Review on State-of-the-art in Polymer Based pH Sensors
Korostynska, Olga; Arshak, Khalil; Gill, Edric; Arshak, Arousian
2007-01-01
This paper reviews current state-of-the-art methods of measuring pH levels that are based on polymer materials. These include polymer-coated fibre optic sensors, devices with electrodes modified with pH-sensitive polymers, fluorescent pH indicators, potentiometric pH sensors as well as sensors that use combinatory approach for ion concentration monitoring. PMID:28903277
Su, W; Xu, J; Ding, Xianting
2016-12-01
Conventional glass-based pH sensors are usually fragile and space consuming. Herein, a miniature electrochemical pH sensor based on amino-functionalized graphene fragments and polyaniline (NH 2 -G/PANI) composite film is developed via simply one-pot electrochemical polymerization on the ITO-coated glass substrates. Cyclic Voltammetry (CV), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Raman Spectra are involved to confirm the successful synthesis and to characterize the properties of the NH 2 -G/PANI composite film. The developed electrochemical pH sensor presents fast response, high sensitivity (51.1 mV/pH) and wide detection range when applied to PBS solutions of pH values from 1 to 11. The robust reproducibility and good stability of the developed pH sensors are investigated as well. Compared to the conventional glass-based pH meters, the NH 2 -G/PANI composite film-based pH sensor could be a promising contender for the flexible and miniaturized pH-sensing devices.
A quantum dot-spore nanocomposite pH sensor.
Zhang, Xingya; Li, Zheng; Zhou, Tao; Zhou, Qian; Zeng, Zhiming; Xu, Xiangdong; Hu, Yonggang
2016-04-01
A new quantum dot (QD)-based pH sensor design is investigated. The sensor is synthesized based on the self-assembly of green QDs onto treated spores to form QD@spore nanocomposites. The nanocomposites are characterized using laser scanning confocal microscopy, transmission electron microscope, and fluorescence spectroscopy, among others. Fluorescence measurements showed that these nanocomposites are sensitive to pH in a broad pH range of 5.0-10.0. The developed pH sensors have been satisfactorily applied for pH estimation of real samples and are comparable with those of the commercial assay method, indicating the potential practical application of the pH sensors. Copyright © 2015 Elsevier B.V. All rights reserved.
pH sensor based on boron nitride nanotubes.
Huang, Q; Bando, Y; Zhao, L; Zhi, C Y; Golberg, D
2009-10-14
A submicrometer-sized pH sensor based on biotin-fluorescein-functionalized multiwalled BN nanotubes with anchored Ag nanoparticles is designed. Intrinsic pH-dependent photoluminescence and Raman signals in attached fluorescein molecules enhanced by Ag nanoparticles allow this novel nanohybrid to perform as a practical pH sensor. It is able to work in a submicrometer-sized space. For example, the sensor may determine the environmental pH of sub-units in living cells where a traditional optical fiber sensor fails because of spatial limitations.
pH sensor based on boron nitride nanotubes
NASA Astrophysics Data System (ADS)
Huang, Q.; Bando, Y.; Zhao, L.; Zhi, C. Y.; Golberg, D.
2009-10-01
A submicrometer-sized pH sensor based on biotin-fluorescein-functionalized multiwalled BN nanotubes with anchored Ag nanoparticles is designed. Intrinsic pH-dependent photoluminescence and Raman signals in attached fluorescein molecules enhanced by Ag nanoparticles allow this novel nanohybrid to perform as a practical pH sensor. It is able to work in a submicrometer-sized space. For example, the sensor may determine the environmental pH of sub-units in living cells where a traditional optical fiber sensor fails because of spatial limitations.
Evaluating nanoparticle sensor design for intracellular pH measurements.
Benjaminsen, Rikke V; Sun, Honghao; Henriksen, Jonas R; Christensen, Nynne M; Almdal, Kristoffer; Andresen, Thomas L
2011-07-26
Particle-based nanosensors have over the past decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors are challenging, and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time-resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle-based sensor systems that are internalized by endocytosis and elucidated important factors in nanosensor design that should be considered in future development of new sensors. From our experiments it is clear that it is highly important to use sensors that have a broad measurement range, as erroneous quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pK(a) to each sensor, seem to be a solution to some of the earlier problems found when measuring pH in the endosome-lysosome pathway.
A novel pH optical sensor using methyl orange based on triacetylcellulose membranes as support.
Hosseini, Mohammad; Heydari, Rouhollah; Alimoradi, Mohammad
2014-07-15
A novel pH optical sensor based on triacetylcellulose membrane as solid support was developed by using immobilization of methyl orange indicator. The prepared optical sensor was fixed into a flow cell for on-line pH monitoring. Variables affecting sensor performance, such as pH of dye bonding to triacetylcellulose membrane and dye concentration have been fully evaluated and optimized. The calibration curve showed good behavior and precision (RSD<0.4%) in the pH range of 4.0-12.0. No significant variation was observed on sensor response with increasing the ionic strength in the range of 0.0-0.5M of sodium chloride. Determination of pH by using the proposed optical sensor is on-line, quick, inexpensive, selective and sensitive in the pH range of 4.0-12.0. Copyright © 2014 Elsevier B.V. All rights reserved.
Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring.
Bandodkar, Amay J; Hung, Vinci W S; Jia, Wenzhao; Valdés-Ramírez, Gabriela; Windmiller, Joshua R; Martinez, Alexandra G; Ramírez, Julian; Chan, Garrett; Kerman, Kagan; Wang, Joseph
2013-01-07
This article presents the fabrication and characterization of novel tattoo-based solid-contact ion-selective electrodes (ISEs) for non-invasive potentiometric monitoring of epidermal pH levels. The new fabrication approach combines commercially available temporary transfer tattoo paper with conventional screen printing and solid-contact polymer ISE methodologies. The resulting tattoo-based potentiometric sensors exhibit rapid and sensitive response to a wide range of pH changes with no carry-over effects. Furthermore, the tattoo ISE sensors endure repetitive mechanical deformation, which is a key requirement of wearable and epidermal sensors. The flexible and conformal nature of the tattoo sensors enable them to be mounted on nearly any exposed skin surface for real-time pH monitoring of the human perspiration, as illustrated from the response during a strenuous physical activity. The resulting tattoo-based ISE sensors offer considerable promise as wearable potentiometric sensors suitable for diverse applications.
Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor
NASA Technical Reports Server (NTRS)
Jeevarajan, Antony S.; Vani, Sundeep; Taylor, Thomas D.; Anderson, Melody M.
2002-01-01
Monitoring and regulating the pH of the solution in a bioprocess is one of the key steps in the success of bioreactor operation. An in-line optical pH sensor, based on the optical absorption properties of phenol red present in the medium, was developed and tested in this work for use in NASA space bioreactors based on a rotating wall-perfused vessel system supporting a baby hamster kidney (BHK-21) cell culture. The sensor was tested over three 30-day and one 124-day cell runs. The pH sensor initially was calibrated and then used during the entire cell culture interval. The pH reported by the sensor was compared to that measured by a fiber optically coupled Shimadzu spectrophotometer and a blood gas analyzer. The maximum standard error of prediction for all the four cell runs for development pH sensor against BGA was +/-0.06 pH unit and for the fiber optically coupled Shimadzu spectrophotometer against the blood gas analyzer was +/-0.05 pH unit. The pH sensor system performed well without need of recalibration for 124 days. Copyright 2002 Wiley Periodicals, Inc.
Bi, Liyan; Wang, Yunqing; Yang, Ying; Li, Yuling; Mo, Shanshan; Zheng, Qingyin; Chen, Lingxin
2018-05-09
Conventional research on surface-enhanced Raman scattering (SERS)-based pH sensors often depends on nanoparticle aggregation, whereas the variability in nanoparticle aggregation gives rise to poor repeatability in the SERS signal. Herein, we fabricated a gold nanorod array platform via an efficient evaporative self-assembly method. The platform exhibits great SERS sensitivity with an enhancement factor of 5.6 × 10 7 and maintains excellent recyclability and reproducibility with relative standard deviation (RSD) values of less than 8%. On the basis of the platform, we developed a highly sensitive bovine serum albumin (BSA)-coated 4-mercaptopyridine (4-MPy)-linked (BMP) SERS-based pH sensor to report pH ranging from pH 3.0 to pH 8.0. The intensity ratio variation of 1004 and 1096 cm -1 in 4-MPy showed excellent pH sensitivity, which decreased as the surrounding pH increased. Furthermore, this BMP SERS-based pH sensor was employed to measure the pH value in C57BL/6 mouse blood. We have demonstrated that the pH sensor has great advantages such as good stability, reliability, and accuracy, which could be extended for the design of point-of-care devices.
Conformal self-assembled thin films for optical pH sensors
NASA Astrophysics Data System (ADS)
Topasna, Daniela M.; Topasna, Gregory A.; Liu, Minghanbo; Tseng, Ching-Hung
2016-04-01
Simple, reliable, lightweight, and inexpensive thin films based sensors are still in intense development and high demand in many applications such as biomedical, industrial, environmental, military, and consumer products. One important class of sensors is the optical pH sensor. In addition, conformal thin film based sensors extend the range of application for pH optical sensors. We present the results on the fabrication and characterization of optical pH sensing coatings made through ionic self-assembled technique. These thin films are based on the combination of a polyelectrolyte and water-soluble organic dye molecule Direct Yellow 4. A series of films was fabricated and characterized in order to determine the optimized parameters of the polymer and of the organic dye solutions. The optical pH responses of these films were also studied. The transparent films were immersed in solutions at various temperature and pH values. The films are stable when immersed in solutions with pH below 9.0 and temperatures below 90 °C and they maintain their performance after longer immersion times. We also demonstrate the functionality of these coatings as conformal films.
Field Performance of ISFET based Deep Ocean pH Sensors
NASA Astrophysics Data System (ADS)
Branham, C. W.; Murphy, D. J.
2017-12-01
Historically, ocean pH time series data was acquired from infrequent shipboard grab samples and measured using labor intensive spectrophotometry methods. However, with the introduction of robust and stable ISFET pH sensors for use in ocean applications a paradigm shift in the methods used to acquire long-term pH time series data has occurred. Sea-Bird Scientific played a critical role in the adoption this new technology by commercializing the SeaFET pH sensor and float pH Sensor developed by the MBARI chemical sensor group. Sea-Bird Scientific continues to advance this technology through a concerted effort to improve pH sensor accuracy and reliability by characterizing their performance in the laboratory and field. This presentation will focus on calibration of the ISFET pH sensor, evaluate its analytical performance, and validate performance using recent field data.
Development of a pH sensor using nanoporous nanostructures of NiO.
Ibupoto, Z H; Khun, K; Willander, M
2014-09-01
Glass is the conventional material used in pH electrodes to monitor pH in various applications. However, the glass-based pH electrode has some limitations for particular applications. The glass sensor is limited in the use of in vivo biomedical, clinical or food applications because of the brittleness of glass, its large size, the difficulty in measuring small volumes and the absence of deformation (inflexibility). Nanostructure-based pH sensors are very sensitive, reliable, fast and applicable towards in vivo measurements. In this study, nanoporous NiO nanostructures are synthesized on a gold-coated glass substrate by a hydrothermal route using poly(vinyl alcohol) (PVA) as a stabilizer. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were used for the morphological and crystalline studies. The grown NiO nanostructures are uniform and dense, and they possess good crystallinity. A pH sensor based on these NiO nanostructures was developed by testing the different pH values from 2-12 of phosphate buffered saline solution. The proposed pH sensor showed robust sensitivity of -43.74 ± 0.80 mV/pH and a quick response time of less than 10 s. Moreover, the repeatability, reproducibility and stability of the presented pH sensor were also studied.
Paper-based potentiometric pH sensor using carbon electrode drawn by pencil
NASA Astrophysics Data System (ADS)
Kawahara, Ryotaro; Sahatiya, Parikshit; Badhulika, Sushmee; Uno, Shigeyasu
2018-04-01
A flexible and disposable paper-based pH sensor fabricated with a pencil-drawn working electrode and a Ag/AgCl paste reference electrode is demonstrated for the first time to show pH response by the potentiometric principle. The sensor substrate is made of chromatography paper with a wax-printed hydrophobic area, and various types of carbon pencils are tested as working electrodes. The pH sensitivities of the electrodes drawn by carbon pencils with different hardnesses range from 16.5 to 26.9 mV/pH. The proposed sensor is expected to be more robust against shape change in electrodes on a flexible substrate than other types of chemiresistive/amperometric pH sensors.
Shi, Bingfang; Su, Yubin; Zhang, Liangliang; Liu, Rongjun; Huang, Mengjiao; Zhao, Shulin
2016-08-15
A nitrogen-rich functional groups carbon nanoparticles (N-CNs) based fluorescent pH sensor with a broad-range responding was prepared by one-pot hydrothermal treatment of melamine and triethanolamine. The as-prepared N-CNs exhibited excellent photoluminesence properties with an absolute quantum yield (QY) of 11.0%. Furthermore, the N-CNs possessed a broad-range pH response. The linear pH response range was 3.0 to 12.0, which is much wider than that of previously reported fluorescent pH sensors. The possible mechanism for the pH-sensitive response of the N-CNs was ascribed to photoinduced electron transfer (PET). Cell toxicity experiment showed that the as-prepared N-CNs exhibited low cytotoxicity and excellent biocompatibility with the cell viabilities of more than 87%. The proposed N-CNs-based pH sensor was used for pH monitoring of environmental water samples, and pH fluorescence imaging of live T24 cells. The N-CNs is promising as a convenient and general fluorescent pH sensor for environmental monitoring and bioimaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Temperature and pH sensors based on graphenic materials.
Salvo, P; Calisi, N; Melai, B; Cortigiani, B; Mannini, M; Caneschi, A; Lorenzetti, G; Paoletti, C; Lomonaco, T; Paolicchi, A; Scataglini, I; Dini, V; Romanelli, M; Fuoco, R; Di Francesco, F
2017-05-15
Point-of-care applications and patients' real-time monitoring outside a clinical setting would require disposable and durable sensors to provide better therapies and quality of life for patients. This paper describes the fabrication and performances of a temperature and a pH sensor on a biocompatible and wearable board for healthcare applications. The temperature sensor was based on a reduced graphene oxide (rGO) layer that changed its electrical resistivity with the temperature. When tested in a human serum sample between 25 and 43°C, the sensor had a sensitivity of 110±10Ω/°C and an error of 0.4±0.1°C compared with the reference value set in a thermostatic bath. The pH sensor, based on a graphene oxide (GO) sensitive layer, had a sensitivity of 40±4mV/pH in the pH range between 4 and 10. Five sensor prototypes were tested in a human serum sample over one week and the maximum deviation of the average response from reference values obtained by a glass electrode was 0.2pH units. For biological applications, the temperature and pH sensors were successfully tested for in vitro cytotoxicity with human fibroblast cells (MRC-5) over 24h. Copyright © 2017 Elsevier B.V. All rights reserved.
High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs
NASA Astrophysics Data System (ADS)
Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao
2016-11-01
The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H+) and hydroxide (OH-) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H+ and OH- ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the relative resistance variations of the sensor increases linearly with increasing the pH values in the range from 5 to 9 and the response time ranges from 0.2 s to 22.6 s. The pH sensor also shows high performance in mechanical bendability, which benefited from the combination of flexible PET substrates and SWNTs. The SWNT-based flexible pH sensor demonstrates great potential in a wide range of areas due to its simple structure, excellent performance, low power consumption, and compatibility with integrated circuits.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-11-09
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique
Khan, Md. Rajibur Rahaman; Kang, Shin-Won
2016-01-01
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865
NASA Astrophysics Data System (ADS)
Lieberman, Robert A.
Various paper on chemical, biochemical, and environmental fiber sensors are presented. Some of the individual topics addressed include: evanescent-wave fiber optic (FO) biosensor, refractive-index sensors based on coupling to high-index multimode overlays, advanced technique in FO sensors, design of luminescence-based temperature sensors, NIR fluorescence in FO applications, FO sensor based on microencapsulated reagents, emitters and detectors for optical gas and chemical sensing, tunable fiber laser source for methane detection at 1.68 micron, FO fluorometer based on a dual-wavelength laser excitation source, thin polymer films as active components of FO chemical sensors, submicron optical sources for single macromolecule detection, nanometer optical fiber pH sensor. Also discussed are: microfabrication of optical sensor array, luminescent FO sensor for the measurement of pH, time-domain fluorescence methods as applied to pH sensing, characterization of a sol-gel-entrapped artificial receptor, FO technology for nuclear waste cleanup, spectroscopic gas sensing with IR hollow waveguides, dissolved-oxygen quenching of in situ fluorescence measurements.
Post-deposition annealing temperature dependence TiO{sub 2}-based EGFET pH sensor sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zulkefle, M. A., E-mail: alhadizulkefle@gmail.com; Rahman, R. A., E-mail: rohanieza.abdrahman@gmail.com; Yusoff, K. A., E-mail: khairul.aimi.yusof@gmail.com
EGFET pH sensor is one type of pH sensor that is used to measure and determine pH of a solution. The sensing membrane of EGFET pH sensor plays vital role in the overall performance of the sensor. This paper studies the effects of different annealing temperature of the TiO{sub 2} sensing membranes towards sensitivity of EGFET pH sensor. Sol-gel spin coating was chosen as TiO{sub 2} deposition techniques since it is cost-effective and produces thin film with uniform thickness. Deposited TiO{sub 2} thin films were then annealed at different annealing temperatures and then were connected to the gate of MOSFETmore » as a part of the EGFET pH sensor structure. The thin films now act as sensing membranes of the EGFET pH sensor and sensitivity of each sensing membrane towards pH was measured. From the results it was determined that sensing membrane annealed at 300 °C gave the highest sensitivity followed by sample annealed at 400 °C and 500 °C.« less
A ph sensor based on a flexible substrate
NASA Astrophysics Data System (ADS)
Huang, Wen-Ding
pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages. Glass electrodes are easily affected by alkaline or HF solution, they require a high input impedance pH meter, they often exhibit a sluggish response. In some specific applications, it is also difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to the difficulty of size miniaturization, planarization and polymerization based on current manufacturing technologies. In this work, we have demonstrated a novel flexible pH sensor based on low-cost sol-gel fabrication process of iridium oxide (IrOx) sensing film (IROF). A pair of flexible miniature IrOx/AgCl electrode generated the action potential from the solution by electrochemical mechanism to obtain the pH level of the reagent. The fabrication process including sol-gel, thermal oxidation, and the electro-plating process of the silver chloride (AgCl) reference electrode were reported in the work. The IrOx film was verified and characterized using electron dispersive analysis (EDAX), scanning electron microscope (SEM), and x-ray diffraction (XRD). The flexible pH sensor's performance and characterization have been investigated with different testing parameters such as sensitivity, response time, stability, reversibility, repeatability, selectivity and temperature dependence. The flexible IrOx pH sensors exhibited promising sensing performance with a near-Nernstian response of sensitivity which is between --51.1mV/pH and --51.7mV/pH in different pH levels ranging from 1.5 to 12 at 25°C. Two applications including gastroesophageal reflux disease (GERD) diagnosis and food freshness wireless monitoring using our micro-flexible IrOx pH sensors were demonstrated. For the GERD diagnosing system, we embedded the micro flexible pH sensor on a 1.2cmx3.8cm of the capsule size of wireless sensor implanted inside the esophagus. Our pH electrode can monitor the pH changes of gastric juice in real time when the reflux happening in the esophagus. Our micro flexible pH sensor performed clear responses in each distinct pH reflux episode quickly and accurately comparing with the other commercial pH monitoring system. For the food freshness monitoring applications, we used the flexible pH sensor as a freshness indicator to monitor the pH changing profile during the food spoilage procedure. The sensor was then embedded with radio frequency identification (RFID) based passive telemetry enabling remote monitoring of food freshness. In the result, our pH-wireless RFID system presented 633Hz/pH of the sensitivity in the frequency calibration. The calibration of stability and dynamical response of the RFID system were also demonstrated before the test on food freshness monitoring. Finally, a white fish meat for long term spoilage procedure monitoring was applied and tested by using our wireless IrOx pH sensing system. Our RFID pH sensing module is able to monitor, collect and transmit the pH information continuously for 18 hours during the food spoilage procedure. In this dissertation, a micro size of IrOx/AgCl pH sensor was fabricated on a flexible substrate. The physical properties of the IrO x thin film was verified in the work. The different sensing capability such as the sensitivity, stability, reversibility, response time, repeatability, selectivity, and temperature dependence was then demonstrated in this work. After the different in-vitro tests, the pH sensor were embedded with our passive RFID circuitry for the in-vivo GERD diagnosis and food freshness monitoring application. Our wireless pH sensing system was able to deliver the accurate and quick pH sensing data wirelessly. In conclusion, our deformable IrOx pH electrodes have been demonstrated with the advantages of accommodating and conforming sensors in small spaces or curved surfaces. This miniature IrOx pH sensor can respond to distinct potentials of the various pH levels as traditional glass electrodes, however, the miniature, bio-compatible and flexible substrate and the ability to be integrated in batterryless telemetry enable the pH sensor to be applied on many new medical, bio-chemical and biological field.
A novel fiber optic sensor for the measurement of pH of blood based on colorimetry
NASA Astrophysics Data System (ADS)
Chaudhari, A. L.; Patil, D. D.; Shaligram, Arvind D.
2005-04-01
Fiber optic sensors designed to the date are largely based on monitoring the absorption change of several immobilized indicators or change in fluorescence of fluorometric indicators. The present paper reports a new type of fiber optic sensor for the measurement of blood pH based on Colorimetric principle. The sensor consists of two multimode step index fibers, mirror as reflector and blood serum with universal indicator as medium. LED is used as source and photodiode as detector. The intensity of color produced due to addition of indicator to blood serum depends upon hydrogen ion concentration. The output intensity from receiving fiber is measured as a function of pH of blood. The developed sensor is calibrated against the standard pH meter. The design, construction and calibration details are presented in paper.
A proteorhodopsin-based biohybrid light-powering pH sensor.
Rao, Siyuan; Guo, Zhibin; Liang, Dawei; Chen, Deliang; Wei, Yen; Xiang, Yan
2013-10-14
The biohybrid sensor is an emerging technique for multi-functional detection that utilizes the instinctive responses or interactions of biomolecules. We develop a biohybrid pH sensor by taking advantage of the pH-dependent photoelectric characteristics of proteorhodopsin (pR). The transient absorption kinetics study indicates that the photoelectric behavior of pR is attributed to the varying lifetime of the M intermediate at different environmental pH values. This pR-based biohybrid light-powering sensor with microfluidic design can achieve real-time pH detection with quick response and high sensitivity. The results of this work would shed light on pR and its potential applications.
Fluorescent pH sensor based on Ag@SiO2 core-shell nanoparticle.
Bai, Zhenhua; Chen, Rui; Si, Peng; Huang, Youju; Sun, Handong; Kim, Dong-Hwan
2013-06-26
We have demonstrated a novel method for the preparation of a fluorescence-based pH sensor by combining the plasmon resonance band of Ag core and pH sensitive dye (HPTS). A thickness-variable silica shell is placed between Ag core and HPTS dye to achieve the maximum fluorescence enhancement. At the shell thickness of 8 nm, the fluorescence intensity increases 4 and 9 times when the sensor is excited at 405 and 455 nm, respectively. At the same time, the fluorescence intensity shows a good sensitivity toward pH value in the range of 5-9, and the ratio of emission intensity at 513 nm excited at 455 nm to that excited at 405 nm versus the pH value in the range of 5-9 is determined. It is believed that the present pH sensor has the potential for determining pH real time in the biological sample.
Iridium Oxide pH Sensor Based on Stainless Steel Wire for pH Mapping on Metal Surface
NASA Astrophysics Data System (ADS)
Shahrestani, S.; Ismail, M. C.; Kakooei, S.; Beheshti, M.; Zabihiazadboni, M.; Zavareh, M. A.
2018-03-01
A simple technique to fabricate the iridium oxide pH sensor is useful in several applications such as medical, food processing and engineering material where it is able to detect the changes of pH. Generally, the fabrication technique can be classified into three types: electro-deposition iridium oxide film (EIrOF), activated iridium oxide film (AIROF) and sputtering iridium oxide film (SIROF). This study focuses on fabricating electrode, calibration and test. Electro-deposition iridium oxide film is a simple and effective method of fabricating this kind of sensor via cyclic voltammetry process. The iridium oxide thick film was successfully electrodeposited on the surface of stainless steel wire with 500 cycles of sweep potential. A further analysis under FESEM shows detailed image of iridium oxide film which has cauliflower-liked microstructure. EDX analysis shows the highest element present are iridium and oxygen which concluded that the process is successful. The iridium oxide based pH sensor has shown a good performance in comparison to conventional glass pH sensor when it is being calibrated in buffer solutions with 2, 4, 7 and 9 pH values. The iridium oxide pH sensor is specifically designed to measure the pH on the surface of metal plate.
The enhanced cyan fluorescent protein: a sensitive pH sensor for fluorescence lifetime imaging.
Poëa-Guyon, Sandrine; Pasquier, Hélène; Mérola, Fabienne; Morel, Nicolas; Erard, Marie
2013-05-01
pH is an important parameter that affects many functions of live cells, from protein structure or function to several crucial steps of their metabolism. Genetically encoded pH sensors based on pH-sensitive fluorescent proteins have been developed and used to monitor the pH of intracellular compartments. The quantitative analysis of pH variations can be performed either by ratiometric or fluorescence lifetime detection. However, most available genetically encoded pH sensors are based on green and yellow fluorescent proteins and are not compatible with multicolor approaches. Taking advantage of the strong pH sensitivity of enhanced cyan fluorescent protein (ECFP), we demonstrate here its suitability as a sensitive pH sensor using fluorescence lifetime imaging. The intracellular ECFP lifetime undergoes large changes (32 %) in the pH 5 to pH 7 range, which allows accurate pH measurements to better than 0.2 pH units. By fusion of ECFP with the granular chromogranin A, we successfully measured the pH in secretory granules of PC12 cells, and we performed a kinetic analysis of intragranular pH variations in living cells exposed to ammonium chloride.
NASA Astrophysics Data System (ADS)
Butler, Thomas M.; MacCraith, Brian D.; McDonagh, Colette M.
1995-09-01
The sol-gel process has been used to entrap pH indicators in porous glass coatings for sensor applications. This sensor is based on evanescent wave absorption using an unclad optical fiber dipcoated with the pH sensitive coating. The entrapped pH indicators show a broadening of the pH range with respect to the behavior in solution giving accurate measurement over three pH units when one indicator is used (bromophenol blue) and over six pH units (pH 3-9) when two indicators are used (bromophenol blue and bromocresol purple). The response of the pH sensor was monitored by measuring absorption at 590 nm referenced against a nonabsorbing region of the spectrum. This enabled the use of LED sources together with low cost photodiodes. The sensor displayed short response time and good repeatability. The thickness and stability of the pH sensitive coatings can be influenced by modifying the composition of the starting sol mixture. The evanescent absorption, and hence the sensitivity of the sensor, can be increased by selectively launching higher order modes in the fiber. These issues together with a full sensor characterization will be reported.
Double-pass Mach-Zehnder fiber interferometer pH sensor.
Tou, Zhi Qiang; Chan, Chi Chiu; Hong, Jesmond; Png, Shermaine; Eddie, Khay Ming Tan; Tan, Terence Aik Huang
2014-04-01
A biocompatible fiber-optic pH sensor based on a unique double-pass Mach-Zehnder interferometer is proposed. pH responsive poly(2-hydroxyethyl methacrylate-co-2-(dimethylamino)ethyl methacrylate) hydrogel coating on the fiber swells/deswells in response to local pH, leading to refractive index changes that manifest as shifting of interference dips in the optical spectrum. The pH sensor is tested in spiked phosphate buffer saline and demonstrates high sensitivity of 1.71 nm/pH, pH 0.004 limit of detection with good responsiveness, repeatability, and stability. The proposed sensor has been successfully applied in monitoring the media pH in cell culture experiments to investigate the relationship between pH and cancer cell growth.
Khodadoust, Saeid; Kouri, Narges Cham; Talebiyanpoor, Mohammad Sharif; Deris, Jamile; Pebdani, Arezou Amiri
2015-12-01
In this work a simple, inexpensive, and sensitive optical sensor based on triacetylcellulose membrane as solid support was developed by using immobilization of Giemsa indicator for pH measurement. In this method, the influence variables on the membrane performance including pH concentration of indicator, response time, ionic strength, and reversibility were investigated. At optimum values of all variables the response of optical pH sensor is linear in the pH range of 3.0-12.0. This optical sensor was produced through simultaneous binding of the Giemsa on the activated triacetylcellulose membrane which responded to the pH changes in a broader linear range within less than 2.0 min and suitable reproducibility (RSD<5%). Stability results showed that this sensor was stable after 6 months of storage in the water/ethanol (50:50, v/v) solution without any measurable divergence in response properties (less than 5% RSD). Copyright © 2015 Elsevier B.V. All rights reserved.
Metal/Metal Oxide Differential Electrode pH Sensors
NASA Technical Reports Server (NTRS)
West, William; Buehler, Martin; Keymeulen, Didier
2007-01-01
Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.
Abu-Thabit, Nedal; Umar, Yunusa; Ratemi, Elaref; Ahmad, Ayman; Ahmad Abuilaiwi, Faraj
2016-06-27
A new optical pH sensor based on polysulfone (PSU) and polyaniline (PANI) was developed. A transparent and flexible PSU membrane was employed as a support. The electrically conductive and pH-responsive PANI was deposited onto the membrane surface by in situ chemical oxidative polymerization (COP). The absorption spectra of the PANI-coated PSU membranes exhibited sensitivity to pH changes in the range of 4-12, which allowed for designing a dual wavelength pH optical sensor. The performance of the membranes was assessed by measuring their response starting from high pH and going down to low pH, and vice versa. It was found that it is necessary to precondition the sensor layers before each measurement due to the slight hysteresis observed during forward and backward pH titrations. PSU membranes with polyaniline coating thicknesses in the range of ≈100-200 nm exhibited fast response times of <4 s, which are attributed to the porous, rough and nanofibrillar morphology of the polyaniline coating. The fabricated pH sensor was characterized by a sigmoidal response (R² = 0.997) which allows for pH determination over a wide dynamic range. All membranes were stable for a period of more than six months when stored in 1 M HCl solution. The reproducibility of the fabricated optical pH sensors was found to be <0.02 absorption units after one month storage in 1 M HCl solution. The performance of the optical pH sensor was tested and the obtained pH values were compared with the results obtained using a pH meter device.
Abu-Thabit, Nedal; Umar, Yunusa; Ratemi, Elaref; Ahmad, Ayman; Ahmad Abuilaiwi, Faraj
2016-01-01
A new optical pH sensor based on polysulfone (PSU) and polyaniline (PANI) was developed. A transparent and flexible PSU membrane was employed as a support. The electrically conductive and pH-responsive PANI was deposited onto the membrane surface by in situ chemical oxidative polymerization (COP). The absorption spectra of the PANI-coated PSU membranes exhibited sensitivity to pH changes in the range of 4–12, which allowed for designing a dual wavelength pH optical sensor. The performance of the membranes was assessed by measuring their response starting from high pH and going down to low pH, and vice versa. It was found that it is necessary to precondition the sensor layers before each measurement due to the slight hysteresis observed during forward and backward pH titrations. PSU membranes with polyaniline coating thicknesses in the range of ≈100–200 nm exhibited fast response times of <4 s, which are attributed to the porous, rough and nanofibrillar morphology of the polyaniline coating. The fabricated pH sensor was characterized by a sigmoidal response (R2 = 0.997) which allows for pH determination over a wide dynamic range. All membranes were stable for a period of more than six months when stored in 1 M HCl solution. The reproducibility of the fabricated optical pH sensors was found to be <0.02 absorption units after one month storage in 1 M HCl solution. The performance of the optical pH sensor was tested and the obtained pH values were compared with the results obtained using a pH meter device. PMID:27355953
Preparation of a novel pH optical sensor using orange (II) based on agarose membrane as support.
Heydari, Rouhollah; Hosseini, Mohammad; Amraei, Ahmadreza; Mohammadzadeh, Ali
2016-04-01
A novel and cost effective optical pH sensor was prepared using covalent immobilization of orange (II) indicator on the agarose membrane as solid support. The fabricated optical sensor was fixed into a sample holder of a spectrophotometer instrument for pH monitoring. Variables affecting sensor performance including pH of dye bonding to agarose membrane and dye concentration were optimized. The sensor responds to the pH changes in the range of 3.0-10.0 with a response time of 2.0 min and appropriate reproducibility (RSD ≤ 0.9%). No significant variation was observed on sensor response after increasing the ionic strength in the range of 0.0-0.5M of sodium chloride. Determination of pH using the proposed optical sensor is quick, simple, inexpensive, selective and sensitive in the pH range of 3.0-10.0. Copyright © 2015 Elsevier B.V. All rights reserved.
Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming
Cambra, Carlos; Lacuesta, Raquel
2018-01-01
Improving the sustainability in agriculture is nowadays an important challenge. The automation of irrigation processes via low-cost sensors can to spread technological advances in a sector very influenced by economical costs. This article presents an auto-calibrated pH sensor able to detect and adjust the imbalances in the pH levels of the nutrient solution used in hydroponic agriculture. The sensor is composed by a pH probe and a set of micropumps that sequentially pour the different liquid solutions to maintain the sensor calibration and the water samples from the channels that contain the nutrient solution. To implement our architecture, we use an auto-calibrated pH sensor connected to a wireless node. Several nodes compose our wireless sensor networks (WSN) to control our greenhouse. The sensors periodically measure the pH level of each hydroponic support and send the information to a data base (DB) which stores and analyzes the data to warn farmers about the measures. The data can then be accessed through a user-friendly, web-based interface that can be accessed through the Internet by using desktop or mobile devices. This paper also shows the design and test bench for both the auto-calibrated pH sensor and the wireless network to check their correct operation. PMID:29693611
Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming.
Cambra, Carlos; Sendra, Sandra; Lloret, Jaime; Lacuesta, Raquel
2018-04-25
Improving the sustainability in agriculture is nowadays an important challenge. The automation of irrigation processes via low-cost sensors can to spread technological advances in a sector very influenced by economical costs. This article presents an auto-calibrated pH sensor able to detect and adjust the imbalances in the pH levels of the nutrient solution used in hydroponic agriculture. The sensor is composed by a pH probe and a set of micropumps that sequentially pour the different liquid solutions to maintain the sensor calibration and the water samples from the channels that contain the nutrient solution. To implement our architecture, we use an auto-calibrated pH sensor connected to a wireless node. Several nodes compose our wireless sensor networks (WSN) to control our greenhouse. The sensors periodically measure the pH level of each hydroponic support and send the information to a data base (DB) which stores and analyzes the data to warn farmers about the measures. The data can then be accessed through a user-friendly, web-based interface that can be accessed through the Internet by using desktop or mobile devices. This paper also shows the design and test bench for both the auto-calibrated pH sensor and the wireless network to check their correct operation.
Polyaniline deposition on tilted fiber Bragg grating for pH sensing
NASA Astrophysics Data System (ADS)
Lopez Aldaba, A.; González-Vila, Á.; Debliquy, M.; Lopez-Amo, M.; Caucheteur, C.; Lahem, D.
2017-04-01
In this paper, we present the results of a new pH sensor based on a polyaniline (PAni) coating on the surface of a tilted fiber Bragg grating. The pH-sensitive PAni was deposited by in situ chemical oxidative polymerization. The performance of the fabricated pH sensor was tested and the obtained pH values were compared with the results obtained using a pH meter device. It was found that the sensor exhibits response to pH changes in the range of 2-12, achieving a sensitivity of 46 pm/pH with a maximum error due to the hysteresis effect of +/-1.14 pH. The main advantages of this PAni-TFBG pH sensor are biochemical compatibility, temperature independence, long-term stability and remote realtime multipoint sensing features. This type of sensor could be used for biochemical applications, pipeline corrosion monitoring or remote-multipoint measurements.
NASA Astrophysics Data System (ADS)
Nakano, Yoshiyuki; Fujiki, Tetsuichi; Kimoto, Katsunori; Miwa, Tetsuya
2017-04-01
Ocean acidification has many far reaching impacts on plankton community in the ocean. There is great need of quality instrumentation to assess and monitor the changing seawater pH. To meet the need, we have developed the in situ high accurate pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring to participate the Wendy Schmidt Ocean health XPRIZE. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS is correcting the value of the potentiometric pH (measuring frequently) by the value of the spectrophotometric pH (measuring less frequently). It is possible to calibrate in situ with Tris buffer or CRM on the spectrophotometric pH sensor. Therefore, the drifts in the value of potentiometric pH measurements can be compensated using the pH value obtained from the spectrophotometric pH measurements. Thereby, the HpHS can measure accurately the value of pH over a long period of time with low power consumption. In order to understand the seasonal and inter-annual variabilities of biogeochemical cycles and ecosystems, ship-based studies have been carried out since 1997 at time-series station K2 (47oN, 160oE) in the subarctic western North Pacific, which is a region with progression of ocean acidification. However, the ship-based studies of the open ocean have been limited in their ability to conduct high-frequency observations for understanding the biogeochemical cycles and ecosystems. To overcome the problem, we developed a hybrid profiling buoy system. The HpHS was attached to a remote automatic water sampler (200m) in the buoy system in July 2015. We recovered the buoy system in June 2016 and succeeded in observing seawater pH every four hours for a year. Here, we show an overview of the diurnal and seasonal variations of pH for a year at station K2. In addition, we examine a relationship between the pH variations and marine calcifiers recovered by the sediment trap during the same period.
Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao
2004-07-01
The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F = 66.871 + 6.605 pH (F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.
NASA Astrophysics Data System (ADS)
Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao
2004-07-01
The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F=66.871+6.605 pH ( F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, T.P.
Sensors for the determination of pH have been developed which are based on the immobilization of direct dyes at hydrolyzed cellulosic films. The performance and structural characteristics of the sensors were investigated by a variety of spectroscopic methods, and applications for remote sensing were developed. Films of cellulose acetate were base hydrolyzed in 0.07 M KOH to yield a porous support structure. The structural changes resulting from the hydrolysis on cellulose acetate were probed with infrared internal reflectance spectroscopy. The progress of the hydrolysis reaction was monitored by the changes in vibrational modes of the acetyl group, and other spectralmore » changes indicated changes in film thickness as a result of solvent incorporation. Direct dyes, including Congo Red and C. I. Direct Blue 8, were then immobilized at these porous cellulosic films. The optical response characteristics of the Congo Red pH sensor were characterized, including the UV-visible absorption spectra as a function of pH, the response time as a function of ionic strength and ionic size of electrolyte, the long-term stability of the sensor, the effects of metal-ion interference, and the concentration of Congo Red in the polymer film. The structural characteristics of the sensor were investigated by internal reflectance spectroscopy and resonance-enhanced Raman spectroscopy, and the protonation sites were identified as the two azo groups of Congo Red. Infrared internal reflection spectra of immobilized Congo Red led to the development of a sensor for pH based on infrared spectroscopy. Finally, a two-wavelength fiber-optic photometer, which is based on solid-state sources and detectors, and a fiber-optic photometer, which is based on solid-state sources and detectors, and a fiber-optic probe were developed for pH determinations using Congo Red and C. I. Direct Blue 8 pH sensors.« less
Mani, Ganesh Kumar; Miyakoda, Kousei; Saito, Asuka; Yasoda, Yutaka; Kajiwara, Kagemasa; Kimura, Minoru; Tsuchiya, Kazuyoshi
2017-07-05
Acid-base homeostasis (body pH) inside the body is precisely controlled by the kidneys and lungs and buffer systems, such that even a minor pH change could severely affect many organs. Blood and urine pH tests are common in day-to-day clinical trials and require little effort for diagnosis. There is always a great demand for in vivo testing to understand more about body metabolism and to provide effective diagnosis and therapy. In this article, we report the simple fabrication of microneedle-based direct, label-free, and real-time pH sensors. The reference and working electrodes were Ag/AgCl thick films and ZnO thin films on tungsten (W) microneedles, respectively. The morphological and structural characteristics of microneedles were carefully investigated through various analytical methods. The developed sensor exhibited a Nernstian response of -46 mV/pH. Different conditions were used to test the sensor to confirm their accuracy and stability, such as various buffer solutions, with respect to time, and we compared the reading with commercial pH electrodes. Besides that, the fabricated microneedle sensor ability is proven by in vivo testing in mouse cerebrospinal fluid (CSF) and bladders. The pH sensor procedure reported here is totally reversible, and results were reproducible after several rounds of testing.
Manufacture and application of RuO2 solid-state metal-oxide pH sensor to common beverages.
Lonsdale, W; Wajrak, M; Alameh, K
2018-04-01
A new reproducible solid-state metal-oxide pH sensor for beverage quality monitoring is developed and characterised. The working electrode of the developed pH sensor is based on the use of laser-etched sputter-deposited RuO 2 on Al 2 O 3 substrate, modified with thin layers of sputter-deposited Ta 2 O 5 and drop-cast Nafion for minimisation of redox interference. The reference electrode is manufactured by further modifying a working electrode with a porous polyvinyl butyral layer loaded with fumed SiO 2 . The developed pH sensor shows excellent performance when applied to a selection of beverage samples, with a measured accuracy within 0.08 pH of a commercial glass pH sensor. Copyright © 2017 Elsevier B.V. All rights reserved.
Sakaguchi, Reiko; Endoh, Takashi; Yamamoto, Seigo; Tainaka, Kazuki; Sugimoto, Kenji; Fujieda, Nobutaka; Kiyonaka, Shigeki; Mori, Yasuo; Morii, Takashi
2009-10-15
A fluorescent sensor for the detection of inositol-1,3,4,5-tetrakisphosphate, Ins(1,3,4,5)P(4), was constructed from a split PH domain and a single circularly permuted GFP. A structure-based design was conducted to transduce a ligand-induced subtle structural perturbation of the split PH domain to an alteration in the population of the protonated and the deprotonated states of the GFP chromophore. Excitation of each distinct absorption band corresponding to the protonated or the deprotonated state of GFP resulted an increase and a decrease, respectively, in the intensity of emission spectra upon addition of Ins(1,3,4,5)P(4) to the split PH domain-based sensor. The Ins(1,3,4,5)P(4) sensor retained the ligand affinity and the selectivity of the parent PH domain, and realized the ratiometric fluorescence detection of Ins(1,3,4,5)P(4).
Preparation Of Small Diameter Sensors For Continuous Clinical Monitoring
NASA Astrophysics Data System (ADS)
Walt, David R.; Munkholm, Christiane; Jordan, David; Milanovich, Fred P.; Daley, Paul F.
1987-04-01
We have prepared fluorescence-based fiber optic sensors which give rapid and reversible responses. Other investigators have previously prepared sensors in which a membrane, tubing, or a hollow fiber is used to contain a specific reagent near the distal end of the fiber. Such an approach produces fibers with limited signal magnitudes and slow response times. Furthermore, these sensors are cumbersome to assemble, and are difficult to miniaturize and calibrate. We have developed a technique for the covalent chemical modification of the fiber's distal surface which is easily adapted to the smallest diameter glass optical fiber (100 μm). The sensing layer is attached directly to the fiber surface. The layer is extremely thin and highly porous and provides high fluorescence intensity with nearly instantaneous response times. The fibers are moderately stable against bleaching and have long shelf-lives. Our initial efforts have concentrated on the preparation of pH-sensitive optical sensors that are useful in the pH range 4.0 to 8.0. These sensors are reversible in response to pH variation and possess signal-to-noise ratios over 250/1. The fibers are prepared using a glass surface modification followed by a polymerization step for dye immobilization. Both fluorescence and absorbance-based sensors have been prepared using this technique. The absorbance-based pH sensors have 100% response times of less than 3 seconds, are sensitive in the region of pH 6.0 to 8.0, and provide reliable measurement of pH with precision of better than 0.03 pH units.
Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples.
Prats-Alfonso, Elisabet; Abad, Llibertat; Casañ-Pastor, Nieves; Gonzalo-Ruiz, Javier; Baldrich, Eva
2013-01-15
This work demonstrates the implementation of iridium oxide films (IROF) grown on silicon-based thin-film platinum microelectrodes, their utilization as a pH sensor, and their successful formatting into a urea pH sensor. In this context, Pt electrodes were fabricated on Silicon by using standard photolithography and lift-off procedures and IROF thin films were growth by a dynamic oxidation electrodeposition method (AEIROF). The AEIROF pH sensor reported showed a super-Nerstian (72.9±0.9mV/pH) response between pH 3 and 11, with residual standard deviation of both repeatability and reproducibility below 5%, and resolution of 0.03 pH units. For their application as urea pH sensors, AEIROF electrodes were reversibly modified with urease-coated magnetic microparticles (MP) using a magnet. The urea pH sensor provided fast detection of urea between 78μM and 20mM in saline solution, in sample volumes of just 50μL. The applicability to urea determination in real urine samples is discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
A pH Sensor Based on a Stainless Steel Electrode Electrodeposited with Iridium Oxide
ERIC Educational Resources Information Center
Martinez, C. C. M.; Madrid, R. E.; Felice, C. J.
2009-01-01
A simple procedure to make an iridium oxide (IrO[subscript 2]) electrodeposited pH sensor, that can be used in a chemical, biomedical, or materials laboratory, is presented here. Some exercises, based on this sensor, that can be used to teach important concepts in the field of biomedical, biochemical, tissue, or materials engineering, are also…
Multianalyte biosensor based on pH-sensitive ZnO electrolyte–insulator–semiconductor structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haur Kao, Chyuan; Chun Liu, Che; Ueng, Herng-Yih
2014-05-14
Multianalyte electrolyte–insulator–semiconductor (EIS) sensors with a ZnO sensing membrane annealed on silicon substrate for use in pH sensing were fabricated. Material analyses were conducted using X-ray diffraction and atomic force microscopy to identify optimal treatment conditions. Sensing performance for various ions of Na{sup +}, K{sup +}, urea, and glucose was also tested. Results indicate that an EIS sensor with a ZnO membrane annealed at 600 °C exhibited good performance with high sensitivity and a low drift rate compared with all other reported ZnO-based pH sensors. Furthermore, based on well-established pH sensing properties, pH-ion-sensitive field-effect transistor sensors have also been developed formore » use in detecting urea and glucose ions. ZnO-based EIS sensors show promise for future industrial biosensing applications.« less
In situ chemical sensing for hydrothermal plume mapping and modeling
NASA Astrophysics Data System (ADS)
Fukuba, T.; Kusunoki, T.; Maeda, Y.; Shitashima, K.; Kyo, M.; Fujii, T.; Noguchi, T.; Sunamura, M.
2012-12-01
Detection, monitoring, and mapping of biogeochemical anomalies in seawater such as temperature, salinity, turbidity, oxidation-reduction potential, and pH are essential missions to explore undiscovered hydrothermal sites and to understand distribution and behavior of hydrothermal plumes. Utilization of reliable and useful in situ sensors has been widely accepted as a promised approach to realize a spatiotemporally resolved mapping of anomalies without water sampling operations. Due to remarkable progresses of sensor technologies and its relatives, a number of highly miniaturized and robust chemical sensors have been proposed and developed. We have been developed, evaluated, and operated a compact ISFET (Ion-Sensitive Field-Effect Transistor)-based chemical sensors for ocean environmental sensing purposes. An ISFET has advantages against conventional glass-based electrodes on its faster response, robustness, and potential on miniaturization, and thus variety of chemical sensors has been already on the market. In this study, ISFET-based standalone pH sensors with a solid-state Cl-ISE as a reference electrode were mounted on various platforms and operated to monitor the pH anomalies in deep-sea environment at the Kairei, Edmond, and surrounding hydrothermal sites in the southern Central Indian Ridge area during KH10-06 scientific cruise (Nov. 2010), supported by project TAIGA (Trans-crustal Advection and In situ biogeochemical processes of Global sub-seafloor Aquifer). Up to three pH sensors were mounted on a wire-lined CTD/RMS (Rosette Multiple Sampler), dredge sampler, a series of MTD plankton nets, and VMPS (Vertical Multiple-operating Plankton Sampler). A standalone temperature sensor was bundled and operated with the pH sensor when they were mounted on the dredge sampler, MTD plankton nets, and VMPS. An AUV equipped with the pH sensor was also operated for hydrothermal activity survey operations. As a result of Tow-Yo intersect operations of the CTD/RMS, distribution of pH anomalies were successfully visualized at the Kairei site. During the operations with the dredge sampler, MTD nets, and VMPS, the pH sensors successfully worked except for a few failures of measurements due to a problem on a sensor cable. The pH sensor mounted on the AUV "R2D4" recoded a weak low-pH anomaly during a dive at the Yokoniwa site. Representative of the pH data obtained at southern Central Indian Ride will be shown visually on the poster. The spatiotemporally resolved data can be also utilized to develop reliable numerical models to estimate fluxes of energy and matters from geologically active sites. An example of optimization of a numerical model for hydrothermal plume study using 4D pH data obtained at a back-arc hydrothermal system (the Hatoma-knoll, the Okinawa Trough, Japan) will be also presented.
Novel fluorescent pH sensor based on coumarin with piperazine and imidazole substituents.
Saleh, Na'il; Al-Soud, Yaseen A; Nau, Werner M
2008-12-01
A new coumarin derivative containing piperazine and imidazole moieties is reported as a fluorophore for hydrogen ions sensing. The fluorescence enhancement of the studied sensor with an increase in hydrogen ions concentration is based on the hindering of photoinduced electron transfer from the piperazinyl amine and the imidazolyl amine to the coumarin fluorophore by protonation. The presented sensor has a novel design of fluorophore-spacer-receptor(1)-receptor(2) format, which is proposed to sense two ranges of pH (from 2.5 to 5.5) and (from 10 to 12) instead of sensing one pH range. A model compound, in which the piperazinyl ring is absent, was synthesized as well to confirm the novel pH sensing of the proposed sensor.
A cell-surface-anchored ratiometric i-motif sensor for extracellular pH detection.
Ying, Le; Xie, Nuli; Yang, Yanjing; Yang, Xiaohai; Zhou, Qifeng; Yin, Bincheng; Huang, Jin; Wang, Kemin
2016-06-14
A FRET-based sensor is anchored on the cell surface through streptavidin-biotin interactions. Due to the excellent properties of the pH-sensitive i-motif structure, the sensor can detect extracellular pH with high sensitivity and excellent reversibility.
A microfabricated fringing field capacitive pH sensor with an integrated readout circuit
NASA Astrophysics Data System (ADS)
Arefin, Md Shamsul; Bulut Coskun, M.; Alan, Tuncay; Redoute, Jean-Michel; Neild, Adrian; Rasit Yuce, Mehmet
2014-06-01
This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0-5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.
NASA Astrophysics Data System (ADS)
Wang, Hongliang; Liu, Baohua; Ding, Zhongjun; Wang, Xiangxin
2017-02-01
Absorption-based optical sensors have been developed for the determination of water pH. In this paper, based on the preparation of a transparent sol-gel thin film with a phenol red (PR) indicator, several calculation methods, including simple linear regression analysis, quadratic regression analysis and dual-wavelength absorbance ratio analysis, were used to calculate water pH. Results of MSSRR show that dual-wavelength absorbance ratio analysis can improve the calculation accuracy of water pH in long-term measurement.
High performance flexible pH sensor based on polyaniline nanopillar array electrode.
Yoon, Jo Hee; Hong, Seok Bok; Yun, Seok-Oh; Lee, Seok Jae; Lee, Tae Jae; Lee, Kyoung G; Choi, Bong Gill
2017-03-15
Flexible pH sensor technologies have attracted a great deal of attention in many applications, such as, wearable health care devices and monitors for chemical and biological processes. Here, we fabricated flexible and thin pH sensors using a two electrode configuration comprised of a polyaniline nanopillar (PAN) array working electrode and an Ag/AgCl reference electrode. In order to provide nanostructure, soft lithography using a polymeric blend was employed to create a flexible nanopillar backbone film. Polyaniline-sensing materials were deposited on a patterned-nanopillar array by electrochemical deposition. The pH sensors produced exhibited a near-Nernstian response (∼60.3mV/pH), which was maintained in a bent state. In addition, pH sensors showed other excellent sensor performances in terms of response time, reversibility, repeatability, selectivity, and stability. Copyright © 2016 Elsevier Inc. All rights reserved.
Development of an underwater in-situ spectrophotometric sensor for seawater pH
NASA Astrophysics Data System (ADS)
Waterbury, Robert D.; Byrne, Robert H.; Kelly, John; Leader, Bram; McElligott, Sean; Russell, Randy
1996-12-01
A pH sensor based upon spectrophotometric techniques has been developed for in-situ analysis of surface seawater. This sensor utilizes a spectrophotometric pH indicator (Thymol Blue) which has been calibrated for use in seawater as a function of temperature and salinity. Shipboard spectrophotometric pH analyses routinely demonstrate a precision on the order of plus or minus 0.0004 pH units. In- situ analysis of seawater pH has demonstrated a precision on the order of plus or minus 0.001 and an accuracy, using shipboard measurements as a standard, on the order of plus or minus 0.01. The sensor is a self-contained system which pumps seawater, meters in indicator, spectrophotometrically determines indicator absorbance and stores data with a 1 Hz acquisition frequency. The sensor employs two absorbance cells, each with three wavelength channels, to obtain the spectrophotometric absorbance. The sensor system, rated for depths up to 500 m, provides pH, conductivity, temperature and can be operated via computer or in a standalone mode with internal data storage. The sensor utilizes less than 12 watts of power and is packaged in a 29' long by 4.5' diameter aluminum housing.
WO3 nanoparticle-based conformable pH sensor.
Santos, Lídia; Neto, Joana P; Crespo, Ana; Nunes, Daniela; Costa, Nuno; Fonseca, Isabel M; Barquinha, Pedro; Pereira, Luís; Silva, Jorge; Martins, Rodrigo; Fortunato, Elvira
2014-08-13
pH is a vital physiological parameter that can be used for disease diagnosis and treatment as well as in monitoring other biological processes. Metal/metal oxide based pH sensors have several advantages regarding their reliability, miniaturization, and cost-effectiveness, which are critical characteristics for in vivo applications. In this work, WO3 nanoparticles were electrodeposited on flexible substrates over metal electrodes with a sensing area of 1 mm(2). These sensors show a sensitivity of -56.7 ± 1.3 mV/pH, in a wide pH range of 9 to 5. A proof of concept is also demonstrated using a flexible reference electrode in solid electrolyte with a curved surface. A good balance between the performance parameters (sensitivity), the production costs, and simplicity of the sensors was accomplished, as required for wearable biomedical devices.
NASA Astrophysics Data System (ADS)
Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng
2016-05-01
A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex® fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications.
Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng
2016-01-01
A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex® fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications. PMID:27199163
Multiplexed fibre optic sensing in the distal lung (Conference Presentation)
NASA Astrophysics Data System (ADS)
Choudhary, Tushar R.; Tanner, Michael G.; Megia-Fernandez, Alicia; Harrington, Kerrianne; Wood, Harry A.; Chankeshwara, Sunay; Zhu, Patricia; Choudhury, Debaditya; Yu, Fei; Thomson, Robert R.; Duncan, Rory R.; Dhaliwal, Kevin; Bradley, Mark
2017-02-01
We present a toolkit for a multiplexed pH and oxygen sensing probe in the distal lung using multicore fibres. Measuring physiological relevant parameters like pH and oxygen is of significant importance in understanding changes associated with disease pathology. We present here, a single multicore fibre based pH and oxygen sensing probe which can be used with a standard bronchoscope to perform in vivo measurements in the distal lung. The multiplexed probe consists of fluorescent pH sensors (fluorescein based) and oxygen sensors (Palladium porphyrin complex based) covalently bonded to silica microspheres (10 µm) loaded on the distal facet of a 19 core (10 µm core diameter) multicore fibre (total diameter of 150 µm excluding coating). Pits are formed by selectively etching the cores using hydrofluoric acid, multiplexing is achieved through the self-location of individual probes on differing cores. This architecture can be expanded to include probes for further parameters. Robust measurements are demonstrated of self-referencing fluorophores, not limited by photobleaching, with short (100ms) measurement times at low ( 10µW) illumination powers. We have performed on bench calibration and tests of in vitro tissue models and in an ovine whole lung model to validate our sensors. The pH sensor is demonstrated in the physiologically relevant range of pH 5 to pH 8.5 and with an accuracy of ± 0.05 pH units. The oxygen sensor is demonstrated in gas mixtures downwards from 20% oxygen and in liquid saturated with 20% oxygen mixtures ( 8mg/L) down to full depletion (0mg/L) with 0.5mg/L accuracy.
Chen, Peng; Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Zhu, Dan; Zhong, Yuan; Cui, Yiping
2014-10-01
p-Aminothiophenol (pATP) functionalized multi-walled carbon nanotubes (MWCNTs) have been demonstrated as an efficient pH sensor for living cells. The proposed sensor employs gold/silver core-shell nanoparticles (Au@Ag NPs) functionalized MWCNTs hybrid structure as the surface-enhanced Raman scattering (SERS) substrate and pATP molecules as the SERS reporters, which possess a pH-dependent SERS performance. By using MWCNTs as the substrate to be in a state of aggregation, the pH sensing range could be extended to pH 3.0∼14.0, which is much wider than that using unaggregated Au@Ag NPs without MWCNTs. Furthermore, the pH-sensitive performance was well retained in living cells with a low cytotoxicity. The developed SERS-active MWCNTs-based nanocomposite is expected to be an efficient intracellular pH sensor for bio-applications.
NASA Astrophysics Data System (ADS)
Kishore, P. V. N.; Sai Shankar, M.
2017-04-01
This paper describes a fiber optics based pH sensor by using wavelength modulated techniques. Fiber Bragg grating (FBG) is functionalized with a stimulus responsive hydrogel which induces a strain on FBG due to mechanical expansion of the gel in response to ambient pH changes. The gel is synthesized from the blends of Poly (vinyl alcohol)/Poly (acrylic acid). The induced strain results in a shift of FBG reflected peak which is monitored by an interrogator. The sensor system shows a good linearity in acidic pH range of 3 to 7 with a sensitivity of 12.16pm/pH. Besides that it shows good repeatability which proves it to be fit for pH sensing applications.
Lonsdale, W; Maurya, D K; Wajrak, M; Alameh, K
2017-03-01
The effect of contact layer on the pH sensing performance of a sputtered RuO 2 thin film pH sensor is investigated. The response of pH sensors employing RuO 2 thin film electrodes on screen-printed Pt, carbon and ordered mesoporous carbon (OMC) contact layers are measured over a pH range from 4 to 10. Working electrodes with OMC contact layer are found to have Nernstian pH sensitivity (-58.4mV/pH), low short-term drift rate (5.0mV/h), low hysteresis values (1.13mV) and fast reaction times (30s), after only 1h of conditioning. A pH sensor constructed with OMC carbon contact layer displays improved sensing performance compared to Pt and carbon-based counterparts, making this electrode more attractive for applications requiring highly-accurate pH sensing with reduced conditioning time. Copyright © 2016 Elsevier B.V. All rights reserved.
Two 1,8- Naphthalimides as Proton-Receptor Fluorescent Sensors for Detecting PH
NASA Astrophysics Data System (ADS)
Wu, H.-L.; Peng, H.-P.; Wang, F.; Zhang, H.; Chen, C.-G.; Zhang, J.-W.; Yang, Z.-H.
2017-01-01
Two proton-receptor sensors for detecting pH change based on 1,8-naphthalimide, N-allyl-4-(4'-N,N-dioctylpropionamide-acetamido-piperazinyl)-1,8-naphthalimide ( 1), and N-(N,N-dioctylpropionamide-acetamido)-4-allyl-1-piperazinyl-1,8-naphthalimide ( 2), were designed, synthesized, and characterized. Photophysical characteristics of the sensors were investigated in different organic solvents and Britton-Robinson buffer/EtOH (1:1, v/v) solution. Sensor 2 displayed a good sensor activity towards protons within the pH range from 3.29 to 6.59, while sensor 1 demonstrated sensitivity to lower pH values from 2.21 to 4.35. The selectivity of the pH sensors toward protons in commonly used buffer solutions and in the presence of metal cations (Na+, K+, Ca2+, Mg2+, Al3+, Pb2+, Fe3+, Ni2+, Zn2+, Cu2+, Hg2+, Ag+, Co2+, Cr3+, Mn2+, and Cd2+) was studied by monitoring the changes in their fluorescence intensity. The results obtained indicate that the synthesized derivatives hold potential for monitoring pH variations between 2.21 and 6.59 in strong acid environments and bio-samples.
Long period grating-based fiber-optic PH sensor for ocean monitoring
NASA Astrophysics Data System (ADS)
Wang, Ke; Klimov, Denis; Kolber, Zbigniew
2007-09-01
A fiber-optic PH sensor is developed based-on the long period grating (LPG). The LPG is fabricated by using CO II laser with a point-by-point technique. Then the grating portion is coated with PH sensitive hydrogel. The hydrogel, made of PVA/PAA, swells its volume in response to the PH change in the surrounding environment and results in a change in the refractive index. As a result, the LPG can response to the refractive index change in the coating by shifting its wavelength. Therefore, change in refractive index can be measured by tracking the wavelength shift using an optical spectrum analyzer (OSA). In this research, the LPG is dip-coated by the hydrogel. A chemostat is designed to simulate the marine environment. The PH in the chemostat is varied by controlling the CO II concentration in the sea water. A PH resolution 0.046/nm using the OSA has been obtained. This sensor is designed to monitor the sea water PH change in a long term basis.
Efficient colorimetric pH sensor based on responsive polymer-quantum dot integrated graphene oxide.
Paek, Kwanyeol; Yang, Hyunseung; Lee, Junhyuk; Park, Junwoo; Kim, Bumjoon J
2014-03-25
In this paper, we report the development of a versatile platform for a highly efficient and stable graphene oxide (GO)-based optical sensor that exhibits distinctive ratiometric color responses. To demonstrate the applicability of the platform, we fabricated a colorimetric, GO-based pH sensor that responds to a wide range of pH changes. Our sensing system is based on responsive polymer and quantum dot (QD) hybrids integrated on a single GO sheet (MQD-GO), with the GO providing an excellent signal-to-noise ratio and high dispersion stability in water. The photoluminescence emissions of the blue and orange color-emitting QDs (BQDs and OQDs) in MQD-GO can be controlled independently by different pH-responsive linkers of poly(acrylic acid) (PAA) (pKa=4.5) and poly(2-vinylpyridine) (P2VP) (pKa=3.0) that can tune the efficiencies of Förster resonance energy transfer from the BQDs to the GO and from the OQDs to the GO, respectively. As a result, the color of MQD-GO changes from orange to near-white to blue over a wide range of pH values. The detailed mechanism of the pH-dependent response of the MQD-GO sensor was elucidated by measurements of time-resolved fluorescence and dynamic light scattering. Furthermore, the MQD-GO sensor showed excellent reversibility and high dispersion stability in pure water, indicating that our system is an ideal platform for biological and environmental applications. Our colorimetric GO-based optical sensor can be expanded easily to various other multifunctional, GO-based sensors by using alternate stimuli-responsive polymers.
Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform
Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot
2006-01-01
A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from logic 1 (+5 V) to logic 0 (+1.7 V). The entire instrument provides an inherently digital output of light intensity measurements for a few cents. A light dependent resistor (LDR) modified with similar sensor membrane was also used as a comparison method. Both the LED sensor and the LDR sensor responded to various pH buffer solutions in a similar way to obtain sigmoidal curves expected of the dye. The pKa value obtained for the sensors was found to agree with the literature value.
Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers.
Mishra, Satyendra K; Gupta, Banshi D
2013-05-07
The fabrication and characterization of a surface plasmon resonance based pH sensor using coatings of silver, ITO (In2O3:SnO2), aluminium and smart hydrogel layers over an unclad core of an optical fiber have been reported. The silver, aluminium and ITO layers were coated using a thermal evaporation technique, while the hydrogel layer was prepared using a dip-coating method. The sensor works on the principle of detecting changes in the refractive index of the hydrogel layer due to its swelling and shrinkage caused by changes in the pH of the fluid surrounding the hydrogel layer. The sensor utilizes a wavelength interrogation technique and operates in a particular window of low and high pH values. Increasing the pH value of the fluid causes swelling of the hydrogel layer, which decreases its refractive index and results in a shift of the resonance wavelength towards blue in the transmitted spectra. The thicknesses of the ITO and aluminium layers have been optimized to achieve the best performance of the sensor. The ITO layer increases the sensitivity while the aluminium layer increases the detection accuracy of the sensor. The proposed sensor possesses maximum sensitivity in comparison to the sensors reported in the literature. A negligible effect of ambient temperature in the range 25 °C to 45 °C on the performance of the sensor has been observed. The additional advantages of the sensor are short response time, low cost, probe miniaturization, probe re-usability and the capability of remote sensing.
Shi, Wen; Li, Xiaohua; Ma, Huimin
2012-06-25
The whole picture: Carbon nanodots labeled with two fluorescent dyes have been developed as a tunable ratiometric pH sensor to measure intracellular pH. The nanosensor shows good biocompatibility and cellular dispersibility. Quantitative determinations on intact HeLa cells and pH fluctuations associated with oxidative stress were performed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Graphite Screen-Printed Electrodes Applied for the Accurate and Reagentless Sensing of pH.
Galdino, Flávia E; Smith, Jamie P; Kwamou, Sophie I; Kampouris, Dimitrios K; Iniesta, Jesus; Smith, Graham C; Bonacin, Juliano A; Banks, Craig E
2015-12-01
A reagentless pH sensor based upon disposable and economical graphite screen-printed electrodes (GSPEs) is demonstrated for the first time. The voltammetric pH sensor utilizes GSPEs which are chemically pretreated to form surface immobilized oxygenated species that, when their redox behavior is monitored, give a Nernstian response over a large pH range (1-13). An excellent experimental correlation is observed between the voltammetric potential and pH over the entire pH range of 1-13 providing a simple approach with which to monitor solution pH. Such a linear response over this dynamic pH range is not usually expected but rather deviation from linearity is encountered at alkaline pH values; absence of this has previously been attributed to a change in the pKa value of surface immobilized groups from that of solution phase species. This non-deviation, which is observed here in the case of our facile produced reagentless pH sensor and also reported in the literature for pH sensitive compounds immobilized upon carbon electrodes/surfaces, where a linear response is observed over the entire pH range, is explained alternatively for the first time. The performance of the GSPE pH sensor is also directly compared with a glass pH probe and applied to the measurement of pH in "real" unbuffered samples where an excellent correlation between the two protocols is observed validating the proposed GSPE pH sensor.
Zhang, Yunfei; Robertson, J Brian; Xie, Qiguang; Johnson, Carl Hirschie
2016-01-01
"pHlash" is a novel bioluminescence-based pH sensor for measuring intracellular pH, which is developed based on Bioluminescence Resonance Energy Transfer (BRET). pHlash is a fusion protein between a mutant of Renilla luciferase (RLuc) and a Venus fluorophore. The spectral emission of purified pHlash protein exhibits pH dependence in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification. In this chapter, we describe an in vitro characterization of pHlash, and also in vivo assays including in yeast cells and in HeLa cells using pHlash as a cytoplasmic pH indicator.
Huang, Xiwei; Yu, Hao; Liu, Xu; Jiang, Yu; Yan, Mei; Wu, Dongping
2015-09-01
The existing ISFET-based DNA sequencing detects hydrogen ions released during the polymerization of DNA strands on microbeads, which are scattered into microwell array above the ISFET sensor with unknown distribution. However, false pH detection happens at empty microwells due to crosstalk from neighboring microbeads. In this paper, a dual-mode CMOS ISFET sensor is proposed to have accurate pH detection toward DNA sequencing. Dual-mode sensing, optical and chemical modes, is realized by integrating a CMOS image sensor (CIS) with ISFET pH sensor, and is fabricated in a standard 0.18-μm CIS process. With accurate determination of microbead physical locations with CIS pixel by contact imaging, the dual-mode sensor can correlate local pH for one DNA slice at one location-determined microbead, which can result in improved pH detection accuracy. Moreover, toward a high-throughput DNA sequencing, a correlated-double-sampling readout that supports large array for both modes is deployed to reduce pixel-to-pixel nonuniformity such as threshold voltage mismatch. The proposed CMOS dual-mode sensor is experimentally examined to show a well correlated pH map and optical image for microbeads with a pH sensitivity of 26.2 mV/pH, a fixed pattern noise (FPN) reduction from 4% to 0.3%, and a readout speed of 1200 frames/s. A dual-mode CMOS ISFET sensor with suppressed FPN for accurate large-arrayed pH sensing is proposed and demonstrated with state-of-the-art measured results toward accurate and high-throughput DNA sequencing. The developed dual-mode CMOS ISFET sensor has great potential for future personal genome diagnostics with high accuracy and low cost.
Deep-Sea DuraFET: A Pressure Tolerant pH Sensor Designed for Global Sensor Networks.
Johnson, Kenneth S; Jannasch, Hans W; Coletti, Luke J; Elrod, Virginia A; Martz, Todd R; Takeshita, Yuichiro; Carlson, Robert J; Connery, James G
2016-03-15
Increasing atmospheric carbon dioxide is driving a long-term decrease in ocean pH which is superimposed on daily to seasonal variability. These changes impact ecosystem processes, and they serve as a record of ecosystem metabolism. However, the temporal variability in pH is observed at only a few locations in the ocean because a ship is required to support pH observations of sufficient precision and accuracy. This paper describes a pressure tolerant Ion Sensitive Field Effect Transistor pH sensor that is based on the Honeywell Durafet ISFET die. When combined with a AgCl pseudoreference sensor that is immersed directly in seawater, the system is capable of operating for years at a time on platforms that cycle from depths of several km to the surface. The paper also describes the calibration scheme developed to allow calibrated pH measurements to be derived from the activity of HCl reported by the sensor system over the range of ocean pressure and temperature. Deployments on vertical profiling platforms enable self-calibration in deep waters where pH values are stable. Measurements with the sensor indicate that it is capable of reporting pH with an accuracy of 0.01 or better on the total proton scale and a precision over multiyear periods of 0.005. This system enables a global ocean observing system for ocean pH.
pH measurements of FET-based (bio)chemical sensors using portable measurement system.
Voitsekhivska, T; Zorgiebel, F; Suthau, E; Wolter, K-J; Bock, K; Cuniberti, G
2015-01-01
In this study we demonstrate the sensing capabilities of a portable multiplex measurement system for FET-based (bio)chemical sensors with an integrated microfluidic interface. We therefore conducted pH measurements with Silicon Nanoribbon FET-based Sensors using different measurement procedures that are suitable for various applications. We have shown multiplexed measurements in aqueous medium for three different modes that are mutually specialized in fast data acquisition (constant drain current), calibration-less sensing (constant gate voltage) and in providing full information content (sweeping mode). Our system therefore allows surface charge sensing for a wide range of applications and is easily adaptable for multiplexed sensing with novel FET-based (bio)chemical sensors.
Xu, Xiao-Yu; Yan, Bing
2016-04-28
A pH sensor is fabricated via a reaction between an Al(III) salt and 2-aminoterephthalic acid in DMF which leads to a MOF (Al-MIL-101-NH2) with free amino groups. The Al-MIL-101-NH2 samples show good luminescence and an intact structure in aqueous solutions with pH ranging from 4.0 to 7.7. Given its exceptional stability and pH-dependent fluorescence intensity, Al-MIL-101-NH2 has been applied to fluorescent pH sensing. Significantly, in the whole experimental pH range (4.0-7.7), the fluorescence intensity almost increases with increasing pH (R(2) = 0.99688) which can be rationalized using a linear equation: I = 2.33 pH + 26.04. In addition, error analysis and cycling experiments have demonstrated the accuracy and utilizability of the sensor. In practical applications (PBS and lake water), Al-MIL-101-NH2 also manifests its analytical efficiency in pH sensing. And the samples can be easily isolated from an aqueous solution by incorporating Fe3O4 nanoparticles. Moreover, the possible sensing mechanism based on amino protonation is discussed in detail. This work is on of the few cases for integrated pH sensing systems in aqueous solution based on luminescent MOFs.
Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi
2013-01-01
Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study. PMID:24351636
Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi
2013-12-13
Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study.
Chamkouri, Narges; Niazi, Ali; Zare-Shahabadi, Vali
2016-03-05
A novel pH optical sensor was prepared by immobilizing an azo dye called Janus Green B on the triacetylcellulose membrane. Condition of the dye solution used in the immobilization step, including concentration of the dye, pH, and duration were considered and optimized using the Box-Behnken design. The proposed sensor showed good behavior and precision (RSD<5%) in the pH range of 2.0-10.0. Advantages of this optical sensor include on-line applicability, no leakage, long-term stability (more than 6 months), fast response time (less than 1 min), high selectivity and sensitivity as well as good reversibility and reproducibility. Copyright © 2015. Published by Elsevier B.V.
Roy Chowdhury, Additi; Mondal, Amita; Roy, Biswajit Gopal; K, Jagadeesh C Bose; Mukhopadhyay, Sudit; Banerjee, Priyabrata
2017-11-08
Two novel hydrazine based sensors, BPPIH (N 1 ,N 3 -bis(perfluorophenyl)isophthalohydrazide) and BPBIH (N 1' ,N 3' -bis(perfluorobenzylidene)isophthalohydrazide), are presented here. BPPIH is found to be a highly sensitive pH sensor in the pH range 5.0 to 10.0 in a DMSO-water solvent mixture with a pK a value of 9.22. Interesting optical responses have been observed for BPPIH in the above mentioned pH range. BPBIH on the other hand turns out to be a less effective pH sensor in the above mentioned pH range. The increase in fluorescence intensity at a lower pH for BPPIH was explained by using density functional theory. The ability of BPPIH to monitor the pH changes inside cancer cells is a useful application of the sensor as a functional material. In addition fluoride (F - ) selectivity studies of these two chemosensors have been performed and show that between them, BPBIH shows greater selectivity towards F - . The interaction energy calculated from the DFT-D3 supports the experimental findings. The pH sensor (BPPIH) can be further interfaced with suitable circuitry interfaced with desired programming for ease of access and enhancement of practical applications.
Devadhasan, Jasmine Pramila; Kim, Sanghyo
2015-02-09
CMOS sensors are becoming a powerful tool in the biological and chemical field. In this work, we introduce a new approach on quantifying various pH solutions with a CMOS image sensor. The CMOS image sensor based pH measurement produces high-accuracy analysis, making it a truly portable and user friendly system. pH indicator blended hydrogel matrix was fabricated as a thin film to the accurate color development. A distinct color change of red, green and blue (RGB) develops in the hydrogel film by applying various pH solutions (pH 1-14). The semi-quantitative pH evolution was acquired by visual read out. Further, CMOS image sensor absorbs the RGB color intensity of the film and hue value converted into digital numbers with the aid of an analog-to-digital converter (ADC) to determine the pH ranges of solutions. Chromaticity diagram and Euclidean distance represent the RGB color space and differentiation of pH ranges, respectively. This technique is applicable to sense the various toxic chemicals and chemical vapors by situ sensing. Ultimately, the entire approach can be integrated into smartphone and operable with the user friendly manner. Copyright © 2014 Elsevier B.V. All rights reserved.
A Compact Optical Instrument with Artificial Neural Network for pH Determination
Capel-Cuevas, Sonia; López-Ruiz, Nuria; Martinez-Olmos, Antonio; Cuéllar, Manuel P.; Pegalajar, Maria del Carmen; Palma, Alberto José; de Orbe-Payá, Ignacio; Capitán-Vallvey, Luis Fermin
2012-01-01
The aim of this work was the determination of pH with a sensor array-based optical portable instrument. This sensor array consists of eleven membranes with selective colour changes at different pH intervals. The method for the pH calculation is based on the implementation of artificial neural networks that use the responses of the membranes to generate a final pH value. A multi-objective algorithm was used to select the minimum number of sensing elements required to achieve an accurate pH determination from the neural network, and also to minimise the network size. This helps to minimise instrument and array development costs and save on microprocessor energy consumption. A set of artificial neural networks that fulfils these requirements is proposed using different combinations of the membranes in the sensor array, and is evaluated in terms of accuracy and reliability. In the end, the network including the response of the eleven membranes in the sensor was selected for validation in the instrument prototype because of its high accuracy. The performance of the instrument was evaluated by measuring the pH of a large set of real samples, showing that high precision can be obtained in the full range. PMID:22778668
Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods
Fulati, Alimujiang; Ali, Syed M.Usman; Riaz, Muhammad; Amin, Gul; Nur, Omer; Willander, Magnus
2009-01-01
ZnO nanotubes and nanorods grown on gold thin film were used to create pH sensor devices. The developed ZnO nanotube and nanorod pH sensors display good reproducibility, repeatability and long-term stability and exhibit a pH-dependent electrochemical potential difference versus an Ag/AgCl reference electrode over a large dynamic pH range. We found the ZnO nanotubes provide sensitivity as high as twice that of the ZnO nanorods, which can be ascribed to the fact that small dimensional ZnO nanotubes have a higher level of surface and subsurface oxygen vacancies and provide a larger effective surface area with higher surface-to-volume ratio as compared to ZnO nanorods, thus affording the ZnO nanotube pH sensor a higher sensitivity. Experimental results indicate ZnO nanotubes can be used in pH sensor applications with improved performance. Moreover, the ZnO nanotube arrays may find potential application as a novel material for measurements of intracellular biochemical species within single living cells. PMID:22291545
Improved fiber-optic chemical sensor for penicillin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Healy, B.G.; Walt, D.R.
An optical penicillin biosensor is described, based on the enzyme penicillinase. The sensor is fabricated by selective photodeposition of analyte-sensitive polymer matrices on optical imaging fibers. The penicillin-sensitive matrices are fabricated by immobilizing the enzyme as micrometer-sized particles in a polymer hydrogel with a covalently bound pH indicator. An array of penicillin-sensitive and pH-sensitive matrices are fabricated on the same fiber. This array allows for the simultaneous, independent measurement of pH and penicillin. Independent measurement of the two analytes allows penicillin to be quantitated in the presence of a concurrent pH change. An analysis was conducted of enzyme kinetic parametersmore » in order to model the penicillin response of the sensor at all pH values. This analysis accounts for the varying activity of the immobilized penicillinase at different pH values. The sensor detects penicillin in the range 0.25-10.0 mM in the pH range 6.2-7.5. The sensor was used to quantify penicillin concentration produced during a Penicillium chrysogenum fermentation. 27 refs., 7 figs., 1 tab.« less
New fluorescent pH sensors based on covalently linkable PET rhodamines
Aigner, Daniel; Borisov, Sergey M.; Orriach Fernández, Francisco J.; Fernández Sánchez, Jorge F.; Saf, Robert; Klimant, Ingo
2012-01-01
A new class of rhodamines for the application as indicator dyes in fluorescent pH sensors is presented. Their pH-sensitivity derives from photoinduced electron transfer between non-protonated amino groups and the excited chromophore which results in effective fluorescence quenching at increasing pH. The new indicator class carries a pentafluorophenyl group at the 9-position of the xanthene core where other rhodamines bear 2-carboxyphenyl substituents instead. The pentafluorophenyl group is used for covalent coupling to sensor matrices by “click” reaction with mercapto groups. Photophysical properties are similar to “classical” rhodamines carrying 2′-carboxy groups. pH sensors have been prepared with two different matrix materials, silica gel and poly(2-hydroxyethylmethacrylate). Both sensors show high luminescence brightness (absolute fluorescence quantum yield ΦF≈0.6) and high pH-sensitivity at pH 5–7 which makes them suitable for monitoring biotechnological samples. To underline practical applicability, a dually lifetime referenced sensor containing Cr(III)-doped Al2O3 as reference material is presented. PMID:22967541
Fiber optic pH sensor with self-assembled polymer multilayer nanocoatings.
Shao, Li-Yang; Yin, Ming-Jie; Tam, Hwa-Yaw; Albert, Jacques
2013-01-24
A fiber-optic pH sensor based on a tilted fiber Bragg grating (TFBG) with electrostatic self-assembly multilayer sensing film is presented. The pH sensitive polymeric film, poly(diallyldimethylammonium chloride) (PDDA) and poly(acrylic acid) (PAA) was deposited on the circumference of the TFBG with the layer-by-layer (LbL) electrostatic self-assembly technique. The PDDA/PAA film exhibits a reduction in refractive index by swelling in different pH solutions. This effect results in wavelength shifts and transmission changes in the spectrum of the TFBG. The peak amplitude of the dominant spectral fringes over a certain window of the transmission spectrum, obtained by FFT analysis, has a near-linear pH sensitivity of 117 arbitrary unit (a.u.)/pH unit and an accuracy of ±1 a.u. (in the range of pH 4.66 to pH 6.02). The thickness and surface morphology of the sensing multilayer film were characterized to investigate their effects on the sensor's performance. The dynamic response of the sensor also has been studied (10 s rise time and 18 s fall time for a sensor with six bilayers of PDDA/PAA).
Measuring pH variability using an experimental sensor on an underwater glider
NASA Astrophysics Data System (ADS)
Hemming, Michael P.; Kaiser, Jan; Heywood, Karen J.; Bakker, Dorothee C. E.; Boutin, Jacqueline; Shitashima, Kiminori; Lee, Gareth; Legge, Oliver; Onken, Reiner
2017-05-01
Autonomous underwater gliders offer the capability of measuring oceanic parameters continuously at high resolution in both vertical and horizontal planes, with timescales that can extend to many months. An experimental ion-sensitive field-effect transistor (ISFET) sensor measuring pH on the total scale was attached to a glider during the REP14-MED experiment in June 2014 in the Sardinian Sea in the northwestern Mediterranean. During the deployment, pH was sampled at depths of up to 1000 m along an 80 km transect over a period of 12 days. Water samples were collected from a nearby ship and analysed for dissolved inorganic carbon concentration and total alkalinity to derive the pH for validating the ISFET sensor measurements. The vertical resolution of the pH sensor was good (1 to 2 m), but stability was poor and the sensor drifted in a non-monotonous fashion. In order to remove the sensor drift, a depth-constant time-varying offset was applied throughout the water column for each dive, reducing the spread of the data by approximately two-thirds. Furthermore, the ISFET sensor required temperature- and pressure-based corrections, which were achieved using linear regression. Correcting for this decreased the apparent sensor pH variability by a further 13 to 31 %. Sunlight caused an apparent sensor pH decrease of up to 0.1 in surface waters around local noon, highlighting the importance of shielding the sensor from light in future deployments. The corrected pH from the ISFET sensor is presented along with potential temperature, salinity, potential density anomalies (σθ), and dissolved oxygen concentrations (c(O2)) measured by the glider, providing insights into the physical and biogeochemical variability in the Sardinian Sea. The pH maxima were identified close to the depth of the summer chlorophyll maximum, where high c(O2) values were also found. Longitudinal pH variations at depth (σθ > 28. 8 kg m-3) highlighted the variability of water masses in the Sardinian Sea. Higher pH was observed where salinity was > 38. 65, and lower pH was found where salinity ranged between 38.3 and 38.65. The higher pH was associated with saltier Levantine Intermediate Water, and it is possible that the lower pH was related to the remineralisation of organic matter. Furthermore, shoaling isopycnals closer to shore coinciding with low pH and c(O2), high salinity, alkalinity, dissolved inorganic carbon concentrations, and chlorophyll fluorescence waters may be indicative of upwelling.
Huang, Guozhen; Li, Chuang; Han, Xintong; Aderinto, Stephen Opeyemi; Shen, Kesheng; Mao, Shanshan; Wu, Huilu
2018-06-01
The present study reports the development of a new 1,8-naphthalimide-based fluorescent sensor V for monitoring Cu(II) ions. The sensor exhibited pH independence over a wide pH range 2.52-9.58, and indicated its possible use for monitoring Cu(II) ions in a competitive pH medium. The sensor also showed high selectivity and sensitivity towards the Cu(II) ions over other competitive metal ions in DMSO-HEPES buffer (v/v, 1:1; pH 7.4) with a fluorescence 'turn off' mode of 79.79% observed. A Job plot indicated the formation of a 1:1 binding mode of the sensor with Cu(II) ions. The association constant and detection limit were 1.14 × 10 6 M -1 and 4.67 × 10 -8 M, respectively. The fluorescence spectrum of the sensor was quenched due to the powerful paramagnetic nature of the Cu(II) ions. Potential application of this sensor was also demonstrated when determining Cu(II) ion levels in two different water samples. Copyright © 2018 John Wiley & Sons, Ltd.
Nano-engineered flexible pH sensor for point-of-care urease detection
NASA Astrophysics Data System (ADS)
Sardarinejad, A.; Maurya, D. K.; Tay, C. Y.; Marshall, B. J.; Alameh, K.
2015-12-01
Accurate pH monitoring is crucial for many applications, such as, water quality monitoring, blood monitoring, chemical and biological analyses, environmental monitoring and clinical diagnostic. The most common technique for pH measurement is based on the use of conventional glass pH electrodes. Glass electrodes have several limitations, such as mechanical fragility, large size, limited shapes and high cost, making them impractical for implementation as Lab-onchips and pH sensor capsules. Various metal oxides, such as RuO2, IrO2, TiO2, SnO2, Ta2O5 and PdO have recently been proposed for the realization of pH sensing electrodes. Specifically, ruthenium oxide exhibits unique properties including thermal stability, excellent corrosion resistance, low hysteresis high sensitivity, and low resistivity. In this paper, we demonstrate the concept of a miniaturized ion selective electrode (ISE) based pH sensor for point-of-care urease monitoring. The sensor comprises a thin film RuO2 on platinum sensing electrode, deposited using E-beam and R.F. magnetron sputtering, in conjunction with an integrated Ag/AgCl reference electrode. The performance and characterization of the developed pH/urea sensors in terms of sensitivity, resolution, reversibility and hysteresis are investigated. Experimental results show a linear potential-versus-urea-concentration response for urea concentrations in the range 0 - 180 mg/ml. Experimental results demonstrate super-Nernstian slopes in the range of 64.33 mV/pH - 73.83 mV/pH for RF sputtered RuO2 on platinum sensing electrode using a 80%:20% Ar:O2 gas ratio. The RuO2 sensor exhibits stable operation and fast dynamic response, making it attractive for in vivo use, wearable and flexible biomedical sensing applications.
pHlash: a new genetically encoded and ratiometric luminescence sensor of intracellular pH.
Zhang, Yunfei; Xie, Qiguang; Robertson, J Brian; Johnson, Carl Hirschie
2012-01-01
We report the development of a genetically encodable and ratiometic pH probe named "pHlash" that utilizes Bioluminescence Resonance Energy Transfer (BRET) rather than fluorescence excitation. The pHlash sensor-composed of a donor luciferase that is genetically fused to a Venus fluorophore-exhibits pH dependence of its spectral emission in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification in vivo. Its spectral ratio response is H(+) specific; neither Ca(++), Mg(++), Na(+), nor K(+) changes the spectral form of its luminescence emission. Moreover, it can be used to image pH in single cells. This is the first BRET-based sensor of H(+) ions, and it should allow the approximation of pH in cytosolic and organellar compartments in applications where current pH probes are inadequate.
A fluorescent colorimetric pH sensor and the influences of matrices on sensing performances
Tian, Yanqing; Fuller, Emily; Klug, Summer; Lee, Fred; Su, Fengyu; Zhang, Liqiang; Chao, Shih-hui; Meldrum, Deirdre R.
2013-01-01
A fluorescent colorimetric pH sensor was developed by a polymerization of a monomeric fluorescein based green emitter (SM1) with a monomeric 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran derived red emitter (SM2) in poly(2-hydroxyethyl methacrylate)-co-polyacrylamide (PHEMA-co-PAM) matrices. Polymerized SM1 (PSM1) in the polymer matrices showed bright emissions at basic conditions and weak emissions at acidic conditions. Polymerized SM2 (PSM2) in the polymer matrices exhibited a vastly different response when compared to PSM1. The emissions of PSM2 are stronger under acidic conditions than those under basic conditions. When SM1 and SM2 were polymerized in the same polymer matrix, a dual emission sensor acting as a ratiometric pH sensor (PSM1,2) was successfully developed. Because the PSM1 and PSM2 exhibited different pH responses and separated emission windows, the changes in the emission colors were clearly observed in their dual color sensor of PSM1,2, which changed emission colors dramatically from green at pH 7 to red at pH 4, which was detected visually and/or by using a color camera under an excitation of 488 nm. In addition to the development of the dual color ratiometric pH sensor, we also studied the effects of different matrix compositions, crosslinkers, and charges on the reporting capabilities of the sensors (sensitivity and pKa). PMID:24078772
A fluorescent colorimetric pH sensor and the influences of matrices on sensing performances.
Tian, Yanqing; Fuller, Emily; Klug, Summer; Lee, Fred; Su, Fengyu; Zhang, Liqiang; Chao, Shih-Hui; Meldrum, Deirdre R
2013-10-01
A fluorescent colorimetric pH sensor was developed by a polymerization of a monomeric fluorescein based green emitter ( SM1 ) with a monomeric 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran derived red emitter ( SM2 ) in poly(2-hydroxyethyl methacrylate)- co -polyacrylamide (PHEMA-co-PAM) matrices. Polymerized SM1 ( PSM1 ) in the polymer matrices showed bright emissions at basic conditions and weak emissions at acidic conditions. Polymerized SM2 ( PSM2 ) in the polymer matrices exhibited a vastly different response when compared to PSM1 . The emissions of PSM2 are stronger under acidic conditions than those under basic conditions. When SM1 and SM2 were polymerized in the same polymer matrix, a dual emission sensor acting as a ratiometric pH sensor ( PSM1,2 ) was successfully developed. Because the PSM1 and PSM2 exhibited different pH responses and separated emission windows, the changes in the emission colors were clearly observed in their dual color sensor of PSM1,2 , which changed emission colors dramatically from green at pH 7 to red at pH 4, which was detected visually and/or by using a color camera under an excitation of 488 nm. In addition to the development of the dual color ratiometric pH sensor, we also studied the effects of different matrix compositions, crosslinkers, and charges on the reporting capabilities of the sensors (sensitivity and p K a ).
Zhu, Haixin; Zhou, Xianfeng; Su, Fengyu; Tian, Yanqing; Ashili, Shashanka; Holl, Mark R; Meldrum, Deirdre R
2012-10-01
We report a novel method for wafer level, high throughput optical chemical sensor patterning, with precise control of the sensor volume and capability of producing arbitrary microscale patterns. Monomeric oxygen (O(2)) and pH optical probes were polymerized with 2-hydroxyethyl methacrylate (HEMA) and acrylamide (AM) to form spin-coatable and further crosslinkable polymers. A micro-patterning method based on micro-fabrication techniques (photolithography, wet chemical process and reactive ion etch) was developed to miniaturize the sensor film onto glass substrates in arbitrary sizes and shapes. The sensitivity of fabricated micro-patterns was characterized under various oxygen concentrations and pH values. The process for spatially integration of two sensors (Oxygen and pH) on the same substrate surface was also developed, and preliminary fabrication and characterization results were presented. To the best of our knowledge, it is the first time that poly (2-hydroxylethyl methacrylate)-co-poly (acrylamide) (PHEMA-co-PAM)-based sensors had been patterned and integrated at the wafer level with micron scale precision control using microfabrication techniques. The developed methods can provide a feasible way to miniaturize and integrate the optical chemical sensor system and can be applied to any lab-on-a-chip system, especially the biological micro-systems requiring optical sensing of single or multiple analytes.
Dini, Valentina; Kirchhain, Arno; Janowska, Agata; Oranges, Teresa; Di Francesco, Fabio
2017-01-01
Wound assessment is usually performed in hospitals or specialized labs. However, since patients spend most of their time at home, a remote real time wound monitoring would help providing a better care and improving the healing rate. This review describes the advances in sensors and biosensors for monitoring the concentration of C-reactive protein (CRP), temperature and pH in wounds. These three parameters can be used as qualitative biomarkers to assess the wound status and the effectiveness of therapy. CRP biosensors can be classified in: (a) field effect transistors, (b) optical immunosensors based on surface plasmon resonance, total internal reflection, fluorescence and chemiluminescence, (c) electrochemical sensors based on potentiometry, amperometry, and electrochemical impedance, and (d) piezoresistive sensors, such as quartz crystal microbalances and microcantilevers. The last section reports the most recent developments for wearable non-invasive temperature and pH sensors suitable for wound monitoring. PMID:29257113
A wearable fingernail chemical sensing platform: pH sensing at your fingertips.
Kim, Jayoung; Cho, Thomas N; Valdés-Ramírez, Gabriela; Wang, Joseph
2016-04-01
This article demonstrates an example of a wearable chemical sensor based on a fingernail platform. Fingernails represent an attractive wearable platform, merging beauty products with chemical sensing, to enable monitoring of our surrounding environment. The new colorimetric pH fingernail sensor relies on coating artificial nails with a recognition layer consisted of pH indicators entrapped in a polyvinyl chloride (PVC) matrix. Such color changing fingernails offer fast and reversible response to pH changes, repeated use, and intense color change detected easily with naked eye. The PVC matrix prevents leaching out of the indicator molecules from the fingernail sensor toward such repeated use. The limited narrow working pH range of a single pH indicator has been addressed by multiplexing three different pH indicators: bromothymol blue (pH 6.0-7.6), bromocresol green (pH 3.8-5.4), and cresol red (pH 7.2-8.8), as demonstrated for analyses of real-life samples of acidic, neutral, and basic character. The new concept of an optical wearable chemical sensor on fingernail platforms can be expanded towards diverse analytes for various applications in connection to the judicious design of the recognition layer. Copyright © 2016 Elsevier B.V. All rights reserved.
Hu, Pengbing; Dong, Xinyong; Wong, Wei Chang; Chen, Li Han; Ni, Kai; Chan, Chi Chiu
2015-04-01
We present a simple photonic crystal fiber interferometer (PCFI) that operates in reflection mode for pH measurement. The sensor is made by coating polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel onto the surface of the PCFI, constructed by splicing a stub of PCF at the distal end of a single-mode fiber with its free end airhole collapsed. The experimental results demonstrate a high average sensitivity of 0.9 nm/pH unit for the 11 wt.% PVA/PAA coated sensor in the pH range from 2.5 to 6.5. The sensor also displays high repeatability and stability and low cross-sensitivity to temperature. Fast, reversible rise and fall times of 12 s and 18 s, respectively, are achieved for the sensor time response.
Kong, Yong; Shan, Xueling; Ma, Jianfeng; Chen, Meilan; Chen, Zhidong
2014-01-27
A molecularly imprinted copolymer, poly(o-phenylenediamine-co-o-aminophenol) (PoPDoAP), was prepared as a new ascorbic acid (AA) sensor. The copolymer was synthesized by incorporation of AA as template molecules during the electrochemical copolymerization of o-phenylenediamine and o-aminophenol, and complementary sites were formed after the copolymer was electrochemically reduced in ammonium aqueous solution. The molecularly imprinted copolymer sensor exhibited a high sensitivity and selectivity toward AA. Differential pulse voltammograms (DPVs) showed a linear concentration range of AA from 0.1 to 10 mM, and the detection limit was calculated to be 36.4 μM. Compared to conventional polyaniline-based AA sensors, the analytical performance of the imprinted copolymer sensor was improved due to the broadened usable pH range of PoPDoAP (from pH 1.0 to pH 8.0). The sensor also exhibited a good reproducibility and stability. And it has been successfully applied in the determination of AA in real samples, including vitamin C tablet and orange juices, with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.
An embedded measurement system for the electrical characterization of EGFET as a pH sensor
NASA Astrophysics Data System (ADS)
Diniz Batista, Pablo
2014-02-01
This work presents the development of an electronic system for the electrical characterization of pH sensors based on the extended gate field effect transistor (EGFET). We designed an electronic circuit with a microcontroller (PIC15F14K50) as the main component in order to provide two programmable output voltages as well as circuits to measure electric current and voltages. The instrument performance analysis was carried out using a glass electrode as a sensitive membrane for investigating the EGFET operation as a pH sensor. The results show that the system is an alternative to the commercial equipment for the electrical characterization of sensors based on field effect devices. In addition, some of the key features expected of this electronic module are: low cost, flexibility, portability and communication with a personal computer using a USB port.
NASA Astrophysics Data System (ADS)
Wang, Chunhong; Sun, Fujun; Fu, Zhongyuan; Ding, Zhaoxiang; Wang, Chao; Zhou, Jian; Wang, Jiawen; Tian, Huiping
2017-08-01
In this paper, a photonic crystal (PhC) butt-coupled mini-hexagonal-H1 defect (MHHD) microcavity sensor is proposed. The MHHD microcavity is designed by introducing six mini-holes into the initial H1 defect region. Further, based on a well-designed 1 ×3 PhC Beam Splitter and three optimal MHHD microcavity sensors with different lattice constants (a), a 3-channel parallel-connected PhC sensor array on monolithic silicon on insulator (SOI) is proposed. Finite-difference time-domain (FDTD) simulations method is performed to demonstrate the high performance of our structures. As statistics show, the quality factor (Q) of our optimal MHHD microcavity attains higher than 7×104, while the sensitivity (S) reaches up to 233 nm/RIU(RIU = refractive index unit). Thus, the figure of merit (FOM) >104 of the sensor is obtained, which is enhanced by two orders of magnitude compared to the previous butt-coupled sensors [1-4]. As for the 3-channel parallel-connected PhC MHHD microcavity sensor array, the FOMs of three independent MHHD microcavity sensors are 8071, 8250 and 8250, respectively. In addition, the total footprint of the proposed 3-channel parallel-connected PhC sensor array is ultra-compactness of 12.5 μm ×31 μm (width × length). Therefore, the proposed high FOM sensor array is an ideal platform for realizing ultra-compact highly parallel refractive index (RI) sensing.
Photonic crystal resonances for sensing and imaging
NASA Astrophysics Data System (ADS)
Pitruzzello, Giampaolo; Krauss, Thomas F.
2018-07-01
This review provides an insight into the recent developments of photonic crystal (PhC)-based devices for sensing and imaging, with a particular emphasis on biosensors. We focus on two main classes of devices, namely sensors based on PhC cavities and those on guided mode resonances (GMRs). This distinction is able to capture the richness of possibilities that PhCs are able to offer in this space. We present recent examples highlighting applications where PhCs can offer new capabilities, open up new applications or enable improved performance, with a clear emphasis on the different types of structures and photonic functions. We provide a critical comparison between cavity-based devices and GMR devices by highlighting strengths and weaknesses. We also compare PhC technologies and their sensing mechanism to surface plasmon resonance, microring resonators and integrated interferometric sensors.
Optical fibre PH sensor based on immobilized indicator
NASA Astrophysics Data System (ADS)
Cai, Defu; Cao, Qiang; Han, JingHong; Cai, Jine; Li, YaTing; Zhu, ZeMin; Fan, Jie; Gao, Ning
1991-08-01
An optical fiber pH sensor which has the immobilized pH sensitive indicator dye reagents on the tip of the optical fiber has been studied. The probe is made by covalently immobilizing the phenol red, bromine phenol blue, or bromothymol blue on the polyacrylamide microsphere fixed by polyterafluoroethylene (PTFE) film. A gap between the dye and optical fiber was used to make the diffusion of the hydrogen ions easier. The parameters of the optical fiber pH sensor have been given completely. The ranges of measurement are 3.0 - 5.0 pH, 7.0 - 8.5 pH, and 8.0 - 10.0 pH for bromine phenol blue, phenol red, and bromothymol blue, respectively. The sensitivity is 66.6 mV/pH. The probe has a precision of better than 0.55 pH. The linear correlation coefficient is 0.999. The response time is 1 - 2 min. The hysteresis is 0.52%. The repeatability is 0.013 mV, while the stability is 0.015 pH/h.
Modified Organosilica Core-Shell Nanoparticles for Stable pH Sensing in Biological Solutions.
Robinson, Kye J; Huynh, Gabriel T; Kouskousis, Betty P; Fletcher, Nicholas L; Houston, Zachary H; Thurecht, Kristofer J; Corrie, Simon R
2018-04-19
Continuous monitoring using nanoparticle-based sensors has been successfully employed in complex biological systems, yet the sensors still suffer from poor long-term stability partially because of the scaffold materials chosen to date. Organosilica core-shell nanoparticles containing a mixture of covalently incorporated pH-sensitive (shell) and pH-insensitive (core) fluorophores is presented as a continuous pH sensor for application in biological media. In contrast to previous studies focusing on similar materials, we sought to investigate the sensor characteristics (dynamic range, sensitivity, response time, stability) as a function of material properties. The ratio of the fluorescence intensities at specific wavelengths was found to be highly sensitive to pH over a physiologically relevant range (4.5-8) with a response time of <100 ms, significantly faster than that of previously reported response times using silica-based particles. Particles produced stable, pH-specific signals when stored at room temperature for more than 80 days. Finally, we demonstrated that the nanosensors successfully monitored the pH of a bacterial culture over 15 h and that pH changes in the skin of mouse cadavers could also be observed via in vivo fluorescence imaging following subcutaneous injection. The understanding gained from linking sensor characteristics and material properties will inform the next generation of optical nanosensors for continuous-monitoring applications.
A FRET-Based Ratiometric Chemosensor for in Vitro Cellular Fluorescence Analyses of pH
Zhou, Xianfeng; Su, Fengyu; Lu, Hongguang; Senechal-Willis, Patti; Tian, Yanqing; Johnson, Roger H.; Meldrum, Deirdre R.
2011-01-01
Ratiometric fluorescence sensing is an important technique for precise and quantitative analysis of biological events occurring under complex conditions by simultaneously recording fluorescence intensities at two wavelengths and calculating their ratios. Herein, we design a ratiometric chemosensor for pH that is based on photo-induced electron transfer (PET) and binding-induced modulation of fluorescence resonance energy transfer (FRET) mechanisms. This ratiometric chemosensor was constructed by introduction of a pH-insensitive coumarin fluorophore as a FRET donor into a pH-sensitive amino-naphthalimide derivative as the FRET acceptor. The sensor exhibited clear dual-mission signal changes in blue and green spectral windows upon pH changes. The pH sensor was applied for not only measuring cellular pH, but also for visualizing stimulus-responsive changes of intracellular pH values. PMID:21982292
No-core fiber-based highly sensitive optical fiber pH sensor.
Bhardwaj, Vanita; Pathak, Akhilesh Kumar; Singh, Vinod Kumar
2017-05-01
The present work describes the fabrication and characterization of an optical fiber pH sensor using a sol–gel technique. The sensing head configuration is incorporated using a short section of no-core fiber, coated with tetraethyl orthosilicate and spliced at the end of a single mode fiber with a bulge. Different types of indicators (bromophenol blue, cresol red, and chlorophenol red) were used to achieve a wide pH range from 2 to 13. High sensitivities of the fabricated device were found to be 1.02 and ? 0.93 ?? nm / pH for acidic and alkaline solutions, respectively. From the characterization results, it was noted that there is an impact of ionic strength and an effect of the temperature of liquid on the response characteristic, which is an advantage of the existing device over the other pH sensors. The fabricated sensor exhibited good reflection spectrum, indicating a blueshift in resonance wavelength for alkaline solutions and a redshift for acidic solutions.
Layer configurations comparison of bilayer-films for EGFET pH sensor application
NASA Astrophysics Data System (ADS)
Rahman, R. A.; Zulkefle, M. A.; Yusof, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.
2018-05-01
The comparison between bilayer configurations were presented in this paper. TiO2 and ZnO layer configurations were manipulated in order to investigate which configuration produce highest sensing performance to be applied as EGFET pH sensor. Both of the materials were deposited together as the bilayer film. The configurations were manipulated between TiO2/ZnO and ZnO/TiO2. ITO was used as the substrate in this study and both of the materials were deposited by using sol-gel spin coating technique. After deposition process, these bilayer film then undergone for EGFET pH sensor measurement and physical characterization. The EGFET pH sensor measurement was done by dipping the fabricated bilayer film into three different pH values, which is pH4, pH7 and pH10. Bilayer film act as the pH-sensitive membrane, which connected to the commercial metal-oxide semiconductor FET (MOSFET). This MOSFET was connected to the interfacing circuit. Voltage output obtained were recorded and the graph was plotted by using the data recorded. Based on the EGFET pH sensor measurement, TiO2/ZnO bilayer film exhibit higher sensing performance, compared with ZnO/TiO2. TiO2/ZnO bilayer film produced 53.10 mV/pH with the linearity value of 0.9913. Afterwards, fabricated bilayer films then were characterized with AFM to explore their surface roughness and surface topography behavior.
Simple graphene chemiresistors as pH sensors: fabrication and characterization
NASA Astrophysics Data System (ADS)
Lei, Nan; Li, Pengfei; Xue, Wei; Xu, Jie
2011-10-01
We report the fabrication and characterization of a simple gate-free graphene device as a pH sensor. The graphene sheets are made by mechanical exfoliation. Platinum contact electrodes are fabricated with a mask-free process using a focused ion beam and then expanded by silver paint. Annealing is used to improve the electrical contact. The experiment on the fabricated graphene device shows that the resistance of the device decreases linearly with increasing pH values (in the range of 4-10) in the surrounding liquid environment. The resolution achieved in our experiments is approximately 0.3 pH in alkali environment. The sensitivity of the device is calculated as approximately 2 kΩ pH-1. The simple configuration, miniaturized size and integration ability make graphene-based sensors promising candidates for future micro/nano applications.
Zhu, Haixin; Zhou, Xianfeng; Su, Fengyu; Tian, Yanqing; Ashili, Shashanka; Holl, Mark R.; Meldrum, Deirdre R.
2012-01-01
We report a novel method for wafer level, high throughput optical chemical sensor patterning, with precise control of the sensor volume and capability of producing arbitrary microscale patterns. Monomeric oxygen (O2) and pH optical probes were polymerized with 2-hydroxyethyl methacrylate (HEMA) and acrylamide (AM) to form spin-coatable and further crosslinkable polymers. A micro-patterning method based on micro-fabrication techniques (photolithography, wet chemical process and reactive ion etch) was developed to miniaturize the sensor film onto glass substrates in arbitrary sizes and shapes. The sensitivity of fabricated micro-patterns was characterized under various oxygen concentrations and pH values. The process for spatially integration of two sensors (Oxygen and pH) on the same substrate surface was also developed, and preliminary fabrication and characterization results were presented. To the best of our knowledge, it is the first time that poly (2-hydroxylethyl methacrylate)-co-poly (acrylamide) (PHEMA-co-PAM)-based sensors had been patterned and integrated at the wafer level with micron scale precision control using microfabrication techniques. The developed methods can provide a feasible way to miniaturize and integrate the optical chemical sensor system and can be applied to any lab-on-a-chip system, especially the biological micro-systems requiring optical sensing of single or multiple analytes. PMID:23175599
[Ph-Sensor Properties of a Fluorescent Protein from Dendronephthya sp].
Pakhomov, A A; Chertkova, R V; Martynov, V I
2015-01-01
Genetically encoded biosensors based on fluorescent proteins are now widely applicable for monitoring pH changes in live cells. Here, we have shown that a fluorescent protein from Dendronephthya sp. (DendFP) exhibits a pronounced pH-sensitivity. Unlike most of known genetically encoded pH-sensors, fluorescence of the protein is not quenched upon medium acidification, but is shifting from the red to green spectral range. Therefore, quantitative measurements of intracellular pH are feasible by ratiometric comparison of emission intensities in the red and green spectral ranges, which makes DendFP advantageous compared with other genetically encoded pH-sensors.
Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P.; Pearton, Stephen J.
2010-01-01
Background Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. Methods HEMT structures, consisting of a 3-μm-thick undoped GaN buffer, 30-Å-thick Al0.3Ga0.7N spacer, and 220-Å-thick silicon-doped Al0.3Ga0.7N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc2O3), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. Results The Sc2O3-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of ∼0.1 pH. A chloride ion detection limit of 10-8 M was achievedt with a HEMT sensor immobilized with the AgCl thin film. The drain–source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 μM. Conclusion There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensingt different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to measure the glucose concentration for diabetic applications. PMID:20167182
Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P; Pearton, Stephen J
2010-01-01
Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. HEMT structures, consisting of a 3-microm-thick undoped GaN buffer, 30-A-thick Al(0.3)Ga(0.7)N spacer, and 220-A-thick silicon-doped Al(0.3)Ga(0.7)N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc(2)O(3)), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. The Sc(2)O(3)-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of approximately 0.1 pH. A chloride ion detection limit of 10(-8) M was achieved with a HEMT sensor immobilized with the AgCl thin film. The drain-source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 microM. There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensing different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to measure the glucose concentration for diabetic applications. 2010 Diabetes Technology Society.
Development of Hybrid pH sensor for long-term seawater pH monitoring.
NASA Astrophysics Data System (ADS)
Nakano, Y.; Egashira, T.; Miwa, T.; Kimoto, H.
2016-02-01
We have been developing the in situ pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring. We are planning to provide the HpHS for researchers and environmental consultants for observation of the CCS (Carbon dioxide Capture and Storage) monitoring system, the coastal environment monitoring system (e.g. Blue Carbon) and ocean acidification. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH (Clayton and Byrne, 1993 and Liu et al., 2011). We can choose both coefficients before deployment. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS consists of an aluminum pressure housing with optical cell (main unit) and an aluminum silicon-oil filled, pressure-compensated vessel containing pumps and valves (diaphragm pump and valve unit) and pressure-compensated reagents bags (pH indicator, pure water and Tris buffer or certified reference material: CRM) with an ability to resist water pressure to 3000m depth. The main unit holds system control boards, pump drivers, data storage (micro SD card), LED right source, photodiode, optical cell and pressure proof windows. The HpHS also has an aluminum pressure housing that holds a rechargeable lithium-ion battery or a lithium battery for the power supply (DC 24 V). The HpHS is correcting the value of the potentiometric pH sensor (measuring frequently) by the value of the spectrophotometric pH sensor (measuring less frequently). It is possible to calibrate in situ with Tris buffer or CRM on the spectrophotometric pH sensor. Therefore, the drifts in the value of potentiometric pH measurements can be compensated using the pH value obtained from the spectrophotometric pH measurements. Thereby, the sensor can measure accurately the value of pH over a long period of time with low power consumption.
Saha, Uday Chand; Dhara, Koushik; Chattopadhyay, Basab; Mandal, Sushil Kumar; Mondal, Swastik; Sen, Supriti; Mukherjee, Monika; van Smaalen, Sander; Chattopadhyay, Pabitra
2011-09-02
A new probe, 3-[(3-benzyloxypyridin-2-ylimino)methyl]-2-hydroxy-5-methylbenzaldehyde (1-H) behaves as a highly selective fluorescent pH sensor in a Britton-Robinson buffer at 25 °C. The pH titrations show a 250-fold increase in fluorescence intensity within the pH range of 4.2 to 8.3 with a pK(a) value of 6.63 which is valuable for studying many of the biological organelles.
High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor
Al-Hardan, Naif H.; Abdul Hamid, Muhammad Azmi; Ahmed, Naser M.; Jalar, Azman; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim; Chiu, Weesiong; Al-Rawi, Hamzah N.
2016-01-01
In this study, porous silicon (PSi) was prepared and tested as an extended gate field-effect transistor (EGFET) for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions. PMID:27338381
A pH-responsive molecular switch with tricolor luminescence.
Ahn, Hyungmin; Hong, Jaewan; Kim, Sung Yeon; Choi, Ilyoung; Park, Moon Jeong
2015-01-14
We developed a new ratiometric pH sensor based on poly(N-phenylmaleimide) (PPMI)-containing block copolymer that emits three different fluorescent colors depending on the pH. The strong solvatochromism and tautomerism of the PPMI derivatives enabled precise pH sensing for almost the entire range of the pH scale. Theoretical calculations have predicted largely dissimilar band gaps for the keto, enol, and enolate tautomers of PPMI owing to low-dimensional conjugation effects. The tunable emission wavelength and intensity of our sensors, as well as the reversible color switching with high-luminescent contrast, were achieved using rational molecular design of PPMI analogues as an innovative platform for accurate H(+) detection. The self-assembly of block copolymers on the nanometer length scale was particularly highlighted as a novel prospective means of regulating fluorescence properties while avoiding the self-quenching phenomenon, and this system can be used as a fast responsive pH sensor in versatile device forms.
High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor.
Al-Hardan, Naif H; Abdul Hamid, Muhammad Azmi; Ahmed, Naser M; Jalar, Azman; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim; Chiu, Weesiong; Al-Rawi, Hamzah N
2016-06-07
In this study, porous silicon (PSi) was prepared and tested as an extended gate field-effect transistor (EGFET) for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions.
Murayama, Takashi; Maruyama, Ichiro N
2015-11-01
Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.
Rational design of a colorimetric pH sensor from a soluble retinoic acid chaperone.
Berbasova, Tetyana; Nosrati, Meisam; Vasileiou, Chrysoula; Wang, Wenjing; Lee, Kin Sing Stephen; Yapici, Ipek; Geiger, James H; Borhan, Babak
2013-10-30
Reengineering of cellular retinoic acid binding protein II (CRABPII) to be capable of binding retinal as a protonated Schiff base is described. Through rational alterations of the binding pocket, electrostatic perturbations of the embedded retinylidene chromophore that favor delocalization of the iminium charge lead to exquisite control in the regulation of chromophoric absorption properties, spanning the visible spectrum (474-640 nm). The pKa of the retinylidene protonated Schiff base was modulated from 2.4 to 8.1, giving rise to a set of proteins of varying colors and pH sensitivities. These proteins were used to demonstrate a concentration-independent, ratiometric pH sensor.
Optical Fibre Sensor For Measuring pH In Physiological Range
NASA Astrophysics Data System (ADS)
Golunski, Witold; Hypszer, Ryszard; Plucinski, Jerzy
1990-01-01
The principle of fibre optic pH sensor operation is given in this paper. PH measurement in 7.0-7.5 range is based on changing of optical property of a indicator. The indicator is sensitive to the hydrogen ion concentration in the water solution. Microspheres of the polymer XAD-2 (a styrene-divinylbenzene copolymer) containing bound phenol red were used as a indicator. Such prepared indicator was inserted in optrode. The optrode was connected with transmitter and receiver by a bundle of glass fibres (multicomponent glass). Transmitter was done by using green LED while receiver construction was based on pin photodiode.
Tahirbegi, Islam Bogachan; Ehgartner, Josef; Sulzer, Philipp; Zieger, Silvia; Kasjanow, Alice; Paradiso, Mirco; Strobl, Martin; Bouwes, Dominique; Mayr, Torsten
2017-02-15
The necessities of developing fast, portable, cheap and easy to handle pesticide detection platforms are getting attention of scientific and industrial communities. Although there are some approaches to develop microchip based pesticide detection platforms, there is no compact microfluidic device for the complementary, fast, cheap, reusable and reliable analysis of different pesticides. In this work, a microfluidic device is developed for in-situ analysis of pesticide concentration detected via metabolism/photosynthesis of Chlamydomonas reinhardtii algal cells (algae) in tap water. Algae are grown in glass based microfluidic chip, which contains integrated optical pH and oxygen sensors in a portable system for on-site detection. In addition, intrinsic algal fluorescence is detected to analyze the pesticide concentration in parallel to pH and oxygen sensors with integrated fluorescence detectors. The response of the algae under the effect of different concentrations of pesticides is evaluated and complementary inhibition effects depending on the pesticide concentration are demonstrated. The three different sensors allow the determination of various pesticide concentrations in the nanomolar concentration range. The miniaturized system provides the fast quantification of pesticides in less than 10min and enables the study of toxic effects of different pesticides on Chlamydomonas reinhardtii green algae. Consequently, the microfluidic device described here provides fast and complementary detection of different pesticides with algae in a novel glass based microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence. Copyright © 2016 Elsevier B.V. All rights reserved.
Henning, Paul E.; Rigo, M. Veronica; Geissinger, Peter
2012-01-01
A highly porous optical-fiber cladding was developed for evanescent-wave fiber sensors, which contains sensor molecules, maintains guiding conditions in the optical fiber, and is suitable for sensing in aqueous environments. To make the cladding material (a poly(ethylene) glycol diacrylate (PEGDA) polymer) highly porous, a microsphere templating strategy was employed. The resulting pore network increases transport of the target analyte to the sensor molecules located in the cladding, which improves the sensor response time. This was demonstrated using fluorescein-based pH sensor molecules, which were covalently attached to the cladding material. Scanning electron microscopy was used to examine the structure of the templated polymer and the large network of interconnected pores. Fluorescence measurements showed a tenfold improvement in the response time for the templated polymer and a reliable pH response over a pH range of five to nine with an estimated accuracy of 0.08 pH units. PMID:22654644
RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode
Wajrak, Magdalena; Alameh, Kamal
2017-01-01
A pH-sensitive RuO2 electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO2 working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO2 pH-sensitive working electrode and a SiO2-PVB junction-modified RuO2 reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices. PMID:28878182
RuO₂ pH Sensor with Super-Glue-Inspired Reference Electrode.
Lonsdale, Wade; Wajrak, Magdalena; Alameh, Kamal
2017-09-06
A pH-sensitive RuO₂ electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO₂ working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO₂ pH-sensitive working electrode and a SiO₂-PVB junction-modified RuO₂ reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices.
Rewritable and pH-Sensitive Micropatterns Based on Nanoparticle "Inks"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, D. W.; Lagzi, Istvan; Wesson, Paul J.
2010-08-16
Rewritable micropatterns based on nanoparticle “inks” are created in gel substrates by wet stamping. The colors of the patterns depend on pH, reflect the degree of nanoparticle aggregation, and can be written using acids and erased using bases. Micropatterns imprinted with salts are “permanent” but can change color upon pH changes; these patterns act as multiple-use pH sensors.
ISFET-based sensor signal processor chip design for environment monitoring applications
NASA Astrophysics Data System (ADS)
Chung, Wen-Yaw; Yang, Chung-Huang; Wang, Ming-Ga
2004-12-01
In recent years Ion-Sensitive Field Effect Transistor (ISFET) based transducers create valuable applications in physiological data acquisition and environment monitoring. This paper presents a mixed-mode ASIC design for potentiometric ISFET-based bio-chemical sensor applications including H+ sensing and hand-held pH meter. For battery power consideration, the proposed system consists of low voltage (3V) analog front-end readout circuits and digital processor has been developed and fabricated in a 0.5mm double-poly double-metal CMOS technology. To assure that the correct pH value can be measured, the two-point calibration circuitry based on the response of standard pH4 and pH7 buffer solution has been implemented by using algorithmic state machine hardware algorithms. The measurement accuracy of the chip is 10 bits and the measured range between pH 2 to pH 12 compared to ideal values is within the accuracy of 0.1pH. For homeland environmental applications, the system provide rapid, easy to use, and cost-effective on-site testing on the quality of water, such as drinking water, ground water and river water. The processor has a potential usage in battery-operated and portable devices in environmental monitoring applications compared to commercial hand-held pH meter.
Wu, Yubo; Guo, Huimin; James, Tony D; Zhao, Jianzhang
2011-07-15
We have prepared chiral fluorescent bisboronic acid sensors with 3,6-dithiophen-2-yl-9H-carbazole as the fluorophore. The thiophene moiety was used to extend the π-conjugation framework of the fluorophore in order to red-shift the fluorescence emission and, at the same time, to enhance the novel process where the fluorophore serves as the electron donor of the photoinduced electron transfer process (d-PET) of the boronic acid sensors; i.e., the background fluorescence of the sensor 1 at acidic pH is weaker compared to that at neutral or basic pH, in stark contrast to the typical a-PET boronic acid sensors (where the fluorophore serves as the electron acceptor of the photoinduced electron transfer process). The benefit of the d-PET boronic acid sensors is that the recognition of the hydroxylic acids can be achieved at acidic pH. We found that the thiophene moiety is an efficient π-conjugation linker and electron donor; as a result, the d-PET contrast ratio of the sensors upon variation of the pH is improved 10-fold when compared to the previously reported d-PET sensors without the thiophene moiety. Enantioselective recognition of tartaric acid was achieved at acid pH, and the enantioselectivity (total response K(D)I(F)(D)/K(L)I(F)(L)) is 3.3. The fluorescence enhancement (I(F)(Sample)/I(F)(Blank)) of sensor 1 upon binding with tartaric acid is 3.5-fold at pH 3.0. With the fluorescent bisboronic acid sensor 1, enantioselective recognition of mandelic acid was achieved for the first time. To the best of our knowledge, this is the first time that the mandelic acid has been enantioselectively recognized using a chiral fluorescent boronic acid sensor. Chiral monoboronic acid sensor 2 and bisboronic acid sensor 3 without the thiophene moiety failed to enantioselectively recognize mandelic acid. Our findings with the thiophene-incorporated boronic acid sensors will be important for the design of d-PET fluorescent sensors for the enantioselective recognition of α-hydroxylic acids such as mandelic acid, given that it is currently a challenge to recognize these analytes with boronic acid fluorescent molecular sensors.
ERIC Educational Resources Information Center
Nyasulu, Frazier; Moehring, Michael; Arthasery, Phyllis; Barlag, Rebecca
2011-01-01
The acid ionization constant, K[subscript a], of acetic acid and the base ionization constant, K[subscript b], of ammonia are determined easily and rapidly using a datalogger, a pH sensor, and a conductivity sensor. To decrease sample preparation time and to minimize waste, sequential aliquots of a concentrated standard are added to a known volume…
A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH
NASA Astrophysics Data System (ADS)
Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed
2015-06-01
Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (Ka = 3582.88 M-1) and selectivity for fructose over glucose at pH = 7.4. The sensor 1 showed a linear response toward D-fructose in the concentrations ranging from 2.5 × 10-5 to 4 × 10-4 mol L-1 with the detection limit of 1.3 × 10-5 mol L-1.
Aigner, Daniel; Ungerböck, Birgit; Mayr, Torsten; Saf, Robert; Klimant, Ingo; Borisov, Sergey M
2013-09-28
New optical pH-sensors relying on 1,4-diketopyrrolo-[3,4- c ]pyrroles (DPPs) as fluorescent pH-indicators are presented. Different polymer hydrogels are useful as immobilization matrices, achieving excellent sensitivity and good brightness in the resulting sensor. The operational pH can be tuned over a wide range (pH 5-12) by selecting the fine structure of the indicator and the matrix. A ratiometric sensor in the form of nanoparticles is also presented. It is suitable for RGB camera readout, and its practical applicability for fluorescence imaging in microfluidic systems is demonstrated. The indicators are synthesized starting from the commercially available DPP pigments by a straightforward concept employing chlorosulfonation and subsequent reaction with amines. Their sensitivity derives from two distinct mechanisms. At high pH (>9), they exhibit a remarkable alteration of both absorption and fluorescence spectra due to deprotonation of the lactam nitrogen atoms. If a phenolic group is introduced, highly effective fluorescence quenching at near-neutral pH occurs due to photoinduced electron transfer (PET) involving the phenolate form.
Pfeifer, David; Klimant, Ingo; Borisov, Sergey M
2018-05-08
New pH sensitive perylene bisimide indicator dyes were synthesised and used for fabrication of optical sensors. The highly photostable dyes show absorption/emission bands in the red/near-infrared (NIR) region of the electromagnetic spectrum, high molar absorption coefficients (up to 100 000 M-1 cm-1) and fluorescence quantum yields close to unity. The absorption and emission spectra show strong bathochromic shift upon deprotonation of imidazole nitrogen which makes the dyes promising as ratiometric fluorescent indicators. Physical entrapment of the indicators into polyurethane hydrogel enables pH determination in alkaline pH. It is also shown that plastic carbon dioxide solid state sensor can be manufactured via immobilization of the pH indicator in a hydrophilic polymer, along with a quaternary ammonium base. The influence of plasticizer, different lipophilic bases and humidity on the sensitivity of the sensor material were systematically investigated. The disubstituted perylene, particularly, features two deprotonation equilibria enabling sensing over a very broad range from 0.5 to 1000 hPa pCO2. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Hongpeng; Yu, Dan; Zhou, Ke; Wang, Shichan; Luo, Suhua; Li, Li; Wang, Weibo; Song, Qinggong
2018-05-01
Optical sensor based on pH-sensitive hydrogel has important practical applications in medical diagnosis and bio-sensor areas. This report details the experimental and theoretical results from a novel photosensitive polymer hydrogel holographic sensor, which formed by thermal polymerization of 2-hydroxyethyl methacrylate, for the detection of pH in buffer. Volume grating recorded in the polymer hydrogel was employed in response to the performance of solution. Methacrylic acid with carboxyl groups was selected as the primary co-monomer to functionalize the matrix. Peak diffraction spectrum of holographic grating determined as a primary sensing parameter was characterized to reflect the change in pH. The extracted linear relation between peak wavelength and pH value provided a probability for the practical application of holographic sensor. To explore the sensing mechanism deeply, a theoretical model was used to describe the relevant holographic processes, including grating formation, dark diffusional enhancement, and final fringe swelling. Numerical result further showed all of the dynamic processes and internal sensing physical mechanism. These experimental and numerical results provided a significant foundation for the development of novel holographic sensor based on polymer hydrogel and improvement of its practical applicability.
Tabassum, Rana; Kaur, Parvinder; Gupta, Banshi D
2016-05-27
We report the fabrication and characterization of a surface plasmon resonance (SPR)-based fiber optic sensor that uses coatings of silver and aluminum (Al)-zinc oxide (ZnO) core-shell nanostructure (Al@ZnO) for the detection of phenyl hydrazine (Ph-Hyd). To optimize the volume fraction (f) of Al in ZnO and the thickness of the core-shell nanostructure layer (d), the electric field intensity along the normal to the multilayer system is simulated using the two-dimensional multilayer matrix method. The Al@ZnO core-shell nanostructure is prepared using the laser ablation technique. Various probes are fabricated with different values of f and an optimized thickness of core-shell nanostructure for the characterization of the Ph-Hyd sensor. The performance of the Ph-Hyd sensor is evaluated in terms of sensitivity. It is found that the Ag/Al@ZnO nanostructure core-shell-coated SPR probe with f = 0.25 and d = 0.040 μm possesses the maximum sensitivity towards Ph-Hyd. These results are in agreement with the simulated ones obtained using electric field intensity. In addition, the performance of the proposed probe is compared with that of probes coated with (i) Al@ZnO nanocomposite, (ii) Al nanoparticles and (iii) ZnO nanoparticles. It is found that the probe coated with an Al@ZnO core-shell nanostructure shows the largest resonance wavelength shift. The detailed mechanism of the sensing (involving chemical reactions) is presented. The sensor also manifests optimum performance at pH 7.
A protein-dye hybrid system as a narrow range tunable intracellular pH sensor.
Anees, Palapuravan; Sudheesh, Karivachery V; Jayamurthy, Purushothaman; Chandrika, Arunkumar R; Omkumar, Ramakrishnapillai V; Ajayaghosh, Ayyappanpillai
2016-11-18
Accurate monitoring of pH variations inside cells is important for the early diagnosis of diseases such as cancer. Even though a variety of different pH sensors are available, construction of a custom-made sensor array for measuring minute variations in a narrow biological pH window, using easily available constituents, is a challenge. Here we report two-component hybrid sensors derived from a protein and organic dye nanoparticles whose sensitivity range can be tuned by choosing different ratios of the components, to monitor the minute pH variations in a given system. The dye interacts noncovalently with the protein at lower pH and covalently at higher pH, triggering two distinguishable fluorescent signals at 700 and 480 nm, respectively. The pH sensitivity region of the probe can be tuned for every unit of the pH window resulting in custom-made pH sensors. These narrow range tunable pH sensors have been used to monitor pH variations in HeLa cells using the fluorescence imaging technique.
NASA Astrophysics Data System (ADS)
Love, B. A.; O'Brien, C.; Bohlmann, H.
2016-02-01
Declining ocean pH has spurred research into the effects of marine carbonate chemistry on a variety of organisms, but less work has focused on the potential role of organisms in changing local carbonate chemistry. It has been suggested that photosynthetic activity of macrophytes in coastal areas can decrease pCO2, increase pH, and may provide areas of refuge for organisms sensitive to ocean acidification. To assess the effect of a large eelgrass meadow on water chemistry, discreet samples were collected hourly over several 24 hour cycles in Padilla Bay, Washington. Calculated pCO2 ranged from less than 100 ppm to greater than 700 ppm, often over the course of only a few hours. Aragonite saturation, DIC and pH were also highly variable. In -situ sensors, including a YSI glass electrode, a custom built DuraFET sensor and a SeaFET sensor were co-deployed to provide a high frequency record of water chemistry over several months. These data, (discrete samples and sensors) were used to develop a model that estimates pCO2 for the summer season based on readily measured parameters. Tidal height, photosynthetically active radiation and pH can predict pCO2 reasonably well in this environment. We compare the data from the 3 pH sensors and analyze the quality of data and predictions based on each one. A simple theoretical model shows that the large observed and modeled changes in pCO2 and pH (up to 800 ppm CO2 or 1 pH unit per day) match the magnitude of changes expected based on experimentally derived photosynthetic rates, measured light and water depth and that CO2 fluxes from gas exchange are expected to be small compared to photosynthetic fluxes in this environment. This study illustrates how eelgrass meadows do have the potential to create favorable carbonate chemistry, and demonstrates both the temporally variable nature of that effect and the possibility of better understanding when and how long it occurs through relatively simple modeling of the system.
Di, Wenjun; Czarny, Ryan S; Fletcher, Nathan A; Krebs, Melissa D; Clark, Heather A
2016-10-01
This study aims to develop biodegradable and biocompatible polymer-based nanofibers that continuously monitor pH within microenvironments of cultured cells in real-time. In the future, these fibers will provide a scaffold for tissue growth while simultaneously monitoring the extracellular environment. Sensors to monitor pH were created by directly electrospinning the sensor components within a polymeric matrix. Specifically, the entire fiber structure is composed of the optical equivalent of an electrode, a pH-sensitive fluorophore, an ionic additive, a plasticizer, and a polymer to impart mechanical stability. The resulting poly(ε-caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA) based sensors were characterized by morphology, dynamic range, reversibility and stability. Since PCL-based nanofibers delivered the most desirable analytical response, this matrix was used for cellular studies. Electrospun nanofiber scaffolds (NFSs) were created directly out of optode material. The resulting NFS sensors respond to pH changes with a dynamic range centered at 7.8 ± 0.1 and 9.6 ± 0.2, for PCL and PLGA respectively. NFSs exhibited multiple cycles of reversibility with a lifetime of at least 15 days with preservation of response characteristics. By comparing the two NFSs, we found PCL-NFSs are more suitable for pH sensing due to their dynamic range and superior reversibility. The proposed sensing platform successfully exhibits a response to pH and compatibility with cultured cells. NSFs will be a useful tool for creating 3D cellular scaffolds that can monitor the cellular environment with applications in fields such as drug discovery and tissue engineering.
NASA Astrophysics Data System (ADS)
Gonski, Stephen F.; Cai, Wei-Jun; Ullman, William J.; Joesoef, Andrew; Main, Christopher R.; Pettay, D. Tye; Martz, Todd R.
2018-01-01
The suitability of the Honeywell Durafet to the measurement of pH in productive, high-fouling, and highly-turbid estuarine environments was investigated at the confluence of the Murderkill Estuary and Delaware Bay (Delaware, USA). Three different flow configurations of the SeapHOx sensor equipped with a Honeywell Durafet and its integrated internal (Ag/AgCl reference electrode containing a 4.5 M KCl gel liquid junction) and external (solid-state chloride ion selective electrode, Cl-ISE) reference electrodes were deployed for four periods between April 2015 and September 2016. In this environment, the Honeywell Durafet proved capable of making high-resolution and high-frequency pH measurements on the total scale between pH 6.8 and 8.4. Natural pH fluctuations of >1 pH unit were routinely captured over a range of timescales. The sensor pH collected between May and August 2016 using the most refined SeapHOx configuration exhibited good agreement with multiple sets of independently measured reference pH values. When deployed in conjunction with rigorous discrete sampling and calibration schemes, the sensor pH had a root-mean squared error ranging between 0.011 and 0.036 pH units across a wide range of salinity relative to both pHT calculated from measured dissolved inorganic carbon and total alkalinity and pHNBS measured with a glass electrode corrected to pHT at in situ conditions. The present work demonstrates the viability of the Honeywell Durafet to the measurement of pH to within the weather-level precision defined by the Global Ocean Acidification Observing Network (GOA-ON, ≤ 0.02 pH units) as a part of future estuarine CO2 chemistry studies undertaken in dynamic environments.
Light-Immune pH Sensor with SiC-Based Electrolyte-Insulator-Semiconductor Structure
NASA Astrophysics Data System (ADS)
Lin, Yi-Ting; Huang, Chien-Shiang; Chow, Lee; Lan, Jyun-Ming; Yang, Chia-Ming; Chang, Liann-Be; Lai, Chao-Sung
2013-12-01
An electrolyte-insulator-semiconductor (EIS) structure with high-band-gap semiconductor of silicon carbide is demonstrated as a pH sensor in this report. Two different sensing membranes, i.e., gadolinium oxide (Gd2O3) and hafnium oxide (HfO2), were investigated. The HfO2 film deposited by atomic layer deposition (ALD) at low temperature shows high pH sensing properties with a sensitivity of 52.35 mV/pH and a low signal of 4.95 mV due to light interference. The EIS structures with silicon carbide can provide better visible light immunity due to its high band gap that allows pH detection in an outdoor environment without degradation of pH sensitivity.
PH Sensor Using A LED Source In A Fibre Optic Device
NASA Astrophysics Data System (ADS)
Grattan, K. T.; Mouaziz, Z.; Selli, R. K.
1987-10-01
Fibre optic pH sensors, for use in acid-base titrations, have been developed which use two wavelengths, in one case from two LEDs and in the other an internally generated reference replaces one of the LEDs, to sense the change in absorption of an indicator dye and provide a reference channel. A description of the construction and calibrated response of these inexpensive sensing devices is given.
Design and characterization of a plastic optical fiber pH sensor
NASA Astrophysics Data System (ADS)
Ferreira, Licínio; Simões, Pedro; Carvalho, Rui S.; Lopes, Paulo; Ferreira, Mário
2013-11-01
In this paper are present the design and characterization of a pH sensor using plastic optical fiber (POF) technology and a material produced by the sol-gel process with TEOS (tetraethyl orthosilicate) to immobilize universal indicator of pH (comprised of Thymol Blue, Methyl Red, Bromothymol Blue and Phenolphthalein) inside the silica matrix. This matrix is positioned between two extensions of plastic optical fiber tightly positioned at each side with both fibers aligned and sharing a common optical axis. This set will work as a pH sensor since the matrix embedded with indicator and in the presence of a solution (basic or acid solution) will change the optical transmittance properties. The optical source is a superluminescent white LED and the receiver is a photodiode having a good and linear responsivity in the visible spectrum. This pH sensitive matrix has large pores which allow the diffusion of the surrounding fluid molecules into the matrix and thus the close contact of these to the indicator molecules. This contact causes the change of color of the whole matrix allowing proper colorimetric detection by the photodiode. This variation of color associated with the detector wavelength linear response is the base of operation of the proposed device. This pH sensor presents many advantages over the standard and commercial pH meters namely, lightweight, portability and a low cost.
Chen, Yuncong; Zhu, Chengcheng; Cen, Jiajie; Bai, Yang; He, Weijiang; Guo, Zijian
2015-05-01
The homeostasis of mitochondrial pH (pH m ) is crucial in cell physiology. Developing small-molecular fluorescent sensors for the ratiometric detection of pH m fluctuation is highly demanded yet challenging. A ratiometric pH sensor, Mito-pH , was constructed by integrating a pH-sensitive FITC fluorophore with a pH-insensitive hemicyanine group. The hemicyanine group also acts as the mitochondria targeting group due to its lipophilic cationic nature. Besides its ability to target mitochondria, this sensor provides two ratiometric pH sensing modes, the dual excitation/dual emission mode (D ex /D em ) and dual excitation (D ex ) mode, and its linear and reversible ratiometric response range from pH 6.15 to 8.38 makes this sensor suitable for the practical tracking of pH m fluctuation in live cells. With this sensor, stimulated pH m fluctuation has been successfully tracked in a ratiometric manner via both fluorescence imaging and flow cytometry.
Cao, Hung; Landge, Vaibhav; Tata, Uday; Seo, Young-Sik; Rao, Smitha; Tang, Shou-Jiang; Tibbals, H F; Spechler, Stuart; Chiao, J-C
2012-11-01
In this study, a device for gastroesophageal reflux disease (GERD) monitoring has been prototyped. The system consists of an implantable, batteryless and wireless transponder with integrated impedance and pH sensors; and a wearable, external reader that wirelessly powers up the transponder and interprets the transponded radio-frequency signals. The transponder implant with the total size of 0.4 cm × 0.8 cm × 3.8 cm harvests radio frequency energy to operate dual-sensor and load-modulation circuitry. The external reader can store the data in a memory card and/or send it to a base station wirelessly, which is optional in the case of multiple-patient monitoring in a hospital or conducting large-scale freely behaving animal experiments. Tests were carried out to verify the signal transduction reliability in different situations for antenna locations and orientation. In vitro, experiments were conducted in a mannequin model by positioning the sensor capsule inside the wall of a tube mimicking the esophagus. Different liquids with known pH values were flushed through the tube creating reflux episodes and wireless signals were recorded. Live pigs under anesthesia were used for the animal models with the transponder implant attached on the esophageal wall. The reflux episodes were created while the sensor data were recorded wirelessly. The data were compared with those recorded independently by a clinically used wireless pH sensor capsule placed next to our implant transponder. The results showed that our transponder detected every episode in both acid and nonacid nature, while the commercial pH sensor missed events that had similar, repeated pH values, and failed to detect pH values higher than 10. Our batteryless transponder does not require a battery thus allowing longer diagnosis and prognosis periods to monitor drug efficacy, as well as providing accurate assessment of GERD symptoms.
2D ratiometric fluorescent pH sensor for tracking of cells proliferation and metabolism.
Ma, Jun; Ding, Changqin; Zhou, Jie; Tian, Yang
2015-08-15
Extracellular pH plays a vital role no matter in physiological or pathological studies. In this work, a hydrogel, CD@Nile-FITC@Gel (Gel sensor), entrapping the ratiometric fluorescent probe CD@Nile-FITC was developed. The Gel sensor was successfully used for real-time extracellular pH monitoring. In the case of CD@Nile-FITC, pH-sensitive fluorescent dye fluorescein isothiocyanate (FITC) was chosen as the response signal for H(+) and Nile blue chloride (Nile) as the reference signal. The developed fluorescent probe exhibited high selectivity for pH over other metal ions and amino acids. Meanwhile, the carbon-dots-based inorganic-organic probe demonstrated excellent photostability against long-term light illumination. In order to study the extracellular pH change in processes of cell proliferation and metabolism, CD@Nile-FITC probe was entrapped in sodium alginate gel and consequently formed CD@Nile-FITC@Gel. The MTT assay showed low cytotoxicity of the Gel and the pH titration indicated that it could monitor the pH fluctuations linearly and rapidly within the pH range of 6.0-9.0, which is valuable for physiological pH determination. As expected, the real-time bioimaging of the probe was successfully achieved. Copyright © 2015 Elsevier B.V. All rights reserved.
Munteanu, Raluca-Elena; Stǎnicǎ, Luciana; Gheorghiu, Mihaela; Gáspár, Szilveszter
2018-05-15
There are only a few tools suitable for measuring the extracellular pH of adherently growing mammalian cells with high spatial resolution, and none of them is widely used in laboratories around the world. Cell biologists very often limit themselves to measuring the intracellular pH with commercially available fluorescent probes. Therefore, we built a voltammetric pH microsensor and investigated its suitability for monitoring the extracellular pH of adherently growing mammalian cells. The voltammetric pH microsensor consisted of a 37 μm diameter carbon fiber microelectrode modified with reduced graphene oxide and syringaldazine. While graphene oxide was used to increase the electrochemically active surface area of our sensor, syringaldazine facilitated pH sensing through its pH-dependent electrochemical oxidation and reduction. The good sensitivity (60 ± 2.5 mV/pH unit), reproducibility (coefficient of variation ≤3% for the same pH measured with 5 different microsensors), and stability (pH drift around 0.05 units in 3 h) of the built voltammetric pH sensors were successfully used to investigate the acidification of the extracellular space of both cancer cells and normal cells. The results indicate that the developed pH microsensor and the perfected experimental protocol based on scanning electrochemical microscopy can reveal details of the pH regulation of cells not attainable with pH sensors lacking spatial resolution or which cannot be reproducibly positioned in the extracellular space.
pHlash: A New Genetically Encoded and Ratiometric Luminescence Sensor of Intracellular pH
Robertson, J. Brian; Johnson, Carl Hirschie
2012-01-01
We report the development of a genetically encodable and ratiometic pH probe named “pHlash” that utilizes Bioluminescence Resonance Energy Transfer (BRET) rather than fluorescence excitation. The pHlash sensor–composed of a donor luciferase that is genetically fused to a Venus fluorophore–exhibits pH dependence of its spectral emission in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification in vivo. Its spectral ratio response is H+ specific; neither Ca++, Mg++, Na+, nor K+ changes the spectral form of its luminescence emission. Moreover, it can be used to image pH in single cells. This is the first BRET-based sensor of H+ ions, and it should allow the approximation of pH in cytosolic and organellar compartments in applications where current pH probes are inadequate. PMID:22905204
Sensors for Environmental Control
NASA Technical Reports Server (NTRS)
1996-01-01
Under a Kennedy Space Center Small Business Innovation Research contract, GEO-CENTERS, Inc. developed a sensing element or 'optrode,' which NASA needed for space life support research to measure a hydroponic culture's pH factor. The company then commercialized the technology in the PC Based pH Monitoring System. The system employs the optrode to enable long term continuous monitoring of the pH level of fluids in standing and flowing conditions, an optoelectronic board with light sensors and detectors that fits into a desktop computer, and a fiber optic cable that connects the two. The system is effective in monitoring the pH output of industries to maintain ranges acceptable to the Environmental Protection Agency.
Pemberton, Roy M.; Cox, Timothy; Tuffin, Rachel; Drago, Guido A.; Griffiths, John; Pittson, Robin; Johnson, Graham; Xu, Jinsheng; Sage, Ian C.; Davies, Rhodri; Jackson, Simon K.; Kenna, Gerry; Luxton, Richard; Hart, John P.
2014-01-01
This report describes the design and development of an integrated electrochemical cell culture monitoring system, based on enzyme-biosensors and chemical sensors, for monitoring indicators of mammalian cell metabolic status. MEMS technology was used to fabricate a microwell-format silicon platform including a thermometer, onto which chemical sensors (pH, O2) and screen-printed biosensors (glucose, lactate), were grafted/deposited. Microwells were formed over the fabricated sensors to give 5-well sensor strips which were interfaced with a multipotentiostat via a bespoke connector box interface. The operation of each sensor/biosensor type was examined individually, and examples of operating devices in five microwells in parallel, in either potentiometric (pH sensing) or amperometric (glucose biosensing) mode are shown. The performance characteristics of the sensors/biosensors indicate that the system could readily be applied to cell culture/toxicity studies. PMID:25360580
An Impedance-Based Mold Sensor with on-Chip Optical Reference
Papireddy Vinayaka, Poornachandra; van den Driesche, Sander; Blank, Roland; Tahir, Muhammad Waseem; Frodl, Mathias; Lang, Walter; Vellekoop, Michael J.
2016-01-01
A new miniaturized sensor system with an internal optical reference for the detection of mold growth is presented. The sensor chip comprises a reaction chamber provided with a culture medium that promotes the growth of mold species from mold spores. The mold detection is performed by measuring impedance changes with integrated electrodes fabricated inside the reaction chamber. The impedance change in the culture medium is caused by shifts in the pH (i.e., from 5.5 to 8) as the mold grows. In order to determine the absolute pH value without the need for calibration, a methyl red indicator dye has been added to the culture medium. It changes the color of the medium as the pH passes specific values. This colorimetric principle now acts as a reference measurement. It also allows the sensitivity of the impedance sensor to be established in terms of impedance change per pH unit. Major mold species that are involved in the contamination of food, paper and indoor environments, like Fusarium oxysporum, Fusarium incarnatum, Eurotium amstelodami, Aspergillus penicillioides and Aspergillus restrictus, have been successfully analyzed on-chip. PMID:27690039
Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes.
Liu, Mingjing; Ye, Zhiqiang; Xin, Chenglong; Yuan, Jingli
2013-01-25
Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4'-hydroxy-2,2':6',2''-terpyridine-6,6''-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu(3+) and Tb(3+) complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA-Eu(3+) is strongly dependent on the pH values in weakly acidic to neutral media (pK(a) = 5.8, pH 4.8-7.5), while that of HTTA-Tb(3+) is pH-independent. This unique luminescence response allows the mixture of HTTA-Eu(3+) and HTTA-Tb(3+) (the HTTA-Eu(3+)/Tb(3+) mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb(3+) emission at 540 nm to its Eu(3+) emission at 610 nm, I(540 nm)/I(610 nm), as a signal. Moreover, the UV absorption spectrum changes of the HTTA-Eu(3+)/Tb(3+) mixture at different pHs (pH 4.0-7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A(290 nm)/A(325 nm), as a signal. This feature enables the HTTA-Eu(3+)/Tb(3+) mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA-Eu(3+) and HTTA-Tb(3+) into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application. Copyright © 2012 Elsevier B.V. All rights reserved.
A wireless pH sensor using magnetoelasticity for measurement of body fluid acidity.
Pang, Pengfei; Gao, Xianjuan; Xiao, Xilin; Yang, Wenyue; Cai, Qingyun; Yao, Shouzhuo
2007-04-01
The determination of body fluid acidity using a wireless magnetoelastic pH-sensitive sensor is described. The sensor was fabricated by casting a layer of pH-sensitive polymer on a magnetoelastic ribbon. In response to an externally applied time-varying magnetic field, the magnetoelastic sensor mechanically vibrates at a characteristic frequency that is inversely dependent upon the mass of the pH polymer film, which varies as the film swells and shrinks in response to pH. As the magnetoelastic sensor is magnetostrictive, the mechanical vibrations of the sensor launch magnetic flux that can be detected remotely using a pickup coil. The sensor can be used for direct measurements of body fluid acidity without a pretreatment of the sample by using a filtration membrane. A reversible and linear response was obtained between pH 5.0 and 8.0 with a measurement resolution of pH 0.1 and a slope of 0.2 kHz pH(-1). Since there are no physical connections between the sensor and the instrument, the sensor can be applied to in vivo and in situ monitoring of the physiological pH and its fluctuations.
Development of an Integrated ISFET pH Sensor for High Pressure Applications in the Deep-Sea
2012-09-30
Measurements in the upper ocean suggest that sensor precision is comparable to the annual pH change due to ocean acidification (Fig. 2). An array of...profiling floats equipped with pH sensors would be capable of directly monitoring the process of ocean acidification . Further refinement of the sensor...Quality of Life The high pressure pH sensor will have direct applications to our understanding of ocean acidification and the impacts on ecosystem
Hu, Bo; Tu, Yuhai
2013-01-01
It is essential for bacteria to find optimal conditions for their growth and survival. The optimal levels of certain environmental factors (such as pH and temperature) often correspond to some intermediate points of the respective gradients. This requires the ability of bacteria to navigate from both directions toward the optimum location and is distinct from the conventional unidirectional chemotactic strategy. Remarkably, Escherichia coli cells can perform such a precision sensing task in pH taxis by using the same chemotaxis machinery, but with opposite pH responses from two different chemoreceptors (Tar and Tsr). To understand bacterial pH sensing, we developed an Ising-type model for a mixed cluster of opposing receptors based on the push-pull mechanism. Our model can quantitatively explain experimental observations in pH taxis for various mutants and wild-type cells. We show how the preferred pH level depends on the relative abundance of the competing sensors and how the sensory activity regulates the behavioral response. Our model allows us to make quantitative predictions on signal integration of pH and chemoattractant stimuli. Our study reveals two general conditions and a robust push-pull scheme for precision sensing, which should be applicable in other adaptive sensory systems with opposing gradient sensors. PMID:23823247
In Vivo Model to Test Implanted Biosensors for Blood pH
NASA Technical Reports Server (NTRS)
Arnaud, Sara B.; Somps, Chris J.; Madou, Marc; Hines, John; Wade, Charles E. (Technical Monitor)
1997-01-01
Biosensors for monitoring physiologic data continuously through telemetry are available for heart rate, respiration, and temperature but not for blood pH or ions affected by hydrogen ion concentration. A telemetric biosensor for monitoring blood pH on-line could be used to identify and manage problems in fluid and electrolyte metabolism, cardiac and respiratory function during space flight and the acid-base status of patients without the need for venipuncture in patients on Earth. Critical to the development of biosensors is a method for evaluating their performance after implantation. Mature rats, prepared with jugular, cannulas for repeated blood samples, were exposed to a gas mixture containing high levels of carbon dioxide (7%) in a closed environment to induce mild respiratory acidosis. Serial blood gas and pH measurements in venous blood were compared with electrical responses from sensors implanted in the subcutaneous tissue. Animals became slightly tachypneic after exposure to excess CO2, but remained alert and active. After 5 minutes, basal blood pH decreased from 7.404 +/- 0.013 to 7.289 +/- 0.010 (p less than 0.001)and PC02 increased from 45 +/- 6 to 65 +/- 4 mm. Hg (p les than 0.001). Thereafter pH and blood gas parameters remained stable. Implanted sensors showed a decrease in millivolts (mV) which paralleled the change in pH and averaged 5-6 mV per 0.1 unit pH. Implanted sensors remained sensitive to modest changes in tissue pH for one week. A system for inducing acidosis in rats was developed to test the in vivo performance of pH biosensors. The system provides a method which is sensitive, rapid and reproducible in the same and different animals with full recovery, for testing the performance of sensors implanted in subcutaneous tissues.
Development of in situ CO2 and pH sensor for AUVs and ROVs
NASA Astrophysics Data System (ADS)
Nakano, Yoshiyuki; Kimoto, Hideshi; Miwa, Tetsuya; Yoshida, Hiroshi
2013-04-01
Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has been developing two-type autonomous underwater vehicles (AUVs): a cruising AUV and a working AUV, since October 2010. These vehicles will perform carbon dioxide (CO2) and pH observations to explore hydrothermal plume on seabed mineral resources and to monitor a leak of CO2 in carbon capture and storage (CCS) up to depth of 3,000 meters. We here have been developing the compact in situ CO2 and pH sensor (Hybrid CO2-pH sensor: HCS) for the AUVs to obtain vertical and horizontal distributions of CO2 and pH. The HCS consists of an aluminum pressure housing (diameter 84 mm, length 570 mm, weight 4 kg) and an acrylic silicon-oil filled, pressure-compensated vessel (diameter 90 mm, length 355 mm, weight 2 kg) containing valves and pump unit. The HCS is also useful for the observation by remotely operated vehicles (ROVs). The measured data were transmitted to the AUVs or ROVs by serial communications. We can monitor the data of in situ pCO2, pH and so on in real time on board. The measurement principle for the CO2 sensor is based on spectrophotometry. The pCO2 is calculated from the optical absorbance of the pH indicator solution equilibrated with CO2 in seawater through a gas permeable membrane. On the other hand, we adopt potentiometric analysis using original glass and reference electrodes as a pH sensor because of the most commonly used technique for sea water pH measurements and high-speed response (within 20 seconds). From simultaneously measured data of in situ pCO2 and pH, we can also calculate dissolved inorganic carbon (DIC) and total alkalinity (TA) as other carbonate species in the ocean. The resolutions of HCS are 1 μatm for pCO2 and 0.001 pH. In the laboratory experiment, the HCS obtained precisions within 3 μatm and within 0.01 pH, respectively. Our first in situ observational test of the HSC with cruising AUV was made in the coast of the Japan Sea last August. And also first in situ test of the HCS with ROV was performed at Okinawa Trough last September. The data obtained from each tests are consistent with predictions based on past studies.
Design of a Water Environment Monitoring System Based on Wireless Sensor Networks
Jiang, Peng; Xia, Hongbo; He, Zhiye; Wang, Zheming
2009-01-01
A water environmental monitoring system based on a wireless sensor network is proposed. It consists of three parts: data monitoring nodes, data base station and remote monitoring center. This system is suitable for the complex and large-scale water environment monitoring, such as for reservoirs, lakes, rivers, swamps, and shallow or deep groundwaters. This paper is devoted to the explanation and illustration for our new water environment monitoring system design. The system had successfully accomplished the online auto-monitoring of the water temperature and pH value environment of an artificial lake. The system's measurement capacity ranges from 0 to 80 °C for water temperature, with an accuracy of ±0.5 °C; from 0 to 14 on pH value, with an accuracy of ±0.05 pH units. Sensors applicable to different water quality scenarios should be installed at the nodes to meet the monitoring demands for a variety of water environments and to obtain different parameters. The monitoring system thus promises broad applicability prospects. PMID:22454592
Fully-Polymeric pH Sensor Realized by Means of a Single-Step Soft Embossing Technique
Fanzio, Paola; Chang, Chi-Tung; Skolimowski, Maciej; Tanzi, Simone; Sasso, Luigi
2017-01-01
We present here an electrochemical sensor microsystem for the monitoring of pH. The all-polymeric device is comprised of a cyclic olefin copolymer substrate, a 200 nm-thin patterned layer of conductive polymer (PEDOT), and a 70 nm electropolymerized layer of a pH sensitive conductive polymer (polyaniline). The patterning of the fluidic (microfluidic channels) and conductive (wiring and electrodes) functional elements was achieved with a single soft PDMS mold via a single embossing step process. A post-processing treatment with ethylene glycol assured the functional enhancement of the electrodes, as demonstrated via an electrical and electrochemical characterization. A surface modification of the electrodes was carried out, based on voltammetric electropolymerization, to obtain a thin layer of polyaniline. The mechanism for pH sensing is based on the redox reactions of the polyaniline layer caused by protonation. The sensing performance of the microsystem was finally validated by monitoring its potentiometric response upon exposure to a relevant range of pH. PMID:28531106
A luminescent ratiometric pH sensor based on a nanoscale and biocompatible Eu/Tb-mixed MOF.
Xia, Tifeng; Zhu, Fengliang; Jiang, Ke; Cui, Yuanjing; Yang, Yu; Qian, Guodong
2017-06-13
The precise and real-time monitoring of localized pH changes is of great importance in many engineering and environmental fields, especially for monitoring small pH changes in biological environments and living cells. Metal-organic frameworks (MOFs) with their nanoscale processability show very promising applications in bioimaging and biomonitoring, but the fabrication of nanoscale MOFs is still a challenge. In this study, we synthesized a nanoscale mixed-lanthanide metal-organic framework by a microemulsion method. The morphology and size of the NMOF can be simply adjusted by the addition of different amounts of the CTAB surfactant. This NMOF exhibits significant pH-dependent luminescence emission, which can act as a self-referenced pH sensor based on two emissions of Tb 3+ at 545 nm and Eu 3+ at 618 nm in the pH range from 3.00 to 7.00. The MTT assay and optical microscopy assay demonstrate the low cytotoxicity and good biocompatibility of the nanosensor.
Fully-Polymeric pH Sensor Realized by Means of a Single-Step Soft Embossing Technique.
Fanzio, Paola; Chang, Chi-Tung; Skolimowski, Maciej; Tanzi, Simone; Sasso, Luigi
2017-05-20
We present here an electrochemical sensor microsystem for the monitoring of pH. The all-polymeric device is comprised of a cyclic olefin copolymer substrate, a 200 nm-thin patterned layer of conductive polymer (PEDOT), and a 70 nm electropolymerized layer of a pH sensitive conductive polymer (polyaniline). The patterning of the fluidic (microfluidic channels) and conductive (wiring and electrodes) functional elements was achieved with a single soft PDMS mold via a single embossing step process. A post-processing treatment with ethylene glycol assured the functional enhancement of the electrodes, as demonstrated via an electrical and electrochemical characterization. A surface modification of the electrodes was carried out, based on voltammetric electropolymerization, to obtain a thin layer of polyaniline. The mechanism for pH sensing is based on the redox reactions of the polyaniline layer caused by protonation. The sensing performance of the microsystem was finally validated by monitoring its potentiometric response upon exposure to a relevant range of pH.
NASA Astrophysics Data System (ADS)
Jang, Jungkyu; Choi, Sungju; Kim, Jungmok; Park, Tae Jung; Park, Byung-Gook; Kim, Dong Myong; Choi, Sung-Jin; Lee, Seung Min; Kim, Dae Hwan; Mo, Hyun-Sun
2018-02-01
In this study, we investigate the effect of rising time (TR) of liquid gate bias (VLG) on transient responses in pH sensors based on Si nanowire ion-sensitive field-effect transistors (ISFETs). As TR becomes shorter and pH values decrease, the ISFET current takes a longer time to saturate to the pH-dependent steady-state value. By correlating VLG with the internal gate-to-source voltage of the ISFET, we found that this effect occurs when the drift/diffusion of mobile ions in analytes in response to VLG is delayed. This gives us useful insight on the design of ISFET-based point-of-care circuits and systems, particularly with respect to determining an appropriate rising time for the liquid gate bias.
Wang, Lai-Hao; Li, Wen-Jie
2011-09-06
The electrochemical behaviors of thiazolidine (tetrahydrothiazole) on gold and platinum electrodes were investigated in a Britton-Robinson buffer (pH 2.77-11.61), acetate buffer (pH 4.31), phosphate buffer solutions (pH 2.11 and 6.38) and methanol or acetonitrile containing various supporting electrolytes. Detection was based on a gold wire electrochemical signal obtained with a supporting electrolyte containing 20% methanol-1.0 mM of phosphate buffer (pH 6.87, potassium dihydrogen phosphate and dipotassium hydrogen phosphate) as the mobile phase. Comparison with results obtained with a commercial amperometric detector shows good agreement. Using the chronoamperometric sensor with the current at a constant potential, and measurements with suitable experimental parameters, a linear concentration from 0.05 to 16 mg L-1 was found. The limit of quantification (LOQ) of the method for thiazolidine was found to be 1 ng.
Current wound healing procedures and potential care.
Dreifke, Michael B; Jayasuriya, Amil A; Jayasuriya, Ambalangodage C
2015-03-01
In this review, we describe current and future potential wound healing treatments for acute and chronic wounds. The current wound healing approaches are based on autografts, allografts, and cultured epithelial autografts, and wound dressings based on biocompatible and biodegradable polymers. The Food and Drug Administration approved wound healing dressings based on several polymers including collagen, silicon, chitosan, and hyaluronic acid. The new potential therapeutic intervention for wound healing includes sustained delivery of growth factors, and siRNA delivery, targeting microRNA, and stem cell therapy. In addition, environment sensors can also potentially utilize to monitor and manage microenvironment at wound site. Sensors use optical, odor, pH, and hydration sensors to detect such characteristics as uric acid level, pH, protease level, and infection - all in the hopes of early detection of complications. Copyright © 2014 Elsevier B.V. All rights reserved.
Current wound healing procedures and potential care
Dreifke, Michael B.; Jayasuriya, Amil A.; Jayasuriya, Ambalangodage C.
2015-01-01
In this review, we describe current and future potential wound healing treatments for acute and chronic wounds. The current wound healing approaches are based on autografts, allografts, and cultured epithelial autografts, and wound dressings based on biocompatible and biodegradable polymers. The Food and Drug Administration approved wound healing dressings based on several polymers including collagen, silicon, chitosan, and hyaluronic acid. The new potential therapeutic intervention for wound healing includes sustained delivery of growth factors, and siRNA delivery, targeting micro RNA, and stem cell therapy. In addition, environment sensors can also potentially utilize to monitor and manage micro environment at wound site. Sensors use optical, odor, pH, and hydration sensors to detect such characteristics as uric acid level, pH, protease level, and infection – all in the hopes of early detection of complications. PMID:25579968
NASA Technical Reports Server (NTRS)
Pappas, D.; Jeevarajan, A.; Anderson, M. M.
2004-01-01
Compact and automated sensors are desired for assessing the health of cell cultures in biotechnology experiments in microgravity. Measurement of cell culture medium allows for the optirn.jzation of culture conditions on orbit to maximize cell growth and minimize unnecessary exchange of medium. While several discrete sensors exist to measure culture health, a multi-parameter sensor would simplify the experimental apparatus. One such sensor, the Paratrend 7, consists of three optical fibers for measuring pH, dissolved oxygen (p02), dissolved carbon dioxide (pC02) , and a thermocouple to measure temperature. The sensor bundle was designed for intra-arterial placement in clinical patients, and potentially can be used in NASA's Space Shuttle and International Space Station biotechnology program bioreactors. Methods: A Paratrend 7 sensor was placed at the outlet of a rotating-wall perfused vessel bioreactor system inoculated with BHK-21 (baby hamster kidney) cells. Cell culture medium (GTSF-2, composed of 40% minimum essential medium, 60% L-15 Leibovitz medium) was manually measured using a bench top blood gas analyzer (BGA, Ciba-Corning). Results: A Paratrend 7 sensor was used over a long-term (>120 day) cell culture experiment. The sensor was able to track changes in cell medium pH, p02, and pC02 due to the consumption of nutrients by the BHK-21. When compared to manually obtained BGA measurements, the sensor had good agreement for pH, p02, and pC02 with bias [and precision] of 0.02 [0.15], 1 mm Hg [18 mm Hg], and -4.0 mm Hg [8.0 mm Hg] respectively. The Paratrend oxygen sensor was recalibrated (offset) periodically due to drift. The bias for the raw (no offset or recalibration) oxygen measurements was 42 mm Hg [38 mm Hg]. The measured response (rise) time of the sensor was 20 +/- 4s for pH, 81 +/- 53s for pC02, 51 +/- 20s for p02. For long-term cell culture measurements, these response times are more than adequate. Based on these findings , the Paratrend sensor could offer automated, continuous monitoring of cell cultures with a temporal resolution of 1 minute, which is not attainable by sampling via handheld blood analyzer (i-STAT). Conclusion: The resulting bias and precision found in these cell culture-based studies is comparable to Paratrend sensor clinical results. Although the large error in p02 measurements (+/-18 mm Hg) may be acceptable for clinical applications, where Paratrend values are periodically adjusted to a BGA measurement, the O2 sensor in this bundle may not be reliable enough for the single-calibration requirement of sensors used in NASA's bioreactors. The pH and pC02 sensors in the bundle are reliable and stable over the measurement period, and can be used without recalibration to measure cell cultures in rn.jcrogravity biotechnology experiments. Future work will test additional Paratrend sensors to provide statistical assessment of sensor performance.
A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH.
Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed
2015-06-05
Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (K(a)=3582.88 M(-1)) and selectivity for fructose over glucose at pH=7.4. The sensor 1 showed a linear response toward d-fructose in the concentrations ranging from 2.5×10(-5) to 4×10(-4) mol L(-1) with the detection limit of 1.3×10(-5) mol L(-1). Copyright © 2015 Elsevier B.V. All rights reserved.
Taylor, Allen D; Ladd, Jon; Yu, Qiuming; Chen, Shengfu; Homola, Jirí; Jiang, Shaoyi
2006-12-15
We report the quantitative and simultaneous detection of four species of bacteria, Escherichia coli O157:H7, Salmonella choleraesuis serotype typhimurium, Listeria monocytogenes, and Campylobacter jejuni, using an eight-channel surface plasmon resonance (SPR) sensor based on wavelength division multiplexing. Detection curves showing SPR response versus analyte concentration were established for each species of bacteria in buffer at pH 7.4, apple juice at native pH 3.7, and apple juice at an adjusted pH of 7.4, as well as for a mixture containing all four species of bacteria in buffer. Control experiments were performed to show the non-fouling characteristics of the sensor surface as well as the specificity of the amplification antibodies used in this study. The limit of detection (LOD) for each of the four species of bacteria in the tested matrices ranges from 3.4 x 10(3) to 1.2 x 10(5) cfu/ml. Detection curves in buffer of an individual species of bacteria in a mixture of all four species of bacteria correlated well with detection curves of the individual species of bacteria alone. SPR responses were higher for bacteria in apple juice at pH 7.4 than in apple juice at pH 3.7. This difference in sensor response could be partly attributed to the pH dependence of antibody-antigen binding.
High sensitivity pH sensing on the BEOL of industrial FDSOI transistors
NASA Astrophysics Data System (ADS)
Rahhal, Lama; Ayele, Getenet Tesega; Monfray, Stéphane; Cloarec, Jean-Pierre; Fornacciari, Benjamin; Pardoux, Eric; Chevalier, Celine; Ecoffey, Serge; Drouin, Dominique; Morin, Pierre; Garnier, Philippe; Boeuf, Frederic; Souifi, Abdelkader
2017-08-01
In this work we demonstrate the use of Fully Depleted Silicon On Insulator (FDSOI) transistors as pH sensors with a 23 nm silicon nitride sensing layer built in the Back-End-Of-Line (BEOL). The back end process to deposit the sensing layer and fabricate the electrical structures needed for testing is detailed. A series of tests employing different pH buffer solutions has been performed on transistors of different geometries, controlled via the back gate. The main findings show a shift of the drain current (ID) as a function of the back gate voltage (VB) when different pH buffer solutions are probed in the range of pH 6 to pH 8. This shift is observed at VB voltages swept from 0 V to 3 V, demonstrating the sensor operation at low voltage. A high sensitivity of up to 250 mV/pH unit (more than 4-fold larger than Nernstian response) is observed on FDSOI MOS transistors of 0.06 μm gate length and 0.08 μm gate width. She is currently working as a Postdoctoral researcher at Institut des nanotechnologies de Lyon in collaboration with STMicroelectronics and Université de Sherbrook (Canada) working on ;Integration of ultra-low-power gas and pH sensors with advanced technologies;. Her research interest includes selection, machining, optimisation and electrical characterisation of the sensitive layer for a low power consumption gas sensor based on advanced MOS transistors.
Online PH measurement technique in seawater desalination
NASA Astrophysics Data System (ADS)
Wang, Haibo; Wu, Kaihua; Hu, Shaopeng
2009-11-01
The measurement technology of pH is essential in seawater desalination. Glass electrode is the main pH sensor in seawater desalination. Because the internal impedance of glass electrode is high and the signal of pH sensor is easy to be disturbed, a signal processing circuit with high input impedance was designed. Because of high salinity of seawater and the characteristic of glass electrode, ultrasonic cleaning technology was used to online clean pH sensor. Temperature compensation was also designed to reduce the measurement error caused by variety of environment temperature. Additionally, the potential drift of pH sensor was analyzed and an automatic calibration method was proposed. In order to online monitor the variety of pH in seawater desalination, three operating modes were designed. The three modes are online monitoring mode, ultrasonic cleaning mode and auto-calibration mode. The current pH in seawater desalination was measured and displayed in online monitoring mode. The cleaning process of pH sensor was done in ultrasonic cleaning mode. The calibration of pH sensor was finished in auto-calibration mode. The result of experiments showed that the measurement technology of pH could meet the technical requirements for desalination. The glass electrode could be promptly and online cleaned and its service life was lengthened greatly.
Muderris, Togay; Gokcan, M Kursat; Yorulmaz, Irfan
2009-02-01
To determine the clinical value of pharyngeal pH monitoring for the diagnosis of laryngopharyngeal reflux (LPR) by using a double-probe, triple-sensor catheter in patients with symptoms of LPR. Prospective review of pH values recorded at the pharyngeal sensor, with the sensor placed in the proximal esophagus in patients with suspected LPR. Tertiary care university hospital. Thirty-three consecutive patients with symptoms of LPR. A pH test result was considered abnormal if a single reflux episode was detected in the hypopharynx and if, in the proximal esophagus, the total percentage of time the pH value was below 4 was 1.0% or higher. Data obtained from sensors were compared to determine the validity of pharyngeal sensor. Correlation between patients' reflux finding scores, reflux finding indexes, and reflux episodes were analyzed. Of 33 patients, 17 had more than 1 reflux episode detected by the pharyngeal sensor and 19 had pathological reflux detected by the proximal esophageal sensor. Four patients who had pharyngeal reflux had a normal esophageal acid exposure time, and 6 patients who had pathological reflux detected by the proximal esophageal sensor did not experienced any pharyngeal reflux episode. Four patients would have had a false-negative test result and 6 subjects would have had a false-positive test result if a hypopharyngeal pH sensor was not implemented. The adjustable, bifurcated, triple-sensor pH probe allows identifying true hypopharyngeal reflux episodes. If single-probe, double-sensor pH monitoring is to be performed, the proximal probe should be placed in the pharynx, not in the upper esophagus.
Parylene C-Based Flexible Electronics for pH Monitoring Applications
Trantidou, Tatiana; Tariq, Mehvesh; Terracciano, Cesare M.; Toumazou, Christofer; Prodromakis, Themistoklis
2014-01-01
Emerging materials in the field of implantable sensors should meet the needs for biocompatibility; transparency; flexibility and integrability. In this work; we present an integrated approach for implementing flexible bio-sensors based on thin Parylene C films that serve both as flexible support substrates and as active H+ sensing membranes within the same platform. Using standard micro-fabrication techniques; a miniaturized 40-electrode array was implemented on a 5 μm-thick Parylene C film. A thin capping film (1 μm) of Parylene on top of the array was plasma oxidized and served as the pH sensing membrane. The sensor was evaluated with the use of extended gate discrete MOSFETs to separate the chemistry from the electronics and prolong the lifetime of the sensor. The chemical sensing array spatially maps the local pH levels; providing a reliable and rapid-response (<5 s) system with a sensitivity of 23 mV/pH. Moreover; it preserves excellent encapsulation integrity and low chemical drifts (0.26–0.38 mV/min). The proposed approach is able to deliver hybrid flexible sensing platforms that will facilitate concurrent electrical and chemical recordings; with application in real-time physiological recordings of organs and tissues. PMID:24988379
Parylene C-based flexible electronics for pH monitoring applications.
Trantidou, Tatiana; Tariq, Mehvesh; Terracciano, Cesare M; Toumazou, Christofer; Prodromakis, Themistoklis
2014-07-01
Emerging materials in the field of implantable sensors should meet the needs for biocompatibility; transparency; flexibility and integrability. In this work; we present an integrated approach for implementing flexible bio-sensors based on thin Parylene C films that serve both as flexible support substrates and as active H(+) sensing membranes within the same platform. Using standard micro-fabrication techniques; a miniaturized 40-electrode array was implemented on a 5 μm-thick Parylene C film. A thin capping film (1 μm) of Parylene on top of the array was plasma oxidized and served as the pH sensing membrane. The sensor was evaluated with the use of extended gate discrete MOSFETs to separate the chemistry from the electronics and prolong the lifetime of the sensor. The chemical sensing array spatially maps the local pH levels; providing a reliable and rapid-response (<5 s) system with a sensitivity of 23 mV/pH. Moreover; it preserves excellent encapsulation integrity and low chemical drifts (0.26-0.38 mV/min). The proposed approach is able to deliver hybrid flexible sensing platforms that will facilitate concurrent electrical and chemical recordings; with application in real-time physiological recordings of organs and tissues.
Zr/ZrO2 sensors for in situ measurement of pH in high-temperature and -pressure aqueous solutions.
Zhang, R H; Zhang, X T; Hu, S M
2008-04-15
The aim of this study is to develop new pH sensors that can be used to test and monitor hydrogen ion activity in hydrothermal conditions. A Zr/ZrO2 oxidation electrode is fabricated for in situ pH measurement of high-temperature aqueous solutions. This sensor responds rapidly and precisely to pH over a wide range of temperature and pressure. The Zr/ZrO2 electrode was made by oxidizing zirconium metal wire with Na2CO3 melt, which produced a thin film of ZrO2 on its surface. Thus, an oxidation-reduction electrode was produced. The Zr/ZrO2 electrode has a good electrochemical stability over a wide range of pH in high-temperature aqueous solutions when used with a Ag/AgCl reference electrode. Measurements of the Zr/ZrO2 sensor potential against a Ag/AgCl reference electrode is shown to vary linearly with pH between temperatures 20 and 200 degrees C. The slope of the potential versus pH at high temperature is slightly below the theoretical value indicated by the Nernst equation; such deviation is attributed to the fact that the sensor is not strictly at equilibrium with the solution to be tested in a short period of time. The Zr/ZrO2 sensor can be calibrated over the conditions that exist in the natural deep-seawater. Our studies showed that the Zr/ZrO2 electrode is a suitable pH sensor for the hydrothermal systems at midocean ridge or other geothermal systems with the high-temperature environment. Yttria-stabilized zirconia sensors have also been used to investigate the pH of hydrothermal fluids in hot springs vents at midocean ridge. These sensors, however, are not sensitive below 200 degrees C. Zr/ZrO2 sensors have wider temperature range and can be severed as good alternative sensors for measuring the pH of hydrothermal fluids.
Real-Time Monitoring of Cellular Bioenergetics with a Multi-Analyte Screen-Printed Electrode
McKenzie, Jennifer R.; Cognata, Andrew C.; Davis, Anna N.; Wikswo, John P.; Cliffel, David E.
2016-01-01
Real-time monitoring of changes to cellular bioenergetics can provide new insights into mechanisms of action for disease and toxicity. This work describes the development of a multi-analyte screen-printed electrode for the detection of analytes central to cellular bioenergetics: glucose, lactate, oxygen, and pH. Platinum screen-printed electrodes were designed in-house and printed by Pine Research Instrumentation. Electrochemical plating techniques were used to form quasi-reference and pH electrodes. A Dimatix materials inkjet printer was used to deposit enzyme and polymer films to form sensors for glucose, lactate, and oxygen. These sensors were evaluated in bulk solution and microfluidic environments, and found to behave reproducibly and possess a lifetime of up to six weeks. Linear ranges and limits of detection for enzyme-based sensors were found to have an inverse relationship with enzyme loading, and iridium oxide pH sensors were found to have super-Nernstian responses. Preliminary measurements where the sensor was enclosed within a microfluidic channel with RAW 264.7 macrophages were performed to demonstrate the sensors’ capabilities for performing real-time microphysiometry measurements. PMID:26125545
Sensitive SERS-pH sensing in biological media using metal carbonyl functionalized planar substrates.
Kong, Kien Voon; Dinish, U S; Lau, Weber Kam On; Olivo, Malini
2014-04-15
Conventional nanoparticle based Surface enhanced Raman scattering (SERS) technique for pH sensing often fails due to the aggregation of particles when detecting in acidic medium or biosamples having high ionic strength. Here, We develop SERS based pH sensing using a novel Raman reporter, arene chromium tricarbonyl linked aminothiophenol (Cr(CO)3-ATP), functionalized onto a nano-roughened planar substrates coated with gold. Unlike the SERS spectrum of the ATP molecule that dominates in the 400-1700 cm(-1) region, which is highly interfered by bio-molecules signals, metal carbonyl-ATP (Cr(CO)3)-ATP) offers the advantage of monitoring the pH dependent strong CO stretching vibrations in the mid-IR (1800-2200 cm(-1)) range. Raman signal of the CO stretching vibrations at ~1820 cm(-1) has strong dependency on the pH value of the environment, where its peak undergo noticeable shift as the pH of the medium is varied from 3.0 to 9.0. The sensor showed better sensitivity in the acidic range of the pH. We also demonstrate the pH sensing in a urine sample, which has high ionic strength and our data closely correlate to the value obtained from conventional sensor. In future, this study may lead to a sensitive chip based pH sensing platform in bio-fluids for the early diagnosis of diseases. © 2013 Published by Elsevier B.V.
Li, Haixia; Dong, Hao; Yu, Mingming; Liu, Chunxia; Li, Zhanxian; Wei, Liuhe; Sun, Ling-Dong; Zhang, Hongyan
2017-09-05
It is crucial for cell physiology to keep the homeostasis of pH, and it is highly demanded yet challenging to develop luminescence resonance energy transfer (LRET)-based near-infrared (NIR) ratiometric luminescent sensor for the detection of pH fluctuation with NIR excitation. As promising energy donors for LRET, upconversion nanoparticles (UCNPs) have been widely used to fabricate nanosensors, but the relatively low LRET efficiency limits their application in bioassay. To improve the LRET efficiency, core/shell/shell structured β-NaGdF 4 @NaYF 4 :Yb,Tm@NaYF 4 UCNPs were prepared and decorated with hemicyanine dyes as an LRET-based NIR ratiometric luminescent pH fluctuation-nanosensor for the first time. The as-developed nanosensor not only exhibits good antidisturbance ability, but it also can reversibly sense pH and linearly sense pH in a range of 6.0-9.0 and 6.8-9.0 from absorption and upconversion emission spectra, respectively. In addition, the nanosensor displays low dark toxicity under physiological temperature, indicating good biocompatibility. Furthermore, live cell imaging results revealed that the sensor can selectively monitor pH fluctuation via ratiometric upconversion luminescence behavior.
Futagawa, Masato; Iwasaki, Taichi; Murata, Hiroaki; Ishida, Makoto; Sawada, Kazuaki
2012-01-01
Making several simultaneous measurements with different kinds of sensors at the same location in a solution is difficult because of crosstalk between the sensors. In addition, because the conditions at different locations in plant beds differ, in situ measurements in agriculture need to be done in small localized areas. We have fabricated a multimodal sensor on a small Si chip in which a pH sensor was integrated with electrical conductivity (EC) and temperature sensors. An ISFET with a Si(3)N(4) membrane was used for the pH sensor. For the EC sensor, the electrical conductivity between platinum electrodes was measured, and the temperature sensor was a p-n junction diode. These are some of the most important measurements required for controlling the conditions in plant beds. The multimodal sensor can be inserted into a plant bed for in situ monitoring. To confirm the absence of crosstalk between the sensors, we made simultaneous measurements of pH, EC, and temperature of a pH buffer solution in a plant bed. When the solution was diluted with hot or cold water, the real time measurements showed changes to the EC and temperature, but no change in pH. We also demonstrated that our sensor was capable of simultaneous in situ measurements in rock wool without being affected by crosstalk.
Futagawa, Masato; Iwasaki, Taichi; Murata, Hiroaki; Ishida, Makoto; Sawada, Kazuaki
2012-01-01
Making several simultaneous measurements with different kinds of sensors at the same location in a solution is difficult because of crosstalk between the sensors. In addition, because the conditions at different locations in plant beds differ, in situ measurements in agriculture need to be done in small localized areas. We have fabricated a multimodal sensor on a small Si chip in which a pH sensor was integrated with electrical conductivity (EC) and temperature sensors. An ISFET with a Si3N4 membrane was used for the pH sensor. For the EC sensor, the electrical conductivity between platinum electrodes was measured, and the temperature sensor was a p-n junction diode. These are some of the most important measurements required for controlling the conditions in plant beds. The multimodal sensor can be inserted into a plant bed for in situ monitoring. To confirm the absence of crosstalk between the sensors, we made simultaneous measurements of pH, EC, and temperature of a pH buffer solution in a plant bed. When the solution was diluted with hot or cold water, the real time measurements showed changes to the EC and temperature, but no change in pH. We also demonstrated that our sensor was capable of simultaneous in situ measurements in rock wool without being affected by crosstalk. PMID:22969403
Cavallaro, Gennara; Giammona, Gaetano; Pasotti, Luca; Pallavicini, Piersandro
2011-09-12
A new approach is presented to obtain fluorescent sensors for pH windows that work in water and under biomimetic conditions. A single molecule that features all-covalently linked components is used, thus making it capable of working as a fluorescent sensor with an OFF/ON/OFF response to pH value. The components are a tertiary amine, a pyridine, and a fluorophore (pyrene). The forms with both protonated bases or both neutral bases quench the pyrene fluorescence, whereas the form with the neutral pyridine and protonated amine groups is fluorescent. The molecular sensor is also equipped with a long alkyl chain to make it highly hydrophobic in all its protonated and unprotonated forms, that is, either when neutral or charged. Accordingly, it can be confined at any pH value either in traditional (i.e., low-molecular-weight) nonionic surfactant micelles or inside polymeric, biocompatible micellar containers. Relevant for future applications in vivo, thanks to its strong hydrophobicity, no leakage of the molecular sensor is observed from the polymeric biocompatible micelles. Due to the proximity of the pyridine and amine functions in the molecular structure and the poor hydration inside the micelles, the observed pK(a) values are low so that the ON window is positioned at very low pH values. However, the window can be shifted to biologically relevant values by comicellization of anionic species. In particular, in the micelles of the nonionic surfactant TritonX-100, a shift of the ON window to pH 4-6 is obtained by addition of the anionic sodium dodecyl sulphate surfactant, whose negative charge promotes the stability of the protonated forms of the pyridine and amine fragments. In the case of the polymeric micelles, we introduce the use of the amphiphilic polystyrene sulfonate anionic polyelectrolyte, the comicellization of which induces a shift and sharpening of the ON window that is centered at pH 4. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Metal Oxides and Ion-Exchanging Surfaces as pH Sensors in Liquids: State-of-the-Art and Outlook
Kurzweil, Peter
2009-01-01
Novel applications of online pH determinations at temperatures from -35 °C to 130 °C in technical and biological media, which are all but ideal aqueous solutions, require new approaches to pH monitoring. The glass electrode, introduced nearly hundred years ago, and chemical sensors based on field effect transistors (ISFET) show specific drawbacks with respect to handling and long-time stability. Proton sensitive metal oxides seem to be a promising and alternative to the state-of-the-art measuring methods, and might overcome some problems of classical hydrogen electrodes and reference electrodes. PMID:22408563
NASA Astrophysics Data System (ADS)
Azizah, N.; Hashim, U.; Arshad, M. K. Md.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Ayub, R. M.
2016-07-01
Titanium dioxide (TiO2) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of pH sensors using IDE nanocoated with TiO2 was studied in this paper. In this paper, a preliminary assessment of this intracellular sensor with electrical measurement under different pH levels. 3-aminopropyltriethoxysilane (APTES) was used to enhance the sensitivity of titanium dioxide layer as well as able to provide surface modification by undergoing protonation and deprotonation process. Different types of pH solution provide different resistivity and conductivity towards the surface. Base solution has the higher current compared to an acid solution. Amine and oxide functionalized TiO2 based IDE exhibit pH-dependent could be understood in terms of the change in surface charge during protonation and deprotonation. The simple fabrication process, high sensitivity, and fast response of the TiO2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.
A novel "modularized" optical sensor for pH monitoring in biological matrixes.
Liu, Xun; Zhang, Shang-Qing; Wei, Xing; Yang, Ting; Chen, Ming-Li; Wang, Jian-Hua
2018-06-30
A novel core-shell structure optical pH sensor is developed with upconversion nanoparticles (UCNPs) serving as the core and silica as the shell, followed by grafting bovineserumalbumin (BSA) as another shell via glutaraldehyde cross-linking. The obtained core-shell-shell structure is shortly termed as UCNPs@SiO 2 @BSA, and its surface provides a platform for loading various pH sensitive dyes, which are alike "modules" to make it feasible for measuring pHs within different pH ranges by simply regulating the type of dyes. Generally, a single pH sensitive dye is adopted to respond within a certain pH range. This study employs bromothymol blue (BTB) and rhodamine B (RhB) to facilitate their responses to pH variations within two ranges, i.e., pH 5.99-8.09 and pH 4.98-6.40, respectively, with detection by ratio-fluorescence protocol. The core-shell-shell structure offers superior sensitivity, which is tens of times more sensitive than those achieved by ratio-fluorescence approaches based on various nanostructures, and favorable stability is achieved in high ionic strength medium. In addition, this sensor exhibits superior photostability under continuous excitation at 980 nm. Thanks to the near infrared excitation in the core-shell-shell structure, it effectively avoids the self-fluorescence from biological samples and thus facilitates accurate sensing of pH in various biological sample matrixes. Copyright © 2018 Elsevier B.V. All rights reserved.
Metal-oxide thin-film transistor-based pH sensor with a silver nanowire top gate electrode
NASA Astrophysics Data System (ADS)
Yoo, Tae-Hee; Sang, Byoung-In; Wang, Byung-Yong; Lim, Dae-Soon; Kang, Hyun Wook; Choi, Won Kook; Lee, Young Tack; Oh, Young-Jei; Hwang, Do Kyung
2016-04-01
Amorphous InGaZnO (IGZO) metal-oxide-semiconductor thin-film transistors (TFTs) are one of the most promising technologies to replace amorphous and polycrystalline Si TFTs. Recently, TFT-based sensing platforms have been gaining significant interests. Here, we report on IGZO transistor-based pH sensors in aqueous medium. In order to achieve stable operation in aqueous environment and enhance sensitivity, we used Al2O3 grown by using atomic layer deposition (ALD) and a porous Ag nanowire (NW) mesh as the top gate dielectric and electrode layers, respectively. Such devices with a Ag NW mesh at the top gate electrode rapidly respond to the pH of solutions by shifting the turn-on voltage. Furthermore, the output voltage signals induced by the voltage shifts can be directly extracted by implantation of a resistive load inverter.
KUPSnet: Knowledge-based Ubiquitous and Persistent Sensor Network Testbed for Threat Assessment
2010-09-16
P. Sawant, M.S. Thesis, Wireless Sensor Network Testbed: Measurement and Analysis, August 2007. 2.3 Current Ph.D Students With two new PhD students...Students With two new MS students (Sana Agaskar and Ankit Agarwal) joining us in August 2010, we have seven M.S. students in this group. 1. Ashith...2010. [2] Qilian Liang, Xiuzhen Cheng, Sherwood Samn, “ NEW : Network-enabled Electronic Warfare for Target Recognition,” IEEE Trans on Aerospace and
Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor.
Tantama, Mathew; Hung, Yin Pun; Yellen, Gary
2011-07-06
Intracellular pH affects protein structure and function, and proton gradients underlie the function of organelles such as lysosomes and mitochondria. We engineered a genetically encoded pH sensor by mutagenesis of the red fluorescent protein mKeima, providing a new tool to image intracellular pH in live cells. This sensor, named pHRed, is the first ratiometric, single-protein red fluorescent sensor of pH. Fluorescence emission of pHRed peaks at 610 nm while exhibiting dual excitation peaks at 440 and 585 nm that can be used for ratiometric imaging. The intensity ratio responds with an apparent pK(a) of 6.6 and a >10-fold dynamic range. Furthermore, pHRed has a pH-responsive fluorescence lifetime that changes by ~0.4 ns over physiological pH values and can be monitored with single-wavelength two-photon excitation. After characterizing the sensor, we tested pHRed's ability to monitor intracellular pH by imaging energy-dependent changes in cytosolic and mitochondrial pH.
Matsuura, Koji; Asano, Yuka; Yamada, Akira; Naruse, Keiji
2013-02-18
Biofilm formation in microfluidic channels is difficult to detect because sampling volumes are too small for conventional turbidity measurements. To detect biofilm formation, we used an ion-sensitive field-effect transistor (ISFET) measurement system to measure pH changes in small volumes of bacterial suspension. Cells of Micrococcus luteus (M. luteus) were cultured in polystyrene (PS) microtubes and polymethylmethacrylate (PMMA)-based microfluidic channels laminated with polyvinylidene chloride. In microtubes, concentrations of bacteria and pH in the suspension were analyzed by measuring turbidity and using an ISFET sensor, respectively. In microfluidic channels containing 20 μL of bacterial suspension, we measured pH changes using the ISFET sensor and monitored biofilm formation using a microscope. We detected acidification and alkalinization phases of M. luteus from the ISFET sensor signals in both microtubes and microfluidic channels. In the alkalinization phase, after 2 day culture, dense biofilm formation was observed at the bottom of the microfluidic channels. In this study, we used an ISFET sensor to detect biofilm formation in clinical and industrial microfluidic environments by detecting alkalinization of the culture medium.
Chen, Xu; Sun, Xueke; Xu, Wen; Pan, Gencai; Zhou, Donglei; Zhu, Jinyang; Wang, He; Bai, Xue; Dong, Biao; Song, Hongwei
2018-01-18
Intracellular pH sensing is of importance and can be used as an indicator for monitoring the evolution of various diseases and the health of cells. Here, we developed a new class of surface-functionalized MXene quantum dots (QDs), Ti 3 C 2 , by the sonication cutting and hydrothermal approach and further explored their intracellular pH sensing. The functionalized Ti 3 C 2 QDs exhibit bright excitation-dependent blue photoluminescence (PL) originating from the size effect and surface defects. Meanwhile, Ti 3 C 2 QDs demonstrate a high PL response induced by the deprotonation of the surface defects. Furthermore, combining the highly pH sensitive Ti 3 C 2 QDs with the pH insensitive [Ru(dpp) 3 ]Cl 2 , we developed a ratiometric pH sensor to quantitatively monitor the intracellular pH values. These novel MXene quantum dots can serve as a promising platform for developing practical fluorescent nanosensors.
Hu, Bo; Tu, Yuhai
2013-07-02
It is essential for bacteria to find optimal conditions for their growth and survival. The optimal levels of certain environmental factors (such as pH and temperature) often correspond to some intermediate points of the respective gradients. This requires the ability of bacteria to navigate from both directions toward the optimum location and is distinct from the conventional unidirectional chemotactic strategy. Remarkably, Escherichia coli cells can perform such a precision sensing task in pH taxis by using the same chemotaxis machinery, but with opposite pH responses from two different chemoreceptors (Tar and Tsr). To understand bacterial pH sensing, we developed an Ising-type model for a mixed cluster of opposing receptors based on the push-pull mechanism. Our model can quantitatively explain experimental observations in pH taxis for various mutants and wild-type cells. We show how the preferred pH level depends on the relative abundance of the competing sensors and how the sensory activity regulates the behavioral response. Our model allows us to make quantitative predictions on signal integration of pH and chemoattractant stimuli. Our study reveals two general conditions and a robust push-pull scheme for precision sensing, which should be applicable in other adaptive sensory systems with opposing gradient sensors. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Imaging of pH in vivo using hyperpolarized 13C-labelled zymonic acid
Düwel, Stephan; Hundshammer, Christian; Gersch, Malte; Feuerecker, Benedikt; Steiger, Katja; Buck, Achim; Walch, Axel; Haase, Axel; Glaser, Steffen J.; Schwaiger, Markus; Schilling, Franz
2017-01-01
Natural pH regulatory mechanisms can be overruled during several pathologies such as cancer, inflammation and ischaemia, leading to local pH changes in the human body. Here we demonstrate that 13C-labelled zymonic acid (ZA) can be used as hyperpolarized magnetic resonance pH imaging sensor. ZA is synthesized from [1-13C]pyruvic acid and its 13C resonance frequencies shift up to 3.0 p.p.m. per pH unit in the physiological pH range. The long lifetime of the hyperpolarized signal enhancement enables monitoring of pH, independent of concentration, temperature, ionic strength and protein concentration. We show in vivo pH maps within rat kidneys and subcutaneously inoculated tumours derived from a mammary adenocarcinoma cell line and characterize ZA as non-toxic compound predominantly present in the extracellular space. We suggest that ZA represents a reliable and non-invasive extracellular imaging sensor to localize and quantify pH, with the potential to improve understanding, diagnosis and therapy of diseases characterized by aberrant acid-base balance. PMID:28492229
A SERS-based pH sensor utilizing 3-amino-5-mercapto-1,2,4-triazole functionalized Ag nanoparticles.
Piotrowski, Piotr; Wrzosek, Beata; Królikowska, Agata; Bukowska, Jolanta
2014-03-07
We report the first use of 3-amino-5-mercapto-1,2,4-triazole (AMT) to construct a surface-enhanced Raman scattering (SERS) based pH nano- and microsensor, utilizing silver nanoparticles. We optimize the procedure of homogenous attachment of colloidal silver to micrometer-sized silica beads via an aminosilane linker. Such micro-carriers are potential optically trappable SERS microprobes. It is demonstrated that the SERS spectrum of AMT is strongly dependent on the pH of the surroundings, as the transformation between two different adsorption modes, upright (A form) and lying flat (B form) orientation, is provoked by pH variation. The possibility of tuning the nanosensor working range by changing the concentration of AMT in the surrounding solution is demonstrated. A strong correlation between the pH response of the nanosensor and the AMT concentration in solution is found to be controlled by the interactions between the surface and solution molecules. In the absence of the AMT monomer, the performance of both the nano- and microsensor is shifted substantially to the strongly acidic pH range, from 1.5 to 2.5 and from 1.0 to 2.0, respectively, which is quite unique even for SERS-based sensors.
González, Wendy; Riedelsberger, Janin; Morales-Navarro, Samuel E; Caballero, Julio; Alzate-Morales, Jans H; González-Nilo, Fernando D; Dreyer, Ingo
2012-02-15
The uptake of potassium ions (K+) accompanied by an acidification of the apoplasm is a prerequisite for stomatal opening. The acidification (approximately 2-2.5 pH units) is perceived by voltage-gated inward potassium channels (K(in)) that then can open their pores with lower energy cost. The sensory units for extracellular pH in stomatal K(in) channels are proposed to be histidines exposed to the apoplasm. However, in the Arabidopsis thaliana stomatal K(in) channel KAT1, mutations in the unique histidine exposed to the solvent (His267) do not affect the pH dependency. We demonstrate in the present study that His267 of the KAT1 channel cannot sense pH changes since the neighbouring residue Phe266 shifts its pKa to undetectable values through a cation-π interaction. Instead, we show that Glu240 placed in the extracellular loop between transmembrane segments S5 and S6 is involved in the extracellular acid activation mechanism. Based on structural models we propose that this region may serve as a molecular link between the pH- and the voltage-sensor. Like Glu240, several other titratable residues could contribute to the pH-sensor of KAT1, interact with each other and even connect such residues far away from the voltage-sensor with the gating machinery of the channel.
pH Mapping on Tooth Surfaces for Quantitative Caries Diagnosis Using Micro Ir/IrOx pH Sensor.
Ratanaporncharoen, Chindanai; Tabata, Miyuki; Kitasako, Yuichi; Ikeda, Masaomi; Goda, Tatsuro; Matsumoto, Akira; Tagami, Junji; Miyahara, Yuji
2018-04-03
A quantitative diagnostic method for dental caries would improve oral health, which directly affects the quality of life. Here we describe the preparation and application of Ir/IrOx pH sensors, which are used to measure the surface pH of dental caries. The pH level is used as an indicator to distinguish between active and arrested caries. After a dentist visually inspected and defined 18 extracted dentinal caries at various positions as active or arrested caries, the surface pH values of sound and caries areas were directly measured with an Ir/IrOx pH sensor with a diameter of 300 μm as a dental explorer. The average pH values of the sound root, the arrested caries, and active caries were 6.85, 6.07, and 5.30, respectively. The pH obtained with an Ir/IrOx sensor was highly correlated with the inspection results by the dentist, indicating that the types of caries were successfully categorized. This caries testing technique using a micro Ir/IrOx pH sensor provides an accurate quantitative caries evaluation and has potential in clinical diagnosis.
Deletion of the pH sensor GPR4 decreases renal acid excretion.
Sun, Xuming; Yang, Li V; Tiegs, Brian C; Arend, Lois J; McGraw, Dennis W; Penn, Raymond B; Petrovic, Snezana
2010-10-01
Proton receptors are G protein-coupled receptors that accept protons as ligands and function as pH sensors. One of the proton receptors, GPR4, is relatively abundant in the kidney, but its potential role in acid-base homeostasis is unknown. In this study, we examined the distribution of GPR4 in the kidney, its function in kidney epithelial cells, and the effects of its deletion on acid-base homeostasis. We observed GPR4 expression in the kidney cortex, in the outer and inner medulla, in isolated kidney collecting ducts, and in cultured outer and inner medullary collecting duct cells (mOMCD1 and mIMCD3). Cultured mOMCD1 cells exhibited pH-dependent accumulation of intracellular cAMP, characteristic of GPR4 activation; GPR4 knockdown attenuated this accumulation. In vivo, deletion of GPR4 decreased net acid secretion by the kidney and resulted in a nongap metabolic acidosis, indicating that GPR4 is required to maintain acid-base homeostasis. Collectively, these findings suggest that GPR4 is a pH sensor with an important role in regulating acid secretion in the kidney collecting duct.
Development of a Dual Solid-State pH-AT Sensor
NASA Astrophysics Data System (ADS)
Briggs, E.; Martz, T. R.; Kummel, A.; Sandoval, S.; Erten, A.
2016-02-01
Here we report on our progress toward development of a solid state, reagentless sensor capable of rapid and simultaneous measurement of pH and Total Alkalinity (AT) using ion sensitive field effect transistor (ISFET) technology. The goal of this work is to provide a means of continuous, direct measurement of the seawater carbon dioxide system through measurement of two "master variables" (pH and AT). ISFET-based pH sensors that achieve 0.001 precision are presently in widespread use on autonomous oceanographic platforms. Modifications to an ISFET allow a nL-scale acid-base titration of total alkalinity to be carried out in 10 s. Titrant, H+, is generated through the electrolysis of water on the surface of the chip eliminating the requirement of external reagents. Initial characterization has been performed titrating individual components (i.e. OH-, HCO3-, CO32-, PO43-) of seawater AT. Based on previous work by others in simple acid-base systems and our preliminary results in seawater we feel that it is within reach to set a benchmark goal of 10 μmol kg-1 precision in AT. The estimated resolution of this dual pH-AT sensor translates to approximately 0.5 and 0.7% error in Total Dissolved Inorganic Carbon (CT) and pCO2 respectively and would have a number of immediate applications for investigating biogeochemical processes where strong gradients exist over short distances and in rapidly changing environments.
Empirical algorithms to estimate water column pH in the Southern Ocean
NASA Astrophysics Data System (ADS)
Williams, N. L.; Juranek, L. W.; Johnson, K. S.; Feely, R. A.; Riser, S. C.; Talley, L. D.; Russell, J. L.; Sarmiento, J. L.; Wanninkhof, R.
2016-04-01
Empirical algorithms are developed using high-quality GO-SHIP hydrographic measurements of commonly measured parameters (temperature, salinity, pressure, nitrate, and oxygen) that estimate pH in the Pacific sector of the Southern Ocean. The coefficients of determination, R2, are 0.98 for pH from nitrate (pHN) and 0.97 for pH from oxygen (pHOx) with RMS errors of 0.010 and 0.008, respectively. These algorithms are applied to Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) biogeochemical profiling floats, which include novel sensors (pH, nitrate, oxygen, fluorescence, and backscatter). These algorithms are used to estimate pH on floats with no pH sensors and to validate and adjust pH sensor data from floats with pH sensors. The adjusted float data provide, for the first time, seasonal cycles in surface pH on weekly resolution that range from 0.05 to 0.08 on weekly resolution for the Pacific sector of the Southern Ocean.
An iridium oxide microelectrode for monitoring acute local pH changes of endothelial cells.
Ng, Shu Rui; O'Hare, Danny
2015-06-21
pH sensors were fabricated by anodically electrodepositing iridium oxide films (AEIROFs) onto microelectrodes on chips and coated with poly(ethyleneimine) (PEI) for mechanical stability. These demonstrate super-Nernstian response to pH from pH 4.0 to 7.7 in chloride-free phosphate buffer. The surface of the chip was coated with fibronectin for the attachment of porcine aortic endothelial cells (PAECs). The working capability of the pH sensor for monitoring acute local pH changes was investigated by stimulating the PAECs with thrombin. Our results show that thrombin induced acute extracellular acidification of PAECs and dissolution of fibronectin, causing the local pH to decrease. The use of PD98059, a mitogen-activated protein kinase (MAPK) inhibitor, reduced extracellular acidification and an increase in local pH was observed. This study shows that our pH sensors can facilitate the investigation of acute cellular responses to stimulation by monitoring the real-time, local pH changes of cells attached to the sensors.
Engineering a pH responsive pore forming protein.
Kisovec, Matic; Rezelj, Saša; Knap, Primož; Cajnko, Miša Mojca; Caserman, Simon; Flašker, Ajda; Žnidaršič, Nada; Repič, Matej; Mavri, Janez; Ruan, Yi; Scheuring, Simon; Podobnik, Marjetka; Anderluh, Gregor
2017-02-08
Listeriolysin O (LLO) is a cytolysin capable of forming pores in cholesterol-rich lipid membranes of host cells. It is conveniently suited for engineering a pH-governed responsiveness, due to a pH sensor identified in its structure that was shown before to affect its stability. Here we introduced a new level of control of its hemolytic activity by making a variant with hemolytic activity that was pH-dependent. Based on detailed structural analysis coupled with molecular dynamics and mutational analysis, we found that the bulky side chain of Tyr406 allosterically affects the pH sensor. Molecular dynamics simulation further suggested which other amino acid residues may also allosterically influence the pH-sensor. LLO was engineered to the point where it can, in a pH-regulated manner, perforate artificial and cellular membranes. The single mutant Tyr406Ala bound to membranes and oligomerized similarly to the wild-type LLO, however, the final membrane insertion step was pH-affected by the introduced mutation. We show that the mutant toxin can be activated at the surface of artificial membranes or living cells by a single wash with slightly acidic pH buffer. Y406A mutant has a high potential in development of novel nanobiotechnological applications such as controlled release of substances or as a sensor of environmental pH.
Engineering a pH responsive pore forming protein
NASA Astrophysics Data System (ADS)
Kisovec, Matic; Rezelj, Saša; Knap, Primož; Cajnko, Miša Mojca; Caserman, Simon; Flašker, Ajda; Žnidaršič, Nada; Repič, Matej; Mavri, Janez; Ruan, Yi; Scheuring, Simon; Podobnik, Marjetka; Anderluh, Gregor
2017-02-01
Listeriolysin O (LLO) is a cytolysin capable of forming pores in cholesterol-rich lipid membranes of host cells. It is conveniently suited for engineering a pH-governed responsiveness, due to a pH sensor identified in its structure that was shown before to affect its stability. Here we introduced a new level of control of its hemolytic activity by making a variant with hemolytic activity that was pH-dependent. Based on detailed structural analysis coupled with molecular dynamics and mutational analysis, we found that the bulky side chain of Tyr406 allosterically affects the pH sensor. Molecular dynamics simulation further suggested which other amino acid residues may also allosterically influence the pH-sensor. LLO was engineered to the point where it can, in a pH-regulated manner, perforate artificial and cellular membranes. The single mutant Tyr406Ala bound to membranes and oligomerized similarly to the wild-type LLO, however, the final membrane insertion step was pH-affected by the introduced mutation. We show that the mutant toxin can be activated at the surface of artificial membranes or living cells by a single wash with slightly acidic pH buffer. Y406A mutant has a high potential in development of novel nanobiotechnological applications such as controlled release of substances or as a sensor of environmental pH.
CIP (cleaning-in-place) stability of AlGaN/GaN pH sensors.
Linkohr, St; Pletschen, W; Schwarz, S U; Anzt, J; Cimalla, V; Ambacher, O
2013-02-20
The CIP stability of pH sensitive ion-sensitive field-effect transistors based on AlGaN/GaN heterostructures was investigated. For epitaxial AlGaN/GaN films with high structural quality, CIP tests did not degrade the sensor surface and pH sensitivities of 55-58 mV/pH were achieved. Several different passivation schemes based on SiO(x), SiN(x), AlN, and nanocrystalline diamond were compared with special attention given to compatibility to standard microelectronic device technologies as well as biocompatibility of the passivation films. The CIP stability was evaluated with a main focus on the morphological stability. All stacks containing a SiO₂ or an AlN layer were etched by the NaOH solution in the CIP process. Reliable passivations withstanding the NaOH solution were provided by stacks of ICP-CVD grown and sputtered SiN(x) as well as diamond reinforced passivations. Drift levels about 0.001 pH/h and stable sensitivity over several CIP cycles were achieved for optimized sensor structures. Copyright © 2012 Elsevier B.V. All rights reserved.
Lim, Cheol-Min; Lee, In-Kyu; Lee, Ki Joong; Oh, Young Kyoung; Shin, Yong-Beom; Cho, Won-Ju
2017-01-01
This work describes the construction of a sensitive, stable, and label-free sensor based on a dual-gate field-effect transistor (DG FET), in which uniformly distributed and size-controlled silicon nanowire (SiNW) arrays by nanoimprint lithography act as conductor channels. Compared to previous DG FETs with a planar-type silicon channel layer, the constructed SiNW DG FETs exhibited superior electrical properties including a higher capacitive-coupling ratio of 18.0 and a lower off-state leakage current under high-temperature stress. In addition, while the conventional planar single-gate (SG) FET- and planar DG FET-based pH sensors showed the sensitivities of 56.7 mV/pH and 439.3 mV/pH, respectively, the SiNW DG FET-based pH sensors showed not only a higher sensitivity of 984.1 mV/pH, but also a lower drift rate of 0.8% for pH-sensitivity. This demonstrates that the SiNW DG FETs simultaneously achieve high sensitivity and stability, with significant potential for future biosensing applications.
NASA Astrophysics Data System (ADS)
Lim, Cheol-Min; Lee, In-Kyu; Lee, Ki Joong; Oh, Young Kyoung; Shin, Yong-Beom; Cho, Won-Ju
2017-12-01
This work describes the construction of a sensitive, stable, and label-free sensor based on a dual-gate field-effect transistor (DG FET), in which uniformly distributed and size-controlled silicon nanowire (SiNW) arrays by nanoimprint lithography act as conductor channels. Compared to previous DG FETs with a planar-type silicon channel layer, the constructed SiNW DG FETs exhibited superior electrical properties including a higher capacitive-coupling ratio of 18.0 and a lower off-state leakage current under high-temperature stress. In addition, while the conventional planar single-gate (SG) FET- and planar DG FET-based pH sensors showed the sensitivities of 56.7 mV/pH and 439.3 mV/pH, respectively, the SiNW DG FET-based pH sensors showed not only a higher sensitivity of 984.1 mV/pH, but also a lower drift rate of 0.8% for pH-sensitivity. This demonstrates that the SiNW DG FETs simultaneously achieve high sensitivity and stability, with significant potential for future biosensing applications.
Chien, Yun-Shan; Yang, Po-Yu; Tsai, Wan-Lin; Li, Yu-Ren; Chou, Chia-Hsin; Chou, Jung-Chuan; Cheng, Huang-Chung
2012-07-01
A novel, simple and low-temperature ultrasonic spray method was developed to fabricate the multi-walled carbon-nanotubes (MWCNTs) based extended-gate field-effect transistors (EGFETs) as the pH sensor. With an acid-treated process, the chemically functionalized two-dimensional MWCNT network could provide plenty of functional groups which exhibit hydrophilic property and serve as hydrogen sensing sites. For the first time, the EGFET using a MWCNT structure could achieve a wide sensing rage from pH = 1 to pH = 13. Furthermore, the pH sensitivity and linearity values of the CNT pH-EGFET devices were enhanced to 51.74 mV/pH and 0.9948 from pH = 1 to pH = 13 while the sprayed deposition reached 50 times. The sensing properties of hydrogen and hydroxyl ions show significantly dependent on the sprayed deposition times, morphologies, crystalline and chemical bonding of acid-treated MWCNT. These results demonstrate that the MWCNT-EGFETs are very promising for the applications in the pH and biomedical sensors.
Solid State Sensor for Simultaneous Measurement of Total Alkalinity and pH of Seawater.
Briggs, Ellen M; Sandoval, Sergio; Erten, Ahmet; Takeshita, Yuichiro; Kummel, Andrew C; Martz, Todd R
2017-09-22
A novel design is demonstrated for a solid state, reagent-less sensor capable of rapid and simultaneous measurement of pH and Total Alkalinity (A T ) using ion sensitive field effect transistor (ISFET) technology to provide a simplified means of characterization of the aqueous carbon dioxide system through measurement of two "master variables": pH and A T . ISFET-based pH sensors that achieve 0.001 precision are widely used in various oceanographic applications. A modified ISFET is demonstrated to perform a nanoliter-scale acid-base titration of A T in under 40 s. This method of measuring A T , a Coulometric Diffusion Titration, involves electrolytic generation of titrant, H + , through the electrolysis of water on the surface of the chip via a microfabricated electrode eliminating the requirement of external reagents. Characterization has been performed in seawater as well as titrating individual components (i.e., OH - , HCO 3 - , CO 3 2- , B(OH) 4 - , PO 4 3- ) of seawater A T . The seawater measurements are consistent with the design in reaching the benchmark goal of 0.5% precision in A T over the range of seawater A T of ∼2200-2500 μmol kg -1 which demonstrates great potential for autonomous sensing.
Majdinasab, Marjan; Hosseini, Seyed Mohammad Hashem; Sepidname, Marziyeh; Negahdarifar, Manizheh; Li, Peiwu
2018-05-01
Alginate is a non-toxic, renewable, and linear copolymer obtained from the brown algae Laminaria digitata that can be easily shaped into beads. Its good gel forming properties have made it useful for entrapping food and pharmaceutical ingredients. In this study, alginate beads were used in a novel application as a colorimetric sensor in food intelligent packaging. Colorimetric sensor was developed through entrapping red cabbage extract as a pH indicator in alginate beads. The pH indicator beads were used in rainbow trout packaging for monitoring fillets spoilage. Color change of beads during fish storage was measured using the CIELab method. The alginate bead colorimetric sensor is validated by measuring total volatile basic nitrogen (TVB-N) levels and microbial populations in fish samples. Moreover, peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) were evaluated during storage. Results indicated that increasing the bacterial population during storage and production of proteolytic enzymes resulted in protein degradation, accumulation of volatile amine compounds, increase in the pH and finally color change of alginate beads. The values of TVB-N, pH, PV and TBARS increased with time of storage. The results of TVB-N and microbial growth were in accordance with color change of beads and CIELab data. Therefore, the proposed system enjoys a high sensitivity to pH variations and is capable of monitoring the spoilage of fish or other protein-rich products through its wide range of color changes. The alginate beads containing the red cabbage extract can, thus, be used as a low-cost colorimetric sensor for intelligent packaging applications.
Liu, Xuan; Wang, Nianyue; Zhao, Wei; Jiang, Hui
2015-02-01
This work reports for the first time a potential-based nano-electrochemiluminescent (ECL) pH sensor, using anatase TiO2 nanocrystals (NCs) as the ECL probe. The first ECL peak potential of the TiO2 NCs shifted negatively with increasing pH, showing a linear range from -0.47 V (vs Ag/AgCl) at pH 3 to -1.06 V at pH 10. This phenomenon was attributed to the absorption of 'potential-determining ions' of OH(-) on the surface of TiO2 NCs, leading to larger impedance of the electron injection. Other common 'potential-determining ions', such as phosphate, induced a slight potential shift of 0.03 V at a concentration of 0.1 M. Using urease as an enzyme model, a urea biosensor was developed by the simultaneous modification of urease and TiO2 NCs on indium-tin oxide (ITO) electrodes. The biosensor, measured on the basis of the pH increase caused by the enzyme catalysis reaction, had a linear range of 0.01-2.0 mM, with a potential shift of 0.175 V. The as-prepared pH sensor, which has simple construction procedures and acceptable sensitivity and selectivity, may provide new avenues for the construction of ECL bioanalytical methodologies. Copyright © 2014 John Wiley & Sons, Ltd.
Consolati, Tanja; Bolivar, Juan M; Petrasek, Zdenek; Berenguer, Jose; Hidalgo, Aurelio; Guisán, Jose M; Nidetzky, Bernd
2018-02-28
The pH is fundamental to biological function and its measurement therefore crucial across all biosciences. Unlike homogenous bulk solution, solids often feature internal pH gradients due to partition effects and confined biochemical reactions. Thus, a full spatiotemporal mapping for pH characterization in solid materials with biological systems embedded in them is essential. In here, therefore, a fully biocompatible methodology for real-time optical sensing of pH within porous materials is presented. A genetically encoded ratiometric pH sensor, the enhanced superfolder yellow fluorescent protein (sYFP), is used to functionalize the internal surface of different materials, including natural and synthetic organic polymers as well as silica frameworks. By using controlled, tailor-made immobilization, sYFP is homogenously distributed within these materials and so enables, via self-referenced imaging analysis, pH measurements in high accuracy and with useful spatiotemporal resolution. Evolution of internal pH is monitored in consequence of a proton-releasing enzymatic reaction, the hydrolysis of penicillin by a penicillin acylase, taking place in solution or confined to the solid surface of the porous matrix. Unlike optochemical pH sensors, which often interfere with biological function, labeling with sYFP enables pH sensing without altering the immobilized enzyme's properties in any of the materials used. Fast response of sYFP to pH change permits evaluation of biochemical kinetics within the solid materials. Thus, pH sensing based on immobilized sYFP represents a broadly applicable technique to the study of biology confined to the internally heterogeneous environment of solid matrices.
Schulz, Volker; Guenther, Margarita; Gerlach, Gerald; Magda, Jules J.; Tathireddy, Prashant; Rieth, Loren; Solzbacher, Florian
2010-01-01
Environmental responsive or smart hydrogels show a volume phase transition due to changes of external stimuli such as pH or ionic strength of an ambient solution. Thus, they are able to convert reversibly chemical energy into mechanical energy and therefore they are suitable as sensitive material for integration in biochemical microsensors and MEMS devices. In this work, micro-fabricated silicon pressure sensor chips with integrated piezoresistors were used as transducers for the conversion of mechanical work into an appropriate electrical output signal due to the deflection of a thin silicon bending plate. Within this work two different sensor designs have been studied. The biocompatible poly(hydroxypropyl methacrylate-N,N-dimethylaminoethyl methacrylate-tetra-ethyleneglycol dimethacrylate) (HPMA-DMA-TEGDMA) was used as an environmental sensitive element in piezoresistive biochemical sensors. This polyelectrolytic hydrogel shows a very sharp volume phase transition at pH values below about 7.4 which is in the range of the physiological pH. The sensor's characteristic response was measured in-vitro for changes in pH of PBS buffer solution at fixed ionic strength. The experimental data was applied to the Hill equation and the sensor sensitivity as a function of pH was calculated out of it. The time-dependent sensor response was measured for small changes in pH, whereas different time constants have been observed. The same sensor principal was used for sensing of ionic strength. The time-dependent electrical sensor signal of both sensors was measured for variations in ionic strength at fixed pH value using PBS buffer solution. Both sensor types showed an asymmetric swelling behavior between the swelling and the deswelling cycle as well as different time constants, which was attributed to the different nature of mechanical hydrogel-confinement inside the sensor. PMID:21152365
NASA Astrophysics Data System (ADS)
Deng, Shijie; McAuliffe, Michael A. P.; Salaj-Kosla, Urszula; Wolfe, Raymond; Lewis, Liam; Huyet, Guillaume
2017-02-01
In this work, a low cost optical pH sensing system that allows for small volume sample measurements was developed. The system operates without the requirement of laboratory instruments (e.g. laser source, spectrometer and CCD camera), this lowers the cost and enhances the portability. In the system, an optical arrangement employing a dichroic filter was used which allows the excitation and emission light to be transmitted using a single fibre thus improving the collection efficiency of the fluorescence signal and also the ability of inserting measurement. The pH sensor in the system uses bromocresol purple as the indicator which is immobilised by sol-gel technology through a dip-coating process. The sensor material was coated on the tip of a 1 mm diameter optical fibre which makes it possible for inserting into very small volume samples to measure the pH. In the system, a LED with a peak emission wavelength of 465 nm is used as the light source and a silicon photo-detector is used to detect the uorescence signal. Optical filters are applied after the LED and in front of the photo-detector to separate the excitation and emission light. The fluorescence signal collected is transferred to a PC through a DAQ and processed by a Labview-based graphic-user-interface (GUI). Experimental results show that the system is capable of sensing pH values from 5.3 to 8.7 with a linear response of R2=0.969. Results also show that the response times for a pH changes from 5.3 to 8.7 is approximately 150 s and for a 0.5 pH changes is approximately 50 s.
Nanosensor for detection of glucose
NASA Astrophysics Data System (ADS)
Del Villar, Ignacio; Matias, Ignacio R.; Arregui, Francisco J.
2004-06-01
A novel fiber-optic sensor sensitive to glucose has been designed based on electrostatic self-assembly method. The polycation of the structure is a mixture of poly(allylamine hydrochloride) (PAH) and Prussian Blue, whereas the polyanion is well-known enzyme gluocose oxidase (GOx). The range of glucose concentration that can be measured is submilimolar and is located between 0.1 and 2 mM. Measures are based on a new detection scheme based on the slope of the change of signal produced by injection of glucose, yielding to a linear response. The sensor responses in a PH range between 4 and 7.4, which includes the physiological PH of blood. Some rules for esitmation of the refractive index of the material deposited and the thickness of bilayers are also given.
Badr, Ibrahim H A; Meyerhoff, Mark E
2005-10-15
More detailed analytical studies of a new fluoride-selective optical sensor based on the use of aluminum(III)-octaethylporphyrin and a lipophilic pH indicator (4',5'-dibromofluorescein octadecyl ester; ETH-7075) within a thin plasticized poly(vinyl chloride) film are reported. The sensor exhibits extraordinary optical selectivity for fluoride over a wide range of other anions, including anions with far more positive free energies of hydration (e.g., perchlorate, thiocyanate, nitrate, etc.). UV-visible spectrophotometric studies of the sensing films indicate that fluoride interacts with the Al(III) center of the porphyrin structure, yielding both a change in the Soret band lambda(max) of the porphyrin and a change in the protonation state of the pH indicator within the film. The same change in spectral properties of the metalloporphyrin occurs in the absence of added pH indicator or with added tetraphenylborate derivative anionic sites, but optical responses to fluoride in these cases are shown to be irreversible. The presence of the pH indicator and the simultaneous fluoride/proton coextraction equilibrium chemistry is shown to greatly enhance the reversibility of fluoride binding to the Al(III) porphyrin. Optical response toward fluoride can be observed in the range of 0.1 microM-1.6 mM. Optical selectivity coefficients of <10(-6) for common anions (e.g., sulfate, chloride, nitrate, etc.) and <10(-4) for perchlorate and thiocyanate are obtained. Measurements of fluoride in drinking water via the new optical sensor are shown to correlate well with values obtained for the same samples using a classical LaF3-based fluoride ion-selective electrode method.
Badr, Ibrahim H. A.; Meyerhoff, Mark E.
2008-01-01
More detailed analytical studies of a new fluoride selective optical sensor based on the use of aluminum(III)-octaethylporphyrin and a lipophilic pH indicator (4′,5′-dibromofluorescein octadecyl ester; ETH-7075) within a thin plasticized poly(vinyl chloride) film are reported. The sensor exhibits extraordinary optical selectivity for fluoride over a wide range of other anions, including anions with far more positive free energies of hydration (e.g., perchlorate, thiocyanate, nitrate, etc.). UV-VIS spectrophotometric studies of the sensing films indicate that fluoride interacts with the Al(III) center of the porphyrin structure, yielding both a change in the Soret band λmax of the porphyrin as well as a change in the protonation state of the pH indicator within the film. The same change in spectral properties of the metalloporphyrin occurs in the absence of added pH indicator or with added tetraphenylborate derivative anionic sites, but optical responses to fluoride in these cases are shown to be irreversible. The presence of the pH indicator and the simultaneous fluoride/proton coextraction equilibrium chemistry is shown to greatly enhance the reversibility of fluoride binding to the Al(III) porphyrin. Optical response toward fluoride can be observed in the range of 0.1 μM to 1.6 mM. Optical selectivity coefficients of < 10−6 for common anions (e.g., sulfate, chloride, nitrate etc.) and < 10−4 for perchlorate and thiocyanate are obtained. Measurements of fluoride in drinking water via the new optical sensor are shown to correlate well with values obtained for the same samples using a classical LaF3 based fluoride ion-selective electrode method. PMID:16223262
High Sensitive pH Sensor Based on AlInN/GaN Heterostructure Transistor.
Dong, Yan; Son, Dong-Hyeok; Dai, Quan; Lee, Jun-Hyeok; Won, Chul-Ho; Kim, Jeong-Gil; Chen, Dunjun; Lee, Jung-Hee; Lu, Hai; Zhang, Rong; Zheng, Youdou
2018-04-24
The AlInN/GaN high-electron-mobility-transistor (HEMT) indicates better performances compared with the traditional AlGaN/GaN HEMTs. The present work investigated the pH sensor functionality of an analogous HEMT AlInN/GaN device with an open gate. It was shown that the Al 0.83 In 0.17 N/GaN device demonstrates excellent pH sense functionality in aqueous solutions, exhibiting higher sensitivity (−30.83 μA/pH for AlInN/GaN and −4.6 μA/pH for AlGaN/GaN) and a faster response time, lower degradation and good stability with respect to the AlGaN/GaN device, which is attributed to higher two-dimensional electron gas (2DEG) density and a thinner barrier layer in Al 0.83 In 0.17 N/GaN owning to lattice matching. On the other hand, the open gate geometry was found to affect the pH sensitivity obviously. Properly increasing the width and shortening the length of the open gate area could enhance the sensitivity. However, when the open gate width is too larger or too small, the pH sensitivity would be suppressed conversely. Designing an optimal ratio of the width to the length is important for achieving high sensitivity. This work suggests that the AlInN/GaN-based 2DEG carrier modulated devices would be good candidates for high-performance pH sensors and other related applications.
Go, Jonghyun; Nair, Pradeep R; Reddy, Bobby; Dorvel, Brian; Bashir, Rashid; Alam, Muhammad A
2012-07-24
We offer a comprehensive theory of pH response of a coupled ISFET sensor to show that the maximum achievable response is given by ΔV/ΔpH = 59 mV/pH × α, where 59 mV/pH is the intrinsic Nernst response and α an amplification factor that depends on the geometrical and electrical properties of the sensor and transducer nodes. While the intrinsic Nernst response of an electrolyte/site-binding interface is fundamental and immutable, we show that by using channels of different materials, areas, and bias conditions, the extrinsic sensor response can be increased dramatically beyond the Nernst limit. We validate the theory by measuring the pH response of a Si nanowire-nanoplate transistor pair that achieves >10 V/pH response and show the potential of the scheme to achieve (asymptotically) the theoretical lower limit of signal-to-noise ratio for a given configuration. We suggest the possibility of an even larger pH response based on recent trends in heterogeneous integration on the Si platform.
In, Byunggyu; Hwang, Gi Won; Lee, Keun-Hyeung
2016-09-15
A fluorescent sensor based on a tripeptide (SerGluGlu) with a dansyl fluorophore detected selectively Al(III) among 16 metal ions in aqueous buffered solutions without any organic cosolvent. The peptide-based sensor showed a highly sensitive turn on response to aluminium ion with high binding affinity (1.84×10(4)M(-1)) in aqueous buffered solutions. The detection limit (230nM, 5.98ppb) of the peptide-based sensor was much lower than the maximum allowable level (7.41μM) of aluminium ions in drinking water demanded by EPA. The binding mode of the peptide sensor with aluminium ions was characterized using ESI mass spectrometry, NMR titration, and pH titration experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Design of PH sensor signal acquisition and display system
NASA Astrophysics Data System (ADS)
Qian, Huifa; Zhang, Quanzhu; Deng, Yonghong
2017-06-01
With the continuous development of sensor manufacturing technology, how to better deal with the signal is particularly important. PH value of the sensor voltage generated by the signal as a signal, through the MCU acquisition A / D conversion, and ultimately through the digital display of its PH value. The system uses hardware and software to achieve the results obtained with the high-precision PH meter to strive to improve the accuracy and reduce error.
Shamsipur, Mojtaba; Kazemi, Sayed Yahya; Sharghi, Hashem
2007-01-01
A novel PVC membrane sensor for the Sr2+ ion based on 1,10-diaza-5,6-benzo-4,7-dioxacyclohexadecane-2,9-dione has been prepared. The sensor possesses a Nernstian slope of 30.0 ± 0.6 mV decade-1 over a wide linear concentration range of 1.6 × 10-6-3.0 ×10-3 M with a detection limit of 6.3 ×10-7 M. It has a fast response time of <15 s and can be used for at least two months without any considerable divergence in potential. The potentiometric response is independent of the pH of test solution in the pH range 4.3-9.4. The proposed electrode shows good selectivities over a variety of alkali, alkaline earth, and transition metal ions.
A Secure-Enhanced Data Aggregation Based on ECC in Wireless Sensor Networks
Zhou, Qiang; Yang, Geng; He, Liwen
2014-01-01
Data aggregation is an important technique for reducing the energy consumption of sensor nodes in wireless sensor networks (WSNs). However, compromised aggregators may forge false values as the aggregated results of their child nodes in order to conduct stealthy attacks or steal other nodes' privacy. This paper proposes a Secure-Enhanced Data Aggregation based on Elliptic Curve Cryptography (SEDA-ECC). The design of SEDA-ECC is based on the principles of privacy homomorphic encryption (PH) and divide-and-conquer. An aggregation tree disjoint method is first adopted to divide the tree into three subtrees of similar sizes, and a PH-based aggregation is performed in each subtree to generate an aggregated subtree result. Then the forged result can be identified by the base station (BS) by comparing the aggregated count value. Finally, the aggregated result can be calculated by the BS according to the remaining results that have not been forged. Extensive analysis and simulations show that SEDA-ECC can achieve the highest security level on the aggregated result with appropriate energy consumption compared with other asymmetric schemes. PMID:24732099
NASA Astrophysics Data System (ADS)
Cho, Won-Ju; Lim, Cheol-Min
2018-02-01
In this study, we developed a cost-effective ion-sensing field-effect transistor (FET) with an extended gate (EG) fabricated on a separative paper substrate. The pH sensing characteristics of the paper EG was compared with those of other EGs fabricated on silicon, glass, or polyimide substrates. The fabricated paper-based EGFET exhibited excellent sensitivity close to the Nernst response limit as well as to that of the other substrate-based EGFETs. In addition, we found that all EGFETs, regardless of the substrate, have similar non-ideal behavior, i.e., drift phenomenon and hysteresis width. To investigate the degradation and durability of the paper EG after prolonged use, aging-effect tests were carried out in terms of the hysteresis width and sensitivity over a course of 30 days. As a result, the paper EG maintained stable pH sensing characteristics after 30 days. Therefore, we expect that paper EGFETs can provide a cost-effective sensor platform.
NASA Astrophysics Data System (ADS)
Peltzer, E. T.; Maughan, T.; Barry, J. P.; Brewer, P. G.; Headley, K. L.; Herlien, R.; Kirkwood, W. J.; Matsumoto, G. I.; O'Reilly, T. C.; Salamy, K. A.; Scholfield, J.; Shane, F. F.; Walz, P. M.
2012-12-01
The MBARI deep-water FOCE experiment was deployed on the MARS cabled observatory in Monterey Bay on May 4th, 2011. It has been in continuous operation (excluding a few minor shore based power outages) ever since. During the fifteen months of deployment, we have been able to observe both the daily variation in pH in response to water mass movements associated with the semi-diurnal tides, internal waves and longer-term trends as a function of the seasonal variations in the water masses within the Monterey Bay Canyon. Our experimental site is located at 890 meters, just below the oxygen minimum for Monterey Bay, and we clearly see the anticipated inverse correlation between seawater temperature and pH. Daily variation in pH is on the order of 0.020-0.030 pH units with longer term trends adding an additional variation of similar magnitude. Instrumentation on this experiment included two CTDs with oxygen sensors (Sea-Bird 52). One CTD is mounted on the external FOCE framework to measure the background conditions, and one CTD is installed within the FOCE pH control area to monitor the experimentally manipulated conditions. In addition, 6 MBARI modified Sea-Bird 18 pH sensors were mounted on the FOCE apparatus. Four of these pH sensors monitored pH inside the experimental chamber and two monitored the external background seawater conditions. Although we originally intended to conduct several in situ CO2 enrichment experiments to study the impact of ocean acidification on the benthic biology and then recover the apparatus after one year, unanticipated changes in the ship schedule have left the FOCE experiment in place for nearly fifteen months at the time of this writing. Throughout this time period, all sensor data has been logged by the MBARI Shore-Side Data System (SSDS) resulting in the longest continuous record of high precision pH measurements in the intermediate water column. We present an analysis of the data obtained from this unique data set, and discuss our in-situ calibration techniques used to compensate for long term sensor drift associated with the reference electrode.
Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and pH Detection.
Oh, Seung Yun; Hong, Soo Yeong; Jeong, Yu Ra; Yun, Junyeong; Park, Heun; Jin, Sang Woo; Lee, Geumbee; Oh, Ju Hyun; Lee, Hanchan; Lee, Sang-Soo; Ha, Jeong Sook
2018-04-25
As part of increased efforts to develop wearable healthcare devices for monitoring and managing physiological and metabolic information, stretchable electrochemical sweat sensors have been investigated. In this study, we report on the fabrication of a stretchable and skin-attachable electrochemical sensor for detecting glucose and pH in sweat. A patterned stretchable electrode was fabricated via layer-by-layer deposition of carbon nanotubes (CNTs) on top of patterned Au nanosheets (AuNS) prepared by filtration onto stretchable substrate. For the detection of glucose and pH, CoWO 4 /CNT and polyaniline/CNT nanocomposites were coated onto the CNT-AuNS electrodes, respectively. A reference electrode was prepared via chlorination of silver nanowires. Encapsulation of the stretchable sensor with sticky silbione led to a skin-attachable sweat sensor. Our sensor showed high performance with sensitivities of 10.89 μA mM -1 cm -2 and 71.44 mV pH -1 for glucose and pH, respectively, with mechanical stability up to 30% stretching and air stability for 10 days. The sensor also showed good adhesion even to wet skin, allowing the detection of glucose and pH in sweat from running while being attached onto the skin. This work suggests the application of our stretchable and skin-attachable electrochemical sensor to health management as a high-performance healthcare wearable device.
Lin, Meng-Hsien; Anderson, Jonathan; Pinnaratip, Rattapol; Meng, Hao; Konst, Shari; DeRouin, Andrew J.; Rajachar, Rupak
2015-01-01
The degradation behavior of a tissue adhesive is critical to its ability to repair a wound while minimizing prolonged inflammatory response. Traditional degradation tests can be expensive to perform, as they require large numbers of samples. The potential for using magnetoelastic resonant sensors to track bioadhesive degradation behavior was investigated. Specifically, biomimetic poly(ethylene glycol)- (PEG-) based adhesive was coated onto magnetoelastic (ME) sensor strips. Adhesive-coated samples were submerged in solutions buffered at multiple pH levels (5.7, 7.4 and 10.0) at body temperature (37°C) and the degradation behavior of the adhesive was tracked wirelessly by monitoring the changes in the resonant amplitude of the sensors for over 80 days. Adhesive incubated at pH 7.4 degraded over 75 days, which matched previously published data for bulk degradation behavior of the adhesive while utilizing significantly less material (~103 times lower). Adhesive incubated at pH 10.0 degraded within 25 days while samples incubated at pH 5.7 did not completely degrade even after 80 days of incubation. As expected, the rate of degradation increased with increasing pH as the rate of ester bond hydrolysis is higher under basic conditions. As a result of requiring a significantly lower amount of samples compared to traditional methods, the ME sensing technology is highly attractive for fully characterizing the degradation behavior of tissue adhesives in a wide range of physiological conditions. PMID:26087077
Dong, Qiuchen; Huang, Yikun; Song, Donghui; Wu, Huixiang; Cao, Fei; Lei, Yu
2018-07-30
Both pH-sensitive and glucose-responsive rhodium oxide nanocorals (Rh 2 O 3 NCs) were synthesized through electrospinning followed by high-temperature calcination. The as-prepared Rh 2 O 3 NCs were systematically characterized using various advanced techniques including scanning electron microscopy, X-ray powder diffraction and Raman spectroscopy, and then employed as a dual functional nanomaterial to fabricate a dual sensor for both non-enzymatic glucose sensing and solid-state pH monitoring. The sensing performance of the Rh 2 O 3 NCs based dual sensor toward pH and glucose was evaluated using open circuit potential, cyclic voltammetry and amperometric techniques, respectively. The results show that the as-prepared Rh 2 O 3 NCs not only maintain accurate and reversible pH sensitivity of Rh 2 O 3 , but also demonstrate a good electrocatalytic activity toward glucose oxidation in alkaline medium with a sensitivity of 11.46 μA mM -1 cm -2 , a limit of detection of 3.1 μM (S/N = 3), and a reasonable selectivity against various interferents in non-enzymatic glucose detection. Its accuracy in determining glucose in human serum samples was further demonstrated. These features indicate that the as-prepared Rh 2 O 3 NCs hold great promise as a dual-functional sensing material in the development of a high-performance sensor forManjakkal both solid-state pH and non-enzymatic glucose sensing. Copyright © 2018 Elsevier B.V. All rights reserved.
ISFET pH Sensitivity: Counter-Ions Play a Key Role.
Parizi, Kokab B; Xu, Xiaoqing; Pal, Ashish; Hu, Xiaolin; Wong, H S Philip
2017-02-02
The Field Effect sensors are broadly used for detecting various target analytes in chemical and biological solutions. We report the conditions under which the pH sensitivity of an Ion Sensitive Field Effect transistor (ISFET) sensor can be significantly enhanced. Our theory and simulations show that by using pH buffer solutions containing counter-ions that are beyond a specific size, the sensor shows significantly higher sensitivity which can exceed the Nernst limit. We validate the theory by measuring the pH response of an extended gate ISFET pH sensor. The consistency and reproducibility of the measurement results have been recorded in hysteresis free and stable operations. Different conditions have been tested to confirm the accuracy and validity of our experiment results such as using different solutions, various oxide dielectrics as the sensing layer and off-the-shelf versus IC fabricated transistors as the basis of the ISFET sensor.
ISFET pH Sensitivity: Counter-Ions Play a Key Role
Parizi, Kokab B.; Xu, Xiaoqing; Pal, Ashish; Hu, Xiaolin; Wong, H. S. Philip
2017-01-01
The Field Effect sensors are broadly used for detecting various target analytes in chemical and biological solutions. We report the conditions under which the pH sensitivity of an Ion Sensitive Field Effect transistor (ISFET) sensor can be significantly enhanced. Our theory and simulations show that by using pH buffer solutions containing counter-ions that are beyond a specific size, the sensor shows significantly higher sensitivity which can exceed the Nernst limit. We validate the theory by measuring the pH response of an extended gate ISFET pH sensor. The consistency and reproducibility of the measurement results have been recorded in hysteresis free and stable operations. Different conditions have been tested to confirm the accuracy and validity of our experiment results such as using different solutions, various oxide dielectrics as the sensing layer and off-the-shelf versus IC fabricated transistors as the basis of the ISFET sensor. PMID:28150700
Development of an IrO x micro pH sensor array on flexible polymer substrate
NASA Astrophysics Data System (ADS)
Huang, Wen-Ding; Wang, Jianqun; Ativanichayaphong, Thermpon; Chiao, Mu; Chiao, J. C.
2008-03-01
pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages in specific applications. It is difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to size limitation and no deformability. In this paper, we present design and fabrication processes of a miniature iridium oxide thin film pH sensor array on flexible polymer substrates. The amorphous iridium oxide thin film was used as the sensing material. A sol-gel dip-coating process of iridium oxide film was demonstrated in this paper. A super-Nernstian response has been measured on individual sensors of the array with a slope of -71.6+/-3 mV/pH at 25°C within the pH range between 2.83 and 11.04.
NASA Astrophysics Data System (ADS)
Lieberman, Robert A.
Various papers on chemical, biochemical, and environmental fiber sensors are presented. Individual topics addressed include: fiber optic pressure sensor for combustion monitoring and control, viologen-based fiber optic oxygen sensors, renewable-reagent fiber optic sensor for ocean pCO2, transition metal complexes as indicators for a fiber optic oxygen sensor, fiber optic pH measurements using azo indicators, simple reversible fiber optic chemical sensors using solvatochromic dyes, totally integrated optical measuring sensors, integrated optic biosensor for environmental monitoring, radiation dosimetry using planar waveguide sensors, optical and piezoelectric analysis of polymer films for chemical sensor characterization, source polarization effects in an optical fiber fluorosensor, lens-type refractometer for on-line chemical analysis, fiber optic hydrocarbon sensor system, chemical sensors for environmental monitoring, optical fibers for liquid-crystal sensing and logic devices, suitability of single-mode fluoride fibers for evanescent-wave sensing, integrated modules for fiber optic sensors, optoelectronic sensors based on narrowband A3B5 alloys, fiber Bragg grating chemical sensor.
Sensor capsule for diagnosis of gastric disorders
NASA Technical Reports Server (NTRS)
Holen, J. T.
1972-01-01
Motility and pH sensor capsule is developed to monitor gastric acidity, pressure, and temperature. Capsule does not interfere with digestion. Sensor is capsule which includes pH electrode, Pitran pressure transducer, and thermistor temperature sensor all potted in epoxy and enclosed in high density polyethylene sheath.
An in vivo quantitative Raman-pH sensor of arterial blood based on laser trapping of erythrocytes.
Lin, Manman; Xu, Bin; Yao, Huilu; Shen, Aiguo; Hu, Jiming
2016-05-10
We report on a continuous and non-invasive approach in vivo to monitor arterial blood pH based on the laser trapping and Raman detection of single live erythrocytes. A home-built confocal laser tweezers Raman system (LTRS) is applied to trace the live erythrocytes at different pH values of the extracellular environment to record their corresponding Raman changes in vitro and in vivo. The analysis results in vitro show that when the extracellular environment pH changes from 6.5 to 9.0, the Raman intensity ratio (R1603, 1616 = I1603/I1616) of single erythrocytes decrease regularly; what is more, there is a good linear relationship between these two variables, and the linearity is 0.985, which is also verified successfully via in vivo Raman measurements. These results demonstrate that the Raman signal of single live erythrocytes is possible as a marker of the extracellular pH value. This in vivo and quantitative Raman-pH sensor of arterial blood will be an important candidate for monitoring the acid-base status during the treatment of ill patients and in some major surgeries because of its continuous and non-invasive characters.
Zhu, Xinxin; Jin, Hui; Gao, Cuili; Gui, Rijun; Wang, Zonghua
2017-01-01
In this article, a facile aqueous synthesis of carbon dots (CDs) was developed by using natural kelp as a new carbon source. Through hydrothermal carbonization of kelp juice, fluorescent CDs were prepared and the CDs' surface was modified with polyethylenimine (PEI). The PEI-modified CDs were conjugated with fluorescein isothiocyanate (FITC) to fabricate CDs-FITC composites. To exploit broad applications, the CDs-FITC composites were developed as fluorescent sensing or imaging platforms of pH and Cu 2+ . Analytical performances of the composites-based fluorescence (FL) sensors were evaluated, including visual FL imaging of pH in glass bottle, ratiometric FL sensing of pH in yogurt samples, visual FL latent fingerprint and leaf imaging detection of [Cu 2+ ], dual-signal FL sensing of [Cu 2+ ] in yogurt and human serum samples. Experimental results from ratiometric, visual, dual-signal FL sensing and imaging applications confirmed the high feasibility, accuracy, stabilization and simplicity of CDs-FITC composites-based FL sensors for the detection of pH and Cu 2+ ions in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Pazos, Ileana M; Ahmed, Ismail A; Berríos, Mariana I León; Gai, Feng
2015-08-15
We expand the spectroscopic utility of a well-known infrared and fluorescence probe, p-cyanophenylalanine, by showing that it can also serve as a pH sensor. This new application is based on the notion that the fluorescence quantum yield of this unnatural amino acid, when placed at or near the N-terminal end of a polypeptide, depends on the protonation status of the N-terminal amino group of the peptide. Using this pH sensor, we are able to determine the N-terminal pKa values of nine tripeptides and also the membrane penetration kinetics of a cell-penetrating peptide. Taken together, these examples demonstrate the applicability of using this unnatural amino acid fluorophore to study pH-dependent biological processes or events that accompany a pH change. Copyright © 2015 Elsevier Inc. All rights reserved.
Optical pH detector based on LTCC and sol-gel technologies
NASA Astrophysics Data System (ADS)
Tadaszak, R. J.; Łukowiak, A.; Golonka, L. J.
2013-01-01
This paper presents an investigation on using sol-gel thin film as a material for sensors application in LTCC (Low Temperature Co-fired Ceramics) technology. This material gives the opportunity to make new, low-cost highly integrated optoelectronic devices. Sensors with optical detection are a significant part of these applications. They can be used for quick and safe diagnostics of some parameters. Authors present a pH detector with the optical detection system made of the LTCC material. The main part of the device is a flow channel with the chamber and sol-gel active material. The silica sol-gel with bromocresol green indicator was used. As the absorbance of sol-gel layer changes with the pH value of a measured medium, the transmitted light power was measured. The pH detector was integrated with the electronic components on the LTCC substrate.
Badugu, Ramachandram; Kostov, Yordan; Rao, Govind; Tolosa, Leah
2008-01-01
The development of a fluorescent excitation ratiometric pH sensor (AHQ-PEG) using a novel allylhydroxyquinolinium (AHQ) derivative copolymerized with polyethylene glycol dimethacrylate (PEG) is described. The AHQ-PEG sensor film is shown to be suitable for real-time, noninvasive, continuous, online pH monitoring of bioprocesses. Optical ratiometric measurements are generally more reliable, robust, inexpensive, and insensitive to experimental errors such as fluctuations in the source intensity and fluorophore photobleaching. The sensor AHQ-PEG in deionized water was shown to exhibit two excitation maxima at 375 and 425 nm with a single emission peak at 520 nm. Excitation spectra of AHQ-PEG show a decrease in emission at the 360 nm excitation and an increase at the 420 nm excitation with increasing pH. Accordingly, the ratio of emission at 420:360 nm excitation showed a maximum change between pH 5 and 8 with an apparent pK(a) of 6.40. The low pK(a) value is suitable for monitoring the fermentation of most industrially important microorganisms. Additionally, the AHQ-PEG sensor was shown to have minimal sensitivity to ionic strength and temperature. Because AHQ is covalently attached to PEG, the film shows no probe leaching and is sterilizable by steam and alcohol. It shows rapid (approximately 2 min) and reversible response to pH over many cycles without any photobleaching. Subsequently, the AHQ-PEG sensor film was tested for its suitability in monitoring the pH of S. cereviseae (yeast) fermentation. The observed pH using AHQ-PEG film is in agreement with a conventional glass pH electrode. However, unlike the glass electrode, the present sensor is easily adaptable to noninvasive monitoring of sterilized, closed bioprocess environments without the awkward wire connections that electrodes require. In addition, the AHQ-PEG sensor is easily miniaturized to fit in microwell plates and microbioreactors for high-throughput cell culture applications.
A graphene oxide pH sensor for wound monitoring.
Melai, B; Salvo, P; Calisi, N; Moni, L; Bonini, A; Paoletti, C; Lomonaco, T; Mollica, V; Fuoco, R; Di Francesco, F
2016-08-01
This article describes the fabrication and characterization of a pH sensor for monitoring the wound status. The pH sensitive layer consists of a graphene oxide (GO) layer obtained by drop-casting 5 μΐ of GO dispersion onto the working electrode of a screen-printed substrate. Sensitivity was 31.8 mV/pH with an accuracy of 0.3 unit of pH. Open-circuit potentiometry was carried out to measure pH in an exudate sample. The GO pH sensor proved to be reliable as the comparison with results obtained from a standard glass electrode pH-meter showed negligible differences (<; 0.09 pH units in the worst case) for measurements performed over a period of 4 days.
Silicon strain gages bonded on stainless steel using glass frit for strain sensor applications
NASA Astrophysics Data System (ADS)
Zhang, Zongyang; Cheng, Xingguo; Leng, Yi; Cao, Gang; Liu, Sheng
2014-05-01
In this paper, a steel pressure sensor using strain gages bonded on a 17-4 PH stainless steel (SS) diaphragm based on glass frit technology is proposed. The strain gages with uniform resistance are obtained by growing an epi-silicon layer on a single crystal silicon wafer using epitaxial deposition technique. The inorganic glass frits are used as the bonding material between the strain gages and the 17-4 PH SS diaphragm. Our results show that the output performances of sensors at a high temperature of 125 °C are almost equal those at room temperature, which indicates that the glass frit bonding is a good method and may lead to a significant advance in the high temperature applicability of silicon strain gage sensors. Finally, the microstructure of the cured organic adhesive and the fired glass frit are compared. It may be concluded that the defects of the cured organic adhesive deteriorate the hysteresis and repeatability errors of the sensors.
Dielectrophoresis-Assisted Integration of 1024 Carbon Nanotube Sensors into a CMOS Microsystem.
Seichepine, Florent; Rothe, Jörg; Dudina, Alexandra; Hierlemann, Andreas; Frey, Urs
2017-05-01
Carbon-nanotube (CNT)-based sensors offer the potential to detect single-molecule events and picomolar analyte concentrations. An important step toward applications of such nanosensors is their integration in large arrays. The availability of large arrays would enable multiplexed and parallel sensing, and the simultaneously obtained sensor signals would facilitate statistical analysis. A reliable method to fabricate an array of 1024 CNT-based sensors on a fully processed complementary-metal-oxide-semiconductor microsystem is presented. A high-yield process for the deposition of CNTs from a suspension by means of liquid-coupled floating-electrode dielectrophoresis (DEP), which yielded 80% of the sensor devices featuring between one and five CNTs, is developed. The mechanism of floating-electrode DEP on full arrays and individual devices to understand its self-limiting behavior is studied. The resistance distributions across the array of CNT devices with respect to different DEP parameters are characterized. The CNT devices are then operated as liquid-gated CNT field-effect-transistors (LG-CNTFET) in liquid environment. Current dependency to the gate voltage of up to two orders of magnitude is recorded. Finally, the sensors are validated by studying the pH dependency of the LG-CNTFET conductance and it is demonstrated that 73% of the CNT sensors of a given microsystem show a resistance decrease upon increasing the pH value. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mani, Ganesh Kumar; Morohoshi, Madoka; Yasoda, Yutaka; Yokoyama, Sho; Kimura, Hiroshi; Tsuchiya, Kazuyoshi
2017-02-15
The present study is concerned about the development of highly sensitive and stable microfluidic pH sensor for possible identification of circulating tumor cells (CTCs) in blood. The precise pH measurements between silver-silver chloride (Ag/AgCl) reference electrode and zinc oxide (ZnO) working electrode have been investigated in the microfluidic device. Since there is a direct link between pH and cancer cells, the developed device is one of the valuable tools to examine circulating tumor cells (CTCs) in blood. The ZnO-based working electrode was deposited by radio frequency (rf) sputtering technique. The potential voltage difference between the working and reference electrodes (Ag/AgCl) is evaluated on the microfluidic device. The ideal Nernstian response of -43.71165 mV/pH was achieved along with high stability and quick response time. Finally, to evaluate the real time capability of the developed microfluidic device, in vitro testing was done with A549, A7r5, and MDCK cells.
Microchamber arrays with an integrated long luminescence lifetime pH sensor.
Poehler, Elisabeth; Pfeiffer, Simon A; Herm, Marc; Gaebler, Michael; Busse, Benedikt; Nagl, Stefan
2016-04-01
A pH probe with a microsecond luminescence lifetime was obtained via covalent coupling of 6-carboxynaphthofluorescein (CNF) moieties to ruthenium-tris-(1,10-phenanthroline)(2+). The probe was covalently attached to amino-modified poly-(2-hydroxyethyl)methacrylate (pHEMA) and showed a pH-dependent FRET with luminescence lifetimes of 681 to 1260 ns and a working range from ca. pH 6.5 to 9.0 with a pKa of 7.79 ± 0.14. The pH sensor matrix was integrated via spin coating as ca. 1- to 2-μm-thick layer into "CytoCapture" cell culture dishes of 6 mm in diameter. These contained a microcavity array of square-shaped regions of 40 μm length and width and 15 μm depth that was homogeneously coated with the pH sensor matrix. The sensor layer showed fast response times in both directions. A microscopic setup was developed that enabled imaging of the pH inside the microchamber arrays over many hours. As a proof of principle, we monitored the pH of Escherichia coli cell cultures grown in the microchamber arrays. The integrated sensor matrix allowed pH monitoring spatially resolved in every microchamber, and the differences in cell growth between individual chambers could be resolved and quantified.
Versatile common instrumentation for optical detection of pH and dissolved oxygen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sardesai, Neha; Rao, Govind; Kostov, Yordan, E-mail: kostov@umbc.edu
2015-07-15
The recent trend toward use of disposable and miniature bioreactors requires the use of appropriate sensors. pH and dissolved oxygen (DO) are often measured using optical chemical sensors due to their small form factor and convenience in use. These sensors are often interrogated using a specialized opto-electronic transducer that is designed around the optical sensor. In this contribution, we are presenting a new class of opto-electronic transducers that are usable with several different chemical sensors without the need to switch the optics or hardware when changing the type of the chemical sensor. This allows flexibility closer to the lab-grade devicesmore » while the size is closer to a dedicated sensor. This versatile instrumentation is capable of seamlessly switching between the pH and DO measurement modes and is capable of auto recognition of the sensor type. The principle of ratiometric fluorescence is used for pH measurements, and that of fluorescence lifetime for DO measurements. An approach to obtain identical calibrations between several devices is also presented. The described hardware constitutes common instrumentation for measuring either pH or DO and has been tested in actual bioprocesses. It has been found adequate for continuous bioprocess monitoring.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azizah, N., E-mail: norazizahparmin84@gmail.com; Gopinath, Subash C. B.; Nadzirah, Sh.
Titanium dioxide (TiO{sub 2}) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of pH sensors using IDE nanocoated with TiO{sub 2} was studied in this paper. In this paper, a preliminary assessment of this intracellular sensor with electrical measurement under different pH levels. 3-aminopropyltriethoxysilane (APTES) was used to enhance the sensitivity of titanium dioxide layer as well as able to provide surface modification by undergoing protonation and deprotonation process. Different types of pH solution provide different resistivity and conductivity towards the surface. Base solution has the higher current compared to anmore » acid solution. Amine and oxide functionalized TiO{sub 2} based IDE exhibit pH-dependent could be understood in terms of the change in surface charge during protonation and deprotonation. The simple fabrication process, high sensitivity, and fast response of the TiO{sub 2} based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO{sub 2} based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.« less
Tekin, Yücel; Kuang, Boyan; Mouazen, Abdul M
2013-08-08
This paper aims at exploring the potential of visible and near infrared (vis-NIR) spectroscopy for on-line measurement of soil pH, with the intention to produce variable rate lime recommendation maps. An on-line vis-NIR soil sensor set up to a frame was used in this study. Lime application maps, based on pH predicted by vis-NIR techniques, were compared with maps based on traditional lab-measured pH. The validation of the calibration model using off-line spectra provided excellent prediction accuracy of pH (R2 = 0.85, RMSEP = 0.18 and RPD = 2.52), as compared to very good accuracy obtained with the on-line measured spectra (R2 = 0.81, RMSEP = 0.20 and RPD = 2.14). On-line predicted pH of all points (e.g., 2,160) resulted in the largest overall field virtual lime requirement (1.404 t), as compared to those obtained with 16 validation points off-line prediction (0.28 t), on-line prediction (0.14 t) and laboratory reference measurement (0.48 t). The conclusion is that the vis-NIR spectroscopy can be successfully used for the prediction of soil pH and for deriving lime recommendations. The advantage of the on-line sensor over sampling with limited number of samples is that more detailed information about pH can be obtained, which is the reason for a higher but precise calculated lime recommendation rate.
Tekin, Yücel; Kuang, Boyan; Mouazen, Abdul M.
2013-01-01
This paper aims at exploring the potential of visible and near infrared (vis-NIR) spectroscopy for on-line measurement of soil pH, with the intention to produce variable rate lime recommendation maps. An on-line vis-NIR soil sensor set up to a frame was used in this study. Lime application maps, based on pH predicted by vis-NIR techniques, were compared with maps based on traditional lab-measured pH. The validation of the calibration model using off-line spectra provided excellent prediction accuracy of pH (R2 = 0.85, RMSEP = 0.18 and RPD = 2.52), as compared to very good accuracy obtained with the on-line measured spectra (R2 = 0.81, RMSEP = 0.20 and RPD = 2.14). On-line predicted pH of all points (e.g., 2,160) resulted in the largest overall field virtual lime requirement (1.404 t), as compared to those obtained with 16 validation points off-line prediction (0.28 t), on-line prediction (0.14 t) and laboratory reference measurement (0.48 t). The conclusion is that the vis-NIR spectroscopy can be successfully used for the prediction of soil pH and for deriving lime recommendations. The advantage of the on-line sensor over sampling with limited number of samples is that more detailed information about pH can be obtained, which is the reason for a higher but precise calculated lime recommendation rate. PMID:23966186
Genetically encoded proton sensors reveal activity-dependent pH changes in neurons.
Raimondo, Joseph V; Irkle, Agnese; Wefelmeyer, Winnie; Newey, Sarah E; Akerman, Colin J
2012-01-01
The regulation of hydrogen ion concentration (pH) is fundamental to cell viability, metabolism, and enzymatic function. Within the nervous system, the control of pH is also involved in diverse and dynamic processes including development, synaptic transmission, and the control of network excitability. As pH affects neuronal activity, and can also itself be altered by neuronal activity, the existence of tools to accurately measure hydrogen ion fluctuations is important for understanding the role pH plays under physiological and pathological conditions. Outside of their use as a marker of synaptic release, genetically encoded pH sensors have not been utilized to study hydrogen ion fluxes associated with network activity. By combining whole-cell patch clamp with simultaneous two-photon or confocal imaging, we quantified the amplitude and time course of neuronal, intracellular, acidic transients evoked by epileptiform activity in two separate in vitro models of temporal lobe epilepsy. In doing so, we demonstrate the suitability of three genetically encoded pH sensors: deGFP4, E(2)GFP, and Cl-sensor for investigating activity-dependent pH changes at the level of single neurons.
Jokic, Tijana; Borisov, Sergey M; Saf, Robert; Nielsen, Daniel A; Kühl, Michael; Klimant, Ingo
2012-08-07
In this study, a series of new BF(2)-chelated tetraarylazadipyrromethane dyes are synthesized and are shown to be suitable for the preparation of on/off photoinduced electron transfer modulated fluorescent sensors. The new indicators are noncovalently entrapped in polyurethane hydrogel D4 and feature absorption maxima in the range 660-710 nm and fluorescence emission maxima at 680-740 nm. Indicators have high molar absorption coefficients of ~80,000 M(-1) cm(-1), good quantum yields (up to 20%), excellent photostability and low cross-sensitivity to the ionic strength. pK(a) values of indicators are determined from absorbance and fluorescence measurements and range from 7 to 11, depending on the substitution pattern of electron-donating and -withdrawing functionalities. Therefore, the new indicators are suitable for exploitation and adaptation in a diverse range of analytical applications. Apparent pK(a) values in sensor films derived from fluorescence data show 0.5-1 pH units lower values in comparison with those derived from the absorption data due to Förster resonance energy transfer from protonated to deprotonated form. A dual-lifetime referenced sensor is prepared, and application for monitoring of pH in corals is demonstrated.
An Autonomous Indicator-based pH Sensor for Oceanographic Research and Monitoring
2010-01-01
E-mail: michael.degrandpre@umontana.edu Co-PI: Jim Beck , MSME Sunburst Sensors, LLC, 1121 E. Broadway, Suite 114, Missoula, MT 59802 Phone...NOPP Award Number: ONR- BAA -07-040 NSF Award Number: OCE-0836807 LONG-TERM GOALS This project, funded under NOPP Topic 3A Sensors for...Spaulding continued work on establishing long- term stability of mCP. Jim Beck coordinated improvements to the design of the software and hardware
Liao, Yu-Yang; Chen, Yung-Tsan; Chen, Chien-Chun; Huang, Jian-Jang
2018-04-03
The sensitivity of traditional diffraction grating sensors is limited by the spatial resolution of the measurement setup. Thus, a large space is required to improve sensor performance. Here, we demonstrate a compact hexagonal photonic crystal (PhC) optical sensor with high sensitivity. PhCs are able to diffract optical beams to various angles in azimuthal space. The critical wavelength that satisfies the phase matching or becomes evanescent was used to benchmark the refractive index of a target analyte applied on a PhC sensor. Using a glucose solution as an example, our sensor demonstrated very high sensitivity and a low limit of detection. This shows that the diffraction mechanism of hexagonal photonic crystals can be used for sensors when compact size is a concern.
Design of aquaponics water monitoring system using Arduino microcontroller
NASA Astrophysics Data System (ADS)
Murad, S. A. Z.; Harun, A.; Mohyar, S. N.; Sapawi, R.; Ten, S. Y.
2017-09-01
This paper describes the design of aquaponics water monitoring system using Arduino microcontroller. Arduino Development Environment (IDE) software is used to develop a program for the microcontroller to communicate with multiple sensors and other hardware. The circuit of pH sensor, temperature sensor, water sensor, servo, liquid crystal displays (LCD), peristaltic pump, solar and Global System for Mobile communication (GSM) are constructed and connected to the system. The system powered by a rechargeable battery using solar energy. When the results of pH, temperature and water sensor are out of range, a notification message will be sent to a mobile phone through GSM. If the pH of water is out of range, peristaltic pump is automatic on to maintain back the pH value of water. The water sensor is fixed in the siphon outlet water flow to detect water flow from grow bed to the fish tank. In addition, servo is used to auto feeding the fish for every 12 hours. Meanwhile, the LCD is indicated the pH, temperature, siphon outlet water flow and remaining time for the next feeding cycle. The pH and temperature of water are set in the ranges of 6 to 7 and 25 °C to 30 °C, respectively.
Guzinski, Marcin; Jarvis, Jennifer M; D'Orazio, Paul; Izadyar, Anahita; Pendley, Bradford D; Lindner, Ernő
2017-08-15
The aim of this study was to find a conducting polymer-based solid contact (SC) for ion-selective electrodes (ISEs) that could become the ultimate, generally applicable SC, which in combination with all kinds of ion-selective membranes (ISMs) would match the performance characteristics of conventional ISEs. We present data collected with electrodes utilizing PEDOT-C 14 , a highly hydrophobic derivative of poly(3,4-ethylenedioxythiophene), PEDOT, as SC and compare its performance characteristics with PEDOT-based SC ISEs. PEDOT-C 14 has not been used in SC ISEs previously. The PEDOT-C 14 -based solid contact (SC) ion-selective electrodes (ISEs) (H + , K + , and Na + ) have outstanding performance characteristics (theoretical response slope, short equilibration time, excellent potential stability, etc.). Most importantly, PEDOT-C 14 -based SC pH sensors have no CO 2 interference, an essential pH sensors property when aimed for whole-blood analysis. The superhydrophobic properties (water contact angle: 136 ± 5°) of the PEDOT-C 14 SC prevent the detachment of the ion-selective membrane (ISM) from its SC and the accumulation of an aqueous film between the ISM and the SC. The accumulation of an aqueous film between the ISM and its SC has a detrimental effect on the sensor performance. Although there is a test for the presence of an undesirable water layer, if the conditions for this test are not selected properly, it does not provide an unambiguous answer. On the other hand, recording the potential drifts of SC electrodes with pH-sensitive membranes in samples with different CO 2 levels can effectively prove the presence or absence of a water layer in a short time period.
Wu, Shanshan; Wu, Siying; Yi, Zheyuan; Zeng, Fei; Wu, Weizhen; Qiao, Yuan; Zhao, Xingzhong; Cheng, Xing; Tian, Yanqing
2018-02-13
In this study, we developed fluorescent dual pH and oxygen sensors loaded in multi-well plates for in-situ and high-throughput monitoring of oxygen respiration and extracellular acidification during microbial cell growth for understanding metabolism. Biocompatible PHEMA-co-PAM materials were used as the hydrogel matrix. A polymerizable oxygen probe (OS2) derived from PtTFPP and a polymerizable pH probe (S2) derived from fluorescein were chemically conjugated into the matrix to solve the problem of the probe leaching from the matrix. Gels were allowed to cure directly on the bottom of 96-well plates at room-temperature via redox polymerization. The influence of matrix's composition on the sensing behaviors was investigated to optimize hydrogels with enough robustness for repeatable use with good sensitivity. Responses of the dual sensing hydrogels to dissolved oxygen (DO) and pH were studied. These dual oxygen-pH sensing plates were successfully used for microbial cell-based screening assays, which are based on the measurement of fluorescence intensity changes induced by cellular oxygen consumption and pH changes during microbial growth. This method may provide a real-time monitoring of cellular respiration, acidification, and a rapid kinetic assessment of multiple samples for cell viability as well as high-throughput drug screening. All of these assays can be carried out by a conventional plate reader.
Zhang, Rongli; Zhu, Ye; Huang, Jing; Xu, Sheng; Luo, Jing; Liu, Xiaoya
2018-02-14
The electrophoretic deposition (EPD) of self-assembled nanoparticles (NPs) on the surface of an electrode is a new strategy for preparing sensor coating. By simply changing the deposition conditions, the electrochemical response for an analyte of deposited NPs-based coating can be controlled. This advantage can decrease the difference between different batches of sensor coating and ensure the reproducibility of each sensor. This work investigated the effects of deposition conditions (including deposition voltage, pH value of suspension, and deposition time) on the structure and the electrochemical response for l-tryptophan of sensor coating formed from Au-doped poly(sodium γ-glutamate) with pendant dopamine units nanohybrids (Au/γ-PGA-DA NBs) via the EPD method. The structure and thickness of the deposited sensor coating were measured by atomic force microscopy, which demonstrated that the structure and thickness of coating can be affected by the deposition voltage, the pH value of the suspension, and the deposition time. The responsive current for l-tryptophan of the deposited sensor coating were measured by differential pulse voltammetry, which showed that the responsive current value was affected by the structure and thickness of the deposited coating. These arguments suggested that a rich design-space for tuning the electrochemical response for analyte and a source of variability in the structure of sensor coating can be provided by the deposition conditions. When Au/γ-PGA-DA NBs were deposited on the electrode surface and formed a continuous coating with particle morphology and thinner thickness, the deposited sensor coating exhibited optimal electrochemical response for l-tryptophan.
Smart packaging for the monitoring of fish freshness
NASA Astrophysics Data System (ADS)
Pacquit, Alexis; Lau, King Tong; Diamond, Dermot
2005-06-01
The development of chromo-reactive sensor spots for real time monitoring of fish freshness is described. The on-package sensor spots incorporating an immobilized pH sensitive dye, respond through visible colour change to basic volatile spoilage compounds collectively known as Total Volatile Basic Nitrogen (TVB-N). Trials on fresh fish filets have verified that the sensor can be employed for real time monitoring of fish spoilage. The sensor response can be interrogated with a simple, inexpensive reflectance colorimeter that we have developed based on two LEDs and a photodetector.
Development and characterization of a voltammetric carbon-fiber microelectrode pH sensor.
Makos, Monique A; Omiatek, Donna M; Ewing, Andrew G; Heien, Michael L
2010-06-15
This work describes the development and characterization of a modified carbon-fiber microelectrode sensor capable of measuring real-time physiological pH changes in biological microenvironments. The reagentless sensor was fabricated under ambient conditions from voltammetric reduction of the diazonium salt Fast Blue RR onto a carbon-fiber surface in aprotic media. Fast-scan cyclic voltammetry was used to probe redox activity of the p-quinone moiety of the surface-bound molecule as a function of pH. In vitro calibration of the sensor in solutions ranging from pH 6.5 to 8.0 resulted in a pH-dependent anodic peak potential response. Flow-injection analysis was used to characterize the modified microelectrode, revealing sensitivity to acidic and basic changes discernible to 0.005 pH units. Furthermore, the modified electrode was used to measure dynamic in vivo pH changes evoked during neurotransmitter release in the central nervous system of the microanalytical model organism Drosophila melanogaster.
Using membrane composition to fine-tune the pKa of an optical liposome pH sensor.
Clear, Kasey J; Virga, Katelyn; Gray, Lawrence; Smith, Bradley D
2016-04-14
Liposomes containing membrane-anchored pH-sensitive optical probes are valuable sensors for monitoring pH in various biomedical samples. The dynamic range of the sensor is maximized when the probe p K a is close to the expected sample pH. While some biomedical samples are close to neutral pH there are several circumstances where the pH is 1 or 2 units lower. Thus, there is a need to fine-tune the probe p K a in a predictable way. This investigation examined two lipid-conjugated optical probes, each with appended deep-red cyanine dyes containing indoline nitrogen atoms that are protonated in acid. The presence of anionic phospholipids in the liposomes stabilized the protonated probes and increased the probe p K a values by < 1 unit. The results show that rational modification of the membrane composition is a general non-covalent way to fine-tune the p K a of an optical liposome sensor for optimal pH sensing performance.
Development and Characterization of a Voltammetric Carbon-fiber Microelectrode pH Sensor
Makos, Monique A.; Omiatek, Donna M.; Ewing, Andrew G.; Heien, Michael L.
2010-01-01
This work describes the development and characterization of a modified carbon-fiber microelectrode sensor capable of measuring real-time physiological pH changes in biological microenvironments. The reagentless sensor was fabricated under ambient conditions from voltammetric reduction of the diazonium salt Fast Blue RR onto a carbon-fiber surface in aprotic media. Fast-scan cyclic voltammetry was used to probe redox activity of the p-quinone moiety of the surface-bound molecule as a function of pH. In vitro calibration of the sensor in solutions ranging from pH 6.5 to 8.0 resulted in a pH-dependent anodic peak potential response. Flow-injection analysis was used to characterize the modified microelectrode, revealing sensitivity to acidic and basic changes discernable to 0.005 pH units. Furthermore, the modified electrode was used to measure dynamic in vivo pH changes evoked during neurotransmitter release in the central nervous system of the microanalytical model organism Drosophila melanogaster. PMID:20380393
Yin, Liyan; He, Chunsheng; Huang, Chusen; Zhu, Weiping; Wang, Xin; Xu, Yufang; Qian, Xuhong
2012-05-11
A polymeric fluorescent sensor PNME, consisting of A4 and N-isopropylacrylamide (NIPAM) units, was synthesized. PNME exhibited dual responses to pH and temperature, and could be used as an intracellular pH sensor for lysosomes imaging. Moreover, it also could sense different temperature change in living cells at 25 and 37 °C, respectively. This journal is © The Royal Society of Chemistry 2012
Tracking bacterial infection of macrophages using a novel red-emission pH sensor.
Jin, Yuguang; Tian, Yanqing; Zhang, Weiwen; Jang, Sei-Hum; Jen, Alex K-Y; Meldrum, Deirdre R
2010-10-01
The relationship between bacteria and host phagocytic cells is key to the induction of immunity. To visualize and monitor bacterial infection, we developed a novel bacterial membrane permeable pH sensor for the noninvasive monitoring of bacterial entry into murine macrophages. The pH sensor was constructed using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) as an electron-withdrawing group and aniline as an electron-donating group. A piperazine moiety was used as the pH-sensitive group. Because of the strong electron-donating and -withdrawing units conjugated in the sensing moiety M, the fluorophore emitted in the red spectral window, away from the autofluorescence regions of the bacteria. Following the engulfment of sensor-labeled bacteria by macrophages and their subsequent merger with host lysosomes, the resulting low-pH environment enhances the fluorescence intensity of the pH sensors inside the bacteria. Time-lapse analysis of the fluorescent intensity suggested significant heterogeneity of bacterial uptake among macrophages. In addition, qRT-PCR analysis of the bacterial 16 S rRNA gene expression within single macrophage cells suggested that the 16 S rRNA of the bacteria was still intact 120 min after they had been engulfed by macrophages. A toxicity assay showed that the pH sensor has no cytotoxicity towards either E. coli or murine macrophages. The sensor shows good repeatability, a long lifetime, and a fast response to pH changes, and can be used for a variety of bacteria.
Angle-independent pH-sensitive composites with natural gyroid structure
Xue, Ruiyang; Zhang, Wang; Sun, Peng; Zada, Imran; Guo, Cuiping; Liu, Qinglei; Gu, Jiajun; Su, Huilan; Zhang, Di
2017-01-01
pH sensor is an important and practical device with a wide application in environmental protection field and biomedical industries. An efficient way to enhance the practicability of intelligent polymer composed pH sensor is to subtilize the three-dimensional microstructure of the materials, adding measurable features to visualize the output signal. In this work, C. rubi wing scales were combined with pH-responsive smart polymer polymethylacrylic acid (PMAA) through polymerization to achieve a colour-tunable pH sensor with nature gyroid structure. Morphology and reflection characteristics of the novel composites, named G-PMAA, are carefully investigated and compared with the original biotemplate, C. rubi wing scales. The most remarkable property of G-PMAA is a single-value corresponding relationship between pH value and the reflection peak wavelength (λmax), with a colour distinction degree of 18 nm/pH, ensuring the accuracy and authenticity of the output. The pH sensor reported here is totally reversible, which is able to show the same results after several detection circles. Besides, G-PMAA is proved to be not influenced by the detection angle, which makes it a promising pH sensor with superb sensitivity, stability, and angle-independence. PMID:28165044
A remote query magnetoelastic pH sensor.
Cai, Q Y; Grimes, C A
2000-11-15
A remote query magnetoelastic pH sensor comprised of a magnetoelastic thick-film coated with a mass-changing pH-responsive polymer is described. In response to a magnetic query field the magnetoelastic sensor mechanically vibrates at a characteristic frequency that is inversely dependent upon the mass of the attached polymer layer. As the magnetoelastic sensor is magnetostrictive the mechanical vibrations of the sensor launch magnetic flux that can be detected remotely from the sensor using a pickup coil. The pH responsive copolymer is synthesized from 20 mol% of acrylic acid and 80 mol% of iso-octyl acrylate and then deposited onto a magnetoelastic film by dip-coating. For a 1 micrometer polymer coating upon a 30 micrometer thick Metglas [The Metglas alloys are a registered trademark of Honeywell Corporation. For product information see: http://www.electronicmaterials.com:80/businesses/sem/amorph/page5_1_2.htm.] alloy 2826MB magnetoelastic film between pH 5 and 9 the change in resonant frequency is linear, approximately 285 Hz/pH or 0.6%/pH. The addition of 10 mmol/l of KCl to the test solution decreases the sensitivity of the polymer approximately 4%. c2000 Elsevier Science B.V. All rights reserved.
Sachat, Alexandros El; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos
2017-03-11
Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3-11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants' ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications.
El Sachat, Alexandros; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos
2017-01-01
Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3–11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants’ ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications. PMID:28287488
Replaceable Sensor System for Bioreactor Monitoring
NASA Technical Reports Server (NTRS)
Mayo, Mike; Savoy, Steve; Bruno, John
2006-01-01
A sensor system was proposed that would monitor spaceflight bioreactor parameters. Not only will this technology be invaluable in the space program for which it was developed, it will find applications in medical science and industrial laboratories as well. Using frequency-domain-based fluorescence lifetime technology, the sensor system will be able to detect changes in fluorescence lifetime quenching that results from displacement of fluorophorelabeled receptors bound to target ligands. This device will be used to monitor and regulate bioreactor parameters including glucose, pH, oxygen pressure (pO2), and carbon dioxide pressure (pCO2). Moreover, these biosensor fluorophore receptor-quenching complexes can be designed to further detect and monitor for potential biohazards, bioproducts, or bioimpurities. Biosensors used to detect biological fluid constituents have already been developed that employ a number of strategies, including invasive microelectrodes (e.g., dark electrodes), optical techniques including fluorescence, and membrane permeable systems based on osmotic pressure. Yet the longevity of any of these sensors does not meet the demands of extended use in spacecraft habitat or bioreactor monitoring. It was therefore necessary to develop a sensor platform that could determine not only fluid variables such as glucose concentration, pO2, pCO2, and pH but can also regulate these fluid variables with controlled feedback loop.
A novel acidic pH fluorescent probe based on a benzothiazole derivative
NASA Astrophysics Data System (ADS)
Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi
2017-04-01
A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.
A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system
Raimondo, Joseph V.; Joyce, Bradley; Kay, Louise; Schlagheck, Theresa; Newey, Sarah E.; Srinivas, Shankar; Akerman, Colin J.
2013-01-01
Within the nervous system, intracellular Cl− and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl− and pH are often co-regulated, and network activity results in the movement of both Cl− and H+. Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl− and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN—a new genetically-encoded ratiometric Cl− and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl− and H+ concentrations under a variety of conditions. In addition, we establish the sensor's utility by characterizing activity-dependent ion dynamics in hippocampal neurons. PMID:24312004
A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system.
Raimondo, Joseph V; Joyce, Bradley; Kay, Louise; Schlagheck, Theresa; Newey, Sarah E; Srinivas, Shankar; Akerman, Colin J
2013-01-01
Within the nervous system, intracellular Cl(-) and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl(-) and pH are often co-regulated, and network activity results in the movement of both Cl(-) and H(+). Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl(-) and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN-a new genetically-encoded ratiometric Cl(-) and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl(-) and H(+) concentrations under a variety of conditions. In addition, we establish the sensor's utility by characterizing activity-dependent ion dynamics in hippocampal neurons.
A Fiber Optic Ammonia Sensor Using a Universal pH Indicator
Rodríguez, Adolfo J.; Zamarreño, Carlos R.; Matías, Ignacio R.; Arregui, Francisco. J.; Domínguez Cruz, Rene F.; May-Arrioja, Daniel. A.
2014-01-01
A universal pH indicator is used to fabricate a fiber optic ammonia sensor. The advantage of this pH indicator is that it exhibits sensitivity to ammonia over a broad wavelength range. This provides a differential response, with a valley around 500 nm and a peak around 650 nm, which allows us to perform ratiometric measurements. The ratiometric measurements provide not only an enhanced signal, but can also eliminate any external disturbance due to humidity or temperature fluctuations. In addition, the indicator is embedded in a hydrophobic and gas permeable polyurethane film named Tecoflex®. The film provides additional advantages to the sensor, such as operation in dry environments, efficient transport of the element to be measured to the sensitive area of the sensor, and prevent leakage or detachment of the indicator. The combination of the universal pH indicator and Tecoflex® film provides a reliable and robust fiber optic ammonia sensor. PMID:24583969
NASA Astrophysics Data System (ADS)
Yuan, Shuai; Ge, Fengyan; Zhou, Man; Cai, Zaisheng; Guang, Shanyi
2017-08-01
A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS. Furthermore, Ag@PAH nanoparticles possessed an ultra-sensitive detecting ability and the detection limit of Rhodamine 6G reduced to 10-12 M. These advantages qualified Ag@PAH NP as a promising smart SERS substrate in the field of trace analysis and sensors.
Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors
NASA Astrophysics Data System (ADS)
Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing
2015-12-01
Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption.
Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors
Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing
2015-01-01
Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption. PMID:26656113
Arefin, Md Shamsul; Redoute, Jean-Michel; Yuce, Mehmet Rasit
2018-01-01
This paper presents a wireless capsule microsystem to detect and monitor the pH, pressure, and temperature of the gastrointestinal tract in real time. This research contributes to the integration of sensors (microfabricated capacitive pH, capacitive pressure, and resistive temperature sensors), frequency modulation and pulse width modulation based interface IC circuits, microcontroller, and transceiver with meandered conformal antenna for the development of a capsule system. The challenges associated with the system miniaturization, higher sensitivity and resolution of sensors, and lower power consumption of interface circuits are addressed. The layout, PCB design, and packaging of a miniaturized wireless capsule, having diameter of 13 mm and length of 28 mm, have successfully been implemented. A data receiver and recorder system is also designed to receive physiological data from the wireless capsule and to send it to a computer for real-time display and recording. Experiments are performed in vitro using a stomach model and minced pork as tissue simulating material. The real-time measurements also validate the suitability of sensors, interface circuits, and meandered antenna for wireless capsule applications.
Fluorescence-based ion-sensing with colloidal particles.
Ashraf, Sumaira; Carrillo-Carrion, Carolina; Zhang, Qian; Soliman, Mahmoud G; Hartmann, Raimo; Pelaz, Beatriz; Del Pino, Pablo; Parak, Wolfgang J
2014-10-01
Particle-based fluorescence sensors for the quantification of specific ions can be made by coupling ion-sensitive fluorophores to carrier particles, or by using intrinsically fluorescent particles whose fluorescence properties depend on the concentration of the ions. Despite the advantages of such particle-based sensors for the quantitative detection of ions, such as the possibility to tune the surface chemistry and thus entry portal of the sensor particles to cells, they have also some associated problems. Problems involve for example crosstalk of the ion-sensitive fluorescence read-out with pH, or spectral overlap of the emission spectra of different fluorescent particles in multiplexing formats. Here the benefits of using particle-based fluorescence sensors, their limitations and strategies to overcome these limitations will be described and exemplified with selected examples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Carbon nanotube sensors integrated inside a microfluidic channel for water quality monitoring
NASA Astrophysics Data System (ADS)
Liu, Yu; Li, Xinghui; Dokmeci, Mehmet R.; Wang, Ming L.
2011-04-01
Single-walled carbon nanotubes (SWNTs) with their unique electrical properties and large surface area are remarkable materials for detecting low concentration of toxic and hazardous chemicals (both from the gaseous and liquid phases). Ionic adsorbates in water will attach on to SWNTs and drastically alter their electrical properties. Several SWNTs based pH and chemical sensors have been demonstrated. However, most of them require external components to test and analyze the response of SWNTs to ions inside the liquid samples. Here, we report a water quality monitoring sensor composed of SWNTs integrated inside microfluidic channels and on-chip testing components with a wireless transmission board. To detect multiple analytes in water requires the functionalization of SWNTs with different chemistries. In addition, microfluidic channels are used to guide liquid samples to individual nanotube sensors in an efficient manner. Furthermore, the microfluidic system enables sample mixing and separation before testing. To realize the nanosensors, first microelectrodes were fabricated on an oxidized silicon substrate. Next, PDMS micro channels were fabricated and bonded on the substrate. These channels can be incorporated with a microfluidic system which can be designed to manipulate different analytes for specific molecule detection. Low temperature, solution based Dielectrophoretic (DEP) assembly was conducted inside this microfluidic system which successfully bridged SWNTs between the microelectrodes. The SWNTs sensors were next characterized with different pH buffer solutions. The resistance of SWNTs had a linearly increase as the pH values ranged from 5 to 8. The nanosensor incorporated within the microfluidic system is a versatile platform and can be utilized to detect numerous water pollutants, including toxic organics and microorganisms down to low concentrations. On-chip processing and wireless transmission enables the realization of a full autonomous system for real time monitoring of water quality.
Pastor-Soler, Nuria; Beaulieu, Valerie; Litvin, Tatiana N; Da Silva, Nicolas; Chen, Yanqiu; Brown, Dennis; Buck, Jochen; Levin, Lonny R; Breton, Sylvie
2003-12-05
Modulation of environmental pH is critical for the function of many biological systems. However, the molecular identity of the pH sensor and its interaction with downstream effector proteins remain poorly understood. Using the male reproductive tract as a model system in which luminal acidification is critical for sperm maturation and storage, we now report a novel pathway for pH regulation linking the bicarbonate activated soluble adenylyl cyclase (sAC) to the vacuolar H+ATPase (V-ATPase). Clear cells of the epididymis and vas deferens contain abundant V-ATPase in their apical pole and are responsible for acidifying the lumen. Proton secretion is regulated via active recycling of V-ATPase. Here we demonstrate that this recycling is regulated by luminal pH and bicarbonate. sAC is highly expressed in clear cells, and apical membrane accumulation of V-ATPase is triggered by a sAC-dependent rise in cAMP in response to alkaline luminal pH. As sAC is expressed in other acid/base transporting epithelia, including kidney and choroid plexus, this cAMP-dependent signal transduction pathway may be a widespread mechanism that allows cells to sense and modulate extracellular pH.
NASA Astrophysics Data System (ADS)
Kumar, Narendra; Senapati, Sujata; Kumar, Satyendra; Kumar, Jitendra; Panda, Siddhartha
2016-04-01
Vertically aligned ZnO nanorods were grown on a SiO2/Si surface by optimization of the temperature and atmosphere for annealing of the seed. The seed layer annealed at 500 °C in vacuum provided well separated and uniform seeds which also provided the best condition to get densely packed, uniformly distributed, and vertically aligned nanorods. These nanorods grown on the substrates were used to fabricate electrolyte-insulator-semiconductor (EIS) devices for pH sensing. Etching of ZnO at acidic pH prevents the direct use of nanorods for pH sensing. Therefore, the nanorods functionalised with 3-aminopropyltriethoxysilane (APTES) were utilized for pH sensing and showed the pH sensitivity of 50.1 mV/pH. APTES is also known to be used as a linker to immobilize biomolecules (such as antibodies). The EIS device with APTES functionalized nanorods was used for the label free detection of prostate-specific antigen (PSA). Finally, voltage shifts of 23 mV and 35 mV were observed with PSA concentrations of 1 ng/ml and 100 ng/ml, respectively.
Embedded micro-sensor for monitoring pH in concrete structures
NASA Astrophysics Data System (ADS)
Srinivasan, Rengaswamy; Phillips, Terry E.; Bargeron, C. Brent; Carlson, Micah A.; Schemm, Elizabeth R.; Saffarian, Hassan M.
2000-04-01
Three major causes of corrosion of steel in concrete are chloride ions (Cl-), temperature (T) and acidity (pH). Under normal operating temperatures and with pH above 13, steel does not undergo pitting corrosion. In presence of Cl-, if the pH decreases below 12, the probability of pitting increases. Acid rain and atmospheric carbon dioxide cause the pH to drop in concrete, often leading to corrosion of the structure with the concomitant cost of repair or replacement. Currently, the pH level in concrete is estimated through destructive testing of the structures. Glass ISFET, and other pH sensors that need maintenance and calibration cannot be embedded in concrete. In this paper, we describe an inexpensive solid state pH sensor that can be embedded in concrete, to detect pH changes at the early stages. It employs a chemical reagent, trinitrobenzenesulfonic acid (TNBS) that exhibits changes in optical properties in the 12 - 14 pH range, and is held in a film of a sol-gel/TNBS composite on an optically transparent surface. A simple LED/filter/photodiode transducer monitors pH-induced changes in TNBS. Such a device needs no periodic calibration or maintenance. The optical window, the light-source and sensor can be easily housed and encapsulated in a chemically inert structure, and embedded in concrete.
Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems.
Zhang, Xin; Rehm, Stefanie; Safont-Sempere, Marina M; Würthner, Frank
2009-11-01
Water-soluble, self-assembled nanocapsules composed of a functional bilayer membrane and enclosed guest molecules can provide smart (that is, condition responsive) sensors for a variety of purposes. Owing to their outstanding optical and redox properties, perylene bisimide chromophores are interesting building blocks for a functional bilayer membrane in a water environment. Here, we report water-soluble perylene bisimide vesicles loaded with bispyrene-based energy donors in their aqueous interior. These loaded vesicles are stabilized by in situ photopolymerization to give nanocapsules that are stable over the entire aqueous pH range. On the basis of pH-tunable spectral overlap of donors and acceptors, the donor-loaded polymerized vesicles display pH-dependent fluorescence resonance energy transfer from the encapsulated donors to the bilayer dye membrane, providing ultrasensitive pH information on their aqueous environment with fluorescence colour changes covering the whole visible light range. At pH 9.0, quite exceptional white fluorescence could be observed for such water-soluble donor-loaded perylene vesicles.
Super-Nernstian pH sensors based on WO3 nanosheets
NASA Astrophysics Data System (ADS)
Kuo, Chao-Yin; Wang, Shui-Jinn; Ko, Rong-Ming; Tseng, Hung-Hao
2018-04-01
The effects of the surface morphology of hydrothermally grown WO3 nanosheets (NSs) and sputtering WO3 film on the performance of pH sensing electrodes are presented and compared in the pH range of 2–12. Using a separated electrode of an extended-gate field-effect transistor (EGFET) configuration, the WO3 nanosheet (NS) pH sensor shows a sensitivity of 63.37 mV/pH, a good linearity of 0.9973, a low voltage hysteresis of 4.79 mV, and a low drift rate of 3.18 mV/h. In contrast, the film-type one shows a typical sensitivity of only 50.08 mV/pH and a linearity of 0.9932. The super-Nernstian response could be attributed to the significant increase in the number of surface ion adsorption sites of the NS structure and the occurrence of local electric field enhancement over the sharp edges and corners of WO3 NSs.
Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors.
Emir Diltemiz, Sibel; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan
2017-02-24
Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with molecular imprinting technology.
Clarke, Jennifer S; Achterberg, Eric P; Rérolle, Victoire M C; Abi Kaed Bey, Samer; Floquet, Cedric F A; Mowlem, Matthew C
2015-10-15
The oceans are a major sink for anthropogenic atmospheric carbon dioxide, and the uptake causes changes to the marine carbonate system and has wide ranging effects on flora and fauna. It is crucial to develop analytical systems that allow us to follow the increase in oceanic pCO2 and corresponding reduction in pH. Miniaturised sensor systems using immobilised fluorescence indicator spots are attractive for this purpose because of their simple design and low power requirements. The technology is increasingly used for oceanic dissolved oxygen measurements. We present a detailed method on the use of immobilised fluorescence indicator spots to determine pH in ocean waters across the pH range 7.6-8.2. We characterised temperature (-0.046 pH/°C from 5 to 25 °C) and salinity dependences (-0.01 pH/psu over 5-35), and performed a preliminary investigation into the influence of chlorophyll on the pH measurement. The apparent pKa of the sensor spots was 6.93 at 20 °C. A drift of 0.00014 R (ca. 0.0004 pH, at 25 °C, salinity 35) was observed over a 3 day period in a laboratory based drift experiment. We achieved a precision of 0.0074 pH units, and observed a drift of 0.06 pH units during a test deployment of 5 week duration in the Southern Ocean as an underway surface ocean sensor, which was corrected for using certified reference materials. The temperature and salinity dependences were accounted for with the algorithm, R=0.00034-0.17·pH+0.15·S(2)+0.0067·T-0.0084·S·1.075. This study provides a first step towards a pH optode system suitable for autonomous deployment. The use of a short duration low power illumination (LED current 0.2 mA, 5 μs illumination time) improved the lifetime and precision of the spot. Further improvements to the pH indicator spot operations include regular application of certified reference materials for drift correction and cross-calibration against a spectrophotometric pH system. Desirable future developments should involve novel fluorescence spots with improved response time and apparent pKa values closer to the pH of surface ocean waters. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Radhakrishnan, Nitin; Park, Jongwon; Kim, Chang-Soo
2012-01-01
Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide). Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc.) to implement a viable component for in-line fluidic sensor systems. PMID:23012527
NASA Astrophysics Data System (ADS)
Rasheed, Hiba S.; Ahmed, Naser M.; Matjafri, M. Z.; Al-Hardan, Naif H.; Almessiere, Munirah Abdullah; Sabah, Fayroz A.; Al-Hazeem, Nabeel Z.
2017-10-01
Metal oxide nanostructures have attracted considerable attention as pH-sensitive membranes because of their unique advantages. Specifically, the special properties of ZnO thin film, including high surface-to-volume ratio, nontoxicity, thermal stability, chemical stability, electrochemical activity, and high mechanical strength, have attracted massive interest. ZnO exhibits wide bandgap of 3.37 eV, good biocompatibility, high reactivity, robustness, and environmental stability. These unique properties explain why ZnO has the most applications among all nanostructured metal oxides based on its structure and properties. Moreover, ZnO has excellent electrical characteristics, enabling its use in accurate sensors with rapid response. ZnO nanostructures can be used in novel pH and biomedical sensing applications. However, ZnO thin film exhibits large sheet resistance and low conductivity. Increasing the conductivity or reducing the resistivity of ZnO sensing membranes is important to achieve low impedance. We propose herein a new design using a multilayer ZnO/Pd/ZnO structure as a pH-sensing membrane. Multiple layers were deposited by radio frequency (RF) sputtering for ZnO and direct current (DC) sputtering for Pd to achieve low sheet resistance. These multilayers with low sheet resistance of 15.8 Ω/sq were then successfully used to control the conductivity in extended-gate field-effect transistors (EGFETs). The resulting multilayered EGFET pH-sensor demonstrated improved sensing performance. The measured sensitivity of the pH sensor was 40 μA/pH and 52 mV/pH within the pH range from 2 to 12, rendering this structure suitable for use in various applications, including pH sensors and biosensors.
Evaluation of Xylem EXO water-quality sondes and sensors
Snazelle, Teri T.
2015-01-01
Two models of multiparameter sondes manufactured by Xylem, parent company of Yellow Springs Incorporated (YSI)—EXO1 and EXO2—equipped with EXO conductivity/temperature (C/T), pH, dissolved oxygen (DO), and turbidity sensors, were evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility. The sondes and sensors were evaluated in two phases for compliance with the manufacturer’s specifications and the USGS acceptance criteria for continuous water-quality monitors. Phase one tested the accuracy of the water-quality sondes equipped: (a) with a C/T, pH, DO, and turbidity sensor by comparing the EXO sensors’ measured values to those of an equivalently configured YSI 6920 V2-2 sensor, and (b) with multiple sensors of the same parameter type (such as three pH sensors and a C/T sensor) on a single sonde at room temperature and at an extended temperature range. In addition to accuracy, the communication protocols and the manufacturing specifications for range of detection and operating temperature were also tested during this phase. Phase two evaluated the sondes’ performance in a surface-water environment by deploying an EXO1 and an EXO2 equipped with pH, C/T, DO, and turbidity sensors at USGS site 02492620 located at East Pearl River near Bay Saint Louis, Mississippi. The EXO sondes’ temperature deviations from a certified YSI 4600 digital thermometer were within the ±0.2 degree Celsius (°C) USGS criteria, but were greater than the ±0.01 °C manufacturing specification. The conductivity sensors met the ±3 percent USGS criteria for specific conductance greater than 100 microsiemens per centimeter. The sensors met the more stringent ±0.5 percent manufacturing specification only at room temperature in the 250 microsiemens per centimeter (µS/cm) standard. The manufacturing and USGS criteria (±0.2 pH unit) were met in pH standards 4, 9.2, 10, and 12.45, but were not met in pH 1.68 standard. The DO sensors met both the ±0.3 milligram per liter (mg/L) USGS criteria and the ±1 percent manufacturing specification. The ±5 percent USGS criteria for turbidity in waters not exceeding 2,000 formazin nephelometric units (FNU) were met by the five turbidity sensors tested; however, all five sensors failed to meet these requirements at turbidities exceeding 2,000 FNU. The more stringent ±2 percent manufacturing turbidity specification for water with less than 1,000 FNU was met by only one of the five sensors tested. The results from the field deployment indicated acceptable agreement in temperature, specific conductance, pH, and DO between the EXO sondes, the site sonde, and the reference sonde. The EXO1 and EXO2 turbidity measurements differed from the site sonde by approximately 23 and 25 percent, respectively.
Hydrogel-coated fiber Bragg grating sensor for pH monitoring
NASA Astrophysics Data System (ADS)
Pabbisetti, Vayu Nandana Kishore; Madhuvarasu, Sai Shankar
2016-06-01
We present a fiber-optic wavelength-modulated sensor for pH applications. Fiber Bragg grating (FBG) is functionalized with a stimulus-responsive hydrogel that induces a strain on FBG due to mechanical expansion of the gel in response to ambient pH changes. The gel is synthesized from the blends of poly (vinyl alcohol)/poly (acrylic acid). The induced strain results in a shift of FBG reflected peak that is monitored by an interrogator. The sensor system shows good linearity in the acidic pH range of 3 to 7 with a sensitivity of 12.16 pm/pH. In addition, it shows good repeatability and oscillator behavior, which proves it to be fit for pH sensing applications.
2012-01-01
In this study, a series of new BF2-chelated tetraarylazadipyrromethane dyes are synthesized and are shown to be suitable for the preparation of on/off photoinduced electron transfer modulated fluorescent sensors. The new indicators are noncovalently entrapped in polyurethane hydrogel D4 and feature absorption maxima in the range 660–710 nm and fluorescence emission maxima at 680–740 nm. Indicators have high molar absorption coefficients of ∼80 000 M–1 cm–1, good quantum yields (up to 20%), excellent photostability and low cross-sensitivity to the ionic strength. pKa values of indicators are determined from absorbance and fluorescence measurements and range from 7 to 11, depending on the substitution pattern of electron-donating and -withdrawing functionalities. Therefore, the new indicators are suitable for exploitation and adaptation in a diverse range of analytical applications. Apparent pKa values in sensor films derived from fluorescence data show 0.5–1 pH units lower values in comparison with those derived from the absorption data due to Förster resonance energy transfer from protonated to deprotonated form. A dual-lifetime referenced sensor is prepared, and application for monitoring of pH in corals is demonstrated. PMID:22738322
Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules.
Hundshammer, Christian; Düwel, Stephan; Ruseckas, David; Topping, Geoffrey; Dzien, Piotr; Müller, Christoph; Feuerecker, Benedikt; Hövener, Jan B; Haase, Axel; Schwaiger, Markus; Glaser, Steffen J; Schilling, Franz
2018-02-15
pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP) magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (p K a ). Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the p K a of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1- 13 C]serine amide and [1- 13 C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei ( 13 C, 15 N, 31 P) with high sensitivity up to 4.8 ppm/pH and we show that 13 C spins can be hyperpolarized with dissolution dynamic polarization (DNP). Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.
A Dual Sensor for pH and Hydrogen Peroxide Using Polymer-Coated Optical Fibre Tips.
Purdey, Malcolm S; Thompson, Jeremy G; Monro, Tanya M; Abell, Andrew D; Schartner, Erik P
2015-12-17
This paper demonstrates the first single optical fibre tip probe for concurrent detection of both hydrogen peroxide (H₂O₂) concentration and pH of a solution. The sensor is constructed by embedding two fluorophores: carboxyperoxyfluor-1 (CPF1) and seminaphtharhodafluor-2 (SNARF2) within a polymer matrix located on the tip of the optical fibre. The functionalised fibre probe reproducibly measures pH, and is able to accurately detect H₂O₂ over a biologically relevant concentration range. This sensor offers potential for non-invasive detection of pH and H₂O₂ in biological environments using a single optical fibre.
A sprayable luminescent pH sensor and its use for wound imaging in vivo.
Schreml, Stephan; Meier, Robert J; Weiß, Katharina T; Cattani, Julia; Flittner, Dagmar; Gehmert, Sebastian; Wolfbeis, Otto S; Landthaler, Michael; Babilas, Philipp
2012-12-01
Non-invasive luminescence imaging is of great interest for studying biological parameters in wound healing, tumors and other biomedical fields. Recently, we developed the first method for 2D luminescence imaging of pH in vivo on humans, and a novel method for one-stop-shop visualization of oxygen and pH using the RGB read-out of digital cameras. Both methods make use of semitransparent sensor foils. Here, we describe a sprayable ratiometric luminescent pH sensor, which combines properties of both these methods. Additionally, a major advantage is that the sensor spray is applicable to very uneven tissue surfaces due to its consistency. A digital RGB image of the spray on tissue is taken. The signal of the pH indicator (fluorescein isothiocyanate) is stored in the green channel (G), while that of the reference dye [ruthenium(II)-tris-(4,7-diphenyl-1,10-phenanthroline)] is stored in the red channel (R). Images are processed by rationing luminescence intensities (G/R) to result in pseudocolor pH maps of tissues, e.g. wounds. © 2012 John Wiley & Sons A/S.
Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways
NASA Astrophysics Data System (ADS)
Modi, Souvik; Halder, Saheli; Nizak, Clément; Krishnan, Yamuna
2013-12-01
DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications.DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications. Electronic supplementary information (ESI) available: Detailed description of all oligonucleotide sequences used in this study; list of figures that support claims from the main text. Mainly these show sensor sequences, phage display results, scFv purification and binding data, cell images clamped at different pH and co-localization studies with endocytic tracers. See DOI: 10.1039/c3nr03769j
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Narendra; Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, Kanpur-208016; Kumar, Jitendra
The use of a-IGZO instead of the conventional high-k dielectrics as a pH sensitive layer could lead to the simplification of fabrication steps of field effect based devices. In this work, the pH sensitivities of a-IGZO films directly deposited over a SiO{sub 2}/Si surface were studied utilizing electrolyte-insulator-semiconductor (EIS) structures. Annealing of the films was found to affect the sensitivity of the devices and the device with the film annealed at 400 {sup o}C in N{sub 2} ambience showed the better sensitivity, which reduced with further increase in the annealing temperature to 500 {sup o}C. The increased pH sensitivity withmore » the film annealed at 400 {sup o}C in N{sub 2} gas was attributed to the enhanced lattice oxygen ions (based on the XPS data) and improved C-V characteristics, while the decrease in sensitivity at an increased annealing temperature of 500 {sup o}C was attributed to defects in the films as well as the induced traps at the IGZO/SiO{sub 2} interface based on the stretched accumulation and the peak in the inversion region of C-V curves. This study could help to develop a sensor where the material (a-IGZO here) used as the active layer in a thin film transistors (TFTs) possibly could also be used as the pH sensitive layer without affecting the TFT characteristics, and thus obviating the need of high-K dielectrics for sensitivity enhancement.« less
Nogami, Hirofumi; Arai, Shozo; Okada, Hironao; Zhan, Lan; Itoh, Toshihiro
2017-01-01
Monitoring rumen conditions in cows is important because a dysfunctional rumen system may cause death. Sub-acute ruminal acidosis (SARA) is a typical disease in cows, and is characterized by repeated periods of low ruminal pH. SARA is regarded as a trigger for rumen atony, rumenitis, and abomasal displacement, which may cause death. In previous studies, rumen conditions were evaluated by wireless sensor nodes with pH measurement capability. The primary advantage of the pH sensor is its ability to continuously measure ruminal pH. However, these sensor nodes have short lifetimes since they are limited by the finite volume of the internal liquid of the reference electrode. Mimicking rumen atony, we attempt to evaluate the rumen condition using wireless sensor nodes with three-axis accelerometers. The theoretical life span of such sensor nodes depends mainly on the transmission frequency of acceleration data and the size of the battery, and the proposed sensor nodes are 30.0 mm in diameter and 70.0 mm in length and have a life span of over 600 days. Using the sensor nodes, we compare the rumen motility of the force transducer measurement with the three-axis accelerometer data. As a result, we can detect discriminative movement of rumen atony. PMID:28346374
Nogami, Hirofumi; Arai, Shozo; Okada, Hironao; Zhan, Lan; Itoh, Toshihiro
2017-03-27
Monitoring rumen conditions in cows is important because a dysfunctional rumen system may cause death. Sub-acute ruminal acidosis (SARA) is a typical disease in cows, and is characterized by repeated periods of low ruminal pH. SARA is regarded as a trigger for rumen atony, rumenitis, and abomasal displacement, which may cause death. In previous studies, rumen conditions were evaluated by wireless sensor nodes with pH measurement capability. The primary advantage of the pH sensor is its ability to continuously measure ruminal pH. However, these sensor nodes have short lifetimes since they are limited by the finite volume of the internal liquid of the reference electrode. Mimicking rumen atony, we attempt to evaluate the rumen condition using wireless sensor nodes with three-axis accelerometers. The theoretical life span of such sensor nodes depends mainly on the transmission frequency of acceleration data and the size of the battery, and the proposed sensor nodes are 30.0 mm in diameter and 70.0 mm in length and have a life span of over 600 days. Using the sensor nodes, we compare the rumen motility of the force transducer measurement with the three-axis accelerometer data. As a result, we can detect discriminative movement of rumen atony.
Frost, Megan C; Meyerhoff, Mark E
2015-01-01
We review approaches and challenges in developing chemical sensor-based methods to accurately and continuously monitor levels of key analytes in blood related directly to the status of critically ill hospitalized patients. Electrochemical and optical sensor-based technologies have been pursued to measure important critical care species in blood [i.e., oxygen, carbon dioxide, pH, electrolytes (K(+), Na(+), Cl(-), etc.), glucose, and lactate] in real-time or near real-time. The two main configurations examined to date for achieving this goal have been intravascular catheter sensors and patient attached ex vivo sensors with intermittent blood sampling via an attached indwelling catheter. We discuss the status of these configurations and the main issues affecting the accuracy of the measurements, including cell adhesion and thrombus formation on the surface of the sensors, sensor drift, sensor selectivity, etc. Recent approaches to mitigate these nagging performance issues that have prevented these technologies from clinical use are also discussed.
Detection of influenza A virus using carbon nanotubes field effect transistor based DNA sensor
NASA Astrophysics Data System (ADS)
Tran, Thi Luyen; Nguyen, Thi Thuy; Huyen Tran, Thi Thu; Chu, Van Tuan; Thinh Tran, Quang; Tuan Mai, Anh
2017-09-01
The carbon nanotubes field effect transistor (CNTFET) based DNA sensor was developed, in this paper, for detection of influenza A virus DNA. Number of factors that influence the output signal and analytical results were investigated. The initial probe DNA, decides the available DNA strands on CNTs, was 10 μM. The hybridization time for defined single helix was 120 min. The hybridization temperature was set at 30 °C to get a net change in drain current of the DNA sensor without altering properties of any biological compounds. The response time of the DNA sensor was less than one minute with a high reproducibility. In addition, the DNA sensor has a wide linear detection range from 1 pM to 10 nM, and a very low detection limit of 1 pM. Finally, after 7-month storage in 7.4 pH buffer, the output signal of DNA sensor recovered 97%.
Soil pH Mapping with an On-The-Go Sensor
Schirrmann, Michael; Gebbers, Robin; Kramer, Eckart; Seidel, Jan
2011-01-01
Soil pH is a key parameter for crop productivity, therefore, its spatial variation should be adequately addressed to improve precision management decisions. Recently, the Veris pH Manager™, a sensor for high-resolution mapping of soil pH at the field scale, has been made commercially available in the US. While driving over the field, soil pH is measured on-the-go directly within the soil by ion selective antimony electrodes. The aim of this study was to evaluate the Veris pH Manager™ under farming conditions in Germany. Sensor readings were compared with data obtained by standard protocols of soil pH assessment. Experiments took place under different scenarios: (a) controlled tests in the lab, (b) semicontrolled test on transects in a stop-and-go mode, and (c) tests under practical conditions in the field with the sensor working in its typical on-the-go mode. Accuracy issues, problems, options, and potential benefits of the Veris pH Manager™ were addressed. The tests demonstrated a high degree of linearity between standard laboratory values and sensor readings. Under practical conditions in the field (scenario c), the measure of fit (r2) for the regression between the on-the-go measurements and the reference data was 0.71, 0.63, and 0.84, respectively. Field-specific calibration was necessary to reduce systematic errors. Accuracy of the on-the-go maps was considerably higher compared with the pH maps obtained by following the standard protocols, and the error in calculating lime requirements was reduced by about one half. However, the system showed some weaknesses due to blockage by residual straw and weed roots. If these problems were solved, the on-the-go sensor investigated here could be an efficient alternative to standard sampling protocols as a basis for liming in Germany. PMID:22346591
Soil pH mapping with an on-the-go sensor.
Schirrmann, Michael; Gebbers, Robin; Kramer, Eckart; Seidel, Jan
2011-01-01
Soil pH is a key parameter for crop productivity, therefore, its spatial variation should be adequately addressed to improve precision management decisions. Recently, the Veris pH Manager™, a sensor for high-resolution mapping of soil pH at the field scale, has been made commercially available in the US. While driving over the field, soil pH is measured on-the-go directly within the soil by ion selective antimony electrodes. The aim of this study was to evaluate the Veris pH Manager™ under farming conditions in Germany. Sensor readings were compared with data obtained by standard protocols of soil pH assessment. Experiments took place under different scenarios: (a) controlled tests in the lab, (b) semicontrolled test on transects in a stop-and-go mode, and (c) tests under practical conditions in the field with the sensor working in its typical on-the-go mode. Accuracy issues, problems, options, and potential benefits of the Veris pH Manager™ were addressed. The tests demonstrated a high degree of linearity between standard laboratory values and sensor readings. Under practical conditions in the field (scenario c), the measure of fit (r(2)) for the regression between the on-the-go measurements and the reference data was 0.71, 0.63, and 0.84, respectively. Field-specific calibration was necessary to reduce systematic errors. Accuracy of the on-the-go maps was considerably higher compared with the pH maps obtained by following the standard protocols, and the error in calculating lime requirements was reduced by about one half. However, the system showed some weaknesses due to blockage by residual straw and weed roots. If these problems were solved, the on-the-go sensor investigated here could be an efficient alternative to standard sampling protocols as a basis for liming in Germany.
Ionic pH and glucose sensors fabricated using hydrothermal ZnO nanostructures
NASA Astrophysics Data System (ADS)
Wang, Jyh-Liang; Yang, Po-Yu; Hsieh, Tsang-Yen; Juan, Pi-Chun
2016-01-01
Hydrothermally synthesized aluminum-doped ZnO (AZO) nanostructures have been adopted in extended-gate field-effect transistor (EGFET) sensors to demonstrate the sensitive and stable pH and glucose sensing characteristics of AZO-nanostructured EGFET sensors. The AZO-nanostructured EGFET sensors exhibited the following superior pH sensing characteristics: a high current sensitivity of 0.96 µA1/2/pH, a high linearity of 0.9999, less distortion of output waveforms, a small hysteresis width of 4.83 mV, good long-term repeatability, and a wide sensing range from pHs 1 to 13. The glucose sensing characteristics of AZO-nanostructured biosensors exhibited the desired sensitivity of 60.5 µA·cm-2·mM-1 and a linearity of 0.9996 up to 13.9 mM. The attractive characteristics of high sensitivity, high linearity, and repeatability of using ionic AZO-nanostructured EGFET sensors indicate their potential use as electrochemical and disposable biosensors.
Chu, Binbin; Song, Bin; Ji, Xiaoyuan; Su, Yuanyuan; Wang, Houyu; He, Yao
2017-11-21
Long-term and real-time investigation of the dynamic process of pH i changes is critically significant for understanding the related pathogenesis of diseases and the design of intracellular drug delivery systems. Herein, we present a one-step synthetic strategy to construct ratiometric pH sensors, which are made of europium (Eu)-doped one-dimensional silicon nanorods (Eu@SiNRs). The as-prepared Eu@SiNRs have distinct emission maxima peaks at 470 and 620 nm under 405 nm excitation. Of particular note, the fluorescence emission intensity at 470 nm decreases along with the increase of pH, while the one at 620 nm is nearly unaffected by pH changes, making Eu@SiNRs a feasible probe for pH sensing ratiometrically. Moreover, Eu@SiNRs are found to be responsive to a broad pH range (ca. 3-9), biocompatible (e.g., ∼100% of cell viability during 24 h treatment) and photostable (e.g., ∼10% loss of intensity after 40 min continuous UV irradiation). Taking advantages of these merits, we employ Eu@SiNRs for the visualization of the cytoplasmic alkalization process mediated by nigericin in living cells, for around 30 min without interruption, revealing important information for understanding the dynamic process of pH i fluctuations.
Efficient Enzyme-Free Biomimetic Sensors for Natural Phenol Detection.
Ferreira Garcia, Luane; Ribeiro Souza, Aparecido; Sanz Lobón, Germán; Dos Santos, Wallans Torres Pio; Alecrim, Morgana Fernandes; Fontes Santiago, Mariângela; de Sotomayor, Rafael Luque Álvarez; de Souza Gil, Eric
2016-08-13
The development of sensors and biosensors based on copper enzymes and/or copper oxides for phenol sensing is disclosed in this work. The electrochemical properties were studied by cyclic and differential pulse voltammetry using standard solutions of potassium ferrocyanide, phosphate/acetate buffers and representative natural phenols in a wide pH range (3.0 to 9.0). Among the natural phenols herein investigated, the highest sensitivity was observed for rutin, a powerful antioxidant widespread in functional foods and ubiquitous in the plant kingdom. The calibration curve for rutin performed at optimum pH (7.0) was linear in a broad concentration range, 1 to 120 µM (r = 0.99), showing detection limits of 0.4 µM. The optimized biomimetic sensor was also applied in total phenol determination in natural samples, exhibiting higher stability and sensitivity as well as distinct selectivity for antioxidant compounds.
NASA Astrophysics Data System (ADS)
Jukl, Jennifer Marie
Although biosensor technology is a broad and well-studied field, the progress of many novel sensor technologies faces challenges. These challenges range from simple design considerations to fundamental issues with the concept or approach. One of the most active fields of sensor research integrates fiber optics with specially engineered fluorescent molecules. This type of sensor typically utilizes a porous polymer or porous glass substrate to entrap the fluorescent (or fluorescently-tagged) molecule. Porous polymer hydrogels are generally favored due to their ease of fabrication, low cost, adaptability, and biocompatibility. While hydrogels are ideal for both functional molecule suspension and fluid diffusion, their porosity and hydrophilicity are not always advantageous. The largest drawback of these properties is the hydrogel swelling they produce and the resulting geometric changes. This project investigated the limitations of fluorescent hydrogel-based sensors and the effects of unpredictable structural changes hydrogels undergo during typical, unrestrained swelling. The significance of covalent incorporation of the sensing fluorophore into the hydrogel matrix is also explored. Leaching tests were conducted using polyacrylamide (PAm) hydrogels which were impregnated with one of two pH sensitive fluorophores, one which bonded covalently with the hydrogel matrix during polymerization (fluorescein o-acrylate), and one which did not (fluorescein sodium). Once determined to be effective, the covalently bonding fluorophore was used to create constrained-dimension fluorescent pH sensors. These sensors were tested for effectiveness and reproducibility. All data was collected using a laboratory grade optical fibers, a USB spectrometer, and SpectraSuite software (Ocean Optics, 2010) unless otherwise specified.
Lin, Wen-Chi; Brondum, Klaus; Monroe, Charles W.; Burns, Mark A.
2017-01-01
Monitoring of the pH, oxidation-reduction-potential (ORP), and conductivity of aqueous samples is typically performed using multiple sensors. To minimize the size and cost of these sensors for practical applications, we have investigated the use of a single sensor constructed with only bare platinum electrodes deposited on a glass substrate. The sensor can measure pH from 4 to 10 while simultaneously measuring ORP from 150 to 800 mV. The device can also measure conductivity up to 8000 μS/cm in the range of 10 °C to 50 °C, and all these measurements can be made even if the water samples contain common ions found in residential water. The sensor is inexpensive (i.e., ~$0.10/unit) and has a sensing area below 1 mm2, suggesting that the unit is cost-efficient, robust, and widely applicable, including in microfluidic systems. PMID:28753913
Kurabayashi, Tomokazu; Funaki, Nayuta; Fukuda, Takeshi; Akiyama, Shinnosuke; Suzuki, Miho
2014-01-01
Dual pH-dependent fluorescence peaks from a semiconductor quantum dot (QD) and a pH-dependent fluorescent dye can be measured by irradiating with a single wavelength light, and the pH can be estimated from the ratio of the fluorescent intensity of the two peaks. In this work, ratiometric pH sensing was achieved in an aqueous environment by a fluorescent CdSe/ZnS QD appended with a pH-sensitive organic dye, based on fluorescence resonance energy transfer (FRET). By functionalizing the CdSe/ZnS QD with 5-(and 6)-carboxynaphthofluorescein succinimidyl ester as a pH-dependent fluorescent dye, we succeeded in fabricating sensitive nanocomplexes with a linear response to a broad range of physiological pH levels (7.5-9.5) when excited at 450 nm. We found that a purification process is important for increasing the high-fluorescence intensity ratio of a ratiometric fluorescence pH-sensor, and the fluorescence intensity ratio was improved up to 1.0 at pH 8.0 after the purification process to remove unreacted CdSe/ZnS QDs even though the fluorescence of the dye could not be observed without the purification process. The fluorescence intensity ratio corresponds to the fluorescence intensity of the dye, and this fluorescent dye exhibited pH-dependent fluorescence intensity changes. These facts indicate that the fluorescence intensity ratio linearly increased with increasing pH value of the buffer solution containing the QD and the dye. The FRET efficiencies changed from 0.3 (pH 7.5) to 6.2 (pH 9.5).
Amperometric micro pH measurements in oxygenated saliva.
Chaisiwamongkhol, Korbua; Batchelor-McAuley, Christopher; Compton, Richard G
2017-07-24
An amperometric micro pH sensor has been developed based on the chemical oxidation of carbon fibre surfaces (diameter of 9 μm and length of ca. 1 mm) to enhance the population of surface quinone groups for the measurement of salivary pH. The pH analysis utilises the electrochemically reversible two-electron, two-proton behaviour of surface quinone groups on the micro-wire electrodes. A Nernstian response is observed across the pH range 2-8 which is the pH range of many biological fluids. We highlight the measurement of pH in small volumes of biological fluids without the need for oxygen removal and specifically the micro pH electrode is examined by measuring the pH of commercial synthetic saliva and authentic human saliva samples. The results correspond well with those obtained by using commercial glass pH electrodes on large volume samples.
A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel
NASA Astrophysics Data System (ADS)
Pathak, Akhilesh Kumar; Singh, Vinod Kumar
2017-12-01
In the present study we report the fabrication and characterization of no-core fiber sensor (NCFS) using smart hydrogel coating for pH measurement. The no-core fiber (NCF) is stubbed between two single-mode fibers with SMA connector before immobilizing of smart hydrogel. The wavelength interrogation technique is used to calculate the sensitivity of the proposed sensor. The result shows a high sensitivity of 1.94 nm/pH for a wide range of pH values varied from 3 to 10 with a good linear response. In addition to high sensitivity, the fabricated sensor provides a fast response time with a good stability, repeatability and reproducibility.
NASA Astrophysics Data System (ADS)
Bindig, U.; Ulatowska-Jarza, A.; Kopaczynska, M.; Müller, G.; Podbielska, H.
2008-01-01
In view of laser-assisted medical applications, the construction of silica-based sol-gel fiberoptic sensors based on photolon (Ph) and protoporphyrin IX (PP IX) is discussed. Electron microscopy and AFM were used to characterize the silica sol-gel coatings. AFM measurements indicate a change in the surface porosity. The PP IX-based sensors were constructed as a one-layer optode as well as a multilayered structure. An additional hybrid sensor made up of alternate layers of PP IX-and Ph-doped sol-gel was also constructed and examined. Sol-gel matrices were prepared from silicate precursor tetraethylorthosilicate (TEOS) mixed with ethanol in acid-catalyzed hydrolysis. The carrier matrices of photosensitive dyes were produced with factor R = 20, where R denotes the ratio of solvent moles (ethanol) to the number of TEOS moles. A multilayered coating was built up using the reverse-dipping technique. The overall coating thickness was determined by electron microscopy. Doped sol-gels with different PP IX concentrations were used to produce fiberoptic coatings. The film optodes with a different number of layers were examined by fluorescence spectroscopy. It was found that photolon and protoporphyrin IX entrapped in sol-gel preserve their chemical reactivity and have contact with the external environment. The hybrid sensor demonstrated clear fluorescence and a reversible behavior in gaseous environments.
Hassan, Ahmed Khudhair; Saad, Bahruddin; Ghani, Sulaiman Ab; Adnan, Rohana; Rahim, Afidah Abdul; Ahmad, Norariza; Mokhtar, Marina; Ameen, Suham Tawfiq; Al-Araji, Suad Mustafa
2011-01-01
Plasticised poly(vinyl chloride)-based membranes containing the ionophores (α-, β- and γ-cyclodextrins (CD), dibenzo-18-crown-6 (DB18C6) and dibenzo-30-crown-10 (DB30C10) were evaluated for their potentiometric response towards promethazine (PM) in a flow injection analysis (FIA) set-up. Good responses were obtained when β- and γ-CDs, and DB30C10 were used. The performance characteristics were further improved when tetrakis(4-chlorophenyl) borate (KTPB) was added to the membrane. The sensor based on β-CD, bis(2-ethylhexyl) adipate (BEHA) and KTPB exhibited the best performance among the eighteen sensor compositions that were tested. The response was linear from 1 × 10−5 to 1 × 10−2 M, slope was 61.3 mV decade−1, the pH independent region ranged from 4.5 to 7.0, a limit of detection of 5.3 × 10−6 M was possible and a lifetime of more than a month was observed when used in the FIA system. Other plasticisers such as dioctyl phenylphosphonate and tributyl phosphate do not show significant improvements in the quality of the sensors. The promising sensors were further tested for the effects of foreign ions (Li+, Na+, K+, Mg2+, Ca2+, Co2+, Cu2+, Cr3+, Fe3+, glucose, fructose). FIA conditions (e.g., effects of flow rate, injection volume, pH of the carrier stream) were also studied when the best sensor was used (based on β-CD). The sensor was applied to the determination of PM in four pharmaceutical preparations and human urine that were spiked with different levels of PM. Good agreement between the sensor and the manufacturer’s claimed values (for pharmaceutical preparations) was obtained, while mean recoveries of 98.6% were obtained for spiked urine samples. The molecular recognition features of the sensors as revealed by molecular modelling were rationalised by the nature of the interactions and complexation energies between the host and guest molecules. PMID:22346617
Tian, Yanqing; Shumway, Bradley R; Youngbull, A Cody; Li, Yongzhong; Jen, Alex K-Y; Johnson, Roger H; Meldrum, Deirdre R
2010-06-03
Using a thermal polymerization approach and polymerizable pH and oxygen sensing monomers with green and red emission spectra, respectively, new pH, oxygen, and their dual sensing membranes were prepared using poly(2-hydroxyethyl methacrylate)-co-poly(acrylamide) as a matrix. The sensors were grafted on acrylate-modified quartz glass and characterized under different pH values, oxygen concentrations, ion strengths, temperatures and cell culture media. The pH and oxygen sensors were excited using the same excitation wavelength and exhibited well-separated emission spectra. The pH-sensing films showed good response over the pH range 5.5 to 8.5, corresponding to pK(a) values in the biologically-relevant range between 6.9 and 7.1. The oxygen-sensing films exhibited linear Stern-Volmer quenching responses to dissolved oxygen. As the sensing membranes were prepared using thermally initiated polymerization of sensing moiety-containing monomers, no leaching of the sensors from the membranes to buffers or medium was observed. This advantageous characteristic accounts in part for the sensors' biocompatibility without apparent toxicity to HeLa cells after 40 hours incubation. The dual-sensing membrane was used to measure pH and dissolved oxygen simultaneously. The measured results correlated with the set-point values.
Development of luminescent pH sensor films for monitoring bacterial growth through tissue.
Wang, Fenglin; Raval, Yash; Chen, Hongyu; Tzeng, Tzuen-Rong J; DesJardins, John D; Anker, Jeffrey N
2014-02-01
Although implanted medical devices (IMDs) offer many benefits, they are susceptible to bacterial colonization and infections. Such infections are difficult to treat because bacteria could form biofilms on the implant surface, which reduce antibiotics penetration and generate local dormant regions with low pH and low oxygen. In addition, these infections are hard to detect early because biofilms are often localized on the surface. Herein, an optical sensor film is developed to detect local acidosis on an implanted surface. The film contains both upconverting particles (UCPs) that serve as a light source and a pH indicator that alters the luminescence spectrum. When irradiated with 980 nm light, the UCPs produce deeply penetrating red light emission, while generating negligible autofluorescence in the tissue. The basic form of the pH indicator absorbs more of upconversion luminescence at 661 nm than at 671 nm and consequently the spectral ratio indicates pH. Implanting this pH sensor film beneath 6-7 mm of porcine tissue does not substantially affect the calibration curve because the peaks are closely spaced. Furthermore, growth of Staphylococcus epidermidis on the sensor surface causes a local pH decrease that can be detected non-invasively through the tissue. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simultaneous detection of pH changes and histamine release from oxyntic glands in isolated stomach.
Bitziou, Eleni; O'Hare, Danny; Patel, Bhavik Anil
2008-11-15
Real-time simultaneous detection of changes in pH and levels of histamine over the oxyntic glands of guinea pig stomach have been investigated. An iridium oxide pH microelectrode was used in a potentiometric mode to record the pH decrease associated with acid secretion when the sensor approached the isolated tissue. A boron-doped diamond (BDD) microelectrode was used in an amperometric mode to detect histamine when the electrode was placed over the tissue. Both sensors provided stable and reproducible responses that were qualitatively consistent with the signaling mechanism for acid secretion at the stomach. Simultaneous measurements in the presence of pharmacological treatments produced significant variations in the signals obtained by both sensors. As the H2 receptor antagonist cimetidine was perfused to the tissue, histamine levels increased that produced an increase in the signal of the BDD electrode whereas the pH sensor recorded a decrease in acid secretion as expected. Addition of acetylcholine (ACh) stimulated additional acid secretion detected with the pH microelectrode whereas the BDD sensor recorded the histamine levels decreasing significantly. This result shows that the primary influence of ACh is directly on the parietal cell receptors rather then the ECL cell receptors of the oxyntic glands. These results highlight the power of this simultaneous detection technique in the monitoring and diagnosis of physiological significant signaling mechanisms and pathways.
ISFET sensor evaluation and modification for seawater pH measurement
NASA Astrophysics Data System (ADS)
Martz, T. R.; Johnson, K. S.; Jannasch, H.; Coletti, L.; Barry, J.; Lovera, C.
2008-12-01
In the future, short-term cycles (daily to subannual) and long-term trends (annual and greater) in the carbonate system will be observed by autonomous sensors operating from a variety of platforms (e.g., moorings, profiling floats, AUVs, etc.). Of the four carbonate parameters, pH measurement has the longest history of development - yet robust autonomous sensing techniques remain elusive due to a catalog of technical challenges. Existing commercial sensor technologies generally do not meet the stringent demands of accuracy, long-term stability, low power, pressure tolerance, resistance to biofouling, and ease of use required by the oceanographic community. We report here on some recent advances in Ion Sensitive Field Effect Transistor (ISFET) technology that may open the door for more widespread autonomous seawater pH measurements. Much of our work has focused on applications of the Honeywell Durafet pH sensor, a product designed for industrial process control. Initial results from laboratory testing and deployments in the MBARI test tank and near shore moorings will be presented. Sensor calibration techniques will be addressed. Applications of now-available off-the-shelf sensors including shipboard underway measurement, shallow water mooring deployment, and a gas controlled seawater aquarium for pH perturbation experiments will be discussed. We hope that an ongoing collaboration between MBARI and Honeywell will result in a commercially available product, designed specifically for oceanographic applications, within the next several years.
Fujii, Mie; Kitasako, Yuichi; Sadr, Alireza; Tagami, Junji
2011-01-01
This study aimed to evaluate enamel surface roughness (Ra) and pH before and after erosion by soft drinks. Enamel was exposed to a soft drink (cola, orange juice or green tea) for 1, 5 or 60 min; Ra was measured using contact-stylus surface profilometry (SSP) and non-contact focus variation 3D microscope (FVM). Surface pH was measured using a micro pH sensor. Data were analyzed at significance level of alpha=0.05. There was a significant correlation in Ra between SSP and FVM. FVM images showed no changes in the surface morphology after various periods of exposure to green tea. Unlike cola and orange juice, exposure to green tea did not significantly affect Ra or pH. A significant correlation was observed between surface pH and Ra change after exposure to the drinks. Optical surface analysis and micro pH sensor may be useful tools for non-damaging, quantitative assessment of soft drinks erosion on enamel.
Shaibani, Parmiss Mojir; Etayash, Hashem; Naicker, Selvaraj; Kaur, Kamaljit; Thundat, Thomas
2017-01-27
We report a simple, fast, and cost-effective approach that measures cancer cell metabolism and their response to anticancer drugs in real time. Using a Light Addressable Potentiometric Sensor integrated with pH sensitive hydrogel nanofibers (NF-LAPS), we detect localized changes in pH of the media as cancer cells consume glucose and release lactate. NF-LAPS shows a sensitivity response of 74 mV/pH for cancer cells. Cancer cells (MDA MB231) showed a response of ∼0.4 unit change in pH compared to virtually no change observed for normal cells (MCF10A). We also observed a drop in pH for the multidrug-resistant cancer cells (MDA-MB-435MDR) in the presence of doxorubicin. However, inhibition of the metabolic enzymes such as hexokinase and lactate dehydrogenase-A suggested an improvement in the efficacy of doxorubicin by decreasing the level of acidification. This approach, based on extracellular acidification, enhances our understanding of cancer cell metabolic modes and their response to chemotherapies, which will help in the development of better treatments, including choice of drugs and dosages.
Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors
Emir Diltemiz, Sibel; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan
2017-01-01
Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with molecular imprinting technology. PMID:28245588
Integration of a Capacitive EIS Sensor into a FIA System for pH and Penicillin Determination
Rolka, David; Poghossian, Arshak; Schöning, Michael J.
2004-01-01
A field-effect based capacitive EIS (electrolyte-insulator-semiconductor) sensor with a p-Si-SiO2-Ta2O5 structure has been successfully integrated into a commercial FIA (flow-injection analysis) system and system performances have been proven and optimised for pH and penicillin detection. A flow-through cell was designed taking into account the requirement of a variable internal volume (from 12 μl up to 48 μl) as well as an easy replacement of the EIS sensor. FIA parameters (sample volume, flow rate, distance between the injection valve and the EIS sensor) have been optimised in terms of high sensitivity and reproducibility as well as a minimum dispersion of the injected sample zone. An acceptable compromise between different FIA parameters has been found. For the cell design used in this study, best results have been achieved with a flow rate of 1.4 ml/min, distance between the injection valve and the EIS sensor of 6.5 cm, probe volume of 0.75 ml, cell internal volume of 12 μl. A sample throughput of at least 15 samples/h was typically obtained.
Highly pH-responsive sensor based on amplified spontaneous emission coupled to colorimetry.
Zhang, Qi; Castro Smirnov, Jose R; Xia, Ruidong; Pedrosa, Jose M; Rodriguez, Isabel; Cabanillas-Gonzalez, Juan; Huang, Wei
2017-04-07
We demonstrated a simple, directly-readable approach for high resolution pH sensing. The method was based on sharp changes in Amplified Spontaneous Emission (ASE) of a Stilbene 420 (ST) laser dye triggered by the pH-dependent absorption of Bromocresol Green (BG). The ASE threshold of BG:ST solution mixtures exhibited a strong dependence on BG absorption, which was drastically changed by the variations of the pH of BG solution. As a result, ASE on-off or off-on was observed with different pH levels achieved by ammonia doping. By changing the concentration of the BG solution and the BG:ST blend ratio, this approach allowed to detect pH changes with a sensitivity down to 0.05 in the 10-11 pH range.
Zhu, Xian-Dong; Zhang, Kun; Wang, Yu; Long, Wei-Wei; Sa, Rong-Jian; Liu, Tian-Fu; Lü, Jian
2018-02-05
A Zn(II)-based fluorescent metal-organic framework (MOF) was synthesized and applied as a highly sensitive and quickly responsive chemical sensor for antibiotic detection in simulated wastewater. The fluorescent chemical sensor, denoted FCS-1, exhibited enhanced fluorescence derived from its highly ordered, 3D MOF structure as well as excellent water stability in the practical pH range of simulated antibiotic wastewater (pH = 3.0-9.0). Remarkably, FCS-1 was able to effectively detect a series of sulfonamide antibiotics via photoinduced electron transfer that caused detectable fluorescence quenching, with fairly low detection limits. Two influences impacting measurements related to wastewater treatment and water quality monitoring, the presence of heavy-metal ions and the pH of solutions, were studied in terms of fluorescence quenching, which was nearly unaffected in sulfonamide-antibiotic detection. Additionally, the effective detection of sulfonamide antibiotics was rationalized by the theoretical computation of the energy bands of sulfonamide antibiotics, which revealed a good match between the energy bands of FCS-1 and sulfonamide antibiotics, in connection with fluorescence quenching in this system.
Yamada, Akira; Mohri, Satoshi; Nakamura, Michihiro; Naruse, Keiji
2015-01-01
The liquid junction potential (LJP), the phenomenon that occurs when two electrolyte solutions of different composition come into contact, prevents accurate measurements in potentiometry. The effect of the LJP is usually remarkable in measurements of diluted solutions with low buffering capacities or low ion concentrations. Our group has constructed a simple method to eliminate the LJP by exerting spatiotemporal control of a liquid junction (LJ) formed between two solutions, a sample solution and a baseline solution (BLS), in a flow-through-type differential pH sensor probe. The method was contrived based on microfluidics. The sensor probe is a differential measurement system composed of two ion-sensitive field-effect transistors (ISFETs) and one Ag/AgCl electrode. With our new method, the border region of the sample solution and BLS is vibrated in order to mix solutions and suppress the overshoot after the sample solution is suctioned into the sensor probe. Compared to the conventional method without vibration, our method shortened the settling time from over two min to 15 s and reduced the measurement error by 86% to within 0.060 pH. This new method will be useful for improving the response characteristics and decreasing the measurement error of many apparatuses that use LJs. PMID:25835300
An Optical Sensor with Polyaniline-Gold Hybrid Nanostructures for Monitoring pH in Saliva.
Luo, Chongdai; Wang, Yangyang; Li, Xuemeng; Jiang, Xueqin; Gao, Panpan; Sun, Kang; Zhou, Jianhua; Zhang, Zhiguang; Jiang, Qing
2017-03-17
Saliva contains important personal physiological information that is related to some diseases, and it is a valuable source of biochemical information that can be collected rapidly, frequently, and without stress. In this article, we reported a new and simple localized surface plasmon resonance (LSPR) substrate composed of polyaniline (PANI)-gold hybrid nanostructures as an optical sensor for monitoring the pH of saliva samples. The overall appearance and topography of the substrates, the composition, and the wettability of the LSPR surfaces were characterized by optical and scanning electron microscope (SEM) images, infrared spectra, and contact angles measurement, respectively. The PANI-gold hybrid substrate readily responded to the pH. The response time was very short, which was 3.5 s when the pH switched from 2 to 7, and 4.5 s from 7 to 2. The changes of visible-near-infrared (NIR) spectra of this sensor upon varying pH in solution showed that-for the absorption at given wavelengths of 665 nm and 785 nm-the sensitivities were 0.0299 a.u./pH (a.u. = arbitrary unit) with a linear range of pH = 5-8 and 0.0234 a.u./pH with linear range of pH = 2-8, respectively. By using this new sensor, the pH of a real saliva sample was monitored and was consistent with the parallel measurements with a standard laboratory method. The results suggest that this novel LSPR sensor shows great potential in the field of mobile healthcare and home medical devices, and could also be modified by different sensitive materials to detect various molecules or ions in the future.
Tang, Yanli; Liu, Yue; Cao, Ali
2013-01-15
A new strategy was developed and applied in monitoring pH response and enzyme activity based on fluorescence emission red shift (FERS) of the conjugated polymer PPP-OR10 induced by the inner filter effect (IFE) of nitrobenzene derivatives. Neutral poly(p-phenylenes) functionalized with oligo(oxyethylene) side chains (PPP-OR10) was designed and synthesized by the Suzuki cross-coupling reaction. Nitrobenzene derivatives display different light absorption activities in the acidic or basic form due to adopting different electron-transition types. When environmental pH is higher than their pK(a) values, nitrobenzene derivatives exhibit strong absorbance around 400 nm, which is close to the maximal emission of polymer PPP-OR10. As a result, the maximal emission wavelength of PPP-OR10/nitrobenzene derivatives red shifts with the pH value increasing. Apparently, the IFE plays a very important role in this case. A new method has been designed that takes advantage of this pH-sensitive platform to sensor α-chymotrypsin (ChT) based on the IFE of p-nitroaniline, since the absorption spectrum of p-nitroaniline, the ChT-hydrolyzed product of N-benzoyl-L-tyrosine-p-nitroaniline (BTNA), overlaps with the emission spectrum of PPP-OR10. In addition, the present approach can detect α-chymotrypsin with a detection limit of 0.1 μM, which is lower than that of the corresponding absorption spectroscopy method. Furthermore, the pH response and enzyme detections can be carried out in 10% serum, which makes this new FERS-based strategy promising in applications in more complex conditions and a broader field.
Smart medical systems with application to nutrition and fitness in space
NASA Technical Reports Server (NTRS)
Soller, Babs R.; Cabrera, Marco; Smith, Scott M.; Sutton, Jeffrey P.
2002-01-01
Smart medical systems are being developed to allow medical treatments to address alterations in chemical and physiologic status in real time. In a smart medical system, sensor arrays assess subject status, which is interpreted by computer processors that analyze multiple inputs and recommend treatment interventions. The response of the subject to the treatment is again assessed by the sensor arrays, thus closing the loop. An early form of "smart medicine" has been practiced in space to assess nutrition. Nutrient levels are assessed with food frequency questionnaires, which are interpreted by flight surgeons to recommend inflight alterations in diet. In the future, sensor arrays will directly probe body chemistry. Near-infrared spectroscopy can be used to non-invasively measure several blood and tissue parameters that are important in the assessment of nutrition and fitness. In particular, this technology can be used to measure blood hematocrit and interstitial fluid pH. The non-invasive measurement of interstitial pH is discussed as a surrogate for blood lactate measurement for the development and real-time assessment of exercise protocols in space. Earth-based application of these sensors is also described.
Smart Medical Systems with Application to Nutrition and Fitness in Space
NASA Technical Reports Server (NTRS)
Soller, Babs R.; Cabrera, Marco; Smith, Scott M.; Sutton, Jeffrey P.
2002-01-01
Smart medical systems are being developed to allow medical treatments to address alterations in chemical and physiological status in real time. In a smart medical system sensor arrays assess subject status, which are interpreted by computer processors which analyze multiple inputs and recommend treatment interventions. The response of the subject to the treatment is again assessed by the sensor arrays, closing the loop. An early form of "smart medicine" has been practiced in space to assess nutrition. Nutrient levels are assessed with food frequency questionnaires, which are interpreted by flight surgeons to recommend in-flight alterations in diet. In the future, sensor arrays will directly probe body chemistry. Near infrared spectroscopy can be used to noninvasively measure several blood and tissue parameters which are important in the assessment of nutrition and fitness. In particular, this technology can be used to measure blood hematocrit and interstitial fluid pH. The noninvasive measurement of interstitial pH is discussed as a surrogate for blood lactate measurement for the development and real-time assessment of exercise protocols in space. Earth-based application of these sensors are also described.
Effect of pH on particles size and gas sensing properties of In2O3 nanoparticles
NASA Astrophysics Data System (ADS)
Anand, Kanica; Thangaraj, Rengasamy; Singh, Ravi Chand
2016-05-01
In this work, indium oxide (In2O3) nanoparticles have been synthesized by co-precipitation method and the effect of pH on the structural and sensor response values of In2O3 nanoparticles has been reported. X-ray diffraction pattern (XRD) revealed the formation of cubic phase In2O3 nanoparticles. FESEM results indicate the formation of nearly spherical shape In2O3 nanoparticles. The band gap energy value changed with change in pH value and found to have highest value at pH 9. Indium oxide nanoparticles thus prepared were deposited as thick films on alumina substrates to act as gas sensors and their sensing response to ethanol vapors and LPG at 50 ppm was investigated at different operating temperatures. It has been observed that all sensors exhibited optimum response at 300°C towards ethanol and at 400°C towards LPG. In2O3 nanoparticles prepared at pH 9, being smallest in size as compared to other, exhibit highest sensor response (SR).
Molecular imprinted polymer functionalized carbon nanotube sensors for detection of saccharides
NASA Astrophysics Data System (ADS)
Badhulika, Sushmee; Mulchandani, Ashok
2015-08-01
In this work, we report the synthesis and fabrication of an enzyme-free sugar sensor based on molecularly imprinted polymer (MIP) on the surface of single walled carbon nanotubes (SWNTs). Electropolymerization of 3-aminophenylboronic acid (3-APBA) in the presence of 10 M d-fructose and fluoride at neutral pH conditions resulted in the formation of a self-doped, molecularly imprinted conducting polymer (MICP) via the formation of a stable anionic boronic ester complex between poly(aniline boronic acid) and d-fructose. Template removal generated binding sites on the polymer matrix that were complementary to d-fructose both in structure, i.e., shape, size, and positioning of functional groups, thus enabling sensing of d-fructose with enhanced affinity and specificity over non-MIP based sensors. Using carbon nanotubes along with MICPs helped to develop an efficient electrochemical sensor by enhancing analyte recognition and signal generation. These sensors could be regenerated and used multiple times unlike conventional affinity based biosensors which suffer from physical and chemical stability.
SERS-Fluorescence Dual-Mode pH-Sensing Method Based on Janus Microparticles.
Yue, Shuai; Sun, Xiaoting; Wang, Ning; Wang, Yaning; Wang, Yue; Xu, Zhangrun; Chen, Mingli; Wang, Jianhua
2017-11-15
A surface-enhanced Raman scattering (SERS)-fluorescence dual-mode pH-sensing method based on Janus microgels was developed, which combined the advantages of high specificity offered by SERS and fast imaging afforded by fluorescence. Dual-mode probes, pH-dependent 4-mercaptobenzoic acid, and carbon dots were individually encapsulated in the independent hemispheres of Janus microparticles fabricated via a centrifugal microfluidic chip. On the basis of the obvious volumetric change of hydrogels in different pHs, the Janus microparticles were successfully applied for sensitive and reliable pH measurement from 1.0 to 8.0, and the two hemispheres showed no obvious interference. The proposed method addressed the limitation that sole use of the SERS-based pH sensing usually failed in strong acidic media. The gastric juice pH and extracellular pH change were measured separately in vitro using the Janus microparticles, which confirmed the validity of microgels for pH sensing. The microparticles exhibited good stability, reversibility, biocompatibility, and ideal semipermeability for avoiding protein contamination, and they have the potential to be implantable sensors to continuously monitor pH in vivo.
Commercialization Issues For Catheter-Based Electrochemical Sensors
NASA Astrophysics Data System (ADS)
Nikolchev, Julian; Gaisford, Scott
1989-08-01
The need for continuous monitoring of key clinical parameters in hospitals is well recognized. Figure 1 shows typical time constants for blood gases, ions and enzymes in response to acute ventilatory changes and interventions. Although it can be seen that relatively low rates of data collection are necessary for many medical measurements, it is also clear that intermittent measurement of P02, PCO2 and pH are not sufficient to provide safe and effective management of the patient. Very frequent or continuous monitoring is often essential. This figure also shows why the emphasis of a large number of research efforts in this country and in Europe and Japan have as their goal the development of continuous blood gas sensors, i.e., sensors that continuously monitor blood pH, partial pressure of oxygen and partial pressure of carbon dioxide. These are three (3) of the most frequent parameters measured in hospitals and the ones having the shortest time constant. Considering that in the United States alone close to 25 million blood gas samples per year are taken from patients, the potential market for continuous monitoring sensors is enormous. The emergence of microelectronics and microfabrication technologies over the past 30 years are now pointing to a possible resolution of the well recognized need for real time monitoring of critically ill patients through catheter-based sensors. Although physicians will always prefer non-invasive monitoring techniques, there are a number of parameters that presently can only be monitored by invasive method. The emerging ability to miniaturize chemical sensors using silicon microfabrication or fiber-optic techniques offer an excellent opportunity to solve this need. In fact, the development of in vivo biomedical sensors with satisfactory performance characteristics has long been considered the ultimate application of these emerging technologies.
Urea biosensor for hemodialysis monitoring
Glass, Robert S.
1999-01-01
An electrochemical sensor capable of detecting and quantifying urea in fluids resulting from hemodialysis procedures. The sensor is based upon measurement of the pH change produced in an aqueous environment by the products of the enzyme-catalyzed hydrolysis of urea. The sensor may be fabricated using methods amenable to mass fabrication, resulting in low-cost sensors and thus providing the potential for disposable use. In a typical application, the sensor could be used in treatment centers, in conjunction with an appropriate electronics/computer system, in order to determine the hemodialysis endpoint. The sensor can also be utilized to allow at-home testing to determine if dialysis was necessary. Such a home monitor is similar, in principle, to devices used for blood glucose testing by diabetics, and would require a blood droplet sample by using a finger prick.
Mechanisms of intragastric pH sensing.
Goo, Tyralee; Akiba, Yasutada; Kaunitz, Jonathan D
2010-12-01
Luminal amino acids and lack of luminal acidity as a result of acid neutralization by intragastric foodstuffs are powerful signals for acid secretion. Although the hormonal and neural pathways underlying this regulatory mechanism are well understood, the nature of the gastric luminal pH sensor has been enigmatic. In clinical studies, high pH, tryptic peptides, and luminal divalent metals (Ca(2+) and Mg(2+)) increase gastrin release and acid production. The calcium-sensing receptor (CaSR), first described in the parathyroid gland but expressed on gastric G cells, is a logical candidate for the gastric acid sensor. Because CaSR ligands include amino acids and divalent metals, and because extracellular pH affects ligand binding in the pH range of the gastric content, its pH, metal, and nutrient-sensing functions are consistent with physiologic observations. The CaSR is thus an attractive candidate for the gastric luminal sensor that is part of the neuroendocrine negative regulatory loop for acid secretion.
Zou, Xianshao; Pan, Tingting; Chen, Lei; Tian, Yanqing; Zhang, Weiwen
2017-09-01
Luminescence including fluorescence and phosphorescence sensors have been demonstrated to be important for studying cell metabolism, and diagnosing diseases and cancer. Various design principles have been employed for the development of sensors in different formats, such as organic molecules, polymers, polymeric hydrogels, and nanoparticles. The integration of the sensing with fluorescence imaging provides valuable tools for biomedical research and applications at not only bulk-cell level but also at single-cell level. In this article, we critically reviewed recent progresses on pH, oxygen, and dual pH and oxygen sensors specifically for their application in microbial cells. In addition, we focused not only on sensor materials with different chemical structures, but also on design and applications of sensors for better understanding cellular metabolism of microbial cells. Finally, we also provided an outlook for future materials design and key challenges in reaching broad applications in microbial cells.
A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device.
Ausländer, David; Ausländer, Simon; Charpin-El Hamri, Ghislaine; Sedlmayer, Ferdinand; Müller, Marius; Frey, Olivier; Hierlemann, Andreas; Stelling, Jörg; Fussenegger, Martin
2014-08-07
All metabolic activities operate within a narrow pH range that is controlled by the CO2-bicarbonate buffering system. We hypothesized that pH could serve as surrogate signal to monitor and respond to the physiological state. By functionally rewiring the human proton-activated cell-surface receptor TDAG8 to chimeric promoters, we created a synthetic signaling cascade that precisely monitors extracellular pH within the physiological range. The synthetic pH sensor could be adjusted by organic acids as well as gaseous CO2 that shifts the CO2-bicarbonate balance toward hydrogen ions. This enabled the design of gas-programmable logic gates, provided remote control of cellular behavior inside microfluidic devices, and allowed for CO2-triggered production of biopharmaceuticals in standard bioreactors. When implanting cells containing the synthetic pH sensor linked to production of insulin into type 1 diabetic mice developing diabetic ketoacidosis, the prosthetic network automatically scored acidic pH and coordinated an insulin expression response that corrected ketoacidosis. Copyright © 2014 Elsevier Inc. All rights reserved.
Rahimi, Rahim; Ochoa, Manuel; Tamayol, Ali; Khalili, Shahla; Khademhosseini, Ali; Ziaie, Babak
2017-03-15
The development of stretchable sensors has recently attracted considerable attention. These sensors have been used in wearable and robotics applications, such as personalized health-monitoring, motion detection, and human-machine interfaces. Herein, we report on a highly stretchable electrochemical pH sensor for wearable point-of-care applications that consists of a pH-sensitive working electrode and a liquid-junction-free reference electrode, in which the stretchable conductive interconnections are fabricated by laser carbonizing and micromachining of a polyimide sheet bonded to an Ecoflex substrate. This method produces highly porous carbonized 2D serpentine traces that are subsequently permeated with polyaniline (PANI) as the conductive filler, binding material, and pH-sensitive membrane. The experimental and simulation results demonstrate that the stretchable serpentine PANI/C-PI interconnections with an optimal trace width of 0.3 mm can withstand elongations of up to 135% and are robust to more than 12 000 stretch-and-release cycles at 20% strain without noticeable change in the resistance. The pH sensor displays a linear sensitivity of -53 mV/pH (r 2 = 0.976) with stable performance in the physiological range of pH 4-10. The sensor shows excellent stability to applied longitudinal and transverse strains up to 100% in different pH buffer solutions with a minimal deviation of less than ±4 mV. The material biocompatibility is confirmed with NIH 3T3 fibroblast cells via PrestoBlue assays.
Urra, Javier; Sandoval, Moisés; Cornejo, Isabel; Barros, L Felipe; Sepúlveda, Francisco V; Cid, L Pablo
2008-10-01
Extracellular pH, especially in relatively inaccessible microdomains between cells, affects transport membrane protein activity and might have an intercellular signaling role. We have developed a genetically encoded extracellular pH sensor capable of detecting pH changes in basolateral spaces of epithelial cells. It consists of a chimerical membrane protein displaying concatenated enhanced variants of cyan fluorescence protein (ECFP) and yellow fluorescence protein (EYFP) at the external aspect of the cell surface. The construct, termed pHCECSensor01, was targeted to basolateral membranes of Madin-Darby canine kidney (MDCK) cells by means of a sequence derived from the aquaporin AQP4. The fusion of pH-sensitive EYFP with pH-insensitive ECFP allows ratiometric pH measurements. The titration curve of pHCECSensor01 in vivo had a pK (a) value of 6.5 +/- 0.04. Only minor effects of extracellular chloride on pHCECSensor01 were observed around the physiological concentrations of this anion. In MDCK cells, the sensor was able to detect changes in pH secondary to H(+) efflux into the basolateral spaces elicited by an ammonium prepulse or lactate load. This genetically encoded sensor has the potential to serve as a noninvasive tool for monitoring changes in extracellular pH microdomains in epithelial and other tissues in vivo.
A zinc fluorescent sensor used to detect mercury (II) and hydrosulfide.
Jung, Jae Min; Lee, Jae Jun; Nam, Eunju; Lim, Mi Hee; Kim, Cheal; Harrison, Roger G
2017-05-05
A zinc sensor based on quinoline and morpholine has been synthesized. The sensor selectively fluoresces in the presence of Zn 2+ , while not for other metal ions. Absorbance changes in the 350nm region are observed when Zn 2+ binds, which binds in a 1:1 ratio. The sensor fluoresces due to Zn 2+ above pH values of 6.0 and in the biological important region. The Zn 2+ -sensor complex has the unique ability to detect both Hg 2+ and HS - . The fluorescence of the Zn 2+ -sensor complex is quenched when it is exposed to aqueous solutions of Hg 2+ with sub-micromolar detection levels for Hg 2+ . The fluorescence of the Zn 2+ -sensor complex is also quenched by aqueous solutions of hydrosulfide. The sensor was used to detect Zn 2+ and Hg 2+ in living cells. Copyright © 2017 Elsevier B.V. All rights reserved.
BIOTEX--biosensing textiles for personalised healthcare management.
Coyle, Shirley; Lau, King-Tong; Moyna, Niall; O'Gorman, Donal; Diamond, Dermot; Di Francesco, Fabio; Costanzo, Daniele; Salvo, Pietro; Trivella, Maria Giovanna; De Rossi, Danilo Emilio; Taccini, Nicola; Paradiso, Rita; Porchet, Jacque-André; Ridolfi, Andrea; Luprano, Jean; Chuzel, Cyril; Lanier, Thierry; Revol-Cavalier, Frdéric; Schoumacker, Sébastien; Mourier, Véronique; Chartier, Isabelle; Convert, Reynald; De-Moncuit, Henri; Bini, Christina
2010-03-01
Textile-based sensors offer an unobtrusive method of continually monitoring physiological parameters during daily activities. Chemical analysis of body fluids, noninvasively, is a novel and exciting area of personalized wearable healthcare systems. BIOTEX was an EU-funded project that aimed to develop textile sensors to measure physiological parameters and the chemical composition of body fluids, with a particular interest in sweat. A wearable sensing system has been developed that integrates a textile-based fluid handling system for sample collection and transport with a number of sensors including sodium, conductivity, and pH sensors. Sensors for sweat rate, ECG, respiration, and blood oxygenation were also developed. For the first time, it has been possible to monitor a number of physiological parameters together with sweat composition in real time. This has been carried out via a network of wearable sensors distributed around the body of a subject user. This has huge implications for the field of sports and human performance and opens a whole new field of research in the clinical setting.
Su, Ya-Ling; Cheng, Shu-Hua
2015-12-11
In this work, an electrochemical sensor coupled with an effective flow-injection amperometry (FIA) system is developed, targeting the determination of gallic acid (GA) in a mild neutral condition, in contrast to the existing electrochemical methods. The sensor is based on a thin electroactive poly(melamine) film immobilized on a pre-anodized screen-printed carbon electrode (SPCE*/PME). The characteristics of the sensing surface are well-characterized by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and surface water contact angle experiments. The proposed assay exhibits a wide linear response to GA in both pH 3 and pH 7.0 phosphate buffer solutions (PBS) under the optimized flow-injection amperometry. The detection limit (S/N = 3) is 0.076 μM and 0.21 μM in the pH 3 and pH 7 solutions, respectively. A relative standard deviation (RSD) of 3.9% is obtained for 57 successive measurements of 50 μM GA in pH 7 solutions. Interference studies indicate that some inorganic salts, catechol, caffeine and ascorbic acid do not interfere with the GA assay. The interference effects from some orthodiphenolic compounds are also investigated. The proposed method and a conventional Folin-Ciocalteu method are applied to detect GA in green tea samples using the standard addition method, and satisfactory spiked recoveries are obtained. Copyright © 2015 Elsevier B.V. All rights reserved.
Ayres, Zoë J; Borrill, Alexandra J; Newland, Jonathan C; Newton, Mark E; Macpherson, Julie V
2016-01-05
The development of a voltammetric boron doped diamond (BDD) pH sensor is described. To obtain pH sensitivity, laser micromachining (ablation) is utilized to introduce controlled regions of sp(2) carbon into a high quality polycrystalline BDD electrode. The resulting sp(2) carbon is activated to produce electrochemically reducible quinone groups using a high temperature acid treatment, followed by anodic polarization. Once activated, no further treatment is required. The quinone groups show a linear (R(2) = 0.999) and Nernstian (59 mV/(pH unit)) pH-dependent reductive current-voltage response over a large analyzable pH range, from pH 2 to pH 12. Using the laser approach, it is possible to optimize sp(2) coverage on the BDD surface, such that a measurable pH response is recorded, while minimizing background currents arising from oxygen reduction reactions on sp(2) carbon in the potential region of interest. This enables the sensor to be used in aerated solutions, boding well for in situ analysis. The voltammetric response of the electrode is not compromised by the presence of excess metal ions such as Pb(2+), Cd(2+), Cu(2+), and Zn(2+). Furthermore, the pH sensor is stable over a 3 month period (the current time period of testing), can be stored in air between measurements, requires no reactivation of the surface between measurements, and can be reproducibly fabricated using the proposed approach. The efficacy of this pH sensor in a real-world sample is demonstrated with pH measurements in U.K. seawater.
Determination of Peroxisomal pH in Living Mammalian Cells Using pHRed.
Godinho, Luis F; Schrader, Michael
2017-01-01
Organelle pH homeostasis is crucial for maintaining proper cellular function. The nature of the peroxisomal pH remains somewhat controversial, with several studies reporting conflicting results. Here, we describe in detail a rapid and accurate method for the measurement of peroxisomal pH, using the pHRed sensor protein and confocal microscopy of living mammalian cells. pHRed, a ratiometric sensor of pH, is targeted to the peroxisomes by virtue of a C-terminal targeting sequence. The probe has a maximum fluorescence emission at 610 nm while exhibiting dual excitation peaks at 440 and 585 nm, allowing for ratiometric imaging and determination of intracellular pH in live cell microscopy.
Shintani, Yukihiro; Kobayashi, Mikinori; Kawarada, Hiroshi
2017-05-05
A fluorine-terminated polycrystalline boron-doped diamond surface is successfully employed as a pH-insensitive SGFET (solution-gate field-effect transistor) for an all-solid-state pH sensor. The fluorinated polycrystalline boron-doped diamond (BDD) channel possesses a pH-insensitivity of less than 3mV/pH compared with a pH-sensitive oxygenated channel. With differential FET (field-effect transistor) sensing, a sensitivity of 27 mv/pH was obtained in the pH range of 2-10; therefore, it demonstrated excellent performance for an all-solid-state pH sensor with a pH-sensitive oxygen-terminated polycrystalline BDD SGFET and a platinum quasi-reference electrode, respectively.
Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor.
Wang, Tiantian; Devadhasan, Jasmine Pramila; Lee, Do Young; Kim, Sanghyo
2016-01-01
In the present study, we developed a polypropylene well-integrated complementary metal oxide semiconductor (CMOS) platform to perform the loop mediated isothermal amplification (LAMP) technique for real-time DNA amplification and detection simultaneously. An amplification-coupled detection system directly measures the photon number changes based on the generation of magnesium pyrophosphate and color changes. The photon number decreases during the amplification process. The CMOS image sensor observes the photons and converts into digital units with the aid of an analog-to-digital converter (ADC). In addition, UV-spectral studies, optical color intensity detection, pH analysis, and electrophoresis detection were carried out to prove the efficiency of the CMOS sensor based the LAMP system. Moreover, Clostridium perfringens was utilized as proof-of-concept detection for the new system. We anticipate that this CMOS image sensor-based LAMP method will enable the creation of cost-effective, label-free, optical, real-time and portable molecular diagnostic devices.
Bonk, Sebastian M; Stubbe, Marco; Buehler, Sebastian M; Tautorat, Carsten; Baumann, Werner; Klinkenberg, Ernst-Dieter; Gimsa, Jan
2015-07-30
We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1) were used as a model system. Thin-film platinum (Pt) sensors for respiration (amperometric oxygen electrode), acidification (potentiometric pH electrodes) and cell adhesion (interdigitated-electrodes structures, IDES) allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs) permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4). Thin Si3N4 layers (20 nm or 60 nm) were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm(2). Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated). Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.
NASA Astrophysics Data System (ADS)
Franke, M.; Leubner, S.; Dubavik, A.; George, A.; Savchenko, T.; Pini, C.; Frank, P.; Melnikau, D.; Rakovich, Y.; Gaponik, N.; Eychmüller, A.; Richter, A.
2017-04-01
Microfluidic devices present the basis of modern life sciences and chemical information processing. To control the flow and to allow optical readout, a reliable sensor material that can be easily utilized for microfluidic systems is in demand. Here, we present a new optical readout system for pH sensing based on pH sensitive, photoluminescent glutathione capped cadmium telluride quantum dots that are covalently immobilized in a poly(acrylate) hydrogel. For an applicable pH sensing the generated hybrid material is integrated in a microfluidic sensor chip setup. The hybrid material not only allows in situ readout, but also possesses valve properties due to the swelling behavior of the poly(acrylate) hydrogel. In this work, the swelling property of the hybrid material is utilized in a microfluidic valve seat, where a valve opening process is demonstrated by a fluid flow change and in situ monitored by photoluminescence quenching. This discrete photoluminescence detection (ON/OFF) of the fluid flow change (OFF/ON) enables upcoming chemical information processing.
New Optical Sensing Materials for Application in Marine Research
NASA Astrophysics Data System (ADS)
Borisov, S.; Klimant, I.
2012-04-01
Optical chemosensors are versatile analytical tools which find application in numerous fields of science and technology. They proved to be a promising alternative to electrochemical methods and are applied increasingly often in marine research. However, not all state-of-the- art optical chemosensors are suitable for these demanding applications since they do not fully fulfil the requirements of high luminescence brightness, high chemical- and photochemical stability or their spectral properties are not adequate. Therefore, development of new advanced sensing materials is still of utmost importance. Here we present a set of novel optical sensing materials recently developed in the Institute of Analytical Chemistry and Food Chemistry which are optimized for marine applications. Particularly, we present new NIR indicators and sensors for oxygen and pH which feature high brightness and low level of autofluorescence. The oxygen sensors rely on highly photostable metal complexes of benzoporphyrins and azabenzoporphyrins and enable several important applications such as simultaneous monitoring of oxygen and chlorophyll or ultra-fast oxygen monitoring (Eddy correlation). We also developed ulta-sensitive oxygen optodes which enable monitoring in nM range and are primary designed for investigation of oxygen minimum zones. The dynamic range of our new NIR pH indicators based on aza-BODIPY dyes is optimized for the marine environment. A highly sensitive NIR luminescent phosphor (chromium(III) doped yttrium aluminium borate) can be used for non-invasive temperature measurements. Notably, the oxygen, pH sensors and temperature sensors are fully compatible with the commercially available fiber-optic readers (Firesting from PyroScience). An optical CO2 sensor for marine applications employs novel diketopyrrolopyrrol indicators and enables ratiometric imaging using a CCD camera. Oxygen, pH and temperature sensors suitable for lifetime and ratiometric imaging of analytes distribution are also realized. To enable versatility of applications we also obtained a range of nano- and microparticles suitable for intra- and extracellular imaging of the above analytes. Bright ratiometric 2-photon-excitable probes were also developed. Magnetic microparticles are demonstrated to be very promising tools for imaging of oxygen, temperature and other parameters in biofilms, corals etc. since they combine the sensing function with the possibility of external manipulation.
Near infrared fluorescence-based bacteriophage particles for ratiometric pH imaging.
Hilderbrand, Scott A; Kelly, Kimberly A; Niedre, Mark; Weissleder, Ralph
2008-08-01
Fluorogenic imaging agents emitting in the near-infrared are becoming important research tools for disease investigation in vivo. Often pathophysiological states such as cancer and cystic fibrosis are associated with disruptions in acid/base homeostasis. The development of optical sensors for pH imaging would facilitate the investigation of these diseased conditions. In this report, the design and synthesis of a ratiometric near-infrared emitting probe for pH quantification is detailed. The pH-responsive probe is prepared by covalent attachment of pH-sensitive and pH-insensitive fluorophores to a bacteriophage particle scaffold. The pH-responsive cyanine dye, HCyC-646, used to construct the probe, has a fluorogenic pKa of 6.2, which is optimized for visualization of acidic pH often associated with tumor hypoxia and other diseased states. Incorporation of pH-insensitive reference dyes enables the ratiometric determination of pH independent of the probe concentration. With the pH-responsive construct, measurement of intracellular pH and accurate determination of pH through optically diffuse biological tissue is demonstrated.
Sensor emplacement testing at Poker Flat, Alaska
NASA Astrophysics Data System (ADS)
Reusch, A.; Beaudoin, B. C.; Anderson, K. E.; Azevedo, S.; Carothers, L.; Love, M.; Miller, P. E.; Parker, T.; Pfeifer, M.; Slad, G.; Thomas, D.; Aderhold, K.
2013-12-01
PASSCAL provides equipment and support for temporary seismic projects. Speed and efficiency of deployments are essential. A revised emplacement technique of putting broadband sensors directly into soil (aka direct burial) is being tested. The first phase (fall 2011 to spring 2013) comparing data quality and sensor stability between the direct burial and the traditional 1 m deep temporary PASSCAL-style vault in a wet and noisy site near San Antonio, NM is complete. Results suggest there is little or no difference in sensor performance in the relatively high-noise environment of this initial test. The second phase was started in November 2012 with the goal of making the same comparison, but at Poker Flat, Alaska, in a low-noise, high-signal, cold and wet environment, alongside a Transportable Array (TA) deployment to be used as a performance control. This location is in an accessible and secure area with very low site noise. In addition to benefiting future worldwide PASSCAL deployments, the Poker Flat experiment serves a secondary purpose of testing modifications necessary to successfully deploy and recover broadband stations in a cold environment with the limited logistics anticipated for remote Flexible Array (FA) and PASSCAL Program deployments in Alaska. Developing emplacement techniques that maintain high data quality and data return while minimizing logistics is critical to enable principle investigators to effectively and efficiently co-locate within the future TA Alaska footprint. Three Nanometrics sensors were installed in November 2012 in power-augered holes 76 cm in depth: a Trillium Compact Posthole (PH) and two Trillium 120PH units (one standard PH and one enhanced PHQ). The installations took less than 8 hours in -30°C conditions with 4 hours of usable daylight. The Compact PH and the 120PHQ are delivering data in realtime, while the 120PH is testing standalone power and data collection systems. Preliminary results compare favorably to each other as well as the nearby Trillium 240 in a traditional TA surface vault and a 120PH in a 5 m machine-drilled borehole. This summer, two Trillium 120PA sensors were installed at a depth of 54 cm in traditional PASSCAL-style vaults, adjacent to the Trillium Compact PH, Trillium 120PH and 120PHQ emplacements. Analysis of the data collected from these five sensors will include the use of probability density functions of power spectral density to examine temporal trends in noise, signal-to-noise ratios for local, regional, and teleseismic earthquakes, and coherence of both noise and earthquake signal recordings to compare the data quality of direct burial versus temporary PASSCAL-style vaults sensor emplacements.
Analytical nanosphere sensors using quantum dot-enzyme conjugates for urea and creatinine.
Ruedas-Rama, Maria J; Hall, Elizabeth A H
2010-11-01
An enzyme-linked analytical nanosphere sensor (ANSor) is described, responding to enzyme-substrate turnover in the vicinity of a quantum dot (QD) due to coimmobilized enzyme and pH sensitive ligand. QD capping by mercapto-alkanoic acids were rejected as a pH sensitive ligand, but with the use of a layer-by-layer assembly on mercaptopropionic capped QDs and an intermediate poly(allylamine hydrochloride) layer, anthraquinone sulfonate (calcium red, CaR) was introduced to modify the pKa in the immobilized system > 8. QD-CaR absorption shows spectral overlap with QD530 emission at all pHs and gives a complex pH dependent fluorescence resonance energy transfer (FRET) efficiency, due to excited state proton transfer (λ(ex) = 540 nm; λ(em) = 585 nm). In contrast QD615-CaR with spectral overlap between the QD and CaR gave a strong and reproducible pH response. QD-urease and QD-creatinine deiminase conjugates could be linked with pH changes produced by enzyme degradation of urea and creatinine, respectively. Close coupling between the pH sensitive QD and enzyme conjugate maximized signal compared with solution based assays: QD-urease and QD-CD bioconjugates were tested in model biological media (Dulbecco's modified Eagle's Medium and fetal calf serum) and in urine, showing a response in 3-4 min.
Wang, Zhaohui Aleck; Sonnichsen, Frederick N; Bradley, Albert M; Hoering, Katherine A; Lanagan, Thomas M; Chu, Sophie N; Hammar, Terence R; Camilli, Richard
2015-04-07
A new, in situ sensing system, Channelized Optical System (CHANOS), was recently developed to make high-resolution, simultaneous measurements of total dissolved inorganic carbon (DIC) and pH in seawater. Measurements made by this single, compact sensor can fully characterize the marine carbonate system. The system has a modular design to accommodate two independent, but similar measurement channels for DIC and pH. Both are based on spectrophotometric detection of hydrogen ion concentrations. The pH channel uses a flow-through, sample-indicator mixing design to achieve near instantaneous measurements. The DIC channel adapts a recently developed spectrophotometric method to achieve flow-through CO2 equilibration between an acidified sample and an indicator solution with a response time of only ∼ 90 s. During laboratory and in situ testing, CHANOS achieved a precision of ±0.0010 and ± 2.5 μmol kg(-1) for pH and DIC, respectively. In situ comparison tests indicated that the accuracies of the pH and DIC channels over a three-week time-series deployment were ± 0.0024 and ± 4.1 μmol kg(-1), respectively. This study demonstrates that CHANOS can make in situ, climatology-quality measurements by measuring two desirable CO2 parameters, and is capable of resolving the CO2 system in dynamic marine environments.
Application of Optical Imaging Techniques for Quantification of pH and O2 Dynamicsin Porous Media
NASA Astrophysics Data System (ADS)
Li, B.; Seliman, A. F.; Pales, A. R.; Liang, W.; Sams, A.; Darnault, C. J. G.; DeVol, T. A.
2016-12-01
Understanding the spatial and temporal distribution of physical and chemical parameters (e.g. pH, O2) is imperative to characterize the behavior of contaminants in a natural environment. The objectives of this research are to calibrate pH and O2 sensor foils, to develop a dual pH/O2 sensor foil, and to apply them into flow and transport experiments, in order to understand the physical and chemical parameters that control contaminant fate and transport in an unsaturated sandy porous medium. In addition, demonstration of a sensor foil that quantifies aqueous uranium concentration will be presented. Optical imaging techniques will be conducted with 2D tanks to investigate the influence of microbial exudates and plant roots on pH and O2 parameters and radionuclides transport. As a non-invasive method, the optical imaging technique utilizes optical chemical sensor films and either a digital camera or a spectrometer to capture the changes with high temporal and spatial resolutions. Sensor foils are made for different parameters by applying dyes to generate favorable fluorescence that is proportional to the parameter of interest. Preliminary results suggested that this method could detect pH ranging from 4.5 to 7.5. The result from uranium foil test with different concentrations in the range of 2 to 8 ppm indicated that a higher concentration of uranium resulted in a greater color intensity.
Xu, Guilin; Chi, Yu; Li, Lu; Liu, Shouhua; Kan, Xianwen
2015-06-15
A novel imprinted sol-gel electrochemical sensor for the determination of propyl gallate (PG) was developed based on a composite of graphene and single walled carbon nanotubes (GR-SWCNTs). It was fabricated by stepwise modifying GR-SWCNTs and molecularly imprinted polymers and stored in 0.10 mol L(-1) phosphate buffer solution pH 6.0, which endowed the sensor good sensitivity and selective recognition towards template molecules. The morphology and specific adsorption capacity of the sensor was characterized by scanning electron microscope and electrochemical methods, respectively. Under the optimized conditions, a linear range of the sensor to PG was 8.0 × 10(-8)-2.6 × 10(-3)mo lL(-1) with a limit of detection of 5.0 × 10(-8)mol L(-1) (S/N=3). The sensor exhibited specificity and selectivity towards template molecules as well as excellent reproducibility, regeneration and stability. Furthermore, the sensor could be applied to determine PG in edible oils, instant noodles and cookies with satisfactory results. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Huilin; Men, Dandan; Sun, Yiqiang; Zhang, Tao; Hang, Lifeng; Liu, Dilong; Li, Cuncheng; Cai, Weiping; Li, Yue
2017-10-01
Uniform Au nanoparticle (NP)/poly (acrylamide-co-acrylic acid) [P(AAm-co-AA)] hydrogel microbeads were successfully prepared using droplet microfluidics technology. The microbeads exhibited a good stimuli-responsive behavior to pH value. Particularly in the pH value ranging from pH 2-pH 9, the composite microbead sizes gradually increased along with the increase of pH value. The homogeneous Au NPs, which were encapsulated in the P(AAm-co-AA) hydrogel microbeads, could transform the volume changes of hydrogel into optical signals by a tested single microbead with a microspectrometre system. The glucose was translated into gluconic acid by glucose oxidase. Thus, the Au NP/P(AAm-co-AA) hydrogel microbeads were used for detecting glucose based on pH effects on the composite microbeads. For this, the single Au NP/P(AAm-co-AA) hydrogel microbead could act as a good pH- or glucose-visualizing sensor.
3D Printing-Based Integrated Water Quality Sensing System
Banna, Muinul; Bera, Kaustav; Sochol, Ryan; Lin, Liwei; Najjaran, Homayoun; Sadiq, Rehan; Hoorfar, Mina
2017-01-01
The online and accurate monitoring of drinking water supply networks is critically in demand to rapidly detect the accidental or deliberate contamination of drinking water. At present, miniaturized water quality monitoring sensors developed in the laboratories are usually tested under ambient pressure and steady-state flow conditions; however, in Water Distribution Systems (WDS), both the pressure and the flowrate fluctuate. In this paper, an interface is designed and fabricated using additive manufacturing or 3D printing technology—material extrusion (Trade Name: fused deposition modeling, FDM) and material jetting—to provide a conduit for miniaturized sensors for continuous online water quality monitoring. The interface is designed to meet two main criteria: low pressure at the inlet of the sensors and a low flowrate to minimize the water bled (i.e., leakage), despite varying pressure from WDS. To meet the above criteria, a two-dimensional computational fluid dynamics model was used to optimize the geometry of the channel. The 3D printed interface, with the embedded miniaturized pH and conductivity sensors, was then tested at different temperatures and flowrates. The results show that the response of the pH sensor is independent of the flowrate and temperature. As for the conductivity sensor, the flowrate and temperature affect only the readings at a very low conductivity (4 µS/cm) and high flowrates (30 mL/min), and a very high conductivity (460 µS/cm), respectively. PMID:28594387
Dimov, Stefan M; Georgiev, Nikolai I; Asiri, Abdullah M; Bojinov, Vladimir B
2014-11-01
A novel blue-emitting 1,8-naphthalimide fluorophore designed as a molecular PET-based probe for determination of pH and detection of transition metal ions in the environment was successfully synthesized. Novel compound was configured on the "fluorophore-spacer-receptor" format. Due to the tertiary amine receptor the novel system showed "off-on" switching properties under the transition from alkaline to acid media (FE = 3.2) and in the presence of Zn(2+) ions (FE = 2.5). The results obtained illustrate the high potential of the synthesized blue-emitting 1,8-naphthalimide fluorophore as an efficient pH chemosensing material and a selective probe for Zn(2+) ions.
Hydroxylated near-infrared BODIPY fluorophores as intracellular pH sensors
Salim, Mohamed M.; Owens, Eric A.; Gao, Tielong; Lee, Jeong Heon; Hyun, Hoon; Choi, Hak Soo; Henary, Maged
2015-01-01
In this study, a series of new, highly sensitive BF2-chelated tetraarylazadipyrromethane dyes are synthesized and analyzed to be suitable as on/off photo-induced electron transfer modulated fluorescent sensors for determination of intracellular pH. The ethanolic solutions of the new indicators feature absorption maxima in the range of 696–700 nm and a fluorescence emission maximum at 720 nm. Molar absorptivity and fluorescence quantum yield data were determined for the studied set of aza-BODIPY indicators. These indicators have high molar absorption coefficients of ~80 000 M−1 cm−1 and quantum yields (up to 18%). Corresponding pKa values of indicators are determined from absorbance and fluorescence measurements and range from 9.1 to 10.8, depending on the selective positioning of electron-donating functionalities. The excellent photostability of the aza-BODIPY indicators makes them particularly suitable for long duration measurements. The in vitro cellular staining of living tissues in PC3 cells based on the isosbestic point at pH 7.8 and pH 9.3 has been employed which shows an increase in fluorescence intensity at 800 nm with increase in pH for certain compounds and fluorescence intensity decreases at 700 nm. Therefore, the new indicators are suitable for exploitation and adaptation in a diverse range of analytical applications. PMID:25105177
The Spinal Cord Has an Intrinsic System for the Control of pH.
Jalalvand, Elham; Robertson, Brita; Tostivint, Hervé; Wallén, Peter; Grillner, Sten
2016-05-23
For survival of the organism, acid-base homeostasis is vital [1, 2]. The respiratory and renal systems are central to this control. Here we describe a novel mechanism, intrinsic to the spinal cord, with sensors that detect pH changes and act to restore pH to physiological levels by reducing motor activity. This pH sensor consists of somatostatin-expressing cerebrospinal fluid-contacting (CSF-c) neurons, which target the locomotor network. They have a low level of activity at pH 7.4. However, at both alkaline and acidic pH, the activity of the individual CSF-c neuron is markedly enhanced through the action of two separate channel subtypes. The alkaline response depends on PKD2L1 channels that have a large conductance and an equilibrium potential around 0 mV, both characteristics of mouse PKD2L1 channels [3-5]. The acidic response is due to an activation of ASIC3 [6]. The discharge pattern of the CSF-c neurons is U-shaped with a minimum frequency around pH 7.4 and a marked increase already at slightly lower and higher pH. During ongoing locomotor activity in the isolated spinal cord, both an increase and as a decrease of pH will reduce the locomotor burst rate. A somatostatin antagonist blocks these effects, suggesting that CSF-c neurons are responsible for the suppression of locomotor activity. CSF-c neurons thus represent a novel innate homeostatic mechanism, designed to sense any deviation from physiological pH and to respond by causing a depression of the motor activity. Because CSF-c neurons are found in all vertebrates, their pH-sensing function is most likely conserved. Copyright © 2016 Elsevier Ltd. All rights reserved.
A pH-Sensing Optode for Mapping Spatiotemporal Gradients in 3D Paper-Based Cell Cultures.
Kenney, Rachael M; Boyce, Matthew W; Whitman, Nathan A; Kromhout, Brenden P; Lockett, Matthew R
2018-02-06
Paper-based cultures are an emerging platform for preparing 3D tissue-like structures. Chemical gradients can be imposed upon these cultures, generating microenvironments similar to those found in poorly vascularized tumors. There is increasing evidence that the tumor microenvironment is responsible for promoting drug resistance and increased invasiveness. Acidosis, or the acidification of the extracellular space, is particularly important in promoting these aggressive cancer phenotypes. To better understand how cells respond to acidosis there is a need for 3D culture platforms that not only model relevant disease states but also contain sensors capable of quantifying small molecules in the extracellular environment. In this work, we describe pH-sensing optodes that are capable of generating high spatial and temporal resolution maps of pH gradients in paper-based cultures. This sensor was fabricated by suspending microparticles containing pH-sensitive (fluorescein) and pH-insensitive (diphenylanthracene) dyes in a polyurethane hydrogel, which was then coated onto a transparent film. The pH-sensing films have a fast response time, are reversible, stable in long-term culture environments, have minimal photobleaching, and are not cytotoxic. These films have a pK a of 7.61 ± 0.04 and are sensitive in the pH range corresponding to normal and tumorigenic tissues. With these optodes, we measured the spatiotemporal evolution of pH gradients in paper-based tumor models.
Microtubular conductometric biosensor for ethanol detection.
Ajay, A K; Srivastava, Divesh N
2007-09-30
A conductometric sensor using microtubules of polyaniline as transducer cum immobilization matrix is reported, capable of detecting ethanol in liquid phase. Enzyme ADH (alcohol dehydrogenase) and its coenzyme NAD+ have been used to improve the selectivity of the sensor. The sensor concept is based on the protonation of the polyaniline by the hydrogen ion produced in the enzyme-catalyzed reaction, leading to changes in the electrical conductance of the polyaniline. The sensor works well on the physiological pH, can detect ethanol as low as 0.02% (v/v) (0.092 M) and has a linear trend at par healthcare guidelines. The sensor responses were measured in various permutation and combination of enzyme and coenzyme concentrations and site of immobilization. The sensor shows minor interference with other functional groups and alcohols. The possible causes for such interference have been discussed.
Urea biosensor for hemodialysis monitoring
Glass, R.S.
1999-01-12
This research discloses an electrochemical sensor capable of detecting and quantifying urea in fluids resulting from hemodialysis procedures. The sensor is based upon measurement of the pH change produced in an aqueous environment by the products of the enzyme-catalyzed hydrolysis of urea. The sensor may be fabricated using methods amenable to mass fabrication, resulting in low-cost sensors and thus providing the potential for disposable use. In a typical application, the sensor could be used in treatment centers, in conjunction with an appropriate electronics/computer system, in order to determine the hemodialysis endpoint. The sensor can also be utilized to allow at-home testing to determine if dialysis was necessary. Such a home monitor is similar, in principle, to devices used for blood glucose testing by diabetics, and would require a blood droplet sample by using a finger prick. 9 figs.
Kim, Tae Yong; Hong, Sung A; Yang, Sung
2015-03-17
In this study, we describe a novel solid-state thin-film Ag/AgCl reference electrode (SSRE) that was coated with a protective layer of graphene oxide (GO). This layer was prepared by drop casting a solution of GO on the Ag/AgCl thin film. The potential differences exhibited by the SSRE were less than 2 mV for 26 days. The cyclic voltammograms of the SSRE were almost similar to those of a commercial reference electrode, while the diffusion coefficient of Fe(CN)63- as calculated from the cathodic peaks of the SSRE was 6.48 × 10-6 cm2/s. The SSRE was used in conjunction with a laboratory-made working electrode to determine its suitability for practical use. The average pH sensitivity of this combined sensor was 58.5 mV/pH in the acid-to-base direction; the correlation coefficient was greater than 0.99. In addition, an integrated pH sensor that included the SSRE was packaged in a secure digital (SD) card and tested. The average sensitivity of the chip was 56.8 mV/pH, with the correlation coefficient being greater than 0.99. In addition, a pH sensing test was also performed by using a laboratory-made potentiometer, which showed a sensitivity of 55.4 mV/pH, with the correlation coefficient being greater than 0.99.
Water quality monitor. [spacecraft potable water
NASA Technical Reports Server (NTRS)
West, S.; Crisos, J.; Baxter, W.
1979-01-01
The preprototype water quality monitor (WQM) subsystem was designed based on a breadboard monitor for pH, specific conductance, and total organic carbon (TOC). The breadboard equipment demonstrated the feasibility of continuous on-line analysis of potable water for a spacecraft. The WQM subsystem incorporated these breadboard features and, in addition, measures ammonia and includes a failure detection system. The sample, reagent, and standard solutions are delivered to the WQM sensing manifold where chemical operations and measurements are performed using flow through sensors for conductance, pH, TOC, and NH3. Fault monitoring flow detection is also accomplished in this manifold assembly. The WQM is designed to operate automatically using a hardwired electronic controller. In addition, automatic shutdown is incorporated which is keyed to four flow sensors strategically located within the fluid system.
Biomedical and sensing applications of a multi-mode biodegradable phosphate-based optical fiber
NASA Astrophysics Data System (ADS)
Podrazky, Ondřej; Peterka, Pavel; Vytykáčová, SoÅa.; Proboštová, Jana; Kuneš, Martin; Lyutakov, Oleksiy; Ceci-Ginistrelli, Edoardo; Pugliese, Diego; Boetti, Nadia G.; Janner, Davide; Milanese, Daniel
2018-02-01
We report on the employment of a biodegradable phosphate-based optical fiber as a pH sensing probe in physiological environment. The phosphate-based optical fiber preform was fabricated by the rod-in-tube technique. The fiber biodegradability was first tested in-vitro and then its biodegradability and toxicity were tested in-vivo. Optical probes for pH sensing were prepared by the immobilization of a fluorescent dye on the fiber tip by a sol-gel method. The fluorescence response of the pH-sensor was measured as a ratio of the emission intensities at the excitation wavelengths of 405 and 450 nm.
Molecular mechanisms of acid-base sensing by the kidney.
Brown, Dennis; Wagner, Carsten A
2012-05-01
A major function of the kidney is to collaborate with the respiratory system to maintain systemic acid-base status within limits compatible with normal cell and organ function. It achieves this by regulating the excretion and recovery of bicarbonate (mainly in the proximal tubule) and the secretion of buffered protons (mainly in the distal tubule and collecting duct). How proximal tubular cells and distal professional proton transporting (intercalated) cells sense and respond to changes in pH, bicarbonate, and CO(2) status is a question that has intrigued many generations of renal physiologists. Over the past few years, however, some candidate molecular pH sensors have been identified, including acid/alkali-sensing receptors (GPR4, InsR-RR), kinases (Pyk2, ErbB1/2), pH-sensitive ion channels (ASICs, TASK, ROMK), and the bicarbonate-stimulated adenylyl cyclase (sAC). Some acid-sensing mechanisms in other tissues, such as CAII-PDK2L1 in taste buds, might also have similar roles to play in the kidney. Finally, the function of a variety of additional membrane channels and transporters is altered by pH variations both within and outside the cell, and the expression of several metabolic enzymes are altered by acid-base status in parts of the nephron. Thus, it is possible that a master pH sensor will never be identified. Rather, the kidney seems equipped with a battery of molecules that scan the epithelial cell environment to mount a coordinated physiologic response that maintains acid-base homeostasis. This review collates current knowledge on renal acid-base sensing in the context of a whole organ sensing and response process.
Geilfus, Christoph-Martin; Mühling, Karl H; Kaiser, Hartmut; Plieth, Christoph
2014-01-01
Ratiometric analysis with H(+)-sensitive fluorescent sensors is a suitable approach for monitoring apoplastic pH dynamics. For the acidic range, the acidotropic dual-excitation dye Oregon Green 488 is an excellent pH sensor. Long lasting (hours) recordings of apoplastic pH in the near neutral range, however, are more problematic because suitable pH indicators that combine a good pH responsiveness at a near neutral pH with a high photostability are lacking. The fluorescent pH reporter protein from Ptilosarcus gurneyi (Pt-GFP) comprises both properties. But, as a genetically encoded indicator and expressed by the plant itself, it can be used almost exclusively in readily transformed plants. In this study we present a novel approach and use purified recombinant indicators for measuring ion concentrations in the apoplast of crop plants such as Vicia faba L. and Avena sativa L. Pt-GFP was purified using a bacterial expression system and subsequently loaded through stomata into the leaf apoplast of intact plants. Imaging verified the apoplastic localization of Pt-GFP and excluded its presence in the symplast. The pH-dependent emission signal stood out clearly from the background. PtGFP is highly photostable, allowing ratiometric measurements over hours. By using this approach, a chloride-induced alkalinizations of the apoplast was demonstrated for the first in oat. Pt-GFP appears to be an excellent sensor for the quantification of leaf apoplastic pH in the neutral range. The presented approach encourages to also use other genetically encoded biosensors for spatiotemporal mapping of apoplastic ion dynamics.
A fluorescent pH probe for acidic organelles in living cells.
Chen, Jyun-Wei; Chen, Chih-Ming; Chang, Cheng-Chung
2017-09-26
A water-soluble pH sensor, 2-(6-(4-aminostyryl)-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-N, N-dimethylethanamine (ADA), was synthesized based on the molecular design of photoinduced electron transfer (PET) and intramolecular charge transfer (ICT). The fluorescence emission response against a pH value is in the range 3-6, which is suitable for labelling intracellular pH-dependent microenvironments. After biological evolution, ADA is more than a pH biosensor because it is also an endocytosis pathway tracking biosensor that labels endosomes, late endosomes, and lysosome pH gradients. From this, the emissive aggregates of ADA and protonated-ADA in these organs were evaluated to explore how this probe stresses emission colour change to cause these unique cellular images.
Zafar, Sufi; D'Emic, Christopher; Afzali, Ali; Fletcher, Benjamin; Zhu, Y; Ning, Tak
2011-10-07
Silicon nanowire field effect transistor sensors with SiO(2)/HfO(2) as the gate dielectric sensing surface are fabricated using a top down approach. These sensors are optimized for pH sensing with two key characteristics. First, the pH sensitivity is shown to be independent of buffer concentration. Second, the observed pH sensitivity is enhanced and is equal to the Nernst maximum sensitivity limit of 59 mV/pH with a corresponding subthreshold drain current change of ∼ 650%/pH. These two enhanced pH sensing characteristics are attributed to the use of HfO(2) as the sensing surface and an optimized fabrication process compatible with silicon processing technology.
Real-time monitoring of ischemia inside stomach.
Tahirbegi, Islam Bogachan; Mir, Mònica; Samitier, Josep
2013-02-15
The low pH in the gastric juice of the stomach makes it difficult to fabricate stable and functional all-solid-state pH ISE sensors to sense ischemia, mainly because of anion interference and adhesion problem between the ISE membrane and the electrode surface. In this work, the adhesion of ISE membrane on solid surface at low pH was improved by modifying the surface with a conductive substrate containing hydrophilic and hydrophobic groups. This creates a stable and robust candidate for low pH applications. Moreover, anion interference problem at low pH was solved by integration of all-solid-state ISE and internal reference electrodes on an array. So, the same tendencies of anion interferences for all-solid-state ISE and all-solid-state reference electrodes cancel each other in differential potentiometric detection. The developed sensor presents a novel all-solid-state potentiometric, miniaturized and mass producible pH ISE sensor for detecting ischemia on the stomach tissue on an array designed for endoscopic applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Rudnitskaya, Alisa; Evtuguin, Dmitry V; Costa, Luis C; Graça, M Pedro F; Fernandes, António J S; Correia, M Rosario P; Gomes, M Teresa S R; Oliveira, J A B P
2013-01-21
Hardwood and softwood lignins obtained from industrial sulphite and kraft and laboratory oxygen-organosolv pulping processes were employed in co-polymerization with tolylene 2,4-diisocyanate terminated poly(propylene glycol). The obtained lignin-based polyurethanes were doped with 0.72 w/w% of multiwall carbon nanotubes (MWCNTs) with the aim of increasing their electrical conductivity to the levels suitable for sensor applications. Effects of the polymer doping with MWCNTs were assessed using electrical impedance (EIS) and UV-Resonance Raman (UV-RR) spectroscopy. Potentiometric sensors were prepared by drop casting of liquid polymer on the surface of carbon glass or platinum electrodes. Lignin-based sensors displayed a very low or no sensitivity to all alkali, alkali-earth and transition metal cations ions except Cr(VI) at pH 2. Response to Cr(VI) values of 39, 50 and 53 mV pX(-1) for the sensors based on kraft, organosolv and lignosulphonate lignins, respectively, were observed. Redox sensitivity values close to the theoretical values of 20 and 21 mV pX(-1) for organosolv and lignosulphonate based sensors respectively were detected in the Cr(III)/Cr(VI) solutions while a very low response was observed in the solutions containing Fe(CN)(6)(3-/4-). Conducting composite lignin-based polyurethanes doped with MWCNTs were suggested as being promising materials for Cr(VI)-sensitive potentiometric sensors.
Model-based pH monitor for sensor assessment.
van Schagen, Kim; Rietveld, Luuk; Veersma, Alex; Babuska, Robert
2009-01-01
Owing to the nature of the treatment processes, monitoring the processes based on individual online measurements is difficult or even impossible. However, the measurements (online and laboratory) can be combined with a priori process knowledge, using mathematical models, to objectively monitor the treatment processes and measurement devices. The pH measurement is a commonly used measurement at different stages in the drinking water treatment plant, although it is a unreliable instrument, requiring significant maintenance. It is shown that, using a grey-box model, it is possible to assess the measurement devices effectively, even if detailed information of the specific processes is unknown.
Liu, Rui; Xiao, Teng; Cui, Weipan; Shinar, Joseph; Shinar, Ruth
2013-05-17
Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs' broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ~20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ0/τ100 (PL decay time τ at 0% O2/τ at 100% O2) that is often used to express S increases ×1.9 to 20.7 relative to the lower molecular weight PS, where this ratio is 11.0. This increase reduces to ×1.7 when the PEG is added (τ0/τ100=18.2), but the latter results in an increase ×2.7 in the PL intensity. The sensor's response time is <10s in all cases. The microporous structure of these blended films, with PEG decorating PS pores, serves a dual purpose. It results in light scattering that reduces the EL that is waveguided in the substrate of the OLEDs and consequently enhances light outcoupling from the OLEDs by ~60%, and it increases the PL directed toward the OPD. The multiple functional structures of multicolor microcavity OLED pixels/microporous scattering films/OPDs enable generation of enhanced individually addressable sensor arrays, devoid of interfering issues, for O2 and pH as well as for other analytes and biochemical parameters. Copyright © 2013 Elsevier B.V. All rights reserved.
A control system based on field programmable gate array for papermaking sewage treatment
NASA Astrophysics Data System (ADS)
Zhang, Zi Sheng; Xie, Chang; Qing Xiong, Yan; Liu, Zhi Qiang; Li, Qing
2013-03-01
A sewage treatment control system is designed to improve the efficiency of papermaking wastewater treatment system. The automation control system is based on Field Programmable Gate Array (FPGA), coded with Very-High-Speed Integrate Circuit Hardware Description Language (VHDL), compiled and simulated with Quartus. In order to ensure the stability of the data used in FPGA, the data is collected through temperature sensors, water level sensor and online PH measurement system. The automatic control system is more sensitive, and both the treatment efficiency and processing power are increased. This work provides a new method for sewage treatment control.
Advanced Biotelemetry Systems for Space Life Sciences: PH Telemetry
NASA Technical Reports Server (NTRS)
Hines, John W.; Somps, Chris; Ricks, Robert; Kim, Lynn; Connolly, John P. (Technical Monitor)
1995-01-01
The SENSORS 2000! (S2K!) program at NASA's Ames Research Center is currently developing a biotelemetry system for monitoring pH and temperature in unrestrained subjects. This activity is part of a broader scope effort to provide an Advanced Biotelemetry System (ABTS) for use in future space life sciences research. Many anticipated research endeavors will require biomedical and biochemical sensors and related instrumentation to make continuous inflight measurements in a variable-gravity environment. Since crew time is limited, automated data acquisition, data processing, data storage, and subject health monitoring are required. An automated biochemical and physiological data acquisition system based on non invasive or implantable biotelemetry technology will meet these requirements. The ABTS will ultimately acquire a variety of physiological measurands including temperature, biopotentials (e.g. ECG, EEG, EMG, EOG), blood pressure, flow and dimensions, as well as chemical and biological parameters including pH. Development activities are planned in evolutionary, leveraged steps. Near-term activities include 1) development of a dual channel pH/temperature telemetry system, and 2) development of a low bandwidth, 4-channel telemetry system, that measures temperature, heart rate, pressure, and pH. This abstract describes the pH/temperature telemeter.
Affinity chemiresistor sensor for sugars.
Tlili, Chaker; Badhulika, Sushmee; Tran, Thien-Toan; Lee, Ilkeun; Mulchandani, Ashok
2014-10-01
In this work, a non-enzymatic chemiresistive sugar sensor has been developed by combining a synthetic receptor with aligned single-walled carbon nanotubes (SWNTs) device. Briefly, boronic acid as a multivalent sugar receptor was immobilized on carbon nanotubes through amide bond formation. The interaction between three common sugars (d-glucose, d-fructose and sucrose) and boronic acid modified SWNTs device was studied. The effect of pH on the receptor-ligand binding was examined and highest response was observed at pH 9. The chemiresistive sensor exhibited specific and reproducible detection with sensitivity over the concentration range of 1-20mM, 1-25 mM, and 1-30 mM for fructose, glucose, and sucrose, respectively. The sensor showed no interference from common electroactive compounds such as citric acid, uric acid, and ascorbic acid. Furthermore, the sensor retained 97.4% of the initial value after five regeneration cycles with an acidic buffer at pH 5, thus ensuring good reusability. Copyright © 2014 Elsevier B.V. All rights reserved.
A cell-surface-anchored ratiometric fluorescent probe for extracellular pH sensing.
Ke, Guoliang; Zhu, Zhi; Wang, Wei; Zou, Yuan; Guan, Zhichao; Jia, Shasha; Zhang, Huimin; Wu, Xuemeng; Yang, Chaoyong James
2014-09-10
Accurate sensing of the extracellular pH is a very important yet challenging task in biological and clinical applications. This paper describes the development of an amphiphilic lipid-DNA molecule as a simple yet useful cell-surface-anchored ratiometric fluorescent probe for extracellular pH sensing. The lipid-DNA probe, which consists of a hydrophobic diacyllipid tail and a hydrophilic DNA strand, is modified with two fluorescent dyes; one is pH-sensitive as pH indicator and the other is pH-insensitive as an internal reference. The lipid-DNA probe showed sensitive and reversible response to pH change in the range of 6.0-8.0, which is suitable for most extracellular studies. In addition, based on simple hydrophobic interactions with the cell membrane, the lipid-DNA probe can be easily anchored on the cell surface with negligible cytotoxicity, excellent stability, and unique ratiometric readout, thus ensuring its accurate sensing of extracellular pH. Finally, this lipid-DNA-based ratiometric pH indicator was successfully used for extracellular pH sensing of cells in 3D culture environment, demonstrating the potential applications of the sensor in biological and medical studies.
A pH sensor based on electric properties of nanotubes on a glass substrate
Nakamura, Motonori; Ishii, Atsushi; Subagyo, Agus; Hosoi, Hirotaka; Sueoka, Kazuhisa; Mukasa, Koichi
2007-01-01
We fabricated a pH-sensitive device on a glass substrate based on properties of carbon nanotubes. Nanotubes were immobilized specifically on chemically modified areas on a substrate followed by deposition of metallic source and drain electrodes on the area. Some nanotubes connected the source and drain electrodes. A top gate electrode was fabricated on an insulating layer of silane coupling agent on the nanotube. The device showed properties of ann-type field effect transistor when a potential was applied to the nanotube from the top gate electrode. Before fabrication of the insulating layer, the device showed that thep-type field effect transistor and the current through the source and drain electrodes depend on the buffer pH. The current increases with decreasing pH of the CNT solution. This device, which can detect pH, is applicable for use as a biosensor through modification of the CNT surface. PMID:21806848
Flip-angle based ratiometric approach for pulsed CEST-MRI pH imaging
NASA Astrophysics Data System (ADS)
Arena, Francesca; Irrera, Pietro; Consolino, Lorena; Colombo Serra, Sonia; Zaiss, Moritz; Longo, Dario Livio
2018-02-01
Several molecules have been exploited for developing MRI pH sensors based on the chemical exchange saturation transfer (CEST) technique. A ratiometric approach, based on the saturation of two exchanging pools at the same saturation power, or by varying the saturation power levels on the same pool, is usually needed to rule out the concentration term from the pH measurement. However, all these methods have been demonstrated by using a continuous wave saturation scheme that limits its translation to clinical scanners. This study shows a new ratiometric CEST-MRI pH-mapping approach based on a pulsed CEST saturation scheme for a radiographic contrast agent (iodixanol) possessing a single chemical exchange site. This approach is based on the ratio of the CEST contrast effects at two different flip angles combinations (180°/360° and 180°/720°), keeping constant the mean irradiation RF power (Bavg power). The proposed ratiometric approach index is concentration independent and it showed good pH sensitivity and accuracy in the physiological range between 6.0 and 7.4.
Label-Free Carbon-Dots-Based Ratiometric Fluorescence pH Nanoprobes for Intracellular pH Sensing.
Shangguan, Jingfang; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Liu, Jinquan; Tang, Jinlu; Yang, Xue; Huang, Jin
2016-08-02
Measuring pH in living cells is of great importance for better understanding cellular functions as well as providing pivotal assistance for early diagnosis of diseases. In this work, we report the first use of a novel kind of label-free carbon dots for intracellular ratiometric fluorescence pH sensing. By simple one-pot hydrothermal treatment of citric acid and basic fuchsin, the carbon dots showing dual emission bands at 475 and 545 nm under single-wavelength excitation were synthesized. It is demonstrated that the fluorescence intensities of the as-synthesized carbon dots at the two emissions are pH-sensitive simultaneously. The intensity ratio (I475 nm/I545 nm) is linear against pH values from 5.2 to 8.8 in buffer solution, affording the capability as ratiometric probes for intracellular pH sensing. It also displays that the carbon dots show excellent reversibility and photostability in pH measurements. With this nanoprobe, quantitative fluorescence imaging using the ratio of two emissions (I475 nm/I545 nm) for the detection of intracellular pH were successfully applied in HeLa cells. In contrast to most of the reported nanomaterials-based ratiometric pH sensors which rely on the attachment of additional dyes, these carbon-dots-based ratiometric probes are low in toxicity, easy to synthesize, and free from labels.
Chen, Haiyong; Wang, Jing; Shan, Duoliang; Chen, Jing; Zhang, Shouting; Lu, Xiaoquan
2018-05-15
pH plays an important role in understanding physiological/pathologic processes, and abnormal pH is a symbol of many common diseases such as cancer, stroke, and Alzheimer's disease. In this work, an effective dual-emission fluorescent metal-organic framework nanocomposite probe (denoted as RB-PCN) has been constructed for sensitive and broad-range detection of pH. RB-PCN was prepared by encapsulating the DBI-PEG-NH 2 -functionalized Fe 3 O 4 into Zr-MOFs and then further reacting it with rhodamine B isothiocyanates (RBITC). In RB-PCN, RBITC is capable of sensing changes in pH in acidic solutions. Zr-MOFs not only enrich the target analyte but also exhibit a fluorescence response to pH changes in alkaline solutions. Based on the above structural and compositional features, RB-PCN could detect a wide range of pH changes. Importantly, such a nanoprobe could "see" the intracellular pH changes by fluorescence confocal imaging as well as "measure" the wider range of pH in actual samples by fluorescence spectroscopy. To the best of our knowledge, this is the first time a MOF-based dual-emitting fluorescent nanoprobe has been used for a wide range of pH detection.
Fabrication of triple-labeled polyelectrolyte microcapsules for localized ratiometric pH sensing.
Song, Xiaoxue; Li, Huanbin; Tong, Weijun; Gao, Changyou
2014-02-15
Encapsulation of pH sensitive fluorophores as reporting molecules provides a powerful approach to visualize the transportation of multilayer capsules. In this study, two pH sensitive dyes (fluorescein and oregon green) and one pH insensitive dye (rhodamine B) were simultaneously labeled on the microcapsules to fabricate ratiometric pH sensors. The fluorescence of the triple-labeled microcapsule sensors was robust and nearly independent of other intracellular species. With a dynamic pH measurement range of 3.3-6.5, the microcapsules can report their localized pH at a real time. Cell culture experiments showed that the microcapsules could be internalized by RAW 246.7 cells naturally and finally accumulated in acidic organelles with a pH value of 5.08 ± 0.59 (mean ± s.d.; n=162). Copyright © 2013 Elsevier Inc. All rights reserved.
Dual modal endoscopic cancer detection based on optical pH sensing and Raman spectroscopy
NASA Astrophysics Data System (ADS)
Kim, Soogeun; Kim, ByungHyun; Sohn, Won Bum; Byun, Kyung Min; Lee, Soo Yeol
2017-02-01
To discriminate between normal and cancerous tissue, a dual modal approach using Raman spectroscopy and pH sensor was designed and applied. Raman spectroscopy has demonstrated the possibility of using as diagnostic method for the early detection of precancerous and cancerous lesions in vivo. It also can be used in identifying markers associated with malignant change. However, Raman spectroscopy lacks sufficient sensitivity due to very weak Raman scattering signal or less distinctive spectral pattern. A dual modal approach could be one of the solutions to solve this issue. The level of extracellular pH in cancer tissue is lower than that in normal tissue due to increased lactic acid production, decreased interstitial fluid buffering and decreased perfusion. High sensitivity and specificity required for accurate cancer diagnosis could be achieved by combining the chemical information from Raman spectrum with metabolic information from pH level. Raman spectra were acquired by using a fiber optic Raman probe, a cooled CCD camera connected to a spectrograph and 785 nm laser source. Different transmission spectra depending on tissue pH were measured by a lossy-mode resonance sensor based on fiber optic. The discriminative capability of pH-Raman dual modal method was evaluated using principal component analysis (PCA). The obtained results showed that the pH-Raman dual modal approach can improve discriminative capability between normal and cancerous tissue, which can lead to very high sensitivity and specificity. The proposed method for cancer detection is expected to be used in endoscopic diagnosis later.
X-Ray Excited Luminescence Chemical Imaging of Bacterial Growth on Surfaces Implanted in Tissue.
Wang, Fenglin; Raval, Yash; Tzeng, Tzuen-Rong J; Anker, Jeffrey N
2015-04-22
A pH sensor film is developed that can be coated on an implant surface and imaged using a combination of X-ray excitation and visible spectroscopy to monitor bacterial infection and treatment of implanted medical devices (IMDs) through tissue. X-ray scintillators in the pH sensor film generate light when an X-ray beam irradiates them. This light first passes through a layer containing pH indicator that alters the spectrum according to pH, then passes through and out of the tissue where it is detected by a spectrometer. A reference region on the film is used to account for spectral distortion from wavelength-dependent absorption and scattering in the tissue. pH images are acquired by moving the sample relative to the X-ray beam and collecting a spectrum at each location, with a spatial resolution limited by the X-ray beam width. Using this X-ray excited luminescence chemical imaging (XELCI) to map pH through ex vivo porcine tissue, a pH drop is detected during normal bacterial growth on the sensor surface, and a restoration of the pH to the bulk value during antibiotic treatment over the course of hours with milli-meter resolution. Overall, XELCI provides a novel approach to noninvasively image surface pH for studying implant infections and treatments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A study of transition from n- to p-type based on hexagonal WO3 nanorods sensor
NASA Astrophysics Data System (ADS)
Wu, Ya-Qiao; Hu, Ming; Wei, Xiao-Ying
2014-04-01
Hexagonal WO3 nanorods are fabricated by a facile hydrothermal process at 180 °C using sodium tungstate and sodium chloride as starting materials. The morphology, structure, and composition of the prepared nanorods are studied by scanning electron microscopy, X-ray diffraction spectroscopy, and energy dispersive spectroscopy. It is found that the agglomeration of the nanorods is strongly dependent on the PH value of the reaction solution. Uniform and isolated WO3 nanorods with diameters ranging from 100 nm-150 nm and lengths up to several micrometers are obtained at PH = 2.5 and the nanorods are identified as being hexagonal in phase structure. The sensing characteristics of the WO3 nanorod sensor are obtained by measuring the dynamic response to NO2 with concentrations in the range 0.5 ppm-5 ppm and at working temperatures in the range 25 °C-250 °C. The obtained WO3 nanorods sensors are found to exhibit opposite sensing behaviors, depending on the working temperature. When being exposed to oxidizing NO2 gas, the WO3 nanorod sensor behaves as an n-type semiconductor as expected when the working temperature is higher than 50 °C, whereas, it behaves as a p-type semiconductor below 50 °C. The origin of the n- to p-type transition is correlated with the formation of an inversion layer at the surface of the WO3 nanorod at room temperature. This finding is useful for making new room temperature NO2 sensors based on hexagonal WO3 nanorods.
Near-IR Two-Photon Fluorescent Sensor for K(+) Imaging in Live Cells.
Sui, Binglin; Yue, Xiling; Kim, Bosung; Belfield, Kevin D
2015-08-19
A new two-photon excited fluorescent K(+) sensor is reported. The sensor comprises three moieties, a highly selective K(+) chelator as the K(+) recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (>52-fold) in detecting K(+) over other physiological metal cations. Upon binding K(+), the sensor switches from nonfluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K(+) sensing in living cells.
Gaudette, Alexandra I; Thorarinsdottir, Agnes E; Harris, T David
2017-11-30
An Fe II complex that features a pH-dependent spin state population, by virtue of a variable ligand protonation state, is described. This behavior leads to a highly pH-dependent 19 F NMR chemical shift with a sensitivity of 13.9(5) ppm per pH unit at 37 °C, thereby demonstrating the potential utility of the complex as a 19 F chemical shift-based pH sensor.
NASA Technical Reports Server (NTRS)
Hwang, Emma Y.; Pappas, Dimitri; Jeevarajan, Antony S.; Anderson, Melody M.
2004-01-01
BACKGROUND: Compact and automated sensors are desired for assessing the health of cell cultures in biotechnology experiments. While several single-analyte sensors exist to measure culture health, a multi-analyte sensor would simplify the cell culture system. One such multi-analyte sensor, the Paratrend 7 manufactured by Diametrics Medical, consists of three optical fibers for measuring pH, dissolved carbon dioxide (pCO(2)), dissolved oxygen (pO(2)), and a thermocouple to measure temperature. The sensor bundle was designed for intra-vascular measurements in clinical settings, and can be used in bioreactors operated both on the ground and in NASA's Space Shuttle and International Space Station (ISS) experiments. METHODS: A Paratrend 7 sensor was placed at the outlet of a bioreactor inoculated with BHK-21 (baby hamster kidney) cells. The pH, pCO(2), pO(2), and temperature data were transferred continuously to an external computer. Cell culture medium, manually extracted from the bioreactor through a sampling port, was also assayed using a bench top blood gas analyzer (BGA). RESULTS: Two Paratrend 7 sensors were used over a single cell culture experiment (64 days). When compared to the manually obtained BGA samples, the sensor had good agreement for pH, pCO(2), and pO(2) with bias (and precision) 0.005(0.024), 8.0 mmHg (4.4 mmHg), and 11 mmHg (17 mmHg), respectively for the first two sensors. A third Paratrend sensor (operated for 141 days) had similar agreement (0.02+/-0.15 for pH, -4+/-8 mm Hg for pCO(2), and 24+/-18 mmHg for pO(2)). CONCLUSION: The resulting biases and precisions are com- parable to Paratrend sensor clinical results. Although the pO(2) differences may be acceptable for clinically relevant measurement ranges, the O(2) sensor in this bundle may not be reliable enough for the ranges of pO(2) in these cell culture studies without periodic calibration.
Smartphone-Based pH Sensor for Home Monitoring of Pulmonary Exacerbations in Cystic Fibrosis
Sun, Alexander; Phelps, Tom; Yao, Chengyang; Venkatesh, A. G.; Conrad, Douglas; Hall, Drew A.
2017-01-01
Currently, Cystic Fibrosis (CF) patients lack the ability to track their lung health at home, relying instead on doctor checkups leading to delayed treatment and lung damage. By leveraging the ubiquity of the smartphone to lower costs and increase portability, a smartphone-based peripheral pH measurement device was designed to attach directly to the headphone port to harvest power and communicate with a smartphone application. This platform was tested using prepared pH buffers and sputum samples from CF patients. The system matches within ~0.03 pH of a benchtop pH meter while fully powering itself and communicating with a Samsung Galaxy S3 smartphone paired with either a glass or Iridium Oxide (IrOx) electrode. The IrOx electrodes were found to have 25% higher sensitivity than the glass probes at the expense of larger drift and matrix sensitivity that can be addressed with proper calibration. The smartphone-based platform has been demonstrated as a portable replacement for laboratory pH meters, and supports both highly robust glass probes and the sensitive and miniature IrOx electrodes with calibration. This tool can enable more frequent pH sputum tracking for CF patients to help detect the onset of pulmonary exacerbation to provide timely and appropriate treatment before serious damage occurs. PMID:28556804
Smartphone-Based pH Sensor for Home Monitoring of Pulmonary Exacerbations in Cystic Fibrosis.
Sun, Alexander; Phelps, Tom; Yao, Chengyang; Venkatesh, A G; Conrad, Douglas; Hall, Drew A
2017-05-30
Currently, Cystic Fibrosis (CF) patients lack the ability to track their lung health at home, relying instead on doctor checkups leading to delayed treatment and lung damage. By leveraging the ubiquity of the smartphone to lower costs and increase portability, a smartphone-based peripheral pH measurement device was designed to attach directly to the headphone port to harvest power and communicate with a smartphone application. This platform was tested using prepared pH buffers and sputum samples from CF patients. The system matches within ~0.03 pH of a benchtop pH meter while fully powering itself and communicating with a Samsung Galaxy S3 smartphone paired with either a glass or Iridium Oxide (IrOx) electrode. The IrOx electrodes were found to have 25% higher sensitivity than the glass probes at the expense of larger drift and matrix sensitivity that can be addressed with proper calibration. The smartphone-based platform has been demonstrated as a portable replacement for laboratory pH meters, and supports both highly robust glass probes and the sensitive and miniature IrOx electrodes with calibration. This tool can enable more frequent pH sputum tracking for CF patients to help detect the onset of pulmonary exacerbation to provide timely and appropriate treatment before serious damage occurs.
NASA Technical Reports Server (NTRS)
Tabacco, Mary Beth; Zhou, Quan
1995-01-01
pH-sensitive chromophoric reagents immobilized in porous optical fibers. Optoelectronic instrumentation system measures acidity or alkalinity of aqueous nutrient solution. Includes one or more optrodes, which are optical-fiber chemical sensors, in sense, analogous to electrodes but not subject to some of spurious effects distorting readings taken by pH electrodes. Concept of optrodes also described in "Ethylene-Vapor Optrodes" (KSC-11579). pH optrode sensor head, with lead-in and lead-out optical fibers, convenient for monitoring solutions located away from supporting electronic equipment.
Membrane-aerated microbioreactor for high-throughput bioprocessing.
Zanzotto, Andrea; Szita, Nicolas; Boccazzi, Paolo; Lessard, Philip; Sinskey, Anthony J; Jensen, Klavs F
2004-07-20
A microbioreactor with a volume of microliters is fabricated out of poly(dimethylsiloxane) (PDMS) and glass. Aeration of microbial cultures is through a gas-permeable PDMS membrane. Sensors are integrated for on-line measurement of optical density (OD), dissolved oxygen (DO), and pH. All three parameter measurements are based on optical methods. Optical density is monitored via transmittance measurements through the well of the microbioreactor while dissolved oxygen and pH are measured using fluorescence lifetime-based sensors incorporated into the body of the microbioreactor. Bacterial fermentations carried out in the microbioreactor under well-defined conditions are compared to results obtained in a 500-mL bench-scale bioreactor. It is shown that the behavior of the bacteria in the microbioreactor is similar to that in the larger bioreactor. This similarity includes growth kinetics, dissolved oxygen profile within the vessel over time, pH profile over time, final number of cells, and cell morphology. Results from off-line analysis of the medium to examine organic acid production and substrate utilization are presented. By changing the gaseous environmental conditions, it is demonstrated that oxygen levels within the microbioreactor can be manipulated. Furthermore, it is demonstrated that the sensitivity and reproducibility of the microbioreactor system are such that statistically significant differences in the time evolution of the OD, DO, and pH can be used to distinguish between different physiological states. Finally, modeling of the transient oxygen transfer within the microbioreactor based on observed and predicted growth kinetics is used to quantitatively characterize oxygen depletion in the system. Copyright 2004 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
1992-01-01
Mike Morris, former Associate Director of STAC, formed pHish Doctor, Inc. to develop and sell a pH monitor for home aquariums. The monitor, or pHish Doctor, consists of a sensor strip and color chart that continually measures pH levels in an aquarium. This is important because when the level gets too high, ammonia excreted by fish is highly toxic; at low pH, bacteria that normally break down waste products stop functioning. Sales have run into the tens of thousands of dollars. A NASA Tech Brief Technical Support Package later led to a salt water version of the system and a DoE Small Business Innovation Research (SBIR) grant for development of a sensor for sea buoys. The company, now known as Ocean Optics, Inc., is currently studying the effects of carbon dioxide buildup as well as exploring other commercial applications for the fiber optic sensor.
Low-voltage analog front-end processor design for ISFET-based sensor and H+ sensing applications
NASA Astrophysics Data System (ADS)
Chung, Wen-Yaw; Yang, Chung-Huang; Peng, Kang-Chu; Yeh, M. H.
2003-04-01
This paper presents a modular-based low-voltage analog-front-end processor design in a 0.5mm double-poly double-metal CMOS technology for Ion Sensitive Field Effect Transistor (ISFET)-based sensor and H+ sensing applications. To meet the potentiometric response of the ISFET that is proportional to various H+ concentrations, the constant-voltage and constant current (CVCS) testing configuration has been used. Low-voltage design skills such as bulk-driven input pair, folded-cascode amplifier, bootstrap switch control circuits have been designed and integrated for 1.5V supply and nearly rail-to-rail analog to digital signal processing. Core modules consist of an 8-bit two-step analog-digital converter and bulk-driven pre-amplifiers have been developed in this research. The experimental results show that the proposed circuitry has an acceptable linearity to 0.1 pH-H+ sensing conversions with the buffer solution in the range of pH2 to pH12. The processor has a potential usage in battery-operated and portable healthcare devices and environmental monitoring applications.
The Influence of Virus Infection on the Extracellular pH of the Host Cell Detected on Cell Membrane.
Liu, Hengjun; Maruyama, Hisataka; Masuda, Taisuke; Honda, Ayae; Arai, Fumihito
2016-01-01
Influenza virus infection can result in changes in the cellular ion levels at 2-3 h post-infection. More H(+) is produced by glycolysis, and the viral M2 proton channel also plays a role in the capture and release of H(+) during both viral entry and egress. Then the cells might regulate the intracellular pH by increasing the export of H(+) from the intracellular compartment. Increased H(+) export could lead indirectly to increased extracellular acidity. To detect changes in extracellular pH of both virus-infected and uninfected cells, pH sensors were synthesized using polystyrene beads (ϕ1 μm) containing Rhodamine B and Fluorescein isothiocyanate (FITC). The fluorescence intensity of FITC can respond to both pH and temperature. So Rhodamine B was also introduced in the sensor for temperature compensation. Then the pH can be measured after temperature compensation. The sensor was adhered to cell membrane for extracellular pH measurement. The results showed that the multiplication of influenza virus in host cell decreased extracellular pH of the host cell by 0.5-0.6 in 4 h after the virus bound to the cell membrane, compared to that in uninfected cells. Immunostaining revealed the presence of viral PB1 protein in the nucleus of virus-bound cells that exhibited extracellular pH changes, but no PB1 protein are detected in virus-unbound cells where the extracellular pH remained constant.
Photoconductivity, pH Sensitivity, Noise, and Channel Length Effects in Si Nanowire FET Sensors
NASA Astrophysics Data System (ADS)
Gasparyan, Ferdinand; Zadorozhnyi, Ihor; Khondkaryan, Hrant; Arakelyan, Armen; Vitusevich, Svetlana
2018-03-01
Silicon nanowire (NW) field-effect transistor (FET) sensors of various lengths were fabricated. Transport properties of Si NW FET sensors were investigated involving noise spectroscopy and current-voltage (I-V) characterization. The static I-V dependencies demonstrate the high quality of fabricated silicon FETs without leakage current. Transport and noise properties of NW FET structures were investigated under different light illumination conditions, as well as in sensor configuration in an aqueous solution with different pH values. Furthermore, we studied channel length effects on the photoconductivity, noise, and pH sensitivity. The magnitude of the channel current is approximately inversely proportional to the length of the current channel, and the pH sensitivity increases with the increase of channel length approaching the Nernst limit value of 59.5 mV/pH. We demonstrate that dominant 1/f-noise can be screened by the generation-recombination plateau at certain pH of the solution or external optical excitation. The characteristic frequency of the generation-recombination noise component decreases with increasing of illumination power. Moreover, it is shown that the measured value of the slope of 1/f-noise spectral density dependence on the current channel length is 2.7 which is close to the theoretically predicted value of 3.
Luminescent Lanthanide MOFs: A Unique Platform for Chemical Sensing
Zhao, Shu-Na; Wang, Guangbo
2018-01-01
In recent years, lanthanide metal–organic frameworks (LnMOFs) have developed to be an interesting subclass of MOFs. The combination of the characteristic luminescent properties of Ln ions with the intriguing topological structures of MOFs opens up promising possibilities for the design of LnMOF-based chemical sensors. In this review, we present the most recent developments of LnMOFs as chemical sensors by briefly introducing the general luminescence features of LnMOFs, followed by a comprehensive investigation of the applications of LnMOF sensors for cations, anions, small molecules, nitroaromatic explosives, gases, vapors, pH, and temperature, as well as biomolecules. PMID:29642458
Time-resolved fluorescence spectroscopy for chemical sensors
NASA Astrophysics Data System (ADS)
Draxler, Sonja; Lippitsch, Max E.
1996-07-01
A family of sensors is presented with fluorescence decay-time measurements used as the sensing technique. The concept is to take a single fluorophore with a suitably long fluorescence decay time as the basic building block for numerous different sensors. Analyte recognition can be performed by different functional groups that are necessary for selective interaction with the analyte. To achieve this, the principle of excited-state electron transfer is applied with pyrene as the fluorophore. Therefore the same instrumentation based on a small, ambient air-nitrogen laser and solid-state electronics can be used to measure different analytes, for example, oxygen, pH, carbon dioxide, potassium, ammonium, lead, cadmium, zinc, and phosphate.
Fluorescent sensors based on boronic acids
NASA Astrophysics Data System (ADS)
Cooper, Christopher R.; James, Tony D.
1999-05-01
Sensor systems have long been needed for detecting the presence in solution of certain chemically or biologically important species. Sensors are used in a wide range of applications from simple litmus paper that shows a single color change in acidic or basic environments to complex biological assays that use enzymes, antibodies and antigens to display binding events. With this work the use of boronic acids in the design and synthesis of sensors for saccharides (diols) will be presented. The fluorescent sensory systems rely on photoinduced electron transfer (PET) to modulate the observed fluorescence. When saccharides form cyclic boronate esters with boronic acids, the Lewis acidity of the boronic acid is enhanced and therefore the Lewis acid-base interaction between the boronic acid and a neighboring amine is strengthened. The strength of this acid-base interaction modulates the PET from the amine (acting as a quencher) to anthracene (acting as a fluorophore). These compounds show increased fluorescence at neutral pH through suppression of the PET from nitrogen to anthracene on saccharide binding. The general strategy for the development of saccharide selective systems will be discussed. The potential of the boronic acid based systems will be illustrated using the development of glucose and glucosamine selective fluorescent sensors as examples.
Sensor Access to the Cellular Microenvironment Using the Sensing Cell Culture Flask.
Kieninger, Jochen; Tamari, Yaara; Enderle, Barbara; Jobst, Gerhard; Sandvik, Joe A; Pettersen, Erik O; Urban, Gerald A
2018-04-26
The Sensing Cell Culture Flask (SCCF) is a cell culture monitoring system accessing the cellular microenvironment in 2D cell culture using electrochemical microsensors. The system is based on microfabricated sensor chips embedded in standard cell culture flasks. Ideally, the sensor chips could be equipped with any electrochemical sensor. Its transparency allows optical inspection of the cells during measurement. The surface of the sensor chip is in-plane with the flask surface allowing undisturbed cell growth on the sensor chip. A custom developed rack system allows easy usage of multiple flasks in parallel within an incubator. The presented data demonstrates the application of the SCCF with brain tumor (T98G) and breast cancer (T-47D) cells. Amperometric oxygen sensors were used to monitor cellular respiration with different incubation conditions. Cellular acidification was accessed with potentiometric pH sensors using electrodeposited iridium oxide films. The system itself provides the foundation for electrochemical monitoring systems in 3D cell culture.
Chemical sensing employingpH sensitive emeraldine base thin film for carbon dioxide detection
NASA Astrophysics Data System (ADS)
Irimia-Vladu, Mihai
Respiration, or CO2 evolution, is a universal indicator for all the biological activities. Among many potential applications, the measurement of CO2 evolution has been found to be a rapid and nondestructive means for examining microbial contamination of food. The sensor developed in this work consists of a thin emeraldine base-polyaniline (EB-PAni) film. In the first half of the project the effect of carbon dioxide over the conductivity of a composite film of emeraldine base polyaniline and poly(vinyl alcohol) in N-methyl pyrrolidone (NMP) respectively was tested. Argon gas or mixture of argon and 5% CO2 were circulated through the glass cell containing the polymer film deposited on interdigitated electrode and exposed to specific humidity levels fixed by aqueous supersaturated salt solutions. In the second half of the project, a thin emeraldine base film in NMP was directly deposited on interdigitated electrode and the respective sensor inserted in water. Carbonic acid solutions of various pHs were generated by bubbling specific mixtures of carbon dioxide and argon. Conductivity measurements were performed by impedance spectroscopy throughout the project. The sensing mechanism is based on intermediate stages of the transformation of the emeraldine base polyaniline to a conductive salt type (ES-PAni). This EB-ES transformation is the consequence of the exposure of EB-PAni to a protonic acid and is accompanied by a change in the conductivity of the polymer film. Carbonic acid, unfortunately, is a very weak acid and is unable to induce a conductivity change, but the intermediate steps that predetermine this transformation are detected by impedance spectroscopy even when the overall conductivity of the film is unchanged. The composite thin film developed in the first part of the project showed poor sensing characteristics: limited dynamic range, drift, instability and slow time response. However, the sensor design employed in the second half of this work, coupled with impedance spectroscopy measurements, revealed valuable information about conduction mechanisms at pH levels were the overall conductivity of the film remained unchanged. Typical impedance spectra for the emeraldine thin films for a frequency sweep between 3.2 E7 to 1 Hz shows a single semicircle. The overall conductivity of the film (5x10-4 S/cm) does not change when CO 2 is bubbled through the water in which the sensor is immersed, but an additional semicircle starts to appear at low (less than 200 Hz) frequency corresponding to lowering the pH of the solution below 5.0. The original semicircle diminishes in size but maintains its initial peak frequency. The EB film is very sensitive to pH changes, therefore an additional semicircle appears in unpurified argon gas due to the reduction of the pH of water solution to 4.65. The same mechanism is displayed in hydrochloric acid solutions of various pH. The formation of the second semicircle depends on the initial conductivity of the emeraldine base film, a film displaying an initial conductivity of 4.8 x 10-3 S/cm forming the second semicircle at a pH of 5.85. The appearance of the second semicircle is most likely due to a preferential protonation in the insulating matrix of the polymer film. The overall conductivity of the film increases when the level of protonation in the insulating portion of the film reached a level close to the protonation level in the scattered metallic islands, allowing the electron-hopping mechanism to became active. The sensor output is stable and reproducible even after 11 months passed from the polymer film deposition.
Gorodkiewicz, Ewa; Breczko, Joanna; Sankiewicz, Anna
2012-04-24
A Surface Plasmon Resonance Imaging (SPRI) sensor based on bromelain or chymopapain or ficin has been developed for specific cystatin determination. Cystatin was captured from a solution by immobilized bromelain or chymopapain or ficin due to the formation of an enzyme-inhibitor complex on the biosensor surface. The influence of bromelain, chymopapain or ficin concentration, as well as the pH of the interaction on the SPRI signal, was investigated and optimized. Sensor dynamic response range is between 0-0.6 μg/ml and the detection limit is equal to 0.1 μg/ml. In order to demonstrate the sensor potential, cystatin was determined in blood plasma, urine and saliva, showing good agreement with the data reported in the literature.
Sharma, Vinay; Kaur, Navpreet; Tiwari, Pranav; Mobin, Shaikh M
2018-05-01
Carbon-based nano materials are developed as a cytocompatible alternative to semiconducting quantum dots for bioimaging and fluorescence-based sensing. The green alternatives for the synthesis of carbon materials are imminent. The present study demonstrates microwave based one step quick synthesis of fluorescent carbon material (FCM) having three variants: (i) un-doped fluorescent carbon material (UFCM) (ii) nitrogen doped FCM (N@FCM), and (iii) nitrogen & phosphorus co-doped FCM (N-P@FCM) using sugarcane extract as a carbon source. The N doping was performed using ethylenediamine and phosphoric acid was used for P doping. The heteroatom doped FCM were synthesized due to insolubility of UFCM in water. Unlike, UFCM, the N@FCM and N-P@FCM were found to be highly soluble in water. The N-P@FCM shows highest quantum yield among the three. The N-P@FCM was explored for alkaline pH sensing and it shows a quenching of fluorescence in the pH range 09-14. The sensing behaviour shows reversibility and high selectivity. Further, the sensor was also investigated for their biocompatibility and hence employed as a promising multicolour probe for cancer cell imaging. The generality in cell imaging was investigated by flow cytometry. The hetero-atom doped green carbon-dots may open new avenues for sensing and selective cellular targeting. Copyright © 2018 Elsevier B.V. All rights reserved.
Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye.
Nath, Nidhi; Godat, Becky; Zimprich, Chad; Dwight, Stephen J; Corona, Cesear; McDougall, Mark; Urh, Marjeta
2016-04-01
Receptor-mediated antibody internalization is a key mechanism underlying several anti-cancer antibody therapeutics. Delivering highly toxic drugs to cancer cells, as in the case of antibody drug conjugates (ADCs), efficient removal of surface receptors from cancer cells and changing the pharmacokinetics profile of the antibody drugs are some of key ways that internalization impacts the therapeutic efficacy of the antibodies. Over the years, several techniques have been used to study antibody internalization including radiolabels, fluorescent microscopy, flow cytometry and cellular toxicity assays. While these methods allow analysis of internalization, they have limitations including a multistep process and limited throughput and are generally endpoint assays. Here, we present a new homogeneous method that enables time and concentration dependent measurements of antibody internalization. The method uses a new hydrophilic and bright pH sensor dye (pHAb dye), which is not fluorescent at neutral pH but becomes highly fluorescent at acidic pH. For receptor mediated antibody internalization studies, antibodies against receptors are conjugated with the pHAb dye and incubated with the cells expressing the receptors. Upon binding to the receptor, the dyes conjugated to the antibody are not fluorescent because of the neutral pH of the media, but upon internalization and trafficking into endosomal and lysosomal vesicles the pH drops and dyes become fluorescent. The enabling attributes of the pHAb dyes are the hydrophilic nature to minimize antibody aggregation and bright fluorescence at acidic pH which allows development of simple plate based assays using a fluorescent reader. Using two different therapeutic antibodies--Trastuzumab (anti-HER2) and Cetuximab (anti-EGFR)--we show labeling with pHAb dye using amine and thiol chemistries and impact of chemistry and dye to antibody ration on internalization. We finally present two new approaches using the pHAb dye, which will be beneficial for screening a large number of antibody samples during early monoclonal development phase. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Molecular gated-AlGaN/GaN high electron mobility transistor for pH detection.
Ding, Xiangzhen; Yang, Shuai; Miao, Bin; Gu, Le; Gu, Zhiqi; Zhang, Jian; Wu, Baojun; Wang, Hong; Wu, Dongmin; Li, Jiadong
2018-04-18
A molecular gated-AlGaN/GaN high electron mobility transistor has been developed for pH detection. The sensing surface of the sensor was modified with 3-aminopropyltriethoxysilane to provide amphoteric amine groups, which would play the role of receptors for pH detection. On modification with 3-aminopropyltriethoxysilane, the transistor exhibits good chemical stability in hydrochloric acid solution and is sensitive for pH detection. Thus, our molecular gated-AlGaN/GaN high electron mobility transistor acheived good electrical performances such as chemical stability (remained stable in hydrochloric acid solution), good sensitivity (37.17 μA/pH) and low hysteresis. The results indicate a promising future for high-quality sensors for pH detection.
A pH sensor with a double-gate silicon nanowire field-effect transistor
NASA Astrophysics Data System (ADS)
Ahn, Jae-Hyuk; Kim, Jee-Yeon; Seol, Myeong-Lok; Baek, David J.; Guo, Zheng; Kim, Chang-Hoon; Choi, Sung-Jin; Choi, Yang-Kyu
2013-02-01
A pH sensor composed of a double-gate silicon nanowire field-effect transistor (DG Si-NW FET) is demonstrated. The proposed DG Si-NW FET allows the independent addressing of the gate voltage and hence improves the sensing capability through an application of asymmetric gate voltage between the two gates. One gate is a driving gate which controls the current flow, and the other is a supporting gate which amplifies the shift of the threshold voltage, which is a sensing metric, and which arises from changes in the pH. The pH signal is also amplified through modulation of the gate oxide thickness.
Structural and functional analysis of the putative pH sensor in the Kir1.1 (ROMK) potassium channel.
Rapedius, Markus; Haider, Shozeb; Browne, Katharine F; Shang, Lijun; Sansom, Mark S P; Baukrowitz, Thomas; Tucker, Stephen J
2006-06-01
The pH-sensitive renal potassium channel Kir1.1 is important for K+ homeostasis. Disruption of the pH-sensing mechanism causes type II Bartter syndrome. The pH sensor is thought to be an anomalously titrated lysine residue (K80) that interacts with two arginine residues as part of an 'RKR triad'. We show that a Kir1.1 orthologue from Fugu rubripes lacks this lysine and yet is still highly pH sensitive, indicating that K80 is not the H+ sensor. Instead, K80 functionally interacts with A177 on transmembrane domain 2 at the 'helix-bundle crossing' and controls the ability of pH-dependent conformational changes to induce pore closure. Although not required for pH inhibition, K80 is indispensable for the coupling of pH gating to the extracellular K+ concentration, explaining its conservation in most Kir1.1 orthologues. Furthermore, we demonstrate that instead of interacting with K80, the RKR arginine residues form highly conserved inter- and intra-subunit interactions that are important for Kir channel gating and influence pH sensitivity indirectly.
NASA Astrophysics Data System (ADS)
Rabbaa, S.; Stiens, J.
2012-11-01
Gallium nitride (GaN) is a relatively new semiconductor material that has the potential of replacing gallium arsenide (GaAs) in some of the more recent technological applications, for example chemical sensor applications. In this paper, we introduce a triangular quantum well model for an undoped AlGaN/GaN high electron mobility transistor (HEMT) structure used as a chemical and biological sensor for pH and dipole moment measurements of polar liquids. We have performed theoretical calculations related to the HEMT characteristics and we have compared them with experimental measurements carried out in many previous papers. These calculations include the current-voltage (I-V) characteristics of the device, the surface potential, the change in the drain current with the dipole moment and the drain current as a function of pH. The results exhibit good agreement with experimental measurements for different polar liquids and electrolyte solutions. It is also found that the drain current of the device exhibits a large linear variation with the dipole moment, and that the surface potential and the drain current depend strongly on the pH. Therefore, it can distinguish molecules with slightly different dipole moments and solutions with small variations in pH. The ability of the device to sense biomolecules (such as proteins) with very large dipole moments is investigated.
Nakata, Shogo; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2017-03-24
Real-time daily healthcare monitoring may increase the chances of predicting and diagnosing diseases in their early stages which, currently, occurs most frequently during medical check-ups. Next-generation noninvasive healthcare devices, such as flexible multifunctional sensor sheets designed to be worn on skin, are considered to be highly suitable candidates for continuous real-time health monitoring. For healthcare applications, acquiring data on the chemical state of the body, alongside physical characteristics such as body temperature and activity, are extremely important for predicting and identifying potential health conditions. To record these data, in this study, we developed a wearable, flexible sweat chemical sensor sheet for pH measurement, consisting of an ion-sensitive field-effect transistor (ISFET) integrated with a flexible temperature sensor: we intend to use this device as the foundation of a fully integrated, wearable healthcare patch in the future. After characterizing the performance, mechanical flexibility, and stability of the sensor, real-time measurements of sweat pH and skin temperature are successfully conducted through skin contact. This flexible integrated device has the potential to be developed into a chemical sensor for sweat for applications in healthcare and sports.
Stretchable wireless system for sweat pH monitoring.
Dang, Wenting; Manjakkal, Libu; Navaraj, William Taube; Lorenzelli, Leandro; Vinciguerra, Vincenzo; Dahiya, Ravinder
2018-06-01
Sensor-laden wearable systems that are capable of providing continuous measurement of key physiological parameters coupled with data storage, drug delivery and feedback therapy have attracted huge interest. Here we report a stretchable wireless system for sweat pH monitoring, which is able to withstand up to 53% uniaxial strain and more than 500 cycles to 30% strain. The stretchability of the pH sensor patch is provided by a pair of serpentine-shaped stretchable interconnects. The pH sensing electrode is made of graphite-polyurethane composite, which is suitable for biosensor application. The sensing patch validated through in-depth electrochemical studies, exhibits a pH sensitivity of 11.13 ± 5.8 mV/pH with a maximum response time of 8 s. Interference study of ions and analyte (Na + , K + and glucose) in test solutions shows negligible influence on the pH sensor performance. The pH data can be wirelessly and continuously transmitted to smartphone through a stretchable radio-frequency-identification antenna, of which the radiating performance is stable under 20% strain, as proved by vector network analyzer measurement. To evaluate the full system, the pH value of a human sweat equivalent solution has been measured and wirelessly transmitted to a custom-developed smart phone App. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhong, Min; Teng, Ying; Pang, Shufen; Yan, Liqin; Kan, Xianwen
2015-02-15
A molecular imprinting polymer (MIP) based electrochemical sensor was successfully prepared for dopamine (DA) recognition and detection using pyrrole-phenylboronic acid (py-PBA) as a novel electropolymerized monomer. py-PBA could form cyclic boronic ester bond with DA, thus endowing a double recognition capacity of the sensor to DA in the combination of the imprinted effect of MIP. Compared with the sensor prepared using pyrrole or phenylboronic acid as electropolymerized monomer, the present sensor exhibited a remarkable high imprinted factor to DA. The influence factors including pH value, the mole ratio between monomer and template molecule, electropolymerization scan rate, and scan cycles of electropolymerization process were investigated and optimized. Under the optimal conditions, the sensor could recognize DA from its analogs and monosaccharides. A linear ranging from 5.0 × 10(-8) to 1.0 × 10(-5) mol/L for the detection of DA was obtained with a detection limit of 3.3 × 10(-8) mol/L (S/N = 3). The sensor has been applied to analyze DA in injection samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.
Boronic acid based imprinted electrochemical sensor for rutin recognition and detection.
Wang, Chunlei; Wang, Qi; Zhong, Min; Kan, Xianwen
2016-10-21
Multi-walled carbon nanotubes (MWNTs) and boronic acid based molecular imprinting polymer (MIP) were successively modified on a glassy carbon electrode surface to fabricate a novel electrochemical sensor for rutin recognition and detection. 3-Aminophenylboronic acid (APBA) was chosen as a monomer for the electropolymerization of MIP film in the presence of rutin. In addition to the imprinted cavities in MIP film to complement the template molecule in shape and functional groups, the high affinity between the boronic acid group of APBA and vicinal diols of rutin also enhanced the selectivity of the sensor, which made the sensor display a good selectivity to rutin. Moreover, the modified MWNTs improved the sensitivity of the sensor for rutin detection. The mole ratios of rutin and APBA, electropolymerized scan cycles and rates, and pH value of the detection solution were optimized. Under optimal conditions, the sensor was used to detect rutin in a linear range from 4.0 × 10 -7 to 1.0 × 10 -5 mol L -1 with a detection limit of 1.1 × 10 -7 mol L -1 . The sensor has also been applied to assay rutin in tablets with satisfactory results.
Fabrication of a Miniature Multi-Parameter Sensor Chip for Water Quality Assessment.
Zhou, Bo; Bian, Chao; Tong, Jianhua; Xia, Shanhong
2017-01-14
Water contamination is a main inducement of human diseases. It is an important step to monitor the water quality in the water distribution system. Due to the features of large size, high cost, and complicated structure of traditional water determination sensors and devices, it is difficult to realize real-time water monitoring on a large scale. In this paper, we present a multi-parameter sensor chip, which is miniature, low-cost, and robust, to detect the pH, conductivity, and temperature of water simultaneously. The sensor chip was fabricated using micro-electro-mechanical system (MEMS) techniques. Iridium oxide film was electrodeposited as the pH-sensing material. The atomic ratio of Ir(III) to Ir(IV) is about 1.38 according to the X-ray photoelectron spectroscopy (XPS) analysis. The pH sensing electrode showed super-Nernstian response (-67.60 mV/pH) and good linearity (R² = 0.9997), in the range of pH 2.22 to pH 11.81. KCl-agar and epoxy were used as the electrolyte layer and liquid junction for the solid-state reference electrode, respectively, and its potential stability in deionized water was 56 h. The conductivity cell exhibited a linear determination range from 21.43 μ S / cm to 1.99 mS / cm , and the electrode constant was 1.566 cm -1 . Sensitivity of the temperature sensor was 5.46 Ω / ° C . The results indicate that the developed sensor chip has potential application in water quality measurements.
Variability in daily pH scales with coral reef accretion and community structure
NASA Astrophysics Data System (ADS)
Price, N.; Martz, T.; Brainard, R. E.; Smith, J.
2011-12-01
Little is known about natural variability in pH in coastal waters and how resident organisms respond to current nearshore seawater conditions. We used autonomous sensors (SeaFETs) to record temperature and, for the first time, pH with high temporal (hourly observations; 7 months of sampling) resolution on the reef benthos (5-10m depth) at several islands (Kingman, Palmyra and Jarvis) within the newly designated Pacific Remote Island Areas Marine National Monument (PRIMNM) in the northern Line Islands; these islands are uninhabited and lack potentially confounding local impacts (e.g. pollution and overfishing). Recorded benthic pH values were compared with regional means and minimum thresholds based on seasonal amplitude estimated from surrounding open-ocean climatological data, which represent seawater chemistry values in the absence of feedback from the reef. Each SeaFET sensor was co-located with replicate Calcification/Acidification Units (CAUs) designed to quantify species abundances and net community calcification rates so we could determine which, if any, metrics of natural variability in benthic pH and temperature were related to community development and reef accretion rates. The observed range in daily pH encompassed maximums reported from the last century (8.104 in the early evening) to minimums approaching projected levels within the next 100 yrs (7.824 at dawn) for pelagic waters. Net reef calcification rates, measured as calcium carbonate accretion on CAUs, varied within and among islands and were comparable with rates measured from the Pacific and Caribbean using chemistry-based approaches. Benthic species assemblages on the CAUs were differentiated by the presence of calcifying and fleshy taxa (CAP analysis, mean allocation success 80%, δ2 = 0.886, P = <0.001). In general, accretion rates were higher at sites that had a greater number of hours at high pH values each day. Where daily pH failed to exceed climatological seasonal minimum thresholds, net accretion was slower and fleshy, non-calcifying benthic organisms dominated. Natural variation in benthic pH offers a unique opportunity to study ecological consequences of likely future ocean chemistry.
A novel Schiff-base as a Cu(II) ion fluorescent sensor in aqueous solution
NASA Astrophysics Data System (ADS)
Gündüz, Z. Yurtman; Gündüz, C.; Özpınar, C.; Urucu, O. Aydın
2015-02-01
A new fluorescent Cu(II) sensor (L) obtained from the Schiff base of 5,5‧-methylene-bis-salicylaldehyde with amidol (2,4-diaminophenol) was synthesized and characterized by FT-IR, MS, 1H NMR, 13C NMR techniques. In the presence of pH 6.5 (KHPO4-Na2HPO4) buffer solutions, copper reacted with L to form a stable 2:1 complex. Fluorescence spectroscopic study showed that Schiff base is highly sensitive towards Cu(II) over other metal ions (K+, Na+, Al3+, Ni2+, Co2+, Fe3+, Zn2+, Pb2+) in DMSO/H2O (30%, v/v). The sensor L was successfully applied to the determination of copper in standard reference material. The structural properties and molecular orbitals of the complex formed between L and Cu2+ ions were also investigated using quantum chemical computations.
NASA Astrophysics Data System (ADS)
Wang, Fei; Gao, Lei; Zhao, Qing; Zhang, Yang; Dong, Wen-Kui; Ding, Yu-Jie
2018-02-01
The optical properties of a novel chemosensor for cyanide anions based on a symmetric bis(salamo)-type ligand (H3L) were investigated by UV-Vis and fluorescence spectroscopy in MeOH/H2O (1:1 v/v) solution. Sensor H3L can selectively sense CN- based on prominent color changes among other anions. The chemosensor exhibits an apparent fluorescence enhancement at 482 nm to CN- which because cyanide ions interact with Cdbnd N bonds. Combining the corrected Benesi-Hildebrand formula, the binding constant of the formed host-guest complex was calculated as 2.42 × 105 M- 1. Meanwhile, the detection limit of the sensor toward CN- was 8.91 × 10- 7 M. It is worth noting that the designed sensor can be used for rapid detection of cyanide anions in basic pH range, and has great practical value.
NASA Astrophysics Data System (ADS)
Liu, Ning; Gan, Lu; Liu, Yu; Gui, Weijun; Li, Wei; Zhang, Xiaohang
2017-10-01
Electrical manipulation of charged ions in electrolyte-gated transistors is crucial for enhancing the electric-double-layer (EDL) gating effect, thereby improving their sensing abilities. Here, indium-zinc-oxide (IZO) based thin-film-transistors (TFTs) are fabricated on flexible plastic substrate. Acid doped chitosan-based biopolymer electrolyte is used as the gate dielectric, exhibiting an extremely high EDL capacitance. By regulating the dynamic EDL charging process with special gate potential profiles, the EDL gating effect of the chitosan-gated TFT is enhanced, and then resulting in higher pH sensitivities. An extremely high sensitivity of ∼57.8 mV/pH close to Nernst limit is achieved when the gate bias of the TFT sensor sweeps at a rate of 10 mV/s. Additionally, an enhanced sensitivity of 2630% in terms of current variation with pH range from 11 to 3 is realized when the device is operated in the ion depletion mode with a negative gate bias of -0.7 V. Robust ionic modulation is demonstrated in such chitosan-gated sensors. Efficiently driving the charged ions in the chitosan-gated IZO-TFT provides a new route for ultrasensitive, low voltage, and low-cost biochemical sensing technologies.
Reagentless chemiluminescence-based fiber optic sensors for regenerative life support in space
NASA Astrophysics Data System (ADS)
Atwater, James E.; Akse, James R.; DeHart, Jeffrey; Wheeler, Richard R., Jr.
1995-04-01
The initial feasibility demonstration of a reagentless chemiluminescence based fiber optic sensor technology for use in advanced regenerative life support applications in space and planetary outposts is described. The primary constraints for extraterrestrial deployment of any technology are compatibility with microgravity and hypogravity environments; minimal size, weight, and power consumption; and minimal use of expendables due to the great expense and difficulty inherent to resupply logistics. In the current research, we report the integration of solid state flow through modules for the production of aqueous phase reagents into an integrated system for the detection of important analytes by chemiluminescence, with fiber optic light transmission. By minimizing the need for resupply expendables, the use of solid phase modules makes complex chemical detection schemes practical. For the proof of concept, hydrogen peroxide and glucose were chosen as analytes. The reaction is catalyzed by glucose oxidase, an immobilized enzyme. The aqueous phase chemistry required for sensor operation is implemented using solid phase modules which adjust the pH of the influent stream, catalyze the oxidation of analyte, and provide the controlled addition of the luminophore to the flowing aqueous stream. Precise control of the pH has proven essential for the long-term sustained release of the luminophore. Electrocatalysis is achieved using a controlled potential across gold mesh and gold foil electrodes which undergo periodic polarity reversals. The development and initial characterization of performance of the reagentless fiber optic chemiluminescence sensors are presented in this paper.
Dong, Jiang Xue; Gao, Zhong Feng; Zhang, Ying; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun
2017-05-15
In this paper, a simple sensor platform is presented for highly selective and sensitive detection of dissolved ammonia in aqueous solutions without pretreatment based on temperature gradient headspace single drop microextraction (HS-SDME) technique, and fluorescence and UV-vis spectrophotometry are utilized with the Ag nanoclusters (Ag NCs) functioned by citrate and glutathione as the probe. The sensing mechanism is based on the volatility of ammonia gas and the active response of Ag NCs to pH change caused by the introduction of ammonia. High pH can make the Ag NCs agglomerate and lead to the obvious decrease of fluorescence intensity and absorbance of Ag NCs solution. Moreover, the presented method exhibits a remarkably high selectivity toward dissolved ammonia over most of inorganic ions and amino acid, and shows a good linear range of 10-350μM (0.14-4.9mgNL -1 ) with a low detection limit of 336nM (4.70μgNL -1 ) at a signal-to-noise ratio of 3. In addition, the practical applications of the sensor have been successfully demonstrated by detecting dissolved ammonia in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Xu, Huifeng; Kou, Fangxia; Ye, Hongzhi; Wang, Zongwen; Huang, Suixin; Liu, Xianxiang; Zhu, Xi; Lin, Zhenyu; Chen, Guonan
2017-12-01
Vascular endothelial growth factor (VEGF) is a crucial signaling protein for the tumor growth and metastasis, which is also acted as the biomarkers for various diseases. In this research, we fabricate an aptamer-antibody sensor for point-of-care test of VEGF. Firstly, target VEGF is captured by antibody immobilized on the microplate, and then binds with aptamer to form the sandwich structure. Next, with the assist of glucose oxidase (GOx)-functionalized ssDNAs, hybridization chain reaction occurs using the aptamer as the primer. Thus, GOx are greatly gathered on the microplate, which catalyzes the oxidization of glucose, leading to the pH change. As a result, the detect limit at a signal-to-noise was estimated to be 0.5pg/mL of target by pH meter, and 1.6pg/mL of VEGF was able to be distinguished by naked eyes. Meanwhile, this method has been used assay VEGF in the serum with the satisfactory results. Copyright © 2017. Published by Elsevier B.V.
Injection moulded microneedle sensor for real-time wireless pH monitoring.
Mirza, Khalid B; Zuliani, Claudio; Hou, Benjamin; Ng, Fu Siong; Peters, Nicholas S; Toumazou, Christofer
2017-07-01
This paper describes the development of an array of individually addressable pH sensitive microneedles using injection moulding and their integration within a portable device for real-time wireless recording of pH distributions in biological samples. The fabricated microneedles are subjected to gold patterning followed by electrodeposition of iridium oxide to sensitize them to 0.07 units of pH change. Miniaturised electronics suitable for the sensors readout, analog-to-digital conversion and wireless transmission of the potentiometric data are embodied within the device, enabling it to measure real-time pH of soft biological samples such as muscles. In this paper, real-time recording of the cardiac pH distribution, during ischemia followed by reperfusion cycles in cardiac muscles of male Wistar rats has been demonstrated by using the microneedle array.
Pulse-voltammetric glucose detection at gold junction electrodes.
Rassaei, Liza; Marken, Frank
2010-09-01
A novel glucose sensing concept based on the localized change or "modulation" in pH within a symmetric gold-gold junction electrode is proposed. A paired gold-gold junction electrode (average gap size ca. 500 nm) is prepared by simultaneous bipotentiostatic electrodeposition of gold onto two closely spaced platinum disk electrodes. For glucose detection in neutral aqueous solution, the potential of the "pH-modulator" electrode is set to -1.5 V vs saturated calomel reference electrode (SCE) to locally increase the pH, and simultaneously, either cyclic voltammetry or square wave voltammetry experiments are conducted at the sensor electrode. A considerable improvement in the sensor electrode response is observed when a normal pulse voltammetry sequence is applied to the modulator electrode (to generate "hydroxide pulses") and the glucose sensor electrode is operated with fixed bias at +0.5 V vs SCE (to eliminate capacitive charging currents). Preliminary data suggest good linearity for the glucose response in the medically relevant 1-10 mM concentration range (corresponding to 0.18-1.8 g L(-1)). Future electroanalytical applications of multidimensional pulse voltammetry in junction electrodes are discussed.
Mangalath, Sreejith; Abraham, Silja; Joseph, Joshy
2017-08-22
A pH-sensitive, fluorescence "turn-on" sensor based on a graphene oxide-naphthalimide (GO-NI) nanoconjugate for the detection of acetylcholine (ACh) by monitoring the enzymatic activity of acetylcholinesterase (AChE) in aqueous solution is reported. These nanoconjugates were synthesized by covalently anchoring picolyl-substituted NI derivatives on the GO/reduced GO surface through a 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide coupling strategy, and the morphological and photophysical properties were studied in detail. Synergistic effects of π-π interactions between GO and the NI chromophore, and efficient photoinduced electron- and energy-transfer processes, were responsible for the strong quenching of fluorescence of these nanoconjugates, which were perturbed under acidic pH conditions, leading to significant enhancement of fluorescence emission. This nanoconjugate was successfully employed for the efficient sensing of pH changes caused by the enzymatic activity of AChE, thereby demonstrating its utility as a fluorescence turn-on sensor for ACh in the neurophysiological range. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polymer immobilized enzyme optrodes for the detection of penicillin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulp, T.J.; Camins, I.; Angel, S.M.
The preparation and performance of two enzyme-based fiber-optic sensors (optrodes) capable of detecting penicillin are described. Each sensor consists of a polymer membrane that is covalently attached to the tip of a glass optical fiber. The membrane contains the enzyme penicillinase and a pH-sensitive fluorescent dye. A signal is produced when the enzyme catalyzes the cleavage of the ..beta..-lactam ring of penicillin to produce penicilloic acid and, consequently, a pH change in the microenvironment of the membrane. The sensors differ in the way the polymer membrane is constructed and in the type of pH indicator dye used. Both optrodes exhibitmore » response times (40-60 s) significantly lower than those of the corresponding enzyme electrodes (2 min). Each gives a linear response over the concentration range of 0.00025 to 0.01 M penicillin G, when measured in a 0.005 M phosphate buffer. The data indicate that these immobilization strategies produce similar results and may be considered complementary alternatives in future enzyme optrode applications.« less
Development of a CO 2 Chemical Sensor for Downhole CO 2 Monitoring in Carbon Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning
Geologic storage of carbon dioxide (CO 2) has been proposed as a viable means for reducing anthropogenic CO 2 emissions. The means for geological sequestration of CO 2 is injection of supercritical CO 2 underground, which requires the CO 2 to remain either supercritical, or in solution in the water/brine present in the underground formation. However, there are aspects of geologic sequestration that need further study, particularly in regards to safety. To date, none of the geologic sequestration locations have been tested for storage integrity under the changing stress conditions that apply to the sequestration of very large amounts ofmore » CO 2. Establishing environmental safety and addressing public concerns require widespread monitoring of the process in the deep subsurface. In addition, studies of subsurface carbon sequestration such as flow simulations, models of underground reactions and transports require a comprehensive monitoring process to accurately characterize and understand the storage process. Real-time information about underground CO 2 movement and concentration change is highly helpful for: (1) better understanding the uncertainties present in CO 2 geologic storage; (2) improvement of simulation models; and (3) evaluation of the feasibility of geologic CO 2 storage. Current methods to monitor underground CO 2 storage include seismic, geoelectric, isotope and tracer methods, and fluid sampling analysis. However, these methods commonly resulted low resolution, high cost, and the inability to monitor continuously over the long time scales of the CO 2 storage process. A preferred way of monitoring in-situ underground CO 2 migration is to continuous measure CO 2 concentration change in brine during the carbon storage process. An approach to obtain the real time information on CO 2 concentration change in formation solution is highly demanded in carbon storage to understand the CO 2 migration subsurface and to answer the public safety problem. The objective of the study is to develop a downhole CO 2 sensor that can in-situ, continuously monitor CO 2 concentration change in deep saline. The sensor is a Severinghaus-type CO 2 sensor with small size, which renders it can be embedded in monitoring well casing or integrated with pressure/temperature transducers, enabling the development of “smart” wells. The studies included: (1) prepare and characterize metal-oxide electrodes. Test the electrodes response to pH change. Investigate different ions and brine concentration effects on the electrode’s performance. Study the stability of the electrode in brine solution; (2) fabricate a downhole CO 2 sensor with the metal-oxide electrodes prepared in the laboratory. Test the performance of the CO 2 sensor in brine solutions. Study high pressure effects on the performance of the sensor; (3) design and conduct CO 2/brine coreflooding experiments with the CO2 sensor. Monitor CO 2 movement along the core and test the performance of the sensor in coreflooding tests. Develop a data acquisition system that can digitize the sensor’s output voltage. Our completed research has resulted in deep understanding of downhole CO 2 sensor development and CO 2 monitoring in CO 2 storage process. The developed downhole CO 2 sensor included a metal-oxide electrode, a gas-permeable membrane, a porous steel cup, and a bicarbonate-based internal electrolyte solution. Iridium oxide-based electrode was prepared and used for preparation the CO 2 sensor. The prepared iridium oxide-based electrode displayed a linearly response to pH change. Different factors such as different ions and ions concentration, temperature, and pressure effects on the electrode performance on pH response were investigated. The results indicated that the electrode exhibited a good performance even in high salt concentration of produced water. To improve the electrode performance under high pressure, IrO 2 nanoparticles with the particle size in the range of 1-2 nm were prepared and electrodeposited on stainless steel substrate by cyclic voltammetry. It was observed that the thin film of iridium oxide was formed on the substrate surface and such iridium oxide-based electrode displayed excellent performance under high pressure for longer term. A downhole CO 2 sensor with the iridium oxide-based electrode was prepared. The working principle of the CO 2 sensor is based on the measurement of the pH change of the internal electrolyte solution caused by the hydrolysis of CO 2 and then determination of the CO 2 concentration in water. The prepared downhole CO 2 sensor had the size of diameter of 0.7 in. and length of 1.5 in. The sensor was tested under the pressures of 500 psi, 2,000 psi, and 3,000 psi. A linear correlation was observed between the sensor potential change and dissolved CO 2 concentration in water. The response time of the CO 2 sensor was in the range of 60-100 minutes. Further tests indicated that the CO 2 sensor exhibited good reproducibility under high pressure. A CO 2/brine coreflooding system was constructed to simulate the real-world CO 2 storage process. The prepared downhole CO 2 sensor was loaded in the system to monitor CO 2 movement during CO 2/brine coreflooding test. The results indicated that the sensor could detect CO 2 movement in the tests. Further studies showed that the sensor could be recovered by brine flooding after CO 2/brine flushed the core. The results of the coreflooding tests demonstrated that the sensor had potential application for CO 2 monitoring in carbon sequestration. A data acquisition system for the downhoe CO 2 sensor was developed and coded. The system converted the sensor output signal into digital data and transported the data from downhole to wellhead surface. The data acquisition system was tested and evaluated in the laboratory with the prepared sensor for data collection.« less
Time-dependent pH sensing phenomena using CdSe/ZnS quantum dots in EIS structure.
Kumar, Pankaj; Maikap, Siddheswar; Prakash, Amit; Tien, Ta-Chang
2014-04-12
Time-dependent pH sensing phenomena of the core-shell CdSe/ZnS quantum dot (QD) sensors in EIS (electrolyte insulator semiconductor) structure have been investigated for the first time. The quantum dots are immobilized by chaperonin GroEL protein, which are observed by both atomic force microscope and scanning electron microscope. The diameter of one QD is approximately 6.5 nm. The QDs are not oxidized over a long time and core-shell CdSe/ZnS are confirmed by X-ray photon spectroscopy. The sensors are studied for sensing of hydrogen ions concentration in different buffer solutions at broad pH range of 2 to 12. The QD sensors show improved sensitivity (38 to 55 mV/pH) as compared to bare SiO2 sensor (36 to 23 mV/pH) with time period of 0 to 24 months, owing to the reduction of defects in the QDs. Therefore, the differential sensitivity of the QD sensors with respect to the bare SiO2 sensors is improved from 2 to 32 mV/pH for the time period of 0 to 24 months. After 24 months, the sensitivity of the QD sensors is close to ideal Nernstian response with good linearity of 99.96%. Stability and repeatability of the QD sensors show low drift (10 mV for 10 cycles) as well as small hysteresis characteristics (<10 mV). This QD sensor is very useful for future human disease diagnostics.
Germond, Arno; Fujita, Hideaki; Ichimura, Taro; Watanabe, Tomonobu M
Over the past decades many researchers have made major contributions towards the development of genetically encoded (GE) fluorescent sensors derived from fluorescent proteins. GE sensors are now used to study biological phenomena by facilitating the measurement of biochemical behaviors at various scales, ranging from single molecules to single cells or even whole animals. Here, we review the historical development of GE fluorescent sensors and report on their current status. We specifically focus on the development strategies of the GE sensors used for measuring pH, ion concentrations (e.g., chloride and calcium), redox indicators, membrane potential, temperature, pressure, and molecular crowding. We demonstrate that these fluroescent protein-based sensors have a shared history of concepts and development strategies, and we highlight the most original concepts used to date. We believe that the understanding and application of these various concepts will pave the road for the development of future GE sensors and lead to new breakthroughs in bioimaging.
Germond, Arno; Fujita, Hideaki; Ichimura, Taro; Watanabe, Tomonobu M
2016-06-01
Over the past decades many researchers have made major contributions towards the development of genetically encoded (GE) fluorescent sensors derived from fluorescent proteins. GE sensors are now used to study biological phenomena by facilitating the measurement of biochemical behaviors at various scales, ranging from single molecules to single cells or even whole animals. Here, we review the historical development of GE fluorescent sensors and report on their current status. We specifically focus on the development strategies of the GE sensors used for measuring pH, ion concentrations (e.g., chloride and calcium), redox indicators, membrane potential, temperature, pressure, and molecular crowding. We demonstrate that these fluroescent protein-based sensors have a shared history of concepts and development strategies, and we highlight the most original concepts used to date. We believe that the understanding and application of these various concepts will pave the road for the development of future GE sensors and lead to new breakthroughs in bioimaging.
Voltammetric pH sensing using carbon electrodes: glassy carbon behaves similarly to EPPG.
Lu, Min; Compton, Richard G
2014-09-21
Developing and building on recent work based on a simple sensor for pH determination using unmodified edge plane pyrolytic graphite (EPPG) electrodes, we present a voltammetric method for pH determination using a bare unmodified glassy carbon (GC) electrode. By exploiting the pH sensitive nature of quinones present on carbon edge-plane like sites within the GC, we show how GC electrodes can be used to measure pH. The electro-reduction of surface quinone groups on the glassy carbon electrode was characterised using cyclic voltammetry (CV) and optimised with square-wave voltammetry (SWV) at 298 K and 310 K. At both temperatures, a linear correlation was observed, corresponding to a 2 electron, 2 proton Nernstian response over the aqueous pH range 1.0 to 13.1. As such, unmodified glassy carbon electrodes are seen to be pH dependent, and the Nernstian response suggests its facile use for pH sensing. Given the widespread use of glassy carbon electrodes in electroanalysis, the approach offers a method for the near-simultaneous measurement and monitoring of pH during such analyses.
Nerve Agent Sensing Biopolymer Wipe
2003-04-01
3. Urease and BChE (at two concentrations) activity as function of pH. ..... 10 Figure 4. Reaction scheme Agentase nerve agent sensor...11 Figure 5. Signal development in Agentase’s Traffic Light Sensor Construct.......... 11 Figure 6. Effect of BChE/ urease ...between two competing enzyme reactions. BChE catalyzed butyrylcholine hydrolysis results in the production of acid (decreasing pH) while urease - catalyzed
New fluorescent perylene bisimide indicators--a platform for broadband pH optodes.
Aigner, Daniel; Borisov, Sergey M; Klimant, Ingo
2011-06-01
Asymmetric perylene bisimide (PBI) dyes are prepared and are shown to be suitable for the preparation of fluorescence chemosensors for pH. They carry one amino-functional substituent which introduces pH sensitivity via photoinduced electron transfer (PET) while the other one increases solubility. The luminescence quantum yields for the new indicators exceed 75% in the protonated form. The new indicators are non-covalently entrapped in polyurethane hydrogel D4 and poly(hydroxyalkylmethacrylates). Several PET functions including aliphatic and aromatic amino groups were successfully used to tune the dynamic range of the sensor. Because of their virtually identical spectral properties, various PBIs with selected PET functions can easily be integrated into a single sensor with enlarged dynamic range (over 4 pH units). PBIs with two different substitution patterns in the bay position are investigated and possess variable spectral properties. Compared with their tetrachloro analogues, tetra-tert-butyl-substituted PBIs yield more long-wave excitable sensors which feature excellent photostability. Cross-sensitivity to ionic strength was found to be negligible. The practical applicability of the sensors may be compromised by the long response times (especially in case of tetra-tert-butyl-substituted PBIs).
Sinha, Sanghamitra; Chowdhury, Bijit; Adarsh, Nayarassery N; Ghosh, Pradyut
2018-05-15
A quinoline-based C3-symmetric fluorescent probe (1), N,N',N''-((2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene))tris(1-(quinolin-2-yl)-N-(quinolin-2-ylmethyl)methanamine), has been developed which can selectively detect Zn2+ without the interference of Cd2+via significant enhancement in emission intensity (fluorescence "turn-ON") associated with distinct fluorescence colour changes and very low detection limits (35.60 × 10-9 M in acetonitrile and 29.45 × 10-8 M in 50% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile media). Importantly, this sensor is operative with a broad pH window (pH 4-10). The sensing phenomenon has been duly studied through UV-vis, steady-state, and time-resolved fluorescence spectroscopic methods indicating 1 : 3 stoichiometric binding between 1 and Zn2+ which is further corroborated by 1H NMR studies. Density functional theoretical (DFT) calculations provide the optimized molecular geometry and properties of the zinc complex, 1[Zn(ClO4)]33+, which is proposed to be formed in acetonitrile. The results are in line with the solution-state experimental findings. The single crystal X-ray study provides the solid state structure of the trinuclear Zn2+ complex showing solubility in an aqueous buffer (10 mM HEPES, pH = 7.4). Finally, the resulting trinuclear Zn2+ complex has been utilized as a fluorescence "turn-OFF" sensor for the selective detection of pyrophosphate in a 70% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile solvent with a nanomolar detection limit (45.37 × 10-9 M).
Development of a sensor to study the DNA conformation using molecular logic gates
NASA Astrophysics Data System (ADS)
Roy, Arpan Datta; Dey, Dibyendu; Saha, Jaba; Chakraborty, Santanu; Bhattacharjee, D.; Hussain, Syed Arshad
2015-02-01
This communication reports our investigations on the Fluorescence Resonance Energy Transfer (FRET) between two laser dyes Acriflavine and Rhodamine B in absence and presence of DNA at different pH. It has been observed that energy transfer efficiency is largely affected by the presence of DNA as well as the pH of the system. It is well known that with increase in pH, DNA conformation changes from double stranded to single stranded (denaturation) and finally form random coil. Based on our experimental results two different types of molecular logic gates namely, XOR and OR logic have been demonstrated which can be used to have an idea about DNA conformation in solution.
A novel sensor for monitoring of iron(III) ions based on porphyrins.
Vlascici, Dana; Fagadar-Cosma, Eugenia; Popa, Iuliana; Chiriac, Vlad; Gil-Agusti, Mayte
2012-01-01
Three A(3)B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10(-7)-1 × 10(-1) M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples.
A selective iodide ion sensor electrode based on functionalized ZnO nanotubes.
Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus
2013-02-04
In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10-6 to 1 × 10-1 M) and excellent sensitivity of -62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10-7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples.
A Selective Iodide Ion Sensor Electrode Based on Functionalized ZnO Nanotubes
Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus
2013-01-01
In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10−6 to 1 × 10−1 M) and excellent sensitivity of −62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10−7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples. PMID:23385412
Kotova, Oxana; Comby, Steve; Gunnlaugsson, Thorfinnur
2011-06-28
1·Eu·BPS was developed as a luminescent lanthanide sensor for use in displacement assays for detection of d-metal ions by monitoring the changes in the europium emission, which was quenched for iron(II), with a detection limit of ∼10 pM (0.002 μg L(-1)) for Fe(II) in buffered pH 7.4 solution. This journal is © The Royal Society of Chemistry 2011
Søndergaard, Rikke V; Henriksen, Jonas R; Andresen, Thomas L
2014-12-01
Particle-based nanosensors offer a tool for determining the pH in the endosomal-lysosomal system of living cells. Measurements providing absolute values of pH have so far been restricted by the limited sensitivity range of nanosensors, calibration challenges and the complexity of image analysis. This protocol describes the design and application of a polyacrylamide-based nanosensor (∼60 nm) that covalently incorporates two pH-sensitive fluorophores, fluorescein (FS) and Oregon Green (OG), to broaden the sensitivity range of the sensor (pH 3.1-7.0), and uses the pH-insensitive fluorophore rhodamine as a reference fluorophore. The nanosensors are spontaneously taken up via endocytosis and directed to the lysosomes where dynamic changes in pH can be measured with live-cell confocal microscopy. The most important focus areas of the protocol are the choice of pH-sensitive fluorophores, the design of calibration buffers, the determination of the effective range and especially the description of how to critically evaluate results. The entire procedure typically takes 2-3 weeks.
A composite hydrogels-based photonic crystal multi-sensor
NASA Astrophysics Data System (ADS)
Chen, Cheng; Zhu, Zhigang; Zhu, Xiangrong; Yu, Wei; Liu, Mingju; Ge, Qiaoqiao; Shih, Wei-Heng
2015-04-01
A facile route to prepare stimuli-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) gelated crystalline colloidal array photonic crystal material was developed. PVA was physically gelated by utilizing an ethanol-assisted method, the resulting hydrogel/crystal composite film was then functionalized with PAA to form an interpenetrating hydrogel film. This sensor film is able to efficiently diffract the visible light and rapidly respond to various environmental stimuli such as solvent, pH and strain, and the accompanying structural color shift can be repeatedly changed and easily distinguished by naked eye.
Azocalix[4]arene strapped calix[4]pyrrole: a confirmable fluoride sensor.
Thiampanya, Preecha; Muangsin, Nongnuj; Pulpoka, Buncha
2012-08-17
A new chromogenic fluoride sensor based on 1,3-di-p-nitrophenylazocalix[4]arene-calix[4]pyrrole (1) was designed and synthesized. The color of the solution of probe 1 changed upon the addition of any F(-), CH(3)CO(2)(-), PhCO(2)(-), and H(2)PO(4)(-) ions. However, from these ions the highly specific sensing of F(-) is achieved by the addition of Ca(2+) which leads to a color change from light sky blue (of 1·F(-)) back to the original light orange color of 1.
Nanowire sensors and arrays for chemical/biomolecule detection
NASA Technical Reports Server (NTRS)
Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.
2005-01-01
We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.
NASA Astrophysics Data System (ADS)
Pyo, Ju-Young; Cho, Won-Ju
2018-04-01
We fabricate high-sensitivity pH sensors using single-walled carbon-nanotube (SWCNT) network thin-film transistors (TFTs). The sensing and transducer parts of the pH sensor are composed of separative extended-sensing gates (ESGs) with SnO2 ion-sensitive membranes and double-gate structure TFTs with thin SWCNT network channels of ∼1 nm and AlO x top-gate insulators formed by the solution-deposition method. To prevent thermal process-induced damages on the SWCNT channel layer due to the post-deposition annealing process and improve the electrical characteristics of the SWCNT-TFTs, microwave irradiation is applied at low temperatures. As a result, a pH sensitivity of 7.6 V/pH, far beyond the Nernst limit, is obtained owing to the capacitive coupling effect between the top- and bottom-gate insulators of the SWCNT-TFTs. Therefore, double-gate structure SWCNT-TFTs with separated ESGs are expected to be highly beneficial for high-sensitivity disposable biosensor applications.
Chen, Long; He, Linwei; Ma, Fuyin; Liu, Wei; Wang, Yaxing; Silver, Mark A; Chen, Lanhua; Zhu, Lin; Gui, Daxiang; Diwu, Juan; Chai, Zhifang; Wang, Shuao
2018-05-09
Real-time and accurate detection of pH in aqueous solution is of great significance in chemical, environmental, and engineering-related fields. We report here the use of 8-hydroxyquinoline-functionalized covalent organic framework (COF-HQ) for dual-mode pH sensing. In the fluorescent mode, the emission intensity of COF-HQ weakened as the pH decreased, and also displayed a good linear relationship against pH in the range from 1 to 5. In addition, COF-HQ showed discernible color changes from yellow to black as the acidity increased and can be therefore used as a colorimetric pH sensor. All these changes are reversible and COF-HQ can be recycled for multiple detection runs owing to its high hydrolytical stability. It can be further assembled into a mixed matrix membrane for practical applications.
Motion-Based pH Sensing Based on the Cartridge-Case-like Micromotor.
Su, Yajun; Ge, Ya; Liu, Limei; Zhang, Lina; Liu, Mei; Sun, Yunyu; Zhang, Hui; Dong, Bin
2016-02-17
In this paper, we report a novel cartridge-case-like micromotor. The micromotor, which is fabricated by the template synthesis method, consists of a gelatin shell with platinum nanoparticles decorating its inner surface. Intriguingly, the resulting cartridge-case-like structure exhibits a pH-dependent "open and close" feature, which originates from the pH responsiveness of the gelatin material. On the basis of the catalytic activity of the platinum nanoparticle inside the gelatin shell, the resulting cartridge-case-like structure is capable of moving autonomously in the aqueous solution containing the hydrogen peroxide fuel. More interestingly, we find out that the micromotor can be utilized as a motion-based pH sensor over the whole pH range. The moving velocity of the micromotor increases monotonically with the increase of pH of the analyte solution. Three different factors are considered to be responsible for the proportional relation between the motion speed and pH of the analyte solution: the peroxidase-like and oxidase-like catalytic behavior of the platinum nanoparticle at low and high pH, the volumetric decomposition of the hydrogen peroxide under the basic condition and the pH-dependent catalytic activity of the platinum nanoparticle caused by the swelling/deswelling behavior of the gelatin material. The current work highlights the impact of the material properties on the motion behavior of a micromotor, thus paving the way toward its application in the motion-based sensing field.
Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao
2018-01-02
In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.
An Integrated Circuit for Chip-Based Analysis of Enzyme Kinetics and Metabolite Quantification.
Cheah, Boon Chong; Macdonald, Alasdair Iain; Martin, Christopher; Streklas, Angelos J; Campbell, Gordon; Al-Rawhani, Mohammed A; Nemeth, Balazs; Grant, James P; Barrett, Michael P; Cumming, David R S
2016-06-01
We have created a novel chip-based diagnostic tools based upon quantification of metabolites using enzymes specific for their chemical conversion. Using this device we show for the first time that a solid-state circuit can be used to measure enzyme kinetics and calculate the Michaelis-Menten constant. Substrate concentration dependency of enzyme reaction rates is central to this aim. Ion-sensitive field effect transistors (ISFET) are excellent transducers for biosensing applications that are reliant upon enzyme assays, especially since they can be fabricated using mainstream microelectronics technology to ensure low unit cost, mass-manufacture, scaling to make many sensors and straightforward miniaturisation for use in point-of-care devices. Here, we describe an integrated ISFET array comprising 2(16) sensors. The device was fabricated with a complementary metal oxide semiconductor (CMOS) process. Unlike traditional CMOS ISFET sensors that use the Si3N4 passivation of the foundry for ion detection, the device reported here was processed with a layer of Ta2O5 that increased the detection sensitivity to 45 mV/pH unit at the sensor readout. The drift was reduced to 0.8 mV/hour with a linear pH response between pH 2-12. A high-speed instrumentation system capable of acquiring nearly 500 fps was developed to stream out the data. The device was then used to measure glucose concentration through the activity of hexokinase in the range of 0.05 mM-231 mM, encompassing glucose's physiological range in blood. Localised and temporal enzyme kinetics of hexokinase was studied in detail. These results present a roadmap towards a viable personal metabolome machine.
Identification of a molecular pH sensor in coral.
Barott, Katie L; Barron, Megan E; Tresguerres, Martin
2017-11-15
Maintaining stable intracellular pH (pHi) is essential for homeostasis, and requires the ability to both sense pH changes that may result from internal and external sources, and to regulate downstream compensatory pH pathways. Here we identified the cAMP-producing enzyme soluble adenylyl cyclase (sAC) as the first molecular pH sensor in corals. sAC protein was detected throughout coral tissues, including those involved in symbiosis and calcification. Application of a sAC-specific inhibitor caused significant and reversible pHi acidosis in isolated coral cells under both dark and light conditions, indicating sAC is essential for sensing and regulating pHi perturbations caused by respiration and photosynthesis. Furthermore, pHi regulation during external acidification was also dependent on sAC activity. Thus, sAC is a sensor and regulator of pH disturbances from both metabolic and external origin in corals. Since sAC is present in all coral cell types, and the cAMP pathway can regulate virtually every aspect of cell physiology through post-translational modifications of proteins, sAC is likely to trigger multiple homeostatic mechanisms in response to pH disturbances. This is also the first evidence that sAC modulates pHi in any non-mammalian animal. Since corals are basal metazoans, our results indicate this function is evolutionarily conserved across animals. © 2017 The Author(s).
Fabrication of a Miniature Multi-Parameter Sensor Chip for Water Quality Assessment
Zhou, Bo; Bian, Chao; Tong, Jianhua; Xia, Shanhong
2017-01-01
Water contamination is a main inducement of human diseases. It is an important step to monitor the water quality in the water distribution system. Due to the features of large size, high cost, and complicated structure of traditional water determination sensors and devices, it is difficult to realize real-time water monitoring on a large scale. In this paper, we present a multi-parameter sensor chip, which is miniature, low-cost, and robust, to detect the pH, conductivity, and temperature of water simultaneously. The sensor chip was fabricated using micro-electro-mechanical system (MEMS) techniques. Iridium oxide film was electrodeposited as the pH-sensing material. The atomic ratio of Ir(III) to Ir(IV) is about 1.38 according to the X-ray photoelectron spectroscopy (XPS) analysis. The pH sensing electrode showed super-Nernstian response (−67.60 mV/pH) and good linearity (R2 = 0.9997), in the range of pH 2.22 to pH 11.81. KCl-agar and epoxy were used as the electrolyte layer and liquid junction for the solid-state reference electrode, respectively, and its potential stability in deionized water was 56 h. The conductivity cell exhibited a linear determination range from 21.43 μS/cm to 1.99 mS/cm, and the electrode constant was 1.566 cm−1. Sensitivity of the temperature sensor was 5.46 Ω/°C. The results indicate that the developed sensor chip has potential application in water quality measurements. PMID:28098824
Changes in root cap pH are required for the gravity response of the Arabidopsis root
NASA Technical Reports Server (NTRS)
Fasano, J. M.; Swanson, S. J.; Blancaflor, E. B.; Dowd, P. E.; Kao, T. H.; Gilroy, S.
2001-01-01
Although the columella cells of the root cap have been identified as the site of gravity perception, the cellular events that mediate gravity signaling remain poorly understood. To determine if cytoplasmic and/or wall pH mediates the initial stages of root gravitropism, we combined a novel cell wall pH sensor (a cellulose binding domain peptide-Oregon green conjugate) and a cytoplasmic pH sensor (plants expressing pH-sensitive green fluorescent protein) to monitor pH dynamics throughout the graviresponding Arabidopsis root. The root cap apoplast acidified from pH 5.5 to 4.5 within 2 min of gravistimulation. Concomitantly, cytoplasmic pH increased in columella cells from 7.2 to 7.6 but was unchanged elsewhere in the root. These changes in cap pH preceded detectable tropic growth or growth-related pH changes in the elongation zone cell wall by 10 min. Altering the gravity-related columella cytoplasmic pH shift with caged protons delayed the gravitropic response. Together, these results suggest that alterations in root cap pH likely are involved in the initial events that mediate root gravity perception or signal transduction.
Bismuth-Based, Disposable Sensor for the Detection of Hydrogen Sulfide Gas.
Rosolina, Samuel M; Carpenter, Thomas S; Xue, Zi-Ling
2016-02-02
A new sensor for the detection of hydrogen sulfide (H2S) gas has been developed to replace commercial lead(II) acetate-based test papers. The new sensor is a wet, porous, paper-like substrate coated with Bi(OH)3 or its alkaline derivatives at pH 11. In contrast to the neurotoxic lead(II) acetate, bismuth is used due to its nontoxic properties, as Bi(III) has been a reagent in medications such as Pepto-Bismol. The reaction between H2S gas and the current sensor produces a visible color change from white to yellow/brown, and the sensor responds to ≥ 30 ppb H2S in a total volume of 1.35 L of gas, a typical volume of human breath. The alkaline, wet coating helps the trapping of acidic H2S gas and its reaction with Bi(III) species, forming colored Bi2S3. The sensor is suitable for testing human bad breath and is at least 2 orders of magnitude more sensitive than a commercial H2S test paper based on Pb(II)(acetate)2. The small volume of 1.35-L H2S is important, as the commercial Pb(II)(acetate)2-based paper requires large volumes of 5 ppm H2S gas. The new sensor reported here is inexpensive, disposable, safe, and user-friendly. A simple, laboratory setup for generating small volumes of ppb-ppm of H2S gas is also reported.
Staying alive! Sensors used for monitoring cell health in bioreactors.
O'Mara, P; Farrell, A; Bones, J; Twomey, K
2018-01-01
Current and next generation sensors such as pH, dissolved oxygen (dO) and temperature sensors that will help drive the use of single-use bioreactors in industry are reviewed. The current trend in bioreactor use is shifting from the traditional fixed bioreactors to the use of single-use bioreactors (SUBs). However as the shift in paradigm occurs there is now a greater need for sensor technology to play 'catch up' with the innovation of bioreactor technology. Many of the sensors still in use today rely on technology created in the 1960's such as the Clark-type dissolved oxygen sensor or glass pH electrodes. This is due to the strict requirements of sensors to monitor bioprocesses resulting in the use of traditional well understood methods, making it difficult to incorporate new sensor technology into industry. A number of advances in sensor technology have been achieved in recent years, a few of these advances and future research will also be discussed in this review. Copyright © 2017 Elsevier B.V. All rights reserved.
Badr, Ibrahim H A; Meyerhoff, Mark E
2005-04-20
A highly selective, sensitive, and reversible fluoride optical sensing film based on aluminum(III)octaethylporphyrin as a fluoride ionophore and a lipophilic pH indicator as the optical transducer is described. The fluoride optical sensing films exhibit a submicromolar detection limit and high discrimination for fluoride over several lipophilic anions such as nitrate, perchlorate, and thiocyanate.
Li, Songyang; Liu, Zhiming; Su, Chengkang; Chen, Haolin; Fei, Xixi; Guo, Zhouyi
2017-02-01
The biological pH plays an important role in various cellular processes. In this work, a novel strategy is reported for biological pH sensing by using Raman spectroscopy and polyaniline nanoparticles (PANI NPs) as the pH-sensitive Raman probe. It is found that the Raman spectrum of PANI NPs is strongly dependent on the pH value. The intensities of Raman spectral bands at 1225 and 1454 cm -1 increase obviously with pH value varying from 5.5 to 8.0, which covers the range of regular biological pH variation. The pH-dependent Raman performance of PANI NPs, as well as their robust Raman signals and sensitivities to pH, was well retained after the nanoparticles incorporated into living 4T1 breast adenocarcinoma cells. The data indicate that such PANI NPs can be used as an effective biological pH sensor. Most interestingly, the PANI spherical nanostructures can be acquired by a low-cost, metal-free, and one-pot oxidative polymerization, which gives them excellent biocompatibility for further biological applications.
NASA Astrophysics Data System (ADS)
Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Khatri, Punit
2018-03-01
New concepts and techniques are replacing traditional methods of water quality parameters measurement systems. This paper proposed a new way of potable water quality assessment in distribution network using Multi Sensor Array (MSA). Extensive research suggests that following parameters i.e. pH, Dissolved Oxygen (D.O.), Conductivity, Oxygen Reduction Potential (ORP), Temperature and Salinity are most suitable to detect overall quality of potable water. Commonly MSA is not an integrated sensor array on some substrate, but rather comprises a set of individual sensors measuring simultaneously different water parameters all together. Based on research, a MSA has been developed followed by signal conditioning unit and finally, an algorithm for easy user interfacing. A dedicated part of this paper also discusses the platform design and significant results. The Objective of this proposed research is to provide simple, efficient, cost effective and socially acceptable means to detect and analyse water bodies regularly and automatically.
Sensitive determination of citrinin based on molecular imprinted electrochemical sensor
NASA Astrophysics Data System (ADS)
Atar, Necip; Yola, Mehmet Lütfi; Eren, Tanju
2016-01-01
In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H3PW12O40, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10-12-1.0 × 10-10 M and 2.0 × 10-13 M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.
Qian, J; Liu, Y; Liu, H; Yu, T; Deng, J
1996-05-01
A simple and effective procedure was described for the immobilization of peroxidase in regenerated silk fibroin membrane prepared from waste silk. The membranes of regenerated silk fibroin with or without peroxidase, before or after the ethanol treatment, were characterized by ir spectra. An amperometric H202 sensor, based on the immobilized peroxidase in regenerated silk fibroin membrane, in the use of new methylene blue N as an electron transfer mediator, was fabricated. The characteristics of the sensor with respect to linearity, response time, effect of pH and temperature, stability, and reproducibility were investigated. Dependences of Michaelis-Menten constant KMapp on the concentration of the mediator, and the applied potential were also studied and the results were presented. The sensor was highly sensitive to H2O2 with a detection limit of 1.0 x 10(-7)M and with response time of less than 40 s.
Evaluation of the Eureka Manta2 Water-Quality Multiprobe Sonde
Tillman, Evan F.
2017-11-08
Two Eureka Manta2 3.5 water-quality multiprobe sondes by Eureka Water Probes were tested at the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) against known standards over the sonde operating temperatures to verify the manufacturer’s stated accuracy specifications for pH, specific conductance (SC) at 25 degrees Celsius (°C), dissolved oxygen (DO), and turbidity. The Manta2 sondes were evaluated for compliance with the USGS National Field Manual for the Collection of Water-Quality Data (NFM) criteria for continuous water-quality monitors, and for compliance with the manufacturer’s technical specifications. The Manta2 was also evaluated for its compliance to Serial Digital Interface at 1200 baud (SDI-12) version 1.3.The Manta2 met the NFM recommendations and manufacturer’s accuracy specifications for DO and turbidity at all values tested. The Manta2 pH sensors met the NFM recommendations and manufacturer’s accuracy specification for nominal pH values of 10 and lower. One of the two sensors was out of compliance by 1.2 units for pH 11.16 at 15 °C and by 0.25 unit for pH 10.78 at 40 °C. The Manta2 sensors were within the NFM recommendations for SC, except at 100 microsiemens (μS/cm) at 40 °C, where the SC sensor exceeded the test standard value by as much as 25 percent. One of two sensors was within manufacturer’s accuracy specifications at 25 °C for all the tested SC values, while the other SC sensor was outside the manufacturer’s accuracy specifications at 100 μS/cm, exceeding the test standard value by 9 percent. One of two sensors was outside the manufacturer’s accuracy specifications at 10,000 μS/cm at 15°C, exceeding the test standard value by 3 percent. One Manta2 passed SDI-12 compliance testing with a NR Systems SDI-12 Verifier. One Manta2 was field tested for 6 weeks at USGS station 02492620, National Space Technology Laboratories (NSTL) Station, Mississippi, on the Pearl River and showed overall good agreement with a well-maintained Hydrolab Datasonde 5X site sonde for water temperature, pH, and DO. Differences in SC values between the Manta2 and the site sonde were most likely due to differences in the deployment depth of the sondes.
Williamson, Danielle M; Elferich, Johannes; Shinde, Ujwal
2015-09-18
The propeptides of proprotein convertases (PCs) regulate activation of cognate protease domains by sensing pH of their organellar compartments as they transit the secretory pathway. Earlier experimental work identified a conserved histidine-encoded pH sensor within the propeptide of the canonical PC, furin. To date, whether protonation of this conserved histidine is solely responsible for PC activation has remained unclear because of the observation that various PC paralogues are activated at different organellar pH values. To ascertain additional determinants of PC activation, we analyzed PC1/3, a paralogue of furin that is activated at a pH of ∼5.4. Using biophysical, biochemical, and cell-based methods, we mimicked the protonation status of various histidines within the propeptide of PC1/3 and examined how such alterations can modulate pH-dependent protease activation. Our results indicate that whereas the conserved histidine plays a crucial role in pH sensing and activation of this protease an additional histidine acts as a "gatekeeper" that fine-tunes the sensitivity of the PC1/3 propeptide to facilitate the release inhibition at higher proton concentrations when compared with furin. Coupled with earlier analyses that highlighted the enrichment of the amino acid histidine within propeptides of secreted eukaryotic proteases, our work elucidates how secreted proteases have evolved to exploit the pH of the secretory pathway by altering the spatial juxtaposition of titratable groups to regulate their activity in a spatiotemporal fashion. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
A remotely interrogatable sensor for chemical monitoring
NASA Technical Reports Server (NTRS)
Stoyanov, P. G.; Doherty, S. A.; Grimes, C. A.; Seitz, W. R.
1998-01-01
A new type of continuously operating, in-situ, remotely monitored sensor is presented. The sensor is comprised of a thin film array of magnetostatically coupled, magnetically soft ferromagnetic thin film structures, adhered to or encased within a thin polymer layer. The polymer is made so that it swells or shrinks in response to the chemical analyte of interest, which in this case is pH. As the polymer swells or shrinks, the magnetostatic coupling between the magnetic elements changes, resulting in changes in the magnetic switching characteristics of the sensor. Placed within a sinusoidal magnetic field the magnetization vector of the coupled sensor elements periodically reverses directions, generating magnetic flux that can be remotely detected as a series of voltage spikes in appropriately placed pickup coils. one preliminary sensor design consists of four triangles, initially spaced approximately 50 micrometers apart, arranged to form a 12 mm x 12 mm square with the triangle tips centered at a common origin. Our preliminary work has focused on monitoring of pH using a lightly crosslinked pH sensitive polymer layer of hydroxyethylmethacrylate and 2-(dimethylamino) ethylmethacrylate. As the polymer swells or shrinks the magnetostatic coupling between the triangles changes, resulting in measurable changes in the amplitude of the detected voltage spirits.
Yang, Jiang; Kwak, Tae-Joon; Zhang, Xiaodong; McClain, Robert; Chang, Woo-Jin; Gunasekaran, Sundaram
2016-11-22
A facile, controllable, inexpensive and green electrochemical synthesis of IrO2-graphene nanohybrid thin films is developed to fabricate an easy-to-use integrated paper microfluidic electrochemical pH sensor for resource-limited settings. Taking advantages from both pH meters and strips, the pH sensing platform is composed of hydrophobic barrier-patterned paper micropad (µPAD) using polydimethylsiloxane (PDMS), screen-printed electrode (SPE) modified with IrO2-graphene films and molded acrylonitrile butadiene styrene (ABS) plastic holder. Repetitive cathodic potential cycling was employed for graphene oxide (GO) reduction which can completely remove electrochemically unstable oxygenated groups and generate a 2D defect-free homogeneous graphene thin film with excellent stability and electronic properties. A uniform and smooth IrO2 film in nanoscale grain size is anodically electrodeposited onto the graphene film, without any observable cracks. The resulting IrO2-RGO electrode showed slightly super-Nernstian responses from pH 2-12 in Britton-Robinson (B-R) buffers with good linearity, small hysteresis, low response time and reproducibility in different buffers, as well as low sensitivities to different interfering ionic species and dissolved oxygen. A simple portable digital pH meter is fabricated, whose signal is measured with a multimeter, using high input-impedance operational amplifier and consumer batteries. The pH values measured with the portable electrochemical paper-microfluidic pH sensors were consistent with those measured using a commercial laboratory pH meter with a glass electrode.
Time-dependent pH sensing phenomena using CdSe/ZnS quantum dots in EIS structure
2014-01-01
Time-dependent pH sensing phenomena of the core-shell CdSe/ZnS quantum dot (QD) sensors in EIS (electrolyte insulator semiconductor) structure have been investigated for the first time. The quantum dots are immobilized by chaperonin GroEL protein, which are observed by both atomic force microscope and scanning electron microscope. The diameter of one QD is approximately 6.5 nm. The QDs are not oxidized over a long time and core-shell CdSe/ZnS are confirmed by X-ray photon spectroscopy. The sensors are studied for sensing of hydrogen ions concentration in different buffer solutions at broad pH range of 2 to 12. The QD sensors show improved sensitivity (38 to 55 mV/pH) as compared to bare SiO2 sensor (36 to 23 mV/pH) with time period of 0 to 24 months, owing to the reduction of defects in the QDs. Therefore, the differential sensitivity of the QD sensors with respect to the bare SiO2 sensors is improved from 2 to 32 mV/pH for the time period of 0 to 24 months. After 24 months, the sensitivity of the QD sensors is close to ideal Nernstian response with good linearity of 99.96%. Stability and repeatability of the QD sensors show low drift (10 mV for 10 cycles) as well as small hysteresis characteristics (<10 mV). This QD sensor is very useful for future human disease diagnostics. PMID:24725352
Fiber-optic sensor applications in civil and geotechnical engineering
NASA Astrophysics Data System (ADS)
Habel, Wolfgang R.; Krebber, Katerina
2011-09-01
Different types of fiber-optic sensors based on glass or polymeric fibers are used to evaluate material behavior or to monitor the integrity and long-term stability of load-bearing structure components. Fiber-optic sensors have been established as a new and innovative measurement technology in very different fields, such as material science, civil engineering, light-weight structures, geotechnical areas as well as chemical and high-voltage substations. Very often, mechanical quantities such as deformation, strain or vibration are requested. However, measurement of chemical quantities in materials and structure components, such as pH value in steel reinforced concrete members also provides information about the integrity of concrete structures. A special fiber-optic chemical sensor for monitoring the alkaline state (pH value) of the cementitious matrix in steel-reinforced concrete structures with the purpose of early detection of corrosion-initiating factors is described. The paper presents the use of several fiber-optic sensor technologies in engineering. One example concerns the use of highly resolving concrete-embeddable fiber Fabry-Perot acoustic emission (AE) sensors for the assessment of the bearing behaviour of large concrete piles in existing foundations or during and after its installation. Another example concerns fiber Bragg grating (FBG) sensors attached to anchor steels (micro piles) to measure the strain distribution in loaded soil anchors. Polymer optical fibers (POF) can be — because of their high elasticity and high ultimate strain — well integrated into textiles to monitor their deformation behaviour. Such "intelligent" textiles are capable of monitoring displacement of soil or slopes, critical mechanical deformation in geotechnical structures (dikes, dams, and embankments) as well as in masonry structures during and after earthquakes.
Biogeochemical sensor performance in the SOCCOM profiling float array
NASA Astrophysics Data System (ADS)
Johnson, Kenneth S.; Plant, Joshua N.; Coletti, Luke J.; Jannasch, Hans W.; Sakamoto, Carole M.; Riser, Stephen C.; Swift, Dana D.; Williams, Nancy L.; Boss, Emmanuel; Haëntjens, Nils; Talley, Lynne D.; Sarmiento, Jorge L.
2017-08-01
The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) program has begun deploying a large array of biogeochemical sensors on profiling floats in the Southern Ocean. As of February 2016, 86 floats have been deployed. Here the focus is on 56 floats with quality-controlled and adjusted data that have been in the water at least 6 months. The floats carry oxygen, nitrate, pH, chlorophyll fluorescence, and optical backscatter sensors. The raw data generated by these sensors can suffer from inaccurate initial calibrations and from sensor drift over time. Procedures to correct the data are defined. The initial accuracy of the adjusted concentrations is assessed by comparing the corrected data to laboratory measurements made on samples collected by a hydrographic cast with a rosette sampler at the float deployment station. The long-term accuracy of the corrected data is compared to the GLODAPv2 data set whenever a float made a profile within 20 km of a GLODAPv2 station. Based on these assessments, the fleet average oxygen data are accurate to 1 ± 1%, nitrate to within 0.5 ± 0.5 µmol kg-1, and pH to 0.005 ± 0.007, where the error limit is 1 standard deviation of the fleet data. The bio-optical measurements of chlorophyll fluorescence and optical backscatter are used to estimate chlorophyll a and particulate organic carbon concentration. The particulate organic carbon concentrations inferred from optical backscatter appear accurate to with 35 mg C m-3 or 20%, whichever is larger. Factors affecting the accuracy of the estimated chlorophyll a concentrations are evaluated.
pH-sensitive fluorescent sensors based on europium(III) complexes.
Zhang, Xiaolin; Jiao, Yang; Jing, Xu; Wu, Hongmei; He, Guangjie; Duan, Chunying
2011-03-21
New europium(III) complexes Eu(TTA)(2)-DSQ and Eu(TTA)(3)-DR1 were designed and synthesized as new fluorescent pH probes (where HDSQ = 5-(dimethylamino)-N-(4-(2-((8-hydroxyquinolin-2-yl)methylene)hydrazinecarbonyl)phenyl)naphthalene-1-sulfonamide, DR1 = N(1)-(4-(dimethylamino)benzylidene)-N(2)-(rhodamine-6G) lactamethylene-diamine and TTA = thiophentrifluoroacetone). Eu(TTA)(2)-DSQ exhibited high sensitivity in monitoring pH changes in neutral aqueous solution with negligible background fluorescence. Eu(TTA)(3)-DR1 comprised a green light emitting Rhodamine 6G fluorophore and a Eu(III) moiety as the origin of red light. These pH-sensitive emitter components have pK(a) values of 5.0 and 7.2 respectively, and exhibit isolated protonated steps within one molecule. Luminescence titrations demonstrate that Eu(TTA)(3)-DR1 was able to detect pH values at both near neutral pH and acidic pH ranges, and was also able to detect pH in both cultured cells and in vivo.
High-k dielectric Al2O3 nanowire and nanoplate field effect sensors for improved pH sensing
Reddy, Bobby; Dorvel, Brian R.; Go, Jonghyun; Nair, Pradeep R.; Elibol, Oguz H.; Credo, Grace M.; Daniels, Jonathan S.; Chow, Edmond K. C.; Su, Xing; Varma, Madoo; Alam, Muhammad A.
2011-01-01
Over the last decade, field-effect transistors (FETs) with nanoscale dimensions have emerged as possible label-free biological and chemical sensors capable of highly sensitive detection of various entities and processes. While significant progress has been made towards improving their sensitivity, much is yet to be explored in the study of various critical parameters, such as the choice of a sensing dielectric, the choice of applied front and back gate biases, the design of the device dimensions, and many others. In this work, we present a process to fabricate nanowire and nanoplate FETs with Al2O3 gate dielectrics and we compare these devices with FETs with SiO2 gate dielectrics. The use of a high-k dielectric such as Al2O3 allows for the physical thickness of the gate dielectric to be thicker without losing sensitivity to charge, which then reduces leakage currents and results in devices that are highly robust in fluid. This optimized process results in devices stable for up to 8 h in fluidic environments. Using pH sensing as a benchmark, we show the importance of optimizing the device bias, particularly the back gate bias which modulates the effective channel thickness. We also demonstrate that devices with Al2O3 gate dielectrics exhibit superior sensitivity to pH when compared to devices with SiO2 gate dielectrics. Finally, we show that when the effective electrical silicon channel thickness is on the order of the Debye length, device response to pH is virtually independent of device width. These silicon FET sensors could become integral components of future silicon based Lab on Chip systems. PMID:21203849
Automated pH Control of Nutrient Solution in a Hydroponic Plant Growth System
NASA Technical Reports Server (NTRS)
Smith, B.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.
1998-01-01
Over, the years, NASA has played an important role in providing to and the development of automated nutrient delivery and monitoring, systems for growing crops hydroponically for long term space missions. One example are the systems used in the Biomass Production Chamber (BPC) at Kennedy Space Center (KSC). The current KSC monitoring system is based on an engineering workstation using standard analog/digital input/output hardware and custom written software. The monitoring system uses completely separate sensors to provide a check of control sensor accuracy and has the ability to graphically display and store data form past experiment so that they are available for data analysis [Fortson, 1992]. In many cases, growing systems have not been fitted with the kind of automated control systems as used at KSC. The Center for Food and Environmental Systems for Human Exploration of Space (CFESH) located on the campus of Tuskegee University, has effectively grown sweetpotatoes and peanuts hydroponically for the past five years. However they have adjusted the pH electrical conductivity and volume of the hydroponic nutrient solution only manually at times when the solution was to be replenished or changed out according to its protocol (e.g. one-week, two-week, or two-day cycle). But the pH of the nutrient solution flowing through the channel is neither known nor controlled between the update, change out, or replenishment period. Thus, the pH of the nutrient solution is not held at an optimum level over the span of the plant's growth cycle. To solve this dilemma, an automated system for the control and data logging of pH data relative to sweetpotato production using the nutrient film technique (NFT) has been developed, This paper discusses a microprocessor-based system, which was designed to monitor, control, and record the pH of a nutrient solution used for growing sweetpotatoes using NFT.
Development of Non-Invasive Deep Tissue pH Sensor.
1995-10-01
gas samples were used to adjust ventilation during the experiment to maintain proper acid-base balance. First, the right latissimus dorsi muscle flap...of skin approximately 1 inch by 2 inches was cut from the rabbit from the area which was over the latissimus dorsi muscle. The skin was shaved of fur
NASA Astrophysics Data System (ADS)
Wang, A. Z.; Sonnichsen, F. N.; Chu, S. N.; Bradley, A. M.; Hoering, K.
2016-02-01
The marine CO2 (inorganic carbon) system is characterized by four primary parameters - total dissolved inorganic carbon (DIC), total alkalinity (TA), partial pressure of CO2 (pCO2), and pH. These parameters are central to the study of the marine carbon cycle and ocean acidification. Simultaneous measurements of two of the four CO2 parameters are required to fully resolve the seawater CO2 system, and DIC is one of the preferred parameters. A self-calibrating, in-situ sensor, Channelized Optical System (CHANOS), has recently been developed to provide simultaneous measurements of both DIC and pH, resolving carbonate chemistry with a single system. CHANOS is among the first to achieve simultaneous, in-situ measurements of a desired pair of CO2 parameters. DIC and pH channels both use flow-through, spectrophotometric methods to detect relative absorbances of the acid and base forms of a pH-sensitive indicator. The precision of CHANOS in laboratory and in-situ tests are ±0.002 and ±3.0 µmol kg-1 for pH and DIC, respectively. In-situ comparison with bottle sampling and analyses indicate that the accuracies for pH and DIC are ±0.004 and ±5.0 µmol kg-1, respectively. It has been demonstrated that CHANOS can make in-situ, climatology-quality measurements to resolve the CO2 system in dynamic aquatic environments. To further improve response time of the sensor, especially for DIC measurements, a new generation of CHANOS-DIC is under development. The new system adapts the recently developed spectrophotometric DIC method to achieve flow-through CO2 equilibration between an acidified sample and an indicator solution with a response time as fast as 22s. Continuous measurements are also achievable. Because of the fast response of CHANOS measurements, it is versatile and suitable for deployments on both fixed (e.g. buoys) and mobile (e.g., AUV, ROV, and profilers) platforms.
Haematic pH sensor for extracorporeal circulation
NASA Astrophysics Data System (ADS)
Ferrari, Luca; Fabbri, Paola; Rovati, Luigi; Pilati, Francesco
2012-03-01
The design and realization of an optical sensor for measuring haematic pH during extracorporeal circulation is presented. It consists of a chemical sensing element in contact with the blood, an interrogation optical head to externally probe the sensing element and the front-end electronics to acquire and process the information of interest. The fluorescein O-methacrylate 97% is used as the indicator. The developed system has been tested in-vitro and on an in-vivo animal model. It showed a linear behavior in the haematic range of interest with a mean error lower than 0.01 units of pH.
Effect of pH on particles size and gas sensing properties of In{sub 2}O{sub 3} nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, Kanica, E-mail: kanica.anand@yahoo.com; Thangaraj, Rengasamy; Singh, Ravi Chand
In this work, indium oxide (In{sub 2}O{sub 3}) nanoparticles have been synthesized by co-precipitation method and the effect of pH on the structural and sensor response values of In{sub 2}O{sub 3} nanoparticles has been reported. X-ray diffraction pattern (XRD) revealed the formation of cubic phase In{sub 2}O{sub 3} nanoparticles. FESEM results indicate the formation of nearly spherical shape In{sub 2}O{sub 3} nanoparticles. The band gap energy value changed with change in pH value and found to have highest value at pH 9. Indium oxide nanoparticles thus prepared were deposited as thick films on alumina substrates to act as gas sensorsmore » and their sensing response to ethanol vapors and LPG at 50 ppm was investigated at different operating temperatures. It has been observed that all sensors exhibited optimum response at 300°C towards ethanol and at 400°C towards LPG. In{sub 2}O{sub 3} nanoparticles prepared at pH 9, being smallest in size as compared to other, exhibit highest sensor response (SR).« less
Casimero, Charnete; McConville, Aaron; Fearon, John-Joe; Lawrence, Clare L; Taylor, Charlotte M; Smith, Robert B; Davis, James
2018-10-16
Monitoring pH within microbial reactors has become an important requirement across a host of applications ranging from the production of functional foods (probiotics) to biofuel cell systems. An inexpensive and scalable composite sensor capable of monitoring the pH within the demanding environments posed by microbial reactors has been developed. A custom designed flavin derivative bearing an electropolymerisable phenol monomer was used to create a redox film sensitive to pH but free from the interferences that can impede conventional pH systems. The film was integrated within a composite carbon-fibre-polymer laminate and was shown to exhibit Nernstian behaviour (55 mV/pH) with minimal drift and robust enough to operate within batch reactors. Copyright © 2018 Elsevier B.V. All rights reserved.
Biona-C Cell Culture pH Monitoring System
NASA Technical Reports Server (NTRS)
Friedericks, C.
1999-01-01
Sensors 2000! is developing a system to demonstrate the ability to perform accurate, real-time measurements of pH and CO2 in a cell culture media in Space. The BIONA-C Cell Culture pH Monitoring System consists of S2K! developed ion selective sensors and control electronics integrated with the fluidics of a cell culture system. The integrated system comprises a "rail" in the Cell Culture Module (CCM) of WRAIR (Space Biosciences of Walter Read Army Institute of Research). The CCM is a Space Shuttle mid-deck locker experiment payload. The BIONA-C is displayed along with associated graphics and text explanations. The presentation will stimulate interest in development of sensor technology for real-time cell culture measurements. The transfer of this technology to other applications will also be of interest. Additional information is contained in the original document.
Zhao, Dong; Liu, Tsan-Zon; Chan, Err-Cheng; Fein, Harry; Zhang, Xueji
2007-05-01
Homocysteine is a sulfur-containing compound produced during metabolism process of methionine. Its uptake in human plasma is believed to be the cause of cardiovascular diseases and many other diseases. An electrochemical method was proposed for selective and quantitative measurement of homocysteine by employing hydrogen sulfide sensor coupled with methionine a, g-lyase. The principle of this method is to measure the evolved hydrogen sulfide from the enzymatic reaction between homocysteine and methionine a, g-lyase. The sensitivities of the measurements at different pH values of the tris buffer solutions and at room temperature peaked to 275 pA/mM at pH 6.5 with detection limit of 150 nM (based on 3 s cutoff). The linearity measurements at pH 6.5 were performed for the homocysteine concentrations range from 0.5 to 200 mM, which is wider than the human blood plasma total homocysteine level of 5 to 100 mM, and the regressive analysis of the experiments gave R2=0.9987. The enzyme also showed the fastest response to homocysteine in the tris buffer solution of pH 7.5 with the current approaching its maximum at 134 seconds. The interference tests against several common agents were carried out, and found that cysteine and methionine were the major two species to introduce measurement problem. The solution to this interference problem was explored and discussed thoroughly based on the preliminary tests. The sensitivities of the experiments against several enzyme concentrations were also performed.
A Wireless Biomedical Signal Interface System-on-Chip for Body Sensor Networks.
Lei Wang; Guang-Zhong Yang; Jin Huang; Jinyong Zhang; Li Yu; Zedong Nie; Cumming, D R S
2010-04-01
Recent years have seen the rapid development of biosensor technology, system-on-chip design, wireless technology. and ubiquitous computing. When assembled into an autonomous body sensor network (BSN), the technologies become powerful tools in well-being monitoring, medical diagnostics, and personal connectivity. In this paper, we describe the first demonstration of a fully customized mixed-signal silicon chip that has most of the attributes required for use in a wearable or implantable BSN. Our intellectual-property blocks include low-power analog sensor interface for temperature and pH, a data multiplexing and conversion module, a digital platform based around an 8-b microcontroller, data encoding for spread-spectrum wireless transmission, and a RF section requiring very few off-chip components. The chip has been fully evaluated and tested by connection to external sensors, and it satisfied typical system requirements.
NASA Astrophysics Data System (ADS)
Kirovskaya, I. A.; Mironova, E. V.; Ushakov, O. V.; Nor, P. E.; Yureva, A. V.; Matyash, Yu I.
2018-01-01
A method for determining the hydrogen index of the surfaces isoelectric state (pHiso) at various gases pressures -possible components of the surrounding and technological media has been developed. With its use, changes in pH of binary and more complex semiconductors-components of the new system-ZnSe-CdS under the influence of nitrogen dioxide-have been found. The limiting sensitivity of surfaces - minimum PNO2, causing a change in pH has been estimated. The most active components of ZnSe-CdS system, recommended as materials for measuring cells of NO2, have been revealed. The relationship between the changing patterns with the composition of surface (acid-base) and bulk (in particular, theoretical calculated crystal density) properties has been established, allowing to find the most effective materials for sensor technology and for semiconductor analysis.
Double-gated Si NW FET sensors: Low-frequency noise and photoelectric properties
NASA Astrophysics Data System (ADS)
Gasparyan, F.; Khondkaryan, H.; Arakelyan, A.; Zadorozhnyi, I.; Pud, S.; Vitusevich, S.
2016-08-01
The transport, noise, and photosensitivity properties of an array of silicon nanowire (NW) p+-p-p+ field-effect transistors (FETs) are investigated. The peculiarities of photosensitivity and detectivity are analyzed over a wide spectrum range. The absorbance of p-Si NW shifts to the short wavelength region compared with bulk Si. The photocurrent and photosensitivity reach increased values in the UV range of the spectrum at 300 K. It is shown that sensitivity values can be tuned by the drain-source voltage and may reach record values of up to 2-4 A/W at a wavelength of 300 nm at room temperature. Low-frequency noise studies allow calculating the photodetectivity values, which increase with decreasing wavelength down to 300 nm. We show that the drain current of Si NW biochemical sensors substantially depends on pH value and the signal-to-noise ratio reaches the high value of 105. Increasing pH sensitivity with gate voltage is revealed for certain source-drain currents of pH-sensors based on Si NW FETs. The noise characteristic index decreases from 1.1 to 0.7 with the growth of the liquid gate voltage. Noise behavior is successfully explained in the framework of the correlated number-mobility unified fluctuation model. pH sensitivity increases as a result of the increase in liquid gate voltage, thus giving the opportunity to measure very low proton concentrations in the electrolyte medium at certain values of the liquid gate voltage.
NASA Astrophysics Data System (ADS)
Zhang, Shanshan; Sun, Tao; Xiao, Dejun; Yuan, Fang; Li, Tianduo; Wang, Enhua; Liu, Haixia; Niu, Qingfen
2018-01-01
A novel dual-responsive colorimetric and fluorescent chemosensor L based on diketopyrrolopyrrole derivative for Fe3 + detection was designed and synthesized. In presence of Fe3 +, sensor L displayed strong colorimetric response as amaranth to rose pink and significant fluorescence enhancement and chromogenic change, which served as a naked-eye indicator by an obvious color change from purple to red. The binding constant for L-Fe3 + complex was found as 2.4 × 104 with the lower detection limit of 14.3 nM. The sensing mechanism was investigated in detail by fluorescence measurements, IR and 1H NMR spectra. Sensor L for Fe3 + detection also exhibited high anti-interference performance, good reversibility, wide pH response range and instantaneous response time. Furthermore, the sensor L has been used to quantify Fe3 + ions in practical water samples with good recovery.
Development of a sensor to study the DNA conformation using molecular logic gates.
Roy, Arpan Datta; Dey, Dibyendu; Saha, Jaba; Chakraborty, Santanu; Bhattacharjee, D; Hussain, Syed Arshad
2015-02-05
This communication reports our investigations on the Fluorescence Resonance Energy Transfer (FRET) between two laser dyes Acriflavine and Rhodamine B in absence and presence of DNA at different pH. It has been observed that energy transfer efficiency is largely affected by the presence of DNA as well as the pH of the system. It is well known that with increase in pH, DNA conformation changes from double stranded to single stranded (denaturation) and finally form random coil. Based on our experimental results two different types of molecular logic gates namely, XOR and OR logic have been demonstrated which can be used to have an idea about DNA conformation in solution. Copyright © 2014 Elsevier B.V. All rights reserved.
Readout Circuits for Noise Compensation in ISFET Sensory System
NASA Astrophysics Data System (ADS)
Das, M. P.; Bhuyan, M.; Talukdar, C.
2015-12-01
This paper presents two different noise reduction techniques for ion sensitive field effect transistor (ISFET) readout configuration and their comparison. The proposed circuit configurations are immune to the noise generated from the ISFET sensory system and particularly to the low frequency pH dependent 1/ f electrochemical noise. The methods used under this study are compensation of noise by differential OPAMP based and Wheatstone bridge circuit, where two identical commercial ISFET sensors were used. The statistical and frequency analysis of the data generated by this two methods were compared for different pH value ranging from pH 2 to 10 at room temperature, and it is found that the readout circuits are able to compensate the noise to a great extent.
Stelmach, Emilia; Maksymiuk, Krzysztof; Michalska, Agata
2017-01-15
Analytical benefits related to application of copolymeric microspheres containing different number of carboxylic acid mers have been studied on example of acrylate copolymers. These structures can be used as a reagent in heterogeneous pH titration, benefiting from different number of reactive groups - i.e. different concentration of a titrant - within the series of copolymers. Thus introducing the same amount of different microspheres from a series to the sample, different amount of the titrant is introduced. Copolymeric microspheres also can be used as optical sensors - in this respect the increasing number of reactive groups in the series is useful to improve the analytical performance of microprobes - sensitivity of determination or/and response range. The increase in ion-permeability of the spheres with increasing number of reactive mers is advantageous. It is shown that for pH sensitive microspheres containing higher number of carboxyl groups the higher sensitivity for alkaline pH samples is observed for an indicator present in the beads. The significant increase of optical responses is related to enhanced ion transport within the microspheres. For zinc or potassium ions model sensors tested it was shown that by choice of pH conditions and type of microspheres from the series, the optical responses can be tuned - to enhance sensitivity for analyte concentration change as well as to change the response pattern from sigmoidal (higher sensitivity, narrow range) to linear (broader response range). For classical optode systems (e.g. microspheres containing an optical transducer - pH sensitive dye and optically silent ionophore - receptor) copolymeric microspheres containing carboxylic acid mers in their structure allow application of the sensor in alkaline pH range, which is usually inaccessible for applied optical transducer. Copyright © 2016 Elsevier B.V. All rights reserved.
Rapid antibiotic susceptibility testing in a microfluidic pH sensor.
Tang, Yanyan; Zhen, Li; Liu, Jingqing; Wu, Jianmin
2013-03-05
For appropriate selection of antibiotics in the treatment of pathogen infection, rapid antibiotic susceptibility testing (AST) is urgently needed in clinical practice. This study reports the utilization of a microfluidic pH sensor for monitoring bacterial growth rate in culture media spiked with different kinds of antibiotics. The microfluidic pH sensor was fabricated by integration of pH-sensitive chitosan hydrogel with poly(dimethylsiloxane) (PDMS) microfluidic channels. For facilitating the reflectometric interference spectroscopic measurements, the chitosan hydrogel was coated on an electrochemically etched porous silicon chip, which was used as the substrate of the microfluidic channel. Real-time observation of the pH change in the microchannel can be realized by Fourier transform reflectometric interference spectroscopy (FT-RIFS), in which the effective optical thickness (EOT) was selected as the optical signal for indicating the reversible swelling process of chitosan hydrogel stimulated by pH change. With this microfluidic pH sensor, we demonstrate that confinement of bacterial cells in a nanoliter size channel allows rapid accumulation of metabolic products and eliminates the need for long-time preincubation, thus reducing the whole detection time. On the basis of this technology, the whole bacterial growth curve can be obtained in less than 2 h, and consequently rapid AST can be realized. Compared with conventional methods, the AST data acquired from the bacterial growth curve can provide more detailed information for studying the antimicrobial behavior of antibiotics during different stages. Furthermore, the new technology also provides a convenient method for rapid minimal inhibition concentration (MIC) determination of individual antibiotics or the combinations of antibiotics against human pathogens that will find application in clinical and point-of-care medicine.
Design of a 15N Molecular Unit to Achieve Long Retention of Hyperpolarized Spin State
NASA Astrophysics Data System (ADS)
Nonaka, Hiroshi; Hirano, Masashi; Imakura, Yuki; Takakusagi, Yoichi; Ichikawa, Kazuhiro; Sando, Shinsuke
2017-01-01
Nuclear hyperpolarization is a phenomenon that can be used to improve the sensitivity of magnetic resonance molecular sensors. However, such sensors typically suffer from short hyperpolarization lifetime. Herein we report that [15N, D14]trimethylphenylammonium (TMPA) has a remarkably long spin-lattice relaxation time (1128 s, 14.1 T, 30 °C, D2O) on its 15N nuclei and achieves a long retention of the hyperpolarized state. [15N, D14]TMPA-based hyperpolarized sensor for carboxylesterase allowed the highly sensitive analysis of enzymatic reaction by 15N NMR for over 40 min in phophate-buffered saline (H2O, pH 7.4, 37 °C).
NASA Astrophysics Data System (ADS)
Pepłowski, A.; Grudziński, D.; Raczyński, T.; Wróblewski, G.; Janczak, D.; Jakubowska, M.
2017-08-01
Electrodes for measuring pH of the solution were fabricated by the means of screen-printing technology. Potentiometric sensors' layers comprised of composite with polymer matrix and graphene nanoplatelets/ruthenium (IV) oxide nanopowder as functional phase. Transceivers were printed on the elastic PMMA foil. Regarding potential application of the sensors in the wearable devices, dynamic response of the electrodes to changing ultraviolet radiation levels was assessed, since RuO2 is reported to be UV-sensitive. Observed changes of the electrodes' potential were of sub-millivolt magnitude, being comparable to simultaneously observed signal drift. Given this stability under varying UV conditions and previously verified good flexibility, fabricated sensors meet the requirements for wearable applications.
pH sensing and regulation in cancer.
Damaghi, Mehdi; Wojtkowiak, Jonathan W; Gillies, Robert J
2013-12-17
Cells maintain intracellular pH (pHi) within a narrow range (7.1-7.2) by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. These sensors have the ability to recognize and induce cellular responses to maintain the pHi, often at the expense of acidifying the extracellular pH. In turn, extracellular acidification impacts cells via specific acid-sensing ion channels (ASICs) and proton-sensing G-protein coupled receptors (GPCRs). In this review, we will discuss some of the major players in proton sensing at the plasma membrane and their downstream consequences in cancer cells and how these pH-mediated changes affect processes such as migration and metastasis. The complex mechanisms by which they transduce acid pH signals to the cytoplasm and nucleus are not well understood. However, there is evidence that expression of proton-sensing GPCRs such as GPR4, TDAG8, and OGR1 can regulate aspects of tumorigenesis and invasion, including cofilin and talin regulated actin (de-)polymerization. Major mechanisms for maintenance of pHi homeostasis include monocarboxylate, bicarbonate, and proton transporters. Notably, there is little evidence suggesting a link between their activities and those of the extracellular H(+)-sensors, suggesting a mechanistic disconnect between intra- and extracellular pH. Understanding the mechanisms of pH sensing and regulation may lead to novel and informed therapeutic strategies that can target acidosis, a common physical hallmark of solid tumors.
NASA Astrophysics Data System (ADS)
Huang, Lijun; Tian, Huiping; Yang, Daquan; Zhou, Jian; Liu, Qi; Zhang, Pan; Ji, Yuefeng
2014-12-01
We propose a high figure of merit (FOM) biochemical sensor by designing a ring defect coupled resonator (RDCR) based on photonic crystal (PhC) slab. The design consists of ring resonant cavity which is coupled in and out with ring and line defect PhC structure. By a three dimensional finite-different time-domain (3D-FDTD) method, we demonstrate that the quality (Q) factor is greatly enhanced by altering the radius of air holes inner the ring resonant cavity and adjusting the width of line defect waveguide. In this paper, we obtain a highest Q up to 107 through numerical calculations. Even though water absorption at telecom wavelength range and random roughness of fabrication is considered, a Q of ~33,517 can be achieved. Simultaneously the proposed sensor possesses sensitivity (S) of 330 nm/RIU (refractive index unit), resulting in FOM of ~8000. Moreover, a minimal detection limit (DL) is obtained as good as 1.24×10-5. Therefore, these suggest that this design is a promising candidate for label-free biochemical sensing in medical diagnosis, life science and environmental monitoring.
Application of Open Garden Sensor on Hydroponic Maintenance Management
NASA Astrophysics Data System (ADS)
Nasution, S.; Siregar, B.; Kurniawan, M.; Pranoto, H.; Andayani, U.; Fahmi, F.
2018-03-01
Hydroponic farming system is an agricultural system that uses direct water as a nutrient without using soil as a planting medium. This system allows smallholder farmers to have the opportunity to develop their crop production with less capital. In addition, hydroponic planting has also been widely adapted by individuals as a personal hobby. Application of technology has penetrated various fields including agricultural fields. One of the technologies that can be applied in a hydroponic farming system is the sensor. Sensors are devices that used to convert a physical quantity into a quantity of electricity so that it can be analyse with a certain electrical circuit. In this study, the technology to be applied is wireless sensor technology applied in human life to help get information quickly and accurately. Sensors to be used in this study are pH sensors, conductivity sensors, temperature sensors and humidity. In addition to sensors, the study also involved Arduino technology. Arduino is a microcontroller board that is used to interact with the environment based on programs that have been made. The final results of the application testing show that the system success to display diagram in real-time in an environment from Arduino board to database and web server.
Lepot, Mathieu; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc
2013-01-01
Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.
Stein, Nienke E; Hamelers, Hubertus V M; Buisman, Cees N J
2010-04-01
A MFC-based biosensor can act as online toxicity sensor. Electrical current is a direct linear measure for metabolic activity of electrochemically active microorganisms. Microorganisms gain energy from anodic overpotential and current strongly depends on anodic overpotential. Therefore control of anodic overpotential is necessary to detect toxic events and prevent false positive alarms. Anodic overpotential and thus current is influenced by anode potential, pH, substrate and bicarbonate concentrations. In terms of overpotential all factor showed a comparable effect, anode potential 1.2% change in current density per mV, pH 0.43%/mV, bicarbonate 0.75%/mV and acetate 0.8%/mV. At acetate saturation the maximum acetate conversion rate is reached and with that a constant bicarbonate concentration. Control of acetate and bicarbonate concentration can be less strict than control of anode potential and pH. Current density changes due to changing anode potential and pH are in the same order of magnitude as changes due to toxicity. Strict control of pH and anode potential in a small range is required. The importance of anodic overpotential control for detection of toxic compounds is shown. To reach a stable baseline current under nontoxic conditions a MFC-based biosensor should be operated at controlled anode potential, controlled pH and saturated substrate concentrations. 2009 Elsevier B.V. All rights reserved.
Measurements of spectral responses for developing fiber-optic pH sensor
NASA Astrophysics Data System (ADS)
Yoo, Wook Jae; Heo, Ji Yeon; Jang, Kyoung Won; Seo, Jeong Ki; Moon, Jin Soo; Park, Jang-Yeon; Park, Byung Gi; Cho, Seunghyun; Lee, Bongsoo
2011-01-01
In this study, we have fabricated a fiber-optic pH sensor, which is composed of a light source, a pH-sensing probe, plastic optical fibers and a spectrometer, for determining the degree of infection by Helicobacter pylori in the stomach. As pH indicators, phenol red and m-cresol purple are used, and pH liquid solutions are prepared by mixing phenol red or m-cresol purple solutions and various kinds of pH buffer solutions. The light emitted by a light source is guided by plastic optical fibers to the pH liquid solution, and the optical characteristic of a reflected light is changed according to the color variations of the pH indicator in the pH-sensing probe. Therefore, we have measured the intensities and wavelength shifts of the reflected lights, which change according to the color variations of indicators at different pH values, by using a spectrometer for spectral analysis. Also, the relationships between the pH values of liquid solutions and the optical properties of the modulated lights are obtained on the basis of the changes of the colors of indicators.
NASA Astrophysics Data System (ADS)
Nie, Xiang-Kun; Xu, Yi-Ting; Song, Zhi-Ling; Ding, Ding; Gao, Feng; Liang, Hao; Chen, Long; Bian, Xia; Chen, Zhuo; Tan, Weihong
2014-10-01
Molecular self-assembly, a process to design molecular entities to aggregate into desired structures, represents a promising bottom-up route towards precise construction of functional systems. Here we report a multifunctional, self-assembled system based on magnetic-graphitic-nanocapsule (MGN) templated diacetylene assembly and photopolymerization. The as-prepared assembly system maintains the unique color and fluorescence change properties of the polydiacetylene (PDA) polymers, while also pursues the superior Raman, NIR, magnetic and superconducting properties from the MGN template. Based on both fluorescence and magnetic resonance imaging (MRI) T2 relaxivity, the MGN@PDA system could efficiently monitor the pH variations which could be used as a pH sensor. The MGN@PDA system further demonstrates potential as unique ink for anti-counterfeiting applications. Reversible color change, strong and unique Raman scattering and fluorescence emission, sensitive NIR thermal response, and distinctive magnetic properties afford this assembly system with multicoded anti-counterfeiting capabilities.Molecular self-assembly, a process to design molecular entities to aggregate into desired structures, represents a promising bottom-up route towards precise construction of functional systems. Here we report a multifunctional, self-assembled system based on magnetic-graphitic-nanocapsule (MGN) templated diacetylene assembly and photopolymerization. The as-prepared assembly system maintains the unique color and fluorescence change properties of the polydiacetylene (PDA) polymers, while also pursues the superior Raman, NIR, magnetic and superconducting properties from the MGN template. Based on both fluorescence and magnetic resonance imaging (MRI) T2 relaxivity, the MGN@PDA system could efficiently monitor the pH variations which could be used as a pH sensor. The MGN@PDA system further demonstrates potential as unique ink for anti-counterfeiting applications. Reversible color change, strong and unique Raman scattering and fluorescence emission, sensitive NIR thermal response, and distinctive magnetic properties afford this assembly system with multicoded anti-counterfeiting capabilities. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03837a
Guo, Zongrang; Niu, Qingfen; Li, Tianduo
2018-07-05
Developing low-cost and efficient sensors for rapid, selective and sensitive detection of the transition metal ions in environmental and food science is very important. In this study, a novel dual-functional fluorescent "turn-on" sensor 3TP based on oligothiophene-phenylamine Schiff base has been synthesized for discrimination and simultaneous detection of both Al 3+ and Fe 3+ ions with high selectivity and anti-interference over other metal ions. Sensor 3TP displayed a very fast fluorescence-enhanced response towards Al 3+ and Fe 3+ ions with low detection limits (0.177μM for Al 3+ and 0.172μM for Fe 3+ ) and wide pH response range (4.0-12.0). The Al 3+ /Fe 3+ sensing mechanisms were investigated by fluorescence experiments, 1 H NMR titrations, FT-IR and ESI-MS spectra. Importantly, sensor 3TP was served as an efficient solid material for the highly sensitive and selective detection of Fe 3+ on TLC plates. Moreover, the sensor 3TP has been successfully used to detect trace Al 3+ and Fe 3+ in environment and food samples with satisfactory results and good recoveries, revealing a convenient, reliable and accurate method for Al 3+ and Fe 3+ analysis in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Zongrang; Niu, Qingfen; Li, Tianduo
2018-07-01
Developing low-cost and efficient sensors for rapid, selective and sensitive detection of the transition metal ions in environmental and food science is very important. In this study, a novel dual-functional fluorescent "turn-on" sensor 3TP based on oligothiophene-phenylamine Schiff base has been synthesized for discrimination and simultaneous detection of both Al3+ and Fe3+ ions with high selectivity and anti-interference over other metal ions. Sensor 3TP displayed a very fast fluorescence-enhanced response towards Al3+ and Fe3+ ions with low detection limits (0.177 μM for Al3+ and 0.172 μM for Fe3+) and wide pH response range (4.0-12.0). The Al3+/Fe3+ sensing mechanisms were investigated by fluorescence experiments, 1H NMR titrations, FT-IR and ESI-MS spectra. Importantly, sensor 3TP was served as an efficient solid material for the highly sensitive and selective detection of Fe3+ on TLC plates. Moreover, the sensor 3TP has been successfully used to detect trace Al3+ and Fe3+ in environment and food samples with satisfactory results and good recoveries, revealing a convenient, reliable and accurate method for Al3+ and Fe3+ analysis in real samples.
The mechanism by which a propeptide-encoded pH sensor regulates spatiotemporal activation of furin.
Williamson, Danielle M; Elferich, Johannes; Ramakrishnan, Parvathy; Thomas, Gary; Shinde, Ujwal
2013-06-28
The proprotein convertase furin requires the pH gradient of the secretory pathway to regulate its multistep, compartment-specific autocatalytic activation. Although His-69 within the furin prodomain serves as the pH sensor that detects transport of the propeptide-enzyme complex to the trans-Golgi network, where it promotes cleavage and release of the inhibitory propeptide, a mechanistic understanding of how His-69 protonation mediates furin activation remains unclear. Here we employ biophysical, biochemical, and computational approaches to elucidate the mechanism underlying the pH-dependent activation of furin. Structural analyses and binding experiments comparing the wild-type furin propeptide with a nonprotonatable His-69 → Leu mutant that blocks furin activation in vivo revealed protonation of His-69 reduces both the thermodynamic stability of the propeptide as well as its affinity for furin at pH 6.0. Structural modeling combined with mathematical modeling and molecular dynamic simulations suggested that His-69 does not directly contribute to the propeptide-enzyme interface but, rather, triggers movement of a loop region in the propeptide that modulates access to the cleavage site and, thus, allows for the tight pH regulation of furin activation. Our work establishes a mechanism by which His-69 functions as a pH sensor that regulates compartment-specific furin activation and provides insights into how other convertases and proteases may regulate their precise spatiotemporal activation.
The Mechanism by Which a Propeptide-encoded pH Sensor Regulates Spatiotemporal Activation of Furin*
Williamson, Danielle M.; Elferich, Johannes; Ramakrishnan, Parvathy; Thomas, Gary; Shinde, Ujwal
2013-01-01
The proprotein convertase furin requires the pH gradient of the secretory pathway to regulate its multistep, compartment-specific autocatalytic activation. Although His-69 within the furin prodomain serves as the pH sensor that detects transport of the propeptide-enzyme complex to the trans-Golgi network, where it promotes cleavage and release of the inhibitory propeptide, a mechanistic understanding of how His-69 protonation mediates furin activation remains unclear. Here we employ biophysical, biochemical, and computational approaches to elucidate the mechanism underlying the pH-dependent activation of furin. Structural analyses and binding experiments comparing the wild-type furin propeptide with a nonprotonatable His-69 → Leu mutant that blocks furin activation in vivo revealed protonation of His-69 reduces both the thermodynamic stability of the propeptide as well as its affinity for furin at pH 6.0. Structural modeling combined with mathematical modeling and molecular dynamic simulations suggested that His-69 does not directly contribute to the propeptide-enzyme interface but, rather, triggers movement of a loop region in the propeptide that modulates access to the cleavage site and, thus, allows for the tight pH regulation of furin activation. Our work establishes a mechanism by which His-69 functions as a pH sensor that regulates compartment-specific furin activation and provides insights into how other convertases and proteases may regulate their precise spatiotemporal activation. PMID:23653353
Three dimensional graphene transistor for ultra-sensitive pH sensing directly in biological media.
Ameri, Shideh Kabiri; Singh, Pramod K; Sonkusale, Sameer R
2016-08-31
In this work, pH sensing directly in biological media using three dimensional liquid gated graphene transistors is presented. The sensor is made of suspended network of graphene coated all around with thin layer of hafnium oxide (HfO2), showing high sensitivity and sensing beyond the Debye-screening limit. The performance of the pH sensor is validated by measuring the pH of isotonic buffered, Dulbecco's phosphate buffered saline (DPBS) solution, and of blood serum derived from Sprague-Dawley rat. The pH sensor shows high sensitivity of 71 ± 7 mV/pH even in high ionic strength media with molarities as high as 289 ± 1 mM. High sensitivity of this device is owing to suspension of three dimensional graphene in electrolyte which provides all around liquid gating of graphene, leading to higher electrostatic coupling efficiency of electrolyte to the channel and higher gating control of transistor channel by ions in the electrolyte. Coating graphene with hafnium oxide film (HfO2) provides binding sites for hydrogen ions, which results in higher sensitivity and sensing beyond the Debye-screening limit. The 3D graphene transistor offers the possibility of real-time pH measurement in biological media without the need for desaltation or sample preparation. Copyright © 2016 Elsevier B.V. All rights reserved.
Phenol red-silk tyrosine cross-linked hydrogels.
Sundarakrishnan, Aswin; Herrero Acero, Enrique; Coburn, Jeannine; Chwalek, Karolina; Partlow, Benjamin; Kaplan, David L
2016-09-15
Phenol red is a cytocompatible pH sensing dye that is commonly added to cell culture media, but removed from some media formulations due to its structural mimicry of estrogen. Phenol red free media is also used during live cell imaging, to avoid absorbance and fluorescence quenching of fluorophores. To overcome these complications, we developed cytocompatible and degradable phenol red-silk tyrosine cross-linked hydrogels using horseradish peroxidase (HRP) enzyme and hydrogen peroxide (H2O2). Phenol red added to silk during tyrosine crosslinking accelerated di-tyrosine formation in a concentration-dependent reaction. Phenol red diffusion studies and UV-Vis spectra of phenol red-silk tyrosine hydrogels at different pHs showed altered absorption bands, confirming entrapment of dye within the hydrogel network. LC-MS of HRP-reacted phenol red and N-acetyl-l-tyrosine reaction products confirmed covalent bonds between the phenolic hydroxyl group of phenol red and tyrosine on the silk. At lower phenol red concentrations, leak-proof hydrogels which did not release phenol red were fabricated and found to be cytocompatible based on live-dead staining and alamar blue assessments of encapsulated fibroblasts. Due to the spectral overlap between phenol red absorbance at 415nm and di-tyrosine fluorescence at 417nm, phenol red-silk hydrogels provide both absorbance and fluorescence-based pH sensing. With an average pKa of 6.8 and good cytocompatibiltiy, phenol red-silk hydrogels are useful for pH sensing in phenol red free systems, cellular microenvironments and bioreactors. Phenol red entrapped within hydrogels facilitates pH sensing in phenol red free environments. Leak-proof phenol red based pH sensors require covalent binding techniques, but are complicated due to the lack of amino or carboxyl groups on phenol red. Currently, there is no simple, reliable technique to covalently link phenol red to hydrogel matrices, for real-time pH sensing in cell culture environments. Herein, we take advantage of phenolic groups for covalent linkage of phenol red to silk tyrosine in the presence of HRP and H2O2. The novelty of the current system stems from its simplicity and the use of silk protein to create a cytocompatible, degradable sensor capable of real-time pH sensing in cell culture microenvironments. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A High-Sensitivity Potentiometric 65-nm CMOS ISFET Sensor for Rapid E. coli Screening.
Jiang, Yu; Liu, Xu; Dang, Tran Chien; Huang, Xiwei; Feng, Hao; Zhang, Qing; Yu, Hao
2018-04-01
Foodborne bacteria, inducing outbreaks of infection or poisoning, have posed great threats to food safety. Potentiometric sensors can identify bacteria levels in food by measuring medium's pH changes. However, most of these sensors face the limitation of low sensitivity and high cost. In this paper, we developed a high-sensitivity ion-sensitive field-effect transistor sensor. It is small sized, cost-efficient, and can be massively fabricated in a standard 65-nm complementary metal-oxide-semiconductor process. A subthreshold pH-to-time-to-voltage conversion scheme was proposed to improve the sensitivity. Furthermore, design parameters, such as chemical sensing area, transistor size, and discharging time, were optimized to enhance the performance. The intrinsic sensitivity of passivation membrane was calculated as 33.2 mV/pH. It was amplified to 123.8 mV/pH with a 0.01-pH resolution, which greatly exceeded 6.3 mV/pH observed in a traditional source-follower based readout structure. The sensing system was applied to Escherichia coli (E. coli) detection with densities ranging from 14 to 140 cfu/mL. Compared to the conventional direct plate counting method (24 h), more efficient sixfold smaller screening time (4 h) was achieved to differentiate samples' E. coli levels. The demonstrated portable, time-saving, and low-cost prescreen system has great potential for food safety detection.
Abouzar, M H; Poghossian, A; Razavi, A; Williams, O A; Bijnens, N; Wagner, P; Schöning, M J
2009-01-01
The feasibility of a capacitive field-effect EDIS (electrolyte-diamond-insulator-semiconductor) platform for multi-parameter sensing is demonstrated by realising EDIS sensors with an O-terminated nanocrystalline-diamond (NCD) film as transducer material for the detection of pH and penicillin concentration as well as for the label-free electrical monitoring of adsorption and binding of charged macromolecules, like polyelectrolytes. The NCD films were grown on p-Si-SiO(2) substrates by microwave plasma-enhanced chemical vapour deposition. To obtain O-terminated surfaces, the NCD films were treated in an oxidising medium. The NCD-based field-effect sensors have been characterised by means of constant-capacitance method. The average pH sensitivity of the O-terminated NCD film was 40 mV/pH. A low detection limit of 5 microM and a high penicillin G sensitivity of 65-70 mV/decade has been obtained for an EDIS penicillin biosensor with the adsorptively immobilised enzyme penicillinase. Alternating potential changes, having tendency to decrease with increasing the number of adsorbed polyelectrolyte layers, have been observed after the layer-by-layer deposition of polyelectrolyte multilayers, using positively charged PAH (poly (allylamine hydrochloride)) and a negatively charged PSS (poly (sodium 4-styrene sulfonate)) as a model system. The response mechanism of the developed EDIS sensors is discussed.
Shi, Peng; Liu, Zhen; Dong, Kai; Ju, Enguo; Ren, Jinsong; Du, Yingda; Li, Zhengqiang; Qu, Xiaogang
2014-10-01
Herein, we design a "sense-act-treat" system via the combination of a ratiometric pH sensor with a therapeutic gold nanocage. Our design could "sense" the tumor through two-state switching of fluorescence and further provide chemotherapy and hyperthermia for "treating" the tumor, showing the potential for future biomedical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent developments in water quality monitoring for Space Station reclaimed wastewaters
NASA Technical Reports Server (NTRS)
Small, John W.; Verostko, Charles E.; Linton, Arthur T.; Burchett, Ray
1987-01-01
This paper discusses the recent developments in water quality monitoring for Space Station reclaimed wastewaters. A preprototype unit that contains an ultraviolet absorbance organic carbon monitor integrated with pH and conductivity sensors is presented. The preprototype has provisions for automated operation and is a reagentless flow-through system without any gas/liquid interfaces. The organic carbon monitor detects by utraviolet absorbance the organic impurities in reclaimed wastewater which may be correlated to the organic carbon content of the water. A comparison of the preprototype organic carbon detection values with actual total organic carbon measurements is presented. The electrolyte double junction concept for the pH sensor and fixed electrodes for both the pH and conductivity sensors are discussed. In addition, the development of a reagentless organic carbon analyzer that incorporates ultraviolet oxidation and infrared detection is presented. Detection sensitivities, hardware development, and operation are included.
Yeo, Jin-Ho; Lee, Sung-Gap; Jo, Ye-Won; Jung, Hye-Rin
2015-11-01
We fabricated electrolyte-dielectric-metal (EDM) device incorporating a high-k Al2O3 sensing membrane from a porous anodic aluminum oxide (AAO) using a two step anodizing process for pH sensors. In order to change the properties of the AAO template, the crystallizing temperature was varied from 400 degrees C to 700 degrees C over 2 hours. The structural properties were observed by field emission scanning electron microscopy (FE-SEM). The pH sensitivity increased with an increase in the crystallizing temperature from 400 degrees C to 600 degrees C. However at 700 degrees C, deformation occurred. The porous AAO sensor with a crystallizing temperature of 600 degrees C displayed the good sensitivity and long-term stability and the values were 55.7 mV/pH and 0.16 mV/h, respectively.
NASA Astrophysics Data System (ADS)
Santana-Casiano, J. M.; González-Dávila, M.; Fraile-Nuez, E.; Santana-González, C.; Baker, E. T.; Resing, J. A.; Walker, S. L.
2016-12-01
The detection of activity from low-temperature hydrothermal vents, where the increase in temperature is not evident, requires the utilization of alternative sensors that respond to emissions of certain chemical species. The character of both reduced and acid fluids in the volcanic emissions in the El Hierro submarine volcano allowed us to detect anomalies related with changes in the chemical potential and the proton concentration using ORP and pH sensors, respectively. Tow-yos with these sensors provided the approximate locations of the emissions plotting δ(ORP)/δt and ΔpH versus the latitude or longitude. The ORP sensor responds very quickly to the presence of reduced chemicals in the water column. The magnitude of this change is examined by the time derivative of ORP, δ(ORP)/δt. For pH changes, ΔpH, the mean pH for each depth at a reference station in an area not affected by the vent emission is subtracted from each point measured near the volcanic edifice. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to apply CTD-pH-ORP tow-yo methodology and to study the effect of CO2 emission on the seawater carbonate system, the global carbon flux, and local ocean acidification. Detailed surveys of the volcanic edifice were carried out during VULCANO 0314 and VULCANA0615 cruises using several CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. CTD-pH-ORP yo-yo studies were also conducted that included discrete sampling for carbonate system parameters and total dissolved Fe(II), TDFe(II). The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d-1and increases the acidity above the volcano by 20%. From the yo-yo studies important anomalies in both pHT and TDFe(II) were observed. The increased TDFe(II) concentrations and the low associated pHT values may be acting as an important fertilization event in the seawater around the volcano at the Island of El Hierro providing optimal conditions for the regeneration of the area.
Baliyan, Anjli; Usha, Sruthi Prasood; Gupta, Banshi D; Gupta, Rani; Sharma, Enakshi Khular
2017-10-01
A label-free technique for the detection of triacylglycerides by a localized surface plasmon resonance (LSPR)-based biosensor is demonstrated. An LSPR-based fiber-optic sensor probe is fabricated by immobilizing lipase enzyme on silver nanoparticles (Ag-NPs) coated on an unclad segment of a plastic clad optical fiber. The size and shape of nanoparticles were characterized by high-resolution transmission electron microscopy and UV-visible spectroscopy. The peak absorbance wavelength changes with concentration of triacylglycerides surrounding the sensor probe, and sensitivity is estimated from shift in the peak absorbance wavelength as a function of concentration. The fabricated sensor was characterized for the concentration of triacylglyceride solution in the range 0 to 7 mM. The sensor shows the best sensitivity at a temperature of 37°C and pH 7.4 of the triacylglycerides emulsion with a response time of 40 s. A sensitivity of 28.5 nm/mM of triacylglyceride solution is obtained with a limit of detection of 0.016 mM in the entire range of triacylglycerides. This compact biosensor shows good selectivity, stability, and reproducibility in the entire physiological range of triacylglycerides and is well-suited to real-time online monitoring and remote sensing. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
A Novel Sensor for Monitoring of Iron(III) Ions Based on Porphyrins
Vlascici, Dana; Fagadar-Cosma, Eugenia; Popa, Iuliana; Chiriac, Vlad; Gil-Agusti, Mayte
2012-01-01
Three A3B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10−7–1 × 10−1 M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples. PMID:22969395
NASA Astrophysics Data System (ADS)
Baliyan, Anjli; Usha, Sruthi Prasood; Gupta, Banshi D.; Gupta, Rani; Sharma, Enakshi Khular
2017-10-01
A label-free technique for the detection of triacylglycerides by a localized surface plasmon resonance (LSPR)-based biosensor is demonstrated. An LSPR-based fiber-optic sensor probe is fabricated by immobilizing lipase enzyme on silver nanoparticles (Ag-NPs) coated on an unclad segment of a plastic clad optical fiber. The size and shape of nanoparticles were characterized by high-resolution transmission electron microscopy and UV-visible spectroscopy. The peak absorbance wavelength changes with concentration of triacylglycerides surrounding the sensor probe, and sensitivity is estimated from shift in the peak absorbance wavelength as a function of concentration. The fabricated sensor was characterized for the concentration of triacylglyceride solution in the range 0 to 7 mM. The sensor shows the best sensitivity at a temperature of 37°C and pH 7.4 of the triacylglycerides emulsion with a response time of 40 s. A sensitivity of 28.5 nm/mM of triacylglyceride solution is obtained with a limit of detection of 0.016 mM in the entire range of triacylglycerides. This compact biosensor shows good selectivity, stability, and reproducibility in the entire physiological range of triacylglycerides and is well-suited to real-time online monitoring and remote sensing.
Aswini, K K; Vinu Mohan, A M; Biju, V M
2016-08-01
Theophylline is an inexpensive drug employed in asthma and chronic obstructive pulmonary disorder medications and is toxic at higher concentration. The development of a molecularly imprinted polymer based theophylline electrochemical sensor on glassy carbon electrode by the electropolymerization of 4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid is being discussed in this work. The MIP modification enhances the theophylline recognition ability and the electron transfer kinetics of the bare electrode. The parameters, controlling the performance of the imprinted polymer based sensor, like number of electropolymerization cycles, composition of the pre-polymerization mixture, pH and immersion time were investigated and optimized. The interaction energy and the most stable conformation of the template-monomer complex in the pre-polymerization mixture were determined computationally using ab initio calculations based on density functional theory. The amperometric measurements showed that the developed sensor has a method detection limit of 0.32μM for the dynamic range of 0.4 to 17μM, at optimized conditions. The transducer possesses appreciable selectivity in the presence of structurally similar interferents such as theobromine, caffeine and doxofylline. The developed sensor showed remarkable stability and reproducibility and was also successfully employed in theophylline detection from commercially available tablets. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Saleh, Sayed M.; Ali, Reham; Ali, Ibrahim A. I.
2017-08-01
In this work, a novel optical fluoro-chemisensor was designed and synthesized for copper (II) ions detection. The sensor film is created by embedded N,N-Bis(2-hydroxo-5-bromobenzyl)ethylenediamine in poly vinyl chloride (PVC) film in presence of dioctyl phthalate (DOP) as plasticizer. The receptor Schiff base reveals "off-on" mode with high selectivity, significant sensitivity to Cu(II) ions. The selectivity of optical sensor for Cu(II) ions is the result of chelation enhanced fluorescence (CHEF). The optimal conditions of pH and response time at which higher efficiency of sensor film is performed was found to be 6.8 and 2.48 min. The possible interference of other metal ions in solution was examined in presence of different types of metal ions. This film shows high selectivity and ultra-sensitivity with low detection limit LOD (1.1 × 10- 8 M). Thus, these considerable properties make it viable to monitor copper metal ions within very low concentration range (0-15 × 10- 6 M Cu(II)) and highly selective even in the presence of different types of metal ions. The sensor reversibility was achieved by utilizing EDTA solution with concentration of 0.1 M solution.
Genetically encoded sensors and fluorescence microscopy for anticancer research
NASA Astrophysics Data System (ADS)
Zagaynova, Elena V.; Shirmanova, Marina V.; Sergeeva, Tatiana F.; Klementieva, Natalia V.; Mishin, Alexander S.; Gavrina, Alena I.; Zlobovskay, Olga A.; Furman, Olga E.; Dudenkova, Varvara V.; Perelman, Gregory S.; Lukina, Maria M.; Lukyanov, Konstantin A.
2017-02-01
Early response of cancer cells to chemical compounds and chemotherapeutic drugs were studied using novel fluorescence tools and microscopy techniques. We applied confocal microscopy, two-photon fluorescence lifetime imaging microscopy and super-resolution localization-based microscopy to assess structural and functional changes in cancer cells in vitro. The dynamics of energy metabolism, intracellular pH, caspase-3 activation during staurosporine-induced apoptosis as well as actin cytoskeleton rearrangements under chemotherapy were evaluated. We have showed that new genetically encoded sensors and advanced fluorescence microscopy methods provide an efficient way for multiparameter analysis of cell activities
Graphene Electronic Device Based Biosensors and Chemical Sensors
NASA Astrophysics Data System (ADS)
Jiang, Shan
Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through pi-pi stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their practical functionality in complex biological systems. In the last part of my thesis, I demonstrate the construction of few-layer molybdenum disulfide (MoS2) based field-effect transistor (FET) device for highly sensitive detection of Hg2+ ion in aquatic solutions. The detection of mercury in aquatic environment is of great importance because mercury is an environment pollutant with severe toxicity. High binding affinity between mercury and sulfur makes MoS2 a promising candidate for mercury sensing. Our studies demonstrate that MoS2 sensors can selectively respond to Hg2+ ion with a detection limit of 30 pM. This MoS2 FET based mercury sensor promises great potential for highly sensitive, label-free, low-cost, fast and non-aggressive detection of mercury in aquatic environment.
Long period fiber grating based sensor for the detection of triacylglycerides.
Baliyan, Anjli; Sital, Shivani; Tiwari, Umesh; Gupta, Rani; Sharma, Enakshi K
2016-05-15
In this paper, stable, label free enzyme based sensor using long period fiber grating (LPG) is described for the detection of triacylglycerides. A stable covalent binding technique for lipase enzyme immobilization on an optical fiber is reported. An active and stable attachment of the functional group of the enzyme on the fiber surface is achieved using this method. Enzyme immobilization is confirmed by Scanning Electron Microscopy (SEM) and Raman Spectroscopy. The stability is confirmed by lipase p-nitrophenyl palmitate (PNP) assay. In contrast to widely used amperometric based biosensor, where a number of enzymes are required, only one enzyme, namely, lipase is required in our sensor. The sensor shows optimum response within one minute at a temperature of 37°C and pH of 7.4. The sensor is based on the shift in resonance wavelength of the LPG transmission spectrum due to the interaction of triacylglycerides with the enzyme. The biosensor is highly specific towards triacylglycerides and is unaffected by the presence of many other interfering substances in serum. Interaction between the bio-molecules and the long period grating surface is also modeled theoretically using a four layer model for the LPG fiber with the bio-recognition layer and the results obtained are consistent with experimentally obtained results. The sensor shows a high sensitivity of 0.5 nm/mM and a low detection limit of 17.71 mg/dl for the physiological range of triacylglycerides in human blood. Copyright © 2015 Elsevier B.V. All rights reserved.
Rahman, Md Aminur; Park, Deog-Soo; Shim, Yoon-Bo
2004-07-15
Amperometric choline biosensors were fabricated by the covalent immobilization of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO/horseradish peroxidase (ChO/HRP) onto poly-5,2':5',2"-terthiophene-3'-carboxylic acid (poly-TTCA) modified electrodes (CPMEs). A sensor modified with ChO utilized the oxidation process of enzymatically generated H(2)O(2) in a choline solution at +0.6V. The other one modified with ChO/HRP utilized the reduction process of H(2)O(2) in a choline solution at -0.2V. Experimental parameters affecting the sensitivity of sensors, such as pH, applied potential, and temperature were optimized. A performance comparison of two sensors showed that one based on ChO/HRP/CPME had a linear range from 1.0 x 10(-6) to 8.0 x 10(-5) M and the other based on ChO/CPME from 1.0 x 10(-6) to 5.0 x 10(-5) M. The detection limits for choline employing ChO/HRP/CPME and ChO/CPME were determined to be about 1.0 x 10(-7) and 4.0 x 10(-7) M, respectively. The response time of sensors was less than 5s. Sensors showed good selectivity to interfering species. The long-term storage stability of the sensor based on ChO/HRP/CPME was longer than that based on ChO/CPME.
Development of an optical Zn 2+ probe based on a single fluorescent protein
Qin, Yan; Sammond, Deanne W.; Braselmann, Esther; ...
2016-07-28
Various fluorescent probes have been developed to reveal the biological functions of intracellular labile Zn 2+. Here we present Green Zinc Probe (GZnP), a novel genetically encoded Zn 2+ sensor design based on a single fluorescent protein (single-FP). The GZnP sensor is generated by attaching two zinc fingers (ZF) of the transcription factor Zap1 (ZF1 and ZF2) to the two ends of a circularly permuted green fluorescent protein (cpGFP). Formation of ZF folds induces interaction between the two ZFs, which induces a change in the cpGFP conformation, leading to an increase in fluorescence. A small sensor library is created tomore » include mutations in the ZFs, cpGFP and linkers between ZF and cpGFP to improve signal stability, sensor brightness and dynamic range based on rational protein engineering and computational design by Rosetta. Using a cell-based library screen, we identify sensor GZnP1 which demonstrates a stable maximum signal, decent brightness (QY = 0.42 at apo state), as well as specific and sensitive response to Zn 2+ in HeLa cells (F max/F min = 2.6, K d = 58 pM, pH 7.4). The subcellular localizing sensors mito-GZnP1 (in mitochondria matrix) and Lck-GZnP1 (on plasma membrane) display sensitivity to Zn 2+ (F max/F min = 2.2). In conclusion, this sensor design provides freedom to be used in combination with other optical indicators and optogenetic tools for simultaneous imaging and advancing our understanding of cellular Zn 2+ function.« less
Fiber Optic Sensor for Real-Time Sensing of Silica Scale Formation in Geothermal Water.
Okazaki, Takuya; Orii, Tatsuya; Ueda, Akira; Ozawa, Akiko; Kuramitz, Hideki
2017-06-13
We present a novel fiber optic sensor for real-time sensing of silica scale formation in geothermal water. The sensor is fabricated by removing the cladding of a multimode fiber to expose the core to detect the scale-formation-induced refractive index change. A simple experimental setup was constructed to measure the transmittance response using white light as a source and a spectroscopy detector. A field test was performed on geothermal water containing 980 mg/L dissolved silica at 93 °C in Sumikawa Geothermal Power Plant, Japan. The transmittance response of the fiber sensor decreased due to the formation of silica scale on the fiber core from geothermal water. An application of this sensor in the evaluation of scale inhibitors was demonstrated. In geothermal water containing a pH modifier, the change of transmittance response decreased with pH decrease. The effectiveness of a polyelectrolyte inhibitor in prevention of silica scale formation was easily detectable using the fiber sensor in geothermal water.
Novel Anaerobic Wastewater Treatment System for Energy Generation at Forward Operating Bases
2016-08-01
every 5 minutes). Other automation features that come with the Bioflo include wet/dry level sensors, dissolved oxygen , pH, temperature and mixing...38 3.4.1 Operation at mesophilic temperature (35oC...38 ERDC/CERL TR-16-13 iv 3.4.2 Operation at ambient temperature (20 oC) ............................................................. 46
Elgetti Brodersen, Kasper; Koren, Klaus; Lichtenberg, Mads; Kühl, Michael
2016-07-01
Seagrasses can modulate the geochemical conditions in their immediate rhizosphere through the release of chemical compounds from their below-ground tissue. This is a vital chemical defence mechanism, whereby the plants detoxify the surrounding sediment. Using novel nanoparticle-based optical O2 and pH sensors incorporated in reduced and transparent artificial sediment, we investigated the spatio-temporal dynamics of pH and O2 within the entire rhizosphere of Zostera marina L. during experimental manipulations of light and temperature. We combined such measurements with O2 microsensor measurements of the photosynthetic productivity and respiration of seagrass leaves. We found pronounced pH and O2 microheterogeneity within the immediate rhizosphere of Z. marina, with higher below-ground tissue oxidation capability and rhizoplane pH levels during both light exposure of the leaf canopy and elevated temperature, where the temperature-mediated stimuli of biogeochemical processes seemed to predominate. Low rhizosphere pH microenvironments appeared to correlate with plant-derived oxic microzones stimulating local sulphide oxidation and thus driving local proton generation, although the rhizoplane pH levels generally where much higher than the bulk sediment pH. Our data show that Z. marina can actively alter its rhizosphere pH microenvironment alleviating the local H2 S toxicity and enhancing nutrient availability in the adjacent sediment via geochemical speciation shift. © 2016 John Wiley & Sons Ltd.
Liu, Weilu; Li, Haifeng; Yu, Shangmin; Zhang, Jiaxing; Zheng, Weihua; Niu, Liting; Li, Gengen
2018-05-01
In this work, we reported the synthesis of 3, 6-diamino-9-ethylcarbazole and its application as a new monomer for preparation of molecularly imprinted polymer (MIP) electrochemical sensor. The as prepared MIP sensor exhibited ultrahigh sensitivity and selectivity for the detection of 17-β-estradiol in attomolar levels (1 × 10 -18 molL -1 ). The sensor works by detecting the change of the interfacial impedance that is derived from recognition of 17-β-estradiol on the MIP layer. The MIP sensor based on 3, 6-diamino-9-ethylcarbazole monomer revealed better performance than that of unmodified carbazole monomer. The monomer/template ratio, electropolymerization scanning cycles, and the incubation pH values were optimised in order to obtain the best detection efficiency. Under the optimised condition, the MIP sensor exhibits a wide linear range from 1aM to 10μM (1 × 10 -18 ̶ 1 × 10 -5 molL -1 ). A low detection limit of 0.36aM (3.6 × 10 -19 molL -1 ) and a good selectivity towards structurally similar compounds were obtained. The proposed MIP sensor also exhibits long-term stability and applicability in human serum samples. These advantages enabled this MIP sensor to be a promising alternative of electrochemical sensor and may be extended to detection of other endogenous compounds. Copyright © 2018 Elsevier B.V. All rights reserved.