent. In the present study we investigated host cytokine profiles in P(H1N1) patients and identified cytokines related to disease severity. We retrieved 77, 59, 26 and 26 sera samples from P(H1N1) and non-flu influenza like illness (non-ILIs) cases with mild symptoms (mild patients), P(H1N1) vaccinees and healthy individuals, respectively. Nine and 16 sera were from hospitalized P(H1N1) and non-ILIs patients with severe symptoms (severe patients). Cytokines of IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IFN-γ and TNF-α were assayed by cytokine bead array, IL-17 and IL-23 measured with ELISA. Mild P(H1N1) patients produced significantly elevated IL-2, IL-12, IFN-γ, IL-6, TNF-α, IL-5, IL-10, IL-17 and IL-23 versus to healthy controls. While an overwhelming IL-6 and IL-10 production were observed in severe P(H1N1) patients. Higher IL-10 secretion in P(H1N1) vaccinees confirmed our observation that highly increased level of sera IL-6 and IL-10 in P(H1N1) patients may lead to disease progression. A comprehensive innate immune response was activated at the early stage of P(H1N1) infection with a combine Th1/Th2/Th3 cytokines production. As disease progression, a systemic production of IL-6 and IL-10 were observed in severe P(H1N1) patients. Further analysis found a strong correlation between IL-6 and IL-10 production in the severe P(H1N1) patients. IL-6 may be served as a mediator to induce IL-10 production. Highly elevated level of sera IL-6 and IL-10 in P(H1N1) patients may lead to disease progression, but the underlying mechanism awaits further detailed investigations.

  1. Intensive Cytokine induction in Pandemic H1N1 Influenza Virus Infection Accompanied by Robust Production of IL-10 and IL-6

    PubMed Central

    Yu, Xuelian; Zhang, Xi; Zhao, Baihui; Wang, Jiayu; Zhu, Zhaokui; Teng, Zheng; Shao, Junjie; Shen, Jiaren; Gao, Ye; Yuan, Zhengan; Wu, Fan

    2011-01-01

    Background The innate immune system is the first line of defense against viruses by inducing expression of cytokines and chemokines. Many pandemic influenza H1N1 virus [P(H1N1)] infected severe cases occur in young adults under 18 years old who were rarely seriously affected by seasonal influenza. Results regarding host cytokine profiles of P(H1N1) are ambivalent. In the present study we investigated host cytokine profiles in P(H1N1) patients and identified cytokines related to disease severity. Methods and Principal Findings We retrieved 77, 59, 26 and 26 sera samples from P(H1N1) and non-flu influenza like illness (non-ILIs) cases with mild symptoms (mild patients), P(H1N1) vaccinees and healthy individuals, respectively. Nine and 16 sera were from hospitalized P(H1N1) and non-ILIs patients with severe symptoms (severe patients). Cytokines of IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IFN-γ and TNF-α were assayed by cytokine bead array, IL-17 and IL-23 measured with ELISA. Mild P(H1N1) patients produced significantly elevated IL-2, IL-12, IFN-γ, IL-6, TNF-α, IL-5, IL-10, IL-17 and IL-23 versus to healthy controls. While an overwhelming IL-6 and IL-10 production were observed in severe P(H1N1) patients. Higher IL-10 secretion in P(H1N1) vaccinees confirmed our observation that highly increased level of sera IL-6 and IL-10 in P(H1N1) patients may lead to disease progression. Conclusion and Significance A comprehensive innate immune response was activated at the early stage of P(H1N1) infection with a combine Th1/Th2/Th3 cytokines production. As disease progression, a systemic production of IL-6 and IL-10 were observed in severe P(H1N1) patients. Further analysis found a strong correlation between IL-6 and IL-10 production in the severe P(H1N1) patients. IL-6 may be served as a mediator to induce IL-10 production. Highly elevated level of sera IL-6 and IL-10 in P(H1N1) patients may lead to disease progression, but the underlying mechanism awaits further detailed investigations. PMID:22174866

  2. Trihalomethane hydrolysis in drinking water at elevated temperatures.

    PubMed

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Karanfil, Tanju; Xie, Yuefeng F

    2015-07-01

    Hydrolysis could contribute to the loss of trihalomethanes (THMs) in the drinking water at elevated temperatures. This study was aimed at investigating THM hydrolysis pertaining to the storage of hot boiled water in enclosed containers. The water pH value was in the range of 6.1-8.2 and the water temperature was varied from 65 to 95 °C. The effects of halide ions, natural organic matter, and drinking water matrix were investigated. Results showed that the hydrolysis rates declined in the order following CHBrCl2 > CHBr2Cl > CHBr3 > CHCl3. THM hydrolysis was primarily through the alkaline pathway, except for CHCl3 in water at relatively low pH value. The activation energies for the alkaline hydrolysis of CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 109, 113, 115 and 116 kJ/mol, respectively. No hydrolysis intermediates could accumulate in the water. The natural organic matter, and probably other constituents, in drinking water could substantially decrease THM hydrolysis rates by more than 50%. When a drinking water was at 90 °C or above, the first order rate constants for THM hydrolysis were in the magnitude of 10(-2)‒10(-1) 1/h. When the boiled real tap water was stored in an enclosed container, THMs continued increasing during the first few hours and then kept decreasing later on due to the competition between hydrolysis and further formation. The removal of THMs, especially brominated THMs, by hydrolysis would greatly reduce one's exposure to disinfection by-products by consuming the boiled water stored in enclosed containers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Trace metal accumulation in soil and their phytoavailability as affected by greenhouse types in north China.

    PubMed

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Hickethier, Martina; Hu, Wenyou

    2015-05-01

    Long-term heavy organic fertilizer application has linked greenhouse vegetable production (GVP) with trace metal contamination in north China. Given that trace metals release from fertilizers and their availability may be affected by discrepant environmental conditions, especially temperature under different greenhouses, this study investigated Cd, Cu, Pb, and Zn accumulation and contamination extent in soil as well as their phytoavailability under two major greenhouses in Tongshan, north China, namely solar greenhouse (SG) and round-arched plastic greenhouse (RAPG), to evaluate their presumed difference. The results showed significant Cd, Cu, Pb, and Zn accumulation in GVP soil by comparing with those in open-field soil, but their accumulation extent and rates were generally greater in SG than those in RAPG. This may be related to more release of trace metals to soil due to the acceleration of decomposition and humification process of organic fertilizers under higher soil temperature in SG relative to that in RAPG. Overall, soil in both greenhouses was generally less polluted or moderately polluted by the study metals. Similarly, decreased soil pH and elevated soil available metals in SG caused higher trace metals in leaf vegetables in SG than those in RAPG, although there was no obvious risk via vegetable consumption under both greenhouses. Lower soil pH may be predominantly ascribed to more intensive farming practices in SG while elevated soil available metals may be attributed to more release of dissolved organic matter-metal complexes from soil under higher temperature in SG. The data provided in this study may assist in developing reasonable and sustainable fertilization strategies to abate trace metal contamination in both greenhouses.

  4. A Biochemical Study on the Gastroprotective Effect of Andrographolide in Rats Induced with Gastric Ulcer

    PubMed Central

    Saranya, P.; Geetha, A.; Selvamathy, S. M. K. Narmadha

    2011-01-01

    The major objective of the study was to evaluate the gastroprotective property of andrographolide, a chief component of the leaves of Andrographis paniculata in terms of the ulcer preventive effect in rats. An acute toxicity test was conducted with different concentrations of andrographolide to determine the LD50 value. The dose responsive study was conducted in rats pretreated with andrographolide (1, 3 and 5 mg/kg) for a period of 30 days, prior to ulcer induction by administering ethanol, aspirin or by pyloric ligation. The ulcer protective efficacy was tested by determining the ulcer score, pH, pepsin, titrable acidity, gastric mucin, lipid peroxides, reduced glutathione, and enzymatic antioxidants superoxide dismutase, catalase and glutathione peroxidase in gastric tissue. The activities of H+-K+ ATPase and myeloperoxidase were also determined in gastric tissue. The LD50 value was found to be 48 mg/kg b. wt and the effective dose was found to be 3 mg/kg. We have observed a significant reduction in the ulcer score in rats pretreated with 3 mg of andrographolide/kg body weight. A favourable increase in the pH and decrease in titrable acidity were observed in the gastric fluid of rats pretreated with the test drug. The gastric tissue H+-K+ ATPase and myeloperoxidase activities were elevated in ulcer-induced animals. The elevation in the enzyme activity was significantly minimized in the andrographolide received animals. The antioxidants and mucin levels were significantly maintained in the gastric tissue of drug-pretreated animals. Andrographolide did not produce any toxic effects in normal rats. This study reveals that the ulcer preventive efficacy of andrographolide may probably due to its antioxidant, cytoprotective and antiacid secretory effects. PMID:22923868

  5. A biochemical study on the gastroprotective effect of andrographolide in rats induced with gastric ulcer.

    PubMed

    Saranya, P; Geetha, A; Selvamathy, S M K Narmadha

    2011-09-01

    The major objective of the study was to evaluate the gastroprotective property of andrographolide, a chief component of the leaves of Andrographis paniculata in terms of the ulcer preventive effect in rats. An acute toxicity test was conducted with different concentrations of andrographolide to determine the LD(50) value. The dose responsive study was conducted in rats pretreated with andrographolide (1, 3 and 5 mg/kg) for a period of 30 days, prior to ulcer induction by administering ethanol, aspirin or by pyloric ligation. The ulcer protective efficacy was tested by determining the ulcer score, pH, pepsin, titrable acidity, gastric mucin, lipid peroxides, reduced glutathione, and enzymatic antioxidants superoxide dismutase, catalase and glutathione peroxidase in gastric tissue. The activities of H(+)-K(+) ATPase and myeloperoxidase were also determined in gastric tissue. The LD(50) value was found to be 48 mg/kg b. wt and the effective dose was found to be 3 mg/kg. We have observed a significant reduction in the ulcer score in rats pretreated with 3 mg of andrographolide/kg body weight. A favourable increase in the pH and decrease in titrable acidity were observed in the gastric fluid of rats pretreated with the test drug. The gastric tissue H(+)-K(+) ATPase and myeloperoxidase activities were elevated in ulcer-induced animals. The elevation in the enzyme activity was significantly minimized in the andrographolide received animals. The antioxidants and mucin levels were significantly maintained in the gastric tissue of drug-pretreated animals. Andrographolide did not produce any toxic effects in normal rats. This study reveals that the ulcer preventive efficacy of andrographolide may probably due to its antioxidant, cytoprotective and antiacid secretory effects.

  6. Hypoxia-induced mitogenic factor (FIZZ1/RELMα) induces endothelial cell apoptosis and subsequent interleukin-4-dependent pulmonary hypertension

    PubMed Central

    Takimoto, Eiki; Zhang, Ailan; Weiner, Noah C.; Meuchel, Lucas W.; Berger, Alan E.; Cheadle, Chris; Johns, Roger A.

    2014-01-01

    Pulmonary hypertension (PH) is characterized by elevated pulmonary artery pressure that leads to progressive right heart failure and ultimately death. Injury to endothelium and consequent wound repair cascades have been suggested to trigger pulmonary vascular remodeling, such as that observed during PH. The relationship between injury to endothelium and disease pathogenesis in this disorder remains poorly understood. We and others have shown that, in mice, hypoxia-induced mitogenic factor (HIMF, also known as FIZZ1 or RELMα) plays a critical role in the pathogenesis of lung inflammation and the development of PH. In this study, we dissected the mechanism by which HIMF and its human homolog resistin (hRETN) induce pulmonary endothelial cell (EC) apoptosis and subsequent lung inflammation-mediated PH, which exhibits many of the hallmarks of the human disease. Systemic administration of HIMF caused increases in EC apoptosis and interleukin (IL)-4-dependent vascular inflammatory marker expression in mouse lung during the early inflammation phase. In vitro, HIMF, hRETN, and IL-4 activated pulmonary microvascular ECs (PMVECs) by increasing angiopoietin-2 expression and induced PMVEC apoptosis. In addition, the conditioned medium from hRETN-treated ECs had elevated levels of endothelin-1 and caused significant increases in pulmonary vascular smooth muscle cell proliferation. Last, HIMF treatment caused development of PH that was characterized by pulmonary vascular remodeling and right heart failure in wild-type mice but not in IL-4 knockout mice. These data suggest that HIMF contributes to activation of vascular inflammation at least in part by inducing EC apoptosis in the lung. These events lead to subsequent PH. PMID:24793164

  7. Biomarkers of airway acidity and oxidative stress in exhaled breath condensate from grain workers.

    PubMed

    Do, Ron; Bartlett, Karen H; Dimich-Ward, Helen; Chu, Winnie; Kennedy, Susan M

    2008-11-15

    Grain workers report adverse respiratory symptoms due to exposures to grain dust and endotoxin. Studies have shown that biomarkers in exhaled breath condensate (EBC) vary with the severity of airway inflammation. The purpose of the study was to evaluate biomarkers of airway acidity (pH and ammonium [NH(4)(+)]) and oxidative stress (8-isoprostane) in the EBC of grain workers. A total of 75 workers from 5 terminal elevators participated. In addition to EBC sampling, exposure monitoring for inhalable grain dust and endotoxin was performed; spirometry, allergy testing, and a respiratory questionnaire derived from that of the American Thoracic Society were administered. Dust and endotoxin levels ranged from 0.010 to 13 mg/m(3) (median, 1.0) and 8.1 to 11,000 endotoxin units/m(3) (median, 610) respectively. EBC pH values varied from 4.3 to 8.2 (median, 7.9); NH(4)(+) values from 22 to 2,400 microM (median, 420); and 8-isoprostane values from 1.3 to 45 pg/ml (median, 11). Univariate and multivariable analyses revealed a consistent effect of cumulative smoking and obesity with decreased pH and NH(4)(+), and intensity of grain dust and endotoxin with increased 8-isoprostane. Duration of work on the test day was associated with decreased pH and NH(4)(+), whereas duration of employment in the industry was associated with decreased 8-isoprostane. Chronic exposures are associated with airway acidity, whereas acute exposures are more closely associated with oxidative stress. These results suggest that the collection of EBC may contribute to predicting the pathological state of the airways of workers exposed to acute and chronic factors.

  8. Anemia, hypoalbuminemia, and elevated troponin levels as risk factors for respiratory failure in patients with severe exacerbations of chronic obstructive pulmonary disease requiring invasive mechanical ventilation.

    PubMed

    Pavliša, Gordana; Labor, Marina; Puretić, Hrvoje; Hećimović, Ana; Jakopović, Marko; Samaržija, Miroslav

    2017-12-31

    To determine in-hospital and post-discharge mortality, readmission rates, and predictors of invasive mechanical ventilation (IMV) in patients treated at intensive care unit (ICU) due to acute exacerbations of chronic obstructive pulmonary disease (AECOPD). A retrospective observational cohort study included all patients treated at a respiratory ICU for AECOPD during one year. A total of 62 patients (41 men) with mean age 68.4±10.4 years were analyzed for outcomes including in-hospital and post-discharge mortality, readmission rates, and IMV. Patients' demographic, hematologic, biochemical data and arterial blood gas (ABG) values were recorded on admission to hospital. Mean duration of follow-up time was 2.4 years. Of 62 patients, 7 (11.3%) died during incident hospitalization and 21 (33.9%) died during the follow-up. The overall 2.4-year mortality was 45.2%. Twenty nine (46.8%) patients were readmitted due to AECOPD. The average number of readmissions was 1.2. Multivariate analysis showed that blood pH, bicarbonate levels, low albumin, low serum chloride, and low hemoglobin were significant predictors of IMV during incident hospitalization (P<0.001 for the overall model fit). High in-hospital and post-discharge mortality and high readmission rates in our patients treated due to AECOPD at ICU indicate that these patients represent a high risk group in need of close monitoring. Our results suggested that anemia, hypoalbuminemia, and elevated troponin levels were risk factors for the need of IMV in severe AECOPD. Identification of such high-risk patients could provide the opportunity for administration of an appropriate and timely treatment.

  9. Jupiter Climatological Database from Frequent 5-25 µm Mid-IR Spectral Mapping using IRTF/TEXES

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh N.; Orton, Glenn S.; Greathouse, Thomas K.; Sinclair, James; Irwin, Patrick G. J.; Giles, Rohini S.; Encrenaz, Therese; Drossart, Pierre

    2015-11-01

    We report on the development of a long-term Jovian Climatological Database (JCliD) to explore variability in Jupiter’s atmospheric temperatures, winds, clouds and composition- from long-term seasonal changes to short-term major upheavals. Radiometrically calibrated spectral scan maps of Jupiter have been regularly obtained using the TEXES instrument (Texas Echelon cross Echelle Spectrograph, Lacy et al. 2002, PASP 114, p153-168) between 2012 and 2015. Ten settings between 5 and 25 µm (10-20 cm-1 wide settings at spectral resolutions of 2000-10000) were selected to be sensitive to jovian temperatures (via H2, CH4 and CH3D), tropospheric phosphine and ammonia, tropospheric haze opacity and stratospheric hydrocarbons ethane and acetylene. Diffraction-limited spatial resolutions of 0.6-1.6” were achieved. Observations over consecutive nights allow the creation of full spatial maps for comparison with the visible light record, revealing ephemeral stratospheric wave activity, NEB hotspots, heating at the northern auroral oval, and complex thermal signatures associated with tropospheric vortices, waves and barges. Full spectra are inverted via the NEMESIS retrieval algorithm (Irwin et al., 2008, JSQRT 109, p1136-1150) to map temperatures at multiple altitudes (1-600 mbar), winds, aerosol opacity and gaseous composition. The spatial and spectral resolutions of the resulting maps surpass those obtained during the Cassini flyby of Jupiter in 2000, and permit temporal interpolation to understand the environmental conditions related to the emergence and evolution of discrete features. In December 2014 we find warmer temperatures in the northern stratosphere (a seasonal effect in late northern summer despite Jupiter’s small axial tilt); a hemispheric asymmetry in the tropospheric PH3 distribution due to variations in the vigour of vertical mixing and photolytic shielding; elevated PH3, aerosols and NH3 in the equatorial zone (EZ) related to equatorial uplift; elevated aerosol opacity in the northern and southern tropical zones (NTrZ and STrZ); and enhanced PH3 and aerosols over the Great Red Spot. Maps of retrieved properties will be assembled as a database (JCliD) to aid in the interpretation of Juno data during 2016-2017.

  10. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification.

    PubMed

    Hall-Spencer, Jason M; Rodolfo-Metalpa, Riccardo; Martin, Sophie; Ransome, Emma; Fine, Maoz; Turner, Suzanne M; Rowley, Sonia J; Tedesco, Dario; Buia, Maria-Cristina

    2008-07-03

    The atmospheric partial pressure of carbon dioxide (p(CO(2))) will almost certainly be double that of pre-industrial levels by 2100 and will be considerably higher than at any time during the past few million years. The oceans are a principal sink for anthropogenic CO(2) where it is estimated to have caused a 30% increase in the concentration of H(+) in ocean surface waters since the early 1900s and may lead to a drop in seawater pH of up to 0.5 units by 2100 (refs 2, 3). Our understanding of how increased ocean acidity may affect marine ecosystems is at present very limited as almost all studies have been in vitro, short-term, rapid perturbation experiments on isolated elements of the ecosystem. Here we show the effects of acidification on benthic ecosystems at shallow coastal sites where volcanic CO(2) vents lower the pH of the water column. Along gradients of normal pH (8.1-8.2) to lowered pH (mean 7.8-7.9, minimum 7.4-7.5), typical rocky shore communities with abundant calcareous organisms shifted to communities lacking scleractinian corals with significant reductions in sea urchin and coralline algal abundance. To our knowledge, this is the first ecosystem-scale validation of predictions that these important groups of organisms are susceptible to elevated amounts of p(CO(2)). Sea-grass production was highest in an area at mean pH 7.6 (1,827 (mu)atm p(CO(2))) where coralline algal biomass was significantly reduced and gastropod shells were dissolving due to periods of carbonate sub-saturation. The species populating the vent sites comprise a suite of organisms that are resilient to naturally high concentrations of p(CO(2)) and indicate that ocean acidification may benefit highly invasive non-native algal species. Our results provide the first in situ insights into how shallow water marine communities might change when susceptible organisms are removed owing to ocean acidification.

  11. Intracellular forms of menadione-dependent small-colony variants of methicillin-resistant Staphylococcus aureus are hypersusceptible to β-lactams in a THP-1 cell model due to cooperation between vacuolar acidic pH and oxidant species.

    PubMed

    Garcia, Laetitia G; Lemaire, Sandrine; Kahl, Barbara C; Becker, Karsten; Proctor, Richard A; Tulkens, Paul M; Van Bambeke, Françoise

    2012-12-01

    Phagocytosed methicillin-resistant Staphylococcus aureus (MRSA) are susceptible to β-lactams because of an acid-induced conformational change of penicillin-binding protein (PBP) 2a within phagolysosomes. We have examined whether this mechanism applies to menD and hemB small-colony variants (SCVs) of the COL MRSA strain, using cloxacillin, meropenem, doripenem, and vancomycin as comparator. Intracellularly, the change in cfu from post-phagocytosis inoculum was measured after 24 h of incubation with antibiotics combined or not with N-acetylcysteine (NAC; oxidant species scavenger); the relative potency (C(s)) was calculated from the Hill equation of concentration-response curves. Extracellularly, the effect of a pre-incubation with H(2)O(2) was determined on MICs and killing at pH 7.4 and 5.5. Intracellularly, the β-lactam C(s) was similar for the COL strain and the hemB mutant and not modified or slightly decreased (2- to 16-fold) by NAC. In contrast, the C(s) was 100- to 900-fold lower for the menD mutant, but similar to that for the COL strain when NAC was present. Extracellularly, β-lactam MICs were markedly reduced at pH 5.5 for the parental strain and the haemin-supplemented hemB mutant, with limited additional effect of pre-incubation with H(2)O(2). In contrast, MICs remained elevated at pH 5.5 for the menD mutant (supplemented with menadione sodium bisulphite or not), but were 7-10 dilutions lower after pre-incubation with H(2)O(2). Vancomycin MICs were unaltered in all conditions, with no marked effect of NAC on C(s). Cooperation between acidic pH and oxidant species confers high potency to β-lactams against intracellular forms of menD SCVs of MRSA.

  12. Remediation of groundwater contaminated with arsenic through enhanced natural attenuation: Batch and column studies.

    PubMed

    Hafeznezami, Saeedreza; Zimmer-Faust, Amity G; Jun, Dukwoo; Rugh, Megyn B; Haro, Heather L; Park, Austin; Suh, Jae; Najm, Tina; Reynolds, Matthew D; Davis, James A; Parhizkar, Tarannom; Jay, Jennifer A

    2017-10-01

    Batch and column laboratory experiments were conducted on natural sediment and groundwater samples from a contaminated site in Maine, USA with the aim of lowering the dissolved arsenate [As(V)] concentrations through chemical enhancement of natural attenuation capacity. In batch factorial experiments, two levels of treatment for three parameters (pH, Ca, and Fe) were studied at different levels of phosphate to evaluate their impact on As(V) solubility. Results illustrated that lowering pH, adding Ca, and adding Fe significantly increased the sorption capacity of sediments. Overall, Fe amendment had the highest individual impact on As(V) levels. To provide further evidence for the positive impact of Ca on As(V) adsorption, isotherm experiments were conducted at three different levels of Ca concentrations. A consistent increase in adsorption capacity (26-37%) of sediments was observed with the addition of Ca. The observed favorable effect of Ca on As(V) adsorption is likely caused by an increase in the surface positive charges due to surface accumulation of Ca 2+ ions. Column experiments were conducted by flowing contaminated groundwater with elevated pH, As(V), and phosphate through both uncontaminated and contaminated sediments. Potential in-situ remediation scenarios were simulated by adding a chemical amendment feed to the columns injecting Fe(II) or Ca as well as simultaneous pH adjustment. Results showed a temporary and limited decrease in As(V) concentrations under the Ca treatment (39-41%) and higher levels of attenuation in Fe(II) treated columns (50-91%) but only after a certain number of pore volumes (18-20). This study illustrates the importance of considering geochemical parameters including pH, redox potential, presence of competing ions, and sediment chemical and physical characteristics when considering enhancing the natural attenuation capacity of sediments to mitigate As contamination in natural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Assessing the risk of pH-dependent absorption for new molecular entities: a novel in vitro dissolution test, physicochemical analysis, and risk assessment strategy.

    PubMed

    Mathias, Neil R; Xu, Yan; Patel, Dhaval; Grass, Michael; Caldwell, Brett; Jager, Casey; Mullin, Jim; Hansen, Luke; Crison, John; Saari, Amy; Gesenberg, Christoph; Morrison, John; Vig, Balvinder; Raghavan, Krishnaswamy

    2013-11-04

    Weak base therapeutic agents can show reduced absorption or large pharmacokinetic variability when coadministered with pH-modifying agents, or in achlorhydria disease states, due to reduced dissolution rate and/or solubility at high gastric pH. This is often referred to as pH-effect. The goal of this study was to understand why some drugs exhibit a stronger pH-effect than others. To study this, an API-sparing, two-stage, in vitro microdissolution test was developed to generate drug dissolution, supersaturation, and precipitation kinetic data under conditions that mimic the dynamic pH changes in the gastrointestinal tract. In vitro dissolution was assessed for a chemically diverse set of compounds under high pH and low pH, analogous to elevated and normal gastric pH conditions observed in pH-modifier cotreated and untreated subjects, respectively. Represented as a ratio between the conditions, the in vitro pH-effect correlated linearly with clinical pH-effect based on the Cmax ratio and in a non-linear relationship based on AUC ratio. Additionally, several in silico approaches that use the in vitro dissolution data were found to be reasonably predictive of the clinical pH-effect. To explore the hypothesis that physicochemical properties are predictors of clinical pH-effect, statistical correlation analyses were conducted using linear sequential feature selection and partial least-squares regression. Physicochemical parameters did not show statistically significant linear correlations to clinical pH-effect for this data set, which highlights the complexity and poorly understood nature of the interplay between parameters. Finally, a strategy is proposed for implementation early in clinical development, to systematically assess the risk of clinical pH-effect for new molecular entities that integrates physicochemical analysis and in vitro, in vivo and in silico methods.

  14. Application of Dredged Materials and Steelmaking Slag as Basal Media to Restore and Create Seagrass Beds: Mesocosm and Core Incubation Experiments

    NASA Astrophysics Data System (ADS)

    Tsukasaki, A.; Suzumura, M.; Tsurushima, N.; Nakazato, T.; Huang, Y.; Tanimoto, T.; Yamada, N.; Nishijima, W.

    2016-02-01

    Seagrass beds stabilize bottom sediments, improve water quality and light conditions, enhance species diversity, and provide habitat complexity in coastal marine environments. Seagrass beds are now experiencing worldwide decline by rapid environmental changes. Possible options of seagrass bed restoration are civil engineering works including mounding to raise the bottom to elevations with suitable light for seagrass growth. Reuse or recycling of dredged materials (DM) and various industrial by-products including steelmaking slags is a beneficial option to restore and create seagrass beds. To evaluate the applicability of DM and dephosphorization slag (Slag) as basal media of seagrass beds, we carried out mesocosm experiments and core incubation experiments in a land-based flow-through seawater tank over a year. During the mesocosm experiment, no difference was found in growth of eelgrass (Zostera marina L.) and macrobenthic community structures between Slag-based sediments and sand-based control experiments, even though Slag-based sediments exhibited substantially higher pH than sand-based sediments. During the core incubation experiment, we investigated detailed variation and distributions of pH and nutrients, and diffusion fluxes of nutrients between the sediment/seawater interface. Though addition of Slag induced high pH up to 10.7 in deep layers (< 5 cm), the surface pH decreased rapidly within 10 days. Concentrations of dissolved inorganic nitrogen were comparable between Slag- and sand-based sediments, whereas dissolved phosphate concentration was substantially reduced by the addition of Slag. The low concentrations of phosphate was likely due to precipitation with calcium under high pH condition. Diffusion fluxes of nutrients from the cores were comparable with those reported in natural coastal systems. It was suggested that the mixture of Slag and DM is applicable as basal media for construction of artificial seagrass beds.

  15. Molecular Mechanisms, Thermodynamics, and Dissociation Kinetics of Knob-Hole Interactions in Fibrin*

    PubMed Central

    Kononova, Olga; Litvinov, Rustem I.; Zhmurov, Artem; Alekseenko, Andrey; Cheng, Chia Ho; Agarwal, Silvi; Marx, Kenneth A.; Weisel, John W.; Barsegov, Valeri

    2013-01-01

    Polymerization of fibrin, the primary structural protein of blood clots and thrombi, occurs through binding of knobs ‘A’ and ‘B’ in the central nodule of fibrin monomer to complementary holes ‘a’ and ‘b’ in the γ- and β-nodules, respectively, of another monomer. We characterized the A:a and B:b knob-hole interactions under varying solution conditions using molecular dynamics simulations of the structural models of fibrin(ogen) fragment D complexed with synthetic peptides GPRP (knob ‘A’ mimetic) and GHRP (knob ‘B’ mimetic). The strength of A:a and B:b knob-hole complexes was roughly equal, decreasing with pulling force; however, the dissociation kinetics were sensitive to variations in acidity (pH 5–7) and temperature (T = 25–37 °C). There were similar structural changes in holes ‘a’ and ‘b’ during forced dissociation of the knob-hole complexes: elongation of loop I, stretching of the interior region, and translocation of the moveable flap. The disruption of the knob-hole interactions was not an “all-or-none” transition as it occurred through distinct two-step or single step pathways with or without intermediate states. The knob-hole bonds were stronger, tighter, and more brittle at pH 7 than at pH 5. The B:b knob-hole bonds were weaker, looser, and more compliant than the A:a knob-hole bonds at pH 7 but stronger, tighter, and less compliant at pH 5. Surprisingly, the knob-hole bonds were stronger, not weaker, at elevated temperature (T = 37 °C) compared with T = 25 °C due to the helix-to-coil transition in loop I that helps stabilize the bonds. These results provide detailed qualitative and quantitative characteristics underlying the most significant non-covalent interactions involved in fibrin polymerization. PMID:23720752

  16. Hg2+-reactive double hydrophilic block copolymer assemblies as novel multifunctional fluorescent probes with improved performance.

    PubMed

    Hu, Jinming; Li, Changhua; Liu, Shiyong

    2010-01-19

    We report on novel type of responsive double hydrophilic block copolymer (DHBC)-based multifunctional chemosensors to Hg(2+) ions, pH, and temperatures and investigate the effects of thermo-induced micellization on the detection sensitivity. Well-defined DHBCs bearing rhodamine B-based Hg(2+)-reactive moieties (RhBHA) in the thermo-responsive block, poly(ethylene oxide)-b-poly(N-isopropylacrylamide-co-RhBHA) (PEO-b-P(NIPAM-co-RhBHA)), were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Nonfluorescent RhBHA moieties are subjected to selective ring-opening reaction upon addition of Hg(2+) ions or lowering solution pH, producing highly fluorescent acyclic species. Thus, at room temperature PEO-b-P(NIPAM-co-RhBHA) DHBCs can serve as water-soluble multifunctional and efficient fluorescent chemosensors to Hg(2+) ions and pH. Upon heating above the lower critical solution temperature (approximately 36 degrees C) of the PNIPAM block, they self-assemble into micelles possessing P(NIPAM-co-RhBHA) cores and well-solvated PEO coronas, which were fully characterized by dynamic and static laser light scattering. It was found that the detection sensitivity to Hg(2+) ions and pH could be dramatically improved at elevated temperatures due to fluorescence enhancement of RhBHA residues in the acyclic form, which were embedded within hydrophobic cores of thermo-induced micellar aggregates. This work represents a proof-of-concept example of responsive DHBC-based multifunctional fluorescent chemosensors for the highly efficient detection of Hg(2+) ions, pH, and temperatures with tunable detection sensitivity. Compared to reaction-based small molecule Hg(2+) probes in previous literature reports, the integration of stimuli-responsive block copolymers with well-developed small molecule-based selective sensing moieties in the current study are expected to exhibit preferred advantages including enhanced detection sensitivity, water dispersibility, biocompatibility, facile incorporation into devices, and the ability of further functionalization for targeted imaging and detection.

  17. Neuroinflammation in pulmonary hypertension: concept, facts, and relevance.

    PubMed

    Hilzendeger, Aline M; Shenoy, Vinayak; Raizada, Mohan K; Katovich, Michael J

    2014-09-01

    Pulmonary hypertension (PH) is a progressive lung disease characterized by elevated pressure in the lung vasculature, resulting in right-sided heart failure and premature death. The pathogenesis of PH is complex and multifactorial, involving a dysregulated autonomic nervous system and immune response. Inflammatory mechanisms have been linked to the development and progression of PH; however, these are usually restricted to systemic and/or local lung tissue. Inflammation within the CNS, often referred to as neuroinflammation involves activation of the microglia, the innate immune cells that are found specifically in the brain and spinal cord. Microglial activation results in the release of several cytokines and chemokines that trigger neuroinflammation, and has been implicated in the pathogenesis of several disease conditions such as Alzheimer's, Parkinson's, hypertension, atherosclerosis, and metabolic disorders. In this review, we introduce the concept of neuroinflammation in the context of PH, and discuss possible strategies that could be developed for PH therapy based on this concept.

  18. Effects of Ocean Acidification and Flow on Oxygen and pH Conditions of Developing Squid (Doryteuthis pealeii) Egg Cases

    NASA Astrophysics Data System (ADS)

    Panyi, A.; Long, M. H.; Mooney, T. A.

    2016-02-01

    While young animals found future cohorts and populations, these early life stages are often particularly susceptible to conditions of the local environment in which they develop. The oxygen and pH of this critical developmental environment is likely impacted by the nearby physical conditions and the animals own respirations. Yet, in nearly all cases, this microenvironment is unknown, limiting our understanding of animal tolerances to current and future OA and hypoxic conditions. This study investigated the oxygen and pH environment adjacent to and within the egg cases of a keystone species, the longfin squid, Doryteuthis pealeii, under ambient and elevated CO2 (400 and 2200 ppm), and across differing water flow rates (0, 1, and 10 cm/s) using microprobes. Under both CO2 treatments, oxygen and pH in the egg case centers dropped dramatically across development to levels generally considered metabolically stressful even for adults. In the ambient CO2 trial, oxygen concentrations reached a minimum of 4.351 µmol/L, and pH reached a minimum of 7.36. In the elevated CO2 trial, oxygen concentrations reached a minimum of 9.910 µmol/L, and pH reached a minimum of 6.79. Flow appeared to alleviate these conditions, with highest O2 concentrations in the egg cases exposed to 10 cm/s flow in both CO2 trials, across all age classes measured. Surprisingly, all tested egg cases successfully hatched, demonstrating that developing D. pealeii embryos have a strong tolerance for low oxygen and pH, but there were more unsuccessful embryos counted in the 0 and 1 cm/s flow conditions. Further climate change could place young, keystone squid outside of their physiological limits, but water flow may play a key role in mitigating developmental stress to egg case bound embryos by increasing available oxygen.

  19. Pre-exposure to simultaneous, but not individual, climate change stressors limits acclimation capacity of Irukandji jellyfish polyps to predicted climate scenarios

    NASA Astrophysics Data System (ADS)

    Klein, Shannon G.; Pitt, Kylie A.; Carroll, Anthony R.

    2017-09-01

    Researchers have investigated the immediate effects of end-of-century climate change scenarios on many marine species, yet it remains unclear whether we can reliably predict how marine species may respond to future conditions because biota may become either more or less resistant over time. Here, we examined the role of pre-exposure to elevated temperature and reduced pH in mitigating the potential negative effects of future ocean conditions on polyps of a dangerous Irukandji jellyfish Alatina alata. We pre-exposed polyps to elevated temperature (28 °C) and reduced pH (7.6), in a full factorial experiment that ran for 14 d. We secondarily exposed original polyps and their daughter polyps to either current (pH 8.0, 25 °C) or future conditions (pH 7.6, 28 °C) for a further 34 d to assess potential phenotypic plastic responses and whether asexual offspring could benefit from parental pre-exposure. Polyp fitness was characterised as asexual reproduction, respiration, feeding, and protein concentrations. Pre-exposure to elevated temperature alone partially mitigated the negative effects of future conditions on polyp fitness, while pre-exposure to reduced pH in isolation completely mitigated the negative effects of future conditions on polyp fitness. Pre-exposure to the dual stressors, however, reduced fitness under future conditions relative to those in the control treatment. Under future conditions, polyps had higher respiration rates regardless of the conditions they were pre-exposed to, suggesting that metabolic rates will be higher under future conditions. Parent and daughter polyps responded similarly to the various treatments tested, demonstrating that parental pre-exposure did not confer any benefit to asexual offspring under future conditions. Importantly, we demonstrate that while pre-exposure to the stressors individually may allow Irukandji polyps to acclimate over short timescales, the stressors are unlikely to occur in isolation in the long term, and thus, warming and acidification in parallel may prevent polyp populations from acclimating to future ocean conditions.

  20. Muscle Microvascular Blood Flow, Oxygenation, pH, and Perfusion Pressure Decrease in Simulated Acute Compartment Syndrome.

    PubMed

    Challa, Sravya T; Hargens, Alan R; Uzosike, Amarachi; Macias, Brandon R

    2017-09-06

    The current gold standard for diagnosing acute compartment syndrome (ACS) is an assessment of clinical signs, invasive measurement of intramuscular pressure (IMP), and measurement of local perfusion pressure. However, IMP measurements have several shortcomings, including pain, risk of infection, risk of technique error, plugging of the catheter tip, lack of consensus on the diagnostic pressure threshold, and lack of specificity and sensitivity. The objective of this study was to evaluate muscle hemodynamics, oxygenation, and pH as diagnostic parameters in a human model of ACS. We hypothesized that as IMP increases, muscle microvascular blood flow, oxygenation, and pH decrease in the anterior compartment of a leg at heart level and that they decrease significantly more when the leg is elevated further. An external pneumatic leg pressure chamber, combined with a venous stasis thigh cuff, was used to increase IMP and simulate ACS. Eight healthy subjects (5 males and 3 females; mean age, 26 years) had photoplethysmography and near-infrared spectroscopy-pH sensors placed over the middle aspect of the tibialis anterior muscle of the right (experimental) and left (control) legs. Leg chamber pressure conditions (40, 50, and 60 mm Hg) were applied in a randomized order after baseline measurements were taken. Data were collected continuously for each 11-minute pressure condition, with an 11-minute recovery period after each condition, and the average of the last 6 minutes was used for data analyses. The same protocol was repeated with each subject's legs elevated 12 cm above heart level. Data were analyzed using repeated-measures analysis of variance (ANOVA). As IMP increased, muscle microvascular blood flow (p = 0.01), oxygenation (p < 0.001), and pH (p < 0.001) all decreased significantly in the experimental leg compared with the control leg. At all IMP levels, leg elevation significantly decreased muscle oxygenation (p = 0.013) and perfusion pressure (p = 0.03) compared with the control leg at heart level. These results indicate that muscle microvascular blood flow, oxygenation, pH, and perfusion pressure decrease significantly as IMP increases in a human model of ACS. This study identifies hemodynamic and metabolic parameters as potential noninvasive diagnostic tools for ACS.

  1. Microelectrode characterization of coral daytime interior pH and carbonate chemistry.

    PubMed

    Cai, Wei-Jun; Ma, Yuening; Hopkinson, Brian M; Grottoli, Andréa G; Warner, Mark E; Ding, Qian; Hu, Xinping; Yuan, Xiangchen; Schoepf, Verena; Xu, Hui; Han, Chenhua; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Matsui, Yohei; Baumann, Justin H; Levas, Stephen; Ying, Ye; Wang, Yongchen

    2016-04-04

    Reliably predicting how coral calcification may respond to ocean acidification and warming depends on our understanding of coral calcification mechanisms. However, the concentration and speciation of dissolved inorganic carbon (DIC) inside corals remain unclear, as only pH has been measured while a necessary second parameter to constrain carbonate chemistry has been missing. Here we report the first carbonate ion concentration ([CO3(2-)]) measurements together with pH inside corals during the light period. We observe sharp increases in [CO3(2-)] and pH from the gastric cavity to the calcifying fluid, confirming the existence of a proton (H(+)) pumping mechanism. We also show that corals can achieve a high aragonite saturation state (Ωarag) in the calcifying fluid by elevating pH while at the same time keeping [DIC] low. Such a mechanism may require less H(+)-pumping and energy for upregulating pH compared with the high [DIC] scenario and thus may allow corals to be more resistant to climate change related stressors.

  2. Antioxidant Property Enhancement of Sweet Potato Flour under Simulated Gastrointestinal pH

    PubMed Central

    Chan, Kim Wei; Khong, Nicholas M. H.; Iqbal, Shahid; Umar, Imam Mustapha; Ismail, Maznah

    2012-01-01

    Sweet potato is known to be rich in healthful antioxidants, but the stability of its antioxidant properties under gastrointestinal pH is very much unknown. Hence, this study aimed to evaluate the changes in antioxidant properties (total contents of phenolics and flavonoids as well as antioxidant activity) of sweet potato flour (SPF) under simulated gastrointestinal pH conditions. It was found that the yield of SPF crude phenolic extract increased from 0.29 to 3.22 g/100 g SPF upon subjection to gastrointestinal pH conditions (p < 0.05). Also elevated significantly were the total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity of SPF (p < 0.05). In summary, the antioxidant properties of SPF were enhanced under gastrointestinal pH conditions, suggesting that SPF might possess a considerable amount of bound phenolic and other antioxidative compounds. The antioxidant properties of SPF are largely influenced by pH and thus might be enhanced during the in vivo digestive process. PMID:22942747

  3. RESPONSES OF CELLS TO pH CHANGES IN THE MEDIUM

    PubMed Central

    Taylor, A. Cecil

    1962-01-01

    Studies were made with time-lapse motion pictures of the reactions of cells in culture to changes in their environment. The concentrations of H+, HCO3 -and CO2 in the medium were altered in such a way that each, in turn, could be maintained constant while the others were varied. Observations were made on the shape of the cells, their activity, and their relation to the substratum. Characteristic reversible changes in the cells were observed whenever environmental pH was altered. Elevation of the pH accelerated cell movements and caused contraction of the cytoplasm, while lowering of the pH retarded and eventually stopped all cell activity, causing apparent gelation of the protoplasm. These responses did not occur when HCO3 - and CO2 were varied without changing the pH. It is suggested that local pH changes in the micro-environment of a cell's surface may be a significant factor in controlling cell behavior in culture and in vivo. PMID:13993539

  4. Renal responses of trout to chronic respiratory and metabolic acidoses and metabolic alkalosis.

    PubMed

    Wood, C M; Milligan, C L; Walsh, P J

    1999-08-01

    Exposure to hyperoxia (500-600 torr) or low pH (4.5) for 72 h or NaHCO(3) infusion for 48 h were used to create chronic respiratory (RA) or metabolic acidosis (MA) or metabolic alkalosis in freshwater rainbow trout. During alkalosis, urine pH increased, and [titratable acidity (TA) - HCO(-)(3)] and net H(+) excretion became negative (net base excretion) with unchanged NH(+)(4) efflux. During RA, urine pH did not change, but net H(+) excretion increased as a result of a modest rise in NH(+)(4) and substantial elevation in [TA - HCO(-)(3)] efflux accompanied by a large increase in inorganic phosphate excretion. However, during MA, urine pH fell, and net H(+) excretion was 3.3-fold greater than during RA, reflecting a similar increase in [TA - HCO(-)(3)] and a smaller elevation in phosphate but a sevenfold greater increase in NH(+)(4) efflux. In urine samples of the same pH, [TA - HCO(-)(3)] was greater during RA (reflecting phosphate secretion), and [NH(+)(4)] was greater during MA (reflecting renal ammoniagenesis). Renal activities of potential ammoniagenic enzymes (phosphate-dependent glutaminase, glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, alanine aminotransferase, phosphoenolpyruvate carboxykinase) and plasma levels of cortisol, phosphate, ammonia, and most amino acids (including glutamine and alanine) increased during MA but not during RA, when only alanine aminotransferase increased. The differential responses to RA vs. MA parallel those in mammals; in fish they may be keyed to activation of phosphate secretion by RA and cortisol mobilization by MA.

  5. Determinants and prognostic implications of the negative diastolic pulmonary pressure gradient in patients with pulmonary hypertension due to left heart disease.

    PubMed

    Nagy, Anikó Ilona; Venkateshvaran, Ashwin; Merkely, Béla; Lund, Lars H; Manouras, Aristomenis

    2017-01-01

    The diastolic pulmonary pressure gradient (DPG) has recently been introduced as a specific marker of combined pre-capillary pulmonary hypertension (Cpc-PH) in left heart disease (LHD). However, its diagnostic and prognostic superiority compared with traditional haemodynamic indices has been challenged lately. Current recommendations explicitly denote that in the normal heart, DPG values are greater than zero, with DPG ≥7 mmHg indicating Cpc-PH. However, clinicians are perplexed by the frequent observation of DPG <0 mmHg (DPG NEG ), as its physiological explanation and clinical impact are unclear to date. We hypothesized that large V-waves in the pulmonary artery wedge pressure (PAWP) curve yielding asymmetric pressure transmission might account for DPG NEG and undertook this study to clarify the physiological and prognostic implications of DPG NEG . Right heart catheterization and echocardiography were performed in 316 patients with LHD due to primary myocardial dysfunction or valvular disease. A total of 256 patients had PH-LHD, of whom 48% demonstrated DPG NEG . The V-wave amplitude inversely correlated with DPG (r = -0.45, P < 0.001) in patients with low pulmonary vascular resistance (PVR), but not in those with elevated PVR (P > 0.05). Patients with large V-waves had negative and lower DPG than those without augmented V-waves (P < 0.001) despite similar PVR (P >0.05). Positive, but normal DPG (0-6 mmHg) carried a worse 2-year prognosis for death and/or heart transplantation than DPG NEG (hazard ratio 2.97; P < 0.05). Our results advocate against DPG NEG constituting a measurement error. We propose that DPG NEG can partially be ascribed to large V-waves and carries a better prognosis than DPG within the normal positive range. © 2016 The Authors. European Journal of Heart Failure © 2016 European Society of Cardiology.

  6. Attenuation of Chemical Reactivity of Shale Matrixes following Scale Precipitation

    NASA Astrophysics Data System (ADS)

    Li, Q.; Jew, A. D.; Kohli, A. H.; Alalli, G.; Kiss, A. M.; Kovscek, A. R.; Zoback, M. D.; Brown, G. E.; Maher, K.; Bargar, J.

    2017-12-01

    Introduction of fracture fluids into shales initiates a myriad of fluid-rock reactions that can strongly influence migration of fluid and hydrocarbon through shale/fracture interfaces. Due to the extremely low permeability of shale matrixes, studies on chemical reactivity of shales have mostly focused on shale surfaces. Shale-fluid interactions inside within shale matrixes have not been examined, yet the matrix is the primary conduit through which hydrocarbons and potential contaminants are transmitted. To characterize changes in matrix mineralogy, porosity, diffusivity, and permeability during hydraulic stimulation, we reacted Marcellus (high clay and low carbonate) and Eagle Ford (low clay and high carbonate) shale cores with fracture fluids for 3 weeks at elevated pressure and temperature (80 oC, and 77 bars). In the carbonate-poor Marcellus system, fluid pH increased from 2 to 4, and secondary Fe(OH)3 precipitates were observed in the fluid. Sulfur X-ray fluorescence maps show that fluids had saturated and reacted with the entire 1-cm-diameter core. In the carbonate-rich Eagle Ford system, pH increased from 2 to 6 due to calcite dissolution. When additional Ba2+ and SO42- were present (log10(Q/K)=1.3), extensive barite precipitation was observed in the matrix of the Eagle Ford core (and on the surface). Barite precipitation was also observed on the surface of the Marcellus core, although to a lesser extent. In the Marcellus system, the presence of barite scale attenuated diffusivity in the matrix, as demonstrated by sharply reduced Fe leaching and much less sulfide oxidation. Systematic studies in homogeneous solution show that barite scale precipitation rates are highly sensitive to pH, salinity, and the presence of organic compounds. These findings imply that chemical reactions are not confined to shale/fluid interfaces but can penetrate into shale matrices, and that barite scale formation can clog diffusion pathways for both fluid and hydrocarbon.

  7. The effect of reaction conditions on formation of wet precipitated calcium phosphates

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Cao, Peng

    2015-03-01

    The precipitation process discussed in the present study involves the addition of alkaline solutions to an acidic calcium phosphate suspension. Several parameters (pH, pH buffer reagent, ageing and stirring) were investigated. The synthesized powders were calcined at 1000°C for 1 h in air, in order to study the thermal stability and crystalline phase compositions. X-ray diffraction (XRD) and ESEM analysis were used for sample characterization. It is found that all these processing parameters affect the crystalline phases evolved and resultant microstructures. Phase evolution occurred at an elevated pH level. The pH buffer reagent would affect both the phase composition and microstructure. Ageing was essential for the phase maturation. Stirring accelerated the reaction process by providing a homogeneous medium for precipitation.

  8. Effects of radiotherapy on parotid salivary sialochemistry in head and neck cancer patients.

    PubMed

    Gupta, S C; Singla, Alok; Singh, Mangal; Thaliath, B Paul; Geeta, Jaiswal

    2009-12-01

    To determine the effects of high dose irradiation on parotid salivary sodium and pH concentration at subsequent duration of 1.5, 3 and 6 months following radiotherapy. Eighty parotid glands of head and neck cancer patients were irradiated with mean dose of 66 Gy. The stimulated parotid flow (PF) was collected by a cannulation of Stenson's duct followed by analysis of sodium (PF sodium) by Easylyte Sodium/Potassium auto analyzer and pH by litmus narrow band pH paper. A steep elevation of PF sodium was found in post-RT period after 1.5 months of starting RT followed by gradual increase up to 6 months and pH changed towards acidity. A high dose of 66 Gy causes irreversible damage to parotid salivary duct system.

  9. Contrasting impacts of ocean acidification and warming on the molecular responses of CO2-resilient oysters.

    PubMed

    Goncalves, Priscila; Thompson, Emma L; Raftos, David A

    2017-06-02

    This study characterises the molecular processes altered by both elevated CO 2 and increasing temperature in oysters. Differences in resilience of marine organisms against the environmental stressors associated with climate change will have significant implications for the sustainability of coastal ecosystems worldwide. Some evidence suggests that climate change resilience can differ between populations within a species. B2 oysters represent a unique genetic resource because of their capacity to better withstand the impacts of elevated CO 2 at the physiological level, compared to non-selected oysters from the same species (Saccostrea glomerata). Here, we used proteomic and transcriptomic analysis of gill tissue to evaluate whether the differential response of B2 oysters to elevated CO 2 also extends to increased temperature. Substantial and distinctive effects on protein concentrations and gene expression were evident among B2 oysters responding to elevated CO 2 or elevated temperature. The combination of both stressors also altered oyster gill proteomes and gene expression. However, the impacts of elevated CO 2 and temperature were not additive or synergistic, and may be antagonistic. The data suggest that the simultaneous exposure of CO 2 -resilient oysters to near-future projected ocean pH and temperature results in complex changes in molecular processes in order to prevent stress-induced cellular damage. The differential response of B2 oysters to the combined stressors also indicates that the addition of thermal stress may impair the resilience of these oysters to decreased pH. Overall, this study reveals the intracellular mechanisms that might enable marine calcifiers to endure the emergent, adverse seawater conditions resulting from climate change.

  10. [Influence of Different Type of Surfactant on Bacteriolytic Activity of Lysozyme].

    PubMed

    Ivanov, R A; Soboleva, O A; Smirnov, S A; Levashov, P A

    2015-01-01

    The influence ofvarious surfactants (anionic sodium dodecyl sulfate, SDS, cationic dodecyltrimethylarnmonium bromide, DTAB, and zwitterionic cocoamidopropylbetaine, CAPB) on the activity of the chicken egg lysozyme is investigated. Lysis of Gram-positive bacteria by the enzyme was carried out at pH 7.2 and ionic strength of 0.15 M. It was found that at low SDS and DTAB concentrations (less than 1 x 10(-5) M) the bacteriolytic activity increases by 30-140%. At higher concentrations (1 x 10(-5) - 1 x 10(4) M) the activity returns to the level observed in the absence of the surfactants. The elevated activity correlated with the formation of hydrophobic lysozyme-surfactant complexes. Introduction of CAPB at concentrations above 1 x 10(-5) M sig, nificantly diminished the bacteriolytic activity due to CAPB induced aggregation of lysozyme.

  11. Pulmonary hypertension in chronic obstructive pulmonary disease and interstitial lung diseases.

    PubMed

    Weitzenblum, Emmanuel; Chaouat, Ari; Canuet, Matthieu; Kessler, Romain

    2009-08-01

    Pulmonary hypertension (PH) is a common complication of chronic respiratory diseases and particularly of chronic obstructive pulmonary disease (COPD) and interstitial lung diseases (ILD). Owing to its frequency COPD is by far the most common cause of PH. It is generally a mild to moderate PH, pulmonary artery mean pressure (PAP) usually ranging between 20 and 25 mm Hg, but PH may worsen during exercise, sleep, and particularly during exacerbations of the disease. These acute increases in PAP may lead to the development of right heart failure. A small proportion of COPD patients may present "disproportionate" PH defined by a resting PAP >35 to 40 mm Hg. The prognosis is particularly poor in these patients. PH is relatively frequent in advanced ILD and particularly in idiopathic pulmonary fibrosis. As in COPD the diagnosis is suggested by Doppler echocardiography, but the confirmation still requires right heart catheterization. As in COPD, functional (alveolar hypoxia) and morphological factors (vascular remodeling, destruction of the pulmonary parenchyma) explain the elevation of pulmonary vascular resistance that leads to PH. Also as in COPD PH is most often mild to moderate. In ILD the presence of PH predicts a poor prognosis. The treatment of PH relies on long-term oxygen therapy. "New" vasodilator drugs have rarely been used in COPD and ILD patients exhibiting severe PH. In advanced ILD the presence of PH is a supplemental argument for considering lung transplantation.

  12. Efficacy and Safety of a Pharmaco-Invasive Strategy With Half-Dose Alteplase Versus Primary Angioplasty in ST-Segment-Elevation Myocardial Infarction: EARLY-MYO Trial (Early Routine Catheterization After Alteplase Fibrinolysis Versus Primary PCI in Acute ST-Segment-Elevation Myocardial Infarction).

    PubMed

    Pu, Jun; Ding, Song; Ge, Heng; Han, Yaling; Guo, Jinchen; Lin, Rong; Su, Xi; Zhang, Heng; Chen, Lianglong; He, Ben

    2017-10-17

    Timely primary percutaneous coronary intervention (PPCI) cannot be offered to all patients with ST-segment-elevation myocardial infarction (STEMI). Pharmaco-invasive (PhI) strategy has been proposed as a valuable alternative for eligible patients with STEMI. We conducted a randomized study to compare the efficacy and safety of a PhI strategy with half-dose fibrinolytic regimen versus PPCI in patients with STEMI. The EARLY-MYO trial (Early Routine Catheterization After Alteplase Fibrinolysis Versus Primary PCI in Acute ST-Segment-Elevation Myocardial Infarction) was an investigator-initiated, prospective, multicenter, randomized, noninferiority trial comparing a PhI strategy with half-dose alteplase versus PPCI in patients with STEMI 18 to 75 years of age presenting ≤6 hours after symptom onset but with an expected PCI-related delay. The primary end point of the study was complete epicardial and myocardial reperfusion after PCI, defined as thrombolysis in myocardial infarction flow grade 3, thrombolysis in myocardial infarction myocardial perfusion grade 3, and ST-segment resolution ≥70%. We also measured infarct size and left ventricular ejection fraction with cardiac magnetic resonance and recorded 30-day clinical and safety outcomes. A total of 344 patients from 7 centers were randomized to PhI (n=171) or PPCI (n=173). PhI was noninferior (and even superior) to PPCI for the primary end point (34.2% versus 22.8%, P noninferiority <0.05, P superiority =0.022), with no significant differences in the frequency of the individual components of the combined end point: thrombolysis in myocardial infarction flow 3 (91.3% versus 89.2%, P =0.580), thrombolysis in myocardial infarction myocardial perfusion grade 3 (65.8% versus 62.9%, P =0.730), and ST-segment resolution ≥70% (50.9% versus 45.5%, P =0.377). Infarct size (23.3%±11.3% versus 25.8%±13.7%, P =0.101) and left ventricular ejection fraction (52.2%±11.0% versus 51.4%±12.0%, P =0.562) were similar in both groups. No significant differences occurred in 30-day rates of total death (0.6% versus 1.2%, P =1.0), reinfarction (0.6% versus 0.6%, P =1.0), heart failure (13.5% versus 16.2%, P =0.545), major bleeding events (0.6% versus 0%, P =0.497), or intracranial hemorrhage (0% versus 0%), but minor bleeding (26.9% versus 11.0%, P <0.001) was observed more often in the PhI group. For patients with STEMI presenting ≤6 hours after symptom onset and with an expected PCI-related delay, a PhI strategy with half-dose alteplase and timely PCI offers more complete epicardial and myocardial reperfusion when compared with PPCI. Adequately powered trials with this reperfusion strategy to assess clinical and safety outcomes are warranted. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01930682. © 2017 American Heart Association, Inc.

  13. Estimation of Mineral and Trace Element Profile in Bubaline Milk Affected with Subclinical Mastitis.

    PubMed

    Singh, Mahavir; Yadav, Poonam; Sharma, Anshu; Garg, V K; Mittal, Dinesh

    2017-04-01

    The milk samples from buffaloes of Murrah breed at mid lactation stage, reared at an organised dairy farm, were screened for subclinical mastitis based on bacteriological examination and somatic cell count following International Dairy Federation criteria. Milk samples from subclinical mastitis infected and healthy buffaloes were analysed to evaluate physicochemical alterations in terms of protein, fat, pH, electrical conductivity, chloride, minerals (sodium, potassium and calcium) and trace elements (iron, zinc, copper and selenium). In the present study, protein, fat, zinc, iron, calcium and selenium content was significantly lower (P < 0.001), while pH and electrical conductivity were significantly higher in mastitic milk as compared to normal milk. Concentration of electrolytes mainly sodium and chloride significantly increased with higher somatic cell count in mastitic milk and to maintain osmolality; potassium levels decreased proportionately. Correlation matrix revealed significantly positive interdependences of somatic cell count with pH, electrical conductivity, sodium and chloride. However, protein, fat, calcium and potassium were correlated negatively with elevated somatic cell count in mastitic milk. It is concluded that udder infections resulting in elevated somatic cells may alter the mineral and trace element profile of milk, and magnitude of changes may have diagnostic and prognostic value.

  14. Elevated intracellular pH appears in aged oocytes and causes oocyte aneuploidy associated with the loss of cohesion in mice

    PubMed Central

    Cheng, Jin-Mei; Li, Jian; Tang, Ji-Xin; Chen, Su-Ren; Deng, Shou-Long; Jin, Cheng; Zhang, Yan; Wang, Xiu-Xia; Zhou, Chen-Xi; Liu, Yi-Xun

    2016-01-01

    ABSTRACT Increases in the aneuploidy rate caused by the deterioration of cohesion with increasing maternal age have been well documented. However, the molecular mechanism for the loss of cohesion in aged oocytes remains unknown. In this study, we found that intracellular pH (pHi) was elevated in aged oocytes, which might disturb the structure of the cohesin ring to induce aneuploidy. We observed for the first time that full-grown germinal vesicle (GV) oocytes displayed an increase in pHi with advancing age in CD1 mice. Furthermore, during the in vitro oocyte maturation process, the pHi was maintained at a high level, up to ∼7.6, in 12-month-old mice. Normal pHi is necessary to maintain protein localization and function. Thus, we put forward a hypothesis that the elevated oocyte pHi might be related to the loss of cohesion and the increased aneuploidy in aged mice. Through the in vitro alkalinization treatment of young oocytes, we observed that the increased pHi caused an increase in the aneuploidy rate and the sister inter-kinetochore (iKT) distance associated with the strength of cohesion and caused a decline in the cohesin subunit SMC3 protein level. Young oocytes with elevated pHi exhibited substantially the increase in chromosome misalignment. PMID:27472084

  15. The effect of CPAP treatment on venous lactate and arterial blood gas among obstructive sleep apnea syndrome patients.

    PubMed

    Lin, Ting; Huang, Jie-Feng; Lin, Qi-Chang; Chen, Gong-Ping; Wang, Bi-Ying; Zhao, Jian-Ming; Qi, Jia-Chao

    2017-05-01

    The aim of this observational study was to investigate the influence of continuous positive airway pressure (CPAP) on arterial blood gas and venous lactate, markers of tissue hypoxia, among obstructive sleep apnea syndrome (OSAS) patients, and determine the risk factor of serum lactate and hydrogen ion concentration (PH) in OSAS patients. One-hundred and nine patients with newly diagnosed OSAS were enrolled in the study. All individuals were treated with CPAP for one night. Venous lactate and arterial blood gas were gathered from all subjects in the morning at the end of polysomnography and the next morning after CPAP treatment. Of the 109 selected subjects, the average lactate level was 2.23 ± 0.59 mmol/L, and the mean PH, PaO 2 , and PaCO 2 were 7.380 ± 0.23, 88.14 ± 17.83 mmHg, and 38.70 ± 4.28 mmHg, respectively. Compared to baseline, lactic acid significantly decreased (2.10 ± 0.50 mmol/L, p = 0.03), while PH increased (7.388 ± 0.27, p < 0.05) after CPAP treatment. In addition, neck circumference and the polysomnographic parameters, including apnea-hypopnea index, oxygen desaturation index (ODI), mean oxygen saturation (SpO 2 ), and the percentage of sleep time with SpO 2 <90 % (TS90 %), positively correlated with lactate, while age correlated negatively with lactate (all p < 0.05). Significantly positive associations were found between age, neck circumference, and PH; furthermore, a negative correlation was found between ODI and PH. Finally, after adjusting for confounding factors, TS90 % was the major contributing predictor for elevated lactate (p < 0.05), and age was a predictor for an increase in PH (p < 0.05). The results indicated that CPAP treatment could reduce serum lactate and increase PH in OSAS patients and might alleviate acid-base balance disorders in OSAS. Furthermore, TS90 % was a risk factor for elevated lactate, and age was independently associated with PH.

  16. Geochemical interactions between constituents in acidic groundwater and alluvium in an aquifer near Globe, Arizona

    USGS Publications Warehouse

    Stollenwerk, Kenneth G.

    1994-01-01

    Acidic water from a copper-mining area has contaminated an alluvial aquifer and stream near Globe, Arizona. The most contaminated groundwater has a pH of 3.3, and contains about 100 mmol/1 SO4, 50 mmol/1 Fe, 11 mmol/1 Al and 3 mmol/1 Cu. Reactions between alluvium and acidic groundwater were first evaluated in laboratory column experiments. A geochemical model was developed and used in the equilibrium speciation program, MINTEQA2, to simulate breakthrough curves for different constituents from the column. The geochemical model was then used to simulate the measured changes in concentration of aqueous constituents along a flow path in the aquifer.The pH was predominantly controlled by reaction with carbonate minerals. Where carbonates had been dissolved, adsorption of H+ by iron oxides was used to simulate pH. Acidic groundwater contained little or no dissolved oxygen, and most aqueous Fe was present as Fe(II). In the anoxic core of the plume, Fe(II) was oxidized by MnO2 to Fe(III), which then precipitated as Fe(OH)3. Attenuation of aqueous Cu, Co, Mn, Ni and Zn was a function of pH and could be quantitatively modeled with the diffuse-layer, surface complexation model in MINTEQA2. Aluminum precipitated as amorphous Al(OH)3 at pH < 4.7 and as AlOHSO4 at pH < 4.7. Aqueous Ca and SO4were close to equilibrium with gypsum.After the alluvium in the column had reached equilibrium with acidic groundwater, uncontaminated groundwater was eluted through the column to evaluate the effect of reactants on groundwater remediation. The concentration of Fe, Mn, Cu, Co, Ni and Zn rapidly decreased to the detection limits within a few pore volumes. All of the gypsum that had precipitated initially redissolved, resulting in elevated Ca and SO4concentrations for about 5 pore volumes. Aluminum and pH exhibited the most potential for continued adverse effects on groundwater quality. As H+ desorbed from Fe(OH)3, pH remained below 4.5 for more than 20 pore volumes, resulting in dissolution of AlOHSO4 and elevated aqueous Al.

  17. Chemical and Hydrologic Data From the Cement Creek and Upper Animas River Confluence and Mixing Zone, Silverton, Colorado, September 1997

    USGS Publications Warehouse

    Schemel, Laurence E.; Cox, Marisa H.

    2007-01-01

    Cement Creek, an acidic tributary, discharges into the circum-neutral Animas River (pH>7) in Silverton, Colorado located in the high-elevation San Juan Mountains. Mixing of Animas River water with acidic metal rich Cement Creek water raises water pH and produces metal precipitates. This report presents selected anion, cation, chloride, and sulfate data along with hydrologic data highlighting the mixing of these streams during the low-flow period in late summer 1997.

  18. Synthesis of illite-smectite from smectite at earth surface temperatures and high pH

    USGS Publications Warehouse

    Eberl, D.D.; Velde, Bruce; McCormick, T.C.

    1993-01-01

    It is well known that illite-smectite can form from smectite at elevated temperatures in natural and experimental systems. However, the conversion of smectite to illite-smectite is also found in some natural systems that have never been heated. The present experiments show that illite layers can form from smectite by chemical reaction at 35° and 60°C at high solution pH. The rate of this reaction is accelerated by wetting and drying.

  19. Addition of sodium bicarbonate to complete pelleted diets fed to dairy calves.

    PubMed

    Wheeler, T B; Wangsness, P J; Muller, L D; Griel, L C

    1980-11-01

    During two trials, 35 and 27 Holstein calves were fed ad libitum complete, pelleted diets containing either 35% alfalfa (Trial 1) or 35% grass (Trial 2) hay from birth to 12 wk of age. Calves in Trial 1 were fed one of the following diets: control, control + 3.5% sodium chloride, or control + 5% sodium bicarbonate. In Trial 2, diets were: control, control + 5% sodium bicarbonate, or control + 5% sodium bicarbonate + loose, chopped grass hay. Intake of dry matter, gain in body weight, ruminal pH, or fecal starch did not differ. Calves fed sodium bicarbonate in Trial 1 but not 2 had a reduced feed efficiency compared with control and supplemented diets. In Trial 1 added sodium bicarbonate did not alter intake or digestible energy. Addition of sodium bicarbonate increased concentration of ruminal acetate and butyrate and decreased propionate in both trials. Fecal pH was elevated in calves fed sodium bicarbonate diets during both trials. Sodium chloride increased water intake in Trial 1, and sodium bicarbonate increased water indigestible energy. Addition of sodium bicarbonate increased concentration of ruminal acetate and butyrate and decreased propionate in both trials. Fecal pH was elevated in calves fed sodium bicarbonate diets during both trials. Sodium chloride increased water intake in Trial 1, and sodium bicarbonate increased water indigestible energy. Addition of sodium bicarbonate increased concentration of ruminal acetate and butyrate and decreased propionate in both trials. Fecal pH was elevated in calves fed sodium bicarbonate diets during both trials. Sodium chloride increased water intake in Trial 1, and sodium bicarbonate increased water intake in Trial 2. Incidence of free-gas bloat was higher in calves fed sodium bicarbonate in both trials. Addition of sodium bicarbonate to complete pelleted diets containing 35% alfalfa or 35% grass hay appeared to have no benefit for young, growing dairy calves in performance and health.

  20. The pathophysiology of pulmonary hypertension in left heart disease.

    PubMed

    Breitling, Siegfried; Ravindran, Krishnan; Goldenberg, Neil M; Kuebler, Wolfgang M

    2015-11-01

    Pulmonary hypertension (PH) is characterized by elevated pulmonary arterial pressure leading to right-sided heart failure and can arise from a wide range of etiologies. The most common cause of PH, termed Group 2 PH, is left-sided heart failure and is commonly known as pulmonary hypertension with left heart disease (PH-LHD). Importantly, while sharing many clinical features with pulmonary arterial hypertension (PAH), PH-LHD differs significantly at the cellular and physiological levels. These fundamental pathophysiological differences largely account for the poor response to PAH therapies experienced by PH-LHD patients. The relatively high prevalence of this disease, coupled with its unique features compared with PAH, signal the importance of an in-depth understanding of the mechanistic details of PH-LHD. The present review will focus on the current state of knowledge regarding the pathomechanisms of PH-LHD, highlighting work carried out both in human trials and in preclinical animal models. Adaptive processes at the alveolocapillary barrier and in the pulmonary circulation, including alterations in alveolar fluid transport, endothelial junctional integrity, and vasoactive mediator secretion will be discussed in detail, highlighting the aspects that impact the response to, and development of, novel therapeutics. Copyright © 2015 the American Physiological Society.

  1. The effectiveness of surface liming in ameliorating the phytotoxic effects of soil contaminated by copper acid leach pad solution in an arid ecosystem

    NASA Astrophysics Data System (ADS)

    Golos, Peter

    2016-04-01

    Revegetation of sites following soil contamination can be challenging especially in identifying the most effective method for ameliorating phytotoxic effects in arid ecosystems. This study at a copper mine in the Great Sandy Desert of Western Australia investigated vegetation restoration of a site contaminated by acid (H2SO4) leach pad solution. Elevated soil copper at low soil pH is phytotoxic to plant roots inhibiting root elongation. In arid ecosystems where rapid root growth is crucial for seedling survival post germination physical or chemical barriers to root growth need to be identified and ameliorated. Initial attempt at rehabilitation of contaminated site with hydrated lime (CaOH2) at 2 tonnes/ha followed by ripping to 30 cm depth then seeding was ineffective as successful seedling emergence was followed by over 90% seedling mortality which was 10-fold greater than seedling mortality in an uncontaminated reference site. High mortality was attributed to seedling roots being impededed as soil water was more than 3-fold greater at 5 to 40 cm depth in contaminated site than reference site. In response to high seedling mortality after emergence test pits were dug to 1 m deep to collect soil samples at 10 cm intervals for phytotoxicity testing and to measure soil pH-CaCl2, copper (DPTA ion extraction), electrical conductivity and gravimetric water content in three replicate pits at three replicate sites. Also, soil impedance was measured down the soil profile at 5 cm intervals at six replicate points/pit. For phytotoxicity testing soil samples were placed into three replicate plastic pots/sample and seeded with 10 seeds of Avena sativa and watered daily. Seedlings were harvested after at least two weeks after seedling emergence and rooting depth in pots measured. There was no difference in seedling emergence and survival of seedlings between contaminated and uncontaminated soil samples however mean seedling root growth was significantly lower in soil samples collected at >10 cm depth than the control. Mean soil pH at 0-10 cm was higher (>7.2) at all sites treated with lime compared to uncontaminated soil (5.5). At depths greater than 10 cm soil pH was <4.6. Soil copper was >16 mg/kg in all contaminated soil samples compared to 0.5 mg/kg in control. High seedling mortality in contaminated site is attributed to low soil pH and elevated soil copper levels which inhibited plant root growth and hence access to soil water. While surface liming of soil increased soil pH ameliorating the effect of elevated soil copper, this was only effective in the top 10 cm due to low solubility of hydrated lime. To improve seedling survival lime will need to be incorporated into the contaminated soil profile to allow plants to access soil water at depth. This study highlights the importance of the need to assess the phytotoxic effects of soil contamination and the effectiveness of amelioration treatments and with proper reference to its ecological context. To improve the success of vegetation restoration of sites contaminated with acidic copper solution, lime needs to be incorporated into the contaminated soil profile to allow plant roots to access soil water at depth. This study highlights the importance of the need to assess the phytotoxic effects of soil contamination and the effectiveness of amelioration treatments and with proper reference to its ecological context.

  2. Reaction path modelling of in-situ mineralisation of CO2 at the CarbFix site at Hellisheidi, SW-Iceland

    NASA Astrophysics Data System (ADS)

    Snæbjörnsdóttir, Sandra Ó.; Gislason, Sigurdur R.; Galeczka, Iwona M.; Oelkers, Eric H.

    2018-01-01

    Results from injection of 175 tonnes of CO2 into the basaltic subsurface rocks at the CarbFix site in SW-Iceland in 2012 show almost complete mineralisation of the injected carbon in less than two years (Matter et al., 2016; Snæbjörnsdóttir et al., 2017). Reaction path modelling was performed to illuminate the rate and extent of CO2-water-rock reactions during and after the injection. The modelling calculations were constrained by the compositions of fluids sampled prior to, during, and after the injection, as reported by Alfredsson et al. (2013) and Snæbjörnsdóttir et al. (2017). The pH of the injected fluid, prior to CO2 dissolution was ∼9.5, whereas the pH of the background waters in the first monitoring well prior to the injections was ∼9.4. The pH of the sampled fluids used in the modelling ranged from ∼3.7 at the injection well to as high as 8.2 in the first monitoring well. Modelling results suggest that CO2-rich water-basalt interaction is dominated by crystalline basalt dissolution along a faster, high permeability flow path, but by basaltic glass dissolution along a slower, pervasive flow path through which the bulk of the injected fluid flows. Dissolution of pre-existing calcite at the onset of the injection does not have a net effect on the carbonation, but does contribute to a rapid early pH rise during the injection, and influences which carbonate minerals precipitate. At low pH, Mg, and Fe are preferentially released from crystalline basalts due to the higher dissolution rates of olivine, and to lesser extent pyroxene, compared to plagioclase and glass (Gudbrandsson et al., 2011). This favours the formation of siderite and Fe-Mg carbonates over calcite during early mineralisation. The model suggests the formation of the following carbonate mineral sequences: siderite at pH < 5, Mg-Fe-carbonates and Ca-Mg-Fe-carbonates at pH > 5, and calcite at higher pH. Other minerals forming with the carbonates are Al- and Fe-hydroxides and chalcedony, and zeolites and smectites at elevated pH. The most efficient carbonate formation is when the pH is high enough for formation of carbonates, but not so high that zeolites and smectites start to form, which compete with carbonates over both cations and pore space. The results of reaction path modelling at the CarbFix site in SW-Iceland indicate that this ;sweet spot; for mineralisation of CO2 is at pH from ∼5.2 to 6.5 in basalts at low temperature (20-50 °C).

  3. Ocean acidification affects prey detection by a predatory reef fish.

    PubMed

    Cripps, Ingrid L; Munday, Philip L; McCormick, Mark I

    2011-01-01

    Changes in olfactory-mediated behaviour caused by elevated CO(2) levels in the ocean could affect recruitment to reef fish populations because larval fish become more vulnerable to predation. However, it is currently unclear how elevated CO(2) will impact the other key part of the predator-prey interaction--the predators. We investigated the effects of elevated CO(2) and reduced pH on olfactory preferences, activity levels and feeding behaviour of a common coral reef meso-predator, the brown dottyback (Pseudochromis fuscus). Predators were exposed to either current-day CO(2) levels or one of two elevated CO(2) levels (∼600 µatm or ∼950 µatm) that may occur by 2100 according to climate change predictions. Exposure to elevated CO(2) and reduced pH caused a shift from preference to avoidance of the smell of injured prey, with CO(2) treated predators spending approximately 20% less time in a water stream containing prey odour compared with controls. Furthermore, activity levels of fish was higher in the high CO(2) treatment and feeding activity was lower for fish in the mid CO(2) treatment; indicating that future conditions may potentially reduce the ability of the fish to respond rapidly to fluctuations in food availability. Elevated activity levels of predators in the high CO(2) treatment, however, may compensate for reduced olfactory ability, as greater movement facilitated visual detection of food. Our findings show that, at least for the species tested to date, both parties in the predator-prey relationship may be affected by ocean acidification. Although impairment of olfactory-mediated behaviour of predators might reduce the risk of predation for larval fishes, the magnitude of the observed effects of elevated CO(2) acidification appear to be more dramatic for prey compared to predators. Thus, it is unlikely that the altered behaviour of predators is sufficient to fully compensate for the effects of ocean acidification on prey mortality.

  4. Cytosolic zinc release and clearance in hippocampal neurons exposed to glutamate – the role of pH and sodium

    PubMed Central

    Kiedrowski, Lech

    2011-01-01

    Although Zn2+ homeostasis in neurons is tightly regulated and its destabilization has been linked to a number of pathologies including Alzheimer's disease and ischemic neuronal death, the primary mechanisms affecting intracellular Zn2+ concentration ([Zn2+]i) in neurons exposed to excitotoxic stimuli remain poorly understood. The present work addressed these mechanisms in cultured hippocampal neurons exposed to glutamate and glycine (Glu/Gly). [Zn2+]i and [Ca2+]i were monitored simultaneously using FluoZin-3 and Fura2-FF and intracellular pH (pHi) was studied in parallel experiments using 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein. Glu/Gly applications under Na+-free conditions (Na+ substituted with N-methyl-D-glucamine+) caused Ca2+ influx, pHi drop, and Zn2+ release from intracellular stores. Experimental maneuvers resulting in a pHi increase during Glu/Gly applications, such as stimulation of Na+-dependent pathways of H+ efflux, forcing H+ efflux via gramicidin-formed channels, or increasing extracellular pH counteracted [Zn2+]i elevations. In the absence of Na+, the rate of [Zn2+]i decrease could be correlated with the rate of pHi increase. In the presence of Na+, the rate of [Zn2+]i decrease was about twice as fast as expected from the rate of pHi elevation. The data suggest that Glu/Gly-induced cytosolic acidification promotes [Zn2+]i elevations and that Na+ counteracts the latter by promoting pHi-dependent and pHi-independent mechanisms of cytosolic Zn2+ clearance. PMID:21255017

  5. Novel Bioconjugation Strategy Using Elevated Hydrostatic Pressure: A Case Study for the Site-Specific Attachment of Polyethylene Glycol (PEGylation) of Recombinant Human Ciliary Neurotrophic Factor.

    PubMed

    Wang, Qi; Zhang, Chun; Guo, Fangxia; Li, Zenglan; Liu, Yongdong; Su, Zhiguo

    2017-11-15

    In this paper, we reported a novel strategy for the site-specific attachment of polyethylene glycol (PEGylation) of proteins using elevated hydrostatic pressure. The process was similar to the conventional one except the reactor was under elevated hydrostatic pressure. The model protein was recombinant human ciliary neurotrophic factor (rhCNTF), and the reagent was monomethoxy-polyethylene glycol-maleimide (mPEG-MAL). PEGylation with mPEG (40 kDa)-MAL at pH 7.0 under normal pressure for 5 h achieved a less than 5% yield. In comparison, when the pressure was elevated, the PEGylation yield was increased dramatically, reaching nearly 90% at 250 MPa. Furthermore, the following phenomena were observed: (1) high-hydrostatic-pressure PEGylation (HHPP) could operate at a low reactant ratio of 1:1.2 (rhCNTF to mPEG-MAL), while the conventional process needs a much-higher ratio. (2) Short and long chains of PEG gave a similar yield of 90% in HHPP, while the conventional yield for the short chain of the PEG was higher than that of the long chain. (3) The reaction pH in the range of 7.0 to 8.0 had almost no influence upon the yield of HHPP, while the PEGylation yield was significantly increased by a factor of three from pH 7.0 to 8.0 at normal pressure. Surface accessibility analysis was performed using GRASP2 software, and we found that Cys17 of rhCNTF was located at the concave patches, which may have steric hindrance for the PEG to approach. The speculated benefit of HHPP was the facilitation of target-site exposure, reducing the steric hindrance and making the reaction much easier. Structure and activity analysis demonstrated that the HHPP product was comparable to the PEGylated rhCNTF prepared through a conventional method. Overall, this work demonstrated that HHPP, as we proposed, may have application potentials in various conjugations of biomacromolecules.

  6. [Primary hyperaldosteronism: problems of diagnostic approaches].

    PubMed

    Widimský, Jiří

    2015-05-01

    Primary hyperaldosteronism (PH) is common cause of endocrine/secondary hypertension with autonomous aldosterone overproduction by adrenal cortex. PH is typically characterized by hypertension, hypokalemia, high plasma aldosterone/renin ratio, high aldosterone, suppressed renin and nonsupressibilty of aldosterone during confirmatory tests. Diagnosis of PH can be difficult since hypokalemia is found only in 50 % of cases and measurement of the parameters of renin-angiotensin-aldosterone system can be influenced by several factors. Morphological dia-gnosis requires in majority of cases adrenal venous sampling. Early diagnostic and therapeutic measures are very important due to high prevalence of PH and potential cure. Patients with suspicion to PH should be investigated in experienced hypertensive centers due to relatively difficult laboratory and morphological diagnostic approaches.

  7. Concentration-independent pH detection with a luminescent dimetallic Eu(III)-based probe.

    PubMed

    Moore, Jeremiah D; Lord, Richard L; Cisneros, G Andrés; Allen, Matthew J

    2012-10-24

    A pH-responsive, luminescent, dimetallic Eu(III)-containing complex has been synthesized and exhibits a unique mechanism of response. The luminescence-decay rate of the complex is slow, due to a lack of water molecules coordinated to the Eu(III) ions. However, the luminescence-decay rate decreases with increasing pH over a biologically relevant range of 4-8. Physical characterization and computational analysis suggest that the pH response is due to protonation of a bridging alkoxide at lower pH values. Modulation of the luminescence-decay rate is independent from the concentration of Eu(III), which we expect to be useful in the non-invasive imaging of in vivo pH.

  8. Rapid pH change due to bacteriorhodopsin measured with a tin-oxide electrode.

    PubMed Central

    Robertson, B; Lukashev, E P

    1995-01-01

    The photocurrent transient generated by bacteriorhodopsin (bR) on a tin-oxide electrode is due to pH change and not to charge displacement as previously assumed. Films of either randomly oriented or highly oriented purple membranes were deposited on transparent electrodes made of tin-oxide-coated glass. The membranes contained either wild-type or D96N-mutant bR. When excited with yellow light through the glass, the bR pumps protons across the membrane. The result is a rapid local pH change as well as a charge displacement. Experiments with these films show that it is the pH change rather than the displacement that produces the current transient. The calibration for the transient pH measurement is given. The sensitivity of a tin-oxide electrode to a transient pH change is very much larger than its sensitivity to a steady-state pH change. PMID:7787036

  9. Flotation as a remediation technique for heavily polluted dredged material. 1. A feasibility study.

    PubMed

    Cauwenberg, P; Verdonckt, F; Maes, A

    1998-01-19

    The flotation behaviour of highly polluted dredged material was investigated at different pH values by mechanical agitated (Denver) flotation. Up to 80% of cadmium, copper, lead and zinc could be concentrated in the froth layer which represented only 30% of the total mass. The maximum specificity for heavy metals, defined as the concentrating factor, was obtained at pH 8-9. The maximum recovery of heavy metals on the other hand was found to be reached at elevated pH values (pH 12). In addition the specificity of the flotation process for the transition metals could be assigned to their presence as metal sulphides in the dredged material. However, the interaction with organic matter is an important factor in determining their flotability. The carbonate fraction was irrelevant for the flotation behaviour of heavy metals.

  10. Urinary pH as a Risk Factor for Stone Type

    NASA Astrophysics Data System (ADS)

    Sakhaee, Khashayar

    2007-04-01

    A high urinary pH is main risk factor for the calcium phosphate stone formation; however, its pathophysiologic mechanism has not been fully understood. The introduction of Topiramate in the treatment of various neurological disorders has been complicated by metabolic acidosis, significant hypocitraturia, elevated urinary pH, and calcium phosphate stone formation. This model provides a probe to investigate the pathophysiologic mechanism of calcium phosphate stone formation and perhaps to develop appropriate countermeasures in the future. On the other hand an unduly acidic urine predisposes one to uric acid nephrolithiasis. Our recent investigation linking low urinary pH, and defective renal ammoniagenesis to insulin resistance provides new knowledge to unfold the pathophysiology of uric acid nephrolithiasis. The metabolic profile leading to uric acid stone may emerge as one of the components of metabolic syndrome.

  11. Response of humic acid formation to elevated nitrate during chicken manure composting.

    PubMed

    Shi, Mingzi; Wei, Zimin; Wang, Liqin; Wu, Junqiu; Zhang, Duoying; Wei, Dan; Tang, Yu; Zhao, Yue

    2018-06-01

    Nitrate can stimulate microbes to degrade aromatic compounds, whereas humic acid (HA) as a high molecular weight aromatic compound, its formation may be affected by elevated nitrate during composting. Therefore, this study is conducted to determine the effect of elevated nitrate on HA formation. Five tests were executed by adding different nitrate concentrations to chicken manure composting. Results demonstrate that the concentration of HA in treatment group is significantly decreased compared with control group (p < 0.05), especially in the highest nitrate concentration group. RDA indicates that the microbes associated with HA and environmental parameters are influenced by elevated nitrate. Furthermore, structural equation model reveals that elevated nitrate reduces HA formation by mediating microbes directly, or by affecting ammonia and pH as the indirect drivers to regulate microbial community structure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Role of Recurrent Hypoxia-Ischemia in Preterm White Matter Injury Severity

    PubMed Central

    Hagen, Matthew W.; Riddle, Art; McClendon, Evelyn; Gong, Xi; Shaver, Daniel; Srivastava, Taasin; Dean, Justin M.; Bai, Ji-Zhong; Fowke, Tania M.; Gunn, Alistair J.; Jones, Daniel F.; Sherman, Larry S.; Grafe, Marjorie R.; Hohimer, A. Roger; Back, Stephen A.

    2014-01-01

    Objective Although the spectrum of white matter injury (WMI) in preterm infants is shifting from cystic necrotic lesions to milder forms, the factors that contribute to this changing spectrum are unclear. We hypothesized that recurrent hypoxia-ischemia (rHI) will exacerbate the spectrum of WMI defined by markers of inflammation and molecules related to the extracellular matrix (hyaluronan (HA) and the PH20 hyaluronidase) that regulate maturation of the oligodendrocyte (OL) lineage after WMI. Methods We employed a preterm fetal sheep model of in utero moderate hypoxemia and global severe but not complete cerebral ischemia that reproduces the spectrum of human WMI. The response to rHI was compared against corresponding early or later single episodes of HI. An ordinal rating scale of WMI was compared against an unbiased quantitative image analysis protocol that provided continuous histo-pathological outcome measures for astrogliosis and microglial activation. Late oligodendrocyte progenitors (preOLs) were quantified by stereology. Analysis of hyaluronan and the hyaluronidase PH20 defined the progressive response of the extracellular matrix to WMI. Results rHI resulted in a more severe spectrum of WMI with a greater burden of necrosis, but an expanded population of preOLs that displayed reduced susceptibility to cell death. WMI from single episodes of HI or rHI was accompanied by elevated HA levels and increased labeling for PH20. Expression of PH20 in fetal ovine WMI was confirmed by RT-PCR and RNA-sequencing. Conclusions rHI is associated with an increased risk for more severe WMI with necrosis, but reduced risk for preOL degeneration compared to single episodes of HI. Expansion of the preOL pool may be linked to elevated hyaluronan and PH20. PMID:25390897

  13. Side-chain dynamics of a detergent-solubilized membrane protein: Measurement of tryptophan and glutamine hydrogen-exchange rates in M13 coat protein by sup 1 H NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neil, J.D.J.; Sykes, B.D.

    M13 coat protein is a small (50 amino acids) lipid-soluble protein that becomes an integral membrane protein during the infection stage of the life cycle of the M13 phage and is therefore used as a model membrane protein. To study side-chain dynamics in the protein, the authors have measured individual hydrogen-exchange rates for a primary amide in the side chain of glutamine-15 and for the indole amine of tryptophan-26. The protein was solubilized with the use of perdeuteriated sodium dodecyl sulfate (SDS), and hydrogen-exchange rates were measured by using {sup 1}H nuclear magnetic resonance spectroscopy. The glutamine-15 syn proton exchangedmore » at a rate identical with that in glutamine model peptides except that the pH corresponding to minimum exchange was elevated by about 1.5 pH units. The tryptophan-26 indole amine proton exchange was biphasic, suggesting that two populations of tryptophan-26 exist. It is suggested that the two populations may reflect protein dimerization or aggregation in the SDS micelles. The pH values of minimum exchange for tryptophan-26 in both environments were also elevated by 1.3-1.9 pH units. This phenomenon is reproduced when small tryptophan- and glutamine-containing hydrophobic peptides are dissolved in the presence of SDS micelles. The electrostatic nature of this phenomenon is proven by showing that the minimum pH for exchange can be reduced by dissolving the hydrophobic peptides in the positively charged detergent micelle dodecyltrimethylammonium bromide.« less

  14. Influence of environmental, structural, and behavioral factors on the presence of phosphine in worker areas during fumigations in grain elevators.

    PubMed

    Reed, C

    2001-02-01

    Data-logging gas monitors with electrochemical cells sensitive to phosphine (PH3) were used to characterize concentrations of this common grain fumigant in and around grain elevators during fumigations. Twenty-four grain fumigations were observed, and each was monitored over a 5- to 8-day period. Phosphine gas, generated from aluminum phosphide fumigant applied to the grain, generally moved upward toward the grain surface and exited the bin at bin-top openings to the outside air or to enclosed worker areas. The upward air currents appeared to be the result of chimney effects, e.g., pressure differences resulting from buoyant air inside the warm grain and cooler, denser, ambient air. Significant wind effects on the PH3 concentration were also observed in the air between the grain surface and the bin roof. In enclosed areas located at the bin-top level, monitors located near the fill port or the fumigant dispenser recorded PH3 concentrations in excess of the exposure limit of 0.3 parts per million (ppm) about 35% of the time during grain fumigations. Phosphine concentrations between 0.31 and 1.0 ppm were observed 17.3% of the time, and concentrations in the ranges of 1.01-3.0, 3.01-10.0, and >10 ppm constituted 11.8%, 5.5%, and 0.3% of all readings, respectively, in bin-top worker areas. The likelihood of recording PH3 concentrations >0.3 ppm depended on ventilation practices. Fans in tunnels and open windows at aboveground locations appeared to greatly reduce the likelihood of high PH3 concentrations in enclosed areas.

  15. Juice Test for Identification of Nonerosive Reflux Disease in Heartburn Patients.

    PubMed

    Fernandes, Michel R; De Oliveira, Marina; Callegari-Jacques, Sidia M; Gonçalves, Gissele V R; Fornari, Fernando

    2018-04-30

    Evaluation of esophageal clearance by orange juice swallowing could be useful to identify different categories of gastroesophageal reflux disease. We determined whether a juice test at the beginning of esophageal pH monitoring can identify nonerosive reflux disease (NERD) among heartburn patients. Multiple swallows of orange juice (pH 3) were performed at the beginning of esophageal pH monitoring in 71 heartburn patients off acid-suppressive therapy. The area between pH drop below 5 and recovery to 5 was calculated from pH tracings and named Delta5 (mmol∙L⁻¹∙sec). Fifteen healthy subjects served to determine Delta5 cutoff (95th percentile). Patients were classified as NERD, non-NERD (a mix of reflux hypersensitivity, functional heartburn, and undetermined), and erosive disease depending on acid exposure, reflux symptom analysis, and upper endoscopy. Delta5 cutoff in healthy subjects was 251 mmol·L⁻¹∙sec. Among 71 patients, 23 had NERD, 26 had non-NERD, and 22 had erosive disease. Compared to non-NERD, Delta5 was higher in both NERD (median [interquartile range]: 316 [213-472] vs 165 [105-225]; P < 0.01) and erosive disease (310 [169-625] vs 165 [105-225]; P < 0.01). An elevated Delta5 (> 251 mmol∙L⁻¹∙sec) showed sensitivity of 74% and specificity of 81% for identification of NERD. Positive and negative likelihood ratios were 3.84 and 0.32 respectively, whereas test accuracy was 78%. A juice test with calculation of Delta5 helps in the identification of true NERD among heartburn patients with endoscopy-negative reflux disease. In these patients, an elevated Delta5 could make prolonged reflux testing unnecessary.

  16. 1 H NMRS of carnosine combined with 31 P NMRS to better characterize skeletal muscle pH dysregulation in Duchenne muscular dystrophy.

    PubMed

    Reyngoudt, Harmen; Turk, Suna; Carlier, Pierre G

    2018-01-01

    In recent years, quantitative nuclear magnetic resonance imaging and spectroscopy (NMRI and NMRS) have been used more systematically as outcome measures in natural history and clinical trial studies for Duchenne muscular dystrophy (DMD). Whereas most of these studies have emphasized the evaluation of the fat fraction as an assessment for disease severity, less focus has been placed on metabolic indices measured by NMRS. 31 P NMRS in DMD reveals an alkaline inorganic phosphate (P i ) pool, originating from either leaky dystrophic myocytes or an increased interstitial space. 1 H NMRS, exploiting the pH-sensitive proton resonances of carnosine, an intracellular dipeptide, was used to distinguish between these two hypotheses. NMR data were obtained in 23 patients with DMD and 14 healthy subjects on a 3-T clinical NMR system. Both 31 P and 1 H NMRS data were acquired at the level of the gastrocnemius medialis muscle. A multi-slice multi-echo imaging acquisition was performed for the determination of water T 2 and fat fraction in the same region of interest. Whereas nearly all patients with DMD showed an elevated pH compared with healthy controls when using 31 P NMRS, 1 H NMRS-determined pH was not systematically increased. As expected, the carnosine-based intracellular pH was never found to be alkaline in the absence of a concurrent P i -based pH elevation. In addition, abnormal intracellular pH, based on carnosine, was never associated with normal water T 2 values. We conclude that, in one group of patients, both 1 H and 31 P NMRS showed an alkaline pH, originating from the intracellular compartment and reflecting ionic dysregulation in dystrophic myocytes. In the other patients with DMD, intracellular pH was normal, but an alkaline P i pool was still present, suggesting an extracellular origin, probably revealing an expanded interstitial volume fraction, often associated with fibrotic changes. The data demonstrate that 1 H NMRS could serve as a biomarker to assess the normalization of intramyocytic pH and sarcolemmal permeability following therapy inducing dystrophin expression in patients with DMD. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Decomposing potassium peroxychromate produces hydroxyl radical (.OH) that can peroxidize the unsaturated fatty acids of phospholipid dispersions.

    PubMed

    Edwards, J C; Quinn, P J

    1982-09-01

    The unsaturated fatty acyl residues of egg yolk lecithin are selectively removed when bilayer dispersions of the lipid are exposed to decomposing peroxychromate at pH 7.6 or pH 9.0. Mannitol (50 mM or 100 mM)partially prevents the oxidation of the phospholipid due to decomposing peroxychromate at pH 7.6 and the amount of lipid lost is inversely proportional to the concentration of mannitol. N,N-Dimethyl-p-nitrosoaniline, mixed with the lipid in a molar ratio of 1.3:1, completely prevents the oxidation of lipid due to decomposing peroxychromate at pH 9.0, but some linoleic acid is lost if the incubation is done at pH 7.6. If the concentration of this quench reagent is reduced tenfold, oxidation of linoleic acid by decomposing peroxychromate at pH 9.0 is observed. Hydrogen peroxide is capable of oxidizing the unsaturated fatty acids of lecithin dispersions. Catalase or boiled catalase (2 mg/ml) protects the lipid from oxidation due to decomposing peroxychromate at pH 7.6 to approximately the same extent, but their protective effect is believed to be due to the non-specific removal of .OH. It is concluded that .OH is the species responsible for the lipid oxidation caused by decomposing peroxychromate. This is consistent with the observed bleaching of N,N-dimethyl-p-nitrosoanaline and the formation of a characteristic paramagnetic .OH adduct of the spin trap, 5,5-dimethylpyrroline-1-oxide.

  18. Carbon Dioxide Addition to Microbial Fuel Cell Cathodes Maintains Sustainable Catholyte pH and Improves Anolyte pH, Alkalinity, and Conductivity

    USDA-ARS?s Scientific Manuscript database

    Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance cont...

  19. Treatment of shock.

    PubMed

    Hardaway, R M

    1979-03-01

    In order to effectively treat shock the physician must understand the physiology of shock. Shock patients may have a low, normal, or high arterial blood pressure, and the blood volume may be below normal, normal, or above normal. Shock is not necessarily accompanied by low arterial pH or low peripheral resistance. Most cases of acute traumatic and hemorrhagic shock show a high arterial pH, partly due to the blowing off of CO2, despite an elevated blood lactic acid level. Most patients also show a very high resistance. A factor that all shock patients have in common is a deficient capillary perfusion, or an insufficient amount of blood flowing through the capillaries. The cornerstone of the treatment of hypovolemic shock is the administration of adequate amounts of the right kinds of intravenous fluids. Focus is on classification of shock (reversible shock, irreversible or fatal shock, hypovolemia), the heart in shock, respiration, drugs (steroids, vasoactive drugs), and disseminated intravascular coagulation. If edema is a problem, diuretics may be helpful. Antibiotics for infection are very important in sepsis and septic shock. Supportive drugs are also important. Steroids and vasoactive drugs have a secondary place in the treatment of shock, and they should be used when these treatments have failed to produce an adequate blood pressure and urinary output.

  20. The effects of thermal and high-CO2 stresses on the metabolism and surrounding microenvironment of the coral Galaxea fascicularis.

    PubMed

    Agostini, Sylvain; Fujimura, Hiroyuki; Higuchi, Tomihiko; Yuyama, Ikuko; Casareto, Beatriz E; Suzuki, Yoshimi; Nakano, Yoshikatsu

    2013-08-01

    The effects of elevated temperature and high pCO2 on the metabolism of Galaxea fascicularis were studied with oxygen and pH microsensors. Photosynthesis and respiration rates were evaluated from the oxygen fluxes from and to the coral polyps. High-temperature alone lowered both photosynthetic and respiration rates. High pCO2 alone did not significantly affect either photosynthesis or respiration rates. Under a combination of high-temperature and high-CO2, the photosynthetic rate increased to values close to those of the controls. The same pH in the diffusion boundary layer was observed under light in both (400 and 750 ppm) CO2 treatments, but decreased significantly in the dark as a result of increased CO2. The ATP contents decreased with increasing temperature. The effects of temperature on the metabolism of corals were stronger than the effects of increased CO2. The effects of acidification were minimal without combined temperature stress. However, acidification combined with higher temperature may affect coral metabolism due to the amplification of diel variations in the microenvironment surrounding the coral and the decrease in ATP contents. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  1. Satellite telemetry: performance of animal-tracking systems

    USGS Publications Warehouse

    Keating, Kim A.; Brewster, Wayne G.; Key, Carl H.

    1991-01-01

    t: We used 10 Telonics ST-3 platform transmitter terminals (PTT's) configured for wolves and ungulates to examine the performance of the Argos satellite telemetry system. Under near-optimal conditions, 68 percentile errors for location qualities (NQ) 1, 2, and 3 were 1,188, 903, and 361 m, respectively. Errors (rE) exceeded expected values for NQ = 2 and 3, varied greatly among PTT's, increased as the difference (HE) between the estimated and actual PTT elevations increased, and were correlated nonlinearly with maximum satellite pass height (P,). We present a model of the relationships among rE, HE, and PH. Errors were bimodally distributed along the east-west axis and tended to occur away from the satellite when HE was positive. A southeasterly bias increased with HE, probably due to the particular distribution of satellite passes and effects of HE on rE. Under near-optimal conditions, 21 sensor message was received for up to 64% of available (PH, 50) satellite passes, and a location (NQ 2 1) was calculated for up to 63% of such passes. Sampling frequencies of sensor and location data declined 13 and 70%, respectively, for PTT's in a valley bottom and 65 and 86%, respectively, for PTT's on animals that were in valley bottoms. Sampling frequencies were greater for ungulate than for wolf collars.

  2. Ulcer healing activity of Mumijo aqueous extract against acetic acid induced gastric ulcer in rats

    PubMed Central

    Shahrokhi, Nader; Keshavarzi, Zakieh; Khaksari, Mohammad

    2015-01-01

    Objective: Gastric ulcer is an important clinical problem, chiefly due to extensive use of some drugs. The aim was to assess the activity of Mumijo extract (which is used in traditional medicine) against acetic acid induced gastric ulcer in rats. Materials and Methods: The aqueous extract of Mumijo was prepared. Animals were randomly (n = 10) divided into four groups: Control, sham-operated group (received 0.2 ml of acetic acid to induce gastric ulcer), Mumijo (100 mg/kg/daily) were given for 4 days postacetic acid administration, and ranitidine group (20 mg/kg). The assessed parameters were pH and pepsin levels (by Anson method) of gastric contents and gastric histopathology. Ranitidine was used as reference anti-ulcer drug. Results: The extract (100 mg/kg/daily, p.o.) inhibited acid acetic-induced gastric ulceration by elevating its pH versus sham group (P < 0.01) and decreasing the pepsin levels compared to standard drug, ranitidine (P < 0.05). The histopathology data showed that the treatment with Mumijo extract had a significant protection against all mucosal damages. Conclusion: Mumijo extract has potent antiulcer activity. Its anti-ulcer property probably acts via a reduction in gastric acid secretion and pepsin levels. The obtained results support the use of this herbal material in folk medicine. PMID:25709338

  3. Dietary tocopherols inhibit PhIP-induced prostate carcinogenesis in CYP1A-humanized mice.

    PubMed

    Chen, Jayson X; Li, Guangxun; Wang, Hong; Liu, Anna; Lee, Mao-Jung; Reuhl, Kenneth; Suh, Nanjoo; Bosland, Maarten C; Yang, Chung S

    2016-02-01

    Tocopherols, the major forms of vitamin E, exist as alpha-tocopherol (α-T), β-T, γ-T and δ-T. The cancer preventive activity of vitamin E is suggested by epidemiological studies, but recent large-scale cancer prevention trials with high dose of α-T yielded disappointing results. Our hypothesis that other forms of tocopherols have higher cancer preventive activities than α-T was tested, herein, in a novel prostate carcinogenesis model induced by 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), a dietary carcinogen, in the CYP1A-humanized (hCYP1A) mice. Treatment of hCYP1A mice with PhIP (200 mg/kg b.w., i.g.) induced high percentages of mouse prostatic intraepithelial neoplasia (mPIN), mainly in the dorsolateral glands. Supplementation with a γ-T-rich mixture of tocopherols (γ-TmT, 0.3% in diet) significantly inhibited the development of mPIN lesions and reduced PhIP-induced elevation of 8-oxo-deoxyguanosine, COX-2, nitrotyrosine, Ki-67 and p-AKT, and the loss of PTEN and Nrf2. Further studies with purified δ-T, γ-T or α-T (0.2% in diet) showed that δ-T was more effective than γ-T or α-T in preventing mPIN formations and p-AKT elevation. These results indicate that γ-TmT and δ-T could be effective preventive agents of prostate cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Dietary tocopherols inhibit PhIP-induced prostate carcinogenesis in CYP1A-humanized mice

    PubMed Central

    Chen, Jayson X.; Li, Guangxun; Wang, Hong; Liu, Anna; Lee, Mao-Jung; Reuhl, Kenneth; Suh, Nanjoo; Bosland, Maarten C.; Yang, Chung S.

    2015-01-01

    Tocopherols, the major forms of vitamin E, exist as alpha-tocopherol (α-T), β-T, γ-T and δ-T. The cancer preventive activity of vitamin E is suggested by epidemiological studies, but recent large-scale cancer prevention trials with high dose of α-T yielded disappointing results. Our hypothesis that other forms of tocopherols have higher cancer preventive activities than α-T was tested, herein, in a novel prostate carcinogenesis model induced by 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), a dietary carcinogen, in the CYP1A-humanized (hCYP1A) mice. Treatment of hCYP1A mice with PhIP (200mg/kg b.w., i.g.) induced high percentages of mouse prostatic intraepithelial neoplasia (mPIN), mainly in the dorsolateral glands. Supplementation with a γ-T-rich mixture of tocopherols (γ-TmT, 0.3% in diet) significantly inhibited the development of mPIN lesions and reduced PhIP-induced elevation of 8-oxo-deoxyguanosine, COX-2, nitrotyrosine, Ki-67 and p-AKT, and the loss of PTEN and Nrf2. Further studies with purified δ-T, γ-T or α-T (0.2% in diet) showed that δ-T was more effective than γ-T or α-T in preventing mPIN formations and p-AKT elevation. These results indicate that γ-TmT and δ-T could be effective preventive agents of prostate cancer. PMID:26582657

  5. A Conserved Aspartate Residue Located at the Extracellular End of the Binding Pocket Controls Cation Interactions in Brain Glutamate Transporters*

    PubMed Central

    Rosental, Noa; Gameiro, Armanda; Grewer, Christof; Kanner, Baruch I.

    2011-01-01

    In the brain, transporters of the major excitatory neurotransmitter glutamate remove their substrate from the synaptic cleft to allow optimal glutamatergic neurotransmission. Their transport cycle consists of two sequential translocation steps, namely cotransport of glutamic acid with three Na+ ions, followed by countertransport of K+. Recent studies, based on several crystal structures of the archeal homologue GltPh, indicate that glutamate translocation occurs by an elevator-like mechanism. The resolution of these structures was not sufficiently high to unambiguously identify the sites of Na+ binding, but functional and computational studies suggest some candidate sites. In the GltPh structure, a conserved aspartate residue (Asp-390) is located adjacent to a conserved tyrosine residue, previously shown to be a molecular determinant of ion selectivity in the brain glutamate transporter GLT-1. In this study, we characterize mutants of Asp-440 of the neuronal transporter EAAC1, which is the counterpart of Asp-390 of GltPh. Except for substitution by glutamate, this residue is functionally irreplaceable. Using biochemical and electrophysiological approaches, we conclude that although D440E is intrinsically capable of net flux, this mutant behaves as an exchanger under physiological conditions, due to increased and decreased apparent affinities for Na+ and K+, respectively. Our present and previous data are compatible with the idea that the conserved tyrosine and aspartate residues, located at the external end of the binding pocket, may serve as a transient or stable cation binding site in the glutamate transporters. PMID:21984827

  6. A conserved aspartate residue located at the extracellular end of the binding pocket controls cation interactions in brain glutamate transporters.

    PubMed

    Rosental, Noa; Gameiro, Armanda; Grewer, Christof; Kanner, Baruch I

    2011-12-02

    In the brain, transporters of the major excitatory neurotransmitter glutamate remove their substrate from the synaptic cleft to allow optimal glutamatergic neurotransmission. Their transport cycle consists of two sequential translocation steps, namely cotransport of glutamic acid with three Na(+) ions, followed by countertransport of K(+). Recent studies, based on several crystal structures of the archeal homologue Glt(Ph), indicate that glutamate translocation occurs by an elevator-like mechanism. The resolution of these structures was not sufficiently high to unambiguously identify the sites of Na(+) binding, but functional and computational studies suggest some candidate sites. In the Glt(Ph) structure, a conserved aspartate residue (Asp-390) is located adjacent to a conserved tyrosine residue, previously shown to be a molecular determinant of ion selectivity in the brain glutamate transporter GLT-1. In this study, we characterize mutants of Asp-440 of the neuronal transporter EAAC1, which is the counterpart of Asp-390 of Glt(Ph). Except for substitution by glutamate, this residue is functionally irreplaceable. Using biochemical and electrophysiological approaches, we conclude that although D440E is intrinsically capable of net flux, this mutant behaves as an exchanger under physiological conditions, due to increased and decreased apparent affinities for Na(+) and K(+), respectively. Our present and previous data are compatible with the idea that the conserved tyrosine and aspartate residues, located at the external end of the binding pocket, may serve as a transient or stable cation binding site in the glutamate transporters.

  7. Mechanisms of interaction between arsenian pyrite and aqueous arsenite under anoxic and oxic conditions

    NASA Astrophysics Data System (ADS)

    Qiu, Guohong; Gao, Tianyu; Hong, Jun; Luo, Yao; Liu, Lihu; Tan, Wenfeng; Liu, Fan

    2018-05-01

    Pyrite affects the conversion and migration processes of arsenic in soils and waters. Adsorption and redox reactions of arsenite (As(III)) occur on the surface of pyrite, and the interaction processes are influenced by the arsenic incorporated into pyrite. This work examined the effects of arsenic content, pH and oxygen on the interaction between arsenian pyrite and aqueous As(III) and investigated the underlying mechanisms. The results indicated that arsenic incorporation led to a high content of Fe(III) in pyrite, and that As(III) was mainly adsorbed on pyrite surface and part of As(III) was oxidized to As(V) by the newly formed intermediates including hydroxyl radicals and hydrogen peroxide. The oxidation rate increased with increasing arsenic content in the pyrite and the presence of air (oxygen), and first decreased and then increased with increasing pH from 3.0 to 11.0. Hydroxyl radicals and hydrogen peroxide significantly contributed to the oxidation of pyrite and aqueous As(III) in acidic and alkaline solutions, respectively. Although pyrite oxidation increased with increasing arsenic content as indicated by the elevated concentrations of elemental S and SO42-, the percentage of released arsenic in total arsenic of the arsenian pyrite decreased due to the adsorption of arsenic on the surface of newly formed ferric (hydr)oxides, especially the ferric arsenate precipitate formed in high pH solutions. The present study enables a better understanding of the important interaction process of dissolved arsenite and natural pyrites in the study of groundwater contamination, arsenic migration/sequestration, and acid mine drainage formation.

  8. High CO2 levels impair alveolar epithelial function independently of pH.

    PubMed

    Briva, Arturo; Vadász, István; Lecuona, Emilia; Welch, Lynn C; Chen, Jiwang; Dada, Laura A; Trejo, Humberto E; Dumasius, Vidas; Azzam, Zaher S; Myrianthefs, Pavlos M; Batlle, Daniel; Gruenbaum, Yosef; Sznajder, Jacob I

    2007-11-28

    In patients with acute respiratory failure, gas exchange is impaired due to the accumulation of fluid in the lung airspaces. This life-threatening syndrome is treated with mechanical ventilation, which is adjusted to maintain gas exchange, but can be associated with the accumulation of carbon dioxide in the lung. Carbon dioxide (CO2) is a by-product of cellular energy utilization and its elimination is affected via alveolar epithelial cells. Signaling pathways sensitive to changes in CO2 levels were described in plants and neuronal mammalian cells. However, it has not been fully elucidated whether non-neuronal cells sense and respond to CO2. The Na,K-ATPase consumes approximately 40% of the cellular metabolism to maintain cell homeostasis. Our study examines the effects of increased pCO2 on the epithelial Na,K-ATPase a major contributor to alveolar fluid reabsorption which is a marker of alveolar epithelial function. We found that short-term increases in pCO2 impaired alveolar fluid reabsorption in rats. Also, we provide evidence that non-excitable, alveolar epithelial cells sense and respond to high levels of CO2, independently of extracellular and intracellular pH, by inhibiting Na,K-ATPase function, via activation of PKCzeta which phosphorylates the Na,K-ATPase, causing it to endocytose from the plasma membrane into intracellular pools. Our data suggest that alveolar epithelial cells, through which CO2 is eliminated in mammals, are highly sensitive to hypercapnia. Elevated CO2 levels impair alveolar epithelial function, independently of pH, which is relevant in patients with lung diseases and altered alveolar gas exchange.

  9. Geochemical characterisation of pyrite oxidation and environmental problems related to release and transport of metals from a coal washing low-grade waste dump, Shahrood, northeast Iran.

    PubMed

    Doulati Ardejani, Faramarz; Jodieri Shokri, Behshad; Moradzadeh, Ali; Shafaei, Seyed Ziadin; Kakaei, Reza

    2011-12-01

    Pyrite oxidation and release of the oxidation products from a low-grade coal waste dump to stream, groundwater and soil was investigated by geochemical and hydrogeochemical techniques at Alborz Sharghi coal washing plant, Shahrood, northeast Iran. Hydrogeochemical analysis of water samples indicates that the metal concentrations in the stream waters were low. Moreover, the pH of the water showed no considerable change. The analysis of the stream water samples shows that except the physical changes, pyrite oxidation process within the coal washing waste dump has not affected the quality of the stream water. Water type was determined to be calcium sulphate. The results of the analysis of groundwater samples indicate that the pH varies from 7.41 to 7.51. The concentrations of the toxic metals were low. The concentration of SO4 is slightly above than its standard concentration in potable water. It seems that the groundwater less affected by the coal washing operation in the study area. Geochemical analysis of the sediment samples shows that Fe concentration decreases gradually downstream the waste dump with pH rising. SO(4) decreases rapidly downstream direction. Copper, Zn and Co concentrations decrease with distance from the waste dump due to a dilution effect by the mixing of uncontaminated sediments. These elements, in particular, Zn are considerably elevated in sediment sample collected at the nearest distance to the waste dump. There is no doubt that such investigations can help to develop an appropriate water remediation plan.

  10. Effects of Elevated CO2 and Decreased Dissolved Oxygen on Phototactic Behaviors of Juvenile Dungeness Crab (Cancer magister)

    NASA Astrophysics Data System (ADS)

    Imm, J.

    2015-12-01

    Anthropogenic CO2 emissions are increasing the concentration of CO2 in the oceans, and contributing to ocean acidification (OA), while increasing ocean temperatures and eutrophication are causing decreased levels of dissolved oxygen (DO). Due to coastal upwelling and limited water flow, the Puget Sound ecosystem is naturally high in CO2 and seasonally low in DO, making it particularly susceptible to increased acidification and hypoxia. Dungeness crabs (Cancer magister) are both ecologically and economically important to the Puget Sound region. To investigate the threat of low pH and DO to C. magister behavior, megalopae and juveniles were exposed to current and predicted future levels of pH and DO. Juveniles were then placed in a dark container with a single bright light, and movement and phototaxis were studied during three-minute trials. We hypothesized that low pH and low DO conditions would alter phototactic behaviors of juvenile C. magister, through changes in neurotransmission and metabolism. C. magister reared in control (High pH-High DO) conditions spent a greater proportion of their time near the light, and were significantly more likely to touch the light during the three-minute trial, as compared to juveniles in the other treatment conditions. These results suggest that future predicted CO2 and DO conditions in Puget Sound could disrupt the behavioral and cognitive abilities of juvenile crabs, leading to decreased survival and recruitment in the C. magister population. Given the importance of C. magister to the Puget Sound, these population changes could have significant ecological and economic implications for the region.

  11. Effects of Elevated CO2 and Decreased Dissolved Oxygen on Phototactic Behaviors of Juvenile Dungeness Crab (Cancer magister)

    NASA Astrophysics Data System (ADS)

    Imm, J.

    2016-02-01

    Anthropogenic CO2 emissions are increasing the concentration of CO2 in the oceans, and contributing to ocean acidification (OA), while increasing ocean temperatures and eutrophication are causing decreased levels of dissolved oxygen (DO). Due to coastal upwelling and limited water flow, the Puget Sound ecosystem is naturally high in CO2 and seasonally low in DO, making it particularly susceptible to increased acidification and hypoxia. Dungeness crabs (Cancer magister) are both ecologically and economically important to the Puget Sound region. To investigate the threat of low pH and DO to C. magister behavior, megalopae and juveniles were exposed to current and predicted future levels of pH and DO. Juveniles were then placed in a dark container with a single bright light, and movement and phototaxis were studied during three-minute trials. We hypothesized that low pH and low DO conditions would alter phototactic behaviors of juvenile C. magister, through changes in neurotransmission and metabolism. C. magister reared in control (High pH-High DO) conditions spent a greater proportion of their time near the light, and were significantly more likely to touch the light during the three-minute trial, as compared to juveniles in the other treatment conditions. These results suggest that future predicted CO2 and DO conditions in Puget Sound could disrupt the behavioral and cognitive abilities of juvenile crabs, leading to decreased survival and recruitment in the C. magister population. Given the importance of C. magister to the Puget Sound, these population changes could have significant ecological and economic implications for the region.

  12. Treatment of As(V) and As(III) by electrocoagulation using Al and Fe electrode.

    PubMed

    Kuan, W H; Hu, C Y; Chiang, M C

    2009-01-01

    A batch electrocoagulation (EC) process with bipolar electrode and potentiodynamic polarization tests with monopolar systems were investigated as methods to explore the effects of electrode materials and initial solution pH on the As(V) and As(III) removal. The results displayed that the system with Al electrode has higher reaction rate during the initial period from 0 to 25 minutes than that of Fe electrode for alkaline condition. The pH increased with the EC time because the As(V) and As(III) removal by either co-precipitation or adsorption resulted in that the OH positions in Al-hydroxide or Fe-hydroxide were substituted by As(V) and As(III). The pH in Fe electrode system elevate higher than that in Al electrode because the As(V) removal substitutes more OH position in Fe-hydroxide than that in Al-hydroxide. EC system with Fe electrode can successfully remove the As(III) but system with Al electrode cannot because As(III) can strongly bind to the surface of Fe-hydroxide with forming inner-sphere species but weakly adsorb to the Al-hydroxide surface with forming outer-sphere species. The acidic solution can destroy the deposited hydroxide passive film then allow the metallic ions liberate into the solution, therefore, the acidic initial solution can enhance the As(V) and As(III) removal. The over potential calculation and potentiodynamic polarization tests reveal that the Fe electrode systems possess higher over potential and pitting potential than that of Al electrode system due to the fast hydrolysis of and the occurrence of Fe-hydroxide passive film.

  13. Hypercapnia and low pH induce neuroepithelial cell proliferation and emersion behaviour in the amphibious fish Kryptolebias marmoratus.

    PubMed

    Robertson, Cayleih E; Turko, Andy J; Jonz, Michael G; Wright, Patricia A

    2015-10-01

    Aquatic hypercapnia may have helped to drive ancestral vertebrate invasion of land. We tested the hypothesis that amphibious fishes sense and respond to elevated aquatic PCO2 by behavioural avoidance mechanisms, and by morphological changes at the chemoreceptor level. Mangrove rivulus (Kryptolebias marmoratus) were exposed to 1 week of normocapnic control water (pH 8), air, hypercapnia (5% CO2, pH 6.8) or isocapnic acidosis (pH 6.8). We found that the density of CO2/H(+) chemoreceptive neuroepithelial cells (NECs) was increased in hypercapnia or isocapnic acidosis-exposed fish. Projection area (a measure of cell size) was unchanged. Acute exposure to progressive hypercapnia induced the fish to emerse (leave water) at water pH values ∼6.1, whereas addition of HCl to water caused a more variable response with a lower pH threshold (∼pH 5.5). These results support our hypothesis and suggest that aquatic hypercapnia provides an adequate stimulus for extant amphibious fishes to temporarily transition from aquatic to terrestrial habitats. © 2015. Published by The Company of Biologists Ltd.

  14. Role of Reactive Oxygen Species in Neonatal Pulmonary Vascular Disease

    PubMed Central

    Steinhorn, Robin H.

    2014-01-01

    Abstract Significance: Abnormal lung development in the perinatal period can result in severe neonatal complications, including persistent pulmonary hypertension (PH) of the newborn and bronchopulmonary dysplasia. Reactive oxygen species (ROS) play a substantive role in the development of PH associated with these diseases. ROS impair the normal pulmonary artery (PA) relaxation in response to vasodilators, and ROS are also implicated in pulmonary arterial remodeling, both of which can increase the severity of PH. Recent Advances: PA ROS levels are elevated when endogenous ROS-generating enzymes are activated and/or when endogenous ROS scavengers are inactivated. Animal models have provided valuable insights into ROS generators and scavengers that are dysregulated in different forms of neonatal PH, thus identifying potential therapeutic targets. Critical Issues: General antioxidant therapy has proved ineffective in reversing PH, suggesting that it is necessary to target specific signaling pathways for successful therapy. Future Directions: Development of novel selective pharmacologic inhibitors along with nonantioxidant therapies may improve the treatment outcomes of patients with PH, while further investigation of the underlying mechanisms may enable earlier detection of the disease. Antioxid. Redox Signal. 21, 1926–1942. PMID:24350610

  15. Effects of ocean acidification on the shells of four Mediterranean gastropod species near a CO2 seep.

    PubMed

    Duquette, Ashley; McClintock, James B; Amsler, Charles D; Pérez-Huerta, Alberto; Milazzo, Marco; Hall-Spencer, Jason M

    2017-11-30

    Marine CO 2 seeps allow the study of the long-term effects of elevated pCO 2 (ocean acidification) on marine invertebrate biomineralization. We investigated the effects of ocean acidification on shell composition and structure in four ecologically important species of Mediterranean gastropods (two limpets, a top-shell snail, and a whelk). Individuals were sampled from three sites near a volcanic CO 2 seep off Vulcano Island, Italy. The three sites represented ambient (8.15pH), moderate (8.03pH) and low (7.73pH) seawater mean pH. Shell mineralogy, microstructure, and mechanical strength were examined in all four species. We found that the calcite/aragonite ratio could vary and increased significantly with reduced pH in shells of one of the two limpet species. Moreover, each of the four gastropods displayed reductions in either inner shell toughness or elasticity at the Low pH site. These results suggest that near-future ocean acidification could alter shell biomineralization and structure in these common gastropods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Silver Nanoparticles Entering Soils via the Wastewater-Sludge-Soil Pathway Pose Low Risk to Plants but Elevated Cl Concentrations Increase Ag Bioavailability.

    PubMed

    Wang, Peng; Menzies, Neal W; Dennis, Paul G; Guo, Jianhua; Forstner, Christian; Sekine, Ryo; Lombi, Enzo; Kappen, Peter; Bertsch, Paul M; Kopittke, Peter M

    2016-08-02

    The widespread use of silver nanoparticles (Ag-NPs) results in their movement into wastewater treatment facilities and subsequently to agricultural soils via application of contaminated sludge. On-route, the chemical properties of Ag may change, and further alterations are possible upon entry to soil. In the present study, we examined the long-term stability and (bio)availability of Ag along the "wastewater-sludge-soil" pathway. Synchrotron-based X-ray absorption spectroscopy (XAS) revealed that ca. 99% of Ag added to the sludge reactors as either Ag-NPs or AgNO3 was retained in sludge, with ≥79% of this being transformed to Ag2S, with the majority (≥87%) remaining in this form even after introduction to soils at various pH values and Cl concentrations for up to 400 days. Diffusive gradients in thin films (DGT), chemical extraction, and plant uptake experiments indicated that the potential (bio)availability of Ag in soil was low but increased markedly in soils with elevated Cl, likely due to the formation of soluble AgClx complexes in the soil solution. Although high Cl concentrations increased the bioavailability of Ag markedly, plant growth was not reduced in any treatment. Our results indicate that Ag-NPs entering soils through the wastewater-sludge-soil pathway pose low risk to plants due to their conversion to Ag2S in the wastewater treatment process, although bioavailability may increase in saline soils or when irrigated with high-Cl water.

  17. Surgical Elimination of the Gastric Digestion by Roux-en-Y Gastric Bypass Impacts on Food Sensitisation-a Pilot Study.

    PubMed

    Shakeri-Leidenmühler, Soheila; Lukschal, Anna; Schultz, Cornelia; Bohdjalian, Arthur; Langer, Felix; Birsan, Tudor; Diesner, Susanne C; Greisenegger, Elli K; Scheiner, Otto; Kopp, Tamara; Jensen-Jarolim, Erika; Prager, Gerhard; Untersmayr, Eva

    2015-12-01

    Impairment of gastric digestion due to pH elevation increases the risk for food allergy induction. As patients after Roux-en-Y gastric bypass (RYGB) surgery have lower gastric acidity and less gastric gland secretion, we aimed to analyse in a prospective study the effect of limiting gastric digestion capacity by surgical intervention on the immune response towards allergens. Nine patients undergoing RYGB surgery for morbid obesity and one control patient having undergone surgery for treatment of an incisional hernia were enrolled in the study. Before and 1, 3, 6, 9 and 12 months after surgery, blood was collected for analysis of specific IgE antibodies, and patients were subjected to skin prick testing with 16 food and 18 aeroallergens. Skin prick test results revealed an increase of positive reactions indicating sensitisations towards the tested food and aeroallergens in 77.8 and 88.9 % of the patients, respectively, after surgical elimination of gastric digestion. These results were in line with elevated titers of food- and aeroallergen-specific IgE antibodies in 7 out of 9 (7/9) and 5/9 patients, respectively, after RYGB surgery. Serum cytokine levels revealed a mixed response for IFN-γ and were mostly beneath detection limit for IL-4. A change of IgE reactivity pattern occurred after impairment of gastric digestion due to surgical elimination underlining the important gastric gatekeeping function during oral sensitisation. Even though this study indicates an increased allergy risk for gastric bypass patients, further studies are needed to investigate in-depth the immunological changes associated with RYGB surgery.

  18. Varying Inundation Regimes Differentially Affect Natural and Sand-Amended Marsh Sediments.

    PubMed

    Wigand, C; Sundberg, K; Hanson, A; Davey, E; Johnson, R; Watson, E; Morris, J

    2016-01-01

    Climate change is altering sea level rise rates and precipitation patterns worldwide. Coastal wetlands are vulnerable to these changes. System responses to stressors are important for resource managers and environmental stewards to understand in order to best manage them. Thin layer sand or sediment application to drowning and eroding marshes is one approach to build elevation and resilience. The above- and below-ground structure, soil carbon dioxide emissions, and pore water constituents in vegetated natural marsh sediments and sand-amended sediments were examined at varying inundation regimes between mean sea level and mean high water (0.82 m NAVD88 to 1.49 m NAVD88) in a field experiment at Laws Point, part of the Plum Island Sound Estuary (MA). Significantly lower salinities, pH, sulfides, phosphates, and ammonium were measured in the sand-amended sediments than in the natural sediments. In natural sediments there was a pattern of increasing salinity with increasing elevation while in the sand-amended sediments the trend was reversed, showing decreasing salinity with increasing elevation. Sulfide concentrations generally increased from low to high inundation with highest concentrations at the highest inundation (i.e., at the lowest elevations). High pore water phosphate concentrations were measured at low elevations in the natural sediments, but the sand-amended treatments had mostly low concentrations of phosphate and no consistent pattern with elevation. At the end of the experiment the lowest elevations generally had the highest measures of pore water ammonium. Soil carbon dioxide emissions were greatest in the sand-amended mesocosms and at higher elevations. Differences in coarse root and rhizome abundances and volumes among the sediment treatments were detected with CT imaging, but by 20 weeks the natural and sand-amended treatments showed similar total belowground biomass at the intermediate and high elevations. Although differences in pore water nutrient concentrations, pH, salinity, and belowground root and rhizome morphology were detected between the natural and sand-amended sediments, similar belowground productivity and total biomass were measured by the end of the growing season. Since the belowground productivity supports organic matter accumulation and peat buildup in marshes, our results suggest that thin layer sand or sediment application is a viable climate adaptation action to build elevation and coastal resiliency, especially in areas with low natural sediment supplies.

  19. The chemistry, physiology and pathology of pH in cancer

    PubMed Central

    Swietach, Pawel; Vaughan-Jones, Richard D.; Harris, Adrian L.; Hulikova, Alzbeta

    2014-01-01

    Cell survival is conditional on the maintenance of a favourable acid–base balance (pH). Owing to intensive respiratory CO2 and lactic acid production, cancer cells are exposed continuously to large acid–base fluxes, which would disturb pH if uncorrected. The large cellular reservoir of H+-binding sites can buffer pH changes but, on its own, is inadequate to regulate intracellular pH. To stabilize intracellular pH at a favourable level, cells control trans-membrane traffic of H+-ions (or their chemical equivalents, e.g. ) using specialized transporter proteins sensitive to pH. In poorly perfused tumours, additional diffusion-reaction mechanisms, involving carbonic anhydrase (CA) enzymes, fine-tune control extracellular pH. The ability of H+-ions to change the ionization state of proteins underlies the exquisite pH sensitivity of cellular behaviour, including key processes in cancer formation and metastasis (proliferation, cell cycle, transformation, migration). Elevated metabolism, weakened cell-to-capillary diffusive coupling, and adaptations involving H+/H+-equivalent transporters and extracellular-facing CAs give cancer cells the means to manipulate micro-environmental acidity, a cancer hallmark. Through genetic instability, the cellular apparatus for regulating and sensing pH is able to adapt to extracellular acidity, driving disease progression. The therapeutic potential of disturbing this sequence by targeting H+/H+-equivalent transporters, buffering or CAs is being investigated, using monoclonal antibodies and small-molecule inhibitors. PMID:24493747

  20. The chemistry, physiology and pathology of pH in cancer.

    PubMed

    Swietach, Pawel; Vaughan-Jones, Richard D; Harris, Adrian L; Hulikova, Alzbeta

    2014-03-19

    Cell survival is conditional on the maintenance of a favourable acid-base balance (pH). Owing to intensive respiratory CO2 and lactic acid production, cancer cells are exposed continuously to large acid-base fluxes, which would disturb pH if uncorrected. The large cellular reservoir of H(+)-binding sites can buffer pH changes but, on its own, is inadequate to regulate intracellular pH. To stabilize intracellular pH at a favourable level, cells control trans-membrane traffic of H(+)-ions (or their chemical equivalents, e.g. ) using specialized transporter proteins sensitive to pH. In poorly perfused tumours, additional diffusion-reaction mechanisms, involving carbonic anhydrase (CA) enzymes, fine-tune control extracellular pH. The ability of H(+)-ions to change the ionization state of proteins underlies the exquisite pH sensitivity of cellular behaviour, including key processes in cancer formation and metastasis (proliferation, cell cycle, transformation, migration). Elevated metabolism, weakened cell-to-capillary diffusive coupling, and adaptations involving H(+)/H(+)-equivalent transporters and extracellular-facing CAs give cancer cells the means to manipulate micro-environmental acidity, a cancer hallmark. Through genetic instability, the cellular apparatus for regulating and sensing pH is able to adapt to extracellular acidity, driving disease progression. The therapeutic potential of disturbing this sequence by targeting H(+)/H(+)-equivalent transporters, buffering or CAs is being investigated, using monoclonal antibodies and small-molecule inhibitors.

  1. Physiological responses to ocean acidification and warming synergistically reduce condition of the common cockle Cerastoderma edule.

    PubMed

    Ong, E Z; Briffa, M; Moens, T; Van Colen, C

    2017-09-01

    The combined effect of ocean acidification and warming on the common cockle Cerastoderma edule was investigated in a fully crossed laboratory experiment. Survival of the examined adult organisms remained high and was not affected by elevated temperature (+3 °C) or lowered pH (-0.3 units). However, the morphometric condition index of the cockles incubated under high pCO 2 conditions (i.e. combined warming and acidification) was significantly reduced after six weeks of incubation. Respiration rates increased significantly under low pH, with highest rates measured under combined warm and low pH conditions. Calcification decreased significantly under low pH while clearance rates increased significantly under warm conditions and were generally lower in low pH treatments. The observed physiological responses suggest that the reduced food intake under hypercapnia is insufficient to support the higher energy requirements to compensate for the higher costs for basal maintenance and growth in future high pCO 2 waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption.

    PubMed

    Hung, Yung-Jr; Lee, San-Liang; Coldren, Larry A

    2010-03-29

    Tapered silicon photonic crystals (PhCs) with smooth sidewalls are realized using a novel single-step deep reactive ion etching. The PhCs can significantly reduce the surface reflection over the wavelength range between the ultra-violet and near-infrared regions. From the measurements using a spectrophotometer and an angle-variable spectroscopic ellipsometer, the sub-wavelength periodic structure can provide a broad and angular-independent antireflective window in the visible region for the TE-polarized light. The PhCs with tapered rods can further reduce the reflection due to a gradually changed effective index. On the other hand, strong optical resonances for TM-mode can be found in this structure, which is mainly due to the existence of full photonic bandgaps inside the material. Such resonance can enhance the optical absorption inside the silicon PhCs due to its increased optical paths. With the help of both antireflective and absorption-enhanced characteristics in this structure, the PhCs can be used for various applications.

  3. Light-Immune pH Sensor with SiC-Based Electrolyte-Insulator-Semiconductor Structure

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Ting; Huang, Chien-Shiang; Chow, Lee; Lan, Jyun-Ming; Yang, Chia-Ming; Chang, Liann-Be; Lai, Chao-Sung

    2013-12-01

    An electrolyte-insulator-semiconductor (EIS) structure with high-band-gap semiconductor of silicon carbide is demonstrated as a pH sensor in this report. Two different sensing membranes, i.e., gadolinium oxide (Gd2O3) and hafnium oxide (HfO2), were investigated. The HfO2 film deposited by atomic layer deposition (ALD) at low temperature shows high pH sensing properties with a sensitivity of 52.35 mV/pH and a low signal of 4.95 mV due to light interference. The EIS structures with silicon carbide can provide better visible light immunity due to its high band gap that allows pH detection in an outdoor environment without degradation of pH sensitivity.

  4. Sensitivity of early-life stage golden trout to low pH and elevated aluminum

    USGS Publications Warehouse

    Delonay, Aaron J.; Little, Edward E.; Woodward, Daniel F.; Brumbaugh, William G.; Farag, Aïda M.; Rabeni, Charles F.

    1993-01-01

    Early-life-stage golden trout (Oncorhynchus aguabonita aguabonita) were exposed to acid and Al to examine the response and determine the sensitivity of a western, alpine salmonid to conditions simulating an episodic pH depression. Freshly fertilized eggs, alevins, and swim-up larvae were exposed for 7 d to one of 12 combinations of pH and Al, and surviving fish were held to 40 d post-hatch to determine the effect of exposure on subsequent survival and recovery. Golden trout are sensitive to conditions simulating episodic acidification events typically observed in the field. Significant mortality occurred when the pH of test waters was below 5.0 in the absence of Al or when pH was 5.5 in the presence of 100 μg/L total Al. Behavioral impairments were sensitive indicators of low pH and Al stress. Impaired locomotory and feeding behavior occurred at pH 5.5 without Al and at Al concentrations > 50 μg/L. In contrast, growth, RNA-to-DNA ratio, and whole-body ion concentration were relatively less sensitive indicators of sublethal acid and Al stress.

  5. Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions.

    PubMed

    Guo, Hongyan; Zhu, Jianguo; Zhou, Hui; Sun, Yuanyuan; Yin, Ying; Pei, Daping; Ji, Rong; Wu, Jichun; Wang, Xiaorong

    2011-08-15

    Elevated CO(2) levels and the increase in heavy metals in soils through pollution are serious problems worldwide. Whether elevated CO(2) levels will affect plants grown in heavy-metal-polluted soil and thereby influence food quality and safety is not clear. Using a free-air CO(2) enrichment (FACE) system, we investigated the impacts of elevated atmospheric CO(2) on the concentrations of copper (Cu) or cadmium (Cd) in rice and wheat grown in soil with different concentrations of the metals in the soil. In the two-year study, elevated CO(2) levels led to lower Cu concentrations and higher Cd concentrations in shoots and grain of both rice and wheat grown in the respective contaminated soil. Elevated CO(2) levels slightly but significantly lowered the pH of the soil and led to changes in Cu and Cd fractionation in the soil. Our study indicates that elevated CO(2) alters the distribution of contaminant elements in soil and plants, thereby probably affecting food quality and safety.

  6. Impacts on water quality and biota from natural acid rock drainage in Colorado's Lake Creek watershed

    USGS Publications Warehouse

    Bird, D.A.; Sares, Matthew A.; Policky, Greg A.; Schmidt, Travis S.; Church, Stan E.

    2006-01-01

    Colorado's Lake Creek watershed hosts natural acid rock drainage that significantly impacts surface water, streambed sediment, and aquatic life. The source of the ARD is a group of iron-rich springs that emerge from intensely hydrothermally altered, unexploited, low-grade porphyry copper mineralization in the Grizzly Peak Caldera. Source water chemistry includes pH of 2.5 and dissolved metal concentrations of up to 277 mg/L aluminum, 498 mg/L iron, and 10 mg/L copper. From the hydrothermally altered area downstream for 27 kilometers to Twin Lakes Reservoir, metal concentrations in streambed sediment are elevated and the watershed experiences locally severe adverse impacts to aquatic life due to the acidic, metal-laden water. The water and sediment quality of Twin Lakes Reservoir is sufficiently improved that the reservoir supports a trout fishery, and remnants of upstream ARD are negligible.

  7. Elevation-dependent cooling caused by volcanic eruptions during last millennium

    NASA Astrophysics Data System (ADS)

    Ning, L.; Liu, J.; Bradley, R. S.; Yan, M.; Sun, W.; Liu, L.

    2017-12-01

    The amplified warming over the high-elevation regions in recent decades due to the increases of greenhouse gases has attracted lots of attentions, due to the potential severe impacts on mountain hydrological systems and ecosystems and corresponding social and economic influences. Similarly, the model simulations show that the rate of cooling is also amplified with elevation after volcanic eruptions during last millennium, such that high-mountain environments experience larger decreases in temperature than environments at lower elevations. This elevation-dependent cooling (EDC) testifies two important mechanisms, i.e. snow albedo feedback and tropical deep convection mechanism, which also induce the elevation-dependent warming (EDW) found in recent decades due to the increases of greenhouse gases that accelerates the rates of changes in mountain hydrological regimes and ecosystems. It can be concluded that although the influences from natural forcing and anthropogenic forcing on the high-mountain regions are opposite, the mechanisms behind the influences are the same. This finding shows that the temperature change over high-elevation regions is more sensitive to the background climate changes, and needs more attention for adaptations and mitigations due to their bio-diversity and fragile ecosystems.

  8. Effects of gastric pH on oral drug absorption: In vitro assessment using a dissolution/permeation system reflecting the gastric dissolution process.

    PubMed

    Kataoka, Makoto; Fukahori, Miho; Ikemura, Atsumi; Kubota, Ayaka; Higashino, Haruki; Sakuma, Shinji; Yamashita, Shinji

    2016-04-01

    The aim of the present study was to evaluate the effects of gastric pH on the oral absorption of poorly water-soluble drugs using an in vitro system. A dissolution/permeation system (D/P system) equipped with a Caco-2 cell monolayer was used as the in vitro system to evaluate oral drug absorption, while a small vessel filled with simulated gastric fluid (SGF) was used to reflect the gastric dissolution phase. After applying drugs in their solid forms to SGF, SGF solution containing a 1/100 clinical dose of each drug was mixed with the apical solution of the D/P system, which was changed to fasted state-simulated intestinal fluid. Dissolved and permeated amounts on applied amount of drugs were then monitored for 2h. Similar experiments were performed using the same drugs, but without the gastric phase. Oral absorption with or without the gastric phase was predicted in humans based on the amount of the drug that permeated in the D/P system, assuming that the system without the gastric phase reflected human absorption with an elevated gastric pH. The dissolved amounts of basic drugs with poor water solubility, namely albendazole, dipyridamole, and ketoconazole, in the apical solution and their permeation across a Caco-2 cell monolayer were significantly enhanced when the gastric dissolution process was reflected due to the physicochemical properties of basic drugs. These amounts resulted in the prediction of higher oral absorption with normal gastric pH than with high gastric pH. On the other hand, when diclofenac sodium, the salt form of an acidic drug, was applied to the D/P system with the gastric phase, its dissolved and permeated amounts were significantly lower than those without the gastric phase. However, the oral absorption of diclofenac was predicted to be complete (96-98%) irrespective of gastric pH because the permeated amounts of diclofenac under both conditions were sufficiently high to achieve complete absorption. These estimations of the effects of gastric pH on the oral absorption of poorly water-soluble drugs were consistent with observations in humans. In conclusion, the D/P system with the gastric phase may be a useful tool for better predicting the oral absorption of poorly water-soluble basic drugs. In addition, the effects of gastric pH on the oral absorption of poorly water-soluble drugs may be evaluated by the D/P system with and without the gastric phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    KUBILIUS, WALTER

    The origin of elevated radium-226 in groundwater beneath a sanitary landfill at the Savannah River Site (SRS) was investigated. Nearly one hundred monitoring wells are developed in the Steed Pond Aquifer (SPA), which consists of 100-150 ft of Coastal Plain sand, iron oxides, and minor clay. Wells screened in the upper and middle portions of the aquifer have average Ra-226 between 0.5 and 2.5 pCi/L, and average pHs above 4.7. However, wells screened near the base of the aquifer exhibit higher average Ra-226 concentrations of 2.5 to 4.6 pCi/L, with some measurements exceeding the MCL of 5 pCi/L, and showmore » average pHs of 4.1 to 4.7. These wells are not downgradient of the landfill, and are not impacted by landfill leachate. The Crouch Branch Confining Unit (CBCU) underlies the aquifer, and is composed partly of reduced gray/brown clay with lignite and authigenic pyrite. Gamma ray logs show that the SPA has low gamma counts, but the CBCU is consistently elevated. Groundwater with high radium/low pH also contains elevated sulfate concentrations. pH calculations indicate that sulfate is in the form of sulfuric acid. A model for the origin of elevated Ra-226 levels in deeper SPA wells envisions infiltration of oxygenated SPA groundwater into reduced pyritic CBCU sediments, with consequent oxidative pyrite dissolution, and acidification of groundwater. Then, naturally occurring CBCU radium dissolves, and mixes into the Steed Pond Aquifer.« less

  10. In Vitro Studies Evaluating Leaching of Mercury from Mine Waste Calcine Using Simulated Human Body Fluids

    PubMed Central

    2010-01-01

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway. PMID:20491469

  11. In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids.

    PubMed

    Gray, John E; Plumlee, Geoffrey S; Morman, Suzette A; Higueras, Pablo L; Crock, James G; Lowers, Heather A; Witten, Mark L

    2010-06-15

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almaden, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 microg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 microg of Hg leached/g), serum-based fluid (as much as 1600 microg of Hg leached/g), and water of pH 5 (as much as 880 microg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.

  12. In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids

    USGS Publications Warehouse

    Gray, John E.; Plumlee, Geoffrey S.; Morman, Suzette A.; Higueras, Pablo L.; Crock, James G.; Lowers, Heather A.; Witten, Mark L.

    2010-01-01

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.

  13. Combined effects of acidification and hypoxia on the estuarine ctenophore, Mnemiopsis leidyi

    EPA Science Inventory

    Estuaries are transitive zones which experience large fluctuations in environmental parameters (temperature, dissolved oxygen, pH, etc.). The interactive effects of reduced dissolved oxygen (DO) and elevated pCO2 on estuarine organisms is not currently well understood. Ctenophore...

  14. Hurricane Wilma's impact on overall soil elevation and zones within the soil profile in a mangrove forest

    USGS Publications Warehouse

    Whelan, K.R.T.; Smith, T. J.; Anderson, G.H.; Ouellette, M.L.

    2009-01-01

    Soil elevation affects tidal inundation period, inundation frequency, and overall hydroperiod, all of which are important ecological factors affecting species recruitment, composition, and survival in wetlands. Hurricanes can dramatically affect a site's soil elevation. We assessed the impact of Hurricane Wilma (2005) on soil elevation at a mangrove forest location along the Shark River in Everglades National Park, Florida, USA. Using multiple depth surface elevation tables (SETs) and marker horizons we measured soil accretion, erosion, and soil elevation. We partitioned the effect of Hurricane Wilma's storm deposit into four constituent soil zones: surface (accretion) zone, shallow zone (0–0.35 m), middle zone (0.35–4 m), and deep zone (4–6 m). We report expansion and contraction of each soil zone. Hurricane Wilma deposited 37.0 (± 3.0 SE) mm of material; however, the absolute soil elevation change was + 42.8 mm due to expansion in the shallow soil zone. One year post-hurricane, the soil profile had lost 10.0 mm in soil elevation, with 8.5 mm of the loss due to erosion. The remaining soil elevation loss was due to compaction from shallow subsidence. We found prolific growth of new fine rootlets (209 ± 34 SE g m−2) in the storm deposited material suggesting that deposits may become more stable in the near future (i.e., erosion rate will decrease). Surficial erosion and belowground processes both played an important role in determining the overall soil elevation. Expansion and contraction in the shallow soil zone may be due to hydrology, and in the middle and bottom soil zones due to shallow subsidence. Findings thus far indicate that soil elevation has made substantial gains compared to site specific relative sea-level rise, but data trends suggest that belowground processes, which differ by soil zone, may come to dominate the long term ecological impact of storm deposit.

  15. Correlation between vegetation and underground microbial communities on a micro-landscape of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Hu, A.; Wang, J.

    2016-12-01

    Aboveground vegetation and underground microbes are tightly associated and form a systematic entity to maintain terrestrial ecosystem functions; however, the roles and relative importance of vegetation to corresponding underlying microbial community remain clearly unresolved. Here we studied the vegetation and corresponding underground microbial communities along an elevation range of 704-3,760 m a.s.l on the Tibetan Plateau, which covering from a tropical forest to frigid shrub meadow ecosystem. By substituting space for time, we explored how the alteration of vegetation and abiotic environments jointly affect the underlying microbial communities. We found that vegetation showed a hump-shaped elevational pattern in diversity, while microbial community exhibited a two-section elevational pattern at a tipping point of 2400m elevation where vegetation diversity approximately peaks. The statistical analyses and regression modelling of the measures of underground microbial community including biomass, diversity, phylogenetic structure and community composition provided evidences of this threshold. Our findings highlighted that vegetation is a good predictor of underground microbial communities. Further statistical analyses suggested that alteration of vegetation and environmental filtering processes might be the vital driving forces jointly structuring underground microbial communities along an elevational gradient. Specifically, vegetation is a major contributor to underground microbes primarily through soil pH below the threshold (that is, in tropical and subtropical zones), while vegetation could directly influence underground microbes and also partly through its effects on several abiotic factors such as soil pH and WSOC above the threshold (that is, in temperate and frigid zones). These insights into the alteration of vegetation types and corresponding underground microbial communities provide new perspective on the aboveground and belowground interactions in forest ecosystems.

  16. Intertidal oysters reach their physiological limit in a future high-CO2 world.

    PubMed

    Scanes, Elliot; Parker, Laura M; O'Connor, Wayne A; Stapp, Laura S; Ross, Pauline M

    2017-03-01

    Sessile marine molluscs living in the intertidal zone experience periods of internal acidosis when exposed to air (emersion) during low tide. Relative to other marine organisms, molluscs have been identified as vulnerable to future ocean acidification; however, paradoxically it has also been shown that molluscs exposed to high CO 2 environments are more resilient compared with those molluscs naive to CO 2 exposure. Two competing hypotheses were tested using a novel experimental design incorporating tidal simulations to predict the future intertidal limit of oysters in a high-CO 2 world; either high-shore oysters will be more tolerant of elevated P CO 2 because of their regular acidosis, or elevated P CO 2  will cause high-shore oysters to reach their limit. Sydney rock oysters, Saccostrea glomerata , were collected from the high-intertidal and subtidal areas of the shore and exposed in an orthogonal design to either an intertidal or a subtidal treatment at ambient or elevated P CO 2 , and physiological variables were measured. The combined treatment of tidal emersion and elevated P CO 2  interacted synergistically to reduce the haemolymph pH (pH e ) of oysters, and increase the P CO 2  in the haemolymph ( P e,CO 2 ) and standard metabolic rate. Oysters in the intertidal treatment also had lower condition and growth. Oysters showed a high degree of plasticity, and little evidence was found that intertidal oysters were more resilient than subtidal oysters. It is concluded that in a high-CO 2 world the upper vertical limit of oyster distribution on the shore may be reduced. These results suggest that previous studies on intertidal organisms that lacked tidal simulations may have underestimated the effects of elevated P CO 2 . © 2017. Published by The Company of Biologists Ltd.

  17. Dynamics of soil available phosphorus and its impact factors under simulated climate change in typical farmland of Taihu Lake region, China.

    PubMed

    Yu, Kaihao; Chen, Xiaomin; Pan, Genxing; Zhang, Xuhui; Chen, Can

    2016-02-01

    Global climate change affects the availability of soil nutrients, thereby influencing crop productivity. This research was conducted to investigate the effects of elevated CO2, elevated temperature, and the interaction of the elevated CO2 and temperature on the soil available phosphorus (P) of a paddy-wheat rotation in the Taihu Lake region, China. Winter wheat (Triticum aestivum L.) was cultivated during the study period from 2011 to 2014 at two CO2 levels (350 μL•L(-1) ambient and 500 μL•L(-1) elevated by 150 μL•L(-1)) and two temperatures (ambient and 2 °C above the ambient). Soil available P content increased at the first season and decreased at the last season during the three wheat growing seasons. Soil available P content showed seasonal variation, whereas dynamic changes were not significant within each growing season. Soil available P content had no obvious trends under different treatments. But for the elevated temperature, CO2, and their combination treatments, soil available P content decreased in a long time period. During the period of wheat ripening stage, significant positive correlations were found between soil available P content and saturated hydraulic conductivity (Ks) and organic matter, but significant negative correlations with soil clay content and pH value; the correlation coefficients were 0.9400 (p < 0.01), 0.9942 (p < 0.01), -0.9383 (p < 0.01), and -0.6403 (p < 0.05), respectively. Therefore, Ks, organic matter, soil clay, and pH were the major impact factors on soil available P content. These results can provide a basis for predicting the trend of soil available P variation, as well as guidance for managing the soil nutrients and best fertilization practices in the future climate change scenario.

  18. Sensitivity towards elevated pCO2 in great scallop (Pecten maximus Lamarck) embryos and fed larvae

    NASA Astrophysics Data System (ADS)

    Andersen, Sissel; Grefsrud, Ellen S.; Harboe, Torstein

    2017-02-01

    The increasing amount of dissolved anthropogenic CO2 has caused a drop in pH values in the open ocean known as ocean acidification. This change in seawater carbonate chemistry has been shown to have a negative effect on a number of marine organisms. Early life stages are the most vulnerable, and especially the organisms that produce calcified structures in the phylum Mollusca. Few studies have looked at effects on scallops, and this is the first study presented including fed larvae of the great scallop (Pecten maximus) followed until day 14 post-fertilization. Fertilized eggs from unexposed parents were exposed to three levels of pCO2 using four replicate units: 465 (ambient), 768 and 1294 µatm, corresponding to pHNIST of 7.94, 7.75 (-0.19 units) and 7.54 (-0.40 units), respectively. All of the observed parameters were negatively affected by elevated pCO2: survival, larval development, shell growth and normal shell development. The latter was observed to be affected only 2 days after fertilization. Negative effects on the fed larvae at day 7 were similar to what was shown earlier for unfed P. maximus larvae. Growth rate in the group at 768 µatm seemed to decline after day 7, indicating that the ability to overcome the environmental change at moderately elevated pCO2 was lost over time. The present study shows that food availability does not decrease the sensitivity to elevated pCO2 in P. maximus larvae. Unless genetic adaptation and acclimatization counteract the negative effects of long term elevated pCO2, recruitment in populations of P. maximus will most likely be negatively affected by the projected drop of 0.06-0.32 units in pH within year 2100.

  19. PROCESS OF EXTRACTING URANIUM AND RADIUM FROM ORES

    DOEpatents

    Sawyer, C.W.; Handley, R.W.

    1959-07-14

    A process is presented for extracting uranium and radium values from a uranium ore which comprises leaching the ore with a ferric chloride solution at an elevated temperature of above 50 deg C and at a pH less than 4; separating the ore residue from the leaching solution by filtration; precipitating the excess ferric iron present at a pH of less than 5 by adding CaCO/sub 3/ to the filtrate; separating the precipitate by filtration; precipitating the uranium present in the filtrate at a Ph less than 6 by adding BaCO/sub 3/ to the filtrate; separating the precipitate by filtration; and precipitating the radium present in the filtrate by adding H/sub 2/SO/sub 4/ to the filtrate.

  20. Whole cell immobilization of refractory glucose isomerase using tris(hydroxymethyl)phosphine as crosslinker for preparation of high fructose corn syrup at elevated temperature.

    PubMed

    Jia, Dong-Xu; Wang, Teng; Liu, Zi-Jian; Jin, Li-Qun; Li, Jia-Jia; Liao, Cheng-Jun; Chen, De-Shui; Zheng, Yu-Guo

    2018-04-04

    Glucose isomerase (GI) responsible for catalyzing the isomerization from d-glucose to d-fructose, was an important enzyme for producing high fructose corn syrup (HFCS). In a quest to prepare HFCS at elevated temperature and facilitate enzymatic recovery, an effective procedure for whole cell immobilization of refractory Thermus oshimai glucose isomerase (ToGI) onto Celite 545 using tris(hydroxymethyl)phosphine (THP) as crosslinker was established. The immobilized biocatalyst showed an activity of approximate 127.3 U/(g·immobilized product) via optimization in terms of cells loading, crosslinker concentration and crosslinking time. The pH optimum of the immobilized biocatalyst was displaced from pH 8.0 of native enzyme to neutral pH 7.0. Compared with conventional glutaraldehyde (GLU)-immobilized cells, it possessed the enhanced thermostability with 70.1% residual activity retaining after incubation at 90°C for 72 h. Moreover, the THP-immobilized biocatalyst exhibited superior operational stability, in which it retained 85.8% of initial activity after 15 batches of bioconversion at 85°C. This study paved a way for reducing catalysis cost for upscale preparation of HFCS with higher d-fructose concentration. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Sensitivity to ocean acidification differs between populations of the Sydney rock oyster: Role of filtration and ion-regulatory capacities.

    PubMed

    Stapp, Laura S; Parker, Laura M; O'Connor, Wayne A; Bock, Christian; Ross, Pauline M; Pörtner, Hans O; Lannig, G

    2018-04-01

    Understanding mechanisms of intraspecific variation in resilience to environmental drivers is key to predict species' adaptive potential. Recent studies show a higher CO 2 resilience of Sydney rock oysters selectively bred for increased growth and disease resistance ('selected oysters') compared to the wild population. We tested whether the higher resilience of selected oysters correlates with an increased ability to compensate for CO 2 -induced acid-base disturbances. After 7 weeks of exposure to elevated seawater PCO 2 (1100 μatm), wild oysters had a lower extracellular pH (pH e = 7.54 ± 0.02 (control) vs. 7.40 ± 0.03 (elevated PCO 2 )) and increased hemolymph PCO 2 whereas extracellular acid-base status of selected oysters remained unaffected. However, differing pH e values between oyster types were not linked to altered metabolic costs of major ion regulators (Na + /K + -ATPase, H + -ATPase and Na + /H + -exchanger) in gill and mantle tissues. Our findings suggest that selected oysters possess an increased systemic capacity to eliminate metabolic CO 2 , possibly through higher and energetically more efficient filtration rates and associated gas exchange. Thus, effective filtration and CO 2 resilience might be positively correlated traits in oysters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Wet and Occult Ion Deposition To An Elevated Forest Ecosystem In Switzerland

    NASA Astrophysics Data System (ADS)

    Buetzberger, P.; Burkard, R.; Eugster, W.

    Due to much higher ion concentrations in fogwater compared to rainwater, critical deposition levels of nutrients such as sulfate, nitrate or ammonium can be achieved in areas with high fog frequency. From summer 2001 until spring 2002 a measuring campaign of the FINIMSAS project (Fog Interception and Nutrient Inputs to Montane- Subalpine Areas in Switzerland) is being conducted at Laegeren (690m asl) on the Swiss Plateau. Fog frequency was high during our campaign. Similar measurements were carried out in 1986/87 at the exact same location, providing a reference data set for comparison. Because the deposition flux was measured differently during 1986/87, direct compar- isons are only possible for ion concentrations. Preliminary results show a significant decrease of sulfate and ammonium median concentrations of more than 50 % over this 15 year period, whereas nitrate decrease is relatively small. This corresponds well with the large-scale evolution of the air pollutant emissions of SO2 (major decrease) and NOx (relatively small decrease). The strong reduction of ammonium is probably due to the reduced use of fertilizer in the area. Chloride shows the largest decrease which can be attributed to the improvement of filtering technique of waste incinerations. In order to achieve maximum comparability, similar event types (e.g. advection fog vs. radiation fog) with similar meteorological conditions were interpreted individually. Analysis of fog nutrient input with respect to wind direction, wind speed, and origin of air mass will help to understand the influence of local and large-scale emissions on fog water concentrations in Switzerland. Computations based on half-hourly mean wind direction revealed significantly lower fog water input but higher median concentra- tions of all measured components if the dominating wind sector was East. Event-based wind field analyses were also carried out and compared to computed trajectories. In order to assess the influence of fog and rain water nutrient deposition on vegetation and soil, we measured throughfall precipitation close to the forest floor. Whereas fog water showed pH values as low as 3, throughfall water was between pH 6 and 7, indicating an important buffering capacity of this ecosystem mainly due to potassium leaching and probably calcium compounds. High ionic concentrations and low pH values seem to act mostly on the leaves.

  3. Interactive effect of elevated CO2 and temperature on coral physiology

    NASA Astrophysics Data System (ADS)

    Grottoli, A. G.; Cai, W.; Warner, M.; Melman, T.; Schoepf, V.; Baumann, J.; Matsui, Y.; Pettay, D. T.; Hoadley, K.; Xu, H.; Wang, Y.; Li, Q.; Hu, X.

    2011-12-01

    Increases in ocean acidification and temperature threaten coral reefs globally. However, the interactive effect of both lower pH and higher temperature on coral physiology and growth are poorly understood. Here, we present preliminary findings from a replicated controlled experiment where four species of corals (Acorpora millepora, Pocillopora damicornis, Montipora monasteriata, Turbinaria reniformis) were reared under the following six treatments for three weeks: 1) 400ppm CO2 and ambient temperature, 2) 400ppm CO2 and elevated temperature, 3) 650ppm CO2 and ambient temperature, 4) 650ppm CO2 and elevated temperature, 5) 800ppm CO2 and ambient temperature, 6) 800ppm CO2 and elevated temperature. Initial findings of photophysiological health (Fv/Fm), calcification rates (as measured by both buoyant weight and the total alkalinity methods), and energy reserves will be presented.

  4. Noninvasive model including right ventricular speckle tracking for the evaluation of pulmonary hypertension.

    PubMed

    Mahran, Yossra; Schueler, Robert; Weber, Marcel; Pizarro, Carmen; Nickenig, Georg; Skowasch, Dirk; Hammerstingl, Christoph

    2016-08-26

    To find parameters from transthorathic echocardiography (TTE) including speckle-tracking (ST) analysis of the right ventricle (RV) to identify precapillary pulmonary hypertension (PH). Forty-four patients with suspected PH undergoing right heart catheterization (RHC) were consecutively included (mean age 63.1 ± 14 years, 61% male gender). All patients underwent standardized TTE including ST analysis of the RV. Based on the subsequent TTE-derived measurements, the presence of PH was assessed: Left ventricular ejection fraction (LVEF) was calculated by Simpsons rule from 4Ch. Systolic pulmonary artery pressure (sPAP) was assessed with continuous wave Doppler of systolic tricuspid regurgitant velocity and regarded raised with values ≥ 30 mmHg as a surrogate parameter for RA pressure. A concomitantly elevated PCWP was considered a means to discriminate between the precapillary and postcapillary form of PH. PCWP was considered elevated when the E/e' ratio was > 12 as a surrogate for LV diastolic pressure. E/e' ratio was measured by gauging systolic and diastolic velocities of the lateral and septal mitral valve annulus using TDI mode. The results were then averaged with conventional measurement of mitral valve inflow. Furthermore, functional testing with six minutes walking distance (6MWD), ECG-RV stress signs, NT pro-BNP and other laboratory values were assessed. PH was confirmed in 34 patients (precapillary PH, n = 15, postcapillary PH, n = 19). TTE showed significant differences in E/e' ratio (precapillary PH: 12.3 ± 4.4, postcapillary PH: 17.3 ± 10.3, no PH: 12.1 ± 4.5, P = 0.02), LV volumes (ESV: 25.0 ± 15.0 mL, 49.9 ± 29.5 mL, 32.2 ± 13.6 mL, P = 0.027; EDV: 73.6 ± 24.0 mL, 110.6 ± 31.8 mL, 87.8 ± 33.0 mL, P = 0.021) and systolic pulmonary arterial pressure (sPAP: 61.2 ± 22.3 mmHg, 53.6 ± 20.1 mmHg, 31.2 ± 24.6 mmHg, P = 0.001). STRV analysis showed significant differences for apical RV longitudinal strain (RVAS: -7.5% ± 5.6%, -13.3% ± 4.3%, -14.3% ± 6.3%, P = 0.03). NT pro-BNP was higher in patients with postcapillary PH (4677.0 ± 7764.1 pg/mL, precapillary PH: 1980.3 ± 3432.1 pg/mL, no PH: 367.5 ± 420.4 pg/mL, P = 0.03). Patients with precapillary PH presented significantly more often with ECG RV-stress signs (P = 0.001). Receiver operating characteristics curve analyses displayed the most significant area under the curve (AUC) for RVAS (cut-off < -6.5%, AUC 0.91, P < 0.001), sPAP (cut-off > 33 mmHg, AUC 0.86, P < 0.001) and ECG RV stress signs (AUC 0.83, P < 0.001). The combination of these parameters had a sensitivity of 82.8% and a specificity of 17.2% to detect precapillary PH. The combination of non-invasive measurements allows feasible assessment of PH and seems beneficial for the differentiation between the pre- and postcapillary form of this disease.

  5. Proteomic analysis of the response of α-ketoglutarate-producer Yarrowia lipolytica WSH-Z06 to environmental pH stimuli.

    PubMed

    Guo, Hongwei; Wan, Hui; Chen, Hongwen; Fang, Fang; Liu, Song; Zhou, Jingwen

    2016-10-01

    During bioproduction of short-chain carboxylates, a shift in pH is a common strategy for enhancing the biosynthesis of target products. Based on two-dimensional gel electrophoresis, comparative proteomics analysis of general and mitochondrial protein samples was used to investigate the cellular responses to environmental pH stimuli in the α-ketoglutarate overproducer Yarrowia lipolytica WSH-Z06. The lower environmental pH stimuli tensioned intracellular acidification and increased the level of reactive oxygen species (ROS). A total of 54 differentially expressed protein spots were detected, and 11 main cellular processes were identified to be involved in the cellular response to environmental pH stimuli. Slight decrease in cytoplasmic pH enhanced the cellular acidogenicity by elevating expression level of key enzymes in tricarboxylic acid cycle (TCA cycle). Enhanced energy biosynthesis, ROS elimination, and membrane potential homeostasis processes were also employed as cellular defense strategies to compete with environmental pH stimuli. Owing to its antioxidant role of α-ketoglutarate, metabolic flux shifted to α-ketoglutarate under lower pH by Y. lipolytica in response to acidic pH stimuli. The identified differentially expressed proteins provide clues for understanding the mechanisms of the cellular responses and for enhancing short-chain carboxylate production through metabolic engineering or process optimization strategies in combination with manipulation of environmental conditions.

  6. Ionization and order disorder transition of hydrogels with ionizable hydrophobic side chain

    NASA Astrophysics Data System (ADS)

    Matsuda, A.; Katayama, Y.; Kaneko, T.; Gong, J. P.; Osada, Y.

    2000-10-01

    pH dependence of the structural change of the amphiphilic copolymer gels containing the crystallizable side chain with carboxylic end group, poly(16-acryloylhexadecanoic acid (AHA)- co-acrylic acid (AA)), has been investigated. The poly(AHA- co-AA) gels could maintain the crystalline domain of AHA units up to pH=11 at ambient temperature, which abruptly transferred into disordered state beyond this pH due to the dissociation of the carboxylic group of AHA. However, the addition of salt or divalent ion enabled to crystallize the gel even at pH=11.5 due to the effective shielding of the electrostatic repulsion. The mechanism of order-disorder transition through changes of pH and salt concentration was discussed in terms of association-dissociation of AHA groups.

  7. Short-term acute hypercapnia affects cellular responses to trace metals in the hard clams Mercenaria mercenaria.

    PubMed

    Ivanina, Anna V; Beniash, Elia; Etzkorn, Markus; Meyers, Tiffany B; Ringwood, Amy H; Sokolova, Inna M

    2013-09-15

    Estuarine and coastal habitats experience large fluctuations of environmental factors such as temperature, salinity, partial pressure of CO2 ( [Formula: see text] ) and pH; they also serve as the natural sinks for trace metals. Benthic filter-feeding organisms such as bivalves are exposed to the elevated concentrations of metals in estuarine water and sediments that can strongly affect their physiology. The effects of metals on estuarine organisms may be exacerbated by other environmental factors. Thus, a decrease in pH caused by high [Formula: see text] (hypercapnia) can modulate the effects of trace metals by affecting metal bioavailability, accumulation or binding. To better understand the cellular mechanisms of interactions between [Formula: see text] and trace metals in marine bivalves, we exposed isolated mantle cells of the hard clams (Mercenaria mercenaria) to different levels of [Formula: see text] (0.05, 1.52 and 3.01 kPa) and two major trace metal pollutants - cadmium (Cd) and copper (Cu). Elevated [Formula: see text] resulted in a decrease in intracellular pH (pHi) of the isolated mantle cells from 7.8 to 7.4. Elevated [Formula: see text] significantly but differently affected the trace metal accumulation by the cells. Cd uptake was suppressed at elevated [Formula: see text] levels while Cu accumulation has greatly accelerated under hypercapnic conditions. Interestingly, at higher extracellular Cd levels, labile intracellular Cd(2+) concentration remained the same, while intracellular levels of free Zn(2+) increased suggesting that Cd(2+) substitutes bound Zn(2+) in these cells. In contrast, Cu exposure did not affect intracellular Zn(2+) but led to a profound increase in the intracellular levels of labile Cu(2+) and Fe(2+). An increase in the extracellular concentrations of Cd and Cu led to the elevated production of reactive oxygen species under the normocapnic conditions (0.05 kPa [Formula: see text] ); surprisingly, this effect was mitigated in hypercapnia (1.52 and 3.01 kPa). Overall, our data reveal complex and metal-specific interactions between the cellular effects of trace metals and [Formula: see text] in clams and indicate that variations in environmental [Formula: see text] may modulate the biological effects of trace metals in marine organisms. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Recycling irrigation reservoir stratification and implications for crop health and production.

    USDA-ARS?s Scientific Manuscript database

    Stratification is often assumed to only take place in deep water bodies. Recycling irrigation reservoirs often are shallow; however, they receive agricultural runoff containing elevated concentrations of nutrients and sediments. This study investigated the temperature, dissolved oxygen and pH charac...

  9. Free ammonia offers algal crop protection from predators in dairy wastewater and ammonium-rich media.

    PubMed

    Thomas, Patrick K; Dunn, Gary P; Passero, Maxine; Feris, Kevin P

    2017-11-01

    Cost-effective methods for protecting crops from grazing organisms like rotifers are needed to reduce the risk of pond crashes in mass algal cultures. We present a novel strategy to optimize the exposure time to free ammonia, via control of media pH, in both defined media and dairy anaerobic digester effluent to suppress rotifers and maintain algal productivity. We tested five different free ammonia exposure times (0, 1, 2, 6, and 12h) and found a significant nonlinear effect of exposure time (p<0.0001) but not pH (p>0.9) on rotifer survival. In both media types, 6-12h of elevated free ammonia significantly reduced Brachionus plicatilis rotifer survival with no negative effects on Nannochloropsis oculata, while shorter exposure times were insufficient to inhibit rotifers, leading to severe algal culture crashes. These results suggest that algal crops can be protected from rotifers, without productivity loss, by elevating free ammonia for 6 or more hours. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ameliorating effects of industrial sugar residue on the Jales gold mine spoil (NE Portugal) using Holcus lanatus and Phaseolus vulgaris as indicators.

    PubMed

    Bleeker, P M; Teiga, P M; Santos, M H; de Koe, T; Verkleij, J A C

    2003-01-01

    Phytostabilisation of bare heavily contaminated substrate, such as abandoned mine sites, is considered a very appropriate technology in order to diminish erosion and dispersion of contaminants into the surroundings. In this short-term pot study, application of industrial sugar residue (ISR), a waste product of the sugar industry, proved to ameliorate spoils conditions for plant performance by elevating pH and immobilising several metals. Although arsenate concentrations were positively correlated to spoil pH and spoil treatment with ISR mobilised As, growth of both Phaseolus vulgaris and Holcus lanatus improved significantly after applications of 3.75 g ISR kg(-1) dry spoil. Nutrient uptake from the substrate, with the exception of potassium, was elevated by ISR. As a remediation technique ISR application could be effective although in As-contaminated sites application might be restricted to areas where leaching to (ground) water does not form a risk.

  11. Serum-free suspension cultivation of PER.C6(R) cells and recombinant adenovirus production under different pH conditions.

    PubMed

    Xie, Liangzhi; Pilbrough, Warren; Metallo, Christian; Zhong, Tanya; Pikus, Lana; Leung, John; Auniņs, John G; Zhou, Weichang

    2002-12-05

    PER.C6(R) cell growth, metabolism, and adenovirus production were studied in head-to-head comparisons in stirred bioreactors under different pH conditions. Cell growth rate was found to be similar in the pH range of 7.1-7.6, while a long lag phase and a slower growth rate were observed at pH 6.8. The specific consumption rates of glucose and glutamine decreased rapidly over time during batch cell growth, as did the specific lactate and ammonium production rates. Cell metabolism in both infected and uninfected cultures was very sensitive to culture pH, resulting in dramatic differences in glucose/glutamine consumption and lactate/ammonium production under different pH conditions. It appeared that glucose metabolism was suppressed at low pH but the efficiency of energy production from glucose was enhanced. Adenovirus infection resulted in profound changes in cell growth and metabolism. Cell growth was largely arrested under all pH conditions, while glucose consumption and lactate production were elevated post virus infection. Virus infection induced a reduction in glutamine consumption at low pH but an increase at high pH. The optimal pH for adenovirus production was found to be 7.3 under the experimental conditions used in the study. Deviations from this optimum resulted in significant reductions of virus productivity. The results indicate that culture pH is a very critical process parameter in PER.C6(R) cell culture and adenovirus production. Copyright 2002 Wiley Periodicals, Inc.

  12. Fermentation pH influences the physiological-state dynamics of Lactobacillus bulgaricus CFL1 during pH-controlled culture.

    PubMed

    Rault, Aline; Bouix, Marielle; Béal, Catherine

    2009-07-01

    This study aims at better understanding the effects of fermentation pH and harvesting time on Lactobacillus bulgaricus CFL1 cellular state in order to improve knowledge of the dynamics of the physiological state and to better manage starter production. The Cinac system and multiparametric flow cytometry were used to characterize and compare the progress of the physiological events that occurred during pH 6 and pH 5 controlled cultures. Acidification activity, membrane damage, enzymatic activity, cellular depolarization, intracellular pH, and pH gradient were determined and compared during growing conditions. Strong differences in the time course of viability, membrane integrity, and acidification activity were displayed between pH 6 and pH 5 cultures. As a main result, the pH 5 control during fermentation allowed the cells to maintain a more robust physiological state, with high viability and stable acidification activity throughout growth, in opposition to a viability decrease and fluctuation of activity at pH 6. This result was mainly explained by differences in lactate concentration in the culture medium and in pH gradient value. The elevated content of the ionic lactate form at high pH values damaged membrane integrity that led to a viability decrease. In contrast, the high pH gradient observed throughout pH 5 cultures was associated with an increased energetic level that helped the cells maintain their physiological state. Such results may benefit industrial starter producers and fermented-product manufacturers by allowing them to better control the quality of their starters, before freezing or before using them for food fermentation.

  13. Ecotoxicology of aluminum to fish and wildlife

    USGS Publications Warehouse

    Sparling, D.W.; Lowe, T.P.; Campbell, P.G.C.; Yokel, Robert A.; Golub, Mari S.

    1997-01-01

    The toxicity of aluminum has been studied extensively in fish, less so in invertebrates, amphibians, and birds, and not at all in reptiles and free-ranging mammals. For aquatic organisms, Al bioavailability and toxicity are intimately related to ambient pH; changes in ambient acidity may affect Al solubility, dissolved Al speciation, and organism sensitivity to Al. At moderate acidity (pH 5.5 to 7.0), fish and invertebrates may be stressed due to Al adsorption onto gill surfaces and subsequent asphyxiation. At pH 4.5 to 5.5, Al can impair ion regulation and augment the toxicity of H+. At lower pH, elevated Al can temporarily ameliorate the toxic effects of acidity by competing for binding sites with H+. Aluminum toxicity in aquatic environments is further affected by the concentration of ligands such as dissolved organic matter, fluoride, or sulfate, and of other cations such as Ca and Mg which compete for cellular binding sites. Although risk of Al toxicity is often based on a model of free-ion (Al3+) activity, recent evidence suggests that factors determining Al toxicity may be more complex. In general, aquatic invertebrates are less sensitive to Al toxicity and acidity than fish; thus acidified, Al-rich waters may actually reduce predation pressure. Fish may be affected by asphyxiation at moderate acidic conditions or electrolyte imbalances at lower pH. In amphibians, embryos and young larvae are typically more sensitive than older larvae. Early breeding amphibians, which lay eggs in ephemeral ponds and streams subject to spring runoff, are most at risk from Al and acidification; those that breed later in the year in lakes or rivers are least vulnerable. Birds and mammals are most likely exposed through dietary ingestion of soil or Al-contaminated foods. Concentrations > 1000 mg.kg-1 in food may be toxic to young birds and mammals. Clinical signs in these animals are consistent with rickets because Al precipitates with P in the gut. Suggestions for additional research on the ecotoxicology of Al to wild animals are provided.

  14. Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate.

    PubMed

    Zhao, Xiaodan; Ma, Jun; von Gunten, Urs

    2017-08-01

    The kinetics for the reactions of hypoiodous acid (HOI) with various phenols (phenol, 4-nitrophenol, 4-hydroxybenzoic acid), 3-oxopentanedioic acid (3-OPA) and flavone were investigated in the pH range of 6.0-11.0. The apparent second order rate constants for the reactions of HOI with phenolic compounds, 3-OPA, flavone and citric acid at pH 8.0 are 10-10 7  M -1 s -1 , (4.0 ± 0.3) × 10 3  M -1 s -1 , (2.5 ± 0.2) × 10 3  M -1 s -1 and <1 M -1 s -1 , respectively. The effect of buffer type and concentration was investigated with acetate, phosphate and borate. All tested buffers promote the HOI reactions with phenols. The percentage of iodine incorporation for various (hydroxyl)phenolic compounds and two NOM extracts ranges from 5% to 98%, indicating that electrophilic aromatic substitution and/or electron transfer can occur. The extent of these reactions depends on the number and relative position of the hydroxyl moieties on the phenolic compounds. Iodoform formation rates increase with increasing pH and iodoform yields increase from 9% to 67% for pH 6.0-10.0 for the HOI/3-OPA reactions. In the permanganate/HOI/3-OPA and permanganate/iodide/3-OPA system at pH < 8.0, iodoform formation is elevated compared to the HOI/3-OPA system in absence of permanganate. For pH > 8.0, in presence of permanganate, iodoform formation is significantly inhibited and iodate formation enhanced, which is due to a faster permanganate-mediated HOI disproportionation to iodate compared to the iodination process. The production of reactive iodine in real waters containing iodide in contact with permanganate may lead to the formation of iodinated organic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Release of Hexavalent Chromium by Ash and Soils in Wildfire-Impacted Areas

    USGS Publications Warehouse

    Wolf, Ruth E.; Morman, Suzette A.; Plumlee, Geoffrey S.; Hageman, Philip L.; Adams, Monique

    2008-01-01

    The highly oxidizing environment of a wildfire has the potential to convert any chromium present in the soil or in residential or industrial debris to its more toxic form, hexavalent chromium, a known carcinogen. In addition, the highly basic conditions resulting from the combustion of wood and wood products could result in the stabilization of any aqueous hexavalent chromium formed. Samples were collected from the October 2007 wildfires in Southern California and subjected to an array of test procedures to evaluate the potential effects of fire-impacted soils and ashes on human and environmental health. Soil and ash samples were leached using de-ionized water to simulate conditions resulting from rainfall on fire-impacted areas. The resulting leachates were of high pH (10-13) and many, particularly those of ash from burned residential areas, contained elevated total chromium as much as 33 micrograms per liter. Samples were also leached using a near-neutral pH simulated lung fluid to model potential chemical interactions of inhaled particles with fluids lining the respiratory tract. High Performance Liquid Chromatography coupled to Inductively Coupled Plasma Mass Spectrometry was used to separate and detect individual species (for example, Cr+3, Cr+6, As+3, As+5, Se+4, and Se+6). These procedures were used to determine the form of the chromium present in the de-ionized water and simulated lung fluid leachates. The results show that in the de-ionized water leachate, all of the chromium present is in the form of Cr+6, and the resulting high pH tends to stabilize Cr+6 from reduction to Cr+3. Analysis of the simulated lung fluid leachates indicates that the predominant form of chromium present in the near-neutral pH of lung fluid would be Cr+6, which is of concern due to the high possibility of inhalation of the small ash and soil particulates, particularly by fire or restoration crews.

  16. Physiological and isotopic responses of scleractinian corals to ocean acidification

    NASA Astrophysics Data System (ADS)

    Krief, Shani; Hendy, Erica J.; Fine, Maoz; Yam, Ruth; Meibom, Anders; Foster, Gavin L.; Shemesh, Aldo

    2010-09-01

    Uptake of anthropogenic CO 2 by the oceans is altering seawater chemistry with potentially serious consequences for coral reef ecosystems due to the reduction of seawater pH and aragonite saturation state ( Ωarag). The objectives of this long-term study were to investigate the viability of two ecologically important reef-building coral species, massive Porites sp. and Stylophora pistillata, exposed to high pCO 2 (or low pH) conditions and to observe possible changes in physiologically related parameters as well as skeletal isotopic composition. Fragments of Porites sp. and S. pistillata were kept for 6-14 months under controlled aquarium conditions characterized by normal and elevated pCO 2 conditions, corresponding to pH T values of 8.09, 7.49, and 7.19, respectively. In contrast with shorter, and therefore more transient experiments, the long experimental timescale achieved in this study ensures complete equilibration and steady state with the experimental environment and guarantees that the data provide insights into viable and stably growing corals. During the experiments, all coral fragments survived and added new skeleton, even at seawater Ωarag < 1, implying that the coral skeleton is formed by mechanisms under strong biological control. Measurements of boron (B), carbon (C), and oxygen (O) isotopic composition of skeleton, C isotopic composition of coral tissue and symbiont zooxanthellae, along with physiological data (such as skeletal growth, tissue biomass, zooxanthellae cell density, and chlorophyll concentration) allow for a direct comparison with corals living under normal conditions and sampled simultaneously. Skeletal growth and zooxanthellae density were found to decrease, whereas coral tissue biomass (measured as protein concentration) and zooxanthellae chlorophyll concentrations increased under high pCO 2 (low pH) conditions. Both species showed similar trends of δ 11B depletion and δ 18O enrichment under reduced pH, whereas the δ 13C results imply species-specific metabolic response to high pCO 2 conditions. The skeletal δ 11B values plot above seawater δ 11B vs. pH borate fractionation curves calculated using either the theoretically derived α B value of 1.0194 (Kakihana et al. (1977) Bull. Chem. Soc. Jpn.50, 158) or the empirical α B value of 1.0272 (Klochko et al. (2006) EPSL248, 261). However, the effective α B must be greater than 1.0200 in order to yield calculated coral skeletal δ 11B values for pH conditions where Ωarag ⩾ 1. The δ 11B vs. pH offset from the seawater δ 11B vs. pH fractionation curves suggests a change in the ratio of skeletal material laid down during dark and light calcification and/or an internal pH regulation, presumably controlled by ion-transport enzymes. Finally, seawater pH significantly influences skeletal δ 13C and δ 18O. This must be taken into consideration when reconstructing paleo-environmental conditions from coral skeletons.

  17. Water movement and fate of nitrogen during drip dispersal of wastewater effluent into a semi-arid landscape.

    PubMed

    Siegrist, Robert L; Parzen, Rebecca; Tomaras, Jill; Lowe, Kathryn S

    2014-04-01

    Drip dispersal of partially treated wastewater was investigated as an approach for onsite water reclamation and beneficial reuse of water and nutrients in a semi-arid climate. At the Mines Park Test Site in Golden, Colorado, a drip dispersal system (DDS) was installed at 20- to 30-cm depth in an Ascalon sandy loam soil profile. Two zones with the same layout were established to enable study of two different hydraulic loading rates. Zones 1 and 2 each had one half of the landscape surface with native vegetation and the other with Kentucky bluegrass sod. After startup activities, domestic septic tank effluent was dispersed five times a day at footprint loading rates of 5 L/m(2)/d for Zone 1 and 10 L/m(2)/d for Zone 2. Over a two-year period, monitoring included the frequency and volume of effluent dispersed and its absorption by the landscape. After the first year of operation in October a (15)N tracer test was completed in the sodded portion of Zone 1 and samples of vegetation and soil materials were collected and analyzed for water content, pH, nitrogen, (15)N, and bacteria. Research revealed that both zones were capable of absorbing the effluent water applied at 5 or 10 L/m(2)/d. Effluent water dispersed from an emitter infiltrates at the emitter and along the drip tubing and water movement is influenced by hydrologic conditions. Based on precipitation and evapotranspiration at the Test Site, only a portion of the effluent water dispersed migrated downward in the soil (approx. 34% or 64% for Zone 1 or 2, respectively). Sampling within Zone 1 revealed water filled porosities were high throughout the soil profile (>85%) and water content was most elevated along the drip tubing (17-22% dry wt.), which is also where soil pH was most depressed (pH 4.5) due to nitrification reactions. NH4(+) and NO3(-) retention occurred near the dispersal location for several days and approximately 51% of the N applied was estimated to be removed by plant uptake and denitrification. Heterotrophic bacteria levels were elevated (up to 1 log) in the subsurface within the DDS but there was effective elimination of effluent fecal coliform and Escherichia coli bacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. How Helicobacter pylori urease may affect external pH and influence growth and motility in the mucus environment: evidence from in-vitro studies.

    PubMed

    Sidebotham, Ramon L; Worku, Mulugeta L; Karim, Q Najma; Dhir, Nirmal K; Baron, J Hugh

    2003-04-01

    Survival of Helicobacter pylori is dependent upon urease in the cytoplasm and at the bacterial surface. We have sought to clarify how alkaline ammonium salts, released from urea by this enzyme, might alter mucus pH and so affect growth and motility of the bacterium in the gastric mucus environment. Experiments were conducted in vitro to determine how the growth and motility of H. pylori are affected by changes in external pH, and how the bacterium, by hydrolysing urea, alters the pH of the bicarbonate buffer that occurs at the gastric mucosal surface. These data were fitted into experimental models that describe how pH varies within the mucus layer in the acid-secreting stomach. H. pylori was motile between pH 5 and 8, with optimal motility at pH 5. It grew between pH 6 and 8, with optimal growth at pH 6. The bacterium had urease activity between pH 2.7 and 7.4, as evidenced by pH rises in bicarbonate-buffered solutions of urea. Changes in buffer pH were dependent upon initial pH and urea concentration, with the greatest rate of pH change occurring at pH 3. Modelling experiments utilizing these data indicated that (1) in the absence of urease, H. pylori growth and motility in the mucus layer would be restricted severely by low mucus pH in the acid-secreting stomach, and (2) urease will sometimes inhibit H. pylori growth and motility in the mucus layer by elevating the pH of the mucus environment above pH 8. Urease is essential to the growth and motility of H. pylori in the mucus layer in the acid-secreting stomach, but, paradoxically, sometimes it might suppress colonization by raising the mucus pH above 8. This latter effect may protect the bacteria from the adverse consequences of overpopulation.

  19. Cancer Survival Estimates Due to Non-Uniform Loss to Follow-Up and Non-Proportional Hazards

    PubMed

    K M, Jagathnath Krishna; Mathew, Aleyamma; Sara George, Preethi

    2017-06-25

    Background: Cancer survival depends on loss to follow-up (LFU) and non-proportional hazards (non-PH). If LFU is high, survival will be over-estimated. If hazard is non-PH, rank tests will provide biased inference and Cox-model will provide biased hazard-ratio. We assessed the bias due to LFU and non-PH factor in cancer survival and provided alternate methods for unbiased inference and hazard-ratio. Materials and Methods: Kaplan-Meier survival were plotted using a realistic breast cancer (BC) data-set, with >40%, 5-year LFU and compared it using another BC data-set with <15%, 5-year LFU to assess the bias in survival due to high LFU. Age at diagnosis of the latter data set was used to illustrate the bias due to a non-PH factor. Log-rank test was employed to assess the bias in p-value and Cox-model was used to assess the bias in hazard-ratio for the non-PH factor. Schoenfeld statistic was used to test the non-PH of age. For the non-PH factor, we employed Renyi statistic for inference and time dependent Cox-model for hazard-ratio. Results: Five-year BC survival was 69% (SE: 1.1%) vs. 90% (SE: 0.7%) for data with low vs. high LFU respectively. Age (<45, 46-54 & >54 years) was a non-PH factor (p-value: 0.036). However, survival by age was significant (log-rank p-value: 0.026), but not significant using Renyi statistic (p=0.067). Hazard ratio (HR) for age using Cox-model was 1.012 (95%CI: 1.004 -1.019) and the same using time-dependent Cox-model was in the other direction (HR: 0.997; 95% CI: 0.997- 0.998). Conclusion: Over-estimated survival was observed for cancer with high LFU. Log-rank statistic and Cox-model provided biased results for non-PH factor. For data with non-PH factors, Renyi statistic and time dependent Cox-model can be used as alternate methods to obtain unbiased inference and estimates. Creative Commons Attribution License

  20. Hydrolysis mechanism of methyl parathion evidenced by Q-Exactive mass spectrometry.

    PubMed

    Liu, Yuan; Zhang, Caixiang; Liao, Xiaoping; Luo, Yinwen; Wu, Sisi; Wang, Jianwei

    2015-12-01

    Organophosphorus pesticides (OPPs), a kind of widely used pesticides, are currently attracting great attention due to their adverse effects on human central nervous systems, particularly in children. Although the hydrolysis behavior of OPPs has been studied well, its hydrolysis mechanism remained controversial, especially at various pH conditions, partly due to their relatively complex structures and abundant moieties that were prone to be attacked by nucleophiles. The Q-Exactive mass spectrometer, part of those hybrid high-resolution mass spectrometers (HRMS), was used to determine hydrolysis products of methyl parathion (MP), a kind of OPPs in situ buffer aqueous solution with pH ranging from 1 to 13 in this study. Most of the complex hydrolysis products of MP were identified due to the high sensitivity and accuracy of HRMS. The results demonstrated that the hydrolysis rate and pathway of MP were strong pH dependent. With the increase of pH, the hydrolysis rate of MP increased, and two different reaction mechanisms were identified: SN (2)@P pathway dominated the hydrolysis process at high pH (e.g., pH ≥ 11) while SN (2)@C was the main behavior at low pH (e.g., pH ≤ 9). This study helps understand the hydrolysis mechanism of OPPs at various pH and extends the use of Q-Exactive mass spectrometry in identifying organic pollutants and their degradation products in environmental matrices.

  1. Improving Use of Prehospital 12-Lead Electrocardiography for Early Identification and Treatment of Acute Coronary Syndrome and ST-Elevation Myocardial Infarction

    PubMed Central

    Daudelin, Denise H.; Sayah, Assaad J.; Kwong, Manlik; Restuccia, Marc C.; Porcaro, William A.; Ruthazer, Robin; Goetz, Jessica D.; Lane, William M.; Beshansky, Joni R.; Selker, Harry P.

    2010-01-01

    Background Performance of Prehospital electrocardiograms (PH-ECGs) expedites identification of ST-elevation myocardial infarction (STEMI) and reduces door-to-balloon (D2B) times for patients receiving reperfusion therapy. To fully realize this benefit, emergency medical service (EMS) performance must be measured and used in feedback reporting and quality improvement (QI). Methods and Results This quasi-experimental design trial tested an approach to improving EMS PH-ECG using feedback reporting and QI interventions in two cities' EMS agencies and receiving hospitals. All patients ≥ 30 years, calling 9-1-1 with possible acute coronary syndrome (ACS) were included. In total 6,994 patients were included: 1,589 patients in the baseline period without feedback and 5,405 in the intervention period when there were feedback reports and QI interventions. Mean age (SD) was 66 (±17) and women represented 51%. Feedback and QI increased PH-ECG performance for patients with ACS from 76% to 93% (p=<.0001) and for patients with STEMI from 77% to 99% (p= <.0001). Aspirin administration increased from 75% to 82% (p=0.001) but the median total EMS run time remained the same at 22 minutes. The proportion of patients with D2B times of ≤90 minutes increased from 27% to 67% (p=0.006). Conclusion Feedback reports and QI improved PH-ECG performance for patients with ACS and STEMI and increased aspirin administration, without prehospital transport delays. Improvements in D2B times were also seen. PMID:20484201

  2. Infrared spectrum analysis of the dissociated states of simple amino acids.

    PubMed

    Sebben, Damien; Pendleton, Phillip

    2014-11-11

    In this work, we present detailed analyses of the dissociation of dilute aqueous solutions of glycine and of lysine over the range 18 resulted in consistent pKa values for the amino acids. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Trace metals in estuaries in the Russian Far East and China: case studies from the Amur River and the Changjiang.

    PubMed

    Shulkin, Vladimir; Zhang, Jing

    2014-11-15

    This paper compares the distributions of dissolved and particulate forms of Mn, Fe, Ni, Cu, Zn, Cd, and Pb in the estuaries of the largest rivers in East Asia: the Amur River and the Changjiang (Yangtze River). High suspended solid concentrations, elevated pH, and relatively low dissolved trace metal concentrations are characteristics of the Changjiang. Elevated dissolved Fe and Mn concentrations, neutral pH, and relatively low suspended solid concentrations are characteristics of the Amur River. The transfer of dissolved Fe to suspended forms is typical in the Amur River estuary, though Cd and Mn tend to mobilize to solution, and Cu and Ni are diluted in the estuarine system. Metal concentrations in suspended matter in the Amur River estuary are controlled by the ratio of terrigenous riverine material, enriched in Al and Fe, and marine biogenic particles, enriched in Cu, Mn, Cd, and in some cases Ni. The increase in dissolved forms of Mn, Fe, Ni, Cu, Cd, and Pb compared with river end-member is unique to the Changjiang estuary. Particle-solution interactions are not reflected in bulk suspended-solid metal concentrations in the Changjiang estuary due to the dominance of particulate forms of these metals. Cd is an exception in the Changjiang estuary, where the increase in dissolved Cd is of comparable magnitude to the decrease in particulate Cd. Despite runoff in the Amur River being lower than that in the Changjiang, the fluxes of dissolved Mn, Zn and Fe in the Amur River exceed those in the Changjiang. Dissolved Ni, and Cd fluxes are near equal in both estuaries, but dissolved Cu is lower in the Amur River estuary. The hydrological and physico-chemical river characteristics are dominated at the assessment of river influence on the adjoining coastal sea areas despite differences in estuarine processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Reactive oxygen species-mediated breast cell carcinogenesis enhanced by multiple carcinogens and intervened by dietary ergosterol and mimosine.

    PubMed

    Pluchino, Lenora Ann; Liu, Amethyst Kar-Yin; Wang, Hwa-Chain Robert

    2015-03-01

    Most breast cancers occur sporadically due to long-term exposure to low-dose carcinogens in the diet and the environment. Specifically, smoke, polluted air, and high-temperature cooked meats comprise multiple carcinogens, such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), benzo[α]pyrene (B[α]P), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). We sought to determine if these carcinogens act together to induce breast cell carcinogenesis, and if so, whether noncytotoxic dietary agents could intervene. We demonstrated that coexposure to physiologically achievable doses of NNK, B[α]P, and PhIP (NBP) holistically enhanced initiation and progression of breast cell carcinogenesis. Reactive oxygen species (ROS) and activation of the ERK pathway were transiently induced by NBP in each exposure, and cross talk between reinforced ROS elevation and ERK activation played an essential role in increased DNA oxidation and damage. After cumulative exposures to NBP, this cross talk contributed to enhanced initiation of cellular carcinogenesis and led to enhanced acquisition of cancer-associated properties. Using NBP-induced transient changes, such as ROS elevation and ERK pathway activation, and cancer-associated properties as targeted endpoints, we revealed, for the first time, that two less-studied dietary compounds, ergosterol and mimosine, at physiologically achievable noncytotoxic levels, were highly effective in intervention of NBP-induced cellular carcinogenesis. Combined ergosterol and mimosine were more effective than individual agents in blocking NBP-induced transient endpoints, including ROS-mediated DNA oxidation, which accounted for their preventive ability to suppress progression of NBP-induced cellular carcinogenesis. Thus, dietary components, such as mushrooms containing ergosterol and legumes containing mimosine, should be considered for affordable prevention of sporadic breast cancer associated with long-term exposure to environmental and dietary carcinogens. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Interactions between sanitizers and packaging gas compositions and their effects on the safety and quality of fresh-cut onions (Allium cepa L.).

    PubMed

    Page, Natalie; González-Buesa, Jaime; Ryser, Elliot T; Harte, Janice; Almenar, Eva

    2016-02-02

    Onions are one of the most widely utilized vegetables worldwide, with demand for fresh-cut onions steadily increasing. Due to heightened safety concerns and consumer demand, the implications of sanitizing and packaging on fresh-cut onion safety and quality need to be better understood. The objective of this study was to investigate the effect of produce sanitizers, in-package atmospheres, and their interactions on the growth of Salmonella Typhimurium, mesophilic aerobic bacteria, yeast and mold, and the physico-chemical quality of diced onions to determine the best sanitizer and in-package atmosphere combination for both safety and quality. Diced onions were inoculated or not with S. Typhimurium, sanitized in sodium hypochlorite, peroxyacetic acid, or liquid chlorine dioxide, and then packaged in either polylactic acid bags containing superatmospheric O2, elevated CO2/reduced O2, or air, or in polyethylene terephthalate snap-fit containers. Throughout 14 days of storage at 7 °C, packaged diced onions were assessed for their safety (S. Typhimurium), and quality (mesophilic aerobic bacteria, yeasts and molds, physico-chemical analyses, and descriptive and consumer acceptance sensory panels). While sanitizer affected (P<0.05) fewer parameters (S. Typhimurium, mesophiles, yeasts and molds, headspace CO2, weight loss, and pH), in-package atmosphere had a significant (P<0.05) effect on all parameters evaluated. Two-way interactions between sanitizer and atmosphere that affected S. Typhimurium and pH were identified whereas 3-way interactions (sanitizer, atmosphere and time) were only observed for headspace CO2. Sodium hypochlorite and elevated CO2/reduced O2 was the best sanitizer and in-package atmosphere combination for enhancing the safety and quality of packaged diced onions. In addition, this combination led to diced onions acceptable for purchase after 2 weeks of storage by trained and consumer panels. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effects of solid/liquid phase fractionation on pH and aqueous species molality in subduction zone fluids

    NASA Astrophysics Data System (ADS)

    Zhong, X.; Galvez, M. E.

    2017-12-01

    Metamorphic fluids are a crucial ingredient of geodynamic evolution, i.e. heat transfer, rock mechanics and metamorphic/metasomatic reactions. During crustal evolution at elevated P and T, rock forming components can be effectively fractionated from the reactive rock system by at least two processes: 1. extraction from porous rocks by liquid phases such as solute-bearing (e.g. Na+, Mg2+) aqueous fluids or partial melts. 2. isolation from effective bulk rock composition due to slow intragranular diffusion in high-P refractory phases such as garnet. The effect of phase fractionation (garnet, partial melt and aqueous species) on fluid - rock composition and properties remain unclear, mainly due to a high demand in quantitative computations of the thermodynamic interactions between rocks and fluids over a wide P-T range. To investigate this problem, we build our work on an approach initially introduced by Galvez et al., (2015) with new functionalities added in a MATLAB code (Rubisco). The fluxes of fractionated components in fluid, melt and garnet are monitored along a typical prograde P-T path for a model crustal pelite. Some preliminary results suggest a marginal effect of fractionated aqueous species on fluid and rock properties (e.g. pH, composition), but the corresponding fluxes are significant in the context of mantle wedge metasomatism. Our work provides insight into the role of high-P phase fractionation on mass redistribution between the surface and deep Earth in subduction zones. Existing limitations relevant to our liquid/mineral speciation/fractionation model will be discussed as well. ReferencesGalvez, M.E., Manning, C.E., Connolly, J.A.D., Rumble, D., 2015. The solubility of rocks in metamorphic fluids: A model for rock-dominated conditions to upper mantle pressure and temperature. Earth Planet. Sci. Lett. 430, 486-498.

  7. Behavior of lead in pristine and urbanized acid wetlands in the New Jersey pinelands with special reference to the role of Sphagnum moss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedagiri, U.K.

    1989-01-01

    The purpose of this study was to investigate the behavior of lead in naturally acidic Sphagnum moss-dominated wetlands of the New Jersey Pinelands and to compare it to the behavior of lead in similar wetlands which had been impacted by storm-water runoff. Data from the field showed that the runoff-impacted sites were characterized by elevated pH, elimination of Spaghnum ground cover, erosion of peat substrate and high lead accumulations, contributing to an effective but decreasing sink capacity. Laboratory experiments explored differences in fractionation, mobility and bioavailability of lead between the two systems. The low pH and high dissolved organic mattermore » of the pristine waters led to higher solubilization and complexing of added lead compared to impacted waters. Lead added to runoff showed unexpectedly high solubility and lability, possibly due to low suspended solids. Lead added to runoff was also much more mobile vertically through peat columns than lead added to swampwater, possibly due to its high lability. The extremely high porosity of the peat substrate allows rapid vertical migration of solutes during events of sudden influx, such as storms. Sphagnum moss greatly decreased vertical transport by binding and flow retardation. The lead that is held in the moss layer was differentially available to different species. Red maple seedlings were better able to take up lead from the peat substrate in the absence of moss cover while cranberry plants showed the reverse pattern. This may be related to differences in rooting requirements and growth of the two species. Lead added in runoff was initially less available to the plants than in swampwater, but was ultimately taken up the red maple, which could tolerate conditions in the impacted substrates.« less

  8. Recovery from chronic and snowmelt acidification: Long-term trends in stream and soil water chemistry at the Hubbard Brook Experimental Forest, New Hampshire, USA

    NASA Astrophysics Data System (ADS)

    Fuss, Colin B.; Driscoll, Charles T.; Campbell, John L.

    2015-11-01

    Atmospheric acid deposition of sulfate and nitrate has declined markedly in the northeastern United States due to emissions controls. We investigated long-term trends in soil water (1984-2011) and stream water (1982-2011) chemistry along an elevation gradient of a forested watershed to evaluate the progress of recovery of drainage waters from acidic deposition at the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire, USA. We found slowed losses of base cations from soil and decreased mobilization of dissolved inorganic aluminum. Stream water pH at the watershed outlet increased at a rate of 0.01 units yr-1, and the acid neutralizing capacity (ANC) gained 0.88 µeq L-1 yr-1. Dissolved organic carbon generally decreased in stream water and soil solutions, contrary to trends observed at many North American and European sites. We compared whole-year hydrochemical trends with those during snowmelt, which is the highest-flow and lowest ANC period of the year, indicative of episodic acidification. Stream water during snowmelt had long-term trends of increasing ANC and pH at a rate very similar to the whole-year record, with closely related steady decreases in sulfate. A more rapid decline in stream water nitrate during snowmelt compared with the whole-year trend may be due, in part, to the marked decrease in atmospheric nitrate deposition during the last decade. The similarity between the whole-year trends and those of the snowmelt period is an important finding that demonstrates a consistency between recovery from chronic acidification during base flow and abatement of snowmelt acidification.

  9. Calcium Isotope (δ44/40Ca) Composition of Morozovella Velascoensis During the Paleocene Eocene Thermal Maximum Ocean Acidification Event

    NASA Astrophysics Data System (ADS)

    Kitch, G. D.; Jacobson, A. D.; Hurtgen, M.; Sageman, B. B.; Harper, D. T.; Zachos, J. C.

    2017-12-01

    Ocean acidification (OA) events are transient disruptions to the carbonate chemistry of seawater that involve decreases in pH, [CO32-] and carbonate mineral saturation states (Ω). Numerical modeling studies predict that the Ca isotope (δ44/40Ca) composition of primary marine carbonate should be sensitive to OA1, and recent evidence from the rock record may support this hypothesis2. Boron isotope (δ11B) data for the planktonic foraminifera Morozovella velascoensis indicate that the Paleocene-Eocene Thermal Maximum (PETM; 55 Mya) was an interval of pronounced OA3, although the Ca isotope composition of the bulk carbonate record appears to show post-burial diagenetic effects4. To further evaluate the Ca isotope proxy, we used a high-precision (2σSD=±0.04‰), double-spike (43Ca-42Ca) TIMS method5 to measure δ44/40Ca values of well-preserved M. velascoensis tests spanning the PETM. M. velascoensis tests (250-355 µm) were picked from samples recovered during ODP Leg 198, Site 1209 on Shatsky Rise in the equatorial Pacific. Five M. velascoensis tests were combined per sample, dissolved, spiked, and analyzed using a Triton TIMS. Repeat dissolutions of ten samples gave δ44/40Ca values within ±0.04‰ of the original measurements. Method and procedural blanks were negligible. δ44/40Ca values are elevated, even before the negative carbon isotope excursion (CIE) that marks the PETM. When δ11/10B values decrease during the CIE, δ44/40Ca values remain elevated, but then decrease by 0.10‰ as δ11B values return to pre-CIE levels. The apparent inverse correlation between δ44/40Ca and δ11B values suggests that Ca isotope fractionation by M. velascoensis was sensitive to OA. A decrease in pH indicated by lower δ11B values is consistent with higher δ44/40Ca values (decreased fractionation) due to elevated [Ca2+]/[CO32-] ratios and reduced W. The Ca isotope composition of pristine foraminiferal calcite may have potential for reconstructing [CO32-]. The current, preliminary dataset may indicate changes in [CO32-] prior to the CIE. 1Nielsen et al., 2012. 2Du Vivier et al., 2015. 3Penman et al., 2014. 4Griffith et al., 2015. 5Lehn et al., 2013.

  10. Apple polyphenol phloretin potentiates the anticancer actions of paclitaxel through induction of apoptosis in human hep G2 cells.

    PubMed

    Yang, Kuo-Ching; Tsai, Chia-Yi; Wang, Ying-Jan; Wei, Po-Li; Lee, Chia-Hwa; Chen, Jui-Hao; Wu, Chih-Hsiung; Ho, Yuan-Soon

    2009-05-01

    Phloretin (Ph), which can be obtained from apples, apple juice, and cider, is a known inhibitor of the type II glucose transporter (GLUT2). In this study, real-time PCR analysis of laser-capture microdissected (LCM) human hepatoma cells showed elevated expression (>5-fold) of GLUT2 mRNA in comparison with nonmalignant hepatocytes. In vitro and in vivo studies were performed to assess Ph antitumor activity when combined with paclitaxel (PTX) for treatment of human liver cancer cells. Inhibition of GLUT2 by Ph potentiated the anticancer effects of PTX, resensitizing human liver cancer cells to drugs. These results demonstrate that 50-150 microM Ph significantly potentiates DNA laddering induced in Hep G2 cells by 10 nM PTX. Activity assays showed that caspases 3, 8, and 9 are involved in this apoptosis. The antitumor therapeutic efficacy of Ph (10 mg/kg body weight) was determined in cells of the SCID mouse model that were treated in parallel with PTX (1 mg/kg body weight). The Hep G2-xenografted tumor volume was reduced more than fivefold in the Ph + PTX-treated mice compared to the PTX-treated group. These results suggest that Ph may be useful for cancer chemotherapy and chemoprevention.

  11. Aging properties of films of plasticized vital wheat gluten cast from acidic and basic solutions.

    PubMed

    Olabarrieta, Idoia; Cho, Sung-Woo; Gällstedt, Mikael; Sarasua, Jose-Ramon; Johansson, Eva; Hedenqvist, Mikael S

    2006-05-01

    In order to understand the mechanisms behind the undesired aging of films based on vital wheat gluten plasticized with glycerol, films cast from water/ethanol solutions were investigated. The effect of pH was studied by casting from solutions at pH 4 and pH 11. The films were aged for 120 days at 50% relative humidity and 23 degrees C, and the tensile properties and oxygen and water vapor permeabilities were measured as a function of aging time. The changes in the protein structure were determined by infrared spectroscopy and size-exclusion and reverse-phase high-performance liquid chromatography, and the film structure was revealed by optical and scanning electron microscopy. The pH 11 film was mechanically more stable with time than the pH 4 film, the latter being initially very ductile but turning brittle toward the end of the aging period. The protein solubility and infrared spectroscopy measurements indicated that the protein structure of the pH 4 film was initially significantly less polymerized/aggregated than that of the pH 11 film. The polymerization of the pH 4 film increased during storage but it did not reach the degree of aggregation of the pH 11 film. Reverse-phase chromatography indicated that the pH 11 films were to some extent deamidated and that this increased with aging. At the same time a large fraction of the aged pH 11 film was unaffected by reducing agents, suggesting that a time-induced isopeptide cross-linking had occurred. This isopeptide formation did not, however, change the overall degree of aggregation and consequently the mechanical properties of the film. During aging, the pH 4 films lost more mass than the pH 11 films mainly due to migration of glycerol but also due to some loss of volatile mass. Scanning electron and optical microscopy showed that the pH 11 film was more uniform in thickness and that the film structure was more homogeneous than that of the pH 4 film. The oxygen permeability was also lower for the pH 11 film. The fact that the pH 4 film experienced a larger and more rapid change in its mechanical properties with time than the pH 11 film, as a consequence of a greater loss of plasticizer, was presumably due to its initial lower degree of protein aggregation/polymerization. Consequently, the cross-link density achieved at pH 4 was too low to effectively retain volatiles and glycerol within the matrix.

  12. Use of the VS-sense swab in diagnosing vulvovaginitis.

    PubMed

    Sobel, Jack D; Nyirjesy, Paul; Kessary, Hadar; Ferris, Daron G

    2009-09-01

    Although pH assessment of vaginal secretions is beneficial for diagnosing vaginitis, it is not commonly done. The purpose of this study was to determine the performance characteristics of the VS-Sense (pH test) swab (Common Sense, Ltd., Caesarea, Israel) in augmenting the diagnosis of vaginitis. We prospectively studied 193 women with acute vulvovaginal symptoms and 74 asymptomatic controls at three medical centers. The VS-Sense swab was administered intravaginally, and results were interpreted by a nurse. These results were compared with final clinical and laboratory diagnoses. In women with an elevated pH caused by bacterial vaginosis (BV), trichomonas, and other types of vaginitis, the VS-Sense test sensitivity and specificity were 82.3% (102 of 124) (95% CI 74.4%-88.5%) and 94.2% (129 of 137) (95% CI 88.8%-97.4%), respectively. There was an 86.2% (95% CI 81.3%-90.1%) overall agreement between pH paper and VS-Sense swab results. The VS-Sense test offers an alternative approach to measuring vaginal pH with nitrazine paper. Use of this simple, more rapid test may facilitate the diagnosis of vulvovaginitis.

  13. Transcriptome Profiling of Shewanella oneidensis Gene Expression following Exposure to Acidic and Alkaline pH†

    PubMed Central

    Leaphart, Adam B.; Thompson, Dorothea K.; Huang, Katherine; Alm, Eric; Wan, Xiu-Feng; Arkin, Adam; Brown, Steven D.; Wu, Liyou; Yan, Tingfen; Liu, Xueduan; Wickham, Gene S.; Zhou, Jizhong

    2006-01-01

    The molecular response of Shewanella oneidensis MR-1 to variations in extracellular pH was investigated based on genomewide gene expression profiling. Microarray analysis revealed that cells elicited both general and specific transcriptome responses when challenged with environmental acid (pH 4) or base (pH 10) conditions over a 60-min period. Global responses included the differential expression of genes functionally linked to amino acid metabolism, transcriptional regulation and signal transduction, transport, cell membrane structure, and oxidative stress protection. Response to acid stress included the elevated expression of genes encoding glycogen biosynthetic enzymes, phosphate transporters, and the RNA polymerase sigma-38 factor (rpoS), whereas the molecular response to alkaline pH was characterized by upregulation of nhaA and nhaR, which are predicted to encode an Na+/H+ antiporter and transcriptional activator, respectively, as well as sulfate transport and sulfur metabolism genes. Collectively, these results suggest that S. oneidensis modulates multiple transporters, cell envelope components, and pathways of amino acid consumption and central intermediary metabolism as part of its transcriptome response to changing external pH conditions. PMID:16452448

  14. Coral calcification mechanisms facilitate adaptive responses to ocean acidification.

    PubMed

    Schoepf, Verena; Jury, Christopher P; Toonen, Robert J; McCulloch, Malcolm T

    2017-12-06

    Ocean acidification (OA) is a pressing threat to reef-building corals, but it remains poorly understood how coral calcification is inhibited by OA and whether corals could acclimatize and/or adapt to OA. Using a novel geochemical approach, we reconstructed the carbonate chemistry of the calcifying fluid in two coral species using both a pH and dissolved inorganic carbon (DIC) proxy (δ 11 B and B/Ca, respectively). To address the potential for adaptive responses, both species were collected from two sites spanning a natural gradient in seawater pH and temperature, and then subjected to three pH T levels (8.04, 7.88, 7.71) crossed by two temperatures (control, +1.5°C) for 14 weeks. Corals from the site with naturally lower seawater pH calcified faster and maintained growth better under simulated OA than corals from the higher-pH site. This ability was consistently linked to higher pH yet lower DIC values in the calcifying fluid, suggesting that these differences are the result of long-term acclimatization and/or local adaptation to naturally lower seawater pH. Nevertheless, all corals elevated both pH and DIC significantly over seawater values, even under OA. This implies that high pH upregulation combined with moderate levels of DIC upregulation promote resistance and adaptive responses of coral calcification to OA. © 2017 The Author(s).

  15. Effects of high medium pH on growth, metabolism and transport in Saccharomyces cerevisiae.

    PubMed

    Peña, Antonio; Sánchez, Norma Silvia; Álvarez, Helber; Calahorra, Martha; Ramírez, Jorge

    2015-03-01

    Growth of Saccharomyces cerevisiae stopped by maintaining the pH of the medium in a pH-stat at pH 8.0 or 9.0. Studying its main physiological capacities and comparing cells after incubation at pH 6.0 vs. 8.0 or 9.0, we found that (a) fermentation was moderately decreased by high pH and respiration was similar and sensitive to the addition of an uncoupler, (b) ATP and glucose-6-phosphate levels upon glucose addition increased to similar levels and (c) proton pumping and K(+) transport were also not affected; all this indicating that energy mechanisms were preserved. Growth inhibition at high pH was also not due to a significant lower amino acid transport by the cells or incorporation into proteins. The cell cycle stopped at pH 9.0, probably due to an arrest as a result of adjustments needed by the cells to contend with the changes under these conditions, and microarray experiments showed some relevant changes to this response. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  16. Increases in intracellular pH facilitate endocytosis and decrease availability of voltage-gated proton channels in osteoclasts and microglia

    PubMed Central

    Sakai, Hiromu; Li, Guangshuai; Hino, Yoshiko; Moriura, Yoshie; Kawawaki, Junko; Sawada, Makoto; Kuno, Miyuki

    2013-01-01

    Voltage-gated proton channels (H+ channels) are highly proton-selective transmembrane pathways. Although the primary determinants for activation are the pH and voltage gradients across the membrane, the current amplitudes fluctuate often when these gradients are constant. The aim of this study was to investigate the role of the intracellular pH (pHi) in regulating the availability of H+ channels in osteoclasts and microglia. In whole-cell clamp recordings, the pHi was elevated after exposure to NH4Cl and returned to the control level after washout. However, the H+ channel conductance did not recover fully when the exposure was prolonged (>5 min). Similar results were observed in osteoclasts and microglia, but not in COS7 cells expressing a murine H+ channel gene (mVSOP). As other electrophysiological properties, like the gating kinetics and voltage dependence for activation, were unchanged, the decreases in the H+ channel conductance were probably due to the decreases in H+ channels available at the plasma membrane. The decreases in the H+ channel conductances were accompanied by reductions in the cell capacitance. Exposure to NH4Cl increased the uptake of the endocytosis marker FM1-43, substantiating the idea that pHi increases facilitated endocytosis. In osteoclasts, whose plasma membrane expresses V-ATPases and H+ channels, pHi increases by these H+-transferring molecules in part facilitated endocytosis. The endocytosis and decreases in the H+ channel conductance were reduced by dynasore, a dynamin blocker. These results suggest that pHi increases in osteoclasts and microglia decrease the numbers of H+ channels available at the plasma membrane through facilitation of dynamin-dependent endocytosis. PMID:24081153

  17. Effects of acidic recharge on groundwater at the St. Kevin Gulch site, Leadville, Colorado

    USGS Publications Warehouse

    Paschke, S.S.; Harrison, W.J.; Walton-Day, K.

    2001-01-01

    The acid rock drainage-affected stream of St. Kevin Gulch recharges the Quaternary sand and gravel aquifer of Tennessee Park, near Leadville, Colorado, lowering pH and contributing iron, cadmium, copper, zinc and sulphate to the ground-water system. Dissolved metal mobility is controlled by the seasonal spring runoff as well as oxidation/reduction (redox) reactions in the aquifer. Oxidizing conditions occur in the unconfined portions of the aquifer whilst sulphate-reducing conditions are found down gradient where semi-confined groundwater flow occurs beneath a natural wetland. Iron-reducing conditions occur in the transition from unconfined to semi-confined groundwater flow. Dissolved iron concentrations are low to not detectable in the alluvial fan recharge zone and increase in a down gradient direction. The effects of low-pH, metal-rich recharge are pronounced during low-flow in the fall when there is a defined area of low pH groundwater with elevated concentrations of dissolved zinc, cadmium, copper and sulphate adjacent to St. Kevin Gulch. Dissolved metal and sulphate concentrations in the recharge zone are diluted during spring runoff, although the maximum concentrations of dissolved zinc, cadmium, copper and sulphate occur at selected down gradient locations during high flow. Dissolved zinc, cadmium and copper concentrations are low to not detectable, whereas dissolved iron concentrations are greatest, in groundwater samples from the sulphate-reducing zone. Attenuation of zinc, cadmium and copper beneath the wetland suggests sulphide mineral precipitation is occurring in the semi-confined aquifer, in agreement with previous site investigations and saturation index calculations. Adsorption of dissolved zinc, cadmium and copper onto iron hydroxides is a minor attenuation process due to the low pH of the groundwater system.

  18. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system.

    PubMed

    Doney, Scott C; Mahowald, Natalie; Lima, Ivan; Feely, Richard A; Mackenzie, Fred T; Lamarque, Jean-Francois; Rasch, Phil J

    2007-09-11

    Fossil fuel combustion and agriculture result in atmospheric deposition of 0.8 Tmol/yr reactive sulfur and 2.7 Tmol/yr nitrogen to the coastal and open ocean near major source regions in North America, Europe, and South and East Asia. Atmospheric inputs of dissociation products of strong acids (HNO(3) and H2SO(4)) and bases (NH(3)) alter surface seawater alkalinity, pH, and inorganic carbon storage. We quantify the biogeochemical impacts by using atmosphere and ocean models. The direct acid/base flux to the ocean is predominately acidic (reducing total alkalinity) in the temperate Northern Hemisphere and alkaline in the tropics because of ammonia inputs. However, because most of the excess ammonia is nitrified to nitrate (NO(3)(-)) in the upper ocean, the effective net atmospheric input is acidic almost everywhere. The decrease in surface alkalinity drives a net air-sea efflux of CO(2), reducing surface dissolved inorganic carbon (DIC); the alkalinity and DIC changes mostly offset each other, and the decline in surface pH is small. Additional impacts arise from nitrogen fertilization, leading to elevated primary production and biological DIC drawdown that reverses in some places the sign of the surface pH and air-sea CO(2) flux perturbations. On a global scale, the alterations in surface water chemistry from anthropogenic nitrogen and sulfur deposition are a few percent of the acidification and DIC increases due to the oceanic uptake of anthropogenic CO(2). However, the impacts are more substantial in coastal waters, where the ecosystem responses to ocean acidification could have the most severe implications for mankind.

  19. Oviduct binding and elevated environmental ph induce protein tyrosine phosphorylation in stallion spermatozoa.

    PubMed

    Leemans, Bart; Gadella, Bart M; Sostaric, Edita; Nelis, Hilde; Stout, Tom A E; Hoogewijs, Maarten; Van Soom, Ann

    2014-07-01

    Sperm-oviduct binding is an essential step in the capacitation process preparing the sperm for fertilization in several mammalian species. In many species, capacitation can be induced in vitro by exposing spermatozoa to bicarbonate, Ca(2+), and albumin; however, these conditions are insufficient in the horse. We hypothesized that binding to the oviduct epithelium is an essential requirement for the induction of capacitation in stallion spermatozoa. Sperm-oviduct binding was established by coincubating equine oviduct explants for 2 h with stallion spermatozoa (2 × 10(6) spermatozoa/ml), during which it transpired that the highest density (per mm(2)) of oviduct-bound spermatozoa was achieved under noncapacitating conditions. In subsequent experiments, sperm-oviduct incubations were performed for 6 h under noncapacitating versus capacitating conditions. The oviduct-bound spermatozoa showed a time-dependent protein tyrosine phosphorylation response, which was not observed in unbound spermatozoa or spermatozoa incubated in oviduct explant conditioned medium. Both oviduct-bound and unbound sperm remained motile with intact plasma membrane and acrosome. Since protein tyrosine phosphorylation can be induced in equine spermatozoa by media with high pH, the intracellular pH (pHi) of oviduct explant cells and bound spermatozoa was monitored fluorometrically after staining with BCECF-AM dye. The epithelial secretory cells contained large, alkaline vesicles. Moreover, oviduct-bound spermatozoa showed a gradual increase in pHi, presumably due to an alkaline local microenvironment created by the secretory epithelial cells, given that unbound spermatozoa did not show pHi changes. Thus, sperm-oviduct interaction appears to facilitate equine sperm capacitation by creating an alkaline local environment that triggers intracellular protein tyrosine phosphorylation in bound sperm. © 2014 by the Society for the Study of Reproduction, Inc.

  20. Responding for a conditioned reinforcer or unconditioned sensory reinforcer in mice: interactions with environmental enrichment, social isolation, and monoamine reuptake inhibitors.

    PubMed

    Browne, Caleb J; Fletcher, Paul J; Zeeb, Fiona D

    2016-03-01

    Environmental factors influence the etiology of many psychiatric disorders. Likewise, environmental factors can alter processes central to motivation. Therefore, motivational deficits present in many disorders may be influenced by early life environmental conditions. We examined whether housing animals in different environmental conditions influenced the ability of sensory stimuli to acquire incentive value and whether elevated monoamine activity altered responsing for these stimuli. Isolation-housed (IH), pair-housed (PH), and environmentally enriched (EE) male C57BL/6N mice were examined in tests of responding for a conditioned reinforcer (CRf) or an unconditioned sensory reinforcer (USRf). The CRf was previously paired with saccharin delivery through Pavlovian conditioning, while the USRf was not conditioned with a reward. Following baseline tests of responding for the CRf or USRf, the effects of elevated monoamine activity were examined. At baseline, PH and EE mice responded similarly for the CRf or USRf. IH mice responded more for the CRf but exhibited slower acquisition of responding for the USRf. Administration of citalopram, a serotonin transporter blocker, or atomoxetine, a norepinephrine transporter blocker, decreased responding for the CRf and USRf in all groups. The dopamine transporter blocker GBR 12909 generally increased responding for the CRf and USRf, but further analysis revealed enhanced responding for both reinforcers only in EE mice. Baseline incentive motivation is strongly influenced by the social component of housing conditions. Furthermore, environmental enrichment increased the sensitivity to elevated dopamine activity, while acute elevations in serotonin and norepinephrine inhibit incentive motivation irrespective of housing condition.

  1. Near-infrared noninvasive spectroscopic determination of pH

    DOEpatents

    Alam, Mary K.; Robinson, Mark R.

    1998-08-11

    Methods and apparatus for, preferably, determining noninvasively and in vitro pH in a human. The non-invasive method includes the steps of: generating light at three or more different wavelengths in the range of 1000 nm to 2500 nm; irradiating blood containing tissue; measuring the intensities of the wavelengths emerging from the blood containing tissue to obtain a set of at least three spectral intensities v. wavelengths; and determining the unknown values of pH. The determination of pH is made by using measured intensities at wavelengths that exhibit change in absorbance due to histidine titration. Histidine absorbance changes are due to titration by hydrogen ions. The determination of the unknown pH values is performed by at least one multivariate algorithm using two or more variables and at least one calibration model. The determined pH values are within the physiological ranges observed in blood containing tissue. The apparatus includes a tissue positioning device, a source, at least one detector, electronics, a microprocessor, memory, and apparatus for indicating the determined values.

  2. Computer simulation of immobilized pH gradients at acidic and alkaline extremes - A quest for extended pH intervals

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Bier, Milan; Righetti, Pier Giorgio

    1986-01-01

    Computer simulations of the concentration profiles of simple biprotic ampholytes with Delta pKs 1, 2, and 3, on immobilized pH gradients (IPG) at extreme pH values (pH 3-4 and pH 10-11) show markedly skewed steady-state profiles with increasing kurtosis at higher Delta pK values. Across neutrality, all the peaks are symmetric irrespective of their Delta pK values, but they show very high contribution to the conductivity of the background gel and significant alteration of the local buffering capacity. The problems of skewness, due to the exponential conductivity profiles at low and high pHs, and of gel burning due to a strong electroosmotic flow generated by the net charges in the gel matrix, also at low and high pHs, are solved by incorporating in the IPG gel a strong viscosity gradient. This is generated by a gradient of linear polyacrylamide which is trapped in the gel by the polymerization process.

  3. The Impact of Hexametaphosphate, Orthophosphate, and Temperature on Copper Corrosion and Release

    EPA Science Inventory

    Excessive corrosion of copper plumbing can lead to elevated copper levels at consumer’s tap or pinhole leaks. Corrosion control solutions include pH adjustment or phosphate addition. Orthophosphate has been shown to reduce copper levels in some cases while the role of polyphosp...

  4. Noninvasive model including right ventricular speckle tracking for the evaluation of pulmonary hypertension

    PubMed Central

    Mahran, Yossra; Schueler, Robert; Weber, Marcel; Pizarro, Carmen; Nickenig, Georg; Skowasch, Dirk; Hammerstingl, Christoph

    2016-01-01

    AIM To find parameters from transthorathic echocardiography (TTE) including speckle-tracking (ST) analysis of the right ventricle (RV) to identify precapillary pulmonary hypertension (PH). METHODS Forty-four patients with suspected PH undergoing right heart catheterization (RHC) were consecutively included (mean age 63.1 ± 14 years, 61% male gender). All patients underwent standardized TTE including ST analysis of the RV. Based on the subsequent TTE-derived measurements, the presence of PH was assessed: Left ventricular ejection fraction (LVEF) was calculated by Simpsons rule from 4Ch. Systolic pulmonary artery pressure (sPAP) was assessed with continuous wave Doppler of systolic tricuspid regurgitant velocity and regarded raised with values ≥ 30 mmHg as a surrogate parameter for RA pressure. A concomitantly elevated PCWP was considered a means to discriminate between the precapillary and postcapillary form of PH. PCWP was considered elevated when the E/e’ ratio was > 12 as a surrogate for LV diastolic pressure. E/e’ ratio was measured by gauging systolic and diastolic velocities of the lateral and septal mitral valve annulus using TDI mode. The results were then averaged with conventional measurement of mitral valve inflow. Furthermore, functional testing with six minutes walking distance (6MWD), ECG-RV stress signs, NT pro-BNP and other laboratory values were assessed. RESULTS PH was confirmed in 34 patients (precapillary PH, n = 15, postcapillary PH, n = 19). TTE showed significant differences in E/e’ ratio (precapillary PH: 12.3 ± 4.4, postcapillary PH: 17.3 ± 10.3, no PH: 12.1 ± 4.5, P = 0.02), LV volumes (ESV: 25.0 ± 15.0 mL, 49.9 ± 29.5 mL, 32.2 ± 13.6 mL, P = 0.027; EDV: 73.6 ± 24.0 mL, 110.6 ± 31.8 mL, 87.8 ± 33.0 mL, P = 0.021) and systolic pulmonary arterial pressure (sPAP: 61.2 ± 22.3 mmHg, 53.6 ± 20.1 mmHg, 31.2 ± 24.6 mmHg, P = 0.001). STRV analysis showed significant differences for apical RV longitudinal strain (RVAS: -7.5% ± 5.6%, -13.3% ± 4.3%, -14.3% ± 6.3%, P = 0.03). NT pro-BNP was higher in patients with postcapillary PH (4677.0 ± 7764.1 pg/mL, precapillary PH: 1980.3 ± 3432.1 pg/mL, no PH: 367.5 ± 420.4 pg/mL, P = 0.03). Patients with precapillary PH presented significantly more often with ECG RV-stress signs (P = 0.001). Receiver operating characteristics curve analyses displayed the most significant area under the curve (AUC) for RVAS (cut-off < -6.5%, AUC 0.91, P < 0.001), sPAP (cut-off > 33 mmHg, AUC 0.86, P < 0.001) and ECG RV stress signs (AUC 0.83, P < 0.001). The combination of these parameters had a sensitivity of 82.8% and a specificity of 17.2% to detect precapillary PH. CONCLUSION The combination of non-invasive measurements allows feasible assessment of PH and seems beneficial for the differentiation between the pre- and postcapillary form of this disease. PMID:27621775

  5. The V-ATPase is expressed in the choroid plexus and mediates cAMP-induced intracellular pH alterations.

    PubMed

    Christensen, Henriette L; Păunescu, Teodor G; Matchkov, Vladimir; Barbuskaite, Dagne; Brown, Dennis; Damkier, Helle H; Praetorius, Jeppe

    2017-01-01

    The cerebrospinal fluid (CSF) pH influences brain interstitial pH and, therefore, brain function. We hypothesized that the choroid plexus epithelium (CPE) expresses the vacuolar H + -ATPase (V-ATPase) as an acid extrusion mechanism in the luminal membrane to counteract detrimental elevations in CSF pH. The expression of mRNA corresponding to several V-ATPase subunits was demonstrated by RT-PCR analysis of CPE cells (CPECs) isolated by fluorescence-activated cell sorting. Immunofluorescence and electron microscopy localized the V-ATPase primarily in intracellular vesicles with only a minor fraction in the luminal microvillus area. The vesicles did not translocate to the luminal membrane in two in vivo models of hypocapnia-induced alkalosis. The Na + -independent intracellular pH (pH i ) recovery from acidification was studied in freshly isolated clusters of CPECs. At extracellular pH (pH o ) 7.4, the cells failed to display significant concanamycin A-sensitive pH i recovery (i.e., V-ATPase activity). The recovery rate in the absence of Na + amounted to <10% of the pH i recovery rate observed in the presence of Na + Recovery of pH i was faster at pH o 7.8 and was abolished at pH o 7.0. The concanamycin A-sensitive pH i recovery was stimulated by cAMP at pH 7.4 in vitro, but intraventricular infusion of the membrane-permeant cAMP analog 8-CPT-cAMP did not result in trafficking of the V-ATPase. In conclusion, we find evidence for the expression of a minor fraction of V-ATPase in the luminal membrane of CPECs. This fraction does not contribute to enhanced acid extrusion at high extracellular pH, but seems to be activated by cAMP in a trafficking-independent manner. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  6. Sorption-desorption of carbamazepine by palygorskite-montmorillonite (PM) filter medium.

    PubMed

    Berhane, Tedros M; Levy, Jonathan; Krekeler, Mark P S; Danielson, Neil D; Stalcup, Apryll

    2015-01-23

    Palygorskite-montmorillonite (PM) was studied as a potential sewage treatment effluent filter material for carbamazepine. Batch sorption experiments were conducted as a function of granule size (0.3-0.6, 1.7-2.0 and 2.8mm) and different sewage effluent conditions (pH, ionic strength and temperature). Results showed PM had a mix of fibrous and plate-like morphologies. Sorption and desorption isotherms were fitted to the Freundlich model. Sorption is granule size-dependent and the medium granule size would be an appropriate size for optimizing both flow and carbamazepine retention. Highest and lowest sorption capacities corresponded to the smallest and the largest granule sizes, respectively. The lowest and the highest equilibrium aqueous (Ce) and sorbed (qe) carbamazepine concentrations were 0.4 mg L(-1) and 4.5 mg L(-1), and 0.6 mg kg(-1) and 411.8 mg kg(-1), respectively. Observed higher relative sorption at elevated concentrations with a Freundlich exponent greater than one, indicated cooperative sorption. The sorption-desorption hysteresis (isotherm non-singularity) indicated irreversible sorption. Higher sorption observed at higher rather than at lower ionic strength conditions is likely due to a salting-out effect. Negative free energy and the inverse sorption capacity-temperature relationship indicated the carbamazepine sorption process was favorable or spontaneous. Solution pH had little effect on sorption. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Treated mine drainage effluent benefits Maryland and West Virginia fisherman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashby, J.C.

    1995-12-31

    In January of 1994, the Maryland Department of Natural Resources-Freshwater Fisheries Division and Mettiki Coal Corporation of Oakland, Maryland entered into a cooperative agreement to construct a trout rearing facility within Mettiki`s 10 million gallons per day acid mine drainage treatment system to supplement the DNR stockings in the newly revitalized North Branch of the Potomac River. Due to pyrite oxidation and a lack of alkaline buffering capacity in the Freeport coal strata, seven thousand gallons per minute of acidic water containing oxidized sulfide minerals must be pumped through Mettiki`s AMD treatment systems and elevated to Federal standards prior tomore » discharge into the Upper North Branch of the Potomac River. Utilizing hydrated lime, aeration, flocculation, sedimentation, and sludge recirculation, Mettiki`s treatment imparts superior trout propagation qualities to the discharge (pH of 8.1, dissolved oxygen of 8.0 ppm, temperature ranges of from 52 to 60 degrees Fahrenheit) and has allowed for weight gain throughout the typically dormant winter months. Presently, 30,000 brown, rainbow, and cutthroat trout are suspended in floating net pens within the systems` discharge collection pond where pH, flow, temperature, feed assimilation, and growth rates were compared with typical stream diversion hatcheries. Growth rates, lack of significant disease, and quality parameters coupled with ideal temperatures suggests treated acidic mine effluent can offer successful fish propagation opportunities.« less

  8. Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond

    NASA Astrophysics Data System (ADS)

    Canganella, Francesco; Wiegel, Juergen

    2011-04-01

    The anthropocentric term "extremophile" was introduced more than 30 years ago to describe any organism capable of living and growing under extreme conditions—i.e., particularly hostile to human and to the majority of the known microorganisms as far as temperature, pH, and salinity parameters are concerned. With the further development of studies on microbial ecology and taxonomy, more "extreme" environments were found and more extremophiles were described. Today, many different extremophiles have been isolated from habitats characterized by hydrostatic pressure, aridity, radiations, elevated temperatures, extreme pH values, high salt concentrations, and high solvent/metal concentrations, and it is well documented that these microorganisms are capable of thriving under extreme conditions better than any other organism living on Earth. Extremophiles have also been investigated as far as the search for life in other planets is concerned and even to evaluate the hypothesis that life on Earth came originally from space. Extremophiles are interesting for basic and applied sciences. Particularly fascinating are their structural and physiological features allowing them to stand extremely selective environmental conditions. These properties are often due to specific biomolecules (DNA, lipids, enzymes, osmolites, etc.) that have been studied for years as novel sources for biotechnological applications. In some cases (DNA polymerase, thermostable enzymes), the search was successful and the final application was achieved, but certainly further exploitations are next to come.

  9. Factors affecting catalysis of copper corrosion products in NDMA formation from DMA in simulated premise plumbing.

    PubMed

    Zhang, Hong; Andrews, Susan A

    2013-11-01

    This study investigated the effects of corrosion products of copper, a metal commonly employed in household plumbing systems, on N-nitrosodimethylamine (NDMA) formation from a known NDMA precursor, dimethylamine (DMA). Copper-catalyzed NDMA formation increased with increasing copper concentrations, DMA concentrations, alkalinity and hardness, but decreased with increasing natural organic matter (NOM) concentration. pH influenced the speciation of chloramine and the interactions of copper with DMA. The transformation of monochloramine (NH2Cl) to dichloramine and complexation of copper with DMA were involved in elevating the formation of NDMA by copper at pH 7.0. The inhibiting effect of NOM on copper catalysis was attributed to the rapid consumption of NH2Cl by NOM and/or the competitive complexation of NOM with copper to limit the formation of DMA-copper complexes. Hardness ions, as represented by Ca(2+), also competed with copper for binding sites on NOM, thereby weakening the inhibitory effect of NOM on NDMA formation. Common copper corrosion products also participated in these reactions but in different ways. Aqueous copper released from malachite [Cu2CO3(OH)2] was shown to promote NDMA formation while NDMA formation decreased in the presence of CuO, most likely due to the adsorption of DMA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Measurement of operational real-time kinematic global positioning service for southeastern Louisiana.

    DOT National Transportation Integrated Search

    2009-01-01

    The establishment of accurate and reliable vertical elevations in Louisiana is : exceedingly critical due to the substantial impact on flood control, hurricane : protection projects, and navigation projects of rapidly changing vertical elevations due...

  11. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress.

    PubMed

    Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua

    2015-09-23

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  12. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    PubMed Central

    Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua

    2015-01-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings. PMID:26395070

  13. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    NASA Astrophysics Data System (ADS)

    Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua

    2015-09-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  14. Laboratory investigations of stable carbon and oxygen isotope ratio data enhance monitoring of CO2 underground

    NASA Astrophysics Data System (ADS)

    Barth, Johannes A. C.; Myrttinen, Anssi; Becker, Veith; Nowak, Martin; Mayer, Bernhard

    2014-05-01

    Stable carbon and oxygen isotope data play an important role in monitoring CO2 in the subsurface, for instance during carbon capture and storage (CCS). This includes monitoring of supercritical and gaseous CO2 movement and reactions under reservoir conditions and detection of potential CO2 leakage scenarios. However, in many cases isotope data from field campaigns are either limited due to complex sample retrieval or require verification under controlled boundary conditions. Moreover, experimentally verified isotope fractionation factors are also accurately known only for temperatures and pressures lower than commonly found in CO2 reservoirs (Myrttinen et al., 2012). For this reason, several experimental series were conducted in order to investigate effects of elevated pressures, temperatures and salinities on stable carbon and oxygen isotope changes of CO2 and water. These tests were conducted with a heateable pressure device and with glass or metal gas containers in which CO2 reacted with fluids for time periods of hours to several weeks. The obtained results revealed systematic differences in 13C/12C-distributions between CO2 and the most important dissolved inorganic carbon (DIC) species under reservoir conditions (CO2(aq), H2CO3 and HCO3-). Since direct measurements of the pH, even immediately after sampling, were unreliable due to rapid CO2 de-gassing, one of the key results of this work is that carbon isotope fractionation data between DIC and CO2 may serve to reconstruct in situ pH values. pH values reconstructed with this approach ranged between 5.5 and 7.4 for experiments with 60 bars and up to 120 °C and were on average 1.4 pH units lower than those measured with standard pH electrodes directly after sampling. In addition, pressure and temperature experiments with H2O and CO2 revealed that differences between the oxygen isotope ratios of both phases depended on temperature, water-gas ratios as well as salt contents of the solutions involved. Such systematic knowledge of the extent of oxygen isotope fractionation between H2O and CO2 can help to reconstruct equilibration times, fluid-CO2 ratios as well as temperature and salinity conditions. Isotope results from systematic laboratory studies and the information they provide for assessing in situ reservoir conditions can be transferred to field applications concerning integrity of CO2 reservoirs. They can also apply to natural systems and other industrial uses that involve monitoring of gases in the subsurface under similar pressure and temperature conditions. Reference: Myrttinen, A., Becker, V., Barth, J.A.C., 2012. A review of methods used for equilibrium isotope fractionation investigations between dissolved inorganic carbon and CO2. Earth-Science Reviews, 115(3): 192-199.

  15. [What is the contribution of Stewart's concept in acid-base disorders analysis?].

    PubMed

    Quintard, H; Hubert, S; Ichai, C

    2007-05-01

    To explain the different approaches for interpreting acid-base disorders; to develop the Stewart model which offers some advantages for the pathophysiological understanding and the clinical interpretation of acid-base imbalances. Record of french and english references from Medline data base. The keywords were: acid-base balance, hyperchloremic acidosis, metabolic acidosis, strong ion difference, strong ion gap. Data were selected including prospective and retrospective studies, reviews, and case reports. Acid-base disorders are commonly analysed by using the traditional Henderson-Hasselbalch approach which attributes the variations in plasma pH to the modifications in plasma bicarbonates or PaCO2. However, this approach seems to be inadequate because bicarbonates and PaCO2 are completely dependent. Moreover, it does not consider the role of weak acids such as albuminate, in the determination of plasma pH value. According to the Stewart concept, plasma pH results from the degree of plasma water dissociation which is determined by 3 independent variables: 1) strong ion difference (SID) which is the difference between all the strong plasma cations and anions; 2) quantity of plasma weak acids; 3) PaCO2. Thus, metabolic acid-base disorders are always induced by a variation in SID (decreased in acidosis) or in weak acids (increased in acidosis), whereas respiratory disorders remains the consequence of a change in PaCO2. These pathophysiological considerations are important to analyse complex acid-base imbalances in critically ill patients. For example, due to a decrease in weak acids, hypoalbuminemia increases SID which may counter-balance a decrease in pH and an elevated anion gap. Thus if using only traditional tools, hypoalbuminemia may mask a metabolic acidosis, because of a normal pH and a normal anion gap. In this case, the association of metabolic acidosis and alkalosis is only expressed by respectively a decreased SID and a decreased weak acids concentration. This concept allows to establish the relationship between hyperchloremic acidosis and infusion of solutes which contain large concentration of chloride such as NaCl 0.9%. Finally, the Stewart concept permits to understand that sodium bicarbonate as well as sodium lactate induces plasma alkalinization. In fact, sodium remains in plasma, whereas anion (lactate or bicarbonate) are metabolized leading to an increase in plasma SID. Due to its simplicity, the traditional Henderson-Hasselbalch approach of acid-base disorders, remains commonly used. However, it gives an inadequate pathophysiological analysis which may conduct to a false diagnosis, especially with complex acid-base imbalances. Despite its apparent complexity, the Stewart concept permits to understand precisely the mechanisms of acid-base disorders. It has to become the most appropriate approach to analyse complex acid-base abnormalities.

  16. Plasmonic gold nanostar for biomedical sensing

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew M.; Vo-Dinh, Tuan

    2014-03-01

    Cancer has become one of most significant death reasons and causes approximately 7.9 million human deaths worldwide each year. The challenge to detect cancer at an early stage makes cancer-related biomarkers sensing attract more and more research interest and efforts. Surface-enhanced Raman scattering (SERS) provides a promising method for various biomarkers (DNA, RNA, protein, et al.) detection due to its high sensitivity, specificity and capability for multiple analytes detection. Raman spectroscopy is a non-destructive photon-scattering technique, which provides molecule-specific information on molecular vibrational energy levels. SERS takes advantage of plasmonic effects and can enhance Raman signal up to 1015 at "hot spots". Due to its excellent sensitivity, SERS has been capable of achieving single-molecule detection limit. Local pH environment has been identified to be a potential biomarker for cancer diagnosis since solid cancer contains highly acidic environments. A near-infrared (NIR) SERS nanoprobe based on gold nanostars for pH sensing is developed for future cancer detection. Near-infrared (NIR) light is more suitable for in vivo applications because of its low attenuation rate and tissue auto fluorescence. SERS spectrum of pH reporter under various pH environments is monitored and used for pH sensing. Furthermore, density functional theory (DFT) calculation is performed to investigate Raman spectra changes with pH at the molecular level. The study demonstrates that SERS is a sensitive tool to monitor minor molecular structural changes due to local pH environment for cancer detection.

  17. Impacts of episodic acidification on in-stream survival and physiological impairment of Atlantic salmon (Salmo salar) smolts

    USGS Publications Warehouse

    McCormick, S.D.; Keyes, A.; Nislow, K.H.; Monette, M.Y.

    2009-01-01

    We conducted field studies to determine the levels of acid and aluminum (Al) that affect survival, smolt development, ion homeostasis, and stress in Atlantic salmon (Salmo salar) smolts in restoration streams of the Connecticut River in southern Vermont, USA. Fish were held in cages in five streams encompassing a wide range of acid and Al levels for two 6-day intervals during the peak of smolt development in late April and early May. Physiological parameters were unchanged from initial sampling at the hatchery and the high water quality reference site (pH > 7.0, inorganic Al < 12 μg·L-1). Mortality, substantial loss of plasma chloride, and gill Na+/K+-ATPase activity, and elevated gill Al occurred at sites with the lowest pH (5.4-5.6) and highest inorganic Al (50-80 μg·L-1). Moderate loss of plasma chloride, increased plasma cortisol and glucose, and moderately elevated gill Al occurred at less severely impacted sites. Gill Al was a better predictor of integrated physiological impacts than water chemistry alone. The results indicate that Al and low pH under field conditions in some New England streams can cause mortality and impair smolt development in juvenile Atlantic salmon and provide direct evidence that episodic acidification is impacting conservation and recovery of Atlantic salmon in the northeastern USA.

  18. Pulmonary hypertension in sickle cell disease children under 10 years of age.

    PubMed

    Colombatti, Raffaella; Maschietto, Nicola; Varotto, Elena; Grison, Alessandra; Grazzina, Nicoletta; Meneghello, Linda; Teso, Simone; Carli, Modesto; Milanesi, Ornella; Sainati, Laura

    2010-09-01

    Despite the finding of elevated Tricuspid Regurgitant Velocity (TRV) in children below 5 years of age, the prevalence and evolution of Pulmonary Hypertension (PH) in young children with sickle cell disease (SCD) are unclear. In order to identify predictive factors of precocious PH development, SCD children > or =3 years old, at steady state, underwent annual echocardiography and Tissue Doppler Imaging (TDI). Patients receiving chronic transfusion were excluded. Thirty-seven of seventy-five patients were > or =3 years, with measurable TRV. In our young population (mean age 6.2 years) of mainly African, HbS/HbS patients, 8/37 (21.6%) had TRV > or =2.5 m/s, 8% being only 3 years old. Significant correlation was found between precocious TRV elevation and high platelet and reticulocyte counts and frequent acute chest syndromes (ACS). In multivariate analysis, ACS was the only variable predicting TRV > or =2.5 m/s. TDI of the 37 patients showed signs of diastolic dysfunction of the left ventricle. At follow-up all eight patients with high TRV displayed further increase and seven more developed TRV > or =2.5 m/s. PH seems to begin in children earlier than expected. Factors involved in its early onset might be different from the ones causing its development in older children or adults. African children might benefit from early screening and re-assessment once a year.

  19. The sensitivity of particle pH to NH3: Can high NH3 cause London Fog conditions?

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Guo, H.; Nenes, A.

    2017-12-01

    High ammonia emissions from agriculture or other sources have been suggested to elevate ambient particle pH levels to near neutral acidity (pH=7), a condition that promotes rapid SO2 oxidation by NO2 to form aerosol sulfate concentration consistent with "London fog" levels. This mechanism has been used to explain pollution haze events in China. Predicted pH for locations in the US and Europe show fine particles are highly acidic with pH typically less than 2. The results are consistent with measured ammonia and nitric acid gas-particle partitioning, validating predicted pH levels. Using these data sets from representative sites around the world we conduct a thermodynamic analysis of aerosol pH and its sensitivity to ammonia levels. We find that particle pH, regardless of ammonia levels, is always acidic even for the unusually high ammonia levels found in highly polluted Asian cities, Beijing (pH=4.5) and Xi'an (pH=5), locations where sulfate production from NOx is proposed. These results indicate that sulfur dioxide oxidation through a NO2-mediated pathway is not likely in China, nor any other region of the world (e.g., US, Mediterranean) since the fine aerosol is consistently acidic. The mildly acidic conditions would, however, permit rapid oxidation of sulfur dioxide through transition metal chemistry. The limited alkalinity from the carbonate buffer in dust and seasalt can provide the only likely set of conditions where NO2-mediated oxidation of SO2 outcompetes with other well-established pathways.

  20. Edwardsiella ictaluri Encodes an Acid-Activated Urease That Is Required for Intracellular Replication in Channel Catfish (Ictalurus punctatus) Macrophages▿

    PubMed Central

    Booth, Natha J.; Beekman, Judith B.; Thune, Ronald L.

    2009-01-01

    Genomic analysis indicated that Edwardsiella ictaluri encodes a putative urease pathogenicity island containing the products of nine open reading frames, including urea and ammonium transporters. In vitro studies with wild-type E. ictaluri and a ureG::kan urease mutant strain indicated that E. ictaluri is significantly tolerant of acid conditions (pH 3.0) but that urease activity is not required for acid tolerance. Growth studies demonstrated that E. ictaluri is unable to grow at pH 5 in the absence of urea but is able to elevate the environmental pH from pH 5 to pH 7 and grow when exogenous urea is available. Substantial production of ammonia was observed for wild-type E. ictaluri in vitro in the presence of urea at low pH, and optimal activity occurred at pH 2 to 3. No ammonia production was detected for the urease mutant. Proteomic analysis with two-dimensional gel electrophoresis indicated that urease proteins are expressed at both pH 5 and pH 7, although urease activity is detectable only at pH 5. Urease was not required for initial invasion of catfish but was required for subsequent proliferation and virulence. Urease was not required for initial uptake or survival in head kidney-derived macrophages but was required for intracellular replication. Intracellular replication of wild-type E. ictaluri was significantly enhanced when urea was present, indicating that urease plays an important role in intracellular survival and replication, possibly through neutralization of the acidic environment of the phagosome. PMID:19749068

  1. Contribution of elevated intracellular calcium to pulmonary arterial myocyte alkalinization during chronic hypoxia

    PubMed Central

    Luke, Trevor; Shimoda, Larissa A.

    2016-01-01

    Abstract In the lung, exposure to chronic hypoxia (CH) causes pulmonary hypertension, a debilitating disease. Development of this condition arises from increased muscularity and contraction of pulmonary vessels, associated with increases in pulmonary arterial smooth muscle cell (PASMC) intracellular pH (pHi) and Ca2+ concentration ([Ca2+]i). In this study, we explored the interaction between pHi and [Ca2+]i in PASMCs from rats exposed to normoxia or CH (3 weeks, 10% O2). PASMC pHi and [Ca2+]i were measured with fluorescent microscopy and the dyes BCECF and Fura-2. Both pHi and [Ca2+]i levels were elevated in PASMCs from hypoxic rats. Exposure to KCl increased [Ca2+]i and pHi to a similar extent in normoxic and hypoxic PASMCs. Conversely, removal of extracellular Ca2+ or blockade of Ca2+ entry with NiCl2 or SKF 96365 decreased [Ca2+]i and pHi only in hypoxic cells. Neither increasing pHi with NH4Cl nor decreasing pHi by removal of bicarbonate impacted PASMC [Ca2+]i. We also examined the roles of Na+/Ca2+ exchange (NCX) and Na+/H+ exchange (NHE) in mediating the elevated basal [Ca2+]i and Ca2+-dependent changes in PASMC pHi. Bepridil, dichlorobenzamil, and KB-R7943, which are NCX inhibitors, decreased resting [Ca2+]i and pHi only in hypoxic PASMCs and blocked the changes in pHi induced by altering [Ca2+]i. Exposure to ethyl isopropyl amiloride, an NHE inhibitor, decreased resting pHi and prevented changes in pHi due to changing [Ca2+]i. Our findings indicate that, during CH, the elevation in basal [Ca2+]i may contribute to the alkaline shift in pHi in PASMCs, likely via mechanisms involving reverse-mode NCX and NHE. PMID:27076907

  2. Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions.

    PubMed

    Dopson, Mark; Holmes, David S; Lazcano, Marcelo; McCredden, Timothy J; Bryan, Christopher G; Mulroney, Kieran T; Steuart, Robert; Jackaman, Connie; Watkin, Elizabeth L J

    2016-01-01

    Extremely acidophilic microorganisms (pH optima for growth of ≤3) are utilized for the extraction of metals from sulfide minerals in the industrial biotechnology of "biomining." A long term goal for biomining has been development of microbial consortia able to withstand increased chloride concentrations for use in regions where freshwater is scarce. However, when challenged by elevated salt, acidophiles experience both osmotic stress and an acidification of the cytoplasm due to a collapse of the inside positive membrane potential, leading to an influx of protons. In this study, we tested the ability of the halotolerant acidophile Acidihalobacter prosperus to grow and catalyze sulfide mineral dissolution in elevated concentrations of salt and identified chloride tolerance mechanisms in Ac. prosperus as well as the chloride susceptible species, Acidithiobacillus ferrooxidans . Ac. prosperus had optimum iron oxidation at 20 g L -1 NaCl while At. ferrooxidans iron oxidation was inhibited in the presence of 6 g L -1 NaCl. The tolerance to chloride in Ac. prosperus was consistent with electron microscopy, determination of cell viability, and bioleaching capability. The Ac. prosperus proteomic response to elevated chloride concentrations included the production of osmotic stress regulators that potentially induced production of the compatible solute, ectoine uptake protein, and increased iron oxidation resulting in heightened electron flow to drive proton export by the F 0 F 1 ATPase. In contrast, At. ferrooxidans responded to low levels of Cl - with a generalized stress response, decreased iron oxidation, and an increase in central carbon metabolism. One potential adaptation to high chloride in the Ac. prosperus Rus protein involved in ferrous iron oxidation was an increase in the negativity of the surface potential of Rus Form I (and Form II) that could help explain how it can be active under elevated chloride concentrations. These data have been used to create a model of chloride tolerance in the salt tolerant and susceptible species Ac. prosperus and At. ferrooxidans , respectively.

  3. Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions

    PubMed Central

    Dopson, Mark; Holmes, David S.; Lazcano, Marcelo; McCredden, Timothy J.; Bryan, Christopher G.; Mulroney, Kieran T.; Steuart, Robert; Jackaman, Connie; Watkin, Elizabeth L. J.

    2017-01-01

    Extremely acidophilic microorganisms (pH optima for growth of ≤3) are utilized for the extraction of metals from sulfide minerals in the industrial biotechnology of “biomining.” A long term goal for biomining has been development of microbial consortia able to withstand increased chloride concentrations for use in regions where freshwater is scarce. However, when challenged by elevated salt, acidophiles experience both osmotic stress and an acidification of the cytoplasm due to a collapse of the inside positive membrane potential, leading to an influx of protons. In this study, we tested the ability of the halotolerant acidophile Acidihalobacter prosperus to grow and catalyze sulfide mineral dissolution in elevated concentrations of salt and identified chloride tolerance mechanisms in Ac. prosperus as well as the chloride susceptible species, Acidithiobacillus ferrooxidans. Ac. prosperus had optimum iron oxidation at 20 g L−1 NaCl while At. ferrooxidans iron oxidation was inhibited in the presence of 6 g L−1 NaCl. The tolerance to chloride in Ac. prosperus was consistent with electron microscopy, determination of cell viability, and bioleaching capability. The Ac. prosperus proteomic response to elevated chloride concentrations included the production of osmotic stress regulators that potentially induced production of the compatible solute, ectoine uptake protein, and increased iron oxidation resulting in heightened electron flow to drive proton export by the F0F1 ATPase. In contrast, At. ferrooxidans responded to low levels of Cl− with a generalized stress response, decreased iron oxidation, and an increase in central carbon metabolism. One potential adaptation to high chloride in the Ac. prosperus Rus protein involved in ferrous iron oxidation was an increase in the negativity of the surface potential of Rus Form I (and Form II) that could help explain how it can be active under elevated chloride concentrations. These data have been used to create a model of chloride tolerance in the salt tolerant and susceptible species Ac. prosperus and At. ferrooxidans, respectively. PMID:28111571

  4. [Effect of argon and nitrogen on the peritoneal macrophages in mice and their resistance to the UV damaging effect in vitro].

    PubMed

    Galchuk, S V; Turovetskiĭ, V B; Andreev, A I; Buravkova, L B

    2001-01-01

    Explored were effects of argon and nitrogen on intracellular pH in peritoneal macrophages in mice and resistance of cellular membranes to the UV damaging effect in vitro. Blasting argon or nitrogen along the surface of cell cultures in airtight chamber for 20 minutes was shown to decrease 5-folds the oxygen content of solution as compared with initial level with culture pH unchanged. Ten-minute blasting argon or nitrogen through the incubation chamber slightly elevates intracellular pH in macrophages. The standard cell incubation conditions recovered following approximately 60 minutes in hypoxic atmosphere, the ability of macrophages to build up fluorescein was degraded and they increased intracellular pH no matter the indifferent gas yet more marked in case of nitrogen in use. It was demonstrated that the normobaric gas environment with oxygen partly replaced by nitrogen or argon protects plasmatic membranes of cells from UV-induced damage.

  5. Working memory contributes to elevated motor activity in adults with ADHD: an examination of the role of central executive and storage/rehearsal processes.

    PubMed

    Hudec, Kristen L; Alderson, R Matt; Kasper, Lisa J; Patros, Connor H G

    2014-05-01

    The relationship between working memory (WM) and objectively measured motor activity was examined in adults with ADHD and healthy controls (HCs). Thirty-five adults (ADHD = 20, HC = 15) were grouped using self-report and collateral-report measures in addition to a semistructured clinical interview. All participants completed control conditions with minimal WM demands, and separate phonological (PH) and visuospatial (VS) WM tasks with recall demands ranging from four to seven stimuli. The ADHD group exhibited significantly more motor activity relative to the HC group, and both groups exhibited greater activity during PH and VS WM tasks, relative to control conditions. Finally, the central executive (CE) and PH storage/rehearsal subsystems were associated with large-magnitude between-group differences in activity. Findings suggest that increased demands on WM, particularly the CE and PH storage/rehearsal, contribute to ADHD-related hyperactivity, though a portion of excessive motor activity in adults with ADHD may occur independently of WM demands.

  6. Temperature and pH influence adsorption of cellobiohydrolase onto lignin by changing the protein properties.

    PubMed

    Lu, Xianqin; Wang, Can; Li, Xuezhi; Zhao, Jian

    2017-12-01

    Non-productive adsorption of cellulase onto lignin restricted the movement of cellulase and also hindered the cellulase recycling in bioconversion of lignocellulose. In this study, effect of temperature and pH on adsorption and desorption of cellobiohydrolase (CBH) on lignin and its possible mechanism were discussed. It found that pH value and temperature influenced the adsorption and desorption behaviors of CBH on lignin. Different thermodynamic models suggested that the action between lignin and CBH was physical action. More CBH was adsorbed onto lignin, but lower initial adsorption velocity was detected at 50°C comparing with 4°C. Elevating pH value could improve desorption of cellulase from lignin. The changes of hydrophobicity and electric potential on protein surface may partially explain the impact of environmental conditions on the adsorption and desorption behaviors of CBH on lignin, and comparing to electrical interaction, the hydrophobicity may be the dominating factor influencing the behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Enhanced bioelectricity generation of air-cathode buffer-free microbial fuel cells through short-term anolyte pH adjustment.

    PubMed

    Ren, Yueping; Chen, Jinli; Li, Xiufen; Yang, Na; Wang, Xinhua

    2018-04-01

    Short-term initial anolyte pH adjustment can relieve the performance deterioration of the single-chamber air-cathode buffer-free microbial fuel cell (BFMFC) caused by anolyte acidification. Adjusting the initial anolyte pH to 9 in 5 running cycles is the optimum strategy. The relative abundance of the electrochemically active Geobacter in the KCl-pH9-MFC anode biofilm increased from 59.01% to 75.13% after the short-term adjustment. The maximum power density (P max ) of the KCl-pH9-MFC was elevated from 316.4mW·m -2 to 511.6mW·m -2 , which was comparable with that of the PBS-MFC. And, after the short-term adjusting, new equilibrium between the anolyte pH and the anode biofilm electrochemical activity has been established in the BFMFC, which ensured the sustainability of the improved bioelectricity generation performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. 51. Port elevation, in port. Note reduced turtle deck due ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. Port elevation, in port. Note reduced turtle deck due to quarters expansion. - U.S. Coast Guard Cutter WHITE SUMAC, U.S. Coast Guard 8th District Base, 4640 Urquhart Street, New Orleans, Orleans Parish, LA

  9. Mercury contribution to an Adirondack lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scrudato, R.J.; Long, D.; Weinbloom, R.

    1987-01-01

    Elevated copper, lead, and zinc concentrations in the upper 10 to 20 cm of sediment sampled from Cranberry Lake, a large Adirondack lake, are attributed to atmospheric contributions. Pb-210 and pollen core data, however, suggest Cranberry Lake also received mercury discharges during the turn of the century when the area was the center of extensive lumbering and related activities. Elevated mercury concentrations in Cranberry Lake smallmouth bass derived from remobilization from mercury-contaminated bottom sediments which increased the bioavailability to Cranberry Lake organisms. Mercury remobilization and accumulation by fish are promoted by fluctuating pH values resulting from acid precipitation.

  10. Mercury contribution to an adirondack lake

    NASA Astrophysics Data System (ADS)

    Scrudato, R. J.; Long, D.; Weinbloom, Robert

    1987-10-01

    Elevated copper, lead, and zinc concentrations in the upper 10 to 20 cm of sediment sampled from Cranberry Lake, a large Adirondack lake, are attributed to atmospheric contributions. Pb-210 and pollen core data, however, suggest Cranberry Lake also received mercury discharges during the turn of the century when the area was the center of extensive lumbering and related activities. Elevated mercury concentrations in Cranberry Lake smallmouth bass derived from remobilization from mercury-contaminated bottom sediments which increased the bioavailability to Cranberry Lake organisms. Mercury remobilization and accumulation by fish are promoted by fluctuating pH values resulting from acid precipilation.

  11. Determination of radon and radium concentrations in drinking water samples around the city of Kutahya.

    PubMed

    Sahin, Latife; Cetinkaya, Hakan; Murat Saç, Müslim; Içhedef, Mutlu

    2013-08-01

    The concentration of radium and radon has been determined in drinking water samples collected from various locations of Kutahya city, Turkey. The water samples are taken from public water sources and tap water, with the collector chamber method used to measure the radon and radium concentration. The radon concentration ranges between 0.1 and 48.6±1.7 Bq l(-1), while the radium concentration varies from a minimum detectable activity of <0.02-0.7±0.2 Bq l(-1) in Kutahya city. In addition to the radon and radium levels, parameters such as pH, conductivity and temperature of the water, humidity, pressure, elevation and the coordinates of the sampling points have also been measured and recorded. The annual effective dose from radon and radium due to typical water usage has been calculated. The resulting contribution to the annual effective dose due to radon ingestion varies between 0.3 and 124.2 μSv y(-1); the contribution to the annual effective dose due to radium ingestion varies between 0 and 143.3 μSv y(-1); the dose contribution to the stomach due to radon ingestion varies between 0.03 and 14.9 μSv y(-1). The dose contribution due to radon inhalation ranges between 0.3 and 122.5 μSv y(-1), assuming a typical transfer of radon in water to the air. For the overwhelming majority of the Kutahya population, it is determined that the average radiation exposure from drinking water is less than 73.6 µSv y(-1).

  12. Renewable energy powered membrane technology: Impact of pH and ionic strength on fluoride and natural organic matter removal.

    PubMed

    Owusu-Agyeman, Isaac; Shen, Junjie; Schäfer, Andrea Iris

    2018-04-15

    Real water pH and ionic strength vary greatly, which influences the performance of membrane processes such as nanofiltration (NF) and reverse osmosis (RO). Systematic variation of pH (3-12) and ionic strength (2-10g/L as total dissolved solids (TDS)) was undertaken with a real Tanzanian water to investigate how water quality affects retention mechanisms of fluoride (F) and natural organic matter (NOM). An autonomous solar powered NF/RO system driven by a solar array simulator was supplied with constant power from a generator. An open NF (NF270) and a brackish water RO (BW30) membrane were used. A surface water with a very high F (59.7mg/L) and NOM (110mgC/L) was used. Retention of F by NF270 was <20% at pH <6, increased to 40% at pH6, and 60-70% at pH7-12, indicating a dominance of charge repulsion while being ineffective in meeting the guideline of 1.5mg/L. Increase in ionic strength led to a significant decline in retention of F (from 70 to 50%) and electrical conductivity (from 60 to 10%) by NF270, presumably due to charge screening. In contrast, BW30 retained about 50% of F at pH3, >80% at pH4, and about 99% at pH >5, due to the smaller pore size and hence a more dominant size exclusion. In consequence, only little impact of ionic strength increase was observed for BW30. The concentration of NOM in permeates of both NF270 and BW30 were typically <2mg/L. This was not affected by pH or ionic strength due to the fact that the bulk of NOM was rejected by both membranes through size exclusion. The research is carried out in the context of providing safe drinking water for rural and remote communities where infrastructure is lacking, and water quality varies significantly. While other studies focus on energy fluctuations, this research emphasises on feed water quality that affects system performance and may alter due to a number of environmental factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2011-01-01

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under “real-time” and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to “real-time” conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict “real-time” release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under “real-time” and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. PMID:22016033

  14. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings.

    PubMed

    Shen, Jie; Burgess, Diane J

    2012-01-17

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under "real-time" and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to "real-time" conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict "real-time" release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under "real-time" and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Effects of elevated seawater pCO2 on early development of scallop Argopecten irradias (Lamarck, 1819)

    NASA Astrophysics Data System (ADS)

    Wang, Weimin; Liu, Guangxing; Zhang, Tianwen; Chen, Hongju; Tang, Liao; Mao, Xuewei

    2016-12-01

    To investigate the effects of elevated seawater pCO2 on the early developmental stages of marine benthic calcifying organisms, we exposed the eggs and larvae of Argopecten irradias, an important bivalve species in Chinese aquaculture, in seawater equilibrated with CO2-enriched (1000 ppm) gas mixtures. We demonstrated that elevated seawater pCO2 significantly interfered with fertilization and larval development and resulted in an increased aberration rate. Fertilization in the treatment (pH 7.6) was 74.3% ± 3.8%, which was 9.7% lower than that in the control (pH 8.3) (84.0% ±3.0%). Hatching success decreased by 23.7%, and aberration rate increased by 30.3% under acidic condition. Larvae in acidified seawater still developed a shell during the post-embryonic phase. However, the shell length and height in the treatment were smaller than those in the control. The development of embryos differed significantly at 12 h after fertilization between the two experimental groups. Embryos developed slower in acidified seawater. Nearly half of the embryos in the control developed into D-shaped larvae at 48 h after fertilization, which were considerably more than those in the treatment (11.7%). Results suggest that future ocean acidification (OA) would cause detrimental effects on the early development of A. irradias.

  16. Evidence for an Elevated Aspartate pKa in the Active Site of Human Aromatase*

    PubMed Central

    Di Nardo, Giovanna; Breitner, Maximilian; Bandino, Andrea; Ghosh, Debashis; Jennings, Gareth K.; Hackett, John C.; Gilardi, Gianfranco

    2015-01-01

    Aromatase (CYP19A1), the enzyme that converts androgens to estrogens, is of significant mechanistic and therapeutic interest. Crystal structures and computational studies of this enzyme shed light on the critical role of Asp309 in substrate binding and catalysis. These studies predicted an elevated pKa for Asp309 and proposed that protonation of this residue was required for function. In this study, UV-visible absorption, circular dichroism, resonance Raman spectroscopy, and enzyme kinetics were used to study the impact of pH on aromatase structure and androstenedione binding. Spectroscopic studies demonstrate that androstenedione binding is pH-dependent, whereas, in contrast, the D309N mutant retains its ability to bind to androstenedione across the entire pH range studied. Neither pH nor mutation perturbed the secondary structure or heme environment. The origin of the observed pH dependence was further narrowed to the protonation equilibria of Asp309 with a parallel set of spectroscopic studies using exemestane and anastrozole. Because exemestane interacts with Asp309 based on its co-crystal structure with the enzyme, its binding is pH-dependent. Aromatase binding to anastrozole is pH-independent, consistent with the hypothesis that this ligand exploits a distinct set of interactions in the active site. In summary, we assign the apparent pKa of 8.2 observed for androstenedione binding to the side chain of Asp309. To our knowledge, this work represents the first experimental assignment of a pKa value to a residue in a cytochrome P450. This value is in agreement with theoretical calculations (7.7–8.1) despite the reliance of the computational methods on the conformational snapshots provided by crystal structures. PMID:25425647

  17. Community production modulates coral reef pH and the sensitivity of ecosystem calcification to ocean acidification

    NASA Astrophysics Data System (ADS)

    DeCarlo, Thomas M.; Cohen, Anne L.; Wong, George T. F.; Shiah, Fuh-Kwo; Lentz, Steven J.; Davis, Kristen A.; Shamberger, Kathryn E. F.; Lohmann, Pat

    2017-01-01

    Coral reefs are built of calcium carbonate (CaCO3) produced biogenically by a diversity of calcifying plants, animals, and microbes. As the ocean warms and acidifies, there is mounting concern that declining calcification rates could shift coral reef CaCO3 budgets from net accretion to net dissolution. We quantified net ecosystem calcification (NEC) and production (NEP) on Dongsha Atoll, northern South China Sea, over a 2 week period that included a transient bleaching event. Peak daytime pH on the wide, shallow reef flat during the nonbleaching period was ˜8.5, significantly elevated above that of the surrounding open ocean (˜8.0-8.1) as a consequence of daytime NEP (up to 112 mmol C m-2 h-1). Diurnal-averaged NEC was 390 ± 90 mmol CaCO3 m-2 d-1, higher than any other coral reef studied to date despite comparable calcifier cover (25%) and relatively high fleshy algal cover (19%). Coral bleaching linked to elevated temperatures significantly reduced daytime NEP by 29 mmol C m-2 h-1. pH on the reef flat declined by 0.2 units, causing a 40% reduction in NEC in the absence of pH changes in the surrounding open ocean. Our findings highlight the interactive relationship between carbonate chemistry of coral reef ecosystems and ecosystem production and calcification rates, which are in turn impacted by ocean warming. As open-ocean waters bathing coral reefs warm and acidify over the 21st century, the health and composition of reef benthic communities will play a major role in determining on-reef conditions that will in turn dictate the ecosystem response to climate change.

  18. Prolactin promotes normal liver growth, survival, and regeneration in rodents: effects on hepatic IL-6, suppressor of cytokine signaling-3, and angiogenesis.

    PubMed

    Moreno-Carranza, Bibiana; Goya-Arce, Maite; Vega, Claudia; Adán, Norma; Triebel, Jakob; López-Barrera, Fernando; Quintanar-Stéphano, Andrés; Binart, Nadine; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2013-10-01

    Prolactin (PRL) is a potent liver mitogen and proangiogenic hormone. Here, we used hyperprolactinemic rats and PRL receptor-null mice (PRLR(-/-)) to study the effect of PRL on liver growth and angiogenesis before and after partial hepatectomy (PH). Liver-to-body weight ratio (LBW), hepatocyte and sinusoidal endothelial cell (SEC) proliferation, and hepatic expression of VEGF were measured before and after PH in hyperprolactinemic rats, generated by placing two anterior pituitary glands (AP) under the kidney capsule. Also, LBW and hepatic expression of IL-6, as well as suppressor of cytokine signaling-3 (SOCS-3), were evaluated in wild-type and PRLR(-/-) mice before and after PH. Hyperprolactinemia increased the LBW, the proliferation of hepatocytes and SECs, and VEGF hepatic expression. Also, liver regeneration was increased in AP-grafted rats and was accompanied by elevated hepatocyte and SEC proliferation, and VEGF expression compared with nongrafted controls. Lowering circulating PRL levels with CB-154, an inhibitor of AP PRL secretion, prevented AP-induced stimulation of liver growth. Relative to wild-type animals, PRLR(-/-) mice had smaller livers, and soon after PH, they displayed an approximately twofold increased mortality and elevated and reduced hepatic IL-6 and SOCS-3 expression, respectively. However, liver regeneration was improved in surviving PRLR(-/-) mice. PRL stimulates normal liver growth, promotes survival, and regulates liver regeneration by mechanisms that may include hepatic downregulation of IL-6 and upregulation of SOCS-3, increased hepatocyte proliferation, and angiogenesis. PRL contributes to physiological liver growth and has potential clinical utility for ensuring survival and regulating liver mass in diseases, injuries, or surgery of the liver.

  19. Pulmonary artery relative area change detects mild elevations in pulmonary vascular resistance and predicts adverse outcome in pulmonary hypertension.

    PubMed

    Swift, Andrew J; Rajaram, Smitha; Condliffe, Robin; Capener, Dave; Hurdman, Judith; Elliot, Charlie; Kiely, David G; Wild, Jim M

    2012-10-01

    The aim of this study was to evaluate the clinical use of magnetic resonance imaging measurements related to pulmonary artery stiffness in the evaluation of pulmonary hypertension (PH). A total of 134 patients with suspected PH underwent right heart catheterization (RHC) and magnetic resonance imaging on a 1.5-T scanner within 2 days. Phase contrast imaging at the pulmonary artery trunk and cine cardiac views were acquired. Pulmonary artery area change (AC), relative AC (RAC), compliance (AC/pulse pressure from RHC), distensibility (RAC/pulse pressure from RHC), right ventricular functional indices, and right ventricular mass were all derived. Regression curve fitting identified the statistical model of best fit between RHC measurements and pulmonary artery stiffness indices. The diagnostic accuracy and prognostic value of noninvasive AC and RAC were also assessed. The relationship between pulmonary vascular resistance and pulmonary artery RAC was best reflected by an inverse linear model. Patients with mild elevation in pulmonary vascular resistance (<4 Woods units) demonstrated reduced RAC (P = 0.02) and increased right ventricular mass index (P < 0.0001) without significant loss of right ventricular function (P = 0.17). At follow-up of 0 to 40 months, 18 patients with PH had died (16%). Analysis of Kaplan-Meier plots showed that both AC and RAC predicted mortality (log-rank test, P = 0.046 and P = 0.012, respectively). Area change and RAC were also predictors of mortality using univariate Cox proportional hazards regression analysis (P = 0.046 and P = 0.03, respectively). Noninvasive assessment of pulmonary artery RAC is a marker sensitive to early increased vascular resistance in PH and is a predictor of adverse outcome.

  20. The isolation of the temperature effect on branched GDGT distribution in an elevation transect of the Eastern Cordillera, Colombia

    NASA Astrophysics Data System (ADS)

    Anderson, V. J.; Shanahan, T. M.; Saylor, J.; Horton, B. K.

    2012-12-01

    Recently, the distribution of branched GDGT's (glycerol dialkyl glycerol tetraethers) has been proposed as a proxy for temperature and pH in soils via the MBT/CBT index, and has been used to reconstruct past temperature variations in a number of settings ranging from marine sediments to loess deposits and paleosols. However, empirical calibrations of the MBT/CBT index against temperature show significant scatter, leading to uncertainties as large as ±2 degrees C . In this study we seek to add to and improve upon the existing soil calibration using a new set of samples spanning a large elevation (and temperature) gradient in the Eastern Cordillera of Colombia. At each site we buried temperature loggers to constrain the diurnal and seasonal temperature experienced by each soil sample. Located only 5 degrees north of the equator, our sites experience a very small seasonal temperature variation - most sites display an annual range of less than 4 degrees C. In addition, the pH of all of the soils is almost invariant across the transect, with the vast majority of samples having pH's between 4 and 5. This dataset represents a "best-case" scenario - small variations in seasonal temperature, pH, and well-constrained instrumental data - which allow us to examine the brGDGT-temperature relationship in the absence of major confounding factors such as seasonality and soil chemistry. Interestingly, the relationship between temperature and the MBT/CBT index is not improved using this dataset, suggesting that these factors are not the cause of the anomalous scatter in the calibration dataset. However, we find that using other parameterizations for the regression equation instead of the MBT and CBT indices, the errors in our temperature estimates are significantly reduced.

  1. Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Lou, Shaofeng; Gao, Shan; Wang, Weiwei; Zhang, Mingming; Zhang, Ju; Wang, Chun; Li, Chen; Kong, Deling; Zhao, Qiang

    2015-02-01

    We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using a combination of enzymatic transesterification and emulsion copolymerization for intracellular drug delivery. The nanogel exhibited redox, pH and temperature-responsive properties, which can be adjusted by varying the monomer feeding ratio. Furthermore, the volume phase transition temperature (VPTT) of the nanogels was close to body temperature and can result in rapid thermal gelation at 37 °C. Scanning electron microscopy also revealed that the P(ODGal-VCL-MAA) nanogel showed uniform spherical monodispersion. With pyrene as a probe, the fluorescence excitation spectra demonstrated nanogel degradation in response to glutathione (GSH). X-ray diffraction (XRD) showed an amorphous property of DOX within the nanogel, which was used in this study as a model anti-cancer drug. Drug-releasing characteristics of the nanogel were examined in vitro. The results showed multi-responsiveness of DOX release by the variation of environmental pH values, temperature or the availability of GSH, a biological reductase. An in vitro cytotoxicity assay showed a higher anti-tumor activity of the galactose-functionalized DOX-loaded nanogels against human hepatoma HepG2 cells, which was, at least in part, due to specific binding between the galactose segments and the asialoglycoprotein receptors (ASGP-Rs) in hepatic cells. Confocal laser scanning microscopy (CLSM) and flow cytometric profiles further confirmed elevated cellular uptake of DOX by the galactose-functionalised nanogels. Thus, we report here a multi-responsive P(ODGal-VCL-MAA) nanogel with a hepatoma-specific targeting ability for anti-cancer drug delivery.We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using a combination of enzymatic transesterification and emulsion copolymerization for intracellular drug delivery. The nanogel exhibited redox, pH and temperature-responsive properties, which can be adjusted by varying the monomer feeding ratio. Furthermore, the volume phase transition temperature (VPTT) of the nanogels was close to body temperature and can result in rapid thermal gelation at 37 °C. Scanning electron microscopy also revealed that the P(ODGal-VCL-MAA) nanogel showed uniform spherical monodispersion. With pyrene as a probe, the fluorescence excitation spectra demonstrated nanogel degradation in response to glutathione (GSH). X-ray diffraction (XRD) showed an amorphous property of DOX within the nanogel, which was used in this study as a model anti-cancer drug. Drug-releasing characteristics of the nanogel were examined in vitro. The results showed multi-responsiveness of DOX release by the variation of environmental pH values, temperature or the availability of GSH, a biological reductase. An in vitro cytotoxicity assay showed a higher anti-tumor activity of the galactose-functionalized DOX-loaded nanogels against human hepatoma HepG2 cells, which was, at least in part, due to specific binding between the galactose segments and the asialoglycoprotein receptors (ASGP-Rs) in hepatic cells. Confocal laser scanning microscopy (CLSM) and flow cytometric profiles further confirmed elevated cellular uptake of DOX by the galactose-functionalised nanogels. Thus, we report here a multi-responsive P(ODGal-VCL-MAA) nanogel with a hepatoma-specific targeting ability for anti-cancer drug delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06714b

  2. Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers.

    PubMed Central

    Chase, P B; Kushmerick, M J

    1988-01-01

    We have investigated (a) effects of varying proton concentration on force and shortening velocity of glycerinated muscle fibers, (b) differences between these effects on fibers from psoas (fast) and soleus (slow) muscles, possibly due to differences in the actomyosin ATPase kinetic cycles, and (c) whether changes in intracellular pH explain altered contractility typically associated with prolonged excitation of fast, glycolytic muscle. The pH range was chosen to cover the physiological pH range (6.0-7.5) as well as pH 8.0, which has often been used for in vitro measurements of myosin ATPase activity. Steady-state isometric force increased monotonically (by about threefold) as pH was increased from pH 6.0; force in soleus (slow) fibers was less affected by pH than in psoas (fast) fibers. For both fiber types, the velocity of unloaded shortening was maximum near resting intracellular pH in vivo and was decreased at acid pH (by about one-half). At pH 6.0, force increased when the pH buffer concentration was decreased from 100 mM, as predicted by inadequate pH buffering and pH heterogeneity in the fiber. This heterogeneity was modeled by net proton consumption within the fiber, due to production by the actomyosin ATPase coupled to consumption by the creatine kinase reaction, with replenishment by diffusion of protons in equilibrium with a mobile buffer. Lactate anion had little mechanical effect. Inorganic phosphate (15 mM total) had an additive effect of depressing force that was similar at pH 7.1 and 6.0. By directly affecting the actomyosin interaction, decreased pH is at least partly responsible for the observed decreases in force and velocity in stimulated muscle with sufficient glycolytic capacity to decrease pH. Images FIGURE 1 PMID:2969265

  3. Acid-base balance and metabolic response of the sea urchin Paracentrotus lividus to different seawater pH and temperatures.

    PubMed

    Catarino, Ana I; Bauwens, Mathieu; Dubois, Philippe

    2012-07-01

    In order to better understand if the metabolic responses of echinoids could be related to their acid-base status in an ocean acidification context, we studied the response of an intertidal sea urchin species, Paracentrotus lividus, submitted to low pH at two different temperatures. Individuals were submitted to control (8.0) and low pH (7.7 and 7.4) at 10°C and 16°C (19 days). The relation between the coelomic fluid acid-base status, the RNA/DNA ratio of gonads and the individual oxygen uptake were studied. The coelomic fluid pH decreased with the aquarium seawater, independently of temperature, but this explained only 13% of the pH variation. The coelomic fluid showed though a partial buffer capacity that was not related to skeleton dissolution ([Mg(2+)] and [Ca(2+)] did not differ between pH treatments). There was an interaction between temperature and pH on the oxygen uptake (V (O2)) which was increased at pH 7.7 and 7.4 at 10°C in comparison with controls, but not at 16°C, indicating an upregulation of the metabolism at low temperature and pH. However, gonad RNA/DNA ratios did not differ according to pH and temperature treatments, indicating that even if maintenance of physiological activities has an elevated metabolic cost when individuals are exposed to stress, they are not directly affected during short-term exposure. Long-term studies are needed in order to verify if gonad production/growth will be affected by low pH seawaters exposure.

  4. A laboratory study evaluating the pH of various modern root canal filling materials.

    PubMed

    Pawińska, Małgorzata; Szczurko, Grzegorz; Kierklo, Anna; Sidun, Jarosław

    2017-01-01

    Alkaline pH is responsible for antibacterial activity and the stimulation of periapical tissue healing. It neutralizes the acidic environment of inflammatory tissues in the periapical region of the teeth and favors bone repair by activating tissue enzymes. The aim of this study was to evaluate and compare in vitro the pH of 8 root canal filling materials (sealers and points) -AH Plus Jet (AH), Apexit Plus (AP), Endomethasone N (END), Epiphany (EP), GuttaFlow (GF), gutta-percha (G), Resilon (R), Tubliseal (T). 0.1 g of each material (n = 6) was placed in dialysis tubes and immersed in 20 mL of deionized water. The control contained deionized water (pH 6.6) with an empty tube. The pH values were recorded immediately after immersion (baseline) and after 1, 2, 24, 48, 120, and 192 h with a pH-meter. Data were statistically analyzed using the Student's -t test and 1-way analysis of variance (p < 0.05). Nearly all the materials had pH significantly higher than the control (p < 0.05). There were significant differences in the pH between the materials tested at each time point (p < 0.001). The highest pH was exhibited by EP, followed by AP and AH. The lowest pH was shown by GF, G and R. Among the materials studied, only EP, AP and AH Plus were able to elevate the pH level that would allow inactivation of microorganisms in the root canals and promote healing of inflamed periapical tissues. However, the low alkalizing potential of G and R can be modified by the concomitant application of sealers producing alkaline pH.

  5. Groundwater age for identification of baseline groundwater quality and impacts of land-use intensification - The National Groundwater Monitoring Programme of New Zealand

    NASA Astrophysics Data System (ADS)

    Morgenstern, Uwe; Daughney, Christopher J.

    2012-08-01

    SummaryWe identified natural baseline groundwater quality and impacts caused by land use intensification by relating groundwater chemistry with water age. Tritium, the most direct tracer for groundwater dating, including the time of water passage through the unsaturated zone, was overwhelmed over the recent decades by contamination from bomb-tritium from nuclear weapons testing in the early 1960s. In the Southern Hemisphere, this situation has changed now with the fading of the bomb-tritium, and tritium has become a tool for accurate groundwater dating. Tritium dating will become efficient also in the Northern Hemisphere over the next decade. Plotting hydrochemistry and field parameters versus groundwater age allowed us to identify those parameters that have increasing concentrations with age and are therefore from geological sources. These indicators for natural groundwater evolution are: Na, HCO3, SiO2, F, PO4, the redox-sensitive elements and compounds Fe, Mn, NH4, CH4, and pH and conductivity. In young groundwater that was recharged after the intensification of agriculture, nitrate, sulphate, CFC-11 and CFC-12, and pesticides are the most representative indicators for the impact of land-use intensification on groundwater quality, with 66% of the sites showing such an impact. Elevated concentrations of nitrate in oxic groundwater allowed us to reconstruct the timing and magnitude of the impact of land-use intensification on groundwater which in New Zealand occurred in two stages. Old pristine groundwater reflects the natural baseline quality. A transition to slightly elevated concentration due to low-intensity land-use was observed in groundwater recharged since around 1880. A sharp increase in nitrate and other agrochemicals due to high-intensity agriculture was observed in groundwater recharged since 1955. The threshold concentrations that distinguish natural baseline quality water from low-intensity land-use water, and low-intensity from high intensity land-use water, are 0.25 and 2.5 mg/L NO3-N, respectively. The change in groundwater quality from pristine baseline to low-intensity impact around 1880 coincides with the start of the meat export industry. The change in groundwater quality from low to high intensity landuse impact around 1955 coincides with the start of industrialised agriculture. No elevated levels of phosphate, a main compound in agricultural fertilisers and, together with nitrogen, a trigger of algae blooms in lakes, were found in young groundwater. This implies that fertiliser phosphate from non-point sources is still retained in the soil and has not yet reached the saturated groundwater systems. The source of elevated PO4, observed only in old groundwater, is therefore due purely to natural geochemical factors.

  6. Use of PCR-DGGE Based Molecular Methods to Analyse Microbial Community Diversity and Stability during the Thermophilic Stages of an ATAD Wastewater Sludge Treatment Process as an Aid to Performance Monitoring

    PubMed Central

    Piterina, Anna V.; Pembroke, J. Tony

    2013-01-01

    PCR and PCR-DGGE techniques have been evaluated to monitor biodiversity indexes within an ATAD (autothermal thermophilic aerobic digestion) system treating domestic sludge for land spread, by examining microbial dynamics in response to elevated temperatures during treatment. The ATAD process utilises a thermophilic population to generate heat and operates at elevated pH due to degradation of sludge solids, thus allowing pasteurisation and stabilisation of the sludge. Genera-specific PCR revealed that Archaea, Eukarya and Fungi decline when the temperature reaches 59°C, while the bacterial lineage constitutes the dominant group at this stage. The bacterial community at the thermophilic stage, its similarity index to the feed material, and the species richness present were evaluated by PCR-DGGE. Parameters such as choice of molecular target (16S rDNA or rpoB genes), and electrophoresis condition, were optimised to maximise the resolution of the method for ATAD. Dynamic analysis of microbial communities was best observed utilising PCR-DGGE analysis of the V6-V8 region of 16S rDNA, while rpoB gene profiles were less informative. Unique thermophilic communities were shown to quickly adapt to process changes, and shown to be quite stable during the process. Such techniques may be used as a monitoring technique for process health and efficiency. PMID:25937969

  7. Fracked ecology: Response of aquatic trophic structure and mercury biomagnification dynamics in the Marcellus Shale Formation.

    PubMed

    Grant, Christopher James; Lutz, Allison K; Kulig, Aaron D; Stanton, Mitchell R

    2016-12-01

    Unconventional natural gas development and hydraulic fracturing practices (fracking) are increasing worldwide due to global energy demands. Research has only recently begun to assess fracking impacts to surrounding environments, and very little research is aimed at determining effects on aquatic biodiversity and contaminant biomagnification. Twenty-seven remotely-located streams in Pennsylvania's Marcellus Shale basin were sampled during June and July of 2012 and 2013. At each stream, stream physiochemical properties, trophic biodiversity, and structure and mercury levels were assessed. We used δ15N, δ13C, and methyl mercury to determine whether changes in methyl mercury biomagnification were related to the fracking occurring within the streams' watersheds. While we observed no difference in rates of biomagnificaion related to within-watershed fracking activities, we did observe elevated methyl mercury concentrations that were influenced by decreased stream pH, elevated dissolved stream water Hg values, decreased macroinvertebrate Index for Biotic Integrity scores, and lower Ephemeroptera, Plecoptera, and Trichoptera macroinvertebrate richness at stream sites where fracking had occurred within their watershed. We documented the loss of scrapers from streams with the highest well densities, and no fish or no fish diversity at streams with documented frackwater fluid spills. Our results suggest fracking has the potential to alter aquatic biodiversity and methyl mercury concentrations at the base of food webs.

  8. Inorganic species distribution and microbial diversity within high Arctic cryptoendolithic habitats.

    PubMed

    Omelon, Christopher R; Pollard, Wayne H; Ferris, F Grant

    2007-11-01

    Cryptoendolithic habitats in the Canadian high Arctic are associated with a variety of microbial community assemblages, including cyanobacteria, algae, and fungi. These habitats were analyzed for the presence of metal ions by sequential extraction and evaluated for relationships between these and the various microorganisms found at each site using multivariate statistical methods. Cyanobacteria-dominated communities exist under higher pH conditions with elevated concentrations of calcium and magnesium, whereas communities dominated by fungi and algae are characterized by lower pH conditions and higher concentrations of iron, aluminum, and silicon in the overlying surfaces. These results suggest that the activity of the dominant microorganisms controls the pH of the surrounding environment, which in turn dictates rates of weathering or the possibility for surface crust formation, both ultimately deciding the structure of microbial diversity for each cryptoendolithic habitat.

  9. Euglycemic Diabetic Ketoacidosis with Elevated Acetone in a Patient Taking a Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitor.

    PubMed

    Andrews, Tory J; Cox, Robert D; Parker, Christina; Kolb, James

    2017-02-01

    Sodium-glucose cotransporter-2 (SGLT2) inhibitor medications are a class of antihyperglycemic agents that increase urinary glucose excretion by interfering with the reabsorption of glucose in the proximal renal tubules. In May of 2015, the U.S. Food and Drug Administration released a warning concerning a potential increased risk of ketoacidosis and ketosis in patients taking these medications. We present a case of a 57-year-old woman with type 2 diabetes mellitus taking a combination of canagliflozin and metformin who presented with progressive altered mental status over the previous 2 days. Her work-up demonstrated a metabolic acidosis with an anion gap of 38 and a venous serum pH of 7.08. The serum glucose was 168 mg/dL. The urinalysis showed glucose > 500 mg/dL and ketones of 80 mg/dL. Further evaluation demonstrated an elevated serum osmolality of 319 mOsm/kg and an acetone concentration of 93 mg/dL. She was treated with intravenous insulin and fluids, and the metabolic abnormalities and her altered mental status resolved within 36 h. This was the first episode of diabetic ketoacidosis (DKA) for this patient. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Diabetic patients on SGLT2 inhibitor medications are at risk for ketoacidosis. Due to the renal glucose-wasting properties of these drugs, they may present with ketoacidosis with only mild elevations in serum glucose, potentially complicating the diagnosis. Acetone is one of the three main ketone bodies formed during DKA and it may be present at considerable concentrations, contributing to the serum osmolality. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Heavy metal capture by autochthonous yeasts from a volcanic influenced environment of Patagonia.

    PubMed

    Russo, Gabriel; Libkind, Diego; Giraudo, María Rosa; Delgado, Osvaldo Daniel

    2016-11-01

    Heavy metals at elevated concentrations are a major threat to agricultural and human health. Typically, human activities tend to release these metals to the environment in aqueous solutions, generating high levels of pollution due to the mobility of the heavy metals. The aim of the present work was to assess heavy metal tolerance in yeasts isolated from Río Agrio - Lake Caviahue volcanic acidic aquatic environment and to evaluate the capacity of selected strains to capture metals in acidic culture media conditions. The ability of three yeast species, Cryptococcus agrionensis, Cryptococcus sp. 2, and Coniochaeta fodinicola, to tolerate and capture metals in live cultures has been evaluated. These three yeast species showed high tolerance to low pH and elevated concentrations of metals, thus implying their autochthonous status. Minimal inhibitory concentration (MIC) for growth obtained for these isolates showed elevated tolerance to the six heavy metals evaluated and were significantly higher than those registered for other microorganisms. C. agrionensis was able to capture 15.80 mg (g biomass) -1 of Cu 2+ (MIC: 0.22 g L -1 ), Cryptococcus sp. 2 was able to capture 36.25 and 65.28 mg (g biomass) -1 of Ni 2+ and Zn 2+ , respectively (MIC: 0.56 and 1.68, respectively), and C. fodinicola was able to capture 67.11 mg (g biomass) -1 of Zn 2+ (MIC: 3.75). This work reported the ability of yeasts to capture metals in acidic conditions for the first time. We hope that it represents the step-stone for future researches in the ability and metabolism of yeasts form acidic aquatic environment related to metal tolerance and capture. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification

    NASA Astrophysics Data System (ADS)

    Carreiro-Silva, M.; Cerqueira, T.; Godinho, A.; Caetano, M.; Santos, R. S.; Bettencourt, R.

    2014-06-01

    Cold-water corals (CWCs) are thought to be particularly vulnerable to ocean acidification (OA) due to increased atmospheric pCO2, because they inhabit deep and cold waters where the aragonite saturation state is naturally low. Several recent studies have evaluated the impact of OA on organism-level physiological processes such as calcification and respiration. However, no studies to date have looked at the impact at the molecular level of gene expression. Here, we report results of a long-term, 8-month experiment to compare the physiological responses of the CWC Desmophyllum dianthus to OA at both the organismal and gene expression levels under two pCO2/pH treatments: ambient pCO2 (460 μatm, pHT = 8.01) and elevated pCO2 (997 μatm, pHT = 7.70). At the organismal level, no significant differences were detected in the calcification and respiration rates of D. dianthus. Conversely, significant differences were recorded in gene expression profiles, which showed an up-regulation of genes involved in cellular stress (HSP70) and immune defence (mannose-binding c-type lectin). Expression of alpha-carbonic anhydrase, a key enzyme involved in the synthesis of coral skeleton, was also significantly up-regulated in corals under elevated pCO2, indicating that D. dianthus was under physiological reconditioning to calcify under these conditions. Thus, gene expression profiles revealed physiological impacts that were not evident at the organismal level. Consequently, understanding the molecular mechanisms behind the physiological processes involved in a coral's response to elevated pCO2 is critical to assess the ability of CWCs to acclimate or adapt to future OA conditions.

  12. Alkaline tide and nitrogen conservation after feeding in an elasmobranch (Squalus acanthias).

    PubMed

    Wood, Chris M; Kajimura, Makiko; Mommsen, Thomas P; Walsh, Patrick J

    2005-07-01

    We investigated the consequences of feeding for acid-base balance, nitrogen excretion, blood metabolites and osmoregulation in the Pacific spiny dogfish. Sharks that had been starved for 7 days were surgically fitted with indwelling stomach tubes for gastric feeding and blood catheters for repetitive blood sampling and were confined in chambers, allowing measurement of ammonia-N and urea-N fluxes. The experimental meal infused via the stomach tube consisted of flatfish muscle (2% of body mass) suspended in saline (4% of body mass total volume). Control animals received only saline (4% of body mass). Feeding resulted in a marked rise in both arterial and venous pH and HCO3- concentrations at 3-9 h after the meal, with attenuation by 17 h. Venous P(O2) also fell. As there were negligible changes in P(CO2), the response was interpreted as an alkaline tide without respiratory compensation, associated with elevated gastric acid secretion. Urea-N excretion, which comprised >90% of the total, was unaffected, while ammonia-N excretion was very slightly elevated, amounting to <3% of the total-N in the meal over 45 h. Plasma ammonia-N rose slightly. Plasma urea-N, TMAO-N and glucose concentrations remained unchanged, while free amino acid and beta-hydroxybutyrate levels exhibited modest declines. Plasma osmolality was persistently elevated after the meal relative to controls, partially explained by a significant rise in plasma Cl-. This marked post-prandial conservation of nitrogen is interpreted as reflecting the needs for urea synthesis for osmoregulation and protein growth in animals that are severely N-limited due to their sporadic and opportunistic feeding lifestyle in nature.

  13. Specific Inhibition of Hepatic Lactate Dehydrogenase Reduces Oxalate Production in Mouse Models of Primary Hyperoxaluria.

    PubMed

    Lai, Chengjung; Pursell, Natalie; Gierut, Jessica; Saxena, Utsav; Zhou, Wei; Dills, Michael; Diwanji, Rohan; Dutta, Chaitali; Koser, Martin; Nazef, Naim; Storr, Rachel; Kim, Boyoung; Martin-Higueras, Cristina; Salido, Eduardo; Wang, Weimin; Abrams, Marc; Dudek, Henryk; Brown, Bob D

    2018-06-15

    Primary hyperoxalurias (PHs) are autosomal recessive disorders caused by the overproduction of oxalate leading to calcium oxalate precipitation in the kidney and eventually to end-stage renal disease. One promising strategy to treat PHs is to reduce the hepatic production of oxalate through substrate reduction therapy by inhibiting liver-specific glycolate oxidase (GO), which controls the conversion of glycolate to glyoxylate, the proposed main precursor to oxalate. Alternatively, diminishing the amount of hepatic lactate dehydrogenase (LDH) expression, the proposed key enzyme responsible for converting glyoxylate to oxalate, should directly prevent the accumulation of oxalate in PH patients. Using RNAi, we provide the first in vivo evidence in mammals to support LDH as the key enzyme responsible for converting glyoxylate to oxalate. In addition, we demonstrate that reduction of hepatic LDH achieves efficient oxalate reduction and prevents calcium oxalate crystal deposition in genetically engineered mouse models of PH types 1 (PH1) and 2 (PH2), as well as in chemically induced PH mouse models. Repression of hepatic LDH in mice did not cause any acute elevation of circulating liver enzymes, lactate acidosis, or exertional myopathy, suggesting further evaluation of liver-specific inhibition of LDH as a potential approach for treating PH1 and PH2 is warranted. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Effects of pH and elevated glucose levels on the electrochemical behavior of dental implants.

    PubMed

    Tamam, Evsen; Turkyilmaz, Ilser

    2014-04-01

    Implant failure is more likely to occur in persons with medically compromising systemic conditions, such as diabetes related to high blood glucose levels and inflammatory diseases related to pH levels lower than those in healthy people. The aim of this study was to investigate the effects of lower pH level and simulated- hyperglycemia on implant corrosion as these effects are critical to biocompatibility and osseointegration. The electrochemical corrosion properties of titanium implants were studied in four different solutions: Ringer's physiological solution at pH = 7.0 and pH = 5.5 and Ringer's physiological solution containing 15 mM dextrose at pH = 7 and pH = 5.5. Corrosion behaviors of dental implants were determined by cyclic polarization test and electrochemical impedance spectroscopy. Surface alterations were studied using a scanning electron microscope. All test electrolytes led to apparent differences in corrosion behavior of the implants. The implants under conditions of test exhibited statistically significant increases in I(corr) from 0.2372 to 1.007 μAcm(-2), corrosion rates from 1.904 to 8.085 mpy, and a decrease in polarization resistances from 304 to 74 Ω. Implants in dextrose-containing solutions were more prone to corrosion than those in Ringer's solutions alone. Increasing the acidity also yielded greater corrosion rates for the dextrose-containing solutions and the solutions without dextrose.

  15. Novel red cell indices indicating reduced availability of iron are associated with high erythropoietin concentration and low ph level in the venous cord blood of newborns.

    PubMed

    Ervasti, Mari; Sankilampi, Ulla; Heinonen, Seppo; Punnonen, Kari

    2008-08-01

    There is evidence that an elevated erythropoietin (EPO) concentration is associated with signs of iron deficient erythropoiesis. The aim of this study was to evaluate the iron status by means of novel cellular indices and serum iron markers and to determine whether these are associated with EPO and pH in the venous cord blood of 193 full-term newborns. There were positive correlations between EPO and the percentage of hypochromic red blood cells (%HYPOm) and reticulocytes (%HYPOr) [r = 0.45 (p < 0.001) and r = 0.56 (p < 0.001), respectively]. %HYPOm and %HYPOr also had negative correlations with pH [r = -0.53 (p = 0.001) and r = -0.46 (p = 0.001), respectively]. Newborns who had low pH (pH < or =7.15, n = 16) had significantly higher %HYPOm, %HYPOr, and serum transferrin receptor and transferrin concentrations in their cord blood than newborns with normal pH. Thus, in newborn cord blood, the higher number of red cells and reticulocytes with lower Hb content may have impaired the oxygen carrying capacity that has been a trigger for EPO production. Furthermore, signs of lower hemoglobinization of red cells are associated with low umbilical vein pH in the newborns, indicating an increased risk of birth asphyxia.

  16. Elevated extracellular pH during early shell formation in the blue mussel Mytilus edulis

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Melzner, F.; Himmerkus, N.; Hu, M.; Bleich, M.

    2016-02-01

    Marine calcifiers are amongst the most vulnerable organisms to ocean acidification (OA). However, limited studies investigate the mechanisms underlying their hindered performance under OA stress. Working with larval stages of the blue mussel, Mytilus edulis, we use microsensors to study the pH and calcium conditions necessary for shell deposition. Using 45-48 hour, D-veliger stages, we discover alkaline conditions with respect to ambient seawater pH by 0.28 pH units and higher calcium concentrations (by 0.54mM) in the extra pallial space beneath the growing shell that likely promotes the rapid synthesis of the first shell. We further use enzyme assays in combination with immuno-stainings of sodium-potassium ATPase (NKA) and proton ATPase (VHA) to provide information on the major ion regulatory pathways that enable transport of calcium carbonate required for shell formation and pH homeostasis. We also use the juvenile stages of M. edulis to understand how extracellular pH regulation close to the shell formation site will be influenced by OA stress. This allows us to describe the pH dependency of early shell formation and to begin to develop a model of the ion regulatory network that facilitates biomineralisation in the organism. The results are discussed in the context of environmental change and consequences for mollusc developmental success.

  17. Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses

    Treesearch

    ZJ Wang; TQ Lan; JY Zhu

    2013-01-01

    Nonspecific (nonproductive) binding (adsorption) of cellulase by lignin has been identified as a key barrier to reduce cellulase loading for economical sugar and biofuel production from lignocellulosic biomass. Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL) is a relatively new process, but demonstrated robust performance for sugar and biofuel...

  18. Analysis of the relationship between the decrease in pH and accumulation of 3-phosphoglyceric acid in developing forespores of Bacillus species.

    PubMed

    Magill, N G; Cowan, A E; Leyva-Vazquez, M A; Brown, M; Koppel, D E; Setlow, P

    1996-04-01

    Analysis of the pH decrease and 3-phosphoglyceric acid (3PGA) accumulation in the forespore compartment of sporulating cells of Bacillus subtilis showed that the pH decrease of 1 to 1.2 units at approximately 4 h of sporulation preceded 3PGA accumulation, as observed previously in B. megaterium. These data, as well as analysis of the forespore pH decrease in asporogenous mutants of B. subtilis, indicated that sigma G-dependent forespore transcription, but not sigma K-dependent mother cell transcription, is required for the forespore pH decrease. Further analysis of these asporogenous mutants showed an excellent correlation between the forespore pH decrease and the forespore's accumulation of 3PGA. These latter results are consistent with our previous suggestion that the decrease in forespore pH results in greatly decreased activity of phosphoglycerate mutase in the forespore, which in turn leads to 3PGA accumulation. In further support of this suggestion, we found that (i) elevating the pH of developing forespores of B. megaterium resulted in rapid utilization of the forespore's 3PGA depot and (ii) increasing forespore levels of PGM approximately 10-fold in B. subtilis resulted in a large decrease in the spore's depot of 3PGA. The B. subtilis strain with a high phosphoglycerate mutase level sporulated, and the spores germinated and went through outgrowth normally, indicating that forespore accumulation of a large 3PGA depot is not essential for these processes.

  19. Tolerance of Chemoorganotrophic Bioleaching Microorganisms to Heavy Metal and Alkaline Stresses

    PubMed Central

    Monballiu, Annick; Cardon, Nele; Tri Nguyen, Minh; Cornelly, Christel; Meesschaert, Boudewijn; Chiang, Yi Wai

    2015-01-01

    The bioleaching potential of the bacterium Bacillus mucilaginosus and the fungus Aspergillus niger towards industrial residues was investigated by assessing their response towards various heavy metals (including arsenic, cadmium, cobalt, chromium, nickel, lead, and zinc) and elevated pH. The plate diffusion method was performed for each metal to determine the toxicity effect. Liquid batch cultures were set up for more quantitative evaluation as well as for studying the influence of basicity. Growth curves were prepared using bacterial/fungal growth counting techniques such as plate counting, optical density measurement, and dry biomass determination. Cadmium, nickel, and arsenite had a negative influence on the growth of B. mucilaginosus, whereas A. niger was sensitive to cadmium and arsenate. However, it was shown that growth recovered when microorganisms cultured in the presence of these metals were inoculated onto metal-free medium. Based on the findings of the bacteriostatic/fungistatic effect of the metals and the adaptability of the microorganisms to fairly elevated pH values, it is concluded that both strains have potential applicability for further research concerning bioleaching of alkaline waste materials. PMID:26236176

  20. Heterogeneous selenite reduction by zero valent iron steel wool.

    PubMed

    Li, Ziyan; Huang, Donglin; McDonald, Louis M

    2017-02-01

    Mine drainage from the low-sulfur surface coal mines in southern West Virginia, USA, is circumneutral (pH > 6) but contains elevated selenium (Se) concentrations. Removal of selenite ions from aqueous solutions under anoxic condition at pH 6-8.5 by zero valent iron steel wool (ZVI-SW) was investigated in bench-scale kinetic experiments using wet chemical, microscopic and spectroscopic techniques (X-ray photoelectron spectroscopy). ZVI-SW could effectively and efficiently remove Se IV from solution with pH 6-8.5. A two-step removal mechanism was identified for Se IV reduction by ZVI-SW. The proposed mechanism was electrochemical reduction of Se IV by Fe 0 in an initial lag stage, followed by a faster heterogeneous reduction, mediated by an Fe II -bearing phase (hydroxide or green rust). Solution pH was a critical factor for the kinetic rate in the lag stage (0.33 h -1 for pH > 8 and 0.10 h -1 for pH 6-8). The length of lag stage was 20-30 min as determined by the time for dissolved Fe II concentration to reach 0.30 ± 0.04 mg L -1 which was critical for induction of the faster stage. About 65% of the initial Se IV was reduced to Se 0 , the primary reductive product in both stages.

  1. Control of Diapause by Acidic pH and Ammonium Accumulation in the Hemolymph of Antarctic Copepods

    PubMed Central

    Schründer, Sabine; Schnack-Schiel, Sigrid B.; Auel, Holger; Sartoris, Franz Josef

    2013-01-01

    Life-cycles of polar herbivorous copepods are characterised by seasonal/ontogenetic vertical migrations and diapause to survive periods of food shortage during the long winter season. However, the triggers of vertical migration and diapause are still far from being understood. In this study, we test the hypothesis that acidic pH and the accumulation of ammonium (NH4 +) in the hemolymph contribute to the control of diapause in certain Antarctic copepod species. In a recent study, it was already hypothesized that the replacement of heavy ions by ammonium is necessary for diapausing copepods to achieve neutral buoyancy at overwintering depth. The current article extends the hypothesis of ammonium-aided buoyancy by highlighting recent findings of low pH values in the hemolymph of diapausing copepods with elevated ammonium concentrations. Since ammonia (NH3) is toxic to most organisms, a low hemolymph pH is required to maintain ammonium in the less toxic ionized form (NH4 +). Recognizing that low pH values are a relevant factor reducing metabolic rate in other marine invertebrates, the low pH values found in overwintering copepods might not only be a precondition for ammonium accumulation, but in addition, it may insure metabolic depression throughout diapause. PMID:24143238

  2. Conventional and improved cytotoxicity test methods of newly developed biodegradable magnesium alloys

    NASA Astrophysics Data System (ADS)

    Han, Hyung-Seop; Kim, Hee-Kyoung; Kim, Yu-Chan; Seok, Hyun-Kwang; Kim, Young-Yul

    2015-11-01

    Unique biodegradable property of magnesium has spawned countless studies to develop ideal biodegradable orthopedic implant materials in the last decade. However, due to the rapid pH change and extensive amount of hydrogen gas generated during biocorrosion, it is extremely difficult to determine the accurate cytotoxicity of newly developed magnesium alloys using the existing methods. Herein, we report a new method to accurately determine the cytotoxicity of magnesium alloys with varying corrosion rate while taking in-vivo condition into the consideration. For conventional method, extract quantities of each metal ion were determined using ICP-MS and the result showed that the cytotoxicity due to pH change caused by corrosion affected the cell viability rather than the intrinsic cytotoxicity of magnesium alloy. In physiological environment, pH is regulated and adjusted within normal pH (˜7.4) range by homeostasis. Two new methods using pH buffered extracts were proposed and performed to show that environmental buffering effect of pH, dilution of the extract, and the regulation of eluate surface area must be taken into consideration for accurate cytotoxicity measurement of biodegradable magnesium alloys.

  3. Relations among rainstorm runoff, streamflow, pH, and metal concentrations, Summitville Mine area, upper Alamosa River basin, southwest Colorado, 1995-97

    USGS Publications Warehouse

    Rupert, Michael G.

    2001-01-01

    The upper Alamosa River Basin contains areas that are geochemically altered and have associated secondary sulfide mineralization. Occurring with this sulfide mineralization are copper, gold, and silver deposits that have been mined since the 1870's. Weathering of areas with sulfide mineralization produces runoff with anomalously low pH and high metal concentrations; mining activities exacerbate the condition. Summer rainstorms in the upper Alamosa River Basin produce a characteristic relation between streamflow and pH; streamflow suddenly increases and pH suddenly decreases (commonly by more than 1 pH unit). This report evaluates changes in pH in the upper Alamosa River Basin during July, August, and September 1995, 1996, and 1997 to examine possible adverse environmental effects due to rainstorm runoff. Ninety-three percent of the rainstorms occurring during 1995?97 produced runoff throughout the entire basin. Out of 54 storms, only 3 storms were isolated to the river reach upstream from the streamflow-gaging station Alamosa River above Wightman Fork, and only 1 storm was isolated to the river reach between the streamflow-gaging stations Alamosa River below Jasper and Alamosa River above Terrace Reservoir. Although most rainstorm runoff events occurred throughout the entire basin, pH changes were highest in parts of the basin that receive runoff from hydrothermally altered areas. The three principal altered areas within the basin are the Jasper, Stunner, and Summitville areas. Only limited mining occurred in the Stunner altered area, and yet significant decreases in pH values occur due to runoff from this area. Even after environmental restoration activities are completed at the Summitville Mine, the main stem of the Alamosa River may continue to be adversely affected by runoff from the Stunner and Jasper altered areas. A comparison of measured pH with Federal and State of Colorado water-quality standards and Toxicological Reference Values indicates pH was too low to support aquatic life in many parts of the basin for extended periods of time. Added stresses from sudden decreases in pH due to rainstorm runoff compound the adverse effects. Discharge of effluent from the Summitville Mine impoundment can significantly decrease pH in the Alamosa River downstream to Terrace Reservoir. A release of only 3 cubic feet per second from the impoundment decreased pH by at least 1 standard unit at all downstream sites. Low-flow years may pose a substantial risk to aquatic organisms within and downstream from Terrace Reservoir. During 1996, the basin had a low-flow year, and water storage and pool size of Terrace Reservoir were significantly reduced. The pH of water discharging from Terrace Reservoir was anomalously low during late August and September 1996, possibly due to geochemical interactions between sediment and the water column within the reservoir. In general, an inverse log-log relation exists between pH and the logarithm of dissolved metal concentrations, but the relations generally are not significant enough to confidently predict metal concentrations based upon measured pH values.

  4. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    USGS Publications Warehouse

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (<5-m depth) from sludge-treated spoil (pH 5.9) were not elevated relative to untreated spoil (pH 4.4). In contrast, concentrations of nitrate were elevated in vadose water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  5. Elevated lactate during psychogenic hyperventilation.

    PubMed

    ter Avest, E; Patist, F M; Ter Maaten, J C; Nijsten, M W N

    2011-04-01

    Elevated arterial lactate levels are closely related to morbidity and mortality in various patient categories. In the present retrospective study, the relation between arterial lactate, partial pressure of carbon dioxide (Pco(2)) and pH was systematically investigated in patients who visited the emergency department (ED) with psychogenic hyperventilation. Over a 5-month period, all the patients who visited the ED of a university hospital with presumed psychogenic hyperventilation were evaluated. Psychogenic hyperventilation was presumed to be present when an increased respiratory rate (>20 min) was documented at or before the ED visit and when somatic causes explaining the hyperventilation were absent. Arterial blood gas and lactate levels (reference values 0.5-1.5 mmol/l) were immediately measured by a point-of-care analyser that was managed and calibrated by the central laboratory. During the study period, 46 patients were diagnosed as having psychogenic hyperventilation. The median (range) Pco(2) for this group was 4.3 (2.0-5.5) kPa, the pH was 7.47 (7.40-7.68) and the lactate level was 1.2 (0.5-4.4) mmol/l. 14 participants (30%) had a lactate level above the reference value of 1.5 mmol/l. Pco(2) was the most important predictor of lactate in multivariate analysis. None of the participants underwent any medical treatment other than observation at the ED or had been hospitalised after their ED visit. In patients with psychogenic hyperventilation, lactate levels are frequently elevated. Whereas high lactates are usually associated with acidosis and an increased risk of poor outcome, in patients with psychogenic hyperventilation, high lactates are associated with hypocapnia and alkalosis. In this context, elevated arterial lactate levels should not be regarded as an adverse sign.

  6. Coral Uptake of Inorganic Phosphorus and Nitrogen Negatively Affected by Simultaneous Changes in Temperature and pH

    PubMed Central

    Godinot, Claire; Houlbrèque, Fanny

    2011-01-01

    The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT (8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification. PMID:21949839

  7. Tensile Properties of 17-7 PH and 12 MoV Stainless-Steel Sheet under Rapid-Heating and Constant-Temperature Conditions

    NASA Technical Reports Server (NTRS)

    Manning, Charles R., Jr.; Price, Howard L.

    1961-01-01

    Results are presented of rapid-heating tests of 17-7 PH and 12 MoV stainless-steel sheet heated to failure at temperature rates from about 1 F to 170 F per second under constant-load conditions. Yield and rupture strengths obtained from rapid-heating tests are compared with yield and tensile strengths obtained from short-time elevated-temperature tensile tests (30-minute exposure). A rate-temperature parameter was used to construct master curves from which yield and rupture stresses or temperatures can be predicted. A method for measuring strain by optical means is described.

  8. Metabolic acidosis mimicking diabetic ketoacidosis after use of calorie-free mineral water.

    PubMed

    Dahl, Gry T; Woldseth, Berit; Lindemann, Rolf

    2012-09-01

    A previously healthy boy was admitted with fever, tachycardia, dyspnea, and was vomiting. A blood test showed a severe metabolic acidosis with pH 7.08 and an anion gap of 36 mmol/L. His urine had an odor of acetone. The serum glucose was 5.6 mmol/L, and no glucosuria was found. Diabetic ketoacidosis could therefore be eliminated. Lactate level was normal. Tests for the most common metabolic diseases were negative. Because of herpes stomatitis, the boy had lost appetite and only been drinking Diet Coke and water the last days. Diet Coke or Coca-Cola Light is sweetened with a blend containing cyclamates, aspartame, and acesulfame potassium, all free of calories. The etiology of the metabolic acidosis appeared to be a catabolic situation exaggerated by fasting with no intake of calories. The elevated anion gap was due to a severe starvation ketoacidosis, mimicking a diabetic ketoacidosis. Pediatricians should recommend carbohydrate/calorie-containing fluids for rehydration of children with acute fever, diarrhea, or illness.

  9. Enhanced acidification of global coral reefs driven by regional biogeochemical feedbacks

    NASA Astrophysics Data System (ADS)

    Cyronak, Tyler; Schulz, Kai G.; Santos, Isaac R.; Eyre, Bradley D.

    2014-08-01

    Physical uptake of anthropogenic CO2 is the dominant driver of ocean acidification (OA) in the open ocean. Due to expected decreases in calcification and increased dissolution of CaCO3 framework, coral reefs are thought to be highly susceptible to OA. However, biogeochemical processes can influence the pCO2 and pH of coastal ecosystems on diel and seasonal time scales, potentially modifying the long-term effects of increasing atmospheric CO2. By compiling data from the literature and removing the effects of short-term variability, we show that the average pCO2 of coral reefs throughout the globe has increased ~3.5-fold faster than in the open ocean over the past 20 years. This rapid increase in pCO2 has the potential to enhance the acidification and predicted effects of OA on coral reef ecosystems. A simple model demonstrates that potential drivers of elevated pCO2 include additional anthropogenic disturbances beyond increasing global atmospheric CO2 such as enhanced nutrient and organic matter inputs.

  10. Using FLIM in the study of permeability barrier function of aged and young skin

    NASA Astrophysics Data System (ADS)

    Xu, P.; Choi, E. H.; Man, M. Q.; Crumrine, D.; Mauro, T.; Elias, P.

    2006-02-01

    Aged skin commonly is afflicted by inflammatory skin diseases or xerosis/eczema that can be triggered or exacerbated by impaired epidermal permeability barrier homeostasis. It has been previously described a permeability barrier defect in humans of advanced age (> 75 years), which in a murine analog >18 mos, could be attributed to reduced lipid synthesis synthesis. However, the functional abnormality in moderately aged mice is due not to decreased lipid synthesis, but rather to a specific defect in stratum corneum (SC) acidification causing impaired lipid processing processing. Endogenous Na +/H + antiporter (NHE1) level was found declined in moderately aged mouse epidermis. This acidification defect leads to perturbed permeability barrier homeostasis through more than one pathways, we addressed suboptimal activation of the essential, lipid-processing enzyme, β-glucocerebrosidase (BGC) is linked to elevated SC pH. Finally, the importance of the epidermis acidity is shown by the normalization of barrier function after exogenous acidification of moderately aged skin.

  11. Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure

    USGS Publications Warehouse

    Preston, Daniel L.; Caine, Nel; McKnight, Diane M.; Williams, Mark W.; Hell, Katherina; Miller, Matthew P.; Hart, Sarah J.; Johnson, Pieter T.J.

    2016-01-01

    High-elevation aquatic ecosystems are highly vulnerable to climate change, yet relatively few records are available to characterize shifts in ecosystem structure or their underlying mechanisms. Using a long-term dataset on seven alpine lakes (3126 to 3620 m) in Colorado, USA, we show that ice-off dates have shifted seven days earlier over the past 33 years and that spring weather conditions – especially snowfall – drive yearly variation in ice-off timing. In the most well-studied lake, earlier ice-off associated with increases in water residence times, thermal stratification, ion concentrations, dissolved nitrogen, pH, and chlorophyll-a. Mechanistically, low spring snowfall and warm temperatures reduce summer stream flow (increasing lake residence times) but enhance melting of glacial and permafrost ice (increasing lake solute inputs). The observed links among hydrological, chemical, and biological responses to climate factors highlight the potential for major shifts in the functioning of alpine lakes due to forecasted climate change.

  12. Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils.

    PubMed

    Spurgeon, David J; Rowland, Philip; Ainsworth, Gillian; Rothery, Peter; Long, Sara; Black, Helaina I J

    2008-05-01

    Concentrations of seven metals were measured in over 1000 samples as part of an integrated survey. Sixteen metal pairs were significantly positively correlated. Cluster analysis identified two clusters. Metals from the largest (Cr, Cu, Ni, V, Zn), but not the smallest (Cd, Pb) cluster were significantly negatively correlated with spatial location and soil pH and organic matter content. Cd and Pb were not correlated with these parameters, due possibly to the masking effect of recent extensive release. Analysis of trends with soil properties in different habitats indicated that general trends may not necessarily be applicable to all areas. A risk assessment indicated that Zn poses the most widespread direct risk to soil fauna and Cd the least. Any risks associated with high metal concentrations are, however, likely to be greatest in habitats such as arable and horticultural, improved grassland and built up areas where soil metal concentrations are more frequently elevated.

  13. Evaluating the effects of bedding materials and elevated platforms on contact dermatitis and plumage cleanliness of commercial broilers and on litter condition in broiler houses.

    PubMed

    Kaukonen, E; Norring, M; Valros, A

    2017-10-01

    1. Experiment 1, comparing wood shavings and ground straw bedding with peat, was performed on 7 broiler farms over two consecutive batches during the winter season. Experiment 2, assessing the effect of elevated (30 cm) platforms, was conducted in three farms replicated with 6 consecutive batches. 2. Footpad lesions were inspected at slaughter following the Welfare Quality® (WQ) assessment and official programme. Hock lesions, plumage cleanliness and litter condition were assessed using the WQ assessment. Litter height, pH, moisture and ammonia were determined. 3. Footpad condition on wood shavings appeared to be worse compared with peat using both methods of assessment and was accompanied by inferior hock skin health. WQ assessment resulted in poorer footpad and hock skin condition on ground straw compared with peat. Farms differed in footpad and hock skin condition. Footpad and hock lesions were not affected by platform treatment. Peat appeared more friable than ground straw. The initial pH of wood shavings was higher and moisture was lower than in peat, but at the end of production period there were no differences. Ground straw exhibited higher initial and lower end pH, and was drier in the beginning than peat. Litter condition and quality were not affected by platform treatment. 4. This study provides new knowledge about the applicability of peat as broiler bedding and shows no negative effects of elevated platforms on litter condition or the occurrence of contact dermatitis in commercial environments. The results suggest a complicated relationship between litter condition, moisture and contact dermatitis. Furthermore, it is concluded that the farmer's ability to manage litter conditions is important, regardless of the chosen litter material. Peat bedding was beneficial for footpad and hock skin health compared with wood shavings and ground straw.

  14. Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms

    PubMed Central

    Vergara-Jaque, Ariela; Fenollar-Ferrer, Cristina; Kaufmann, Desirée; Forrest, Lucy R.

    2015-01-01

    Secondary active transporters are critical for neurotransmitter clearance and recycling during synaptic transmission and uptake of nutrients. These proteins mediate the movement of solutes against their concentration gradients, by using the energy released in the movement of ions down pre-existing concentration gradients. To achieve this, transporters conform to the so-called alternating-access hypothesis, whereby the protein adopts at least two conformations in which the substrate binding sites are exposed to one or other side of the membrane, but not both simultaneously. Structures of a bacterial homolog of neuronal glutamate transporters, GltPh, in several different conformational states have revealed that the protein structure is asymmetric in the outward- and inward-open states, and that the conformational change connecting them involves a elevator-like movement of a substrate binding domain across the membrane. The structural asymmetry is created by inverted-topology repeats, i.e., structural repeats with similar overall folds whose transmembrane topologies are related to each other by two-fold pseudo-symmetry around an axis parallel to the membrane plane. Inverted repeats have been found in around three-quarters of secondary transporter folds. Moreover, the (a)symmetry of these systems has been successfully used as a bioinformatic tool, called “repeat-swap modeling” to predict structural models of a transporter in one conformation using the known structure of the transporter in the complementary conformation as a template. Here, we describe an updated repeat-swap homology modeling protocol, and calibrate the accuracy of the method using GltPh, for which both inward- and outward-facing conformations are known. We then apply this repeat-swap homology modeling procedure to a concentrative nucleoside transporter, VcCNT, which has a three-dimensional arrangement related to that of GltPh. The repeat-swapped model of VcCNT predicts that nucleoside transport also occurs via an elevator-like mechanism. PMID:26388773

  15. Lead forms in urban turfgrass and forest soils as related to organic matter content and pH

    Treesearch

    Ian D. Yesilonis; Bruce R. James; Richard V. Pouyat; Bahram Momen

    2008-01-01

    Soil pH may influence speciation and extractability of Pb, depending on type of vegetation in urban soil environments. We investigated the relationship between soil pH and Pb extractability at forest and turf grass sites in Baltimore, Maryland. Our two hypotheses were: (1) due to lower pH values in forest soils, more Pb will be in exchangeable forms in forested than in...

  16. Effects of exercise training on pulmonary hemodynamics, functional capacity and inflammation in pulmonary hypertension

    PubMed Central

    Richter, Manuel J.; Grimminger, Jan; Krüger, Britta; Ghofrani, Hossein A.; Mooren, Frank C.; Gall, Henning; Pilat, Christian; Krüger, Karsten

    2017-01-01

    Pulmonary hypertension (PH) is characterized by severe exercise limitation mainly attributed to the impairment of right ventricular function resulting from a concomitant elevation of pulmonary vascular resistance and pressure. The unquestioned cornerstone in the management of patients with pulmonary arterial hypertension (PAH) is specific vasoactive medical therapy to improve pulmonary hemodynamics and strengthen right ventricular function. Nevertheless, evidence for a beneficial effect of exercise training (ET) on pulmonary hemodynamics and functional capacity in patients with PH has been growing during the past decade. Beneficial effects of ET on regulating factors, inflammation, and metabolism have also been described. Small case-control studies and randomized clinical trials in larger populations of patients with PH demonstrated substantial improvements in functional capacity after ET. These findings were accompanied by several studies that suggested an effect of ET on inflammation, although a direct link between this effect and the therapeutic benefit of ET in PH has not yet been demonstrated. On this background, the aim of the present review is to describe current concepts regarding the effects of exercise on the pulmonary circulation and pathophysiological limitations, as well as the clinical and mechanistic effects of exercise in patients with PH. PMID:28680563

  17. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish.

    PubMed

    Munday, Philip L; Dixson, Danielle L; Donelson, Jennifer M; Jones, Geoffrey P; Pratchett, Morgan S; Devitsina, Galina V; Døving, Kjell B

    2009-02-10

    The persistence of most coastal marine species depends on larvae finding suitable adult habitat at the end of an offshore dispersive stage that can last weeks or months. We tested the effects that ocean acidification from elevated levels of atmospheric carbon dioxide (CO(2)) could have on the ability of larvae to detect olfactory cues from adult habitats. Larval clownfish reared in control seawater (pH 8.15) discriminated between a range of cues that could help them locate reef habitat and suitable settlement sites. This discriminatory ability was disrupted when larvae were reared in conditions simulating CO(2)-induced ocean acidification. Larvae became strongly attracted to olfactory stimuli they normally avoided when reared at levels of ocean pH that could occur ca. 2100 (pH 7.8) and they no longer responded to any olfactory cues when reared at pH levels (pH 7.6) that might be attained later next century on a business-as-usual carbon-dioxide emissions trajectory. If acidification continues unabated, the impairment of sensory ability will reduce population sustainability of many marine species, with potentially profound consequences for marine diversity.

  18. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish

    PubMed Central

    Munday, Philip L.; Dixson, Danielle L.; Donelson, Jennifer M.; Jones, Geoffrey P.; Pratchett, Morgan S.; Devitsina, Galina V.; Døving, Kjell B.

    2009-01-01

    The persistence of most coastal marine species depends on larvae finding suitable adult habitat at the end of an offshore dispersive stage that can last weeks or months. We tested the effects that ocean acidification from elevated levels of atmospheric carbon dioxide (CO2) could have on the ability of larvae to detect olfactory cues from adult habitats. Larval clownfish reared in control seawater (pH 8.15) discriminated between a range of cues that could help them locate reef habitat and suitable settlement sites. This discriminatory ability was disrupted when larvae were reared in conditions simulating CO2-induced ocean acidification. Larvae became strongly attracted to olfactory stimuli they normally avoided when reared at levels of ocean pH that could occur ca. 2100 (pH 7.8) and they no longer responded to any olfactory cues when reared at pH levels (pH 7.6) that might be attained later next century on a business-as-usual carbon-dioxide emissions trajectory. If acidification continues unabated, the impairment of sensory ability will reduce population sustainability of many marine species, with potentially profound consequences for marine diversity. PMID:19188596

  19. High resolution microscopy reveals significant impacts of ocean acidification and warming on larval shell development in Laternula elliptica.

    PubMed

    Bylenga, Christine H; Cummings, Vonda J; Ryan, Ken G

    2017-01-01

    Environmental stressors impact marine larval growth rates, quality and sizes. Larvae of the Antarctic bivalve, Laternula elliptica, were raised to the D-larvae stage under temperature and pH conditions representing ambient and end of century projections (-1.6°C to +0.4°C and pH 7.98 to 7.65). Previous observations using light microscopy suggested pH had no influence on larval abnormalities in this species. Detailed analysis of the shell using SEM showed that reduced pH is in fact a major stressor during development for this species, producing D-larvae with abnormal shapes, deformed shell edges and irregular hinges, cracked shell surfaces and even uncalcified larvae. Additionally, reduced pH increased pitting and cracking on shell surfaces. Thus, apparently normal larvae may be compromised at the ultrastructural level and these larvae would be in poor condition at settlement, reducing juvenile recruitment and overall survival. Elevated temperatures increased prodissoconch II sizes. However, the overall impacts on larval shell quality and integrity with concurrent ocean acidification would likely overshadow any beneficial results from warmer temperatures, limiting populations of this prevalent Antarctic species.

  20. [The randomized study of efficiency of preoperative photodynamic].

    PubMed

    Akopov, A L; Rusanov, A A; Molodtsova, V P; Gerasin, A V; Kazakov, N V; Urtenova, M A; Chistiakov, I V

    2013-01-01

    The authors made a prospective randomized comparison of results of preoperative photodynamic therapy (PhT) with chemotherapy, preoperative chemotherapy in initial unresectable central non-small cell lung cancer in stage III. The efficiency and safety of preoperative therapy were estimated as well as the possibility of subsequent surgical treatment. The research included patients in stage IIIA and IIIB of central non-small cell lung cancer with lesions of primary bronchi and lower section of the trachea, which initially were unresectable, but potentially the patients could be operated on after preoperative treatment. The photodynamic therapy was performed using chlorine E6 and the light of wave length 662 nm. Since January 2008 till December 2011,42 patients were included in the research, 21 patients were randomized in the group for photodynamic therapy and 21--in group without PhT. These groups were compared according to their sex, age, stage of the disease and histological findings. After nonadjuvant treatment the remissions were reached in 19 (90%) patients of the group with PhT and in 16 (76%) patients without PhT and all the patients were operated on. The explorative operations were made on 3 patients out of 16 operated on in the group without PhT (19%). In the group PhT 14 pneumonectomies and 5 lobectomies were perfomed opposite 10 pneumonectomies and 3 lobectomies in group without PhT. The degree of radicalism of resection appears to be reliably higher in the group PhT (RO-89%, R1-11% as against RO-54%, R1-46% in group without PhT), p = 0.038. The preoperative endobronchial PhT conducted with chemotherapy was characterized by efficiency and safety, allowed the surgical treatment and elevated the degree of radicalism of this treatment in selected patients, initially assessed as unresectable.

  1. A large, population-based study of age-related associations between vaginal pH and human papillomavirus infection.

    PubMed

    Clarke, Megan A; Rodriguez, Ana Cecilia; Gage, Julia C; Herrero, Rolando; Hildesheim, Allan; Wacholder, Sholom; Burk, Robert; Schiffman, Mark

    2012-02-08

    Vaginal pH is related to genital tract inflammation and changes in the bacterial flora, both suggested cofactors for persistence of human papillomavirus (HPV) infection. To evaluate the relationship between vaginal pH and HPV, we analyzed data from our large population-based study in Guanacaste, Costa Rica. We examined vaginal pH and the risk of HPV infection, cytological abnormalities, and C. trachomatis infection. Our study included 9,165 women aged 18-97 at enrollment with a total of 28,915 visits (mean length of follow-up = 3.4 years). Generalized estimating equations were used to evaluate the relationship between vaginal pH and HPV infection (both overall and single versus multiple types) and low-grade squamous intraepithelial lesions (LSIL), the cytomorphic manifestation of HPV infection. The relationship between enrollment vaginal pH and C. trachomatis infection was assessed by logistic regression. Results were stratified by age at visit. Detection of HPV was positively associated with vaginal pH, mainly in women < 35 years (p-trend = 0.009 and 0.007 for women aged < 25 and 25-34 years, respectively). Elevated vaginal pH was associated with 30% greater risk of infection with multiple HPV types and with LSIL, predominantly in women younger than 35 and 65+ years of age. Detection of C. trachomatis DNA was associated with increased vaginal pH in women < 25 years (OR 2.2 95% CI 1.0-5.0). Our findings suggest a possible association of the cervical microenvironment as a modifier of HPV natural history in the development of cervical precancer and cancer. Future research should include studies of vaginal pH in a more complex assessment of hormonal changes and the cervicovaginal microbiome as they relate to the natural history of cervical neoplasia.

  2. Introducing TEX86 as a Water pH Proxy for Alkaline Lakes on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, M.; Tian, Q.; Li, X.; Liang, J.; Yue, H.; Hou, J.

    2017-12-01

    Lake water pH represents one of the most important indicators for lake evolution and factors influencing the evolution of aquatic ecosystem, however, which is less studied on the Tibetan Plateau (TP). Applicability of diatom assemblages, an effective proxy of lake water pH variation in freshwater lakes, is highly limited on the TP because the widespread distribution of alkaline lakes is unfavorable for preservation of diatom shells. Glycerol dialkyl glycerol tetraethers (GDGTs) are a series of specific membrane lipids biosynthesized by archaea and bacteria, which appear to be a promising method to reflect lake water pH variation. Here we present the distribution of iGDGTs compounds in surface sediments across the TP to discuss the effect of various environmental factors on iGDGTs distribution. The results show that TEX86 is a promising proxy for lake water pH in high-elevation alkaline lakes, as water pH appears to be the most important factor to affect the cyclization of iGDGTs. We proposed the water pH calibration for lakes (salinity<20g/L) on TP, pH=1.8176×TEX86+8.2376 (n=31, r=0.86, RMSE=0.24). To evaluate its performance, we applied the calibration at Bangong Co in western TP and reconstructed past changes in lake water pH. The TEX86-derived pH at Bangong Co varied from 8.69 to 9.49 since the last 16 kyr BP, which is generally consistent with precipitation isotope variation that was reconstructed from leaf wax D/H ratios in the same sediment core, suggesting the lake water pH was mainly controlled by local hydrology. We believe that TEX86 will be able to infer past water pH of alkaline lakes over TP and could be a potentially useful tool for reconstructing pH in alkaline lakes worldwide after regional calibrated.

  3. Spring phenology at different altitudes is becoming more uniform under global warming in Europe.

    PubMed

    Chen, Lei; Huang, Jian-Guo; Ma, Qianqian; Hänninen, Heikki; Rossi, Sergio; Piao, Shilong; Bergeron, Yves

    2018-04-26

    Under current global warming, high-elevation regions are expected to experience faster warming than low-elevation regions. However, due to the lack of studies based on long-term large-scale data, the relationship between tree spring phenology and the elevation-dependent warming is unclear. Using 652k records of leaf unfolding of five temperate tree species monitored during 1951-2013 in situ in Europe, we discovered a nonlinear trend in the altitudinal sensitivity (S A , shifted days per 100 m in altitude) in spring phenology. A delayed leaf unfolding (2.7 ± 0.6 days per decade) was observed at high elevations possibly due to decreased spring forcing between 1951 and 1980. The delayed leaf unfolding at high-elevation regions was companied by a simultaneous advancing of leaf unfolding at low elevations. These divergent trends contributed to a significant increase in the S A (0.36 ± 0.07 days 100/m per decade) during 1951-1980. Since 1980, the S A started to decline with a rate of -0.32 ± 0.07 days 100/m per decade, possibly due to reduced chilling at low elevations and improved efficiency of spring forcing in advancing the leaf unfolding at high elevations, the latter being caused by increased chilling. Our results suggest that due to both different temperature changes at the different altitudes, and the different tree responses to these changes, the tree phenology has shifted at different rates leading to a more uniform phenology at different altitudes during recent decades. © 2018 John Wiley & Sons Ltd.

  4. Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors.

    PubMed

    Parker, Laura M; O'Connor, Wayne A; Byrne, Maria; Coleman, Ross A; Virtue, Patti; Dove, Michael; Gibbs, Mitchell; Spohr, Lorraine; Scanes, Elliot; Ross, Pauline M

    2017-02-01

    Parental effects passed from adults to their offspring have been identified as a source of rapid acclimation that may allow marine populations to persist as our surface oceans continue to decrease in pH. Little is known, however, whether parental effects are beneficial for offspring in the presence of multiple stressors. We exposed adults of the oyster Saccostrea glomerata to elevated CO 2 and examined the impacts of elevated CO 2 (control = 392; 856 µatm) combined with elevated temperature (control = 24; 28°C), reduced salinity (control = 35; 25) and reduced food concentration (control = full; half diet) on their larvae. Adult exposure to elevated CO 2 had a positive impact on larvae reared at elevated CO 2 as a sole stressor, which were 8% larger and developed faster at elevated CO 2 compared with larvae from adults exposed to ambient CO 2 These larvae, however, had significantly reduced survival in all multistressor treatments. This was particularly evident for larvae reared at elevated CO 2 combined with elevated temperature or reduced food concentration, with no larvae surviving in some treatment combinations. Larvae from CO 2 -exposed adults had a higher standard metabolic rate. Our results provide evidence that parental exposure to ocean acidification may be maladaptive when larvae experience multiple stressors. © 2017 The Author(s).

  5. Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors

    PubMed Central

    O'Connor, Wayne A.; Byrne, Maria; Virtue, Patti; Dove, Michael; Gibbs, Mitchell; Spohr, Lorraine; Scanes, Elliot; Ross, Pauline M.

    2017-01-01

    Parental effects passed from adults to their offspring have been identified as a source of rapid acclimation that may allow marine populations to persist as our surface oceans continue to decrease in pH. Little is known, however, whether parental effects are beneficial for offspring in the presence of multiple stressors. We exposed adults of the oyster Saccostrea glomerata to elevated CO2 and examined the impacts of elevated CO2 (control = 392; 856 µatm) combined with elevated temperature (control = 24; 28°C), reduced salinity (control = 35; 25) and reduced food concentration (control = full; half diet) on their larvae. Adult exposure to elevated CO2 had a positive impact on larvae reared at elevated CO2 as a sole stressor, which were 8% larger and developed faster at elevated CO2 compared with larvae from adults exposed to ambient CO2. These larvae, however, had significantly reduced survival in all multistressor treatments. This was particularly evident for larvae reared at elevated CO2 combined with elevated temperature or reduced food concentration, with no larvae surviving in some treatment combinations. Larvae from CO2-exposed adults had a higher standard metabolic rate. Our results provide evidence that parental exposure to ocean acidification may be maladaptive when larvae experience multiple stressors. PMID:28202683

  6. Rapid general dental erosion by gas-chlorinated swimming pool water. Review of the literature and case report.

    PubMed

    Geurtsen, W

    2000-12-01

    Several reports indicate an increased prevalence of dental erosion among intensive swimmers due to low pH gas-chlorinated pool water. Contrary to other extrinsic factors which induce erosion located on the facial aspect, low pH pool water results in general dental erosion. Additionally, a case report is presented which describes the very rapid occurrence of excessive general dental erosion of a competitive swimmer due to gas-chlorinated pool water within 27 days. The observation of several authors as well as this case underscore the significance of a regular pH monitoring of chlorinated swimming pool water. The high incidence indicates that dental erosion due to frequent swimming is of considerable diagnostic and therapeutic significance. Furthermore, it is recommended to fluoridate the teeth of intensive swimmers regularly to prevent dental erosion.

  7. A thermal and chemical degradation approach to decipher pristane and phytane precursors in sedimentary organic matter

    USGS Publications Warehouse

    Koopmans, M.P.; Rijpstra, W.I.C.; Klapwijk, M.M.; De Leeuw, J. W.; Lewan, M.D.; Sinninghe, Damste J.S.

    1999-01-01

    A thermal and chemical degradation approach was followed to determine the precursors of pristane (Pr) and phytane (Ph) in samples from the Gessoso-solfifera, Ghareb and Green River Formations. Hydrous pyrolysis of these samples yields large amounts of Pr and Ph carbon skeletons, indicating that their precursors are predominantly sequestered in high-molecular-weight fractions. However, chemical degradation of the polar fraction and the kerogen of the unheated samples generally does not release large amounts of Pr and Ph. Additional information on the precursors of Pr and Ph is obtained from flash pyrolysis analyses of kerogens and residues after hydrous pyrolysis and after chemical degradation. Multiple precursors for Pr and Ph are recognised in these three samples. The main increase of the Pr/Ph ratio with increasing maturation temperature, which is associated with strongly increasing amounts of Pr and Ph, is probably due to the higher amount of precursors of Pr compared to Ph, and not to the different timing of generation of Pr and Ph.A thermal and chemical degradation approach was followed to determine the precursors of pristane (Pr) and phytane (Ph) in samples from the Gessoso-solfifera, Ghareb and Green River Formations. Hydrous pyrolysis of these samples yields large amounts of Pr and Ph carbon skeletons, indicating that their precursors are predominantly sequestered in high-molecular-weight fractions. However, chemical degradation of the polar fraction and the kerogen of the unheated samples generally does not release large amounts of Pr and Ph. Additional information on the precursors of Pr and Ph is obtained from flash pyrolysis analyses of kerogens and residues after hydrous pyrolysis and after chemical degradation. Multiple precursors for Pr and Ph are recognised in these three samples. The main increase of the Pr/Ph ratio with increasing maturation temperature, which is associated with strongly increasing amounts of Pr and Ph, is probably due to the higher amount of precursors of Pr compared to Ph, and not to the different timing of generation of Pr and Ph.

  8. Diamond formation due to a pH drop during fluid–rock interactions

    DOE PAGES

    Sverjensky, Dimitri A.; Huang, Fang

    2015-11-03

    Diamond formation has typically been attributed to redox reactions during precipitation from fluids or magmas. Either the oxidation of methane or the reduction of carbon dioxide has been suggested, based on simplistic models of deep fluids consisting of mixtures of dissolved neutral gas molecules without consideration of aqueous ions. The role of pH changes associated with water–silicate rock interactions during diamond formation is unknown. Here we show that diamonds could form due to a drop in pH during water–rock interactions. We use a recent theoretical model of deep fluids that includes ions, to show that fluid can react irreversibly withmore » eclogite at 900 °C and 5.0 GPa, generating diamond and secondary minerals due to a decrease in pH at almost constant oxygen fugacity. Overall, our results constitute a new quantitative theory of diamond formation as a consequence of the reaction of deep fluids with the rock types that they encounter during migration. Diamond can form in the deep Earth during water–rock interactions without changes in oxidation state.« less

  9. Diamond formation due to a pH drop during fluid–rock interactions

    PubMed Central

    Sverjensky, Dimitri A.; Huang, Fang

    2015-01-01

    Diamond formation has typically been attributed to redox reactions during precipitation from fluids or magmas. Either the oxidation of methane or the reduction of carbon dioxide has been suggested, based on simplistic models of deep fluids consisting of mixtures of dissolved neutral gas molecules without consideration of aqueous ions. The role of pH changes associated with water–silicate rock interactions during diamond formation is unknown. Here we show that diamonds could form due to a drop in pH during water–rock interactions. We use a recent theoretical model of deep fluids that includes ions, to show that fluid can react irreversibly with eclogite at 900 °C and 5.0 GPa, generating diamond and secondary minerals due to a decrease in pH at almost constant oxygen fugacity. Overall, our results constitute a new quantitative theory of diamond formation as a consequence of the reaction of deep fluids with the rock types that they encounter during migration. Diamond can form in the deep Earth during water–rock interactions without changes in oxidation state. PMID:26529259

  10. Does the method of expression of venous blood affect ischaemia/reperfusion damage in tourniquet use? An experimental study on rabbits.

    PubMed

    Iltar, Serkan; Kılınç, Cem Yalın; Alemdaroğlu, Kadir Bahadır; Ozcan, Selahattin; Aydoğan, Nevres Hürriyet; Sürer, Hatice; Kılınç, Aytün Şadan

    2013-11-01

    The aim of this study was to compare the ischaemia and reperfusion phases of two tourniquet application models (Group 1: expressing the blood by a sterile rubber bandage and Group 2: elevation of the limb for several minutes) using an analysis of ischaemia/reperfusion parameters and blood pH. Sixteen New Zealand rabbits were used. Muscle samples were extracted from the triceps surae; at phase A (baseline: just before tourniquet application), phase B (ischaemia: 3h after tourniquet inflation) and phase C (2h after tourniquet deflation). Nitrite, nitrate, reduced glutathione, myeloperoxidase, malondyaldehyde were measured in the samples. Blood pH was also measured at each phase. Group 2 had significantly decreased nitrite (p=0.007) and nitrate (p=0.01) levels compared to Group 1 while passing from phase A to phase B. The pH decrease through the phases was significant within Group 1 (p=0.006) and was not significant within Group 2 (p=0.052). Lower levels of NO metabolites nitrate and nitrite, result from tourniquet use with incomplete venous blood expression by elevation. Also, with this technique severe acidosis is less likely to occur than when a tourniquet is used with expression of the venous blood by rubber bandage. These findings may help in the decision of which tourniquet technique is to be used for potentially long operations which may exceed 2h. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The Geographic Information System applied to study schistosomiasis in Pernambuco

    PubMed Central

    Barbosa, Verônica Santos; Loyo, Rodrigo Moraes; Guimarães, Ricardo José de Paula Souza e; Barbosa, Constança Simões

    2017-01-01

    ABSTRACT OBJECTIVE Diagnose risk environments for schistosomiasis in coastal localities of Pernambuco using geoprocessing techniques. METHODS A coproscopic and malacological survey were carried out in the Forte Orange and Serrambi areas. Environmental variables (temperature, salinity, pH, total dissolved solids and water fecal coliform dosage) were collected from Biomphalaria breeding sites or foci. The spatial analysis was performed using ArcGis 10.1 software, applying the kernel estimator, elevation map, and distance map. RESULTS In Forte Orange, 4.3% of the population had S. mansoni and were found two B. glabrata and 26 B. straminea breeding sites. The breeding sites had temperatures of 25ºC to 41ºC, pH of 6.9 to 11.1, total dissolved solids between 148 and 661, and salinity of 1,000 d. In Serrambi, 4.4% of the population had S. mansoni and were found seven B. straminea and seven B. glabrata breeding sites. Breeding sites had temperatures of 24ºC to 36ºC, pH of 7.1 to 9.8, total dissolved solids between 116 and 855, and salinity of 1,000 d. The kernel estimator shows the clusters of positive patients and foci of Biomphalaria, and the digital elevation map indicates areas of rainwater concentration. The distance map shows the proximity of the snail foci with schools and health facilities. CONCLUSIONS Geoprocessing techniques prove to be a competent tool for locating and scaling the risk areas for schistosomiasis, and can subsidize the health services control actions. PMID:29166439

  12. Calcium silicate-based sealers: Assessment of physicochemical properties, porosity and hydration.

    PubMed

    Marciano, Marina Angélica; Duarte, Marco Antonio Hungaro; Camilleri, Josette

    2016-02-01

    Investigation of hydration, chemical, physical properties and porosity of experimental calcium silicate-based sealers. Experimental calcium silicate-based sealers with calcium tungstate and zirconium oxide radio-opacifiers were prepared by mixing 1g of powder to 0.3 mL of 80% distilled water and 20% propylene glycol. MTA and MTA Fillapex were used as controls. The raw materials and set sealers were characterized using a combination of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Physical properties were analyzed according to ANSI/ADA. The pH and calcium ion release were assessed after 3, 24, 72 and 168 h. The porosity was assessed using mercury intrusion porosimetry. The analysis of hydration of prototype sealers revealed calcium hydroxide as a by-product resulting in alkaline pH and detection of calcium ion release, with high values in initial periods. The radiopacity was similar to MTA for the sealers containing high amounts of radio-opacifiers (p>0.05). Flowability was higher and film thickness was lower for resinous MTA Fillapex sealer (p<0.05). The test sealers showed water sorption and porosity similar to MTA (p>0.05). The prototype sealers presented adequate hydration, elevated pH and calcium ion release. Regarding physical properties, elevated proportions of radio-opacifiers were necessary to accomplish adequate radiopacity, enhance flowability and reduce film thickness. All the tested sealers presented water sorption and porosity similar to MTA. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Impact of ocean acidification on the hypoxia tolerance of the woolly sculpin, Clinocottus analis.

    PubMed

    Hancock, Joshua R; Place, Sean P

    2016-01-01

    As we move into the Anthropocene, organisms inhabiting marine environments will continue to face growing challenges associated with changes in ocean pH (ocean acidification), dissolved oxygen (dead zones) and temperature. These factors, in combination with naturally variable environments such as the rocky intertidal zone, may create extreme physiological challenges for organisms that are already performing near their biological limits. Although numerous studies have examined the impacts of climate-related stressors on intertidal animals, little is known about the underlying physiological mechanisms driving adaptation to ocean acidification and how this may alter organism interactions, particularly in marine vertebrates. Therefore, we have investigated the effects of decreased ocean pH on the hypoxia response of an intertidal sculpin, Clinocottus analis . We used both whole-animal and biochemistry-based analyses to examine how the energetic demands associated with acclimation to low-pH environments may impact the fish's reliance on facultative air breathing in low-oxygen environments. Our study demonstrated that acclimation to ocean acidification resulted in elevated routine metabolic rates and acid-base regulatory capacity (Na + ,K + -ATPase activity). These, in turn, had downstream effects that resulted in decreased hypoxia tolerance (i.e. elevated critical oxygen tension). Furthermore, we present evidence that these fish may be living near their physiological capacity when challenged by ocean acidification. This serves as a reminder that the susceptibility of teleost fish to changes in ocean pH may be underestimated, particularly when considering the multiple stressors that many experience in their natural environments.

  14. Dysregulated Arginine Metabolism and Cardiopulmonary Dysfunction in Patients with Thalassaemia

    PubMed Central

    Morris, Claudia R.; Kim, Hae-Young; Klings, Elizabeth S.; Wood, John; Porter, John B.; Trachtenberg, Felicia; Sweeters, Nancy; Olivieri, Nancy F; Kwiatkowski, Janet L; Virzi, Lisa; Hassell, Kathryn; Taher, Ali; Neufeld, Ellis J; Thompson, Alexis A.; Larkin, Sandra; Suh, Jung H.; Vichinsky, Elliott P; Kuypers, Frans A.

    2015-01-01

    Pulmonary hypertension (PH) commonly develops in thalassaemia syndromes, but is poorly characterized. The goal of this study was to provide a comprehensive description of the cardiopulmonary and biological profile of patients with thalassaemia at risk for PH. A case-control study of thalassaemia patients at high versus low PH-risk was performed. A single cross-sectional measurement for variables reflecting cardiopulmonary status and biological pathophysiology were obtained, including Doppler-echocardiography, 6-minute-walk-test, Borg Dyspnea Score, New York Heart Association functional class, cardiac magnetic resonance imaging (MRI), chest-computerized tomography, pulmonary function testing and laboratory analyses targeting mechanism of coagulation, inflammation, haemolysis, adhesion and the arginine-nitric oxide pathway. Twenty-seven thalassaemia patients were evaluated, 14 with an elevated tricuspid-regurgitant-jet-velocity (TRV) ≥2.5m/s. Patients with increased TRV had a higher frequency of splenectomy, and significantly larger right atrial size, left atrial volume and left septal-wall thickness on echocardiography and/or MRI, with elevated biomarkers of abnormal coagulation, lactate dehydrogenase levels and arginase concentration, and lower arginine-bioavailability compared to low-risk patients. Arginase concentration correlated significantly to several echocardiography/MRI parameters of cardiovascular function in addition to global-arginine-bioavailability and biomarkers of haemolytic rate, including lactate dehydrogenase, haemoglobin and bilirubin. Thalassaemia patients with a TRV ≥2.5m/s have additional echocardiography and cardiac-MRI parameters suggestive of right and left-sided cardiac dysfunction. In addition, low arginine bioavailability may contribute to cardiopulmonary dysfunction in β-thalassaemia. PMID:25907665

  15. Food effect: The combined effect of media pH and viscosity on the gastrointestinal absorption of ciprofloxacin tablet.

    PubMed

    Radwan, Asma; Zaid, Abdel Naser; Jaradat, Nidal; Odeh, Yousef

    2017-04-01

    The clinical implications of food-drug interactions may have to be taken seriously into account with oral drugs administration in order to minimize variations in drug bioavailability. Food intake may alter physiological changes in the pH and viscosity of the gastrointestinal lumen, which could affect the oral absorption of drugs. The aim of the present study was to have an insight on the effect of media parameters: viscosity and pHon the oral absorption of ciprofloxacin HCl from solid formulations using a model food: Corchorus olitorius (Jute) Soup. In vitro disintegration and dissolution rates of ciprofloxacin tablet were evaluated using compendia buffer media in the presence/absence of C. olitorius leaves. These in vitro data were then input to GastroPlus™ to predict ciprofloxacin absorption profiles under fasted and fed states. The present study demonstrated the significance of luminal pH and viscosity on the dissolution and disintegration of solid formulations following postprandial ingestion of the viscous soup. The tablets showed prolonged disintegration times and reduced dissolution rates in this soup, which could be attributed to the postprandial elevation in media viscosity and reduced solubility at elevated gastricpH. The predicted model under fed state showed no impact on AUC but prolonged T max and a decrease in C max . Concomitant intake of C. olitorius soup with ciprofloxacin might have negative effect on the rate of drug release from conventional immediate release tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Time course of the establishment of uterine seawater conditions in late-term pregnant spiny dogfish (Squalus acanthias).

    PubMed

    Kormanik, G A

    1988-07-01

    The gestation period for embryos of the spiny dogfish, Squalus acanthias (L.) lasts for nearly 2 years. During the latter part of this period the pups remain in the uterus and the fluid surrounding the embryos resembles sea water with respect to the major ions, but is low in pH (approx. 6), high in partial pressure of carbon dioxide (approx. 3 mmHg; 1 mmHg = 133.3 Pa), low in total carbon dioxide content (approx. 0.2 mmol l-1), and may have a total ammonia concentration of up to 22 mmol l-1. Thus the conditions under which the pups complete their development in utero is quite remarkable. The derivation of these conditions was examined in late-term pregnant females, from whose uterine horns the pups had been removed, by monitoring changes that occurred in instilled uterine sea water. The mother is responsible for reducing the pH, reducing the total carbon dioxide content and elevating the partial pressure of carbon dioxide to the levels observed in fresh-caught females, in less than 24 h. The ammonia concentration is also elevated, but this takes rather longer. The decreased pH is responsible for the accumulation of ammonia in the uterine sea water, and it also serves to protect the pups from the toxic effects of NH3, by converting it to the relatively non-toxic ionic form, NH4+. The reasons for the establishment of these uterine seawater conditions are still not evident.

  17. SPRUCE Deep Peat Microbial Diversity, CO2 and CH4 Production in Response to Nutrient, Temperature, and pH Treatments during Incubation Studies.

    DOE Data Explorer

    A., Kluber Laurel [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Allen, Samantha A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hendershot, Nicholas [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, Paul J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Schadt, Christopher W. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

    2014-09-01

    This data set contains the results of a microcosm incubation study on deep peat collected from the SPRUCE experimental site in the S1 Bog in September 2014. Microcosms were monitored for CO2 and CH4 production, and microbial community dynamics were assessed using qPCR and amplicon sequencing.The experiment was designed with a full factorial design with elevated temperature, nitrogen (N), (P), and pH treatments was used with samples from each transect serving replicates. In all, 96 microcosms were constructed to account for the 16 treatment combinations (N x P x pH x temperature), 2 time points, and 3 replicates. Temperature treatments were 6 °C, to mimic the SPRUCE ambient plot temperatures, and 15 °C to mimic the SPRUCE +9 °C treatment.

  18. Parastomal hernias after radical cystectomy and ileal conduit diversion

    PubMed Central

    Donahue, Timothy F.

    2016-01-01

    Parastomal hernia, defined as an "incisional hernia related to an abdominal wall stoma", is a frequent complication after conduit urinary diversion that can negatively impact quality of life and present a clinically significant problem for many patients. Parastomal hernia (PH) rates may be as high as 65% and while many patients are asymptomatic, in some series up to 30% of patients require surgical intervention due to pain, leakage, ostomy appliance problems, urinary obstruction, and rarely bowel obstruction or strangulation. Local tissue repair, stoma relocation, and mesh repairs have been performed to correct PH, however, long-term results have been disappointing with recurrence rates of 30%–76% reported after these techniques. Due to high recurrence rates and the potential morbidity of PH repair, efforts have been made to prevent PH development at the time of the initial surgery. Randomized trials of circumstomal prophylactic mesh placement at the time of colostomy and ileostomy stoma formation have shown significant reductions in PH rates with acceptably low complication profiles. We have placed prophylactic mesh at the time of ileal conduit creation in patients at high risk for PH development and found it to be safe and effective in reducing the PH rates over the short-term. In this review, we describe the clinical and radiographic definitions of PH, the clinical impact and risk factors associated with its development, and the use of prophylactic mesh placement for patients undergoing ileal conduit urinary diversion with the intent of reducing PH rates. PMID:27437533

  19. Rational design of Pleurotus eryngii versatile ligninolytic peroxidase for enhanced pH and thermal stability through structure-based protein engineering.

    PubMed

    Gao, Yu; Li, Jian-Jun; Zheng, Lanyan; Du, Yuguang

    2017-11-01

    Versatile peroxidase (VP) from Pleurotus eryngii is a high redox potential peroxidase. It has aroused great biotechnological interest due to its ability to oxidize a wide range of substrates, but its application is still limited due to low pH and thermal stability. Since CiP (Coprinopsis cinerea peroxidase) and PNP (peanut peroxidase) exhibited higher pH and thermal stability than VP, several motifs, which might contribute to their pH and thermal stability, were identified through structure and sequence alignment. Six VP variants incorporating the beneficial motifs were designed and constructed. Most variants were nearly completely inactivated except V1 (Variant 1) and V4. V1 showed comparable activity to WT VP against ABTS, while V4 exhibited reduced activity. V1 displayed improved pH stability than WT VP, at pH 3.0 in particular, whereas the pH stability of V4 did not change a lot. The thermal stabilities of V1 and V4 were enhanced with T50 raised by 3°C. The results demonstrated that variants containing the beneficial motifs of CiP and PNP conferred VP with improved pH and thermal stability. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Impact of hard vs. soft wheat and monensin level on rumen acidosis in feedlot heifers.

    PubMed

    Yang, W Z; Xu, L; Zhao, Y L; Chen, L Y; McAllister, T A

    2014-11-01

    Many feedlot finishing diets include wheat when the relative wheat prices are low. This study was conducted to examine the responses in ruminal pH and fermentation as well as site and extent of digestion from substituting soft or hard wheat for barley grain and to determine whether an elevated monensin concentration might decrease indicators of ruminal acidosis in feedlot heifers. Five ruminally cannulated beef heifers were used in a 5 × 5 Latin square with 2 × 2 + 1 factorial arrangement. Treatments included barley (10% barley silage, 86% barley, 4% supplement, with 28 mg monensin/kg DM) and diets where barley was substituted by either soft or hard wheat with either 28 or 44 mg monensin/kg diet DM. Intake of DM was not affected by grain source, whereas increasing monensin with wheat diets reduced (P < 0.02) DMI. Mean ruminal pH was lower (P < 0.04) and durations of pH < 5.8 and pH < 5.5 greater (P < 0.03) for wheat than for barley diets. However, ruminal pH was not affected by wheat type or monensin level. Total VFA concentrations were greater (P < 0.03) for wheat than barley diets with no effect of wheat type. The molar proportion of propionate was greater (P < 0.04), whereas butyrate (P < 0.01) and ratio of acetate to propionate tended to be lower (P < 0.09), with the high as compared to low level of monensin. Replacing barley with wheat in finishing diets did not affect the duodenal flow or the digestibility of OM, likely as a result of greater (P < 0.01) NDF digestion from barley offsetting the increased (P < 0.03) supply of digested starch from wheat. Feeding soft vs. hard wheat delivered a greater (P < 0.03) duodenal supply of OM and nonammonia N with no differences in total tract nutrient digestion. The increased monensin concentration decreased the flow of OM (P < 0.01), total N (P < 0.05), and microbial protein (P < 0.05) to the small intestine due to decreased DMI. These results indicated that hard and soft wheat exhibited digestive characteristics similar to barley, but ruminal pH measurements indicate that compared with barley, wheat increased the risk of ruminal acidosis. Although an increased level of monensin had limited impact on ruminal indicators of acidosis, an increase in propionate would be expected to improve efficiency of feed use by heifers fed wheat-based finishing diets.

  1. The Effects of Elevated pCO2, Hypoxia and Temperature on Larval Sheepshead minnow, Cyprinodon variegatus: How much stress is too much?

    EPA Science Inventory

    Estuarine fish are acclimated to living in an environment with rapid and frequent changes in temperature, salinity, pH, and dissolved oxygen (DO) levels; the physiology of these organisms is well suited to cope with extreme thermal, hypercapnic, and hypoxic stress. While the adve...

  2. Acute Electrocardiographic ST Segment Elevation May Predict Hypotension in a Swine Model of Severe Cyanide Toxicity

    DTIC Science & Technology

    2012-04-21

    model with severe acidosis (pH 6.8), hyperkalemia (up to 10 meq/L), hypoglycemia, and hypoxia and reported that ECG electrical changes were not directly...hypoxia, hyperkalemia , and acidosis on intracellular and extracellular poten tials and metabolism in the isolated porcine heart. Circ Res 46 (5):634

  3. 75 FR 35721 - Endangered and Threatened Wildlife and Plants; Listing Ipomopsis polyantha

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... soil pH is nearly neutral to slightly alkaline (6.6 to 8.4). The elevation range is 6,800 to 7,300 feet... highway activities and maintenance. Exotic grasses planted by CDOT along roadsides dominate the ROW... species' range. However, the planted exotic grasses continue to limit the species' habitat. Highway ROWs...

  4. Chemical composition of acid precipitation in central Texas

    Treesearch

    Hal B. H., Jr. Cooper; Jerry M. Demo

    1976-01-01

    Studies were undertaken to determine factors affecting composition of acidic precipitation formation in the Austin area of Central Texas. The study was initiated to determine background levels of acid and alkalinity producing constituents in an area with elevated natural dust levels from nearby limestone rock formations. Results showed normal rainfall pH values of 6.5...

  5. Investigating the formation of acid mine drainage of Toledo pyrite concentrate using column cells

    NASA Astrophysics Data System (ADS)

    Aguila, Diosa Marie

    2018-01-01

    Acid mine drainage (AMD) is an inevitable problem in mining and has adverse effects in water quality. Studying AMD formation will be valuable in controlling the composition of mine waters and in planning the rehabilitation method for a mine. In this research, kinetics of AMD formation of Toledo pyrite was studied using two column experiments. The mechanisms of AMD formation and the effects of various factors on pH drop were first studied. Another column test was done for validation and to study the role of Fe2+/Fe3+ ratio in the change of leachate pH. The first experiment revealed that time and particle size are the most significant factors. It was also observed that the sudden pH drop during the starting hours was due to cracks formed from beneficiation, and the formation of Fe(OH)3. The laddered behavior of pH thereafter was due to decrease in formation of Fe(OH)3, and the precipitates in pyrite surface that lowered the surface area available for pyrite oxidation. The results of the second experiment validated the laddered behavior of pH. It was also observed that particle size distribution and pyrite surface were affected by the change in pH. Fe2+/Fe3+ ratio of leachate generally decreased as pH dropped.

  6. Evaluation of skin permeation of β-blockers for topical drug delivery.

    PubMed

    Chantasart, Doungdaw; Hao, Jinsong; Li, S Kevin

    2013-03-01

    β-Blockers have recently become the main form of treatment of infantile hemangiomas. Due to the potential systemic adverse effects of β-blockers, topical skin treatment of the drugs is preferred. However, the effect and mechanism of dosage form pH upon skin permeation of these weak bases is not well understood. To develop an effective topical skin delivery system for the β-blockers, the present study evaluated skin permeation of β-blockers propranolol, betaxolol, timolol, and atenolol. Experiments were performed in side-by-side diffusion cells with human epidermal membrane (HEM) in vitro to determine the effect of donor solution pH upon the permeation of the β-blockers across HEM. The apparent permeability coefficients of HEM for the β-blockers increased with their lipophilicity, suggesting the HEM lipoidal pathway as the main permeation mechanism of the β-blockers. The pH in the donor solution was a major factor influencing HEM permeation for the β-blockers with a 2- to 4-fold increase in the permeability coefficient per pH unit increase. This permeability versus pH relationship was found to deviate from theoretical predictions, possibly due to the effective stratum corneum pH being different from the pH in the donor solution. The present results suggest the possibility of topical treatment of hemangioma using β-blockers.

  7. Evaluating the effect of local pH on fluorescence emissions from oral bacteria of the genus Prevotella

    NASA Astrophysics Data System (ADS)

    Hope, Christopher K.; Higham, Susan M.

    2016-08-01

    A number of anaerobic oral bacteria, notably Prevotellaceae, exhibit red fluorescence when excited by short-wavelength visible light due to their accumulation of porphyrins, particularly protoporphyrin IX. pH affects the fluorescence of abiotic preparations of porphyrins due to transformations in speciation between monomers, higher aggregates, and dimers. To elucidate whether the porphyrin speciation phenomenon could be manifested within a microbiological system, suspensions of Prevotella intermedia and Prevotella nigrescens were examined by fluorescence spectrophotometry while being titrated against NaOH. The initial pH of the samples was <6, which was then raised toward the maximum found within a diseased periodontal pocket, being ˜pH 8.7. The intensity of the fluorescence emissions increased between 600 and 650 nm with increasing pH. Peak fluorescence emissions occurred at 635±1 nm with a second emission peak developing with increasing pH at 622 nm. A linear relationship was demonstrated between pH and the log10 ratio of 635:622 nm excitation fluorescence intensities. These findings suggest that the pH range found within the oral cavity could affect the fluorescence of oral bacteria in vivo, which may in turn have connotations for any clinical diagnoses that may be inferred from dental plaque fluorescence.

  8. Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems.

    PubMed

    Gutierrez, Oriol; Sudarjanto, Gatut; Ren, Guo; Ganigué, Ramon; Jiang, Guangming; Yuan, Zhiguo

    2014-01-01

    Caustic dosing to raise pH above 10.0 for short periods (hours) is often used by water utilities for controlling sulfide formation in sewers. However the effectiveness of this strategy is rarely reported and the impact of pH level and exposure time on the effectiveness is largely unknown. The effectiveness of this strategy under various pH levels (10.5-12.5) and exposure time (0.5-6.0 h) in controlling sulfide and methane production was evaluated in laboratory scale anaerobic sewer reactors and then in a real sewer system. Laboratory studies showed that the sulfide production rate of the laboratory sewer biofilm was reduced by 70-90% upon the completion of the pH shock, while the methane production rate decreased by 95-100%. It took approximately one week for the sulfate-reducing activity to recover to normal levels. In comparison, the methanogenic activities recovered to only about 10% in 4 weeks. The slow recovery is explained by the substantially loss of cell viability upon pH shocks, which recovered slowly after the shocks. Laboratory studies further revealed that a pH level of 10.5 for 1-2 h represent cost-effective conditions for the pH shock treatment. However, field trials showed a higher pH (11.5) and larger dosing times are needed due to the pH decreases along the sewer line and at the two ends of the caustic-receiving wastewater slugs due to dilution. To have effective sulfide and methane control, it is important to ensure effective conditions (pH > 10.5 and duration >1-2 h) for the entire sewer line. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Variation in Phenometric Lapse Rates in Pasture Resources across Four Rayons in Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; Tomaszewska, M. A.; Kelgenbaeva, K.

    2017-12-01

    High elevation pasture resources form the foundation of agro-pastoralist livelihoods in Kyrgyzstan and elsewhere in montane Central Asia. We explore the temporal and the topographical variation in phenometric lapse rates (PLRs: the change in a phenometric as a function of elevation) across four rayons in two oblasts of the Kyrgyz Republic—Alay, At-Bashy, Chong Alay, and Naryn—with the aim of identifying and quantifying robust generic patterns in the PLRs. We evaluate two fundamental phenometrics derived from the downward convex quadratic model of land surface phenology that links the NDVI to accumulated growing degree-day (AGDD). The peak height (PH) is the maximum NDVI value obtained from the fitted model. The thermal time to peak (TTP) is the amount of AGDD required to reach the PH. We fitted sixteen years of Landsat NDVI data at 30 m spatial resolution to annual AGDD progressions derived from MODIS land surface temperature time series at 1 km spatial resolution, yielding maps for each phenometric. If the coefficient of determination was less than 0.5, then the model fit was deemed a failure. We classified the reliability of pasture resources into five classes based on the number of years of successful model fit: very persistent (14-16 y); persistent (11-13 y); marginal (7-10 y); occasional (4-6); and rare (1-3). We explore the interactive roles of elevation, slope, aspect, latitude, and rayon on the PLRs and pasture resource persistence to identify critical areas for resource management.

  10. Rigor mortis development at elevated temperatures induces pale exudative turkey meat characteristics.

    PubMed

    McKee, S R; Sams, A R

    1998-01-01

    Development of rigor mortis at elevated post-mortem temperatures may contribute to turkey meat characteristics that are similar to those found in pale, soft, exudative pork. To evaluate this effect, 36 Nicholas tom turkeys were processed at 19 wk of age and placed in water at 40, 20, and 0 C immediately after evisceration. Pectoralis muscle samples were taken at 15 min, 30 min, 1 h, 2 h, and 4 h post-mortem and analyzed for R-value (an indirect measure of adenosine triphosphate), glycogen, pH, color, and sarcomere length. At 4 h, the remaining intact Pectoralis muscle was harvested, and aged on ice 23 h, and analyzed for drip loss, cook loss, shear values, and sarcomere length. By 15 min post-mortem, the 40 C treatment had higher R-values, which persisted through 4 h. By 1 h, the 40 C treatment pH and glycogen levels were lower than the 0 C treatment; however, they did not differ from those of the 20 C treatment. Increased L* values indicated that color became more pale by 2 h post-mortem in the 40 C treatment when compared to the 20 and 0 C treatments. Drip loss, cook loss, and shear value were increased whereas sarcomere lengths were decreased as a result of the 40 C treatment. These findings suggested that elevated post-mortem temperatures during processing resulted in acceleration of rigor mortis and biochemical changes in the muscle that produced pale, exudative meat characteristics in turkey.

  11. Response of aluminum solubility to elevated nitrification in soil of a red spruce stand in eastern Maine

    USGS Publications Warehouse

    Lawrence, G.B.; David, M.B.

    1997-01-01

    Elevated concentrations of soluble Al can impair tree growth and be toxic to aquatic biota, but effects of acidic deposition on Al solubility in forest soils are only partially understood because of complex interactions with H+ and organic matter. We therefore evaluated Al solubility in two red spruce stands in eastern Maine, one of which received dry (NH4)2SO4 at a rate of 1800 equiv ha-1 yr-1 during 19891995. Samples of soil (Spodosol Oa and Bh horizons) and soil solution were collected on five dates from 1992 to 1995. The treatment elevated nitrification, causing an increase in acid input that led to inorganic Al concentrations of greater than 60 ??mol L-1 in both the Oa and Bh horizons. Solubility of Al was also lower in the Bh horizon of the treated stand than in the reference stand, a response related to higher DOC concentrations in the treated stand. Concentrations of CuCl2 and pyrophosphate-extractable Al were higher in the Oa horizon of the treated watershed than the reference stand, a result of accelerated weathering of mineral particles caused by lower solution pH in the treated stand (3.47) than in the reference stand (3.69). Dissolved Al concentrations in these soils are the result of complex mechanisms through which mineral matter, organic matter, and pH interact to control Al solubility; mechanisms that are not incorporated in current Al solubility models.

  12. Exhaled breath condensate pH decreases following oral glucose tolerance test.

    PubMed

    Bikov, Andras; Pako, Judit; Montvai, David; Kovacs, Dorottya; Koller, Zsofia; Losonczy, Gyorgy; Horvath, Ildiko

    2015-12-15

    Exhaled breath condensate (EBC) pH is a widely measured non-invasive marker of airway acidity. However, some methodological aspects have not been thoroughly investigated. The aim of the study was to determine the effect of oral glucose tolerance test (OGTT) on EBC pH in attempt to better standardize its measurement. Seventeen healthy subjects (24  ±  2 years, 6 men, 11 women) participated in the study. EBC collection and capillary blood glucose measurements were performed before as well as 0, 30, 60 and 120 min after a standardized OGTT test. The rate of respiratory droplet dilution and pH were evaluated in EBC. Blood glucose significantly increased at 30 min and maintained elevation after 60 and 120 min following OGTT. Compared to baseline (7.99  ±  0.25) EBC pH significantly decreased immediately after OGTT (7.41  ±  0.47); this drop sustained over 30 (7.44  ±  0.72) and 60 min (7.62  ±  0.44) without a significant difference at 120 min (7.78  ±  0.26). No change was observed in the rate of respiratory droplet dilution. There was no relationship between blood glucose and EBC pH values. Sugar intake may significantly decrease EBC pH. This effect needs to be considered when performing EBC pH studies. Further experiments are also warranted to investigate the effect of diet on other exhaled biomarkers.

  13. Anti-stress effects of human placenta extract: possible involvement of the oxidative stress system in rats.

    PubMed

    Park, Hyun-Jung; Shim, Hyun Soo; Lee, Sunyoung; Hahm, Dae Hyun; Lee, Hyejung; Oh, Chang Taek; Han, Hae Jung; Ji, Hyi Jeong; Shim, Insop

    2018-05-08

    Human placenta hydrolysate (hPH) has been utilized to improve menopausal, fatigue, liver function. Its high concentration of bioactive substances is known to produce including antioxidant, anti-inflammatory and anti-nociceptive activities. However, its mechanisms of stress-induced depression remain unknown. The present study examined the effect of hPH on stress-induced depressive behaviors and biochemical parameters in rats. hPH (0.02 ml, 0.2 ml or 1 ml/rat) was injected intravenously 30 min before the daily stress session in male Sprague-Dawley rats exposed to repeated immobilization stress (4 h/day for 7 days). The depressive-like behaviors of all groups were measured by elevated plus maze (EPM) and forced swimming test (FST). After the behavior tests, brain samples of all groups were collected for the analysis of glutathione peroxidase (GPx) and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) staining. Treatment with hPH produced a significant decrease of immobility time in the FST compared to the controls. Additionally, hPH treatment elicited a slightly decreasing trend in anxiety behavior on the EPM. Furthermore, hPH increased the level of GPx protein in the hippocampus, and decreased the expression of NADPH-d in the paraventricular nucleus (PVN). This study demonstrated that hPH has anti-stress effects via the regulation of nitric oxide (NO) synthase and antioxidant activity in the brain. These results suggest that hPH may be useful in the treatment of stress-related diseases such as chronic fatigue syndrome.

  14. Diverse forms of pulmonary hypertension remodel the arterial tree to a high shear phenotype

    PubMed Central

    Allen, Roblee P.; Schelegle, Edward S.

    2014-01-01

    Pulmonary hypertension (PH) is associated with progressive changes in arterial network complexity. An allometric model is derived that integrates diameter branching complexity between pulmonary arterioles of generation n and the main pulmonary artery (MPA) via a power-law exponent (X) in dn = dMPA2−n/X and the arterial area ratio β = 21–2/X. Our hypothesis is that diverse forms of PH demonstrate early decrements in X independent of etiology and pathogenesis, which alters the arteriolar shear stress load from a low-shear stress (X > 2, β > 1) to a high-shear stress phenotype (X < 2, β < 1). Model assessment was accomplished by comparing theoretical predictions to retrospective morphometric and hemodynamic measurements made available from a total of 221 PH-free and PH subjects diagnosed with diverse forms (World Health Organization; WHO groups I-IV) of PH: mitral stenosis, congenital heart disease, chronic obstructive pulmonary lung disease, chronic thromboembolism, idiopathic pulmonary arterial hypertension (IPAH), familial (FPAH), collagen vascular disease, and methamphetamine exposure. X was calculated from pulmonary artery pressure (PPA), cardiac output (Q) and body weight (M), utilizing an allometric power-law prediction of X relative to a PH-free state. Comparisons of X between PAH-free and PAH subjects indicates a characteristic reduction in area that elevates arteriolar shear stress, which may contribute to mechanisms of endothelial dysfunction and injury before clinically defined thresholds of pulmonary vascular resistance and PH. We conclude that the evaluation of X may be of use in identifying reversible and irreversible phases of PH in the early course of the disease process. PMID:24858853

  15. Autophagy failure in Alzheimer's disease and the role of defective lysosomal acidification.

    PubMed

    Wolfe, Devin M; Lee, Ju-Hyun; Kumar, Asok; Lee, Sooyeon; Orenstein, Samantha J; Nixon, Ralph A

    2013-06-01

    Autophagy is a lysosomal degradative process which recycles cellular waste and eliminates potentially toxic damaged organelles and protein aggregates. The important cytoprotective functions of autophagy are demonstrated by the diverse pathogenic consequences that may stem from autophagy dysregulation in a growing number of neurodegenerative disorders. In many of the diseases associated with autophagy anomalies, it is the final stage of autophagy-lysosomal degradation that is disrupted. In several disorders, including Alzheimer's disease (AD), defective lysosomal acidification contributes to this proteolytic failure. The complex regulation of lysosomal pH makes this process vulnerable to disruption by many factors, and reliable lysosomal pH measurements have become increasingly important in investigations of disease mechanisms. Although various reagents for pH quantification have been developed over several decades, they are not all equally well suited for measuring the pH of lysosomes. Here, we evaluate the most commonly used pH probes for sensitivity and localisation, and identify LysoSensor yellow/blue-dextran, among currently used probes, as having the optimal profile of properties for measuring lysosomal pH. In addition, we review evidence that lysosomal acidification is defective in AD and extend our original findings, of elevated lysosomal pH in presenilin 1 (PS1)-deficient blastocysts and neurons, to additional cell models of PS1 and PS1/2 deficiency, to fibroblasts from AD patients with PS1 mutations, and to neurons in the PS/APP mouse model of AD. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Role of Transcription Factors in Pulmonary Artery Smooth Muscle Cells: An Important Link to Hypoxic Pulmonary Hypertension.

    PubMed

    Di Mise, Annarita; Wang, Yong-Xiao; Zheng, Yun-Min

    2017-01-01

    Hypoxia, namely a lack of oxygen in the blood, induces pulmonary vasoconstriction and vasoremodeling, which serve as essential pathologic factors leading to pulmonary hypertension (PH). The underlying molecular mechanisms are uncertain; however, pulmonary artery smooth muscle cells (PASMCs) play an essential role in hypoxia-induced pulmonary vasoconstriction, vasoremodeling, and PH. Hypoxia causes oxidative damage to DNAs, proteins, and lipids. This damage (oxidative stress) modulates the activity of ion channels and elevates the intracellular calcium concentration ([Ca 2+ ] i , Ca 2+ signaling) of PASMCs. The oxidative stress and increased Ca 2+ signaling mutually interact with each other, and synergistically results in a variety of cellular responses. These responses include functional and structural abnormalities of mitochondria, sarcoplasmic reticulum, and nucleus; cell contraction, proliferation, migration, and apoptosis, as well as generation of vasoactive substances, inflammatory molecules, and growth factors that mediate the development of PH. A number of studies reveal that various transcription factors (TFs) play important roles in hypoxia-induced oxidative stress, disrupted PAMSC Ca 2+ signaling and the development and progress of PH. It is believed that in the pathogenesis of PH, hypoxia facilitates these roles by mediating the expression of multiple genes. Therefore, the identification of specific genes and their transcription factors implicated in PH is necessary for the complete understanding of the underlying molecular mechanisms. Moreover, this identification may aid in the development of novel and effective therapeutic strategies for PH.

  17. Mine tailings composition in a historic site: implications for ecological restoration.

    PubMed

    Courtney, R

    2013-02-01

    Ecological restoration, using tolerant plant species and nutrient additions, is a low-cost option to decrease environmental risks associated with mine tailings. An attempt was previously made to establish such a vegetation cover on an abandoned tailings facility in Southern Ireland. Historically, the tailings site has been prone to dusting and is a potential source of contamination to the surrounding environment. The site was examined to determine the success of the previous restoration plan used to revegetate the site and to determine its suitability for further restoration. Three distinct floristic areas were identified (grassland, poor grassland and bare area) based on herbage compositions and elemental analysis. Surface and subsurface samples were taken to characterise tailings from within these areas of the tailings site. The pH of bare surface tailings (pH, 2.7) was significantly more acidic (p < 0.5) than in other areas. Additionally, negligible net neutralising potential resulted in the tailings being hostile to plant growth. Total metal concentrations in tailings were high (c. 10,000 mg kg(-1) for Pb and up to 20,000 mg kg(-1) for Zn). DTPA-extractable Zn and Pb were 16 and 11 % of the total amount, respectively. Metal content in grasses growing on some areas of the tailings were elevated and demonstrated the inability of the tailings to support sustainable plant growth. Due to the inherently hostile characteristics of these areas, future restoration work will employ capping with a barrier layer.

  18. Dynamic coupled metal transport-speciation model: application to assess a zinc-contaminated lake.

    PubMed

    Bhavsar, Satyendra P; Diamond, Miriam L; Gandhi, Nilima; Nilsen, Joel

    2004-10-01

    A coupled metal transport and speciation/complexation model (TRANSPEC) has been developed to estimate the speciation and fate of multiple interconverting species in surface aquatic systems. Dynamic-TRANSPEC loosely, sequentially couples the speciation/complexation and fate modules that, for the unsteady state formulation, run alternatively at every time step. The speciation module first estimates species abundance using, in this version, MINEQL+ considering time-dependent changes in water and pore-water chemistry. The fate module is based on the quantitative water air sediment interaction (QWASI) model and fugacity/aquivalence formulation, with the option of using a pseudo-steady state solution to account for past discharges. Similarly to the QWASI model for organic contaminants, TRANSPEC assumes the instantaneous equilibrium distribution of metal species among dissolved, colloidal, and particulate phases based on ambient chemistry parameters that can be collected through conventional field methods. The model is illustrated with its application to Ross Lake (Manitoba, Canada) that has elevated Zn concentrations due to discharges over 70 years from a mining operation. Using measurements from field studies, the model reproduces year-round variations in Zn water concentrations. A 10-year projection for current conditions suggests decreasing Zn remobilization and export from the lake. Decreasing Zn loadings increases sediment-to-water transport but decreases water concentrations, and vice versa. Species distribution is affected by pH such that a decrease in pH increases metal export from the lake and vice versa.

  19. Environmental risk assessment of cobalt and manganese from industrial sources in an estuarine system.

    PubMed

    Barrio-Parra, F; Elío, J; De Miguel, E; García-González, J E; Izquierdo, M; Álvarez, R

    2018-04-01

    A total of 74 samples of soil, sediment, industrial sludge, and surface water were collected in a Mediterranean estuarine system in order to assess the potential ecological impact of elevated concentrations of Co and Mn associated with a Terephthalic (PTA) and Isophthalic (PIPA) acids production plant. Samples were analyzed for elemental composition (37 elements), pH, redox potential, organic carbon, and CaCO 3 content, and a group of 16 selected samples were additionally subjected to a Tessier sequential extraction. Co and Mn soil concentrations were significantly higher inside the industrial facility and around its perimeter than in background samples, and maximum dissolved Co and Mn concentrations were found in a creek near the plant's discharge point, reaching values 17,700 and 156 times higher than their respective background concentrations. The ecological risk was evaluated as a function of Co and Mn fractionation and bioavailability which were controlled by the environmental conditions generated by the advance of seawater into the estuarine system during high tide. Co appeared to precipitate near the river mouth due to the pH increase produced by the influence of seawater intrusion, reaching hazardous concentrations in sediments. In terms of their bioavailability and the corresponding risk assessment code, both Co and Mn present sediment concentrations that result in medium to high ecological risk whereas water concentrations of both elements reach values that more than double their corresponding Secondary Acute Values.

  20. Few Like it Hot: Coral Reef Reponses to Elevated Temperatures and CO2

    NASA Astrophysics Data System (ADS)

    Eakin, C. M.; Gledhill, D. K.; Heron, S. F.; Skirving, W.; Christensen, T.; Morgan, J.; Liu, G.; Strong, A. E.

    2007-12-01

    Coral reefs live within a fairly narrow envelope of environmental conditions constrained by water temperatures, light, salinity, nutrients, bathymetry and the aragonite saturation state of seawater. As documented in numerous studies, the world's coral reefs are "in crisis" as a result of human impacts on their environment. While local stresses currently dominate, coral reefs are increasingly confronted with global-scale changes due to rising greenhouse gas concentrations. These changes are rapidly modifying the environmental envelope of coral reefs through both increased thermal stress and ocean acidification. In the former case, there is a well-documented relationship between thermal stress and the response of corals that include coral bleaching, disease, and mortality. Clear tolerance thresholds exist beyond which high temperature and accumulated thermal stress have deleterious effects. However, the synergistic effects of increasing temperature and ocean acidification are not yet fully understood. At this time, there is mounting concern that decreasing pH and aragonite saturation state will cause net reef accretion to cease or become negative. The threshold at which this could occur is likely to be reached much sooner than the pH drop necessary to induce carbonate dissolution. Both the thermal and chemical limits that control coral survival and reef growth will likely be passed before 2100 assuming even conservative projections reported in the 4th Assessment Report of the Intergovernmental Panel on Climate Change. This talk will discuss these thresholds and their ramifications for ecosystems and resource management.

Top