Sample records for ph values due

  1. Near-infrared noninvasive spectroscopic determination of pH

    DOEpatents

    Alam, Mary K.; Robinson, Mark R.

    1998-08-11

    Methods and apparatus for, preferably, determining noninvasively and in vitro pH in a human. The non-invasive method includes the steps of: generating light at three or more different wavelengths in the range of 1000 nm to 2500 nm; irradiating blood containing tissue; measuring the intensities of the wavelengths emerging from the blood containing tissue to obtain a set of at least three spectral intensities v. wavelengths; and determining the unknown values of pH. The determination of pH is made by using measured intensities at wavelengths that exhibit change in absorbance due to histidine titration. Histidine absorbance changes are due to titration by hydrogen ions. The determination of the unknown pH values is performed by at least one multivariate algorithm using two or more variables and at least one calibration model. The determined pH values are within the physiological ranges observed in blood containing tissue. The apparatus includes a tissue positioning device, a source, at least one detector, electronics, a microprocessor, memory, and apparatus for indicating the determined values.

  2. Computer simulation of immobilized pH gradients at acidic and alkaline extremes - A quest for extended pH intervals

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Bier, Milan; Righetti, Pier Giorgio

    1986-01-01

    Computer simulations of the concentration profiles of simple biprotic ampholytes with Delta pKs 1, 2, and 3, on immobilized pH gradients (IPG) at extreme pH values (pH 3-4 and pH 10-11) show markedly skewed steady-state profiles with increasing kurtosis at higher Delta pK values. Across neutrality, all the peaks are symmetric irrespective of their Delta pK values, but they show very high contribution to the conductivity of the background gel and significant alteration of the local buffering capacity. The problems of skewness, due to the exponential conductivity profiles at low and high pHs, and of gel burning due to a strong electroosmotic flow generated by the net charges in the gel matrix, also at low and high pHs, are solved by incorporating in the IPG gel a strong viscosity gradient. This is generated by a gradient of linear polyacrylamide which is trapped in the gel by the polymerization process.

  3. Combined effect of pH and heating conditions on the physical properties of Alaska pollock surimi gels.

    PubMed

    Lee, Myeong Gi; Yoon, Won Byong; Park, Jae W

    2017-06-01

    Physical properties of Alaska pollock surimi paste were investigated as affected by pH (4.0 and 6.0-10.0) and heating conditions (slow and fast). The highest values of gel strength and deformability, as shown by breaking force and penetration distance, were obtained at pH 7.5-8.0, while the lowest values were at pH 10.0 followed by pH 6.0 and pH 6.5, respectively. Two-step slow heating process increased the breaking strength value nearly two times higher than one-step fast heating. The effect of pH was strikingly high at pH 7.5 when gels were prepared using 2-step heating, indicating the pH dependence of endogenous transglutaminase. However, the highest gel strength was obtained at pH 8.0 when gels were prepared in fast heating. Whiteness value (L - 3b*) increased significantly (p < .05) as pH increased from 6.0 to 6.5, but thereafter decreased significantly (p < .05) as pH increased. L* value (lightness) and b* value (yellowness) continuously decreased as the pH is shifted from 6.0 to 10. Fast heated gels showed the lowest yellowness, resulting in whiter appearance, probably due to the effect of reduced browning reaction. The uniqueness of this study was to measure the combined effect of pH and heating conditions on the gel texture and color. There were various studies dealing with pH or heating conditions independently. As the primary character for surimi seafood is gel texture and color. The highest values of gel strength and deformability, as shown by breaking force and penetration distance, were obtained at pH 7.5-8.0, while the lowest values were at pH 10.0 followed by pH 6.0 and pH 6.5, respectively. Two-step slow heating process increased the breaking strength value nearly two times higher than one-step fast heating. Whiteness value (L - 3b*) increased significantly as pH increased from 6.0 to 6.5, but thereafter decreased significantly as pH increased. L* value (lightness) and b* value (yellowness) continuously decreased as the pH is shifted from 6.0 to 10. Fast heated gels showed the lowest yellowness, resulting in whiter appearance. © 2016 Wiley Periodicals, Inc.

  4. Potassium extrusion by the moderately halophilic and alkaliphilic methanogen methanolobus taylorii GS-16 and homeostasis of cytosolic pH.

    PubMed Central

    Ni, S; Boone, J E; Boone, D R

    1994-01-01

    Methanolobus taylorii GS-16, a moderately halophilic and alkaliphilic methanogen, grows over a wide pH range, from 6.8 to 9.0. Cells suspended in medium with a pH above 8.2 reversed their transmembrane pH gradient (delta pH), making their cytosol more acidic than the medium. The decreased energy in the proton motive force due to the reversed delta pH was partly compensated by an increased electric membrane potential (delta psi). The cytosolic acidification by M. taylorii at alkaline pH values was accompanied by K+ extrusion. The cytosolic K+ concentration was 110 mM in cells suspended at pH 8.7, but it was 320 mM in cells suspended at neutral pH values. High external K+ concentrations (210 mM or higher) inhibited the growth of M. taylorii at alkaline pH values, perhaps by preventing K+ extrusion. Cells suspended at pH 8.5 and 300 mM external K+ failed to acidify their cytosol. The key observation indicative of the involvement of K+ transport in cytosolic acidification was that valinomycin (0.8 microM), a K+ uniporter, inhibited the growth of M. taylorii only at alkaline pH values. Experiments with resting cells indicated that at alkaline pH values valinomycin uncoupled catabolic reactions from ATP synthesis. Thus, K+/H+ antiport activity was proposed to account for the K+ extrusion and the uncoupling effect of valinomycin at alkaline pH values. Such antiport activity was demonstrated by the sharp drop in pH of the bulk medium of the cell suspension upon the addition of 0.1 M KCl. The antiporter appeared to be active only at alkaline pH values, which was in accordance with a possible role in pH homeostasis by M. taylorii growing at alkaline pH values. PMID:7961499

  5. Cancer Survival Estimates Due to Non-Uniform Loss to Follow-Up and Non-Proportional Hazards

    PubMed

    K M, Jagathnath Krishna; Mathew, Aleyamma; Sara George, Preethi

    2017-06-25

    Background: Cancer survival depends on loss to follow-up (LFU) and non-proportional hazards (non-PH). If LFU is high, survival will be over-estimated. If hazard is non-PH, rank tests will provide biased inference and Cox-model will provide biased hazard-ratio. We assessed the bias due to LFU and non-PH factor in cancer survival and provided alternate methods for unbiased inference and hazard-ratio. Materials and Methods: Kaplan-Meier survival were plotted using a realistic breast cancer (BC) data-set, with >40%, 5-year LFU and compared it using another BC data-set with <15%, 5-year LFU to assess the bias in survival due to high LFU. Age at diagnosis of the latter data set was used to illustrate the bias due to a non-PH factor. Log-rank test was employed to assess the bias in p-value and Cox-model was used to assess the bias in hazard-ratio for the non-PH factor. Schoenfeld statistic was used to test the non-PH of age. For the non-PH factor, we employed Renyi statistic for inference and time dependent Cox-model for hazard-ratio. Results: Five-year BC survival was 69% (SE: 1.1%) vs. 90% (SE: 0.7%) for data with low vs. high LFU respectively. Age (<45, 46-54 & >54 years) was a non-PH factor (p-value: 0.036). However, survival by age was significant (log-rank p-value: 0.026), but not significant using Renyi statistic (p=0.067). Hazard ratio (HR) for age using Cox-model was 1.012 (95%CI: 1.004 -1.019) and the same using time-dependent Cox-model was in the other direction (HR: 0.997; 95% CI: 0.997- 0.998). Conclusion: Over-estimated survival was observed for cancer with high LFU. Log-rank statistic and Cox-model provided biased results for non-PH factor. For data with non-PH factors, Renyi statistic and time dependent Cox-model can be used as alternate methods to obtain unbiased inference and estimates. Creative Commons Attribution License

  6. Concentration-independent pH detection with a luminescent dimetallic Eu(III)-based probe.

    PubMed

    Moore, Jeremiah D; Lord, Richard L; Cisneros, G Andrés; Allen, Matthew J

    2012-10-24

    A pH-responsive, luminescent, dimetallic Eu(III)-containing complex has been synthesized and exhibits a unique mechanism of response. The luminescence-decay rate of the complex is slow, due to a lack of water molecules coordinated to the Eu(III) ions. However, the luminescence-decay rate decreases with increasing pH over a biologically relevant range of 4-8. Physical characterization and computational analysis suggest that the pH response is due to protonation of a bridging alkoxide at lower pH values. Modulation of the luminescence-decay rate is independent from the concentration of Eu(III), which we expect to be useful in the non-invasive imaging of in vivo pH.

  7. Spectral investigation of somatotropin for different pH values

    NASA Astrophysics Data System (ADS)

    Otero de Joshi, Virginia; Gil, Herminia; Contreras, Silvia; Joshi, Narahari V.; Hernandez, Luis

    1996-04-01

    Spectral investigations of absorbance in deep ultra-violet region (from 200 nm to 350 nm) of (STM) was carried out for different pH values. On the high energy side the peak is located at 195 nm which is generally attributed to peptide bonds. This peak, as expected, does not show any shift with pH value (4.3 to 10.8). A rather broad peak is spread in the region from 200 nm to 240 nm which could be the superposition of the peaks corresponding to the absorption due to (alpha) helix and (beta) structure. This peak shows a red shift as pH value increases. The same hormone was glycated by a conventional method and the process was estimated with the absorption spectra. The results are discussed in the light of nonenzymatic glycation. It was found that glycation mucus somatotropin resistant towards the denaturation process.

  8. Lead forms in urban turfgrass and forest soils as related to organic matter content and pH

    Treesearch

    Ian D. Yesilonis; Bruce R. James; Richard V. Pouyat; Bahram Momen

    2008-01-01

    Soil pH may influence speciation and extractability of Pb, depending on type of vegetation in urban soil environments. We investigated the relationship between soil pH and Pb extractability at forest and turf grass sites in Baltimore, Maryland. Our two hypotheses were: (1) due to lower pH values in forest soils, more Pb will be in exchangeable forms in forested than in...

  9. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Hanschen, Franziska S.; Klopsch, Rebecca; Oliviero, Teresa; Schreiner, Monika; Verkerk, Ruud; Dekker, Matthijs

    2017-01-01

    Consumption of glucosinolate-rich Brassicales vegetables is associated with a decreased risk of cancer with enzymatic hydrolysis of glucosinolates playing a key role. However, formation of health-promoting isothiocyanates is inhibited by the epithiospecifier protein in favour of nitriles and epithionitriles. Domestic processing conditions, such as changes in pH value, temperature or dilution, might also affect isothiocyanate formation. Therefore, the influences of these three factors were evaluated in accessions of Brassica rapa, Brassica oleracea, and Arabidopsis thaliana. Mathematical modelling was performed to determine optimal isothiocyanate formation conditions and to obtain knowledge on the kinetics of the reactions. At 22 °C and endogenous plant pH, nearly all investigated plants formed nitriles and epithionitriles instead of health-promoting isothiocyanates. Response surface models, however, clearly demonstrated that upon change in pH to domestic acidic (pH 4) or basic pH values (pH 8), isothiocyanate formation considerably increases. While temperature also affects this process, the pH value has the greatest impact. Further, a kinetic model showed that isothiocyanate formation strongly increases due to dilution. Finally, the results show that isothiocyanate intake can be strongly increased by optimizing the conditions of preparation of Brassicales vegetables.

  10. Safety of tomatillos and products containing tomatillos canned by the water-bath canning method.

    PubMed

    McKee, L H; Remmenga, M D; Bock, M A

    1998-01-01

    Three studies were conducted to evaluate the safety of tomatillos and products containing tomatillos canned by the water-bath processing method. In the first study, plain tomatillos were processed for 25, 37.5, 50 and 62.5 min. In the second study, five tomatillo/onion combinations were prepared while five tomatillo/green chile combinations were prepared in the third study. pH evaluations were conducted to determine safety in all studies using pH 4.2 as the cut-off value. No differences in the pH of plain tomatillos were detected due to processing time. All jars of plain tomatillos had pH values below 4.1. All combinations of tomatillos/onions and tomatillos/green chile containing more than 50% tomatillo had pH values below the 4.2 cut-off value. Results of the three studies indicate (1) acidification of plain tomatillos is probably unnecessary for canning by the water-bath processing method and (2) combinations of acidic tomatillos and low-acid onions or green chile must contain more than 50% tomatillos to have a pH low enough for safe water-bath processing.

  11. Net alkalinity and net acidity 2: Practical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the initial alkalinity. Acidity calculated from the pH and dissolved metals concentrations, assuming equivalents of 2 per mole of Fe and Mn and 3 per mole of Al, was equivalent to that calculated based on complete aqueous speciation of FeII/FeIII. Despite changes in the pH, alkalinity, and metals concentrations, the Hot Acidities were comparable for fresh and most aged samples. A meaningful "net" acidity can be determined from a measured Hot Acidity or by calculation from the pH, alkalinity, and dissolved metals concentrations. The use of net alkalinity = (Alkalinitymeasured - Hot Aciditymeasured) to design mine drainage treatment can lead to systems with insufficient Alkalinity to neutralize metal and H+ acidity and is not recommended. The use of net alkalinity = -Hot Acidity titration is recommended for the planning of mine drainage treatment. The use of net alkalinity = (Alkalinitymeasured - Aciditycalculated) is recommended with some cautions. ?? 2005 Elsevier Ltd. All rights reserved.

  12. [Effects of dissolved oxygen and pH on Candida utilis batch fermentation of glutathione].

    PubMed

    Wei, Gong-Yuan; Li, Yin; Du, Guo-Cheng; Chen, Jian

    2003-11-01

    The effects of dissolved oxygen (DO) and pH on glutathione batch fermentation by Candida utilis WSH-02-08 in a 7 liters stirred fermentor were investigated. It was shown that DO concentration is an important factor in glutathione production. With the initial glucose concentration of 30 g/L and a 5 L/min air flow rate, and the agitation rate less than 250 r/min, the DO concentration was not sufficient to satisfy the oxygen requirement during the fermentation. With an agitation rate of more than 300 r/min, the cell growth and glutathione production were enhanced significantly, with the dry cell mass and glutathione production were 20% and 25% higher than that at 200 r/min. When C. utilis WSH 02-08 was cultivated in a batch process without pH control, cell growth and glutathione production were inhibited, likely due to a dramatic decrease in the pH. Intracellular glutathione leakages were observed when the pH was 1.5 or less. To assess the effect of pH on glutathione production, six batch processes controlled at pH 4.0, 4.5, 5.0, 5.5, 6.0 and 6.5 were conducted. The yield was highest at pH 5.5, when the dry cell mass and yield were 27% and 95% respectively higher than fermentation without pH control. The maximal intracellular glutathione content (2.15 %) was also achieved at the pH. To improve our understandings on the effect of pH on the batch glutathione production, a modified Logistic equation and Luedeking-Piret equation were used to simulate cell growth and glutathione production, respectively, under different pH. Based on the parameters obtained by the nonlinear estimation, kinetic analysis was performed to elucidate the effect of pH on the batch glutathione production. The process controlled at pH 5.5 was proven to be the best due to the higher value of K(I) (substrate inhibitory constant in the Logistic equation), lower value of a and higher value of beta (slope and intercept in the Luedeking-Piret equation, respectively).

  13. Determination of Acidity in Donor Milk.

    PubMed

    Escuder-Vieco, Diana; Vázquez-Román, Sara; Sánchez-Pallás, Juan; Ureta-Velasco, Noelia; Mosqueda-Peña, Rocío; Pallás-Alonso, Carmen Rosa

    2016-11-01

    There is no uniformity among milk banks on milk acceptance criteria. The acidity obtained by the Dornic titration technique is a widely used quality control in donor milk. However, there are no comparative data with other acidity-measuring techniques, such as the pH meter. The objective of this study was to assess the correlation between the Dornic technique and the pH measure to determine the pH cutoff corresponding to the Dornic degree limit value used as a reference for donor milk quality control. Fifty-two human milk samples were obtained from 48 donors. Acidity was measured using the Dornic method and pH meter in triplicate. Statistical data analysis to estimate significant correlations between variables was carried out. The Dornic acidity value that led to rejecting donor milk was ≥ 8 Dornic degrees (°D). In the evaluated sample size, Dornic acidity measure and pH values showed a statistically significant negative correlation (τ = -0.780; P = .000). A pH value of 6.57 corresponds to 8°D and of 7.12 to 4°D. Donor milk with a pH over 6.57 may be accepted for subsequent processing in the milk bank. Moreover, the pH measurement seems to be more useful due to certain advantages over the Dornic method, such as objectivity, accuracy, standardization, the lack of chemical reagents required, and the fact that it does not destroy the milk sample.

  14. Influence of pH for the determination of serum albumin by a dye-binding method in the presence of a detergent.

    PubMed

    Suzuki, Yuji

    2008-08-01

    In the dye-binding method, the absorbance increase caused by a protein error of a pH indicator is observed only in a restricted pH range. However, this pH range in the presence of a detergent has not yet been examined. Thus, the author investigated the pH (pH(UL)) where the absorbance increase becomes zero by a calculation based on the chemical equilibrium of a protein error of a pH indicator, and by experiments using four sulfonephthalein dyes. The pH(UL) value changed only with the detergent concentration, but did not change at all due to the dye, buffer solution or protein concentrations. Although the pH(UL) value was different according to the kind of dye used, it correlated well with the pK(D) values (dissociation constant) of BPB, BCG, BCP and BTB. The characteristics of pH(UL) in the reactions of the four dyes indicated good agreement with that obtained by a calculation.

  15. Precipitation and ultimate pH effect on chemical and gelation properties of protein prepared by isoelectric solubilization/precipitation process from pale, soft, exudative (PSE)-like chicken breast meat1.

    PubMed

    Zhao, X; Xing, T; Chen, X; Han, M-Y; Li, X; Xu, X-L; Zhou, G-H

    2017-05-01

    Pale, soft, exudative (PSE)-like chicken breast is considered deteriorated raw material in the poultry meat industry that has inferior processing ability. The chemical and gelation properties of PSE-like chicken breast meat paste were studied. These pastes were prepared by the pH adjustment method and protein isolation using the isoelectric solubilization/precipitation (ISP) process from PSE-like chicken meat. The ISP-isolated samples were solubilized at pH 11.0 and recovered at pH 5.5 and 6.2. The ultimate pH of the ISP-isolated protein and meat paste was adjusted to 6.2 and 7.0. The ultimate pH in this article referred to the final pH of the extracted protein and meat paste. Higher reactive sulfhydryl content and surface hydrophobicity were found in the precipitation at pH 6.2 than at pH 5.5. However, various ultimate pH values showed no significant influence on the surface hydrophobicity. The hardness of gel, as measured by textural profile analysis, was improved using 6.2 as the precipitation pH compared with pH 5.5. The viscoelastic modulus (G΄) of gel pastes prior to the thermal gelation was higher with ISP treatment. However, lower G΄ was seen after thermal gelation compared with the control. Dynamic rheological measurement demonstrated a different gel-forming mechanism for protein precipitated at pH values of 5.5 and 6.2 compared with the meat paste. The cooking loss showed that the recovered protein failed to form a gel with good water-retention capacity unless the ultimate pH was adjusted to 7.0. Gels made from protein extracted by the ISP method had higher yellowness and lower redness values, probably due to protein denaturation. Precipitation at pH 6.2 formed a harder gel with lower water-retention ability than that at pH 5.5, and this result was possibly due to higher surface hydrophobicity and S-S bridge formation. Overall, network characteristics of ISP-treated protein gels were strongly dependent on precipitation pH and ultimate pH. © 2016 Poultry Science Association Inc.

  16. Evaluation of Sorption Mechanism of Pb (II) and Ni (II) onto Pea (Pisum sativum) Peels.

    PubMed

    Haq, Atta Ul; Saeed, Muhammad; Anjum, Salma; Bokhari, Tanveer Hussain; Usman, Muhammad; Tubbsum, Saiqa

    2017-07-01

    The present study was carried out to know the sorption mechanism of Pb (II) and Ni (II) in aqueous solution using pea peels under the influence of sorbent dose, pH, temperature, initial metal ion concentration and contact time. SEM and FTIR were used for characterization of pea peels. The study showed that solution pH affects sorption process and the optimum pH for Pb (II) was 6.0 while for that of Ni (II) was 7.0. Pseudo-second order kinetic model was found to be the most suitable one to explain the kinetic data not only due to high value of R 2 (>0.99) but also due to the closeness of the experimental sorption capacity values to that of calculated sorption capacity values of pseudo second order kinetic model. It can be seen from the results that Freundlich isotherm explains well the equilibrium data (R 2 >0.99). Sorption capacity of pea peels was 140.84 and 32.36 for Pb (II) and Ni (II) mg g -1 respectively. The positive value of ΔH° and negative values of ΔG° suggest that sorption of Pb (II) and Ni (II) onto pea peels is an endothermic and spontaneous process respectively.

  17. Relations among rainstorm runoff, streamflow, pH, and metal concentrations, Summitville Mine area, upper Alamosa River basin, southwest Colorado, 1995-97

    USGS Publications Warehouse

    Rupert, Michael G.

    2001-01-01

    The upper Alamosa River Basin contains areas that are geochemically altered and have associated secondary sulfide mineralization. Occurring with this sulfide mineralization are copper, gold, and silver deposits that have been mined since the 1870's. Weathering of areas with sulfide mineralization produces runoff with anomalously low pH and high metal concentrations; mining activities exacerbate the condition. Summer rainstorms in the upper Alamosa River Basin produce a characteristic relation between streamflow and pH; streamflow suddenly increases and pH suddenly decreases (commonly by more than 1 pH unit). This report evaluates changes in pH in the upper Alamosa River Basin during July, August, and September 1995, 1996, and 1997 to examine possible adverse environmental effects due to rainstorm runoff. Ninety-three percent of the rainstorms occurring during 1995?97 produced runoff throughout the entire basin. Out of 54 storms, only 3 storms were isolated to the river reach upstream from the streamflow-gaging station Alamosa River above Wightman Fork, and only 1 storm was isolated to the river reach between the streamflow-gaging stations Alamosa River below Jasper and Alamosa River above Terrace Reservoir. Although most rainstorm runoff events occurred throughout the entire basin, pH changes were highest in parts of the basin that receive runoff from hydrothermally altered areas. The three principal altered areas within the basin are the Jasper, Stunner, and Summitville areas. Only limited mining occurred in the Stunner altered area, and yet significant decreases in pH values occur due to runoff from this area. Even after environmental restoration activities are completed at the Summitville Mine, the main stem of the Alamosa River may continue to be adversely affected by runoff from the Stunner and Jasper altered areas. A comparison of measured pH with Federal and State of Colorado water-quality standards and Toxicological Reference Values indicates pH was too low to support aquatic life in many parts of the basin for extended periods of time. Added stresses from sudden decreases in pH due to rainstorm runoff compound the adverse effects. Discharge of effluent from the Summitville Mine impoundment can significantly decrease pH in the Alamosa River downstream to Terrace Reservoir. A release of only 3 cubic feet per second from the impoundment decreased pH by at least 1 standard unit at all downstream sites. Low-flow years may pose a substantial risk to aquatic organisms within and downstream from Terrace Reservoir. During 1996, the basin had a low-flow year, and water storage and pool size of Terrace Reservoir were significantly reduced. The pH of water discharging from Terrace Reservoir was anomalously low during late August and September 1996, possibly due to geochemical interactions between sediment and the water column within the reservoir. In general, an inverse log-log relation exists between pH and the logarithm of dissolved metal concentrations, but the relations generally are not significant enough to confidently predict metal concentrations based upon measured pH values.

  18. Conditions of Mytilus edulis extracellular body fluids and shell composition in a pH-treatment experiment: Acid-base status, trace elements and δ11B

    NASA Astrophysics Data System (ADS)

    Heinemann, Agnes; Fietzke, Jan; Melzner, Frank; BöHm, Florian; Thomsen, JöRn; Garbe-SchöNberg, Dieter; Eisenhauer, Anton

    2012-01-01

    Mytilus edulis were cultured for 3 months under six different seawater pCO2 levels ranging from 380 to 4000 μatm. Specimen were taken from Kiel Fjord (Western Baltic Sea, Germany) which is a habitat with high and variable seawater pCO2 and related shifts in carbonate system speciation (e.g., low pH and low CaCO3 saturation state). Hemolymph (HL) and extrapallial fluid (EPF) samples were analyzed for pH and total dissolved inorganic carbon (CT) to calculate pCO2 and [HCO3-]. A second experiment was conducted for 2 months with three different pCO2 levels (380, 1400 and 4000 μatm). Boron isotopes (δ11B) were investigated by LA-MC-ICP-MS (Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry) in shell portions precipitated during experimental treatment time. Additionally, elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF of specimen from the second experiment were measured via ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry). Extracellular pH was not significantly different in HL and EPF but systematically lower than ambient water pH. This is due to high extracellular pCO2 values, a prerequisite for metabolic CO2 excretion. No accumulation of extracellular [HCO3-] was measured. Elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF increased slightly with pH which is in accordance with increasing growth and calcification rates at higher seawater pH values. Boron isotope ratios were highly variable between different individuals but also within single shells. This corresponds to a high individual variability in fluid B/Ca ratios and may be due to high boron concentrations in the organic parts of the shell. The mean δ11B value shows no trend with pH but appears to represent internal pH (EPF) rather than ambient water pH.

  19. Natural Oxidation of Bromide to Bromine in Evaporated Dead Sea Brines

    NASA Astrophysics Data System (ADS)

    Gavrieli, Ittai; Golan, Rotem; Lazar, Boaz; Baer, Gidi; Zakon, Yevgeni; Ganor, Jiwchar

    2016-04-01

    Highly evaporated Dead Sea brines are found in isolated sinkholes along the Dead Sea. Many of these brines reach densities of over 1.3 kg/L and pH<5 and are the product of evaporation of Dead Sea brine that drain into the sinkholes. The low pH and the reddish to brownish hue of these brines were an enigma until recently. Despite the rather high total alkalinity (TA) of the Dead Sea (3.826 mmol/kg) the pH of the Dead Sea brine is known to be slightly acidic with a value of ~6.3. In comparison, seawater with the same alkalinity would have a pH value well above 8.3, meaning that H+ activity is 100 fold lower than that of Dead Sea brine. In the present work we assess the apparent dissociation constant value of boric acid (K`B) for the Dead Sea brine and use it to explain the brine's low pH value. We then show that pH decreases further as the brine evaporates and salinity increases. Finally we explain the reddish hue of the hypersaline brines in the sinkholes as due to the presence of dissolved bromine. The latter is the product of oxidation of dissolved bromide, a process that is enabled by the low pH of the hypersaline brines and their high bromide concentration.

  20. VizieR Online Data Catalog: Supernova matter EOS (Buyukcizmeci+, 2014)

    NASA Astrophysics Data System (ADS)

    Buyukcizmeci, N.; Botvina, A. S.; Mishustin, I. N.

    2017-03-01

    The Statistical Model for Supernova Matter (SMSM) was developed in Botvina & Mishustin (2004, PhLB, 584, 233 ; 2010, NuPhA, 843, 98) as a direct generalization of the Statistical Multifragmentation Model (SMM; Bondorf et al. 1995, PhR, 257, 133). We treat supernova matter as a mixture of nuclear species, electrons, and photons in statistical equilibrium. The SMSM EOS tables cover the following ranges of control parameters: 1. Temperature: T = 0.2-25 MeV; for 35 T values. 2. Electron fraction Ye: 0.02-0.56; linear mesh of Ye = 0.02, giving 28 Ye values. It is equal to the total proton fraction Xp, due to charge neutrality. 3. Baryon number density fraction {rho}/{rho}0 = (10-8-0.32), giving 31 {rho}/{rho}0 values. (2 data files).

  1. Transient kinetic studies of pH-dependent hydrolyses by exo-type carboxypeptidase P on a 27-MHz quartz crystal microbalance.

    PubMed

    Furusawa, Hiroyuki; Takano, Hiroki; Okahata, Yoshio

    2008-02-15

    pH-Dependent kinetic parameters (k(on), k(off), and k(cat)) of protein (myoglobin) hydrolyses catalyzed by exo-enzyme (carboxypeptidase P, CPP) were obtained by using a protein-immobilized quartz crystal microbalance (QCM) in acidic aqueous solutions. The formation of the enzyme-substrate (ES) complex (k(on)), the decay of the ES complex (k(off)), and the formation of the product (k(cat)) could be analyzed by transient kinetics as mass changes on the QCM plate. The Kd (k(off)/k(on)) value was different from the Michaelis constant Km calculated from (k(off) + k(cat))/k(on) due to k(cat) > k(off). The rate-determining step was the binding step (k(on), and the catalytic rate k(cat) was faster than other k(on) and k(off) values. In the range of pH 2.5-5.0, values of k(on) gradually increased with decreasing pH showing a maximum at pH 3.7, values of k(off) were independent of pH, and k(cat) increased gradually with decreasing pH. As a result, the apparent rate constant (k(cat)/Km) showed a maximum at pH 3.7 and gradually increased with decreasing pH. The optimum pH at 3.7 of k(on) is explained by the optimum binding ability of CPP to the COOH terminus of the substrate with hydrogen bonds. The increase of k(cat) at the lower pH correlated with the decrease of alpha-helix contents of the myoglobin substrate on the QCM.

  2. Yogurt made from milk heated at different pH values.

    PubMed

    Ozcan, Tulay; Horne, David S; Lucey, John A

    2015-10-01

    Milk for yogurt manufacture is subjected to high heat treatment to denature whey proteins. Low milk pH values (≤ 6.5) at heating result in most denatured whey proteins becoming associated with casein micelles, whereas high milk pH values (≥ 7.0) at heating result in the formation of mostly soluble (nonmicellar) denatured whey protein complexes. There are conflicting reports on the relative importance of soluble and casein-bound whey protein aggregates on the properties of acid gels. Prior studies investigating the effect of pH of milk at heating used model gels in which milk was acidified by glucono-δ-lactone; in this study, we prepared yogurt gels using commercial starter cultures. Model acid gels can have very different texture and physical properties from those made by fermentation with starter cultures. In this study, we investigated the effects of different pH values of milk at heating on the rheological, light backscatter, and microstructural properties of yogurt gels. Reconstituted skim milk was adjusted to pH values 6.2, 6.7, and 7.2 and heated at 85°C for 30 min. A portion of the heated milk samples was readjusted back to pH 6.7 after heating. Milks were inoculated with 3% (wt/wt) yogurt starter culture and incubated at 40°C until pH 4.6. Gel formation was monitored using dynamic oscillatory rheology, and parameters measured included the storage modulus (G') and loss tangent (LT) values. Light-backscattering properties, such as the backscatter ratio (R) and the first derivative of light backscatter ratio (R'), were also monitored during fermentation. Fluorescence microscopy was used to observe gel microstructure. The G' values at pH 4.6 were highest in gels made from milk heated at pH 6.7 and lowest in milk heated at pH 6.2, with or without pH adjustment after heating. The G' values at pH 4.6 were lower in samples after adjustment back to pH 6.7 after heating. No maximum in the LT parameter was observed during gelation for yogurts made from milk heated at pH 6.2; a maximum in LT was observed at pH ~4.8 for samples heated at pH 6.7 or 7.2, with or without pH adjustment after heating. Higher R-values were observed with an increase in pH of heating, with or without pH adjustment after heating. The sample heated at pH 6.2 had only one major peak in its R' profile during acidification, whereas samples heated at pH 6.7 and 7.2 had 2 large peaks. The lack of a maximum in LT parameter and the presence of a single peak in the R' profile for the samples heated at pH 6.2 were likely due to the partial solubilization of insoluble calcium phosphate when milk was acidified to this lower pH value. No clear differences were observed in the microstructures of gels between the different treatments. This study indicates that heating milk at the natural pH (~6.7) created an optimum balance of casein-bound and soluble denatured whey proteins, which resulted in yogurt with the highest gel stiffness. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Infrared spectrum analysis of the dissociated states of simple amino acids.

    PubMed

    Sebben, Damien; Pendleton, Phillip

    2014-11-11

    In this work, we present detailed analyses of the dissociation of dilute aqueous solutions of glycine and of lysine over the range 18 resulted in consistent pKa values for the amino acids. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Template-free synthesis of ZnWO{sub 4} powders via hydrothermal process in a wide pH range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hojamberdiev, Mirabbos, E-mail: mirabbos_uz@yahoo.com; Zhu, Gangqiang; Xu, Yunhua

    ZnWO{sub 4} powders with different morphologies were fabricated through a template-free hydrothermal method at 180 {sup o}C for 8 h in a wide pH range. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible and luminescence spectrophotometers were applied to study the effects of pH values on crystallinity, morphology, optical and luminescence properties. The XRD results showed that the WO{sub 3} + ZnWO{sub 4}, ZnWO{sub 4}, and ZnO phases could form after hydrothermal processing at 180 {sup o}C for 8 h with the pH values of 1, 3-11, and 13, respectively. The SEM and TEM observation revealedmore » that the morphological transformation of ZnWO{sub 4} powders occurred with an increase in pH values as follows: star anise-, peony-, and desert rose-like microstructures and soya bean- and rod-like nanostructures. The highest luminescence intensity was found to be in sample consisting of star anise-like crystallites among all the samples due to the presence of larger particles with high crystallinity resulted from the favorable pH under the current hydrothermal conditions.« less

  5. An EPR study of the pH dependence of formate effects on Photosystem II.

    PubMed

    Jajoo, Anjana; Katsuta, Nobuhiro; Kawamori, Asako

    2006-04-01

    Effects of formate on rates of O(2) evolution and electron paramagnetic resonance (EPR) signals were observed in the oxygen evolving PS II membranes as a function of pH. In formate treated PS II membranes, decrease in pH value resulted in the inhibition of the O(2) evolving activity, a decrease in the intensity of S(2) state multiline signal but an increase in the intensity of the Q(A)(-)Fe(2+) EPR signal. Time-resolved EPR study of the Y(Z)(*) decay kinetics showed that the light-induced intensity of Y(Z)(*) EPR signal was proportional to the formate concentration. The change in the pH affected both the light-induced intensities and the decay rates of Y(Z)(*), which was found to be faster at lower pH. At 253 K, t(1/e) value of Y(Z)(*) decay kinetics was found to be 8-10 s at pH 6.0 and 18-21 s at pH 5.0. The results presented here indicate that the extent of inhibition at the donor and the acceptor side of PS II due to formate is pH dependent, being more effective at lower pH.

  6. Synthesis, morphology, optical and photocatalytic performance of nanostructured β-Ga{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girija, K.; DRDO – BU CLS, Bharathiar University, Coimbatore 641046; Thirumalairajan, S.

    2013-06-01

    Highlights: ► Nanostructures of β-Ga{sub 2}O{sub 3} were prepared using facile reflux condensation process. ► The pH of the reaction mixture shows evident influence on the size and shape of the nanostructures formed. ► The nanostructures exhibited good photocatalytic activity toward Rhodamine B and was found to be superior for higher pH value. - Abstract: Fine powders of β-Ga{sub 2}O{sub 3} nanostructures were prepared via low temperature reflux condensation method by varying the pH value without using any surfactant. The pH value of reaction mixture had great influence on the morphology of final products. High crystalline single phase β-Ga{sub 2}O{submore » 3} nanostructures were obtained by thermal treatment at 900 °C which was confirmed by X-ray diffraction and Raman spectroscopy. The morphological analysis revealed rod like nanostructures at lower and higher pH values of 6 and 10, while spindle like structures were obtained at pH = 8. The phase purity and presence of vibrational bands were identified using Fourier transform infrared spectroscopy. The optical absorbance spectrum showed intense absorption features in the UV spectral region. A broad blue emission peak centered at 441 nm due to donor–acceptor gallium–oxygen vacancy pair recombination appeared. The photocatalytic activity toward Rhodamine B under visible light irradiation was higher for nanorods at pH 10.« less

  7. A novel FbFP-based biosensor toolbox for sensitive in vivo determination of intracellular pH.

    PubMed

    Rupprecht, Christian; Wingen, Marcus; Potzkei, Janko; Gensch, Thomas; Jaeger, Karl-Erich; Drepper, Thomas

    2017-09-20

    The intracellular pH is an important modulator of various bio(techno)logical processes such as enzymatic conversion of metabolites or transport across the cell membrane. Changes of intracellular pH due to altered proton distribution can thus cause dysfunction of cellular processes. Consequently, accurate monitoring of intracellular pH allows elucidating the pH-dependency of (patho)physiological and biotechnological processes. In this context, genetically encoded biosensors represent a powerful tool to determine intracellular pH values non-invasively and with high spatiotemporal resolution. We have constructed a toolbox of novel genetically encoded FRET-based pH biosensors (named Fluorescence Biosensors for pH or FluBpH) that utilizes the FMN-binding fluorescent protein EcFbFP as donor domain. In contrast to many fluorescent proteins of the GFP family, EcFbFP exhibits a remarkable tolerance towards acidic pH (pK a ∼3.2). To cover the broad range of physiologically relevant pH values, three EYFP variants exhibiting pK a values of 5.7, 6.1 and 7.5 were used as pH-sensing FRET acceptor domains. The resulting biosensors FluBpH 5.7, FluBpH 6.1 and FluBpH 7.5 were calibrated in vitro and in vivo to accurately evaluate their pH indicator properties. To demonstrate the in vivo applicability of FluBpH, changes of intracellular pH were ratiometrically measured in E. coli cells during acid stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Complexation of sodium caseinate with gum tragacanth: Effect of various species and rheology of coacervates.

    PubMed

    Ghorbani Gorji, Sara; Ghorbani Gorji, Elham; Mohammadifar, Mohammad Amin; Zargaraan, Azizollaah

    2014-06-01

    We investigated complex coacervation of sodium caseinate/Astragalus rahensis (A.r) as a function of pH with light scattering, spectrophotometry, and viscosity measurements. Interestingly, sodium caseinate/A.r displayed five structural transitions; pH 7.00 to pH ∼5.40: no interaction occurred, pH ∼5.40 to pH ∼4.80: initiation of the formation of primary soluble complexes, pH ∼4.80 to ∼4.30: formation of interpolymer complexes, pH ∼4.30 to ∼4.02: optimum coacervation and pH ∼4.02 to ∼2.50: suppression of coacervation. In addition, rheological properties of sodium caseinate/A.r coacervates were studied at various pH values. A much higher storage modulus (G') than loss modulus (G″) for all sodium caseinate/A.r coacervates suggests the formation of highly interconnected gel-like network structures with mainly elastic behaviour. Moreover, sodium caseinate/A.r coacervates at all pH values exhibited a shear thinning behaviour across the entire shear rate range investigated. Effects of different species of gum tragacanth on the interactions with sodium caseinate have been scarcely studied. Our study showed that systems containing various species (A.r, soluble fraction of A.r and Astragalus gossypinus (A.g)) had different critical pH values and particle sizes during complex coacervation, which could be due to different ratio of soluble to insoluble fractions and uronic acid content of various species. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Is Your Drinking Water Acidic? A Comparison of the Varied pH of Popular Bottled Waters.

    PubMed

    Wright, Kellie F

    2015-06-01

    Dental professionals continually educate patients on the dangers of consuming acidic foods and beverages due to their potential to contribute to dental erosion and tooth decay. Excess acid in the diet can also lead to acidosis, which causes negative systemic side effects. However, water is not typically categorized as acidic. The purpose of this in-vitro study was to investigate the pH levels of several popular brands of bottled water and compare them to various other acidic beverages. Two different brands of marketed alkaline water (with a pH of 8.8 or higher) were also studied, tested for acidity and described. A pilot in-vitro study was conducted to determine the pH levels of a convenience sample of popular brands of bottled water, tap water and other known acidic beverages in comparison with the pH values reported on the respective manufacturers' website. Each beverage was tested in a laboratory using a calibrated Corning pH meter model 240, and waters were compared to the corresponding company's testified pH value. Waters were also compared and contrasted based on their process of purification. The data was then compiled and analyzed descriptively. The pH values for the tested beverages and bottled waters were found to be predominantly acidic. Ten out of the 14 beverages tested were acidic (pH<7), 2 municipal (or "tap") waters were neutral (pH=7) and 2 bottled waters were alkaline (pH>7). The majority of waters tested had a more acidic pH when tested in the lab than the value listed in their water quality reports. It is beneficial for the health care provider to be aware of the potential acidity of popular bottled drinking waters and educate patients accordingly. Copyright © 2015 The American Dental Hygienists’ Association.

  10. The influence of pH adjustment on kinetics parameters in tapioca wastewater treatment using aerobic sequencing batch reactor system

    NASA Astrophysics Data System (ADS)

    Mulyani, Happy; Budianto, Gregorius Prima Indra; Margono, Kaavessina, Mujtahid

    2018-02-01

    The present investigation deals with the aerobic sequencing batch reactor system of tapioca wastewater treatment with varying pH influent conditions. This project was carried out to evaluate the effect of pH on kinetics parameters of system. It was done by operating aerobic sequencing batch reactor system during 8 hours in many tapioca wastewater conditions (pH 4.91, pH 7, pH 8). The Chemical Oxygen Demand (COD) and Mixed Liquor Volatile Suspended Solids (MLVSS) of the aerobic sequencing batch reactor system effluent at steady state condition were determined at interval time of two hours to generate data for substrate inhibition kinetics parameters. Values of the kinetics constants were determined using Monod and Andrews models. There was no inhibition constant (Ki) detected in all process variation of aerobic sequencing batch reactor system for tapioca wastewater treatment in this study. Furthermore, pH 8 was selected as the preferred aerobic sequencing batch reactor system condition in those ranging pH investigated due to its achievement of values of kinetics parameters such µmax = 0.010457/hour and Ks = 255.0664 mg/L COD.

  11. Control of the microstructure and surface chemistry of graphene aerogels via pH and time manipulation by a hydrothermal method.

    PubMed

    García-Bordejé, E; Víctor-Román, S; Sanahuja-Parejo, O; Benito, A M; Maser, W K

    2018-02-15

    Three-dimensional graphene aerogels of controlled pore size have emerged as an important platform for several applications such as energy storage or oil-water separation. The aerogels of reduced graphene oxide are mouldable and light weight, with a porosity up to 99.9%, consisting mainly of macropores. Graphene aerogel preparation by self-assembly in the liquid phase is a promising strategy due to its tunability and sustainability. For graphene aerogels prepared by a hydrothermal method, it is known that the pH value has an impact on their properties but it is unclear how pH affects the auto-assembly process leading to the final properties. We have monitored the time evolution of the chemical and morphological properties of aerogels as a function of the initial pH value. In the hydrothermal treatment process, the hydrogel is precipitated earlier and with lower oxygen content for basic pH values (∼13 wt% O) than for acidic pH values (∼20 wt% O). Moreover, ∼7 wt% of nitrogen is incorporated on the graphene nanosheets at basic pH generated by NH 3 addition. To our knowledge, there is no precedent showing that the pH value affects the microstructure of graphene nanosheets, which become more twisted and bent for the more intensive deoxygenation occurring at basic pH. The bent nanosheets attained at pH = 11 reduce the stacking by the basal planes and they connect via the borders, hence leading eventually to higher pore volumes. In contrast, the flatter graphene nanosheets attained under acidic pH entail more stacking and higher oxygen content after a long hydrothermal treatment. The gravimetric absorption capacity of non-polar solvents scales directly with the pore volume. The aerogels have proved to be highly selective, recyclable and robust for the absorption of nonpolar solvents in water. The control of the porous structure and surface chemistry by manipulation of pH and time will also pave the way for other applications such as supercapacitors or batteries.

  12. Release of major ions during rigor mortis development in kid Longissimus dorsi muscle.

    PubMed

    Feidt, C; Brun-Bellut, J

    1999-01-01

    Ionic strength plays an important role in post mortem muscle changes. Its increase is due to ion release during the development of rigor mortis. Twelve alpine kids were used to study the effects of chilling and meat pH on ion release. Free ions were measured in Longissimus dorsi muscle by capillary electrophoresis after water extraction. All free ion concentrations increased after death, but there were differences between ions. Temperature was not a factor affecting ion release in contrast to ultimate pH value. Three release mechanisms are believed to coexist: a passive binding to proteins, which stops as pH decreases, an active segregation which stops as ATP disappears and the production of metabolites due to anaerobic glycolysis.

  13. A Surfactant-Free Synthesis Technique of Coral-Like Zno Hierarchical Structures for Photocatalytic Degradation of Resorcinol under UV Irradiation

    NASA Astrophysics Data System (ADS)

    Sin, Jin-Chung; Lam, Sze-Mun; Chin, Ying-Hui

    2018-01-01

    Hierarchical coral-like ZnO structures were successfully prepared by a surfactant-free wet chemical method. Various characterization tests were carried out to analyze the as-prepared ZnO samples. The coral-like ZnO was used to degrade resorcinol at three different solution pH values (pH 5.0, pH 8.0 and pH 11.0). It was observed that the resorcinol adsorption onto the ZnO was strongly dependent on the electrical charge properties of both photocatalyst and resorcinol. Photocatalytic degradation of resorcinol reached the highest at pH 11.0 due to high concentration of hydroxyl ions for hydroxyl radicals generation.

  14. Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models

    NASA Astrophysics Data System (ADS)

    Song, Shaojie; Gao, Meng; Xu, Weiqi; Shao, Jingyuan; Shi, Guoliang; Wang, Shuxiao; Wang, Yuxuan; Sun, Yele; McElroy, Michael B.

    2018-05-01

    pH is an important property of aerosol particles but is difficult to measure directly. Several studies have estimated the pH values for fine particles in northern China winter haze using thermodynamic models (i.e., E-AIM and ISORROPIA) and ambient measurements. The reported pH values differ widely, ranging from close to 0 (highly acidic) to as high as 7 (neutral). In order to understand the reason for this discrepancy, we calculated pH values using these models with different assumptions with regard to model inputs and particle phase states. We find that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies. Calculations using only aerosol-phase composition as inputs (i.e., reverse mode) are sensitive to the measurement errors of ionic species, and inferred pH values exhibit a bimodal distribution, with peaks between -2 and 2 and between 7 and 10, depending on whether anions or cations are in excess. Calculations using total (gas plus aerosol phase) measurements as inputs (i.e., forward mode) are affected much less by these measurement errors. In future studies, the reverse mode should be avoided whereas the forward mode should be used. Forward-mode calculations in this and previous studies collectively indicate a moderately acidic condition (pH from about 4 to about 5) for fine particles in northern China winter haze, indicating further that ammonia plays an important role in determining this property. The assumed particle phase state, either stable (solid plus liquid) or metastable (only liquid), does not significantly impact pH predictions. The unrealistic pH values of about 7 in a few previous studies (using the standard ISORROPIA model and stable state assumption) resulted from coding errors in the model, which have been identified and fixed in this study.

  15. Influence of the isomerism on the sorption of imazamethabenz-methyl by soil.

    PubMed

    Pinna, Maria Vittoria; Pusino, Alba

    2013-04-01

    The sorption of meta and para isomers of the herbicide imazamethabenz-methyl, methyl 6-[(RS)-4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl]-m- or p-toluate, by three soils and soil organic matter, was studied. Sorption isotherms conformed to the Freundlich equation. It was found that pH was the main factor influencing the adsorption in all of the systems. The highest level of sorption was measured on soils with low pH and high organic carbon content. Moreover, at low pH value, the soil rich in smectite clays, favoured the sorption of meta rather than para isomer. The higher affinity of clay surfaces for the meta isomer of the herbicide is due to the stabilization of the meta protonated form by resonance. At all pH values, the sorption on soil organic matter did not differ between two isomers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. pH studies in the synthesis of amino acid coated hydrophilic MNPs

    NASA Astrophysics Data System (ADS)

    Saxena, Namita; Dube, Charu Lata

    2018-04-01

    Magnetic iron oxide nanoparticles magnetite and maghemite (MNPs) are specially useful in various fields like biomedical, waste disposal, catalysis etc. because of their biocompatibility and magnetic properties. They can be manipulated by applying magnetic field and hence their easier separation, wider applications and unending scope in the field of research. They are inherently hydrophobic, and aggregate easily mainly due to magnetic and nanosize effects. The present work reports the synthesis of hydrophilic, stably dispersed MNPs coated by different amino acids at different pH values. Lower concentration of amino acids, 1/3 (moles by moles) of Iron salts concentration was used in the study. Crystallites were found to be approximately 6-7 nm in size, as determined by XRD and also found to have good magnetization values in VSM studies. The effects of coating are mainly studied by FTIR and TG. Higher/lower pH values have been studied for better coating, and it is observed that higher pH is more helpful in getting better results, on bare MNPs synthesized under a pH of approximately 13.3. The effects of net charge on coating efficiency were also studied.

  17. Effects of pH on heat transfer nanofluids containing ZrO2 and TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Wamkam, Carine Tchamakam; Opoku, Michael Kwabena; Hong, Haiping; Smith, Pauline

    2011-01-01

    In this paper, pH influences of zeta potential, particle size distribution, rheology, viscosity, and stability on heat transfer nanofluids are studied. Significant enhancement of thermal conductivity (TC) (>20%) containing 3 wt % zirconium dioxide (ZrO2) and titanium dioxide (TiO2) are observed near the isoelectric point (IEP). Meanwhile, at this IEP (pH), particle sizes, and viscosities of these nanofluids demonstrate a significant increase to maximum values. Experimental results also indicate that the stabilities of these nanofluids are influenced by pH values. The reasonable explanation for these interesting phenomena is that at this IEP, the repulsive forces among metal oxides are zero and nanoparticles coagulate together at this pH value. According to the Derjaguin-Landau-Verwey-Overbeek theory, when the pH is equal to or close to the IEP, nanoparticles tend to be unstable, form clusters, and precipitate. The resulting big clusters will trap water and the structures of trapped water are varied due to the strong atomic force among nanoparticles. Water is packed well inside and volume fraction of the nanoparticles will be larger. In addition, shapes of clusters containing trapped water will not be spherical but rather has irregular structure (like chains). Such structure favors thermal transport because they provide a long link. Therefore, overall TC of nanofluids is enhanced. Some literature results and conclusions related to pH effects of nanofluids are discussed and analyzed. Understanding pH effects may enable exploration of fundamental nature of nanofluids.

  18. Sorption of the pharmaceuticals carbamazepine and naproxen to dissolved organic matter: role of structural fractions.

    PubMed

    Maoz, Adi; Chefetz, Benny

    2010-02-01

    Pharmaceutical compounds and dissolved organic matter (DOM) are co-introduced into the environment by irrigation with reclaimed wastewater and/or application of biosolids. In this study, we evaluate the role and mechanism of interaction of the pharmaceuticals naproxen and carbamazepine with structural fractions of biosolids-derived DOM. Sorption interactions were estimated from dialysis-bag experiments at different pHs. Sorption of naproxen and carbamazepine by the hydrophobic acid fraction exhibited strong pH-dependence. With both pharmaceuticals, the highest sorption coefficients (K(DOC)) were at pH 4. With the hydrophobic neutral fraction, pH affected only naproxen sorption (decreasing with increasing pH). Among the hydrophilic DOM fractions, the hydrophilic acid fraction exhibited the highest K(DOC) value for carbamazepine, probably due to their bipolar character. In the hydrophilic acid fraction-naproxen system, significant anionic repulsion was observed with increasing pH. The hydrophilic base fraction contains positively charged functional groups. Therefore with increasing ionization of naproxen (with increasing pH), K(DOC) to this fraction increased. The hydrophilic neutral fraction exhibited the lowest K(DOC) with both studied pharmaceuticals. The K(DOC) value of carbamazepine with the bulk DOM sample was higher than the calculated K(DOC) value based on sorption by the individual isolated fractions. The opposite trend was observed with naproxen at pH 8: the calculated K(DOC) value was higher than the value obtained for the bulk DOM. These results demonstrate that DOM fractions interact with each other and do not act as separate sorption domains. (c) 2009 Elsevier Ltd. All rights reserved.

  19. Investigating controls on boron isotope ratios in shallow marine carbonates

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Henehan, Michael J.; Hull, Pincelli M.; Reid, R. Pamela; Hardisty, Dalton S.; Hood, Ashleigh v. S.; Planavsky, Noah J.

    2017-01-01

    The boron isotope-pH proxy has been widely used to reconstruct past ocean pH values. In both planktic foraminifera and corals, species-specific calibrations are required in order to reconstruct absolute values of pH, due to the prevalence of so-called vital effects - physiological modification of the primary environmental signals by the calcifying organisms. Shallow marine abiotic carbonate (e.g. ooids and cements) could conceivably avoid any such calibration requirement, and therefore provide a potentially useful archive for reconstructions in deep (pre-Cenozoic) time. However, shallow marine abiotic carbonates could also be affected by local shifts in pH caused by microbial photosynthesis and respiration, something that has up to now not been fully tested. In this study, we present boron isotope measurements from shallow modern marine carbonates, from the Bahama Bank and Belize to investigate the potential of using shallow water carbonates as pH archives, and to explore the role of microbial processes in driving nominally 'abiogenic' carbonate deposition. For Bahama bank samples, our boron-based pH estimates derived from a range of carbonate types (i.e. ooids, peloids, hardground cements, carbonate mud, stromatolitic micrite and calcified filament micrite) are higher than the estimated modern mean-annual seawater pH values for this region. Furthermore, the majority (73%) of our marine carbonate-based pH estimates fall out of the range of the estimated pre-industrial seawater pH values for this region. In shallow sediment cores, we did not observe a correlation between measured pore water pH and boron-derived pH estimates, suggesting boron isotope variability is a depositional rather than early diagenetic signal. For Belize reef cements, conversely, the pH estimates are lower than likely in situ seawater pH at the time of cement formation. This study indicates the potential for complications when using shallow marine non-skeletal carbonates as marine pH archives. In addition, variability in δ11B based pH estimates provides additional support for the idea that photosynthetic CO2 uptake plays a significant role in driving carbonate precipitation in a wide range of shallow water carbonates.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avazbaeva, Zaure; Sung, Woongmo; Lee, Jonggwan

    In this paper, it has been reported that an octadecylamine (ODA) Langmuir monolayer becomes unstable at low pH values with no measurable surface pressure at around pH 3.5, suggesting significant dissolution of the ODA molecule into the subphase solution (Albrecht, Colloids Surf. A 2006, 284–285, 166–174). However, by lowering the pH further, ODA molecules reoccupy the surface, and a full monolayer is recovered at pH 2.5. Using surface sum-frequency spectroscopy and pressure–area isotherms, it is found that the recovered monolayer at very low pH has a larger area per molecule with many gauche defects in the ODA molecules as comparedmore » to that at high pH values. This structural change suggests that the reappearance of the monolayer is due to the adsorbed Cl– counterions to the protonated amine groups, leading to partial charge neutralization. This proposition is confirmed by intentionally adding monovalent salts (i.e., NaCl, NaBr, or NaI) to the subphase to recover the monolayer at pH 3.5, in which the detailed structure of the monolayer is confirmed by sum frequency spectra and the adsorbed anions by X-ray reflectivity.« less

  1. An extended model based on the modified Nernst-Planck equation for describing transdermal iontophoresis of weak electrolytes.

    PubMed

    Imanidis, Georgios; Luetolf, Peter

    2006-07-01

    An extended model for iontophoretic enhancement of transdermal drug permeation under constant voltage is described based on the previously modified Nernst-Planck equation, which included the effect of convective solvent flow. This model resulted in an analytical expression for the enhancement factor as a function of applied voltage, convective flow velocity due to electroosmosis, ratio of lipid to aqueous pathway passive permeability, and weighted average net ionic valence of the permeant in the aqueous epidermis domain. The shift of pH in the epidermis compared to bulk caused by the electrical double layer at the lipid-aqueous domain interface was evaluated using the Poisson-Boltzmann equation. This was solved numerically for representative surface charge densities and yielded pH differences between bulk and epidermal aqueous domain between 0.05 and 0.4 pH units. The developed model was used to analyze the experimental enhancement of an amphoteric weak electrolyte measured in vitro using human cadaver epidermis and a voltage of 250 mV at different pH values. Parameter values characterizing the involved factors were determined that yielded the experimental enhancement factors and passive permeability coefficients at all pH values. The model provided a very good agreement between experimental and calculated enhancement and passive permeability. The deduced parameters showed (i) that the pH shift in the aqueous permeation pathway had a notable effect on the ionic valence and the partitioning of the drug in this domain for a high surface charge density and depending on the pK(a) and pI of the drug in relation to the bulk pH; (ii) the magnitude and the direction of convective transport due to electroosmosis typically reflected the density and sign, respectively, of surface charge of the tissue and its effect on enhancement was substantial for bulk pH values differing from the pI of epidermal tissue; (iii) the aqueous pathway predominantly determined passive permeability of the studied compound despite its measurable lipophilicity and therefore the lipid pathway did not notably affect enhancement. Hence, the proposed model can provide a good quantitative insight into the interplay between different phenomena and permeant properties influencing iontophoresis and can potentially be used as a predictive tool of the process.

  2. Influence of the water molecules near surface of viral protein on virus activation process

    NASA Astrophysics Data System (ADS)

    Shepelenko, S. O.; Salnikov, A. S.; Rak, S. V.; Goncharova, E. P.; Ryzhikov, A. B.

    2009-06-01

    The infection of a cell with influenza virus comprises the stages of receptor binding to the cell membrane, endocytosis of virus particle, and fusion of the virus envelope and cell endosome membrane, which is determined by the conformational changes in hemagglutinin, a virus envelope protein, caused by pH decrease within the endosome. The pH value that induces conformation rearrangements of hemagglutinin molecule considerably varies for different influenza virus strains, first and foremost, due to the differences in amino acid structure of the corresponding proteins. The main goal of this study was to construct a model making it possible to assess the critical pH value characterizing the fusogenic activity of influenza virus hemagglutinin from the data on hemagglutinin structure and experimental verification of this model. Under this model, we assume that when the electrostatic force between interacting hemagglutinin molecules in the virus envelop exceeds a certain value, the hemagglutinin HA1 subunits are arranged so that they form a cavity sufficient for penetration of water molecules. This event leads to an irreversible hydration of the inner fragments of hemagglutinin molecule in a trimer and to the completion of conformational changes. The geometry of electrostatic field in hemagglutinin trimer was calculated taking into account the polarization effects near the interface of two dielectrics, aqueous medium and protein macromolecule. The critical pH values for the conformational changes in hemagglutinin were measured by the erythrocyte hemolysis induced by influenza virus particles when decreasing pH. The critical pH value conditionally separating the pH range into the regions with and without the conformational changes was calculated for several influenza virus H1N1 and H3N2 strains based on the data on the amino acid structure of the corresponding hemagglutinin molecules. Comparison of the theoretical and experimental values of critical pH values for influenza virus strains suggests that the proposed model of the interaction between water molecules and influenza virus envelope proteins has a high prediction efficiency.

  3. Polyaniline deposition on tilted fiber Bragg grating for pH sensing

    NASA Astrophysics Data System (ADS)

    Lopez Aldaba, A.; González-Vila, Á.; Debliquy, M.; Lopez-Amo, M.; Caucheteur, C.; Lahem, D.

    2017-04-01

    In this paper, we present the results of a new pH sensor based on a polyaniline (PAni) coating on the surface of a tilted fiber Bragg grating. The pH-sensitive PAni was deposited by in situ chemical oxidative polymerization. The performance of the fabricated pH sensor was tested and the obtained pH values were compared with the results obtained using a pH meter device. It was found that the sensor exhibits response to pH changes in the range of 2-12, achieving a sensitivity of 46 pm/pH with a maximum error due to the hysteresis effect of +/-1.14 pH. The main advantages of this PAni-TFBG pH sensor are biochemical compatibility, temperature independence, long-term stability and remote realtime multipoint sensing features. This type of sensor could be used for biochemical applications, pipeline corrosion monitoring or remote-multipoint measurements.

  4. Occurrence of killer Candida glabrata clinical isolates

    PubMed Central

    Arroyo-Helguera, O; Penas Alejandro, De Las; Irene, Castaño

    2012-01-01

    In this work we characterized the occurrence of killer activity in 64 Candida glabrata clinical isolates under different conditions. We found that only 6.25 % of the clinical isolates tested were positive for killer activity against a Saccharomyces cerevisiae W303 sensitive strain. Sensitivity of killer activity to different values of pH and temperatures was analyzed. We found that the killer activity presented by all isolates was resistant to every pH and temperature tested, although optimal activity was found at a range of pH values from 4 to 7 and at 37°C. We did not observe extrachromosomal genetic elements associated with killer activity in any of the positive C. glabrata isolates. The killer effect was due to a decrease in viability and DNA fragmentation in sensitive yeast. PMID:24031902

  5. Regularities in Low-Temperature Phosphatization of Silicates

    NASA Astrophysics Data System (ADS)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  6. Influence of surface porosity and pH on bacterial adherence to hydroxyapatite and biphasic calcium phosphate bioceramics.

    PubMed

    Kinnari, Teemu J; Esteban, Jaime; Martin-de-Hijas, Nieves Z; Sánchez-Muñoz, Orlando; Sánchez-Salcedo, Sandra; Colilla, Montserrat; Vallet-Regí, María; Gomez-Barrena, Enrique

    2009-01-01

    Hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramic materials are widely employed as bone substitutes due to their porous and osteoconductive structure. Their porosity and the lowering of surrounding pH as a result of surgical trauma may, however, predispose these materials to bacterial infections. For this reason, the influence of porosity and pH on the adherence of common Gram-positive bacteria to the surfaces of these materials requires investigation. Mercury intrusion porosimetry measurements revealed that the pore size distribution of both bioceramics had, on a logarithmic scale, a sinusoidal frequency distribution ranging from 50 to 300 nm, with a mean pore diameter of 200 nm. Moreover, total porosity was 20 % for HA and 50 % for BCP. Adherence of Staphylococcus aureus and Staphylococcus epidermidis was studied at a physiological pH of 7.4 and at a pH simulating bone infection of 6.8. Moreover, the effect of pH on the zeta potential of HA, BCP and of both staphylococci was evaluated. Results showed that when pH decreased from 7.4 to 6.8, the adherence of both staphylococci to HA and BCP surfaces decreased significantly, although at the same time the negative zeta-potential values of the ceramic surfaces and both bacteria diminished. At both pH values, the number of S. aureus adhered to the HA surface appeared to be lower than that for BCP. A decrease in pH to 6.8 reduced the adherence of both bacterial species (mean 57 %). This study provides evidence that HA and BCP ceramics do not have pores sufficiently large to allow the internalization of staphylococci. Their anti-adherent properties seemed to improve when pH value decreased, suggesting that HA and BCP bioceramics are not compromised upon orthopaedic use.

  7. Combining hydrogen evolution and corrosion data - A case study on the economic viability of selected metal cathodes in microbial electrolysis cells

    NASA Astrophysics Data System (ADS)

    Brown, Robert Keith; Schmidt, Ulrike Christiane; Harnisch, Falk; Schröder, Uwe

    2017-07-01

    In this study, hydrogen evolution reaction (HER) catalytic and corrosion data is determined for selected metal cathode materials. The HER data was gathered using cyclic voltammetry (CV) in electrolytes with several pH values and varying current densities. Of the tested materials, the stainless steel alloy EN 1.4401/AISI 316 generally had the lowest HER overpotentials at the pH values 0.25, 7 and 9. At the higher pH values of 11 and 14 a custom NiMoFe alloy with a m/m% composition of 60-30-10 showed the lowest overpotentials. After each CV experiment, the electrolyte solution was analyzed to determine the corrosion of the metal cathodes. Results of corrosion measurements showed that the stainless steels EN 1.4401 had the lowest corrosion losses on average across all tested pH values. Combining HER and corrosion data revealed that: In the pH 9 electrolyte solution, EN 1.4401 was not always the best catalyst in terms of its overpotential, but it incurs the least material costs due to its lack of corrosion, this balance thereby making it the "best choice" under the given conditions. The combination of HER and corrosion data provides a more effective framework for discussing economic viability than either data set alone.

  8. Origin of the instability of octadecylamine Langmuir monolayer at low pH

    DOE PAGES

    Avazbaeva, Zaure; Sung, Woongmo; Lee, Jonggwan; ...

    2015-11-30

    In this paper, it has been reported that an octadecylamine (ODA) Langmuir monolayer becomes unstable at low pH values with no measurable surface pressure at around pH 3.5, suggesting significant dissolution of the ODA molecule into the subphase solution (Albrecht, Colloids Surf. A 2006, 284–285, 166–174). However, by lowering the pH further, ODA molecules reoccupy the surface, and a full monolayer is recovered at pH 2.5. Using surface sum-frequency spectroscopy and pressure–area isotherms, it is found that the recovered monolayer at very low pH has a larger area per molecule with many gauche defects in the ODA molecules as comparedmore » to that at high pH values. This structural change suggests that the reappearance of the monolayer is due to the adsorbed Cl– counterions to the protonated amine groups, leading to partial charge neutralization. This proposition is confirmed by intentionally adding monovalent salts (i.e., NaCl, NaBr, or NaI) to the subphase to recover the monolayer at pH 3.5, in which the detailed structure of the monolayer is confirmed by sum frequency spectra and the adsorbed anions by X-ray reflectivity.« less

  9. A physicochemical study of Al(+3) interactions with edible seaweed biomass in acidic waters.

    PubMed

    Lodeiro, Pablo; López-García, Marta; Herrero, Luz; Barriada, José L; Herrero, Roberto; Cremades, Javier; Bárbara, Ignacio; Sastre de Vicente, Manuel E

    2012-09-01

    In this article, a study of the Al(+3) interactions in acidic waters with biomass of different edible seaweeds: brown (Fucus vesiculosus, Saccorhiza polyschides), red (Mastocarpus stellatus, Gelidium sesquipedale, Chondrus crispus), and green (Ulva rigida, Codium tomentosum), has been performed. The influence of both, the initial concentration of metal and the solution pH, on the Al-uptake capacity of the biomass has been analyzed. From preliminary tests, species Fucus vesiculosus and Gelidium sesquipedale have been selected for a more exhaustive analysis. Sorption kinetic studies demonstrated that 60 min are enough to reach equilibrium. The intraparticle diffusion model has been used to describe kinetic data. Equilibrium studies have been carried out at pH values of 1, 2.5, and 4. Langmuir isotherms showed that the best uptake values, obtained at pH 4, were 33 mg/g for F. vesiculosus and 9.2 mg/g for G. sesquipedale. These edible seaweeds have been found particularly effective in binding aluminum metal ions for most of the conditions tested. Physicochemical data reported at these low pH values could be of interest, not only in modeling aluminum-containing antacids-food pharmacokinetic processes produced in the stomach (pH values 1 to 3) but in remediation studies in acidic waters. Aluminum is thought to be linked to neurological disruptions such as Alzheimer's disease. In this article, the adsorption ability of different types of edible seaweeds toward aluminum has been studied. The choice of low pH values is due to the fact that stomach region is acidic with a pH value between 1 and 3 as a consequence of hydrochloric secretion; so physicochemical data reported in this study could be of interest in modeling drug-food interactions, in particular those referring to aluminum-containing antacids-food pharmacokinetic processes produced in the gastrointestinal tract. © 2012 Institute of Food Technologists®

  10. Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash.

    PubMed

    Wu, Deyi; Sui, Yanming; He, Shengbing; Wang, Xinze; Li, Chunjie; Kong, Hainan

    2008-07-15

    The capability of 14 zeolites synthesized from different fly ashes (ZFAs) to sequestrate Cr(III) from aqueous solutions was investigated in a batch mode. The influence of pH on the sorption of Cr(III) was examined. ZFAs had a much greater ability than fly ash to remove Cr(III), due to the high cation exchange capacity (CEC) and the high acid neutralizing capacity (ANC) of ZFAs. The mechanism of Cr(III) removal by ZFAs involved ion exchange and precipitation. A high-calcium content in both the fly ashes and ZFAs resulted in a high ANC value and, as a result, a high immobilization capacity for Cr(III). The pH strongly influenced Cr(III) removal by ZFAs. Inside the solubility range, removal of chromium increased with increasing pH. Hydroxysodalite made from a high-calcium fly ash had a higher sorptive capacity for Cr(III) than the NaP1 zeolite from medium- and low-calcium fly ashes. On the other hand, at pH values above the solubility range, the efficiency of chromium removal by the ZFAs approached 100% due to the precipitation of Cr(OH)3 on the sorbent surfaces. It is concluded that ZFAs and high-calcium fly ashes may be promising materials for the purification of Cr(III) from water/wastewater.

  11. Efficacy of primed infusions with high dose ranitidine and omeprazole to maintain high intragastric pH in patients with peptic ulcer bleeding: a prospective randomised controlled study.

    PubMed Central

    Labenz, J; Peitz, U; Leusing, C; Tillenburg, B; Blum, A L; Börsch, G

    1997-01-01

    BACKGROUND: In healthy subjects, continuous infusions of high dose ranitidine and omeprazole produce high intragastric pH values. AIM: To test the hypothesis that both drugs also maintain high intragastric pH values in patients with bleeding ulcers. PATIENTS AND METHODS: In two parallel studies, 20 patients with bleeding duodenal ulcers and 20 patients with bleeding gastric ulcers were randomly assigned to receive either ranitidine (0.25 mg/kg/hour after a bolus of 50 mg) or omeprazole (8 mg/hour after a bolus of 80 mg) for 24 hours. Intragastric pH was continuously recorded with a glass electrode placed 5 cm below the cardia. RESULTS: Both drugs rapidly raised the intragastric pH above 6. During the second 12 hour period, however, the percentage of time spent below a pH of 6 was 0.15% with omeprazole and 20.1% with ranitidine (p = 0.0015) in patients with duodenal ulcer; in patients with gastric ulcer it was 0.1% with omeprazole and 46.1% with ranitidine (p = 0.002). CONCLUSIONS: Primed infusions of omeprazole after a bolus produced consistently high intragastric pH values in patients with bleeding peptic ulcers, whereas primed infusions with ranitidine were less effective during the second half of a 24 hour treatment course. This loss of effectiveness may be due to tolerance. PMID:9155573

  12. Thermal resistance parameters of acid-adapted and unadapted Escherichia coli O157:H7 in apple-carrot juice blends: effect of organic acids and pH.

    PubMed

    Usaga, Jessie; Worobo, Randy W; Padilla-Zakour, Olga I

    2014-04-01

    Numerous outbreaks involving fresh juices contaminated with Escherichia coli O157:H7 have occurred in the United States and around the world, raising concern for the safety of these products. Until now, only a few studies regarding the thermal tolerance of this pathogen in acidic juices over a wide range of pH values have been published. Therefore, the effect of varying the pH with different organic acids on the thermal inactivation of non-acid-adapted and acid-adapted E. coli O157:H7 (strain C7927) was determined. The decimal reduction times (D-values) and the change in temperature required for the thermal destruction curve to traverse 1 log cycle (z-values) were calculated for non-acid-adapted E. coli in an apple-carrot juice blend (80:20) adjusted to three pH values (3.3, 3.5, and 3.7) by the addition of lactic, malic, or acetic acid and at a pH of 4.5 adjusted with NaOH. Thermal parameters were also determined for acid-adapted cells in juices acidified with malic acid. The effect of the soluble solids content on the thermal tolerance was studied in samples with a pH of 3.7 at 9.4 to 11.5 °Brix. The D-values were determined at 54, 56, and 58 °C, and trials were conducted in triplicate. Non-acid-adapted E. coli exhibited the highest thermal tolerance at pH 4.5 (D-value at 54 °C [D54 °C] of 20 ± 4 min and z-value of 6.2 °C), although on average, the D-values increased significantly (P < 0.01) due to acid adaptation. In acidified juices, the highest tolerance was observed in acid-adapted E. coli in samples adjusted to pH 3.7 with malic acid (D54 °C of 9 ± 2 min and z-value of 5.4 °C) and the lowest in unadapted E. coli at pH 3.3 acidified with acetic acid (D58 °C of 0.03 ± 0.01 min and z-value of 10.4 °C). For juices acidified to the same endpoint pH with different acids, E. coli was found to be more tolerant in samples acidified with malic acid, followed by lactic and acetic acids. Increasing the soluble solids content from 9.4 to 11.5 °Brix showed no significant effect on the thermal tolerance of E. coli (P > 0.01). The data from this study will be useful for establishing critical limits for safe thermal processing of pH-controlled juices and similar products.

  13. Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH.

    PubMed

    Wang, Bing; Lehmann, Johannes; Hanley, Kelly; Hestrin, Rachel; Enders, Akio

    2015-11-01

    The objective of this work was to investigate the retention mechanisms of ammonium in aqueous solution by using progressively oxidized maple wood biochar at different pH values. Hydrogen peroxide was used to oxidize the biochar to pH values ranging from 8.1 to 3.7, with one set being adjusted to a pH of 7 afterwards. Oxidizing the biochars at their lowered pH did not increase their ability to adsorb ammonium. However, neutralizing the oxygen-containing surface functional groups on oxidized biochar to pH 7 increased ammonia adsorption two to three-fold for biochars originally at pH 3.7-6, but did not change adsorption of biochars oxidized to pH 7 and above. The adsorption characteristics of ammonium are well described by the Freundlich equation. Adsorption was not fully reversible in water, and less than 27% ammonium was desorbed in water in two consecutive steps than previously adsorbed, for biochars with a pH below 7, irrespective of oxidation. Recovery using an extraction with 2M KCl increased from 34% to 99% of ammonium undesorbed by both preceding water extractions with increasing oxidation, largely irrespective of pH adjustment. Unrecovered ammonium in all extractions and residual biochar was negligible at high oxidation, but increased to 39% of initially adsorbed amounts at high pH, likely due to low amounts adsorbed and possible ammonia volatilization losses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys.

    PubMed

    Zhen, Zhen; Liu, Xiaoli; Huang, Tao; Xi, TingFei; Zheng, Yufeng

    2015-01-01

    Good hemocompatibility and cell compatibility are essential requirements for coronary stents, especially for biodegradable magnesium alloy stents, which could change the in situ environment after implanted. In this work, the effects of magnesium ion concentration and pH value on the hemolysis and cytotoxicity have been evaluated. Solution with different Mg(2+) concentration gradients and pH values of normal saline and cell culture media DMEM adjusted by MgCl2 and NaOH respectively were tested for the hemolysis and cell viability. Results show that even when the concentration of Mg(2+) reaches 1000 μg/mL, it has little destructive effect on erythrocyte, and the high pH value over 11 caused by the degradation is the real reason for the high hemolysis ratio. Low concentrations of Mg(2+) (<100 μg/mL) cause no cytotoxicity to L929 cells, of which the cell viability is above 80%, while high concentrations of Mg(2+) (>300 μg/mL) could induce obvious death of the L929 cells. The pH of the extract plays a synergetic effect on cytotoxicity, due to the buffer action of the cell culture medium. To validate this conclusion, commercial pure Mg using normal saline and PBS as extract was tested with the measurement of pH and Mg(2+) concentration. Pure Mg leads to a higher hemolysis ratio in normal saline (47.76%) than in buffered solution (4.38%) with different pH values and low concentration of Mg(2+). The Mg extract culture media caused no cytotoxicity, with pH=8.44 and 47.80 μg/mL Mg(2+). It is suggested that buffered solution and dynamic condition should be adopted in the hemolysis evaluation. Copyright © 2014. Published by Elsevier B.V.

  15. Differences in the skin surface pH and bacterial microflora due to the long-term application of synthetic detergent preparations of pH 5.5 and pH 7.0. Results of a crossover trial in healthy volunteers.

    PubMed

    Korting, H C; Hübner, K; Greiner, K; Hamm, G; Braun-Falco, O

    1990-01-01

    Skin cleansing preparations consisting of identical synthetic detergents but differing in pH-value (pH 5.5 and 7.0) were applied twice daily on the forehead and forearm of healthy volunteers in a randomized crossover trial. The skin surface pH was found to be significantly higher when the neutral preparation had been used, as was the propionibacterial count (p less than 0.05). The number of propionibacteria was significantly linked to the skin pH. Hence even minor differences in the pH of skin cleansing preparations seem to be of importance for the integrity of the skin surface. This should be taken into account when planning the formulation of optimal skin care products.

  16. Effects of bulk precipitation pH and growth period on cation enrichment in precipitation beneath the canopy of a beech (Fagus moesiaca) forest stand.

    PubMed

    Michopoulos, P; Baloutsos, G; Nakos, G; Economou, A

    2001-12-17

    The effects of bulk precipitation pH and growth period (growing and dormant) on cation enrichment beneath foliage were examined in a beech (Fagus moesiaca) forest stand during a 48-month period. The bulk precipitation pH values ranged from 4.2 to 7.2. The lowest values were observed in winter due to fossil fuel combustion in a nearby big city. The ratio of monthly ion fluxes of throughfall plus stemflow over monthly ion fluxes of bulk precipitation was chosen as an index of cation enrichment and, therefore, as the dependent variable. Bulk precipitation pH and growth period were chosen as independent factors. Precipitation interception (%) by tree canopies was also taken into account. It was found that the pH factor was significant only for H+ ion enrichment suggesting neutralization of H+ ions in the beech canopy, whereas Mg2+ and K+ enrichment were greater in the growing period, probably as a result of leaching. Crown interception was negatively significant for NH4+-N enrichment.

  17. Salivary buffer effect in relation to late pregnancy and postpartum.

    PubMed

    Laine, M; Pienihäkkinen, K

    2000-02-01

    We studied the salivary pH, buffer effect (BE), and flow rates of unstimulated and paraffin-stimulated saliva of 8 women in their late pregnancy and postpartum. Salivary samples were collected about 1 month prior to and about 2 months after delivery. In non-pregnant control women, two paraffin-stimulated salivary samples were collected 1 month apart. The salivary BE increased significantly from late pregnancy to postpartum without exception. The increase was 2.04 +/- 1.17 pH units (P < 0.001) on average. The BE increased from 4.79 +/- 1.64 (final pH) to 6.82 +/- 1.01 (final pH). This change was not due to variation in salivary flow rates, since both unstimulated and paraffin-stimulated flow rates remained unchanged. In control women the difference between the 2 BE measurements was only 0.13 +/- 0.47 pH units on average. We concluded that women with high postpartum BE values may have moderate or even low BE values in late pregnancy. In control women, individual variation was found to be low in all variables studied.

  18. Degradation kinetics of anthocyanins from European cranberrybush (Viburnum opulus L.) fruit extracts. Effects of temperature, pH and storage solvent.

    PubMed

    Moldovan, Bianca; David, Luminiţa; Chişbora, Cristian; Cimpoiu, Claudia

    2012-09-28

    European cranberrybush (Viburnum opulus L.) fruits are well known for their biological properties, of which some are due to the presence of anthocyanins in the berries. Current literature provides little information concerning these fruits. The stability of anthocyanins from Viburnum opulus fruits, in aqueous and ethanolic extracts, stored under darkness for 7 days at different temperatures (2 °C, 37 °C and 75 °C) and pH values (pH = 3 and 7), was studied here. The lowest stability was showed by the anthocyanins from the water extract stored at 75 °C and pH = 7, with half-life and constant rate values of 1.98 h and 0.3488 h⁻¹, respectively. The results showed a good correlation between the total anthocyanin content (determined using the pH differential method) and the time of storage, with determination coefficients varying from R² = 0.9298 to R² = 0.9971. Results indicate that the storage degradation of anthocyanins followed first-order reaction kinetics under all investigated conditions.

  19. Effects of pH on the formation of 4(5)-Methylimidazole in glucose/ammonium sulfate and glucose/ammonium sulfite caramel model reactions.

    PubMed

    Wu, Xinlan; Kong, Fansheng; Huang, Minghui; Yu, Shujuan

    2015-10-01

    The objective of the present study was to detail the change of 4(5)-Methylimidazole (4-MI) in sulfite and sulfate reactions with different initial pH values. Glucose/ammonium sulfate and glucose/ammonium sulfite reaction systems with initial pH conditions 4.9, 5.9, 6.9, 8.0 and 8.6, were heated at 100°C for 2h, respectively. Higher concentration of methylglyoxal (MGO) and 4-MI was detected in thermal treated glucose/ammonium sulfite reaction system than that in sulfate system. The SO 3 2- reacting with MGO and other precursors of 4-MI at higher pH conditions prevented 4-MI formation. However, no inhibition of 4-MI was found at lower pH conditions due to higher reactivity of the nucleophilic NH 4 + than SO 3 2- . The browning intensity of the sulfite system changed scarcely at higher pH values, which was possibly caused by the polyreaction between SO 3 2- and carbonyl, instead of the intermolecular polymerisation of carbonyl in the advanced stage of the Maillard reaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Improvement of physicomechanical properties of carbamazepine by recrystallization at different pH values.

    PubMed

    Javadzadeh, Yousef; Mohammadi, Ameneh; Khoei, Nazaninossadat Seyed; Nokhodchi, Ali

    2009-06-01

    The morphology of crystals has an appreciable impact role on the physicochemical properties of drugs. Drug properties such as flowability, dissolution, hardness and bioavailability may be affected by crystallinity behaviours of drugs. The objective of this study was to achieve an improved physicomechanical property of carbamazepine powder through recrystallization from aqueous solutions at different pH values. For this purpose, carbamazapine was recrystallized from aqueous solutions at different pH values (1, 7, 11). The morphology of crystals was investigated using scanning electron microscopy; X-ray powder diffraction (XRPD) was used to identify polymorphism; thermodynamic properties were analyzed using differential scanning calorimetery (DSC). Dissolution rate was determined using USP dissolution apparatus. Mechanical behavior of recrystallized carbamazepine powders was investigated by making tablets under different compaction pressure and measuring their hardness. SEM studies showed that the carbamazepine crystallization in different media affected the morphology and size of carbamazepine crystals. The shape of carbamazepine crystals changed from flaky or thin plate-like to needle shape. XRPD and DSC results ruled out any crystallinity changes occurring due to the temperature during recrystallization procedure or pH of crystallization media. The crushing strength of tablets indicated that all of the recrystallized carbamazepine samples had better compactiblity than the original carbamazepine powder. In vitro dissolution studies of carbamazepine samples showed a higher dissolution rate for carbamazepine crystals obtained from media with pH 11 and 1. Carbamazepine particles recrystallized from aqueous solutions of different pH values (all media) appeared to have superior mechanical properties to those of the original carbamazepine sample.

  1. Determination of the pK values of 5-aminosalicylic acid and N-acetylaminosalicylic acid and comparison of the pH dependent lipid-water partition coefficients of sulphasalazine and its metabolites.

    PubMed

    Allgayer, H; Sonnenbichler, J; Kruis, W; Paumgartner, G

    1985-01-01

    Sulphasalazine (SASP), used in the treatment of inflammatory bowel disease, is split into sulphapyridine (SP) and 5-aminosalicylic acid (5-ASA) in the colon. Lower plasma levels of SASP and 5-ASA as compared to those of SP may be due to different absorption rates from the colon because of different pK values and pH dependent lipid-water partition coefficients. In this study we determined the pK values of 5-ASA and its major metabolite, N-acetyl amino-salicylic acid (AcASA), by 13C-NMR spectroscopy and compared the pH dependent apparent benzene-water partition coefficients (Papp) of SASP, SP and 5-ASA with respect to their different plasma levels. The COOH group of 5-ASA had a pK value of 3.0, the -NH3+ group had 6.0, the -OH group 13.9; the -COOH group of AcASA had 2.7 and the -OH group 12.9; The Papp of SASP (0.042 +/- 0.004) and 5-ASA (0.059 +/- 0.01) were significantly lower than that of SP (0.092 +/- 0.03) (at pH 5.5).

  2. Is pH paper an acceptable, low-cost alternative to the blood gas analyzer for determining pleural fluid pH?

    PubMed

    Lesho, E P; Roth, B J

    1997-11-05

    Our laboratory uses pH paper rather than a blood gas analyzer to measure pleural fluid pH to decrease cost and avoid analyzer malfunction due to viscous fluids. To compare these two methods of determining pleural fluid pH, 42 patients undergoing diagnostic or therapeutic thoracentesis had two 1-mL aliquots of pleural fluid anaerobically collected in a heparinized syringe and placed on ice. pH measurements were made using litmus paper (pHydron Vivid 6-8 brand litmus paper; MicroEssential Labs; Brooklyn, NY) and the model 995-Hb blood gas analyzer (AVL Instruments; Roswell, GA) within 1 h of collection. Agreement analysis was performed in three ways: on the entire group; in subcategories of complicated or uncomplicated parapneumonic effusions (<7.1, 7.1 to 7.3, >7.3); and in subcategories of poor prognosis or better prognosis malignant effusions(<7.3, >7.3). pH measured with pH paper was significantly more variable (SD=0.55, coefficient of variation [CV]=7.5%) than was pH measured with the blood gas analyzer (SD=0.11, CV=1.5%). There was no significant correlation between values obtained with the two techniques (r=-0.26, SD of the differences=0.59). Using the pH subcategories, there was 72% discordance in classification between litmus paper and arterial blood gas (ABG) determinations for patients with parapneumonic effusions. In patients with malignant effusions, there was 30% discordance. The pH values obtained by the ABG analyzer predicted tube thoracostomy 72% of the time, whereas the pH values obtained using pH paper were consistent only 36% of the time. Determination of pleural fluid pH using pH paper is unreliable and should not be considered an acceptable alternative to the blood gas analyzer. There is no need to determine pH on purulent samples. Hospital laboratories will be more likely to allow the use of the ABG analyzer on fluids other than blood if clinicians keep this in mind.

  3. Influence of ionic strength and OH(-) ion concentration on the Cu(II) complex formation with EDTA in alkaline solutions.

    PubMed

    Norkus, E; Vaskelis, A; Zakaite, I

    1996-03-01

    D.c. polarographic data show that the complex formation of copper ions with EDTA depends markedly on the ionic strength of the solution at pH 8-10. This is primarily associated with the dependence of the fourth deprotonization constant of EDTA on the solution ionic strength: when it increases from 0.4 to 3.4, the pK(a4) value decreases from 9.5 to 8.2. According to polarographic and spectrophotometric data the degree of Cu(II) complexation increases at pH>10 due to transformation of the complex CuY(2-) to the more stable CuY(OH)(3-) (Y(4-), a fully deprotonized anion of EDTA), but it decreases with increase in alkalinity in a highly alkaline solution (pH>13.5). The latter result could be explained by the decrease in the EDTA anion activity. The calculated values of the activity coefficient are lower than 0.05 at pH>14.

  4. Effect of increasing the colloidal calcium phosphate of milk on the texture and microstructure of yogurt.

    PubMed

    Ozcan, T; Horne, D; Lucey, J A

    2011-11-01

    The effect of increasing the colloidal calcium phosphate (CCP) content on the physical, rheological, and microstructural properties of yogurt was investigated. The CCP content of heated (85°C for 30 min) milk was increased by increasing the pH by the addition of alkali (NaOH). Alkalized milk was dialyzed against pasteurized skim milk at approximately 4°C for 72 h to attempt to restore the original pH and soluble Ca content. By adjustment of the milk to pH values 7.45, 8.84, 10.06, and 10.73, the CCP content was increased to approximately 107, 116, 123, and 128%, respectively, relative to the concentration in heated milk. During fermentation of milk, the storage modulus (G') and loss tangent values of yogurts were measured using dynamic oscillatory rheology. Large deformation rheological properties were also measured. The microstructure of yogurt was observed using fluorescence microscopy, and whey separation was determined. Acid-base titration was used to evaluate changes in the CCP content in milk. Total Ca and casein-bound Ca increased with an increase in the pH value of alkalization. During acidification, elevated buffering occurred in milk between pH values 6.7 to 5.2 with an increase in the pH of alkalization. When acidified milk was titrated with alkali, elevated buffering occurred in milk between pH values 5.6 to 6.4 with an increase in the pH of alkalization. The high residual pH of milk after dialysis could be responsible for the decreased contents of soluble Ca in these milks. The pH of gelation was higher in all dialyzed samples compared with the heated control milk, and the gelation pH was higher with an increase in CCP content. The sample with highest CCP content (128%) exhibited gelation at very high pH (6.3), which could be due to alkali-induced CN micellar disruption. The G' values at pH 4.6 were similar in gels with CCP levels up to 116%; at higher CCP levels, the G' values at pH 4.6 greatly decreased. Loss tangent values at pH 5.1 were similar in all samples except in gels with a CCP level of 128%. For dialyzed milk, the whey separation levels were similar in gels made from milk with up to 107% CCP but increased at higher CCP levels. Microstructure of yogurt gels made from milk with 100 to 107% CCP was similar but very large clusters were observed in gels made from milk with higher CCP levels. By dialyzing heated milk against pasteurized milk, we may have retained some heat-induced Ca phosphate on micelles that normally dissolves on cooling because, during dialysis, pasteurized milk provided soluble Ca ions to the heated milk system. Yogurt texture was significantly affected by increasing the casein-bound Ca (and total Ca) content of milk as well as by the alkalization procedure involved in that approach. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Heat resistance of Bacillus cereus spores: effects of milk constituents and stabilizing additives.

    PubMed

    Mazas, M; López, M; Martínez, S; Bernardo, A; Martin, R

    1999-04-01

    Heat resistance of Bacillus cereus spores (ATCC 7004, 4342, and 9818) heated in different types of milk (skim, whole, and concentrated skim milk), skim milk containing stabilizing additives (sodium citrate, monopotassium phosphate, or disodium phosphate, 0.1%), and cream was investigated. Thermal resistance experiments were performed at temperatures within the range of 92 to 115 degrees C under continuous monitoring of pH. For strain 4342 no significant differences (P < 0.05) in D values were detected in any case. For strains 7004 and 9818 higher D values of about 20% were obtained in whole and concentrated skim milk than those calculated in skim milk. From all stabilizing additives tested, only sodium citrate and sodium phosphate increased the heat resistance for strain 9818. However, when the menstruum pH was measured at the treatment temperature, different pH values were found between the heating media. The differences in heat resistance observed could be due to a pH effect rather than to the difference in the substrates in which spores were heated. In contrast, when cream (fat content 20%) was used, lower D values were obtained, especially for strains 7004 and 9818. z values were not significantly modified by the milk composition, with an average z value of 7.95+/-0.20 degrees C for strain 7004, 7.88+/-0.10 degrees C for strain 4342, and 9.13+/-0.16 degrees C for strain 9818.

  6. [Lactose intolerance in neonates with non-infectious diarrhea].

    PubMed

    Su, Hui-Min; Jiang, Yi; Hu, Yu-Lian; Yang, Hui; Dong, Tian-Jin

    2016-04-01

    To investigate the development of lactose intolerance in neonates with non-infectious diarrhea and its association with diarrhea, and to evaluate the diagnostic values of fecal pH value and urine galactose determination for neonatal lactase deficiency. Seventy hospitalized neonates who developed non-infectious diarrhea between October 2012 and June 2015 were enrolled as the diarrhea group, and 162 hospitalized neonates without non-infectious diarrhea were enrolled as the non-diarrhea group. Test paper was used to determine fecal pH value. The galactose oxidase method was used to detect urine galactose. The neonates with positive galactose oxidase were diagnosed with lactase deficiency, and those with lactase deficiency and diarrhea were diagnosed with lactose intolerance. According to the results of urine galactose detection, 69 neonates in the diarrhea group who underwent urine galactose detection were classified into lactose intolerance group (45 neonates) and lactose tolerance group (24 neonates), and their conditions after treatment were compared between the two groups. The follow-up visits were performed for neonates with diarrhea at 3 months after discharge. Fecal pH value and positive rate of urine galactose (65% vs 54%) showed no significant differences between the diarrhea and non-diarrhea groups (P>0.05). Fecal pH value showed no significant difference between the lactose intolerance and lactose tolerance groups (P>0.05), while the neonates in the lactose intolerance group had a significantly longer time to recovery of defecation than those in the lactose tolerance group (P<0.05). The incidence of lactase deficiency is high in neonates, and diarrhea due to lactose intolerance tends to occur. Determination of fecal pH value has no significance in the diagnosis of lactose intolerance in neonates with diarrhea.

  7. In-vitro investigations of a pH- and ionic-strength-responsive polyelectrolytic hydrogel using a piezoresistive microsensor

    PubMed Central

    Schulz, Volker; Guenther, Margarita; Gerlach, Gerald; Magda, Jules J.; Tathireddy, Prashant; Rieth, Loren; Solzbacher, Florian

    2010-01-01

    Environmental responsive or smart hydrogels show a volume phase transition due to changes of external stimuli such as pH or ionic strength of an ambient solution. Thus, they are able to convert reversibly chemical energy into mechanical energy and therefore they are suitable as sensitive material for integration in biochemical microsensors and MEMS devices. In this work, micro-fabricated silicon pressure sensor chips with integrated piezoresistors were used as transducers for the conversion of mechanical work into an appropriate electrical output signal due to the deflection of a thin silicon bending plate. Within this work two different sensor designs have been studied. The biocompatible poly(hydroxypropyl methacrylate-N,N-dimethylaminoethyl methacrylate-tetra-ethyleneglycol dimethacrylate) (HPMA-DMA-TEGDMA) was used as an environmental sensitive element in piezoresistive biochemical sensors. This polyelectrolytic hydrogel shows a very sharp volume phase transition at pH values below about 7.4 which is in the range of the physiological pH. The sensor's characteristic response was measured in-vitro for changes in pH of PBS buffer solution at fixed ionic strength. The experimental data was applied to the Hill equation and the sensor sensitivity as a function of pH was calculated out of it. The time-dependent sensor response was measured for small changes in pH, whereas different time constants have been observed. The same sensor principal was used for sensing of ionic strength. The time-dependent electrical sensor signal of both sensors was measured for variations in ionic strength at fixed pH value using PBS buffer solution. Both sensor types showed an asymmetric swelling behavior between the swelling and the deswelling cycle as well as different time constants, which was attributed to the different nature of mechanical hydrogel-confinement inside the sensor. PMID:21152365

  8. Sensitive SERS-pH sensing in biological media using metal carbonyl functionalized planar substrates.

    PubMed

    Kong, Kien Voon; Dinish, U S; Lau, Weber Kam On; Olivo, Malini

    2014-04-15

    Conventional nanoparticle based Surface enhanced Raman scattering (SERS) technique for pH sensing often fails due to the aggregation of particles when detecting in acidic medium or biosamples having high ionic strength. Here, We develop SERS based pH sensing using a novel Raman reporter, arene chromium tricarbonyl linked aminothiophenol (Cr(CO)3-ATP), functionalized onto a nano-roughened planar substrates coated with gold. Unlike the SERS spectrum of the ATP molecule that dominates in the 400-1700 cm(-1) region, which is highly interfered by bio-molecules signals, metal carbonyl-ATP (Cr(CO)3)-ATP) offers the advantage of monitoring the pH dependent strong CO stretching vibrations in the mid-IR (1800-2200 cm(-1)) range. Raman signal of the CO stretching vibrations at ~1820 cm(-1) has strong dependency on the pH value of the environment, where its peak undergo noticeable shift as the pH of the medium is varied from 3.0 to 9.0. The sensor showed better sensitivity in the acidic range of the pH. We also demonstrate the pH sensing in a urine sample, which has high ionic strength and our data closely correlate to the value obtained from conventional sensor. In future, this study may lead to a sensitive chip based pH sensing platform in bio-fluids for the early diagnosis of diseases. © 2013 Published by Elsevier B.V.

  9. Methodological implications in pH standardization of exhaled breath condensate.

    PubMed

    Hoffmeyer, F; Berresheim, H; Beine, A; Sucker, K; Brüning, T; Bünger, J

    2015-05-14

    The variable amount of dissolved carbon dioxide is one of the main confounding factors of exhaled breath condensate (EBC) pH measurements. There have been many attempts at identifying the optimal approach to displace CO2 as a way to gain reproducible and valid pH values in EBC samples. The aim of the present study was to assess the correlation of pH and pCO2 in untreated, neat EBC samples and, after deaeration, to reevaluate the standardization of CO2 as a means to obtain valid pH values. A further aim was to evaluate the impact of deaeration on the acid-base balance in EBC samples. EBC was collected from seven female and 31 male subjects. The pH and pCO2 values immediately determined in untreated, neat EBC samples were strongly correlated (rp = -0.723, p <  0.0001). This correlation was not observed after deaeration with argon (rs = 0.264, p = 0.109). Based on a regression function for the pH/pCO2 relationship, the calculated pH at a pCO2 of 5.33 kPa was 6.07 (IQR 5.99, 6.20). No significant difference was observed between the pH measured in neat EBC samples and those calculated after deaeration with regression function and measured neat pCO2. Our data suggest that pCO2 is the most important confounder of pH measurement in EBC samples and, when adjusting for pCO2, the acid-base balance of EBC samples is not significantly influenced by the process of deaeration. Furthermore, measurement with a blood-gas analyzer and standardization of pH for pCO2 allows sensitive assaying of EBC samples. Therefore, this method provides a basis for detection of even small changes in airway pH due to inhalative exposure or respiratory disease.

  10. Differences in functional traits between invasive and native Amaranthus species under simulated acid deposition with a gradient of pH levels

    NASA Astrophysics Data System (ADS)

    Wang, Congyan; Wu, Bingde; Jiang, Kun; Zhou, Jiawei

    2018-05-01

    Co-occurring invasive plant species (invaders hereafter) and natives receive similar or even the same environmental selection pressures. Thus, the differences in functional traits between natives and invaders have become widely recognized as a major driving force of the success of plant invasion. Meanwhile, increasing amounts of acid are deposited into ecosystems. Thus, it is important to elucidate the potential effects of acid deposition on the functional traits of invaders in order to better understand the potential mechanisms for the successful invasion. This study aims to address the differences in functional traits between native red amaranth (Amaranthus tricolor L.; amaranth hereafter) and invasive redroot pigweed (A. retroflexus L.; pigweed hereafter) under simulated acid deposition with a gradient of pH levels. Pigweed was significantly taller than amaranth under most treatments. The greater height of pigweed can lead to greater competitive ability for resource acquisition, particularly for sunlight. Leaf shape index of pigweed was also significantly greater than that of amaranth under all treatments. The greater leaf shape index of pigweed can enhance the efficiency of resource capture (especially sunlight capture) via adjustments to leaf shape and size. Thus, the greater height and leaf shape index of pigweed can significantly enhance its competitive ability, especially under acid deposition. Acid deposition of pH 5.6 significantly increased amaranth leaf width in the co-cultivation due to added nutrients. The pH 4.5 acid deposition treatment significantly increased the specific leaf area of amaranth in the monoculture compared with the pH 5.6 acid deposition treatment and the control. The main mechanism explaining this pattern may be due to acid deposition mediating a hormesis effect on plants, promoting plant growth. The values of the relative competition intensity between amaranth and pigweed for most functional traits were lower than zero under most treatments. Thus, competitive performance arose in most treatments when the two species were grown together. This may be due to the enhanced competitive intensity under interspecific coexistence. However, the values of the relative competition intensity of the leaf functional traits between amaranth and pigweed were all higher than zero under the pH 5.6 simulated acid deposition treatment. Thus, interspecific facilitation occurs when the two species are co-cultivated under the pH 5.6 simulated acid deposition treatment. This may be due the positive nutritional effects induced in the pH 5.6 simulated acid deposition treatment.

  11. Effect of dextran and dextran sulfate on the structural and rheological properties of model acid milk gels.

    PubMed

    Pachekrepapol, U; Horne, D S; Lucey, J A

    2015-05-01

    Various types of polysaccharides are widely used in cultured dairy products. However, the interaction mechanisms, between milk proteins and these polysaccharides, are not entirely clear. To explore the interactions between uncharged and charged polysaccharides and the caseins, we used a model acid-milk-gel system, which allowed acidification to occur separately from gelation. The effect of adding uncharged dextran (DX; molecular weight ~2.0×10(6) Da) and negatively charged dextran sulfate (DS; molecular weight ~1.4×10(6) Da) to model acid milk gels was studied. Two concentrations (0.075 and 0.5%, wt/wt) of DX or DS were added to cold milk (~0°C) that had been acidified to pH values 4.4, 4.6, 4.8, or 4.9. Acidified milks containing DX or DS were then quiescently heated at the rate of 0.5°C/min to 30°C, which induced gelation, and gels were then held at 30°C for 17 h to facilitate gel development. Dynamic small-amplitude-oscillation rheology and large-deformation (shear) tests were performed. Microstructure of gels was examined by fluorescence microscopy. Gels made with a high concentration of DX gelled at a lower temperature, but after 17 h at 30°C, these gels exhibited lower storage moduli and lower yield-stress values. At pH 4.8 or 4.9 (pH values greater than the isoelectric point of caseins), addition of 0.5% DS to acidified milk resulted in lower gelation temperature. At pH 4.4 (pH values less than the isoelectric point of caseins), addition of 0.5% DS to acidified milk resulted in gels with very high stiffness values. Gels made at pH 4.8 or 4.9 with both concentrations of DS had much lower stiffness and yield-stress values than control gels. Microstructural analysis indicated that gels made at pH 4.4 with the addition of 0.5% DX exhibited large protein strands and pores, whereas gels made with 0.075% DX or the control gels had a finer protein matrix. At higher pH values (>4.4), gels made with 0.5% DX had a finer structure. At all pH values, gels made with 0.5% DS exhibited larger pores than the control gels. This study demonstrated that low concentrations of uncharged DX did not significantly affect the rheological properties of model acid milk gels; high concentrations of DX resulted in earlier gelation, possibly caused by depletion-induced attractions between casein particles, which altered the microstructure and created weaker gels. At pH values <4.6, negatively charged DS produced stiff casein gels, which might be due to attractive crosslinking by electrostatic interactions between DS and caseins at pH values below the isoelectric pH of casein (i.e., positively charged casein regions interacted with negatively charged DS molecules). Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Effects of Gold Salt Speciation and Structure of Human and Bovine Serum Albumin on the Synthesis and Stability of Gold Nanostructures

    NASA Astrophysics Data System (ADS)

    Miranda, Érica; Tofanello, Aryane; Brito, Adrianne; Lopes, David; Giacomelli, Fernando; Albuquerque, Lindomar; Costa, Fanny; Ferreira, Fabio; Araujo-Chaves, Juliana; de Castro, Carlos; Nantes, Iseli

    2016-03-01

    The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3-12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from fifteen days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After two months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination with the gold surface. Therefore, the cysteine side chain of albumins is important for the colloidal stabilization of GNPs rather than as the reducing agent for the synthesis. Despite the presence of more reactive gold species at more acidic pH values, i.e., below

  13. Inner-Helmholtz potential development at the hematite (α-Fe 2O 3) (0 0 1) surface

    NASA Astrophysics Data System (ADS)

    Boily, Jean-François; Chatman, Shawn; Rosso, Kevin M.

    2011-08-01

    Electric potentials of the (0 0 1) surface of hematite were measured as a function of pH and ionic strength in solutions of sodium nitrate and oxalic acid using the single-crystal electrode approach. The surface is predominantly charge-neutral in the pH 4-14 range, and develops a positive surface potential below pH 4 due to protonation of μ-OH 0 sites (p K1,1,0,int = -1.32). This site is resilient to deprotonation up to at least pH 14 (-p K-1,1,0,int ≫ 19). The associated Stern layer capacitance of 0.31-0.73 F/m 2 is smaller than typical values of powders, and possibly arises from a lower degree of surface solvation. Acid-promoted dissolution under elevated concentrations of HNO 3 etches the (0 0 1) surface, yielding a convoluted surface populated by -OH20.5+ sites. The resulting surface potential was therefore larger under these conditions than in the absence of dissolution. Oxalate ions also promoted (0 0 1) dissolution. Associated electric potentials were strongly negative, with values as large as -0.5 V, possibly from metal-bonded interactions with oxalate. The hematite surface can also acquire negative potentials in the pH 7-11 range due to surface complexation and/or precipitation of iron species (0.0038 Fe/nm 2) produced from acidic conditions. Oxalate-bearing systems also result in negative potentials in the same pH range, and may include ferric-oxalate surface complexes and/or surface precipitates. All measurements can be modeled by a thermodynamic model that can be used to predict inner-Helmholtz potentials of hematite surfaces.

  14. pH Neutralization of Aqueous Bio-Oil from Switchgrass Intermediate Pyrolysis Using Process Intensification Devices

    DOE PAGES

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira; ...

    2017-07-20

    Despite the potential carbon-neutrality of switchgrass bio-oil, its high acidity and diverse chemical composition limit its utilization. The objectives of this research are to investigate pH neutralization of bio-oil by adding various alkali solutions in a batch system and then perform neutralization using process intensification devices, including a static mixer and a centrifugal contactor. The results indicate that sodium hydroxide and potassium hydroxide are more appropriate bases for pH neutralization of bio-oil than calcium hydroxide due to the limited solubility of calcium hydroxide in aqueous bio-oil. Mass and total acid number (TAN) balances were performed for both batch and continuous-flowmore » systems. Upon pH neutralization of bio-oil, the TAN values of the system increased after accounting the addition of alkali solution. A bio-oil heating experiment showed that the heat generated during pH neutralization did not cause a significant increase in the acidity of bio-oil. The formation of phenolic compounds during neutralization was initially suspected of increasing the system’s overall TAN value because some of these compounds (e.g., vanillic acid) act as polyprotic acids and have a stronger influence on the TAN value than monoprotic acids (e.g., acetic acid). The amount of phenolics in separated bio-oil phases, however, did not change significantly after pH neutralization. In conclusion, process intensification devices provided sufficient mixing and separation of the organic and aqueous phases, suggesting a scale-up route for the bio-oil pH neutralization process.« less

  15. pH Neutralization of Aqueous Bio-Oil from Switchgrass Intermediate Pyrolysis Using Process Intensification Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira

    Despite the potential carbon-neutrality of switchgrass bio-oil, its high acidity and diverse chemical composition limit its utilization. The objectives of this research are to investigate pH neutralization of bio-oil by adding various alkali solutions in a batch system and then perform neutralization using process intensification devices, including a static mixer and a centrifugal contactor. The results indicate that sodium hydroxide and potassium hydroxide are more appropriate bases for pH neutralization of bio-oil than calcium hydroxide due to the limited solubility of calcium hydroxide in aqueous bio-oil. Mass and total acid number (TAN) balances were performed for both batch and continuous-flowmore » systems. Upon pH neutralization of bio-oil, the TAN values of the system increased after accounting the addition of alkali solution. A bio-oil heating experiment showed that the heat generated during pH neutralization did not cause a significant increase in the acidity of bio-oil. The formation of phenolic compounds during neutralization was initially suspected of increasing the system’s overall TAN value because some of these compounds (e.g., vanillic acid) act as polyprotic acids and have a stronger influence on the TAN value than monoprotic acids (e.g., acetic acid). The amount of phenolics in separated bio-oil phases, however, did not change significantly after pH neutralization. In conclusion, process intensification devices provided sufficient mixing and separation of the organic and aqueous phases, suggesting a scale-up route for the bio-oil pH neutralization process.« less

  16. Leaching of lead from new unplasticized polyvinyl chloride (uPVC) pipes into drinking water.

    PubMed

    Zhang, Yuanyuan; Lin, Yi-Pin

    2015-06-01

    Unplasticized polyvinyl chloride (uPVC) pipes have been used in the premise plumbing system due to their high strength, long-term durability, and low cost. uPVC pipes, however, may contain lead due to the use of lead compounds as the stabilizer during the manufacturing process. The release of lead from three locally purchased uPVC pipes was investigated in this study. The effects of various water quality parameters including pH value, temperature, and type of disinfectant on the rate of lead release were examined. The elemental mapping obtained using scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) confirmed the presence of lead on the inner surfaces of the uPVC pipes and their surface lead weight percentages were determined. The leachable lead concentration for each pipe was determined using high strength acidic EDTA solutions (pH 4, EDTA = 100 mg/L). Lead leaching experiments using tap water and reconstituted tape water under static conditions showed that the rate of lead release increased with the decreasing pH value and increasing temperature. In the presence of monochloramine, lead release was faster than that in the presence of free chlorine.

  17. Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources.

    PubMed

    Vergili, I

    2013-09-30

    Pharmaceutical active compounds (PhACs) are persistent during the process used to treat drinking water and, because drinking water treatment plants are not specifically designed to remove PhACs, these compounds are found in drinking water. Although there are currently no regulations or drinking water directives for PhACs, precautionary principles suggest ensuring maximal removal of PhACs through improved or existing treatment techniques. This study was designed to investigate the performance of a nanofiltration membrane in cross-flow filtration equipment for the removal of three PhACs [carbamazepine (CBZ), diclofenac (DIC) and ibuprofen (IBU)] that were spiked in water taken from a drinking water treatment plant using surface water. Because of their low solubilities, high log Kow values, low dipole moments and negative charges, higher rejection values were obtained for DIC and IBU. Low to moderate rejection values were most likely due to the small molecular sizes of the PhACs (i.e., MW < MWCO) and the divalent ions present in the raw water. Flux declines obtained from DIC studies was attributed to the adsorption of DIC ions inside the membrane pores, which decreases the flux. The most evident change in the FT-IR spectrum after nanofiltration was the appearance of new intense bands at 1072 cm(-1) and 1011 cm(-1), indicating the deposition of calcium salts on the membrane surface. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. [Macroscopic evaluation of the oral mucosa and analysis of salivary pH in patients with anorexia nervosa].

    PubMed

    Paszyńska, Elzbieta; Słopień, Agnieszka; Slebioda, Zuzanna S; Dyszkiewicz-Konwińska, Marta; Weglarz, Monika; Rajewski, Andrzej

    2014-01-01

    The aim of the study was to evaluate the status of the oral mucosa, to assess the prevalence of Candida in the oral cavity and to analyze the pH values of total saliva in patients with anorexia nervosa (AN) in comparison to the general population. A controlled clinical trial was designed for two, age-matched, female groups: patients with AN (Group A, n=31) and healthy women (Group 0, n = 40). Total saliva was collected at rest and after stimulation by chewing paraffin wax. Salivary pH was measured and macroscopic evaluation of the oral mucosa was performed with a qualitative and quantitative mycological analysis. The smear layer was collected from three different areas in the oral cavity. Selected Candida broths were used for incubation. Changes in the macroscopic structure of the oral mucosa due to multifactorial etiologies were observed. The prevalence of Candida in patients with AN was comparable to that in the general population. Salivary pH values were significantly lower in the AN patients than in the control group. The incidence of pathological changes in the oral mucosa is associated with the loss of the salivary protective barrier. This is shown by the significant reduction in the pH values of stimulated and non-stimulated saliva of the AN patients. In these patients, the monitoring of salivary parameters such as salivary flow rate and pH is indicated, and a regular dental checkup, together with soft tissue evaluation, is advised.

  19. Effects of Gold Salt Speciation and Structure of Human and Bovine Serum Albumins on the Synthesis and Stability of Gold Nanostructures

    PubMed Central

    Miranda, Érica G. A.; Tofanello, Aryane; Brito, Adrianne M. M.; Lopes, David M.; Albuquerque, Lindomar J. C.; de Castro, Carlos E.; Costa, Fanny N.; Giacomelli, Fernando C.; Ferreira, Fabio F.; Araújo-Chaves, Juliana C.; Nantes, Iseli L.

    2016-01-01

    The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3–12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from 15 days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After 2 months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination with the gold surface. Therefore, the cysteine side chain of albumins is important for the colloidal stabilization of GNPs rather than as the reducing agent for the synthesis. Despite the presence of more reactive gold species at more acidic pH values, i.e., below 6.0, in these conditions the loss of native albumin structure impaired GNP synthesis. Alkaline pH values (9–12) combined the unfavorable conditions of denaturated protein structure with less reactive gold species. Therefore, an optimal condition for the synthesis of GNPs using serum albumins involves more reactive gold salt species combined with a reducing and negatively charged form of the protein, all favored at pH 6–7. PMID:27066476

  20. Effects of pH and phosphate on glyphosate adsorption to Argentina soils.

    NASA Astrophysics Data System (ADS)

    De Geronimo, Eduardo; Aparicio, Virginia; Costa, José Luis

    2017-04-01

    Glyphosate is a non-selective, post-emergence herbicide that is widely used in Argentina. Due to the similar molecular structures, glyphosate and phosphate compete for the same adsorption sites in soil. Soil pH has a strong influence in glyphosate and phosphate adsorption since it modifies the net charge of the molecules and, consequently, the force of the electrostatic interaction between these molecules and soil components. Glyphosate adsorption generally decreases as the soil pH was increased, although there were exceptions. In this work, we study the effects of pH and the presence of phosphate on the adsorption of glyphosate on six different types of Argentina soils. Batch equilibrium technique was employed to study the adsorption of glyphosate onto soils at different pH values (from 3 to 9) and phosphate content (0.5 and 1 mM). Stepwise multiple linear regression analysis was applied to obtain a relationship between the sorption parameters and soil properties. The results indicated that Freundlich equations used to simulate glyphosate adsorption isotherms gave high correlation coefficients with Kf values range from 24.9 to 397.4. Clay contents and soil pH were found to be the most significant soil factors affecting the glyphosate adsorption process. The presence of phosphate significantly decreased the adsorption of glyphosate to soils. The Kf values obtained for all six soils decreased a 40% at 0.5 mM of phosphate and a 55% at 1 mM of phosphate. On the other hand, the affinity parameters of glyphosate to soils varied with changes in pH. A general trend of decrease in glyphosate adsorption with increase in pH was observed for all six studied soils. In turn, there appears to be a maximum glyphosate adsorption at pH close to 6 for most soils when the net charge of the molecule at this pH was approximately -1.7.

  1. Measurement of pH in whole blood by near-infrared spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, M. Kathleen; Maynard, John D.; Robinson, M. Ries

    1999-03-01

    Whole blood pH has been determined {ital in vitro} by using near-infrared spectroscopy over the wavelength range of 1500 to 1785 nm with multivariate calibration modeling of the spectral data obtained from two different sample sets. In the first sample set, the pH of whole blood was varied without controlling cell size and oxygen saturation (O{sub 2} Sat) variation. The result was that the red blood cell (RBC) size and O{sub 2} Sat correlated with pH. Although the partial least-squares (PLS) multivariate calibration of these data produced a good pH prediction cross-validation standard error of prediction (CVSEP)=0.046, R{sup 2}=0.982, themore » spectral data were dominated by scattering changes due to changing RBC size that correlated with the pH changes. A second experiment was carried out where the RBC size and O{sub 2} Sat were varied orthogonally to the pH variation. A PLS calibration of the spectral data obtained from these samples produced a pH prediction with an R{sup 2} of 0.954 and a cross-validated standard error of prediction of 0.064 pH units. The robustness of the PLS calibration models was tested by predicting the data obtained from the other sets. The predicted pH values obtained from both data sets yielded R{sup 2} values greater than 0.9 once the data were corrected for differences in hemoglobin concentration. For example, with the use of the calibration produced from the second sample set, the pH values from the first sample set were predicted with an R{sup 2} of 0.92 after the predictions were corrected for bias and slope. It is shown that spectral information specific to pH-induced chemical changes in the hemoglobin molecule is contained within the PLS loading vectors developed for both the first and second data sets. It is this pH specific information that allows the spectra dominated by pH-correlated scattering changes to provide robust pH predictive ability in the uncorrelated data, and visa versa. {copyright} {ital 1999} {ital Society for Applied Spectroscopy}« less

  2. Effects of system net charge and electrostatic truncation on all-atom constant pH molecular dynamics.

    PubMed

    Chen, Wei; Shen, Jana K

    2014-10-15

    Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here, we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: (1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? (2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force-shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK(a) values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via cotitrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle mesh Ewald, considering the known artifacts due to charge-compensating background plasma. Copyright © 2014 Wiley Periodicals, Inc.

  3. Effects of system net charge and electrostatic truncation on all-atom constant pH molecular dynamics †

    PubMed Central

    Chen, Wei; Shen, Jana K.

    2014-01-01

    Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: 1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? 2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK a values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via co-titrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle-mesh Ewald, considering the known artifacts due to charge-compensating background plasma. PMID:25142416

  4. Switchable nanoassembly from an azobenzene-containing dye.

    PubMed

    Wang, Jing; Ha, Chang-Sik

    2011-07-01

    In this work, we investigated optical properties and the morphology of the amphiphilic azobenzene dye 1 containing hydroxyl azobenzene and C10 alkyl chains. Since the hydroxyl group on 1 has a pKa of 9.38, the deprotonation of the hydroxyl group occurs at pH > pKa (9.38) and thus the 1 nanoparticles are negatively charged. The deprotonated hydroxyl group is hydrophilic relative to the long alkyl chain that is hydrophobic, while the hydrophobic and hydrophilic parts are connected by covalent bonds. When such an azobenzene molecule 1 with both hydrophobic and hydrophilic groups exists in solution, "self-aggregation" may occur due to the hydrophobic interaction between the long alkyl chains. The scattered morphology at pH 7.0 (neutral state) and the aggregated morphology at pH 10.5 (anionic state) of 1 were demostrated by transmission electron microscopy (TEM) and atomic force microscopy (AFM) images. Formation of supramolecular aggregation-induced vesicular-like structures are highly interesting due to the ability to respond to external triggers, pH. The pH value can be reversed by adding acid or base to the system, that is, switching the aggregation "on" and "off" can be repeated.

  5. GLUTAMIC DECARBOXYLASE OF ERGOT, CLAVICEPS PURPUREA

    PubMed Central

    Anderson, John A.; Cheldelin, Vernon H.; King, Tsoo E.

    1961-01-01

    Anderson, John A. (Oregon State University, Corvallis), Vernon H. Cheldelin, and Tsoo E. King. Glutamic decarboxylase of ergot, Claviceps purpurea. J. Bacteriol. 82:354–358. 1961.—l-Glutamic acid is the only naturally occurring amino acid which can be decarboxylated by cell-free extracts of Claviceps purpurea. This decarboxylase was partially purified and the properties of the enzyme studied. The specific activity of the purified preparation was 111 μliters per 10 min per mg of protein. The products formed, stability, inhibition, stimulation of activity with pyridoxal phosphate, and pH activity curve were typical of l-glutamic decarboxylase in Escherichia coli and other microorganisms. The substrate constants at pH 4.6, 5.25, and 5.65 were 0.0169 m, 0.0174 m, and 0.0139 m, respectively. The respective maximal velocities at these pH values were 104, 104, and 90 μliters per 10 min. The pH optimum was 4.8 to 5.2. The enzyme was unstable below pH 4.5 and it was suggested that the fall in activity at the lower end of the pH curve was due to inactivation of the enzyme. The decrease in activity above pH 5.2 did not appear to be due to a change in affinity of enzyme for substrate but to a change of the enzyme-substrate complex into an inactive form. PMID:13683214

  6. Determination of Cu Environments in the Cyanobacterium Anabaena flos-aquae by X-Ray Absorption Spectroscopy

    PubMed Central

    Kretschmer, X. C.; Meitzner, G.; Gardea-Torresdey, J. L.; Webb, R.

    2004-01-01

    Whole cells and peptidoglycan isolated from cell walls of the cyanobacterium Anabaena flos-aquae were lyophilized and used at pH 2 and pH 5 in Cu(II) binding studies. X-ray absorption spectra measured at the Cu K-edge were used to determine the oxidation states and chemical environments of Cu species in the whole-cell and peptidoglycan samples. In the whole-cell samples, most of the Cu retained at both pH values was coordinated by phosphate ligands. The whole-cell fractions contained significant concentrations of Cu(I) as well as Cu(II). An X-ray absorption near-edge spectrum analysis suggested that Cu(I) was coordinated by amine and thiol ligands. An analysis of the peptidoglycan fractions found that more Cu was adsorbed by the peptidoglycan fraction prepared at pH 5, due to increased chelation by amine and carboxyl ligands. The peptidoglycan fractions, also referred to as the cell wall fractions, contained little or no Cu(I). The Cu loading level was 30 times higher in the cell wall sample prepared at pH 5 than in the sample prepared at pH 2. Amine and bidentate carboxyl ligands had similar relative levels of importance in cell wall peptidoglycan samples prepared at both pH values, but phosphate coordination was insignificant. PMID:14766554

  7. If Euhydric and Isotonic Do Not Work, What Are Acceptable pH and Osmolality for Parenteral Drug Dosage Forms?

    PubMed

    Roethlisberger, Dieter; Mahler, Hanns-Christian; Altenburger, Ulrike; Pappenberger, Astrid

    2017-02-01

    Parenteral products should aim toward being isotonic and euhydric (physiological pH). Yet, due to other considerations, this goal is often not reasonable or doable. There are no clear allowable ranges related to pH and osmolality, and thus, the objective of this review was to provide a better understanding of acceptable formulation pH, buffer strength, and osmolality taking into account the administration route (i.e., intramuscular, intravenous, subcutaneous) and administration technique (i.e., bolus, push, infusion). This evaluation was based on 3 different approaches: conventional, experimental, and parametric. The conventional way of defining formulation limits was based on standard pH and osmolality ranges. Experimental determination of titratable acidity or in vitro hemolysis testing provided additional drug product information. Finally, the parametric approach was based on the calculation of theoretical values such as (1) the maximal volume of injection which cannot shift the blood's pH or its molarity out of the physiological range and (b) a dilution ratio at the injection site and by verifying that threshold values are not exceeded. The combination of all 3 approaches can support the definition of acceptable pH, buffer strength, and osmolality of formulations and thus may reduce the risk of failure during preclinical and clinical development. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Remediation of AMD using industrial waste adsorbents

    NASA Astrophysics Data System (ADS)

    Mohammed, Nuur Hani Bte; Yaacob, Wan Zuhairi Wan

    2016-11-01

    The study investigates the characteristic of industrial waste as adsorbents and its potential as heavy metals absorbents in AMD samples. The AMD sample was collected from active mine pond and the pH was measured in situ. The metal contents were analyzed by ICP-MS. The AMD water was very acidic (pH< 3.5), and the average heavy metals content in AMD were high especially in Fe (822.029 mg/l). Fly ash was found to be the most effective absorbent material containing high percentage of CaO (57.24%) and SiO2 (13.88%), followed by ladle furnace slag containing of high amount of CaO (51.52%) and Al2O3 (21.23%), while biomass ash consists of SiO2 (43.07%) and CaO (12.97%). Tank analysis display a huge changes due to pH value change from acidity to nearly neutral phases. After 50 days, fly ash remediation successfully increase the AMD pH values from pH 2.57-7.09, while slag change from acidity to nearly alkaline phase from pH 2.60-7.3 and biomass has change to pH 2.54-6.8. Fly ash has successfully remove Fe, Mn, Cu, and Ni. Meanwhile, slag sample displays as an effective adsorbent to adsorb more Pb and Cd in acid mine drainage.

  9. Enhancement of hydrogen production during waste activated sludge anaerobic fermentation by carbohydrate substrate addition and pH control.

    PubMed

    Chen, Yinguang; Xiao, Naidong; Zhao, Yuxiao; Mu, Hui

    2012-06-01

    The effects of carbohydrate/protein ratio (CH/Pr) and pH on hydrogen production from waste activated sludge (WAS) were investigated. Firstly, the optimal pH value for hydrogen production was influenced by the CH/Pr ratio, which was pH 10, 9, 8, 8, 8 and 6 at the CH/Pr ratio (COD based) of 0.2 (sole sludge), 1, 2.4, 3.8, 5 and 6.6, respectively. The maximal hydrogen production (100.6 mL/g-COD) was achieved at CH/Pr of 5 and pH 8, which was due to the synergistic effect of carbohydrate addition on hydrogen production, the enhancement of sludge protein degradation and protease and amylase activities, and the suitable fermentation pathway for hydrogen production. As hydrogen consumption was observed at pH 8, in order to further increase hydrogen production a two-step pH control strategy (pH 8+pH 10) was developed and the hydrogen production was further improved by 17.6%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Effect of heavy metals on pH buffering capacity and solubility of Ca, Mg, K, and P in non-spiked and heavy metal-spiked soils.

    PubMed

    Najafi, Sarvenaz; Jalali, Mohsen

    2016-06-01

    In many parts of the world, soil acidification and heavy metal contamination has become a serious concern due to the adverse effects on chemical properties of soil and crop yield. The aim of this study was to investigate the effect of pH (in the range of 1 to 3 units above and below the native pH of soils) on calcium (Ca), magnesium (Mg), potassium (K), and phosphorus (P) solubility in non-spiked and heavy metal-spiked soil samples. Spiked samples were prepared by cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) as chloride salts and incubating soils for 40 days. The pH buffering capacity (pHBC) of each sample was determined by plotting the amount of H(+) or OH(-) added (mmol kg(-1)) versus the related pH value. The pHBC of soils ranged from 47.1 to 1302.5 mmol kg(-1) for non-spiked samples and from 45.0 to 1187.4 mmol kg(-1) for spiked soil samples. The pHBC values were higher in soil 2 (non-spiked and spiked) which had higher calcium carbonate content. The results indicated the presence of heavy metals in soils generally decreased the solution pH and pHBC values in spiked samples. In general, solubility of Ca, Mg, and K decreased with increasing equilibrium pH of non-spiked and spiked soil samples. In the case of P, increasing the pH to about 7, decreased the solubility in all soils but further increase of pH from 7, enhanced P solubility. The solubility trends and values for Ca, Mg, and K did not differed significantly in non-spiked and spiked samples. But in the case of P, a reduction in solubility was observed in heavy metal-spiked soils. The information obtained in this study can be useful to make better estimation of the effects of soil pollutants on anion and cation solubility from agricultural and environmental viewpoints.

  11. Photodynamic inactivation of bacteria using polyethylenimine-chlorin(e6) conjugates: Effect of polymer molecular weight, substitution ratio of chlorin(e6) and pH.

    PubMed

    Huang, Liyi; Zhiyentayev, Timur; Xuan, Yi; Azhibek, Dulat; Kharkwal, Gitika B; Hamblin, Michael R

    2011-04-01

    Antimicrobial photodynamic therapy (APDT) is a novel technique to treat local infections. Previously we reported that the attachment of chlorin(e6) to polyethylenimine (PEI) polymers to form PEI-ce6 conjugates is an effective way to improve ce6 PDT activity against bacteria. The aim of this work was to explore how the polymer molecular weight, substitution ratio (SR) of ce6 and pH value affect the PDT efficacy. We have synthesized PEI-ce6(10) (MW = 60,000, SR = 1) and PEI-ce6(11) (MW = 60,000, SR = 5) and compared these with the previous PEI-ce6(9) (MW = 10,000, SR = 1). We tested the PDT efficacy of these three conjugates against Gram-negative E. coli and Gram-positive bacteria (S. aureus and E. fecalis) at three different pH values (5.0, 7.4, 10.0) that may affect the charge on both the bacterial cells and on the conjugate (that has both basic and acidic groups). PEI-ce6(9) and PEI-ce6(10) were the most effective against these tested bacteria. The PDT effect of all three conjugates depended on pH values. The effective order was pH = 10.0 > pH = 7.4 > pH = 5.0 on E. coli. For S. aureus and E. fecalis the order was pH = 5.0 > pH = 10.0 > pH = 7.4. PEI-ce6(11) PDT activity was worse than PEI-ce6(10) activity which is probably connected to the fact that ce6 molecules are self-quenched within the PEI-ce6(11) molecule. Ce6 quenching within the PEI-ce6 molecules was proved by analyzing fluorescence spectra of PEI-ce6 conjugates at different pH values. There were no differences in bacterial uptake between different pH values in three PEI-ce6 conjugates. We assume high pH (rather than low pH as was hypothesized) disaggregates the conjugates, so the higher pH was more effective than the lower pH against E. coli. But for Gram-positive bacteria, low pH was more effective possibly due to more overall positive charge on the conjugate. Copyright © 2011 Wiley-Liss, Inc.

  12. An in vitro assessment of the effect of load and pH on wear between opposing enamel and dentine surfaces.

    PubMed

    Ranjitkar, Sarbin; Kaidonis, John A; Townsend, Grant C; Vu, Anh M; Richards, Lindsay C

    2008-11-01

    Previous in vitro studies have described the wear characteristics of specimens in which enamel has been opposed to enamel and dentine opposed to dentine. The aim of this study was to assess the characteristics of wear between specimens in which enamel was opposed to dentine at loads simulating attrition and at pH values simulating different erosive environments. It was hypothesized that enamel would wear more slowly than dentine under all conditions. Opposing enamel and dentine specimens from 57 human third molar teeth were worn in electromechanical machines with various loads (32, 62 and 100 N) and lubricants (pH 1.2, 3.0 and 6.1). Tooth wear was quantified by measuring reduction in dentine volume over time using a 3D profilometer. Qualitative assessment was also carried out using scanning electron microscopy. Dentine wear increased with increasing load, and dentine wear was faster at pH 1.2 than at pH 3.0 or 6.1 for all loads tested. Interestingly, enamel wore more rapidly than dentine at pH 1.2 under all loads. At pH values of 3.0 and 6.1, enamel wear rates were not measurably different from zero and they were less than wear rates for opposing dentine specimens at all loads. Micrographic assessment showed extensive surface destruction of dentine wear facets due to erosion at pH 1.2. Dentine wear facets were smoother at pH 3.0 that at pH 6.1. When enamel wears against dentine in an acidic environment enamel will wear more rapidly at very low pH, while under less acid conditions dentine will wear faster than enamel.

  13. Rain pH estimation based on the particulate matter pollutants and wet deposition study.

    PubMed

    Singh, Shweta; Elumalai, Suresh Pandian; Pal, Asim Kumar

    2016-09-01

    In forecasting of rain pH, the changes caused by particulate matter (PM) are generally neglected. In regions of high PM concentration like Dhanbad, the role of PM in deciding the rain pH becomes important. Present work takes into account theoretical prediction of rain pH by two methods. First method considers only acid causing gases (ACG) like CO2, SO2 and NOx in pH estimation, whereas, second method additionally accounts for effect of PM (ACG-PM). In order to predict the rain pH, site specific deposited dust that represents local PM was studied experimentally for its impact on pH of neutral water. After incorporation of PM correction factor, it was found that, rain pH values estimated were more representative of the observed ones. Fractional bias (FB) for the ACG-PM method reduced to values of the order of 10(-2) from those with order of 10(-1) for the ACG method. The study confirms neutralization of rain acidity by PM. On account of this, rain pH was found in the slightly acidic to near neutral range, despite of the high sulfate flux found in rain water. Although, the safer range of rain pH blurs the severity of acid rain from the picture, yet huge flux of acidic and other ions get transferred to water bodies, soil and ultimately to the ground water system. Simple use of rain pH for rain water quality fails to address the issues of its increased ionic composition due to the interfering pollutants and thus undermines severity of pollutants transferred from air to rain water and then to water bodies and soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Application of Proteomics for the Investigation of the Effect of Initial pH on Pathogenic Mechanisms of Fusarium proliferatum on Banana Fruit.

    PubMed

    Li, Taotao; Wu, Qixian; Wang, Yong; John, Afiya; Qu, Hongxia; Gong, Liang; Duan, Xuewu; Zhu, Hong; Yun, Ze; Jiang, Yueming

    2017-01-01

    Fusarium proliferatum is an important pathogen and causes a great economic loss to fruit industry. Environmental pH-value plays a regulatory role in fungi pathogenicity, however, the mechanism needs further exploration. In this study, F. proliferatum was cultured under two initial pH conditions of 5 and 10. No obvious difference was observed in the growth rate of F. proliferatum between two pH-values. F. proliferatum cultured under both pH conditions infected banana fruit successfully, and smaller lesion diameter was presented on banana fruit inoculated with pH 10-cultured fungi. Proteomic approach based on two-dimensional electrophoresis (2-DE) was used to investigate the changes in secretome of this fungus between pH 5 and 10. A total of 39 differential spots were identified using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) and liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Compared to pH 5 condition, proteins related to cell wall degrading enzymes (CWDEs) and proteolysis were significantly down-regulated at pH 10, while proteins related to oxidation-reduction process and transport were significantly up-regulated under pH 10 condition. Our results suggested that the downregulation of CWDEs and other virulence proteins in the pH 10-cultured F. proliferatum severely decreased its pathogenicity, compared to pH 5-cultured fungi. However, the alkaline environment did not cause a complete loss of the pathogenic ability of F. proliferatum , probably due to the upregulation of the oxidation-reduction related proteins at pH 10, which may partially compensate its pathogenic ability.

  15. Functional pools of fast and slow twitch fibers observed by /sup 31/P-NMR during exercise of flexor wrist muscles in man

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.H.; Park, C.R.; Brown, R.L.

    Functional compartments of fast and slow twitch fibers have been observed by /sup 31/P-NMR spectroscopy during exercise of the wrist flexor muscles in a sedentary, young male subject. Values of Pi, phosphocreatine (PCr) and adenine nucleotides were determined at rest and during an exercise protocol. The subject flexed his wrist muscles at 20% of maximum strength every 5 sec for 6 min and then increased his effort in the next two 6 min intervals to 40% and 60% of maximum. With exercise, the Pi/PCr rose rapidly to the exceptionally high value of 2.2 at 60% effort. As the Pi increased,more » the initial single peak (pH 7.0-6.9) split into two distinct components with pH values of 6.8 and 6.3. Quantitatively, distribution of the Pi was 40% in the pH 6.8 peak and 60% in the pH 6.3 peak as determined by area estimation following curve fitting. This presumably reflects two pools of Pi corresponding to the oxidative (slow twitch, high pH) and glycolytic (fast twitch, low pH) fibers. In the second identical exercise sequence which followed immediately, only one Pi peak (pH 6.8-6.9) appeared. This suggested that the glycolytic contribution to energy production was largely exhausted and the residual energy was derived from oxidative metabolism. During exercise at high levels, total phosphate decreased due primarily to loss of NMR visible adenine nucleotides. Similar phenomena have been observed in three other sedentary individuals, but not in trained athletes.« less

  16. Simulation of weak polyelectrolytes: a comparison between the constant pH and the reaction ensemble method

    NASA Astrophysics Data System (ADS)

    Landsgesell, Jonas; Holm, Christian; Smiatek, Jens

    2017-03-01

    The reaction ensemble and the constant pH method are well-known chemical equilibrium approaches to simulate protonation and deprotonation reactions in classical molecular dynamics and Monte Carlo simulations. In this article, we demonstrate the similarity between both methods under certain conditions. We perform molecular dynamics simulations of a weak polyelectrolyte in order to compare the titration curves obtained by both approaches. Our findings reveal a good agreement between the methods when the reaction ensemble is used to sweep the reaction constant. Pronounced differences between the reaction ensemble and the constant pH method can be observed for stronger acids and bases in terms of adaptive pH values. These deviations are due to the presence of explicit protons in the reaction ensemble method which induce a screening of electrostatic interactions between the charged titrable groups of the polyelectrolyte. The outcomes of our simulation hint to a better applicability of the reaction ensemble method for systems in confined geometries and titrable groups in polyelectrolytes with different pKa values.

  17. Ruminal pH predictions for beef cattle: Comparative evaluation of current models.

    PubMed

    Sarhan, M A; Beauchemin, K A

    2015-04-01

    This study evaluated 8 empirical models for their ability to accurately predict mean ruminal pH in beef cattle fed a wide range of diets. Models tested that use physically effective fiber (peNDF) as a dependent variable were Pitt et al. (1996, PIT), Mertens (1997, MER), Fox et al. (2004, FOX), Zebeli et al. (2006, ZB6), and Zebeli et al. (2008, ZB8), and those that use rumen VFA were Tamminga and Van Vuuren (1988, TAM), Lescoat and Sauvant (1995, LES), and Allen (1997, ALL). A data set of 65 published papers (231 treatment means) for beef cattle was assembled that included information on animal characteristics, diet composition, and ruminal fermentation and mean pH. Model evaluations were based on mean square prediction error (MSPE), concordance correlation coefficient (CCC), and regression analysis. The prediction potential of the models varied with low root MSPE (RMSPE) values of 4.94% and 5.37% for PIT and FOX, RMSPE values of 9.66% and 12.55% for ZB6 and MER, and intermediate RMSPE values of 5.66% to 6.26% for the other models. For PIT and FOX, with the lowest RMSPE, approximately 96% of MSPE was due to random error, whereas for ZB6 and MER, with the highest RMSPE, 15.85% and 23.42% of MSPE, respectively, was due to linear bias, and 37.19% and 60.12% of the error, respectively, was due to deviation of the regression slope from unity. The CCC was greatest for PIT (0.67) and FOX (0.62), followed by 0.60 for LES and TAM, 0.52 for ZB8, 0.39 for MER, 0.34 for ALL, and 0.22 for ZB6. Residuals plotted against model-predicted values showed linear bias (P < 0.001) for all models except PIT (P = 0.976) and FOX (P = 0.054) and mean bias (P < 0.001) except for FOX (P = 0.293), LES (P = 0.215), and TAM (P = 0.119). The study showed that the empirical models PIT and FOX, based on peNDF, and LES and TAM, based on VFA, are preferred over the others for prediction of mean ruminal pH in beef cattle fed a wide range of diets. Several animal (BW and intake), diet (forage and OM contents), and ruminal (ammonia and acetate concentrations) factors were (P < 0.001) related to the residuals for each model. We conclude that the accuracy of prediction of mean ruminal pH was relatively low for all extant models. Consideration of factors in addition to peNDF and total VFA, as well as the use of data from studies with continuous measurement of ruminal pH over 24 h or more, would be useful in the development of improved models for predicting ruminal pH in beef cattle.

  18. Analysis of Dental Enamel Surface Submitted to Fruit Juice Plus Soymilk by Micro X-Ray Fluorescence: In Vitro Study.

    PubMed

    Brito, Janaína Salmos; Santos Neto, Alexandrino; Silva, Luciano; Menezes, Rebeca; Araújo, Natália; Carneiro, Vanda; Moreno, Lara Magalhães; Miranda, Jéssica; Álvares, Pâmella; Nevares, Giselle; Xavier, Felipe; Arruda, José Alcides; Bessa-Nogueira, Ricardo; Santos, Natanael; Queiroz, Gabriela; Sobral, Ana Paula; Silveira, Márcia; Albuquerque, Diana; Gerbi, Marleny

    2016-01-01

    This paper aimed to analyze the in vitro industrialized fruit juices effect plus soy to establish the erosive potential of these solutions. Seventy bovine incisors were selected after being evaluated under stereomicroscope. Their crowns were prepared and randomly divided into 7 groups, using microhardness with allocation criteria. The crowns were submitted to the fruit juice plus soy during 15 days, twice a day. The pH values, acid titration, and Knoop microhardness were recorded and the specimens were evaluated using X-ray microfluorescence (µXRF). The pH average for all juices and after 3 days was significantly below the critical value for dental erosion. In average, the pH value decreases 14% comparing initial time and pH after 3 days. Comparing before and after, there was a 49% microhardness decrease measured in groups (p < 0.05). Groups G1, G2, G5, and G6 are above this average. The analysis by μXRF showed a decrease of approximately 7% Ca and 4% P on bovine crowns surface. Florida (FL) statistical analysis showed a statistically significant 1 difference between groups. Thus, a tooth chance to suffer demineralization due to industrialized fruit juices plus soy is real.

  19. Dispersion stability of a ceramic glaze achieved through ionic surfactant adsorption.

    PubMed

    Panya, Preecha; Arquero, Orn-anong; Franks, George V; Wanless, Erica J

    2004-11-01

    The adsorption of cetylpyridinium chloride (CPC) and sodium dodecylbenzenesulfonate (SDBS) onto a ceramic glaze mixture composed of limestone, feldspar, quartz, and kaolin has been investigated. Both adsorption isotherms and the average particle zeta potential have been studied in order to understand the suspension stability as a function of pH, ionic strength, and surfactant concentration. The adsorption of small amounts of cationic CPC onto the primarily negatively charged surfaces of the particles at pH 7 and 9 results in strong attraction and flocculation due to hydrophobic interactions. At higher surfactant concentrations a zeta potential of more than +60 mV results from the bilayered adsorbed surfactant, providing stability at salt concentrations < or = 0.01 M. At 0.1 M salt poor stability results despite substantial zeta potential values. Three mechanisms for SDBS adsorption have been identified. When anionic SDBS monomers either adsorb by electrostatic interactions with the few positive surface sites at high pH or adsorb onto like charged negative surface sites due to dispersion or hydrophobic interactions, the magnitude of the negative zeta potential increases slightly. At pH 9 this increase is enough to promote stability with an average zeta potential of more than -55 mV, whereas at pH 7 the zeta potential is lower at about -45 mV. The stability of suspensions at pH 7 is additionally due to steric repulsion caused by the adsorption of thick layers of neutrally charged Ca(DBS)2 complexes created when the surfactant interacts with dissolved calcium ions from the calcium carbonate component.

  20. The impact of pH inhomogeneities on CHO cell physiology and fed-batch process performance - two-compartment scale-down modelling and intracellular pH excursion.

    PubMed

    Brunner, Matthias; Braun, Philipp; Doppler, Philipp; Posch, Christoph; Behrens, Dirk; Herwig, Christoph; Fricke, Jens

    2017-07-01

    Due to high mixing times and base addition from top of the vessel, pH inhomogeneities are most likely to occur during large-scale mammalian processes. The goal of this study was to set-up a scale-down model of a 10-12 m 3 stirred tank bioreactor and to investigate the effect of pH perturbations on CHO cell physiology and process performance. Short-term changes in extracellular pH are hypothesized to affect intracellular pH and thus cell physiology. Therefore, batch fermentations, including pH shifts to 9.0 and 7.8, in regular one-compartment systems are conducted. The short-term adaption of the cells intracellular pH are showed an immediate increase due to elevated extracellular pH. With this basis of fundamental knowledge, a two-compartment system is established which is capable of simulating defined pH inhomogeneities. In contrast to state-of-the-art literature, the scale-down model is included parameters (e.g. volume of the inhomogeneous zone) as they might occur during large-scale processes. pH inhomogeneity studies in the two-compartment system are performed with simulation of temporary pH zones of pH 9.0. The specific growth rate especially during the exponential growth phase is strongly affected resulting in a decreased maximum viable cell density and final product titer. The gathered results indicate that even short-term exposure of cells to elevated pH values during large-scale processes can affect cell physiology and overall process performance. In particular, it could be shown for the first time that pH perturbations, which might occur during the early process phase, have to be considered in scale-down models of mammalian processes. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Acute toxicity (LC50) of ammonia to carp fish (Cyprinus carpio) at different pH Levels

    NASA Astrophysics Data System (ADS)

    Ardeniswan; Dara, F.; Sukmawati, F.

    2017-03-01

    Mass death of carp fish in reservoirs and lakes in Indonesia is due to the up-welling phenomenon of ammonia generates from the decomposition of fish feed remaining in the bottom of the lakes/reservoirs by microbes. The formation of ammonia gas is very dependent on pH. Most of the ammonia gas is formed form at the high pH value. Ammonia concentration can be determined with indophenol blue method using UV-Vis spectrophotometer. Carp fish (Cyprinus carpio of 5-6 gr was exposed to the three concentration of ammonia. Acute toxicity (LC50) of ammonia (NH3) was tested on similar sizes (5-6 g) of carp fish was maintained at three different pH levels within range of 7-9 for 96-h. Results showed that the concentration of ammonia increased at higher pH. The 96-h LC50’s for exposure to ammonia were 60% (NH3 1.85 ppm at pH 8), 100% (NH3 2.16 ppm at pH 9), and insignificant result at NH3 1.68 ppm with pH 7.

  2. A fluorescent molecular sensor for pH windows in traditional and polymeric biocompatible micelles: comicellization of anionic species to shift and reshape the ON window.

    PubMed

    Cavallaro, Gennara; Giammona, Gaetano; Pasotti, Luca; Pallavicini, Piersandro

    2011-09-12

    A new approach is presented to obtain fluorescent sensors for pH windows that work in water and under biomimetic conditions. A single molecule that features all-covalently linked components is used, thus making it capable of working as a fluorescent sensor with an OFF/ON/OFF response to pH value. The components are a tertiary amine, a pyridine, and a fluorophore (pyrene). The forms with both protonated bases or both neutral bases quench the pyrene fluorescence, whereas the form with the neutral pyridine and protonated amine groups is fluorescent. The molecular sensor is also equipped with a long alkyl chain to make it highly hydrophobic in all its protonated and unprotonated forms, that is, either when neutral or charged. Accordingly, it can be confined at any pH value either in traditional (i.e., low-molecular-weight) nonionic surfactant micelles or inside polymeric, biocompatible micellar containers. Relevant for future applications in vivo, thanks to its strong hydrophobicity, no leakage of the molecular sensor is observed from the polymeric biocompatible micelles. Due to the proximity of the pyridine and amine functions in the molecular structure and the poor hydration inside the micelles, the observed pK(a) values are low so that the ON window is positioned at very low pH values. However, the window can be shifted to biologically relevant values by comicellization of anionic species. In particular, in the micelles of the nonionic surfactant TritonX-100, a shift of the ON window to pH 4-6 is obtained by addition of the anionic sodium dodecyl sulphate surfactant, whose negative charge promotes the stability of the protonated forms of the pyridine and amine fragments. In the case of the polymeric micelles, we introduce the use of the amphiphilic polystyrene sulfonate anionic polyelectrolyte, the comicellization of which induces a shift and sharpening of the ON window that is centered at pH 4. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Activity, conformation and dynamics of cutinase adsorbed on poly(methyl methacrylate) latex particles.

    PubMed

    Baptista, R P; Santos, A M; Fedorov, A; Martinho, J M G; Pichot, C; Elaïssari, A; Cabral, J M S; Taipa, M A

    2003-05-08

    The adsorption of a recombinant cutinase from Fusarium solani pisi onto the surface of 100 nm diameter poly(methyl methacrylate) (PMMA) latex particles was evaluated. Adsorption of cutinase is a fast process since more than 70% of protein molecules are adsorbed onto PMMA at time zero of experiment, irrespective of the tested conditions. A Langmuir-type model fitted both protein and enzyme activity isotherms at 25 degrees C. Gamma(max) increased from 1.1 to 1.7 mg m(-2) and U(max) increased from 365 to 982 U m(-2) as the pH was raised from 4.5 to 9.2, respectively. A decrease (up to 50%) in specific activity retention was observed at acidic pH values (pH 4.5 and 5.2) while almost no inactivation (eta(act) congruent with 87-94%) was detected upon adsorption at pH 7.0 and 9.2. Concomitantly, far-UV circular dichroism (CD) spectra evidenced a reduction in the alpha-helical content of adsorbed protein at acidic pH values while at neutral and alkaline pH the secondary structure of adsorbed cutinase was similar to that of native protein. Fluorescence anisotropy decays showed the release of some constraints to the local motion of the Trp69 upon protein adsorption at pH 8.0, probably due to the disruption of the tryptophan-alanine hydrogen bond when the tryptophan interacts with the PMMA surface. Structural data associated with activity measurements at pH 7.0 and 9.2 showed that cutinase adsorbs onto PMMA particles in an end-on orientation with active site exposed to solvent and full integrity of cutinase secondary structure. Hydrophobic interactions are likely the major contribution to the adsorption mechanism at neutral and alkaline pH values, and a higher amount of protein is adsorbed to PMMA particles with increasing temperature at pH 9.2. The maximum adsorption increased from 88 to 140 mg cutinase per g PMMA with temperature raising from 25 to 50 degrees C, at pH 9.2.

  4. Characterization of N-nitrosodimethylamine formation from the ozonation of ranitidine.

    PubMed

    Lv, Juan; Wang, Lin; Li, Yongmei

    2017-08-01

    N-nitrosodimethylamine (NDMA) is an emerging disinfection by-product which is formed during water disinfection in the presence of amine-based precursors. Ranitidine, as one kind of amine-based pharmaceuticals, has been identified as NDMA precursor with high NDMA molar conversion during chloramination. This study focused on the characterization of NDMA formation during ozonation of ranitidine. Influences of operational variables (ozone dose, pH value) and water matrix on NDMA generation as well as ranitidine degradation were evaluated. The results indicate high reactivity of ranitidine with ozone. Dimethylamine (DMA) and NDMA were generated due to ranitidine oxidation. High pH value caused more NDMA accumulation. NDMA formation was inhibited under acid conditions (pH≤5) mainly due to the protonation of amines. Water matrix such as HCO 3 - and humic acid impacted NDMA generation due to OH scavenging. Compared with OH, ozone molecules dominated the productions of DMA and NDMA. However, OH was a critical factor in NDMA degradation. Transformation products of ranitidine during ozonation were identified using gas chromatography-mass spectrometry. Among these products, just DMA and N,N-dimethylformamide could contribute to NDMA formation due to the DMA group in the molecular structures. The NDMA formation pathway from ranitidine ozonation was also proposed. Copyright © 2017. Published by Elsevier B.V.

  5. Diversities and similarities in pH dependency among bacterial NhaB-like Na+/H+ antiporters.

    PubMed

    Kiriyama, Wakako; Honma, Kei; Hiratsuka, Tomoaki; Takahashi, Itsuka; Nomizu, Takahiro; Takashima, Yuta; Ohtsuka, Masataka; Takahashi, Daiki; Moriyama, Kazuya; Mori, Sayoko; Nishiyama, Shiho; Fukuhara, Masahiro; Nakamura, Tatsunosuke; Shigematsu, Toru; Yamaguchi, Toshio

    2013-10-01

    NhaB-like antiporters were the second described class of Na(+)/H(+) antiporters, identified in bacteria more than 20 years ago. While nhaB-like gene sequences have been found in a number of bacterial genomes, only a few of the NhaB-like antiporters have been functionally characterized to date. Although earlier studies have identified a few pH-sensitive and -insensitive NhaB-like antiporters, the mechanisms that determine their pH responses still remain elusive. In this study, we sought to investigate the diversities and similarities among bacterial NhaB-like antiporters, with particular emphasis on their pH responsiveness. Our phylogenetic analysis of NhaB-like antiporters, combined with pH profile analyses of activities for representative members of several phylogenetic groups, demonstrated that NhaB-like antiporters could be classified into three distinct types according to the degree of their pH dependencies. Interestingly, pH-insensitive NhaB-like antiporters were only found in a limited proportion of enterobacterial species, which constitute a subcluster that appears to have diverged relatively recently among enterobacterial NhaB-like antiporters. Furthermore, kinetic property analyses of NhaB-like antiporters at different pH values revealed that the degree of pH sensitivity of antiport activities was strongly correlated with the magnitude of pH-dependent change in apparent Km values, suggesting that the dramatic pH sensitivities observed for several NhaB-like antiporters might be mainly due to the significant increases of apparent Km at lower pH. These results strongly suggested the possibility that the loss of pH sensitivity of NhaB-like antiporters had occurred relatively recently, probably via accumulation of the mutations that impair pH-dependent change of Km in the course of molecular evolution.

  6. Tricuspid annular plane systolic excursion is preserved in young patients with pulmonary hypertension except when associated with repaired congenital heart disease.

    PubMed

    Hauck, Amanda; Guo, Ruixin; Ivy, D Dunbar; Younoszai, Adel

    2017-04-01

    Tricuspid annular plane systolic excursion (TAPSE) is a measure of right ventricular (RV) longitudinal function that correlates with functional status and mortality in adults with pulmonary hypertension (PH). The diagnostic and predictive value of TAPSE in children with PH has not been fully examined. We aimed to define TAPSE across aetiologies of paediatric PH and assess the correlation between TAPSE and measures of disease severity. TAPSE measurements were obtained in 84 children and young adults undergoing treatment for PH and 315 healthy children to establish z-scores at moderate altitude for comparison. The relationships between TAPSE and echocardiographic, biomarker, and functional measures of disease severity between aetiologies were assessed. TAPSE z-scores in PH patients with congenital heart disease (CHD) repaired with open cardiac surgery (n = 20, mean -2.73) were significantly decreased compared with normal children and patients with other aetiologies of PH (P < 0.001) but did not reflect poorer clinical status. TAPSE z-scores in children with idiopathic PH (n = 29, -0.41), unrepaired CHD (n = 11, -0.1), and PH related to systemic disease (n = 14, -0.39) were not different from normal. TAPSE correlated modestly with brain natriuretic peptide, echocardiographic function parameters, and functional class except in patients with repaired CHD. Children with PH maintain normal TAPSE values early except when associated with repaired CHD. Superior RV adaptation to high afterload in children compared with adults may account for this finding. Reduced TAPSE after repair of CHD does not correlate with functional status and may reflect post-operative changes rather than poor function primarily due to PH. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  7. Acid-base physiology response to ocean acidification of two ecologically and economically important holothuroids from contrasting habitats, Holothuria scabra and Holothuria parva.

    PubMed

    Collard, Marie; Eeckhaut, Igor; Dehairs, Frank; Dubois, Philippe

    2014-12-01

    Sea cucumbers are dominant invertebrates in several ecosystems such as coral reefs, seagrass meadows and mangroves. As bioturbators, they have an important ecological role in making available calcium carbonate and nutrients to the rest of the community. However, due to their commercial value, they face overexploitation in the natural environment. On top of that, occurring ocean acidification could impact these organisms, considered sensitive as echinoderms are osmoconformers, high-magnesium calcite producers and have a low metabolism. As a first investigation of the impact of ocean acidification on sea cucumbers, we tested the impact of short-term (6 to 12 days) exposure to ocean acidification (seawater pH 7.7 and 7.4) on two sea cucumbers collected in SW Madagascar, Holothuria scabra, a high commercial value species living in the seagrass meadows, and H. parva, inhabiting the mangroves. The former lives in a habitat with moderate fluctuations of seawater chemistry (driven by day-night differences) while the second lives in a highly variable intertidal environment. In both species, pH of the coelomic fluid was significantly negatively affected by reduced seawater pH, with a pronounced extracellular acidosis in individuals maintained at pH 7.7 and 7.4. This acidosis was due to an increased dissolved inorganic carbon content and pCO2 of the coelomic fluid, indicating a limited diffusion of the CO2 towards the external medium. However, respiration and ammonium excretion rates were not affected. No evidence of accumulation of bicarbonate was observed to buffer the coelomic fluid pH. If this acidosis stays uncompensated for when facing long-term exposure, other processes could be affected in both species, eventually leading to impacts on their ecological role.

  8. Endowing hexaphenylsilole with chemical sensory and biological probing properties by attaching amino pendants to the silolyl core

    NASA Astrophysics Data System (ADS)

    Dong, Yongqiang; Lam, Jacky W. Y.; Qin, Anjun; Li, Zhen; Liu, Jianzhao; Sun, Jingzhi; Dong, Yuping; Tang, Ben Zhong

    2007-09-01

    Hexaphenylsilole (HPS) was functionalized by two amino (A 2) groups, giving a new silole derivative of 1,1-bis[4-(diethylaminomethyl)phenyl]-2,3,4,5-tetraphenylsilole (A 2HPS) that is capable of detecting explosives, biomacromolecules and pH changes. A 2HPS is nonemissive when molecularly dissolved but becomes highly luminescent when aggregated. The emission of its nanoaggregates is quenched by picric acid with a high Ksv value (˜1.7 × 10 5 M -1). A 2HPS can dissolve in acidic aqueous media, due to the transformation of its amino groups to ammonium-salts. The resultant nonemissive aqueous solution is turned on by increasing its pH value or adding protein or DNA.

  9. Effects of temperature, pH and NaCl on protease activity in digestive tract of young turbot, Scophthalmus maximus

    NASA Astrophysics Data System (ADS)

    Chen, Muyan; Zhang, Xiumei; Gao, Tianxiang; Chen, Chao

    2006-09-01

    The protease activity in digestive tract of young turbot Scophthalmus maximum was studied, and the optimal pH, temperature and NaCl concentration were determined for different portions of the fish's internal organs. The optimal activity in the fish's stomach was at pH of 2.2, while that in the intestinal extracts was within the alkaline range from 9.5 to 10.0. In hepatopancreas, the optimal pH was in low alkalinity at 8.5. The optimal reaction temperature was above 40°C in stomach, intestine and hepatopancreas. With increasing temperature, the pH value increased in stomach, while in the intestine, an opposite tendency was observed due to combined effect of pH and temperature. NaCl concentration showed inhibitory impact on protein digestion in hepatopancreas. The main protease for protein digestion in turbot seemed to be pepsin. Moreover, the maximum protease activity in different segments of intestine existed in the hindgut.

  10. PROTOPLASMIC POTENTIALS IN HALICYSTIS

    PubMed Central

    Blinks, L. R.

    1933-01-01

    The nature and origin of the large "protoplasmic" potential in Halicystis must be studied by altering conditions, not only in external solutions, but in the sap and the protoplasm itself. Such interior alteration caused by the penetration of ammonia is described. Concentrations of NH4Cl in the sea water were varied from 0.00001 M to above 0.01 M. At pH 8.1 there is little effect below 0.0005 M NH4Cl. At about 0.001 M a sudden reversal of the potential difference across the protoplasm occurs, from about 68 mv. outside positive to 30 to 40 mv. outside negative. At this threshold value the time curve is characteristically S-shaped, with a slow beginning, a rapid reversal, and then an irregularly wavering negative value. There are characteristic cusps at the first application of the NH4Cl, also immediately after the reversal. The application of higher NH4Cl concentrations causes a more rapid reversal, and also a somewhat higher negative value. Conversely the reduction of NH4Cl concentrations causes recovery of the normal positive potential, but the threshold for recovery is at a lower concentration than for the original reversal. A temporary overshooting or increase of the positive potential usually occurs on recovery. The reversals may be repeated many times on the same cell without injury. The plot of P.D. against the log of ammonium ion concentration is not the straight line characteristic of ionic concentration effects, but has a break of 100 mv. or more at the threshold value. Further evidence that the potential is not greatly influenced by ammonium ions is obtained by altering the pH of the sea water. At pH 5, no reversal occurs with 0.1 M NH4Cl, while at pH 10.3, the NH4Cl threshold is 0.0001 M or less. This indicates that the reversal is due to undissociated ammonia. The penetration of NH3 into the cells increases both the internal ammonia and the pH. The actual concentration of ammonium salt in the sap is again shown to have little effect on the P.D. The pH is therefore the governing factor. But assuming that NH3 enters the cells until it is in equilibrium between sap and sea water, no sudden break of pH should occur, pH being instead directly proportional to log NH3 for any constant (NH4) concentration. Experimentally, a linear relation is found between the pH of the sap and the log NH3 in sea water. The sudden change of P.D. must therefore be ascribed to some system in the cell upon which the pH change operates. The pH value of the sap at the NH3 threshold is between 6.0 and 6.5 which corresponds well with the pH value found to cause reversal of P.D. by direct perfusion of solutions in the vacuole. PMID:19872757

  11. Characterizing the variation in pH measurements with apheresis platelets.

    PubMed

    Moroff, Gary; Seetharaman, Shalini; Kurtz, James; Wagner, Stephen J

    2011-11-01

    pH measurements of platelet (PLT) components remain a key parameter when assessing how storage and shipping conditions influence the retention of PLT properties. Studies were conducted to characterize variations in pH measured with two pH meters and a blood gas analyzer. Samples were obtained from apheresis PLT units that were stored with or without continuous agitation to measure a range of pH values. pH values were determined with pH meters at room temperature (20-24°C) upon placing of samples in 5-mL sterile polypropylene tubes and with the blood gas analyzer at 37°C upon injection of identical samples, with conversion to 22°C. The calculated coefficient of variation (%CV) of pH measurements using pH meters (n = 10) was 0.43% or less. The %CV values were comparable with different samples having pH values ranging from 6.0 to 7.4. The %CV levels with the blood gas analyzer were comparable to those observed with the pH meters. The difference in the mean pH values for the two pH meters was no greater than 0.10 units, with 9 of 10 samples having differences in values of 0.05 or less; however, greater differences of values (0.1 to 0.2) were observed between pH measured using the blood gas analyzer and pH meters. Our data show good precision and comparability of pH measurements with two pH meters. Differences in pH values were greater on comparison of the blood gas analyzer with the pH meters. © 2011 American Association of Blood Banks.

  12. Crystal structures of different substrates of bacteriorhodopsin's M intermediate at various pH levels.

    PubMed

    Yamamoto, Masataka; Hayakawa, Naoki; Murakami, Midori; Kouyama, Tsutomu

    2009-10-30

    The hexagonal P622 crystal of bacteriorhodopsin, which is made up of stacked membranes, is stable provided that the precipitant concentration in the soaking solution is higher than a critical value (i.e., 1.5 M ammonium sulfate). Diffraction data showed that the crystal lattice shrank linearly with increasing precipitant concentration, due primarily to narrowing of intermembrane spaces. Although the crystal shrinkage did not affect the rate of formation of the photoreaction M intermediate, its lifetime increased exponentially with the precipitant concentration. It was suggested that the energetic barrier of the M-to-N transition becomes higher when the motional freedom of the EF loop is reduced by crystal lattice force. As a result of this property, the M state accumulated predominantly when the crystal that was soaked at a high precipitant concentration was illuminated at room temperature. Structural data obtained at various pH levels showed that the overall structure of M is not strongly dependent on pH, except that Glu194 and Glu204 in the proton release complex are more separated at pH 7 than at pH 4.4. This result suggests that light-induced disruption of the paired structure of Glu194 and Glu204 is incomplete when external pH is lower than the pK(a) value of the proton release group in the M state.

  13. Layer by layer assembled films between hemoglobin and multiwall carbon nanotubes for pH-switchable biosensing.

    PubMed

    Pan, Zhongqin; Liu, Xiaojun; Xie, Jing; Bao, Ning; He, Hong; Li, Xiaodong; Zeng, Jiang; Gu, Haiying

    2015-05-01

    Although pH-switchable behaviors have been reported based on multilayer films modified electrodes, their pH-switchable biosensing is still difficult due to the existence of the electroactive mediator. In this study, we report the pH-dependable determination of hydrogen peroxide (H2O2) based on a four-bilayer film fabricated through layer by layer assembly between hemoglobin (Hb) and multiwall carbon nanotubes (MWCNTs). We observed that response of electroactive probe Fe(CN)6(3-) at the multilayer films was very sensitive and reversible to pH values of phosphate buffer solutions phosphate buffer solution with cyclic voltammetry. The reduction peak height of Fe(CN)6(3-) at the multilayer film could reach ∼221μA at pH 3.0 while 0μA at pH 9.0. The linear range for the detection of H2O2 at pH 3.0 was from 12.5μM to 10.4mM, which was much wider than that at pH 9.0. Our results demonstrated that the detection of H2O2 with the proposed modified electrode is dependent on pH values of phosphate buffer solution. Moreover, the component of multilayer films has impacts on the performance of biosensors with pH-switchable behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Gypsum (CaSO4·2H2O) Scaling on Polybenzimidazole and Cellulose Acetate Hollow Fiber Membranes under Forward Osmosis

    PubMed Central

    Chen, Si Cong; Su, Jincai; Fu, Feng-Jiang; Mi, Baoxia; Chung, Tai-Shung

    2013-01-01

    We have examined the gypsum (CaSO4·2H2O) scaling phenomena on membranes with different physicochemical properties in forward osmosis (FO) processes. Three hollow fiber membranes made of (1) cellulose acetate (CA), (2) polybenzimidazole (PBI)/polyethersulfone (PES) and (3) PBI-polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) were studied. For the first time in FO processes, we have found that surface ionic interactions dominate gypsum scaling on the membrane surface. A 70% flux reduction was observed on negatively charged CA and PBI membrane surfaces, due to strong attractive forces. The PBI membrane surface also showed a slightly positive charge at a low pH value of 3 and exhibited a 30% flux reduction. The atomic force microscopy (AFM) force measurements confirmed a strong repulsive force between gypsum and PBI at a pH value of 3. The newly developed PBI-POSS/PAN membrane had ridge morphology and a contact angle of 51.42° ± 14.85° after the addition of hydrophilic POSS nanoparticles and 3 min thermal treatment at 95 °C. Minimal scaling and an only 1.3% flux reduction were observed at a pH value of 3. Such a ridge structure may reduce scaling by not providing a locally flat surface to the crystallite at a pH value of 3; thus, gypsum would be easily washed away from the surface. PMID:24957062

  15. A High Frequency Analysis of Electromagnetic Plane Wave Scattering by a Fully Illuminated Perfectly Conducting Semi-Infinite Cone.

    DTIC Science & Technology

    1986-01-01

    mn, 5] sin OdOd (B.39) 98 V Due to the orthogonality of the Legendre polynomials (shown in Appendix D), there is only a value when v = v’. This yields... some of his unpublished results. These results were for the special case of axial incidence on the semi- infinite cone, and were useful in verifying my... general solution. I express gratitude to Mr.(Ph.D. Candidate) Ming Cheng Liang for our many hours of discussion, and to my office mate Mr.(Ph.D

  16. LED-CT Scan for pH Distribution on a Cross-Section of Cell Culture Medium.

    PubMed

    Higashino, Nobuya; Takayama, Toshio; Ito, Hiroaki; Horade, Mitsuhiro; Yamaguchi, Yasutaka; Dylan Tsai, Chia-Hung; Kaneko, Makoto

    2018-01-11

    In cell culture, the pH of the culture medium is one of the most important conditions. However, the culture medium may have non-uniform pH distribution due to activities of cells and changes in the environment. Although it is possible to measure the pH distribution with an existing pH meter using distributed electrodes, the method involves direct contact with the medium and would greatly increase the risk of contamination. Here in this paper, we propose a computed tomography (CT) scan for measuring pH distribution using the color change of phenol red with a light-emitting diode (LED) light source. Using the principle of CT scan, we can measure pH distribution without contacting culture medium, and thus, decrease the risk of contamination. We have developed the device with a LED, an array of photo receivers and a rotation mechanism. The system is firstly calibrated with different shapes of wooden objects that do not pass light, we succeeded in obtaining their 3D topographies. The system was also used for measuring a culture medium with two different pH values, it was possible to obtain a pH distribution that clearly shows the boundary.

  17. Microfluidic Fabrication of Cell Adhesive Chitosan Microtubes

    PubMed Central

    Oh, Jonghyun; Kim, Keekyoung; Won, Sung Wook; Cha, Chaenyung; Gaharwar, Akhilesh; Selimović, Šeila; Bae, Hojae; Lee, Kwang Ho; Lee, Dong Hwan; Lee, Sang-Hoon; Khademhosseini, Ali

    2013-01-01

    Chitosan has been used as a scaffolding material in tissue engineering due to its mechanical properties and biocompatibility. With increased appreciation of the effect of micro- and nanoscale environments on cellular behavior, there is increased emphasis on generating microfabricated chitosan structures. Here we employed a microfluidic coaxial flow-focusing system to generate cell adhesive chitosan microtubes of controlled sizes by modifying the flow rates of a chitosan pre-polymer solution and phosphate buffered saline (PBS). The microtubes were extruded from a glass capillary with a 300 μm inner diameter. After ionic crosslinking with sodium tripolyphosphate (TPP), fabricated microtubes had inner and outer diameter ranges of 70-150 μm and 120-185 μm. Computational simulation validated the controlled size of microtubes and cell attachment. To enhance cell adhesiveness on the microtubes, we mixed gelatin with the chitosan pre-polymer solution and adjusted the pH values of the chitosan pre-polymer solution with gelatin and TPP. During the fabrication of microtubes, fibroblasts suspended in core PBS flow adhered to the inner surface of chitosan-gelatin microtubes. To achieve physiological pH values, we adjusted pH values of chiotsan pre-polymer solution and TPP. In particular, we were able to improve cell viability to 92% with pH values of 5.8 and 7.4 for chitosan and TPP solution respectively. Cell culturing for three days showed that the addition of the gelatin enhanced cell spreading and proliferation inside the chitosan-gelatin microtubes. The microfluidic fabrication method for ionically crosslinked chitosan microtubes at physiological pH can be compatible with a variety of cells and used as a versatile platform for microengineered tissue engineering. PMID:23355068

  18. Amino acid composition and functional properties of giant red sea cucumber ( Parastichopus californicus) collagen hydrolysates

    NASA Astrophysics Data System (ADS)

    Liu, Zunying; Su, Yicheng; Zeng, Mingyong

    2011-03-01

    Giant red sea cucumber ( Parastichopus californicus) is an under-utilized species due to its high tendency to autolysis. The aim of this study was to evaluate the functional properties of collagen hydrolysates from this species. The degree of hydrolysis (DH), amino acid composition, SDS-PAGE, emulsion activity index (EAI), emulsion stability index (ESI), foam expansion (FE), and foam stability (FS) of hydrolysates were investigated. The effects of pH on the EAI, ESI FE and FS of hydrolysates were also investigated. The results indicated that the β and α 1 chains of the collagen were effectively hydrolyzed by trypsin at 50°c with an Enzyme/Substrate (E/S) ration of 1:20 (w:w). The DH of collagen was up to 17.3% after 3 h hydrolysis with trypsin. The hydrolysates had a molecular weight distribution of 1.1-17 kDa, and were abundant in glycine (Gly), proline (Pro), glutamic acid (Glu), alanine (Ala) and hydroxyproline (Hyp) residues. The hydrolysates were fractionated into three fractions (< 3 kDa, 3-10 kDa, and > 10 kDa), and the fraction of 3-10 kDa exhibited a higher EAI value than the fraction of > 10 kDa ( P<0.05). The fraction of > 10 kDa had higher FE and FS values than other fractions ( P<0.05). The pH had an important effect on the EAI, ESI, FE and FS. All the fractions showed undesirable emulsion and forming properties at pH 4.0. Under pH 7.0 and pH 10.0, the 3-10 kDa fraction showed higher EAI value and the fraction of > 10 kDa showed higher FE value, respectively. They are hoped to be utilized as functional ingredients in food and nutraceutical industries.

  19. Production, purification and biochemical characterization of two laccase isoforms produced by Trametes versicolor grown on oak sawdust.

    PubMed

    Martínez-Morales, Fernando; Bertrand, Brandt; Pasión Nava, Angélica A; Tinoco, Raunel; Acosta-Urdapilleta, Lourdes; Trejo-Hernández, María R

    2015-02-01

    Two laccase isoforms (lcc1 and lcc2) produced by Trametes versicolor, grown on oak sawdust under solid-state fermentation conditions, were purified and characterized. The two isoforms showed significant biochemical differences. Lcc1 and lcc2 had MWs of 60 and 100 kDa, respectively. Both isoforms had maximal activity at pH 3 with ABTS and 2,6-dimethyloxyphenol (DMP). Lcc1 was the most attractive isoform due to its greater affinity towards all the laccase substrates used. Lcc1 had Km values of 12, 10, 15 and 17 mM towards ABTS, DMP, guaiacol and syringaldazine, respectively. Lcc2 had equivalent values of 45, 47, 15 and 39 mM. The biochemical properties of lcc1 substantiate the potential of this enzyme for application in the treatment of contaminated water with low pH values and high phenolic content.

  20. Geochemical behavior and dissolved species control in acid sand pit lakes, Sepetiba sedimentary basin, Rio de Janeiro, SE - Brazil

    NASA Astrophysics Data System (ADS)

    Marques, Eduardo D.; Sella, Sílvia M.; Bidone, Edison D.; Silva-Filho, Emmanoel V.

    2010-12-01

    This work shows the influence of pluvial waters on dissolved components and mineral equilibrium of four sand pit lakes, located in the Sepetiba sedimentary basin, SE Brazil. The sand mining activities promote sediment oxidation, lowering pH and increasing SO 4 contents. The relatively high acidity of these waters, similar to ore pit lakes environment and associated acid mine drainage, increases weathering rate, especially of silicate minerals, which produces high Al concentrations, the limiting factor for fish aquaculture. During the dry season, basic cations (Ca, Mg, K and Na), SiO 2 and Al show their higher values due to evapoconcentration and pH are buffered. In the beginning of the wet season, the dilution factor by rainwater increases SO 4 and decreases pH values. The aluminum monomeric forms (Al(OH) 2+ and Al(OH) 2+), the most toxic species for aquatic organisms, occur during the dry season, while AlSO 4+ species predominate during the wet season. Gibbsite, allophane, alunite and jurbanite are the reactive mineral phases indicated by PHREEQC modeling. During the dry season, hydroxialuminosilicate allophane is the main phase in equilibrium with the solution, while the sulphate salts alunite and jurbanite predominate in the rainy season due to the increasing of SO 4 values. Gibbsite is also in equilibrium with sand pit lakes waters, pointing out that hydrolysis reaction is a constant process in the system. Comparing to SiO 2, sulphate is the main Al retriever in the pit waters because the most samples (alunite and jurbanite) are in equilibrium with the solution in both seasons. This Al hydrochemical control allied to some precaution, like pH correction and fertilization of these waters, allows the conditions for fishpond culture. Equilibrium of the majority samples with kaolinite (Ca, Mg, Na diagrams) and primary minerals (K diagram) points to moderate weathering rate in sand pit sediments, which cannot be considered for the whole basin due to the anomalous acidification of the studied waters.

  1. Dual fluorescence of syringaldazine

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Balasubramanian, T.

    2007-11-01

    The absorption and fluorescence spectra of syringaldazine (SYAZ) has been recorded in solvents of different polarity, pH and β-cyclodextrin (β-CD) and compared with syringaldehyde (SYAL). The inclusion complex of SYAZ with β-CD is investigated by UV-vis, fluorimetry, AM 1, FT-IR, 1H NMR and scanning electron microscope (SEM). Δ G value suggests the inclusion process is an exothermic and spontaneous. In all solvents a dual fluorescence is observed for SYAZ, whereas, SYAL shows a dual luminescence only in polar solvents. The excitation spectra for the 410 nm is different from 340 nm indicate two different species present in this molecule. In pH solutions: (i) a large red shifted maxima is observed in the dianion and is due to large interactions between the aromatic ring and (ii) the large blue shift at pH ˜4.5, is due to dissociation of azine group and formation of aldehyde. β-CD studies reveal that, SYAZ forms a 1:2 complex from 1:1 complex with β-CD.

  2. [Effects of thiourea on pH and availability of metal ions in acid red soil].

    PubMed

    Yang, Bo; Wang, Wen; Zeng, Qing-Ru; Zhou, Xi-Hong

    2014-03-01

    Through the simulation research, the effects of application of thiourea and urea on pH and availability of metal ions in acid red soil were studied, and the results showed that after applying urea, the soil pH increased in the first experimental stage and then reduced gradually to a low level, however, decreased trends of soil pH values were inhibited by the application of thiourea, especially when the concentration of thiourea reached to 5.0 mmol x kg(-1) dry soil, the soil pH was stable at high level, which exceeded to 6.0. It proved that the application of thiourea could inhibit the soil acidification due to urea application. After applying urea with different concentrations of thiourea, the available contents of Zn and Al decreased with the increasing concentration of thiourea, nevertheless, when the concentration of thiourea reached to 5.0 mmol x kg(-1), the available content of Mn was stable at high level which was over 110 mg x kg(-1). In addition, the results showed a highly significant negative correlation between the soil pH and the available content of Cu, Zn and Al, but for Mn, no discipline was found between the soil pH and the availability after applying thiourea. Moreover, the soil pH became higher after applying urea with thiourea compared to add urea only, which led to the decreasing of available content of Al, and it was benefited for the control of the phytotoxic effect of Al. The available content of Mn in the soil not only depended on soil pH but also the content of thiourea due to its redox and complexing reaction with Mn.

  3. The Stability of Lubricant Oil Acidity of Biogas Fuelled Engine due to Biogas Desulfurization

    NASA Astrophysics Data System (ADS)

    Gde Tirta Nindhia, Tjokorda; Wayan Surata, I.; Wardana, Ari

    2017-05-01

    This research is established for the purpose of the understanding the stability of the acidity of lubricant oil in biogas fuelled engine due to the absence of hydrogen sulfide (H2S). As was recognized that other than Methane (CH4), there are also other gas impurities in the biogas such as carbon dioxide (CO2), hydrogen sulfide (H2S), moisture (H2O) and ammonia (NH3). Due to H2S contents in the biogas fuel, the engine was found failure. This is caused by corrosion in the combustion chamber due to increase of lubricant acidity. To overcome this problem in practical, the lubricant is increased the pH to basic level with the hope will be decrease to normal value after several time use. Other method is by installing pH measurement sensor in the engine lubricant so that when lubricant is known turn to be acid, then lubricant replacement should be done. In this research, the effect of biogas desulfurization down to zero level to the acidity of lubricant oil in the four stroke engine was carried out with the hope that neutral lubrication oil to be available during running the engine. The result indicates that by eliminating H2S due desulfurization process, effect on stability and neutrality of pH lubricant. By this method the engine safety can be obtained without often replacement the lubricant oil.

  4. pH-dependence of pesticide adsorption by wheat-residue-derived black carbon.

    PubMed

    Yang, Yaning; Chun, Yuan; Sheng, Guangyao; Huang, Minsheng

    2004-08-03

    The potential of black carbon as an adsorbent for pesticides in soils may be strongly influenced by the properties of the adsorbent and pesticides and by the environmental conditions. This study evaluated the effect of pH on the adsorption of diuron, bromoxynil, and ametryne by a wheat (Triticum aestivum L.) residue derived black carbon (WC) as compared to a commercial activated carbon (AC). The pH drift method indicated that WC had a point of zero charge of 4.2, much lower than that of 7.8 for AC. The density of oxygen-containing surface functional groups, measured by the Boehm titration, on WC was 5.4 times higher than that on AC, resulting in a pesticide adsorption by WC being 30-50% of that by AC, due to the blockage of WC surface by the waters associated with the functional groups. A small decrease (5.5%/unit pH) in diuron adsorption by WC with increase in pH resulted from increased deprotonation of surface functional groups at higher pH values. A much larger decrease (14-21%/unit pH) in bromoxynil adsorption by WC with increase in pH resulted from the deprotonation of both the adsorbate and surface functional groups of the adsorbent. The deprotonation reduced the adsorptive interaction between bromoxynil and the neutral carbon surface and increased the electrical repulsion between the negatively charged WC surface and bromoxynil anions. Deprotonation of ametryne with increase in pH over the low pH range increased its fraction of molecular form and thus adsorption on WC by 15%/unit pH. Further increase in pH resulted in a 20%/unit pH decrease in ametryne adsorption by WC due primarily to the development of a negative charge on the surface of WC. The pH-dependent adsorption of pesticides by black carbon may significantly influence their environmental fate in soils.

  5. Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs

    NASA Astrophysics Data System (ADS)

    D'Olivo, J. P.; McCulloch, M. T.; Eggins, S. M.; Trotter, J.

    2014-07-01

    The boron isotopic (δ11Bcarb) compositions of long-lived Porites coral are used to reconstruct reef-water pH across the central Great Barrier Reef (GBR) and assess the impact of river runoff on inshore reefs. For the period from 1940 to 2009, corals from both inner as well as mid-shelf sites exhibit the same overall decrease in δ11Bcarb of 0.086 ± 0.033‰ per decade, equivalent to a~decline in seawater pH (pHsw) of ~ 0.017 ± 0.007 pH units per decade. This decline is consistent with the long-term effects of ocean acidification based on estimates of CO2 uptake by surface waters due to rising atmospheric levels. We also find that compared to the mid-shelf corals, the δ11Bcarb compositions for inner shelf corals subject to river discharge events, have higher and more variable values and hence higher inferred pHsw values. These higher δ11Bcarb values for inner-shelf corals are particularly evident during wet years, despite river waters having lower pH. The main effect of river discharge on reef-water carbonate chemistry thus appears to be from higher nutrients driving increased phytoplankton productivity, resulting in the drawdown of pCO2 and increase in pHsw. Increased primary production therefore has the potential to counter the more transient effects of low pH river water (pHrw) discharged into near-shore environments. Importantly however, inshore reefs also show a consistent pattern of sharply declining coral growth that coincides with periods of high river discharge. This occurs despite these reefs having higher pHsw values and hence higher seawater aragonite saturation states, demonstrating the over-riding importance of local reef-water quality on coral reef health.

  6. pH-Responsive Shape Memory Poly(ethylene glycol)-Poly(ε-caprolactone)-based Polyurethane/Cellulose Nanocrystals Nanocomposite.

    PubMed

    Li, Ying; Chen, Hongmei; Liu, Dian; Wang, Wenxi; Liu, Ye; Zhou, Shaobing

    2015-06-17

    In this study, we developed a pH-responsive shape-memory polymer nanocomposite by blending poly(ethylene glycol)-poly(ε-caprolactone)-based polyurethane (PECU) with functionalized cellulose nanocrystals (CNCs). CNCs were functionalized with pyridine moieties (CNC-C6H4NO2) through hydroxyl substitution of CNCs with pyridine-4-carbonyl chloride and with carboxyl groups (CNC-CO2H) via 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) mediated surface oxidation, respectively. At a high pH value, the CNC-C6H4NO2 had attractive interactions from the hydrogen bonding between pyridine groups and hydroxyl moieties; at a low pH value, the interactions reduced or disappeared due to the protonation of pyridine groups, which are a Lewis base. The CNC-CO2H responded to pH variation in an opposite manner. The hydrogen bonding interactions of both CNC-C6H4NO2 and CNC-CO2H can be readily disassociated by altering pH values, endowing the pH-responsiveness of CNCs. When these functionalized CNCs were added in PECU polymer matrix to form nanocomposite network which was confirmed with rheological measurements, the mechanical properties of PECU were not only obviously improved but also the pH-responsiveness of CNCs could be transferred to the nanocomposite network. The pH-sensitive CNC percolation network in polymer matrix served as the switch units of shape-memory polymers (SMPs). Furthermore, the modified CNC percolation network and polymer molecular chains also had strong hydrogen bonding interactions among hydroxyl, carboxyl, pyridine moieties, and isocyanate groups, which could be formed or destroyed through changing pH value. The shape memory function of the nanocomposite network was only dependent on the pH variation of the environment. Therefore, this pH-responsive shape-memory nancomposite could be potentially developed into a new smart polymer material.

  7. Isoelectric focusing of dansylated amino acids in immobilized pH gradients

    NASA Technical Reports Server (NTRS)

    Bianchi-Bosisio, Adriana; Righetti, Pier Giorgio; Egen, Ned B.; Bier, Milan

    1986-01-01

    The 21 free amino acids commonly encountered in proteins have been transformed into 'carrier ampholyte' species by reacting their primary amino groups with dansyl chloride. These derivatives can thus be focused in an immobilized pH gradient covering the pH interval 3.1 to 4.1, except for arginine, which still retains a pI of 8.8. Due to their inherent fluorescence, the dansyl derivatives are revealed in UV light, with a sensitivity of the order of 2-4 ng/sq mm. All nearest neighbors are separated except for the following couples: Asn-Gln, Gly-Thr, Val-Ile and Cys-Cys2, with a resolving power, in a Delta(pI) scale, of the order of 0.0018 pH units. Except for a few cases (notably the aromatic amino acids), the order of pI values is well correlated with the pK values of carboxyl groups, suggesting that the latter are not altered by dansylation. From the set of pK(COOH)-pI values of the different amino acids, the pK of the tertiary amino group in the dansyl label has been calculated to be 5.11 + or - 0.06. Knowing the pK of the amino-dansyl and the pI of the excess, free dansyl label (pI = 3.34), a pK of 1.57 is derived for its sulfonic acid group.

  8. Evaluation of the Eureka Manta2 Water-Quality Multiprobe Sonde

    USGS Publications Warehouse

    Tillman, Evan F.

    2017-11-08

    Two Eureka Manta2 3.5 water-quality multiprobe sondes by Eureka Water Probes were tested at the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) against known standards over the sonde operating temperatures to verify the manufacturer’s stated accuracy specifications for pH, specific conductance (SC) at 25 degrees Celsius (°C), dissolved oxygen (DO), and turbidity. The Manta2 sondes were evaluated for compliance with the USGS National Field Manual for the Collection of Water-Quality Data (NFM) criteria for continuous water-quality monitors, and for compliance with the manufacturer’s technical specifications. The Manta2 was also evaluated for its compliance to Serial Digital Interface at 1200 baud (SDI-12) version 1.3.The Manta2 met the NFM recommendations and manufacturer’s accuracy specifications for DO and turbidity at all values tested. The Manta2 pH sensors met the NFM recommendations and manufacturer’s accuracy specification for nominal pH values of 10 and lower. One of the two sensors was out of compliance by 1.2 units for pH 11.16 at 15 °C and by 0.25 unit for pH 10.78 at 40 °C. The Manta2 sensors were within the NFM recommendations for SC, except at 100 microsiemens (μS/cm) at 40 °C, where the SC sensor exceeded the test standard value by as much as 25 percent. One of two sensors was within manufacturer’s accuracy specifications at 25 °C for all the tested SC values, while the other SC sensor was outside the manufacturer’s accuracy specifications at 100 μS/cm, exceeding the test standard value by 9 percent. One of two sensors was outside the manufacturer’s accuracy specifications at 10,000 μS/cm at 15°C, exceeding the test standard value by 3 percent. One Manta2 passed SDI-12 compliance testing with a NR Systems SDI-12 Verifier. One Manta2 was field tested for 6 weeks at USGS station 02492620, National Space Technology Laboratories (NSTL) Station, Mississippi, on the Pearl River and showed overall good agreement with a well-maintained Hydrolab Datasonde 5X site sonde for water temperature, pH, and DO. Differences in SC values between the Manta2 and the site sonde were most likely due to differences in the deployment depth of the sondes.

  9. Simulation of CO₂ leakages during injection and storage in sub-seabed geological formations: metal mobilization and biota effects.

    PubMed

    Rodríguez-Romero, Araceli; Basallote, M Dolores; De Orte, Manoela R; DelValls, T Ángel; Riba, Inmaculada; Blasco, Julián

    2014-07-01

    To assess the potential effects on metal mobilization due to leakages of CO2 during its injection and storage in marine systems, an experimental set-up was devised and operated, using the polychaete Hediste diversicolor as the model organism. The objective was to study the effects of such leakage in the expected scenarios of pH values between 8.0 and 6.0. Polychaetes were exposed for 10 days to seawater with sediment samples collected in two different coastal areas, one with relatively uncontaminated sediment as reference (RSP) and the other with known contaminated sediment (ML), under pre-determined pH conditions. Survival and metal accumulation (Al, Fe, Mn, Cu, Zn, As and Hg) in the whole body of H. diversicolor were employed as endpoints. Mortality was significant at the lowest pH level in the sediment with highest metal concentrations. In general, metal concentrations in tissues of individuals exposed to the contaminated sediment were influenced by pH. These results indicate that ocean acidification due to CO2 leakages would provoke increased metal mobilization, causing adverse side effects in sediment toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Controls on the pH of hyper-saline lakes - A lesson from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Golan, Rotem; Gavrieli, Ittai; Ganor, Jiwchar; Lazar, Boaz

    2016-01-01

    The pH of aqueous environments is determined by the dominant buffer systems of the water, defined operationally as total alkalinity (TA). The major buffer systems in the modern ocean are carbonic and boric acids of which the species bicarbonate, carbonate and borate make up about 77%, 19% and 4% of the TA, respectively. During the course of seawater evaporation (e.g. lagoons) the residual brine loses considerable portion of the dissolved inorganic carbon (DIC) and carbonate alkalinity (CA) already at the early stages of evaporation. DIC and CA decrease due to massive precipitation of CaCO3, while total boron (TB) increases conservatively, turning borate to the dominant alkalinity species in marine derived brines. In the present work we assess the apparent dissociation constant value of boric acid (KB‧) in saline and hypersaline waters, using the Dead Sea (DS) as a case study. We explain the DS low pH (∼6.3) and the effect of the boric and carbonic acid pK‧-s on the behavior of the brine's buffer system, including the pH increase that results from brine dilution. The KB‧ in DS was estimated from TB, TA, DIC and pH data measured in this study and early empirical data on artificial DS brines containing just carbonic acid. The KB‧ value was corroborated by Pitzer ion interaction model calculations using PHREEQC thermodynamic code applied to the chemical composition of the DS. Our results show that KB‧ increases considerably with the brine's ionic strength, reaching in the DS to a factor of 100 higher than in ;mean; seawater. Based on theoretical calculations and analyses of other natural brines it is suggested that brines' composition is a major factor in determining the KB‧ value and in turn the pH of such brines. We show that the higher the proportion of divalent cations in the brine the higher the dissociation constants of the weak acids (presumably due to formation of complexes). The low pH of the Dead Sea is accordingly explained by its extremely high ionic strength (TDS = 348 g/L) and the dominance of the divalent cation, Mg2+. Other natural hyper-saline brines with high concentration of divalent cations such as Kunteyi Lake in China and Don-Juan Pond in Antarctica follow the same general pattern. In contrast, the high pH of soda lakes results not only from their high TA but also by the dominance of the monovalent cation, Na+. Our study emphasizes the strong control of brine composition on pKB‧ and pH. These factors should be taken into consideration when reconstructing past and present environmental evaporitic environments.

  11. Highly photostable near-infrared fluorescent pH indicators and sensors based on BF2-chelated tetraarylazadipyrromethene dyes.

    PubMed

    Jokic, Tijana; Borisov, Sergey M; Saf, Robert; Nielsen, Daniel A; Kühl, Michael; Klimant, Ingo

    2012-08-07

    In this study, a series of new BF(2)-chelated tetraarylazadipyrromethane dyes are synthesized and are shown to be suitable for the preparation of on/off photoinduced electron transfer modulated fluorescent sensors. The new indicators are noncovalently entrapped in polyurethane hydrogel D4 and feature absorption maxima in the range 660-710 nm and fluorescence emission maxima at 680-740 nm. Indicators have high molar absorption coefficients of ~80,000 M(-1) cm(-1), good quantum yields (up to 20%), excellent photostability and low cross-sensitivity to the ionic strength. pK(a) values of indicators are determined from absorbance and fluorescence measurements and range from 7 to 11, depending on the substitution pattern of electron-donating and -withdrawing functionalities. Therefore, the new indicators are suitable for exploitation and adaptation in a diverse range of analytical applications. Apparent pK(a) values in sensor films derived from fluorescence data show 0.5-1 pH units lower values in comparison with those derived from the absorption data due to Förster resonance energy transfer from protonated to deprotonated form. A dual-lifetime referenced sensor is prepared, and application for monitoring of pH in corals is demonstrated.

  12. Regulation of H+ Extrusion and Cytoplasmic pH in Maize Root Tips Acclimated to a Low-Oxygen Environment.

    PubMed

    Xia, J. H.; Roberts, JKM.

    1996-05-01

    We tested the hypothesis that H+ extrusion contributes to cytoplasmic pH regulation and tolerance of anoxia in maize (Zea mays) root tips. We studied root tips of whole seedlings that were acclimated to a low-oxygen environment by pretreatment in 3% (v/v) O2. Acclimated root tips characteristically regulate cytoplasmic pH near neutrality and survive prolonged anoxia, whereas nonacclimated tips undergo severe cytoplasmic acidosis and die much more quickly. We show that the plasma membrane H+-ATPase can operate under anoxia and that net H+ extrusion increases when cytoplasmic pH falls. However, at an external pH near 6.0, H+ extrusion contributes little to cytoplasmic pH regulation. At more acidic external pH values, net H+ flux into root tips increases dramatically, leading to a decrease in cytoplasmic pH and reduced tolerance of anoxia. We present evidence that, under these conditions, H+ pumps are activated to partly offset acidosis due to H+ influx and, thereby, contribute to cytoplasmic pH regulation and tolerance of anoxia. The regulation of H+ extrusion under anoxia is discussed with respect to the acclimation response and mechanisms of intracellular pH regulation in aerobic plant cells.

  13. Data-driven RBE parameterization for helium ion beams

    NASA Astrophysics Data System (ADS)

    Mairani, A.; Magro, G.; Dokic, I.; Valle, S. M.; Tessonnier, T.; Galm, R.; Ciocca, M.; Parodi, K.; Ferrari, A.; Jäkel, O.; Haberer, T.; Pedroni, P.; Böhlen, T. T.

    2016-01-01

    Helium ion beams are expected to be available again in the near future for clinical use. A suitable formalism to obtain relative biological effectiveness (RBE) values for treatment planning (TP) studies is needed. In this work we developed a data-driven RBE parameterization based on published in vitro experimental values. The RBE parameterization has been developed within the framework of the linear-quadratic (LQ) model as a function of the helium linear energy transfer (LET), dose and the tissue specific parameter {{(α /β )}\\text{ph}} of the LQ model for the reference radiation. Analytic expressions are provided, derived from the collected database, describing the \\text{RB}{{\\text{E}}α}={α\\text{He}}/{α\\text{ph}} and {{\\text{R}}β}={β\\text{He}}/{β\\text{ph}} ratios as a function of LET. Calculated RBE values at 2 Gy photon dose and at 10% survival (\\text{RB}{{\\text{E}}10} ) are compared with the experimental ones. Pearson’s correlation coefficients were, respectively, 0.85 and 0.84 confirming the soundness of the introduced approach. Moreover, due to the lack of experimental data at low LET, clonogenic experiments have been performed irradiating A549 cell line with {{(α /β )}\\text{ph}}=5.4 Gy at the entrance of a 56.4 MeV u-1He beam at the Heidelberg Ion Beam Therapy Center. The proposed parameterization reproduces the measured cell survival within the experimental uncertainties. A RBE formula, which depends only on dose, LET and {{(α /β )}\\text{ph}} as input parameters is proposed, allowing a straightforward implementation in a TP system.

  14. Prevalence of pale, soft, and exudative (PSE) condition in chicken meat used for commercial meat processing and its effect on roasted chicken breast.

    PubMed

    Karunanayaka, Deshani S; Jayasena, Dinesh D; Jo, Cheorun

    2016-01-01

    Studies on prevalence of pale, soft, exudative (PSE) condition in Sri Lankan poultry industry is minimal. Hence, the objective of present study was to determine the incidence of PSE chicken meat in a commercial meat processing plant and to find out its consequences on meat quality traits of roasted chicken breast. A total of 60 breast fillets were randomly selected, evaluated based on color L* value, and placed into 1 of 2 categories; PSE (L* > 58) or normal meat (L* ≤ 58). A total of 20 breast fillets (10 PSE and 10 normal) were then analyzed for color, pH, and water holding capacity (WHC). After processing those into roasted chicken breast, cooking loss, color, pH, WHC, and texture values were evaluated. A sensory evaluation was conducted using 30 untrained panelists. The incidence of PSE meat was 70 % in the present experiment. PSE fillets were significantly lighter and had lower pH values compared with normal fillets. Correlation between the lightness and pH was negative (P < 0.05). Although there was no significant difference in color, texture, and WHC values between the 2 groups after processing into roasted chicken breast (P > 0.05), an approximately 3 % higher cooking loss was observed in PSE group compared to its counterpart (P < 0.05). Moreover, cooking loss and lightness values showed a significant positive correlation. Nevertheless, there were no significant differences in sensory parameters between the 2 products (P > 0.05). These results indicated that an economical loss can be expected due to the significantly higher cooking loss observed in roasted breast processed from PSE meat.

  15. Effect of fortification with various types of milk proteins on the rheological properties and permeability of nonfat set yogurt.

    PubMed

    Peng, Y; Serra, M; Horne, D S; Lucey, J A

    2009-01-01

    Yogurt base was prepared from reconstituted skim milk powder (SMP) with 2.5% protein and fortified with additional 1% protein (wt/wt) from 4 different milk protein sources: SMP, milk protein isolate (MPI), micellar casein (MC), and sodium caseinate (NaCN). Heat-treated yogurt mixes were fermented at 40 degrees C with a commercial yogurt culture until pH 4.6. During fermentation pH was monitored, and storage modulus (G') and loss tangent (LT) were measured using dynamic oscillatory rheology. Yield stress (sigma(yield)) and permeability of gels were analyzed at pH 4.6. Addition of NaCN significantly reduced buffering capacity of yogurt mix by apparently solubilizing part of the indigenous colloidal calcium phosphate (CCP) in reconstituted SMP. Use of different types of milk protein did not affect pH development except for MC, which had the slowest fermentation due to its very high buffering. NaCN-fortified yogurt had the highest G' and sigma(yield) values at pH 4.6, as well as maximum LT values. Partial removal of CCP by NaCN before fermentation may have increased rearrangements in yogurt gel. Soluble casein molecules in NaCN-fortified milks may have helped to increase G' and LT values of yogurt gels by increasing the number of cross-links between strands. Use of MC increased the CCP content but resulted in low G' and sigma(yield) at pH 4.6, high LT and high permeability. The G' value at pH 4.6 of yogurts increased in the order: SMP = MC < MPI < NaCN. Type of milk protein used to standardize the protein content had a significant impact on physical properties of yogurt. Practical Application: In yogurt processing, it is common to add additional milk solids to improve viscosity and textural attributes. There are many different types of milk protein powders that could potentially be used for fortification purposes. This study suggests that the type of milk protein used for fortification impacts yogurt properties and sodium caseinate gave the best textural results.

  16. Low Medium pH Value Enhances Anthocyanin Accumulation in Malus Crabapple Leaves

    PubMed Central

    Tian, Ji; Jin, Kaina; Yao, Yuncong

    2014-01-01

    Anthocyanin is a critical factor involved in coloration of plant tissues, but the mechanism how medium pH values affect anthocyanin accumulation in woody plants is unknown. We analyzed anthocyanin composition and the expression of elements encoding anthocyanin and flavonols biosynthesis underlying different medium pH values by using three different leave color type cultivars. HPLC analysis demonstrated that high medium pH values treatment induced a dramatic decrease in the concentration of cyaniding in crabapple leaves. Conversely, the high medium pH values induced up-regulation of the content of flavones and flavonols, suggesting that low pH treatment-induced anthocyanin accumulation. Quantitative real time PCR experiment showed the expression level of anthocyanidin synthase (McANS) and uridine diphosphate glucose flavonoid 3-O-glucosyltransferase (McUFGT) was up-regulated by low pH values treatment, and high medium pH value treatment up-regulate the transcription level of flavonol synthase (McFLS). Meanwhile, several MYB TFs have been suggested in the regulation of pH responses. These results strongly indicate that the low pH treatment-induced anthocyanin accumulation is mediated by the variation of mRNA transcription of the anthocyanin biosynthetic genes. PMID:24914811

  17. Evaluation of pH of Bathing Soaps and Shampoos for Skin and Hair Care.

    PubMed

    Tarun, Jose; Susan, Jose; Suria, Jacob; Susan, Veronica John; Criton, Sebastian

    2014-09-01

    Normal healthy skin has potential of hydrogen (pH) range of 5.4-5.9 and a normal bacterial flora. Use of soap with high pH causes an increase in skin pH, which in turn causes an increase in dehydrative effect, irritability and alteration in bacterial flora. The majority of soaps and shampoos available in the market do not disclose their pH. The aim of this study was to assess the pH of different brands of bathing soaps and shampoos available in the market. The samples of soaps and shampoos were collected from shops in the locality. The samples of different brands are coded before the analysis of the pH. Solution of each sample was made and pH was measured using pH meter. Majority of the soaps have a pH within the range of 9-10. Majority of the shampoos have a pH within the range of 6-7. The soaps and shampoos commonly used by the population at large have a pH outside the range of normal skin and hair pH values. Therefore, it is hoped that before recommending soap to patient especially those who have sensitive and acne prone skin, due consideration is given to the pH factor and also that manufacturers will give a thought to pH of soaps and shampoos manufactured by them, so that their products will be more skin and hair friendly.

  18. Cementitious porous pavement in stormwater quality control: pH and alkalinity elevation.

    PubMed

    Kuang, Xuheng; Sansalone, John

    2011-01-01

    A certain level of alkalinity acts as a buffer and maintains the pH value in a stable range in water bodies. With rapid urban development, more and more acidic pollutants flow to watersheds with runoff and drop alkalinity to a very low level and ultimately degrade the water environment. Cementitious porous pavement is an effective tool for stormwater acidic neutralization. When stormwater infiltrates cement porous pavement (CPP) materials, alkalinity and pH will be elevated due to the basic characteristics of cement concrete. The elevated alkalinity will neutralize acids in water bodies and maintain the pH in a stable level as a buffer. It is expected that CPP materials still have a certain capability of alkalinity elevation after years of service, which is important for CPP as an effective tool for stormwater management. However, few previous studies have reported on how CPP structures would elevate runoff alkalinity and pH after being exposed to rainfall-runoff for years. In this study, three groups of CPP specimens, all exposed to rainfall-runoff for 3 years, were used to test the pH and alkalinity elevation properties. It was found that runoff pH values were elevated from 7.4 to the range of 7.8-8.6 after infiltrating through the uncoated specimens, and from 7.4 to 8.5-10.7 after infiltrating through aluminum-coated specimens. Runoff alkalinity elevation efficiencies are 11.5-14.5% for uncoated specimens and 42.2% for coated specimens. The study shows that CPP is an effective passive unit operation for stormwater acid neutralization in our built environment.

  19. Impact of concentration and species of sulfamethoxazole and ofloxacin on their adsorption kinetics on sediments.

    PubMed

    Wang, Peng; Zhang, Di; Zhang, Huang; Li, Hao; Ghosh, Saikat; Pan, Bo

    2017-05-01

    Antibiotics are used widely in human and veterinary medicine and are ubiquitous in environmental matrices worldwide. The influence of the concentration of antibiotics on adsorption kinetics is still unclear. This study used sulfamethoxazole (SMX) and ofloxacin (OFL) as adsorbates to investigate the adsorption kinetics on sediment affected by varying concentrations of antibiotics adsorbable species. At the experimental pH values, the major adsorbed species of SMX and OFL on sediment were SMX 0 and OFL + by hydrophobic interaction and electrostatic attraction, respectively. The apparent adsorption rate of SMX was not affected by the initial concentration and the pH values because the hydrophobic interactions were concentration-independent and charge-independent. However, the apparent adsorption rate of OFL significantly slowed down as the initial concentration increased. The adsorbed OFL + effectively neutralized the negative charges of the sediment, leading to a reduced adsorption rate of subsequent OFL + . The neutralization effect was greatly enhanced due to the increased OFL + with the increasing OFL concentration. Additionally, the apparent adsorption rate of OFL significantly increased at higher pH due to the reduced neutralization effect that resulted from the decreased OFL + and increased negative charges of the sediment surface. This study implied that the adsorption kinetics of antibiotics was greatly dominated by the concentration of adsorbable species rather than apparent overall concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of pH and Ibuprofen on Phopholipid Bilayer Bending Modulus

    NASA Astrophysics Data System (ADS)

    Boggara, Mohan; Faraone, Antonio; Krishnamoorti, Ramanan

    2010-03-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) e.g. Aspirin and Ibuprofen, are known to cause gastrointestinal (GI) toxicity with chronic usage. However, NSAIDs pre-associated with phospholipids has been experimentally shown to reduce the GI toxicity and increase the therapeutic efficacy. In this study, using neutron spin-echo the effect of ibuprofen on the phospholipid membrane bending modulus is studied as a function of pH and temperature. Ibuprofen was found to lower the bending modulus at all pH values. We further present molecular insights into the observed effect on membrane dynamics based on structural studies using molecular dynamics simulations and small angle neutron scattering data as well as changes in zwitterionic headgroup electrostatics due to pH and addition of ibuprofen. This study is expected to help towards effective design of drug delivery nanoparticles based on variety of soft condensed matter such as lipids or polymers.

  1. A coupled hydrodynamic-hydrochemical modeling for predicting mineral transport in a natural acid drainage system.

    NASA Astrophysics Data System (ADS)

    Zegers Risopatron, G., Sr.; Navarro, L.; Montserrat, S., Sr.; McPhee, J. P.; Niño, Y.

    2017-12-01

    The geochemistry of water and sediments, coupled with hydrodynamic transport in mountainous channels, is of particular interest in central Chilean Andes due to natural occurrence of acid waters. In this paper, we present a coupled transport and geochemical model to estimate and understand transport processes and fate of minerals at the Yerba Loca Basin, located near Santiago, Chile. In the upper zone, water presentes low pH ( 3) and high concentrations of iron, aluminum, copper, manganese and zinc. Acidity and minerals are the consequence of water-rock interactions in hydrothermal alteration zones, rich in sulphides and sulphates, covered by seasonal snow and glaciers. Downstream, as a consequence of neutral to alkaline lateral water contributions (pH >7) along the river, pH increases and concentration of solutes decreases. The mineral transport model has three components: (i) a hydrodynamic model, where we use HEC-RAS to solve 1D Saint-Venant equations, (ii) a sediment transport model to estimate erosion and sedimentation rates, which quantify minerals transference between water and riverbed and (iii) a solute transport model, based on the 1D OTIS model which takes into account the temporal delay in solutes transport that typically is observed in natural channels (transient storage). Hydrochemistry is solved using PHREEQC, a software for speciation and batch reaction. Our results show that correlation between mineral precipitation and dissolution according to pH values changes along the river. Based on pH measurements (and according to literature) we inferred that main minerals in the water system are brochantite, ferrihydrite, hydrobasaluminite and schwertmannite. Results show that our model can predict the transport and fate of minerals and metals in the Yerba Loca Basin. Mineral dissolution and precipitation process occur for limited ranges of pH values. When pH values are increased, iron minerals (schwertmannite) are the first to precipitate ( 2.5

  2. Forsterite surface composition in aqueous solutions: a combined potentiometric, electrokinetic, and spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Pokrovsky, Oleg S.; Schott, Jacques

    2000-10-01

    Surfaces of natural and synthetic forsterite (Fo 91 and Fo 100) in aqueous solutions at 25°C were investigated using surface titrations in batch and limited residence time reactors, column filtration experiments, electrokinetic measurements (streaming potential and electrophoresis techniques), Diffuse Reflectance Infrared Spectroscopy (DRIFT), and X-ray Photoelectron Spectroscopy (XPS). At pH < 9, a Mg-depleted, Si-rich layer (<20 Å thick) is formed on the forsterite surface due to a Mg 2+ ↔ H + exchange reaction. Electrokinetic measurements yield a pH IEP value of 4.5 corresponding to the dominance of SiO 2 in the surface layer at pH < 9. In contrast, surface titrations of fresh powders give an apparent pH PZC of about 10 with the development of a large positive charge (up to 10 -4 mol/m 2 or 10 C/m 2) in the acid pH region. This may be explained by penetration of H + into the first unit cells of forsterite surface. The surface charge of acid-reacted forsterite is one or two orders of magnitude lower than that of unreacted forsterite with an apparent pH PZC at around 6.5 and a pH IEP value of 2.1 which is close to that for amorphous silica and reflects the formation of a silica-rich layer on the surface. XPS analyses indicate the penetration of hydrogen into the surface and the polymerization of silica tetrahedra in this leached layer. At pH > 10, a Si-deficient, Mg-rich surface layer is formed as shown by XPS analyses and the preferential Si release from the surface during column filtration experiments.

  3. Habit-associated salivary pH changes in oral submucous fibrosis-A controlled cross-sectional study.

    PubMed

    Donoghue, Mandana; Basandi, Praveen S; Adarsh, H; Madhushankari, G S; Selvamani, M; Nayak, Prachi

    2015-01-01

    Oral submucous fibrosis (OSF) is a multi-causal inflammatory reaction to the chemical or mechanical trauma caused due to exposure to arecanut containing products with or without tobacco (ANCP/T). Arecanut and additional components such as lime and chewing tobacco render ANCP/T highly alkaline. Fibrosing repair is a common reaction to an alkaline exposure in the skin. OSF may be related to the alkaline exposure by ANCP/T in a similar manner. The study was aimed at establishing the relationship of habit-associated salivary pH changes and OSF. The study design was controlled cross-sectional. Base line salivary pH (BLS pH), salivary pH after chewing the habitual ANCP/T substance, post chew salivary pH (PCSpH) for 2 min and salivary pH recovery time (SpHRT) were compared in 30 OSF patients and 30 sex-matched individuals with ANCP/T habits and apparently healthy oral mucosa. The group's mean BLSpH values were similar and within normal range and representative of the population level values. The average PCSpH was significantly higher (P ˂ 0.0001) than the average BLSpH in both groups. There was no significant difference (P = 0.09) between PCSpH of OSF patients and controls. OSF patients had a significantly longer (P = 0.0076) SpHRT than controls. Factors such as age, daily exposure, cumulative habit years, BLSpH and PCSpH, had varying effects on the groups. Chewing ANCP/T causes a significant rise in salivary pH of all individuals. SpHRT has a significant association with OSF. The effect of salivary changes in OSF patients differs with those in healthy controls.

  4. Discrimination of excess toxicity from baseline level for ionizable compounds: Effect of pH.

    PubMed

    Li, Jin J; Zhang, Xu J; Wang, Xiao H; Wang, Shuo; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H

    2016-03-01

    The toxic effect can be affected by pH in water through affecting the degree of ionization of ionizable compounds. Wrong classification of mode of action can be made from the apparent toxicities. In this paper, the toxicity data of 61 compounds to Daphnia magna determined at three pH values were used to investigate the effect of pH on the discrimination of excess toxicity. The results show that the apparent toxicities are significantly less than the baseline level. Analysis on the effect of pH on bioconcentration factor (BCF) shows that the log BCF values are significantly over-estimated for the strongly ionizable compounds, leading to the apparent toxicities greatly less than the baseline toxicities and the toxic ratios greatly less than zero. A theoretical equation between the apparent toxicities and pH has been developed basing on the critical body residue (CBR). The apparent toxicities are non-linearly related to pH, but linearly to fraction of unionized form. The determined apparent toxicities are well fitted with the toxicities predicted by the equation. The toxicities in the unionized form calculated from the equation are close to, or greater than the baseline level for almost all the strongly ionizable compounds, which are very different from the apparent toxicities. The studied ionizable compounds can be either classified as baseline, less inert or reactive compounds in D. magna toxicity. Some ionizable compounds do not exhibit excess toxicity at a certain pH, due not to their poor reactivity with target molecules, but because of the ionization in water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Impact of Persistent Degassing of Kilauea Volcano on Domestic Water Supplies

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Macomber, T.

    2010-12-01

    In March, 2008, a small explosive eruption in the summit crater of Kilauea Volcano marked the initiation of a new, persistently degassing vent at Kilauea. Emission rates of sulfur dioxide initially exceeded 1000 tons per day but declined to a longer term rate of ~800 tons per day. Because of its location farther inland, the plume from this vent generated more severe and more frequent adverse air quality impacts on the surrounding and downwind communities than has the longer lived degassing vents at Pu'u O'o. Because many residents on Hawaii Island derive their domestic water supply from roof catchment systems, deposition of aerosols produced in the volcanic plume could pose a significant health threat to the community. In order to quantify that risk, a program of screening of water catchment systems was undertaken in three communities: Lower Puna, upwind of the vent; Volcano Village, immediately adjacent to the Kilauea summit; and Hawaiian Ocean View Estates, located ~65 km downwind from the vent. An aggregate of 439 samples were collected and analyzed for pH, and fluoride, chloride and sulfate ion concentrations; the median values and extrema are shown in Table I below. The pH values for the catchments proved not to be a good indicator of plume influence: the Volcano and Ocean View communities showed a bimodal distribution of values reflecting residents managing their water systems (median pH = 6.2 and 7.2 respectively) and those that didn't (median pH = 4.5 and 4.3 respectively); however, the lower extremes for pH gave values of 2.9 and 3.3 respectively. Chloride values were also variable due to the use of sodium hypochlorite to treat for biological contaminants. The median values for fluoride and sulfate show a progressive increase from the Puna catchments to Volcano and Ocean View. We believe that these values are consistent with the relative exposure of the communities to the volcanic plume: although the Volcano community is closer to the source, wind conditions conducive to exposure are infrequent whereas the more distant Ocean View community is exposed to a more dilute plume but at a much higher frequency. Even though the median values are within accepted limits for drinking water, the extreme values observed are cause for concern: the pH values are well below those recommended for drinking water and the fluoride values are approaching WHO recommended drinking water levels. With even modest increases in plume output or exposure times, some of the community catchment systems can accumulate sufficient acid or fluoride ion concentrations to pose a significant health threat if drinking water is drawn from those catchments. Continued monitoring of catchment water quality is recommended.Table I. Catchment Water Supply Analytical Results Concentrations in parts per million

  6. Influence of turkey meat on residual nitrite in cured meat products.

    PubMed

    Kilic, B; Cassens, R G; Borchert, L L

    2001-02-01

    A response surface experimental design was employed to estimate residual nitrite level at various initial nitrite concentrations, percent turkey meat in the formula, and heat quantity (F) values using a typical wiener as the test system. Pork and mechanically separated turkey were used as the meat ingredients. Residual nitrite and pH were measured at day 1, 7 days, 14 days, and 49 days after processing. Protein, fat, salt, moisture, and CIE (L*a*b*) color values were also determined. Results showed that the effect of turkey meat on residual nitrite level was significant (P < 0.01). An increased amount of turkey meat in the formula resulted in lower residual nitrite levels at a fixed pH. The residual nitrite level was initially proportional to initial nitrite concentration, but it became a nonsignificant factor during longer storage time. Differences in heat quantity had a significant effect (P < 0.05) on residual nitrite level initially. Greater heat quantity decreased residual nitrite level in finished cured meat products at a fixed pH. However, this effect became nonsignificant during longer storage. Reduction of residual nitrite in wieners because of turkey meat addition at a fixed pH was due to characteristics of the turkey tissue, but the mechanism of action remains unknown. It was also established that commercial wieners had a higher pH if poultry meat was included in the formulation.

  7. Biological parameters in technogenic soils of a former sulphur mine

    NASA Astrophysics Data System (ADS)

    Siwik-Ziomek, Anetta; Brzezińska, Małgorzata; Lemanowicz, Joanna; Koper, Jan; Szarlip, Paweł

    2018-04-01

    This study was conducted on the soils originating from a reclamation area of the former sulphur mine in Tarnobrzeg, Poland. Soil was sampled 16 years after the completion of mining works with the open-pit method at Machów, as well as 7 years after sulphur mining via the `smelting' method in the Jeziórko mine was abandoned. Several biological parameters were examined: soil respiration, soil microbial biomass and the activity of rhodanese and arylsulphatase enzymes taking part in sulphur transformation within the site's soils. The soils showed a high total sulphur and sulphates content. The SO42- constituted a large fraction of total sulphur, in some cases, exceeding 80% or even 95% of total sulphur. The soil pH decreased due to the degrading effects of sulphur mining. In the soils studied from the locations with the lowest soil pH value, no activity of arylsulphatase was reported and the activity of rhodanese was lowest. The highest soil respiration values were recorded from the 0-5 cm layer in the areas covered with forest vegetation. A high soil respiration value at the waste heap at Machów wherein a very high concentration of Stot and SO42- was observed can be due to the ability of fungi to produce hyphal strands and to survive unfavourable conditions.

  8. Linking Thermodynamics to Pollutant Reduction Kinetics by Fe2+ Bound to Iron Oxides.

    PubMed

    Stewart, Sydney M; Hofstetter, Thomas B; Joshi, Prachi; Gorski, Christopher A

    2018-05-15

    Numerous studies have reported that pollutant reduction rates by ferrous iron (Fe 2+ ) are substantially enhanced in the presence of an iron (oxyhydr)oxide mineral. Developing a thermodynamic framework to explain this phenomenon has been historically difficult due to challenges in quantifying reduction potential ( E H ) values for oxide-bound Fe 2+ species. Recently, our group demonstrated that E H values for hematite- and goethite-bound Fe 2+ can be accurately calculated using Gibbs free energy of formation values. Here, we tested if calculated E H values for oxide-bound Fe 2+ could be used to develop a free energy relationship capable of describing variations in reduction rate constants of substituted nitrobenzenes, a class of model pollutants that contain reducible aromatic nitro groups, using data collected here and compiled from the literature. All the data could be described by a single linear relationship between the logarithms of the surface-area-normalized rate constant ( k SA ) values and E H and pH values [log( k SA ) = - E H /0.059 V - pH + 3.42]. This framework provides mechanistic insights into how the thermodynamic favorability of electron transfer from oxide-bound Fe 2+ relates to redox reaction kinetics.

  9. Stability and reactivity of 2-nitrosoamino-3,8-dimethylimidazo[4,5-f]quinoxaline.

    PubMed

    Lakshmi, Vijaya M; Hsu, Fong Fu; Schut, Herman A J; Zenser, Terry V

    2006-02-01

    2-Nitrosoamino-3,8-dimethylimidazo[4,5-f]quinoxaline (N-NO-MeIQx) is a nitrosation product of the food carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and is proposed to form in vivo under inflammatory conditions. This study evaluated the stability and reactivity of N-NO-MeIQx to assess its possible role in the initiation of colon cancer by MeIQx. 14C-N-NO-MeIQx (4 microM) was incubated for 4 h over a range of pH values, and its stability was monitored by HPLC. At pH values from pH 7.4 to 9.0, N-NO-MeIQx was very stable with no detectable change observed. Glutathione (1 mM) did not alter stability at pH 7.4. As the pH decreased, this nitrosamine was less stable with only 48 +/- 1% remaining at pH 5.5 and none remaining at pH 3.5 or 2.0. Major products identified by electrospray ionization mass spectrometry were 3,8-dimethylimidazo[4,5-f]quinoxaline and 2-hydroxy-3,8-dimethylimidazo[4,5-f]quinoxaline. MeIQx was a minor product. At pH 2.0, the t(1/2) for N-NO-MeIQx was reduced from 2.1 +/- 0.2 to 1.2 +/- 0.1 min with 10 mM NaN3. This effect of azide was due to the formation of 2-azido-MeIQx. The binding of 14C-N-NO-MeIQx to DNA increased with decreasing pH. The 10-fold increase in binding observed at pH 2.0 as compared to pH 5.5 was completely inhibited by 10 mM NaN3 due to 2-azido-MeIQx formation. The reactivity of N-NO-MeIQx was compared to N-OH-MeIQx by evaluating adduct formation with 2'-deoxyguanosine 3'-monophosphate (dGp) by 32P-postlabeling. N-OH-MeIQx formed a single major adduct, N-(deoxyguanosin-8-yl)-MeIQx (dG-C8-MeIQx). Incubation of N-NO-MeIQx under inflammatory conditions (pH 5.5 +/- HOCl) produced dG-C8-MeIQx along with 4-6 other adducts. dG-C8-MeIQx formation increased in the presence of HOCl. Liver from a MeIQx-treated mouse contained dG-C8-MeIQx and two other adducts detected with N-NO-MeIQx but not N-OH-MeIQx. These results suggest that N-NO-MeIQx could be genotoxic, is activated by conditions that mediate inflammatory responses, and is a possible cancer risk factor for individuals with inflammation of the colon.

  10. Stability and Reactivity of 2-Nitrosoamino-3,8-dimethylimidazo[4,5-f]quinoxaline

    PubMed Central

    Lakshmi, Vijaya M.; Hsu, Fong Fu; Schut, Herman A. J.; Zenser, Terry V.

    2008-01-01

    2-Nitrosoamino-3,8-dimethylimidazo[4,5-f]quinoxaline (N-NO-MeIQx) is a nitrosation product of the food carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and proposed to form in vivo under inflammatory conditions. This study evaluated the stability and reactivity of N-NO-MeIQx to assess its possible role in initiation of colon cancer by MeIQx. 14C-N-NO-MeIQx (4 μM) was incubated for 4 hours over a range of pH values and its stability monitored by HPLC. At pH values from pH 7.4 to 9.0, N-NO-MeIQx was very stable with no detectable change observed. Glutathione (1 mM) did not alter stability at pH 7.4. As pH decreased, this nitrosamine was less stable with only 48 ± 1 % remaining at pH 5.5 and none remaining at pH 3.5 or 2.0. Major products identified by electrospray ionization mass spectrometry were 3,8-dimethylimidazo[4,5-f]quinoxaline and 2-hydroxy-3,8-dimethylimidazo[4,5-f]quinoxaline. MeIQx was a minor product. At pH 2.0, the t1/2 for N-NO-MeIQx was reduced from 2.1 ± 0.2 to 1.2 ± 0.1 min with 10 mM NaN3. This effect of azide was due to formation of 2-azido-MeIQx. The binding of 14C-N-NO-MeIQx to DNA increased with decreasing pH. The 10-fold increase in binding observed at pH 2.0 compared to pH 5.5 was completely inhibited by 10 mM NaN3 due to 2-azido-MeIQx formation. The reactivity of N-NO-MeIQx was compared to N-OH-MeIQx by evaluating adduct formation with 2′-deoxyguanosine 3′-monophosphate (dGp) by 32P-postlabeling. N-OH-MeIQx formed a single major adduct, N-(deoxyguanosin-8-yl)-MeIQx (dG-C8-MeIQx). Incubation of N-NO-MeIQx under inflammatory conditions (pH 5.5 ± HOCl) produced dG-C8-MeIQx along with 4 to 6 other adducts. dG-C8-MeIQx formation increased in the presence of HOCl. Liver from a MeIQx-treated mouse contained dG-C8-MeIQx and two other adducts detected with N-NO-MeIQx, but not N-OH-MeIQx. These results suggest that N-NO-MeIQx could be genotoxic, is activated by conditions that mediate inflammatory responses, and is a possible cancer risk factor for individuals with inflammation of the colon. PMID:16485910

  11. Physiological and isotopic responses of scleractinian corals to ocean acidification

    NASA Astrophysics Data System (ADS)

    Krief, Shani; Hendy, Erica J.; Fine, Maoz; Yam, Ruth; Meibom, Anders; Foster, Gavin L.; Shemesh, Aldo

    2010-09-01

    Uptake of anthropogenic CO 2 by the oceans is altering seawater chemistry with potentially serious consequences for coral reef ecosystems due to the reduction of seawater pH and aragonite saturation state ( Ωarag). The objectives of this long-term study were to investigate the viability of two ecologically important reef-building coral species, massive Porites sp. and Stylophora pistillata, exposed to high pCO 2 (or low pH) conditions and to observe possible changes in physiologically related parameters as well as skeletal isotopic composition. Fragments of Porites sp. and S. pistillata were kept for 6-14 months under controlled aquarium conditions characterized by normal and elevated pCO 2 conditions, corresponding to pH T values of 8.09, 7.49, and 7.19, respectively. In contrast with shorter, and therefore more transient experiments, the long experimental timescale achieved in this study ensures complete equilibration and steady state with the experimental environment and guarantees that the data provide insights into viable and stably growing corals. During the experiments, all coral fragments survived and added new skeleton, even at seawater Ωarag < 1, implying that the coral skeleton is formed by mechanisms under strong biological control. Measurements of boron (B), carbon (C), and oxygen (O) isotopic composition of skeleton, C isotopic composition of coral tissue and symbiont zooxanthellae, along with physiological data (such as skeletal growth, tissue biomass, zooxanthellae cell density, and chlorophyll concentration) allow for a direct comparison with corals living under normal conditions and sampled simultaneously. Skeletal growth and zooxanthellae density were found to decrease, whereas coral tissue biomass (measured as protein concentration) and zooxanthellae chlorophyll concentrations increased under high pCO 2 (low pH) conditions. Both species showed similar trends of δ 11B depletion and δ 18O enrichment under reduced pH, whereas the δ 13C results imply species-specific metabolic response to high pCO 2 conditions. The skeletal δ 11B values plot above seawater δ 11B vs. pH borate fractionation curves calculated using either the theoretically derived α B value of 1.0194 (Kakihana et al. (1977) Bull. Chem. Soc. Jpn.50, 158) or the empirical α B value of 1.0272 (Klochko et al. (2006) EPSL248, 261). However, the effective α B must be greater than 1.0200 in order to yield calculated coral skeletal δ 11B values for pH conditions where Ωarag ⩾ 1. The δ 11B vs. pH offset from the seawater δ 11B vs. pH fractionation curves suggests a change in the ratio of skeletal material laid down during dark and light calcification and/or an internal pH regulation, presumably controlled by ion-transport enzymes. Finally, seawater pH significantly influences skeletal δ 13C and δ 18O. This must be taken into consideration when reconstructing paleo-environmental conditions from coral skeletons.

  12. Labile pools of Pb in vegetable-growing soils investigated by an isotope dilution method and its influence on soil pH.

    PubMed

    Xie, Hong; Huang, Zhi-Yong; Cao, Ying-Lan; Cai, Chao; Zeng, Xiang-Cheng; Li, Jian

    2012-08-01

    Pollution of Pb in the surface of agricultural soils is of increasing concern due to its serious impact on the plant growth and the human health through the food chain. However, the mobility, activity and bioavailability of Pb rely mainly on its various chemical species in soils. In the present study, E and L values, the labile pools of isotopically exchangeable Pb, were estimated using the method of isotope dilution in three vegetable-growing soils. The experiments involved adding a stable enriched isotope ((206)Pb > 96%) to a soil suspension and to soils in which plants are subsequently grown, the labile pools of Pb were then estimated by measuring the isotopic composition of Pb in soil solutions and in the plant tissues, respectively. In addition, the correlation of E values and soil pH was investigated at the ranges of pH 4.5-7.0. The amount of labile Pb in soils was also estimated using different single chemical extractants and a modified BCR approach. The results showed that after spiking the enriched isotopes of (206)Pb (>96%) for 24 hours an equilibration of isotopic exchanges in soil suspensions was achieved, and the isotope ratios of (208)Pb/(206)Pb measured at that time was used for calculating the E(24 h) values. The labile pools of Pb by %E(24 h) values, ranging from 53.2% to 61.7% with an average 57%, were found to be significantly higher (p < 0.05) than the values estimated with L values, single chemical extractants and the Σ(BCR) values obtained with the BCR approach, respectively. A strong negative correlation (R(2) = 0.984) between E(24 h) values and soil pH was found in the tested soil sample. The results indicate that the %E(24 h) value can more rapidly and easily predict the labile pools of Pb in soils compared with L values, but it might be readily overestimated because of the artificial soil acidity derived from the spiked isotopic tracer and the excess of spiked enriched isotopes. The results also suggest that the amounts of Pb extracted with EDTA and the Σ(BCR) values extracted with the modified BCR approach are helpful to detect the labile pools of Pb in soils. In addition, the negative correlation between soil pH and the labile pools of Pb in soils may be useful for further remediation to reduce the bioavailability of Pb in contaminated soils.

  13. Effect of ozonation on minocycline degradation and N-Nitrosodimethylamine formation.

    PubMed

    Lv, Juan; Li, Yong M

    2018-06-07

    The objective of this study was to assess reactivity of Minocycline (MNC) towards ozone and determine the effects of ozone dose, pH value, and water matrix on MNC degradation as well as to characterize N-Nitrosodimethylamine (NDMA) formation from MNC ozonation. The MNC initial concentration of the solution was set in the range of 2-20 mg/L to investigate NDMA formation during MNC ozonation. Four ozone doses (22.5, 37.2, 58.0, and 74.4 mg/min) were tested to study the effect of ozone dose. For the evaluation of effects of pH value, pH was adjusted from 5 to 9 in the presence of phosphate buffer. MNC ozonation experiments were also conducted in natural water to assess the influence of water matirx. The influence of the typical component of natural water was also investigated with the addition of HA and NaHCO 3 solution. Results indicated that ozone was effective in MNC removal. Consequently, NDMA and dimethylamine (DMA) were generated from MNC oxidation. Increasing pH value enhanced MNC removal but led to greater NDMA generation. Water matrices, such as HCO 3 - and humic acid, affected MNC degradation. Conversely, more NDMA accumulated due to the inhibition of NDMA oxidation by oxidant consumption. Though ⋅OH can enhance MNC degradation, ozone molecules were heavily involved in NDMA production. Seven transformation products were identified. However, only DMA and the unidentified tertiary amine containing DMA group contributed to NDMA formation.

  14. Separation of tricyclic antidepressants by capillary zone electrophoresis with N,N,N',N'-tetramethyl-1,3-butanediamine (TMBD) as an effective electrolyte additive.

    PubMed

    Dell'Aquila, Caterina

    2002-09-05

    Five tricyclic antidepressants (TADs), desipramyne, nortriptyline, imipramine, doxepin and amitriptyline, were separated by using the N,N,N',N'-tetramethyl-1,3-butanediamine (TMBD) as additive in the background electrolyte solution. Because the tricyclic antidepressants are similar in structure, mass and pka values, their separation, by capillary zone electrophoresis, requires the careful manipulation of parameters, such as the pH and the composition of the electrolyte solution. As basic drugs, the TADs interact with the silanol groups on the capillary wall giving rise to peak broadening and asymmetry, non reproducible migration times and failing in selectivity. Different concentrations of TMBD (40, 60, 100 and 150 mM) were used at pH 9.5, but only a 100 mM TMBD allowed a good separation and a high efficiency for all the TADs. At this pH the separation was not possible without additive. This result is due to the reduced electroosmotic flow whose mobility is at a value of 10(-9) m(2) V(-1) s(-1).

  15. Corrosion resistance of a laser spot-welded joint of NiTi wire in simulated human body fluids.

    PubMed

    Yan, Xiao-Jun; Yang, Da-Zhi

    2006-04-01

    The purpose of this study was to investigate corrosion resistance of a laser spot-welded joint of NiTi alloy wires using potentiodynamic tests in Hank's solution at different PH values and the PH 7.4 NaCl solution for different Cl- concentrations. Scanning electron microscope observations were carried out before and after potentiodynamic tests. The composition of a laser spot-welded joint and base metal were characterized by using an electron probe microanalyzer. The results of potentiodynamic tests showed that corrosion resistance of a laser spot-welded joint of NiTi alloy wire was better than that of base metal, which exhibited a little higher breakdown potential and passive range, and a little lower passive current density. Corrosion resistances of a laser spot-welded joint and base metal decreased with increasing of the Cl- concentration and PH value. The improvement of corrosion resistance of the laser spot-welded joint was due to the decrease of the surface defects and the increase of the Ti/Ni ratio. (c) 2005 Wiley Periodicals, Inc.

  16. Branched GDGT-based paleotemperature reconstruction of the last 30,000 years in humid monsoon region of Southeast China

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2017-12-01

    The use of bacterial branched glycerol dialkyl glycerol tetraethers (brGDGTs) to reconstruct mean annual air temperatures (MAATs) and environmental pH from soils has sparked significant interest in the terrestrial paleoclimate community. However, the reconstruction of these climate proxies from peat bogs is rare in monsoonal regions of the East Asia. This research was carried out on a core from the Shuizhuyang (SZY) peat bog located in Fujian Province. Branched GDGT (brGDGT) indexes were used for reconstructing the paleoclimate of the last 30 cal ka. The aim was to evaluate quantitatively the MAAT and pH values since the Last Glacial Maximum (LGM) in the subtropical zone of China. Results show that the CBT-MBT'-derived MAAT at MIS 3 is about 15.6 °C on average, which is followed by a significant fall at the LGM (11.7-12.1 °C). The temperature difference between the LGM and the present-day value is as high as 5.8 °C. The synchronous variation of biomarker and pollen proxies indicates that replacement of subtropical evergreen broadleaved forests by coldtolerant, deciduous broadleaved forests was driven by the significant drop in air temperature. Our results also indicate that the Younger Dryas event lasted from about 12.9 to about 11.3 cal ka, and cooling event at 3.2 cal ka in the late Holocene was detected, showing the sensitivity of peat bogs to rapid cooling. Our pH reconstructions indicate that the pH of the bog rose during Heinrich 1 and Bølling-Allerød periods, probably due to low precipitation, and were lowest in the Holocene thermal maximum between 8 ka and 2.5 ka, probably due to higher precipitation. The decoupling of reconstructed MAAT and pH during particularly deglaciation and YD periods supports the hypothesis that the variations in temperature and precipitation are not always synchronous.

  17. [Rapid test for detection of susceptibility to cefotaxime in Enterobacteriaceae].

    PubMed

    Jiménez-Guerra, Gemma; Hoyos-Mallecot, Yannik; Rodríguez-Granger, Javier; Navarro-Marí, José María; Gutiérrez-Fernández, José

    In this work an "in house" rapid test based on the change in pH that is due to hydrolysis for detecting Enterobacteriaceae susceptible to cefotaxime is evaluated. The strains of Enterobacteriaceae from 1947 urine cultures were assessed using MicroScan panels and the "in house" test. This rapid test includes red phenol solution and cefotaxime. Using MicroScan panels, 499 Enterobacteriaceae isolates were evaluated, which included 27 isolates of Escherichia coli producing extended-spectrum beta-lactamases (ESBL), 16 isolates of Klebsiella pneumoniae ESBL and 1 isolate of Klebsiella oxytoca ESBL. The "in house" test offers the following values: sensitivity 98% and specificity 97%, with negative predictive value 100% and positive predictive value 78%. The "in house" test based on the change of pH is useful in our area for detecting presumptively cefotaxime-resistant Enterobacteriaceae strains. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. The influence of postmortem electrical stimulation on rigor mortis development, calpastatin activity, and tenderness in broiler and duck pectoralis.

    PubMed

    Alvarado, C Z; Sams, A R

    2000-09-01

    This study was conducted to evaluate the effects of electrical stimulation (ES) on rigor mortis development, calpastatin activity, and tenderness in anatomically similar avian muscles composed primarily of either red or white muscle fibers. A total of 72 broilers and 72 White Pekin ducks were either treated with postmortem (PM) ES (450 mA) at the neck in a 1% NaCl solution for 2 s on and 1 s off for a total of 15 s or were used as nonstimulated controls. Both pectoralis muscles were harvested from the carcasses after 0.25, 1.25, and 24 h PM and analyzed for pH, inosine:adenosine ratio (R-value), sarcomere length, gravimetric fragmentation index, calpastatin activity, shear value, and cook loss. All data were analyzed within species for the effects of ES. Electrically stimulated ducks had a lower muscle pH at 0.25 and 1.25 h PM and higher R-values at 0.25 h PM compared with controls. Electrically stimulated broilers had a lower muscle pH at 1.25 h and higher R-values at 0.25 and 1.25 h PM compared with controls. Muscles of electrically stimulated broilers exhibited increased myofibrillar fragmentation at 0.25 and 1.25 h PM, whereas there was no such difference over PM time in the duck muscle. Electrical stimulation did not affect calpastatin activity in either broilers or ducks; however, the calpastatin activity of the broilers did decrease over the aging time period, whereas that of the ducks did not. Electrical stimulation decreased shear values in broilers at 1.25 h PM compared with controls; however, there was no difference in shear values of duck muscle due to ES at any sampling time. Cook loss was lower for electrically stimulated broilers at 0.25 and 1.25 h PM compared with the controls, but had no effect in the ducks. These results suggest that the red fibers of the duck pectoralis have less potential for rigor mortis acceleration and tenderization due to ES than do the white fibers of the broiler pectoralis.

  19. Effects of experimental long-term CO2 exposure on Daphnia magna (Straus 1820): From physiological effects to ecological consequences.

    PubMed

    Parra, Gema; Galotti, Andréa; Jiménez-Melero, Raquel; Guerrero, Francisco; Sánchez-Moyano, Emilio; Jiménez-Gómez, Francisco; Conradi, Mercedes

    2016-08-01

    The carbon capture and storage (CCS) technologies that were proposed to mitigate environmental problems arising from anthropogenic CO2 emissions, also have potential environmental risks. An eventual CCS leak might induce very low pH values in the aquatic system. Due to the lack of knowledge of long-term CO2 exposures with very low pH values, this study aims to know the effects and consequences of such a situation for zooplankton, using the Daphnia magna experimental model. A CO2 injection system was used to provide the experimental condition. A twenty-one days experiment with control and low pH treatment (pH = 7) replicates was carried out under light and temperature-controlled conditions. Survival, individual growth, RNA:DNA ratio, and neonates production were analysed during the aforementioned period. No differences on survival (except last day), individual growth and RNA:DNA ratio were observed between both control and low pH treatments. However, clear differences were detected in neonates production and, consequently, in population growth rates and secondary production. The observed differences could be related with an energy allocation strategy to ensure individual survival but would have ecological consequences affecting higher trophic levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ruixue; Chen, Kezheng, E-mail: dxb@sdu.edu.cn; Liao, Zhongmiao

    Highlights: ► Hydroxyapatite hierarchical microstructures have been synthesized by a facile method. ► The morphology and size of the building units of 3D structures can be controlled. ► The hydroxyapatite with 3D structure is morphologically and structurally stable up to 800 °C. - Abstract: Hydroxyapatite (HAp) hierarchical microstructures with novel 3D morphology were prepared through a template- and surfactant-free hydrothermal homogeneous precipitation method. Field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) were used to characterize the morphology and composition of the synthesized products. Interestingly, the obtained HAp with 3D structure is composed ofmore » one-dimensional (1D) nanorods or two-dimensional (2D) nanoribbons, and the length and morphology of these building blocks can be controlled through controlling the pH of the reaction. The building blocks are single crystalline and have different preferential orientation growth under different pH conditions. At low pH values, octacalcium phosphate (OCP) phase formed first and then transformed into HAp phase due to the increased pH value caused by the decomposition of urea. The investigation on the thermal stability reveals that the prepared HAp hierarchical microstructures are morphologically and structurally stable up to 800 °C.« less

  1. Hydrolysis of triacetin catalyzed by immobilized lipases: effect of the immobilization protocol and experimental conditions on diacetin yield.

    PubMed

    Hernandez, Karel; Garcia-Verdugo, Eduardo; Porcar, Raul; Fernandez-Lafuente, Roberto

    2011-05-06

    The effect of the immobilization protocol and some experimental conditions (pH value and presence of acetonitrile) on the regioselective hydrolysis of triacetin to diacetin catalyzed by lipases has been studied. Lipase B from Candida antarctica (CALB) and lipase from Rhizomucor miehei (RML) were immobilized on Sepabeads (commercial available macroporous acrylic supports) activated with glutaraldehyde (covalent immobilization) or octadecyl groups (adsorption via interfacial activation). All the biocatalysts accumulated diacetin. Covalently immobilized RML was more active towards rac-methyl mandelate than the adsorbed RML. However, this covalent RML preparation presented the lowest activity towards triacetin. For this reason, this preparation was discarded as biocatalyst for this reaction. At pH 7, acyl migration occurred giving a mixture of 1,2 and 1,3 diacetin, but at pH 5.5, only 1,2 diacetin was produced. Yields were improved at acidic pH values and in the presence of 20% acetonitrile (to over 95%). RML immobilized on octadecyl Sepabeads was proposed as optimal preparation, mainly due to its higher specific activity. Each enzyme preparation presented very different properties. Moreover, changes in the reaction conditions affected the various immobilized enzymes in a different way. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Extending the working pH of nitrobenzene degradation using ultrasonic/heterogeneous Fenton to the alkaline range via amino acid modification.

    PubMed

    ElShafei, Gamal M S; Yehia, F Z; Dimitry, O I H; Badawi, A M; Eshaq, Gh

    2015-11-01

    Oxides of iron, α-Fe2O3 (I), and copper, CuO (II) prepared by usual precipitation method without surfactant were used at room temperature in the process of nitrobenzene (10mgL(-1)) degradation at different pH values with ultrasonic at 20kHz. The degradation was complete in 20 and 30min for (I) and (II), respectively in the pH range 2-7 using1.0gL(-1) of solids and 10mM of H2O2. A remarkable decrease in degradation efficiency was recorded on increasing the pH to values higher than the neutral range. This loss in efficiency was cancelled to a great extent through modifying the used oxides with amino acids. Arginine showed higher improving effect to (II) (1:1 weight ration) than glycine or glutamic acid. Modification of both oxides with increasing amounts of arginine increased the degradation efficiency of (I) in a more regular way than in case of (II). However, the extent of improvement due to amino acid modification was higher in case of (II) because of its originally low degradation efficiency in strongly alkaline media. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Capillary gas chromatographic separation of organic bases using a pH-adjusted basic water stationary phase.

    PubMed

    Darko, Ernest; Thurbide, Kevin B

    2016-09-23

    The use of a pH-adjusted water stationary phase for analyzing organic bases in capillary gas chromatography (GC) is demonstrated. Through modifying the phase to typical values near pH 11.5, it is found that various organic bases are readily eluted and separated. Conversely, at the normal pH 7 operating level, they are not. Sodium hydroxide is found to be a much more stable base than ammonium hydroxide for altering the pH due to the higher volatility and evaporation of the latter. In the basic condition, such analytes are not ionized and are observed to produce good peak shapes even for injected masses down to about 20ng. By comparison, analyses on a conventional non-polar capillary GC column yield more peak tailing and only analyte masses of 1μg or higher are normally observed. Through carefully altering the pH, it is also found that the selectivity between analytes can be potentially further enhanced if their respective pKa values differ sufficiently. The analysis of different pharmaceutical and petroleum samples containing organic bases is demonstrated. Results indicate that this approach can potentially offer unique and beneficial selectivity in such analyses. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A Silica-Supported Iron Oxide Catalyst Capable of Activating Hydrogen Peroxide at Neutral pH Values

    PubMed Central

    Pham, Anh Le-Tuan; Lee, Changha; Doyle, Fiona M.; Sedlak, David L.

    2009-01-01

    Iron oxides catalyze the conversion of hydrogen peroxide (H2O2) into oxidants capable of transforming recalcitrant contaminants. Unfortunately, the process is relatively inefficient at circumneutral pH values due to competing reactions that decompose H2O2 without producing oxidants. Silica- and alumina-containing iron oxides prepared by sol-gel processing of aqueous solutions containing Fe(ClO4)3, AlCl3 and tetraethyl orthosilicate efficiently catalyzed the decomposition of H2O2 into oxidants capable of transforming phenol at circumneutral pH values. Relative to hematite, goethite and amorphous FeOOH, the silica-iron oxide catalyst exhibited a stoichiometric efficiency, defined as the number of moles of phenol transformed per mole of H2O2 consumed, that was 10 to 40 times higher than that of the iron oxides. The silica-alumina-iron oxide catalyst had a stoichiometric efficiency that was 50 to 80 times higher than that of the iron oxides. The significant enhancement in oxidant production is attributable to the interaction of Fe with Al and Si in the mixed oxides, which alters the surface redox processes, favoring the production of strong oxidants during H2O2 decomposition. PMID:19943668

  5. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.

    PubMed

    Xuan, Dongxing; Zhan, Baojian; Poon, Chi Sun; Zheng, Wei

    2016-07-15

    Concrete slurry waste (CSW) is generated from ready-mixed concrete plants during concrete production and is classified as a corrosive hazardous material. If it is disposed of at landfills, it would cause detrimental effects for our surrounding environment and ecosystems due to its high pH value as well as heavy metal contamination and accumulation. A new method in this study has been introduced to effectively reuse CSW in new construction products. In this method, the calcium-silicate rich CSW in the fresh state was considered as a cementitious paste as well as a CO2 capture medium. The experimental results showed that the pH values of the collected CSWs stored for 28 days ranged from 12.5 to 13.0 and a drastic decrease of pH value was detected after accelerated mineral carbonation. The theoretically calculated CO2 sequestration extent of CSWs was from 27.05% to 31.23%. The practical water to solid ratio in the fresh CSW varied from 0.76 to 1.12, which had a significant impact on the compressive strength of the mixture with CSWs. After subjecting to accelerated mineral carbonation, rapid initial strength development and lower drying shrinkage for the prepared concrete mixture were achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Highly Photostable Near-Infrared Fluorescent pH Indicators and Sensors Based on BF2-Chelated Tetraarylazadipyrromethene Dyes

    PubMed Central

    2012-01-01

    In this study, a series of new BF2-chelated tetraarylazadipyrromethane dyes are synthesized and are shown to be suitable for the preparation of on/off photoinduced electron transfer modulated fluorescent sensors. The new indicators are noncovalently entrapped in polyurethane hydrogel D4 and feature absorption maxima in the range 660–710 nm and fluorescence emission maxima at 680–740 nm. Indicators have high molar absorption coefficients of ∼80 000 M–1 cm–1, good quantum yields (up to 20%), excellent photostability and low cross-sensitivity to the ionic strength. pKa values of indicators are determined from absorbance and fluorescence measurements and range from 7 to 11, depending on the substitution pattern of electron-donating and -withdrawing functionalities. Therefore, the new indicators are suitable for exploitation and adaptation in a diverse range of analytical applications. Apparent pKa values in sensor films derived from fluorescence data show 0.5–1 pH units lower values in comparison with those derived from the absorption data due to Förster resonance energy transfer from protonated to deprotonated form. A dual-lifetime referenced sensor is prepared, and application for monitoring of pH in corals is demonstrated. PMID:22738322

  7. Buffer capacity of biologics--from buffer salts to buffering by antibodies.

    PubMed

    Karow, Anne R; Bahrenburg, Sven; Garidel, Patrick

    2013-01-01

    Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. Copyright © 2013 American Institute of Chemical Engineers.

  8. Photodegradation of gallic acid under UV irradiation: insights regarding the pH effect on direct photolysis and the ROS oxidation-sensitized process of DOM.

    PubMed

    Du, Yingxun; Chen, Hui; Zhang, Yuanyuan; Chang, Yuguang

    2014-03-01

    In this study, the degradation of gallic acid (GA), a model compound for dissolved organic matter (DOM) in controlled UV/N2, UV/air, UV/Fe(3+)/N2, and UV/Fe(3+)/air systems was investigated to elucidate the contribution of direct photolysis and reactive oxygen species (ROS) oxidation to GA degradation at various pH values. In general, the order of the degradation rate of GA in these four systems was as follows: UV/Fe(3+)/air>UV/air>UV/Fe(3+)/N2≈UV/N2. In the UV/N2 system, GA underwent slow direct photolysis, the rate of which decreased with decreasing pH. In the UV/Fe(3+)/air system, the most rapid GA degradation was achieved at pH 5. ROS are mainly derived from two sources. The first source is attributed to the role of DO and the other is attributed to the interaction of Fe(3+) and DO. The contribution of ROS to GA oxidation is much greater (>71%) than that of direct photolysis (<29%) at each pH value and is most obvious at pH 5. H2O2 formation was detected during GA degradation in the UV/air and UV/Fe(3+)/air systems. Using ROS scavengers, it was found that oxidation by OH was the main mechanism of GA degradation in the UV/Fe(3+)/air system. Based on the experimental results, a mechanism for GA degradation and ROS formation involving the effect of pH was proposed. This study furthers our understanding of changes in DOM degradation mechanisms due to global acidification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Multiple sulfur isotopes fractionations associated with abiotic sulfur transformations in Yellowstone National Park geothermal springs

    PubMed Central

    2014-01-01

    Background The paper presents a quantification of main (hydrogen sulfide and sulfate), as well as of intermediate sulfur species (zero-valent sulfur (ZVS), thiosulfate, sulfite, thiocyanate) in the Yellowstone National Park (YNP) hydrothermal springs and pools. We combined these measurements with the measurements of quadruple sulfur isotope composition of sulfate, hydrogen sulfide and zero-valent sulfur. The main goal of this research is to understand multiple sulfur isotope fractionation in the system, which is dominated by complex, mostly abiotic, sulfur cycling. Results Water samples from six springs and pools in the Yellowstone National Park were characterized by pH, chloride to sulfate ratios, sulfide and intermediate sulfur species concentrations. Concentrations of sulfate in pools indicate either oxidation of sulfide by mixing of deep parent water with shallow oxic water, or surface oxidation of sulfide with atmospheric oxygen. Thiosulfate concentrations are low (<6 μmol L-1) in the pools with low pH due to fast disproportionation of thiosulfate. In the pools with higher pH, the concentration of thiosulfate varies, depending on different geochemical pathways of thiosulfate formation. The δ34S values of sulfate in four systems were close to those calculated using a mixing line of the model based on dilution and boiling of a deep hot parent water body. In two pools δ34S values of sulfate varied significantly from the values calculated from this model. Sulfur isotope fractionation between ZVS and hydrogen sulfide was close to zero at pH < 4. At higher pH zero-valent sulfur is slightly heavier than hydrogen sulfide due to equilibration in the rhombic sulfur–polysulfide – hydrogen sulfide system. Triple sulfur isotope (32S, 33S, 34S) fractionation patterns in waters of hydrothermal pools are more consistent with redox processes involving intermediate sulfur species than with bacterial sulfate reduction. Small but resolved differences in ∆33S among species and between pools are observed. Conclusions The variation of sulfate isotopic composition, the origin of differences in isotopic composition of sulfide and zero–valent sulfur, as well as differences in ∆33S of sulfide and sulfate are likely due to a complex network of abiotic redox reactions, including disproportionation pathways. PMID:24959098

  10. Precipitation of CaCO3 due to the Uptake of CO2 in Aqueous Solutions - Mechanisms and Rates

    NASA Astrophysics Data System (ADS)

    Dietzel, M.; Purgstaller, B.; Rinder, T.; Niedermayr, A.

    2012-12-01

    In natural and man-made environments the exchange of CO2 between aqueous solutions and the atmosphere frequently induces precipitation of CaCO3 polymorphs. Liberation of gaseous CO2 is well known to induce carbonate formation and extensively studied. In contrast significant gaps of knowledge exist with respect to the combined CO2 uptake and CaCO3 formation, although it is known to be highly valid for many natural and man-made surroundings causing e.g. travertine and scaling in analogy to CO2 liberation. Recently CO2 uptake is also discussed for biomineralization issues and debated for CO2 sequestration by using alkaline residue materials. In the present study CO2 uptake and CaCO3 precipitation mechanisms and rates were experimentally studied by diffusion of CO2 through a polyethylene membrane from an inner to an outer solution containing carbonic acid and CaCl2 (10 mM), respectively. The pH of the outer solution was kept constant between 8.3 and 11.5 by pH stat. technique (25°C). At a critical Ion Activity Product (IAP) CaCO3 is formed in the outer solution. The NaOH titration curve and Ca2+ concentrations reflect CO2 uptake and CaCO3 precipitation rates. To discover the impact of a drift in pH due to CO2 uptake on CaCO3 precipitation hydrogeochemical modeling was applied. XRD, (micro)Raman pattern and SEM imaging reveal the formation of calcite and vaterite at pH 8.3 and 9, whereas at pH > 10 vaterite is additionally formed. However at a given pH the formation of individual CaCO3 polymorphs strongly depends on the CO2 uptake rate (adjusted by membrane thickness), which controls carbonate accumulation in the solution. At elevated pH of the outer solution the uptake rate of CO2 is significantly higher and less time for nucleation of CaCO3 is required compared to lower pH. Surprisingly at the total experimental time of ≈ 20 h the amount of precipitated CaCO3 is similar for all experiments. This can be explained by significant higher CaCO3 precipitation rates at low versus high pH if once a critical IAP is reached. If a drift in pH is permitted the internal Pco2 value can be used as a reliable proxy to evaluate whether uptake of CO2 results in an increase or decrease of IAP with a threshold value of 10-6.15 atm at 25°C (pH ≈ 11). The obtained relationships for CaCO3 formation through CO2 uptake are discussed for selected alkaline environments.

  11. The Importance of Protein-Protein Interactions on the pH-Induced Conformational Changes of Bovine Serum Albumin: A Small-Angle X-Ray Scattering Study

    PubMed Central

    Barbosa, Leandro R.S.; Ortore, Maria Grazia; Spinozzi, Francesco; Mariani, Paolo; Bernstorff, Sigrid; Itri, Rosangela

    2010-01-01

    Abstract The combined effects of concentration and pH on the conformational states of bovine serum albumin (BSA) are investigated by small-angle x-ray scattering. Serum albumins, at physiological conditions, are found at concentrations of ∼35–45 mg/mL (42 mg/mL in the case of humans). In this work, BSA at three different concentrations (10, 25, and 50 mg/mL) and pH values (2.0–9.0) have been studied. Data were analyzed by means of the Global Fitting procedure, with the protein form factor calculated from human serum albumin (HSA) crystallographic structure and the interference function described, considering repulsive and attractive interaction potentials within a random phase approximation. Small-angle x-ray scattering data show that BSA maintains its native state from pH 4.0 up to 9.0 at all investigated concentrations. A pH-dependence of the absolute net protein charge is shown and the charge number per BSA is quantified to 10(2), 8(1), 13(2), 20(2), and 26(2) for pH values 4.0, 5.4, 7.0, 8.0, and 9.0, respectively. The attractive potential diminishes as BSA concentration increases. The coexistence of monomers and dimers is observed at 50 mg/mL and pH 5.4, near the BSA isoelectric point. Samples at pH 2.0 show a different behavior, because BSA overall shape changes as a function of concentration. At 10 mg/mL, BSA is partially unfolded and a strong repulsive protein-protein interaction occurs due to the high amount of exposed charge. At 25 and 50 mg/mL, BSA undergoes some re-folding, which likely results in a molten-globule state. This work concludes by confirming that the protein concentration plays an important role on the pH-unfolded BSA state, due to a delicate compromise between interaction forces and crowding effects. PMID:20085727

  12. Understanding Early Post-Mortem Biochemical Processes Underlying Meat Color and pH Decline in the Longissimus thoracis Muscle of Young Blond d'Aquitaine Bulls Using Protein Biomarkers.

    PubMed

    Gagaoua, Mohammed; Terlouw, E M Claudia; Micol, Didier; Boudjellal, Abdelghani; Hocquette, Jean-François; Picard, Brigitte

    2015-08-05

    Many studies on color biochemistry and protein biomarkers were undertaken in post-mortem beef muscles after ≥24 hours. The present study was conducted on Longissimus thoracis muscles of 21 Blond d'Aquitaine young bulls to evaluate the relationships between protein biomarkers present during the early post-mortem and known to be related to tenderness and pH decline and color development. pH values at 45 min, 3 h, and 30 h post-mortem were correlated with three, seven, and six biomarkers, respectively. L*a*b* color coordinates 24 h post-mortem were correlated with nine, five, and eight protein biomarkers, respectively. Regression models included Hsp proteins and explained between 47 and 59% of the variability between individuals in pH and between 47 and 65% of the variability in L*a*b* color coordinates. Proteins correlated with pH and/or color coordinates were involved in apoptosis or had antioxidative or chaperone activities. The main results include the negative correlations between pH45 min, pH3 h, and pHu and Prdx6, which may be explained by the antioxidative and phospholipase activities of this biomarker. Similarly, inducible Hsp70-1A/B and μ-calpain were correlated with L*a*b* coordinates, due to the protective action of Hsp70-1A/B on the proteolytic activities of μ-calpain on structural proteins. Correlations existed further between MDH1, ENO3, and LDH-B and pH decline and color stability probably due to the involvement of these enzymes in the glycolytic pathway and, thus, the energy status of the cell. The present results show that research using protein indicators may increase the understanding of early post-mortem biological mechanisms involved in pH and beef color development.

  13. Organohalide Respiration with Chlorinated Ethenes under Low pH Conditions

    DOE PAGES

    Yang, Yi; Cápiro, Natalie L.; Marcet, Tyler F.; ...

    2017-06-30

    Bioremediation at chlorinated solvent sites often leads to groundwater acidification due to electron donor fermentation and enhanced dechlorination activity. The microbial reductive dechlorination process is robust at circumneutral pH, but activity declines at groundwater pH values below 6.0. Consistent with this observation, the activity of tetrachloroethene (PCE) dechlorinating cultures declined at pH 6.0 and was not sustained in pH 5.5 medium, with one notable exception. Sulf urospirillum multivorans dechlorinated PCE to cis-1,2-dichloroethene (cDCE) in pH 5.5 medium and maintained this activity upon repeated transfers. Microcosms established with soil and aquifer materials from five distinct locations dechlorinated PCE-to-ethene at pH 5.5more » and pH 7.2. Dechlorination to ethene was maintained following repeated transfers at pH 7.2, but no ethene was produced at pH 5.5, and only the transfer cultures derived from the Axton Cross Superfund (ACS) microcosms sustained PCE dechlorination to cDCE as a final product. 16S rRNA gene amplicon sequencing of pH 7.2 and pH 5.5 ACS enrichments revealed distinct microbial communities, with the dominant dechlorinator being Dehalococcoides in pH 7.2 and Sulf urospirillum in pH 5.5 cultures. PCE-to-trichloroethene- (TCE-) and PCE-to-cDCEdechlorinating isolates obtained from the ACS pH 5.5 enrichment shared 98.6%, and 98.5% 16S rRNA gene sequence similarities to Sulf urospirillum multivorans. Lastly, these findings imply that sustained Dehalococcoides activity cannot be expected in low pH (i.e., ≤ 5.5) groundwater, and organohalide-respiring Sulf urospirillum spp. are key contributors to in situ PCE reductive dechlorination under low pH conditions.« less

  14. Organohalide Respiration with Chlorinated Ethenes under Low pH Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Cápiro, Natalie L.; Marcet, Tyler F.

    Bioremediation at chlorinated solvent sites often leads to groundwater acidification due to electron donor fermentation and enhanced dechlorination activity. The microbial reductive dechlorination process is robust at circumneutral pH, but activity declines at groundwater pH values below 6.0. Consistent with this observation, the activity of tetrachloroethene (PCE) dechlorinating cultures declined at pH 6.0 and was not sustained in pH 5.5 medium, with one notable exception. Sulf urospirillum multivorans dechlorinated PCE to cis-1,2-dichloroethene (cDCE) in pH 5.5 medium and maintained this activity upon repeated transfers. Microcosms established with soil and aquifer materials from five distinct locations dechlorinated PCE-to-ethene at pH 5.5more » and pH 7.2. Dechlorination to ethene was maintained following repeated transfers at pH 7.2, but no ethene was produced at pH 5.5, and only the transfer cultures derived from the Axton Cross Superfund (ACS) microcosms sustained PCE dechlorination to cDCE as a final product. 16S rRNA gene amplicon sequencing of pH 7.2 and pH 5.5 ACS enrichments revealed distinct microbial communities, with the dominant dechlorinator being Dehalococcoides in pH 7.2 and Sulf urospirillum in pH 5.5 cultures. PCE-to-trichloroethene- (TCE-) and PCE-to-cDCEdechlorinating isolates obtained from the ACS pH 5.5 enrichment shared 98.6%, and 98.5% 16S rRNA gene sequence similarities to Sulf urospirillum multivorans. Lastly, these findings imply that sustained Dehalococcoides activity cannot be expected in low pH (i.e., ≤ 5.5) groundwater, and organohalide-respiring Sulf urospirillum spp. are key contributors to in situ PCE reductive dechlorination under low pH conditions.« less

  15. Stoichiometry and pH dependence of the rabbit proton-dependent oligopeptide transporter PepT1.

    PubMed

    Steel, A; Nussberger, S; Romero, M F; Boron, W F; Boyd, C A; Hediger, M A

    1997-02-01

    1. The intestinal H(+)-coupled peptide transporter PepT1, displays a broad substrate specificity and accepts most charged and neutral di- and tripeptides. To study the proton-to-peptide stoichiometry and the dependence of the kinetic parameters on extracellular pH (pHo), rabbit PepT1 was expressed in Xenopus laevis oocytes and used for uptake studies of radiolabelled neutral and charged dipeptides, voltage-clamp analysis and intracellular pH measurements. 2. PepT1 did not display the substrate-gated anion conductances that have been found to be characteristic of members of the Na(+)- and H(+)-coupled high-affinity glutamate transporter family. In conjunction with previous data on the ion dependence of PepT1, it can therefore be concluded that peptide-evoked charge fluxes of PepT1 are entirely due to H+ movement. 3. Neutral, acidic and basic dipeptides induced intracellular acidification. The rate of acidification, the initial rates of the uptake of radiolabelled peptides and the associated charge fluxes gave proton-substrate coupling ratios of 1:1, 2:1 and 1:1 for neutral, acidic and basic dipeptides, respectively. 4. Maximal transport of the neutral and charged dipeptides Gly-Leu, Gly-Glu, Gly-Lys and Ala-Lys occurred at pHo 5.5, 5.2, 6.2 and 5.8, respectively. The Imax values were relatively pHo independent but the apparent affinity (Km(app) values for these peptides were shown to be highly pHo dependent. 5. Our data show that at physiological pH (pHo 5.5-6.0) PepT1 prefers neutral and acidic peptides. The shift in transport maximum for the acidic peptide Gly-Glu to a lower pH value suggests that acidic dipeptides are transported in the protonated form. The shift in the transport maxima of the basic dipeptides to higher pH values may involve titration of a side-chain on the transporter molecule (e.g. protonation of a histidine group). These considerations have led us to propose a model for coupled transport of neutral, acidic and basic dipeptides.

  16. Net alkalinity and net acidity 1: Theoretical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a standard method "hot peroxide" acidity titration, provided that labs report negative values. The authors recommend the third approach; i.e., net alkalinity = -Hot Acidity. ?? 2005 Elsevier Ltd. All rights reserved.

  17. Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner.

    PubMed

    Müller-Lutz, Anja; Khalil, Nadia; Schmitt, Benjamin; Jellus, Vladimir; Pentang, Gael; Oeltzschner, Georg; Antoch, Gerald; Lanzman, Rotem S; Wittsack, Hans-Jörg

    2014-12-01

    The objective of this study was to show the feasibility to perform Iopamidol-based pH imaging via clinical 3T magnetic resonance imaging (MRI) using chemical exchange saturation transfer (CEST) imaging with pulse train presaturation. The pulse train presaturation scheme of a CEST sequence was investigated for Iopamidol-based pH measurements using a 3T magnetic resonance (MR) scanner. The CEST sequence was applied to eight tubes filled with 100-mM Iopamidol solutions with pH values ranging from 5.6 to 7.0. Calibration curves for pH quantification were determined. The dependence of pH values on the concentration of Iopamidol was investigated. An in vivo measurement was performed in one patient who had undergone a previous contrast-enhanced computed tomography (CT) scan with Iopamidol. The pH values of urine measured with CEST MRI and with a pH meter were compared. In the measured pH range, pH imaging using CEST imaging with pulse train presaturation was possible. Dependence between the pH value and the concentration of Iopamidol was not observed. In the in vivo investigation, the pH values in the human bladder measured by the Iopamidol CEST sequence and in urine were consistent. Our study shows the feasibility of using CEST imaging with Iopamidol for quantitative pH mapping in vitro and in vivo on a 3T MR scanner.

  18. Estimation of the IC to CG Ratio Using JEM-GLIMS and Ground-based Lightning Network Data

    NASA Astrophysics Data System (ADS)

    Bandholnopparat, K.; Sato, M.; Takahashi, Y.; Adachi, T.; Ushio, T.

    2017-12-01

    The ratio between intracloud (IC) discharge and cloud-to-ground (CG) discharge, which is denoted by Z, is the important parameter for the studies on the climatological differences of thunderstorm structures and for the quantitative evaluation of lightning contributions to the global electric circuit. However, the latitudinal, regional, and seasonal dependences of Z-value are not fully clarified. The purposes of this study are (i) to develop new methods to identify IC and CG discharges using optical data obtained by the Global Lightning and Sprite Measurements on Japanese Experiment Module (JEM-GLIMS) from space and ground-based lightning data, (ii) to estimate Z-value and its latitudinal, regional, and seasonal dependences. As a first step, we compared the JEM-GLIMS data to the ground-based lightning data obtained by JLDN, NLDN, WWLLN, and GEON in order to distinguish the lightning discharge type detected by JEM-GLIMS. As a next step, we have calculated intensity ratios between the blue and red PH channels, that is, PH2(337 nm)/PH3(762 nm), PH5(316 nm)/PH3, PH6(392 nm)/PH3, PH2/PH4(599-900 nm), PH5/PH4, and PH6/PH4 for each lightning event. From these analyses, it is found that 447 and 454 of 8355 lightning events were identified to be CG and IC discharges, respectively. It is also found that the PH intensity ratio of IC discharges is clearly higher than that of CG discharges. In addition, the difference of the PH2/PH3, PH2/PH4, and PH6/PH4 ratio between IC and CG cases is relatively large, which means these three ratios are the useful proxy to classify the discharge types for other 7454 lightning events. Finally, the estimated Z-value varies from 0.18 - 0.84 from the equator to the higher latitude. The decrease of the Z-value from the equator to the higher latitude is confirmed both in the northern and the southern hemispheres. Although this latitudinal dependence of the Z-value is similar to previous studies, i.e., Boccippio et al. (2001), the estimated absolute Z-value is smaller than that in previous studies. The reason of the smaller absolute Z-value may be because JEM-GLIMS used the high threshold for the event triggering and missed many lightning events having lower optical energies. At the presentation, we will show the regional and seasonal dependences of the Z-value in detail.

  19. Microbial diversity at the moderate acidic stage in three different sulfidic mine tailings dumps generating acid mine drainage.

    PubMed

    Korehi, Hananeh; Blöthe, Marco; Schippers, Axel

    2014-11-01

    In freshly deposited sulfidic mine tailings the pH is alkaline or circumneutral. Due to pyrite or pyrrhotite oxidation the pH is dropping over time to pH values <3 at which acidophilic iron- and sulfur-oxidizing prokaryotes prevail and accelerate the oxidation processes, well described for several mine waste sites. The microbial communities at the moderate acidic stage in mine tailings are only scarcely studied. Here we investigated the microbial diversity via 16S rRNA gene sequence analysis in eight samples (pH range 3.2-6.5) from three different sulfidic mine tailings dumps in Botswana, Germany and Sweden. In total 701 partial 16S rRNA gene sequences revealed a divergent microbial community between the three sites and at different tailings depths. Proteobacteria and Firmicutes were overall the most abundant phyla in the clone libraries. Acidobacteria, Actinobacteria, Bacteroidetes, and Nitrospira occurred less frequently. The found microbial communities were completely different to microbial communities in tailings at

  20. Numerical modelling of biophysicochemical effects on multispecies reactive transport in porous media involving Pseudomonas putida for potential microbial enhanced oil recovery application.

    PubMed

    Sivasankar, P; Rajesh Kanna, A; Suresh Kumar, G; Gummadi, Sathyanarayana N

    2016-07-01

    pH and resident time of injected slug plays a critical role in characterizing the reservoir for potential microbial enhanced oil recovery (MEOR) application. To investigate MEOR processes, a multispecies (microbes-nutrients) reactive transport model in porous media was developed by coupling kinetic and transport model. The present work differs from earlier works by explicitly determining parametric values required for kinetic model by experimental investigations using Pseudomonas putida at different pH conditions and subsequently performing sensitivity analysis of pH, resident time and water saturation on concentrations of microbes, nutrients and biosurfactant within reservoir. The results suggest that nutrient utilization and biosurfactant production are found to be maximum at pH 8 and 7.5 respectively. It is also found that the sucrose and biosurfactant concentrations are highly sensitive to pH rather than reservoir microbial concentration, while at larger resident time and water saturation, the microbial and nutrient concentrations were lesser due to enhanced dispersion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sublethal effects of copper sulphate compared to copper nanoparticles in rainbow trout (Oncorhynchus mykiss) at low pH: physiology and metal accumulation.

    PubMed

    Al-Bairuty, Genan A; Boyle, David; Henry, Theodore B; Handy, Richard D

    2016-05-01

    A few studies have investigated the interaction between copper toxicity and water pH in fishes, but little is known about the effects of acidic pH on the toxicity of copper nanoparticles (Cu-NPs). This study aimed to describe the sub-lethal toxic effects of Cu-NPs compared to CuSO4 at neutral and acidic water pH values in juvenile rainbow trout. Fish were exposed in triplicate (3 tanks/treatment) to control (no added Cu), or 20μgl(-1) of either Cu as CuSO4 or Cu-NPs, at pH 7 and 5 in a semi-static aqueous exposure regime for up to 7 days. Acidification of the water altered the mean primary particle size (at pH 7, 60±2nm and pH 5, 55±1nm) and dialysis experiments to measure dissolution showed an increased release of dissolved Cu from Cu-NPs at pH 5 compared to pH 7. Copper accumulation was observed in the gills of trout exposed to CuSO4 and Cu-NPs at pH 7 and 5, with a greater accumulation from the CuSO4 treatment than Cu-NPs at each pH. The liver also showed Cu accumulation with both Cu treatments at pH 7 only, whereas, the spleen and kidney did not show measurable accumulation of Cu at any of the water pH values. Exposure to acid water caused changes in the ionoregulatory physiology of control fish and also altered the observed effects of Cu exposure; at pH 5, branchial Na(+)/K(+)-ATPase activity was greater than at pH 7 and the inhibition of Na(+)/K(+)-ATPase activity caused by exposure to CuSO4 at pH 7 was also not observed. There were some changes in haematology and depletion of plasma Na(+) at pH 7 and 5 due to Cu exposure, but there were few material-type or pH effects. Overall, the data show that the accumulation of Cu is greater from CuSO4 than Cu-NPs; however, understanding of the effects of low pH on bioavailability of CuSO4 may not be directly transferred to Cu-NPs without further consideration of the physico-chemical behaviour of Cu-NPs in acid water. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Characterization of polyphenol oxidase from the Manzanilla cultivar (Olea europaea pomiformis) and prevention of browning reactions in bruised olive fruits.

    PubMed

    Segovia-Bravo, Kharla A; Jarén-Galan, Manuel; García-García, Pedro; Garrido-Fernandez, Antonio

    2007-08-08

    The crude extract of the polyphenol oxidase (PPO) enzyme from the Manzanilla cultivar (Olea europaea pomiformis) was obtained, and its properties were characterized. The browning reaction followed a zero-order kinetic model. Its maximum activity was at pH 6.0. This activity was completely inhibited at a pH below 3.0 regardless of temperature; however, in alkaline conditions, pH inhibition depended on temperature and was observed at values above 9.0 and 11.0 at 8 and 25 degrees C, respectively. The thermodynamic parameters of substrate oxidation depended on pH within the range in which activity was observed. The reaction occurred according to an isokinetic system because pH affected the enzymatic reaction rate but not the energy required to carry out the reaction. In the alkaline pH region, browning was due to a combination of enzymatic and nonenzymatic reactions that occurred in parallel. These results correlated well with the browning behavior observed in intentionally bruised fruits at different temperatures and in different storage solutions. The use of a low temperature ( approximately 8 degrees C) was very effective for preventing browning regardless of the cover solution used.

  3. Effect of processing conditions on the organosulfides of shallot (Allium cepa L. Aggregatum group).

    PubMed

    Tocmo, Restituto; Lin, Yi; Huang, Dejian

    2014-06-11

    There is a growing account of the health benefits of H2S as an endogenous cell-signaling molecule. H2S from organic polysulfides, in particular, is increasingly gaining attention for their beneficial effects to cardiovascular health. Here, we studied shallot as a potential dietary source of organic polysulfides and examined the effects of processing conditions on its polysulfide profiles. Boiling, autoclaving, and freeze-drying were tested on whole and crushed shallot bulbs, analyzing their effect on the yield of organosulfides. Seventeen organosulfides, including disulfides, trisulfides, and cyclic polysulfides, were identified. Significant differences in the quantitative and qualitative profiles of organosulfides in the hydrodistilled and solvent extracted oils were observed. Freeze-drying retained the majority of the organosulfides, but the whole-autoclaved and whole-boiled shallots lost more than 95% of their organic polysulfides. Crushed-boiled and crushed-autoclaved shallot lost 76-80% of their organosulfides, likely due to the thermal sensitivity of these compounds. The organosulfide profiles are sensitive to the pH values of the processing media. In general, disulfides increased at basic pH (pH 9.0) while trisulfides and cyclic organosulfides are much higher at the acidic to neutral pH values (pH 3.0-5.0). Our results provide important information on the effects of processing conditions that are relevant for optimizing extraction of organosulfides from shallot for further studies evaluating their H2S-releasing activity.

  4. Investigation of simultaneous biosorption of copper(II) and chromium(VI) on dried Chlorella vulgaris from binary metal mixtures: Application of multicomponent adsorption isotherms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksu, Z.; Acikel, U.; Kutsal, T.

    1999-02-01

    Although the biosorption of single metal ions to various kinds of microorganisms has been extensively studied and the adsorption isotherms have been developed for only the single metal ion situation, very little attention has been given to the bioremoval and expression of adsorption isotherms of multimetal ions systems. In this study the simultaneous biosorption of copper(II) and chromium(VI) to Chlorella vulgaris from a binary metal mixture was studied and compared with the single metal ion situation in a batch stirred system. The effects of pH and single- and dual-metal ion concentrations on the equilibrium uptakes were investigated. In previous studiesmore » the optimum biosorption pH had been determined as 4.0 for copper(II) and as 2.0 for chromium(VI). Multimetal ion biosorption studies were performed at these two pH values. It was observed that the equilibrium uptakes of copper(II) or chromium(VI) ions were changed due to the biosorption pH and the presence of other metal ions. Adsorption isotherms were developed for both single- and dual-metal ions systems at these two pH values, and expressed by the mono- and multicomponent Langmuir and Freundlich adsorption models. Model parameters were estimated by nonlinear regression. It was seen that the adsorption equilibrium data fitted very well to the competitive Freundlich model in the concentration ranges studied.« less

  5. An electrochemical quartz crystal microbalance study of magnesium dissolution

    NASA Astrophysics Data System (ADS)

    Ralston, K. D.; Thomas, S.; Williams, G.; Birbilis, N.

    2016-01-01

    A quartz crystal microbalance (QCM) was used in conjunction with electrochemical measurements to study dissolution of pure magnesium (Mg) sensors in dilute NaCl electrolytes. Open circuit potential and potentiodynamic polarisation experiments were conducted in 0.01 M NaCl, having pH values 3 (buffered) and 6 (unbuffered). In the pH 3 solution, the Mg sensor showed a net mass-loss during the electrochemical tests, whereas, in the unbuffered pH 6 solution Mg showed a net mass-gain, corresponding to the growth of an Mg(OH)2 film on its surface. The loss in the electrochemical efficiency of Mg dissolution due to such direct parasitic Mg(OH)2 growth has been estimated to be around 17-34%. This loss relates to the low capacities and voltage fluctuations reported during discharge of primary Mg batteries.

  6. 75 FR 22589 - Preliminary Listing of an Additional Water to Wisconsin's 2008 List of Waters Under Section 303(d...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... to the presence of excessive nutrients, including phosphorus, elevated pH values, as well as the... Wisconsin does not have numeric criterian for phosphorus and WDNR did not believe that the available data..., and that the Bay was not impaired due to phosphorus. WDNR stated that it will continue to monitor...

  7. Development of an effective treatment for a 5-log reduction of Escherichia coli in refrigerated pickle products

    USDA-ARS?s Scientific Manuscript database

    Refrigerated cucumber pickle products cannot be heat processed due to the loss of characteristic sensory attributes. Typically brined refrigerated pickles contain less than 100 mM acetic acid with pH values of 3.7 to 4.0. Refrigeration (4 to 10 ºC) helps to inhibit the growth of spoilage bacteria an...

  8. The influence of carbon nanotubes on the properties of water solutions and fresh cement pastes

    NASA Astrophysics Data System (ADS)

    Leonavičius, D.; Pundienė, I.; Girskas, G.; Pranckevičienė, J.; Kligys, M.; Sinica, M.

    2017-10-01

    It is known, that the properties of cement-based materials can be significantly improved by addition of carbon nanotubes (CNTs). The dispersion of CNTs is an important process due to an extremely high specific surface area. This aspect is very relevant and is one of the main factors for the successful use of CNTs in cement-based materials. The influence of CNTs in different amounts (from 0 to 0.5 percent) on the pH values of water solutions and fresh cement pastes, and also on rheological properties, flow characteristics, setting time and EXO reaction of the fresh cement pastes was analyzed in this work. It was found that the increment of the amount of CNTs leads to decreased pH values of water solutions and fresh cement pastes, and also increases viscosity, setting times and EXO peak times of fresh cement pastes.

  9. pH dependent antioxidant activity of lettuce (L. sativa) and synergism with added phenolic antioxidants.

    PubMed

    Altunkaya, Arzu; Gökmen, Vural; Skibsted, Leif H

    2016-01-01

    Influence of pH on the antioxidant activities of combinations of lettuce extract (LE) with quercetin (QC), green tea extract (GTE) or grape seed extract (GSE) was investigated for both reduction of Fremy's salt in aqueous solution using direct electron spin resonance (ESR) spectroscopy and in L-α-phosphatidylcholine liposome peroxidation assay measured following formation of conjugated dienes. All examined phenolic antioxidants showed increasing radical scavenging effect with increasing pH values by using both methods. QC, GTE and GSE acted synergistically in combination with LE against oxidation of peroxidating liposomes and with QC showing the largest effect. The pH dependent increase of the antioxidant activity of the phenols is due to an increase of their electron-donating ability upon deprotonation and to their stabilization in alkaline solutions leading to polymerization reaction. Such polymerization reactions of polyphenolic antioxidants can form new oxidizable -OH moieties in their polymeric products resulting in a higher radical scavenging activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effects of soy sauce on physicochemical and textural properties of tumbled chicken breast.

    PubMed

    Kim, H W; Hwang, K E; Song, D H; Kim, Y J; Lim, Y B; Choi, J H; Choi, Y S; Kim, H Y; Kim, C J

    2014-03-01

    The objective of this study was to evaluate the effects of soy sauce on the physicochemical and textural properties of tumbled chicken breasts. Chicken breasts marinated with distilled water (Con), 4% NaCl solution, 4% NaCl and lactic acid solution (pH 4.9), and soy sauce solution (4% salt concentration and pH 4.9) were vacuum tumbled at 3°C for 60 min. The chicken breast marinated with soy sauce solution showed lower lightness and higher redness and yellowness due to the color of the soy sauce. The acidic marinades led to a decrease in pH value of tumbled chicken breast. The acidic marinades increased collagen solubility of sample compared with 4% NaCl solution, resulting in decreased shear force. Water-holding capacity, marination and cooking yields, and solubility of myofibrillar proteins were mainly affected by the presence of salt in the marinade, rather than by pH alternation. Our results suggested that soy sauce marination can improve the tenderness of tumbled chicken breast.

  11. Acceleration of modern acidification in the South China Sea driven by anthropogenic CO2

    PubMed Central

    Liu, Yi; Peng, Zicheng; Zhou, Renjun; Song, Shaohua; Liu, Weiguo; You, Chen-Feng; Lin, Yen-Po; Yu, Kefu; Wu, Chung-Che; Wei, Gangjian; Xie, Luhua; Burr, George S.; Shen, Chuan-Chou

    2014-01-01

    Modern acidification by the uptake of anthropogenic CO2 can profoundly affect the physiology of marine organisms and the structure of ocean ecosystems. Centennial-scale global and regional influences of anthropogenic CO2 remain largely unknown due to limited instrumental pH records. Here we present coral boron isotope-inferred pH records for two periods from the South China Sea: AD 1048–1079 and AD 1838–2001. There are no significant pH differences between the first period at the Medieval Warm Period and AD 1830–1870. However, we find anomalous and unprecedented acidification during the 20th century, pacing the observed increase in atmospheric CO2. Moreover, pH value also varies in phase with inter-decadal changes in Asian Winter Monsoon intensity. As the level of atmospheric CO2 keeps rising, the coupling global warming via weakening the winter monsoon intensity could exacerbate acidification of the South China Sea and threaten this expansive shallow water marine ecosystem. PMID:24888785

  12. Acceleration of modern acidification in the South China Sea driven by anthropogenic CO2

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Peng, Zicheng; Zhou, Renjun; Song, Shaohua; Liu, Weiguo; You, Chen-Feng; Lin, Yen-Po; Yu, Kefu; Wu, Chung-Che; Wei, Gangjian; Xie, Luhua; Burr, George S.; Shen, Chuan-Chou

    2014-06-01

    Modern acidification by the uptake of anthropogenic CO2 can profoundly affect the physiology of marine organisms and the structure of ocean ecosystems. Centennial-scale global and regional influences of anthropogenic CO2 remain largely unknown due to limited instrumental pH records. Here we present coral boron isotope-inferred pH records for two periods from the South China Sea: AD 1048-1079 and AD 1838-2001. There are no significant pH differences between the first period at the Medieval Warm Period and AD 1830-1870. However, we find anomalous and unprecedented acidification during the 20th century, pacing the observed increase in atmospheric CO2. Moreover, pH value also varies in phase with inter-decadal changes in Asian Winter Monsoon intensity. As the level of atmospheric CO2 keeps rising, the coupling global warming via weakening the winter monsoon intensity could exacerbate acidification of the South China Sea and threaten this expansive shallow water marine ecosystem.

  13. Rates of arsenopyrite oxidation by oxygen and Fe(III) at pH 1.8-12.6 and 15-45 degrees C.

    PubMed

    Yu, Yunmei; Zhu, Yongxuan; Gao, Zhenmin; Gammons, Christopher H; Li, Denxian

    2007-09-15

    The oxidation rate of arsenopyrite by dissolved oxygen was measured using a mixed flow reactor at dissolved O2 concentrations of 0.007-0.77 mM, pH 1.8-12.6, and temperatures of 15-45 degrees C. As(III) was the dominant redox species (>75%) in the experimental system, and the As(III)/As(V) ratio of effluent waters did not change with pH. The results were used to derive the following rate law expression (valid between pH 1.8 and 6.4): r = 10((-2211 +/- 57)T) (mO2)(0.45 +/- 0.05), where r is the rate of release of dissolved As in mol m(-2) s(-1) and T is in Kelvin. Activation energies (Ea) for oxidation of arsenopyrite by 02 at pH 1.8 and 5.9 are 43 and 57 kJ/mol, respectively, and they compare to an Ea value of 16 kJ/mol for oxidation by Fe(III) at pH 1.8. Apparent As release rates passed through a minimum in the pH range 7-8, which may have been due to oxidation of Fe2+ to hydrous ferric oxide (HFO) with attenuation of dissolved As onto the freshly precipitated HFO.

  14. Adsorption of glyphosate on variable-charge, volcanic ash-derived soils.

    PubMed

    Cáceres-Jensen, L; Gan, J; Báez, M; Fuentes, R; Escudey, M

    2009-01-01

    Glyphosate (N-phosphonometylglycine) is widely used due to its broad spectrum of activity and nonselective mode of action. In Chile it is the most used herbicide, but its adsorption behavior in the abundant and widespread variable charge soils is not well understood. In this study, three volcanic ash-derived soils were selected, including Andisols (Nueva Braunau and Diguillin) and Ultisols (Collipulli), to evaluate the adsorption kinetics, equilibrium isotherms, and the effect of pH in glyphosate adsorption. The influence of glyphosate on soil phosphorus retention was also studied. Glyphosate was rapidly and strongly adsorbed on the selected soils, and adsorption isotherms were well described by the Freundlich relationship with strong nonlinearity (n(fads) < 0.5). The n(fads) values were consistently higher than n(fdes) values, suggesting strong hysteresis. Adsorption (K(ads)) increased strongly when pH decreased. The presence of glyphosate (3200 mug mL(-1)) changed the adsorption behavior of phosphate at its maximum adsorption capacity. Andisol soils without the addition of glyphosate had similar mean K(ads) values for Nueva Braunau (5.68) and Diguillin (7.38). Collipulli had a mean K(ads) value of 31.58. During the successive desorption steps, glyphosate at the highest level increased K(ads) values for phosphate in the Andisol soils but had little effect in the Ultisol soil. This different behavior was probably due to the irreversible occupation of some adsorption sites by glyphosate in the Ultisol soil attributed to the dominant Kaolinite mineral. Results from this study suggest that in the two types of volcanic soils, different mechanisms are involved in glyphosate and phosphate adsorption and that long-term use of glyphosate may impose different effects on the retention and availability of phosphorus. Volcanic ash-derived soils have a particular environmental behavior in relation to the retention of organic contaminants, representing an environmental substrate that may become highly polluted over time due to intensive agronomic uses.

  15. Humic acid protein complexation

    NASA Astrophysics Data System (ADS)

    Tan, W. F.; Koopal, L. K.; Weng, L. P.; van Riemsdijk, W. H.; Norde, W.

    2008-04-01

    Interactions of purified Aldrich humic acid (PAHA) with lysozyme (LSZ) are investigated. In solution LSZ is moderately positively and PAHA negatively charged at the investigated pH values. The proton binding of PAHA and of LSZ is determined by potentiometric proton titrations at various KCl concentrations. It is also measured for two mixtures of PAHA-LSZ and compared with theoretically calculated proton binding assuming no mutual interaction. The charge adaptation due to PAHA-LSZ interaction is relatively small and only significant at low and high pH. Next to the proton binding, the mass ratio PAHA/LSZ at the iso-electric point (IEP) of the complex at given solution conditions is measured together with the pH using the Mütek particle charge detector. From the pH changes the charge adaptation due to the interaction can be found. Also these measurements show that the net charge adaptation is weak for PAHA-LSZ complexes at their IEP. PAHA/LSZ mass ratios in the complexes at the IEP are measured at pH 5 and 7. At pH 5 and 50 mmol/L KCl the charge of the complex is compensated for 30-40% by K +; at pH 7, where LSZ has a rather low positive charge, this is 45-55%. At pH 5 and 5 mmol/L KCl the PAHA/LSZ mass ratio at the IEP of the complex depends on the order of addition. When LSZ is added to PAHA about 25% K + is included in the complex, but no K + is incorporated when PAHA is added to LSZ. The flocculation behavior of the complexes is also different. After LSZ addition to PAHA slow precipitation occurs (6-24 h) in the IEP, but after addition of PAHA to LSZ no precipitation can be seen after 12 h. Clearly, PAHA/LSZ complexation and the colloidal stability of PAHA-LSZ aggregates depend on the order of addition. Some implications of the observed behavior are discussed.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Thomas; Jalilehvand, Farideh

    Mercury(II) ions precipitate from aqueous cysteine (H 2Cys) solutions containing H 2Cys/Hg(II) mole ratio ≥ 2.0 as Hg( S-HCys) 2. In absence of additional cysteine, the precipitate dissolves at pH ~12 with the [Hg( S, N-Cys) 2] 2- complex dominating. With excess cysteine (H 2Cys/Hg(II) mole ratio ≥ 4.0), higher complexes form and the precipitate dissolves at lower pH values. Previously, we found that tetrathiolate [Hg( S-Cys) 4] 6- complexes form at pH = 11.0; in this work we extend the investigation to pH values of physiological interest. We examined two series of Hg(II)-cysteine solutions in which C Hg(II) variedmore » between 8 – 9 mM and 80 – 100 mM, respectively, with H 2Cys/Hg(II) mole ratios from 4 to ~20. The solutions were prepared in the pH range 7.1 – 8.8, at the pH at which the initial Hg( S-HCys) 2 precipitate dissolved. The variations in the Hg(II) speciation were followed by 199Hg NMR, X-ray absorption and Raman spectroscopic techniques. Our results show that in the dilute solutions (C Hg(II) = 8 – 9 mM), mixtures of di-, tri- (major) and tetrathiolate complexes exist at moderate cysteine excess (C H2Cys ~ 0.16 M) at pH 7.1. In the more concentrated solutions (C Hg(II) = 80 – 100 mM) with high cysteine excess (C H2Cys > 0.9 M), tetrathiolate [Hg( S-cysteinate) 4] m-6 ( m = 0 – 4) complexes dominate in the pH range 7.3 – 7.8, with lower charge than for the [Hg( S-Cys) 4] 6- complex due to protonation of some ( m) of the amino groups of the coordinated cysteine ligands. In conclusion, the results of this investigation could provide a key to the mechanism of biosorption and accumulation of Hg(II) ions in biological / environmental systems.« less

  17. Effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans during chalcopyrite bioleaching

    NASA Astrophysics Data System (ADS)

    Yu, Run-lan; Liu, Jing; Tan, Jian-xi; Zeng, Wei-min; Shi, Li-juan; Gu, Guo-hua; Qin, Wen-qing; Qiu, Guan-zhou

    2014-04-01

    The pH value plays an important role in the bioleaching of sulphide minerals. The effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans was investigated in different phases of bacterial growth during chalcopyrite bioleaching. It is found that extracellular polysaccharide secretion from the cells attached to chalcopyrite is more efficiently than that of the free cells in the bioleaching solution. Three factors, pH values, the concentration of soluble metal ions, and the bacterial growth and metabolism, affect extracellular polysaccharide secretion in the free cells, and are related to the bacterial growth phase. Extracellular polysaccharide secretion from the attached cells is mainly dependent on the pH value of the bacterial culture.

  18. The Coastal Carbonate Chemistry in Bolinao-Anda, Pangasinan, Northern Philippines

    NASA Astrophysics Data System (ADS)

    Lagumen, M. C. T.; San Diego-McGlone, M. L.; Araujo, M.; Noriega, C.

    2016-12-01

    The coastal ocean represents only 7% of the total ocean area, but the interactions of CO2 (dissolved, atmospheric) within the coastal area is very dynamic. This study was conducted in the coastal waters of the Bolinao-Anda channel, Pangasinan, Philippines. The 28 stations were divided into 3 groups: coral, seagrass and mariculture area. Samples were collected for carbonate parameters namely total alkalinity (TA), dissolved inorganic carbon (DIC) and pH. Air-sea surface CO2 flux (FCO2) was estimated from the difference between partial pressure of CO2 at sea surface (pCO2) and the concentration of CO2 in the atmosphere (pCO2atm). TA ranged from 1226 to 2240 µmol/kg with highest value in the seagrass stations and lowest in the mariculture stations. Mean TA in coral and seagrass stations were similar at 2104.11 ± 6.54 µmol/kg and 2093.32 ± 62.67 µmol/kg, respectively. DIC ranged from 1270.12 µmol/kg to 2006.26 µmol/kg. Mean DIC values were 1868.12 ± 20.25 µmol/kg for coral stations, 1776.82 ± 87.87 µmol/kg for seagrass stations, and 1715.94 ± 52.61 µmol/kg for mariculture stations. A higher range of pH (7.95 to 8.52) and Ωarg (1.97 to 4.85) were determined for the coral and seagrass stations compared to mariculture stations. Mean pH value in mariculture stations was 7.60 ± 0.04, while the mean pH of coral stations was 8.05 ± 0.03, and seagrass stations was 8.27 ± 0.09. The mariculture area is a source of CO2 with flux of 44.72 mmol m-2 day-1 and the coral area too athough flux is small at 0.31 mmol m-2 day-1, while the seagrass area is a sink for CO2 with mean flux of -5.91 mmol m-2 day-1. It is likely that water quality conditions due to mariculture can affect the corals and seagrass areas due to the hydrodynamics of the area.

  19. Response of O2 and pH to ENSO in the California Current System in a high-resolution global climate model

    NASA Astrophysics Data System (ADS)

    Turi, Giuliana; Alexander, Michael; Lovenduski, Nicole S.; Capotondi, Antonietta; Scott, James; Stock, Charles; Dunne, John; John, Jasmin; Jacox, Michael

    2018-02-01

    Coastal upwelling systems, such as the California Current System (CalCS), naturally experience a wide range of O2 concentrations and pH values due to the seasonality of upwelling. Nonetheless, changes in the El Niño-Southern Oscillation (ENSO) have been shown to measurably affect the biogeochemical and physical properties of coastal upwelling regions. In this study, we use a novel, high-resolution global climate model (GFDL-ESM2.6) to investigate the influence of warm and cold ENSO events on variations in the O2 concentration and the pH of the CalCS coastal waters. An assessment of the CalCS response to six El Niño and seven La Niña events in ESM2.6 reveals significant variations in the response between events. However, these variations overlay a consistent physical and biogeochemical (O2 and pH) response in the composite mean. Focusing on the mean response, our results demonstrate that O2 and pH are affected rather differently in the euphotic zone above ˜ 100 m. The strongest O2 response reaches up to several hundreds of kilometers offshore, whereas the pH signal occurs only within a ˜ 100 km wide band along the coast. By splitting the changes in O2 and pH into individual physical and biogeochemical components that are affected by ENSO variability, we found that O2 variability in the surface ocean is primarily driven by changes in surface temperature that affect the O2 solubility. In contrast, surface pH changes are predominantly driven by changes in dissolved inorganic carbon (DIC), which in turn is affected by upwelling, explaining the confined nature of the pH signal close to the coast. Below ˜ 100 m, we find conditions with anomalously low O2 and pH, and by extension also anomalously low aragonite saturation, during La Niña. This result is consistent with findings from previous studies and highlights the stress that the CalCS ecosystem could periodically undergo in addition to impacts due to climate change.

  20. Birth asphyxia measured by the pH value of the umbilical cord blood may predict an increased risk of attention deficit hyperactivity disorder.

    PubMed

    Mikkelsen, Susanne Hvolgaard; Olsen, Jørn; Bech, Bodil Hammer; Wu, Chunsen; Liew, Zeyan; Gissler, Mika; Obel, Carsten; Arah, Onyebuchi

    2017-06-01

    Although birth asphyxia is a major risk factor for neonatal and childhood morbidity and mortality, it has not been investigated much in relation to attention deficit hyperactivity disorder (ADHD). We examined whether birth asphyxia measured by the pH of the blood in the umbilical artery cord was associated with childhood ADHD. A population-based cohort of 295 687 children born in Finland between 1991 and 2002 was followed until December 31, 2007. ADHD was identified by the International Classification of Diseases, 10th edition, as a diagnosis of hyperkinetic disorder. We examined the risk of ADHD with varying pH values using Cox regression, taking time trends into consideration. When compared to the reference group, a pH value below 7.10 was significantly associated with an increased risk of ADHD. The strongest risks were observed among children with a pH value <7.15 and a gestational age of <32 weeks. The pH value did not contribute much to the risk among children with an Apgar score of 0-3. Birth asphyxia, defined by low pH value, may predict an increased risk of ADHD in childhood. The association between the pH value and ADHD was homogenous when stratified by gestational age and the Apgar score. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  1. Effect of pH on rheotaxis of bull sperm using microfluidics.

    PubMed

    El-Sherry, T M; Abdel-Ghani, M A; Abou-Khalil, N S; Elsayed, M; Abdelgawad, M

    2017-10-01

    The aim of the present research is to study the effect of pH values on the sperm rheotaxis properties. Semen collected from bulls was diluted with SOF medium (1:10). pH of the medium was adjusted using a digital pH meter to the following pH values: 6.0, 6.2, 6.4, 6.4, 6.8, 7.0. All kinetic parameters of sperm (n = 3,385) were determined through a computer-assisted sperm analysis (CASA) system using microfluidic devices with controlled flow velocity. The following parameters were determined: total motility (TM%), positive rheotaxis (PR%), straightline velocity (VSL, μm/s), average path velocity (VAP, μm/s), linearity (LIN, as VSL/VCL, %), beat cross-frequency (BCF, Hz) and curvilinear velocity (VCL, μm/s). Nitric oxide, calcium and potassium were estimated in semen at different pH values. To confirm the effect of nitric oxide and K + , we used sodium nitroprusside (an NO donor) and KCL as (a K + donor) to see their effect on sperm PR%. The results showed no difference in TM% at pH (6-7). The PR% was the lowest at pH 6 and 7. The best parameters for the PR% were at pH 6.4-6.6. The concentration of Ca +2 did not change at different pH values. The mean NO values decreased with the increase of pH; however, the mean values of K + increased with the increase of pH. Addition of high concentration of NO and K + to the semen media at fixed pH level had a negative effect on TM% and PR%. In conclusion, the bull sperm had the best rheotaxis properties at pH 6.4-6.6 and sensitive to the change of seminal NO and K + . © 2017 Blackwell Verlag GmbH.

  2. Fluorometric determination of Vibrio parahaemolyticus using an F0F1-ATPase-based aptamer and labeled chromatophores.

    PubMed

    Duan, Nuo; Wu, Shijia; Zhang, Huiling; Zou, Ying; Wang, Zhouping

    2018-05-18

    An F 0 F 1 -ATPase-based aptasensor is described for the fluorometric determination of Vibrio parahaemolyticus. Chromatophores containing F 0 F 1 -ATPases were first prepared from Rhodospirillum rubrum cells. Then, an aptamer-functionalized chromatophore acts as the capture probe, and a chromatophore labeled with the pH probe fluorescein acts as the signalling probe. In the presence of V. parahaemolyticus, the rotation rate of F 0 F 1 -ATPase is decreased due to the formation of the aptamer-chromatophore complex. This leads to a retarded proton flux out of the chromatophores. As a result, the pH value inside the chromatophores is reduced, and the fluorescence of the pH probe F1300 is accordingly decreased. The relative fluorescence varies linearly over the 15 to 1.5 × 10 6  cfu·mL -1 Vibrio parahaemolyticus concentration range, and the limit of detection is 15 cfu·mL -1 . The method was applied to analyze artificially contaminated salmon samples where it showed excellent perfomance. Graphical abstract In this assay, aptamer functionalized chromatophores act as a capture probe, and the fluoresce in labeled chromatophores as signalling probe. The formation of aptamer-chromatophore complex leads to a retarded proton flux out of the chromatophores. As a result, the pH value inside the chromatophores is reduced, and fluorescence intensity is accordingly decreased.

  3. Inactivation of Mycobacterium avium with free chlorine.

    PubMed

    Luh, Jeanne; Mariñas, Benito J

    2007-07-15

    The inactivation kinetics of Mycobacterium avium with free chlorine was characterized by two stages: an initial phase at a relatively fast rate followed by a slower second stage of pseudo first-order kinetics. The inactivation rate of each stage was approximately the same for all experiments performed at a certain condition of pH and temperature; however, variability was observed for the disinfectant exposure at which the transition between the two stages occurred. This variability was not a function of the initial disinfectant concentration, the initial bacterial density, or the bacterial stock. However, the transition to the second stage varied more significantly at high temperatures (30 degrees C), while lower variability was observed at lower temperatures (5 and 20 degrees C). Experiments conducted at pH values in the range of 6-9 revealed that the inactivation of M. avium was primarily due to hypochlorous acid, with little contribution from hypochlorite ion within this pH range. The inactivation kinetics was represented with a two-population model. The activation energies for the resulting pseudo first-order rate constants for the populations with fast and slow kinetics were 100.3 and 96.5 kJ/mol, respectively. The magnitude of these values suggested that for waters of relatively high pH and low temperatures, little inactivation of M. avium would be achieved within treatment plants, providing a seeding source for distribution systems.

  4. Thermal inactivation of the wine spoilage yeasts Dekkera/Brettanomyces.

    PubMed

    Couto, José António; Neves, Filipe; Campos, Francisco; Hogg, Tim

    2005-10-25

    The heat resistance of three strains of Dekkera/Brettanomyces (Dekkera anomala PYCC 5,153, Dekkera bruxellensis PYCC 4,801 and Dekkera/Brettanomyces 093) was evaluated at different temperatures between 32.5 and 55 degrees C. Thermal inactivation tests were performed in tartrate buffer solution (pH 4.0) and in wines. In the studies employing buffer as the heating menstruum, measurable thermal inactivation began only at temperatures of 50 degrees C. When heating was performed in wine, significant inactivation begins at 35 degrees C. Subsequent thermal inactivation tests were performed in buffer at various levels of pH, ethanol concentration, and various phenolic acids. Results from experiments in buffer with added ethanol suggest that the greater heat sensitivity shown in wines can be largely attributed to ethanol, although potentiation of this effect might be due to the phenolic content, particularly from ferulic acid. In the range of pH values tested (2.5-4.5), this factor had no influence in the heat inactivation kinetics. Relevant data, in the form of D and Z values calculated in the various environments, potentially useful for the establishment of regimes of thermal control of Dekkera/Brettanomyces yeasts in wine and contaminated equipment is presented.

  5. Transpiration as landfill leachate phytotoxicity indicator.

    PubMed

    Białowiec, Andrzej

    2015-05-01

    An important aspect of constructed wetlands design for landfill leachate treatment is the assessment of landfill leachate phytotoxicity. Intravital methods of plants response observation are required both for lab scale toxicity testing and field examination of plants state. The study examined the toxic influence of two types of landfill leachate from landfill in Zakurzewo (L1) and landfill in Wola Pawłowska (L2) on five plant species: reed Phragmites australis (Cav.) Trin. ex Steud, manna grass Glyceria maxima (Hartm.) Holmb., bulrush Schoenoplectus lacustris (L.) Palla, sweet flag Acorus calamus L., and miscanthus Miscanthus floridulus (Labill) Warb. Transpiration measurement was used as indicator of plants response. The lowest effective concentration causing the toxic effect (LOEC) for each leachate type and plant species was estimated. Plants with the highest resistance to toxic factors found in landfill leachate were: sweet flag, bulrush, and reed. The LOEC values for these plants were, respectively, 17%, 16%, 9% in case of leachate L1 and 21%, 18%, 14% in case of L2. Leachate L1 was more toxic than L2 due to a higher pH value under similar ammonia nitrogen content, i.e. pH 8.74 vs. pH 8.00. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Synthesis and characterization of a thermo-sensitive poly( N-methyl acryloylglycine methyl ester) used as a drug release carrier

    NASA Astrophysics Data System (ADS)

    Deng, Kui-Lin; Zhong, Hai-Bin; Jiao, Yi-Suo; Fan, Ting; Qiao, Xiao; Zhang, Peng-Fei; Ren, Xiao-Bo

    2010-06-01

    In this article, poly( N-methyl acryloylglycine methyl ester) (PNMAME) was prepared as a novel thermosensitive material with a lower critical solution temperature (LCST) at around 49.5°C. The chemical structures of the monomer NMAME and PNMAME were characterized by 1H NMR and IR measurements. The LCST was investigated systematically as a function of PNMAME concentration, inorganic salt solution and pH value. The results indicated that LCST of PNMAME was obviously dependent on PNMAME concentration and pH. The LCST was increased with a decrease in pH value and PNMAME concentration. To obtain a thermo-sensitive hydrogel with the phase transition temperature close to human body temperature, the copolymerization was conducted between NMAME and N-acryloylglycine ethyl ester (NAGEE). The release behavior of caffeine was evaluated at different temperatures and contents of cross-linkers ( N, N-methylenebis(acrylamide) (NMBA)). The increase of cross-linker content led to a decrease in the release rate of caffeine due to higher crossing density in the hydrogel network. In addition, a faster release of caffeine from the hydrogel with 3% NMBA at 37°C was found in contrast to that at 18°C.

  7. A Flexible Optical pH Sensor Based on Polysulfone Membranes Coated with pH-Responsive Polyaniline Nanofibers.

    PubMed

    Abu-Thabit, Nedal; Umar, Yunusa; Ratemi, Elaref; Ahmad, Ayman; Ahmad Abuilaiwi, Faraj

    2016-06-27

    A new optical pH sensor based on polysulfone (PSU) and polyaniline (PANI) was developed. A transparent and flexible PSU membrane was employed as a support. The electrically conductive and pH-responsive PANI was deposited onto the membrane surface by in situ chemical oxidative polymerization (COP). The absorption spectra of the PANI-coated PSU membranes exhibited sensitivity to pH changes in the range of 4-12, which allowed for designing a dual wavelength pH optical sensor. The performance of the membranes was assessed by measuring their response starting from high pH and going down to low pH, and vice versa. It was found that it is necessary to precondition the sensor layers before each measurement due to the slight hysteresis observed during forward and backward pH titrations. PSU membranes with polyaniline coating thicknesses in the range of ≈100-200 nm exhibited fast response times of <4 s, which are attributed to the porous, rough and nanofibrillar morphology of the polyaniline coating. The fabricated pH sensor was characterized by a sigmoidal response (R² = 0.997) which allows for pH determination over a wide dynamic range. All membranes were stable for a period of more than six months when stored in 1 M HCl solution. The reproducibility of the fabricated optical pH sensors was found to be <0.02 absorption units after one month storage in 1 M HCl solution. The performance of the optical pH sensor was tested and the obtained pH values were compared with the results obtained using a pH meter device.

  8. A Flexible Optical pH Sensor Based on Polysulfone Membranes Coated with pH-Responsive Polyaniline Nanofibers

    PubMed Central

    Abu-Thabit, Nedal; Umar, Yunusa; Ratemi, Elaref; Ahmad, Ayman; Ahmad Abuilaiwi, Faraj

    2016-01-01

    A new optical pH sensor based on polysulfone (PSU) and polyaniline (PANI) was developed. A transparent and flexible PSU membrane was employed as a support. The electrically conductive and pH-responsive PANI was deposited onto the membrane surface by in situ chemical oxidative polymerization (COP). The absorption spectra of the PANI-coated PSU membranes exhibited sensitivity to pH changes in the range of 4–12, which allowed for designing a dual wavelength pH optical sensor. The performance of the membranes was assessed by measuring their response starting from high pH and going down to low pH, and vice versa. It was found that it is necessary to precondition the sensor layers before each measurement due to the slight hysteresis observed during forward and backward pH titrations. PSU membranes with polyaniline coating thicknesses in the range of ≈100–200 nm exhibited fast response times of <4 s, which are attributed to the porous, rough and nanofibrillar morphology of the polyaniline coating. The fabricated pH sensor was characterized by a sigmoidal response (R2 = 0.997) which allows for pH determination over a wide dynamic range. All membranes were stable for a period of more than six months when stored in 1 M HCl solution. The reproducibility of the fabricated optical pH sensors was found to be <0.02 absorption units after one month storage in 1 M HCl solution. The performance of the optical pH sensor was tested and the obtained pH values were compared with the results obtained using a pH meter device. PMID:27355953

  9. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-04-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03.

  10. Effect of blueberry agro-industrial waste addition to corn starch-based films for the production of a pH-indicator film.

    PubMed

    Luchese, Cláudia Leites; Sperotto, Natalia; Spada, Jordana Corralo; Tessaro, Isabel Cristina

    2017-11-01

    Intelligent packaging is an emerging area of food technology that can provide better preservation and be of further convenience for consumers. It is recommended that biodegradable materials be used to develop low-impact designs for better packaging, which could benefit the environment by simply expanding their use to new areas. In this work, corn starch, glycerol and blueberry powder (with and without prior fruit bleaching) were used to produce films by casting. Blueberry powder, a co-product from juice processing, which is rich in anthocyanins, was added in the films to evaluate its potential as a colorimetric indicator, due to the ability of anthocyanin to change color when placed in an acidic or basic environment. After the films were immersed in different buffer solutions, visual color changes were observed, where the films became reddish at acidic pH and bluish at basic pH. The ΔE* values were greater than 3, suggesting a visually perceptible change to the human eye. The samples with fruit bleaching (CB) were visually darker (lower luminance values), while the samples without bleaching (SB) had a lighter color and higher brightness, represented by larger L* values. These results indicate the potential of blueberry powder as a pH indicator for intelligent food packaging or even for sensing food deterioration. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The in vivo pH of the extravascular space of the lung

    PubMed Central

    Effros, Richard M.; Chinard, Francis P.

    1969-01-01

    The partition of 5,5-dimethyloxazolidine-2,4-dione (DMO) and of 11 amines between the vascular and extravascular spaces of the lung has been determined by the multiple indicator dilution technique. Four amines (nicotine, pentylamine, quinine, and benzylamine) were found to have pH-sensitive tissue to blood concentration ratios. Of these, tritiated nicotine appears to be the nost satisfactory indicator of tissue pH and values for the pH of the pulmonary extravascular space (pHe) have been calculated from the nicotine data. At an arterial pH (pHart) between 7.38 and 7.43 pHe averaged 6.69 ±0.07. Changes in pHe usually paralleled but were consistently less than concomitant changes in pHart. Alterations in PCO2 at constant pHart regularly produced relatively small, parallel changes in extravascular hydrogen ion concentrations. Local alterations in tissue pH due to PCO2 changes are apparently buffered quite rapidly and the pHe of the lung seems more closely linked to pHart than the cellular pH of other tissues. DMO, guanidine, methylamine, morphine, and atropine were confined to the vascular volume during the first circulation and could not be used to measure tissue pH. Histamine appeared to be bound to a pH-insensitive site. The extravascular distributions of antipyrine and aniline were unresponsive to alterations in arterial pH, presumably because they are essentially uncharged at pH levels found in the lung. PMID:4898722

  12. Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe.

    PubMed

    Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui

    2016-12-09

    Accurate quantitation of intracellular pH (pH i ) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pH i sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pH i . Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pH i , in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF 4 :Yb 3+ , Tm 3+ UCNPs were used as pH i response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pH i value 3.0-7.0 with deviation less than 0.43. This approach shall facilitate the researches in pH i related areas and development of the intracellular drug delivery systems.

  13. An intramolecular charge transfer process based fluorescent probe for monitoring subtle pH fluctuation in living cells.

    PubMed

    Sun, Mingtai; Du, Libo; Yu, Huan; Zhang, Kui; Liu, Yang; Wang, Suhua

    2017-01-01

    It is crucial to monitor intracellular pH values and their fluctuation since the organelles of cells have different pH distribution. Herein we construct a new small molecule fluorescent probe HBT-O for monitoring the subtle pH values within the scope of neutral to acid in living cells. The probe exhibited good water solubility, a marked turquoise to olivine emission color change in response to pH, and tremendous fluorescence hypochromatic shift of ∼50nm (1718cm -1 ) as well as the increased fluorescence intensity when the pH value changed from neutral to acid. Thus, the probe HBT-O can distinguish the subtle changes in the range of normal pH values from neutral to acid with significant fluorescence changes. These properties can be attributed to the intramolecular charge transfer (ICT) process of the probe upon protonation in buffer solutions at varied pH values. Moreover, the probe was reversible and nearly non-toxic for living cells. Then the probe was successfully used to detect pH fluctuation in living cells by exhibiting different fluorescence colors and intensity. These findings demonstrate that the probe will find useful applications in biology and biomedical research. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Estimation of neonatal outcome artery pH value according to CTG interpretation of the last 60 min before delivery: a retrospective study. Can the outcome pH value be predicted?

    PubMed

    Kundu, S; Kuehnle, E; Schippert, C; von Ehr, J; Hillemanns, P; Staboulidou, Ismini

    2017-11-01

    The aim of this study was to analyze whether the umbilical artery pH value can be estimated throughout CTG assessment 60 min prior to delivery and if the estimated umbilical artery pH value correlates with the actual one. This includes analysis of correlation between CTG trace classification and actual umbilical artery pH value. Intra-and interobserver agreement and the impact of professional experience on visual analysis of fetal heart rate tracing were evaluated. This was a retrospective study. 300 CTG records of the last 60 min before delivery were picked randomly from the computer database with the following inclusion criteria; singleton pregnancy >37 weeks, no fetal anomalies, vaginal delivery either spontaneous or instrumental-assisted. Five obstetricians and two midwives of different professional experience classified 300 CTG traces according to the FIGO criteria and estimated the postnatal umbilical artery pH. The results showed a significant difference (p < 0.05) in estimated and actual pH value, independent of professional experience. Analysis and correlation of CTG assessment and actual umbilical artery pH value showed significantly (p < 0.05) diverging results. Intra- and interobserver variability was high. Intraobserver variability was significantly higher for the resident (p = 0.001). No significant differences were detected regarding interobserver variability. An estimation of the pH value and consequently of neonatal outcome on the basis of a present CTG seems to be difficult. Therefore, not only CTG training but also clinical experience and the collaboration and consultation within the whole team is important.

  15. Influence of bath PH value on microstructure and corrosion resistance of phosphate chemical conversion coating on sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Ding, Xia; Xue, Long-fei; Wang, Xiu-chun; Ding, Kai-hong; Cui, Sheng-li; Sun, Yong-cong; Li, Mu-sen

    2016-10-01

    The effect of bath PH value on formation, microstructure and corrosion resistance of the phosphate chemical conversion (PCC) coatings as well as the effect on the magnetic property of the magnets is investigated in this paper. The results show that the coating mass and thickness increase with the decrease of the bath PH value. Scanning electron microscopy observation demonstrates that the PCC coatings are in a blocky structure with different grain size. Transmission electron microscope and X-ray diffractometer tests reveal the coatings are polycomponent and are mainly composed of neodymium phosphate hydrate and praseodymium phosphate hydrate. The electrochemical analysis and static immersion corrosion test show the corrosion resistance of the PCC coatings prepared at bath PH value of 0.52 is worst. Afterwards the corrosion resistance increases first and then decreases with the increasing of the bath PH values. The magnetic properties of all the samples with PCC treatment are decreased. The biggest loss is occurred when the bath PH value is 0.52. Taken together, the optimum PH range of 1.00-1.50 for the phosphate solution has been determined.

  16. Adsorption of collagen to indium oxide nanoparticles and infrared emissivity study thereon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Yuming; Shan Yun; Sun Yanqing

    Adsorption of collagen to indium oxide nanoparticles was carried out in water-acetone solution at volumetric ratio of 1:1 with pH value varying from 3.2 to 9.3. As indicated by TGA, maximum collagen adsorption to indium oxide nanoparticles occurred at pH of 3.2. It was proposed that noncovalent interactions such as hydrogen bonding, hydrophilic and electrostatic interactions made main contributions to collagen adsorption. The IR emissivity values (8-14 {mu}m) of collagen-adsorbed indium oxide nanoparticles decreased significantly compared to either pure collagen or indium oxide nanoparticles possibly due to the interfacial interactions between collagen and indium oxide nanoparticles. And the lowest infraredmore » emissivity value of 0.587 was obtained at collagen adsorption of 1.94 g/100 g In{sub 2}O{sub 3}. On the chance of improved compatibility with organic adhesives, the chemical activity of adsorbed collagen was further confirmed by grafting copolymerization with methyl methacrylate by formation of polymer shell outside, as evidenced by IR spectrum and transmission electron microscopy.« less

  17. [In vitro testing of yeast resistance to antimycotic substances].

    PubMed

    Potel, J; Arndt, K

    1982-01-01

    Investigations have been carried out in order to clarify the antibiotic susceptibility determination of yeasts. 291 yeast strains of different species were tested for sensitivity to 7 antimycotics: amphotericin B, flucytosin, nystatin, pimaricin, clotrimazol, econazol and miconazol. Additionally to the evaluation of inhibition zone diameters and MIC-values the influence of pH was examined. 1. The dependence of inhibition zone diameters upon pH-values varies due to the antimycotic tested. For standardizing purposes the pH 6.0 is proposed; moreover, further experimental parameters, such as nutrient composition, agar depth, cell density, incubation time and -temperature, have to be normed. 2. The relation between inhibition zone size and logarythmic MIC does not fit a linear regression analysis when all species are considered together. Therefore regression functions have to be calculated selecting the individual species. In case of the antimycotics amphotericin B, nystatin and pimaricin the low scattering of the MIC-values does not allow regression analysis. 3. A quantitative susceptibility determination of yeasts--particularly to the fungistatical substances with systemic applicability, flucytosin and miconazol, -- is advocated by the results of the MIC-tests.

  18. Synthesis of curcumin-loaded chitosan phosphate nanoparticle and study of its cytotoxicity and antimicrobial activity.

    PubMed

    Deka, C; Aidew, L; Devi, N; Buragohain, A K; Kakati, D K

    2016-11-01

    Curcumin has acquired an important position in the treatment of various diseases. But its use, as a chemotherapeutic agent, is limited due to its low water solubility, poor bioavailability, and its sensitive nature at the physiological pH. To overcome this, curcumin was loaded into chitosan phosphate nanoparticles (CPNs). The loading efficiency was found to be 84%. DLS studies revealed the average particle size of CPNs and curcumin-loaded CPNs as 53 and 91 nm, respectively, and TEM results supplemented these values. A sustained release pattern was noticed and the amount of curcumin released in acidic pH was higher than at physiological pH. The curcumin nanoformulation exhibited proficient activity against both Gram-positive and Gram-negative bacteria as well as fungus. Cytocompatibility of the nanoformulations against peripheral blood mononuclear cells (PBMCs) and murine monocyte-macrophage cell line was confirmed by incubating with PBMCs and murine monocyte-macrophage cell line.

  19. Selective removal of heavy metals from metal-bearing wastewater in a cascade line reactor.

    PubMed

    Pavlović, Jelena; Stopić, Srećko; Friedrich, Bernd; Kamberović, Zeljko

    2007-11-01

    This paper is a part of the research work on 'Integrated treatment of industrial wastes towards prevention of regional water resources contamination - INTREAT' the project. It addresses the environmental pollution problems associated with solid and liquid waste/effluents produced by sulfide ore mining and metallurgical activities in the Copper Mining and Smelting Complex Bor (RTB-BOR), Serbia. However, since the minimum solubility for the different metals usually found in the polluted water occurs at different pH values and the hydroxide precipitates are amphoteric in nature, selective removal of mixed metals could be achieved as the multiple stage precipitation. For this reason, acid mine water had to be treated in multiple stages in a continuous precipitation system-cascade line reactor. All experiments were performed using synthetic metal-bearing effluent with chemical a composition similar to the effluent from open pit, Copper Mining and Smelting Complex Bor (RTB-BOR). That effluent is characterized by low pH (1.78) due to the content of sulfuric acid and heavy metals, such as Cu, Fe, Ni, Mn, Zn with concentrations of 76.680, 26.130, 0.113, 11.490, 1.020 mg/dm3, respectively. The cascade line reactor is equipped with the following components: for feeding of effluents, for injection of the precipitation agent, for pH measurements and control, and for removal of the process gases. The precipitation agent was 1M NaOH. In each of the three reactors, a changing of pH and temperature was observed. In order to verify. efficiency of heavy metals removal, chemical analyses of samples taken at different pH was done using AES-ICP. Consumption of NaOH in reactors was 370 cm3, 40 cm3 and 80 cm3, respectively. Total time of the experiment was 4 h including feeding of the first reactor. The time necessary to achieve the defined pH value was 25 min for the first reactor and 13 min for both second and third reactors. Taking into account the complete process in the cascade line reactor, the difference between maximum and minimum temperature was as low as 6 degrees C. The quantity of solid residue in reactors respectively was 0.62 g, 2.05 g and 3.91 g. In the case of copper, minimum achieved concentration was 0.62 mg/dm3 at pH = 10.4. At pH = 4.50 content of iron has rapidly decreased to < 0.1 mg/dm3 and maintained constant at all higher pH values. That means that precipitation has already ended at pH=4.5 and maximum efficiency of iron removal was 99.53%. The concentration of manganese was minimum at pH value of 11.0. Minimum obtained concentration of Zn was 2.18 mg/dm3 at a pH value of 11. If pH value is higher than 11, Zn can be re-dissolved. The maximum efficiency of Ni removal reached 76.30% at a pH value of 10.4. Obtained results show that efficiency of copper, iron and manganese removal is very satisfactory (higher than 90%). The obtained efficiency of Zn and Ni removal is lower (72.30% and 76.31%, respectively). The treated effluent met discharge water standard according to The Council Directive 76/464/EEC on pollution caused by certain dangerous substances into the aquatic environment of the Community. Maximum changing of temperature during the whole process was 6 degrees C. This technology, which was based on inducing chemical precipitation of heavy metals is viable for selective removal of heavy metals from metal-bearing effluents in three reactor systems in a cascade line. The worldwide increasing concern for the environment and guidelines regarding effluent discharge make their treatment necessary for safe discharge in water receivers. In the case where the effluents contain valuable metals, there is also an additional economic interest to recover these metals and to recycle them as secondary raw materials in different production routes.

  20. Mapping as a tool for predicting the risk of anthrax outbreaks in Northern Region of Ghana.

    PubMed

    Nsoh, Ayamdooh Evans; Kenu, Ernest; Forson, Eric Kofi; Afari, Edwin; Sackey, Samuel; Nyarko, Kofi Mensah; Yebuah, Nathaniel

    2016-01-01

    Anthrax is a febrile soil-born infectious disease that can affect all warm-blooded animals including man. Outbreaks of anthrax have been reported in northern region of Ghana but no concerted effort has been made to implement risk-based surveillance systems to document outbreaks so as to implement policies to address the disease. We generated predictive maps using soil pH, temperature and rainfall as predictor variables to identify hotspot areas for the outbreaks. A 10-year secondary data records on soil pH, temperature and rainfall were used to create climate-based risk maps using ArcGIS 10.2. The monthly mean values of rainfall and temperature for ten years were calculated and anthrax related evidence based constant raster values were created as weights for the three factors. All maps were generated using the Kriging interpolation method. There were 43 confirmed outbreaks. The deaths involved were 131 cattle, 44 sheep, 15 goats, 562 pigs with 6 human deaths and 22 developed cutaneous anthrax. We found three strata of well delineated distribution pattern indicating levels of risk due to suitability of area for anthrax spore survival. The likelihood of outbreaks occurrence and reoccurrence was higher in Strata I, Strata II and strata III respectively in descending order, due to the suitability of soil pH, temperature and rainfall for the survival and dispersal of B. anthracis spore. The eastern corridor of Northern region is a Hots spot area. Policy makers can develop risk based surveillance system and focus on this area to mitigate anthrax outbreaks and reoccurrence.

  1. Technical note: A comparison of reticular and ruminal pH monitored continuously with 2 measurement systems at different weeks of early lactation.

    PubMed

    Falk, M; Münger, A; Dohme-Meier, F

    2016-03-01

    Subacute ruminal acidosis is one of the most important digestive disorders in high-yielding dairy cows fed highly fermentable diets. Monitoring of forestomach pH has been suggested as a potentially valuable tool for diagnosing subacute ruminal acidosis. The objective of the present study was to compare continuously recorded measurements of an indwelling telemetric pH sensor inserted orally in the reticulum with those obtained from a measurement system placed in the ventral sac of the rumen through a cannula. The experiment was conducted with 6 ruminally cannulated Holstein cows kept in a freestall barn. Equal numbers of cows were assigned to 2 treatment groups based on their previous lactation milk yield. Cows in treatment CON- were offered a diet consisting of only fresh herbage cut once daily, and cows in treatment CON+ got fresh herbage plus a concentrate supplement according to the individual milk yield of each cow to meet their predicted nutrient requirements. The experiment lasted from 2 wk before the predicted calving date until wk 8 of lactation. During the whole experiment, a pH value was recorded every 10 min in the reticulum using a wireless telemetry bolus including a pH sensor (eBolus, eCow Ltd., Exeter, Devon, UK), which had been applied orally using a balling gun. Simultaneously, in wk 2, before the estimated calving date and in wk 2, 4, 6, and 8 of lactation, the ruminal pH was measured every 30 s for 48 h with the LRCpH measurement system (Dascor Inc., Escondido, CA) placed in the ventral sac of the rumen through the cannula. The readings of the LRCpH measurement system were summarized as an average over 10 min for statistical analysis. The recorded pH values were on average 0.24 pH units higher in the reticulum than in the rumen. The reticular pH also showed less fluctuation (overall SD 0.19 pH units) than pH profiles recorded in the rumen (overall SD 0.51 pH units). Regardless of measurement system, pH was not influenced by treatment, but varied across week of lactation and decreased with advancing lactation. The difference between ruminal and reticular pH varied across week of lactation. Due to this variation, no fixed conversion factor can be provided to make pH measurements in the reticulum comparable with those in the rumen. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications.

    PubMed

    Piccinini, Esteban; Bliem, Christina; Reiner-Rozman, Ciril; Battaglini, Fernando; Azzaroni, Omar; Knoll, Wolfgang

    2017-06-15

    We present the construction of layer-by-layer (LbL) assemblies of polyethylenimine and urease onto reduced-graphene-oxide based field-effect transistors (rGO FETs) for the detection of urea. This versatile biosensor platform simultaneously exploits the pH dependency of liquid-gated graphene-based transistors and the change in the local pH produced by the catalyzed hydrolysis of urea. The use of an interdigitated microchannel resulted in transistors displaying low noise, high pH sensitivity (20.3µA/pH) and transconductance values up to 800 µS. The modification of rGO FETs with a weak polyelectrolyte improved the pH response because of its transducing properties by electrostatic gating effects. In the presence of urea, the urease-modified rGO FETs showed a shift in the Dirac point due to the change in the local pH close to the graphene surface. Markedly, these devices operated at very low voltages (less than 500mV) and were able to monitor urea in the range of 1-1000µm, with a limit of detection (LOD) down to 1µm, fast response and good long-term stability. The urea-response of the transistors was enhanced by increasing the number of bilayers due to the increment of the enzyme surface coverage onto the channel. Moreover, quantification of the heavy metal Cu 2+ (with a LOD down to 10nM) was performed in aqueous solution by taking advantage of the urease specific inhibition. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Monitoring the clean-up operation of agricultural fields flooded with red mud in Hungary.

    PubMed

    Uzinger, Nikolett; Rékási, Márk; Anton, Áron D; Koós, Sándor; László, Péter; Anton, Attila

    2016-12-01

    In the course of the clean-up operation after the red mud inundation in 2010, red mud was removed from the soil surface in places where the layer was more than 5 cm deep. Before its removal, the red mud seeped into the soil. In 2012, soil samples were taken from depths of 0 to 20 and 20 to 40 cm on some of the affected areas. The parameters investigated were pH, organic matter, salt%, and the total and mobile fractions of various elements. The values recorded in 2012 were compared with those measured immediately after the removal of the red mud in 2010 and with the background and clean-up target concentrations. The pH values remained below the designated limit, while the salt content only exhibited values in the weakly salty range on areas at the greatest distance from the dam. In the central part of the inundated area, total Na contents above the 900 mg/kg target value were observed, but the Na content in the 0-20-cm layer generally exhibited a decrease due to leaching. The pH and As concentration also showed a decline on several areas compared with the values recorded in 2010. Total As and Co contents in excess of the target values were recorded on the lowest-lying part of the flooded area, probably because the finest red mud particles were deposited the furthest from the dam, where they seeped into the soil. Nevertheless, the mobility and plant availability of both elements remained moderate. The total contents of both Co and Mo, however, exhibited a significant rise compared with both the background value and the 2010 data. The monitoring of the cleaned-up areas showed that after a 2-year period element concentrations that exceeded the target values and could be attributed to the red mud pollution were only detectable on the lowest-lying areas.

  4. Structural characterization of nickel oxide/hydroxide nanosheets produced by CBD technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taşköprü, T., E-mail: ttaskopru@anadolu.edu.tr; Department of Physics, Çankırı Karatekin University, Çankırı 18100; Zor, M.

    2015-10-15

    Graphical abstract: SEM images of (a) as deposited β-Ni(OH)2 and (b) NiO samples deposited with pH 10 solution. The inset figures shows the absorbance spectra of (a) β-Ni(OH)2 and (b) NiO samples. - Highlights: • The formation of β-Ni(OH){sub 2} and NiO were confirmed with XRD, SEM, FT-IR and Raman. • Porous nickel oxide was synthesized after heat treatment of nickel hydroxide. • The increase in pH value changes the nanoflake structure to hexagonal nanosheet. • On increasing the pH from 8 to 11, the band gap decreases from 3.52 to 3.37 eV. - Abstract: Nickel hydroxide samples were depositedmore » onto glass substrates using Ni(NO{sub 3}){sub 2}·6H{sub 2}O and aqueous ammonia by chemical bath deposition technique. The influence of pH of solution was investigated by means of X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, Raman spectroscopy, optical absorption and BET analysis. The as-deposited samples were identified as β-Ni(OH){sub 2}, were transformed into NiO after heat treatment in air at 500 °C for 2 h. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets. The optical transitions observed in the absorbance spectra below optical band gap is due to defects or Ni{sup 2+} vacancies in NiO samples. The band gap energy of NiO samples changes between 3.37 and 3.52 eV depending on the pH values.« less

  5. Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers.

    PubMed

    Mishra, Satyendra K; Gupta, Banshi D

    2013-05-07

    The fabrication and characterization of a surface plasmon resonance based pH sensor using coatings of silver, ITO (In2O3:SnO2), aluminium and smart hydrogel layers over an unclad core of an optical fiber have been reported. The silver, aluminium and ITO layers were coated using a thermal evaporation technique, while the hydrogel layer was prepared using a dip-coating method. The sensor works on the principle of detecting changes in the refractive index of the hydrogel layer due to its swelling and shrinkage caused by changes in the pH of the fluid surrounding the hydrogel layer. The sensor utilizes a wavelength interrogation technique and operates in a particular window of low and high pH values. Increasing the pH value of the fluid causes swelling of the hydrogel layer, which decreases its refractive index and results in a shift of the resonance wavelength towards blue in the transmitted spectra. The thicknesses of the ITO and aluminium layers have been optimized to achieve the best performance of the sensor. The ITO layer increases the sensitivity while the aluminium layer increases the detection accuracy of the sensor. The proposed sensor possesses maximum sensitivity in comparison to the sensors reported in the literature. A negligible effect of ambient temperature in the range 25 °C to 45 °C on the performance of the sensor has been observed. The additional advantages of the sensor are short response time, low cost, probe miniaturization, probe re-usability and the capability of remote sensing.

  6. Determination of acid forming potential of massive sulfide minerals and the tailings situated in lead/zinc mining district of Balya (NW Turkey)

    NASA Astrophysics Data System (ADS)

    Çelebi, E. Ender; Öncel, M. Salim

    2016-12-01

    Weathering of sulfide minerals is a major source of acid production in nature and especially in mining territories. Pyrite is not the only principal mineral that generates acid drainage: other sulfide minerals (sphalerite, galena, chalcopyrite, etc.) may also be responsible for acid production. In addition to massive sulfide minerals, sulfide-bearing mine tailings may also produce acid drainage due to oxidation and hydrolysis reactions in waste dumps. The lead/zinc (Pb/Zn) mining region in Balya and Balıkesir, in Turkey, has operated mines intensively since the 1860s; so that characterization of the sulfide minerals and tailings situated and formed around the mining site is of great importance to secure a sustainable environment. For this purpose, acid production and neutralization potentials of massive sulfide ores of the region, and in the Pb/Zn process facility mine tailings from ten different points of tailings dam, have been determined by applied conventional Acid-Base Accounting (ABA) and Net Acid Generation (NAG) static tests after chemical and mineralogical analysis. The NAG pH and net acid production potential (NAPP) values were compared on a chart in order to classify the samples as either acid generating or non-acid generating. According to the comparisons, the sulfide minerals were classified as potentially acid forming (PAF). Massive pyrite had the highest NAPP and NAG pH value of 1966.6 kg H2SO4/ton and 1.91, respectively and the galena had the lowest NAPP value of 558.9 kg H2SO4/ton. However, the sphalerite NAG leachate pH value of 4.30 was the highest in sulfide minerals so that the sphalerite plotted near the uncertainty reference border in the PAF zone. In the mine tailings, NAPP values of 105.9 kg H2SO4/ton on average and the NAG pH values of over 7.5 were determined. In addition to these tests, water leaching (agitation test) was carried out on tailings in order to generate more information. The tailings did not generate acidic leachates as they lie on limestone bed rock which neutralized the acidity.

  7. Validation of a portable, waterproof blood pH analyser for elasmobranchs.

    PubMed

    Talwar, Brendan; Bouyoucos, Ian A; Shipley, Oliver; Rummer, Jodie L; Mandelman, John W; Brooks, Edward J; Grubbs, R Dean

    2017-01-01

    Quantifying changes in blood chemistry in elasmobranchs can provide insights into the physiological insults caused by anthropogenic stress, and can ultimately inform conservation and management strategies. Current methods for analysing elasmobranch blood chemistry in the field are often costly and logistically challenging. We compared blood pH values measured using a portable, waterproof pH meter (Hanna Instruments HI 99161) with blood pH values measured by an i-STAT system (CG4+ cartridges), which was previously validated for teleost and elasmobranch fishes, to gauge the accuracy of the pH meter in determining whole blood pH for the Cuban dogfish ( Squalus cubensis ) and lemon shark ( Negaprion brevirostris ). There was a significant linear relationship between values derived via the pH meter and the i-STAT for both species across a wide range of pH values and temperatures (Cuban dogfish: 6.8-7.1 pH 24-30°C; lemon sharks: 7.0-7.45 pH 25-31°C). The relative error in the pH meter's measurements was ~±2.7%. Using this device with appropriate correction factors and consideration of calibration temperatures can result in both a rapid and accurate assessment of whole blood pH, at least for the two elasmobranch species examined here. Additional species should be examined in the future across a wide range of temperatures to determine whether correction factors are universal.

  8. Biophysical characterization and conformational stability of Ebola and Marburg virus-like particles.

    PubMed

    Hu, Lei; Trefethen, Jared M; Zeng, Yuhong; Yee, Luisa; Ohtake, Satoshi; Lechuga-Ballesteros, David; Warfield, Kelly L; Aman, M Javad; Shulenin, Sergey; Unfer, Robert; Enterlein, Sven G; Truong-Le, Vu; Volkin, David B; Joshi, Sangeeta B; Middaugh, C Russell

    2011-12-01

    The filoviruses, Ebola virus and Marburg virus, cause severe hemorrhagic fever with up to 90% human mortality. Virus-like particles of EBOV (eVLPs) and MARV (mVLPs) are attractive vaccine candidates. For the development of stable vaccines, the conformational stability of these two enveloped VLPs produced in insect cells was characterized by various spectroscopic techniques over a wide pH and temperature range. Temperature-induced aggregation of the VLPs at various pH values was monitored by light scattering. Temperature/pH empirical phase diagrams (EPDs) of the two VLPs were constructed to summarize the large volume of data generated. The EPDs show that both VLPs lose their conformational integrity above about 50°C-60°C, depending on solution pH. The VLPs were maximally thermal stable in solution at pH 7-8, with a significant reduction in stability at pH 5 and 6. They were much less stable in solution at pH 3-4 due to increased susceptibility of the VLPs to aggregation. The characterization data and conformational stability profiles from these studies provide a basis for selection of optimized solution conditions for further vaccine formulation and long-term stability studies of eVLPs and mVLPs. Copyright © 2011 Wiley-Liss, Inc.

  9. Acid and alkaline solubilization (pH shift) process: a better approach for the utilization of fish processing waste and by-products.

    PubMed

    Surasani, Vijay Kumar Reddy

    2018-05-22

    Several technologies and methods have been developed over the years to address the environmental pollution and nutritional losses associated with the dumping of fish processing waste and low-cost fish and by-products. Despite the continuous efforts put in this field, none of the developed technologies was successful in addressing the issues due to various technical problems. To solve the problems associated with the fish processing waste and low-value fish and by-products, a process called pH shift/acid and alkaline solubilization process was developed. In this process, proteins are first solubilized using acid and alkali followed by precipitating them at their isoelectric pH to recover functional and stable protein isolates from underutilized fish species and by-products. Many studies were conducted using pH shift process to recover proteins from fish and fish by-products and found to be most successful in recovering proteins with increased yields than conventional surimi (three cycle washing) process and with good functional properties. In this paper, problems associated with conventional processing, advantages and principle of pH shift processing, effect of pH shift process on the quality and storage stability of recovered isolates, applications protein isolates, etc. are discussed in detail for better understanding.

  10. Acid-base metabolism: implications for kidney stones formation.

    PubMed

    Hess, Bernhard

    2006-04-01

    The physiology and pathophysiology of renal H+ ion excretion and urinary buffer systems are reviewed. The main focus is on the two major conditions related to acid-base metabolism that cause kidney stone formation, i.e., distal renal tubular acidosis (dRTA) and abnormally low urine pH with subsequent uric acid stone formation. Both the entities can be seen on the background of disturbances of the major urinary buffer system, NH3+ <--> NH4+. On the one hand, reduced distal tubular secretion of H+ ions results in an abnormally high urinary pH and either incomplete or complete dRTA. On the other hand, reduced production/availability of NH4+ is the cause of an abnormally low urinary pH, which predisposes to uric acid stone formation. Most recent research indicates that the latter abnormality may be a renal manifestation of the increasingly prevalent metabolic syndrome. Despite opposite deviations from normal urinary pH values, both the dRTA and uric acid stone formation due to low urinary pH require the same treatment, i.e., alkali. In the dRTA, alkali is needed for improving the body's buffer capacity, whereas the goal of alkali treatment in uric acid stone formers is to increase the urinary pH to 6.2-6.8 in order to minimize uric acid crystallization.

  11. Superconducting Fluctuations above T c and pair breaking parameters of two dimensional Niobium Nitride Films

    NASA Astrophysics Data System (ADS)

    Shinozaki, B.; Ezaki, S.; Odou, T.; Makise, K.; Asano, T.

    2018-03-01

    Transport properties have been investigated for the epitaxial superconducting NbN thin films. We analysed the excess conductance σ’ ≡ σ(T) - σN by the sum of the Aslamazov-Larkin (AL) and Maki-Thompson (MT) terms for thermal fluctuations above T c, where the σN ≡1/R sq N is the normal state sheet conductance. We have found that the theoretical expression σ’theo (T) = σ’AL (T) + σ’MT (T,δ) can be well fitted to σ’exp (T) with use of the suitable value of the pair breaking parameter δ in the MT term relating to the inelastic scattering rate 1/τin(T) as δ = πħ/8k B Tτin. The rate 1/τin(T) given by the sum of 1/τfluc(T), 1/τe-e(T) and 1/τe-ph (T) is determined from the analysis of the magneto-conductance Δσ = σ(H) – σ(0) by the sum of AL, MT and the localization terms, where the first, second and third terms correspond to the rate due to the superconducting fluctuation effect, electron-electron and electron-phonon interactions, respectively. The R sq N dependence of δ is expressed by δ = δ0 + αR sq N, where the first term δ0 due to 1/τe-ph (T) and the second term due to the sum of 1/τfluc(T) and 1/τe-e(T). Although we obtained a reasonable value of Debye temperature ΘD ≈630 K from the δ0, the magnitude of the α is about 5 times larger than the theoretical value.

  12. The effects of surface chemistry of mesoporous silica materials and solution pH on kinetics of molsidomine adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolinina, E.S.; Parfenyuk, E.V., E-mail: terrakott37@mail.ru

    2014-01-15

    Adsorption kinetics of molsidomine on mesoporous silica material (UMS), the phenyl- (PhMS) and mercaptopropyl-functionalized (MMS) derivatives from solution with different pH and 298 K was studied. The adsorption kinetics was found to follow the pseudo-second-order kinetic model for all studied silica materials and pH. Effects of surface functional groups and pH on adsorption efficiency and kinetic adsorption parameters were investigated. At all studied pH, the highest molsidomine amount is adsorbed on PhMS due to π–π interactions and hydrogen bonding between surface groups of PhMS and molsidomine molecules. An increase of pH results in a decrease of the amounts of adsorbedmore » molsidomine onto the silica materials. Furthermore, the highest adsorption rate kinetically evaluated using a pseudo-second-order model, is observed onto UMS and it strongly depends on pH. The mechanism of the adsorption process was determined from the intraparticle diffusion and Boyd kinetic film–diffusion models. The results showed that the molsidomine adsorption on the silica materials is controlled by film diffusion. Effect of pH on the diffusion parameters is discussed. - Graphical abstract: The kinetic study showed that the k{sub 2} value, the rate constant of pseudo-second order kinetic model, is the highest for molsidomine adsorption on UMS and strongly depends on pH because it is determined by availability and accessibility of the reaction sites of the adsorbents molsidomine binding. Display Omitted - Highlights: • The adsorption capacities of UMS, PhMS and MMS were dependent on the pH. • At all studied pH, the highest molsidomine amount is adsorbed on PhMS. • The highest adsorption rate, k{sub 2}, is observed onto UMS and strongly depends on pH. • Film diffusion was the likely rate-limiting step in the adsorption process.« less

  13. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-11-01

    The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H+) and hydroxide (OH-) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H+ and OH- ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the relative resistance variations of the sensor increases linearly with increasing the pH values in the range from 5 to 9 and the response time ranges from 0.2 s to 22.6 s. The pH sensor also shows high performance in mechanical bendability, which benefited from the combination of flexible PET substrates and SWNTs. The SWNT-based flexible pH sensor demonstrates great potential in a wide range of areas due to its simple structure, excellent performance, low power consumption, and compatibility with integrated circuits.

  14. Selective binding behavior of humic acid removal by aluminum coagulation.

    PubMed

    Jin, Pengkang; Song, Jina; Yang, Lei; Jin, Xin; Wang, Xiaochang C

    2018-02-01

    The reactivity characteristics of humic acid (HA) with aluminium coagulants at different pH values was investigated. It revealed that the linear complexation reaction occurred between aluminum and humic acid at pH < 7, and the reaction rate increased as the pH increased from 2 to 6. While at pH = 7, most of the dosed aluminum existed in the form of free aluminum and remained unreacted in the presence of HA until the concentration reached to trigger Al(OH) 3(s) formation. Differentiating the change of functional groups of HA by 1 H nuclear magnetic resonance spectroscopy and X-ray photoelectron spectra analysis, it elucidated that there was a selective complexation between HA and Al with lower Al dosage at pH 5, which was probably due to coordination of the activated functional groups onto aluminium. While almost all components were removed proportionally by sweep adsorption without selectivity at pH 7, as well as that with higher Al dosage at pH 5. This study provided a promising pathway to analyse the mechanism of the interaction between HA and metal coagulants in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Nanoparticle titanium dioxide aqueous interfacial energy can be modified to control phase stability, coarsening, and morphology

    NASA Astrophysics Data System (ADS)

    Finnegan, Michael Patrick

    The effect of solution chemistry on the phase stability, coarsening kinetics and morphology of titanium dioxide (TiO2) nanoparticles is investigated in order to attain efficient production pathways to desired nano-structures with optimal properties. To obtain sample, TiO2 was synthesized via hydrolysis of titanium isopropoxide producing an 85% anatase/15% brookite mixture. The titania was hydrothermally heated in an array of temperatures and pH values for various times. There are distinct phase stability fields for nanoscale titania based on pH alone due to slight interface charging behavior differences among the polymorphs. The mixture transforms to rutile below the pH of zero point of charge (ZPC) and remains anatase above the ZPC. This phenomenon is partially reversible. The solution chemistry also dictates the hydrothermal coarsening mechanism of the anatase polymorph. Ostwald ripening (OR) takes place in basic pH where titania solubility is elevated relative to neutral pH where lower solubility prevents rapid OR but allows for coarsening via oriented attachment (OA) of nanoparticles. This OA event can alter the symmetry of anatase causing unexpected and perhaps technically useful morphologies such as straight and curved nanorods during coarsening.

  16. Acid base activity of live bacteria: Implications for quantifying cell wall charge

    NASA Astrophysics Data System (ADS)

    Claessens, Jacqueline; van Lith, Yvonne; Laverman, Anniet M.; Van Cappellen, Philippe

    2006-01-01

    To distinguish the buffering capacity associated with functional groups in the cell wall from that resulting from metabolic processes, base or acid consumption by live and dead cells of the Gram-negative bacterium Shewanella putrefaciens was measured in a pH stat system. Live cells exhibited fast consumption of acid (pH 4) or base (pH 7, 8, 9, and 10) during the first few minutes of the experiments. At pH 5.5, no acid or base was required to maintain the initial pH constant. The initial amounts of acid or base consumed by the live cells at pH 4, 8, and 10 were of comparable magnitudes as those neutralized at the same pHs by intact cells killed by exposure to gamma radiation or ethanol. Cells disrupted in a French press required higher amounts of acid or base, due to additional buffering by intracellular constituents. At pH 4, acid neutralization by suspensions of live cells stopped after 50 min, because of loss of viability. In contrast, under neutral and alkaline conditions, base consumption continued for the entire duration of the experiments (5 h). This long-term base neutralization was, at least partly, due to active respiration by the cells, as indicated by the build-up of succinate in solution. Qualitatively, the acid-base activity of live cells of the Gram-positive bacterium Bacillus subtilis resembled that of S. putrefaciens. The pH-dependent charging of ionizable functional groups in the cell walls of the live bacteria was estimated from the initial amounts of acid or base consumed in the pH stat experiments. From pH 4 to 10, the cell wall charge increased from near-zero values to about -4 × 10 -16 mol cell -1 and -6.5 × 10 -16 mol cell -1 for S. putrefaciens and B. subtilis, respectively. The similar cell wall charging of the two bacterial strains is consistent with the inferred low contribution of lipopolysaccharides to the buffering capacity of the Gram-negative cell wall (of the order of 10%).

  17. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite

    USGS Publications Warehouse

    Balci, N.; Shanks, Wayne C.; Mayer, B.; Mandernack, K.W.

    2007-01-01

    To better understand reaction pathways of pyrite oxidation and biogeochemical controls on ??18O and ??34S values of the generated sulfate in acid mine drainage (AMD) and other natural environments, we conducted a series of pyrite oxidation experiments in the laboratory. Our biological and abiotic experiments were conducted under aerobic conditions by using O2 as an oxidizing agent and under anaerobic conditions by using dissolved Fe(III)aq as an oxidant with varying ??18OH2O values in the presence and absence of Acidithiobacillus ferrooxidans. In addition, aerobic biological experiments were designed as short- and long-term experiments where the final pH was controlled at ???2.7 and 2.2, respectively. Due to the slower kinetics of abiotic sulfide oxidation, the aerobic abiotic experiments were only conducted as long term with a final pH of ???2.7. The ??34SSO4 values from both the biological and abiotic anaerobic experiments indicated a small but significant sulfur isotope fractionation (???-0.7???) in contrast to no significant fractionation observed from any of the aerobic experiments. Relative percentages of the incorporation of water-derived oxygen and dissolved oxygen (O2) to sulfate were estimated, in addition to the oxygen isotope fractionation between sulfate and water, and dissolved oxygen. As expected, during the biological and abiotic anaerobic experiments all of the sulfate oxygen was derived from water. The percentage incorporation of water-derived oxygen into sulfate during the oxidation experiments by O2 varied with longer incubation and lower pH, but not due to the presence or absence of bacteria. These percentages were estimated as 85%, 92% and 87% from the short-term biological, long-term biological and abiotic control experiments, respectively. An oxygen isotope fractionation effect between sulfate and water (??18 OSO4 s(-) H2 O) of ???3.5??? was determined for the anaerobic (biological and abiotic) experiments. This measured ??18 OSO42 - s(-) H2 O value was then used to estimate the oxygen isotope fractionation effects (??18 OSO42 - s(-) O2) between sulfate and dissolved oxygen in the aerobic experiments which were -10.0???, -10.8???, and -9.8??? for the short-term biological, long-term biological and abiotic control experiments, respectively. Based on the similarity between ??18OSO4 values in the biological and abiotic experiments, it is suggested that ??18OSO4 values cannot be used to distinguish biological and abiotic mechanisms of pyrite oxidation. The results presented here suggest that Fe(III)aq is the primary oxidant for pyrite at pH < 3, even in the presence of dissolved oxygen, and that the main oxygen source of sulfate is water-oxygen under both aerobic and anaerobic conditions. ?? 2007 Elsevier Ltd. All rights reserved.

  18. Fluorescent probes and nanoparticles for intracellular sensing of pH values

    NASA Astrophysics Data System (ADS)

    Shi, Wen; Li, Xiaohua; Ma, Huimin

    2014-12-01

    Intracellular pH regulates a number of cell metabolism processes and its sensing is thus of great importance for cell studies. Among various methods, fluorescent probes have been widely used for sensing intracellular pH values because of their high sensitivity and spatiotemporal resolution capability. In this article, the development of fluorescent probes with good practicability in sensing intracellular pH values and pH variation during 2009 - 2014 is reviewed. These fluorescence probes are divided into two kinds: small molecules and nanoparticles. Photophysical properties, advantages/disadvantages and applications of the two kinds of probes are discussed in detail.

  19. Formation of Hg(II) tetrathiolate complexes with cysteine at neutral pH

    DOE PAGES

    Warner, Thomas; Jalilehvand, Farideh

    2016-01-04

    Mercury(II) ions precipitate from aqueous cysteine (H 2Cys) solutions containing H 2Cys/Hg(II) mole ratio ≥ 2.0 as Hg( S-HCys) 2. In absence of additional cysteine, the precipitate dissolves at pH ~12 with the [Hg( S, N-Cys) 2] 2- complex dominating. With excess cysteine (H 2Cys/Hg(II) mole ratio ≥ 4.0), higher complexes form and the precipitate dissolves at lower pH values. Previously, we found that tetrathiolate [Hg( S-Cys) 4] 6- complexes form at pH = 11.0; in this work we extend the investigation to pH values of physiological interest. We examined two series of Hg(II)-cysteine solutions in which C Hg(II) variedmore » between 8 – 9 mM and 80 – 100 mM, respectively, with H 2Cys/Hg(II) mole ratios from 4 to ~20. The solutions were prepared in the pH range 7.1 – 8.8, at the pH at which the initial Hg( S-HCys) 2 precipitate dissolved. The variations in the Hg(II) speciation were followed by 199Hg NMR, X-ray absorption and Raman spectroscopic techniques. Our results show that in the dilute solutions (C Hg(II) = 8 – 9 mM), mixtures of di-, tri- (major) and tetrathiolate complexes exist at moderate cysteine excess (C H2Cys ~ 0.16 M) at pH 7.1. In the more concentrated solutions (C Hg(II) = 80 – 100 mM) with high cysteine excess (C H2Cys > 0.9 M), tetrathiolate [Hg( S-cysteinate) 4] m-6 ( m = 0 – 4) complexes dominate in the pH range 7.3 – 7.8, with lower charge than for the [Hg( S-Cys) 4] 6- complex due to protonation of some ( m) of the amino groups of the coordinated cysteine ligands. In conclusion, the results of this investigation could provide a key to the mechanism of biosorption and accumulation of Hg(II) ions in biological / environmental systems.« less

  20. pH triggered in vivo photothermal therapy and fluorescence nanoplatform of cancer based on responsive polymer-indocyanine green integrated reduced graphene oxide.

    PubMed

    Sharker, Shazid Md; Lee, Jung Eun; Kim, Sung Han; Jeong, Ji Hoon; In, Insik; Lee, Haeshin; Park, Sung Young

    2015-08-01

    We have synthesized a pH-dependent, NIR-sensitive, reduced graphene oxide (rGO) hybrid nano-composite via electrostatic interaction with indocyanine green (ICG) which is designed not only to destroy localized cancer cells but also be minimally invasive to surrounding normal cells. The near-infrared (NIR) irradiated hybrid nano-composites showed pH dependent photo-thermal heat generation capability from pH 5.0 to 7.4 due to the pH response relief and quenching effects of poly(2-dimethyl amino ethyl methacrylate) [poly(PDMAEMA)] with ICG on a single rGO sheet. This pH-triggered relief and quenching mechanism regulated in vitro photo-thermolysis as the pH changed from 5.0 to 7.4. The in vitro cellular uptake and confocal laser scan microscopic (CLSM) images at different pH values show promise for environment sensitive bio-imaging. The NIR-absorbing hybrid nanomaterials showed a remarkably improved in vitro cancer cell targeted photothermal destruction compared to free ICG. Upon local NIR irradiation, these hybrid nano-composites-treated tumors showed necrotic, shrunken, ablation of malignant cells and totally healed after 18 days treatment. Our finding regarding the acidic pH stimulus of cancer cellular environment has proven to be a wining platform for the fight against cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Adsorption and desorption for dynamics transport of hexavalent chromium Cr(Ⅵ) in soil column

    NASA Astrophysics Data System (ADS)

    Tong, J.

    2017-12-01

    Batch experiments have been carried out to study the adsorption of heavy metals in soils, and the migration and transformation of hexavalent chromium Cr(Ⅵ) in the soil of a vegetable base were studied by dynamic adsorption and desorption soil column experiments. The aim of this study was to investigate the effect of initial concentration and pH value on the adsorption process of Cr(Ⅵ). Breakthrough curve were used to evaluate the capacity of Cr(Ⅵ) adsorption in soil columns. The results show that the higher the initial concentration, the worse the adsorption capacity of Cr(Ⅵ). The adsorption of Cr(Ⅵ) was strongly sensitive to pH value. The capacity of Cr(Ⅵ) adsorption is maximized at very low pH value. This may be due to changes in pH that cause a series of complex reactions in Cr(Ⅵ). In a strongly acidic environment, the reaction of Cr(Ⅵ) with hydrogen ions is accompanied by the formation of Cr3+, which reacts with the soil free iron-aluminum oxide to produce hydroxide in the soil. The results of the desorption experiments indicate that Cr(Ⅵ) is more likely to leach from this soil, but if the eluent is strong acid solution, the leaching process will be slow and persistent. The program CXTFIT was used to fit the breakthrough curve to estimate parameters. The results of the calculation of the dispersion coefficient (D) can be obtained by this program. The two-site model fit the breakthrough curve data of Cr(Ⅵ) well, and the parameters calculated by CXTFIT can be used to explain the behavior of Cr(Ⅵ) migration and transformation in soil columns. When pH=2, the retardation factor (R) reach at 79.71 while the value of the R is generally around 10 in other experiments. The partitioning coefficient β shows that more than half of the adsorption sites are rate-limited in this adsorption process and non-equilibrium effects the Cr(Ⅵ) transport process in this soil.

  2. Influence of metakaolin on chemical resistance of concrete

    NASA Astrophysics Data System (ADS)

    Mlinárik, L.; Kopecskó, K.

    2013-12-01

    Nowadays the most suitable and widely used construction material is concrete. We could develop concrete for every request in connection with the properties of fresh concrete and the quality of hardened concrete, too. The demand is rising in application of special concretes, like high performance and ultra high performance concretes (HPC, UHPC). These are usable in extreme natural circumstances or in very corrosive surroundings (for example: sewage farm, sewer, cooling tower, biogas factories). The pH value of the commercial sewage is between 7-8, but this value is often around 4 or less. The concrete pipes, which transport the sewage, are under corrosion, because above the liquid level sulphuric acid occurs due to microbes. Acidic surroundings could start the corrosion of concrete. When the pH value reduces, the influence of the acids will increase. The most significant influence has the sulphuric acid. The pH value of sulphuric acid is about 1, or less. Earlier in the cooling towers of coal thermal power stations used special coating on the concrete wall. Recently application of high performance concrete without polymeric coating is more general. Cementitious supplementary materials are widely used to protect the concrete from these corrosive surroundings. Usually used cementitious supplementary materials are ground granulated blastfurnace slag (GGBS), flying ash (FA) or silica fume (SF). In the last years there has been a growing interest in the application of metakaolin. Metakaolin is made by heat treatment, calcinations of a natural clay mineral, kaolinite. In our present research the chemical resistance of mortars in different corrosive surroundings (pH=1 sulphuric acid; pH=3 acetic acid) and the chloride ion migration were studied on series of mortar samples using rapid chloride migration test. Cement paste and mortar samples were made with 17% metakaolin replacement or without metakaolin. The following cements were used: CEM II/A-S 42.5 N, CEM I 42.5 N-S. We concluded that the replacement of cement by metakaolin results in significant increases in compressive and tensile strengths and it prevents the infiltration of harmful substances.

  3. Process-based modeling of silicate mineral weathering responses to increasing atmospheric CO2 and climate change

    NASA Astrophysics Data System (ADS)

    Banwart, Steven A.; Berg, Astrid; Beerling, David J.

    2009-12-01

    A mathematical model describes silicate mineral weathering processes in modern soils located in the boreal coniferous region of northern Europe. The process model results demonstrate a stabilizing biological feedback mechanism between atmospheric CO2 levels and silicate weathering rates as is generally postulated for atmospheric evolution. The process model feedback response agrees within a factor of 2 of that calculated by a weathering feedback function of the type generally employed in global geochemical carbon cycle models of the Earth's Phanerozoic CO2 history. Sensitivity analysis of parameter values in the process model provides insight into the key mechanisms that influence the strength of the biological feedback to weathering. First, the process model accounts for the alkalinity released by weathering, whereby its acceleration stabilizes pH at values that are higher than expected. Although the process model yields faster weathering with increasing temperature, because of activation energy effects on mineral dissolution kinetics at warmer temperature, the mineral dissolution rate laws utilized in the process model also result in lower dissolution rates at higher pH values. Hence, as dissolution rates increase under warmer conditions, more alkalinity is released by the weathering reaction, helping maintain higher pH values thus stabilizing the weathering rate. Second, the process model yields a relatively low sensitivity of soil pH to increasing plant productivity. This is due to more rapid decomposition of dissolved organic carbon (DOC) under warmer conditions. Because DOC fluxes strongly influence the soil water proton balance and pH, this increased decomposition rate dampens the feedback between productivity and weathering. The process model is most sensitive to parameters reflecting soil structure; depth, porosity, and water content. This suggests that the role of biota to influence these characteristics of the weathering profile is as important, if not more important, than the role of biota to influence mineral dissolution rates through changes in soil water chemistry. This process-modeling approach to quantify the biological weathering feedback to atmospheric CO2 demonstrates the potential for a far more mechanistic description of weathering feedback in simulations of the global geochemical carbon cycle.

  4. Effects of niacin supplementation and dietary concentrate proportion on body temperature, ruminal pH and milk performance of primiparous dairy cows.

    PubMed

    Lohölter, Malte; Meyer, Ulrich; Rauls, Caroline; Rehage, Jürgen; Dänicke, Sven

    2013-06-01

    The objective of this study was to investigate the effects of niacin and dietary concentrate proportion on body temperature, ruminal pH and milk production of dairy cows. In a 2 × 2 factorial design, 20 primiparous Holstein cows (179 ± 12 days in milk) were assigned to four dietary treatments aimed to receive either 0 or 24 g niacin and 30% (low) or 60% (high) concentrate with the rest being a partial mixed ration (PMR) composed of 60% corn and 40% grass silage (on dry matter basis). Ambient temperature and relative humidity were determined and combined by the calculation of temperature humidity index. Respiration rates, rectal, skin and subcutaneous temperatures were measured. Milk production and composition were determined. Ruminal pH and temperature were recorded at a frequency of 5 min using wireless devices for continuous intra-ruminal measurement (boluses). pH values were corrected for pH sensor drift. The climatic conditions varied considerably but temporarily indicated mild heat stress. Niacin did not affect skin, rectal and subcutaneous temperatures but tended to increase respiration rates. High concentrate reduced skin temperatures at rump, thigh and neck by 0.1-0.3°C. Due to the technical disturbances, not all bolus data could be subjected to statistical evaluation. However, both niacin and high concentrate influenced mean ruminal pH. High concentrate increased the time spent with a pH below 5.6 and ruminal temperatures (0.2-0.3°C). Niacin and high concentrate enhanced milk, protein and lactose yield but reduced milk fat and protein content. Milk fat yield was slightly reduced by high concentrate but increased due to niacin supplementation. In conclusion, niacin did not affect body temperature but stimulated milk performance. High concentrate partially influenced body temperatures and had beneficial effects on milk production.

  5. Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs

    NASA Astrophysics Data System (ADS)

    D'Olivo, J. P.; McCulloch, M. T.; Eggins, S. M.; Trotter, J.

    2015-02-01

    The boron isotopic (δ11Bcarb) compositions of long-lived Porites coral are used to reconstruct reef-water pH across the central Great Barrier Reef (GBR) and assess the impact of river runoff on inshore reefs. For the period from 1940 to 2009, corals from both inner- and mid-shelf sites exhibit the same overall decrease in δ11Bcarb of 0.086 ± 0.033‰ per decade, equivalent to a decline in seawater pH (pHsw) of ~0.017 ± 0.007 pH units per decade. This decline is consistent with the long-term effects of ocean acidification based on estimates of CO2 uptake by surface waters due to rising atmospheric levels. We also find that, compared to the mid-shelf corals, the δ11Bcarb compositions of inner-shelf corals subject to river discharge events have higher and more variable values, and hence higher inferred pHsw values. These higher δ11Bcarb values of inner-shelf corals are particularly evident during wet years, despite river waters having lower pH. The main effect of river discharge on reef-water carbonate chemistry thus appears to be from reduced aragonite saturation state and higher nutrients driving increased phytoplankton productivity, resulting in the drawdown of pCO2 and increase in pHsw. Increased primary production therefore has the potential to counter the more transient effects of low-pH river water (pHrw) discharged into near-shore environments. Importantly, however, inshore reefs also show a consistent pattern of sharply declining coral growth that coincides with periods of high river discharge. This occurs despite these reefs having higher pHsw, demonstrating the overriding importance of local reef-water quality and reduced aragonite saturation state on coral reef health.

  6. Complete factorial design to adjust pH and sugar concentrations in the inoculum phase of Ralstonia solanacearum to optimize P(3HB) production

    PubMed Central

    Alves, Mariane Igansi; Rodrigues, Amanda Ávila; Furlan, Lígia; da Silva Rodrigues, Rosane; Diaz de Oliveira, Patrícia; Vendruscolo, Claire Tondo; da Silveira Moreira, Angelita

    2017-01-01

    Poly(3-hydroxybutyrate) (P(3HB)) is a biodegradable plastic biopolymer that accumulates as lipophilic inclusions in the cytoplasm of some microorganisms. The biotechnological process by which P(3HB) is synthesized occurs in two phases. The first phase involves cell growth in a complex culture medium, while the second phase involves polymer accumulation in the presence of excess carbon sources. As such, the efficiency of the second phase depends on the first phase. The aim of this study was to evaluate culture media with different concentrations of sucrose and glucose and different pH values in the inoculum phase of Ralstonia solanacearum RS with the intention of identifying methods by which the biomass yield could be increased, subsequently enhancing the yield of P(3HB). The culture medium was formulated according to the experimental planning type of central composite rotational design 22. The independent variables were pH and sugar concentration (sucrose and glucose), and the dependent variables were OD600nm, dry cell weight (DCW), and P(3HB) yield. The highest cell growth, estimated by the OD600nm (20.6) and DCW (5.35) values, was obtained when sucrose was used in the culture medium at a concentration above 35 g.L-1 in combination with an acidic pH. High polymer (45%) accumulation was also achieved under these conditions. Using glucose, the best results for OD600nm (12.5) and DCW (2.74) were also obtained at acidic pH but with a sugar concentration at the minimum values evaluated. Due to the significant accumulation of polymer in the cells that were still in the growth phase, the accumulating microorganism P(3HB) Ralstonia solanacearum RS can be classified as having type II metabolism in relation to the polymer accumulation phase, which is different from other Ralstonia spp. studied until this time. PMID:28704411

  7. Waffle production: influence of batter ingredients on sticking of fresh egg waffles at baking plates-Part I: effect of starch and sugar components.

    PubMed

    Huber, Regina; Schoenlechner, Regine

    2017-05-01

    Fresh egg waffles are a sweet convenience product typically baked from eggs, water, sugar, flour, fat, leavening agents, emulsifiers, preservatives, and flavors. In industrial production, waffles are baked continuously in high amounts of up to 200 kg raw material per hour. Therefore, it is important that the waffles do not stick onto the baking plates, which can cause significant product loss and increased costs due to interruption of the baking process, required cleaning procedures, and restarting of the energy-consuming start-up phase. Sticking of waffles is greatly influenced not only by baking plate material, release agent, baking temperature, and time, but also by the batter ingredients. In this study, effects of different starches and sugar components were investigated. Within the selected starches, potato starch demonstrated the highest effects on increasing waffle stability and releasing properties compared to wheat and lupine flour (less than 7% sticking waffles). Rice flour performed worst, with almost 50% of sticking waffles. Most of these waffles were broken during take-off, due to their crumbly texture. Within the sugar components, glycerine was better suitable than sorbitol and crystal sugar was superior compared to powdered sugar. They required less take-off force. It could be demonstrated that waffles with increased stability and texture were those that showed the least number of sticking waffles, thus the main aim of batter ingredients was to improve waffle quality. Waffle quality was influenced by batter parameters, significant correlations could be found, for example, a positive correlation between pH- and L-value, negative correlations between pH- and a-value, or density and aw-value. This resulted in significant correlations with take-off-force, which was correlated with L*- and b*-value (negative) and positive to a*-value. Sticking behavior was strongly associated with b*-value (positive) and to a*-value (negative).

  8. Effect of continuous dialysis on blood ph in acidemic hypercapnic animals with severe acute kidney injury: a randomized experimental study comparing high vs. low bicarbonate affluent.

    PubMed

    Romano, Thiago Gomes; Azevedo, Luciano Cesar Pontes; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Park, Marcelo

    2017-12-01

    Controlling blood pH during acute ventilatory failure and hypercapnia in individuals suffering from severe acute kidney injury (AKI) and undergoing continuous renal replacement therapy (CRRT) is of paramount importance in critical care settings. In this situation, the optimal concentration of sodium bicarbonate in the dialysate is still an unsolved question in critical care since high concentrations may worsen carbon dioxide levels and low concentrations may not be as effective in controlling pH. We performed a randomized, non-blinded, experimental study. AKI was induced in 12 female pigs via renal hilum ligation and hypoventilation by reducing the tidal volume during mechanical ventilation with the goal of achieving a pH between 7.10-7.15. After achieving the target pH, animals were randomized to undergo isovolemic hemodialysis with one of two bicarbonate concentrations in the dialysate (40 mEq/L [group 40] vs. 20 mEq/L [group 20]). Hemodynamic, respiratory, and laboratory data were collected. The median pH value at CRRT initiation was 7.14 [7.12, 7.15] in group 20 and 7.13 [7.09, 7.14] in group 40 (P = ns). The median baseline PaCO 2 was 74 [72, 81] mmHg in group 20 vs. 79 [63, 85] mmHg in group 40 (P = ns). After 3 h of CRRT, the pH value was 7.05 [6.95, 7.09] in group 20 and 7.12 [7.1, 7.14] in group 40 (P < 0.05), with corresponding values of PaCO 2 of 85 [79, 88] mmHg vs. 81 [63, 100] mmHg (P = ns). The difference in pH after 3 h was due to a metabolic component [standard base excess -10.4 [-12.5, -9.5] mEq/L in group 20 vs. -7.6 [-9.2, -5.1] mEq/L in group 40) (P < 0.05)]. Despite the increased infusion of bicarbonate in group 40, the blood CO 2 content did not change during the experiment. The 12-h survival rate was higher in group 40 (67% vs. 0, P = 0.032). A higher bicarbonate concentration in the dialysate of animals undergoing hypercapnic respiratory failure was associated with improved blood pH control without increasing the PaCO 2 levels.

  9. The Simultaneous Determination of Muscle Cell pH Using a Weak Acid and Weak Base

    PubMed Central

    Adler, Sheldon

    1972-01-01

    Should significant pH heterogeneity exist within cells then the simultaneous calculation of intracellular pH from the distribution of a weak acid will give a value closest to the highest pH in the system, whereas calculation from the distribution of a weak base will give a value closer to the lowest pH. These two values should then differ significantly. Intact rat diaphragms were exposed in vitro to varying bicarbonate concentrations (pure metabolic) and CO2 tensions (pure respiratory), and steady-state cell pH was measured simultaneously either by distribution of the weak acid 5,5-dimethyloxazolidine-2,4-dione-14C (pH DMO) or by distribution of the weak base nicotine-14C (pH nicotine). The latter compound was found suitable to measure cell pH since it was neither metabolized nor bound by rat diaphragms. At an external pH of 7.40, pH DMO was 7.17 while pH nicotine was 6.69—a pH difference of 0.48 pH units (P < 0.001). In either respiratory or metabolic alkalosis both DMO and pH nicotine rose so that differences between them remained essentially constant. Metabolic acidosis induced a decrease in both values though they fell more slowly than did extracellular pH. In contradistinction, in respiratory acidosis, decreasing extracellular pH from 7.40 to 6.80 resulted in 0.35 pH unit drop in pH DMO while pH nicotine remained constant. In every experiment, under all external conditions, pH DMO exceeded pH nicotine. These results indicate that there is significant pH heterogeneity within diaphragm muscle, but the degree of heterogeneity may vary under different external conditions. The metabolic implications of these findings are discussed. In addition, the data show that true overall cell pH is between 6.69 and 7.17—a full pH higher than would be expected from thermodynamic considerations alone. This implies the presence of active processes to maintain cell pH. PMID:5009113

  10. Degradation of 4-aminoantipyrine by electro-oxidation with a boron-doped diamond anode: Optimization by central composite design, oxidation products and toxicity.

    PubMed

    de Melo da Silva, Lucas; Gozzi, Fábio; Sirés, Ignasi; Brillas, Enric; de Oliveira, Silvio Cesar; Machulek, Amilcar

    2018-08-01

    Electro-oxidation with electrogenerated H 2 O 2 (EO-H 2 O 2 ) was applied to treat acidic aqueous solutions of 4-aminoantipyrine (4-AA), a persistent drug metabolite of dipyrone, in sulfate medium. Trials were made using a boron-doped diamond anode in the presence of H 2 O 2 electrogenerated on site. A 2 4 central composite design (CCD) was employed to evaluate the effect of four independent variables, namely current density (j), pH, 4-AA concentration and electrolysis time, on the percentages of degradation and mineralization, as well as on mineralization current efficiency (MCE). Predicted responses agreed with observed values, showing linear trendlines with good R 2 and R 2 adj values. The degradation was optimum at j=77.5mAcm -2 , pH3.5 and 62.5mgL -1 4-AA, leading to 63% and 99% removal after 3 and 7min, respectively. For those solutions, the largest mineralization was found at j=77.5mAcm -2 , attaining 45% abatement at 175min. Low MCE values were obtained in all electrolyses. An initial route for 4-AA degradation is proposed based on one dimer and eleven aromatic and aliphatic intermediates detected in the treated solutions at pH3.5 by LC-MS. The initial 62.5mgL -1 solution at pH3.5 presented acute toxicity on Artemia salina larvae, with LC 50 =13.6mgL -1 , being substantially reduced after 3 and 7min of EO-H 2 O 2 at j=77.5mAcm -2 due to the formation of less toxic derivatives. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Biomarkers of airway acidity and oxidative stress in exhaled breath condensate from grain workers.

    PubMed

    Do, Ron; Bartlett, Karen H; Dimich-Ward, Helen; Chu, Winnie; Kennedy, Susan M

    2008-11-15

    Grain workers report adverse respiratory symptoms due to exposures to grain dust and endotoxin. Studies have shown that biomarkers in exhaled breath condensate (EBC) vary with the severity of airway inflammation. The purpose of the study was to evaluate biomarkers of airway acidity (pH and ammonium [NH(4)(+)]) and oxidative stress (8-isoprostane) in the EBC of grain workers. A total of 75 workers from 5 terminal elevators participated. In addition to EBC sampling, exposure monitoring for inhalable grain dust and endotoxin was performed; spirometry, allergy testing, and a respiratory questionnaire derived from that of the American Thoracic Society were administered. Dust and endotoxin levels ranged from 0.010 to 13 mg/m(3) (median, 1.0) and 8.1 to 11,000 endotoxin units/m(3) (median, 610) respectively. EBC pH values varied from 4.3 to 8.2 (median, 7.9); NH(4)(+) values from 22 to 2,400 microM (median, 420); and 8-isoprostane values from 1.3 to 45 pg/ml (median, 11). Univariate and multivariable analyses revealed a consistent effect of cumulative smoking and obesity with decreased pH and NH(4)(+), and intensity of grain dust and endotoxin with increased 8-isoprostane. Duration of work on the test day was associated with decreased pH and NH(4)(+), whereas duration of employment in the industry was associated with decreased 8-isoprostane. Chronic exposures are associated with airway acidity, whereas acute exposures are more closely associated with oxidative stress. These results suggest that the collection of EBC may contribute to predicting the pathological state of the airways of workers exposed to acute and chronic factors.

  12. [Effects of ethanol extract of Rhizome Pinelliae Preparata on intracellular pH value of human gastric adenocarcinoma cells].

    PubMed

    Zhang, Ci-an; Wu, Feng; Mao, Zhu-jun; Wei, Zhen; Li, Yong-jin; Wei, Pin-kang

    2011-08-01

    To observe the effects of ethanol extract of Rhizome Pinelliae Preparata on the intracellular pH value of human gastric cancer SGC7901 cells. After coculturing SGC7901 cells with ethanol extract of Rhizome Pinelliae Preparata (1, 0.5, 0.25 and 0.125 mg/mL), cell viability was evaluated by chromatometry with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining. Intracellular pH value of SGC7901 cells was measured in the monolayer by using the pH-sensitive fluorescent probe 2,7-bis-(2-carboxyethyl)-5-carboxyfluorescein-acetoxymethyl ester. The extracellular pH value of culture medium was measured by a pH211 Calibration Check Microprocessor pH Meter. Half-inhibitory concentration (IC(50)) of ethanol extract culture to SGC7901 cells was decided by the MTT method and expressions of vacuolar-H(+)-ATPase (V-ATPase) and Na(+)/H(+) exchanger isoform 1 (NHE1) mRNAs were examined by the method of fluorescence quantitative-polymerase chain reaction after 72 h of drug treatment. Ethanol extract of Rhizome Pinelliae Preparata at different concentrations significantly inhibited the proliferation of SGC7901 cells, lowered the intracellular pH values and heightened the extracellular pH values. The IC(50) of 72 h culture was 0.5mg/mL and it inhibited the expressions of V-ATPase and NHE1 mRNAs. Ethanol extract of Rhizome Pinelliae Preparata can lower down the intracellular pH value of SGC7901 cells. The mechanism may be related to inhibiting the expressions of V-ATPase and NHE1 mRNAs.

  13. Thermal inactivation kinetics of Bacillus coagulans spores in tomato juice.

    PubMed

    Peng, Jing; Mah, Jae-Hyung; Somavat, Romel; Mohamed, Hussein; Sastry, Sudhir; Tang, Juming

    2012-07-01

    The thermal characteristics of the spores and vegetative cells of three strains of Bacillus coagulans (ATCC 8038, ATCC 7050, and 185A) in tomato juice were evaluated. B. coagulans ATCC 8038 was chosen as the target microorganism for thermal processing of tomato products due to its spores having the highest thermal resistance among the three strains. The thermal inactivation kinetics of B. coagulans ATCC 8038 spores in tomato juice between 95 and 115°C were determined independently in two different laboratories using two different heating setups. The results obtained from both laboratories were in general agreement, with z-values (z-value is defined as the change in temperature required for a 10-fold reduction of the D-value, which is defined as the time required at a certain temperature for a 1-log reduction of the target microorganisms) of 8.3 and 8.7°C, respectively. The z-value of B. coagulans 185A spores in tomato juice (pH 4.3) was found to be 10.2°C. The influence of environmental factors, including cold storage time, pH, and preconditioning, upon the thermal resistance of these bacterial spores is discussed. The results obtained showed that a storage temperature of 4°C was appropriate for maintaining the viability and thermal resistance of B. coagulans ATCC 8038 spores. Acidifying the pH of tomato juice decreased the thermal resistance of these spores. A 1-h exposure at room temperature was considered optimal for preconditioning B. coagulans ATCC 8038 spores in tomato juice.

  14. Correlation between ultrafiltration rate and phase angle measured by BIA in chronic kidney disease patients on regular hemodialysis

    NASA Astrophysics Data System (ADS)

    Nasution, B. R.; Lubis, A. R.

    2018-03-01

    Chronic Kidney Disease (CKD) patients with regular hemodialysis have high rates of morbidity and mortality that may be related to the hemodynamic effects of rapid UFR and low PhA value. In this study, we investigated whether high UFR is associated with a low value of PhA thus indirectly affect the risk of morbidity and mortality. UFR and Bioelectrical Impedance Analysis (BIA) examination on 92 subjects were recorded shortly after HD and analyzed by using Pearson correlation test. Multivariate analysis was also conducted to identify several factors that can affect the value of Phase angle. The number of HD regular CKD patients with PhA<4 based on the division of the UFR (cc/kg/h) <10, 10-13, ≥ 13, respectively were3, 10 and 6, whereas patients with ≥ 4 PhA <10, 10-13, ≥ 13respectively were 60, 11, and 2. The results showed a significant relationship between UFR with PhA. In CKD patients with regular HD, UFR has aninverse relationship with the value of PhA. After multivariate analysis, the UFR and the etiology of HD are still significantly affect the value of PhA. UFR optimal value in patients with CKD with regular HD is <10 cc/kg/h.

  15. A Reliable and Non-destructive Method for Monitoring the Stromal pH in Isolated Chloroplasts Using a Fluorescent pH Probe.

    PubMed

    Su, Pai-Hsiang; Lai, Yen-Hsun

    2017-01-01

    The proton gradient established by the pH difference across a biological membrane is essential for many physiological processes, including ATP synthesis and ion and metabolite transport. Currently, ionophores are used to study proton gradients, and determine their importance to biological functions of interest. Because of the lack of an easy method for monitoring the proton gradient across the inner envelope membrane of chloroplasts (ΔpH env ), whether the concentration of ionophores used can effectively abolish the ΔpH env is not proven for most experiments. To overcome this hindrance, we tried to setup an easy method for real-time monitoring of the stromal pH in buffered, isolated chloroplasts by using fluorescent pH probes; using this method the ΔpH env can be calculated by subtracting the buffer pH from the measured stromal pH. When three fluorescent dyes, BCECF-AM [2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester], CFDA-SE [5(6)-Carboxyfluorescein diacetate succinimidyl ester] and SNARF-1 carboxylic acid acetate succinimidyl ester were incubated with isolated chloroplasts, BCECF-AM and CFDA-SE, but not the ester-formed SNARF-1 were taken up by chloroplasts and digested with esterase to release high levels of fluorescence. According to its relatively higher pKa value (6.98, near the physiological pH of the stroma), BCECF was chosen for further development. Due to shielding of the excitation and emission lights by chloroplast pigments, the ratiometric fluorescence of BCECF was highly dependent on the concentration of chloroplasts. By using a fixed concentration of chloroplasts, a highly correlated standard curve of pH to the BCECF ratiometric fluorescence with an r -square value of 0.98 was obtained, indicating the reliability of this method. Consistent with previous reports, the light-dependent formation of ΔpH env can be detected ranging from 0.15 to 0.33 pH units upon illumination. The concentration of the ionophore nigericin required to collapse the ΔpH env was then studied. The establishment of a non-destructive method of monitoring the stromal pH will be valuable for studying the roles of the ΔpH env in chloroplast physiology.

  16. Studies on the development of functional powder from citrus peel.

    PubMed

    Kang, H J; Chawla, S P; Jo, C; Kwon, J H; Byun, M W

    2006-03-01

    The suitability of citrus peels, generated as a by-product of the juice industry, as a source of antioxidants was investigated. Citrus peel powder was prepared by lyophilizing 70% ethanol extract from citrus peels. Extraction was carried out at room temperature (20 degrees C) for 72 h. The extract was subjected to gamma-irradiation treatment (20 kGy). The aqueous solutions of citrus peel powder were examined for color characteristics and antioxidant potential in terms of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, beta-carotene bleaching and nitrite scavenging activities. There were significant changes in Hunter color values due to irradiation. The a*- and b*-values decreased due to radiation treatment. DPPH radical scavenging, beta-carotene bleaching and nitrite scavenging activities were not affected by irradiation treatment. Nitrite scavenging activity was the highest in the extract at pH 1.2 followed by pH 4.2 and 6.0. These functional properties of the aqueous solution were found to be stable in heat treatment. It could significantly improve oxidative stability of lipids in fish meat system. Based on these results there may be opportunities to use citrus peel powder as a functional component in the food processing industry with gamma irradiation treatment improving its color characteristics without adversely influencing the functional properties.

  17. Co-injection of SO2 With CO2 in Geological Sequestration: Potential for Acidification of Formation Brines

    NASA Astrophysics Data System (ADS)

    Ellis, B. R.; Crandell, L. E.; Peters, C. A.

    2008-12-01

    Coal-fired power plants produce flue gas streams containing 0.02-1.4% SO2 after traditional sulfur scrubbing techniques are employed. Due to the corrosive nature of H2SO4, it will likely be necessary to remove the residual SO2 prior to carbon capture and transport; however, it may still be economically advantageous to reintroduce the SO2 to the injection stream to mitigate the cost of SO2 disposal and/or to get credits for SO2 emissions reduction. This study examines the impact of SO2 co-injection on the pH of formation brine. Using phase equilibrium modeling, it is shown that a CO2 gas stream with 1% SO2 under oxidizing conditions can create extremely acidic conditions (pH<1), but this will occur only near the CO2 plume and over a short time frame. Nearly all of the SO2 will be lost to the brine during this first phase equilibration, within approximately a decade, and the pH after the second is only 3.7, which is the pH that would occur from the carbonic acid alone. This suggests that although SO2 will create low pH values due to the formation of H2SO4, the effect will have a very limited lifespan and a localized impact spatially. SO2 is much more soluble than CO2 and as the relative of amount of SO2 to CO2 is very small, the SO2 will quickly dissolve into the formation brine. The extent of H2SO4 formation is dependent on the redox conditions of the system. Several SO2 oxidation pathways are investigated, including SO2 disproportionation which produces both sulfate and the weaker acid, H2S. Further modeling considers a time varying, diffusion limited flux of SO2. Relative to the case of instantaneous phase equilibrium, this results in a smaller decrease in pH occurring over a longer duration. Our overall conclusion is that brine acidification due to SO2 co-injection is not likely to be significant over relevant time and spatial scales.

  18. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too.

    PubMed

    Tripathi, Binu M; Kim, Mincheol; Singh, Dharmesh; Lee-Cruz, Larisa; Lai-Hoe, Ang; Ainuddin, A N; Go, Rusea; Rahim, Raha Abdul; Husni, M H A; Chun, Jongsik; Adams, Jonathan M

    2012-08-01

    The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types--primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1-V3 region was pyrosequenced using the 454 Roche machine. We found that land use in itself has a weak but significant effect on the bacterial community composition. However, bacterial community composition and diversity was strongly correlated with soil properties, especially soil pH, total carbon, and C/N ratio. Soil pH was the best predictor of bacterial community composition and diversity across the various land use types, with the highest diversity close to neutral pH values. In addition, variation in phylogenetic structure of dominant lineages (Alphaproteobacteria, Beta/Gammaproteobacteria, Acidobacteria, and Actinobacteria) is also significantly correlated with soil pH. Together, these results confirm the importance of soil pH in structuring soil bacterial communities in Southeast Asia. Our results also suggest that unlike the general diversity pattern found for larger organisms, primary tropical forest is no richer in operational taxonomic units of soil bacteria than logged forest, and agricultural land (crop and pasture) is actually richer than primary forest, partly due to selection of more fertile soils that have higher pH for agriculture and the effects of soil liming raising pH.

  19. Continuous measurement of reticuloruminal pH values in dairy cows during the transition period from barn to pasture feeding using an indwelling wireless data transmitting unit.

    PubMed

    Gasteiner, J; Horn, M; Steinwidder, A

    2015-04-01

    This study was performed to investigate the effect of the transition from barn feeding to pasture on the pattern of reticuloruminal pH values in 8 multiparous dairy cows. A indwelling wireless data transmitting system for pH measurement was given to 8 multiparous cows orally. Reticuloruminal pH values were measured every 600 s over a period of 42 days. After 7 days of barn feeding (period 1), all of the animals were pastured with increasing grazing times from 2 to 7 h/day over 7 days (period 2). From day 15 to day 21 (period 3), the cows spent 7 h/day on pasture. Beginning on day 22, the animals had 20 h/day access to pasture (day and night grazing). To study reticuloruminal adaptation to pasture feeding, the phase of day and night grazing was subdivided into another 3 weekly periods (periods 4-6). Despite a mild transition period from barn feeding to pasture, significant effects on reticuloruminal pH values were observed. During barn feeding, the mean reticuloruminal pH value for all of the cows was 6.44 ± 0.14, and the pH values decreased significantly (p < 0.001) during period 2 and 3 to 6.24 ± 0.17 and 6.21 ± 0.19 respectively. During periods 4, 5 and 6, the reticuloruminal pH values increased again (pH 6.25 ± 0.22; pH 6.31 ± 0.17; pH 6.37 ± 0.16). Our results showed that the animals had significantly lowered reticuloruminal pH during the periods of feed transition from barn to pasture feeding. Despite these significant changes, the decrease was not harmful, as indicated by data of feed intake and milk production. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  20. Development of Alkoxide Precursors-Based Hybrid Coatings on Ti-6Al-4V Alloy for Biomedical Applications: Influence of pH of Sol

    NASA Astrophysics Data System (ADS)

    Salvador, D. G.; Marcolin, P.; Beltrami, L. V. R.; Brandalise, R. N.; Kunst, S. R.

    2018-04-01

    The Ti-6Al-4V alloy, widely used in biomedical applications, is associated with cytotoxic effects due to the release of aluminum and vanadium ions in the human body. One of the most effective ways to control the release of cytotoxic ions is through anti-corrosive coatings. Among them, the alkoxysilanes stand out for their good barrier properties and the absence of toxicity. Aiming to improve the clinical success rate of metallic implants, this study sets out to evaluate the influence of the pH of the sol on the physico-chemical, morphological, mechanical and electrochemical characteristics of hybrid films based on 3-(trimethoxysilylpropyl)methacrylate (MAP) and tetraethoxysilane (TEOS) applied to Ti-6Al-4V. The film was prepared by using the sol-gel method for pH values of 3, 4, and 5. The results indicated that maintaining the pH of the sol at 4 favors the hydrolysis rate of alkoxide precursors, which results in a uniform, dense and adherent film with excellent anti-corrosion performance.

  1. Catalytic degradation of picric acid by heterogeneous Fenton-based processes.

    PubMed

    Dulova, Niina; Trapido, Marina; Dulov, Aleksandr

    2011-01-01

    The efficiency of goethite, magnetite and iron powder (Fe0) in catalysing the Fenton-based oxidation of picric acid (PA) in aqueous solution was studied. The effect of pH, hydrogen peroxide concentration, and catalyst type and dosage on treatment efficacy was investigated. The adsorption of PA from aqueous solution by heterogeneous catalysts was also examined. The results demonstrated negligible PA removal in H2O2/alpha-FeOOH and H2O2/Fe3O4 systems independent of process pH, and hydrogen peroxide and catalyst dosage. The PA adsorption effects of both iron oxides turned out to be insignificant for all studied pH values and catalyst dosages. The H2O2/Fe0 system proved efficient at degrading PA, but only under acidic conditions (pH 3). The results indicated that, due to rather fast leaching of ferrous ions from the iron powder surface, PA degradation was carried out mainly by the classic Fenton oxidation mechanism in the bulk solution. The adsorption of PA onto the iron powder surface may also contribute to the overall efficiency of PA degradation.

  2. Potentiometric and Relaxometric Properties of a Gadolinium-based MRI Contrast Agent for Sensing Tissue pH

    PubMed Central

    Kálmán, Ferenc K.; Woods, Mark; Caravan, Peter; Jurek, Paul; Spiller, Marga; Tircsó, Gyula; Király, Róbert; Brücher, Ernő; Sherry, A. Dean

    2008-01-01

    The pH sensitive contrast agent, GdDOTA-4AmP (Gd1) has been successfully used to map tissue pH by MRI. Further studies now demonstrate that two distinct chemical forms of the complex can be prepared depending upon the pH at which Gd3+ is mixed with ligand 1. The desired pH sensitive form of this complex, referred to here as a Type II complex, is obtained as the exclusive product only when the complexation reaction is performed above pH 8. At lower pH values, a second complex is formed that, by analogy with an intermediate formed during preparation of GdDOTA, we tentatively assign this to a Type I complex where the Gd3+ is coordinated only by the appended side-chain arms of 1. The proportion of Type I complex formed is largely determined by the pH of the complexation reaction. The magnitude of pH dependent change in relaxivity of Gd1 was found to be less than earlier reported (S. Zhang, K. Wu, and A. D. Sherry, Angew. Chem., Int. Ed., 1999, 38, 3192), likely due to contamination of the earlier sample by an unknown amount of Type I complex. Examination of the NMRD and relaxivity temperature profiles, coupled with information from potentiometric titrations, shows that the amphoteric character of the phosphonate side-chains enables rapid prototropic exchange between the single bound water of the complex with those of the bulk water thereby giving Gd1 a unique pH dependent relaxivity that is quite useful for pH mapping of tissues by MRI. PMID:17539632

  3. Effect of pH on the survival of Listeria innocua in calcium ascorbate solutions and on quality of fresh-cut apples.

    PubMed

    Karaibrahimoglu, Yildiz; Fan, Xuetong; Sapers, Gerald M; Sokorai, Kimberly

    2004-04-01

    Fresh-cut apple slices were dipped in calcium ascorbate (CaA) solution at pH values ranging from 2.5 to 7.0 to inhibit browning. After treatment, the cut apples were stored at 4 and 10 degrees C for up to 21 days. Color and texture of the apples were determined on days 1, 14, and 21. In a separate experiement, the pH of CaA solution was adjusted with acetic acid to six different pH levels, and the solution was inoculated with Listeria innocua. The survival of the bacterium and the stability of CaA were determined at 0, 20, and 96 h. The cut apples maintained fresh quality when the pH of the CaA solution was above 4.5, but slight discoloration of apple slices dipped in pH 4.5 solution was observed after 14 days at 10 degrees C. At pH 5.0, the CaA dip maintained the quality of the apples at both temperatures for at least 21 days. The L. innocua population was reduced by 4 to 5 log CFU/ml at pH 4.5 after 96 h. At pH 5, the bacterial population in the CaA solution was reduced by approximately 2 log CFU/ml during the same period. The CaA solution was stable at pH 5 for at least 96 h. Reduction of the pH to between 4.5 and 5.0 might reduce the risk of foodborne illness due to consumption of fresh-cut apples treated with a CaA solution contaminated with Listeria.

  4. Regulation of arsenic mobility on basaltic glass surfaces by speciation and pH.

    PubMed

    Sigfusson, Bergur; Meharg, Andrew A; Gislason, Sigurdur R

    2008-12-01

    The importance of geothermal energy as a source for electricity generation and district heating has increased over recent decades. Arsenic can be a significant constituent of the geothermal fluids pumped to the surface during power generation. Dissolved As exists in different oxidation states, mainly as As(III) and As(V), and the charge of individual species varies with pH. Basaltic glass is one of the most important rock types in many high-temperature geothermal fields. Static batch and dynamic column experiments were combined to generate and validate sorption coefficients for As(III) and As(V) in contact with basaltic glass at pH 3-10. Validation was carried out by two empirical kinetic models and a surface complexation model (SCM). The SCM provided a better fit to the experimental column data than kinetic models at high pH values. However, in certain circumstances, an adequate estimation of As transport in the column could not be attained without incorporation of kinetic reactions. The varying mobility with pH was due to the combined effects of the variable charge of the basaltic glass with the pH point of zero charge at 6.8 and the individual As species as pH shifted, respectively. The mobility of As(III) decreased with increasing pH. The opposite was true for As(V), being nearly immobile at pH 3 to being highly mobile at pH 10. Incorporation of appropriate sorption constants, based on the measured pH and Eh of geothermal fluids, into regional groundwater-flow models should allow prediction of the As(III) and As(V) transport from geothermal systems to adjacent drinking water sources and ecosystems.

  5. Evaluation of the yield, molar mass of exopolysaccharides, and rheological properties of gels formed during fermentation of milk by Streptococcus thermophilus strains St-143 and ST-10255y.

    PubMed

    Khanal, Som N; Lucey, John A

    2017-09-01

    The yield and chemical structures of exopolysaccharides (EPS) produced by many strains of Streptococcus thermophilus have been characterized. However, the kinetics (or production profile) for EPS during milk fermentation is not clear. In this study, we investigated whether any differences existed in the yield and molar mass of EPS when milk was fermented at the same acidification rate by 2 strains of S. thermophilus (St-143 and ST-10255y). The type of EPS produced by these 2 strains is different. Milk samples were analyzed for EPS concentration every 30 min during a fermentation period of 270 min (final pH 4.5) by using a modified quantification method, which was faster and validated for its recovery of added EPS. Rheological properties of milks during fermentation were also analyzed using small-strain dynamic oscillatory rheology. For the determination of molar mass, EPS extracts were isolated by ultrafiltration of whey obtained during fermentation of milk to pH values 5.2, 4.9, 4.7, and 4.5, and molar mass was analyzed using size-exclusion chromatography-multi-angle laser light scattering. During fermentation, both strains appeared to start producing significant amounts of EPS after about ∼150 min, which corresponded to pH ∼5.3, which was close to the point of gelation. During the remainder of the fermentation process (150-270 min), the EPS concentration from strains St-143 and ST-10255y significantly increased from 30 to 72 mg/L and from 26 to 56 mg/L, respectively. The quantity of EPS recovered by our modified method was estimated to represent ∼60% of the total EPS added to milk. The molar mass of EPS produced by both strains appeared to slightly decrease during fermentation. At pH 5.2, EPS from St-143 and ST-10255y had molar masses of 2.9 × 10 6 and 1.4 × 10 6 g/mol, respectively, which decreased to 1.6 × 10 6 and 0.8 × 10 6 g/mol, respectively, when the pH of milk was 4.5. Distinct differences were apparent in the rheological properties of gels fermented by the 2 strains. At the end of fermentation, St-143 fermented milk had weaker gels with storage modulus (G') value at pH 4.6 of 26 Pa, whereas gels made with ST-10255y were stiffer with a G' value at pH 4.6 of 82 Pa. For St-143 gels, maximum loss tangent (LT max ) values were higher (0.50) and occurred earlier (at a higher pH value) than the LT max values (0.46) for gels from ST-10255y strain. Because the fermentation conditions were identical for both strains, the observed changes in rheological properties could be due to the differences in chemical structures and molar mass of the EPS produced by these 2 S. thermophilus strains. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Evidence of preorganization in quinonoid intermediate formation from L-Trp in H463F mutant Escherichia coli tryptophan indole-lyase from effects of pressure and pH.

    PubMed

    Phillips, Robert S; Kalu, Ukoha; Hay, Sam

    2012-08-21

    The effects of pH and hydrostatic pressure on the reaction of H463F tryptophan indole-lyase (TIL) have been evaluated. The mutant TIL shows very low activity for elimination of indole but is still competent to form a quinonoid intermediate from l-tryptophan [Phillips, R. S., Johnson, N., and Kamath, A. V. (2002) Biochemistry 41, 4012-4019]. Stopped-flow measurements show that the formation of the quinonoid intermediate at 505 nm is affected by pH, with a bell-shaped dependence for the forward rate constant, k(f), and dependence on a single basic group for the reverse rate constant, k(r), with the following values: pK(a1) = 8.14 ± 0.15, pK(a2) = 7.54 ± 0.15, k(f,min) = 18.1 ± 1.3 s(-1), k(f,max) = 179 ± 46.3 s(-1), k(r,min) = 11.4 ± 1.2 s(-1), and k(r,max) = 33 ± 1.6 s(-1). The pH effects may be due to ionization of Tyr74 as the base and Cys298 as the acid influencing the rate constant for deprotonation. High-pressure stopped-flow measurements were performed at pH 8, which is the optimum for the forward reaction. The rate constants show an increase with pressure up to 100 MPa and a subsequent decrease above 100 MPa. Fitting the pressure data gives the following values: k(f,0) = 15.4 ± 0.8 s(-1), ΔV(‡) = -29.4 ± 2.9 cm(3) mol(-1), and Δβ(‡) = -0.23 ± 0.03 cm(3) mol(-1) MPa(-1) for the forward reaction, and k(r,0) = 20.7 ± 0.8 s(-1), ΔV(‡) = -9.6 ± 2.3 cm(3) mol(-1), and Δβ(‡) = -0.05 ± 0.02 cm(3) mol(-1) MPa(-1) for the reverse reaction. The primary kinetic isotope effect on quinonoid intermediate formation at pH 8 is small (~2) and is not significantly pressure-dependent, suggesting that the effect of pressure on k(f) may be due to perturbation of an active site preorganization step. The negative activation volume is also consistent with preorganization of the ES complex prior to quinonoid intermediate formation, and the negative compressibility may be due to the effect of pressure on the enzyme conformation. These results support the conclusion that the preorganization of the H463F TIL Trp complex, which is probably dominated by motion of the l-Trp indole moiety of the aldimine complex, contributes to quinonoid intermediate formation.

  7. Sampling and storage of blood for pH and blood gas analysis.

    PubMed

    Haskins, S C

    1977-02-15

    Techniques used in sampling and storage of a blood sample for pH and gas measurements can have an important effect on the measured values. Observation of these techniques and principles will minimize in vitro alteration of the pH and blood gas values. To consider that a significant change has occurred in a pH or blood gas measurement from previous values, the change must exceed 0.015 for pH, 3 mm Hg for PCO2, 5 mm Hg for PO2, and 2 mEq/L for [HCO-3] or base excess/deficit. In vitro dilution of the blood sample with anticoagulant should be avoided because it will alter the measured PCO2 and base excess/deficit values. Arterial samples should be collected for meaningful pH and blood gas values. Central venous and free-flowing capillary blood can be used for screening procedures in normal patients but are subject to considerable error. A blood sample can be stored for up to 30 minutes at room temperature without significant change in acid-base values but only up to 12 minutes before significant changes occur in PO2. A blood sample can be stored for up to 3.5 hours in an ice-water bath without significant change in pH and for 6 hours without significant change in PCO2 or PO2. Variations of body temperatures from normal will cause a measurable change in pH and blood gas values when the blood is exposed to the normal water bath temperatures of the analyzer.

  8. Development of Hybrid pH sensor for long-term seawater pH monitoring.

    NASA Astrophysics Data System (ADS)

    Nakano, Y.; Egashira, T.; Miwa, T.; Kimoto, H.

    2016-02-01

    We have been developing the in situ pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring. We are planning to provide the HpHS for researchers and environmental consultants for observation of the CCS (Carbon dioxide Capture and Storage) monitoring system, the coastal environment monitoring system (e.g. Blue Carbon) and ocean acidification. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH (Clayton and Byrne, 1993 and Liu et al., 2011). We can choose both coefficients before deployment. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS consists of an aluminum pressure housing with optical cell (main unit) and an aluminum silicon-oil filled, pressure-compensated vessel containing pumps and valves (diaphragm pump and valve unit) and pressure-compensated reagents bags (pH indicator, pure water and Tris buffer or certified reference material: CRM) with an ability to resist water pressure to 3000m depth. The main unit holds system control boards, pump drivers, data storage (micro SD card), LED right source, photodiode, optical cell and pressure proof windows. The HpHS also has an aluminum pressure housing that holds a rechargeable lithium-ion battery or a lithium battery for the power supply (DC 24 V). The HpHS is correcting the value of the potentiometric pH sensor (measuring frequently) by the value of the spectrophotometric pH sensor (measuring less frequently). It is possible to calibrate in situ with Tris buffer or CRM on the spectrophotometric pH sensor. Therefore, the drifts in the value of potentiometric pH measurements can be compensated using the pH value obtained from the spectrophotometric pH measurements. Thereby, the sensor can measure accurately the value of pH over a long period of time with low power consumption.

  9. Validation of a portable, waterproof blood pH analyser for elasmobranchs

    PubMed Central

    Bouyoucos, Ian A.; Shipley, Oliver; Rummer, Jodie L.; Mandelman, John W.; Brooks, Edward J.; Grubbs, R. Dean

    2017-01-01

    Abstract Quantifying changes in blood chemistry in elasmobranchs can provide insights into the physiological insults caused by anthropogenic stress, and can ultimately inform conservation and management strategies. Current methods for analysing elasmobranch blood chemistry in the field are often costly and logistically challenging. We compared blood pH values measured using a portable, waterproof pH meter (Hanna Instruments HI 99161) with blood pH values measured by an i-STAT system (CG4+ cartridges), which was previously validated for teleost and elasmobranch fishes, to gauge the accuracy of the pH meter in determining whole blood pH for the Cuban dogfish (Squalus cubensis) and lemon shark (Negaprion brevirostris). There was a significant linear relationship between values derived via the pH meter and the i-STAT for both species across a wide range of pH values and temperatures (Cuban dogfish: 6.8–7.1 pH 24–30°C; lemon sharks: 7.0–7.45 pH 25–31°C). The relative error in the pH meter's measurements was ~±2.7%. Using this device with appropriate correction factors and consideration of calibration temperatures can result in both a rapid and accurate assessment of whole blood pH, at least for the two elasmobranch species examined here. Additional species should be examined in the future across a wide range of temperatures to determine whether correction factors are universal. PMID:28616238

  10. A survey of water activity and pH values in fresh pasta packed under modified atmosphere manufactured in Argentina and Uruguay.

    PubMed

    Schebor, C; Chirife, J

    2000-07-01

    The water activity (a(w)) and pH values of commercially available filled fresh pasta and gnocchi packed under modified atmosphere and manufactured in Argentina and Uruguay were examined. The retail survey included 58 samples (several brands) of filled pasta and 11 samples of gnocchi. Fillings consisted of different combinations of cheese (various types), beef, ricotta, ham, chicken, and spinach. The survey revealed that the a(w) values of the 58 samples of filled pasta ranged from 0.916 to 0.973, and their pH values ranged from 5.2 to 7.0. The a(w) of gnocchi was consistently higher and ranged from 0.936 to 0.983, with pH values from 4.8 to 6.4. Some samples of filled pasta and most gnocchi samples were found to have a(w) and pH values that would support growth of spores of Clostridium botulinum, if present, under conditions of temperature abuse (i.e., 30 degrees C).

  11. Automatic film processors' quality control test in Greek military hospitals.

    PubMed

    Lymberis, C; Efstathopoulos, E P; Manetou, A; Poudridis, G

    1993-04-01

    The two major military radiology installations (Athens, Greece) using a total of 15 automatic film processors were assessed using the 21-step-wedge method. The results of quality control in all these processors are presented. The parameters measured under actual working conditions were base and fog, contrast and speed. Base and fog as well as speed displayed large variations with average values generally higher than acceptable, whilst contrast displayed greater stability. Developer temperature was measured daily during the test and was found to be outside the film manufacturers' recommended limits in nine of the 15 processors. In only one processor did film passing time vary on an every day basis and this was due to maloperation. Developer pH test was not part of the daily monitoring service being performed every 5 days for each film processor and found to be in the range 9-12; 10 of the 15 processors presented pH values outside the limits specified by the film manufacturers.

  12. Effects of finite coverage on global polarization observables in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Lan, Shaowei; Lin, Zi-Wei; Shi, Shusu; Sun, Xu

    2018-05-01

    In non-central relativistic heavy ion collisions, the created matter possesses a large initial orbital angular momentum. Particles produced in the collisions could be polarized globally in the direction of the orbital angular momentum due to spin-orbit coupling. Recently, the STAR experiment has presented polarization signals for Λ hyperons and possible spin alignment signals for ϕ mesons. Here we discuss the effects of finite coverage on these observables. The results from a multi-phase transport and a toy model both indicate that a pseudorapidity coverage narrower than | η | < ∼ 1 will generate a larger value for the extracted ϕ-meson ρ00 parameter; thus a finite coverage can lead to an artificial deviation of ρ00 from 1/3. We also show that a finite η and pT coverage affect the extracted pH parameter for Λ hyperons when the real pH value is non-zero. Therefore proper corrections are necessary to reliably quantify the global polarization with experimental observables.

  13. Pitting Corrosion of alloy 690 in thiosulfate-containing chloride solutions

    NASA Astrophysics Data System (ADS)

    Tsai, Wen-Ta; Wu, Tsung-Feng

    2000-01-01

    The effects of thiosulfate ion and solution pH on pitting corrosion of Alloy 690 in chloride solution were explored. Potentiodynamic polarization measurements were conducted to evaluate pitting corrosion susceptibility of Alloy 690 in these environments. The results showed that pitting corrosion occurred in the mill-annealed (1050°C/5min) Alloy 690 in 1 wt% NaCl solution but not in 0.1 M Na 2S 2O 3 solution. The value of pitting nucleation potential ( Enp) determined in 1 wt% NaCl solution (without Na 2S 2O 3 ) increased with increasing solution pH value in the range of 2-10. The addition of Na 2S 2O 3 to 1 wt% NaCl solution greatly affected the pitting corrosion behavior, which was dependent on concentration. The preformed nickel sulfide surface film due to the presence of Na 2S 2O 3 caused Alloy 690 to become more susceptible to pitting corrosion in 1 wt% NaCl solution.

  14. Phase angle as a nutritional evaluation tool in all stages of chronic liver disease.

    PubMed

    Peres, W A F; Lento, D F; Baluz, K; Ramalho, A

    2012-01-01

    Malnutrition is commonly and frequently under-diagnosed in clinical settings in patients with chronic liver disease (CLD) due to the limitations of nutritional evaluation methods in this population. We hypothesized that the bioelectrical impedance analysis derived phase angle (BIA-derived PhA) might be considered as a nutritional indicator in CLD since it represents either cell death or malnutrition characterized by changes in cellular membrane integrity. The aim of this study was to evaluate the BIA-derived PhA as a nutritional evaluation tool in all stages of CLD, including chronic hepatitis, liver cirrhosis and hepatocellular carcinoma (HCC). Liver-related death and survival were evaluated. A total of 66 patients were enrolled in a cross-sectional study. For the nutritional diagnosis, mid-arm circumference (MAC), triceps skinfold thickness (TST), mid-arm muscle circumference (MAMC) and Subject Global Assessment (SGA) were evaluated. Biochemical and clinical evaluations were performed. Our results showed that PhA was higher in well-nourished patients, according to SGA and in the patients without hepatic encephalopathy. PhA correlated significantly with MAMC, MAC and albumin and was inversely correlated with age. No correlation was found between PhA values and the Child-Pugh score and ascites. PhA was strongly associated with survival and PhA ≤ 5.18º with relative risk increase of 2.5 for death. We conclude that the BIA-derived PhA is a relevant nutritional evaluation tool in chronic hepatitis, liver cirrhosis and HCC and the role of PhA in the prediction of survival in CLD should be examined further in a controlled study.

  15. Decrease of U(VI) Immobilization Capability of the Facultative Anaerobic Strain Paenibacillus sp. JG-TB8 under Anoxic Conditions Due to Strongly Reduced Phosphatase Activity

    PubMed Central

    Reitz, Thomas; Rossberg, Andre; Barkleit, Astrid; Selenska-Pobell, Sonja; Merroun, Mohamed L.

    2014-01-01

    Interactions of a facultative anaerobic bacterial isolate named Paenibacillus sp. JG-TB8 with U(VI) were studied under oxic and anoxic conditions in order to assess the influence of the oxygen-dependent cell metabolism on microbial uranium mobilization and immobilization. We demonstrated that aerobically and anaerobically grown cells of Paenibacillus sp. JG-TB8 accumulate uranium from aqueous solutions under acidic conditions (pH 2 to 6), under oxic and anoxic conditions. A combination of spectroscopic and microscopic methods revealed that the speciation of U(VI) associated with the cells of the strain depend on the pH as well as on the aeration conditions. At pH 2 and pH 3, uranium was exclusively bound by organic phosphate groups provided by cellular components, independently on the aeration conditions. At higher pH values, a part (pH 4.5) or the total amount (pH 6) of the dissolved uranium was precipitated under oxic conditions in a meta-autunite-like uranyl phosphate mineral phase without supplying an additional organic phosphate substrate. In contrast to that, under anoxic conditions no mineral formation was observed at pH 4.5 and pH 6, which was clearly assigned to decreased orthophosphate release by the cells. This in turn was caused by a suppression of the indigenous phosphatase activity of the strain. The results demonstrate that changes in the metabolism of facultative anaerobic microorganisms caused by the presence or absence of oxygen can decisively influence U(VI) biomineralization. PMID:25157416

  16. [Spatiotemporal variation of soil pH in Guangdong Province of China in past 30 years].

    PubMed

    Guo, Zhi-Xing; Wang, Jing; Chai, Min; Chen, Ze-Peng; Zhan, Zhen-Shou; Zheng, Wu-Ping; Wei, Xiu-Guo

    2011-02-01

    Based on the 1980s' soil inventory data and the 2002-2007 soil pH data of Guangdong Province, the spatiotemporal variation of soil pH in the Province in past 30 years was studied. In the study period, the spatial distribution pattern of soil pH in the Province had less change (mainly acidic), except that in Pearl River Delta and parts of Qingyuan and Shaoguan (weak alkaline). The overall variation of soil pH was represented as acidification, with the average pH value changed from 5.70 to 5.44. Among the soil types in the Province, alluvial soil had an increased pH, lateritic red soil, paddy soil, and red soil had a large decrement of pH value, and lime soil was most obvious in the decrease of pH value and its area percentage. The soil acidification was mainly induced by soil characteristics, some natural factors such as acid rain, and human factors such as unreasonable fertilization and urbanization. In addition, industrialization and mining increased the soil pH in some areas.

  17. Effect of marination on CIE L* and pH values of chicken breast pectoralis major with different color lightness

    USDA-ARS?s Scientific Manuscript database

    Color lightness (CIE L* values) and pH are widely used as quality indicators for raw poultry breast fillets (pectoralis major). The objective of this study was to evaluate the effects of vacuum-tumbling marination on L* and pH values of raw chicken breast meat with different color lightness. Early d...

  18. Effect of marination on CIE L* and pH values of chicken breast pectoralis major with different color lightness

    USDA-ARS?s Scientific Manuscript database

    Color lightness (CIE L* values) and pH are widely used as quality indicators for raw poultry breast fillets (pectoralis major). The objective of this study was to evaluate the effects of vacuum-tumbling marination on L* and pH values of raw chicken breast meat with different color lightness. Early ...

  19. Stream Water Quality Modeling in the Great Smoky Mountains National Park

    NASA Astrophysics Data System (ADS)

    Barnett, T. W.; Robinson, R. B.

    2003-12-01

    The purpose of this study was to examine water quality in the acid-impacted Great Smoky Mountains National Park (GRSM). Water samples have been collected roughly quarterly at ninety sampling sites throughout the Park from October, 1993 to November, 2002.. These samples were analyzed for pH, acid neutralizing capacity (ANC), conductivity, major cations, and major anions. The trout fisheries of the GRSM are considered some of the best in the eastern United States. However, fisheries biologists at the GRSM believe that some of the streams that once supported trout populations twenty or thirty years ago, no longer do. This study outlines and quantifies surface water quality conditions that might be harmful to trout populations through a literature review. This study identifies 71 sites (79 percent of total sampling sites) that currently have a median pH of greater than 6.0, above which, is unlikely to be harmful to trout species unless a high runoff of acid, Al-rich water creates a mixing zone where Al(OH)3 precipitates. The precipitate can accumulate on the gills and impede normal diffusion of O2, CO2, and nutrients. There are 17 sites (18 percent) that have median pH values in the 5.0 to 6.0 range. This range of pH values is likely to be harmful to trout species when aluminum concentrations exceed about 0.2 mg/l. The lower end of this range is probably harmful to the eggs and fry of trout and also to non-acclimated trout especially when calcium, sodium, and chloride concentrations are low. Only two sampling sites have median pH values in the 4.5 to 5.0 range. This pH range is likely harmful to eggs, fry and adult trout, particularly in the soft water conditions prevalent in the GRSM. The mechanisms adversely affecting trout in these ranges are ionoregulatory dysfunction, respiratory stress, and circulatory stress. Currently, there are no sampling sites with median pH values less than 4.5, although pH values could be lowered by more than one pH unit during high-flow episodic events depending on the ANC in the stream. Stepwise multiple linear regression was used to model pH, ANC, nitrate and sulfate. This study incorporates basin characteristics, time, acid deposition data, USGS stream flow data as surrogate hydrologic data, and precipitation data, e.g., inches of rain on preceding days, to determine whether these variables are associated with water quality. Acid deposition data came from biweekly wet only and throughfall monitoring at the Noland Divide, which is a high elevation acid deposition monitoring site within the Park. Precipitation data is collected at five National Weather Service monitoring sites within the Park. Each of the above variables were found to be statistically significant (p<0.05) influencing factors to water quality, particularly pH. Water quality conditions were adversely (decreasing pH and ANC and increasing sulfate and nitrate) affected by increased stream flows, acid deposition and precipitation. Models for pH and ANC produced R-square values around 0.71 and 0.86, respectively. Nitrate and sulfate modeling produced R-square values around 0.30. This study also analyzes temporal trends in pH. Modeling reveals statistically significant decreasing trends in pH with time. If conditions remain the same and past trends continue, models suggest that 30.0 percent of the sampling sites will reach pH values less than 6.0 in less than 10 years, 63.3 percent of the sites will reach pH values less than 6.0 in less than 25 years, and 96.7 percent of the sites will reach pH values less than 6.0 in less than 50 years. The models used to predict future pH values explain around 70 percent of the variability in the data.

  20. Predicting the solubility and lability of Zn, Cd, and Pb in soils from a minespoil-contaminated catchment by stable isotopic exchange

    NASA Astrophysics Data System (ADS)

    Marzouk, E. R.; Chenery, S. R.; Young, S. D.

    2013-12-01

    The Rookhope catchment of Weardale, England, has a diverse legacy of contaminated soils due to extensive lead mining activity over four centuries. We measured the isotopically exchangeable content of Pb, Cd and Zn (E-values) in a large representative subset of the catchment soils (n = 246) using stable isotope dilution. All three metals displayed a wide range of %E-values (c. 1-100%) but relative lability followed the sequence Cd > Pb > Zn. A refinement of the stable isotope dilution approach also enabled detection of non-reactive metal contained within suspended sub-micron (<0.22 μm) colloidal particles (SCP-metal). For most soils, the presence of non-labile SCP-metal caused only minor over-estimation of E-values (<2%) but the effect was greater for soils with particularly large humus or carbonate contents. Approximately 80%, 53% and 66% of the variability in Zn, Cd and Pb %E-values (respectively) could be explained by pH, loss on ignition and total metal content. E-values were affected by the presence of ore minerals at high metal contents leading to an inconsistent trend in the relationship between %E-value and soil metal concentration. Metal solubility, in the soil suspensions used to measure E-values, was predicted using the WHAM geochemical speciation model (versions VI and VII). The use of total and isotopically exchangeable metal as alternative input variables was compared; the latter provided significantly better predictions of solubility, especially in the case of Zn. Lead solubility was less well predicted by either version of WHAM, with over-prediction at low pH and under-prediction at high soil pH values. Quantify the isotopically exchangeable fractions of Zn, Cd and Pb (E-values), and assess their local and regional variability, using multi-element stable isotope dilution, in a diverse range of soil ecosystems within the catchment of an old Pb/Zn mining area. Assess the controlling influences of soil properties on metal lability and develop predictive algorithms for metal lability in the contaminated catchment based on simple soil properties (such as pH, organic matter (LOI), and total metal content). Examine the incidence of non-isotopically-exchangeable metal held within suspended colloidal particles (SCP-metal) in filtered soil solutions (<0.22 μm) by comparing E-values from isotopic abundance in solutions equilibrated with soil and in a resin phase equilibrated with the separated solution. Assess the ability of a geochemical speciation model, WHAM(VII), to predict metal solubility using isotopically exchangeable metal as an input variable.

  1. Dynamic aggregation of the mid-sized gadolinium complex {Ph4[Gd(DTTA)(H2O)2](-)3}.

    PubMed

    Jaccard, Hugues; Miéville, Pascal; Cannizzo, Caroline; Mayer, Cédric R; Helm, Lothar

    2014-02-01

    A compound binding three Gd(3+) ions, {Ph4[Gd(DTTA)(H2O)2](-) 3} (where H5DTTA is diethylenetriaminetetraacetic acid), has been synthesized around a hydrophobic center made up of four phenyl rings. In aqueous solution the molecules start to self-aggregate at concentrations well below 1 mM as shown by the increase of rotational correlation times and by the decrease of the translational self-diffusion constant. NMR spectra recorded in aqueous solution of the diamagnetic analogue {Ph4[Y(DTTA)(H2O)2](-)3} show that the aggregation is dynamic and due to intermolecular π-stacking interactions between the hydrophobic aromatic centers. From estimations of effective radii, it can be concluded that the aggregates are composed of two to three monomers. The paramagnetic {Ph4[Gd(DTTA)(H2O)2](-)3} exhibits concentration-dependent (1)H NMR relaxivities with high values of approximately 50 mM(-1) s(-1) (30 MHz, 25 °C) at gadolinium concentrations above 20 mM. A combined analysis of (1)H NMR dispersion profiles measured at different concentrations of the compound and (17)O NMR data measured at various temperatures was performed using different theoretical approaches. The fitted parameters showed that the increase in relaxivity with increasing concentration of the compound is due to slower global rotational motion and an increase of the Lipari-Szabo order parameter S(2).

  2. Accuracy of biochemical markers for predicting nasogastric tube placement in adults--a systematic review of diagnostic studies.

    PubMed

    Fernandez, Ritin S; Chau, Janita Pak-Chun; Thompson, David R; Griffiths, Rhonda; Lo, Hoi-Shan

    2010-08-01

    The objective of this study was to investigate the diagnostic performance of biochemical tests used to determine placement of nasogastric (NG) tubes after insertion in adults. A systematic review of diagnostic studies was undertaken. A literature search of the bibliographic databases and the World Wide Web was performed to locate original diagnostic studies in English or Chinese on biochemical markers for detecting NG tube location. Studies in which one or more different tests were evaluated with a reference standard, and diagnostic values were reported or could be calculated were included. Two reviewers independently checked all abstracts and full text studies for inclusion criteria. Included studies were assessed for their quality using the QUADAS tool. Study features and diagnostic values were extracted from the included studies. Of the 10 studies included in this review, seven investigated the diagnostic accuracy of pH, one investigated the diagnostic accuracy of pH and bilirubin respectively, two a combination of pH and bilirubin and one a combination of pH, pepsin and trypsin levels in identifying NG tube location. All studies used X-rays as the reference standard for comparison. Pooled results demonstrated that a pH of

  3. Effects of pH values of hydrogen peroxide bleaching agents on enamel surface properties.

    PubMed

    Xu, B; Li, Q; Wang, Y

    2011-01-01

    This study investigated the influence of pH values of bleaching agents on the properties of the enamel surface. Sixty freshly extracted premolars were embedded in epoxy resin and mesiodistally sectioned through the buccal aspect into two parts. The sectioned slabs were distributed among six groups (n=10) and treated using different solutions. Group HCl was treated with HCl solution (pH=3.0) and served as a positive control. Group DW, stored in distilled water (pH=7.0), served as a negative control. Four treatment groups were treated using 30% hydrogen peroxide solutions with different pH values: group HP3 (pH=3.0), group HP5 (pH=5.0), group HP7 (pH=7.0), and group HP8 (pH=8.0). The buccal slabs were subjected to spectrophotometric evaluations. Scanning electron microscopy investigation and Micro-Raman spectroscopy were used to evaluate enamel surface morphological and chemical composition alterations. pH value has a significant influence on the color changes after bleaching (p<0.001). Tukey's multiple comparisons revealed that the order of color changes was HP8, HP7>HP5, HP3>HCl>DW. No obvious morphological alterations were detected on the enamel surface in groups DW, HP7, and HP8. The enamel surface of groups HCl and HP3 showed significant alterations with an erosion appearance. No obvious chemical composition changes were detected with respect to Micro-Raman analysis. Within the limitations of this study, it was concluded that no obvious morphological or chemical composition alterations of enamel surface were detected in the neutral or alkaline bleaching solutions. Bleaching solutions with lower pH values could result in more significant erosion of enamel, which represented a slight whitening effect.

  4. Effect of artificial saliva with different pH levels on the cytotoxicity of soft denture lining materials.

    PubMed

    Akay, Canan; Tanış, Merve Ç; Sevim, Handan

    2017-10-13

    The aim of this study was to evaluate the cytotoxic effects of 9 different soft denture liners on the viability of L-929 mouse fibroblast cells at different incubation periods by storing them in artificial saliva (AS) with different pH levels. 96 disk samples from each lining material were prepared and divided into 4 groups: GI: No treatment; GII: Stored in artificial saliva with pH 3 for 21 days; Group III: Stored in artificial saliva with pH 7 for 21 days; and Group IV: Stored in artificial saliva with pH 14 for 21 days. The cytotoxicity of the extracts to cultured mouse fibroblasts (L-929) was measured by MTT (tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-dipHnyltetrazolium bromide) assay. Data were analyzed using 1-way analysis of variation (ANOVA). It was found that for the pH 3 values of New Truliner, Trusoft, Mollosil Plus, Dentusil, TDV, and HydroCast®; for the pH 7 values of Ufi Gel P and Elite plus; and for the pH 14 values of HydroCast®, there was a noncytotoxic effect during both the 24-hour and 48-hour incubation periods. In the control group 48-hour incubation period, HydroCast®, TDV, Mollosil, 24-hour incubation period Elite plus, for pH 3 values; Elite Plus 24-hour incubation period, for pH 7 values Trusoft 48-hour incubation period there was a moderately cytotoxic effect. This in vitro study revealed that storage in artificial saliva with different pH levels can affect the cytotoxicity of soft lining materials.

  5. Experimental study of the bending elasticity of charged lipid bilayers in aqueous solutions with pH5

    NASA Astrophysics Data System (ADS)

    Mitkova, D.; Stoyanova-Ivanova, A.; Ermakov, Yu A.; Vitkova, V.

    2012-12-01

    Exposure to high concentrations of contaminations due to air polluting gases, vapours and aerosols and possibly altering the normal pH in the body could lead to undesirable changes in the properties of biological cells. Here, we study experimentally the mechanical properties of synthetic phospholipid bilayers containing increasing molar fractions (up to 0.15) of charged lipid (synthetic phosphatidylserine) in aqueous solutions with controlled ionic strength and at pH 5, which is slightly lower than the physiological values of pH. Our observations in phase contrast and fluorescence testified to the coexistence of two phases in membranes for temperatures below 29°C. Micro-sized inhomogeneities in vesicle membranes were systematically observed at temperatures lower than 29°C and for molar fractions of phosphatidylserine in the bilayer higher than 0.1. For the quantitative determination of the membrane bending rigidity, we applied thermal fluctuation analysis of the shape of quasispherical lipid vesicles. As far as the liquid-crystalline state of the bilayer is a necessary condition for the application of the experimental method, only vesicles satisfying this requirement were processed for determination of their membrane bending rigidity. The value obtained for the bending modulus of bilayers with 0.15 molar content of charged lipid is about two times higher than the bending modulus of uncharged membranes in the same bathing solution. These findings are in qualitative agreement with our previous results for the bending rigidity of charged bilayers, measured by vesicle micromanipulation.

  6. A rapid method for measuring intracellular pH using BCECF-AM.

    PubMed

    Ozkan, Pinar; Mutharasan, Raj

    2002-08-15

    A rapid intracellular pH (pH(i)) measurement method based on initial rate of increase of fluorescence ratio of 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein upon dye addition to a cell suspension in growth medium is reported. A dye transport model that describes dye concentration and fluorescence values in intracellular and extracellular spaces provides the mathematical basis for the approach. Experimental results of ammonium chloride challenge response of the two suspension cells, Spodoptera frugiperda and Chinese hamster ovary (CHO) cells, successfully compared with results obtained using traditional perfusion method. Since the cell suspension does not require any preparation, measurement of pH(i) can be completed in about 1 min minimizing any potential errors due to dye leakage.

  7. Effect of pH on the rheological and structural properties of gels of water-washed chicken-breast muscle at physiological ionic strength.

    PubMed

    Feng, Y; Hultin, H O

    2001-08-01

    Adjustment of pH from 6.4 to neutrality improved gelling ability and water-holding capacity of twice water-washed, minced chicken-breast muscle significantly at physiological ionic strength, at which the majority of the myofibrillar proteins, including myosin, are not soluble. A strain value of 2.2 was obtained at neutral pH. Myofibrils were the main components of the gel network at both pH 6.4 and 7.0; however, the myofibrillar distribution varied with the pH value. At pH 6.4, myofibrils formed a network of localized aggregates leaving large voids between, whereas at neutral pH, an evenly distributed network of myofibrils was formed. In addition, at neutral pH, a network of fine strands was found within the network of myofibrils. The network was much less developed at pH 6.4. The thin and thick filaments within each myofibrillar structure were disorganized at both pH values. The intramyofibrillar spaces were larger at neutral pH than at pH 6.4. It was proposed that adjustment of pH to neutrality increased electrostatic repulsion leading to a more even distribution of the myofibrillar proteins, a key factor responsible for the improved gel strength and water-holding capacity.

  8. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger

    PubMed Central

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-01-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03. PMID:27126606

  9. Effects of pH and dose on nasal absorption of scopolamine hydrobromide in human subjects

    NASA Technical Reports Server (NTRS)

    Ahmed, S.; Sileno, A. P.; deMeireles, J. C.; Dua, R.; Pimplaskar, H. K.; Xia, W. J.; Marinaro, J.; Langenback, E.; Matos, F. J.; Putcha, L.; hide

    2000-01-01

    PURPOSE: The present study was conducted to evaluate the effects of formulation pH and dose on nasal absorption of scopolamine hydrobromide, the single most effective drug available for the prevention of nausea and vomiting induced by motion sickness. METHODS: Human subjects received scopolamine nasally at a dose of 0.2 mg/0.05 mL or 0.4 mg/0.10 mL, blood samples were collected at different time points, and plasma scopolamine concentrations were determined by LC-MS/MS. RESULTS: Following administration of a 0.2 mg dose, the average Cmax values were found to be 262+/-118, 419+/-161, and 488+/-331 pg/ mL for pH 4.0, 7.0, and 9.0 formulations, respectively. At the 0.4 mg dose the average Cmax values were found to be 503+/-199, 933+/-449, and 1,308+/-473 pg/mL for pH 4.0, 7.0, and 9.0 formulations, respectively. At a 0.2 mg dose, the AUC values were found to be 23,208+/-6,824, 29,145+/-9,225, and 25,721+/-5,294 pg x min/mL for formulation pH 4.0, 7.0, and 9.0, respectively. At a 0.4 mg dose, the average AUC value was found to be high for pH 9.0 formulation (70,740+/-29,381 pg x min/mL) as compared to those of pH 4.0 (59,573+/-13,700 pg x min/mL) and pH 7.0 (55,298+/-17,305 pg x min/mL) formulations. Both the Cmax and AUC values were almost doubled with doubling the dose. On the other hand, the average Tmax, values decreased linearly with a decrease in formulation pH at both doses. For example, at a 0.4 mg dose, the average Tmax values were 26.7+/-5.8, 15.0+/-10.0, and 8.8+/-2.5 minutes at formulation pH 4.0, 7.0, and 9.0, respectively. CONCLUSIONS: Nasal absorption of scopolamine hydrobromide in human subjects increased substantially with increases in formulation pH and dose.

  10. Mitochondrial 3β-Hydroxysteroid Dehydrogenase Enzyme Activity Requires Reversible pH-dependent Conformational Change at the Intermembrane Space*

    PubMed Central

    Prasad, Manoj; Thomas, James L.; Whittal, Randy M.; Bose, Himangshu S.

    2012-01-01

    The inner mitochondrial membrane protein 3β-hydroxysteroid dehydrogenase 2 (3βHSD2) synthesizes progesterone and androstenedione through its dehydrogenase and isomerase activities. This bifunctionality requires 3βHSD2 to undergo a conformational change. Given its proximity to the proton pump, we hypothesized that pH influences 3βHSD2 conformation and thus activity. Circular dichroism (CD) showed that between pH 7.4 and 4.5, 3βHSD2 retained its primarily α-helical character with a decrease in α-helical content at lower pH values, whereas the β-sheet content remained unchanged throughout. Titrating the pH back to 7.4 restored the original conformation within 25 min. Metabolic conversion assays indicated peak 3βHSD2 activity at pH 4.5 with ∼2-fold more progesterone synthesized at pH 4.5 than at pH 3.5 and 7.4. Increasing the 3βHSD2 concentration from 1 to 40 μg resulted in a 7-fold increase in progesterone at pH 4.5, but no change at pH 7.4. Incubation with guanidinum hydrochloride (GdmHCl) showed a three-step cooperative unfolding of 3βHSD2 from pH 7.4 to 4.5, possibly due to the native state unfolding to the intermediate ion core state. With further decreases in pH, increasing concentrations of GdmHCl led to rapid two-step unfolding that may represent complete loss of structure. Between pH 4 and 5, the two intermediate states appeared stable. Stopped-flow kinetics showed slower unfolding at around pH 4, where the protein is in a pseudostable state. Based on our data, we conclude that at pH 4–5, 3βHSD2 takes on a molten globule conformation that promotes the dual functionality of the enzyme. PMID:22262841

  11. Two-stage anaerobic digestion of sugar beet silage: The effect of the pH-value on process parameters and process efficiency.

    PubMed

    Kumanowska, Elzbieta; Uruñuela Saldaña, Mariana; Zielonka, Simon; Oechsner, Hans

    2017-12-01

    The study investigated the influence of the target pH-values 4.5, 5, 5.5 and 6 in the acidification reactor on process parameters, such as substrate-specific methane yield and the intermediates, in the two-stage anaerobic digestion of sugar beet silage. The total specific methane yield (Nlkg -1 CODd -1 ) increased with an increase in the pH (pH 4.5: 140.58±70.08, pH 5: 181.21±55.71, pH 5.5: 218.32±51.01, pH 6: 256.47±28.78). The pH-value also had an effect on the dominant intermediate in hydrolysate. At the pH-value of 4.5, almost no acidification and microbial activity was observed. At pH 5 and 5.5, butyric acid production dominated, guided by H 2 production. At pH 6 acetic acid was the main product. The absence of H 2 and the highest SMY makes it favorable under practical aspects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Optical sensing properties of Au nanoparticle/hydrogel composite microbeads using droplet microfluidics

    NASA Astrophysics Data System (ADS)

    Li, Huilin; Men, Dandan; Sun, Yiqiang; Zhang, Tao; Hang, Lifeng; Liu, Dilong; Li, Cuncheng; Cai, Weiping; Li, Yue

    2017-10-01

    Uniform Au nanoparticle (NP)/poly (acrylamide-co-acrylic acid) [P(AAm-co-AA)] hydrogel microbeads were successfully prepared using droplet microfluidics technology. The microbeads exhibited a good stimuli-responsive behavior to pH value. Particularly in the pH value ranging from pH 2-pH 9, the composite microbead sizes gradually increased along with the increase of pH value. The homogeneous Au NPs, which were encapsulated in the P(AAm-co-AA) hydrogel microbeads, could transform the volume changes of hydrogel into optical signals by a tested single microbead with a microspectrometre system. The glucose was translated into gluconic acid by glucose oxidase. Thus, the Au NP/P(AAm-co-AA) hydrogel microbeads were used for detecting glucose based on pH effects on the composite microbeads. For this, the single Au NP/P(AAm-co-AA) hydrogel microbead could act as a good pH- or glucose-visualizing sensor.

  13. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing.

    PubMed

    Shen, Yanting; Liang, Lijia; Zhang, Shuqin; Huang, Dianshuai; Zhang, Jing; Xu, Shuping; Liang, Chongyang; Xu, Weiqing

    2018-01-25

    The pH value of subcellular organelles in living cells is a significant parameter in the physiological activities of cells. Its abnormal fluctuations are commonly believed to be associated with cancers and other diseases. Herein, a series of surface-enhanced Raman scattering (SERS) nanosensors with high sensitivity and targeting function was prepared for the quantification and monitoring of pH values in mitochondria, nucleus, and lysosome. The nanosensors were composed of gold nanorods (AuNRs) functionalized with a pH-responsive molecule (4-mercaptopyridine, MPy) and peptides that could specifically deliver the AuNRs to the targeting subcellular organelles. The localization of our prepared nanoprobes in specific organelles was confirmed by super-high resolution fluorescence imaging and bio-transmission electron microscopy (TEM) methods. By the targeting ability, the pH values of the specific organelles can be determined by monitoring the vibrational spectral changes of MPy with different pH values. Compared to the cases of reported lysosome and cytoplasm SERS pH sensors, more accurate pH values of mitochondria and nucleus, which could be two additional intracellular tracers for subcellular microenvironments, were disclosed by this SERS approach, further improving the accuracy of discrimination of related diseases. Our sensitive SERS strategy can also be employed to explore crucial physiological and biological processes that are related to subcellular pH fluctuations.

  14. Effect of pH on whitening efficacy of 35% hydrogen peroxide and enamel microhardness.

    PubMed

    Jurema, Ana Luiza Barbosa; de Souza, Mauricio Yugo; Torres, Carlos Rocha Gomes; Borges, Alessandra Bühler; Caneppele, Taciana Marco Ferraz

    2018-03-01

    This study aimed to evaluate the effect of 35% hydrogen peroxide at different pH values and the degree of tooth staining on whitening efficacy and enamel microhardness. 90 enamel-dentin specimens were obtained from bovine incisors. They were randomly divided into 2 groups (n = 45), 1 group was immersed in a staining broth for 14 days, and another group was not stained and kept in distilled water at 37°C. Twenty-four hours after the staining procedure, each group was distributed into 3 subgroups that were whitened by 35% hydrogen peroxide with different pH values (5, 7, and 8.4) for 30 minutes. The color was measured at baseline and 7 days after whitening. Microhardness was measured at baseline, immediate, 24 hours, and 1 month after the whitening procedure. Data were submitted to 2-way analysis of variance (ANOVA) and the Tukey test for multiple comparisons for color analysis. Repeated measures ANOVA and the Tukey test were used to analyze microhardness data. The color change of the stained groups (ΔE 00  = 4.6) was significantly higher than that of the nonstained groups (ΔE 00  = 3.7). Microhardness value decreased significantly immediately after whitening for all subgroups and did not return to initial values. For each measurement time, microhardness was not significantly different among subgroups with different pH values. Despite the effectiveness of 35% hydrogen peroxide, changes on gel pH did not affect the whitening efficacy, and the enamel was superficially demineralized, regardless of pH values. Independently of the pH value of whitening gel, enamel undergoes superficial demineralization and with a reduction in superficial microhardness that does not return to the initial values. However, using hydrogen peroxide with different pH values does not alter the whitening effect. © 2018 Wiley Periodicals, Inc.

  15. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application

    PubMed Central

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65°C, respectively, and is stable at 55°C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments. PMID:26938873

  16. Active Control of pH in the Bioculture System Through Carbon Dioxide Control

    NASA Technical Reports Server (NTRS)

    Monhollon, Luke; Pletcher, David; Hauss, Jessica

    2016-01-01

    For successful cell research, the growth culture environment must be tightly controlled. Deviance from the optimal conditions will mask the desired variable being analyzed or lead to inconstancies in the results. In standard laboratories, technology and procedures are readily available for the reliable control of variables such as temperature, pH, nutrient loading, and dissolved gases. Due to the nature of spaceflight, and the inherent constraints to engineering designs, these same elements become a challenge to maintain at stable values by both automated and manual approaches. Launch mass, volume, and power usage create significant constraints to cell culture systems; nonetheless, innovative solutions for active environmental controls are available. The acidity of the growth media cannot be measured through standard probes due to the degradation of electrodes and reliance on indicators for chromatography. Alternatively, carbon dioxide sensors are capable of monitoring the pH by leveraging the relationship between the partial pressure of carbon dioxide and carbonic acid in solution across a membrane. In microgravity cell growth systems, the gas delivery system can be used to actively maintain the media at the proper acidity by maintaining a suitable gas mixture around permeable tubing. Through this method, launch mass and volume are significantly reduced through the efficient use of the limited gas supply in orbit.

  17. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application.

    PubMed

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65 °C, respectively, and is stable at 55 °C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0 was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments.

  18. Discrimination of fluorescence light-up effects induced by pH and metal ion chelation on a spirocyclic derivative of rhodamine B.

    PubMed

    Leite, Andreia; Silva, Ana M G; Cunha-Silva, Luís; de Castro, Baltazar; Gameiro, Paula; Rangel, Maria

    2013-05-07

    In the present work we describe the structure and the spectroscopic characterization of a spirocyclic derivative of a rhodamine B ligand whose properties allow discrimination of light-up effects induced by metal ion chelation and variation of pH. Distinction of the two effects is important for the use of this type of ligand to detect and monitor metal ions in aqueous solutions. The synthesis of the ligand was performed in two steps, which involve the reaction of rhodamine B with hydrazine hydrate to form rhodamine B hydrazide followed by condensation with 2-pyridinecarboxaldehyde and was successfully optimized using a solvent free approach under microwave irradiation. The ligand was obtained in the expected spirolactam form and was characterized in the solid state by EA, MS and single-crystal X-ray diffraction. The ligand was characterized in solution by NMR and absorption and fluorescence spectroscopies and its properties were found to be sensitive to pH and concentration of iron(III). The study of the fluorescence properties at variable pH shows that the compound is fluorescent in the range 2 < pH < 4 with maximum intensity at pH 3 and allowed the determination of two pK(a) values (pK(a1) = 2.98, pK(a2) = 2.89) and establishment of the corresponding distribution diagram. The very low pK(a) values guarantee that above pH equal to 4 the ligand is mostly present in the fully non-protonated and non-fluorescent form L. The study of the interaction of the ligand with iron(iii) was performed in DMSO and DMSO-H(2)O to exclude the influence of pH and due to the low solubility of the compound. The results indicate that the presence of iron(III) triggers the opening of the spirolactam form of the ligand and the maximum intensity obtained at a metal : ligand ratio of 1 : 2 is consistent with the formation of an iron(III) complex with the tridentate ligand.

  19. Polymeric micelle for tumor pH and folate-mediated targeting.

    PubMed

    Lee, Eun Seong; Na, Kun; Bae, You Han

    2003-08-28

    Novel pH-sensitive polymeric mixed micelles composed of poly(L-histidine) (polyHis; M(w) 5000)/PEG (M(n) 2000) and poly(L-lactic acid) (PLLA) (M(n) 3000)/PEG (M(n) 2000) block copolymers with or without folate conjugation were prepared by diafiltration. The micelles were investigated for pH-dependent drug release, folate receptor-mediated internalization and cytotoxicity using MCF-7 cells in vitro. The polyHis/PEG micelles showed accelerated adriamycin release as the pH decreased from 8.0. When the cumulative release for 24 h was plotted as a function of pH, the gradual transition in release rate appeared in a pH range from 8.0 to 6.8. In order to tailor the triggering pH of the polymeric micelles to the more acidic extracellular pH of tumors, while improving the micelle stability at pH 7.4, the PLLA/PEG block copolymer was blended with polyHis/PEG to form mixed micelles. Blending shifted the triggering pH to a lower value. Depending on the amount of PLLA/PEG, the mixed micelles were destabilized in the pH range of 7.2-6.6 (triggering pH for adriamycin release). When the mixed micelles were conjugated with folic acid, the in vitro results demonstrated that the micelles were more effective in tumor cell kill due to accelerated drug release and folate receptor-mediated tumor uptake. In addition, after internalization polyHis was found to be effective for cytosolic ADR delivery by virtue of fusogenic activity. This approach is expected to be useful for treatment of solid tumors in vivo.

  20. Influence of natural organic matter on the adsorption of metal ion onto clay particles

    USGS Publications Warehouse

    Schmitt, D.; Taylor, Howard E.; Aiken, G.R.; Roth, D.A.; Frimmel, F.H.

    2002-01-01

    The influence of natural organic matter (NOM) on the adsorption of Al, Fe, Zn, and Pb onto clay minerals was investigated. Adsorption experiments were carried out at pH = 5 and pH = 7 in the presence and absence of NOM. In general, the presence of NOM decreased the adsorption of metal ions onto the clay particles. Al and Fe were strongly influenced by NOM, whereas Zn and Pb adsorption was only slightly altered. The interaction of the metal ions with the minerals and the influence of NOM on this interaction was investigated by coupling SdFFF with an inductively coupled plasma mass spectrometer (ICPMS) or an inductively coupled plasma atomic emission spectrometer (ICPAES). Quantitative atomization of the clay particles in the ICP was confirmed by comparing elemental content determined by direct injection of the clay into the ICPMS with values from acid digestion. Particle sizes of the clays were found to be between 0.1 and 1 μm by sedimentation field-flow fractionation (SdFFF) with UV detection. Aggregation of particles due to metal adsorption was observed using SdFFF-ICPMS measurements. This aggregation was dependent on the specific metal ion and decreased in the presence of NOM and at higher pH value.

  1. Isolation, Solubility, and Characterization of D-Mannitol Esters of 4-Methoxybenzeneboronic Acid.

    PubMed

    Lopalco, Antonio; Marinaro, William A; Day, Victor W; Stella, Valentino J

    2017-02-01

    The purpose of this study was to determine the aqueous solubility of a model phenyl boronic acid, 4-methoxybenzeneboronic acid, as a function of pH both in the absence and in the presence of varying D-mannitol concentration. Solid isolated D-mannitol esters were characterized by differential scanning calorimetry, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray studies, and the boronic acid-to-D-mannitol ratio was quantified by HPLC. Hydrolysis of the monoester was studied using UV spectral differences between the monoester and the parent boronic acid. Two D-mannitol esters of 4-methoxybenzeneboronic acid were isolated. The triboronate ester was very insoluble whereas a symmetrical monoboronate monohydrate was also less soluble than the parent. Both esters were crystalline. The monoboronate monohydrate was, however, more soluble than the parent at alkaline pH values due to its lower pKa value (6.53) compared to the parent acid (9.41). Hydrolysis of the monoboronate was extremely fast when even small amount of water was added to dry acetonitrile solutions of the ester. The hydrolysis was buffer concentration dependent and apparent pH sensitive with hydrolysis accelerated by acid. Implications affecting the formulation of future boronic acid drugs are discussed. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Protein gels and emulsions from mixtures of Cape hake and pea proteins.

    PubMed

    Tomé, Ana Sofia; Pires, Carla; Batista, Irineu; Sousa, Isabel; Raymundo, Anabela

    2015-01-01

    Portioning of frozen fish generates by-products such as fish 'sawdust' and cut-offs which can be further processed into protein concentrates and isolates. The objective of the present work was to produce gels and emulsions using recovered Cape hake protein powder (HPP). In previous works, the structures of the gels produced by HPP were found to be strong, with a high rubbery character. In this work, the addition of commercial pea proteins (PPC) to HPP gels and emulsions was studied. Physical properties of gels and emulsions prepared with different proportions of mixtures of PPC and HPP were evaluated. In general, gels and emulsions showed high values for whiteness and, as expected, the higher content of HPP in the protein mixtures led to higher firmness values of the gels. The gel network was rapidly formed upon heating due to the fish protein macromolecules and further reinforced by the pea protein macromolecules when cooled to 5 °C. Both visco-elastic parameters, storage and loss moduli, of the produced gels increased with the HPP proportion in the protein mixtures, corresponding to more structured systems. For the emulsions, two different pH environments were studied: 3.8 and 7.0. At neutral pH a synergy was found between the vegetable and fish protein, which is not so strong when pH is lowered to 3.8, near the isoelectric point of pea proteins (pI = 4.5). This evidence was supported by the results from the texture measurements, viscosity and visco-elastic parameters. Gels made from Cape hake proteins showed a softer texture and were less rubbery with the addition of pea proteins. Emulsions stabilised by these mixtures showed slightly different behaviour when produced at pH 7.0 or pH 3.8. © 2014 Society of Chemical Industry.

  3. Strategy for sensor based on fluorescence emission red shift of conjugated polymers: applications in pH response and enzyme activity detection.

    PubMed

    Tang, Yanli; Liu, Yue; Cao, Ali

    2013-01-15

    A new strategy was developed and applied in monitoring pH response and enzyme activity based on fluorescence emission red shift (FERS) of the conjugated polymer PPP-OR10 induced by the inner filter effect (IFE) of nitrobenzene derivatives. Neutral poly(p-phenylenes) functionalized with oligo(oxyethylene) side chains (PPP-OR10) was designed and synthesized by the Suzuki cross-coupling reaction. Nitrobenzene derivatives display different light absorption activities in the acidic or basic form due to adopting different electron-transition types. When environmental pH is higher than their pK(a) values, nitrobenzene derivatives exhibit strong absorbance around 400 nm, which is close to the maximal emission of polymer PPP-OR10. As a result, the maximal emission wavelength of PPP-OR10/nitrobenzene derivatives red shifts with the pH value increasing. Apparently, the IFE plays a very important role in this case. A new method has been designed that takes advantage of this pH-sensitive platform to sensor α-chymotrypsin (ChT) based on the IFE of p-nitroaniline, since the absorption spectrum of p-nitroaniline, the ChT-hydrolyzed product of N-benzoyl-L-tyrosine-p-nitroaniline (BTNA), overlaps with the emission spectrum of PPP-OR10. In addition, the present approach can detect α-chymotrypsin with a detection limit of 0.1 μM, which is lower than that of the corresponding absorption spectroscopy method. Furthermore, the pH response and enzyme detections can be carried out in 10% serum, which makes this new FERS-based strategy promising in applications in more complex conditions and a broader field.

  4. Interactions between stepwise-eluted sub-fractions of fulvic acids and protons revealed by fluorescence titration combined with EEM-PARAFAC.

    PubMed

    Song, Fanhao; Wu, Fengchang; Guo, Fei; Wang, Hao; Feng, Weiying; Zhou, Min; Deng, Yanghui; Bai, Yingchen; Xing, Baoshan; Giesy, John P

    2017-12-15

    In aquatic environments, pH can control environmental behaviors of fulvic acid (FA) via regulating hydrolysis of functional groups. Sub-fractions of FA, eluted using pyrophosphate buffers with initial pHs of 3.0 (FA 3 ), 5.0 (FA 5 ), 7.0 (FA 7 ), 9.0 (FA 9 ) and 13.0 (FA 13 ), were used to explore interactions between the various, operationally defined, FA fractions and protons, by use of EEM-PARAFAC analysis. Splitting of peaks (FA 3 and FA 13 ), merging of peaks (FA 7 ), disappearance of peaks (FA 9 and FA 13 ), and red/blue-shifting of peaks were observed during fluorescence titration. Fulvic-like components were identified from FA 3 -FA 13 , and protein-like components were observed in fractions FA 9 and FA 13 . There primary compounds (carboxylic-like, phenolic-like, and protein-like chromophores) in PARAFAC components were distinguished based on acid-base properties. Dissociation constants (pK a ) for fulvic-like components with proton ranged from 2.43 to 4.13 in an acidic pH and from 9.95 to 11.27 at basic pH. These results might be due to protonation of di-carboxylate and phenolic functional groups. At basic pH, pK a values of protein-like components (9.77-10.13) were similar to those of amino acids. However, at acidic pH, pK a values of protein-like components, which ranged from 3.33 to 4.22, were 1-2units greater than those of amino acids. Results presented here, will benefit understanding of environmental behaviors of FA, as well as interactions of FA with environmental contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Surface complexation model of uranyl sorption on Georgia kaolinite

    USGS Publications Warehouse

    Payne, T.E.; Davis, J.A.; Lumpkin, G.R.; Chisari, R.; Waite, T.D.

    2004-01-01

    The adsorption of uranyl on standard Georgia kaolinites (KGa-1 and KGa-1B) was studied as a function of pH (3-10), total U (1 and 10 ??mol/l), and mass loading of clay (4 and 40 g/l). The uptake of uranyl in air-equilibrated systems increased with pH and reached a maximum in the near-neutral pH range. At higher pH values, the sorption decreased due to the presence of aqueous uranyl carbonate complexes. One kaolinite sample was examined after the uranyl uptake experiments by transmission electron microscopy (TEM), using energy dispersive X-ray spectroscopy (EDS) to determine the U content. It was found that uranium was preferentially adsorbed by Ti-rich impurity phases (predominantly anatase), which are present in the kaolinite samples. Uranyl sorption on the Georgia kaolinites was simulated with U sorption reactions on both titanol and aluminol sites, using a simple non-electrostatic surface complexation model (SCM). The relative amounts of U-binding >TiOH and >AlOH sites were estimated from the TEM/EDS results. A ternary uranyl carbonate complex on the titanol site improved the fit to the experimental data in the higher pH range. The final model contained only three optimised log K values, and was able to simulate adsorption data across a wide range of experimental conditions. The >TiOH (anatase) sites appear to play an important role in retaining U at low uranyl concentrations. As kaolinite often contains trace TiO2, its presence may need to be taken into account when modelling the results of sorption experiments with radionuclides or trace metals on kaolinite. ?? 2004 Elsevier B.V. All rights reserved.

  6. A New Bis(aquated) High Relaxivity Mn(II) Complex as an Alternative to Gd(III)-Based MRI Contrast Agent.

    PubMed

    Phukan, Bedika; Mukherjee, Chandan; Goswami, Upashi; Sarmah, Amrit; Mukherjee, Subhajit; Sahoo, Suban K; Moi, Sankar Ch

    2018-03-05

    Disclosed here are a piperazine, a pyridine, and two carboxylate groups containing pentadentate ligand H 2 pmpa and its corresponding water-soluble Mn(II) complex (1). DFT-based structural optimization implied that the complex had pentagonal bipyramidal geometry where the axial positions were occupied by two water molecules, and the equatorial plane was constituted by the ligand ON 3 O donor set. Thus, a bis(aquated) disc-like Mn(II) complex has been synthesized. The complex showed higher stability compared with Mn(II)-EDTA complex [log K MnL = 14.29(3)] and showed a very high r 1 relaxivity value of 5.88 mM -1 s -1 at 1.41 T, 25 °C, and pH = 7.4. The relaxivity value remained almost unaffected by the pH of the medium in the range of 6-10. Although the presence of 200 equiv of fluoride and bicarbonate anions did not affect the relaxivity value appreciably, an increase in the value was noticed in the presence of phosphate anion due to slow tumbling of the complex. Cell viability measurements, as well as phantom MR images using clinical MRI imager, consolidated the possible candidature of complex 1 as a positive contrast agent.

  7. Shear bond strength of one-step self-etch adhesives: pH influence

    PubMed Central

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2015-01-01

    Background: The aim of this study was to compare the shear bond strength of four one-step self-etch adhesives with different pH values to enamel and dentin. Materials and Methods: In this in vitro study, 200 bovine permanent mandibular incisors were used. Four one-step self-etch adhesives with different pH values were tested both on enamel and on dentin: Adper™ Easy Bond Self-Etch Adhesive (pH = 0.8-1), Futurabond NR (pH=2), G-aenial Bond (pH = 1.5), Clearfil S3 Bond (pH = 2.7). After adhesive systems application, a nanohybrid composite resin was inserted into the bonded surface. The specimens were placed in a universal testing machine. The shear bond strength was performed at a cross-head speed of 1 mm/min until the sample rupture. The shear bond strength values (MPa) of the different groups were compared with analysis of variance after that Kolmogorov and Smirnov tests were applied to assess normality of distributions. P < 0.05 was considered as significant. Results: In enamel shear bond strength, the highest shear bond strength values were reported with Futurabond NR (P < 0.01); however, no significant differences were found with Clearfil S3 Bond. The others adhesive systems showed lower shear bond strength values with significant differences between them (P < 0.05). When comparing the dentin shear bond strength, the lowest shear bond strength values were reported with Clearfil S3 Bond (P < 0.05), while there were no significant differences among the other three products (P > 0.05). Conclusion: The pH values of adhesive systems did not influence significantly their shear bond strength to enamel or dentin. PMID:26005459

  8. Host origin determines pH tolerance of Tritrichomonas foetus isolates from the feline gastrointestinal and bovine urogenital tracts.

    PubMed

    Morin-Adeline, Victoria; Fraser, Stuart T; Stack, Colin; Šlapeta, Jan

    2015-10-01

    The ability for protozoan parasites to tolerate pH fluctuations within their niche is critical for the establishment of infection and require the parasite to be capable of adapting to a distinct pH range. We used two host adapted Tritrichomonas foetus isolates, capable of infecting either the digestive tract (pH 5.3-6.6) of feline hosts or the reproductive tract (pH 7.4-7.8) of bovine hosts to address their adaptability to changing pH. Using flow cytometry, we investigated the pH tolerance of the bovine and feline T. foetus isolates over a range of physiologically relevant pH in vitro. Following exposure to mild acid stress (pH 6), the bovine T. foetus isolates showed a significant decrease in cell viability and increased cytoplasmic granularity (p-value < 0.003, p-value < 0.0002) compared to pH 7 and 8 (p-value > 0.7). In contrast, the feline genotype displayed an enhanced capacity to maintain cell morphology and viability (p-value > 0.05). Microscopic assessment revealed that following exposure to a weak acidic stress (pH 6), the bovine T. foetus transformed into rounded parasites with extended cell volumes and displays a decrease in viability. The higher tolerance for acidic extracellular environment of the feline isolate compared to the bovine isolate suggests that pH could be a critical factor in regulating T. foetus infections and host-specificity. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Investigation of pH and Temperature Profiles in the GI Tract of Fasted Human Subjects Using the Intellicap(®) System.

    PubMed

    Koziolek, Mirko; Grimm, Michael; Becker, Dieter; Iordanov, Ventzeslav; Zou, Hans; Shimizu, Jeff; Wanke, Christoph; Garbacz, Grzegorz; Weitschies, Werner

    2015-09-01

    Gastrointestinal (GI) pH and temperature profiles under fasted-state conditions were investigated in two studies with each 10 healthy human subjects using the IntelliCap(®) system. This telemetric drug delivery device enabled the determination of gastric emptying time, small bowel transit time, and colon arrival time by significant pH and temperature changes. The study results revealed high variability of GI pH and transit times. The gastric transit of IntelliCap(®) was characterized by high fluctuations of the pH with mean values ranging from pH 1.7 to pH 4.7. Gastric emptying was observed after 7-202 min (median: 30 min). During small bowel transit, which had a duration of 67-532 min (median: 247 min), pH values increased slightly from pH 5.9-6.3 in proximal parts to pH 7.4-7.8 in distal parts. Colonic pH conditions were characterized by values fluctuating mainly between pH 5 and pH 8. The pH profiles and transit times described in this work are highly relevant for the comprehension of drug delivery of solid oral dosage forms comprising ionizable drugs and excipients with pH-dependent solubility. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. [Significance of identification of fungi in gastric juice of patients with artificial airway in intensive care unit].

    PubMed

    Feng, Yong-wen; Wu, Ming; Li, Ying; Zeng, Jing-jing; Li, Ming-li; He, Yun; Li, Dan-hui; Cui, Man-li

    2012-02-01

    To investigate the direct relationship and significance between the pH value of gastric juice and positive fungi in culture critical patients with artificial airway in intensive care unit (ICU) by analyzing and identifying the type of fungi and their sensitivity to antifungal therapy. A prospective study was conducted.One hundred and sixty patients (between December, 2008 and October, 2011) with artificial airway lasting longer than 48 hours were studied in the ICU at the First Affiliated Hospital of Shenzhen University. The gastric juice specimens were collected through a nasogastric tube, their pH values were measured using precise litmus paper. These samples were divided into six groups according to their pH values: pH ≤ 2.0, pH 2.1-3.0, pH 3.1-4.0, pH 4.1-5.0, pH 5.1-6.0 and pH 6.1-7.0, and then fungi were cultured in these specimens with different pH values. Susceptibility of different fungicide drugs were also investigated. The susceptibility of fungi to gastric juice with different pH values was also investigated. The relationship between 28-day survival rate and the presence of fungi in gastric juice was analyzed in order to analyze the relationship of the presence of fungi in gastric juice and clinical outcome. (1) No fungal growth was found in the gastric juice with pH value lower than 4.0, and the positive rate of fungal culture was significantly increased when the pH value of gastric juice raised. (2) The positive rate of fungal growth was 27.9% (55/197), in which, the positive rate of Candida and non-Candida fungi was 38.2% (21/55) and 61.8% (34/55) respectively, and the difference was significant statistically [χ(2) = 4.16, P < 0.05]. (3) The fungal positive rate was 40.0% (22/55) and 60.0% (33/55) respectively, in survivors (102 cases) and non-survivors (58 cases). The percentage of Candida infection and non-Candida infection was 54.5% (12/22) and 45.5% (10/22) respectively, in survivors, and it was 27.3% (9/33) and 72.7% (24/33), respectively, in non-survivors. The rate of resistance of Candida and non-Candida fungi was 4.7%-14.3% (mean 10.1%) and 0-60% (mean 28.5%) respectively. Positive fungus culture rate was higher in critical patients with artificial airway and higher gastric juice pH values. Non-Candida fungi were mainly found in gastric juice with increasing resistance rate. Candida was more commonly found in survivors, and non-Candida fungi were more commonly found in non-survivors.

  11. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    PubMed

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  12. Research on dispose of wastewater from printing and dyeing by CWF combined with Iron-carbon Microelectrolysis

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Ye, Tingjin; Xu, Zizhen; Chen, Xiaogang; Shi, Liang; He, Lingfeng; Zhang, Yongli

    2018-03-01

    The carboxymethylchitosan cladding coal ash (CWF) was oxidized by the high temperature using coal ash and sodium carboxymethyl chitosan as raw and processed material for treatment of simulated and actual printing and dyeing wastewater over iron-carbon micro-electrolysis. The results on pH and CWF dosage for effluent dispose were evaluated by the decolorization rate, COD removal efficiency and turbidity removal rate. The experimental results indicated that the decolorization rate was first augmented and then declined with the increase of pH, and attained a peak value when pH was at 5-6. The COD removal efficiency augmented with the augmented of pH, and attained a peak value when pH was 6-7. The turbidity removal rate was first increases and afterwards decreases with the augment of pH, and attained a peak value when pH was at 5-6. Furthermore, the optimum pH for the treatment of simulated dyeing wastewater was 6 over iron-carbon micro-electrolysis, which indicated that the appropriate pH can promote the degradation of wastewater.

  13. Subunit interactions in horse spleen apoferritin. Dissociation by extremes of pH

    PubMed Central

    Crichton, Robert R.; Bryce, Charles F. A.

    1973-01-01

    1. The dissociation of horse spleen apoferritin as a function of pH was analysed by sedimentation-velocity techniques. The oligomer is stable in the range pH2.8–10.6. Between pH2.8 and 1.6 and 10.6 and 13.0 both oligomer and subunits can be detected. At pH values between 1.6 and 1.0 the subunit is the only species observed, although below pH1.0 aggregation of the subunits to a particle sedimenting much faster than the oligomer occurs. 2. When apoferritin is first dissociated into subunits at low pH values and then dialysed into buffers of pH1.5–5.0, the subunit reassociates to oligomer in the pH range 3.1–4.3. 3. U.v.-difference spectroscopy was used to study conformational changes occurring during the dissociation process. The difference spectrum in acid can be accounted for by the transfer of four to five tyrosine residues/subunit from the interior of the protein into the solvent. This process is reversed on reassociation, but shows the same hysteresis as found by sedimentation techniques. The difference spectrum in alkali is more complex, but is consistent with the deprotonation of tyrosine residues, which appear to have rather high pK values. 4. In addition to the involvement of tyrosine residues in the conformational change at low pH values, spectral evidence is presented that one tryptophan residue/subunit also changes its environment before dissociation and subsequent to reassociation. 5. Analysis of the dissociation and reassociation of apoferritin at low pH values suggests that this is a co-operative process involving protonation and deprotonation of at least two carboxyl functions of rather low intrinsic pK. The dissociation at alkaline pH values does not appear to be co-operative. 6. Of the five tyrosine residues/subunit only one can be nitrated with tetranitromethane. Guanidination of lysine residues results in the modification of seven out of a total of nine residues/subunit. Nine out of the ten arginine residues/subunit react with cyclohexanedione. PMID:4737425

  14. Impact of preacidification of milk and fermentation time on the properties of yogurt.

    PubMed

    Peng, Y; Horne, D S; Lucey, J A

    2009-07-01

    Casein interactions play an important role in the textural properties of yogurt. The objective of this study was to investigate how the concentration of insoluble calcium phosphate (CCP) that is associated with casein particles and the length of fermentation time influence properties of yogurt gels. A central composite experimental design was used. The initial milk pH was varied by preacidification with glucono-delta-lactone (GDL), and fermentation time (time to reach pH 4.6 from the initial pH) was altered by varying the inoculum level. We hypothesized that by varying the initial milk pH value, the amount of CCP would be modified and that by varying the length of the fermentation time we would influence the rate and extent of solubilization of CCP during any subsequent gelation process. We believe that both of these factors could influence casein interactions and thereby alter gel properties. Milks were preacidified to pH values from 6.55 to 5.65 at 40 degrees C using GDL and equilibrated for 4 h before inoculation. Fermentation time was varied from 250 to 500 min by adding various amounts of culture at 40 degrees C. Gelation properties were monitored using dynamic oscillatory rheology, and microstructure was studied using fluorescence microscopy. Whey separation and permeability were analyzed at pH 4.6. The preacidification pH value significantly affected the solubilization of CCP. Storage modulus values at pH 4.6 were positively influenced by the preacidification pH value and negatively affected by fermentation time. The value for the loss tangent maximum during gelation was positively affected by the preacidification pH value. Fermentation time positively affected whey separation and significantly influenced the rate of CCP dissolution during fermentation, as CCP dissolution was a slow process. Longer fermentation times resulted in greater loss of CCP at the pH of gelation. At the end of fermentation (pH approximately 4.6), virtually all CCP was dissolved. Preacidification of milk increased the solubilization of CCP, increased the early loss of CCP crosslinks, and produced weak gels. Long fermentation times allowed more time for solubilization of CCP during the critical gelation stage of the process and increased the possibility of greater casein rearrangements; both could have contributed to the increase in whey separation.

  15. Dipeptide-based Polyphosphazene and Polyester Blends for Bone Tissue Engineering

    PubMed Central

    Deng, Meng; Nair, Lakshmi S.; Nukavarapu, Syam P.; Jiang, Tao; Kanner, William A.; Li, Xudong; Kumbar, Sangamesh G.; Weikel, Arlin L.; Krogman, Nicholas R.; Allcock, Harry R.; Laurencin, Cato T.

    2010-01-01

    Polyphosphazene-polyester blends are attractive materials for bone tissue engineering applications due to their controllable degradation pattern with non-toxic and neutral pH degradation products. In our ongoing quest for an ideal completely miscible polyphosphazene-polyester blend system, we report synthesis and characterization of a mixed-substituent biodegradable polyphosphazene poly[(glycine ethyl glycinato)1(phenyl phenoxy)1phosphazene] (PNGEG/PhPh) and its blends with a polyester. Two dipeptide-based blends namely 25:75 (Matrix1) and 50:50 (Matrix2) were produced at two different weight ratios of PNGEG/PhPh to poly(lactic acid-glycolic acid) (PLAGA). Blend miscibility was confirmed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Both blends resulted in higher tensile modulus and strength than the polyester. The blends showed a degradation rate in the order of Matrix2 < Matrix1 < PLAGA in phosphate buffered saline at 37°C over 12 weeks. Significantly higher pH values of degradation media were observed for blends compared to PLAGA confirming the neutralization of PLAGA acidic degradation by polyphosphazene hydrolysis products. The blend components PLAGA and polyphosphazene exhibited a similar degradation pattern as characterized by the molecular weight loss. Furthermore, blends demonstrated significantly higher osteoblast growth rates compared to PLAGA while maintaining osteoblast phenotype over a 21-day culture. Both blends demonstrated improved biocompatibility in a rat subcutaneous implantation model compared to PLAGA over 12 weeks. PMID:20334909

  16. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    PubMed

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

    PubMed

    Tsai, T T; Kao, C M; Wang, J Y

    2011-04-01

    The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. A multimodal histamine ligand for chromatographic purification of plasmid DNA.

    PubMed

    Černigoj, Urh; Vidic, Urška; Barut, Miloš; Podgornik, Aleš; Peterka, Matjaž; Štrancar, Aleš

    2013-03-15

    To exploit different chromatographic modes for efficient plasmid DNA (pDNA) purification a novel monolithic chromatographic support bearing multimodal histamine (HISA) groups was developed and characterized. Electrostatic charge of HISA groups depends on the pH of the mobile phase, being neutral above pH 7 and becoming positively charged below. As a consequence, HISA groups exhibit predominantly ion-exchange character at low pH values, which decreases with titration of the HISA groups resulting in increased hydrophobicity. This feature enabled separation of supercoiled (sc) pDNA from other plasmid isoforms (and other process related impurities) by adjusting salt or pH gradient. The dynamic binding capacity (DBC) for a 5.1kbp large plasmid at pH 5 was 4.0 mg/ml under low salt binding conditions, remaining relatively high (3.0 mg/ml) even in the presence of 1.0 M NaCl due to the multimodal nature of HISA ligand. Only slightly lower DBC (2.7 mg/ml) was determined under preferentially hydrophobic conditions in 3.0 M (NH(4))(2)SO(4), pH 7.4. Open circular and sc pDNA isoforms were baseline separated in descending (NH(4))(2)SO(4) gradient. Furthermore, an efficient plasmid DNA separation was possible both on analytical as well as on preparative scale by applying the descending pH gradient at a constant concentration (above 3.0 M) of (NH(4))(2)SO(4). Copyright © 2013 Elsevier B.V. All rights reserved.

  19. pH-dependent optical properties of N-acetyl-L-cysteine-capped ZnSe(S) nanocrystals with intense/stable emissions

    NASA Astrophysics Data System (ADS)

    Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza

    2017-03-01

    In the present study, a series of aqueous-based ZnSe(S) nanocrystals (NCs) was prepared at different solution pH ranging from 8 to 11.9, and using N-acetyl-L-cysteine (NAC) as capping agent. In addition to zinc blende structure, the X-ray diffraction studies demonstrated the quantum size regime of the ZnSe(S) NCs. To gain further insight toward the influence of the quantum confinement and pH values on optical properties of the as-prepared NCs, their UV-visible absorption and photoluminescence spectra were systematically analyzed. The absorption spectra experienced a red shift from 340 to 382 nm as the pH increased from 8.0 to 11.9, indicating the growth of the as-prepared ZnSe(S) NCs. The emission spectra also show the obvious red shift and the relative area of excitonic to trap emission, firstly increases from pH = 8.0 to 10.7, and then decreases by further increasing of the solution pH. The initial behavior might be due to the improved surface passivation of the trap dangling states by better deprotonation of thiol groups in NAC, whereas at pH >10.7, the faster growth rate of the ZnSe(s) NCs may lead to the formation of many defect sites. All of these phenomena were combined in the scheme which displays the effect of quantum confinement and solution pH on variation of the excitonic and trap-related emissions.

  20. Mechanism-based site-directed mutagenesis to shift the optimum pH of the phenylalanine ammonia-lyase from Rhodotorula glutinis JN-1.

    PubMed

    Zhu, Longbao; Zhou, Li; Cui, Wenjing; Liu, Zhongmei; Zhou, Zhemin

    2014-09-01

    Phenylalanine ammonia-lyase ( Rg PAL) from Rhodotorula glutinis JN-1 stereoselectively catalyzes the conversion of the l-phenylalanine into trans -cinnamic acid and ammonia, and was used in chiral resolution of dl-phenylalanine to produce the d-phenylalanine under acidic condition. However, the optimum pH of Rg PAL is 9 and the Rg PAL exhibits low catalytic efficiency at acidic side. Therefore, a mutant Rg PAL with a lower optimum pH is expected. Based on catalytic mechanism and structure analysis, we constructed a mutant Rg PAL-Q137E by site-directed mutagenesis, and found that this mutant had an extended optimum pH 7-9 with activity of 1.8-fold higher than that of the wild type at pH 7. As revealed by Friedel-Crafts-type mechanism of Rg PAL, the improvement of the Rg PAL-Q137E might be due to the negative charge of Glu137 which could stabilize the intermediate transition states through electrostatic interaction. The Rg PAL-Q137E mutant was used to resolve the racemic dl-phenylalanine, and the conversion rate and the ee D value of d-phenylalanine using Rg PAL-Q137E at pH 7 were increased by 29% and 48%, and achieved 93% and 86%, respectively. This work provides an effective strategy to shift the optimum pH which is favorable to further applications of Rg PAL.

  1. Kinetic evidence for the interactive inhibition of laccase from Trametes versicolor by pH and chloride.

    PubMed

    Raseda, Nasrin; Hong, Soonho; Kwon, O Yul; Ryu, Keungarp

    2014-12-28

    The interactive inhibitory effects of pH and chloride on the catalysis of laccase from Trametes versicolor were investigated by studying the alteration of inhibition characteristics of sodium chloride at different pHs for the oxidation of 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid). At pH 3.0, the addition of sodium chloride (50 mM) brought about a 40-fold increase in Km(app) and a 4-fold decrease in Vmax(app). As the pH increased to 7.0, the inhibitory effects of sodium chloride became significantly weakened. The mixed-inhibition mechanism was successfully used to quantitatively estimate the competitive and uncompetitive inhibition strengths by chloride at two different pHs (pH 3.0 and 6.0). At pH 3.0, the competitive inhibition constant, Ki, was 0.35 mM, whereas the uncompetitive inhibition constant, Ki', was 18.1 mM, indicating that the major cause of the laccase inhibition by chloride is due to the competitive inhibition step. At a higher pH of 6.0, where the inhibition of the laccase by hydroxide ions takes effect, the inhibition of the laccase by chloride diminished to a great extent, showing increased values of both the competitive inhibition constant (Ki= 23.7 mM) and uncompetitive inhibition constant (Ki' = 324 mM). These kinetic results evidenced that the hydroxide anion and chloride share a common mechanism to inhibit the laccase activity.

  2. Model for screened, charge-regulated electrostatics of an eye lens protein: Bovine gammaB-crystallin

    PubMed Central

    Wahle, Christopher W.; Martini, K. Michael; Hollenbeck, Dawn M.; Langner, Andreas; Ross, David S.; Hamilton, John F.; Thurston, George M.

    2018-01-01

    We model screened, site-specific charge regulation of the eye lens protein bovine gammaB-crystallin (γ B) and study the probability distributions of its proton occupancy patterns. Using a simplified dielectric model, we solve the linearized Poisson-Boltzmann equation to calculate a 54 × 54 work-of-charging matrix, each entry being the modeled voltage at a given titratable site, due to an elementary charge at another site. The matrix quantifies interactions within patches of sites, including γB charge pairs. We model intrinsic pK values that would occur hypothetically in the absence of other charges, with use of experimental data on the dependence of pK values on aqueous solution conditions, the dielectric model, and literature values. We use Monte Carlo simulations to calculate a model grand-canonical partition function that incorporates both the work-of-charging and the intrinsic pK values for isolated γB molecules and we calculate the probabilities of leading proton occupancy configurations, for 4 < pH < 8 and Debye screening lengths from 6 to 20 Å. We select the interior dielectric value to model γB titration data. At pH 7.1 and Debye length 6.0 Å, on a given γB molecule the predicted top occupancy pattern is present nearly 20% of the time, and 90% of the time one or another of the first 100 patterns will be present. Many of these occupancy patterns differ in net charge sign as well as in surface voltage profile. We illustrate how charge pattern probabilities deviate from the multinomial distribution that would result from use of effective pK values alone and estimate the extents to which γB charge pattern distributions broaden at lower pH and narrow as ionic strength is lowered. These results suggest that for accurate modeling of orientation-dependent γB-γB interactions, consideration of numerous pairs of proton occupancy patterns will be needed. PMID:29346981

  3. Model for screened, charge-regulated electrostatics of an eye lens protein: Bovine gammaB-crystallin.

    PubMed

    Wahle, Christopher W; Martini, K Michael; Hollenbeck, Dawn M; Langner, Andreas; Ross, David S; Hamilton, John F; Thurston, George M

    2017-09-01

    We model screened, site-specific charge regulation of the eye lens protein bovine gammaB-crystallin (γB) and study the probability distributions of its proton occupancy patterns. Using a simplified dielectric model, we solve the linearized Poisson-Boltzmann equation to calculate a 54×54 work-of-charging matrix, each entry being the modeled voltage at a given titratable site, due to an elementary charge at another site. The matrix quantifies interactions within patches of sites, including γB charge pairs. We model intrinsic pK values that would occur hypothetically in the absence of other charges, with use of experimental data on the dependence of pK values on aqueous solution conditions, the dielectric model, and literature values. We use Monte Carlo simulations to calculate a model grand-canonical partition function that incorporates both the work-of-charging and the intrinsic pK values for isolated γB molecules and we calculate the probabilities of leading proton occupancy configurations, for 4

  4. Food Waste Composting Study from Makanan Ringan Mas

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Ismail, S. N. M.; Jamaludin, S. N.

    2016-07-01

    The poor management of municipal solid waste in Malaysia has worsened over the years especially on food waste. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Composting is one of low cost alternative method to dispose the food waste. This study is conducted to compost the food waste generation in Makanan Ringan Mas, which is a medium scale industry in Parit Kuari Darat due to the lack knowledge and exposure of food waste recycling practice. The aim of this study is to identify the physical and chemical parameters of composting food waste from Makanan Ringan Mas. The physical parameters were tested for temperature and pH value and the chemical parameter are Nitrogen, Phosphorus and Potassium. In this study, backyard composting was conducted with 6 reactors. Tapioca peel was used as fermentation liquid and soil and coconut grated were used as the fermentation bed. Backyard composting was conducted with six reactors. The overall results from the study showed that the temperature of the reactors were within the range which are from 30° to 50°C. The result of this study revealed that all the reactors which contain processed food waste tend to produce pH value within the range of 5 to 6 which can be categorized as slightly acidic. Meanwhile, the reactors which contained raw food waste tend to produce pH value within the range of 7 to 8 which can be categorized as neutral. The highest NPK obtained is from Reactor B that process only raw food waste. The average value of Nitrogen is 48540 mg/L, Phosphorus is 410 mg/L and Potassium is 1550 mg/L. From the comparison with common chemical fertilizer, it shows that NPK value from the composting are much lower than NPK of the common chemical fertilizer. However, comparison with NPK of organic fertilizer shown only slightly difference value in NPK.

  5. A method for calibrating pH meters using standard solutions with low electrical conductivity

    NASA Astrophysics Data System (ADS)

    Rodionov, A. K.

    2011-07-01

    A procedure for obtaining standard solutions with low electrical conductivity that reproduce pH values both in acid and alkali regions is proposed. Estimates of the maximal possible error of reproducing the pH values of these solutions are obtained.

  6. PH-sensitive dispersion of carbon nanotubes by myoglobin

    NASA Astrophysics Data System (ADS)

    Nie, Haiyu; Shen, Ganni; Sun, Junlin; Zhang, Tao

    2017-03-01

    A facile and effective method of dispersion of double-walled carbon nanotubes (DWNTs) was developed. At appropriate pH value and sonication, myoglobin helps the solubilization of DWNTs. The product is a pH-sensitive dispersion, which remains in a highly dispersed state at pH<3.0 and pH>10.0. This approach can be used to disperse DWNTs in scale. A reversible conversion of the highly dispersed state to the aggregated state could be observed by changing the pH value. This feature holds great promise for the development of pH sensors.

  7. Holocene soil pH changes and East Asian summer monsoon evolution derived from loess brGDGTs in the northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Duan, Y.; Sun, Q.; Zhao, H.

    2017-12-01

    GDGTs-based proxies have been used successfully to reconstruct paleo-temperature from loess-paleosol sequences during the past few years. However, the pH variations of loess sediments derived from GDGTs covering the geological history remain poorly constrained. Here we present two pH records spanning the last 12 ka (1ka=1000years) based on the modified cyclization ratio index (CBT') of the branched GDGTs using regional CBT'-pH empirical relationship from two well-dated loess-paleosol sections (YWY14 and SHD09) in the northeastern Tibetan Plateau. The results indicate that a slightly alkaline condition occurred during 12 8.5 ka with pH values ranging from 6.98 to 7.24, then CBT'-derived pH decreased from 8.5 to 6.5 ka with values from 7.19 to 6.49 and gradually increased thereafter. The reconstructed pH values from topmost samples can be well compared with instrumental pH values of the surrounding surface soil. The lowest intervals of CBT'-derived pH values during the mid-Holocene in our records are consistent with the results of highest tree pollen percentage from the adjacent lake sediments and regional weakest aeolian activities, which reveals that the moisture maximum during that period, but conflicted with previous results of the wettest early-Holocene inferred from speleothem or ostracod shell oxygen isotope (δ18O) values. Taking together, we conclude that Holocene humidity evolution (wettest middle Holocene) in response to the East Asian summer monsoon (EASM) changes exerts important control on pH variations of loess deposits in northeastern Tibetan Plateau. CBT'-derived pH variations can be potentially used as an indicator of EASM evolution reconstructions. In addition, we argue that speleothem or ostracod shell δ18O records are essentially a signal of the isotopic composition of precipitations rather than EASM intensity.

  8. Evaluation of the pH- and Thermal Stability of the Recombinant Green Fluorescent Protein (GFP) in the Presence of Sodium Chloride

    NASA Astrophysics Data System (ADS)

    Ishii, Marina; Kunimura, Juliana Sayuri; Jeng, Hélio Tallon; Vessoni Penna, Thereza Christina; Cholewa, Olivia

    The thermal stability of recombinant green fluorescent protein (GFP) in sodium chloride (NaCl) solutions at different concentrations, pH, and temperatures was evaluated by assaying the loss of fluorescence intensity as a measure of denaturation. GFP, extracted from Escherichia coli cells by the three-phase partitioning method and purified through a butyl hydrophobic interaction chromatography (HIC) column, was diluted in water for injection (WFI) (pH 6.0-7.0) and in 10 mM buffer solutions (acetate, pH 5.0; phosphate, pH 7.0; and Tris-EDTA, pH 8.0) with 0.9-30% NaCl or without and incubated at 80-95°C. The extent of protein denaturation was expressed as a percentage of the calculated decimal reduction time (D-value). In acetate buffer (pH 4.84 ±0.12), the mean D-values for 90% reduction in GFP fluorescence ranged from 2.3 to 3.6 min, independent of NaCl concentration and temperature. GFP thermal stability diluted in WFI (pH 5.94±0.60) was half that observed in phosphate buffer (pH 6.08±0.60); but in both systems, D-values decreased linearly with increasing NaCl concentration, with D-values (at 80°C) ranging from 3.44, min (WFI) to 6.1 min (phosphate buffer), both with 30% NaCl. However, D-values in Tris-EDTA (pH 7.65±0.17) were directly dependent on the NaCl concentration and 5-10 times higher than D-values for GFP in WFI at 80°C. GFP pH-and thermal stability can be easily monitored by the convenient measure of fluorescence intensity and potentially be used as an indicator to monitor that processing times and temperatures were attained.

  9. Evaluation of the efficacy of four weak acids as antifungal preservatives in low-acid intermediate moisture model food systems.

    PubMed

    Huang, Yang; Wilson, Mark; Chapman, Belinda; Hocking, Ailsa D

    2010-02-01

    The potential efficacy of four weak acids as preservatives in low-acid intermediate moisture foods was assessed using a glycerol based agar medium. The minimum inhibitory concentrations (MIC, % wt./wt.) of each acid was determined at two pH values (pH 5.0, pH 6.0) and two a(w) values (0.85, 0.90) for five food spoilage fungi, Eurotium herbariorum, Eurotium rubrum, Aspergillus niger, Aspergillus flavus and Penicillium roqueforti. Sorbic acid, a preservative commonly used to control fungal growth in low-acid intermediate moisture foods, was included as a reference. The MIC values of the four acids were lower at pH 5.0 than pH 6.0 at equivalent a(w) values, and lower at 0.85 a(w) than 0.90 a(w) at equivalent pH values. By comparison with the MIC values of sorbic acid, those of caprylic acid and dehydroacetic acid were generally lower, whereas those for caproic acid were generally higher. No general observation could be made in the case of capric acid. The antifungal activities of all five weak acids appeared related not only to the undissociated form, but also the dissociated form, of each acid.

  10. Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Moo; Park, Keum-Hwan; Kim, Da-Som; Hwang, Bo-yeon; Kim, Sun-Kyung; Chae, Hee-Man; Ju, Byeong-Kwon; Kim, Young-Seok

    2018-01-01

    Thermophotovoltaic (TPV) systems have attracted attention as promising power generation systems that can directly convert the radiant energy produced by the combustion of fuel into electrical energy. However, there is a fundamental limit of their conversion efficiency due to the broadband distribution of the radiant spectrum. To overcome this problem, several spectrally selective thermal emitter technologies have been investigated, including the fabrication of photonic crystal (PhC) structures. In this paper, we present some design rules based on finite-a difference time-domain (FDTD) simulation results for tungsten (W) PhC emitter. The W 2D PhC was fabricated by a simple nano-imprint lithography (NIL) process, and inductive coupled plasma reactive ion etching (ICP-RIE) with an isotropic etching process, the benefits and parameters of which are presented. The fabricated W PhC emitter showed spectrally selective emission near the infrared wavelength range, and the optical properties varied depending on the size of the nano-patterns. The measured results of the fabricated prototype structure correspond well to the simulated values. Finally, compared with the performance of a flat W emitter, the total thermal emitter efficiency was almost 3.25 times better with the 2D W PhC structure.

  11. Discontinuous pH gradient-mediated separation of TiO2-enriched phosphopeptides

    PubMed Central

    Park, Sung-Soo; Maudsley, Stuart

    2010-01-01

    Global profiling of phosphoproteomes has proven a great challenge due to the relatively low stoichiometry of protein phosphorylation and poor ionization efficiency in mass spectrometers. Effective, physiologically-relevant, phosphoproteome research relies on the efficient phosphopeptide enrichment from complex samples. Immobilized metal affinity chromatography and titanium dioxide chromatography (TOC) can greatly assist selective phosphopeptide enrichment. However, the complexity of resultant enriched samples is often still high, suggesting that further separation of enriched phosphopeptides is required. We have developed a pH-gradient elution technique for enhanced phosphopeptide identification in conjunction with TOC. Using this process, we have demonstrated its superiority to the traditional ‘one-pot’ strategies for differential protein identification. Our technique generated a highly specific separation of phosphopeptides by an applied pH-gradient between 9.2 and 11.3. The most efficient elution range for high-resolution phosphopeptide separation was between pH 9.2 and 9.4. High-resolution separation of multiply-phosphorylated peptides was primarily achieved using elution ranges > pH 9.4. Investigation of phosphopeptide sequences identified in each pH fraction indicated that phosphopeptides with phosphorylated residues proximal to acidic residues, including glutamic acid, aspartic acid, and other phosphorylated residues, were preferentially eluted at higher pH values. PMID:20946866

  12. Photochemistry of monodentate and bidentate carbonato complexes of rhodium (3). [applications to spacecraft fuel cells

    NASA Technical Reports Server (NTRS)

    Sheridan, P. S.

    1980-01-01

    A scheme for the photochemical fixation of water is proposed which involves a five-step reaction sequence; the first step involves the 2 electron reduction of a metal by a coordinated carbonate ligand, with corresponding oxidation of the carbonate to CO2 and O2. Ligand field photolysis of trans- (RH(en)2 H2O CO3) ClO4, and (Rh(en)2 CO3) CLO4 have been studied in the solid state and in aqueous solution at various pH values. Both salts are photoinert in the solid phase, but are quite photoreactive in aqueous solution. In solution, the monodentate ion undergoes efficient isomerization to a mixture of cis and trans - (Rh(en)2 H2O CO3)+, presumably with water exchange. A minor pH increase upon photolysis is evidence of inefficient carbonate (CO3 =) release, with formation of (Rh(en)2 (H2O)2)3+. In contrast, aqueous solutions of the bidentate carbonato complex undergo efficient pH decrease upon ligand field photolysis. Changes in the electronic spectrum (200-500 nm) and pH changes indicate that the desired redox is occurring. The pH increase is due to the aqueous behavior of CO2.

  13. Diurnal and seasonal variations of pH for a year in the western subarctic North Pacific observed by using a hybrid pH sensor

    NASA Astrophysics Data System (ADS)

    Nakano, Yoshiyuki; Fujiki, Tetsuichi; Kimoto, Katsunori; Miwa, Tetsuya

    2017-04-01

    Ocean acidification has many far reaching impacts on plankton community in the ocean. There is great need of quality instrumentation to assess and monitor the changing seawater pH. To meet the need, we have developed the in situ high accurate pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring to participate the Wendy Schmidt Ocean health XPRIZE. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS is correcting the value of the potentiometric pH (measuring frequently) by the value of the spectrophotometric pH (measuring less frequently). It is possible to calibrate in situ with Tris buffer or CRM on the spectrophotometric pH sensor. Therefore, the drifts in the value of potentiometric pH measurements can be compensated using the pH value obtained from the spectrophotometric pH measurements. Thereby, the HpHS can measure accurately the value of pH over a long period of time with low power consumption. In order to understand the seasonal and inter-annual variabilities of biogeochemical cycles and ecosystems, ship-based studies have been carried out since 1997 at time-series station K2 (47oN, 160oE) in the subarctic western North Pacific, which is a region with progression of ocean acidification. However, the ship-based studies of the open ocean have been limited in their ability to conduct high-frequency observations for understanding the biogeochemical cycles and ecosystems. To overcome the problem, we developed a hybrid profiling buoy system. The HpHS was attached to a remote automatic water sampler (200m) in the buoy system in July 2015. We recovered the buoy system in June 2016 and succeeded in observing seawater pH every four hours for a year. Here, we show an overview of the diurnal and seasonal variations of pH for a year at station K2. In addition, we examine a relationship between the pH variations and marine calcifiers recovered by the sediment trap during the same period.

  14. Staphylococci in Competition1

    PubMed Central

    Peterson, A. C.; Black, J. J.; Gunderson, M. F.

    1964-01-01

    Previous results showed definite repressive effects on the growth of staphylococci in mixed cultures due to the competitive growth of psychrophilic saprophytes. This study was continued, and the influence of other environmental factors, pH and salt, on the competition between staphylococci and saprophytes was investigated. Initial pH values varied from 5 to 9. At the extremes of the pH range, staphylococci failed to grow, while the saprophytes grew under all of the conditions tested. At pH 5, the growth curves for the saprophytes were markedly altered from those obtained at neutral pH. The lag phases were greatly lengthened at and below 20 C, but normal numbers of saprophytes were reached in the stationary phase. At pH 6 and 8, staphylococcal growth showed the same inhibition observed at pH 7, at and below 20 C; normal multiplication was observed above this temperature, but with accelerated death phases. Thus, pH did not primarily effect staphylococcal growth through its influence on saprophyte growth and competition, but rather directly affected the growth of Staphylococcus cultures. Salt concentrations from 3.5 to 9.5% were investigated for influence on staphylococcal growth in mixed populations. Above 3.5% salt, staphylococcal inhibition at and above 20 C was not as marked as in the controls, although normal numbers were never reached. The saprophytes were increasingly inhibited, and their lag phases materially lengthened as salt concentration was increased. Salt acted directly on the Staphylococcus population and also, by repressing saprophyte growth, decreased competition, which allowed the staphylococci to grow. PMID:14106943

  15. [Effects of simulated acid rain on seed germination and seedling growth of different type corn Zea mays].

    PubMed

    Zhang, Hai-Yan

    2013-06-01

    Taking normal corn, waxy corn, pop corn, and sweet corn as test materials, this paper studied their seed germination and seedling growth under effects of simulated acid rain (pH 6.0, 5.0, 4.0, 3.0, 2.0, and 1.0). Simulated acid rain at pH 2.0-5.0 had no significant effects on the seed germination and seedling growth, but at pH 1.0, the germination rate of normal corn, waxy corn, pop corn, and sweet corn was 91.3%, 68.7%, 27.5%, and 11.7%, respectively. As compared with those at pH 6.0 (CK), the germination rate, germination index, vigor index, germination velocity, shoot height, root length, shoot and root dry mass, and the transformation rate of stored substances at pH 1.0 had significant decrease, and the average germination time extended apparently. At pH 1.0, the effects of acid rain were greater at seedling growth stage than at germination stage, and greater on underground part than on aboveground part. Due to the differences in gene type, normal corn and waxy corn had the strongest capability against acid rain, followed by pop corn, and sweet corn. It was suggested that corn could be categorized as an acid rain-tolerant crop, the injury threshold value of acid rain was likely between pH 1.0 and pH 2.0, and normal corn and waxy corn would be prioritized for planting in acid rain-stricken area.

  16. Phase angle assessment by bioelectrical impedance analysis and its predictive value for malnutrition risk in hospitalized geriatric patients.

    PubMed

    Varan, Hacer Dogan; Bolayir, Basak; Kara, Ozgur; Arik, Gunes; Kizilarslanoglu, Muhammet Cemal; Kilic, Mustafa Kemal; Sumer, Fatih; Kuyumcu, Mehmet Emin; Yesil, Yusuf; Yavuz, Burcu Balam; Halil, Meltem; Cankurtaran, Mustafa

    2016-12-01

    Phase angle (PhA) value determined by bioelectrical impedance analysis (BIA) is an indicator of cell membrane damage and body cell mass. Recent studies have shown that low PhA value is associated with increased nutritional risk in various group of patients. However, there have been only a few studies performed globally assessing the relationship between nutritional risk and PhA in hospitalized geriatric patients. The aim of the study is to evaluate the predictive value of the PhA for malnutrition risk in hospitalized geriatric patients. One hundred and twenty-two hospitalized geriatric patients were included in this cross-sectional study. Comprehensive geriatric assessment tests and BIA measurements were performed within the first 48 h after admission. Nutritional risk state of the patients was determined with NRS-2002. Phase angle values of the patients with malnutrition risk were compared with the patients that did not have the same risk. The independent variables for predicting malnutrition risk were determined. SPSS version 15 was utilized for the statistical analyzes. The patients with malnutrition risk had significantly lower phase angle values than the patients without malnutrition risk (p = 0.003). ROC curve analysis suggested that the optimum PhA cut-off point for malnutrition risk was 4.7° with 79.6 % sensitivity, 64.6 % specificity, 73.9 % positive predictive value, and 73.9 % negative predictive value. BMI, prealbumin, PhA, and Mini Mental State Examination Test scores were the independent variables for predicting malnutrition risk. PhA can be a useful, independent indicator for predicting malnutrition risk in hospitalized geriatric patients.

  17. Formation of polyelectrolyte complexes with diethylaminoethyl dextran: charge ratio and molar mass effect.

    PubMed

    Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc

    2014-11-26

    The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Selective Electrocatalytic Reduction of Nitrite to Dinitrogen Based on Decoupled Proton-Electron Transfer.

    PubMed

    He, Daoping; Li, Yamei; Ooka, Hideshi; Go, Yoo Kyung; Jin, Fangming; Kim, Sun Hee; Nakamura, Ryuhei

    2018-02-14

    The development of denitrification catalysts which can reduce nitrate and nitrite to dinitrogen is critical for sustaining the nitrogen cycle. However, regulating the selectivity has proven to be a challenge, due to the difficulty of controlling complex multielectron/proton reactions. Here we report that utilizing sequential proton-electron transfer (SPET) pathways is a viable strategy to enhance the selectivity of electrochemical reactions. The selectivity of an oxo-molybdenum sulfide electrocatalyst toward nitrite reduction to dinitrogen exhibited a volcano-type pH dependence with a maximum at pH 5. The pH-dependent formation of the intermediate species (distorted Mo(V) oxo species) identified using operando electron paramagnetic resonance (EPR) and Raman spectroscopy was in accord with a mathematical prediction that the pK a of the reaction intermediates determines the pH-dependence of the SPET-derived product. By utilizing this acute pH dependence, we achieved a Faradaic efficiency of 13.5% for nitrite reduction to dinitrogen, which is the highest value reported to date under neutral conditions.

  19. Roof-harvested rainwater for potable purposes: application of solar disinfection (SODIS) and limitations.

    PubMed

    Amin, Muhammad Tahir; Han, Mooyoung

    2009-01-01

    Efficiency of solar disinfection (SODIS) was evaluated for the potability of rainwater in view of the increasing water and energy crises especially in developing countries. Rainwater samples were collected from an underground storage tank in 2 L polyethylene terephthalate (PET) bottles and SODIS efficiency was evaluated at different weather conditions. For optimizing SODIS, PET bottles with different backing surfaces to enhance the optical and thermal effects of SODIS were used and different physicochemical parameters were selected and evaluated along with microbial re-growth observations and calculating microbial decay constants. Total and fecal coliforms were used along with Escherichia Coli and Heterotrophic Plate Counts (HPC) as basic microbial and indicator organisms of water quality. For irradiance less than 600 W/m(2), reflective type PET bottles were best types while for radiations greater than 700 W/m(2), absorptive type PET bottles offered best solution due to the synergistic effects of both thermal and UV radiations. Microbial inactivation did not improve significantly by changing the initial pH and turbidity values but optimum SODIS efficiency is achieved for rainwater with acidic pH and low initial turbidity values by keeping air-spaced PET bottles in undisturbed conditions. Microbial re-growth occurred after one day only at higher turbidity values and with basic pH values. First-order reaction rate constant was in accordance with recent findings for TC but contradicted with previous researches for E. coli. No microbial parameter met drinking water guidelines even under strong experimental weather conditions rendering SODIS ineffective for complete disinfection and hence needed more exposure time or stronger sunlight radiations. With maximum possible storage of rainwater, however, and by using some means for accelerating SODIS process, rainwater can be disinfected and used for potable purposes.

  20. Axillary pH and influence of deodorants.

    PubMed

    Stenzaly-Achtert, S.; Schölermann, A.; Schreiber, J.; Diec, K. H.; Rippke, F.; Bielfeldt, S.

    2000-05-01

    BACKGROUND/AIMS: In moist intertriginous regions, such as the armpit, the pH value is physiologically higher than in other skin regions. The regulation of the axillary pH-value was examined in an open study with 48 subjects in three groups with n=16 each. METHODS: In the first 10 days (run-in) the subjects received a standard treatment in the axilla with shaving, cleansing and application of a pH-neutral deodorant. This was followed by a 5 day treatment period with the three test products (pH5 Eucerin(R) Deodorant Roll-on, Deodorant Balsam Spray, Deodorant Cream). The study was concluded by a wash-out period with procedures identical to the run-in phase. The pH was measured with a calibrated pH-meter. RESULTS: A significant pH reduction was shown during the treatment period when compared to the run-in phase. The Deodorant Roll-on induced a reduction of the mean pH values from 6.1 to 5.3, the Deodorant Balsam Spray from 6.5 to 5.7 and the Deodorant Cream from 6.2 to 5.3. During the wash-out period all pH values returned to baseline. CONCLUSION: All of the deodorants tested demonstrated a significant reduction in axillary pH. There is evidence that a high skin pH promotes the growth of several microorganisms that produce malodor. Therefore, the regulation of pH may contribute to the deodorant efficacy of the test products.

  1. Respiratory properties of blood and arterial blood gases in the tegu lizard: effects of temperature and hypercapnia.

    PubMed

    Wood, S C; Glass, M L; Andersen, N A; Heisler, N

    1987-01-01

    The effects of body temperature and hypercapnia (7% inspired CO2) on arterial blood gases, plasma pH, and the characteristics of the blood oxygen dissociation curve were determined in Tegu lizards (Tupinambis nigropunctatus). Arterial pH fell from 7.59 to 7.50 when body temperature was increased from 25 to 35 degrees C. The pH/temperature coefficient (delta pH/delta t = -0.009 U/degrees C) was half of that predicted on the basis of 'constant relative alkalinity' and the alphastat hypothesis. The fall in plasma pH resulted from a decrease in plasma [HCO3-], and a rise in plasma Pco2. The O2 affinity of Tegu blood, expressed by the partial pressure at half saturation (P50), decreased with temperature in vitro from 42.3 to 49.6 torr at pH 7.4. The apparent enthalpy (delta H = -3.1 kcal/mol) is about 1/4 of that of human blood. In vivo, the arterial blood oxygen saturation decreased from 89% at 25 degrees to 82% at 35 degrees C. Arterial Po2 increased from 61 to 71 torr as expected from the right-shift of the oxygen dissociation curve. During environmental hypercapnia (7% CO2, 21% O2, 72% N2 inspired concentrations), arterial pH decreased to 7.28. Arterial O2 saturation remained constant and arterial Po2 increased from 61 to 85 torr due to the right-shift of the oxygen dissociation curve. The comparatively small effect of changes in temperature on the oxygen affinity of Tegu blood (directly according to the delta H value, and indirectly via changes in blood pH) results in a relatively small right shift of the oxygen dissociation curve, and accordingly in relatively high arterial and tissue Po2 values also at higher temperatures.

  2. Effect of pH and lactose concentration on solvent production from whey permeate using Clostridium acetobutylicum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ennis, B.M.; Maddox, I.S.

    1987-02-20

    A study was performed to optimize the production of solvents from whey permeate in batch fermentation using Clostridium acetobutylicum P262. Fermentations performed at relatively low pH values resulted in high solvent yields and productivities, but lactose utilization was incomplete. At higher pH values, lactose-utilization was improved but acid production dominated over solvent production. When operating at the higher pH values, an increase in the initial lactose concentration of the whey permeate resulted in lower rates of lactose utilization, and this was accompanied by increased solvent production and decreased acid production. Analysis of data from several experiments revealed a strong inversemore » relationship between solvent yield and lactose utilization rate. Thus, conditions which minimize the lactose utilization rate such as low culture pH values or high initial lactose concentrations, favor solventogenesis at the expense of acid production. 12 references.« less

  3. An extension of ASM2d including pH calculation.

    PubMed

    Serralta, J; Ferrer, J; Borrás, L; Seco, A

    2004-11-01

    This paper presents an extension of the Activated Sludge Model No. 2d (ASM2d) including a chemical model able to calculate the pH value in biological processes. The developed chemical model incorporates the complete set of chemical species affecting the pH value to ASM2d describing non-equilibrium biochemical processes. It considers the system formed by one aqueous phase, in which biochemical processes take place, and one gaseous phase, and is based on the assumptions of instantaneous chemical equilibrium under liquid phase and kinetically governed mass transport between the liquid and gas phase. The ASM2d enlargement comprises the addition of every component affecting the pH value and an ion-balance for the calculation of the pH value and the dissociation species. The significant pH variations observed in a sequencing batch reactor operated for enhanced biological phosphorus removal were used to verify the capability of the extended model for predicting the dynamics of pH jointly with concentrations of acetic acid and phosphate. A pH inhibition function for polyphosphate accumulating bacteria has also been included in the model to simulate the behaviour observed. Experimental data obtained in four different experiments (with different sludge retention time and influent phosphorus concentrations) were accurately reproduced.

  4. Effect of pH and glucose on cultured human peritoneal mesothelial cells.

    PubMed

    Shao, J C; Yorioka, N; Nishida, Y; Yamakido, M

    1999-08-01

    We investigated the effects of various pH and glucose concentrations on the growth of human peritoneal mesothelial cells and on coagulation and fibrinolytic factors. Cells were cultured at various pH values in Ham's F-12 medium containing 1.0% foetal calf serum and supplemented with D-glucose or D-mannitol at various concentrations. After 4-48 h, cell proliferation and 3H-thymidine incorporation were determined. Coagulation and fibrinolytic factors were measured after 48 h. Glucose caused concentration-dependent inhibition of cell growth at all pH values, but the deleterious effect of low pH on cell proliferation was faster and stronger than that of high glucose. At a similar osmolality, mannitol caused less inhibition of cell proliferation than glucose. There was a glucose concentration-dependent increase of thrombin-antithrombin III complex production at all pH values. At pH 5.2, tissue-type plasminogen activator production was far lower than at higher pH values, and production of the plasminogen activator inhibitor showed a glucose concentration-dependent increase. At pH 6.5 or 7.3, however, the plasminogen activator inhibitor production decreased and tissue-type plasminogen activator production increased in a glucose concentration-dependent manner. Low pH and/or high glucose culture medium had an inhibitory effect on peritoneal mesothelial cells, with the effect of high glucose being partially related to hyperosmolality. These cells may modulate peritoneal coagulant and fibrinolytic activity, with the balance between coagulation and fibrinolysis being disturbed by low pH and/or high glucose.

  5. Measurements of pH and redox potential distributions in TNT-contaminated plant-soil systems using microelectrode techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, H.; Zhang, T.C.

    1997-12-31

    The pH and redox potential profiles in TNT-contaminated soils with and without plants were investigated using microelectrode techniques. The new pH cocktail and double-barreled structure greatly improved the performance of the pH microelectrode. For soil without plants, there is almost no pH difference at different locations with different heights; while for the TNT-contaminated soils with plants there exist pH profiles. The soil immediately near the root of the plant has the lowest pH value. The pH value increases as the distance between the measuring point and the plant roots increases. The pH gradient (the increased pH value over the unitmore » distance) decreases with an increase of the distance between the measuring point and the plant roots. These results show that the plant presence can greatly affect the pH distribution. In vegetated soil, the redox potentials in the layer nearest the plant roots are higher than those in the bulk soil without plants. The redox potentials in the central part of the plant are lower than those in the soil around the plant and soil without the plant. The redox potentials in the soil without plants decrease with an increase of depth.« less

  6. Uranium Adsorption on Ferrihydrite - Effects of Phosphate and Humic Acid

    USGS Publications Warehouse

    Payne, T.E.; Davis, J.A.; Waite, T.D.

    1996-01-01

    Uranium adsorption on ferrihydrite was studied as a function of pH in systems equilibrated with air, in the presence and absence of added phosphate and humic acid (HA). The objective was to determine the influence of PO43- and HA on uranium uptake. Below pH 7, the sorption of UO22+ typically increases with increasing pH (the 'low pH sorption edge'), with a sharp decrease in sorption above this pH value (the 'high pH edge'). The presence of ??PO43- of 10-4 mol/L moved the low pH edge to the left by approximately 0.8 pH units. The PO43- was strongly bound by the ferrihydrite surface, and the increased uptake of U was attributed to the formation of ternary surface complexes involving both UO22+ and PO43-. The addition of HA (9 mg/L) increased U uptake at pH values below 7, with little effect at higher pH values. The positions of the pH edges were also affected by the ionic strength and total U content. These experiments show that sorption interactions involving PO43 and HA must be considered in order to model the behavior of U in natural systems, in which these components are often present.

  7. pH value promotes growth of Staphylococcus epidermidis in platelet concentrates.

    PubMed

    Störmer, Melanie; Kleesiek, Knut; Dreier, Jens

    2008-05-01

    The platelet (PLT) storage lesion is characterized metabolically by a pH value associated with lactic acid generation. PLT storage conditions support the growth of Staphylococcus epidermidis, the most common organism implicated in bacterial contamination of PLT concentrates (PCs). Here, different factors that influence bacterial growth in PCs are discussed and the relation between pH values of PCs and citrate plasma (CP) is studied, with emphasis on bacterial proliferation. The PLT lesion with regard to pH decrease and lactic acid production was monitored during storage and correlated to bacterial proliferation properties. A total of 115 coagulase-negative staphylococci, especially S. epidermidis isolates, were characterized for their proliferation in different blood components (CP, buffy coat-derived, and apheresis PCs). Furthermore, the influence of donor-specific, product-specific, species-specific, and strain-specific factors on bacterial proliferation was investigated. PCs showed a lower pH value in comparison to plasma during storage. Bacterial proliferation in PCs and the failure to grow in CP were determined with all organisms tested. No correlation to donor-specific, species-specific, or strain-specific factors was observed. Lowering the pH of CP resulted in bacterial proliferation, whereas a pH increase in the PC unit inhibited the proliferation of S. epidermidis. With emphasis on bacterial proliferation, the significant difference between PC and CP is the presence of metabolizing PLTs. The pH values of stored PLTs, but not those of stored plasma, support the growth of S. epidermidis.

  8. PH Tester Gauge Repeatability and Reproducibility Study for WO3 Nanostructure Hydrothermal Growth Process

    NASA Astrophysics Data System (ADS)

    Abd Rashid, Amirul; Hayati Saad, Nor; Bien Chia Sheng, Daniel; Yee, Lee Wai

    2014-06-01

    PH value is one of the important variables for tungsten trioxide (WO3) nanostructure hydrothermal synthesis process. The morphology of the synthesized nanostructure can be properly controlled by measuring and controlling the pH value of the solution used in this facile synthesis route. Therefore, it is very crucial to ensure the gauge used for pH measurement is reliable in order to achieve the expected result. In this study, gauge repeatability and reproducibility (GR&R) method was used to assess the repeatability and reproducibility of the pH tester. Based on ANOVA method, the design of experimental metrics as well as the result of the experiment was analyzed using Minitab software. It was found that the initial GR&R value for the tester was at 17.55 % which considered as acceptable. To further improve the GR&R level, a new pH measuring procedure was introduced. With the new procedure, the GR&R value was able to be reduced to 2.05%, which means the tester is statistically very ideal to measure the pH of the solution prepared for WO3 hydrothermal synthesis process.

  9. Impact of pH on hydrogen oxidizing redox processes in aquifers due to gas intrusions

    NASA Astrophysics Data System (ADS)

    Metzgen, Adrian; Berta, Marton; Dethlefsen, Frank; Ebert, Markus; Dahmke, Andreas

    2017-04-01

    Hydrogen production from excess energy and its storage can help increasing the efficiency of solar and wind in the energy mix. Therefore, hydrogen needs large-scale intermediate storage independent of the intended later use as hydrogen gas or as reactant to produce methane in the Sabatier process. A possible storage solution is using the geological subsurface such as caverns built in salt deposits or aquifers that are not used for drinking water production. However, underground storage of hydrogen gas potentially leads to accidental gas leakages into near-surface potable aquifers triggering subsequent geochemical processes. These leakages pose potential risks that are currently not sufficiently understood. To close this gap in knowledge, a high-pressure laboratory column system was used to simulate a hydrogen gas intrusion into a shallow aquifer. Water and sediment were gained from a sandy Pleistocene aquifer near Neumünster, Germany. In the first stage of the experiment, 100% hydrogen gas was used to simulate dissolved hydrogen concentrations between 800 and 4000 µM by varying pH2 between 2 and 15 bars. pH values rose to between 7.9 and 10.4, partly due to stripping CO2 from the groundwater used during H2 gas addition. In a second stage, the pH was regulated in a range of 6.7 to 7.9 by using a gas mixture of 99% H2 and 1% CO2 at 5 bars of total gas pressure. Observed processes included hydrogen oxidation, sulfate reduction, acetogenesis, formate production, and methanogenesis, which were independent of the hydrogen concentration. Hydrogen oxidation and sulfate reduction showed zeroth order reaction rates and rate constants (106 to 412 µM/h and 12 to 33 µM/h, respectively) in the pH range between 8 and 10. At pH levels between 7 and 8, both reactions started out faster near the column's inflow but then seemed limited towards the columns outflow, suggesting the dependence of sulfate reduction on the pH-value. Acetogenesis dominated the pH range between 8 and 10 (first order rate constants between 0.029 and 0.036 1/h). Between pH 7 and 8, acetogenesis showed a linear trend (zeroth order rates between 3 and 5 µM/h) whereas formate production became the main process (zeroth order rates between 38 to 197 µM/h) together with methanogenesis as a minor process. The results indicated a strong dependency of the biogeochemical hydrogenotrophic redox reactions on the pH milieu. Thus, pH buffers such as dissolved or solid phase carbonates should be taken into account when predicting effects a hydrogen leakage may have on shallow aquifers. Additionally, parameters derived from the observed processes and their rates allow the design of a process based numerical model simulating a hydrogen intrusion into a shallow aquifer. Consequently the presented outcomes allow an exemplary quantification of the resulting geochemical effects. This study was carried out within the ANGUS+ project and was funded by the German Federal Ministry of Education and Research (BMBF) energy storage funding initiative.

  10. Uniform Corrosion and General Dissolution of Aluminum Alloys 2024-T3, 6061-T6, and 7075-T6

    NASA Astrophysics Data System (ADS)

    Huang, I.-Wen

    Uniform corrosion and general dissolution of aluminum alloys was not as well-studied in the past, although it was known for causing significant amount of weight loss. This work comprises four chapters to understand uniform corrosion of aluminum alloys 2024-T3, 6061-T6, and 7075-T6. A preliminary weight loss experiment was performed for distinguishing corrosion induced weight loss attributed to uniform corrosion and pitting corrosion. The result suggested that uniform corrosion generated a greater mass loss than pitting corrosion. First, to understand uniform corrosion mechanism and kinetics in different environments, a series of static immersion tests in NaCl solutions were performed to provide quantitative measurement of uniform corrosion. Thereafter, uniform corrosion development as a function of temperature, pH, Cl-, and time was investigated to understand the influence of environmental factors. Faster uniform corrosion rate has been found at lower temperature (20 and 40°C) than at higher temperature (60 and 80°C) due to accelerated corrosion product formation at high temperatures inhibiting corrosion reactions. Electrochemical tests including along with scanning electron microscopy (SEM) were utilized to study the temperature effect. Second, in order to further understand the uniform corrosion influence on pit growth kinetics, a long term exposures for 180 days in both immersion and ASTM-B117 test were performed. Uniform corrosion induced surface recession was found to have limited impact on pit geometry regardless of exposure methods. It was also found that the competition for limited cathodic current from uniform corrosion the primary rate limiting factor for pit growth. Very large pits were found after uniform corrosion growth reached a plateau due to corrosion product coverage. Also, optical microscopy and focused ion beam (FIB) imaging has provided more insights of distinctive pitting geometry and subsurface damages found from immersion samples and B117 samples. Although uniform corrosion was studied in various electrolytes, the pH impact was still difficult to discern due to ongoing cathodic reactions that changed electrolyte pH with time. Therefore, buffered pH electrolytes with pH values of 3, 5, 8, and 10 were prepared static immersion tests. Electrochemical experiments were performed in each buffered pH conditions for understanding corrosion mechanisms. Uniform corrosion was found exhibiting higher corrosion rate in buffered acidic and alkaline electrolytes due to pH- and temperature-dependent corrosion product precipitation. Observations were supported by electrochemical, SEM, and EDS observations. Due to the complexity of corrosion data, a reliable corrosion prediction based on empirical observations could be challenging. Artificial neural network (ANN) modeling was used for corrosion data pattern recognition by mimicking human neural network systems. Predictive models were developed based on corrosion data acquired in this study. The model was adaptable through iteratively update its prediction by error minimization during the training phase. Trained ANN model can predict uniform corrosion successfully. In addition to ANN, fuzzy curve analysis was utilized to rank the influence of each input (temperature, pH, Cl-, and time). For example, temperature and pH were found to be the most influential parameters to uniform corrosion. This information can provide feedback for ANN improvement, also known as "data pruning".

  11. Sulphate partitioning into calcite: Experimental verification of pH control and application to seasonality in speleothems

    NASA Astrophysics Data System (ADS)

    Wynn, Peter M.; Fairchild, Ian J.; Borsato, Andrea; Spötl, Christoph; Hartland, Adam; Baker, Andy; Frisia, Silvia; Baldini, James U. L.

    2018-04-01

    Carbonate-associated sulphate (CAS) is a useful carrier of palaeoenvironmental information throughout the geologic record, particularly through its stable isotope composition. However, a paucity of experimental data restricts quantitative understanding of sulphate incorporation into carbonates, and consequently CAS concentrations and their diagenetic modifications are rarely interpreted. However, in the case of calcite speleothems, the remarkably high-resolution CAS records which are obtainable via modern microanalytical techniques represent a potentially invaluable source of palaeoenvironmental information. Here, we describe the results of controlled experiments of sulphate co-precipitation with calcite in freshwater solutions where pH, saturation state, and sulphate concentration were varied independently of each other. Solution pH is confirmed as the principal control on sulphate incorporation into calcite. The relative efficiency of incorporation was calculated as a partition coefficient DSO4 = (mSO4/mCO3)solid/(mSO4/mCO3)solution. High crystal growth rates (driven by either pH or saturation state) encouraged higher values of DSO4 because of an increasing concentration of defect sites on crystal surfaces. At low growth rates, DSO4 was reduced due to an inferred competition between sulphate and bicarbonate at the calcite surface. These experimental results are applied to understand the incorporation of sulphate into speleothem calcite. The experimentally determined pH-dependence suggests that strong seasonal variations in cave air PCO2 could account for annual cycles in sulphate concentration observed in stalagmites. Our new experimentally determined values of DSO4 were compared with DSO4 values calculated from speleothem-drip water monitoring from two caves within the Austrian and Italian Alps. At Obir cave, Austria, DSO4 (×105) varies between 11.1 (winter) and 9.0 (summer) and the corresponding figures for Ernesto cave, Italy, are 15.4 (winter) and 14.9 (summer). These values approximate predicted DSO4 values based on our chamber experiments containing both low (2 ppm) and high (20 ppm) sulphate concentrations. Our experimental values of DSO4 obtained at crystal growth rates typical of stalagmites, closely match those observed in other cave sites from around the world. This validates the universality of the controls behind DSO4 and will enhance the use of speleothem CAS as a palaeoenvironmental proxy.

  12. Tailoring the structure of biphasic calcium phosphate via synthesis procedure

    NASA Astrophysics Data System (ADS)

    Mansour, S. F.; El-dek, S. I.; Ahmed, M. K.

    2017-12-01

    Nano calcium phosphate ceramics (CaPC) were synthesized using simple co-precipitation method at different preparation conditions. The selected Ca/P ratio with a variation of pH value lead to formation of dicalcium phosphate dihydrate (DCPD) at pH 5 and 6 while, hydroxyapatite (HAP) nano particles were formed at pH 9 and 12 at room temperature. The crystallite size was in the range of 15-55 nm depending on the obtained crystalline phase. The study displayed variation of decomposition depending on the annealing temperature. The significant note is the different transformation trend of each phase depending on the starting pH value. The HRTEM illustrated that the DCPD phase was formed as fibers with diameter around 4-6 nm, while HAP was formed in rod shape. The aspect ratio decreased from 6.6 at pH 9 to 4 at pH 12 which refer to the great influence of pH value on the morphology of calcium phosphates.

  13. Structure and optical properties of ZnO produced from microwave hydrothermal hydrolysis of tris(ethylenediamine)zinc nitrate complex

    NASA Astrophysics Data System (ADS)

    Mostafa, Nasser Y.; Heiba, Zein K.; Ibrahim, Mohamed M.

    2015-01-01

    ZnO powders were synthesized using a solution microwave hydrothermal hydrolysis process and tris(ethylenediamine)zinc nitrate {[Zn(en)3](NO3)2} (en = ethylenediamine) as a precursor. Hydrolysis of the precursor complex at different pH produced zinc oxide with a diversity of well-defined morphologies. The effect of hydrolysis pH values on the structural and optical properties has been explored using XRD, SEM, and UV-visible diffuse reflectance spectroscopy (DRS). At pH = 7.0, randomly dispersed rods were formed. Whereas flower-like morphologies were obtained by treating the complex precursor in water at pH = 10.0 and 12.0. The ZnO4 tetrahedrons are greatly affected by the pH value. The band gap decreased sharply with increasing the pH value from 7.0 to 10.0, then slightly decreased with further increasing the pH to 12.0. The relationship between band gap and both structure and surface defects of the samples is also discussed.

  14. Comparative kinetic and energetic modelling of phyllosemiquinone oxidation in Photosystem I.

    PubMed

    Santabarbara, Stefano; Zucchelli, Giuseppe

    2016-04-14

    The oxidation kinetics of phyllo(semi)quinone (PhQ), which acts as an electron transfer (ET) intermediate in the Photosystem I reaction centre, are described by a minimum of two exponential phases, characterised by lifetimes in the 10-30 ns and 150-300 ns ranges. The fastest phase is considered to be dominated by the oxidation of the PhQ molecule coordinated by the PsaB reaction centre subunit (PhQB), and the slowest phase is dominated by the oxidation of the PsaA coordinated PhQ (PhQA). Testing different energetic schemes within a unified theory-based kinetic modelling approach provides reliable limit-values for some of the physical-chemical parameters controlling these ET reactions: (i) the value of ΔG(0) associated with PhQA oxidation is smaller than ∼+30 meV; (ii) the value of the total reorganisation energy (λt) likely exceeds 0.7 eV; (iii) different mean nuclear modes are coupled to PhQB and PhQA oxidation, the former being larger, and both being ≥100 cm(-1).

  15. Effect of pH value of probe molecule on the graphene oxide-based surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Cui, Shao-li; Du, Xiao-qing; Zeng, Chao; Li, Lu; Bao, Jun

    2017-06-01

    The dependence of graphene oxide (GO)-based surface enhanced Raman scattering (SERS) on the pH value of probe molecule was investigated. Water-soluble copper phthalocyanine (TSCuPc) was used as probe molecule and its pH value was adjusted with HCl and NaOH solution. The Raman spectra of TSCuPc with pH equaling 3, 8, and 11 on GO base were tested, respectively. The results show that both Raman enhanced intensity and full width at half maximum (FWHM) of characteristic peaks vary with the pH value of TSCuPc. It is shown that there is no obvious spectral widening of TSCuPc characteristic peaks when TSCuPc is neutral or acidic, and the chemical enhancement intensity of neutral TSCuPc on GO is biggest. In contrast, when TSCuPc is alkaline, the characteristic Raman peaks between 1350 and 1600 cm-1 of TSCuPc on GO are much wider and the intensities of characteristic peaks decrease considerably. The reasons for the pH dependence of GO-based Raman spectra were explored by comparing the wettability of molecule droplet on GO and the absorbance of different pH-adjusted TSCuPc films. It is found that the effect of molecule's pH value on SERS can be contributed to the differences of concentration and distributions on GO surface for varied pH-treated molecule.

  16. Design of PH sensor signal acquisition and display system

    NASA Astrophysics Data System (ADS)

    Qian, Huifa; Zhang, Quanzhu; Deng, Yonghong

    2017-06-01

    With the continuous development of sensor manufacturing technology, how to better deal with the signal is particularly important. PH value of the sensor voltage generated by the signal as a signal, through the MCU acquisition A / D conversion, and ultimately through the digital display of its PH value. The system uses hardware and software to achieve the results obtained with the high-precision PH meter to strive to improve the accuracy and reduce error.

  17. Studies on the Effects of Certain Soil Properties on the Biodegradation of Oils Determined by the Manometric Respirometric Method

    PubMed Central

    Kaakinen, Juhani; Vähäoja, Pekka; Kuokkanen, Toivo; Roppola, Katri

    2007-01-01

    The biodegradability of certain biofuels was studied in the case of forest soils using the manometric respirometric technique, which was proved to be very suitable for untreated, fertilized as well as pH adjusted soils. Experiments carried out in infertile sandy forest soil gave a BOD/ThOD value of 45.1% for a typical model substance, that is, sodium benzoate after a period of 30 days and mineral addition improved the BOD/ThOD value to a value of 76.2%. Rapeseed oil-based chain oil almost did not biodegrade at all in 30 days in nonprocessed soil, and when pH was adjusted to 8.0, the BOD/ThOD value increased slightly to a value of 7.4%. Mineral addition improved the BOD/ThOD value on average to 43.2% after 30 days. The combined mineral addition and pH adjustment together increased the BOD/ThOD value to 75.8% in 30 days. The observations were similar with a rapeseed oil-based lubricating oil: after 30 days, the BOD/ThOD value increased from 5.9% to an average value of 51.9%, when the pH and mineral concentrations of the soil were optimized. The mineral addition and pH adjustment also improved the precision of the measurements significantly. PMID:18273392

  18. Acidity and alkalinity in mine drainage: Theoretical considerations

    USGS Publications Warehouse

    Kirby, Carl S.; Cravotta,, Charles A.

    2004-01-01

    Acidity, net acidity, and net alkalinity are widely used parameters for the characterization of mine drainage, but these terms are not well defined and are often misunderstood. Incorrect interpretation of acidity, alkalinity, and derivative terms can lead to inadequate treatment design or poor regulatory decisions. We briefly explain derivations of theoretical expressions of three types of alkalinities (caustic, phenolphthalein, and total) and acidities (mineral, CO2, and total). Theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined “CO2- acidity” is closely related to most standard titration methods used for mine drainage with an endpoint pH of 8.3, but it presents numerous interpretation problems, and it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/massaction approach and employing graphs for visualization, we explore the concept of principal components and how to assign acidity contributions to solution species, including aqueous complexes, commonly found in mine drainage. We define a comprehensive theoretical definition of acidity in mine drainage on the basis of aqueous speciation at the sample pH and the capacity of these species to undergo hydrolysis to pH 8.3. This definition indicates the computed acidity in milligrams per liter (mg L-1 ) as CaCO3 (based on pH and analytical concentrations of dissolved FeIII , FeII , Mn, and Al in mg L-1 ): Aciditycomputed = 50. (10(3-pH) + 3.CFeIII/55.8 + 2.CFeII/55.8 + 2.CMn/54.9 + 3.CAl/27.0) underestimates contributions from HSO4 - and H+ , but overestimates the acidity due to Fe3+. These errors tend to approximately cancel each other. We demonstrate that “net alkalinity” is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. We demonstrate that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: 1) alkalinity and acidity values based on aqueous speciation, 2) measured alkalinity - computed acidity, or 3) taking the negative of the value obtained in a standard method “hot peroxide” acidity titration, provided that labs report negative values. We recommend the third approach; i.e., Net alkalinity = - Hot Acidity.

  19. Bioremediation of direct dyes in simulated textile effluents by a paramorphogenic form of Aspergillus oryzae.

    PubMed

    Corso, C R; Almeida, E J R; Santos, G C; Morão, L G; Fabris, G S L; Mitter, E K

    2012-01-01

    Azo dyes are extensively used for coloring textiles, paper, food, leather, drinks, pharmaceutical products, cosmetics and inks. The textile industry consumes the largest amount of azo dyes, and it is estimated that approximately 10-15% of dyes used for coloring textiles may be lost in waste streams. Almost all azo dyes are synthetic and resist biodegradation, however, they can readily be reduced by a number of chemical and biological reducing systems. Biological treatment has advantages over physical and chemical methods due to lower costs and minimal environmental effect. This research focuses on the utilization of Aspergillus oryzae to remove some types of azo dyes from aqueous solutions. The fungus, physically induced in its paramorphogenic form (called 'pellets'), was used in the dye biosorption studies with both non-autoclaved and autoclaved hyphae, at different pH values. The goals were the removal of dyes by biosorption and the decrease of their toxicity. The dyes used were Direct Red 23 and Direct Violet 51. Their spectral stability (325-700 nm) was analyzed at different pH values (2.50, 4.50 and 6.50). The best biosorptive pH value and the toxicity limit, (which is given by the lethal concentration (LC(100)), were then determined. Each dye showed the same spectrum at different pH values. The best biosorptive pH was 2.50, for both non- autoclaved and autoclaved hyphae of A. oryzae. The toxicity level of the dyes was determined using the Trimmed Spearman-Karber Method, with Daphnia similis in all bioassays. The Direct Violet 51 (LC(100) 400 mg · mL(-1)) was found to be the most toxic dye, followed by the Direct Red 23 (LC(100) 900 mg · mL(-1)). The toxicity bioassays for each dye have shown that it is possible to decrease the toxicity level to zero by adding a small quantity of biomass from A. oryzae in its paramorphogenic form. The autoclaved biomass had a higher biosorptive capacity for the dye than the non-autoclaved biomass. The results show that bioremediation occurs with A. oryzae in its paramorphogenic form, and it can be used as a biosorptive substrate for treatment of industrial waste water containing azo dyes.

  20. A renaissance of soaps? - How to make clear and stable solutions at neutral pH and room temperature.

    PubMed

    Wolfrum, Stefan; Marcus, Julien; Touraud, Didier; Kunz, Werner

    2016-10-01

    Soaps are the oldest and perhaps most natural surfactants. However, they lost much of their importance since "technical surfactants", usually based on sulfates or sulfonates, have been developed over the last fifty years. Indeed, soaps are pH- and salt-sensitive and they are irritant, especially to the eyes. In food emulsions, although authorized, they have a bad taste, and long-chain saturated soaps have a high Krafft temperature. We believe that most or perhaps all of these problems can be solved with modern formulation approaches. We start this paper with a short overview of our present knowledge of soaps and soap formulations. Then we focus on the problem of the lacking soap solubility at neutral pH values. For example, it is well known that with the food emulsifier sodium oleate (NaOl), clear and stable aqueous solutions can only be obtained at pH values higher than 10. A decrease in the pH value leads to turbid and unstable solutions. This effect is not compatible with the formulation of aqueous stable and drinkable formulations with neutral or even acidic pH values. However, the pH value/phase behavior of aqueous soap solutions can be altered by the addition of other surfactants. Such a surfactant can be Rebaudioside A (RebA), a steviol glycoside from the plant Stevia rebaudiana which is used as a natural food sweetener. In a recent paper, we showed the influence of RebA on the apKa value of sodium oleate in a beverage microemulsion and on its clearing temperature. In the present paper, we report on the effect of the edible bio-surfactant RebA, on the macroscopic and microscopic phase behavior of simple aqueous sodium oleate solutions at varying pH values. The macroscopic phase behavior is investigated by visual observation and turbidity measurements. The microscopic phase behavior is analyzed by acid-base titration curves, phase-contrast and electron microscopy. It turned out that even at neutral pH, aqueous NaOl/RebA solutions can be completely clear and stable for more than 50days at room temperature. This is for the first time that a long chain soap could be really solubilized in water at neutral pH at room temperature. At last, these findings were applied to prepare stable, highly translucent and drinkable aqueous solutions of omega-3-fatty acids at a pH value of 7.5. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Pb and Cd binding to natural freshwater biofilms developed at different pH: the important role of culture pH.

    PubMed

    Hua, Xiuyi; Dong, Deming; Ding, Xiaoou; Yang, Fan; Jiang, Xu; Guo, Zhiyong

    2013-01-01

    The effects of solution pH on adsorption of trace metals to different types of natural aquatic solid materials have been studied extensively, but few studies have been carried out to investigate the effect of pH at which the solid materials were formed on the adsorption. The purpose of present study is to examine this effect of culture pH on metal adsorption to natural freshwater biofilms. The adsorption of Pb and Cd to biofilms which were developed at different culture pH values (ranging from 6.5 to 9.0) was measured at the same adsorption pH value (6.5). The culture pH had considerable effects on both composition and metal adsorption ability of the biofilms. Higher culture pH usually promoted the accumulation of organic material and Fe oxides in the biofilms. The culture pH also affected the quantity and species of algae in the biofilms. The adsorption of Pb and Cd to the biofilms generally increased with the increase of culture pH. This increase was minor at lower pH range and significant at higher pH range and was more remarkable for Cd adsorption than for Pb adsorption. The notable contribution of organic material to the adsorption at higher culture pH values was also observed. The profound impacts of culture pH on adsorption behavior of biofilms mainly resulted from the variation of total contents of the biofilm components and were also affected by the alteration of composition and properties of the components.

  2. Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps.

    PubMed

    Fang, Jingyun; Zhao, Quan; Fan, Chihhao; Shang, Chii; Fu, Yun; Zhang, Xiangru

    2017-09-01

    When a bromide-containing water is treated by the ultraviolet (UV)/chlorine process, hydroxyl radicals (HO) and halogen radicals such as Cl or Br are formed due to the UV photolysis of free halogens. These reactive species may induce the formation of bromate, which is a probable human carcinogen. Bromate formation in the UV/chlorine process using low pressure (LP) and medium pressure (MP) lamps in the presence of bromide was investigated in the present study. The UV/chlorine process significantly enhanced bromate formation as compared to dark chlorination. The bromate formation was elevated with increasing UV fluence, bromide concentration, and pH values under both LP and MP UV irradiations. It was significantly enhanced at pH 9 compared to those at pH 6 and 7 with MP UV irradiation, while it was slightly enhanced at pH 9 with LP UV. The formation by UV/chlorine process started with the formation of free bromine (HOBr/OBr - ) through the reaction of chlorine and bromide, followed by a subsequent oxidation of free bromine and formation of BrO and bromate by reacting with radicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Uranium behaviour in an estuary polluted by mining and industrial effluents: the Ría of Huelva (SW of Spain).

    PubMed

    Hierro, A; Martín, J E; Olías, M; Vaca, F; Bolivar, J P

    2013-10-15

    This paper describes a comprehensive study of the behaviour of U in the Ría of Huelva estuary, formed by the Tinto and Odiel rivers. This ecosystem is conditioned by two hydrochemical facts: one connected with the acid mining drainage (AMD) generated in the first section of the river basins, and another one related to the fertilizer industry located at the estuary. AMD gives a singular character to these rivers; low pH and high redox potential that keep high amounts of toxic elements and radionuclides in dissolution. Most of the data for dissolved U in estuaries indicate conservative mixing, but there are examples of non-conservative behaviour attributed to oxidation/reduction processes or solubility variations. In the Ría of Huelva estuary the U shows a non-conservative behaviour due to solubility changes produced by variations in the pH. A complete removal of riverine dissolved U is observed in a pH range of 4-6. At higher pH values, U release from suspended matter, and probably also from sediments into the dissolved phase is found. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The Influence of pH on Prokaryotic Cell Size and Temperature

    NASA Astrophysics Data System (ADS)

    Sundararajan, D.; Gutierrez, F.; Heim, N. A.; Payne, J.

    2015-12-01

    The pH of a habitat is essential to an organism's growth and success in its environment. Although most organisms maintain a neutral internal pH, their environmental pH can vary greatly. However, little research has been done concerning an organism's environmental pH across a wide range of taxa. We studied pH tolerance in prokaryotes and its relationship with biovolume, taxonomic classification, and ideal temperature. We had three hypotheses: pH and temperature are not correlated; pH tolerance is similar within taxonomic groups; and extremophiles have small cell sizes. To test these hypotheses, we used pH, size, and taxonomic data from The Prokaryotes. We found that the mean optimum external pH was neutral for prokaryotes as a whole and when divided by domain, phylum, and class. Using ANOVA to test for pH within and among group variances, we found that variation of pH in domains, phyla, classes, and families was greater than between them. pH and size did not show much of a correlation, except that the largest and smallest sized prokaryotes had nearly neutral pH. This seems significant because extremophiles need to divert more of their energy from growth to maintain a neutral internal pH. Acidophiles showed a larger range of optimum pH values than alkaliphiles. A similar result was seen with the minimum and maximum pH values of acidophiles and alkaliphiles. While acidophiles were spread out and had some alkaline maximum values, alkaliphiles had smaller ranges, and unlike some acidophiles that had pH minimums close to zero, alkaliphile pH maximums did not go beyond a pH of 12. No statistically significant differences were found between sizes of acidophiles and alkaliphiles. However, optimum temperatures of acidophiles and alkaliphiles did have a statistically significant difference. pH and temperature had a negative correlation. Therefore, pH seems to have a correlation with cell size, temperature, and taxonomy to some extent.

  5. African-Americans, Hispanic Americans, and non-Hispanic whites without GERD or reflux symptoms have equivalent 24-h pH esophageal acid exposure.

    PubMed

    Vega, Kenneth J; Langford, Tracy; Palacio, Carlos; Watts, Janet; Jamal, M Mazen

    2013-12-01

    Ambulatory esophageal pH monitoring is, currently, the recommended diagnostic exam for gastroesophageal reflux disease. Data are currently available for African-American (AA) and non-Hispanic white (nHw) volunteers among United States ethnic groups. The purpose of this study was to obtain normal values of 24-h esophageal pH by monitoring healthy adult Hispanic American (HA) volunteers and to compare these with values obtained from healthy AA and nHw volunteers to determine if ethnic variation exists in 24-h esophageal pH. 24-h Dual esophageal pH monitoring was performed for healthy AA, HA, and nHw. Values for total number of reflux episodes, episodes longer than 5 min, total reflux time, and longest reflux episode in the proximal and/or distal esophagus were obtained for all groups. Differences between groups were considered significant if p<0.05. One-hundred and thirty-six subjects volunteered and completed 24-h pH testing. Fifty-three were AA, 25 HA, and 58 nHw, with males accounting for 52, 47, and 47%, respectively, of each group. AA were older than nHw only and nHw had a lower body mass index than both AA and HA. Shorter study duration was observed for HA than for AA and nHw. No difference was observed between ethnic groups for any measured pH data in the proximal or distal esophagus. No difference exists in values obtained during esophageal pH monitoring among healthy AA, HA, and nHw. This indicates that currently accepted normal values of ambulatory esophageal pH monitoring can be used for all major United States ethnic groups without compromising diagnostic accuracy.

  6. Computational Investigation of the pH Dependence of Loop Flexibility and Catalytic Function in Glycoside Hydrolases*

    PubMed Central

    Bu, Lintao; Crowley, Michael F.; Himmel, Michael E.; Beckham, Gregg T.

    2013-01-01

    Cellulase enzymes cleave glycosidic bonds in cellulose to produce cellobiose via either retaining or inverting hydrolysis mechanisms, which are significantly pH-dependent. Many fungal cellulases function optimally at pH ∼5, and their activities decrease dramatically at higher or lower pH. To understand the molecular-level implications of pH in cellulase structure, we use a hybrid, solvent-based, constant pH molecular dynamics method combined with pH-based replica exchange to determine the pKa values of titratable residues of a glycoside hydrolase (GH) family 6 cellobiohydrolase (Cel6A) and a GH family 7 cellobiohydrolase (Cel7A) from the fungus Hypocrea jecorina. For both enzymes, we demonstrate that a bound substrate significantly affects the pKa values of the acid residues at the catalytic center. The calculated pKa values of catalytic residues confirm their proposed roles from structural studies and are consistent with the experimentally measured apparent pKa values. Additionally, GHs are known to impart a strained pucker conformation in carbohydrate substrates in active sites for catalysis, and results from free energy calculations combined with constant pH molecular dynamics suggest that the correct ring pucker is stable near the optimal pH for both Cel6A and Cel7A. Much longer molecular dynamics simulations of Cel6A and Cel7A with fixed protonation states based on the calculated pKa values suggest that pH affects the flexibility of tunnel loops, which likely affects processivity and substrate complexation. Taken together, this work demonstrates several molecular-level effects of pH on GH enzymes important for cellulose turnover in the biosphere and relevant to biomass conversion processes. PMID:23504310

  7. Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil.

    PubMed

    Galhardi, Juliana Aparecida; Bonotto, Daniel Marcos

    2016-09-01

    Effects of acid mine drainage (AMD) were investigated in surface waters (Laranjinha River and Ribeirão das Pedras stream) and groundwaters from a coal mining area sampled in two different seasons at Figueira city, Paraná State, Brazil. The spatial data distribution indicated that the acid effluents favor the chemical elements leaching and transport from the tailings pile into the superficial water bodies or aquifers, modifying their quality. The acid groundwaters in both sampling periods (dry: pH 2.94-6.04; rainy: pH 3.25-6.63) were probably due to the AMD generation and infiltration, after the oxidation of sulfide minerals. Such acid effluents cause an increase of the solubilization rate of metals, mainly iron and aluminum, contributing to both groundwater and surface water contamination. Sulfate in high levels is a result of waters' pollution due to AMD. In some cases, high sulfate and low iron contents, associated with less acidic pH values, could indicate that AMD, previously generated, is nowadays being neutralized. The chemistry of the waters affected by AMD is controlled by the pH, sulfide minerals' oxidation, oxygen, iron content, and microbial activity. It is also influenced by seasonal variations that allow the occurrence of dissolution processes and the concentration of some chemical elements. Under the perspective of the waters' quality evaluation, the parameters such as conductivity, dissolved sodium, and sulfate concentrations acted as AMD indicators of groundwaters and surface waters affected by acid effluents.

  8. Pore-water chemistry explains zinc phytotoxicity in soil.

    PubMed

    Kader, Mohammed; Lamb, Dane T; Correll, Ray; Megharaj, Mallavarapu; Naidu, Ravi

    2015-12-01

    Zinc (Zn) is a widespread soil contaminant arising from a numerous anthropogenic sources. However, adequately predicting toxicity of Zn to ecological receptors remains difficult due to the complexity of soil characteristics. In this study, we examined solid-solution partitioning using pore-water data and toxicity of Zn to cucumber (Cucumis sativus L.) in spiked soils. Pore-water effective concentration (ECx, x=10%, 20% and 50% reduction) values were negatively related to pH, indicating lower Zn pore water concentration were needed to cause phytotoxicity at high pH soils. Total dissolved zinc (Znpw) and free zinc (Zn(2+)) in soil-pore water successfully described 78% and 80.3% of the variation in relative growth (%) in the full dataset. When the complete data set was used (10 soils), the estimated EC50pw was 450 and 79.2 µM for Znpw and Zn(2+), respectively. Total added Zn, soil pore water pH (pHpw) and dissolve organic carbon (DOC) were the best predictors of Znpw and Zn(2+) in pore-water. The EC10 (total loading) values ranged from 179 to 5214 mg/kg, depending on soil type. Only pH measurements in soil were related to ECx total Zn data. The strongest relationship to ECx overall was pHca, although pHw and pHpw were in general related to Zn ECx. Similarly, when a solution-only model was used to predict Zn in shoot, DOC was negatively related to Zn in shoot, indicating a reduction in uptake/ translocation of Zn from solution with increasing DOC. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Can patients with moderate to severe acute respiratory failure from COPD be treated safely with noninvasive mechanical ventilation on the ward?

    PubMed

    Yalcinsoy, Murat; Salturk, Cuneyt; Oztas, Selahattin; Gungor, Sinem; Ozmen, Ipek; Kabadayi, Feyyaz; Oztim, Aysem Askim; Aksoy, Emine; Adıguzel, Nalan; Oruc, Ozlem; Karakurt, Zuhal

    2016-01-01

    Noninvasive mechanical ventilation (NIMV) usage outside of intensive care unit is not recommended in patients with COPD for severe acute respiratory failure (ARF). We assessed the factors associated with failure of NIMV in patients with ARF and severe acidosis admitted to the emergency department and followed on respiratory ward. This is a retrospective observational cohort study conducted in a tertiary teaching hospital specialized in chest diseases and thoracic surgery between June 1, 2013 and May 31, 2014. COPD patients who were admitted to our emergency department due to ARF were included. Patients were grouped according to the severity of acidosis into two groups: group 1 (pH=7.20-7.25) and group 2 (pH=7.26-7.30). Group 1 included 59 patients (mean age: 70±10 years, 30.5% female) and group 2 included 171 patients (mean age: 67±11 years, 28.7% female). On multivariable analysis, partial arterial oxygen pressure to the inspired fractionated oxygen (PaO2/FiO2) ratio <200, delta pH value <0.30, and pH value <7.31 on control arterial blood gas after NIMV in the emergency room and peak C-reactive protein were found to be the risk factors for NIMV failure in COPD patients with ARF in the ward. NIMV is effective not only in mild respiratory failure but also with severe forms of COPD patients presenting with severe exacerbation. The determination of the failure criteria of NIMV and the expertise of the team is critical for treatment success.

  10. End Tidal CO2 Tension

    PubMed Central

    Pugh, Meredith E.; Newman, Alexander L.; Robbins, Ivan M.; Tolle, James; Austin, Eric D.; Newman, John H.

    2011-01-01

    Background: CO2 excretion is impaired in pulmonary arterial hypertension (PAH) due to underlying vascular obstruction and increased dead space. Our aim was to determine whether resting end tidal CO2 (Etco2) could differentiate patients with PAH from those with pulmonary venous hypertension (PVH) or patients without pulmonary hypertension (PH) and whether successful treatment of PAH resulted in higher Etco2 values. Methods: We performed Etco2 measurements for five breaths at rest and after a 6-min walk test (6MWT) in patients seen at our pulmonary vascular center. Mean Etco2 values were correlated with 6-min walk distance and right-sided heart catheterization data. Results: We enrolled 84 patients with PAH, 17 with PVH without left ventricular systolic dysfunction, and seven with no PH and no severe alterations in pulmonary function testing. Etco2 was significantly lower in patients with PAH than in those with no PH and PVH (P < .0001 PAH vs both groups). Etco2 correlated with the pulmonary artery diastolic pressure-to-pulmonary artery occlusion pressure gradient (r = −0.50, P = .0002) and pulmonary vascular resistance (r = −0.44, P = .002). Etco2 after 6MWT correlated with walk distance (r = 0.34, P = .003). In patients with prostaglandin therapy escalation, Etco2 increased in those who had clinical improvement, whereas in patients who did not improve clinically, Etco2 failed to rise (P = .04). Conclusions: Etco2 is a promising tool to differentiate patients with PAH from those with PVH or no PH, correlates with diagnostic and prognostic hemodynamic indicators, and may increase with successful treatment of PAH. PMID:21622547

  11. Effect of Consuming Tea with Stevia on Salivary pH - An In Vivo Randomised Controlled Trial.

    PubMed

    Pallepati, Akhil; Yavagal, Puja; Veeresh, D J

    To assess the effect of consuming tea with stevia on salivary pH. This randomised controlled trial employed a Latin square design. Twenty-four male students aged 20-23 years were randomly allocated to 4 different groups, 3 experimental with tea sweetened by sucrose, jaggery or stevia, and one unsweetened control. Salivary pH assessments were performed at baseline and 1 min, 20 and 60 min after consumption of the respective tea. One-way ANOVA and repeated measures ANOVA followed by Tukey's post-hoc tests were employed to analyse the data. One minute after tea consumption, the salivary pH of the sucrose group significantly decreased compared to the stevia group (p = 0.01). There was a significant difference between baseline mean salivary pH and post-interventional mean salivary pH values at all time intervals in the tea + sucrose, tea + jaggery, and plain tea groups (p < 0.01). One hour after consumption of tea, the salivary pH values reached the baseline pH in stevia and plain tea groups, but it remained lower in the sucrose and jaggery groups. The results of the present study, in which the salivary pH values returned to baseline pH 1 h after drinking stevia-sweetened tea, suggest stevia's potential as a non-cariogenic sweetener.

  12. Quantitative Chemical Exchange Saturation Transfer MRI of Intervertebral Disc in a Porcine Model

    PubMed Central

    Zhou, Zhengwei; Bez, Maxim; Tawackoli, Wafa; Giaconi, Joseph; Sheyn, Dmitriy; de Mel, Sandra; Maya, Marcel M.; Pressman, Barry D.; Gazit, Zulma; Pelled, Gadi; Gazit, Dan; Li, Debiao

    2017-01-01

    Purpose Previous studies have associated low pH in interver-tebral discs (IVDs) with discogenic back pain. The purpose of this study was to determine whether quantitative CEST (qCEST) MRI can be used to detect pH changes in IVDs in vivo. Methods The exchange rate ksw between glycosaminoglycan (GAG) protons and water protons was determined from qCEST analysis. Its dependence on pH value was investigated in GAG phantoms with varying pH and concentrations. The relationship between ksw and pH was studied further in vivo in a porcine model on a 3T MR scanner and validated using a pH meter. Sodium lactate was injected into the IVDs to induce various pH values within the discs ranging from 5 to 7. Results Phantom and animal results revealed that ksw measured using qCEST MRI is highly correlated with pH level. In the animal studies, the relationship can be described as ksw =9.2 × 106 × 10−pH + 196.9, R2 = 0.7883. Conclusion The exchange rate between GAG and water protons determined from qCEST MRI is closely correlated with pH value. This technique has the potential to noninvasively measure pH in the IVDs of patients with discogenic pain. PMID:27670140

  13. Effects of different annealing atmospheres on the properties of cadmium sulfide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yücel, E., E-mail: dr.ersinyucel@gmail.com; Kahraman, S.; Güder, H.S.

    2015-08-15

    Graphical abstract: The effects of different annealing atmospheres (air and sulfur) on the structural, morphological and optical properties of CdS thin films were studied at three different pH values. - Highlights: • Compactness and smoothness of the films were enhanced after sulfur annealing. • Micro-strain values of some films were improved after sulfur annealing. • Dislocation density values of some films were improved after sulfur annealing. • Band gap values of the films were improved after sulfur annealing. - Abstract: Cadmium sulfide (CdS) thin films were prepared on glass substrates by using chemical bath deposition (CBD) technique. The effects ofmore » different annealing atmospheres (air and sulfur) on the structural, morphological and optical properties of CdS thin films were studied at three different pH values. Compactness and smoothness of the films (especially for pH 10.5 and 11) enhanced after sulfur annealing. pH value of the precursor solution remarkably affected the roughness, uniformity and particle sizes of the films. Based on the analysis of X-ray diffraction (XRD) patterns of the films, micro-strain and dislocation density values of the sulfur-annealed films (pH 10.5 and 11) were found to be lower than those of air-annealed films. Air-annealed films (pH 10.5, 11 and 11.5) exhibited higher transmittance than sulfur-annealed films in the wavelength region of 550–800 nm. Optical band gap values of the films were found between 2.31 eV and 2.36 eV.« less

  14. Secondary elements of blood pH variation can influence the effort effectiveness based on adaptive changes within a group of elite athletes.

    PubMed

    Martin, Ştefan Adrian; Tomescu, Valeriu; Voidăzan, Septimiu

    2016-01-01

    pH is the direct indicator of the body reaction following the activities performed. Establishing precise correlations between pH and blood biochemical parameters might support the balancing of values during periods of marked physical activity. We conducted a case study in a group of elite rowers. Twelve athletes were included in the study. Monitoring was carried out by collecting biological samples several times a day: in the morning, 80 minutes pre-workout, 12 hours after the last physical effort performed, at two different times, 10 days apart. Determinations were aimed at adapting the reported biochemical parameters depending on the effort performed. The following parameters were monitored: pH, HCO3, pCO2, pO2, BE, SBE, SBC, Ca++, Mg++, LDH, GPT, T-Pro, and Alb. The mean value of pH found in athletes was 7.41±0.024. The value obtained was significantly correlated to biochemical parameters such as BE (2.32±1.79), SBC (1.67±1.45), SBE (2.70±1.75). However, bicarbonate (HCO3) was statistically significantly related with SBE, SBC, SBE, and pO2, but did not present a strong association with the pH value (p=0.094). However, values such as Alb, Ca++, LDH, BE, SBC are related to pH value as a result of variations in the data submitted. The processed data evidence the fact that blood pH, in this case, is significantly influenced by a number of indices that correlate energy system activity, individual adaptation to effort, and the recovery process. The parameters under investigation (SBE, SBC, SBE, CPK, LDH) are associated with pH changes that could confirm the recovery efficiency of the athlete, along with a possible metabolic acidosis/alkalosis.

  15. [Degradation kinetics of chlorogenic acid, cryptochlorogenic acid, and neochlorogenic acid at neutral and alkaline pH values].

    PubMed

    Zhu, Peng; Miao, Xiao-lei; Chen, Yong

    2016-01-01

    The degradation kinetics of chlorogenic acid (5-CQA), cryptochlorogenic acid (4-CQA), and neochlorogenic acid (3-CQA) in aqueous solution at 37 degrees C and different pH values (7.05, 7.96, 9.25) were investigated in the present work. The results indicated that 3-, 4- and 5-CQA tended to remain stable in acidic pH circumstance, and unstable in neutral and alkaline pH circumstance. With the increase of the alkalinity, the degradation of 3-, 4- and 5-CQA was increased leading to a less amount of total CQA and was satisfactorily described by the Weibull equation. Meanwhile, caffeic acid was not detected after the degradation of CQA. Moreover, the degradation of 3-CQA and 5-CQA tended to be converted to 4-CQA, and the degradation of 4-CQA tended to be converted to 3-CQA rather than 5-CQA. The comparison of the degradation kinetics parameters of 3-, 4- and 5-CQA at neutral and alkaline pH values showed that the orders of the rate constant (k) values were 4-CQA > 3-CQA > 5-CQA, while the orders of the degradation half life (t½) values were 4-CQA < 3-CQA < 5-CQA, indicating the orders of the stabilities of 3-, 4- and 5-CQA at 37 degrees C and neutral and alkaline pH values were 4-CQA < 3-CQA < 5-CQA.

  16. Low Fermentation pH Is a Trigger to Alcohol Production, but a Killer to Chain Elongation.

    PubMed

    Ganigué, Ramon; Sánchez-Paredes, Patricia; Bañeras, Lluis; Colprim, Jesús

    2016-01-01

    Gasification of organic wastes coupled to syngas fermentation allows the recovery of carbon in the form of commodity chemicals, such as carboxylates and biofuels. Acetogenic bacteria ferment syngas to mainly two-carbon compounds, although a few strains can also synthesize four-, and six-carbon molecules. In general, longer carbon chain products have a higher biotechnological (and commercial) value due to their higher energy content and their lower water solubility. However, de-novo synthesis of medium-chain products from syngas is quite uncommon in acetogenic bacteria. An alternative to de-novo synthesis is bioproduction of short-chain products (C2 and C4), and their subsequent elongation to C4, C6, or C8 through reversed β-oxidation metabolism. This two-step synergistic approach has been successfully applied for the production of up to C8 compounds, although the accumulation of alcohols in these mixed cultures remained below detection limits. The present work investigates the production of higher alcohols from syngas by open mixed cultures (OMC). A syngas-fermenting community was enriched from sludge of an anaerobic digester for a period of 109 days in a lab-scale reactor. At the end of this period, stable production of ethanol and butanol was obtained. C6 compounds were only transiently produced at the beginning of the enrichment phase, during which Clostridium kluyveri, a bacterium able to carry out carbon chain elongation, was detected in the community. Further experiments showed pH as a critical parameter to maintain chain elongation activity in the co-culture. Production of C6 compounds was recovered by preventing fermentation pH to decrease below pH 4.5-5. Finally, experiments showed maximal production of C6 compounds (0.8 g/L) and alcohols (1.7 g/L of ethanol, 1.1 g/L of butanol, and 0.6 g/L of hexanol) at pH 4.8. In conclusion, low fermentation pH is critical for the production of alcohols, although detrimental to C. kluyveri. Fine control of fermentation pH to final values around 4.8 could allow sustained production of higher alcohols.

  17. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid.

    PubMed

    Genç-Fuhrman, Hülya; Mikkelsen, Peter S; Ledin, Anna

    2016-10-01

    The effect of contact time, solution pH, and the presence of humic acid (HA) on the combined removal of As, Cd, Cr, Cu, Ni and Zn is investigated in batch tests using alumina, granulated activated carbon (GAC), and bauxsol coated sand (BCS) as sorbents. It is found that the equilibrium time for Cd, Cu, Ni and Zn is about 4h, while no clear equilibrium is observed for As and Cr. It is also found that increasing the pH until pH~8 enhanced Cd, Cu, Ni and Zn removal, but increasing the pH above this point had no major effect. In the cases of As and Cr, higher pH values (i.e. >7) decreased their removal. The presence of both 20 and 100mg/L HA suppressed the heavy metal removal except for Cr, and the suppression was higher at the higher HA concentration. Geochemical simulations suggest that this is due to the formation of dissolved HA-metal complexes preventing effective metal sorption. In the case of Cr, the presence of HA increased the removal when using alumina or BCS, while hindering the removal when using GAC. The findings show that the pH-value of the stormwater to be treated must be in the range of 6-7 in order to achieve removal of the full spectrum of metals. The results also show that natural organic matter may severely influence the removal efficiency, such that, for most metals the removal was reduced to the half, while for Cr it was increased to the double for alumina and BCS. Consequently, a properly working filter set up may not work properly anymore when receiving high loads of natural organic acids during the pollen season in spring or during defoliation in autumn and early winter, and during mixing of runoff with snowmelt having a low pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions

    NASA Astrophysics Data System (ADS)

    Janjua, Naveed Kausar; Siddiqa, Asima; Yaqub, Azra; Sabahat, Sana; Qureshi, Rumana; Haque, Sayed ul

    2009-12-01

    Mode of interactions of three flavonoids [morin (M), quercetin (Q), and rutin (R)] with chicken blood ds.DNA (ck.DNA) has been investigated spectrophotometrically at different temperatures including body temperature (310 K) and at two physiological pH values, i.e. 7.4 (human blood pH) and 4.7 (stomach pH). The binding constants, Kf, evaluated using Benesi-Hildebrand equation showed that the flavonoids bind effectively through intercalation at both pH values and body temperature. Quercetin, somehow, showed greater binding capabilities with DNA. The free energies of flavonoid-DNA complexes indicated the spontaneity of their binding. The order of binding constants of three flavonoids at both pH values were found to be Kf(Q) > Kf(R) > Kf(M) and at 310 K.

  19. Functional and rheological properties of proteins in frozen turkey breast meat with different ultimate pH.

    PubMed

    Chan, J T Y; Omana, D A; Betti, M

    2011-05-01

    Functional and rheological properties of proteins from frozen turkey breast meat with different ultimate pH at 24 h postmortem (pH(24)) have been studied. Sixteen breast fillets from Hybrid Tom turkeys were initially selected based on lightness (L*) values for each color group (pale, normal, and dark), with a total of 48 breast fillets. Further selection of 8 breast samples was made within each class of meat according to the pH(24). The average L* and pH values of the samples were within the following range: pale (L* >52; pH ≤5.7), normal (46 < L* < 52; 5.9 < pH <6.1), and dark (L* <46; pH ≥6.3), referred to as low, normal, and high pH meat, respectively. Ultimate pH did not cause major changes in the emulsifying and foaming properties of the extracted sarcoplasmic and myofibrillar proteins. An SDS-PAGE profile of proteins from low and normal pH meat was similar, which revealed that the extent of protein denaturation was the same. Low pH meat had the lowest water-holding capacity compared with normal and high pH meat as shown by the increase in cooking loss, which can be explained by factors other than protein denaturation. Gel strength analysis and folding test revealed that gel-forming ability was better for high pH meat compared with low and normal pH meat.Dynamic viscoelastic behavior showed that myosin denaturation temperature was independent of pH(24). Normal and high pH meat had similar hardness, springiness, and chewiness values as revealed by texture profile analysis. The results from this study indicate that high pH meat had similar or better functional properties than normal pH meat. Therefore, high pH meat is suitable for further processed products, whereas low pH meat may need additional treatment or ingredient formulations to improve its functionality.

  20. Arterial versus venous lactate: a measure of sepsis in children.

    PubMed

    Samaraweera, Sahan Asela; Gibbons, Berwyck; Gour, Anami; Sedgwick, Philip

    2017-08-01

    This study assessed the agreement between arterial and venous blood lactate and pH levels in children with sepsis. This retrospective, three-year study involved 60 PICU patients, with data collected from electronic or paper patient records. The inclusion criteria comprised of children (≤17 years old) with sepsis and those who had a venous blood gas taken first with an arterial blood gas taken after within one hour. The lactate and pH values measured through each method were analysed. There is close agreement between venous and arterial lactate up to 2 mmol/L. As this value increases, this agreement becomes poor. The limits of agreement (LOA) are too large (±1.90 mmol/L) to allow venous and arterial lactate to be used interchangeably. The mean difference and LOA between both methods would be much smaller if derived using lactate values under 2.0 mmol/L. There is close agreement between arterial and venous pH (MD = -0.056, LOA ± 0.121). However, due to extreme variations in pH readings during sepsis, pH alone is an inadequate marker. A venous lactate ≤2 mmol/L can be used as a surrogate for arterial lactate during early management of sepsis in children. However, if the value exceeds 2 mmol/L, an arterial sample must confirm the venous result. What is known: • In children with septic shock, a blood gas is an important test to show the presence of acidosis and high lactic acid. Hyperlactataemia on admission is an early predictor of outcome and is associated with a greater mortality risk. • An arterial sample is the standard for lactate measurement, however getting a sample may be challenging in the emergency department or a general paediatric ward. Venous samples are quicker and easier to obtain. Adult studies generally advise caution in replacing venous lactate values for the arterial standard, whilst paediatric studies are limited in this area. What is new: • This is the first study assessing the agreement between arterial and peripheral venous lactate in children with sepsis, with a significant sample of patients. • This study shows that a venous sample with a lactate of ≤ 2 mmol/L can be used as a surrogate measurement for arterial lactate during early management of sepsis in children. However, if the venous lactate is above 2 mmol/L, an arterial sample must be taken to confirm the result.

  1. Water-rock interaction in the magmatic-hydrothermal system of Nisyros Island (Greece)

    NASA Astrophysics Data System (ADS)

    Ambrosio, Michele; Doveri, Marco; Fagioli, Maria Teresa; Marini, Luigi; Principe, Claudia; Raco, Brunella

    2010-04-01

    In this work, we investigated the water-rock interaction processes taking place in the hydrothermal reservoir of Nisyros through both: (1) a review of the hydrothermal mineralogy encountered in the deep geothermal borehole Nisyros-2; and (2) a comparison of the analytically-derived redox potentials and acidities of fumarolic-related liquids, with those controlled by redox buffers and pH buffers, involving hydrothermal mineral phases. The propylitic zone met in the deep geothermal borehole Nisyros-2, from 950 to 1547 m (total depth), is characterised by abundant, well crystallised epidote, adularia, albite, quartz, pyrite, chlorite, and sericite-muscovite, accompanied by less abundant anhydrite, stilpnomelane, wairakite, garnet, tremolite and pyroxene. These hydrothermal minerals were produced in a comparatively wide temperature range, from 230 to 300 °C, approximately. Hydrothermal assemblages are well developed from 950 to 1360 m, whereas they are less developed below this depth, probably due to low permeability. Based on the RH values calculated for fumarolic gases and for the deep geothermal fluids of Nisyros-1 and Nisyros-2 wells, redox equilibrium with the (FeO)/(FeO 1.5) rock buffer appears to be closely attained throughout the hydrothermal reservoir of Nisyros. This conclusion may be easily reconciled with the nearly ubiquitous occurrence of anhydrite and pyrite, since RH values controlled by coexistence of anhydrite and pyrite can be achieved by gas separation. The pH of the liquids feeding the fumarolic vents of Stephanos and Polybote Micros craters was computed, by means of the EQ3 code, based on the Cl- δD relationship which is constrained by the seawater-magmatic water mixing occurring at depth in the hydrothermal-magmatic system of Nisyros. The temperature dependence of analytically-derived pH values for the reservoir liquids feeding the fumarolic vents of Stephanos and Polybote Micros craters suggests that some unspecified pH buffer fixes the acidity of these reservoir liquids at values of 4.72-4.85 and 4.88-5.23, respectively. Many of these pH values are lower than those expected for the full-equilibrium condition, although they are close to those of the reservoir liquids of Nisyros-1, 5.16, and Nisyros-2, 4.87. It is likely that this excess of acidity-producing species, chiefly CO 2, promotes release of Fe(II) and Fe(III) to the reservoir liquids through rock dissolution, permitting the attainment of redox equilibrium with the (FeO)/(FeO 1.5) rock buffer, as already suggested by the late Werner Giggenbach.

  2. Improving the storage stability of Bifidobacterium breve in low pH fruit juice.

    PubMed

    Saarela, M; Alakomi, H L; Mättö, J; Ahonen, A M; Puhakka, A; Tynkkynen, S

    2011-09-01

    Bifidobacterial food applications are limited since bifidobacteria are sensitive to e.g. acidic conditions prevalent in many food matrices. The aim of the present study was to investigate whether a low pH selection step alone or combined to UV mutagenesis could improve the viability of an acid sensitive Bifidobacterium strain, B. breve 99, in low pH food matrices. Furthermore, the potential of carriers and an oat fibre preparation to further improve the stability was studied. The best performing low pH tolerant variants in the present study were generated by UV-mutagenesis with 70-700μJ/cm(2) followed by incubation in growth medium at pH 4.5. The most promising variants regarding the low pH tolerance showed, in repeated tests with cells grown without pH control, about one Log-value better survival in pH 3.8 fruit juice after one week storage at 4°C compared to wild-type B. breve 99. Cells grown with pH control, PDX formulated and then frozen showed poorer viability in low pH fruit juice than cells grown with no pH control. For frozen concentrates pH 3.8 was too stressful and no or small differences between the variants and the wild-type strain were seen. The differences detected at pH 3.8 with the cells grown without pH control were also seen with the frozen concentrates at pH 4.5. Some improvement in the stability could be achieved by using a combination of trehalose, vitamin C and PDX as a freezing carrier material, whereas a significant improvement in the stability was seen when oat fibre was added into the fruit juice together with the frozen cells. Due to the initial very poor fruit juice tolerance of B. breve 99 the obtained improvement in the stability was not enough for commercial applications. However, the same methods could be applied to initially better performing strains to further improve their stability in the fruit juice. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Self-immunity microcapsules for corrosion protection of steel bar in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Wang, Yanshuai; Fang, Guohao; Ding, Weijian; Han, Ningxu; Xing, Feng; Dong, Biqin

    2015-12-01

    A novel microcapsule-based self-immunity system for reinforced concrete is proposed. Its feasibility for hindering the corrosion of steel rebar by means of lifting the threshold value of [Cl-]/[OH-] is discussed. Precisely controlled release behavior enables corrosion protection in the case of depassivation. The release process is characterized over a designated range of pH values, and its release characteristics of the microcapsules, triggered by decreasing pH value, are captured by observing that the core crystals are released when exposed to a signal (stimulus). The aim of corrosion protection of steel bar is achieved through the constantly-stabilized passive film, and its stability is promoted using continuous calcium hydroxide released from the microcapsule, restoring alkaline conditions. The test results exhibited that the release process of the microcapsules is a function of time. Moreover, the release rate of core materials could interact with environmental pH value, in which the release rate is found to increase remarkably with decreasing pH value, but is inhibited by high pH levels.

  4. Self-immunity microcapsules for corrosion protection of steel bar in reinforced concrete.

    PubMed

    Wang, Yanshuai; Fang, Guohao; Ding, Weijian; Han, Ningxu; Xing, Feng; Dong, Biqin

    2015-12-17

    A novel microcapsule-based self-immunity system for reinforced concrete is proposed. Its feasibility for hindering the corrosion of steel rebar by means of lifting the threshold value of [Cl(-)]/[OH(-)] is discussed. Precisely controlled release behavior enables corrosion protection in the case of depassivation. The release process is characterized over a designated range of pH values, and its release characteristics of the microcapsules, triggered by decreasing pH value, are captured by observing that the core crystals are released when exposed to a signal (stimulus). The aim of corrosion protection of steel bar is achieved through the constantly-stabilized passive film, and its stability is promoted using continuous calcium hydroxide released from the microcapsule, restoring alkaline conditions. The test results exhibited that the release process of the microcapsules is a function of time. Moreover, the release rate of core materials could interact with environmental pH value, in which the release rate is found to increase remarkably with decreasing pH value, but is inhibited by high pH levels.

  5. Stabilizing effect of citrate buffer on the photolysis of riboflavin in aqueous solution

    PubMed Central

    Ahmad, Iqbal; Sheraz, Muhammad Ali; Ahmed, Sofia; Kazi, Sadia Hafeez; Mirza, Tania; Aminuddin, Mohammad

    2011-01-01

    In the present investigation the photolysis of riboflavin (RF) in the presence of citrate species at pH 4.0–7.0 has been studied. A specific multicomponent spectrophotometric method has been used to assay RF in the presence of photoproducts during the reactions. The overall first-order rate constants (kobs) for the photolysis of RF range from 0.42 to 1.08×10–2 min−1 in the region. The values of kobs have been found to decrease with an increase in citrate concentration indicating an inhibitory effect of these species on the rate of reaction. The second-order rate constants for the interaction of RF with total citrate species causing inhibition range from 1.79 to 5.65×10–3 M−1 min−1 at pH 4.0–7.0. The log k–pH profiles for the reactions at 0.2–1.0 M citrate concentration show a gradual decrease in kobs and the value at 1.0 M is more than half compared to that of k0, i.e., in the absence of buffer, at pH 5.0. Divalent citrate ions cause a decrease in RF fluorescence due to the quenching of the excited singlet state resulting in a decrease in the rate of reaction and consequently leading to the stabilization of RF solutions. The greater quenching of fluorescence at pH 4.0 compared to that of 7.0 is in accordance with the greater concentration of divalent citrate ions (99.6%) at that pH. The trivalent citrate ions exert a greater inhibitory effect on the rate of RF photolysis compared to that of the divalent citrate ions probably as a result of excited triplet state quenching. The values of second-order rate constants for the interaction of divalent and trivalent citrate ions are 0.44×10–2 and 1.06×10–3 M–1 min–1, respectively, indicating that the trivalent ions exert a greater stabilizing effect, compared to the divalent ions, on RF solutions. PMID:25755977

  6. Formation of Mg-aluminosilicates During Early Diagenesis of Carbonate Sediments in the Volcanic Crater Lake of Dziani Dzaha (Mayotte - Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Milesi, V. P.; Jezequel, D.; Debure, M.; Marty, N.; Guyot, F. J.; Claret, F.; Virgone, A.; Gaucher, E.; Ader, M.

    2017-12-01

    Authigenic clays are increasingly reported in ancient carbonate rocks, but their origin remains poorly understood, strongly limiting paleoenvironmental interpretations. To tackle this issue, the carbonate sediments of the volcanic crater lake Dziani Dzaha are studied and reactive transport modeling is performed to assess the processes originating carbonate sediments associated with Mg-rich silicates during early diagenesis. The Dziani Dzaha is characterized by CO2-rich gases bubbling in three different locations, a high primary productivity leading to organic carbon contents of up to 30wt.% in the sediment, an alkalinity of 0.26 molal in the water column and pH values of 9 to 9.5. Characterization of bulk samples and clay fraction (<2µm) from the first meter of sediment with X-ray powder diffraction and X-ray fluorescence spectrometry indicates aragonite and hydromagnesite in surface sediment. The contents of hydromagnesite and organic matter decrease at depth while saponite, a Mg- and Al-rich trioctahedral smectite, accumulates to reach up to 25wt.% of mineral phases. Concurrently, chemical analyses of pore waters show a decrease of pH values from 9 to 8.3. Modeling of these diagenetic evolutions is performed with the reactive transport code Crunchflow, taking into account the sediment burial. High pH values combined with the alteration of alkaline feldspars and clinopyroxenes from the volcanic catchment allow supersaturation of lake waters relative to aragonite, hydromagnesite and saponite. Kinetic limitations in the formation of saponite explain its accumulation at depth. Production of CO2 associated with organic matter mineralization accounts for the pH decrease of pore waters, which induces hydromagnesite destabilisation leaving behind a saponite-aragonite mineral assemblage. The main driving force for the observed sequence is the intense primary productivity partly fueled by inputs of CO2-rich volcanic gases, which generates high pH, promoting the formation of saponite, aragonite and hydromagnesite, which precipitates at first before being destabilized at depth due to organic matter mineralization. The observed carbon cycle, influenced by volcanic gases, may thus play a key role in the development of carbonate rocks associated with Mg-silicates.

  7. Effects of dietary glutamine and gamma-aminobutyric acid on meat colour, pH, composition, and water-holding characteristic in broilers under cyclic heat stress.

    PubMed

    Dai, S F; Gao, F; Xu, X L; Zhang, W H; Song, S X; Zhou, G H

    2012-01-01

    1. An experiment was conducted to evaluate the effects of dietary glutamine (Gln, 0 and 5 g/kg) and gamma-aminobutyric acid (GABA, 0 and 100 mg/kg) on raw breast meat colour, pH, composition and water-holding characteristic of broilers under cyclic heat stress (HS). 2. A total of 360 21-d-old Arbor Acres male chicks were randomly assigned to 5 treatment groups (6 replicates of 12 birds per cage). The positive control (PC) broilers were kept in a thermoneutral chamber (22-24°C) and fed on the basal diet. The other 4 groups were kept in a cyclic HS chamber (30-34°C) for 9 h (from 09:00 to 18:00). 3. A significant increase was observed in breast meat lightness at 28, 35 and 42 d; and pH values at 28, 35 and 42 d; while a significant decrease was observed in breast meat cooking loss (CL) and contents of moisture, crude protein (CP), crude fat (CF) and crude ash (CA) due to HS. 4. The supplementation with 0·5 g Gln/kg decreased lightness at 28, 35 and 42 d; while increasing redness at 28 d, yellowness at 35 d, contents of CP, CF and CA, thawing loss (TL) and drip loss (DL). The addition of 100 mg GABA/kg decreased lightness at 28 and 35 d, pH value at 28, 35 and 42 d, and TL; while increasing redness at 28 d, 35 and 42 d, contents of moisture, CP and CF. 5. The lightness, redness, and pH value; contents of moisture, CP, CF and CA; and TL, DL and CL of breast meat of broilers fed with the mixture of Gln and GABA under cyclic HS were similar to those of the broilers in the PC group. 6. Significant interactions were found between Gln and GABA for yellowness at 28 and 35 d; pH at 28, 35 and 42 d; moisture content, CP content, water-holding capacity and TL. 7. These results demonstrated that dietary Gln and GABA offer a potential nutritional strategy to prevent cyclic HS-related depression in broiler meat chemical composition and quality.

  8. Dipstick Spot urine pH does not accurately represent 24 hour urine PH measured by an electrode.

    PubMed

    Omar, Mohamed; Sarkissian, Carl; Jianbo, Li; Calle, Juan; Monga, Manoj

    2016-01-01

    To determine whether spot urine pH measured by dipstick is an accurate representation of 24 hours urine pH measured by an electrode. We retrospectively reviewed urine pH results of patients who presented to the urology stone clinic. For each patient we recorded the most recente pH result measured by dipstick from a spot urine sample that preceded the result of a 24-hour urine pH measured by the use of a pH electrode. Patients were excluded if there was a change in medications or dietary recommendations or if the two samples were more than 4 months apart. A difference of more than 0.5 pH was considered na inaccurate result. A total 600 patients were retrospectively reviewed for the pH results. The mean difference in pH between spot urine value and the 24 hours collection values was 0.52±0.45 pH. Higher pH was associated with lower accuracy (p<0.001). The accuracy of spot urine samples to predict 24-hour pH values of <5.5 was 68.9%, 68.2% for 5.5 to 6.5 and 35% for >6.5. Samples taken more than 75 days apart had only 49% the accuracy of more recent samples (p<0.002). The overall accuracy is lower than 80% (p<0.001). Influence of diurnal variation was not significant (p=0.588). Spot urine pH by dipstick is not an accurate method for evaluation of the patients with urolithiasis. Patients with alkaline urine are more prone to error with reliance on spot urine pH.

  9. Observations on the influence of water and soil pH on the persistence of insecticides.

    PubMed

    Chapman, R A; Cole, C M

    1982-01-01

    The pH-disappearance rate profiles were determined at ca. 25 degrees C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water-ethanol (99:1 v/v). Half-lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (greater than 1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1-2 days for trichlorfon and oxamyl to greater than 1 year for fensulfothion and cypermethrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.

  10. Evaluation of red cell distribution width in dogs with pulmonary hypertension.

    PubMed

    Swann, James W; Sudunagunta, Siddharth; Covey, Heather L; English, Kate; Hendricks, Anke; Connolly, David J

    2014-12-01

    To compare red cell distribution width (RDW) between dogs with different causes of pulmonary hypertension (PH) and a control dog population to determine whether RDW was correlated with severity of PH as measured by echocardiography. A further aim was to determine the prognostic significance of increased RDW for dogs with PH. Forty-four client-owned dogs with PH and 79 control dogs presented to a single tertiary referral institution. Signalment, clinical pathological and echocardiographic data were obtained retrospectively from the medical records of dogs with PH, and RDW measured on a Cell-Dyn 3500 was compared between dogs with pre- and post-capillary PH and a control population. Referring veterinary surgeons were contacted for follow-up information and Kaplan-Meier analysis was conducted to investigate differences in survival time between affected dogs with different RDW values. The RDW was significantly greater in dogs with pre-capillary PH compared to control dogs. There was no difference in median survival times between dogs with PH divided according to RDW values. The RDW was positively correlated with mean corpuscular volume and haematocrit in dogs with PH, but did not correlate with echocardiographic variables. An association was found between dogs with PH and increased RDW; however there was considerable overlap in values between control dogs and dogs with PH. The RDW was not associated with survival in this study. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Intra-shell boron isotope ratios in the symbiont-bearing benthic foraminiferan Amphistegina lobifera: Implications for δ 11B vital effects and paleo-pH reconstructions

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, C.; Erez, J.

    2010-03-01

    The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ 11B has some limitations such as the knowledge of the fractionation factor ( α4-3) between boric acid and the borate ion and the amplitude of "vital effects" on this proxy that are not well constrained. Using secondary ion mass spectrometry (SIMS) we have examined the internal variability of the boron isotope ratio in the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24 ± 0.1 °C) in seawater with pH ranging between 7.90 and 8.45. Intra-shell boron isotopes showed large variability with an upper limit value of ≈30‰. Our results suggest that the fractionation factor α4-3 of 0.97352 ( Klochko et al., 2006) is in better agreement with our experiments and with direct pH measurements in seawater vacuoles associated with the biomineralization process in these foraminifera. Despite the large variability of the skeletal pH values in each cultured specimen, it is possible to link the lowest calculated pH values to the experimental culture pH values while the upper pH limit is slightly below 9. This variability can be interpreted as follows: foraminifera variably increase the pH at the biomineralization site to about 9. This increase above ambient seawater pH leads to a range in δ 11B (Δ 11B) for each seawater pH. This Δ 11B is linearly correlated with the culture seawater pH with a slope of -13.1 per pH unit, and is independent of the fractionation factor α4-3, or the δ 11B sw through time. It may also be independent of the p KB (the dissociation constant of boric acid) value. Therefore, Δ 11B in foraminifera can potentially reconstruct paleo-pH of seawater.

  12. Electrohydrodynamic properties of succinoglycan as probed by fluorescence correlation spectroscopy, potentiometric titration and capillary electrophoresis.

    PubMed

    Duval, Jérôme F L; Slaveykova, Vera I; Hosse, Monika; Buffle, Jacques; Wilkinson, Kevin J

    2006-10-01

    The electrostatic, hydrodynamic and conformational properties of aqueous solutions of succinoglycan have been analyzed by fluorescence correlation spectroscopy (FCS), proton titration, and capillary electrophoresis (CE) over a large range of pH values and electrolyte (NaCl) concentrations. Using the theoretical formalism developed previously for the electrokinetic properties of soft, permeable particles, a quantitative analysis for the electro-hydrodynamics of succinoglycan is performed by taking into account, in a self-consistent manner, the measured values of the diffusion coefficients, electric charge densities, and electrophoretic mobilities. For that purpose, two limiting conformations for the polysaccharide in solution are tested, i.e. succinoglycan behaves as (i) a spherical, random coil polymer or (ii) a rodlike particle with charged lateral chains. The results show that satisfactory modeling of the titration data for ionic strengths larger than 50 mM can be accomplished using both geometries over the entire range of pH values. Electrophoretic mobilities measured for sufficiently large pH values (pH > 5-6) are in line with predictions based on either model. The best manner to discriminate between these two conceptual models is briefly discussed. For low pH values (pH < 5), both models indicate aggregation, resulting in an increase of the hydrodynamic permeability and a decrease of the diffusion coefficient.

  13. Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact.

    PubMed

    Lusa, M; Bomberg, M; Aromaa, H; Knuutinen, J; Lehto, J

    2015-05-01

    Batch sorption experiments were conducted to evaluate the sorption behaviour of iodide and the microbial impact on iodide sorption in the surface moss, subsurface peat, gyttja, and clay layers of a nutrient-poor boreal bog. The batch distribution coefficient (Kd) values of iodide decreased as a function of sampling depth. The highest Kd values, 4800 L/Kg dry weight (DW) (geometric mean), were observed in the fresh surface moss and the lowest in the bottom clay (geometric mean 90 mL/g DW). In the surface moss, peat and gyttja layers, which have a high organic matter content (on average 97%), maximum sorption was observed at a pH between ∼ 4 and 5 and in the clay layer at pH 2. The Kd values were significantly lower in sterilized samples, being 20-fold lower than the values found for the unsterilized samples. In addition, the recolonization of sterilized samples with a microbial population from the fresh samples restored the sorption capacity of surface moss, peat and gyttja samples, indicating that the decrease in the sorption was due to the destruction of microbes and supporting the hypothesis that microbes are necessary for the incorporation of iodide into the organic matter. Anoxic conditions reduced the sorption of iodide in fresh, untreated samples, similarly to the effect of sterilization, which supports the hypothesis that iodide is oxidized into I2/HIO before incorporation into the organic matter. Furthermore, the Kd values positively correlated with peroxidase activity in surface moss, subsurface peat and gyttja layers at +20 °C, and with the bacterial cell counts obtained from plate count agar at +4 °C. Our results demonstrate the importance of viable microbes for the sorption of iodide in the bog environment, having a high organic matter content and a low pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Inactivation of viruses using novel protein A wash buffers.

    PubMed

    Bolton, Glen R; Selvitelli, Keith R; Iliescu, Ionela; Cecchini, Douglas J

    2015-01-01

    Low pH viral inactivation is typically performed in the eluate pool following the protein A capture step during the manufacturing of monoclonal antibodies and Fc-fusion proteins. However, exposure to low pH has the potential to alter protein quality. To avoid these difficulties, novel wash buffers capable of inactivating viruses while antibodies or Fc-fusion proteins were bound to protein A or mixed mode resins were developed. By equilibrating the column in high salt buffer (2 M ammonium sulfate or 3 M sodium chloride) after loading, the hydrophobic interactions between antibodies and protein A ligands were increased enough to prevent elution at pH 3. The ammonium sulfate was also found to cause binding of an antibody to a mixed mode cation exchange and a mixed mode anion exchange resin at pH values that caused elution in conventional cation and anion exchange resins (pH 3.5 for Capto Adhere and pH 8.0 for Capto MMC), indicating that retention was due to enhanced hydrophobic interactions. The potential of the 2 M ammonium sulfate pH 3 buffer, a 1 M arginine buffer, and a buffer containing the detergent LDAO to inactivate XMuLV virus when used as protein A wash buffers with a 1 hour contact time were studied. The high salt and detergent containing wash buffers provided about five logs of removal, determined using PCR, and complete combined removal and inactivation (> 6 logs), determined by measuring infectivity. The novel protein A washes could provide more rapid, automated viral inactivation steps with lower pool conductivities. © 2014 American Institute of Chemical Engineers.

  15. Single-step electrodeposition of CIS thin films with the complexing agent triethanolamine

    NASA Astrophysics Data System (ADS)

    Chiu, Yu-Shuen; Hsieh, Mu-Tao; Chang, Chih-Min; Chen, Chun-Shuo; Whang, Thou-Jen

    2014-04-01

    Some difficulties have long been encountered by single-step electrodeposition such as the optimization of electrolyte composition, deposition potentials, deposition time, and pH values. The approach of introducing ternary components into single-step electrodeposition is rather challenging especially due to the different values of the equilibrium potential for each constituent. Complexing agents play an important role in single-step electrodeposition of CuInSe2 (CIS), since the equilibrium potential of every constituent can be brought closer to each other when complexing agents are employed. In this work, single-step electrodeposition of CIS was enhanced by adding triethanolamine (TEA) into deposition bath, the CIS thin films were improved consequently in the form of polycrystalline cauliflower structures through the examination of SEM images and XRD patterns. The optimum composition of the solution for single-step electrodeposition of CIS is found to be 5 mM CuCl2, 22 mM InCl3, and 22 mM SeO2 at pH 1.5 with 0.1 M TEA. The structures, compositions, and morphologies of as-deposited and of annealed films were investigated.

  16. Functionalized dithiocarbamate chelating resin for the removal of Co2+ from simulated wastewater

    NASA Astrophysics Data System (ADS)

    Shi, Xuewei; Fu, Linwei; Wu, Yanyang; Zhao, Huiling; Zhao, Shuangliang; Xu, Shouhong

    2017-12-01

    Industrial wastewater that contains trace amounts of heavy metal ions is often seen in petrochemical industry. While this wastewater can not be directly discharged, it is difficult to treat due to the low concentration of metal ions. Introducing chelating reagents into this wastewater for selective ion adsorption, followed by a mechanical separation process, provides an appealing solution. Toward the success of this technology, the development of effective chelating resins is of key importance. In the present work, a chelating resin containing amino and dithiocarbamate groups was reported for the removal of Co(II) metal ions in trace concentrations from simulated wastewater. By investigating the adsorption performance of the chelating resin at different solution pH values, adsorbent dosages, contact time, initial ion concentrations, and adsorption temperatures, the maximum adsorption capacity of the resin for Co(II) was identified to be 24.89 mg g-1 for a 2 g L-1 adsorbent dosage and a pH value of 5. After four adsorption-desorption cycles, 97% of the adsorption capacity of the resin was maintained. The adsorption kinetics and thermodynamics were analyzed and discussed as well.

  17. Illumina sequencing-based analyses of bacterial communities during short-chain fatty-acid production from food waste and sewage sludge fermentation at different pH values.

    PubMed

    Cheng, Weixiao; Chen, Hong; Yan, ShuHai; Su, Jianqiang

    2014-09-01

    Short-chain fatty acids (SCFAs) can be produced by primary and waste activated sludge anaerobic fermentation. The yield and product spectrum distribution of SCFAs can be significantly affected by different initial pH values. However, most studies have focused on the physical and chemical aspects of SCFA production by waste activated sludge fermentation at different pH values. Information on the bacterial community structures during acidogenic fermentation is limited. In this study, comparisons of the bacterial communities during the co-substrate fermentation of food wastes and sewage sludge at different pH values were performed using the barcoded Illumina paired-end sequencing method. The results showed that different pH environments harbored a characteristic bacterial community, including sequences related to Lactobacillus, Prevotella, Mitsuokella, Treponema, Clostridium, and Ureibacillus. The most abundant bacterial operational taxonomic units in the different pH environments were those related to carbohydrate-degrading bacteria, which are associated with constituents of co-substrate fermentation. Further analyses showed that during organic matter fermentation, a core microbiota composed of Firmicutes, Proteobacteria, and Bacteroidetes existed. Comparison analyses revealed that the bacterial community during fermentation was significantly affected by the pH, and that the diverse product distribution was related to the shift in bacterial communities.

  18. Charge-leveling and proper treatment of long-range electrostatics in all-atom molecular dynamics at constant pH.

    PubMed

    Wallace, Jason A; Shen, Jana K

    2012-11-14

    Recent development of constant pH molecular dynamics (CpHMD) methods has offered promise for adding pH-stat in molecular dynamics simulations. However, until now the working pH molecular dynamics (pHMD) implementations are dependent in part or whole on implicit-solvent models. Here we show that proper treatment of long-range electrostatics and maintaining charge neutrality of the system are critical for extending the continuous pHMD framework to the all-atom representation. The former is achieved here by adding forces to titration coordinates due to long-range electrostatics based on the generalized reaction field method, while the latter is made possible by a charge-leveling technique that couples proton titration with simultaneous ionization or neutralization of a co-ion in solution. We test the new method using the pH-replica-exchange CpHMD simulations of a series of aliphatic dicarboxylic acids with varying carbon chain length. The average absolute deviation from the experimental pK(a) values is merely 0.18 units. The results show that accounting for the forces due to extended electrostatics removes the large random noise in propagating titration coordinates, while maintaining charge neutrality of the system improves the accuracy in the calculated electrostatic interaction between ionizable sites. Thus, we believe that the way is paved for realizing pH-controlled all-atom molecular dynamics in the near future.

  19. Charge-leveling and proper treatment of long-range electrostatics in all-atom molecular dynamics at constant pH

    PubMed Central

    Wallace, Jason A.; Shen, Jana K.

    2012-01-01

    Recent development of constant pH molecular dynamics (CpHMD) methods has offered promise for adding pH-stat in molecular dynamics simulations. However, until now the working pH molecular dynamics (pHMD) implementations are dependent in part or whole on implicit-solvent models. Here we show that proper treatment of long-range electrostatics and maintaining charge neutrality of the system are critical for extending the continuous pHMD framework to the all-atom representation. The former is achieved here by adding forces to titration coordinates due to long-range electrostatics based on the generalized reaction field method, while the latter is made possible by a charge-leveling technique that couples proton titration with simultaneous ionization or neutralization of a co-ion in solution. We test the new method using the pH-replica-exchange CpHMD simulations of a series of aliphatic dicarboxylic acids with varying carbon chain length. The average absolute deviation from the experimental pKa values is merely 0.18 units. The results show that accounting for the forces due to extended electrostatics removes the large random noise in propagating titration coordinates, while maintaining charge neutrality of the system improves the accuracy in the calculated electrostatic interaction between ionizable sites. Thus, we believe that the way is paved for realizing pH-controlled all-atom molecular dynamics in the near future. PMID:23163362

  20. Reduction of N-nitrosodimethylamine formation from ranitidine by ozonation preceding chloramination: influencing factors and mechanisms.

    PubMed

    Zou, Rusen; Liao, Xiaobin; Zhao, Lei; Yuan, Baoling

    2018-05-01

    Formation of toxic N-nitrosodimethylamine (NDMA) by chloramination of ranitidine, a drug to block histamine, was still an ongoing issue and posed a risk to human health. In this study, the effect of ozonation prior to chloramination on NDMA formation and the transformation pathway were determined. Influencing factors, including ozone dosages, pH, hydroxyl radical scavenger, bromide, and NOM, were studied. The results demonstrated that small ozone dosage (0.5 mg/L) could effectively control NDMA formation from subsequent chloramination (from 40 to 0.8%). The NDMA molar conversion was not only influenced by pH but also by ozone dosages at various pre-ozonation pH (reached the highest value of 5% at pH 8 with 0.5 mg/L O 3 but decreased with the increasing pH with 1 mg/L O 3 ). The NDMA molar yield by chloramination of ranitidine without pre-ozonation was reduced by the presence of bromide ion due to the decomposition of disinfectant. However, due to the formation of brominated intermediate substances (i.e., dimethylamine (DMA), dimethyl-aminomethyl furfuryl alcohol (DFUR)) with higher NDMA molar yield than their parent substances, more NDMA was formed than that without bromide ion upon ozonation. Natural organic matter (NOM) and hydroxyl radical scavenger (tert-butyl alcohol, tBA) enhanced NDMA generation because of the competition of ozone and more ranitidine left. The NDMA reduction mechanism by pre-ozonation during chloramination of ranitidine may be due to the production of oxidation products with less NDMA yield (such as DMA) than parent compound. Based on the result of Q-TOF and GC-MS/MS analysis, three possible transformation pathways were proposed. Different influences of oxidation conditions and water quality parameters suggest that strategies to reduce NDMA formation should vary with drinking water sources and choose optimal ozone dosage.

  1. Electrolytic treatment of Standard Malaysian Rubber process wastewater.

    PubMed

    Vijayaraghavan, Krishnan; Ahmad, Desa; Yazid, Ahmad Yuzri Ahmad

    2008-01-31

    A new method of Standard Malaysian Rubber (SMR) process wastewater treatment was developed based on in situ hypochlorous acid generation. The hypochlorous acid was generated in an undivided electrolytic cell consisting of two sets of graphite as anode and stainless sheets as cathode. The generated hypochlorous acid served as an oxidizing agent to destroy the organic matter present in the SMR wastewater. For an influent COD concentration of 2960 mg/L at an initial pH 4.5+/-0.1, current density 74.5 mA/cm(2), sodium chloride content 3% and electrolysis period of 75 min, resulted in the following residual values pH 7.5, COD 87 mg/L, BOD(5) 60 mg/L, TOC 65 mg/L, total chlorine 146 mg/L, turbidity 7 NTU and temperature 48 degrees C, respectively. In the case of 2% sodium chloride as an electrolyte for the above said operating condition resulted in the following values namely: pH 7.2, COD 165 mg/L, BOD(5) 105 mg/L, TOC 120 mg/L, total chlorine 120 mg/L, turbidity 27 NTU and temperature 53 degrees C, respectively. The energy requirement were found to be 30 and 46 Wh/L, while treating 24 L of SMR wastewater at 2 and 3% sodium chloride concentration at a current density 74.5 mA/cm(2). The observed energy difference was due to the improved conductivity at high sodium chloride content.

  2. Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater.

    PubMed

    Song, Yonghui; Dai, Yunrong; Hu, Qiong; Yu, Xiaohua; Qian, Feng

    2014-04-01

    P recovery from swine wastewater has become a great concern as a result of the high demand for P resources and its potential eutrophication effects on water ecosystems. The method of magnesium ammonium phosphate (MAP) crystallization was used to recover P from simulated swine wastewater, and the effects of three organic acids (citric acid, succinic acid and acetic acid) on P removal efficiency and rate at different pH values were investigated. The results indicated that the P removal efficiency was worst affected by citric acid in the optimal pH range of 9.0-10.5, followed by succinic acid and acetic acid, and the influencing extent of organic acids decreased with the increasing pH value. Due to the complexation between organic acid and Mg(2+)/NH4(+), all of three organic acids could inhibit the P removal rate at the beginning of the reaction, which showed positive correlation between the inhibition effects and the concentration of organic acids. The high concentration of citric acid could completely suppress the MAP crystallization reaction. Moreover, citric acid and succinic acid brought obvious effects on the morphology of the crystallized products. The experimental results also demonstrated that MAP crystals could be obtained in the presence of different kinds and concentrations of organic acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering.

    PubMed

    Deng, Meng; Nair, Lakshmi S; Nukavarapu, Syam P; Jiang, Tao; Kanner, William A; Li, Xudong; Kumbar, Sangamesh G; Weikel, Arlin L; Krogman, Nicholas R; Allcock, Harry R; Laurencin, Cato T

    2010-06-01

    Polyphosphazene-polyester blends are attractive materials for bone tissue engineering applications due to their controllable degradation pattern with non-toxic and neutral pH degradation products. In our ongoing quest for an ideal completely miscible polyphosphazene-polyester blend system, we report synthesis and characterization of a mixed-substituent biodegradable polyphosphazene poly[(glycine ethyl glycinato)(1)(phenyl phenoxy)(1)phosphazene] (PNGEG/PhPh) and its blends with a polyester. Two dipeptide-based blends namely 25:75 (Matrix1) and 50:50 (Matrix2) were produced at two different weight ratios of PNGEG/PhPh to poly(lactic acid-glycolic acid) (PLAGA). Blend miscibility was confirmed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Both blends resulted in higher tensile modulus and strength than the polyester. The blends showed a degradation rate in the order of Matrix2

  4. Impact of Interfacial Composition on Lipid and Protein Co-Oxidation in Oil-in-Water Emulsions Containing Mixed Emulisifers.

    PubMed

    Zhu, Zhenbao; Zhao, Cui; Yi, Jianhua; Liu, Ning; Cao, Yuangang; Decker, Eric A; McClements, David Julian

    2018-05-02

    The impact of interfacial composition on lipid and protein co-oxidation in oil-in-water emulsions containing a mixture of proteins and surfactants was investigated. The emulsions consisted of 5% v/v walnut oil, 0.5% w/v whey protein isolate (WPI), and 0 to 0.4% w/v Tween 20 (pH 3 and pH 7). The protein surface load, magnitude of the ξ-potential, and mean particle diameter of the emulsions decreased as the Tween 20 concentration was increased, indicating the whey proteins were displaced by this nonionic surfactant. The whey proteins were displaced from the lipid droplet surfaces more readily at pH 3 than at pH 7, which may have been due to differences in the conformation or interactions of the proteins at the droplet surfaces at different pH values. Emulsions stabilized by whey proteins alone had relatively low lipid oxidation rates when incubated in the dark at 45 °C for up to 8 days, as determined by measuring lipid hydroperoxides and 2-thiobarbituric acid-reactive substances (TBARS). Conversely, the whey proteins themselves were rapidly oxidized, as shown by carbonyl formation, intrinsic fluorescence, sulfhydryl group loss, and electrophoresis measurements. Displacement of whey proteins from the interface by Tween 20 reduced protein oxidation but promoted lipid oxidation. These results indicated that the adsorbed proteins were more prone to oxidation than the nonadsorbed proteins, and therefore, they could act as better antioxidants. Protein oxidation was faster, while lipid oxidation was slower at pH 3 than at pH 7, which was attributed to a higher antioxidant activity of whey proteins under acidic conditions. These results highlight the importance of interfacial composition and solution pH on the oxidative stability of emulsions containing mixed emulsifiers.

  5. Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene.

    PubMed

    Paul, Laiby; Smolders, Erik

    2014-09-01

    Reductive dechlorination of chlorinated ethenes is inhibited by acidification and by the presence of Fe (III) as a competitive electron acceptor. Synergism between both factors on dechlorination is predicted as reductive dissolution of Fe (III) minerals is facilitated by acidification. This study was set-up to assess this synergism for two common aquifer Fe (III) minerals, goethite and ferrihydrite. Anaerobic microbial dechlorination of trichloroethylene (TCE) by KB-1 culture and formate as electron donor was investigated in anaerobic batch containers at different solution pH values (6.2-7.2) in sand coated with these Fe minerals and a sand only as control. In the absence of Fe, lowering substrate pH from 7.2 to 6.2 increased the time for 90% TCE degradation from 14±1d to 42±4d. At pH 7.2, goethite did not affect TCE degradation time while ferrihydrite increased the degradation time to 19±1d compared to the no Fe control. At pH 6.2, 90% degradation was at 78±1 (ferrihydrite) or 131±1d (goethite). Ferrous iron production in ferrihydrite treatment increased between pH 7.2 and 6.5 but decreased by further lowering pH to 6.2, likely due to reduced microbial activity. This study confirms that TCE is increasingly inhibited by the combined effect of acidification and bioavailable Fe (III), however no evidence was found for synergistic inhibition since Fe reduction did not increase as pH decreases. To the best of our knowledge, this is the first study where effect of pH and Fe (III) reduction on TCE was simultaneously tested. Acid Fe-rich aquifers need sufficient buffering and alkalinity to ensure swift degradation of chlorinated ethenes. Copyright © 2014. Published by Elsevier Ltd.

  6. Synthesis and Properties of Poly(ether sulfone)s with Clustered Sulfonic Groups for PEMFC Applications under Various Relative Humidity.

    PubMed

    Lee, Shih-Wei; Chen, Jyh-Chien; Wu, Jin-An; Chen, Kuei-Hsien

    2017-03-22

    Novel sulfonated poly(ether sulfone) copolymers (S4PH-x-PSs) based on a new aromatic diol containing four phenyl substituents at the 2, 2', 6, and 6' positions of 4,4'-diphenyl ether were synthesized. Sulfonation was found to occur exclusively on the 4 position of phenyl substituents by NMR spectroscopy. The ion exchange capacity (IEC) values can be controlled by adjusting the mole percent (x in S4PH-x-PS) of the new diol. The fully hydrated sulfonated poly(ether sulfone) copolymers had good proton conductivity in the range 0.004-0.110 S/cm at room temperature. The surface morphology of S4PH-x-PSs and Nafion 212 was investigated by atomic force microscopy (tapping-mode) and related to the percolation limit and proton conductivity. Single H 2 /O 2 fuel cell based on S4PH-40-PS loaded with 0.25 mg/cm 2 catalyst (Pt/C) exhibited a peak power density of 462.6 mW/cm 2 , which was close to that of Nafion 212 (533.5 mW/cm 2 ) at 80 °C with 80% RH. Furthermore, fuel cell performance of S4PH-35-PS with various relative humidity was investigated. It was confirmed from polarization curves that the fuel cell performance of S4PH-35-PS was not as high as that of Nafion 212 under fully hydrated state due to higher interfacial resistance between S4PH-35-PS and electrodes. While under low relative humidity (53% RH) at 80 °C, fuel cells based on S4PH-35-PS showed higher peak power density (234.9 mW/cm 2 ) than that (214.0 mW/cm 2 ) of Nafion 212.

  7. Separation of abscission zone cells in detached Azolla roots depends on apoplastic pH.

    PubMed

    Fukuda, Kazuma; Yamada, Yoshiya; Miyamoto, Kensuke; Ueda, Junichi; Uheda, Eiji

    2013-01-01

    In studies on the mechanism of cell separation during abscission, little attention has been paid to the apoplastic environment. We found that the apoplastic pH surrounding abscission zone cells in detached roots of the water fern Azolla plays a major role in cell separation. Abscission zone cells of detached Azolla roots were separated rapidly in a buffer at neutral pH and slowly in a buffer at pH below 4.0. However, cell separation rarely occurred at pH 5.0-5.5. Light and electron microscopy revealed that cell separation was caused by a degradation of the middle lamella between abscission zone cells at both pH values, neutral and below 4.0. Low temperature and papain treatment inhibited cell separation. Enzyme(s) in the cell wall of the abscission zone cells might be involved in the degradation of the pectin of the middle lamella and the resultant, pH-dependent cell separation. By contrast, in Phaseolus leaf petioles, unlike Azolla roots, cell separation was slow and increased only at acidic pH. The rapid cell separation, as observed in Azolla roots at neutral pH, did not occur. Indirect immunofluorescence microscopy, using anti-pectin monoclonal antibodies, revealed that the cell wall pectins of the abscission zone cells of Azolla roots and Phaseolus leaf petioles looked similar and changed similarly during cell separation. Thus, the pH-related differences in cell separation mechanisms of Azolla and Phaseolus might not be due to differences in cell wall pectin, but to differences in cell wall-located enzymatic activities responsible for the degradation of pectic substances. A possible enzyme system is discussed. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. Spatial distribution of pH and organic matter in urban soils and its implications on site-specific land uses in Xuzhou, China.

    PubMed

    Mao, Yingming; Sang, Shuxun; Liu, Shiqi; Jia, Jinlong

    2014-05-01

    The spatial variation of soil pH and soil organic matter (SOM) in the urban area of Xuzhou, China, was investigated in this study. Conventional statistics, geostatistics, and a geographical information system (GIS) were used to produce spatial distribution maps and to provide information about land use types. A total of 172 soil samples were collected based on grid method in the study area. Soil pH ranged from 6.47 to 8.48, with an average of 7.62. SOM content was very variable, ranging from 3.51 g/kg to 17.12 g/kg, with an average of 8.26 g/kg. Soil pH followed a normal distribution, while SOM followed a log-normal distribution. The results of semi-variograms indicated that soil pH and SOM had strong (21%) and moderate (44%) spatial dependence, respectively. The variogram model was spherical for soil pH and exponential for SOM. The spatial distribution maps were achieved using kriging interpolation. The high pH and high SOM tended to occur in the mixed forest land cover areas such as those in the southwestern part of the urban area, while the low values were found in the eastern and the northern parts, probably due to the effect of industrial and human activities. In the central urban area, the soil pH was low, but the SOM content was high, which is mainly attributed to the disturbance of regional resident activities and urban transportation. Furthermore, anthropogenic organic particles are possible sources of organic matter after entering the soil ecosystem in urban areas. These maps provide useful information for urban planning and environmental management. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  9. Erosion and attrition of human enamel in vitro part I: interaction effects.

    PubMed

    Eisenburger, M; Addy, M

    2002-01-01

    The aim of the study in vitro was to measure the interplay of attrition and erosion of human enamel under several different pH conditions. Cusp and smooth surface enamel specimens were prepared from unerupted human third molar teeth. Cusp and smooth surface specimens opposed each other in a wear machine under a load of 600 g. The machine simulated tooth grinding for 30 min (2280 wear cycles). Six groups of 10 specimens were worn in the following environmental conditions: saline, citric acid at pH values of 3.2, 5.5 or 7.0 and two cycling groups (pH 3.2/saline or saline/pH 3.2). Additionally, 10 smooth surface specimens were exposed to the same fluids without attrition. Tissue loss on smooth surface specimens was determined by profilometry. The worn specimen surfaces were studied by SEM. Attrition depth in saline and pH 7.0 citric acid was 25.5 microm. At pH 3.2 and 5.5 attrition depths were 6.0 and 4.3 microm, respectively. Cycling in saline/citric acid and vice versa produced attrition depths of 9.2 and 7.9 microm, respectively. In the erosion only specimens lesion depths were 3.0, 1.2 and 0 microm at pH 3.2, 5.5 and 7.0 and saline, respectively. Attrition specimens at pH 7.0 and in saline showed very rough surfaces. At low pH enamel surfaces appeared flat and smooth. Enamel wear in neutral conditions is significantly higher than in acidic conditions (p < 0.05), apparently due to a smoothing effect of erosion on contacting surfaces. Copyright 2002 Elsevier Science Ltd.

  10. Regulation of Serratia marcescens ompF and ompC porin genes in response to osmotic stress, salicylate, temperature and pH.

    PubMed

    Begic, Sanela; Worobec, Elizabeth A

    2006-02-01

    Serratia marcescens is a Gram-negative enterobacterium that has become an important opportunistic pathogen, largely due to its high degree of natural antibiotic resistance. One factor contributing to this natural antibiotic resistance is reduced outer membrane permeability, which is controlled in part by OmpC and OmpF porin proteins. OmpF expression is regulated by micF, an RNA transcript encoded upstream of the ompC gene, which hybridizes with the ompF transcript to inhibit its translation. Regulation of S. marcescens porin gene expression, as well as that of micF, was investigated using beta-galactosidase reporter gene fusions in response to 5, 8 and 10 % sucrose, 1, 5 and 8 mM salicylate, and different pH and temperature values. beta-Galactosidase activity assays revealed that a lower growth temperature (28 degrees C), a more basic pH (pH 8), and an absence of sucrose and salicylate induce the transcription of the ompF gene, whereas the induction of ompC is stimulated at a higher growth temperature (42 degrees C), acidic pH (pH 6), and maximum concentrations of sucrose (10 %) and salicylate (8 mM). In addition, when multiple conditions were tested, temperature had the predominant effect, followed by pH. In this study, it was found that the MicF regulatory mechanism does not play a role in the osmoregulation of the ompF and ompC genes, whereas MicF does repress OmpF expression in the presence of salicylate and high growth temperature, and under low pH conditions.

  11. Acute toxicity of low pH to the brown darter Etheostoma edwini under flow-through conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kase, J.; Burnett, M.; Shortelle, A.B.

    1995-12-31

    The Okaloosa darter, Etheostoma okaloosae, is found exclusively in the Rocky and Boggy Bayou stream systems entering Choctawhatchee Bay, Florida. Due to its limited range and habitat degradation, E. okaloosae was added to the List of Endangered Species in 1973. The Air Force controls several active test areas situated near streams known to contain Okaloosa darters. The possible release and deposition of strong acids such as hydrochloric acid and hydrofluoric acid to stream surface water during some testing activities has raised concerns that the Okaloosa darter population may be adversely affected by episodic pH depression as a result of testingmore » activities. To evaluate the sensitivity of the Okaloosa darter to pH depression, acute toxicity tests using a closely related species, E. edwini, were conducted. Ninety-six hour and 200 min acute pH depression flow-through toxicity tests were performed with surface water collected from the Rocky Bayou stream system. The 96 h test was conducted using six concentrations held at constant pH throughout the duration of the exposure. The 200 min test used an episodic exposure; pH in the exposure chambers were initially dropped and allowed to return to normal. Mortality data obtained during the studies were used to determine the pH depression necessary to cause 50% mortality (LC50) in each scenario. The 96 h and 200 min LC50 values are, respectively, 3.79 and 2.99 s.u. The 200 min LC50 calculations are based on the lowest achieved pH in each exposure during the test. The results of these tests are part of an effort by the Air Force to make risk-based management decision regarding testing activities.« less

  12. Synergistic effect of wire bending and salivary pH on surface properties and mechanical properties of orthodontic stainless steel archwires.

    PubMed

    Hobbelink, Marieke G; He, Yan; Xu, Jia; Xie, Huixu; Stoll, Richard; Ye, Qingsong

    2015-01-01

    The aim of this study was to investigate the corrosive behaviour of stainless steel archwires in a more clinically relevant way by bending and exposing to various pH. One hundred and twenty pieces of rectangular stainless steel wires (0.43 × 0.64 mm) were randomly assigned into four groups. In each group, there were 15 pieces of bent wires and 15 straight ones. Prior to measurements of the wires, as individual experimental groups (group 1, 2, and 3), the wires were exposed to artificial saliva for 4 weeks at pH 5.6, 6.6, and 7.6, respectively. A control group of wires (group 4) remained in air for the same period of time before sent for measurements. Surface roughness (Ra-value) was measured by a profilometer. Young's modulus and maximum force were determined by a four-point flexural test apparatus. Scanning electron microscopy was used to observe the surface morphology of straight wire. Differences between groups were examined using a two-way analysis of variance (ANOVA). Mean surface roughness values, flexural Young's moduli, and maximum force values of bent wires are significantly different from those of the straight wires, which was the main effect of wire bending, ignoring the influence of pH. A significant effect was found between Ra-values regarding the main effect of pH, ignoring the influence of shape. There was a significant interaction effect of bending and pH on flexural Young's moduli of stainless steel archwires, while pH did not show much impact on the maximum force values of those stainless steel wires. Bigger surface irregularities were seen on SEM images of straight wires immersed in artificial saliva at pH 5.6 compared to artificial saliva at other pH values. Surface depth (Rz) was more sensitive than Ra in revealing surface roughness, both measured from 3D reconstructed SEM images. Ra showed a comparable result of surface roughness to Ra-value measured by the profilometer. Bending has a significant influence on surface roughness and mechanical properties of rectangular SS archwires. pH plays a synergistic effect on the change of mechanical properties of stainless steel (SS) wires along with wire bending.

  13. Effect of temperature, pH, and water activity on biofilm formation by Salmonella enterica enteritidis PT4 on stainless steel surfaces as indicated by the bead vortexing method and conductance measurements.

    PubMed

    Giaouris, E; Chorianopoulos, N; Nychas, G J E

    2005-10-01

    An assay was developed in an effort to elucidate the effect of important environmental parameters (temperature, pH, and water activity [aw]) on Salmonella Enteritidis biofilm formation on stainless steel surfaces. To achieve this, a modified microbiological technique used for biofilm studying (the bead vortexing method) and a rapid method based on conductivity measurements were used. The ability of the microorganism to generate biofilm on the stainless surfaces was studied at three temperatures (5, 20, and 37 degrees C), four pH values (4.5, 5.5, 6.5, and 7.4), and four aw values (0.5, 1.5, 5.5, and 10.5% NaCl). Results obtained by the bead vortexing method show that maximum numbers of adherent bacteria per square centimeter (106 CFU/cm2) were attained in 6 days at 20 degrees C. Biofilm formation after 7 days of incubation at 20 degrees C was found to be independent of the pH value. In addition, the high concentration of sodium chloride (10.5% NaCl, aw = 0.94) clearly inhibited the adherence of cells to the coupons. Conductance measurements were used as a supplementary tool to measure indirectly the attachment and biofilm formation of bacterial cells on stainless steel surfaces via their metabolic activity (i.e., changes in the conductance of the growth medium due to microbial growth or metabolism). Results obtained by conductance measurements corresponded well to those of the bead vortexing method. Furthermore, we were able to detect cells that remained attached on the metal surfaces even after vortexing via their metabolic activity. The results, except for demonstrating environmental-dependent Salmonella Enteritidis biofilm formation, indicated that traditional vortexing with beads did not remove completely biofilm cells from stainless steel; hence, conductance measurements seem to provide a more sensitive test capable to detect down to one single viable organism.

  14. [Massive transfusion of washed red blood cells: acid-base and electrolyth changes for different wash solutions].

    PubMed

    Sümpelmann, R; Schürholz, T; Marx, G; Ahrenshop, O; Zander, R

    2003-09-01

    The composition of normal saline (NaCl), the standard wash solution for cell saver autotransfusion, is considerably different from physiologic plasma values in small infants. Therefore, we investigated acid-base and electrolyte changes during massive cell saver autotransfusion with different wash solutions in young pigs. After approval by the animal protection authorities 15 young pigs (weight 10.6 +/- 1.1 kg, blood volume 848 +/- 88 ml, mean+/-SD) underwent 15 cycles of cell saver autotransfusion (Haemolite 2plus, Haemonetics). For each cycle, 100 ml arterial blood was withdrawn, washed with NaCl, physiologic multielectrolyte solution (PME, V Infusionslösung 296 mval Elektrolyte, Baxter) or physiologic erythrocyte protection solution (PEP, 3.2 % gelatine, pH 7.40, cHCO3 24 mmol/l), and then retransfused. Analyses of acid-base, electrolyte, and hematologic parameters were performed for systemic and washed blood samples. For NaCl there was a progressive decrease in systemic pH, HCO3 and base excess (BE) and an increase in chloride values (Cl) (p < 0.05). Use of PME slightly decreased pH (n. s.), whereas HCO3, BE and Cl remained stable. PEP slightly increased pH, HCO3 and BE, and decreased Cl (n. s.). Free hemoglobin increased in NaCl and PME (p < 0.05) and was below baseline in PEP (n. s.). Lactic acid course was comparable in all groups. The use of NaCl as wash solution for massive autotransfusion resulted in metabolic acidosis caused by dilution of HCO3 and increased Cl values. Fewer systemic acid-base and electrolyte changes were observed, when blood was washed with PME or PEP. The decreased hemoglobin release with PEP is possibly due to a gelatine specific electrostatic surface coating of erythrocyte membranes. For massive transfusion of washed red blood cells, physiologic multielectrolyte solution and physiologic erythrocyte protection solution should be preferred to NaCl, especially for small infants.

  15. Natural ocean acidification at Papagayo upwelling system (north Pacific Costa Rica): implications for reef development

    NASA Astrophysics Data System (ADS)

    Sánchez-Noguera, Celeste; Stuhldreier, Ines; Cortés, Jorge; Jiménez, Carlos; Morales, Álvaro; Wild, Christian; Rixen, Tim

    2018-04-01

    Numerous experiments have shown that ocean acidification impedes coral calcification, but knowledge about in situ reef ecosystem response to ocean acidification is still scarce. Bahía Culebra, situated at the northern Pacific coast of Costa Rica, is a location naturally exposed to acidic conditions due to the Papagayo seasonal upwelling. We measured pH and pCO2 in situ during two non-upwelling seasons (June 2012, May-June 2013), with a high temporal resolution of every 15 and 30 min, respectively, using two Submersible Autonomous Moored Instruments (SAMI-pH, SAMI-CO2). These results were compared with published data from the 2009 upwelling season. Findings revealed that the carbonate system in Bahía Culebra shows a high temporal variability. Incoming offshore waters drive intra- and interseasonal changes. Lowest pH (7.8) and highest pCO2 (658.3 µatm) values measured during a cold-water intrusion event in the non-upwelling season were similar to those minimum values reported from upwelling season (pH = 7.8, pCO2 = 643.5 µatm), unveiling that natural acidification also occurs sporadically in the non-upwelling season. This affects the interaction of photosynthesis, respiration, calcification and carbonate dissolution and the resulting diel cycle of pH and pCO2 in the reefs of Bahía Culebra. During the non-upwelling season, the aragonite saturation state (Ωa) rises to values of > 3.3 and during the upwelling season falls below 2.5. The Ωa threshold values for coral growth were derived from the correlation between measured Ωa and coral linear extension rates which were obtained from the literature and suggest that future ocean acidification will threaten the continued growth of reefs in Bahía Culebra. These data contribute to building a better understanding of the carbonate system dynamics and coral reefs' key response (e.g., coral growth) to natural low-pH conditions, in upwelling areas in the eastern tropical Pacific and beyond.

  16. Soil pH on mobility of imazaquin in oxisols with positive balance of charges.

    PubMed

    Regitano, Jussara B; da Rocha, Wadson S D; Alleoni, Luís R F

    2005-05-18

    The influence of soil pH on the leaching potential of the ionizable herbicide imazaquin was assessed on the profile of two highly weathered soils having a net positive charge in the B horizon, in contrast to a soil having a net negative charge in the whole profile, using packed soil column experiments. Imazaquin leached to a large extent and faster at Kd values lower than 1.0 L kg(-1), a much more lenient limit than usually proposed for pesticides in the literature (Kd < 5.0 L kg(-1)). The amount of imazaquin leached increased with soil pH. As the soil pH increased, the percentage of imazaquin in the anionic forms, the negative surface potential of the soils, as well as imazaquin water solubility also increased, thus reducing sorption because of repulsive electrostatic forces (hydrophilic interactions). For all surface samples (0-0.2 m), imazaquin did not leach at soil pH values lower than pKa (3.8) and more than 80% of the applied amount was leached at pH values higher than 5.5. For subsurface samples from the acric soils, imazaquin only began to leach at soil pH values > zero point of salt effects (ZPSE > 5.7). In conclusion, the use of surface K(oc) values to predict the amount of imazaquin leached within soil profiles having a positive balance of charges may greatly overestimate its actual leaching potential.

  17. Comparison of pH and refractometry index with calcium concentrations in preparturient mammary gland secretions of mares.

    PubMed

    Korosue, Kenji; Murase, Harutaka; Sato, Fumio; Ishimaru, Mutsuki; Kotoyori, Yasumitsu; Tsujimura, Koji; Nambo, Yasuo

    2013-01-15

    To test the usefulness of measuring pH and refractometry index, compared with measuring calcium carbonate concentration, of preparturient mammary gland secretions for predicting parturition in mares. Evaluation study. 27 pregnant Thoroughbred mares. Preparturient mammary gland secretion samples were obtained once or twice daily 10 days prior to foaling until parturition. The samples were analyzed for calcium carbonate concentration with a water hardness kit (151 samples), pH with pH test paper (222 samples), and refractometry index with a Brix refractometer (214 samples). The sensitivity, specificity, and positive and negative predictive values for each test were calculated for evaluation of predicting parturition. The PPV within 72 hours and the NPV within 24 hours for calcium carbonate concentration determination (standard value set to 400 μg/g) were 93.8% and 98.3%, respectively. The PPV within 72 hours and the NPV within 24 hours for the pH test (standard value set at 6.4) were 97.9% and 99.4%, respectively. The PPV within 72 hours and the NPV within 24 hours for the Brix test (standard value set to 20%) were 73.2% and 96.5%, respectively. Results suggested that the pH test with the standard value set at a pH of 6.4 would be useful in the management of preparturient mares by predicting when mares are not ready to foal. This was accomplished with equal effectiveness of measuring calcium carbonate concentration with a water hardness kit.

  18. Effects on water quality due to flood-water detention by Barker and Addicks Reservoirs, Houston, Texas

    USGS Publications Warehouse

    Liscum, Fred; Goss, R.L.; Paul, E.M.

    1987-01-01

    The third approach was a comparison at each site of the mean, maximum, and minimum values computed for seven constituents that did not correlate with discharge. These constituents or properties of water were temperature, pH, dissolved oxygen, dissolved oxygen percent saturation, total-coliform bacteria, fecal-conform bacteria, and fecal-streptococci bacteria. The only consistent water-quality changes observed were with the three bacteria groups, which were decreased by flood-water detention.

  19. Effect of heat, pH, ultrasonication and ethanol on the denaturation of whey protein isolate using a newly developed approach in the analysis of difference-UV spectra.

    PubMed

    Nikolaidis, Athanasios; Andreadis, Marios; Moschakis, Thomas

    2017-10-01

    A newly developed method of analysis of difference-UV spectra was successfully implemented in the study of the effect of heat, pH, ultrasonication and ethanol on the denaturation of whey protein isolate. It was found that whey proteins exhibit their highest stability against heat denaturation at pH 3.75. At very low pH values, i.e. 2.5, they exhibited considerable cold denaturation, while after heating at this pH value, the supplementary heat denaturation rate was lower compared to that at neutral pH. The highest heat denaturation rates were observed at pH values higher than neutral. High power sonication on whey proteins, previously heated at 90°C for 30min, resulted in a rather small reduction of the fraction of the heat denatured protein aggregates. Finally, when ethanol was used as a cosolvent in the concentration range 20-50%, a sharp increase in the degree of denaturation, compared to the native protein solution, was observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Processed dairy beverages pH evaluation: consequences of temperature variation.

    PubMed

    Ferreira, Fabiana Vargas; Pozzobon, Roselaine Terezinha

    2009-01-01

    This study assessed the pH from processed dairy beverages as well as eventual consequences deriving from different ingestion temperatures. 50 adults who accompanied children attended to at the Dentistry School were randomly selected and they answered a questionnaire on beverages. The beverages were divided into 4 groups: yogurt (GI) fermented milk (GII), chocolate-based products (GIII) and fermented dairy beverages (GIV). They were asked which type, flavor and temperature. The most popular beverages were selected, and these made up the sample. A pH meter Quimis 400A device was used to verify pH. The average pH from each beverage was calculated and submitted to statistical analysis (Variance and Tukey test with a 5% significance level). for groups I, II and III beverages, type x temperature interaction was significant, showing the pH averages were influenced by temperature variation. At iced temperatures, they presented lower pH values, which were considered statistically significant when compared to the values found for the same beverages at room temperature. All dairy beverages, with the exception of the chocolate-based type presented pH below critical level for enamel and present corrosive potential; as to ingestion temperature, iced temperature influenced pH reducing its values, in vitro.

  1. The pH dependent Raman spectroscopic study of caffeine

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Gu, Huaimin; Zhong, Liang; Hu, Yongjun; Liu, Fang

    2011-02-01

    First of all the surface enhanced Raman spectroscopy (SERS) and normal Raman spectra of caffeine aqueous solution were obtained at different pH values. In order to obtain the detailed vibrational assignments of the Raman spectroscopy, the geometry of caffeine molecule was optimized by density functional theory (DFT) calculation. By comparing the SERS of caffeine with its normal spectra at different pH values; it is concluded that pH value can dramatically affect the SERS of caffeine, but barely affect the normal Raman spectrum of caffeine aqueous solution. It can essentially affect the reorientation of caffeine molecule to the Ag colloid surface, but cannot impact the vibration of functional groups and chemical bonds in caffeine molecule.

  2. Capsule Design for Blue Light Therapy against Helicobacter pylori.

    PubMed

    Li, Zhangyong; Ren, Binbin; Tan, Haiyan; Liu, Shengrong; Wang, Wei; Pang, Yu; Lin, Jinzhao; Zeng, Chen

    2016-01-01

    A photo-medical capsule that emits blue light for Helicobacter pylori treatment was described in this paper. The system consists of modules for pH sensing and measuring, light-emitting diode driver circuit, radio communication and microcontroller, and power management. The system can differentiate locations by monitoring the pH values of the gastrointestinal tract, and turn on and off the blue light according to the preset range of pH values. Our experimental tests show that the capsule can operate in the effective light therapy mode for more than 32 minutes and the wireless communication module can reliably transmit the measured pH value to a receiver located outside the body.

  3. Composition and structure of whey protein/gum arabic coacervates.

    PubMed

    Weinbreck, F; Tromp, R H; de Kruif, C G

    2004-01-01

    Complex coacervation in whey protein/gum arabic (WP/GA) mixtures was studied as a function of three main key parameters: pH, initial protein to polysaccharide mixing ratio (Pr:Ps)(ini), and ionic strength. Previous studies had already revealed under which conditions a coacervate phase was obtained. This study is aimed at understanding how these parameters influence the phase separation kinetics, the coacervate composition, and the internal coacervate structure. At a defined (Pr:Ps)(ini), an optimum pH of complex coacervation was found (pH(opt)), at which the strength of electrostatic interaction was maximum. For (Pr:Ps)(ini) = 2:1, the phase separation occurred the fastest and the final coacervate volume was the largest at pH(opt) = 4.0. The composition of the coacervate phase was determined after 48 h of phase separation and revealed that, at pH(opt), the coacervate phase was the most concentrated. Varying the (Pr:Ps)(ini) shifted the pH(opt) to higher values when (Pr:Ps)(ini) was increased and to lower values when (Pr:Ps)(ini) was decreased. This phenomenon was due to the level of charge compensation of the WP/GA complexes. Finally, the structure of the coacervate phase was studied with small-angle X-ray scattering (SAXS). SAXS data confirmed that at pH(opt) the coacervate phase was dense and structured. Model calculations revealed that the structure factor of WP induced a peak at Q = 0.7 nm(-1), illustrating that the coacervate phase was more structured, inducing the stronger correlation length of WP molecules. When the pH was changed to more acidic values, the correlation peak faded away, due to a more open structure of the coacervate. A shoulder in the scattering pattern of the coacervates was visible at small Q. This peak was attributed to the presence of residual charges on the GA. The peak intensity was reduced when the strength of interaction was increased, highlighting a greater charge compensation of the polyelectrolyte. Finally, increasing the ionic strength led to a less concentrated, a more heterogeneous, and a less structured coacervate phase, induced by the screening of the electrostatic interactions.

  4. Optical absorption and fluorescence spectroscopy studies of Artepillin C, the major component of green propolis

    NASA Astrophysics Data System (ADS)

    Camuri, Isamara Julia; Costa, Adriano Batista; Ito, Amando Siuiti; Pazin, Wallance Moreira

    2018-06-01

    The bioactivity of propolis against several pathogens is well established, leading to the extensive consumption of that bee product to prevent diseases. Brazilian green propolis, collected by the species Apis mellifera, is one of the most consumed in the world. The chemical composition of green propolis is complex and it has been shown that it displays antioxidant, antimicrobial, anti-inflammatory and antitumor activities, especially due to the high content of Artepillin C. The molecule is a derivative of cinnamic acid with two prenylated groups, responsible for the improvement of the affinity of the compound for lipophilic environment. A carboxylic group (COOH) is also present in the molecule, making it a pH-sensitive compound and the pH-dependent structure of Artepillin C, may modulate its biological activity related to interactions with the cellular membrane of organisms and tissues. Molecular properties of Artepillin C on aqueous solution were examined by optical absorption, steady state and time-resolved fluorescence spectroscopies. Acid-base titration based on the spectral position of the near UV absorption band, resulted in the pKa value of 4.65 for the carboxylic group in Artepillin C. In acidic pH, below the pKa value, an absorption band raised around 350 nm at Artepillin C concentration above 50 μM, due to aggregation of the molecule. In neutral pH, with excitation at 310 nm, Artepillin C presents dual emission at 400 and 450 nm. In pH close to the pKa, the optical spectra show contribution from both protonated and deprotonated species. A three-exponential function was necessary to fit the intensity decays at the different pHs, dominated by a very short lifetime component, around 0.060 ns. The fast decay resulted in emission before fluorescence depolarization, and in values of fluorescence anisotropy higher than could be expected for monomeric forms of the compound. The results give fundamental knowledge about the protonation-deprotonation state of the molecule, that may be relevant in processes mediated by biological membranes.

  5. Consumption of baked nuts or seeds reduces dental plaque acidogenicity after sucrose challenge.

    PubMed

    Wang, Xiaoling; Cheng, Chuoyue; Ge, Chunling; Wang, Bing; Gan, Ye-Hua

    2016-06-01

    To assess the acidogenic potential of eight different types of baked nuts or seeds eaten alone and after a sucrose challenge using in-dwelling electrode telemetry. Six participants wearing a mandibular partial prosthesis incorporated with a miniature glass pH electrode were enrolled. The plaque pH was measured after 5 or 6 days of plaque accumulation. To establish a control, the subjects were instructed to rinse with sucrose, without any subsequent treatment, at the first visit. At each subsequent test visit, the subjects were asked to chew sugar free xylitol gum or consume 10 g of baked (180 degrees C, 5 minutes) peanuts, walnuts, pistachios, cashews, almonds, sunflower seeds, pumpkin seeds, or watermelon seeds alone and 10 minutes after a sucrose rinse. The minimum plaque pH value and area of plaque pH curve under 5.7 (AUC5.7) during and after nut/seed consumption or gum chewing alone, the plaque pH value at 10 minutes after the sucrose rinse, the time required for the pH to return to >5.7 and AUC5.7 after the sucrose rinse with or without nut/seed consumption or gum chewing were calculated from the telemetric curves. The sucrose rinse induced a rapid decrease in the plaque pH to 4.32 +/- 0.17 at 10 minutes; this value remained below 5.7 for the measurement period. The AUC5.7 values were 34.58 +/- 7.27 and 63.55 +/- 15.17 for 40 and 60 minutes after the sucrose challenge, respectively. With the exception of cashews and pumpkin seeds (minimum pH, 5.42 and 5.63 respectively), the nuts or seeds did not decrease the plaque pH to below 5.7 when consumed alone, with the AUC5.7 values during and after consumption (total 40 minutes) ranging from 0.24 to 2.5 (8.44 for cashews), which were significantly lower than those after the sucrose challenge. Furthermore, nut/seed consumption or gum chewing after the sucrose challenge significantly reversed the sucrose-induced decrease in the plaque pH, and the time required for the pH to return to >5.7 and the AUC5.7 values for 60 minutes after the sucrose challenge were much less than that of the sucrose challenge without subsequent interference.

  6. Characterization of callase (β-1,3-D-glucanase) activity during microsporogenesis in the sterile anthers of Allium sativum L. and the fertile anthers of A. atropurpureum.

    PubMed

    Winiarczyk, Krystyna; Jaroszuk-Ściseł, Jolanta; Kupisz, Kamila

    2012-06-01

    We examined callase activity in anthers of sterile Allium sativum (garlic) and fertile Allium atropurpureum. In A. sativum, a species that produces sterile pollen and propagates only vegetatively, callase was extracted from the thick walls of A. sativum microspore tetrads exhibited maximum activity at pH 4.8, and the corresponding in vivo values ranged from 4.5 to 5.0. Once microspores were released, in vitro callase activity peaked at three distinct pH values, reflecting the presence of three callase isoforms. One isoform, which was previously identified in the tetrad stage, displayed maximum activity at pH 4.8, and the remaining two isoforms, which were novel, were most active at pH 6.0 and 7.3. The corresponding in vivo values ranged from pH 4.75 to 6.0. In contrast, in A. atropurpureum, a sexually propagating species, three callase isoforms, active at pH 4.8-5.2, 6.1, and 7.3, were identified in samples of microsporangia that had released their microspores. The corresponding in vivo value for this plant was 5.9. The callose wall persists around A. sativum meiotic cells, whereas only one callase isoform, with an optimum activity of pH 4.8, is active in the acidic environment of the microsporangium. However, this isoform is degraded when the pH rises to 6.0 and two other callase isoforms, maximally active at pH 6.0 and 7.3, appear. Thus, factors that alter the pH of the microsporangium may indirectly affect the male gametophyte development by modulating the activity of callase and thereby regulating the degradation of the callose wall.

  7. The effect of antacid on salivary pH in patients with and without dental erosion after multiple acid challenges.

    PubMed

    Dhuhair, Sarah; Dennison, Joseph B; Yaman, Peter; Neiva, Gisele F

    2015-04-01

    To evaluate the effect of antacid swish in the salivary pH values and to monitor the pH changes in subjects with and without dental erosion after multiple acid challenge tests. 20 subjects with tooth erosion were matched in age and gender with 20 healthy controls according to specific inclusion/exclusion criteria. Baseline measures were taken of salivary pH, buffering capacity and salivary flow rate using the Saliva Check System. Subjects swished with Diet Pepsi three times at 10-minute intervals. Changes in pH were monitored using a digital pH meter at 0-, 5-, and 10- minute intervals and at every 5 minutes after the third swish until pH resumed baseline value or 45 minutes relapse. Swishing regimen was repeated on a second visit, followed by swishing with sugar-free liquid antacid (Mylanta Supreme). Recovery times were also recorded. Data was analyzed using independent t-tests, repeated measures ANOVA, and Fisher's exact test (α= 0.05). Baseline buffering capacity and flow rate were not significantly different between groups (P= 0.542; P= 0.2831, respectively). Baseline salivary pH values were similar between groups (P= 0.721). No significant differences in salivary pH values were found between erosion and non-erosion groups in response to multiple acid challenges (P= 0.695) or antacid neutralization (P= 0.861). Analysis of salivary pH recovery time revealed no significant differences between groups after acid challenges (P= 0.091) or after the use of antacid (P= 0.118). There was a highly significant difference in the survival curves of the two groups on Day 2, with the non-erosion group resolving significantly faster than the erosion group (P= 0.0086).

  8. pH-sensitive interaction of HMG-CoA reductase inhibitors (statins) with organic anion transporting polypeptide 2B1.

    PubMed

    Varma, Manthena V; Rotter, Charles J; Chupka, Jonathan; Whalen, Kevin M; Duignan, David B; Feng, Bo; Litchfield, John; Goosen, Theunis C; El-Kattan, Ayman F

    2011-08-01

    The human organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) is ubiquitously expressed and may play an important role in the disposition of xenobiotics. The present study aimed to examine the role of OATP2B1 in the intestinal absorption and tissue uptake of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase inhibitors (statins). We first investigated the functional affinity of statins to the transporter as a function of extracellular pH, using OATP2B1-transfeced HEK293 cells. The results indicate that OATP2B1-mediated transport is significant for rosuvastatin, fluvastatin and atorvastatin, at neutral pH. However, OATP2B1 showed broader substrate specificity as well as enhanced transporter activity at acidic pH. Furthermore, uptake at acidic pH was diminished in the presence of proton ionophore, suggesting proton gradient as the driving force for OATP2B1 activity. Notably, passive transport rates are predominant or comparable to active transport rates for statins, except for rosuvastatin and fluvastatin. Second, we studied the effect of OATP modulators on statin uptake. At pH 6.0, OATP2B1-mediated transport of atorvastatin and cerivastatin was not inhibitable, while rosuvastatin transport was inhibited by E-3-S, rifamycin SV and cyclosporine with IC(50) values of 19.7 ± 3.3 μM, 0.53 ± 0.2 μM and 2.2 ± 0.4 μM, respectively. Rifamycin SV inhibited OATP2B1-mediated transport of E-3-S and rosuvastatin with similar IC(50) values at pH 6.0 and 7.4, suggesting that the inhibitor affinity is not pH-dependent. Finally, we noted that OATP2B1-mediated transport of E-3-S, but not rosuvastatin, is pH sensitive in intestinal epithelial (Caco-2) cells. However, uptake of E-3-S and rosuvastatin by Caco-2 cells was diminished in the presence of proton ionophore. The present results indicate that OATP2B1 may be involved in the tissue uptake of rosuvastatin and fluvastatin, while OATP2B1 may play a significant role in the intestinal absorption of several statins due to their transporter affinity at acidic pH.

  9. Neutralizing salivary pH by mouthwashes after an acidic challenge.

    PubMed

    Dehghan, Mojdeh; Tantbirojn, Daranee; Kymer-Davis, Emily; Stewart, Colette W; Zhang, Yanhui H; Versluis, Antheunis; Garcia-Godoy, Franklin

    2017-05-01

    The aim of the present study was to test the neutralizing effect of mouthwashes on salivary pH after an acidic challenge. Twelve participants were recruited for three visits, one morning per week. Resting saliva was collected at baseline and after 2-min swishing with 20 mL orange juice as an acidic challenge. Participants then rinsed their mouth for 30 s with 20 mL water (control), an over-the-counter mouthwash (Listerine), or a two-step mouthwash, randomly assigned for each visit. Saliva was collected immediately, 15, and 45 min after rinsing. The pH values of the collected saliva were measured and analyzed with anova, followed by Student-Newman-Keuls post-hoc test (significance level: 0.05). Orange juice significantly lowered salivary pH. Immediately after rinsing, Listerine and water brought pH back to baseline values, with the pH significantly higher in the Listerine group. The two-step mouthwash raised pH significantly higher than Listerine and water, and higher than the baseline value. Salivary pH returned to baseline and was not significantly different among groups at 15 and 45 min post-rinsing. Mouth rinsing after an acidic challenge increased salivary pH. The tested mouthwashes raised pH higher than water. Mouthwashes with a neutralizing effect can potentially reduce tooth erosion from acid exposure. © 2015 Wiley Publishing Asia Pty Ltd.

  10. Influence of pH, benzoic acid, glutathione, EDTA, 4-hexylresorcinol, and sodium chloride on the pressure inactivation kinetics of mushroom polyphenol oxidase.

    PubMed

    Weemaes, C A; Ludikhuyze, L R; Van den Broeck, I; Hendrickx, M E

    1999-09-01

    Pressure inactivation of mushroom PPO was studied for pH values ranging from 4 to 8, and the effect of some antibrowning agents on the pressure stability of mushroom PPO at pH 6.5 was evaluated. pH reduction below 6.5 resulted in a lowered inactivation threshold pressure and an increase of the absolute value of the activation volume (or a decrease of the z(p) value), the latter two parameters reflecting the pressure dependency of the inactivation rate constant. An increase in pH from 6.5 to 8, on the other hand, did only marginally affect the pressure stability of the enzyme. Mushroom PPO at pH 6.5 was markedly sensitized toward pressure by the presence of 2.5 mM 4-hexylresorcinol and slightly stabilized by the presence of 5 mM EDTA. The presence of 5 mM glutathione, sodium chloride, or benzoic acid caused no significant alteration of the enzyme pressure stability. Only in the presence of 4-hexylresorcinol, significant changes of the activation volume and z(p) value were noticed.

  11. Evaluation of the 5 and 8 pH point titration methods for monitoring anaerobic digesters treating solid waste.

    PubMed

    Vannecke, T P W; Lampens, D R A; Ekama, G A; Volcke, E I P

    2015-01-01

    Simple titration methods certainly deserve consideration for on-site routine monitoring of volatile fatty acid (VFA) concentration and alkalinity during anaerobic digestion (AD), because of their simplicity, speed and cost-effectiveness. In this study, the 5 and 8 pH point titration methods for measuring the VFA concentration and carbonate system alkalinity (H2CO3*-alkalinity) were assessed and compared. For this purpose, synthetic solutions with known H2CO3*-alkalinity and VFA concentration as well as samples from anaerobic digesters treating three different kind of solid wastes were analysed. The results of these two related titration methods were verified with photometric and high-pressure liquid chromatography measurements. It was shown that photometric measurements lead to overestimations of the VFA concentration in the case of coloured samples. In contrast, the 5 pH point titration method provides an accurate estimation of the VFA concentration, clearly corresponding with the true value. Concerning the H2CO3*-alkalinity, the most accurate and precise estimations, showing very similar results for repeated measurements, were obtained using the 8 pH point titration. Overall, it was concluded that the 5 pH point titration method is the preferred method for the practical monitoring of AD of solid wastes due to its robustness, cost efficiency and user-friendliness.

  12. Adsorption effect on the degradation of 4,6-o-dinitrocresol and p-nitrophenol in a montmorillonite clay slurry by AFT.

    PubMed

    Ye, Peng; Lemley, Ann T

    2009-03-01

    The adsorption and degradation of 4,6-o-dinitrocresol (DNOC) and p-nitrophenol (PNP) in SWy-2 montmorillonite clay slurry were investigated. The pH and type of cation of the slurry were varied. Results showed that adsorption of DNOC and PNP increased at lower pH values, and when pH < pKa(4.4) of DNOC, DNOC was almost completely adsorbed on the clay under given experimental conditions. The specific cation also had a significant effect on adsorption, which was dramatically enhanced in the presence of K+ and NH4+, compared with the presence of Na+ or Ca2+. Anodic Fenton treatment (AFT) degradation of DNOC and PNP in the clay slurry was studied, and it was found that DNOC degradation rates were greatly affected by the initial pH and the types of electrolytes. Due to the higher adsorption, the degradation rate substantially decreased in the clay slurry system in the presence of K+ and low pH, with a large amount of DNOC residue remaining after 60 min treatment. AFT degradation of PNP was completed within 30 min treatment. Based on LC-MS data, a DNOC degradation pathway was proposed. Overall, the results showed the inhibition effect of adsorption on the degradation of nitroaromatic compounds in montmorillonite clay slurry by AFT, providing important implications for water and soil remediation.

  13. Expression and Properties of the Highly Alkalophilic Phenylalanine Ammonia-Lyase of Thermophilic Rubrobacter xylanophilus

    PubMed Central

    Kovács, Klaudia; Bánóczi, Gergely; Varga, Andrea; Szabó, Izabella; Holczinger, András; Hornyánszky, Gábor; Zagyva, Imre

    2014-01-01

    The sequence of a phenylalanine ammonia-lyase (PAL; EC: 4.3.1.24) of the thermophilic and radiotolerant bacterium Rubrobacter xylanophilus (RxPAL) was identified by screening the genomes of bacteria for members of the phenylalanine ammonia-lyase family. A synthetic gene encoding the RxPAL protein was cloned and overexpressed in Escherichia coli TOP 10 in a soluble form with an N-terminal His6-tag and the recombinant RxPAL protein was purified by Ni-NTA affinity chromatography. The activity assay of RxPAL with l-phenylalanine at various pH values exhibited a local maximum at pH 8.5 and a global maximum at pH 11.5. Circular dichroism (CD) studies showed that RxPAL is associated with an extensive α-helical character (far UV CD) and two distinctive near-UV CD peaks. These structural characteristics were well preserved up to pH 11.0. The extremely high pH optimum of RxPAL can be rationalized by a three-dimensional homology model indicating possible disulfide bridges, extensive salt-bridge formation and an excess of negative electrostatic potential on the surface. Due to these properties, RxPAL may be a candidate as biocatalyst in synthetic biotransformations leading to unnatural l- or d-amino acids or as therapeutic enzyme in treatment of phenylketonuria or leukemia. PMID:24475062

  14. Emulsifying properties of succinylated arabinoxylan-protein gum produced from corn ethanol residuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Zhouyang; Runge, Troy

    This study investigated the possibilities of making valuable products from corn ethanol byproducts and providing the beverage industries more variety of high quality emulsifiers other than gum arabic. An arabinoxylan-protein gum (APG) was extracted from distillers' grains (DG), a low-value corn ethanol byproduct, and modified through acylation with succinic anhydride. The effects of pH and degree of substitution (DS) on the emulsifying properties of succinylated APG, referred to as SAPG, were investigated. Emulsion particle size and stability of APG and gum arabic were comparable at pH 3.5–6.5. Succinylation could enhance the emulsifying properties of APG. Compared to gum arabic, atmore » pH < 5, SAPG emulsions had larger particle size but comparable stability, whereas at pH > 5, SAPG had much smaller particle size and better stability than gum arabic. The results suggested that SAPG, compared to gum arabic, could be a comparable emulsifier at low pH values and a better emulsifier at neutral pH values.« less

  15. Emulsifying properties of succinylated arabinoxylan-protein gum produced from corn ethanol residuals

    DOE PAGES

    Xiang, Zhouyang; Runge, Troy

    2015-07-21

    This study investigated the possibilities of making valuable products from corn ethanol byproducts and providing the beverage industries more variety of high quality emulsifiers other than gum arabic. An arabinoxylan-protein gum (APG) was extracted from distillers' grains (DG), a low-value corn ethanol byproduct, and modified through acylation with succinic anhydride. The effects of pH and degree of substitution (DS) on the emulsifying properties of succinylated APG, referred to as SAPG, were investigated. Emulsion particle size and stability of APG and gum arabic were comparable at pH 3.5–6.5. Succinylation could enhance the emulsifying properties of APG. Compared to gum arabic, atmore » pH < 5, SAPG emulsions had larger particle size but comparable stability, whereas at pH > 5, SAPG had much smaller particle size and better stability than gum arabic. The results suggested that SAPG, compared to gum arabic, could be a comparable emulsifier at low pH values and a better emulsifier at neutral pH values.« less

  16. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    PubMed Central

    He, Guo-qing; Kong, Qing; Chen, Qi-he; Ruan, Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB. PMID:16252341

  17. Sub-optimal pH Preadaptation Improves the Survival of Lactobacillus plantarum Strains and the Malic Acid Consumption in Wine-Like Medium

    PubMed Central

    Succi, Mariantonietta; Pannella, Gianfranco; Tremonte, Patrizio; Tipaldi, Luca; Coppola, Raffaele; Iorizzo, Massimo; Lombardi, Silvia Jane; Sorrentino, Elena

    2017-01-01

    Forty-two oenological strains of Lb. plantarum were assessed for their response to ethanol and pH values generally encountered in wines. Strains showed a higher variability in the survival when exposed to low pH (3.5 or 3.0) than when exposed to ethanol (10 or 14%). The study allowed to individuate the highest ethanol concentration (8%) and the lowest pH value (4.0) for the growth of strains, even if the maximum specific growth rate (μmax) resulted significantly reduced by these conditions. Two strains (GT1 and LT11) preadapted to 2% ethanol and cultured up to 14% of ethanol showed a higher growth than those non-preadapted when they were cultivated at 8% of ethanol. The evaluation of the same strains preadapted to low pH values (5.0 and 4.0) and then grown at pH 3.5 or 3.0 showed only for GT1 a sensitive μmax increment when it was cultivated in MRS at pH 3 after a preadaptation to pH 5.0. The survival of GT1 and LT11 was evaluated in Ringer's solution at 14% ethanol after a long-term adaptation in MRS with 2% ethanol or in MRS with 2% ethanol acidified at pH 5.0 (both conditions, BC). Analogously, the survival was evaluated at pH 3.5 after a long-term adaptation in MRS at pH 5.0 or in MRS BC. The impact of the physiologic state (exponential phase vs stationary phase) on the survival was also evaluated. Preadapted cells showed the same behavior of non-preadapted cells only when cultures were recovered in the stationary phase. Mathematical functions were individuated for the description of the survival of GT1 and LT11 in MRS at 14% ethanol or at pH 3.5. Finally, a synthetic wine (SW) was used to assess the behavior of Lb. plantarum GT1 and LT11 preadapted in MRS at 2% ethanol or at pH 5.0 or in BC. Only GT1 preadapted to pH 5.0 and collected in the stationary phase showed constant values of microbial counts after incubation for 15 days at 20°C. In addition, after 15 days the L-malic acid resulted completely degraded and the pH value increased of about 0.3 units. PMID:28382030

  18. Lower pH values of weakly acidic refluxes as determinants of heartburn perception in gastroesophageal reflux disease patients with normal esophageal acid exposure.

    PubMed

    de Bortoli, N; Martinucci, I; Savarino, E; Franchi, R; Bertani, L; Russo, S; Ceccarelli, L; Costa, F; Bellini, M; Blandizzi, C; Savarino, V; Marchi, S

    2016-01-01

    Multichannel impedance pH monitoring has shown that weakly acidic refluxes are able to generate heartburn. However, data on the role of different pH values, ranging between 4 and 7, in the generation of them are lacking. The aim of this study was to evaluate whether different pH values of weakly acidic refluxes play a differential role in provoking reflux symptoms in endoscopy-negative patients with physiological esophageal acid exposure time and positive symptom index and symptom association probability for weakly acidic refluxes. One hundred and forty-three consecutive patients with gastroesophageal reflux disease, nonresponders to proton pump inhibitors (PPIs), were allowed a washout from PPIs before undergoing: upper endoscopy, esophageal manometry, and multichannel impedance pH monitoring. In patients with both symptom index and symptom association probability positive for weakly acidic reflux, each weakly acidic reflux was evaluated considering exact pH value, extension, physical characteristics, and correlation with heartburn. Forty-five patients with normal acid exposure time and positive symptom association probability for weakly acidic reflux were identified. The number of refluxes not heartburn related was higher than those heartburn related. In all distal and proximal liquid refluxes, as well as in distal mixed refluxes, the mean pH value of reflux events associated with heartburn was significantly lower than that not associated. This condition was not confirmed for proximal mixed refluxes. Overall, a low pH of weakly acidic reflux represents a determinant factor in provoking heartburn. This observation contributes to better understand the pathophysiology of symptoms generated by weakly acidic refluxes, paving the way toward the search for different therapeutic approaches to this peculiar condition of esophageal hypersensitivity. © 2014 International Society for Diseases of the Esophagus.

  19. A Quantitative Review and Meta-Models of the Variability and Factors Affecting Oral Drug Absorption-Part I: Gastrointestinal pH.

    PubMed

    Abuhelwa, Ahmad Y; Foster, David J R; Upton, Richard N

    2016-09-01

    This study aimed to conduct a quantitative meta-analysis for the values of, and variability in, gastrointestinal (GI) pH in the different GI segments; characterize the effect of food on the values and variability in these parameters; and present quantitative meta-models of distributions of GI pH to help inform models of oral drug absorption. The literature was systemically reviewed for the values of, and the variability in, GI pH under fed and fasted conditions. The GI tract was categorized into the following 10 distinct regions: stomach (proximal, mid-distal), duodenum (proximal, mid-distal), jejunum and ileum (proximal, mid, and distal small intestine), and colon (ascending, transverse, and descending colon). Meta-analysis used the "metafor" package of the R language. The time course of postprandial stomach pH was modeled using NONMEM. Food significantly influenced the estimated meta-mean stomach and duodenal pH but had no significant influence on small intestinal and colonic pH. The time course of postprandial pH was described using an exponential model. Increased meal caloric content increased the extent and duration of postprandial gastric pH buffering. The different parts of the small intestine had significantly different pH. Colonic pH was significantly different for descending but not for ascending and transverse colon. Knowledge of GI pH is important for the formulation design of the pH-dependent dosage forms and in understanding the dissolution and absorption of orally administered drugs. The meta-models of GI pH may also be used as part of semi-physiological pharmacokinetic models to characterize the effect of GI pH on the in vivo drug release and pharmacokinetics.

  20. CONTRIBUTIONS OF CHEMICAL EXCHANGE TO T1ρ DISPERSION IN A TISSUE MODEL

    PubMed Central

    Cobb, Jared G.; Xie, Jingping; Gore, John C.

    2015-01-01

    Variations in T1ρ with locking-field strength (T1ρ dispersion) may be used to estimate proton exchange rates. We developed a novel approach utilizing the second derivative of the dispersion curve to measure exchange in a model system of cross-linked polyacrylamide gels. These gels were varied in relative composition of co-monomers, increasing stiffness, and in pH, modifying exchange rates. MR images were recorded with a spin-locking sequence as described by Sepponen et al. These measurements were fit to a mono-exponential decay function yielding values for T1ρ at each locking-field measured. These values were then fit to a model by Chopra et al. for estimating exchange rates. For low stiffness gels, the calculated exchange values increased by a factor of 4 as pH increased, consistent with chemical exchange being the dominant contributor to T1ρ dispersion. Interestingly, calculated chemical exchange rates also increased with stiffness, likely due to modified side-chain exchange kinetics as the composition varied. This paper demonstrates a new method to assess the structural and chemical effects on T1ρ relaxation dispersion with a suitable model. These phenomena may be exploited in an imaging context to emphasize the presence of nuclei of specific exchange rates, rather than chemical shifts. PMID:21590720

  1. Application of the Oxidation-Reduction Potential (ORP) for Pre-grading Tuna Freshness On-board

    NASA Astrophysics Data System (ADS)

    Cheevaporanapivat, Mongkol; Sakai, Hisaharu; Mine, Yuuji; Watanabe, Manabu; Suzuki, Toru

    Application of ORP as a rapid indicator for grading tuna's freshness on the ship was studied. The long line trawling process was used for catching the sample tuna in the South Pacific Ocean. All captured sample tuna were weighed, gender identified and investigated for their mortality, then measured ORP and K value. Three species of tuna were caught: blue marlin (Makaira mazara), yellow fin tuna (Thunnus albacares), and swordfish (Xiphia gladius). Most of the fish captured were male and they had been dead after picking onboard. The measured ORP values of blue marlin varied in the range of 0.295-0.362 Volt, with pH between 5.35-5.84. Both ORP and pH of swordfish was similar to that of blue marlin. But for yellow fin tuna, the ORP value was about the same as blue marlin while its pH was significantly higher. ORP value in all species tended to increase with pH of the fish meat decrease. It is interesting that ORP value of tuna increased in correlation with K value. These results suggested that ORP and pH change, which are measured in the short time, are the effective indicators for grading tuna's freshness on-board.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmieri, M.D.; Fritz, J.S.

    Metal ions are determined by adding N-methylfurohydroxamic acid to an aqueous sample and then separating the metal chelates by direct injection onto a liquid chromatographic column. Separations on a C/sub 8/ silica column and a polystyrene-divinylbenzene column are compared, with better separations seen on the polymeric column. The complexes formed at low pH values are cationic and are separated by an ion pairing mechanism. Retention times and selectivity of the metal complexes can be varied by changing the pH. Several metal ions can be separated and quantified; separation conditions, linear calibration curve ranges, and detection limits are presented for Zr(IV),more » Hf(IV), Fe(III), Nb(V), Al(III), and Sb(III). Interferences due to the presence of other ions in solution are investigated. Finally, an antiperspirant sample is analyzed for zirconium by high-performance liquid chromatography.« less

  3. Comparison between several reactors with Trametes versicolor immobilized on lignocellulosic support for the continuous treatments of hospital wastewater.

    PubMed

    Torán, J; Blánquez, P; Caminal, G

    2017-11-01

    Hospital wastewater is a major source of pharmaceutically active compounds (PhACs), which are not all removed in conventional wastewater treatment plants. White rot fungi can degrade PhACs, but their application has been limited to non-sterile conditions due to the competition with other microorganisms for growth. In this study, immobilization of Trametes versicolor on different lignocellulosic supports was studied as strategy to ensure fungal survival under continuous treatment conditions. A fluidized bed reactor and a trickling packed-bed reactor with T. versicolor immobilized on pallet wood were employed for the removal of ibuprofen, ketoprofen and naproxen. Best results were obtained with the trickling packed-bed reactor, which operated for 49days with high removal values in real hospital wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of pH on compressive strength of some modification of mineral trioxide aggregate

    PubMed Central

    Saghiri, Mohammad A.; Garcia-Godoy, Franklin; Asatourian, Armen; Lotfi, Mehrdad; Khezri-Boukani, Kaveh

    2013-01-01

    Objectives: Recently, it was shown that NanoMTA improved the setting time and promoted a better hydration process which prevents washout and the dislodgment of this novel biomaterial in comparison with WTMA. This study analyzed the compressive strength of ProRoot WMTA (Dentsply), a NanoWMTA (Kamal Asgar Research Center), and Bioaggregate (Innovative Bioceramix) after its exposure to a range of environmental pH conditions during hydration. Study Design: After mixing the cements under aseptic condition and based on the manufacturers` recommendations, the cements were condensed with moderate force using plugger into 9 × 6 mm split molds. Each type of cement was then randomly divided into three groups (n=10). Specimens were exposed to environments with pH values of 4.4, 7.4, or 10.4 for 3 days. Cement pellets were compressed by using an Instron testing machine. Values were recorded and compared. Data were analyzed by using one-way analysis of variance and a post hoc Tukey’s test. Results: After 3 days, the samples were solid when probed with an explorer before removing them from the molds. The greatest mean compressive strength 133.19±11.14 MPa was observed after exposure to a pH value of 10.4 for NanoWMTA. The values decreased to 111.41±8.26 MPa after exposure to a pH value of 4.4. Increasing of pH had a significant effect on the compressive strength of the groups (p<0.001). The mean compressive strength for the NanoWMTA was statistically higher than for ProRoot WMTA and Bioaggregate (p<0.001). Moreover, increasing of pH values had a significant effect on compressive strength of the experimental groups (p<0.001). Conclusion: The compressive strength of NanoWMTA was significantly higher than WMTA and Bioaggregate; the more acidic the environmental pH, the lower was the compressive strength. Key words:Compressive strength, mineral trioxide aggregate, Nano. PMID:23722137

  5. Sensitive detection of strong acidic condition by a novel rhodamine-based fluorescent pH chemosensor.

    PubMed

    Tan, Jia-Lian; Yang, Ting-Ting; Liu, Yu; Zhang, Xue; Cheng, Shu-Jin; Zuo, Hua; He, Huawei

    2016-05-01

    A novel rhodamine-based fluorescent pH probe responding to extremely low pH values has been synthesized and characterized. This probe showed an excellent photophysical response to pH on the basis that the colorless spirocyclic structure under basic conditions opened to a colored and highly fluorescent form under extreme acidity. The quantitative relationship between fluorescence intensity and pH value (1.75-2.62) was consistent with the equilibrium equation pH = pKa + log[(Imax - I)/(I - Imin)]. This sensitive pH probe was also characterized with good reversibility and no interaction with interfering metal ions, and was successfully applied to image Escherichia coli under strong acidity. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Functional photoacoustic microscopy of pH

    NASA Astrophysics Data System (ADS)

    Chatni, M. Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2012-02-01

    pH is a tightly regulated indicator of metabolic activity. In mammalian systems, imbalance of pH regulation may result from or result in serious illness. Even though the regulation system of pH is very robust, tissue pH can be altered in many diseases such as cancer, osteoporosis and diabetes mellitus. Traditional high-resolution optical imaging techniques, such as confocal microscopy, routinely image pH in cells and tissues using pH sensitive fluorescent dyes, which change their fluorescence properties with the surrounding pH. Since strong optical scattering in biological tissue blurs images at greater depths, high-resolution pH imaging is limited to penetration depths of 1mm. Here, we report photoacoustic microscopy (PAM) of commercially available pH-sensitive fluorescent dye in tissue phantoms. Using both opticalresolution photoacoustic microscopy (OR-PAM), and acoustic resolution photoacoustic microscopy (AR-PAM), we explored the possibility of recovering the pH values in tissue phantoms. In this paper, we demonstrate that PAM was capable of recovering pH values up to a depth of 2 mm, greater than possible with other forms of optical microscopy.

  7. Evaluation of the relation between lipid coat, transepidermal water loss, and skin pH.

    PubMed

    Algiert-Zielińska, Barbara; Batory, Mirella; Skubalski, Janusz; Rotsztejn, Helena

    2017-11-01

    The epidermis is an epidermal barrier which accumulates lipid substances and participates in skin moisturizing. An evaluation of the epidermal barrier efficiency can be made, among others, by the measurement of the following values: the lipid coat, the transepidermal water loss (TEWL) index, and pH. The study involved 50 Caucasian, healthy women aged 19-35 years (mean 20.56). Measurements were made using Courage & Khazaka Multi Probe Adapter MPA 580: Tewameter TM 300, pH-Meter PH 905, Sebumeter SM 815. The areas of measurements included forehead, nose, left cheek, right cheek, chin, and thigh. In the T-zone, the lipid coat was in the range between 0 and 270 μg/cm 2 (mean 128 μg/cm 2 ), TEWL between 1 and 55 g/m 2 /h (mean 11.1 g/m 2 /h), and pH 4.0-5.6 (mean 5.39). Lower values of the lipid coat up to 100 μg/cm 2 were accompanied by TEWL greater than 30 g/m 2 /h and less acidic pH of 5.6-9.0. In the U-zone the range of lipid coat was up to 200 μg/cm 2 (mean 65.2 μg/cm 2 ), the skin pH remained 4.0-5.6 (mean 5.47), and TEWL was in the range between 1 and 20 g/m 2 /h (mean 8.7 g/m 2 /h). Lower values of the lipid coat up to 100 μg/cm 2 were accompanied by TEWL between 1 and 20 g/m 2 /h and less acidic pH of 5.6-9.0. High values of the lipid coat between 180 and 200 μg/cm 2 were connected with TEWL of 1-15 g/m 2 /h. On the skin of the thigh, we observed a very thin lipid coat - 35 μg/cm 2 (mean 5.6 μg/cm 2 ), pH (mean 5.37), and TEWL (mean 8.5 g/m 2 /h) were considered by us to be within regular limits. In the T-zone, a thinner lipid coat resulted in relatively high TEWL and pH levels changing toward alkaline. In the U-zone, thinner lipid coat was accompanied by lower TEWL and pH changing toward alkaline. We also observed that lower values of lipid coat up to 100 μg/cm 2 were associated with higher pH values ranging toward the basic character pH 5.6-9.0). © 2017 The International Society of Dermatology.

  8. Loss of ecosystem services due to chronic pollution of forests and surface waters in the Adirondack region (USA)

    USGS Publications Warehouse

    Beier, Colin M.; Caputo, Jesse; Lawrence, Gregory B.; Sullivan, Timothy J.

    2017-01-01

    Sustaining recent progress in mitigating acid pollution could require lower emissions caps that will give rise to real or perceived tradeoffs between healthy ecosystems and inexpensive energy. Because most impacts of acid rain affect ecosystem functions that are poorly understood by policy-makers and the public, an ecosystem services (ES) framework can help to measure how pollution affects human well-being. Focused on the Adirondack region (USA), a global ‘hot-spot’ of acid pollution, we measured how the chronic acidification of the region's forests, lakes, and streams has affected the potential economic and cultural benefits they provide to society. We estimated that acid-impaired hardwood forests provide roughly half of the potential benefits of forests on moderate to well-buffered soils – an estimated loss of ∼ $10,000 ha−1 in net present value of wood products, maple syrup, carbon sequestration, and visual quality. Acidic deposition has had only nominal impact – relative to the effects of surficial geology and till depth – on the capacity of Adirondack lakes and streams to provide water suitable for drinking. However, as pH declines in lakes, the estimated value of recreational fishing decreases significantly due to loss of desirable fish such as trout. Hatchery stocking programs have partially offset the pollution-mediated losses of fishery value, most effectively in the pH range 4.8–5.5, but are costly and limited in scope. Although any estimates of the monetary ‘damages’ of acid rain have significant uncertainties, our findings highlight some of the more tangible economic and cultural benefits of pollution mitigation efforts, which continue to face litigation and political opposition.

  9. Erosive Potential of Cola and Orange Fruit Juice on Tooth Colored Restorative Materials

    PubMed Central

    Rajavardhan, K; Sankar, AJS; Kumar, MGM; Kumar, KR; Pranitha, K; Kishore, KK

    2014-01-01

    Background: Erosion is a common condition which manifests due to consumption of high caloric and low pH acidic food stuffs such as carbonated drinks and fruit juices which cause irreversible damage to dental hard tissues and early deterioration of the dental restorations. Aim: The main aim of this study is to evaluate and to compare the erosive potential of carbonated drink (cola) and fruit juice (orange fruit juice) by measuring the surface roughness (Ra) values on two commonly used dental restorative materials. Materials and Methods: A total of 36 specimens each were prepared using both testing materials, compomer (Group I) and giomer (Group II). Six specimens in each group were discarded due to wide variation in pre exposed Ra values and the remaining 30 specimens in each group were further sub divided into 10 samples each according to the testing media used. Immersion regime was followed according to Von Fraunhofer and Rogers. The pre and post immersion surface roughness values were recorded using a profilometer. Results: Both tested materials showed statistically-significant surface erosion (P < 0.01) when exposed to cola and orange fruit juice than the control group (water). Discussion: Compomer showed more surface roughness when compared to giomer when exposed to the three tested media which can be attributed to the variation in filler content, decomposition of resin matrix and fallout of the fillers in composites when exposed to acidic drinks. Other factors responsible for this significant erosion were also discussed. Conclusions: Significant surface changes of the dental restorative materials can take place when exposed to low pH drinks for a prolonged period. PMID:25364590

  10. Loss of ecosystem services due to chronic pollution of forests and surface waters in the Adirondack region (USA).

    PubMed

    Beier, Colin M; Caputo, Jesse; Lawrence, Gregory B; Sullivan, Timothy J

    2017-04-15

    Sustaining recent progress in mitigating acid pollution could require lower emissions caps that will give rise to real or perceived tradeoffs between healthy ecosystems and inexpensive energy. Because most impacts of acid rain affect ecosystem functions that are poorly understood by policy-makers and the public, an ecosystem services (ES) framework can help to measure how pollution affects human well-being. Focused on the Adirondack region (USA), a global 'hot-spot' of acid pollution, we measured how the chronic acidification of the region's forests, lakes, and streams has affected the potential economic and cultural benefits they provide to society. We estimated that acid-impaired hardwood forests provide roughly half of the potential benefits of forests on moderate to well-buffered soils - an estimated loss of ∼ $10,000 ha -1 in net present value of wood products, maple syrup, carbon sequestration, and visual quality. Acidic deposition has had only nominal impact - relative to the effects of surficial geology and till depth - on the capacity of Adirondack lakes and streams to provide water suitable for drinking. However, as pH declines in lakes, the estimated value of recreational fishing decreases significantly due to loss of desirable fish such as trout. Hatchery stocking programs have partially offset the pollution-mediated losses of fishery value, most effectively in the pH range 4.8-5.5, but are costly and limited in scope. Although any estimates of the monetary 'damages' of acid rain have significant uncertainties, our findings highlight some of the more tangible economic and cultural benefits of pollution mitigation efforts, which continue to face litigation and political opposition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Dynamic Change of Water Quality in Hyporheic Zone at Water Curtain Cultivation Area, Cheongju, Korea

    NASA Astrophysics Data System (ADS)

    Moon, S. H.; Kim, Y.

    2015-12-01

    There has been recently growing numbers of facilities for water curtain cultivation of strawberry and lettuce in Korea. These areas are nearly all located in the fluvial deposits near streams which can replenish water resources into exhausted groundwater aquifers during peak season. The purpose of this study is on groundwater chemistry and the change in physical and chemical properties due to stream-groundwater exchange or mixing in the representative agricultural area among the Jurassic granitic terrain of Korea. In the study area, groundwater level continuously decreased from November through March due to intensive use of groundwater, which forced stream water into aquifer. After March, groundwater level was gradually recovered to the original state. To evaluate the extent and its variations of stream water mixing into aquifer, field parameters including T, pH, EC and DO values, concentrations of major ions and oxygen and hydrogen stable isotopic ratios were used. Field measurements and water sample collections were performed several times from 2012 to 2015 mainly during peak time of groundwater use. To compare the temporal variations and areal differences, 21 wells from four cross sections perpendicular to stream line were used. While water temperature, EC values and concentrations of Ca, Mg, Si, HCO3 showed roughly gradual increase from stream line to 150 m distance, pH and DO values showed reverse phenomenon. This can be used to evaluate the extent and limit of stream water introduction into aquifer. However, individual wells showed yearly variations in those parameters and this dynamic and unstable feature indicates that mixing intensity of stream water over groundwater in this hyporheic zone varied year by year according to amounts of groundwater use and decrease of groundwater level.

  12. High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor

    PubMed Central

    Al-Hardan, Naif H.; Abdul Hamid, Muhammad Azmi; Ahmed, Naser M.; Jalar, Azman; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim; Chiu, Weesiong; Al-Rawi, Hamzah N.

    2016-01-01

    In this study, porous silicon (PSi) was prepared and tested as an extended gate field-effect transistor (EGFET) for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions. PMID:27338381

  13. High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor.

    PubMed

    Al-Hardan, Naif H; Abdul Hamid, Muhammad Azmi; Ahmed, Naser M; Jalar, Azman; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim; Chiu, Weesiong; Al-Rawi, Hamzah N

    2016-06-07

    In this study, porous silicon (PSi) was prepared and tested as an extended gate field-effect transistor (EGFET) for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions.

  14. Atomic Physics with the Goddard High Resolution Spectrograph on the Hubble Space Telescope. III; Oscillator Strengths for Neutral Carbon

    NASA Technical Reports Server (NTRS)

    Zsargo, J.; Federman, S. R.; Cardelli, Jason A.

    1997-01-01

    High quality spectra of interstellar absorption from C I toward beta(sup 1) S(sub co), rho O(sub ph) A, and chi O(sub ph) were obtained with the Goddard High Resolution Spectrograph on HST. Many weak lines were detected within the observed wavelength intervals: 1150-1200 A for beta(sup 1) S(sub co) and 1250-1290 A for rho O(sub ph) A and chi O(sub ph). Curve-of-growth analyses were performed in order to extract accurate column densities and Doppler parameters from lines with precise laboratory-based f-values. These column densities and b-values were used to obtain a self-consistent set of f-values for all the observed C I lines. A particularly important constraint was the need to reproduce data for more than one line of sight. For about 50% of the lines, the derived f-values differ appreciably from the values quoted by Morton.

  15. Effect of pH and nitrite concentration on nitrite oxidation rate.

    PubMed

    Jiménez, E; Giménez, J B; Ruano, M V; Ferrer, J; Serralta, J

    2011-10-01

    The effect of pH and nitrite concentration on the activity of the nitrite oxidizing bacteria (NOB) in an activated sludge reactor has been determined by means of laboratory batch experiments based on respirometric techniques. The bacterial activity was measured at different pH and at different total nitrite concentrations (TNO₂). The experimental results showed that the nitrite oxidation rate (NOR) depends on the TNO₂ concentration independently of the free nitrous acid (FNA) concentration, so FNA cannot be considered as the real substrate for NOB. NOB were strongly affected by low pH values (no activity was detected at pH 6.5) but no inhibition was observed at high pH values (activity was nearly the same for the pH range 7.5-9.95). A kinetic expression for nitrite oxidation process including switch functions to model the effect of TNO₂ concentration and pH inhibition is proposed. Substrate half saturation constant and pH inhibition constants have been obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Pnicogen bonds between X═PH3 (X = O, S, NH, CH2) and phosphorus and nitrogen bases.

    PubMed

    Alkorta, Ibon; Sánchez-Sanz, Goar; Elguero, José; Del Bene, Janet E

    2014-02-27

    Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to investigate the pnicogen bonded complexes formed between the acids O═PH3, S═PH3, HN═PH3, and H2C═PH3 and the bases NH3, NCH, N2, PH3, and PCH. All nitrogen and phosphorus bases form complexes in which the bases are lone pair electron donors. The binding energies of complexes involving the stronger bases NH3, NCH, and PH3 differentiate among the acids, but the binding energies of complexes with the weaker bases do not. These complexes are stabilized by charge transfer from the lone pair orbital of N or P to the σ*P═A orbital of X═PH3, where A is the atom of X directly bonded to P. PCH also forms complexes with the X═PH3 acids as a π electron donor to the σ*P═A orbital. The binding energies and the charge-transfer energies of the π complexes are greater than those of the complexes in which PCH is a lone pair donor. Whether the positive charge on P increases, decreases, or remains the same upon complex formation, the chemical shieldings of (31)P decrease in the complexes relative to the corresponding monomers. (1p)J(P-N) and (1p)J(P-P) values correlate best with the corresponding P-N and P-P distances as a function of the nature of the base. (1)J(P-A) values do not correlate with P-A distances. Rather, the absolute values of (1)J(P-O), (1)J(P-S), and (1)J(P-N) decrease upon complexation. Decreasing (1)J(P-A) values correlate linearly with increasing complex binding energies. In contrast, (1)J(P-C) values increase upon complexation and correlate linearly with increasing binding energies.

  17. Effects of land use and surficial geology on flow and water quality of streams in the coal-mining region of southwestern Indiana, October 1979 through September 1980

    USGS Publications Warehouse

    Wilber, William G.; Renn, Danny E.; Crawford, Charles G.

    1985-01-01

    The effect of surficial geology on stream quality was evident for several dissolved constituents in forested and agricultural watersheds. In general, pH and concentrations of alkalinity and calcium were significantly higher in streams draining the Wisconsin glacial province than in streams draining the Illinoian glacial province and unglaciated regions. The higher pH and concentrations of these constituents suggests that there is greater dissolution of carbonate minerals in the Wisconsin glacial province than the other regions. Median concentrations of arsenic, lead, and manganese for streams draining the Wisconsin glacial province were significantly lower than for those constituents in streams draining the Illinoian province and unglaciated region. The median cadmium concentration for streams draining the Wisconsin glacial province was lower than for streams draining the unglaciated region. These differences may have been due to lower solubilities of metal and trace elements at higher pH values in the Wisconsin glacial province than in the Illinoian glacial province and the unglaciated region.

  18. Thermal stability and structural characterization of organic/inorganic hybrid nonlinear optical material containing a two-dimensional chromophore.

    PubMed

    Chang, Po-Hsun; Tsai, Hsieh-Chih; Chen, Yu-Ren; Chen, Jian-Yu; Hsiue, Ging-Ho

    2008-10-21

    In this study, two nonlinear optic hybrid materials with different dimensional alkoxysilane dyes were prepared and characterized. One NLO silane (Cz2PhSO 2OH- TES), a two-dimensional structure based on carbazole, had a larger rotational volume than the other (DR19-TES). Second harmonic ( d 33) analysis verified there is an optimum heating process for the best poling efficiency. The maximum d 33 value of NLO hybrid film containing Cz2PhSO 2OH was obtained for 10.7 pm/V after precuring at 150 degrees C for 3 h and poling at 210 degrees C for 60 min. The solid-state (29)Si NMR spectrum shows that the main factor influencing poling efficiency and thermal stability was cross-linking degree of NLO silane, but not that of TMOS. In particular, the two-dimensional sol-gel system has a greater dynamic and temporary stability than the one-dimensional system due to Cz2PhSO 2OH-TES requiring a larger volume to rotate in the hybrid matrix after cross-linking.

  19. Coordination-Enabled One-Step Assembly of Ultrathin, Hybrid Microcapsules with Weak pH-Response.

    PubMed

    Yang, Chen; Wu, Hong; Yang, Xiao; Shi, Jiafu; Wang, Xiaoli; Zhang, Shaohua; Jiang, Zhongyi

    2015-05-06

    In this study, an ultrathin, hybrid microcapsule is prepared though coordination-enabled one-step assembly of tannic acid (TA) and titanium(IV) bis(ammonium lactate) dihydroxide (Ti-BALDH) upon a hard-templating method. Briefly, the PSS-doped CaCO3 microspheres with a diameter of 5-8 μm were synthesized and utilized as the sacrificial templates. Then, TA-Ti(IV) coatings were formed on the surface of the PSS-doped CaCO3 templates through soaking in TA and Ti-BALDH aqueous solutions under mild conditions. After removing the template by EDTA treatment, the TA-Ti(IV) microcapsules with a capsule wall thickness of 15 ± 3 nm were obtained. The strong coordination bond between polyphenol and Ti(IV) conferred the TA-Ti(IV) microcapsules high structural stability in the range of pH values 3.0-11.0. Accordingly, the enzyme-immobilized TA-Ti(IV) microcapsules exhibited superior pH and thermal stabilities. This study discloses the formation of TA-Ti(IV) microcapsules that are suitable for use as supports in catalysis due to their extensive pH and thermal stabilities.

  20. A new amperometric enzyme electrode for alcohol determination.

    PubMed

    Gülce, H; Gülce, A; Kavanoz, M; Coşkun, H; Yildiz, A

    2002-06-01

    A new enzyme electrode for the determination of alcohols was developed by immobilizing alcohol oxidase in polvinylferrocenium matrix coated on a Pt electrode surface. The amperometric response due to the electrooxidation of enzymatically generated H(2)O(2) was measured at a constant potential of +0.70 V versus SCE. The effects of substrate, buffer and enzyme concentrations, pH and temperature on the response of the electrode were investigated. The optimum pH was found to be pH 8.0 at 30 degrees C. The steady-state current of this enzyme electrode was reproducible within +/-5.0% of the relative error. The sensitivity of the enzyme electrode decreased in the following order: methanol>ethanol>n-butanol>benzyl alcohol. The linear response was observed up to 3.7 mM for methanol, 3.0 mM for ethanol, 6.2 mM for n-butanol, and 5.2 mM for benzyl alcohol. The apparent Michaelis-Menten constant (K(Mapp)) value and the activation energy, E(a), of this immobilized enzyme system were found to be 5.78 mM and 38.07 kJ/mol for methanol, respectively.

  1. Analysis of the optical properties of bile

    NASA Astrophysics Data System (ADS)

    Baldini, Francesco; Bechi, Paolo; Cianchi, Fabio; Falai, Alida; Fiorillo, Claudia; Nassi, Paolo

    2000-07-01

    Invasive bile determination is very useful in the diagnosis of many gastric pathologies. At the moment, this measurement is performed with Bilitec 2000, an optical fiber sensor, that is based on absorption by bilirubin. Nevertheless, erroneous evaluations are possible, due to the different configurations which the bilirubin molecule can adopt. The optical behavior of human samples of pure bile and bile+gastric juice has been examined using an optical fiber spectrophotometer and two suitable modified Bilitec 2000 units. A protocol has been established for the treatment of biological fluids, in order to make it possible to study the behavior of their optical properties as a function of pH and concentration without causing any alteration in the samples. The analysis of pH dependence evidenced the presence of different calibration curves at different pH values: the self-aggregation of the bilirubin molecules observed in pure bile samples was almost totally absent in the gastric samples. Measurements carried out on Bilitec 2000 showed that the most appropriate wavelength for bilirubin detection in the stomach should be 470 nm.

  2. Stratum corneum hydration and skin surface pH in patients with atopic dermatitis.

    PubMed

    Knor, Tanja; Meholjić-Fetahović, Ajša; Mehmedagić, Aida

    2011-01-01

    Atopic dermatitis (AD) is a chronically relapsing skin disease with genetic predisposition, which occurs most frequently in preschool children. It is considered that dryness and pruritus, which are always present in AD, are in correlation with degradation of the skin barrier function. Measurement of hydration and pH value of the stratum corneum is one of the noninvasive methods for evaluation of skin barrier function. The aim of the study was to assess skin barrier function by measuring stratum corneum hydration and skin surface pH of the skin with lesions, perilesional skin and uninvolved skin in AD patients, and skin in a healthy control group. Forty-two patients were included in the study: 21 young and adult AD patients and 21 age-matched healthy controls. Capacitance, which is correlated with hydration of stratum corneum and skin surface pH were measured on the forearm in the above areas by SM810/CM820/pH900 combined units (Courage AND Khazaka, Germany). The mean value of water capacitance measured in AD patients was 44.1 ± 11.6 AU (arbitrary units) on the lesions, 60.2 ± 12.4 AU on perilesional skin and 67.2 ± 8.8 AU on uninvolved skin. In healthy controls, the mean value was 74.1 ± 9.2 AU. The mean pH value measured in AD patients was 6.13 ± 0.52 on the lesions, 5.80 ± 0.41 on perilesional skin, and 5.54 ± 0.49 on uninvolved skin. In control group, the mean pH of the skin surface was 5.24 ± 0.40. The values of both parameters measured on lesional skin were significantly different (capacitance decreased and pH increased) from the values recorded on perilesional skin and uninvolved skin. The same held for the relation between perilesional and uninvolved skin. According to study results, the uninvolved skin of AD patients had significantly worse values of the measured parameters as compared with control group. The results of this study suggested the skin barrier function to be degraded in AD patients, which is specifically expressed in lesional skin.

  3. Effect of sampling location on L* values and pH measurements and their relationship in broiler breast fillets

    USDA-ARS?s Scientific Manuscript database

    Lightness (CIELAB L*) and pH values are the most widely measured quality indicators for broiler breast fillets (pectoralis major). Measurement of L* values with a spectrophotometer can be done through Specular Component Included (SCI) or Specular Component Excluded (SCE) modes. The intra-fillet loca...

  4. The fate of silicon during glass corrosion under alkaline conditions: A mechanistic and kinetic study with the International Simple Glass

    NASA Astrophysics Data System (ADS)

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Berthon, Claude; Wang, Zhaoying; Mitroshkov, Alexandre; Zhu, Zihua; Ryan, Joseph V.

    2015-02-01

    International Simple Glass - a six oxide borosilicate glass selected by the international nuclear glass community to improve the understanding of glass corrosion mechanisms and kinetics - was altered at 90 °C in a solution initially saturated with respect to amorphous 29SiO2. The pH90°C, was fixed at 9 at the start of the experiment and raised to 11.5 after 209 d by the addition of KOH. Isotope sensitive analytical techniques were used to analyze the solution and altered glass samples, helping to understand the driving forces and rate limiting processes controlling long-term glass alteration. At pH 9, the corrosion rate continuously drops and the glass slowly transforms into a uniform, homogeneous amorphous alteration layer. The mechanisms responsible for this transformation are water penetration through the growing alteration layer and ion exchange. We demonstrate that this amorphous alteration layer is not a precipitate resulting from the hydrolysis of the silicate network; it is mostly inherited from the glass structure from which the most weakly bonded cations (Na, Ca and B) have been released. At pH 11.5, the alteration process is very different: the high solubility of glass network formers (Si, Al, Zr) triggers the rapid and complete dissolution of the glass (dissolution becomes congruent) and precipitation of amorphous and crystalline phases. Unlike at pH 9 where glass corrosion rate decreased by 3 orders of magnitude likely due to the retroaction of the alteration layer on water dynamics/reactivity at the reaction front, the rate at pH 11.5 is maintained at a value close to the forward rate due to both the hydrolysis of the silicate network promoted by OH- and the precipitation of CSH and zeolites. This study provides key information for a unified model for glass dissolution.

  5. Sedimentation of iron deposits in Nagahama Bay, Satsuma Iwo-jima Island:Precipitation behavior of colloidal particle

    NASA Astrophysics Data System (ADS)

    Harada, T.; Kiyokawa, S.; Ikehara, M.

    2016-12-01

    Satsuma Iwo-Jima Island, with volcanic activities, is located about 40km south of Kyushu Island, Japan. This island is one of the best places to observe a shallow water hydrothermal system. Nagahama Bay, in the south of Satsuma Iwo-Jima Island, is partly separated from open sea. The seawater appears dark reddish brown color due to colloidal iron hydroxide by the mixing of volcanic fluids (pH=5.5, 50-60 degree Celsius) and oceanic water (Ninomiya & kiyokawa, 2009; Kiyokawa et al., 2012; Ueshiba & kiyokawa, 2012). Very high deposition rate (33 cm per year) of iron-rich sediments was observed in the bay (Kiyokawa et al., 2012). However, precipitation behavior of colloidal iron hydroxide has not been clarified. In this study, I report the results of analysis of deposition experiments of the colloidal particles at the Nagahama bay. Since the size of the colloidal particles is 1nm 1μm, single particle cannot be precipitated. This arise from precipitation of the particles in the viscous fluid is according to the Stokes' law. Colloidal iron hydroxide has the property of having the electric charges on the surface. The charge on the colloids is affected by pH of its surrounding seawater and can become more positively or negatively charged due to the gain or loss, respectively, of protons (H+) in the seawater. This property affects the stability of the colloidal dispersion. FE-SEM observation shows that the suspended particles consist of colloidal iron hydroxide (about 0.2μm), on the other hand, the iron-rich sediments are composed of bigger one (>1 μm). This indicates the colloidal iron hydroxide is precipitated by flocculation. We examined the precipitation amount of colloidal iron hydroxide under the various pH environments. The precipitation amount of pH=7.8 seawater 10% higher than that of pH=7.2. This result is roughly follows the theoretical value.

  6. Micro Electrochemical pH Sensor Applicable for Real-Time Ratiometric Monitoring of pH Values in Rat Brains.

    PubMed

    Zhou, Jie; Zhang, Limin; Tian, Yang

    2016-02-16

    To develop in vivo monitoring meter for pH measurements is still the bottleneck for understanding the role of pH plays in the brain diseases. In this work, a selective and sensitive electrochemical pH meter was developed for real-time ratiometric monitoring of pH in different regions of rat brains upon ischemia. First, 1,2-naphthoquinone (1,2-NQ) was employed and optimized as a selective pH recognition element to establish a 2H(+)/2e(-) approach over a wide range of pH from 5.8 to 8.0. The pH meter demonstrated remarkable selectivity toward pH detection against metal ions, amino acids, reactive oxygen species, and other biological species in the brain. Meanwhile, an inner reference, 6-(ferrocenyl)hexanethiol (FcHT), was selected as a built-in correction to avoid the environmental effect through coimmobilization with 1,2-NQ. In addition, three-dimensional gold nanoleaves were electrodeposited onto the electrode surface to amplify the signal by ∼4.0-fold and the measurement was achieved down to 0.07 pH. Finally, combined with the microelectrode technique, the microelectrochemical pH meter was directly implanted into brain regions including the striatum, hippocampus, and cortex and successfully applied in real-time monitoring of pH values in these regions of brain followed by global cerebral ischemia. The results demonstrated that pH values were estimated to 7.21 ± 0.05, 7.13 ± 0.09, and 7.27 ± 0.06 in the striatum, hippocampus, and cortex in the rat brains, respectively, in normal conditions. However, pH decreased to 6.75 ± 0.07 and 6.52 ± 0.03 in the striatum and hippocampus, upon global cerebral ischemia, while a negligible pH change was obtained in the cortex.

  7. An empirical method for estimating instream pre-mining pH and dissolved Cu concentration in catchments with acidic drainage and ferricrete

    USGS Publications Warehouse

    Nimick, D.A.; Gurrieri, J.T.; Furniss, G.

    2009-01-01

    Methods for assessing natural background water quality of streams affected by historical mining are vigorously debated. An empirical method is proposed in which stream-specific estimation equations are generated from relationships between either pH or dissolved Cu concentration in stream water and the Fe/Cu concentration ratio in Fe-precipitates presently forming in the stream. The equations and Fe/Cu ratios for pre-mining deposits of alluvial ferricrete then were used to reconstruct estimated pre-mining longitudinal profiles for pH and dissolved Cu in three acidic streams in Montana, USA. Primary assumptions underlying the proposed method are that alluvial ferricretes and modern Fe-precipitates share a common origin, that the Cu content of Fe-precipitates remains constant during and after conversion to ferricrete, and that geochemical factors other than pH and dissolved Cu concentration play a lesser role in determining Fe/Cu ratios in Fe-precipitates. The method was evaluated by applying it in a fourth, naturally acidic stream unaffected by mining, where estimated pre-mining pH and Cu concentrations were similar to present-day values, and by demonstrating that inflows, particularly from unmined areas, had consistent effects on both the pre-mining and measured profiles of pH and Cu concentration. Using this method, it was estimated that mining has affected about 480 m of Daisy Creek, 1.8 km of Fisher Creek, and at least 1 km of Swift Gulch. Mean values of pH decreased by about 0.6 pH units to about 3.2 in Daisy Creek and by 1-1.5 pH units to about 3.5 in Fisher Creek. In Swift Gulch, mining appears to have decreased pH from about 5.5 to as low as 3.6. Dissolved Cu concentrations increased due to mining almost 40% in Daisy Creek to a mean of 11.7 mg/L and as much as 230% in Fisher Creek to 0.690 mg/L. Uncertainty in the fate of Cu during the conversion of Fe-precipitates to ferricrete translates to potential errors in pre-mining estimates of as much as 0.25 units for pH and 22% for dissolved Cu concentration. The method warrants further testing in other mined and unmined watersheds. Comparison of pre-mining water-quality estimates derived from the ferricrete and other methods in single watersheds would be particularly valuable. The method has potential for use in monitoring remedial efforts at mine sites with ferricrete deposits. A reasonable remediation objective might be realized when the downstream pattern of Fe/Cu ratios in modern streambed Fe-precipitates corresponds to the pattern in pre-mining alluvial ferricrete deposits along a stream valley.

  8. Adsorption of emerging contaminant metformin using graphene oxide.

    PubMed

    Zhu, Shuai; Liu, Yun-Guo; Liu, Shao-Bo; Zeng, Guang-Ming; Jiang, Lu-Hua; Tan, Xiao-Fei; Zhou, Lu; Zeng, Wei; Li, Ting-Ting; Yang, Chun-Ping

    2017-07-01

    The occurrence of emerging contaminants in our water resources poses potential threats to the livings. Due to the poor treatment in wastewater management, treatment technologies are needed to effectively remove these products for living organism safety. In this study, Graphene oxide (GO) was tested for the first time for its capacity to remove a kind of emerging wastewater contaminants, metformin. The research was conducted by using a series of systematic adsorption and kinetic experiments. The results indicated that GO could rapidly and efficiently reduce the concentration of metformin, which could provide a solution in handling this problem. The uptake of metformin on the graphene oxide was strongly dependent on temperature, pH, ionic strength, and background electrolyte. The adsorption kinetic experiments revealed that almost 80% removal of metformin was achieved within 20 min for all the doses studied, corresponding to the relatively high k 1 (0.232 min -1 ) and k 2 (0.007 g mg -1  min -1 ) values in the kinetic models. It indicated that the highest adsorption capacity in the investigated range (q m ) of GO for metformin was at pH 6.0 and 288 K. Thermodynamic study indicated that the adsorption was a spontaneous (ΔG 0  < 0) and exothermic (ΔH 0  < 0) process. The adsorption of metformin increased when the pH values changed from 4.0 to 6.0, and decreased adsorption were observed at pH 6.0-11.0. GO still exhibited excellent adsorption capacity after several desorption/adsorption cycles. Besides, both so-called π-π interactions and hydrogen bonds might be mainly responsible for the adsorption of metformin onto GO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Management of fetal growth restriction using the contraction stress test: a case-control study.

    PubMed

    Tanaka, Hiroaki; Furuhashi, Fumi H; Toriyabe, Kuniaki; Matsumoto, Takeshi; Magawa, Shoich; Nii, Masafumi; Watanabe, Junko; Tanaka, Kayo; Umekawa, Takashi; Kamimoto, Yuki; Ikeda, Tomoaki

    2018-04-18

    Fetal growth restriction (FGR) is a concerning health issue. However, studies on FGR management are limited due to its rarity. We aimed to evaluate the efficacy of the contraction stress test (CST) for FGR management. A case-control retrospective study design. Our institute innovated CST in FGR management in 2017. We included women in their 33rd-40th week of pregnancy with a diagnosis of FGR and retrospectively divided them into groups: the CST group (FGR management with CST) and no CST group (FGR management without CST) before and after CST development. Neonatal outcome, pH, and pO 2 of umbilical artery (UA) were compared between the two groups. No significant differences in the rate of birth weight, Apgar score <7 (5 minutes), neonatal death, hospitalization to newborn childhood intensive care unit (NICU), and UA pH were found between groups. Average UA pH was 7.29 ± 0.05 and 7.29 ± 0.04 in the CST and no CST groups, respectively (p = .864). Average UA pO 2 values were 21.1 ± 8.6 and 15.7 ± 5.0 mmHg in the CST and no CST groups, respectively (p = .016), showing significant differences. Neonatal outcomes and UA pH were slightly different between the groups managed with and without CST. However, UA pO 2 values significantly differed between the groups. For FGR management, the use of a CST may allow for early intervention before fetal acidemia and acidosis. For establishing the effects of a CST for FGR management, analysis including several cases and investigation of long-term outcomes of newborn infants is necessary.

  10. Effect of deposition parameters on the structural properties of ZnO nanopowders prepared by microwave-assisted hydrothermal synthesis.

    PubMed

    Caglar, Yasemin; Gorgun, Kamuran; Aksoy, Seval

    2015-03-05

    ZnO nanopowders were synthesized via microwave-assisted hydrothermal method at different deposition (microwave irradiation) times and pH values. The effects of pH and deposition (microwave irradiation) time on the crystalline structure and orientation of the ZnO nanopowders have been investigated by X-ray diffraction (XRD) study. XRD observations showed that the crystalline quality of ZnO nanopowders increased with increasing pH value. The crystallite size and texture coefficient values of ZnO nanopowders were calculated. The structural quality of ZnO nanopowder was improved by deposition parameters. Field emission scanning electron microscope (FESEM) was used to analyze the surface morphology of the ZnO nanopowders. Microwave irradiation time and pH value showed a significant effect on the surface morphology. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Interfacial behavior of N-nitrosodiethylamine/bovine serum albumin complexes at the air-water and the chloroform-water interfaces by axisymmetric drop tensiometry.

    PubMed

    Juárez, J; Galaz, J G; Machi, L; Burboa, M; Gutiérrez-Millán, L E; Goycoolea, F M; Valdez, M A

    2007-03-15

    Interfacial properties of N-nitrosodiethylamine/bovine serum albumin (NDA/BSA) complexes were investigated at the air-water interface. The interfacial behavior at the chloroform-water interface of the interaction product of phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), dissolved in the chloroform phase, and NDA/BSA complex, in the aqueous phase, were also analyzed by using a drop tensiometer. The secondary structure changes of BSA with different NDA concentrations were monitored by circular dichroism spectroscopy at different pH and the NDA/BSA interaction was probed by fluorescence spectroscopy. Different NDA/BSA mixtures were prepared from 0, 7.5 x 10(-5), 2.2 x 10(-4), 3.7 x 10(-4), 5 x 10(-4), 1.6 x 10(-3), and 3.1 x 10(-3) M NDA solutions in order to afford 0, 300/1, 900/1, 1 500/1, 2 000/1, 6 000/1, and 12 500/1 NDA/BSA molar ratios, respectively, in the aqueous solutions. Increments of BSA alpha-helix contents were obtained up to the 2 000/1 NDA/BSA molar ratio, but at ratios beyond this value, the alpha-helix content practically disappeared. These BSA structure changes produced an increment of the surface pressure at the air-water interface, as the alpha-helix content increased with the concentration of NDA. On the contrary, when alpha-helix content decreased, the surface pressure also appeared lower than the one obtained with pure BSA solutions. The interaction of DPPC with NDA/BSA molecules at the chloroform-water interface produced also a small, but measurable, pressure increment with the addition of NDA molecules. Dynamic light scattering measurements of the molecular sizes of NDA/BSA complex at pH 4.6, 7.1, and 8.4 indicated that the size of extended BSA molecules at pH 4.6 increased in a greater proportion with the increment in NDA concentration than at the other studied pH values. Diffusion coefficients calculated from dynamic surface tension values, using a short-term solution of the general adsorption model of Ward and Tordai, also showed differences with pH and the NDA concentration. Both, the storage and loss dilatational elastic modulus were obtained at the air-water and at the chloroform-water interfaces. The interaction of NDA/BSA with DPPC at the chloroform-water produced a less rigid monolayer than the one obtained with pure DPPC (1 x 10(-5) M), indicating a significant penetration of NDA/BSA molecules at the interface. At short times and pH 4.6, the values of the storage elastic modulus were larger and more sensible to the NDA addition than the ones at pH 7.1 and 8.4, probably due to a gel-like network formation at the air-water interface.

  12. [Wastewater from the condensation and drying section of ABS was pretreated by microelectrolysis].

    PubMed

    Lai, Bo; Qin, Hong-Ke; Zhou, Yue-Xi; Song, Yu-Dong; Cheng, Jia-Yun; Sun, Li-Dong

    2011-04-01

    Wastewater from the condensation and drying section of acrylonitrile-butadiene-styrene (ABS) resin plant was pretreated by the microelectrolysis, and the effect of the influent pH value on the pollution removal efficiency of the microelectrolysis was mainly studied. In order to study the electrochemical action of the microelectrolysis for the degradation of toxic refractory organic pollutants, two control experiments of activated carbon and iron were set up. The results showed that the TOC removal efficiencies were all fluctuated between 40% and 60% under the condition of different influent pH values. The microelectrolysis can decompose and transform the toxic refractory organic pollutants and increase the BOD5/COD ratio from 0.32 to 0.60, which increased the biodegradability of ABS resin wastewater significantly. When the pH value of influent was 4.0, the BOD5/COD ratio of effluent reached 0.71. The result of UV-vis spectra indicates that the removal efficiency of the organic nitrile was the highest with influent pH was 4.0. Therefore, the best influent pH value of microelectrolysis was 4.0.

  13. Effect of sonication on the colloidal stability of iron oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2015-04-24

    Colloidal stability of superparamagnetic iron oxide nanoparticles’ (SPION) suspensions, ultrasonically irradiated at various pH was studied. Electrophoresis measurement of the sonicated SPION showed that the shock waves and other unique conditions generated from the acoustic cavitation process (formation, growth and collapse of bubbles) affect the zeta potential value of the suspension. In this work, stabled colloidal suspensions of SPION were prepared and their pH is varied between 3 and 5. Prior to ultrasonic irradiation of the suspensions, their initial zeta potential values were determined. After ultrasonic irradiation of the suspensions, we observed that the sonication process interacts with colloidal stabilitymore » of the nanoparticles. The results demonstrated that only suspensions with pH less 4 were found stable and able to retain more than 90% of its initial zeta potential value. However, at pH greater than 4, the suspensions were found unstable. The result implies that good zeta potential value of SPION can be sustained in sonochemical process as long as the pH of the mixture is kept below 4.« less

  14. Stable and selective self-assembly of α-lipoic acid on Ge(001) for biomolecule immobilization

    NASA Astrophysics Data System (ADS)

    Kazmierczak, M.; Flesch, J.; Mitzloff, J.; Capellini, G.; Klesse, W. M.; Skibitzki, O.; You, C.; Bettenhausen, M.; Witzigmann, B.; Piehler, J.; Schroeder, T.; Guha, S.

    2018-05-01

    We demonstrate a novel method for the stable and selective surface functionalization of germanium (Ge) embedded in silicon dioxide. The Ge(001) surface is functionalized using α-lipoic acid (ALA), which can potentially be utilized for the immobilization of a wide range of biomolecules. We present a detailed pH-dependence study to establish the effect of the incubation pH value on the adsorption layer of the ALA molecules. A threshold pH value for functionalization is identified, dividing the examined pH range into two regions. Below a pH value of 7, the formation of a disordered ALA multilayer is observed, whereas a stable well-ordered ALA mono- to bi-layer on Ge(001) is achieved at higher pH values. Furthermore, we analyze the stability of the ALA layer under ambient conditions, revealing the most stable functionalized Ge(001) surface to effectively resist oxidation for up to one week. Our established functionalization method paves the way towards the successful immobilization of biomolecules in future Ge-based biosensors.

  15. Effect of pH on particles size and gas sensing properties of In2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Anand, Kanica; Thangaraj, Rengasamy; Singh, Ravi Chand

    2016-05-01

    In this work, indium oxide (In2O3) nanoparticles have been synthesized by co-precipitation method and the effect of pH on the structural and sensor response values of In2O3 nanoparticles has been reported. X-ray diffraction pattern (XRD) revealed the formation of cubic phase In2O3 nanoparticles. FESEM results indicate the formation of nearly spherical shape In2O3 nanoparticles. The band gap energy value changed with change in pH value and found to have highest value at pH 9. Indium oxide nanoparticles thus prepared were deposited as thick films on alumina substrates to act as gas sensors and their sensing response to ethanol vapors and LPG at 50 ppm was investigated at different operating temperatures. It has been observed that all sensors exhibited optimum response at 300°C towards ethanol and at 400°C towards LPG. In2O3 nanoparticles prepared at pH 9, being smallest in size as compared to other, exhibit highest sensor response (SR).

  16. Study of Vis/NIR spectroscopy measurement on acidity of yogurt

    NASA Astrophysics Data System (ADS)

    He, Yong; Feng, Shuijuan; Wu, Di; Li, Xiaoli

    2006-09-01

    A fast measurement of pH of yogurt using Vis/NIR-spectroscopy techniques was established in order to measuring the acidity of yogurt rapidly. 27 samples selected separately from five different brands of yogurt were measured by Vis/NIR-spectroscopy. The pH of yogurt on positions scanned by spectrum was measured by a pH meter. The mathematical model between pH and Vis/NIR spectral measurements was established and developed based on partial least squares (PLS) by using Unscramble V9.2. Then 25 unknown samples from 5 different brands were predicted based on the mathematical model. The result shows that The correlation coefficient of pH based on PLS model is more than 0.890, and standard error of calibration (SEC) is 0.037, standard error of prediction (SEP) is 0.043. Through predicting the pH of 25 samples of yogurt from 5 different brands, the correlation coefficient between predictive value and measured value of those samples is more than 0918. The results show the good to excellent prediction performances. The Vis/NIR spectroscopy technique had a significant greater accuracy for determining the value of pH. It was concluded that the VisINIRS measurement technique can be used to measure pH of yogurt fast and accurately, and a new method for the measurement of pH of yogurt was established.

  17. In vitro activity of the novel echinocandin CD101 at pH 7 and 4 against Candida spp. isolates from patients with vulvovaginal candidiasis

    PubMed Central

    Boikov, Dina A.; James, Kenneth D.; Bartizal, Ken; Sobel, Jack D.

    2017-01-01

    Background: The novel echinocandin CD101 has stability properties amenable to topical formulation for use in the treatment of acute vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC). CD101 has demonstrated potent antifungal activity at pH 7, but assessment of its activity at the physiological pH of the vaginal environment is needed. Objectives: To evaluate the antifungal activity of CD101 against clinical VVC isolates of Candida spp., including azole-resistant strains, at pH 4. Methods: MIC values of CD101 and comparators (fluconazole, itraconazole, micafungin, caspofungin and anidulafungin) were assessed via broth microdilution. MIC assays were conducted at pH 7 and 4 after 24 and 48 h against a 108 VVC isolate panel of Candida spp., including Candida albicans (n = 60), Candida glabrata (n = 21), Candida parapsilosis (n = 14) and Candida tropicalis (n = 13). Results: Overall, MIC values of all drugs were slightly higher at pH 4 versus 7 and at 48 versus 24 h of incubation. CD101 MIC values typically exhibited ∼4-fold shifts at pH 4 and were not affected by azole susceptibility. C. parapsilosis susceptibility was the least affected at pH 4 and did not increase for most drugs. Conclusions: CD101 had potent activity against all Candida isolates tested, including azole-resistant strains. Although there was some reduction in activity at pH 4 versus 7, the resulting MIC values were still well below the intravaginal CD101 drug concentrations anticipated to be present following topical administration. These results support continued development of topical CD101 for the treatment of VVC/RVVC. PMID:28158577

  18. In vitro activity of the novel echinocandin CD101 at pH 7 and 4 against Candida spp. isolates from patients with vulvovaginal candidiasis.

    PubMed

    Boikov, Dina A; Locke, Jeffrey B; James, Kenneth D; Bartizal, Ken; Sobel, Jack D

    2017-05-01

    The novel echinocandin CD101 has stability properties amenable to topical formulation for use in the treatment of acute vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC). CD101 has demonstrated potent antifungal activity at pH 7, but assessment of its activity at the physiological pH of the vaginal environment is needed. To evaluate the antifungal activity of CD101 against clinical VVC isolates of Candida spp., including azole-resistant strains, at pH 4. MIC values of CD101 and comparators (fluconazole, itraconazole, micafungin, caspofungin and anidulafungin) were assessed via broth microdilution. MIC assays were conducted at pH 7 and 4 after 24 and 48 h against a 108 VVC isolate panel of Candida spp., including Candida albicans ( n  =   60), Candida glabrata ( n  =   21), Candida parapsilosis ( n  =   14) and Candida tropicalis ( n  =   13). Overall, MIC values of all drugs were slightly higher at pH 4 versus 7 and at 48 versus 24 h of incubation. CD101 MIC values typically exhibited ∼4-fold shifts at pH 4 and were not affected by azole susceptibility. C. parapsilosis susceptibility was the least affected at pH 4 and did not increase for most drugs. CD101 had potent activity against all Candida isolates tested, including azole-resistant strains. Although there was some reduction in activity at pH 4 versus 7, the resulting MIC values were still well below the intravaginal CD101 drug concentrations anticipated to be present following topical administration. These results support continued development of topical CD101 for the treatment of VVC/RVVC. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  19. pH-Manipulated Underwater-Oil Adhesion Wettability Behavior on the Micro/Nanoscale Semicircular Structure and Related Thermodynamic Analysis.

    PubMed

    Tie, Lu; Guo, Zhiguang; Liu, Weimin

    2015-05-20

    Controlling oil of wettability behavior in response to the underwater out stimulation has shown promising applications in understanding and designing novel micro- or nanofluidic devices. In this article, the pH-manipulated underwater-oil adhesion wetting phenomenon and superoleophobicity on the micro- and nanotexture copper mesh films (CMF) were investigated. It should be noted that the surface exhibits underwater superoleophobicity under different pH values of the solution; however, the underwater-oil adhesion behavior on the surface is dramatically influenced by the pH value of the solution. On the basis of the thermodynamic analysis, a plausible mechanism to explain the pH-controllable underwater-oil adhesion and superoleophobic wetting behavior observed on a micro- and nanoscale semicircular structure has been revealed. Furthermore, variation of chemistry (intrinsic oil contact angle (OCA)) of the responsive surface that due to the carboxylic acid groups is protonated or deprotonated by the acidic or basic solution on free energy (FE) with its barrier (FEB) and equilibrium oil contact angle (EOCA) with it hysteresis (OCAH) are discussed. The result shows that a critical intrinsic OCA on the micro- and nano- semicircular texture is necessary for conversion from the oil Cassie impregnating to oil Cassie wetting state. In a water/oil/solid system, the mechanism reveals that the differences between the underwater OCA and oil adhesive force of the responsive copper mesh film under different pH values of solution are ascribed to the different oil wetting state that results from combining the changing intrinsic OCA and micro-/nanosemicircular structures. These results are well in agreement with the experiment.

  20. Effects of biochars derived from chicken manure and rape straw on speciation and phytoavailability of Cd to maize in artificially contaminated loess soil.

    PubMed

    Zhao, Baowei; Xu, Renzhi; Ma, Fengfeng; Li, Yewei; Wang, Lu

    2016-12-15

    While biochar can reduce the bioavailability of heavy metals in acidic soils and reduce their risk of entering the food chain, conditions for alkaline soils such as loess soils with high pH values, high carbonate content and low organic matter content remain unclear. Pot experiments were conducted to assess the effects of four rates (1%, 5%, 10%, and 15% w/w) of biochars prepared at 600 °C from chicken manure and rape straw (CBC and RBC) on soil properties, Cd speciation and phytoavailability, and plant growth in Cd contaminated (20 mg kg -1 ) light sierozem using maize (Zea mays L.) as an indicator plant. Biochar additions significantly (P < 0.05) increased soil pH values, cation exchange capacity (CEC) and soil organic matter (OM). The results showed that Cd speciation turned somewhat into stable state as biochar application increased. When CBC and RBC was applied at the rate of 15%, the content of acid-extractable Cd decreased only by 16.3% and 11.64%, respectively. The uptake of Cd by maize shoots scarcely decreased with CBC and RBC amendment at the rate of 1% and 5%, respectively. Although it seemed that additions of more than 5% CBC or RBC significantly (P < 0.05) reduced Cd contents in maize shoots, maize growth was largely inhibited due to the high value of soil pH. These results could provide different implications for immobilization remediation of loess soils (e.g., light sierozem) contaminated with Cd. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Molecular Insights into the Effects of Media-Drug and Carrier-Drug Interactions on pH-Responsive Drug Carriers.

    PubMed

    Katiyar, Ratna S; Jha, Prateek K

    2018-05-10

    We have performed two sets of all atom molecular dynamics (MD) simulations of poly(acrylic acid) (PAA) oligomers, considered as a model pH-responsive drug carrier. In the first set, multiple oligomers of PAA are simulated in model gastric and intestinal fluids, where the degree of deprotonation of PAA oligomers is varied with the medium pH. Since the gastric fluid has a pH substantially lower than that of intestinal fluid, PAA is relatively lesser ionized in gastric fluid and forms aggregates. In the second set, we simulated multiple oligomers of PAA with multiple molecules of a cationic anticancer drug, doxorubicin (DOX), for a range of pH values representative of various physiological conditions. The diffusion coefficient of DOX decreases with an increase in pH due to an increase in the ionic complexation of PAA with DOX, despite a decrease in PAA aggregation. Our findings are in agreement with recent experimental reports on pH-triggered targeting of tumor cells by the PAA-DOX system. Results of these two sets of studies establish that both carrier aggregation and carrier-drug interactions are competing influences that together determine the drug release from pH-responsive polymers.

  2. Exercise Training in Group 2 Pulmonary Hypertension: Which Intensity and What Modality.

    PubMed

    Arena, Ross; Lavie, Carl J; Borghi-Silva, Audrey; Daugherty, John; Bond, Samantha; Phillips, Shane A; Guazzi, Marco

    2016-01-01

    Pulmonary hypertension (PH) due to left-sided heart disease (LSHD) is a common and disconcerting occurrence. For example, both heart failure (HF) with preserved and reduced ejection fraction (HFpEF and HFrEF) often lead to PH as a consequence of a chronic elevation in left atrial filling pressure. A wealth of literature demonstrates the value of exercise training (ET) in patients with LSHD, which is particularly robust in patients with HFrEF and growing in patients with HFpEF. While the effects of ET have not been specifically explored in the LSHD-PH phenotype (i.e., composite pathophysiologic characteristics of patients in this advanced disease state), the overall body of evidence supports clinical application in this subgroup. Moderate intensity aerobic ET significantly improves peak oxygen consumption, quality of life and prognosis in patients with HF. Resistance ET significantly improves muscle strength and endurance in patients with HF, which further enhance functional capacity. When warranted, inspiratory muscle training and neuromuscular electrical stimulation are becoming recognized as important components of a comprehensive rehabilitation program. This review will provide a detailed account of ET programing considerations in patients with LSHD with a particular focus on those concomitantly diagnosed with PH. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Protonation equilibrium and lipophilicity of olamufloxacin (HSR-903), a newly synthesized fluoroquinolone antibacterial.

    PubMed

    Sun, Jin; Sakai, Shigeko; Tauchi, Yoshihiko; Deguchi, Yoshiharu; Cheng, Gang; Chen, Jimin; Morimoto, Kazuhiro

    2003-09-01

    This study was performed to characterize the protonation equilibrium at the molecular level and pH-dependent lipophilicity of olamufloxacin. The deprotonation fraction of the carboxyl group as a function of pH was specifically calculated at the critical wavelength 294 nm, where UV pH-dependent absorbance of olamufloxacin was independent of the ionized state of the aminopyrrolidinyl amino group but heavily depended on that of the carboxyl moiety. Accordingly, micro-protonation equilibrium could be described using a nonlinear least-squares regression program MULTI. In contrast, macro-protonation equilibrium was depicted at most wavelengths where olamufloxacin absorbance was influenced by ionized states of both proton-binding groups, results coinciding with the former. Furthermore, distribution features of four microspecies in aqueous phase were assessed. The apparent partition coefficient versus pH profile of olamufloxacin showed a parabolic curve in n-octanol/buffer system which reached peak near pH 8, agreeing with the above determined isoelectric point (pI). Ion-pair effect was observed for olamufloxacin under an acidic condition, eliciting experimental values higher than those theoretically calculated, which was similar to ciprofloxacin but not levofloxacin due to amino group type. Moreover, olamufloxacin was moderately lipophilic in comparison with other quinolones, with an apparent partition coefficient of 1.95 at pH 7.4.

  4. On the Versatility of Rheoreversible, Stimuli-responsive Hydraulic-Fracturing Fluids for Enhanced Geothermal Systems: Effect of Reservoir pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Carlos A.; Shao, Hongbo; Bonneville, Alain

    Abstract The primary challenge for the feasibility of enhanced geothermal systems (EGS) is to cost-effectively create high-permeability reservoirs inside deep crystalline bedrock. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. These authors recently reported an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing due to in situ volume expansion and gel formation. The potential of this novel fracturing fluid is evaluated in this work towards its application at geothermal sitesmore » under different pH conditions. Laboratory-scale fracturing experiments using Coso Geothermal rock cores under different pH environments were performed followed by X-ray microtomography characterization. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable polyallylamine (PAA) consistently and reproducibly creates/propagates fracture networks through highly impermeable crystalline rock from Coso EGS sites at considerably lower effective stress as compared to conventional fracturing fluids. In addition, permeability was significantly enhanced in a wide range of formation-water pH values. This effective, and environmentally-friendly fracturing fluid technology represents a potential alternative to conventional fracturing fluids.« less

  5. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation.

    PubMed

    Berman, Marvin D; Carey, Martin C

    2015-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. Copyright © 2015 the American Physiological Society.

  6. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation

    PubMed Central

    Berman, Marvin D.

    2014-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. PMID:25359538

  7. [Primary hyperaldosteronism: problems of diagnostic approaches].

    PubMed

    Widimský, Jiří

    2015-05-01

    Primary hyperaldosteronism (PH) is common cause of endocrine/secondary hypertension with autonomous aldosterone overproduction by adrenal cortex. PH is typically characterized by hypertension, hypokalemia, high plasma aldosterone/renin ratio, high aldosterone, suppressed renin and nonsupressibilty of aldosterone during confirmatory tests. Diagnosis of PH can be difficult since hypokalemia is found only in 50 % of cases and measurement of the parameters of renin-angiotensin-aldosterone system can be influenced by several factors. Morphological dia-gnosis requires in majority of cases adrenal venous sampling. Early diagnostic and therapeutic measures are very important due to high prevalence of PH and potential cure. Patients with suspicion to PH should be investigated in experienced hypertensive centers due to relatively difficult laboratory and morphological diagnostic approaches.

  8. Rapid pH change due to bacteriorhodopsin measured with a tin-oxide electrode.

    PubMed Central

    Robertson, B; Lukashev, E P

    1995-01-01

    The photocurrent transient generated by bacteriorhodopsin (bR) on a tin-oxide electrode is due to pH change and not to charge displacement as previously assumed. Films of either randomly oriented or highly oriented purple membranes were deposited on transparent electrodes made of tin-oxide-coated glass. The membranes contained either wild-type or D96N-mutant bR. When excited with yellow light through the glass, the bR pumps protons across the membrane. The result is a rapid local pH change as well as a charge displacement. Experiments with these films show that it is the pH change rather than the displacement that produces the current transient. The calibration for the transient pH measurement is given. The sensitivity of a tin-oxide electrode to a transient pH change is very much larger than its sensitivity to a steady-state pH change. PMID:7787036

  9. Effect of acid- and alkaline-aided extractions on functional and rheological properties of proteins recovered from mechanically separated turkey meat (MSTM).

    PubMed

    Hrynets, Yuliya; Omana, Dileep A; Xu, Yan; Betti, Mirko

    2010-09-01

    Functional and rheological characteristics of acid- and alkali-extracted proteins from mechanically separated turkey meat (MSTM) have been investigated. Extractions were carried out at 4 pH values (2.5, 3.5, 10.5, and 11.5). The study demonstrated that alkali and acid extractions resulted in significant (P < 0.0001) decreases of cooking and water loss compared to raw MSTM; however, the cooking loss was found to be similar (P = 0.5699) among the different protein isolates. Proteins extracted at pH 10.5 showed the lowest (P = 0.0249) water loss. Emulsion and foaming properties were found to be slightly higher in alkali-extracted proteins compared to those for acid extractions. The myofibrillar protein fraction showed better ability to form and stabilize emulsions compared to sarcoplasmic proteins. Myofibrillar proteins also showed better foam expansion; however, foam volume stability was similar for both myofibrillar and sarcoplasmic protein fractions. Textural characteristics (hardness, chewiness, springiness, and cohesiveness) of recovered proteins were found to be unaffected (P > 0.05) by different extraction pH. The protein extracted at pH 3.5 formed a highly viscoelastic gel network as evidenced by storage modulus (G') values, whereas the gel formed from proteins extracted at pH 10.5 was found to be the weakest. The work also revealed that acid treatments were more effective for removal of total heme pigments from MSTM. Color characteristics of protein isolates were markedly improved compared to the initial material and tended to be better when subjected to acid extractions. Mechanically separated meat is one of the cheapest sources of protein obtained by grinding meat and bones together and forcing the mixture through a perforated drum. The use of mechanically separated turkey meat (MSTM) for the production of further processed poultry products is limited due to its undesirable color and textural properties. Recovery of proteins from MSTM using pH shifting process will help the poultry processors to get better returns and also create opportunity to produce functional food ingredients.

  10. Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid.

    PubMed

    Jang, Yu-Sin; Woo, Hee Moon; Im, Jung Ae; Kim, In Ho; Lee, Sang Yup

    2013-11-01

    Clostridium acetobutylicum has been considered as an attractive platform host for biorefinery due to its metabolic diversity. Considering its capability to overproduce butanol through butyrate, it was thought that butyric acid can also be efficiently produced by this bacterium through metabolic engineering. The pta-ctfB-deficient C. acetobutylicum CEKW, in which genes encoding phosphotransacetylase and CoA-transferase were knocked out, was assessed for its potential as a butyric acid producer in fermentations with four controlled pH values at 5.0, 5.5, 6.0, and 6.4. Butyric acid could be best produced by fermentation of the CEKW at pH 6.0, resulting in the highest titer of 26.6 g/l, which is 6.4 times higher than that obtained with the wild type. However, due to the remaining solventogenic ability of the CEKW, 3.6 g/l solvents were also produced. Thus, the CEKW was further engineered by knocking out the adhE1-encoding aldehyde/alcohol dehydrogenase to prevent solvent production. Batch fermentation of the resulting C. acetobutylicum HCEKW at pH 6.0 showed increased butyric acid production to 30.8 g/l with a ratio of butyric-to-acetic acid (BA/AA) of 6.6 g/g and a productivity of 0.72 g/l/h from 86.9 g/l glucose, while negligible solvent (0.8 g/l ethanol only) was produced. The butyric acid titer, BA/AA ratio, and productivity obtained in this study were the highest values reported for C. acetobutylicum, and the BA/AA ratio and productivity were also comparable to those of native butyric acid producer Clostridium tyrobutyricum. These results suggested that the simultaneous deletion of the pta-ctfB-adhE1 in C. acetobutylicum resulted in metabolic switch from biphasic to acidogenic fermentation, which enhanced butyric acid production.

  11. Flexible modeling improves assessment of prognostic value of C-reactive protein in advanced non-small cell lung cancer.

    PubMed

    Gagnon, B; Abrahamowicz, M; Xiao, Y; Beauchamp, M-E; MacDonald, N; Kasymjanova, G; Kreisman, H; Small, D

    2010-03-30

    C-reactive protein (CRP) is gaining credibility as a prognostic factor in different cancers. Cox's proportional hazard (PH) model is usually used to assess prognostic factors. However, this model imposes a priori assumptions, which are rarely tested, that (1) the hazard ratio associated with each prognostic factor remains constant across the follow-up (PH assumption) and (2) the relationship between a continuous predictor and the logarithm of the mortality hazard is linear (linearity assumption). We tested these two assumptions of the Cox's PH model for CRP, using a flexible statistical model, while adjusting for other known prognostic factors, in a cohort of 269 patients newly diagnosed with non-small cell lung cancer (NSCLC). In the Cox's PH model, high CRP increased the risk of death (HR=1.11 per each doubling of CRP value, 95% CI: 1.03-1.20, P=0.008). However, both the PH assumption (P=0.033) and the linearity assumption (P=0.015) were rejected for CRP, measured at the initiation of chemotherapy, which kept its prognostic value for approximately 18 months. Our analysis shows that flexible modeling provides new insights regarding the value of CRP as a prognostic factor in NSCLC and that Cox's PH model underestimates early risks associated with high CRP.

  12. Using eddy currents for noninvasive in vivo pH monitoring for bone tissue engineering.

    PubMed

    Beck-Broichsitter, Benedicta E; Daschner, Frank; Christofzik, David W; Knöchel, Reinhard; Wiltfang, Jörg; Becker, Stephan T

    2015-03-01

    The metabolic processes that regulate bone healing and bone induction in tissue engineering models are not fully understood. Eddy current excitation is widely used in technical approaches and in the food industry. The aim of this study was to establish eddy current excitation for monitoring metabolic processes during heterotopic osteoinduction in vivo. Hydroxyapatite scaffolds were implanted into the musculus latissimus dorsi of six rats. Bone morphogenetic protein 2 (BMP-2) was applied 1 and 2 weeks after implantation. Weekly eddy current excitation measurements were performed. Additionally, invasive pH measurements were obtained from the scaffolds using fiber optic detection devices. Correlations between the eddy current measurements and the metabolic values were calculated. The eddy current measurements and pH values decreased significantly in the first 2 weeks of the study, followed by a steady increase and stabilization at higher levels towards the end of the study. The measurement curves and statistical evaluations indicated a significant correlation between the resonance frequency values of the eddy current excitation measurements and the observed pH levels (p = 0.0041). This innovative technique was capable of noninvasively monitoring metabolic processes in living tissues according to pH values, showing a direct correlation between eddy current excitation and pH in an in vivo tissue engineering model.

  13. Comparison of survival of diarrhoeagenic agents in two local weaning foods (ogi and koko).

    PubMed

    Bakare, S; Smith, S I; Olukoya, D K; Akpan, E

    1998-12-01

    The pH values of both cooked and uncooked ogi and koko samples were determined and the survival rate of four diarrhoeagenic agents, enteroinvasive Escherichia coli, Salmonella typhi, Shigella flexneri, and Vibrio cholerae were studied after they were seeded into cooked ogi and koko. Analysis of the pH of the cooked inoculated samples showed that there was a slight increase in pH (decrease in acidity) during storage for 48 h and 37 degrees C (from 3.5 to 3.7 for ogi and from 3.7 to 4.1 for koko). The study also showed that ogi had a slightly lower pH value than koko both before and after cooking. In both cases, the cooked samples had a slightly lower pH value than the uncooked samples. The pH value of ogi ranged from 3.0 to 3.6 and that of koko from 3.5 to 3.9. The survival experiment showed that the inoculated enteric pathogens were inhibited in cooked ogi and koko during storage for 24-48 h. The antibacterial effect of cooked koko was more pronounced, on the four enteric pathogens studied, than that of cooked ogi. Except for Shigella flexneri and E. coli in ogi, non of the other bacteria studied was recovered after 24 h.

  14. Heavy metals alter the electrokinetic properties of bacteria, yeasts, and clay minerals.

    PubMed Central

    Collins, Y E; Stotzky, G

    1992-01-01

    The electrokinetic patterns of four bacterial species (Bacillus subtilis, Bacillus megaterium, Pseudomonas aeruginosa, and Agrobacterium radiobacter), two yeasts (Saccharomyces cerevisiae and Candida albicans), and two clay minerals (montmorillonite and kaolinite) in the presence of the chloride salts of the heavy metals, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, and of Na and Mg were determined by microelectrophoresis. The cells and kaolinite were net negatively charged at pH values above their isoelectric points (pI) in the presence of Na, Mg, Hg, and Pb at an ionic strength (mu) of 3 x 10(-4); montmorillonite has no pI and was net negatively charged at all pH values in the presence of these metals. However, the charge of some bacteria, S. cerevisiae, and kaolinite changed to a net positive charge (charge reversal) in the presence of Cd, Cr, Cu, Ni, and Zn at pH values above 5.0 (the pH at which charge reversal occurred differed with the metal) and then, at higher pH values, again became negative. The charge of the bacteria and S. cerevisiae also reversed in solutions of Cu and Ni with a mu of greater than 3 x 10(-4), whereas there was no reversal in solutions with a mu of less than 3 x 10(-4). The clays became net positively charged when the mu of Cu was greater than 3 x 10(-4) and that of Ni was greater than 1.5 x 10(-4). The charge of the cells and clays also reversed in solutions containing both Mg and Ni or both Cu and Ni (except montmorillonite) but not in solutions containing both Mg and Cu (except kaolinite) (mu = 3 x 10(-4)). The pIs of the cells in the presence of the heavy metals were at either higher or lower pH values than in the presence of Na and Mg. Exposure of the cells to the various metals at pH values from 2 to 9 for the short times (ca. 10 min) required to measure the electrophoretic mobility did not affect their viability. The specific adsorption on the cells and clays of the hydrolyzed species of some of the heavy metals that formed at higher pH values was probably responsible for the charge reversal. These results suggest that the toxicity of some heavy metals to microorganisms varies with pH because the hydrolyzed speciation forms of these metals, which occur at higher pH values, bind on the cell surface and alter the net charge of the cell.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1622229

  15. Multifunctional pH sensitive 3D scaffolds for treatment and prevention of bone infection.

    PubMed

    Cicuéndez, Mónica; Doadrio, Juan C; Hernández, Ana; Portolés, M Teresa; Izquierdo-Barba, Isabel; Vallet-Regí, María

    2018-01-01

    Multifunctional-therapeutic three-dimensional (3D) scaffolds have been prepared. These biomaterials are able to destroy the S. aureus bacterial biofilm and to allow bone regeneration at the same time. The present study is focused on the design of pH sensitive 3D hierarchical meso-macroporous 3D scaffolds based on MGHA nanocomposite formed by a mesostructured glassy network with embedded hydroxyapatite nanoparticles, whose mesopores have been loaded with levofloxacin (Levo) as antibacterial agent. These 3D platforms exhibit controlled and pH-dependent Levo release, sustained over time at physiological pH (7.4) and notably increased at infection pH (6.7 and 5.5), which is due to the different interaction rate between diverse Levo species and the silica matrix. These 3D systems are able to inhibit the S. aureus growth and to destroy the bacterial biofilm without cytotoxic effects on human osteoblasts and allowing an adequate colonization and differentiation of preosteoblastic cells on their surface. These findings suggest promising applications of these hierarchical MGHA nanocomposite 3D scaffolds for the treatment and prevention of bone infection. Multifunctional 3D nanocomposite scaffolds with the ability for loading and sustained delivery of an antimicrobial agent, to eliminate and prevent bone infection and at the same time to contribute to bone regeneration process without cytotoxic effects on the surrounding tissue has been proposed. These 3D scaffolds exhibit a sustained levofloxacin delivery at physiological pH (pH 7.4), which increasing notably when pH decreases to characteristic values of bone infection process (pH 6.7 and pH 5.5). In vitro competitive assays between preosteoblastic and bacteria onto the 3D scaffold surface demonstrated an adequate osteoblast colonization in entire scaffold surface together with the ability to eliminate bacteria contamination. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Soil pH Mapping with an On-The-Go Sensor

    PubMed Central

    Schirrmann, Michael; Gebbers, Robin; Kramer, Eckart; Seidel, Jan

    2011-01-01

    Soil pH is a key parameter for crop productivity, therefore, its spatial variation should be adequately addressed to improve precision management decisions. Recently, the Veris pH Manager™, a sensor for high-resolution mapping of soil pH at the field scale, has been made commercially available in the US. While driving over the field, soil pH is measured on-the-go directly within the soil by ion selective antimony electrodes. The aim of this study was to evaluate the Veris pH Manager™ under farming conditions in Germany. Sensor readings were compared with data obtained by standard protocols of soil pH assessment. Experiments took place under different scenarios: (a) controlled tests in the lab, (b) semicontrolled test on transects in a stop-and-go mode, and (c) tests under practical conditions in the field with the sensor working in its typical on-the-go mode. Accuracy issues, problems, options, and potential benefits of the Veris pH Manager™ were addressed. The tests demonstrated a high degree of linearity between standard laboratory values and sensor readings. Under practical conditions in the field (scenario c), the measure of fit (r2) for the regression between the on-the-go measurements and the reference data was 0.71, 0.63, and 0.84, respectively. Field-specific calibration was necessary to reduce systematic errors. Accuracy of the on-the-go maps was considerably higher compared with the pH maps obtained by following the standard protocols, and the error in calculating lime requirements was reduced by about one half. However, the system showed some weaknesses due to blockage by residual straw and weed roots. If these problems were solved, the on-the-go sensor investigated here could be an efficient alternative to standard sampling protocols as a basis for liming in Germany. PMID:22346591

  17. Soil pH mapping with an on-the-go sensor.

    PubMed

    Schirrmann, Michael; Gebbers, Robin; Kramer, Eckart; Seidel, Jan

    2011-01-01

    Soil pH is a key parameter for crop productivity, therefore, its spatial variation should be adequately addressed to improve precision management decisions. Recently, the Veris pH Manager™, a sensor for high-resolution mapping of soil pH at the field scale, has been made commercially available in the US. While driving over the field, soil pH is measured on-the-go directly within the soil by ion selective antimony electrodes. The aim of this study was to evaluate the Veris pH Manager™ under farming conditions in Germany. Sensor readings were compared with data obtained by standard protocols of soil pH assessment. Experiments took place under different scenarios: (a) controlled tests in the lab, (b) semicontrolled test on transects in a stop-and-go mode, and (c) tests under practical conditions in the field with the sensor working in its typical on-the-go mode. Accuracy issues, problems, options, and potential benefits of the Veris pH Manager™ were addressed. The tests demonstrated a high degree of linearity between standard laboratory values and sensor readings. Under practical conditions in the field (scenario c), the measure of fit (r(2)) for the regression between the on-the-go measurements and the reference data was 0.71, 0.63, and 0.84, respectively. Field-specific calibration was necessary to reduce systematic errors. Accuracy of the on-the-go maps was considerably higher compared with the pH maps obtained by following the standard protocols, and the error in calculating lime requirements was reduced by about one half. However, the system showed some weaknesses due to blockage by residual straw and weed roots. If these problems were solved, the on-the-go sensor investigated here could be an efficient alternative to standard sampling protocols as a basis for liming in Germany.

  18. [The cellular factors of innate immunity in nonpsychotic patients at high risk for schizophrenia].

    PubMed

    Vasilyeva, E F; Kushner, S G; Factor, M I; Omelchenko, M A; Bogdanova, E D; Petrakova, L N; Brusov, O S

    Changes in the parameters of innate immunity in patients with schizophrenia are observed already in the first episode. The study was performed to find out whether these changes take place prior to disease manifestation, and what role do they play in the pathogenesis of schizophrenia. Thirty-five male nonpsychotic patients at high risk of psychosis, aged between 17 to 23 years, were examined. Phagocyte activity (PA) of neutrophils in the blood serum was evaluated by the number of active neutrophils, i.e. phagocytic index (PhI), and phagocytic number (PhN), which was determined by counting latex particles absorbed with a single phagocytic cell. Cytotoxic activity of natural killer lymphocytes (NK CA) was evaluated by the number of cell targets K-562, which remained non-degraded after the contact with natural killer cells. The influence of monocytes on NKCA was determined as well. Compared to controls, patients had the lower PhI level (p<0.001) which was compensated by the increase in PhN levels, and the lower NK CA level which was increased due to the influence of monocytes. Negative correlations between PhI and PhN (r= -0.83, p<0.01) and between the level of NKCA and PhI (r= -0.83, p<0.05) as well as the positive correlation between PhN and SOPS scores (r=0.69, p<0.01) were found. After treatment, there was the decreasein the severity of mental disorders (p<0.001). The level of PhAN was normalized in 61.9% of patients compared to 36.7% before treatment. After treatment, the proportion of patients with normal levels of NK CA was the same as before treatment (40 and 35%, respectively). The immune disturbances revealed in the study may play a role in the pathogenesis of the disease and have predictive value for schizophrenia.

  19. Narrow pH Range of Surface Water Bodies Receiving Pesticide Input in Europe.

    PubMed

    Bundschuh, Mirco; Weyers, Arnd; Ebeling, Markus; Elsaesser, David; Schulz, Ralf

    2016-01-01

    Fate and toxicity of the active ingredients (AI's) of plant protection products in surface waters is often influenced by pH. Although a general range of pH values is reported in literature, an evaluation targeting aquatic ecosystems with documented AI inputs is lacking at the larger scale. Results show 95% of European surface waters (n = 3075) with a documented history of AI exposure fall within a rather narrow pH range, between 7.0 and 8.5. Spatial and temporal variability in the data may at least be partly explained by the calcareous characteristics of parental rock material, the affiliation of the sampling site to a freshwater ecoregion, and the photosynthetic activity of macrophytes (i.e., higher pH values with photosynthesis). Nonetheless, the documented pH range fits well with the standard pH of most ecotoxicological test guidelines, confirming the fate and ecotoxicity of AIs are usually adequately addressed.

  20. Fluorescent pH sensor based on Ag@SiO2 core-shell nanoparticle.

    PubMed

    Bai, Zhenhua; Chen, Rui; Si, Peng; Huang, Youju; Sun, Handong; Kim, Dong-Hwan

    2013-06-26

    We have demonstrated a novel method for the preparation of a fluorescence-based pH sensor by combining the plasmon resonance band of Ag core and pH sensitive dye (HPTS). A thickness-variable silica shell is placed between Ag core and HPTS dye to achieve the maximum fluorescence enhancement. At the shell thickness of 8 nm, the fluorescence intensity increases 4 and 9 times when the sensor is excited at 405 and 455 nm, respectively. At the same time, the fluorescence intensity shows a good sensitivity toward pH value in the range of 5-9, and the ratio of emission intensity at 513 nm excited at 455 nm to that excited at 405 nm versus the pH value in the range of 5-9 is determined. It is believed that the present pH sensor has the potential for determining pH real time in the biological sample.

Top