Guan, Li; Liu, Qi; Zhang, Borui; Wang, Lanying
2017-01-01
Fluorescence pH imaging in living cells is a rapidly expanding research direction, however, it relies on the development of pH-sensitive fluorescent imaging agents. Here four norcyanine dyes with benzo[c,d]indolium moiety, exhibiting high spectral sensitivity with pH changes, were synthesized for fluorescence pH imaging in living cells, and characterized by 1 H NMR, 13 C NMR, IR, UV-Vis and HRMS. The investigation of their spectral properties in methanol and water showed that the absorption and emission maxima were in the region 488-618nm and 583-651nm, respectively, and four dyes exhibited high photostability. The pH spectral titrations showed that selective dye D1 had pH-dependent absorption spectral changes within the pH range of 2.4 to 9.4, and high fluorescent spectral sensitivity at pH5.0-8.0, with a pK a of 5.0. A cell association study indicated that dye D1 exhibited no or mild cytotoxicity at the application dose and duration, and could be accumulated in cells and mainly distributed in the cytoplasm, giving red fluorescence imaging. In particular, dye D1 could achieve pH-dependent fluorescence imaging in living cells with the increase of pH from 3.0 to 8.0, at excitation wavelength of 543nm and receiving wavelength of 655-755nm, which was valuable for studying the weak acidic, neutral and weak alkaline biological tissue compartments. Copyright © 2016 Elsevier B.V. All rights reserved.
In situ fluorescence imaging of localized corrosion with a pH-sensitive imaging fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panova, A.A.; Pantano, P.; Walt, D.R.
1997-12-01
A fiber optic pH-sensor capable of both visualizing corrosion sites and measuring local chemical concentrations is applied to real-time corrosion monitoring. The imaging fiber`s distal face containing an immobilized pH-sensitive fluorescent dye is brought into contact with metal surfaces submerged in aqueous buffers and fluorescence images are acquired as a function of time. The observed changes in fluorescence due to increases in pH at cathodic sites and decreases in pH at anodic sites are indicative of localized corrosion rates.
Aigner, Daniel; Ungerböck, Birgit; Mayr, Torsten; Saf, Robert; Klimant, Ingo; Borisov, Sergey M
2013-09-28
New optical pH-sensors relying on 1,4-diketopyrrolo-[3,4- c ]pyrroles (DPPs) as fluorescent pH-indicators are presented. Different polymer hydrogels are useful as immobilization matrices, achieving excellent sensitivity and good brightness in the resulting sensor. The operational pH can be tuned over a wide range (pH 5-12) by selecting the fine structure of the indicator and the matrix. A ratiometric sensor in the form of nanoparticles is also presented. It is suitable for RGB camera readout, and its practical applicability for fluorescence imaging in microfluidic systems is demonstrated. The indicators are synthesized starting from the commercially available DPP pigments by a straightforward concept employing chlorosulfonation and subsequent reaction with amines. Their sensitivity derives from two distinct mechanisms. At high pH (>9), they exhibit a remarkable alteration of both absorption and fluorescence spectra due to deprotonation of the lactam nitrogen atoms. If a phenolic group is introduced, highly effective fluorescence quenching at near-neutral pH occurs due to photoinduced electron transfer (PET) involving the phenolate form.
New fluorescent pH sensors based on covalently linkable PET rhodamines
Aigner, Daniel; Borisov, Sergey M.; Orriach Fernández, Francisco J.; Fernández Sánchez, Jorge F.; Saf, Robert; Klimant, Ingo
2012-01-01
A new class of rhodamines for the application as indicator dyes in fluorescent pH sensors is presented. Their pH-sensitivity derives from photoinduced electron transfer between non-protonated amino groups and the excited chromophore which results in effective fluorescence quenching at increasing pH. The new indicator class carries a pentafluorophenyl group at the 9-position of the xanthene core where other rhodamines bear 2-carboxyphenyl substituents instead. The pentafluorophenyl group is used for covalent coupling to sensor matrices by “click” reaction with mercapto groups. Photophysical properties are similar to “classical” rhodamines carrying 2′-carboxy groups. pH sensors have been prepared with two different matrix materials, silica gel and poly(2-hydroxyethylmethacrylate). Both sensors show high luminescence brightness (absolute fluorescence quantum yield ΦF≈0.6) and high pH-sensitivity at pH 5–7 which makes them suitable for monitoring biotechnological samples. To underline practical applicability, a dually lifetime referenced sensor containing Cr(III)-doped Al2O3 as reference material is presented. PMID:22967541
Hydroxylated near-infrared BODIPY fluorophores as intracellular pH sensors
Salim, Mohamed M.; Owens, Eric A.; Gao, Tielong; Lee, Jeong Heon; Hyun, Hoon; Choi, Hak Soo; Henary, Maged
2015-01-01
In this study, a series of new, highly sensitive BF2-chelated tetraarylazadipyrromethane dyes are synthesized and analyzed to be suitable as on/off photo-induced electron transfer modulated fluorescent sensors for determination of intracellular pH. The ethanolic solutions of the new indicators feature absorption maxima in the range of 696–700 nm and a fluorescence emission maximum at 720 nm. Molar absorptivity and fluorescence quantum yield data were determined for the studied set of aza-BODIPY indicators. These indicators have high molar absorption coefficients of ~80 000 M−1 cm−1 and quantum yields (up to 18%). Corresponding pKa values of indicators are determined from absorbance and fluorescence measurements and range from 9.1 to 10.8, depending on the selective positioning of electron-donating functionalities. The excellent photostability of the aza-BODIPY indicators makes them particularly suitable for long duration measurements. The in vitro cellular staining of living tissues in PC3 cells based on the isosbestic point at pH 7.8 and pH 9.3 has been employed which shows an increase in fluorescence intensity at 800 nm with increase in pH for certain compounds and fluorescence intensity decreases at 700 nm. Therefore, the new indicators are suitable for exploitation and adaptation in a diverse range of analytical applications. PMID:25105177
Kurabayashi, Tomokazu; Funaki, Nayuta; Fukuda, Takeshi; Akiyama, Shinnosuke; Suzuki, Miho
2014-01-01
Dual pH-dependent fluorescence peaks from a semiconductor quantum dot (QD) and a pH-dependent fluorescent dye can be measured by irradiating with a single wavelength light, and the pH can be estimated from the ratio of the fluorescent intensity of the two peaks. In this work, ratiometric pH sensing was achieved in an aqueous environment by a fluorescent CdSe/ZnS QD appended with a pH-sensitive organic dye, based on fluorescence resonance energy transfer (FRET). By functionalizing the CdSe/ZnS QD with 5-(and 6)-carboxynaphthofluorescein succinimidyl ester as a pH-dependent fluorescent dye, we succeeded in fabricating sensitive nanocomplexes with a linear response to a broad range of physiological pH levels (7.5-9.5) when excited at 450 nm. We found that a purification process is important for increasing the high-fluorescence intensity ratio of a ratiometric fluorescence pH-sensor, and the fluorescence intensity ratio was improved up to 1.0 at pH 8.0 after the purification process to remove unreacted CdSe/ZnS QDs even though the fluorescence of the dye could not be observed without the purification process. The fluorescence intensity ratio corresponds to the fluorescence intensity of the dye, and this fluorescent dye exhibited pH-dependent fluorescence intensity changes. These facts indicate that the fluorescence intensity ratio linearly increased with increasing pH value of the buffer solution containing the QD and the dye. The FRET efficiencies changed from 0.3 (pH 7.5) to 6.2 (pH 9.5).
Georgiev, Nikolai I; Bryaskova, Rayna; Tzoneva, Rumiana; Ugrinova, Iva; Detrembleur, Christophe; Miloshev, Stoyan; Asiri, Abdullah M; Qusti, Abdullah H; Bojinov, Vladimir B
2013-11-01
Herein we report on the synthesis and sensor activity of a novel pH sensitive probe designed as highly water-soluble fluorescent micelles by grafting of 1,8-naphthalimide-rhodamine bichromophoric FRET system (RNI) to the PMMA block of a well-defined amphiphilic diblock copolymer-poly(methyl methacrylate)-b-poly(methacrylic acid) (PMMA48-b-PMAA27). The RNI-PMMA48-b-PMAA27 adduct is capable of self-assembling into micelles with a hydrophobic PMMA core, containing the anchored fluorescent probe, and a hydrophilic shell composed of PMAA block. Novel fluorescent micelles are able to serve as a highly sensitive pH probe in water and to internalize successfully HeLa and HEK cells. Furthermore, they showed cell specificity and significantly higher photostability than that of a pure organic dye label such as BODIPY. The valuable properties of the newly prepared fluorescent micelles indicate the high potential of the probe for future biological and biomedical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
A cell-surface-anchored ratiometric fluorescent probe for extracellular pH sensing.
Ke, Guoliang; Zhu, Zhi; Wang, Wei; Zou, Yuan; Guan, Zhichao; Jia, Shasha; Zhang, Huimin; Wu, Xuemeng; Yang, Chaoyong James
2014-09-10
Accurate sensing of the extracellular pH is a very important yet challenging task in biological and clinical applications. This paper describes the development of an amphiphilic lipid-DNA molecule as a simple yet useful cell-surface-anchored ratiometric fluorescent probe for extracellular pH sensing. The lipid-DNA probe, which consists of a hydrophobic diacyllipid tail and a hydrophilic DNA strand, is modified with two fluorescent dyes; one is pH-sensitive as pH indicator and the other is pH-insensitive as an internal reference. The lipid-DNA probe showed sensitive and reversible response to pH change in the range of 6.0-8.0, which is suitable for most extracellular studies. In addition, based on simple hydrophobic interactions with the cell membrane, the lipid-DNA probe can be easily anchored on the cell surface with negligible cytotoxicity, excellent stability, and unique ratiometric readout, thus ensuring its accurate sensing of extracellular pH. Finally, this lipid-DNA-based ratiometric pH indicator was successfully used for extracellular pH sensing of cells in 3D culture environment, demonstrating the potential applications of the sensor in biological and medical studies.
The enhanced cyan fluorescent protein: a sensitive pH sensor for fluorescence lifetime imaging.
Poëa-Guyon, Sandrine; Pasquier, Hélène; Mérola, Fabienne; Morel, Nicolas; Erard, Marie
2013-05-01
pH is an important parameter that affects many functions of live cells, from protein structure or function to several crucial steps of their metabolism. Genetically encoded pH sensors based on pH-sensitive fluorescent proteins have been developed and used to monitor the pH of intracellular compartments. The quantitative analysis of pH variations can be performed either by ratiometric or fluorescence lifetime detection. However, most available genetically encoded pH sensors are based on green and yellow fluorescent proteins and are not compatible with multicolor approaches. Taking advantage of the strong pH sensitivity of enhanced cyan fluorescent protein (ECFP), we demonstrate here its suitability as a sensitive pH sensor using fluorescence lifetime imaging. The intracellular ECFP lifetime undergoes large changes (32 %) in the pH 5 to pH 7 range, which allows accurate pH measurements to better than 0.2 pH units. By fusion of ECFP with the granular chromogranin A, we successfully measured the pH in secretory granules of PC12 cells, and we performed a kinetic analysis of intragranular pH variations in living cells exposed to ammonium chloride.
Functional photoacoustic microscopy of pH
NASA Astrophysics Data System (ADS)
Chatni, M. Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.
2012-02-01
pH is a tightly regulated indicator of metabolic activity. In mammalian systems, imbalance of pH regulation may result from or result in serious illness. Even though the regulation system of pH is very robust, tissue pH can be altered in many diseases such as cancer, osteoporosis and diabetes mellitus. Traditional high-resolution optical imaging techniques, such as confocal microscopy, routinely image pH in cells and tissues using pH sensitive fluorescent dyes, which change their fluorescence properties with the surrounding pH. Since strong optical scattering in biological tissue blurs images at greater depths, high-resolution pH imaging is limited to penetration depths of 1mm. Here, we report photoacoustic microscopy (PAM) of commercially available pH-sensitive fluorescent dye in tissue phantoms. Using both opticalresolution photoacoustic microscopy (OR-PAM), and acoustic resolution photoacoustic microscopy (AR-PAM), we explored the possibility of recovering the pH values in tissue phantoms. In this paper, we demonstrate that PAM was capable of recovering pH values up to a depth of 2 mm, greater than possible with other forms of optical microscopy.
Intestine pH measurements using fluorescence imaging: an in-vivo preliminary study
NASA Astrophysics Data System (ADS)
Marechal, Xavier-Marie; Mordon, Serge R.; Devoisselle, Jean-Marie; Begu, Sylvie; Mathieu, D.; Buys, Bruno; Dhelin, Guy; Lesage, Jean C.; Neviere, Remi; Chopin, Claude
1999-02-01
Measurement of gastrointestinal intramucosal pH has been recognized as an important factor in the detection of hypoxia-induced dysfunctions. However, current pH measurement techniques are limited in terms of time and spatial resolution. A major advance in accurate pH measurement was the development of the ratiometric fluorescent indicator dye, 2',7'-bis(carboxyethyl)-4,5- carboxyfluorescein (BCECF). This study aimed to demonstrate the feasibility of fluorescence imaging technique to measure in vivo the pH of intestine. The intestine was inserted in an optical chamber placed under a microscope. Animals were injected i.v. with the pH-sensitive fluorescent dye BCECF. Fluorescence was visualized by illuminating the intestine alternately at 490 and 470 nm. The emitted fluorescence was directed to an intensified camera. The ratio of emitted fluorescence at excitation wavelengths of 490 and 470 nm was measured, corrected and converted to pH by constructing a calibration curve. The pH controls were performed with a pH microelectrode correlated with venous blood gas sampling. We concluded that accurate pH measurements of rat intestine can be obtained by fluorescence imaging using BCECF. This technology could be easily adapted for endoscopic pH measurement.
Huang, Guozhen; Li, Chuang; Han, Xintong; Aderinto, Stephen Opeyemi; Shen, Kesheng; Mao, Shanshan; Wu, Huilu
2018-06-01
The present study reports the development of a new 1,8-naphthalimide-based fluorescent sensor V for monitoring Cu(II) ions. The sensor exhibited pH independence over a wide pH range 2.52-9.58, and indicated its possible use for monitoring Cu(II) ions in a competitive pH medium. The sensor also showed high selectivity and sensitivity towards the Cu(II) ions over other competitive metal ions in DMSO-HEPES buffer (v/v, 1:1; pH 7.4) with a fluorescence 'turn off' mode of 79.79% observed. A Job plot indicated the formation of a 1:1 binding mode of the sensor with Cu(II) ions. The association constant and detection limit were 1.14 × 10 6 M -1 and 4.67 × 10 -8 M, respectively. The fluorescence spectrum of the sensor was quenched due to the powerful paramagnetic nature of the Cu(II) ions. Potential application of this sensor was also demonstrated when determining Cu(II) ion levels in two different water samples. Copyright © 2018 John Wiley & Sons, Ltd.
Matzke, Antonius J M; Matzke, Marjori
2015-10-12
It is increasingly appreciated that electrical controls acting at the cellular and supra-cellular levels influence development and initiate rapid responses to environmental cues. An emerging method for non-invasive optical imaging of electrical activity at cell membranes uses genetically-encoded voltage indicators (GEVIs). Developed by neuroscientists to chart neuronal circuits in animals, GEVIs comprise a fluorescent protein that is fused to a voltage-sensing domain. One well-known GEVI, ArcLight, undergoes strong shifts in fluorescence intensity in response to voltage changes in mammalian cells. ArcLight consists of super-ecliptic (SE) pHluorin (pH-sensitive fluorescent protein) with an A227D substitution, which confers voltage sensitivity in neurons, fused to the voltage-sensing domain of the voltage-sensing phosphatase of C iona i ntestinalis (Ci-VSD). In an ongoing effort to adapt tools of optical electrophysiology for plants, we describe here the expression and testing of ArcLight and various derivatives in different membranes of root cells in Arabidopsis thaliana. Transgenic constructs were designed to express ArcLight and various derivatives targeted to the plasma membrane and nuclear membranes of Arabidopsis root cells. In transgenic seedlings, changes in fluorescence intensity of these reporter proteins following extracellular ATP (eATP) application were monitored using a fluorescence microscope equipped with a high speed camera. Coordinate reductions in fluorescence intensity of ArcLight and Ci-VSD-containing derivatives were observed at both the plasma membrane and nuclear membranes following eATP treatments. However, similar responses were observed for derivatives lacking the Ci-VSD. The dispensability of the Ci-VSD suggests that in plants, where H(+) ions contribute substantially to electrical activities, the voltage-sensing ability of ArcLight is subordinate to the pH sensitivity of its SEpHluorin base. The transient reduction of ArcLight fluorescence triggered by eATP most likely reflects changes in pH and not membrane voltage. The pH sensitivity of ArcLight precludes its use as a direct sensor of membrane voltage in plants. Nevertheless, ArcLight and derivatives situated in the plasma membrane and nuclear membranes may offer robust, fluorescence intensity-based pH indicators for monitoring concurrent changes in pH at these discrete membrane systems. Such tools will assist analyses of pH as a signal and/or messenger at the cell surface and the nuclear periphery in living plants.
Pfeifer, David; Klimant, Ingo; Borisov, Sergey M
2018-05-08
New pH sensitive perylene bisimide indicator dyes were synthesised and used for fabrication of optical sensors. The highly photostable dyes show absorption/emission bands in the red/near-infrared (NIR) region of the electromagnetic spectrum, high molar absorption coefficients (up to 100 000 M-1 cm-1) and fluorescence quantum yields close to unity. The absorption and emission spectra show strong bathochromic shift upon deprotonation of imidazole nitrogen which makes the dyes promising as ratiometric fluorescent indicators. Physical entrapment of the indicators into polyurethane hydrogel enables pH determination in alkaline pH. It is also shown that plastic carbon dioxide solid state sensor can be manufactured via immobilization of the pH indicator in a hydrophilic polymer, along with a quaternary ammonium base. The influence of plasticizer, different lipophilic bases and humidity on the sensitivity of the sensor material were systematically investigated. The disubstituted perylene, particularly, features two deprotonation equilibria enabling sensing over a very broad range from 0.5 to 1000 hPa pCO2. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jokic, Tijana; Borisov, Sergey M; Saf, Robert; Nielsen, Daniel A; Kühl, Michael; Klimant, Ingo
2012-08-07
In this study, a series of new BF(2)-chelated tetraarylazadipyrromethane dyes are synthesized and are shown to be suitable for the preparation of on/off photoinduced electron transfer modulated fluorescent sensors. The new indicators are noncovalently entrapped in polyurethane hydrogel D4 and feature absorption maxima in the range 660-710 nm and fluorescence emission maxima at 680-740 nm. Indicators have high molar absorption coefficients of ~80,000 M(-1) cm(-1), good quantum yields (up to 20%), excellent photostability and low cross-sensitivity to the ionic strength. pK(a) values of indicators are determined from absorbance and fluorescence measurements and range from 7 to 11, depending on the substitution pattern of electron-donating and -withdrawing functionalities. Therefore, the new indicators are suitable for exploitation and adaptation in a diverse range of analytical applications. Apparent pK(a) values in sensor films derived from fluorescence data show 0.5-1 pH units lower values in comparison with those derived from the absorption data due to Förster resonance energy transfer from protonated to deprotonated form. A dual-lifetime referenced sensor is prepared, and application for monitoring of pH in corals is demonstrated.
A quantum dot-spore nanocomposite pH sensor.
Zhang, Xingya; Li, Zheng; Zhou, Tao; Zhou, Qian; Zeng, Zhiming; Xu, Xiangdong; Hu, Yonggang
2016-04-01
A new quantum dot (QD)-based pH sensor design is investigated. The sensor is synthesized based on the self-assembly of green QDs onto treated spores to form QD@spore nanocomposites. The nanocomposites are characterized using laser scanning confocal microscopy, transmission electron microscope, and fluorescence spectroscopy, among others. Fluorescence measurements showed that these nanocomposites are sensitive to pH in a broad pH range of 5.0-10.0. The developed pH sensors have been satisfactorily applied for pH estimation of real samples and are comparable with those of the commercial assay method, indicating the potential practical application of the pH sensors. Copyright © 2015 Elsevier B.V. All rights reserved.
Review on State-of-the-art in Polymer Based pH Sensors
Korostynska, Olga; Arshak, Khalil; Gill, Edric; Arshak, Arousian
2007-01-01
This paper reviews current state-of-the-art methods of measuring pH levels that are based on polymer materials. These include polymer-coated fibre optic sensors, devices with electrodes modified with pH-sensitive polymers, fluorescent pH indicators, potentiometric pH sensors as well as sensors that use combinatory approach for ion concentration monitoring. PMID:28903277
Charge-transfer-based terbium MOF nanoparticles as fluorescent pH sensor for extreme acidity.
Qi, Zewan; Chen, Yang
2017-01-15
Newly emerged metal organic frameworks (MOFs) have aroused the great interest in designing functional materials by means of its flexible structure and component. In this study, we used lanthanide Tb 3+ ions and small molecular ligands to design and assemble a kind of pH-sensitive MOF nanoparticle based on intramolecular-charge-transfer effect. This kind of made-to-order MOF nanoparticle for H + is highly specific and sensitive and could be used to fluorescently indicate pH value of strong acidic solution via preset mechanism through luminescence of Tb 3+ . The long luminescence lifetime of Tb 3+ allows eliminating concomitant non-specific fluorescence by time-revised fluorescence techniques, processing an advantage in sensing H + in biological media with strong autofluorescence. Our method showed a great potential of MOF structures in designing and constructing sensitive sensing materials for specific analytes directly via the assembly of functional ions/ligands. Copyright © 2016 Elsevier B.V. All rights reserved.
Fang, Mingxi; Adhikari, Rashmi; Bi, Jianheng; Mazi, Wafa; Dorh, Nethaniah; Wang, Jianbo; Conner, Nathan; Ainsley, Jon; Karabencheva-Christova, Tatyana G; Luo, Fen-Tair; Tiwari, Ashutosh; Liu, Haiying
2017-12-28
We report five fluorescent probes based on coumarin-hybridized fluorescent dyes with spirolactam ring structures (A-E) to detect pH changes in live cell by monitoring visible and near-infrared fluorescence changes. Under physiological or basic conditions, the fluorescent probes A, B, C, D and E preserve their spirolactam ring-closed forms and only display fluorescent peaks in the visible region corresponding to coumarin moieties at 497, 483, 498, 497 and 482 nm, respectively. However, at acidic pH, the rings of the spirolactam forms of the fluorescent probes A, B, C, D and E open up, generating new near-infrared fluorescence peaks at 711, 696, 707, 715, and 697 nm, respectively, through significantly extended π-conjugation to coumarin moieties of the fluorophores. The fluorescent probes B and E can be applied to visualize pH changes by monitoring visible as well as near-infrared fluorescence changes. This helps avoid fluorescence imaging blind spots at neutral or basic pH, which typical pH fluorescent probes encounter. The probes exhibit high sensitivity to pH changes, excellent photostability, low auto-fluorescence background and good cell membrane permeability.
PH-sensitive fluorescence detection by diffuse fluorescence tomography
NASA Astrophysics Data System (ADS)
Li, Jiao; Gao, Feng; Duan, Linjing; Wang, Xin; Zhang, Limin; Zhao, Huijuan
2012-03-01
The importance of cellular pH has been shown clearly in the study of cell activity, pathological feature, drug metabolism, etc. Monitoring pH changes of living cells and imaging the regions with abnormal pH values in vivo could provide the physiologic and pathologic information for the research of the cell biology, pharmacokinetics, diagnostics and therapeutics of certain diseases such as cancer. Thus, pH-sensitive fluorescence imaging of bulk tissues has been attracting great attention in the regime of near-infrared diffuse fluorescence tomography (DFT), an efficient small-animal imaging tool. In this paper, the feasibility of quantifying pH-sensitive fluorescence targets in turbid medium is investigated using both time-domain and steady-state DFT methods. By use of the specifically designed time-domain and continuous-wave systems and the previously proposed image reconstruction scheme, we validate the method through 2-dimensional imaging experiments on a small-animal-sized phantom with multiply targets of distinct pH values. The results show that the approach can localize the targets with reasonable accuracy and achieve quantitative reconstruction of the pH-sensitive fluorescent yield.
2012-01-01
In this study, a series of new BF2-chelated tetraarylazadipyrromethane dyes are synthesized and are shown to be suitable for the preparation of on/off photoinduced electron transfer modulated fluorescent sensors. The new indicators are noncovalently entrapped in polyurethane hydrogel D4 and feature absorption maxima in the range 660–710 nm and fluorescence emission maxima at 680–740 nm. Indicators have high molar absorption coefficients of ∼80 000 M–1 cm–1, good quantum yields (up to 20%), excellent photostability and low cross-sensitivity to the ionic strength. pKa values of indicators are determined from absorbance and fluorescence measurements and range from 7 to 11, depending on the substitution pattern of electron-donating and -withdrawing functionalities. Therefore, the new indicators are suitable for exploitation and adaptation in a diverse range of analytical applications. Apparent pKa values in sensor films derived from fluorescence data show 0.5–1 pH units lower values in comparison with those derived from the absorption data due to Förster resonance energy transfer from protonated to deprotonated form. A dual-lifetime referenced sensor is prepared, and application for monitoring of pH in corals is demonstrated. PMID:22738322
Tanaka, Shotaro; Harada, Hiroshi; Hiraoka, Masahiro
2015-09-04
The alkalization of intracellular pH (pHin) advances together with enhancement of aerobic glycolysis within tumor cells (the Warburg effect), and that is responsible for the progression of tumor malignancy together with hypoxia and angiogenesis. But how they correlate each other during tumor growth is poorly understood, partly due to the lack of suitable imaging methods. In present study, we propose a novel method to visually determine the pHin of tumor xenograft model from fluorescent image ratios. We utilized tandemly-linked two fluorescent proteins as a pH indicator; yellow fluorescent protein (YFP, pH sensitive) as an indicator, and red fluorescent protein (RFP, pH insensitive) as a reference. This method can eliminate the influence of optical factors from tissue as well as of the diverse expression level of pH indicator in the grafted cells. In addition, that can be operated by filter-based fluorescent imagers that are generally used in small animal study. The efficacy of the pH indicator, RFP-YFP, was confirmed by studies using recombinant protein in vitro and HeLa cells expressing RFP-YFP in vivo. Furthermore, we prepared nude mice subcutaneously xenografted HeLa cells expressing RFP-YFP cells as tumor model. The image ratios (YFP/RFP) of the tumor at the day 5 after surgery clearly showed the heterogeneous distribution of diverse pHin cells in the tumor tissue. Concomitantly acquired angiography using near-infrared fluorescence (680 nm for emission) also indicated that the relative alkaline pHin cells located in the region far from tumor vessels in which tumor aerobic glycolysis would be facilitated by progression of hypoxia and nutrient starvation. Applying the present method for a multi-wavelength imaging concerning pO2 and/or nutrient starvation states in addition to pHin and angiogenesis would provide valuable information about complicated alteration of tumoral cell states during tumorigenesis. Copyright © 2015 Elsevier Inc. All rights reserved.
A pH-sensitive red fluorescent protein compatible with hydrophobic resin embedding
NASA Astrophysics Data System (ADS)
Guo, Wenyan; Gang, Yadong; Liu, Xiuli; Zhou, Hongfu; Zeng, Shaoqun
2017-02-01
pH sensitive fluorescent proteins enabling chemical reactivation in resin are useful tools for fluorescence microimaging. EYFP or EGFP improved from GFP in jellyfish are good for such applications. For simultaneous two-color imaging, a suitable red fluorescent protein is of urgent need. Here a pH sensitive red fluorescent protein, pHuji, is selected and verified to be compatible with hydrophobic resin embedding and thus may be promising for dual-colour chemical reactivation imaging in conjunction with EGFP or EYFP.
Imaging Lysosomal pH Alteration in Stressed Cells with a Sensitive Ratiometric Fluorescence Sensor.
Xue, Zhongwei; Zhao, Hu; Liu, Jian; Han, Jiahuai; Han, Shoufa
2017-03-24
The organelle-specific pH is crucial for cell homeostasis. Aberrant pH of lysosomes has been manifested in myriad diseases. To probe lysosome responses to cell stress, we herein report the detection of lysosomal pH changes with a dual colored probe (CM-ROX), featuring a coumarin domain with "always-on" blue fluorescence and a rhodamine-lactam domain activatable to lysosomal acidity to give red fluorescence. With sensitive ratiometric signals upon subtle pH changes, CM-ROX enables discernment of lysosomal pH changes in cells undergoing autophagy, cell death, and viral infection.
Elsutohy, Mohamed M; Chauhan, Veeren M; Markus, Robert; Kyyaly, Mohammed Aref; Tendler, Saul J B; Aylott, Jonathan W
2017-05-11
Intracellular pH is a key parameter that influences many biochemical and metabolic pathways that can also be used as an indirect marker to monitor metabolic and intracellular processes. Herein, we utilise ratiometric fluorescent pH-sensitive nanosensors with an extended dynamic pH range to measure the intracellular pH of yeast (Saccharomyces cerevisiae) during glucose metabolism in real-time. Ratiometric fluorescent pH-sensitive nanosensors consisting of a polyacrylamide nanoparticle matrix covalently linked to two pH-sensitive fluorophores, Oregon green (OG) and 5(6)carboxyfluorescein (FAM), and a reference pH-insensitive fluorophore, 5(6)carboxytetramethylrhodamine (TAMRA), were synthesised. Nanosensors were functionalised with acrylamidopropyltrimethyl ammonium hydrochloride (ACTA) to confer a positive charge to the nanoparticle surfaces that facilitated nanosensor delivery to yeast cells, negating the need to use stress inducing techniques. The results showed that under glucose-starved conditions the intracellular pH of yeast population (n ≈ 200) was 4.67 ± 0.15. Upon addition of d-(+)-glucose (10 mM), this pH value decreased to pH 3.86 ± 0.13 over a period of 10 minutes followed by a gradual rise to a maximal pH of 5.21 ± 0.26, 25 minutes after glucose addition. 45 minutes after the addition of glucose, the intracellular pH of yeast cells returned to that of the glucose starved conditions. This study advances our understanding of the interplay between glucose metabolism and pH regulation in yeast cells, and indicates that the intracellular pH homestasis in yeast is highly regulated and demonstrates the utility of nanosensors for real-time intracellular pH measurements.
Fluorescent pH sensor based on Ag@SiO2 core-shell nanoparticle.
Bai, Zhenhua; Chen, Rui; Si, Peng; Huang, Youju; Sun, Handong; Kim, Dong-Hwan
2013-06-26
We have demonstrated a novel method for the preparation of a fluorescence-based pH sensor by combining the plasmon resonance band of Ag core and pH sensitive dye (HPTS). A thickness-variable silica shell is placed between Ag core and HPTS dye to achieve the maximum fluorescence enhancement. At the shell thickness of 8 nm, the fluorescence intensity increases 4 and 9 times when the sensor is excited at 405 and 455 nm, respectively. At the same time, the fluorescence intensity shows a good sensitivity toward pH value in the range of 5-9, and the ratio of emission intensity at 513 nm excited at 455 nm to that excited at 405 nm versus the pH value in the range of 5-9 is determined. It is believed that the present pH sensor has the potential for determining pH real time in the biological sample.
New fluorescent perylene bisimide indicators--a platform for broadband pH optodes.
Aigner, Daniel; Borisov, Sergey M; Klimant, Ingo
2011-06-01
Asymmetric perylene bisimide (PBI) dyes are prepared and are shown to be suitable for the preparation of fluorescence chemosensors for pH. They carry one amino-functional substituent which introduces pH sensitivity via photoinduced electron transfer (PET) while the other one increases solubility. The luminescence quantum yields for the new indicators exceed 75% in the protonated form. The new indicators are non-covalently entrapped in polyurethane hydrogel D4 and poly(hydroxyalkylmethacrylates). Several PET functions including aliphatic and aromatic amino groups were successfully used to tune the dynamic range of the sensor. Because of their virtually identical spectral properties, various PBIs with selected PET functions can easily be integrated into a single sensor with enlarged dynamic range (over 4 pH units). PBIs with two different substitution patterns in the bay position are investigated and possess variable spectral properties. Compared with their tetrachloro analogues, tetra-tert-butyl-substituted PBIs yield more long-wave excitable sensors which feature excellent photostability. Cross-sensitivity to ionic strength was found to be negligible. The practical applicability of the sensors may be compromised by the long response times (especially in case of tetra-tert-butyl-substituted PBIs).
Tan, Jia-Lian; Yang, Ting-Ting; Liu, Yu; Zhang, Xue; Cheng, Shu-Jin; Zuo, Hua; He, Huawei
2016-05-01
A novel rhodamine-based fluorescent pH probe responding to extremely low pH values has been synthesized and characterized. This probe showed an excellent photophysical response to pH on the basis that the colorless spirocyclic structure under basic conditions opened to a colored and highly fluorescent form under extreme acidity. The quantitative relationship between fluorescence intensity and pH value (1.75-2.62) was consistent with the equilibrium equation pH = pKa + log[(Imax - I)/(I - Imin)]. This sensitive pH probe was also characterized with good reversibility and no interaction with interfering metal ions, and was successfully applied to image Escherichia coli under strong acidity. Copyright © 2015 John Wiley & Sons, Ltd.
2D ratiometric fluorescent pH sensor for tracking of cells proliferation and metabolism.
Ma, Jun; Ding, Changqin; Zhou, Jie; Tian, Yang
2015-08-15
Extracellular pH plays a vital role no matter in physiological or pathological studies. In this work, a hydrogel, CD@Nile-FITC@Gel (Gel sensor), entrapping the ratiometric fluorescent probe CD@Nile-FITC was developed. The Gel sensor was successfully used for real-time extracellular pH monitoring. In the case of CD@Nile-FITC, pH-sensitive fluorescent dye fluorescein isothiocyanate (FITC) was chosen as the response signal for H(+) and Nile blue chloride (Nile) as the reference signal. The developed fluorescent probe exhibited high selectivity for pH over other metal ions and amino acids. Meanwhile, the carbon-dots-based inorganic-organic probe demonstrated excellent photostability against long-term light illumination. In order to study the extracellular pH change in processes of cell proliferation and metabolism, CD@Nile-FITC probe was entrapped in sodium alginate gel and consequently formed CD@Nile-FITC@Gel. The MTT assay showed low cytotoxicity of the Gel and the pH titration indicated that it could monitor the pH fluctuations linearly and rapidly within the pH range of 6.0-9.0, which is valuable for physiological pH determination. As expected, the real-time bioimaging of the probe was successfully achieved. Copyright © 2015 Elsevier B.V. All rights reserved.
Hsieh, Chia-Jung; Chen, Yu-Cheng; Hsieh, Pei-Ying; Liu, Shi-Rong; Wu, Shu-Pao; Hsieh, You-Zung; Hsu, Hsin-Yun
2015-06-03
We chemically tuned the oxidation status of graphene oxide (GO) and constructed a GO-based nanoplatform combined with a pH-sensitive fluorescence tracer that is designed for both pH sensing and pH-responsive drug delivery. A series of GOs oxidized to distinct degrees were examined to optimize the adsorption of the model drug, poly dT30. We determined that highly oxidized GO was a superior drug-carrier candidate in vitro when compared to GOs oxidized to lesser degrees. In the cell experiment, the synthesized pH-sensitive rhodamine dye was first applied to monitor cellular pH; under acidic conditions, protonated rhodamine fluoresces at 588 nm (λex=561 nm). When the dT30-GO nanocarrier was introduced into cells, a rhodamine-triggered competition reaction occurred, and this led to the release of the oligonucleotides and the quenching of rhodamine fluorescence by GO. Our results indicate high drug loading (FAM-dT30/GO=25/50 μg/mL) and rapid cellular uptake (<0.5 h) of the nanocarrier which can potentially be used for targeted RNAi delivery to the acidic milieu of tumors.
Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana
NASA Technical Reports Server (NTRS)
Moseyko, N.; Feldman, L. J.
2001-01-01
This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non-invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH-sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH-sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole-root tissues of A. thaliana is reported. The utility of pH-sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated.
A single pH fluorescent probe for biosensing and imaging of extreme acidity and extreme alkalinity.
Chao, Jian-Bin; Wang, Hui-Juan; Zhang, Yong-Bin; Li, Zhi-Qing; Liu, Yu-Hong; Huo, Fang-Jun; Yin, Cai-Xia; Shi, Ya-Wei; Wang, Juan-Juan
2017-07-04
A simple tailor-made pH fluorescent probe 2-benzothiazole (N-ethylcarbazole-3-yl) hydrazone (Probe) is facilely synthesized by the condensation reaction of 2-hydrazinobenzothiazole with N-ethylcarbazole-3-formaldehyde, which is a useful fluorescent probe for monitoring extremely acidic and alkaline pH, quantitatively. The pH titrations indicate that Probe displays a remarkable emission enhancement with a pK a of 2.73 and responds linearly to minor pH fluctuations within the extremely acidic range of 2.21-3.30. Interestingly, Probe also exhibits strong pH-dependent characteristics with pK a 11.28 and linear response to extreme-alkalinity range of 10.41-12.43. In addition, Probe shows a large Stokes shift of 84 nm under extremely acidic and alkaline conditions, high selectivity, excellent sensitivity, good water-solubility and fine stability, all of which are favorable for intracellular pH imaging. The probe is further successfully applied to image extremely acidic and alkaline pH values fluctuations in E. coli cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Functional photoacoustic microscopy of pH.
Chatni, Muhammad Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin I; Wang, Lihong V
2011-10-01
pH is a tightly regulated indicator of metabolic activity. In mammalian systems, an imbalance of pH regulation may result from or result in serious illness. In this paper, we report photoacoustic microscopy (PAM) of a commercially available pH-sensitive fluorescent dye (SNARF-5F carboxylic acid) in tissue phantoms. We demonstrated that PAM is capable of pH imaging in absolute values at tissue depths of up to 2.0 mm, greater than possible with other forms of optical microscopy.
A new fluorescence-based method to monitor the pH in the thylakoid lumen using GFP variants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Hong; Pu, Xiaojun; Wang, Lu
The ΔpH-dependent/Tat pathway is unique for using only the proton motive force for driving proteins transport across the thylakoid membrane in chloroplasts. 9-aminoacridine fluorescence quenching is widely used to monitor the ΔpH developed across the thylakoid membrane in the light. However, this method suffers from limited sensitivity to low ΔpH values and to spurious fluorescence signals due to membrane binding. In order to develop a more sensitive method for monitoring the real pH of the thylakoid lumen without these problems we transformed Arabidopsis thaliana with a ratiometric pH-sensitive GFP variant (termed pHluorin) targeted to the lumen by the prOE17 transitmore » peptide. Positive transgenic plants displayed localization of pHluorin in the chloroplast by confocal microscopy, and fractionation experiments revealed that it is in the lumen. The pHluorin signal was the strongest in very young plants and diminished as the plants matured. The pHluorin released from the lumen displayed the expected fluorescence intensity changes in response to pH titration. The fluorescence signal in isolated chloroplasts responded to illumination in a manner consistent with light-dependent lumen acidification. Future experiments will exploit the use of this new pH-indicating probe of the thylakoid lumen to examine the influence of the thylakoid ΔpH on ATP synthesis and protein transport.« less
NASA Astrophysics Data System (ADS)
Cui, Peng; Jiang, Xuekai; Sun, Junyong; Zhang, Qiang; Gao, Feng
2017-06-01
A structurally simple, water-soluble rhodamine-derivatived fluorescent probe, which is responsive to acidic pH, was conveniently synthesized via a one-step condensation reaction of rhodamine B hydrazide and 4-formybenzene-1,3-disulfonate. As a stable and highly sensitive pH sensor, the probe displays an approximately 50-fold fluorescence enhancement over the pH range of 7.16-4.89 as the structure of probe changes from spirocyclic (weak fluorescent) to ring-open (strong fluorescent) with decreasing pH. The synthesized fluorescent probe is applied to the detection of pH changes in vitro and in vivo bioimaging of immortalized gastric cancer cells, with satisfactory results.
Stability of a pH-sensitive polymer matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Northrup, M.A.; Langry, K.; Angel, S.M.
1990-03-01
A ratiometric pH-sensitive fluorescent dye (hydroxypyrenetrisulfonic acid) was covalently attached to an acrylamide polymer. These pH-sensitive copolymers were either covalently bonded to the end of an optical fiber or polymerized into separate gels. Long-term, accelerated aging studies were performed on the fibers and gels in 43{degree}C distilled H{sub 2}O. The fiber-immobilized optrodes gave good pH responses for up to 2 months. The pH-sensitive gels were physically attached to optical fibers and gave very good pH responses for over one year. These physically immobilized, one-year-old, pH-sensitive copolymers provided optrodes with linear pH responses between pH 6 and 8 and resolution greatermore » than 0.25 pH unit. A simple photostability experiment on these optrodes showed that they were very photostable. The results of this study indicate that pH-sensitive copolymers in a simple optrode design can be employed as pH sensors with useful lifetimes exceeding one year. 11 refs., 6 figs.« less
Colorimetric and Fluorescent Bimodal Ratiometric Probes for pH Sensing of Living Cells.
Liu, Yuan-Yuan; Wu, Ming; Zhu, Li-Na; Feng, Xi-Zeng; Kong, De-Ming
2015-06-01
pH measurement is widely used in many fields. Ratiometric pH sensing is an important way to improve the detection accuracy. Herein, five water-soluble cationic porphyrin derivatives were synthesized and their optical property changes with pH value were investigated. Their pH-dependent assembly/disassembly behaviors caused significant changes in both absorption and fluorescence spectra, thus making them promising bimodal ratiometric probes for both colorimetric and fluorescent pH sensing. Different substituent identity and position confer these probes with different sensitive pH-sensing ranges, and the substituent position gives a larger effect. By selecting different porphyrins, different signal intensity ratios and different fluorescence excitation wavelengths, sensitive pH sensing can be achieved in the range of 2.1-8.0. Having demonstrated the excellent reversibility, good accuracy and low cytotoxicity of the probes, they were successfully applied in pH sensing inside living cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
pH-Dependent Optical Properties of Synthetic Fluorescent Imidazoles
Berezin, Mikhail Y.; Kao, Jeff; Achilefu, Samuel
2010-01-01
An imidazole moiety is often found as an integral part of fluorophores in a variety of fluorescent proteins and many such proteins possess pH dependent light emission. In contrast, synthetic fluorescent compounds with incorporated imidazoles are rare and have not been studied as pH probes. In this report, the richness of imidazole optical properties, including pH sensitivity, was demonstrated via a novel imidazole-based fluorophore 1H-imidazol-5-yl-vinyl-benz[e]indolium. Three species corresponding to protonated, neutral and deprotonated imidazoles were identified in the broad range of pH 1-12. The absorption and emission bands of each species were assigned by comparative spectral analysis with synthesized mono- and di-N-methylated fluorescent imidazole analogues. pKa analysis in the ground and the excited states showed photoacidic properties of the fluorescent imidazoles due to the excited state proton transfer (ESPT). This effect was negligible for substituted imidazoles. The assessment of a pH sensitive center in the imidazole ring revealed the switching of the pH sensitive centers from 1-N in the ground state to 3-N in the excited state. The effect was attributed to the unique kind of the excited state charge transfer (ESCT) resulting in a positive charge swapping between two nitrogens. PMID:19212987
pH-sensitive fluorescent sensors based on europium(III) complexes.
Zhang, Xiaolin; Jiao, Yang; Jing, Xu; Wu, Hongmei; He, Guangjie; Duan, Chunying
2011-03-21
New europium(III) complexes Eu(TTA)(2)-DSQ and Eu(TTA)(3)-DR1 were designed and synthesized as new fluorescent pH probes (where HDSQ = 5-(dimethylamino)-N-(4-(2-((8-hydroxyquinolin-2-yl)methylene)hydrazinecarbonyl)phenyl)naphthalene-1-sulfonamide, DR1 = N(1)-(4-(dimethylamino)benzylidene)-N(2)-(rhodamine-6G) lactamethylene-diamine and TTA = thiophentrifluoroacetone). Eu(TTA)(2)-DSQ exhibited high sensitivity in monitoring pH changes in neutral aqueous solution with negligible background fluorescence. Eu(TTA)(3)-DR1 comprised a green light emitting Rhodamine 6G fluorophore and a Eu(III) moiety as the origin of red light. These pH-sensitive emitter components have pK(a) values of 5.0 and 7.2 respectively, and exhibit isolated protonated steps within one molecule. Luminescence titrations demonstrate that Eu(TTA)(3)-DR1 was able to detect pH values at both near neutral pH and acidic pH ranges, and was also able to detect pH in both cultured cells and in vivo.
Fluorescent probes and nanoparticles for intracellular sensing of pH values
NASA Astrophysics Data System (ADS)
Shi, Wen; Li, Xiaohua; Ma, Huimin
2014-12-01
Intracellular pH regulates a number of cell metabolism processes and its sensing is thus of great importance for cell studies. Among various methods, fluorescent probes have been widely used for sensing intracellular pH values because of their high sensitivity and spatiotemporal resolution capability. In this article, the development of fluorescent probes with good practicability in sensing intracellular pH values and pH variation during 2009 - 2014 is reviewed. These fluorescence probes are divided into two kinds: small molecules and nanoparticles. Photophysical properties, advantages/disadvantages and applications of the two kinds of probes are discussed in detail.
Functional photoacoustic microscopy of pH
Chatni, Muhammad Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.
2011-01-01
pH is a tightly regulated indicator of metabolic activity. In mammalian systems, an imbalance of pH regulation may result from or result in serious illness. In this paper, we report photoacoustic microscopy (PAM) of a commercially available pH-sensitive fluorescent dye (SNARF-5F carboxylic acid) in tissue phantoms. We demonstrated that PAM is capable of pH imaging in absolute values at tissue depths of up to 2.0 mm, greater than possible with other forms of optical microscopy. PMID:22029342
Measuring Synaptic Vesicle Endocytosis in Cultured Hippocampal Neurons.
Villarreal, Seth; Lee, Sung Hoon; Wu, Ling-Gang
2017-09-04
During endocytosis, fused synaptic vesicles are retrieved at nerve terminals, allowing for vesicle recycling and thus the maintenance of synaptic transmission during repetitive nerve firing. Impaired endocytosis in pathological conditions leads to decreases in synaptic strength and brain functions. Here, we describe methods used to measure synaptic vesicle endocytosis at the mammalian hippocampal synapse in neuronal culture. We monitored synaptic vesicle protein endocytosis by fusing a synaptic vesicular membrane protein, including synaptophysin and VAMP2/synaptobrevin, at the vesicular lumenal side, with pHluorin, a pH-sensitive green fluorescent protein that increases its fluorescence intensity as the pH increases. During exocytosis, vesicular lumen pH increases, whereas during endocytosis vesicular lumen pH is re-acidified. Thus, an increase of pHluorin fluorescence intensity indicates fusion, whereas a decrease indicates endocytosis of the labelled synaptic vesicle protein. In addition to using the pHluorin imaging method to record endocytosis, we monitored vesicular membrane endocytosis by electron microscopy (EM) measurements of Horseradish peroxidase (HRP) uptake by vesicles. Finally, we monitored the formation of nerve terminal membrane pits at various times after high potassium-induced depolarization. The time course of HRP uptake and membrane pit formation indicates the time course of endocytosis.
Effects of iron on optical properties of dissolved organic matter.
Poulin, Brett A; Ryan, Joseph N; Aiken, George R
2014-09-02
Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV-vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron(II) and iron(III) on the UV-vis absorption and fluorescence of solutions containing two DOM fractions and two surface water samples. In each case, regardless of DOM composition, UV-vis absorption increased linearly with increasing iron(III). Correction factors were derived using iron(III) absorption coefficients determined at wavelengths commonly used to characterize DOM. Iron(III) addition increased specific UV absorbances (SUVA) and decreased the absorption ratios (E2:E3) and spectral slope ratios (SR) of DOM samples. Both iron(II) and iron(III) quenched DOM fluorescence at pH 6.7. The degree and region of fluorescence quenching varied with the iron:DOC concentration ratio, DOM composition, and pH. Regions of the fluorescence spectra associated with greater DOM conjugation were more susceptible to iron quenching, and DOM fluorescence indices were sensitive to the presence of both forms of iron. Analyses of the excitation-emission matrices using a 7- and 13-component parallel factor analysis (PARAFAC) model showed low PARAFAC sensitivity to iron addition.
Effects of iron on optical properties of dissolved organic matter
Poulin, Brett; Ryan, Joseph N.; Aiken, George R.
2014-01-01
Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV–vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron(II) and iron(III) on the UV–vis absorption and fluorescence of solutions containing two DOM fractions and two surface water samples. In each case, regardless of DOM composition, UV–vis absorption increased linearly with increasing iron(III). Correction factors were derived using iron(III) absorption coefficients determined at wavelengths commonly used to characterize DOM. Iron(III) addition increased specific UV absorbances (SUVA) and decreased the absorption ratios (E2:E3) and spectral slope ratios (SR) of DOM samples. Both iron(II) and iron(III) quenched DOM fluorescence at pH 6.7. The degree and region of fluorescence quenching varied with the iron:DOC concentration ratio, DOM composition, and pH. Regions of the fluorescence spectra associated with greater DOM conjugation were more susceptible to iron quenching, and DOM fluorescence indices were sensitive to the presence of both forms of iron. Analyses of the excitation–emission matrices using a 7- and 13-component parallel factor analysis (PARAFAC) model showed low PARAFAC sensitivity to iron addition.
Nanoparticle assembled microcapsules for application as pH and ammonia sensor.
Amali, Arlin Jose; Awwad, Nour H; Rana, Rohit Kumar; Patra, Digambara
2011-12-05
The encapsulation of molecular probes in a suitable nanostructured matrix can be exploited to alter their optical properties and robustness for fabricating efficient chemical sensors. Despite high sensitivity, simplicity, selectivity and cost effectiveness, the photo-destruction and photo-bleaching are the serious concerns while utilizing molecular probes. Herein we demonstrate that hydroxy pyrene trisulfonate (HPTS), a pH sensitive molecular probe, when encapsulated in a microcapsule structure prepared via the assembly of silica nanoparticles mediated by poly-L-lysine and trisodium citrate, provides a robust sensing material for pH sensing under the physiological conditions. The temporal evolution under continuous irradiation indicates that the fluorophore inside the silica microcapsule is extraordinarily photostable. The fluorescence intensity alternation at dual excitation facilitates for a ratiometic sensing of the pH, however, the fluorescence lifetime is insensitive to hydrogen ion concentration. The sensing scheme is found to be robust, fast and simple for the measurement of pH in the range 5.8-8.0, and can be successfully applied for the determination of ammonia in the concentration range 0-1.2 mM, which is important for aquatic life and the environment. Copyright © 2011 Elsevier B.V. All rights reserved.
Abolhasani, Jafar; Naderali, Roza; Hassanzadeh, Javad
2016-01-01
We describe the effect of different sized gold and silver nanoparticles on the terbium sensitized fluorescence of deferasirox. It is indicated that silver nanostructures, especially 18 nm Ag nanoparticles (AgNPs), have a remarkable amplifying effect compared to Au nanoparticles. Based on this observation, a highly sensitive and selective method was developed for the determination of deferasirox. Effects of various parameters like AgNPs and Tb(3+) concentration and pH of media were investigated. Under the optimal conditions, a calibration curve was plotted as the fluorescence intensities versus the concentration of deferasirox in the range of 0.1 to 200 nmol L(-1), and detection limit of 0.03 nmol L(-1) was obtained. The method has good linearity, recovery, reproducibility and sensitivity, and was satisfactorily applied for the determination of deferasirox in urine and pharmaceutical samples.
Best, Quinn A.; Liu, Chuangjun; van Hoveln, Paul D.; McCarroll, Matthew E.
2013-01-01
A series of pH dependent rhodamine analogs possessing an anilino-methyl moiety was developed and shown to exhibit a unique photophysical response to pH. These Anilinomethylrhodamines (AnMR) maintain a colorless, non-fluorescent spiro-cyclic structure at high pH. The spiro-cyclic structures open in mildly acidic conditions and are weakly fluorescent; however at very low pH, the fluorescence is greatly enhanced. The equilibrium constants of these processes show a linear response to substituent effects, which was demonstrated by the Hammett equation. PMID:24050117
Anand, Thangaraj; Sivaraman, Gandhi; Mahesh, Ayyavu; Chellappa, Duraisamy
2015-01-01
We have synthesized a new probe 5-((anthracen-9-ylmethylene) amino)quinolin-10-ol (ANQ) based on anthracene platform. The probe was tested for its sensing behavior toward heavy metal ions Hg(2+), Pb(2+), light metal Al(3+) ion, alkali, alkaline earth, and transition metal ions by UV-visible and fluorescent techniques in ACN/H2O mixture buffered with HEPES (pH 7.4). It shows high selectivity toward sensing Pb(2+)/Al(3+) metal ions. Importantly, 10-fold and 5- fold fluorescence enhancement at 429 nm was observed for probe upon complexation with Pb(2+) and Al(3+) ions, respectively. This fluorescence enhancement is attributable to the prevention of photoinduced electron transfer. The photonic studies indicate that the probe can be adopted as a sensitive fluorescent chemosensor for Pb(2+) and Al(3+) ions. Copyright © 2014 Elsevier B.V. All rights reserved.
Pyrene functionalized molecular beacon with pH-sensitive i-motif in a loop.
Dembska, Anna; Juskowiak, Bernard
2015-01-01
In this work, we present a spectral characterization of pH-sensitive system, which combines the i-motif properties with the spatially sensitive fluorescence signal of pyrene molecules attached to hairpin ends. The excimer production (fluorescence max. ∼480 nm) by pyrene labels at the ends of the molecular beacon is driven by pH-dependent i-motif formation in the loop. To illustrate the performance and reversible work of our systems, we performed the experiments with repeatedly pH cycling between pH values of 7.5±0.3 and 6.5±0.3. The sensor gives analytical response in excimer-monomer switching mode in narrow pH range (1.5 pH units) and exhibits high pH resolution (0.1 pH unit). Copyright © 2015 Elsevier B.V. All rights reserved.
Optical measurement of acidification of human dental plaque in vitro
NASA Astrophysics Data System (ADS)
Graham, Jasmine Y.; Nelson, Leonard Y.; Seibel, Eric J.
2018-02-01
A pH measurement of oral biofilms is helpful for monitoring the impact of acidogenic bacteria in the caries process. Demineralization of dental enamel is closely related to the time dependent pH of human plaque. Therefore, providing a means to easily measure the local pH of biofilms is a useful clinical diagnostic in the arsenal of caries prevention tools. Optical measurement methods of plaque metabolism can use intrinsic fluorescence or extrinsic fluorescence from added dyes. Autofluorescence spectral features of human oral biofilms at green (500 nm) and red (634 nm) fluorescence wavelengths using 405 nm excitation did not demonstrate a spectral or intensity shift between neutral and acidic conditions. Chlorin e6, an ingredient in chlorophyllin food supplement, exhibited a spectral and intensity shift of fluorescence emission in buffered solutions, but this quantitative pH-dependence was not transferable to a human plaque environment. Finally, a ratiometric quantitative pH measure was achieved by exciting (405 nm laser) a mixture of two dyes, fluorescein and rhodamine B. This two-dye mixture produced two strong fluorescent bands centered at 515 nm (fluorescein) and 580 nm (rhodamine B), where the 515 nm band was pH sensitive and the 580 nm band served as a pH insensitive reference. This dual-dye fluorescence ratio exhibited a linear response over pH 7 to 5 in human oral biofilms during a sugar challenge. We have explored methods to use non-contact, optical measures of local acidity levels in difficult to access dental locations such as occlusal fissures using various pH sensitive fluorescent dye systems.
A novel "modularized" optical sensor for pH monitoring in biological matrixes.
Liu, Xun; Zhang, Shang-Qing; Wei, Xing; Yang, Ting; Chen, Ming-Li; Wang, Jian-Hua
2018-06-30
A novel core-shell structure optical pH sensor is developed with upconversion nanoparticles (UCNPs) serving as the core and silica as the shell, followed by grafting bovineserumalbumin (BSA) as another shell via glutaraldehyde cross-linking. The obtained core-shell-shell structure is shortly termed as UCNPs@SiO 2 @BSA, and its surface provides a platform for loading various pH sensitive dyes, which are alike "modules" to make it feasible for measuring pHs within different pH ranges by simply regulating the type of dyes. Generally, a single pH sensitive dye is adopted to respond within a certain pH range. This study employs bromothymol blue (BTB) and rhodamine B (RhB) to facilitate their responses to pH variations within two ranges, i.e., pH 5.99-8.09 and pH 4.98-6.40, respectively, with detection by ratio-fluorescence protocol. The core-shell-shell structure offers superior sensitivity, which is tens of times more sensitive than those achieved by ratio-fluorescence approaches based on various nanostructures, and favorable stability is achieved in high ionic strength medium. In addition, this sensor exhibits superior photostability under continuous excitation at 980 nm. Thanks to the near infrared excitation in the core-shell-shell structure, it effectively avoids the self-fluorescence from biological samples and thus facilitates accurate sensing of pH in various biological sample matrixes. Copyright © 2018 Elsevier B.V. All rights reserved.
Fluorescence Lifetime Imaging Microscopy (FLIM) of quantum dots in living cells
NASA Astrophysics Data System (ADS)
Nadeau, Jay; Carlini, Lina
2013-02-01
Fluorescence lifetime imaging microscopy (FLIM) is an emerging imaging technique that can indicate environmental factors such as pH and redox potential by the effect of these factors on the fluorescence lifetimes of fluorophores. Semiconductor quantum dots (QDs) are highly sensitive to environment and so are ideal for use in FLIM, although certain experimental parameters must be carefully considered for QD imaging to account for their long lifetimes and two-photon behavior. We image the uptake of three types of QDs in cultured fibroblasts and show some preliminary results on the effects of endosomes and lysosomes on QD lifetimes. These results indicate the feasibility of FLIM for studies using QDs in live cells.
Glycine Insertion Makes Yellow Fluorescent Protein Sensitive to Hydrostatic Pressure
Watanabe, Tomonobu M.; Imada, Katsumi; Yoshizawa, Keiko; Nishiyama, Masayoshi; Kato, Chiaki; Abe, Fumiyoshi; Morikawa, Takamitsu J.; Kinoshita, Miki; Fujita, Hideaki; Yanagida, Toshio
2013-01-01
Fluorescent protein-based indicators for intracellular environment conditions such as pH and ion concentrations are commonly used to study the status and dynamics of living cells. Despite being an important factor in many biological processes, the development of an indicator for the physicochemical state of water, such as pressure, viscosity and temperature, however, has been neglected. We here found a novel mutation that dramatically enhances the pressure dependency of the yellow fluorescent protein (YFP) by inserting several glycines into it. The crystal structure of the mutant showed that the tyrosine near the chromophore flipped toward the outside of the β-can structure, resulting in the entry of a few water molecules near the chromophore. In response to changes in hydrostatic pressure, a spectrum shift and an intensity change of the fluorescence were observed. By measuring the fluorescence of the YFP mutant, we succeeded in measuring the intracellular pressure change in living cell. This study shows a new strategy of design to engineer fluorescent protein indicators to sense hydrostatic pressure. PMID:24014139
Bing, Qijing; Wang, Lin; Li, Donglin; Wang, Guang
2018-09-05
A new benzimidazole base turn-on fluorescent and ratiometric absorption chemosensor (L) bearing bidentate ligand for detection of Cu 2+ was designed and synthesized. Fluorescence and UV-vis spectra studies demonstrated that L can detect Cu 2+ ions in aqueous solution using fluorescence enhancement and ratiometric absorption sensing over a wide pH range. Both fluorescent and ratiometric absorption sensing of L for Cu 2+ possessed high selectivity and sensitivity over other competitive metal ions and had low detection limit. Job's plot, mass spectra and DFT calculation indicated the sensing mechanism is the complex formation between L and Cu 2+ with 1:2 stoichiometry. Fluorescence images of HepG2 in the absence and presence of Cu 2+ displayed L had cell permeability and detection ability for Cu 2+ in live cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Draffehn, Sören; Kumke, Michael U
2016-05-02
Nowadays, the encapsulation of therapeutic compounds in so-called carrier systems is a very smart method to achieve protection as well as an improvement of their temporal and spatial distribution. After the successful transport to the point of care, the delivery has to be released under controlled conditions. To monitor the triggered release from the carrier, we investigated different fluorescent probes regarding their response to the pH-induced collapse of pH-sensitive liposomes (pHSLip), which occurs when the environmental pH falls below a critical value. Depending on the probe, the fluorescence decay time as well as fluorescence anisotropy can be used equally as key parameters for monitoring the collapse. Especially the application of a fluorescein labeled fatty acid (fPA) enabled the monitoring of the pHSLips collapse and the pH of its microenvironment simultaneously without interference. Varying the pH in the range of 3 < pH < 9, anisotropy data revealed the critical pH value at which the collapse of the pHSLips occurs. Complementary methods, e.g., fluorescence correlation spectroscopy and dynamic light scattering, supported the analysis based on the decay time and anisotropy. Additional experiments with varying incubation times yielded information on the kinetics of the liposomal collapse.
Han, Liang; Liu, Mingming; Ye, Deyong; Zhang, Ning; Lim, Ed; Lu, Jing; Jiang, Chen
2014-03-01
Minimizing the background signal is crucial for developing tumor-imaging techniques with sufficient specificity and sensitivity. Here we use pH difference between healthy tissues and tumor and tumor targeting delivery to achieve this goal. We synthesize fluorophore-dopamine conjugate as pH-dependent electron donor-acceptor fluorescence system. Fluorophores are highly sensitive to electron-transfer processes, which can alter their optical properties. The intrinsic redox properties of dopamine are oxidation of hydroquinone to quinone at basic pH and reduction of quinone to hydroquinone at acidic pH. Quinone can accept electron then quench fluorescence. We design tumor cell membrane-targeting carrier for delivery. We demonstrate quenched fluorophore-quinone can be specially transferred to tumor extracellular environment and tumor-accumulated fluorophore can be activated by acidic pH. These tumor-targeting pH-dependent electron donor-acceptor fluorescence systems may offer new opportunity for developing tumor-imaging techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.
Saha, Uday Chand; Dhara, Koushik; Chattopadhyay, Basab; Mandal, Sushil Kumar; Mondal, Swastik; Sen, Supriti; Mukherjee, Monika; van Smaalen, Sander; Chattopadhyay, Pabitra
2011-09-02
A new probe, 3-[(3-benzyloxypyridin-2-ylimino)methyl]-2-hydroxy-5-methylbenzaldehyde (1-H) behaves as a highly selective fluorescent pH sensor in a Britton-Robinson buffer at 25 °C. The pH titrations show a 250-fold increase in fluorescence intensity within the pH range of 4.2 to 8.3 with a pK(a) value of 6.63 which is valuable for studying many of the biological organelles.
Chen, Haiyong; Wang, Jing; Shan, Duoliang; Chen, Jing; Zhang, Shouting; Lu, Xiaoquan
2018-05-15
pH plays an important role in understanding physiological/pathologic processes, and abnormal pH is a symbol of many common diseases such as cancer, stroke, and Alzheimer's disease. In this work, an effective dual-emission fluorescent metal-organic framework nanocomposite probe (denoted as RB-PCN) has been constructed for sensitive and broad-range detection of pH. RB-PCN was prepared by encapsulating the DBI-PEG-NH 2 -functionalized Fe 3 O 4 into Zr-MOFs and then further reacting it with rhodamine B isothiocyanates (RBITC). In RB-PCN, RBITC is capable of sensing changes in pH in acidic solutions. Zr-MOFs not only enrich the target analyte but also exhibit a fluorescence response to pH changes in alkaline solutions. Based on the above structural and compositional features, RB-PCN could detect a wide range of pH changes. Importantly, such a nanoprobe could "see" the intracellular pH changes by fluorescence confocal imaging as well as "measure" the wider range of pH in actual samples by fluorescence spectroscopy. To the best of our knowledge, this is the first time a MOF-based dual-emitting fluorescent nanoprobe has been used for a wide range of pH detection.
Fast loading ester fluorescent Ca2+ and pH indicators into pollen of Pyrus pyrifolia.
Qu, Haiyong; Jiang, Xueting; Shi, Zebin; Liu, Lianmei; Zhang, Shaoling
2012-01-01
Loading of Ca(2+)-sensitive fluorescent probes into plant cells is an essential step to measure activities of free Ca(2+) ions in cytoplasm with a fluorescent imaging technique. Fluo-3 is one of the most suitable Ca(2+) indicators for CLSM. We loaded pollen with fluo-3/AM at three different temperatures. Fluo-3/AM was successfully loaded into pollen at both low (4°C) and high (37°C) temperatures. However, high loading temperature was best suited for pollen, because germination rate of pollen and growth of pollen tubes were relatively little impaired and loading time was shortened. Moreover, Ca(2+) distribution increased in the three apertures of pollen after hydration and showed a Ca(2+) gradient, similar to the tip of growing pollen tubes. The same protocol can be used with the AM-forms of other fluorescent dyes for effective labeling. When loading BCECF-AM into pollen at high temperature, the pollen did not show a pH gradient after hydration. Ca(2+) activities and fluxes had the same periodicity as pollen germination, but pH did not show the same phase and mostly lagged behind. However, the clear zone was alkaline when pollen tube growth was slowed or stopped and turned acidic when growth recovered. It is likely that apical pH(i) regulated pollen tube growth.
Best, Quinn A; Liu, Chuangjun; van Hoveln, Paul D; McCarroll, Matthew E; Scott, Colleen N
2013-10-18
A series of pH dependent rhodamine analogues possessing an anilino-methyl moiety was developed and shown to exhibit a unique photophysical response to pH. These anilinomethylrhodamines (AnMR) maintain a colorless, nonfluorescent spirocyclic structure at high pH. The spirocyclic structures open in mildly acidic conditions and are weakly fluorescent; however, at very low pH, the fluorescence is greatly enhanced. The equilibrium constants of these processes show a linear response to substituent effects, which was demonstrated by the Hammett equation.
A novel acidic pH fluorescent probe based on a benzothiazole derivative
NASA Astrophysics Data System (ADS)
Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi
2017-04-01
A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.
A FRET-Based Ratiometric Chemosensor for in Vitro Cellular Fluorescence Analyses of pH
Zhou, Xianfeng; Su, Fengyu; Lu, Hongguang; Senechal-Willis, Patti; Tian, Yanqing; Johnson, Roger H.; Meldrum, Deirdre R.
2011-01-01
Ratiometric fluorescence sensing is an important technique for precise and quantitative analysis of biological events occurring under complex conditions by simultaneously recording fluorescence intensities at two wavelengths and calculating their ratios. Herein, we design a ratiometric chemosensor for pH that is based on photo-induced electron transfer (PET) and binding-induced modulation of fluorescence resonance energy transfer (FRET) mechanisms. This ratiometric chemosensor was constructed by introduction of a pH-insensitive coumarin fluorophore as a FRET donor into a pH-sensitive amino-naphthalimide derivative as the FRET acceptor. The sensor exhibited clear dual-mission signal changes in blue and green spectral windows upon pH changes. The pH sensor was applied for not only measuring cellular pH, but also for visualizing stimulus-responsive changes of intracellular pH values. PMID:21982292
Fu, Jingni; Ding, Changqin; Zhu, Anwei; Tian, Yang
2016-08-07
Intracellular pH plays a vital role in cell biology, including signal transduction, ion transport and homeostasis. Herein, a ratiometric fluorescent silica probe was developed to detect intracellular pH values. The pH sensitive dye fluorescein isothiocyanate isomer I (FITC), emitting green fluorescence, was hybridized with reference dye rhodamine B (RB), emitting red fluorescence, as a dual-emission fluorophore, in which RB was embedded in a silica core of ∼40 nm diameter. Moreover, to prevent fluorescence resonance energy transfer between FITC and RB, FITC was grafted onto the surface of core-shell silica colloidal particles with a shell thickness of 10-12 nm. The nanoprobe exhibited dual emission bands centered at 517 and 570 nm, under single wavelength excitation of 488 nm. RB encapsulated in silica was inert to pH change and only served as reference signals for providing built-in correction to avoid environmental effects. Moreover, FITC (λem = 517 nm) showed high selectivity toward H(+) against metal ions and amino acids, leading to fluorescence variation upon pH change. Consequently, variations of the two fluorescence intensities (Fgreen/Fred) resulted in a ratiometric pH fluorescent sensor. The specific nanoprobe showed good linearity with pH variation in the range of 6.0-7.8. It can be noted that the fluorescent silica probe demonstrated good water dispersibility, high stability and low cytotoxicity. Accordingly, imaging and biosensing of pH variation was successfully achieved in HeLa cells.
NASA Astrophysics Data System (ADS)
Li, Jiao; Wang, Xin; Yi, Xi; Zhang, Limin; Zhou, Zhongxing; Zhao, Huijuan; Gao, Feng
2012-09-01
The importance of cellular pH has been shown clearly in the study of cell activity, pathological feature, and drug metabolism. Monitoring pH changes of living cells and imaging the regions with abnormal pH-values, in vivo, could provide invaluable physiological and pathological information for the research of the cell biology, pharmacokinetics, diagnostics, and therapeutics of certain diseases such as cancer. Naturally, pH-sensitive fluorescence imaging of bulk tissues has been attracting great attentions from the realm of near infrared diffuse fluorescence tomography (DFT). Herein, the feasibility of quantifying pH-induced fluorescence changes in turbid medium is investigated using a continuous-wave difference-DFT technique that is based on the specifically designed computed tomography-analogous photon counting system and the Born normalized difference image reconstruction scheme. We have validated the methodology using two-dimensional imaging experiments on a small-animal-sized phantom, embedding an inclusion with varying pH-values. The results show that the proposed approach can accurately localize the target with a quantitative resolution to pH-sensitive variation of the fluorescent yield, and might provide a promising alternative method of pH-sensitive fluorescence imaging in addition to the fluorescence-lifetime imaging.
Wang, Jianbo; Xia, Shuai; Bi, Jianheng; Fang, Mingxi; Mazi, Wafa; Zhang, Yibin; Conner, Nathan; Luo, Fen-Tair; Lu, H Peter; Liu, Haiying
2018-04-18
In this paper, we present three ratiometric near-infrared fluorescent probes (A-C) for accurate, ratiometric detection of intracellular pH changes in live cells. Probe A consists of a tetraphenylethene (TPE) donor and near-infrared hemicyanine acceptor in a through-bond energy transfer (TBET) strategy, while probes B and C are composed of TPE and hemicyanine moieties through single and double sp 2 carbon-carbon bond connections in a π-conjugation modulation strategy. The specific targeting of the probes to lysosomes in live cells was achieved by introducing morpholine residues to the hemicyanine moieties to form closed spirolactam ring structures. Probe A shows aggregation-induced emission (AIE) property at neutral or basic pH, while probes B and C lack AIE properties. At basic or neutral pH, the probes only show fluorescence of TPE moieties with closed spirolactam forms of hemicyanine moieties, and effectively avoid blind fluorescence imaging spots, an issue which typical intensity-based pH fluorescent probes encounter. Three probes show ratiometric fluorescence responses to pH changes from 7.0 to 3.0 with TPE fluorescence decreases and hemicyanine fluorescence increases, because acidic pH makes the spirolactam rings open to enhance π-conjugation of hemicyanine moieties. However, probe A shows much more sensitive ratiometric fluorescence responses to pH changes from 7.0 to 3.0 with remarkable ratio increase of TPE fluorescence to hemicyanine fluorescence up to 238-fold than probes B and C because of its high efficiency of energy transfer from TPE donor to the hemicyanine acceptor in the TBET strategy. The probe offers dual Stokes shifts with a large pseudo-Stokes shift of 361 nm and well-defined dual emissions, and allows for colocalization of the imaging readouts of visible and near-infrared fluorescence channels to achieve more precisely double-checked ratiometric fluorescence imaging. These platforms could be employed to develop a variety of novel ratiometric fluorescent probes for accurate detection of different analytes in applications of chemical and biological sensing, imaging, and diagnostics by introducing appropriate sensing ligands to hemicyanine moieties to form on-off spirolactam switches.
Dai, Chun-Guang; Du, Xiao-Jiao; Song, Qin-Hua
2015-12-18
A Michael addition is usually taken as a base-catalyzed reaction. Most fluorescent probes have been designed to detect thiols in slightly alkaline solutions (pH 7-9). The sensing reactions of almost all Michael-type fluorescent probes for thiols are faster in a high pH solution than in a low pH solution. In this work, we synthesized a series of 7-substituted 2-(quinolin-2-ylmethylene)malonic acids (QMAs, substituents: NEt2, OH, H, Cl, or NO2) and their ethyl esters (QMEs) as Michael-type fluorescent probes for thiols. The sensing reactions of QMAs and QMEs occur in distinct pH ranges, pH < 7 for QMAs and pH > 7 for QMEs. On the basis of experimental and theoretic studies, we have clarified the distinct pH effects on the sensing reactivity between QMAs and QMEs and demonstrated that two QMAs (NEt2, OH) are highly sensitive and selective fluorescent probes for thiols in acidic solutions (pH < 7) and promising dyes that can label lysosomes in live cells.
A novel FbFP-based biosensor toolbox for sensitive in vivo determination of intracellular pH.
Rupprecht, Christian; Wingen, Marcus; Potzkei, Janko; Gensch, Thomas; Jaeger, Karl-Erich; Drepper, Thomas
2017-09-20
The intracellular pH is an important modulator of various bio(techno)logical processes such as enzymatic conversion of metabolites or transport across the cell membrane. Changes of intracellular pH due to altered proton distribution can thus cause dysfunction of cellular processes. Consequently, accurate monitoring of intracellular pH allows elucidating the pH-dependency of (patho)physiological and biotechnological processes. In this context, genetically encoded biosensors represent a powerful tool to determine intracellular pH values non-invasively and with high spatiotemporal resolution. We have constructed a toolbox of novel genetically encoded FRET-based pH biosensors (named Fluorescence Biosensors for pH or FluBpH) that utilizes the FMN-binding fluorescent protein EcFbFP as donor domain. In contrast to many fluorescent proteins of the GFP family, EcFbFP exhibits a remarkable tolerance towards acidic pH (pK a ∼3.2). To cover the broad range of physiologically relevant pH values, three EYFP variants exhibiting pK a values of 5.7, 6.1 and 7.5 were used as pH-sensing FRET acceptor domains. The resulting biosensors FluBpH 5.7, FluBpH 6.1 and FluBpH 7.5 were calibrated in vitro and in vivo to accurately evaluate their pH indicator properties. To demonstrate the in vivo applicability of FluBpH, changes of intracellular pH were ratiometrically measured in E. coli cells during acid stress. Copyright © 2017 Elsevier B.V. All rights reserved.
Investigation on the pH-dependent binding of benzocaine and lysozyme by fluorescence and absorbance
NASA Astrophysics Data System (ADS)
Li, Shihui; Li, Daojin
2011-11-01
The interaction mechanism between benzocaine (BZC) and lysozyme (Lys) has been investigated by fluorescence, synchronous fluorescence, ultraviolet-vis (UV) absorption spectra, and three-dimensional fluorescence (3-D) in various pH medium. The observations of fluorescence spectra were mainly rationalized in terms of a static quenching process at lower concentration of BZC ( CBZC/ CLys < 9) and a combined quenching process at higher concentration of BZC ( CBZC/ CLys > 9) at pH 7.4 and 8.4. However, the fluorescence quenching was mainly arisen from static quenching by complex formation in all studied drug concentrations at pH 3.5. The structural characteristics of BZC and Lys were probed, and their binding affinities were determined under different pH conditions (pH 3.5, 7.4, and 8.4). The results indicated that the binding abilities of BZC to Lys decreased at the pH below and above the simulative physiological condition (pH 7.4) due to the alterations of the protein secondary and tertiary structures or the structural change of BZC. The effect of BZC on the conformation of Lys was analyzed using UV, synchronous fluorescence and three-dimensional fluorescence under different pH conditions. These results indicate that the binding of BZC to Lys causes apparent change in the secondary and tertiary structures of Lys. The effect of Zn 2+ on the binding constant of BZC with Lys under various pH conditions (pH 3.5, 7.4, and 8.4) was also studied.
[Ph-Sensor Properties of a Fluorescent Protein from Dendronephthya sp].
Pakhomov, A A; Chertkova, R V; Martynov, V I
2015-01-01
Genetically encoded biosensors based on fluorescent proteins are now widely applicable for monitoring pH changes in live cells. Here, we have shown that a fluorescent protein from Dendronephthya sp. (DendFP) exhibits a pronounced pH-sensitivity. Unlike most of known genetically encoded pH-sensors, fluorescence of the protein is not quenched upon medium acidification, but is shifting from the red to green spectral range. Therefore, quantitative measurements of intracellular pH are feasible by ratiometric comparison of emission intensities in the red and green spectral ranges, which makes DendFP advantageous compared with other genetically encoded pH-sensors.
Zhu, Xian-Dong; Zhang, Kun; Wang, Yu; Long, Wei-Wei; Sa, Rong-Jian; Liu, Tian-Fu; Lü, Jian
2018-02-05
A Zn(II)-based fluorescent metal-organic framework (MOF) was synthesized and applied as a highly sensitive and quickly responsive chemical sensor for antibiotic detection in simulated wastewater. The fluorescent chemical sensor, denoted FCS-1, exhibited enhanced fluorescence derived from its highly ordered, 3D MOF structure as well as excellent water stability in the practical pH range of simulated antibiotic wastewater (pH = 3.0-9.0). Remarkably, FCS-1 was able to effectively detect a series of sulfonamide antibiotics via photoinduced electron transfer that caused detectable fluorescence quenching, with fairly low detection limits. Two influences impacting measurements related to wastewater treatment and water quality monitoring, the presence of heavy-metal ions and the pH of solutions, were studied in terms of fluorescence quenching, which was nearly unaffected in sulfonamide-antibiotic detection. Additionally, the effective detection of sulfonamide antibiotics was rationalized by the theoretical computation of the energy bands of sulfonamide antibiotics, which revealed a good match between the energy bands of FCS-1 and sulfonamide antibiotics, in connection with fluorescence quenching in this system.
Sayed, Mhejabeen; Pal, Haridas
2015-04-14
The differential binding affinity of the hydroxypropyl-β-cyclodextrin (HPβCD) macrocycle, a drug delivery vehicle, towards the protonated and deprotonated forms of the well-known DNA binder and model anticancer drug acridine has been exploited as a strategy for dye-drug transportation and pH-responsive delivery to a natural DNA target. From pH-sensitive changes in the ground state absorption and steady-state fluorescence characteristics of the studied acridine dye-HPβCD-DNA ternary system and strongly supported by fluorescence lifetime, fluorescence anisotropy, Job's plots, (1)H NMR and circular dichroism results, it is revealed that in a moderately alkaline solution (pH ∼ 8.5), the dye can be predominantly bound to the HPβCD macrocycle and when the pH is lowered to a moderately acidic region (pH ∼ 4), the dye efficiently detaches from the HPβCD cavity and almost exclusively binds to DNA. In the present study we are thus able to construct a pH-sensitive supramolecular assembly where pH acts as a simple stimulus for controlled uptake and targeted release of the dye-drug. As pH is an essential and sensitive factor in various biological processes, a simple yet reliable pH-sensitive model such as is demonstrated here can have promising applications in the host-assisted delivery of prodrug to the target sites, such as cancer or tumour microenvironments, with an enhanced stability, bioavailability and activity, and also in the design of new fluorescent probes, sensors and smart materials for applications in nano-science.
Kang, Eun Bi; Choi, Cheong A; Mazrad, Zihnil Adha Islamy; Kim, Sung Han; In, Insik; Park, Sung Young
2017-12-19
The tumor-specific sensitive fluorescence sensing of cellular alkaline phosphatase (ALP) activity on the basis of host-guest specific and pH sensitivity was conducted on coated surfaces and aqueous states. Cross-linked fluorescent nanoparticles (C-FNP) consisting of β-cyclodextrin (β-CD)/boronic acid (BA) and fluorescent hyaluronic acid [FNP(HA)] were conjugated to fluorescent polydopamine [FNP(pDA)]. To determine the quenching effect of this system, hydrolysis of 4-nitrophenyl phosphate (NPP) to 4-nitrophenol (NP) was performed in the cavity of β-CD in the presence of ALP activated photoinduced electron transfer (PET) between NP and C-FNP. At an ALP level of 30-1000 U/L, NP caused off-emission of C-FNP because of their specific host-guest recognition. Fluorescence can be recovered under pH shock due to cleavage of the diol bond between β-CD and BA, resulting in release of NP from the fluorescent system. Sensitivity of the assays was assessed by confocal imaging not only in aqueous states, but also for the first time on coated surfaces in MDAMB-231 and MDCK cells. This novel system demonstrated high sensitivity to ALP through generation of good electron donor/acceptor pair during the PET process. Therefore, this fluorescence sensor system can be used to enhance ALP monitoring and cancer diagnosis on both coated surfaces and in aqueous states in clinical settings.
Shi, Bingfang; Su, Yubin; Zhang, Liangliang; Liu, Rongjun; Huang, Mengjiao; Zhao, Shulin
2016-08-15
A nitrogen-rich functional groups carbon nanoparticles (N-CNs) based fluorescent pH sensor with a broad-range responding was prepared by one-pot hydrothermal treatment of melamine and triethanolamine. The as-prepared N-CNs exhibited excellent photoluminesence properties with an absolute quantum yield (QY) of 11.0%. Furthermore, the N-CNs possessed a broad-range pH response. The linear pH response range was 3.0 to 12.0, which is much wider than that of previously reported fluorescent pH sensors. The possible mechanism for the pH-sensitive response of the N-CNs was ascribed to photoinduced electron transfer (PET). Cell toxicity experiment showed that the as-prepared N-CNs exhibited low cytotoxicity and excellent biocompatibility with the cell viabilities of more than 87%. The proposed N-CNs-based pH sensor was used for pH monitoring of environmental water samples, and pH fluorescence imaging of live T24 cells. The N-CNs is promising as a convenient and general fluorescent pH sensor for environmental monitoring and bioimaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Geilfus, Christoph-Martin; Mühling, Karl H; Kaiser, Hartmut; Plieth, Christoph
2014-01-01
Ratiometric analysis with H(+)-sensitive fluorescent sensors is a suitable approach for monitoring apoplastic pH dynamics. For the acidic range, the acidotropic dual-excitation dye Oregon Green 488 is an excellent pH sensor. Long lasting (hours) recordings of apoplastic pH in the near neutral range, however, are more problematic because suitable pH indicators that combine a good pH responsiveness at a near neutral pH with a high photostability are lacking. The fluorescent pH reporter protein from Ptilosarcus gurneyi (Pt-GFP) comprises both properties. But, as a genetically encoded indicator and expressed by the plant itself, it can be used almost exclusively in readily transformed plants. In this study we present a novel approach and use purified recombinant indicators for measuring ion concentrations in the apoplast of crop plants such as Vicia faba L. and Avena sativa L. Pt-GFP was purified using a bacterial expression system and subsequently loaded through stomata into the leaf apoplast of intact plants. Imaging verified the apoplastic localization of Pt-GFP and excluded its presence in the symplast. The pH-dependent emission signal stood out clearly from the background. PtGFP is highly photostable, allowing ratiometric measurements over hours. By using this approach, a chloride-induced alkalinizations of the apoplast was demonstrated for the first in oat. Pt-GFP appears to be an excellent sensor for the quantification of leaf apoplastic pH in the neutral range. The presented approach encourages to also use other genetically encoded biosensors for spatiotemporal mapping of apoplastic ion dynamics.
Chen, Peng; Wang, Zhuyuan; Zong, Shenfei; Zhu, Dan; Chen, Hui; Zhang, Yizhi; Wu, Lei; Cui, Yiping
2016-01-15
We fabricate a multifunctional nanocarrier based on multi-walled carbon nanotubes (MWCNTs) decorated with gold/silver core-shell nanoparticles (Au@Ag NPs) and fluorescein isothiocyanate (FITC) for tracking the intracellular drug release process. In the demonstrated nanocarrier, the Au@Ag NPs adsorbed on the surface of MWCNTs were labeled with the pH-dependent SERS reporter 4-Mercaptobenzoic acid (4MBA) for SERS based pH sensing. FITC was conjugated on MWCNTs to provide fluorescence signal for tracing the MWCNTs. Fluorescent doxorubicin (DOX) was used as the model drug which can be loaded onto MWCNTs via π-π stacking and released from the MWCNTs under acidic condition. By detecting the SERS spectrum of 4MBA, the pH value around the nanocarrier could be monitored. Besides, by tracing the fluorescence of FITC and DOX, we can also investigate the drug release process in cells. Experimental results show that the proposed nanocarrier retained a well pH-sensitive performance in living cells, and the DOX detached from MWCNTs inside the lysosomes and entered into the cytoplasm with the MWCNTs being left in lysosomes. To further investigate the drug release dynamics, 2-D color-gradient pH mapping were plotted, which were calculated from the SERS spectra of 4MBA. The detailed release process and carrier distribution have been recorded as environmental pH changes during cell endocytosis. Furthermore, we also confirmed that the proposed nanocarrier has a good biocompatibility. It indicates that the designed nanocarrier have a great potential in intraceable drug delivery, cancer cells imaging and pH monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.
Investigation on the pH-dependent binding of benzocaine and lysozyme by fluorescence and absorbance.
Li, Shihui; Li, Daojin
2011-11-01
The interaction mechanism between benzocaine (BZC) and lysozyme (Lys) has been investigated by fluorescence, synchronous fluorescence, ultraviolet-vis (UV) absorption spectra, and three-dimensional fluorescence (3-D) in various pH medium. The observations of fluorescence spectra were mainly rationalized in terms of a static quenching process at lower concentration of BZC (C(BZC)/C(Lys)<9) and a combined quenching process at higher concentration of BZC (C(BZC)/C(Lys)>9) at pH 7.4 and 8.4. However, the fluorescence quenching was mainly arisen from static quenching by complex formation in all studied drug concentrations at pH 3.5. The structural characteristics of BZC and Lys were probed, and their binding affinities were determined under different pH conditions (pH 3.5, 7.4, and 8.4). The results indicated that the binding abilities of BZC to Lys decreased at the pH below and above the simulative physiological condition (pH 7.4) due to the alterations of the protein secondary and tertiary structures or the structural change of BZC. The effect of BZC on the conformation of Lys was analyzed using UV, synchronous fluorescence and three-dimensional fluorescence under different pH conditions. These results indicate that the binding of BZC to Lys causes apparent change in the secondary and tertiary structures of Lys. The effect of Zn(2+) on the binding constant of BZC with Lys under various pH conditions (pH 3.5, 7.4, and 8.4) was also studied. Copyright © 2011 Elsevier B.V. All rights reserved.
Dimerization of Organic Dyes on Luminescent Gold Nanoparticles for Ratiometric pH Sensing.
Sun, Shasha; Ning, Xuhui; Zhang, Greg; Wang, Yen-Chung; Peng, Chuanqi; Zheng, Jie
2016-02-12
Synergistic effects arising from the conjugation of organic dyes onto non-luminescent metal nanoparticles (NPs) have greatly broadened their applications in both imaging and sensing. Herein, we report that conjugation of a well-known pH-insensitive dye, tetramethyl-rhodamine (TAMRA), to pH-insensitive luminescent gold nanoparticles (AuNPs) can lead to an ultrasmall nanoindicator that can fluorescently report local pH in a ratiometric way. Such synergy originated from the dimerization of TAMRA on AuNPs, of which geometry was very sensitive to surface charges of the AuNPs and can be reversely modulated through protonation of surrounding glutathione ligands. Not limited to pH-insensitive dyes, this pH-dependent dimerization can also enhance the pH sensitivity of fluorescein, a well-known pH-sensitive dye, within a larger pH range, opening up a new pathway to design ultrasmall fluorescent ratiometric nanoindicators with tunable wavelengths and pH response ranges. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A protein-dye hybrid system as a narrow range tunable intracellular pH sensor.
Anees, Palapuravan; Sudheesh, Karivachery V; Jayamurthy, Purushothaman; Chandrika, Arunkumar R; Omkumar, Ramakrishnapillai V; Ajayaghosh, Ayyappanpillai
2016-11-18
Accurate monitoring of pH variations inside cells is important for the early diagnosis of diseases such as cancer. Even though a variety of different pH sensors are available, construction of a custom-made sensor array for measuring minute variations in a narrow biological pH window, using easily available constituents, is a challenge. Here we report two-component hybrid sensors derived from a protein and organic dye nanoparticles whose sensitivity range can be tuned by choosing different ratios of the components, to monitor the minute pH variations in a given system. The dye interacts noncovalently with the protein at lower pH and covalently at higher pH, triggering two distinguishable fluorescent signals at 700 and 480 nm, respectively. The pH sensitivity region of the probe can be tuned for every unit of the pH window resulting in custom-made pH sensors. These narrow range tunable pH sensors have been used to monitor pH variations in HeLa cells using the fluorescence imaging technique.
Two 1,8- Naphthalimides as Proton-Receptor Fluorescent Sensors for Detecting PH
NASA Astrophysics Data System (ADS)
Wu, H.-L.; Peng, H.-P.; Wang, F.; Zhang, H.; Chen, C.-G.; Zhang, J.-W.; Yang, Z.-H.
2017-01-01
Two proton-receptor sensors for detecting pH change based on 1,8-naphthalimide, N-allyl-4-(4'-N,N-dioctylpropionamide-acetamido-piperazinyl)-1,8-naphthalimide ( 1), and N-(N,N-dioctylpropionamide-acetamido)-4-allyl-1-piperazinyl-1,8-naphthalimide ( 2), were designed, synthesized, and characterized. Photophysical characteristics of the sensors were investigated in different organic solvents and Britton-Robinson buffer/EtOH (1:1, v/v) solution. Sensor 2 displayed a good sensor activity towards protons within the pH range from 3.29 to 6.59, while sensor 1 demonstrated sensitivity to lower pH values from 2.21 to 4.35. The selectivity of the pH sensors toward protons in commonly used buffer solutions and in the presence of metal cations (Na+, K+, Ca2+, Mg2+, Al3+, Pb2+, Fe3+, Ni2+, Zn2+, Cu2+, Hg2+, Ag+, Co2+, Cr3+, Mn2+, and Cd2+) was studied by monitoring the changes in their fluorescence intensity. The results obtained indicate that the synthesized derivatives hold potential for monitoring pH variations between 2.21 and 6.59 in strong acid environments and bio-samples.
Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging
Burdikova, Zuzana; Svindrych, Zdenek; Pala, Jan; Hickey, Cian D.; Wilkinson, Martin G.; Panek, Jiri; Auty, Mark A. E.; Periasamy, Ammasi; Sheehan, Jeremiah J.
2015-01-01
Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g., pH, redox potential) due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM). In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening. PMID:25798136
Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging.
Burdikova, Zuzana; Svindrych, Zdenek; Pala, Jan; Hickey, Cian D; Wilkinson, Martin G; Panek, Jiri; Auty, Mark A E; Periasamy, Ammasi; Sheehan, Jeremiah J
2015-01-01
Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g., pH, redox potential) due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM). In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening.
Wu, Chi-Ming; Chen, Yen-Hao; Dayananda, Kasala; Shiue, Tsun-Wei; Hung, Chen-Hsiung; Liaw, Wen-Feng; Chen, Po-Yu; Wang, Yun-Ming
2011-12-05
A colorless and non-fluorescent rhodamine derivative, rhodamine B hydrazide (RH), is applied to detect nitric oxide and form fluorescent rhodamine B (RB). The reaction mechanism of RH with NO is proposed in this study. The probe shows good stability over a broad pH range (pH>4). Furthermore, fluorescence intensity of RH displays an excellent linearity to the NO concentration and the detection limit is as low as 20 nM. A 1000-fold fluorescence turn-on from a dark background was observed. Moreover, the selectivity study indicated that the fluorescence intensity increasing in the presence of NO was significantly higher than those of other reactive oxygen/nitrogen species. In exogenously generated NO detection study, clear intracellular red fluorescence was observed in the presence of S-nitroso-N-acetyl-D,L-penicillamine (SNAP, a kind of NO releasing agent). In endogenously generated NO detection study, increasing incubation time of RH with lipopolysaccharied (LPS) pre-treated cells could obtain a highly fluorescent cell image. These cell imaging results demonstrated that RH can efficiently penetrate into Raw 264.7 cells and be used for detection of exogenously and endogenously generated nitric oxide. Copyright © 2011 Elsevier B.V. All rights reserved.
Electrostatics Control Actin Filament Nucleation and Elongation Kinetics*
Crevenna, Alvaro H.; Naredi-Rainer, Nikolaus; Schönichen, André; Dzubiella, Joachim; Barber, Diane L.; Lamb, Don C.; Wedlich-Söldner, Roland
2013-01-01
The actin cytoskeleton is a central mediator of cellular morphogenesis, and rapid actin reorganization drives essential processes such as cell migration and cell division. Whereas several actin-binding proteins are known to be regulated by changes in intracellular pH, detailed information regarding the effect of pH on the actin dynamics itself is still lacking. Here, we combine bulk assays, total internal reflection fluorescence microscopy, fluorescence fluctuation spectroscopy techniques, and theory to comprehensively characterize the effect of pH on actin polymerization. We show that both nucleation and elongation are strongly enhanced at acidic pH, with a maximum close to the pI of actin. Monomer association rates are similarly affected by pH at both ends, although dissociation rates are differentially affected. This indicates that electrostatics control the diffusional encounter but not the dissociation rate, which is critical for the establishment of actin filament asymmetry. A generic model of protein-protein interaction, including electrostatics, explains the observed pH sensitivity as a consequence of charge repulsion. The observed pH effect on actin in vitro agrees with measurements of Listeria propulsion in pH-controlled cells. pH regulation should therefore be considered as a modulator of actin dynamics in a cellular environment. PMID:23486468
Olsen, Katja N.; Budde, Birgitte B.; Siegumfeldt, Henrik; Rechinger, K. Björn; Jakobsen, Mogens; Ingmer, Hanne
2002-01-01
We show that a pH-sensitive derivative of the green fluorescent protein, designated ratiometric GFP, can be used to measure intracellular pH (pHi) in both gram-positive and gram-negative bacterial cells. In cells expressing ratiometric GFP, the excitation ratio (fluorescence intensity at 410 and 430 nm) is correlated to the pHi, allowing fast and noninvasive determination of pHi that is ideally suited for direct analysis of individual bacterial cells present in complex environments. PMID:12147523
Damiano, E; Bassilana, M; Rigaud, J L; Leblanc, G
1984-01-23
Measurements of the fluorescent properties of 8-hydroxy-1,3,6-pyrenetrisulfonate (pyranine) enclosed within the internal space of Escherichia coli membrane vesicles enable recordings and quantitative analysis of: (i) changes in intravesicular pH taking place during oxidation of electron donors by the membrane respiratory chain; (ii) transient alkalization of the internal aqueous space resulting from the creation of outwardly directed acetate diffusion gradients across the vesicular membrane. Quantitation of the fluorescence variations recorded during the creation of transmembrane acetate gradients shows a close correspondence between the measured shifts in internal pH value and those expected from the amplitude of the imposed acetate gradients.
Azmi, Nur Ellina; Ramli, Noor Izaanin; Abdullah, Jaafar; Abdul Hamid, Mohammad Azmi; Sidek, Hamidah; Abd Rahman, Samsulida; Ariffin, Nurhayati; Yusof, Nor Azah
2015-05-15
A novel optical detection system consisting of combination of uricase/HRP-CdS quantum dots (QDs) for the determination of uric acid in urine sample is described. The QDs was used as an indicator to reveal fluorescence property of the system resulting from enzymatic reaction of uricase and HRP (horseradish peroxidase), which is involved in oxidizing uric acid to allaintoin and hydrogen peroxide. The hydrogen peroxide produced was able to quench the QDs fluorescence, which was proportional to uric acid concentration. The system demonstrated sufficient activity of uricase and HRP at a ratio of 5U:5U and pH 7.0. The linearity of the system toward uric acid was in the concentration range of 125-1000 µM with detection limit of 125 µM. Copyright © 2014 Elsevier B.V. All rights reserved.
Blood perfusion and pH monitoring in organs by laser-induced fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Vari, Sandor G.; Papazoglou, Theodore G.; Pergadia, Vani R.; Stavridi, Marigo; Snyder, Wendy J.; Papaioannou, Thanassis; Duffy, J. T.; Weiss, Andrew B.; Thomas, Reem; Grundfest, Warren S.
1994-01-01
Sensitivity of laser-induced fluorescence spectroscopy (LIFS) in detecting a change in tissue pH, and blood perfusion was determined. Rabbits were anesthetized, paralyzed, and mechanically ventilated. The arterial and venous blood supplies of the kidney were isolated and ligated to alter the perfusion. The femoral artery was cannulated to extract samples for blood gas analysis. A 308-nm XeCl was used as an excitation source. A 600 micrometers core diameter fiber was used for fluorescence acquisition, and the spectra analyzed by an optical multichannel analyzer (EG & G, OMA III). the corresponding intensity ratio R equals INADH / ICOLL was used as an index for respiratory acidosis. Blood perfusion was assessed using the following algorithm: (IELAS minus ICOLL) divided by (INADH minus ICOLL). The intensity ratio linearly decreased with the reduction of blood perfusion. When we totally occluded the artery the ratio decreased tenfold when compared to the ratio of a fully perfused kidney. Results of monitoring blood acidosis by laser-induced fluorescence spectroscopy shows a significant trend between pH and intensity ratio. Since all the slopes were negative, there is an obvious significant correlation between the pH and NADH.COLLAGEN RATIO. Blue-light-induced fluorescence measurements and ratio fluorometry is a sensitive method for monitoring blood perfusion and acidity or alkalinity of an organ.
Ohara-Imaizumi, Mica; Nakamichi, Yoko; Tanaka, Toshiaki; Katsuta, Hidenori; Ishida, Hitoshi; Nagamatsu, Shinya
2002-04-01
The dynamics of exocytosis/endocytosis of insulin secretory granules in pancreatic beta-cells remains to be clarified. In the present study, we visualized and analysed the motion of insulin secretory granules in MIN6 cells using pH-sensitive green fluorescent protein (pHluorin) fused to either insulin or the vesicle membrane protein, phogrin. In order to monitor insulin exocytosis, pHluorin, which is brightly fluorescent at approximately pH 7.4, but not at approximately pH 5.0, was attached to the C-terminus of insulin. To monitor the motion of insulin secretory granules throughout exocytosis/endocytosis, pHluorin was inserted between the third and fourth amino acids after the identified signal-peptide cleavage site of rat phogrin cDNA. Using this method of cDNA construction, pHluorin was located in the vesicle lumen, which may enable discrimination of the unfused acidic secretory granules from the fused neutralized ones. In MIN6 cells expressing insulin-pHluorin, time-lapse confocal laser scanning microscopy (5 or 10 s intervals) revealed the appearance of fluorescent spots by depolarization after stimulation with 50 mM KCl and 22 mM glucose. The number of these spots in the image at the indicated times was counted and found to be consistent with the results of insulin release measured by RIA during the time course. In MIN6 cells expressing phogrin-pHluorin, data showed that fluorescent spots appeared following high KCl stimulation and remained stationary for a while, moved on the plasma membrane and then disappeared. Thus we demonstrate the visualized motion of insulin granule exocytosis/endocytosis using the pH-sensitive marker, pHluorin.
Zhang, Yanan; Guo, Shan; Cheng, Shibo; Ji, Xinghu; He, Zhike
2017-08-15
The homeostasis of lysosomal pH is crucial in cell physiology. Developing small fluorescent nanosensors for lysosome imaging and ratiometric measurement of pH is highly demanded yet challenging. Herein, a pH-sensitive fluorescein tagged aptamer AS1411 has been utilized to covalently modify the label-free fluorescent silicon nanodots via a crosslinker for construction of a ratiometric pH biosensor. The established aptasensor exhibits the advantages of ultrasmall size, hypotoxicity, excellent pH reversibility and good photostability, which favors its application in an intracellular environment. Using human breast MCF-7 cancer cells and MCF-10A normal cells as the model, this aptasensor shows cell specificity for cancer cells and displays a wide pH response range of 4.5-8.0 in living cells. The results demonstrate that the pH of MCF-7 cells is 5.1, which is the expected value for acidic organelles. Lysosome imaging and accurate measurement of pH in MCF-7 cells have been successfully conducted based on this nanosensor via fluorescent microscopy and flow cytometry. Copyright © 2017 Elsevier B.V. All rights reserved.
Hu, Jinming; Li, Changhua; Liu, Shiyong
2010-01-19
We report on novel type of responsive double hydrophilic block copolymer (DHBC)-based multifunctional chemosensors to Hg(2+) ions, pH, and temperatures and investigate the effects of thermo-induced micellization on the detection sensitivity. Well-defined DHBCs bearing rhodamine B-based Hg(2+)-reactive moieties (RhBHA) in the thermo-responsive block, poly(ethylene oxide)-b-poly(N-isopropylacrylamide-co-RhBHA) (PEO-b-P(NIPAM-co-RhBHA)), were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Nonfluorescent RhBHA moieties are subjected to selective ring-opening reaction upon addition of Hg(2+) ions or lowering solution pH, producing highly fluorescent acyclic species. Thus, at room temperature PEO-b-P(NIPAM-co-RhBHA) DHBCs can serve as water-soluble multifunctional and efficient fluorescent chemosensors to Hg(2+) ions and pH. Upon heating above the lower critical solution temperature (approximately 36 degrees C) of the PNIPAM block, they self-assemble into micelles possessing P(NIPAM-co-RhBHA) cores and well-solvated PEO coronas, which were fully characterized by dynamic and static laser light scattering. It was found that the detection sensitivity to Hg(2+) ions and pH could be dramatically improved at elevated temperatures due to fluorescence enhancement of RhBHA residues in the acyclic form, which were embedded within hydrophobic cores of thermo-induced micellar aggregates. This work represents a proof-of-concept example of responsive DHBC-based multifunctional fluorescent chemosensors for the highly efficient detection of Hg(2+) ions, pH, and temperatures with tunable detection sensitivity. Compared to reaction-based small molecule Hg(2+) probes in previous literature reports, the integration of stimuli-responsive block copolymers with well-developed small molecule-based selective sensing moieties in the current study are expected to exhibit preferred advantages including enhanced detection sensitivity, water dispersibility, biocompatibility, facile incorporation into devices, and the ability of further functionalization for targeted imaging and detection.
A new fluorescent pH probe for imaging lysosomes in living cells.
Lv, Hong-Shui; Huang, Shu-Ya; Xu, Yu; Dai, Xi; Miao, Jun-Ying; Zhao, Bao-Xiang
2014-01-15
A new rhodamine B-based pH fluorescent probe has been synthesized and characterized. The probe responds to acidic pH with short response time, high selectivity and sensitivity, and exhibits a more than 20-fold increase in fluorescence intensity within the pH range of 7.5-4.1 with the pKa value of 5.72, which is valuable to study acidic organelles in living cells. Also, it has been successfully applied to HeLa cells, for its low cytotoxicity, brilliant photostability, good membrane permeability and no 'alkalizing effect' on lysosomes. The results demonstrate that this probe is a lysosome-specific probe, which can selectively stain lysosomes and monitor lysosomal pH changes in living cells. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vegesna, Giri K; Sripathi, Srinivas R; Zhang, Jingtuo; Zhu, Shilei; He, Weilue; Luo, Fen-Tair; Jahng, Wan Jin; Frost, Megan; Liu, Haiying
2013-05-22
A highly water-soluble BODIPY dye bearing electron-rich o-diaminophenyl groups at 2,6-positions was prepared as a highly sensitive and selective fluorescent probe for detection of nitric oxide (NO) in living cells. The fluorescent probe displays an extremely weak fluorescence with fluorescence quantum yield of 0.001 in 10 mM phosphate buffer (pH 7.0) in the absence of NO as two electron-rich o-diaminophenyl groups at 2,6-positions significantly quench the fluorescence of the BODIPY dye via photoinduced electron transfer mechanism. The presence of NO in cells enhances the dye fluorescence dramatically. The fluorescent probe demonstrates excellent water solubility, membrane permeability, and compatibility with living cells for sensitive detection of NO.
NASA Astrophysics Data System (ADS)
Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng
2016-05-01
A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex® fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications.
Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng
2016-01-01
A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex® fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications. PMID:27199163
Hirschfeld, Tomas B.; Wang, Francis T.
1989-01-01
An apparatus is provided for remotely monitoring pH. A support material is provided on which organic dye molecules are covalently attached at a surface density falling within a predetermined range. The pH dependent fluorescence response of the bound organic dye molecules depends critically on surface density of the organic dye molecules bound to the support material and the nature of the covalent linkage betwen the organic dye molecules and the support material. The invention is operated by contacting the support material on which the organic dye is attached with the fluid whose pH is to be determined. When in contact, the organic dye on the support material is illuminated so that it is caused to fluoresce. The intensity of organic dye fluorescence is then related to pH.
Lotfi, Ali; Manzoori, Jamshid L
2016-11-01
In this study, a simple and sensitive spectrofluorimetric method is presented for the determination of fluoxetine based on the enhancing effect of silver nanoparticles (AgNPs) on the terbium-fluoxetine fluorescence emission. The AgNPs were prepared by a simple reduction method and characterized by UV-Vis spectroscopy and transmission electron microscopy. It was indicated that these AgNPs have a remarkable amplifying effect on the terbium-sensitized fluorescence of fluoxetine. The effects of various parameters such as AgNP and Tb 3+ concentration and the pH of the media were investigated. Under obtained optimal conditions, the fluorescence intensity of the terbium-fluoxetine-AgNP system was enhanced linearly by increasing the concentration of fluoxetine in the range of 0.008 to 19 mg/L. The limit of detection (b + 3s) was 8.3 × 10 -4 mg/L. The interference effects of common species found in real samples were also studied. The method had good linearity, recovery, reproducibility and sensitivity, and was satisfactorily applied for the determination of fluoxetine in tablet formulations, human urine and plasma samples. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Akbar, Rifat; Baral, Minati; Kanungo, B K
2017-01-01
Photophysical properties of a multidentate tripodal ligand, 5,5'-(2-(((8-hydroxyquinolin-5-yl) methylamino)methyl)-2-methylpropane-1,3-diyl) bis (azanediyl)bis (methylene)diquinolin-8-ol, (TAME5OX), with La 3+ and Er 3+ ions have been examined for photonics applications. The change in behavior in electronic spectra of these complexes reveals the use of TAME5OX as a sensitive optical pH based sensor to detect Ln 3+ ions whereas indication of strong green fluorescence allows simultaneous sensing within the visible region in competitive medium. The intense fluorescence intermittently gets quenched under acidic and basic conditions due to photoinduced intramolecular electron transfer from the excited 8-hydroxyquinoline (8-HQ) moiety to the metal ion. This renders these compounds the OFF-ON-OFF type of pH-dependent fluorescent sensor. The thermodynamic stability and coordination behaviour of the chelator with the said lanthanide ions have also been probed by potentiometric, UV - visible and fluorescence spectrophotometric method. TAME5OX forms protonated complex [Ln (H 4 L)] 4+ below pH ~4.0 which sequentially deprotonates through one proton process with increase of pH. The stability constants of neutral complexes have been determined to be in the range log β 110 = 32-34 and pLn in the range of 14-20, indicating TAME5OX is a good synthetic lanthanide chelator. Theoretical spectra were also calculated by ZINDO/s methodology at single excitations (CIS) level on PM7 as sparkle energy-minimized geometries.
Leite, Andreia; Silva, Ana M G; Cunha-Silva, Luís; de Castro, Baltazar; Gameiro, Paula; Rangel, Maria
2013-05-07
In the present work we describe the structure and the spectroscopic characterization of a spirocyclic derivative of a rhodamine B ligand whose properties allow discrimination of light-up effects induced by metal ion chelation and variation of pH. Distinction of the two effects is important for the use of this type of ligand to detect and monitor metal ions in aqueous solutions. The synthesis of the ligand was performed in two steps, which involve the reaction of rhodamine B with hydrazine hydrate to form rhodamine B hydrazide followed by condensation with 2-pyridinecarboxaldehyde and was successfully optimized using a solvent free approach under microwave irradiation. The ligand was obtained in the expected spirolactam form and was characterized in the solid state by EA, MS and single-crystal X-ray diffraction. The ligand was characterized in solution by NMR and absorption and fluorescence spectroscopies and its properties were found to be sensitive to pH and concentration of iron(III). The study of the fluorescence properties at variable pH shows that the compound is fluorescent in the range 2 < pH < 4 with maximum intensity at pH 3 and allowed the determination of two pK(a) values (pK(a1) = 2.98, pK(a2) = 2.89) and establishment of the corresponding distribution diagram. The very low pK(a) values guarantee that above pH equal to 4 the ligand is mostly present in the fully non-protonated and non-fluorescent form L. The study of the interaction of the ligand with iron(iii) was performed in DMSO and DMSO-H(2)O to exclude the influence of pH and due to the low solubility of the compound. The results indicate that the presence of iron(III) triggers the opening of the spirolactam form of the ligand and the maximum intensity obtained at a metal : ligand ratio of 1 : 2 is consistent with the formation of an iron(III) complex with the tridentate ligand.
Solvatochromic fluorescence characteristics of cinnamoyl pyrone derivatives
NASA Astrophysics Data System (ADS)
Benosmane, Nadjib; Boutemeur, Baya; Hamdi, Safouane M.; Hamdi, Maamar; Silva, Artur S. M.
2017-12-01
The solvatochromic fluorescence behavior of cinnamoyl pyrone derivatives has been studied in several polar and non-polar solvents. The fluorescence spectra of these compounds exhibit red shift from its absorption spectra and present an excellent correlation with solvent polarity. Cinnamoyl pyrones show a significant spectral shift in fluorescence emission as a function of water composition in binary aqueous solutions mixture. This change is due to the specific intermolecular hydrogen bonding of cinnamoyl pyrones with a molecules of water, due to the deactivation of the lowest excited singlet state of these compounds. The relative quantum yields are calculated. It is found that the quantum yields of the cinnamoyl pyrones vary with the change in the solvent polarity indicating the dependency of fluorescence properties on the solvent nature. It has been observed that the addition of water and pH medium can affect the fluorescence properties of cinnamoyl pyrones in ethanol. This study exhibited that due to the solvent sensitive emission, cinnamoyl pyrone derivatives are a good compound to be used as fluorescence probes.
Liang, Fang-Cheng; Kuo, Chi-Ching; Chen, Bo-Yu; Cho, Chia-Jung; Hung, Chih-Chien; Chen, Wen-Chang; Borsali, Redouane
2017-05-17
Novel red-green-blue (RGB) switchable probes based on fluorescent porous electrospun (ES) nanofibers exhibiting high sensitivity to pH and mercury ions (Hg 2+ ) were prepared with one type of copolymer (poly(methyl methacrylatete-co-1,8-naphthalimide derivatives-co-rhodamine derivative); poly(MMA-co-BNPTU-co-RhBAM)) by using a single-capillary spinneret. The MMA, BNPTU, and RhBAM moieties were designed to (i) permit formation of porous fibers, (ii) fluoresce for Hg 2+ detection, and (iii) fluoresce for pH, respectively. The fluorescence emission of BNPTU (fluorescence resonance energy transfer (FRET) donor) changed from green to blue as it detected Hg 2+ . The fluorescence emission of RhBAM (FRET acceptor) was highly selective for pH, changing from nonfluorescent (pH 7) to exhibiting strong red fluorescence (pH 2). The full-color emission of the ES nanofibers included green, red, blue, purple, and white depending on the particular pH and Hg 2+ -concentration combination of the solution. The porous ES nanofibers with 30 nm pores were fabricated using hydrophobic MMA, low-boiling-point solvent, and at a high relative humidity (80%). These porous ES nanofibers had a higher surface-to-volume ratio than did the corresponding thin films, which enhanced their performance. The present study demonstrated that the FRET-based full-color-fluorescence porous nanofibrous membranes, which exhibit on-off switching and can be used as naked eye probes, have potential for application in water purification sensing filters.
Hirschfeld, T.B.; Wang, F.T.
1989-02-07
An apparatus is provided for remotely monitoring pH. A support material is provided on which organic dye molecules are covalently attached at a surface density falling within a predetermined range. The pH dependent fluorescence response of the bound organic dye molecules depends critically on surface density of the organic dye molecules bound to the support material and the nature of the covalent linkage between the organic dye molecules and the support material. The invention is operated by contacting the support material on which the organic dye is attached with the fluid whose pH is to be determined. When in contact, the organic dye on the support material is illuminated so that it is caused to fluoresce. The intensity of organic dye fluorescence is then related to pH. 4 figs.
Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui
2016-12-09
Accurate quantitation of intracellular pH (pH i ) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pH i sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pH i . Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pH i , in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF 4 :Yb 3+ , Tm 3+ UCNPs were used as pH i response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pH i value 3.0-7.0 with deviation less than 0.43. This approach shall facilitate the researches in pH i related areas and development of the intracellular drug delivery systems.
pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis
Shen, Yi; Rosendale, Morgane
2014-01-01
Fluorescent proteins with pH-sensitive fluorescence are valuable tools for the imaging of exocytosis and endocytosis. The Aequorea green fluorescent protein mutant superecliptic pHluorin (SEP) is particularly well suited to these applications. Here we describe pHuji, a red fluorescent protein with a pH sensitivity that approaches that of SEP, making it amenable for detection of single exocytosis and endocytosis events. To demonstrate the utility of the pHuji plus SEP pair, we perform simultaneous two-color imaging of clathrin-mediated internalization of both the transferrin receptor and the β2 adrenergic receptor. These experiments reveal that the two receptors are differentially sorted at the time of endocytic vesicle formation. PMID:25385186
Hassan, Ahmed Sheikh; Sapin, Anne; Ubrich, Nathalie; Maincent, Philippe; Bolzan, Claire; Leroy, Pierre
2008-10-01
A simple and sensitive high-performance liquid chromatography (HPLC) assay applied to the measurement of ibuprofen in rat plasma has been developed. Two parameters have been investigated to improve ibuprofen detectability using fluorescence detection: variation of mobile phase pH and the use of beta-cyclodextrin (beta-CD). Increasing the pH value from 2.5 to 6.5 and adding 5 mM beta-CD enhanced the fluorescence signal (lambda(exc) = 224 nm; lambda(em) = 290 nm) by 2.5 and 1.3-fold, respectively, when using standards. In the case of plasma samples, only pH variation significantly lowered detection and quantification limits, down to 10 and 35 ng/mL, respectively. Full selectivity was obtained with a single step for plasma treatment, that is, protein precipitation with acidified acetonitrile. The validated method was applied to a pharmacokinetic study of ibuprofen encapsulated in microspheres and subcutaneously administered to rats.
Xu, Xiao-Yu; Yan, Bing
2016-04-28
A pH sensor is fabricated via a reaction between an Al(III) salt and 2-aminoterephthalic acid in DMF which leads to a MOF (Al-MIL-101-NH2) with free amino groups. The Al-MIL-101-NH2 samples show good luminescence and an intact structure in aqueous solutions with pH ranging from 4.0 to 7.7. Given its exceptional stability and pH-dependent fluorescence intensity, Al-MIL-101-NH2 has been applied to fluorescent pH sensing. Significantly, in the whole experimental pH range (4.0-7.7), the fluorescence intensity almost increases with increasing pH (R(2) = 0.99688) which can be rationalized using a linear equation: I = 2.33 pH + 26.04. In addition, error analysis and cycling experiments have demonstrated the accuracy and utilizability of the sensor. In practical applications (PBS and lake water), Al-MIL-101-NH2 also manifests its analytical efficiency in pH sensing. And the samples can be easily isolated from an aqueous solution by incorporating Fe3O4 nanoparticles. Moreover, the possible sensing mechanism based on amino protonation is discussed in detail. This work is on of the few cases for integrated pH sensing systems in aqueous solution based on luminescent MOFs.
Goswami, Shyamaprosad; Chakraborty, Shampa; Paul, Sima; Halder, Sandipan; Panja, Sukanya; Mukhopadhyay, Subhra Kanti
2014-05-21
A new pyrene based fluorescence probe has been synthesized for fluorogenic detection of Cu(2+) in acetonitrile-aqueous media (7 : 3 CH3CN-HEPES buffer, v/v, at pH 7.5) with bioimaging in both prokaryotic (Candida albicans cells) and eukaryotic (Tecoma stans pollen cells) living cells. The anion recognition properties of the sensor have also been studied in acetonitrile by fluorescence methods which show remarkable sensitivity toward fluoride over other anions examined.
Wang, Lei; Yang, Xiaodong; Chen, Xiuli; Zhou, Yuping; Lu, Xiaodan; Yan, Chenggong; Xu, Yikai; Liu, Ruiyuan; Qu, Jinqing
2017-03-01
A novel fluorescence probe 1 based on triphenylamine was synthesized and characterized by NMR, IR, high resolution mass spectrometry and elemental analysis. Its fluorescence was quenched when pH below 2. There was a linear relationship between the fluorescence intensity and pH value ranged from 2 to 7. And its fluorescence emission was reversibility in acidic and alkaline solution. Furthermore, it exhibited remarkable selectivity and high sensitivity to Fe 3+ and was able to detect Fe 3+ in aqueous solution with low detection limit of 0.511μM. Job plot showed that the binding stoichiometry of 1 with Fe 3+ was 1:1. Further observations of 1 H NMR titration suggested that coordination interaction between Fe 3+ and nitrogen atom on CN bond promoted the intramolecular charge transfer (ICT) or energy transfer process causing fluorescence quenching. Additionally, 1 was also able to be applied for detecting Fe 3+ in living cell and bioimaging. Copyright © 2016. Published by Elsevier B.V.
Li, Kai; Feng, Qi; Niu, Guangle; Zhang, Weijie; Li, Yuanyuan; Kang, Miaomiao; Xu, Kui; He, Juan; Hou, Hongwei; Tang, Ben Zhong
2018-04-23
In this work, a benzothiazole-based aggregation-induced emission luminogen (AIEgen) of 2-(5-(4-carboxyphenyl)-2-hydroxyphenyl)benzothiazole (3) was designed and synthesized, which exhibited multifluorescence emissions in different dispersed or aggregated states based on tunable excited-state intramolecular proton transfer (ESIPT) and restricted intramolecular rotation (RIR) processes. 3 was successfully used as a ratiometric fluorescent chemosensor for the detection of pH, which exhibited reversible acid/base-switched yellow/cyan emission transition. More importantly, the pH jump of 3 was very precipitous from 7.0 to 8.0 with a midpoint of 7.5, which was well matched with the physiological pH. This feature makes 3 very suitable for the highly sensitive detection of pH fluctuation in biosamples and neutral water samples. 3 was also successfully used as a ratiometric fluorescence chemosensor for the detection of acidic and basic organic vapors in test papers.
Feng, Weiyong; Li, Meixing; Sun, Yao; Feng, Guoqiang
2017-06-06
Selenocysteine (Sec) is the 21st naturally occurring amino acid and has emerged as an important sensing target in recent years. However, fluorescent detection of Sec in living systems is challenging. To date, very few fluorescent Sec probes have been reported and most of them respond fluorescence to Sec in the visible region. In this paper, a very promising near-infrared fluorescent probe for Sec was developed. This probe works in aqueous solution over a wide pH range under mild conditions and can be used for rapid, highly selective and sensitive detection of Sec with significant near-infrared fluorescent turn-on signal changes. In addition, it features a remarkable large Stokes shift (192 nm) and a low detection limit (60 nM) for Sec with a wide linear range (0-70 μM). Moreover, this probe can be conveniently used to detect Sec in serum samples, living cells, and animals, indicating it holds great promise for biological applications.
Chen, Juan; Chen, Hao; Zhang, Xing-wen; Lei, Kun; Kenny, Jonathan E
2015-11-01
A fluorescence quenching model using copper(II) ion (Cu(2+)) ion selective electrode (Cu-ISE) is developed. It uses parallel factor analysis (PARAFAC) to model fluorescence excitation-emission matrices (EEMs) of humic acid (HA) samples titrated with Cu(2+) to resolve fluorescence response of fluorescent components to Cu(2+) titration. Meanwhile, Cu-ISE is employed to monitor free Cu(2+) concentration ([Cu]) at each titration step. The fluorescence response of each component is fit individually to a nonlinear function of [Cu] to find the Cu(2+) conditional stability constant for that component. This approach differs from other fluorescence quenching models, including the most up-to-date multi-response model that has a problematic assumption on Cu(2+) speciation, i.e., an assumption that total Cu(2+) present in samples is a sum of [Cu] and those bound by fluorescent components without taking into consideration the contribution of non-fluorescent organic ligands and inorganic ligands to speciation of Cu(2+). This paper employs the new approach to investigate Cu(2+) binding by Pahokee peat HA (PPHA) at pH values of 6.0, 7.0, and 8.0 buffered by phosphate or without buffer. Two fluorescent components (C1 and C2) were identified by PARAFAC. For the new quenching model, the conditional stability constants (logK1 and logK2) of the two components all increased with increasing pH. In buffered solutions, the new quenching model reported logK1 = 7.11, 7.89, 8.04 for C1 and logK2 = 7.04, 7.64, 8.11 for C2 at pH 6.0, 7.0, and 8.0, respectively, nearly two log units higher than the results of the multi-response model. Without buffer, logK1 and logK2 decreased but were still high (>7) at pH 8.0 (logK1 = 7.54, logK2 = 7.95), and all the values were at least 0.5 log unit higher than those (4.83 ~ 5.55) of the multi-response model. These observations indicate that the new quenching model is more intrinsically sensitive than the multi-response model in revealing strong fluorescent binding sites of PPHA in different experimental conditions. The new model was validated by testing it with a mixture of two fluorescing Cu(2+) chelating organic compounds, i.e., l-tryptophan and salicylic acid mixed with one non-fluorescent binding compound oxalic acid titrated with Cu(2+) at pH 5.0.
Wu, Luling; Li, Xiaolin; Huang, Chusen; Jia, Nengqin
2016-08-16
As traditional pH meters cannot work well for minute regions (such as subcellular organelles) and in harsh media, molecular pH-sensitive devices for monitoring pH changes in diverse local heterogeneous environments are urgently needed. Here, we report a new dual-modal colorimetric/fluorescence merocyanine-based molecular probe (CPH) for ratiometric sensing of pH. Compared with previously reported pH probes, CPH bearing the benzyl group at the nitrogen position of the indolium group and the phenol, which is used as the acceptor for proton, could respond to pH changes immediately through both the ratiometric fluorescence signal readout and naked-eye colorimetric observation. The sensing process was highly stable and reversible. Most importantly, the suitable pKa value (6.44) allows CPH to presumably accumulate in lysosomes and become a lysosome-target fluorescent probe. By using CPH, the intralysosomal pH fluctuation stimulated by antimalaria drug chloroquine was successfully tracked in live cells through the ratiometric fluorescence images. Additionally, CPH could be immobilized on test papers, which exhibited a rapid and reversible colorimetric response to acid/base vapor through the naked-eye colorimetric analysis. This proof-of-concept study presents the potential application of CPH as a molecular tool for monitoring intralysosomal pH fluctuation in live cells, as well as paves the way for developing the economic, reusable, and fast-response optical pH meters for colorimetric sensing acid/base vapor with direct naked-eye observation.
Ho, Cheuk Y; Choy, Christopher H; Wattson, Christina A; Johnson, Danielle E; Botelho, Roberto J
2015-04-10
Lysosomes and the yeast vacuole are degradative and acidic organelles. Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), a master architect of endolysosome and vacuole identity, is thought to be necessary for vacuolar acidification in yeast. There is also evidence that PtdIns(3,5)P2 may play a role in lysosomal acidification in higher eukaryotes. Nevertheless, these conclusions rely on qualitative assays of lysosome/vacuole pH. For example, quinacrine, an acidotropic fluorescent base, does not accumulate in the vacuoles of fab1Δ yeast. Fab1, along with its mammalian ortholog PIKfyve, is the lipid kinase responsible for synthesizing PtdIns(3,5)P2. In this study, we employed several assays that quantitatively assessed the lysosomal and vacuolar pH in PtdIns(3,5)P2-depleted cells. Using ratiometric imaging, we conclude that lysosomes retain a pH < 5 in PIKfyve-inhibited mammalian cells. In addition, quantitative fluorescence microscopy of vacuole-targeted pHluorin, a pH-sensitive GFP variant, indicates that fab1Δ vacuoles are as acidic as wild-type yeast. Importantly, we also employed fluorimetry of vacuoles loaded with cDCFDA, a pH-sensitive dye, to show that both wild-type and fab1Δ vacuoles have a pH < 5.0. In comparison, the vacuolar pH of the V-ATPase mutant vph1Δ or vph1Δ fab1Δ double mutant was 6.1. Although the steady-state vacuolar pH is not affected by PtdIns(3,5)P2 depletion, it may have a role in stabilizing the vacuolar pH during salt shock. Overall, we propose a model in which PtdIns(3,5)P2 does not govern the steady-state pH of vacuoles or lysosomes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Ho, Cheuk Y.; Choy, Christopher H.; Wattson, Christina A.; Johnson, Danielle E.; Botelho, Roberto J.
2015-01-01
Lysosomes and the yeast vacuole are degradative and acidic organelles. Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), a master architect of endolysosome and vacuole identity, is thought to be necessary for vacuolar acidification in yeast. There is also evidence that PtdIns(3,5)P2 may play a role in lysosomal acidification in higher eukaryotes. Nevertheless, these conclusions rely on qualitative assays of lysosome/vacuole pH. For example, quinacrine, an acidotropic fluorescent base, does not accumulate in the vacuoles of fab1Δ yeast. Fab1, along with its mammalian ortholog PIKfyve, is the lipid kinase responsible for synthesizing PtdIns(3,5)P2. In this study, we employed several assays that quantitatively assessed the lysosomal and vacuolar pH in PtdIns(3,5)P2-depleted cells. Using ratiometric imaging, we conclude that lysosomes retain a pH < 5 in PIKfyve-inhibited mammalian cells. In addition, quantitative fluorescence microscopy of vacuole-targeted pHluorin, a pH-sensitive GFP variant, indicates that fab1Δ vacuoles are as acidic as wild-type yeast. Importantly, we also employed fluorimetry of vacuoles loaded with cDCFDA, a pH-sensitive dye, to show that both wild-type and fab1Δ vacuoles have a pH < 5.0. In comparison, the vacuolar pH of the V-ATPase mutant vph1Δ or vph1Δ fab1Δ double mutant was 6.1. Although the steady-state vacuolar pH is not affected by PtdIns(3,5)P2 depletion, it may have a role in stabilizing the vacuolar pH during salt shock. Overall, we propose a model in which PtdIns(3,5)P2 does not govern the steady-state pH of vacuoles or lysosomes. PMID:25713145
Synthesis of a ratiometric fluorescent peptide sensor for the highly selective detection of Cd2+.
Li, Yan; Li, Lianzhi; Pu, Xuewei; Ma, Guolin; Wang, Erqiong; Kong, Jinming; Liu, Zhipeng; Liu, Yangzhong
2012-06-15
A novel ratiometric fluorescent peptidyl chemosensor (Dansyl-Cys-Pro-Gly-Cys-Trp-NH(2), D-P5) for metal ions detection has been synthesized via Fmoc solid-phase peptide synthesis. The chemosensor exhibited a high selectivity for Cd(2+) over other metal ions including competitive transition and Group I and II metal ions in neutral pH. The fluorescence emission intensity of D-P5 was significantly enhanced in the presence of Cd(2+) by fluorescent resonance energy transfer (FRET) and chelation enhanced fluorescence (CHEF) effects. The binding stoichiometry, detection limit, binding affinity, reversibility and pH sensitivity of the sensor for Cd(2+) were investigated. Copyright © 2012 Elsevier Ltd. All rights reserved.
Development of a fluorescence endoscopic system for pH mapping of gastric tissue
NASA Astrophysics Data System (ADS)
Rochon, Philippe; Mordon, Serge; Buys, Bruno; Dhelin, Guy; Lesage, Jean C.; Chopin, Claude
2003-10-01
Measurement of gastro intestinal intramucosal pH (pHim) has been recognized as an important factor in the detection of hypoxia induced dysfonctions. However, current pH measurements techniques are limited in terms of time and spatial resolutions. A major advance in accurate pH measurement was the development of the ratiometric fluorescent indicator dye, 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF). BCECF which pKa is in the physiological pH range is suitable for pH tissue measurements in vivo. This study aimed to develop and evaluate an endoscopic imaging system for real time pH measurements in the stomach in order to provide to ICU a new tool for gastro intestinal intramucosal pH (pHim) measurements. This fluorescence imaging technique should allow the temporal exploration of sequential events, particularly in ICU where the pHim provides a predictive information of the patient' status. The experimental evaluations of this new and innovative endoscopic fluorescence system confirms the accuracy of pH measurement using BCECF.
Chen, Xu; Sun, Xueke; Xu, Wen; Pan, Gencai; Zhou, Donglei; Zhu, Jinyang; Wang, He; Bai, Xue; Dong, Biao; Song, Hongwei
2018-01-18
Intracellular pH sensing is of importance and can be used as an indicator for monitoring the evolution of various diseases and the health of cells. Here, we developed a new class of surface-functionalized MXene quantum dots (QDs), Ti 3 C 2 , by the sonication cutting and hydrothermal approach and further explored their intracellular pH sensing. The functionalized Ti 3 C 2 QDs exhibit bright excitation-dependent blue photoluminescence (PL) originating from the size effect and surface defects. Meanwhile, Ti 3 C 2 QDs demonstrate a high PL response induced by the deprotonation of the surface defects. Furthermore, combining the highly pH sensitive Ti 3 C 2 QDs with the pH insensitive [Ru(dpp) 3 ]Cl 2 , we developed a ratiometric pH sensor to quantitatively monitor the intracellular pH values. These novel MXene quantum dots can serve as a promising platform for developing practical fluorescent nanosensors.
Gangidi, R R; Metzger, L E
2006-11-01
The purpose of this study was to determine if the ionic calcium content of skim milk could be determined using molecular probes and front-face fluorescence spectroscopy. Current methods for determining ionic calcium are not sensitive, overestimate ionic calcium, or require complex procedures. Molecular probes designed specifically for measuring ionic calcium could potentially be used to determine the ionic calcium content of skim milk. The goal of the current study was to develop foundation methods for future studies to determine ionic calcium directly in skim milk and other dairy products with molecular probes and fluorescence spectroscopy. In this study, the effect of pH on calcium-sensitive fluorescent probe (Rhod-5N and Fluo-5N) performance using various concentrations of skim milk was determined. The pH of diluted skim milk (1.9 to 8.9% skim milk), was adjusted to either 6.2 or 7.0, after which the samples were analyzed with fluorescent probes (1 microM) and front-face fluorescence spectroscopy. The ionic calcium content of each sample was also determined using a calcium ion-selective electrode. The results demonstrated that the ionic calcium content of each sample was highly correlated (R2 > 0.989) with the fluorescence intensities of the probe-calcium adduct using simple linear regression. Higher than suggested ionic calcium contents of 1,207 and 1,973 microM were determined with the probes (Fluo-5N and Rhod-5N) in diluted skim milk with pH 7.0 and 6.2, respectively. The fluorescence intensity of the probe-calcium adduct decreased with a decrease in pH for the same ionic calcium concentration. This study demonstrates that Fluo-5N and Rhod-5N can be used to determine the ionic-calcium content of diluted milk with front-face fluorescence spectroscopy. Furthermore, these probes may also have the potential to determine the ionic calcium content of undiluted skim milk.
Fluorescent ratiometric pH indicator SypHer2: applications in neuroscience and regenerative biology
Matlashov, Mikhail E.; Bogdanova, Yulia A.; Ermakova, Galina V.; Mishina, Natalia M.; Ermakova, Yulia G.; Nikitin, Evgeny S.; Balaban, Pavel M.; Okabe, Shigeo; Lukyanov, Sergey; Enikolopov, Grigori; Zaraisky, Andrey G.; Belousov, Vsevolod V.
2015-01-01
Background SypHer is a genetically encoded fluorescent pH-indicator with a ratiometric readout, suitable for measuring fast intracellular pH shifts. However, a relatively low brightness of the indicator limits its use. Methods Here we designed a new version of pH-sensor - SypHer-2, that has up to three times brighter fluorescence signal in cultured mammalian cells compared to the SypHer. Results Using the new indicator we registered activity-associated pH oscillations in neuronal cell culture. We observed prominent temporal neuronal cytoplasm acidification that occurs in parallel with calcium entry. Furthermore, we monitored pH in presynaptic and postsynaptic termini by targeting SypHer-2 directly to these compartments and revealed marked differences in pH dynamics between synaptic boutons and dendritic spines. Finally, we were able to reveal for the first time the intracellular pH drop which occurs within an extended region of the amputated tail of the Xenopus laevis tadpole before it begins to regenerate. Conclusions SypHer2 is suitable for quantitative monitoring of pH in biological systems of different scales, from small cellular subcompartments to animal tissues in vivo. General significance The new pH-sensor will help to investigate pH-dependent processes in both in vitro and in vivo studies. PMID:26259819
Fluorescent ratiometric pH indicator SypHer2: Applications in neuroscience and regenerative biology.
Matlashov, Mikhail E; Bogdanova, Yulia A; Ermakova, Galina V; Mishina, Natalia M; Ermakova, Yulia G; Nikitin, Evgeny S; Balaban, Pavel M; Okabe, Shigeo; Lukyanov, Sergey; Enikolopov, Grigori; Zaraisky, Andrey G; Belousov, Vsevolod V
2015-11-01
SypHer is a genetically encoded fluorescent pH-indicator with a ratiometric readout, suitable for measuring fast intracellular pH shifts. However, the relatively low brightness of the indicator limits its use. Here we designed a new version of pH-sensor called SypHer-2, which has up to three times brighter fluorescence in cultured mammalian cells compared to the SypHer. Using the new indicator we registered activity-associated pH oscillations in neuronal cell culture. We observed prominent transient neuronal cytoplasm acidification that occurs in parallel with calcium entry. Furthermore, we monitored pH in presynaptic and postsynaptic termini by targeting SypHer-2 directly to these compartments and revealed marked differences in pH dynamics between synaptic boutons and dendritic spines. Finally, we were able to reveal for the first time the intracellular pH drop that occurs within an extended region of the amputated tail of the Xenopus laevis tadpole before it begins to regenerate. SypHer2 is suitable for quantitative monitoring of pH in biological systems of different scales, from small cellular subcompartments to animal tissues in vivo. The new pH-sensor will help to investigate pH-dependent processes in both in vitro and in vivo studies. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Jia-Ming; Lin, Li-ping; Wang, Xin-Xing; Lin, Shao-Qin; Cai, Wen-Lian; Zhang, Li-Hong; Zheng, Zhi-Yong
2012-06-07
Based on the ability of lysine (Lys) to enhance the fluorescence intensity of bovine serum albumin modified-carbon dots (CDs-BSA) to decrease surface defects and quench fluorescence of the CDs-BSA-Lys system in the presence of Cu(2+) under conditions of phosphate buffer (PBS, pH = 5.0) at 45 °C for 10 min, a sensitive Lys enhancing CDs-BSA fluorescent probe was designed. The environment-friendly, simple, rapid, selective and sensitive fluorescent probe has been utilized to detect Cu(2+) in hair and tap water samples and it achieved consistent results with those obtained by inductively coupled plasma mass spectroscopy (ICP-MS). The mechanism of the proposed assay for the detection of Cu(2+) is discussed.
Selective imaging of cancer cells with a pH-activatable lysosome-targeting fluorescent probe.
Shi, Rongguang; Huang, Lu; Duan, Xiaoxue; Sun, Guohao; Yin, Gui; Wang, Ruiyong; Zhu, Jun-Jie
2017-10-02
Fluorescence imaging with tumor-specific fluorescent probe has emerged as a tool to aid surgeons in the identification and removal of tumor tissue. We report here a new lysosome-targeting fluorescent probe (NBOH) with BODIPY fluorephore to distinguish tumor tissue out of normal tissue based on different pH environment. The probe exhibited remarkable pH-dependent fluorescence behavior in a wide pH range from 3.0 to 11.0, especially a sensitive pH-dependent fluorescence change at pH range between 3.5 and 5.5, corresponding well to the acidic microenvironment of tumor cells, in aqueous solution. The response time of NBOH was extremely short and the photostability was proved to be good. Toxicity test and fluorescence cell imaging together with a sub-cellular localization study were carried out revealing its low biotoxicity and good cell membrane permeability. And NBOH was successfully applied to the imaging of tumor tissue in tumor-bearing mice suggesting potential application to surgery as a tumor-specific probe. Copyright © 2017 Elsevier B.V. All rights reserved.
Shi, Lihong; Li, Yanyan; Li, Xiaofeng; Zhao, Bo; Wen, Xiangping; Zhang, Guomei; Dong, Chuan; Shuang, Shaomin
2016-03-15
We report a controllable strategy for fabrication of green and blue fluorescent carbon nanodots (CDs), and demonstrate their applications for pH and Cu(2+) sensing in living cells. Green and blue fluorescent CDs have been synthesized by hydrothermal method and pyrolysis of leeks, respectively, providing an easy way for the production of CDs without the request of tedious synthetic methodology or the use of toxic/expensive solvents and starting materials. Green fluorescent CDs (G-CDs) exhibit high tolerance to pH values and external cations. Blue fluorescent CDs (B-CDs) can be applied to pH and Cu(2+) sensing. The linear range of Cu(2+) detection is 0.01-10.00 μM and the detection limit is 0.05 μM. For pH detection, there is a good linearity in the pH range of 3.5-10.0. The linear and rapid response of B-CDs to Cu(2+) and pH is valuable for Cu(2+) and pH sensing in living cells. Confocal fluorescent imaging of human cervical carcinoma cells indicates that B-CDs could visualize Cu(2+) and pH fluctuations in living cells with negligible autofluorescence. Copyright © 2015 Elsevier B.V. All rights reserved.
Han, Yingying; Ding, Changqin; Zhou, Jie; Tian, Yang
2015-01-01
It is very essential to disentangle the complicated inter-relationship between pH and Cu in the signal transduction and homeostasis. To this end, reporters that can display distinct signals to pH and Cu are highly valuable. Unfortunately, there is still no report on the development of biosensors that can simultaneously respond to pH and Cu(2+), to the best of our knowledge. In this work, we developed a single fluorescent probe, AuNC@FITC@DEAC (AuNC, gold cluster; FITC, fluorescein isothiocyanate; DEAC, 7-diethylaminocoumarin-3-carboxylic acid), for biosensing of pH, Cu(2+), and pH/Cu(2+) with different ratiometric fluorescent signals. First, 2,2',2″-(2,2',2″-nitrilotris(ethane-2,1-diyl)tris((pyridin-2-yl-methyl)azanediyl))triethanethiol (TPAASH) was designed for specific recognition of Cu(2+), as well as for organic ligand to synthesize fluorescent AuNCs. Then, pH-sensitive molecule, FITC emitting at 518 nm, and inner reference molecule, DEAC with emission peak at 472 nm, were simultaneously conjugated on the surface of AuNCs emitting at 722 nm, thus, constructing a single fluorescent probe, AuNC@FITC@DEAC, to sensing pH, Cu(2+), and pH/Cu(2+) excited by 405 nm light. The developed probe exhibited high selectivity and accuracy for independent determination of pH and Cu(2+) against reactive oxygen species (ROS), other metal ions, amino acids, and even copper-containing proteins. The AuNC-based inorganic-organic probe with good cell-permeability and high biocompatibility was eventually applied in monitoring both pH and Cu(2+) and in understanding the interplaying roles of Cu(2+) and pH in live cells by ratiometric multicolor fluorescent imaging.
Single-photon counting multicolor multiphoton fluorescence microscope.
Buehler, Christof; Kim, Ki H; Greuter, Urs; Schlumpf, Nick; So, Peter T C
2005-01-01
We present a multicolor multiphoton fluorescence microscope with single-photon counting sensitivity. The system integrates a standard multiphoton fluorescence microscope, an optical grating spectrograph operating in the UV-Vis wavelength region, and a 16-anode photomultiplier tube (PMT). The major technical innovation is in the development of a multichannel photon counting card (mC-PhCC) for direct signal collection from multi-anode PMTs. The electronic design of the mC-PhCC employs a high-throughput, fully-parallel, single-photon counting scheme along with a high-speed electrical or fiber-optical link interface to the data acquisition computer. There is no electronic crosstalk among the detection channels of the mC-PhCC. The collected signal remains linear up to an incident photon rate of 10(8) counts per second. The high-speed data interface offers ample bandwidth for real-time readout: 2 MByte lambda-stacks composed of 16 spectral channels, 256 x 256 pixel image with 12-bit dynamic range can be transferred at 30 frames per second. The modular design of the mC-PhCC can be readily extended to accommodate PMTs of more anodes. Data acquisition from a 64-anode PMT has been verified. As a demonstration of system performance, spectrally resolved images of fluorescent latex spheres and ex-vivo human skin are reported. The multicolor multiphoton microscope is suitable for highly sensitive, real-time, spectrally-resolved three-dimensional imaging in biomedical applications.
Label-Free Carbon-Dots-Based Ratiometric Fluorescence pH Nanoprobes for Intracellular pH Sensing.
Shangguan, Jingfang; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Liu, Jinquan; Tang, Jinlu; Yang, Xue; Huang, Jin
2016-08-02
Measuring pH in living cells is of great importance for better understanding cellular functions as well as providing pivotal assistance for early diagnosis of diseases. In this work, we report the first use of a novel kind of label-free carbon dots for intracellular ratiometric fluorescence pH sensing. By simple one-pot hydrothermal treatment of citric acid and basic fuchsin, the carbon dots showing dual emission bands at 475 and 545 nm under single-wavelength excitation were synthesized. It is demonstrated that the fluorescence intensities of the as-synthesized carbon dots at the two emissions are pH-sensitive simultaneously. The intensity ratio (I475 nm/I545 nm) is linear against pH values from 5.2 to 8.8 in buffer solution, affording the capability as ratiometric probes for intracellular pH sensing. It also displays that the carbon dots show excellent reversibility and photostability in pH measurements. With this nanoprobe, quantitative fluorescence imaging using the ratio of two emissions (I475 nm/I545 nm) for the detection of intracellular pH were successfully applied in HeLa cells. In contrast to most of the reported nanomaterials-based ratiometric pH sensors which rely on the attachment of additional dyes, these carbon-dots-based ratiometric probes are low in toxicity, easy to synthesize, and free from labels.
Glaasker, E; Konings, W N; Poolman, B
1996-01-01
Intracellular pH in bacteria can be measured efficiently between internal pH values of 6.5 and 8.5 with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5[and-6]-carboxyfluorescein (BCECF). A new fluorescent pH probe with a lower pKa(app) than BCECF was synthesized from fluorescein isothiocyanate and glutamate. The new probe, N-(fluorescein thio-ureanyl)-glutamate (FTUG), was much less sensitive to changes in concentrations of KCl than was BCECF. Similar to BCECF, an efflux of FTUG independent of the proton motive force, but dependent on ATP, was observed both in Lactobacillus plantarum and Lactococcus lactis. Corrections for probe efflux allowed accurate measurements of the pHin. Similar intracellular pH values were determined with FTUG and BCECF, in the range where both probes can be applied, and the pH values correlated well with those estimated from the distribution of radio-labelled benzoic acid. Since FITC can easily be coupled to substrates containing an amino group, it is possible to develop other FITC derivatives as well. The mechanisms of probe excretion and the nature of the excreted product(s) were studied in further detail for BCECF and FTUG. BCECF was excreted from wild-type L. lactis in an unmodified form as was determined by chromatographic and mass spectrometry analysis. In the case of FTUG, the excreted product was a conjugated derivative. Unmodified FTUG was not excreted, although it was present in cellular extracts from L. lactis. Exit of BCECF was completely inhibited in a BCECF efflux mutant (Bef-) of L. lactis, whereas FTUG-conjugate efflux in this mutant was similar to the wild-type. Addition of indomethacin, a known inhibitor of BCECF efflux in human epithelial cells, resulted in complete inhibition of BCECF efflux in wild-type L. lactis, whereas FTUG-conjugate exit was only slightly affected. The results of the mutant and inhibitor studies suggest that FTUG-conjugate and BCECF efflux in L. lactis are mediated by different ATP-driven extrusion systems for organic anions.
Acid-base titration of melanocortin peptides: evidence of Trp rotational conformers interconversion.
Fernandez, Roberto M; Vieira, Renata F F; Nakaie, Clóvis R; Lamy, M Teresa; Ito, Amando S
2005-01-01
Tryptophantime-resolved fluorescence was used to monitor acid-base titration properties of alpha-melanocyte stimulating hormone (alpha-MSH) and the biologically more potent analog [Nle4, D-Phe7]alpha -MSH (NDP-MSH), labeled or not with the paramagnetic amino acid probe 2,2,6,6-tetramthylpiperidine-N-oxyl-4-amino-4-carboxylic acid (Toac). Global analysis of fluorescence decay profiles measured in the pH range between 2.0 and 11.0 showed that, for each peptide, the data could be well fitted to three lifetimes whose values remained constant. The less populated short lifetime component changed little with pH and was ascribed to Trp g+ chi1 rotamer, in which electron transfer deactivation predominates over fluorescence. The long and intermediate lifetime preexponential factors interconverted along that pH interval and the result was interpreted as due to interconversion between Trp g- and trans chi1 rotamers, driven by conformational changes promoted by modifications in the ionization state of side-chain residues. The differences in the extent of interconversion in alpha-MSH and NDP-MSH are indicative of structural differences between the peptides, while titration curves suggest structural similarities between each peptide and its Toac-labeled species, in aqueous solution. Though less sensitive than fluorescence, the Toac electron spin resonance (ESR) isotropic hyperfine splitting parameter can also monitor the titration of side-chain residues located relatively far from the probe. Copyright (c) 2005 Wiley Periodicals, Inc.
Perroud, Thomas D.; Bokoch, Michael P.; Zare, Richard N.
2005-01-01
We apply the photon counting histogram (PCH) model, a fluorescence technique with single-molecule sensitivity, to study pH-induced conformational changes of cytochrome c. PCH is able to distinguish different protein conformations based on the brightness of a fluorophore sensitive to its local environment. We label cytochrome c through its single free cysteine with tetramethylrhodamine-5-maleimide (TMR), a fluorophore with specific brightnesses that we associate with specific protein conformations. Ensemble measurements demonstrate two different fluorescence responses with increasing pH: (i) a decrease in fluorescence intensity caused by the alkaline transition of cytochrome c (pH 7.0–9.5), and (ii) an increase in intensity when the protein unfolds (pH 9.5–10.8). The magnitudes of these two responses depend strongly on the molar ratio of TMR used to label cytochrome c. Using PCH we determine that this effect arises from the proportion of a nonfunctional conformation in the sample, which can be differentiated from the functional conformation. We further determine the causes of each ensemble fluorescence response: (i) during the alkaline transition, the fluorophore enters a dark state and discrete conformations are observed, and (ii) as cytochrome c unfolds, the fluorophore incrementally brightens, but discrete conformations are no longer resolved. Moreover, we also show that functional TMR-cytochrome c undergoes a response of identical magnitude regardless of the proportion of nonfunctional protein in the sample. As expected for a technique with single-molecule sensitivity, we demonstrate that PCH can directly observe the most relevant conformation, unlike ensemble fluorometry. PMID:16314563
NASA Astrophysics Data System (ADS)
Shrive, Jason D. A.; Krull, Ulrich J.
1995-01-01
In the work reported here, surface concentrations of 0.027 and 0.073 molecules nm-2 of the fluorescent membrane probe molecule nitrobenzoxadiazole dipalmitoylphosphatidylethanolamine (NBD-PE) were shown to yield optimum sensitivity for fluorimetric transduction of membrane structural perturbations for lipid membrane-based biosensor development. These optima were obtained through correlation of experimental data with theoretical predictions of optimum surface concentrations based on a model for NBD-PE self quenching previously published by our group. It was also determined that membrane structural heterogeneity improves the sensitivity of NBD-PE labeled membrane transducers. Together with fluorescence microscopy, observations of surface potential change upon compression or expansion of phosphatidylcholine (PC)/phosphatidic acid (PA) monolayers were used to qualitatively indicate the degree of structural heterogeneity in these membranes. It was determined that sub-microscopic domains must exist in microscopically homogeneous egg PC/egg PA membranes in order to facilitate the observed NBD-PE self-quenching responses upon alteration of bulk pH and therefore, membrane surface electrostatics and structure.
Wu, Weitai; Zhou, Ting; Aiello, Michael; Zhou, Shuiqin
2010-08-15
A new class of optical glucose nanobiosensors with high sensitivity and selectivity at physiological pH is described. To construct these glucose nanobiosensors, the fluorescent CdS quantum dots (QDs), serving as the optical code, were incorporated into the glucose-sensitive poly(N-isopropylacrylamide-acrylamide-2-acrylamidomethyl-5-fluorophenylboronic acid) copolymer microgels, via both in situ growth method and "breathing in" method, respectively. The polymeric gel can adapt to surrounding glucose concentrations, and regulate the fluorescence of the embedded QDs, converting biochemical signals into optical signals. The gradual swelling of the gel would lead to the quenching of the fluorescence at the elevated glucose concentrations. The hybrid microgels displayed high selectivity to glucose over the potential primary interferents of lactate and human serum albumin in the physiologically important glucose concentration range. The stability, reversibility, and sensitivity of the organic-inorganic hybrid microgel-based biosensors were also systematically studied. These general properties of our nanobiosensors are well tunable under appropriate tailor on the hybrid microgels, in particular, simply through the change in the crosslinking degree of the microgels. The optical glucose nanobiosensors based on the organic-inorganic hybrid microgels have shown the potential for a third generation fluorescent biosensor. Copyright 2010 Elsevier B.V. All rights reserved.
Lattanzio, F A
1990-08-31
A novel method of determining the apparent dissociation constants of fluorescent calcium indicators is described which utilizes Chelex-100 ion exchange resin and 45Ca. The affinity for calcium of indicators fluo-3, fura-2 and indo-1 measured at either 22 degrees or 37 degrees C decreases as pH is decreased from 7.4 to 5.5. These measurements agree with determinations made using EDTA-calcium buffers. The 1:1 calcium:indicator complex is maintained under all conditions. The necessity to correct dissociation constants during intracellular acidification to properly interpret fluorescence measurements is illustrated by indo-1 measurements in the ischemic rat heart.
A NBD-based simple but effective fluorescent pH probe for imaging of lysosomes in living cells.
Cao, Xiang-Jian; Chen, Li-Na; Zhang, Xuan; Liu, Jin-Ting; Chen, Ming-Yu; Wu, Qiu-Rong; Miao, Jun-Ying; Zhao, Bao-Xiang
2016-05-12
NBDlyso with lysosome-locating morpholine moiety has been developed as a high selective and sensitive fluorescent pH probe. This probe can respond to acidic pH (2.0-7.0) in a short time (less than 1 min) and not almost change after continuously illuminated for an extended period by ultraviolet light. The fluorescence intensity of NBDlyso enhanced 100-fold in acidic solution, with very good linear relationship (R(2) = 0.996). The pKa of probe NBDlyso is 4.10. Therefore, NBDlyso was used to detect lysosomal pH changes successfully. Besides, X-ray crystallography was used to verify the structure of NBDlyso, and the recognition mechanism involving photo-induced electron transfer was interpreted theoretically by means of DFT and TDDFT calculations skillfully when NBDlyso comes into play under the acidic condition. This probe showed good ability to sense pH change in living cell image. Copyright © 2016 Elsevier B.V. All rights reserved.
Puvvada, Nagaprasad; Rajput, Shashi; Kumar, B.N. Prashanth; Sarkar, Siddik; Konar, Suraj; Brunt, Keith R.; Rao, Raj R.; Mazumdar, Abhijit; Das, Swadesh K.; Basu, Ranadhir; Fisher, Paul B.; Mandal, Mahitosh; Pathak, Amita
2015-01-01
Low pH in the tumor micromilieu is a recognized pathological feature of cancer. This attribute of cancerous cells has been targeted herein for the controlled release of chemotherapeutics at the tumour site, while sparing healthy tissues. To this end, pH-sensitive, hollow ZnO-nanocarriers loaded with paclitaxel were synthesized and their efficacy studied in breast cancer in vitro and in vivo. The nanocarriers were surface functionalized with folate using click-chemistry to improve targeted uptake by the malignant cells that over-express folate-receptors. The nanocarriers released ~75% of the paclitaxel payload within six hours in acidic pH, which was accompanied by switching of fluorescence from blue to green and a 10-fold increase in the fluorescence intensity. The fluorescence-switching phenomenon is due to structural collapse of the nanocarriers in the endolysosome. Energy dispersion X-ray mapping and whole animal fluorescent imaging studies were carried out to show that combined pH and folate-receptor targeting reduces off-target accumulation of the nanocarriers. Further, a dual cell-specific and pH-sensitive nanocarrier greatly improved the efficacy of paclitaxel to regress subcutaneous tumors in vivo. These nanocarriers could improve chemotherapy tolerance and increase anti-tumor efficacy, while also providing a novel diagnostic read-out through fluorescent switching that is proportional to drug release in malignant tissues. PMID:26145450
NASA Astrophysics Data System (ADS)
Puvvada, Nagaprasad; Rajput, Shashi; Kumar, B. N. Prashanth; Sarkar, Siddik; Konar, Suraj; Brunt, Keith R.; Rao, Raj R.; Mazumdar, Abhijit; Das, Swadesh K.; Basu, Ranadhir; Fisher, Paul B.; Mandal, Mahitosh; Pathak, Amita
2015-07-01
Low pH in the tumor micromilieu is a recognized pathological feature of cancer. This attribute of cancerous cells has been targeted herein for the controlled release of chemotherapeutics at the tumour site, while sparing healthy tissues. To this end, pH-sensitive, hollow ZnO-nanocarriers loaded with paclitaxel were synthesized and their efficacy studied in breast cancer in vitro and in vivo. The nanocarriers were surface functionalized with folate using click-chemistry to improve targeted uptake by the malignant cells that over-express folate-receptors. The nanocarriers released ~75% of the paclitaxel payload within six hours in acidic pH, which was accompanied by switching of fluorescence from blue to green and a 10-fold increase in the fluorescence intensity. The fluorescence-switching phenomenon is due to structural collapse of the nanocarriers in the endolysosome. Energy dispersion X-ray mapping and whole animal fluorescent imaging studies were carried out to show that combined pH and folate-receptor targeting reduces off-target accumulation of the nanocarriers. Further, a dual cell-specific and pH-sensitive nanocarrier greatly improved the efficacy of paclitaxel to regress subcutaneous tumors in vivo. These nanocarriers could improve chemotherapy tolerance and increase anti-tumor efficacy, while also providing a novel diagnostic read-out through fluorescent switching that is proportional to drug release in malignant tissues.
The Effect of Curcumin on Intracellular pH (pHi), Membrane Hyperpolarization and Sperm Motility.
Naz, Rajesh K
2014-04-01
Curcumin has shown to affect sperm motility and function in vitro and fertility in vivo. The molecular mechanism(s) by which curcumin affects sperm motility has not been delineated. Since modulation of intracellular pH (pHi) and plasma membrane polarization is involved in sperm motility, the present study was conducted to investigate the effect of curcumin on these sperm (human and murine) parameters. The effect of curcumin on sperm forward motility was examined by counting percentages of forward moving sperm. The effect of curcumin on intracellular pH (pHi) was measured by the fluorescent pH indicator 2,7-bicarboxyethyl-5,6-carboxyfluorescein-acetoxymethyl ester (BCECF-AM). The effect of curcumin on plasma membrane polarization was examined using the fluorescence sensitive dye bis (1,3-dibarbituric acid)-trimethine oxanol [DiBAC4(3)]. Curcumin caused a concentration-dependent (p<0.05) decrease in forward motility of both human and mouse sperm. It also caused a concentration-dependent decrease in intracellular pH (pHi) in both human and mouse sperm. Curcumin induced significant (p<0.05) hyperpolarization of the plasma membrane in both human and mouse sperm. These findings indicate that curcumin inhibits sperm forward motility by intracellular acidification and hyperpolarization of sperm plasma membrane. This is the first study to our knowledge which examined the effect of curcumin on sperm pHi and membrane polarization that affect sperm forward motility. These exciting findings will have application in deciphering the signal transduction pathway involved in sperm motility and function and in development of a novel non-steroidal contraceptive for infertility.
Measuring Phagosome pH by Ratiometric Fluorescence Microscopy
Nunes, Paula; Guido, Daniele; Demaurex, Nicolas
2015-01-01
Phagocytosis is a fundamental process through which innate immune cells engulf bacteria, apoptotic cells or other foreign particles in order to kill or neutralize the ingested material, or to present it as antigens and initiate adaptive immune responses. The pH of phagosomes is a critical parameter regulating fission or fusion with endomembranes and activation of proteolytic enzymes, events that allow the phagocytic vacuole to mature into a degradative organelle. In addition, translocation of H+ is required for the production of high levels of reactive oxygen species (ROS), which are essential for efficient killing and signaling to other host tissues. Many intracellular pathogens subvert phagocytic killing by limiting phagosomal acidification, highlighting the importance of pH in phagosome biology. Here we describe a ratiometric method for measuring phagosomal pH in neutrophils using fluorescein isothiocyanate (FITC)-labeled zymosan as phagocytic targets, and live-cell imaging. The assay is based on the fluorescence properties of FITC, which is quenched by acidic pH when excited at 490 nm but not when excited at 440 nm, allowing quantification of a pH-dependent ratio, rather than absolute fluorescence, of a single dye. A detailed protocol for performing in situ dye calibration and conversion of ratio to real pH values is also provided. Single-dye ratiometric methods are generally considered superior to single wavelength or dual-dye pseudo-ratiometric protocols, as they are less sensitive to perturbations such as bleaching, focus changes, laser variations, and uneven labeling, which distort the measured signal. This method can be easily modified to measure pH in other phagocytic cell types, and zymosan can be replaced by any other amine-containing particle, from inert beads to living microorganisms. Finally, this method can be adapted to make use of other fluorescent probes sensitive to different pH ranges or other phagosomal activities, making it a generalized protocol for the functional imaging of phagosomes. PMID:26710109
Khatua, Snehadrinarayan; Choi, Shin Hei; Lee, Junseong; Huh, Jung Oh; Do, Youngkyu; Churchill, David G
2009-03-02
Fluorescent dinuclear chiral zinc complexes were synthesized in a "one-pot" method in which the lysine-based Schiff base ligand was generated in situ. This complex acts as a highly sensitive and selective fluorescent ON-OFF probe for Cu(2+) in water at physiological pH. Other metal ions such as Hg(2+), Cd(2+), and Pb(2+) gave little fluorescence change.
Huang, Pengcheng; Li, Sha; Gao, Nan; Wu, Fangying
2015-11-07
Heavy metal pollution can exert severe effects on the environment and human health. Simple, selective, and sensitive detection of heavy metal ions, especially two or more, using a single probe, is thereby of great importance. In this study, we report a new and facile strategy for discriminative detection of Hg(2+) and Cd(2+) with high selectivity and sensitivity via pH-modulated surface chemistry of the glutathione-capped gold NCs (GSH-Au NCs). By simply adjusting pH values of the colloidal solution of the NCs, Hg(2+) could specifically turn off the fluorescence under acidic pH, however, Cd(2+) could exclusively turn on the fluorescence under alkaline pH. This enables the NCs to serve as a dual fluorescent sensor for Hg(2+) and Cd(2+). We demonstrate that these two opposing sensing modes are presumably due to different interaction mechanisms: Hg(2+) induces aggregation by dissociating GSH from the Au surface via robust coordination and, Cd(2+) could passivate the Au surface by forming a Cd-GSH complex with a compact structure. Finally, the present strategy is successfully exploited to separately determine Hg(2+) and Cd(2+) in environmental water samples.
Turn-On Fluorescent Chemosensor for Hg2+ Based on Multivalent Rhodamine Ligands
Wang, Xuemei; Iqbal, Mudassir; Huskens, Jurriaan; Verboom, Willem
2012-01-01
Rhodamine-based fluorescent chemosensors 1 and 2 exhibit selective fluorescence enhancement to Fe3+ and Hg2+ over other metal ions at 580 nm in CH3CN/H2O (3/1, v/v) solution. Bis(rhodamine) chemosensor 1, under optimized conditions (CH3CN/HEPES buffer (0.02 M, pH = 7.0) (95/5, v/v)), shows a high selectivity and sensitivity to Hg2+, with a linear working range of 0–50 μM, a wide pH span of 4–10, and a detection limit of 0.4 μM Hg2+. PMID:23222686
pH-controlled silicon nanowires fluorescence switch
NASA Astrophysics Data System (ADS)
Mu, Lixuan; Shi, Wensheng; Zhang, Taiping; Zhang, Hongyan; She, Guangwei
2010-08-01
Covalently immobilizing photoinduced electronic transfer (PET) fluorophore 3-[N, N-bis(9-anthrylmethyl)amino]-propyltriethoxysilane (DiAN) on the surface of silicon nanowires (SiNWs) resulted a SiNWs-based fluorescence switch. This fluorescence switch is operated by adjustment of the acidity of the environment and exhibits sensitive response to pH at the range from 8 to 10. Such response is attributed to the effect of pH on the PET process. The successful combination of logic switch and SiNWs provides a rational approach to assemble different logic molecules on SiNWs for realization of miniaturization and modularization of switches and logic devices.
Identification of nasopharyngeal carcinoma from photoluminescence spectra of 3C-SiC nanocrystals
NASA Astrophysics Data System (ADS)
Wang, Li-Fen; Guo, Jun-Hong; Huang, Zhi-Chun; Gu, Jian-Sen; Feng, Li-Ren; Liu, Li-Zhe
2017-09-01
The identification of intracellular pH (pHi) during carcinogenesis progression plays a crucial role in the studies of biochemistry, cytology, and clinical medicine. In this work, 3C-SiC nanocrystals (NCs), which can effectively monitor the pH environment by using the linear relation between photoluminescence intensity and surface OH- and H+ concentration, are adapted as fluorescent probes for monitoring carcinogenesis progression of nasopharyngeal carcinoma. Our results demonstrated that 3C-SiC NCs are compatible with living cells and have low cytotoxicity. The pHi measurements in different carcinogenesis environments indicate the validity and sensitivity of this technology in identifying nasopharyngeal carcinoma in application.
SERS-Fluorescence Dual-Mode pH-Sensing Method Based on Janus Microparticles.
Yue, Shuai; Sun, Xiaoting; Wang, Ning; Wang, Yaning; Wang, Yue; Xu, Zhangrun; Chen, Mingli; Wang, Jianhua
2017-11-15
A surface-enhanced Raman scattering (SERS)-fluorescence dual-mode pH-sensing method based on Janus microgels was developed, which combined the advantages of high specificity offered by SERS and fast imaging afforded by fluorescence. Dual-mode probes, pH-dependent 4-mercaptobenzoic acid, and carbon dots were individually encapsulated in the independent hemispheres of Janus microparticles fabricated via a centrifugal microfluidic chip. On the basis of the obvious volumetric change of hydrogels in different pHs, the Janus microparticles were successfully applied for sensitive and reliable pH measurement from 1.0 to 8.0, and the two hemispheres showed no obvious interference. The proposed method addressed the limitation that sole use of the SERS-based pH sensing usually failed in strong acidic media. The gastric juice pH and extracellular pH change were measured separately in vitro using the Janus microparticles, which confirmed the validity of microgels for pH sensing. The microparticles exhibited good stability, reversibility, biocompatibility, and ideal semipermeability for avoiding protein contamination, and they have the potential to be implantable sensors to continuously monitor pH in vivo.
Multimodal Sensing Strategy Using pH Dependent Fluorescence Switchable System
NASA Astrophysics Data System (ADS)
Muthurasu, A.; Ganesh, V.
2016-12-01
Biomolecules assisted preparation of fluorescent gold nanoparticles (FL-Au NPs) has been reported in this work using glucose oxidase enzyme as both reducing and stabilizing agent and demonstrated their application through multimodal sensing strategy for selective detection of cysteine (Cys). Three different methods namely fluorescence turn OFF-ON strategy, naked eye detection and electrochemical methods are used for Cys detection by employing FL-Au NPs as a common probe. In case of fluorescence turn-OFF method a strong interaction between Au NPs and thiol results in quenching of fluorescence due to replacement of glucose oxidase by Cys at neutral pH. Second mode is based on fluorescence switch-ON strategy where initial fluorescence is significantly quenched by either excess acid or base and further addition of Cys results in appearance of rosy-red and green fluorescence respectively. Visual colour change and fluorescence emission arises due to etching of Au atoms on the surface by thiol leading to formation of Au nanoclusters. Finally, electrochemical sensing of Cys is also carried out using cyclic voltammetry in 0.1 M PBS solution. These findings provide a suitable platform for Cys detection over a wide range of pH and concentration levels and hence the sensitivity can also be tuned accordingly.
Discrepancy between photodynamic injuries and pheophorbide A accumulation in digestive tissues
NASA Astrophysics Data System (ADS)
Evrard, S.; Koenig, M.; Damge, C.; Marescaux, Jacques; Aprahamian, M.
1995-01-01
This report describes the discrepancy between pheophorbide A (PH-A) localization and photodynamically induced necrosis for the digestive tract. After an IV 9 mg/Kg-1 sensitization, the dye was caught by the whole digestive tract and its inherent vessels, as shown by fluorescence microscopy. The dye fluorescence disappeared within 24 h from the stomach and the jejunum. It remained high in the pancreas, the portal vein, the bile duct, the arteries and the duodenal mucosae. A light dose, 660 nm, 100 J/cm-2, 24 h after Ph-A sensitization, induced a necrosis of the duodenal mucosae. The pancreas and the hepatic pedicle were relatively unaffected by photodynamic therapy (PDT). The duodenal response to PDT results logically from its selective PH-A retention. But hepatic pedicule and pancreas immunities for PDT involve either protecting singlet oxygen scavengers or photosensitizer quenchers.
Synthesis and photochemistry of pH-sensitive GFP chromophore analogues
USDA-ARS?s Scientific Manuscript database
Nobel GFP chromophore analogues containing 2-thienyl-, 5-methyl-2-furyl-, 2-pyrryl, and 6-methyl-2-pyridyl-groups were synthesized, and their fluorescence spectra were recorded across pH range of 1 to 7. The GFP chromophores prevent photoisomerizaiton in acidic media and increase their fluorescent a...
pH and Protein Sensing with Functionalized Semiconducting Oxide Nanobelt FETs
NASA Astrophysics Data System (ADS)
Cheng, Yi; Yun, C. S.; Strouse, G. F.; Xiong, P.; Yang, R. S.; Wang, Z. L.
2008-03-01
We report solution pH sensing and selective protein detection with high-performance channel-limited field-effect transistors (FETs) based on single semiconducting oxide (ZnO and SnO2) nanobelts^1. The devices were integrated with PDMS microfluidic channels for analyte delivery and the source/drain contacts were passivated for in-solution sensing. pH sensing experiments were performed on FETs with functionalized and unmodified nanobelts. Functionalization of the nanobelts by APTES was found to greatly improve the pH sensitivity. The change in nanobelt conductance as functions of pH values at different gate voltages and ionic strengths showed high sensitivity and consistency. For the protein detection, we achieved highly selective biotinylation of the nanobelt channel with through APTES linkage. The specific binding of fluorescently-tagged streptavidin to the biotinylated nanobelt was verified by fluorescence microscopy; non-specific binding to the substrate was largely eliminated using PEG-silane passivation. The electrical responses of the biotinylated FETs to the streptavidin binding in PBS buffers of different pH values were systematically measured. The results will be presented and discussed. ^1Y. Cheng et al., Appl. Phys. Lett. 89, 093114 (2006). *Supported by NSF NIRT Grant ECS-0210332.
Wilkening, Svea; Schmitt, Franz-Josef; Horch, Marius; Zebger, Ingo; Lenz, Oliver; Friedrich, Thomas
2017-09-01
The fluorescent biosensor Frex, recently introduced as a sensitive tool to quantify the NADH concentration in living cells, was characterized by time-integrated and time-resolved fluorescence spectroscopy regarding its applicability for in vivo measurements. Based on the purified sensor protein, it is shown that the NADH dependence of Frex fluorescence can be described by a Hill function with a concentration of half-maximal sensor response of K D ≈ 4 µM and a Hill coefficient of n ≈ 2. Increasing concentrations of NADH have moderate effects on the fluorescence lifetime of Frex, which changes by a factor of two from about 500 ps in the absence of NADH to 1 ns under fluorescence-saturating NADH concentrations. Therefore, the observed sevenfold rise of the fluorescence intensity is primarily ascribed to amplitude changes. Notably, the dynamic range of Frex sensitivity towards NADH highly depends on the NAD + concentration, while the apparent K D for NADH is only slightly affected. We found that NAD + has a strong inhibitory effect on the fluorescence response of Frex during NADH sensing, with an apparent NAD + dissociation constant of K I ≈ 400 µM. This finding was supported by fluorescence lifetime measurements, which showed that the addition of NAD + hardly affects the fluorescence lifetime, but rather reduces the number of Frex molecules that are able to bind NADH. Furthermore, the fluorescence responses of Frex to NADH and NAD + depend critically on pH and temperature. Thus, for in vivo applications of Frex, temperature and pH need to be strictly controlled or considered during data acquisition and analysis. If all these constraints are properly met, Frex fluorescence intensity measurements can be employed to estimate the minimum NADH concentration present within the cell at sufficiently low NAD + concentrations below 100 µM.
Gotthard, Guillaume; von Stetten, David; Clavel, Damien; Noirclerc-Savoye, Marjolaine; Royant, Antoine
2017-12-12
ECFP, the first usable cyan fluorescent protein (CFP), was obtained by adapting the tyrosine-based chromophore environment in green fluorescent protein to that of a tryptophan-based one. This first-generation CFP was superseded by the popular Cerulean, CyPet, and SCFP3A that were engineered by rational and random mutagenesis, yet the latter CFPs still exhibit suboptimal properties of pH sensitivity and reversible photobleaching behavior. These flaws were serendipitously corrected in the third-generation CFP mTurquoise and its successors without an obvious rationale. We show here that the evolution process had unexpectedly remodeled the chromophore environment in second-generation CFPs so they would accommodate a different isomer, whose formation is favored by acidic pH or light irradiation and which emits fluorescence much less efficiently. Our results illustrate how fluorescent protein engineering based solely on fluorescence efficiency optimization may affect other photophysical or physicochemical parameters and provide novel insights into the rational evolution of fluorescent proteins with a tryptophan-based chromophore.
Fluorescence-based ion-sensing with colloidal particles.
Ashraf, Sumaira; Carrillo-Carrion, Carolina; Zhang, Qian; Soliman, Mahmoud G; Hartmann, Raimo; Pelaz, Beatriz; Del Pino, Pablo; Parak, Wolfgang J
2014-10-01
Particle-based fluorescence sensors for the quantification of specific ions can be made by coupling ion-sensitive fluorophores to carrier particles, or by using intrinsically fluorescent particles whose fluorescence properties depend on the concentration of the ions. Despite the advantages of such particle-based sensors for the quantitative detection of ions, such as the possibility to tune the surface chemistry and thus entry portal of the sensor particles to cells, they have also some associated problems. Problems involve for example crosstalk of the ion-sensitive fluorescence read-out with pH, or spectral overlap of the emission spectra of different fluorescent particles in multiplexing formats. Here the benefits of using particle-based fluorescence sensors, their limitations and strategies to overcome these limitations will be described and exemplified with selected examples. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Tsung-I.; Jovanovic, Misa V.; Dowben, Robert M.
1989-06-01
Absorption and fluorescence spectroscopic studies are reported here for nine new fluorescent probes recently synthesized in our laboratories: four pyrene derivatives with substituents of (i) 1,3-diacetoxy-6,8-dichlorosulfonyl, (ii) 1,3-dihydroxy-6,8-disodiumsulfonate, (iii) 1,3-disodiumsulfonate, and (iv) l-ethoxy-3,6,8-trisodiumsulfonate groups, and five [7-julolidino] coumarin derivatives with substituents of (v) 3-carboxylate-4-methyl, (vi) 3- methylcarboxylate, (vii) 3-acetate-4-methyl, (viii) 3-propionate-4-methyl, and (ix) 3-sulfonate-4-methyl groups. Pyrene compounds i and ii and coumarin compounds v and vi exhibit interesting absorbance and fluorescence properties: their absorption maxima are red shifted compared to the parent compound to the blue-green region, and the band width broadens considerably. All four blue-absorbing dyes fluoresce intensely in the green region, and the two pyrene compounds emit at such long wavelengths without formation of excimers. The fluorescence properties of these compounds are quite environment-sensitive: considerable spectral shifts and fluorescence intensity changes have been observed in the pH range from 3 to 10 and in a wide variety of polar and hydrophobic solvents with vastly different dielectric constants. The high extinction and fluorescence quantum yield of these probes make them ideal fluorescent labeling reagents for proteins, antibodies, nucleic acids, and cellular organelles. The pH and hydrophobicity-dependent fluorescence changes can be utilized as optical pH and/or hydrophobicity indicators for mapping environmental difference in various cellular components in a single cell. Since all nine probes absorb in the UV, but emit at different wavelengths in the visible, these two groups of compounds offer an advantage of utilizing a single monochromatic light source (e.g., a nitrogen laser) to achieve multi-wavelength detection for flow cytometry application. As a first step to explore potential application in cancer cell diagnostics, we have found that at least two of these probes are preferentially taken up by cancerous lymphocytes as compared to normal peripheral blood lymphocytes. The feasiblity of using these probes in diagnosing malignant cells in the body fluid of cancer patients directly on a fluorocytometer is presently being investigated.
Near-IR Two-Photon Fluorescent Sensor for K(+) Imaging in Live Cells.
Sui, Binglin; Yue, Xiling; Kim, Bosung; Belfield, Kevin D
2015-08-19
A new two-photon excited fluorescent K(+) sensor is reported. The sensor comprises three moieties, a highly selective K(+) chelator as the K(+) recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (>52-fold) in detecting K(+) over other physiological metal cations. Upon binding K(+), the sensor switches from nonfluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K(+) sensing in living cells.
Kovaliov, Marina; Weitman, Michal; Major, Dan Thomas; Fischer, Bilha
2014-08-01
To expand the arsenal of fluorescent cytidine analogues for the detection of genetic material, we synthesized para-substituted phenyl-imidazolo-cytidine ((Ph)ImC) analogues 5a-g and established a relationship between their structure and fluorescence properties. These analogues were more emissive than cytidine (λem 398-420 nm, Φ 0.009-0.687), and excellent correlation was found between Φ of 5a-g and σp(-) of the substituent on the phenyl-imidazolo moiety (R(2) = 0.94). Calculations suggested that the dominant tautomer of (Ph)ImC in methanol solution is identical to that of cytidine. DFT calculations of the stable tautomer of selected (Ph)ImC analogues suggested a relationship between the HOMO-LUMO gap and Φ and explained the loss of fluorescence in the nitro analogue. Incorporation of the CF3-(Ph)ImdC analogue into a DNA probe resulted in 6-fold fluorescence quenching of the former. A 17-fold reduction of fluorescence was observed for the G-matched duplex vs ODN(CF3-(Ph)ImdC), while for A-mismatched duplex, only a 2-fold decrease was observed. Furthermore, since the quantum yield of ODN(CF3-(Ph)ImdC):ODN(G) was reduced 17-fold vs that of a single strand, whereas that of ODN(CF3-(Ph)ImdC):ORN(G) was reduced only 3.8-fold, ODN(CF3-(Ph)ImdC) appears to be a DNA-selective probe. We conclude that the ODN(CF3-(Ph)ImdC) probe, exhibiting emission sensitivity upon single nucleotide replacement, may be potentially useful for DNA single nucleotide polymorphism (SNP) typing.
Perkins, Lydia A; Yan, Qi; Schmidt, Brigitte F; Kolodieznyi, Dmytro; Saurabh, Saumya; Larsen, Mads Breum; Watkins, Simon C; Kremer, Laura; Bruchez, Marcel P
2018-02-06
Fluorescent protein-based pH sensors are useful tools for measuring protein trafficking through pH changes associated with endo- and exocytosis. However, commonly used pH-sensing probes are ubiquitously expressed with their protein of interest throughout the cell, hindering our ability to focus on specific trafficking pools of proteins. We developed a family of excitation ratiometric, activatable pH responsive tandem dyes, consisting of a pH sensitive Cy3 donor linked to a fluorogenic malachite green acceptor. These cell-excluded dyes are targeted and activated upon binding to a genetically expressed fluorogen-activating protein and are suitable for selective labeling of surface proteins for analysis of endocytosis and recycling in live cells using both confocal and superresolution microscopy. Quantitative profiling of the endocytosis and recycling of tagged β2-adrenergic receptor (B2AR) at a single-vesicle level revealed differences among B2AR agonists, consistent with more detailed pharmacological profiling.
Zha, Jian-peng; Lin, Ying; Yang, Xing-hui; Hou, Hai-ni; Wei, Tie-jun; Chen, Xing-li
2002-06-01
Fluorescence enhancement of anhydrotetracycline hydrochloride and iso-tetracycline has been described. The fluorescence intensities of anhydrotetracycline hydrochloride and iso-tetracycline with cetyltrimethylammonium bromide (CTMAB) enhanced by micellar solution have been examined. It is found that fluorescence enhancement of anhydrotetracycline hydrochloride and iso-tetracycline depends on the concentration of CTMAB and pH of the solution. It can be used to develop sensitive methods for the determination of tetracycline hydrochloride and its decomposition product.
Chen, Yuncong; Zhu, Chengcheng; Cen, Jiajie; Bai, Yang; He, Weijiang; Guo, Zijian
2015-05-01
The homeostasis of mitochondrial pH (pH m ) is crucial in cell physiology. Developing small-molecular fluorescent sensors for the ratiometric detection of pH m fluctuation is highly demanded yet challenging. A ratiometric pH sensor, Mito-pH , was constructed by integrating a pH-sensitive FITC fluorophore with a pH-insensitive hemicyanine group. The hemicyanine group also acts as the mitochondria targeting group due to its lipophilic cationic nature. Besides its ability to target mitochondria, this sensor provides two ratiometric pH sensing modes, the dual excitation/dual emission mode (D ex /D em ) and dual excitation (D ex ) mode, and its linear and reversible ratiometric response range from pH 6.15 to 8.38 makes this sensor suitable for the practical tracking of pH m fluctuation in live cells. With this sensor, stimulated pH m fluctuation has been successfully tracked in a ratiometric manner via both fluorescence imaging and flow cytometry.
The Mechanisms and Biomedical Applications of an NIR BODIPY-Based Switchable Fluorescent Probe
Cheng, Bingbing; Bandi, Venugopal; Yu, Shuai; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Tang, Liping; Yuan, Baohong
2017-01-01
Highly environment-sensitive fluorophores have been desired for many biomedical applications. Because of the noninvasive operation, high sensitivity, and high specificity to the microenvironment change, they can be used as excellent probes for fluorescence sensing/imaging, cell tracking/imaging, molecular imaging for cancer, and so on (i.e., polarity, viscosity, temperature, or pH measurement). In this work, investigations of the switching mechanism of a recently reported near-infrared environment-sensitive fluorophore, ADP(CA)2, were conducted. Besides, multiple potential biomedical applications of this switchable fluorescent probe have been demonstrated, including wash-free live-cell fluorescence imaging, in vivo tissue fluorescence imaging, temperature sensing, and ultrasound-switchable fluorescence (USF) imaging. The fluorescence of the ADP(CA)2 is extremely sensitive to the microenvironment, especially polarity and viscosity. Our investigations showed that the fluorescence of ADP(CA)2 can be switched on by low polarity, high viscosity, or the presence of protein and surfactants. In wash-free live-cell imaging, the fluorescence of ADP(CA)2 inside cells was found much brighter than the dye-containing medium and was retained for at least two days. In all of the fluorescence imaging applications conducted in this study, high target-to-noise (>5-fold) was achieved. In addition, a high temperature sensitivity (73-fold per Celsius degree) of ADP(CA)2-based temperature probes was found in temperature sensing. PMID:28208666
Teng, Fangfang; Deng, Peizong; Song, Zhimei; Zhou, Feilong; Feng, Runliang; Liu, Na
2017-06-15
In order to improve azithromycin's antibacterial activity in acidic medium, monomethoxy poly (ethylene glycol)-block-poly (aspartic acid-graft-imidazole) copolymer was synthesized through allylation, free radical addition, ring-opening polymerization and amidation reactions with methoxy poly (ethylene glycol) as raw material. Drug loading capacity and encapsulation efficiency of azithromycin-loaded micelles prepared via thin film hydration method were 11.58±0.86% and 96.06±1.93%, respectively. The drug-loaded micelles showed pH-dependent property in the respects of particle size, zeta potential at the range of pH 5.5-7.8. It could control drug in vitro release and demonstrate higher release rate at pH 6.0 than that at pH 7.4. In vitro antibacterial experiment indicated that the activity of azithromycin-loaded micelles against S. aureus was superior to free azithromycin in medium at both pH 6.0 and pH 7.4. Using fluorescein as substitute with pH-dependent fluorescence decrease property, laser confocal fluorescence microscopy analysis confirmed that cellular uptake of micelles was improved due to protonation of copolymer's imidazole groups at pH 6.0. The enhanced cellular uptake and release of drug caused its activity enhancement in acidic medium when compared with free drug. The micellar drug delivery system should be potential application in the field of bacterial infection treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
Intracellular distribution of Photofrin in malignant and normal endothelial cell lines.
Saczko, J; Mazurkiewicz, M; Chwiłkowska, A; Kulbacka, J; Kramer, G; Ługowski, M; Snietura, M; Banaś, T
2007-01-01
Compared to current treatments including surgery, radiation therapy, and chemotherapy, PDT offers the advantage of an effective and selective method of destroying diseased tissues without damaging surrounding healthy tissues. One of the aspects of antitumour effectiveness of PDT is related to the distribution of photosensitizing drugs. The localization of photosensitizers in cytoplasmic organelles during PDT plays a major role in the cell destruction; therefore, intracellular localization of Ph in malignant and normal cells was investigated. The cell lines used throughout the study were: human malignant A549, MCF-7, Me45 and normal endothelial cell line HUV-EC-C. After incubation with Ph cells were examined using fluorescence and confocal microscopy to visualize the photosensitizer accumulation. For cytoplasm and mitochondria identification, cells were stained with CellTracker Green and MitoTracker Green, respectively. Distribution of Ph was different in malignant and normal cells and dependent on the incubation time. The maximal concentration of Ph in two malignant cell lines (A549 and MCF-7) was observed after 4 hours of incubation, and the most intensive signal was observed around the nuclear envelope. Intracellular distribution of Ph in the Me45 cell line showed that the fluorescence emitted by Ph overlaid that from MitoTracker. This indicates preferential accumulation of the sensitizer in mitochondria. Our results based on the mitochondrial localization support the idea that PDT can contribute to elimination of malignant cells by inducing apoptosis, which is of physiological significance.
NASA Astrophysics Data System (ADS)
Soulie-Begu, Sylvie; Devoisselle, Jean-Marie; Mordon, Serge R.
1995-04-01
Liposomes are known to be uptaken by the liver cells after intraveinous injection. Only few techniques are available to follow this process in vivo like nuclear magnetic resonance spectroscopy or scintigraphy. Intracellular pathway and liposomes localization in the different liver cells require sacrifice of the animals, cells separation and electronic microscopy, then little is known about liposomes kinetic uptake by the acidic intracellular compartments in vivo. We propose in this study a new method to follow liposomes uptake in the liver in vivo using a fluorescent pH sensitive probe 5,6-carboxyfluorescein and two different composition of liposomes: phospholipids DSPC/Chol and DMPC in order to evaluate the influence of the formulation on the release characteristics of liposomes in the lysosomes. We have already demonstrated the ability of the fluorescence spectroscopy and imaging using a pH dependent probe to monitor pH in living tissues. As pH of lysosomes is very low, the kinetic liposomes uptake in this intracellular acidic compartment is followed by monitoring the pH of the whole liver in vivo and ex vivo. Carboxyfluorescein is used at high concentration (100 mM) in order to quench its fluorescence. Liposomes are injected to Wistar rats into the penil vein. After laparotomy, fluorescence spectra and images are recorded during two hours. Results show a clear relationship between formulation of liposomes and stability in the acidic compartments of hepatic cells. After sacrifice and flush with cold saline solution, pH of the liver ex vivo is found to be 5.0-5.5. Data show a rapid clearance of release dye and an uptake of liposomes by the liver cells and, as liposomes penetrate in the acidic compartment, dye is released from liposomes and is delivered in lysosomes leading to the decrease of the pH.
Fluorophotometric measurement of pH of human tears in vivo.
Yamada, M; Mochizuki, H; Kawai, M; Yoshino, M; Mashima, Y
1997-05-01
To measure the pH in the precorneal tear film of humans in vivo using a pH-sensitive fluorescent dye, bis-carboxyethyl-carboxyfluorescein (BCECF). The measurement was initiated by instilling 1 microliter of 2 mM BCECF solution into the subject's eye. The pH was calculated by measuring the ratio of fluorescent intensities at two excitation wavelengths (490/430 ratio), which was dependent on pH, but independent of the dye concentration and other variables. The tears of the same subject were then collected and loaded on to a micro pH-meter to ensure the accuracy of the measurement. The mean pH values of 40 eyes from 20 healthy volunteers was 7.50 (SD +/- 0.23), which corresponded well with those measured by the micro pH-meter. The method described was useful in measuring the pH of the precorneal tear film of humans with minimal invasion.
Britz-McKibbin, Philip; Otsuka, Koji; Terabe, Shigeru
2002-08-01
Simple yet effective methods to enhance concentration sensitivity is needed for capillary electrophoresis (CE) to become a practical method to analyze trace levels of analytes in real samples. In this report, the development of a novel on-line preconcentration technique combining dynamic pH junction and sweeping modes of focusing is applied to the sensitive and selective analysis of three flavin derivatives: riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Picomolar (pM) detectability of flavins by CE with laser-induced fluorescence (LIF) detection is demonstrated through effective focusing of large sample volumes (up to 22% capillary length) using a dual pH junction-sweeping focusing mode. This results in greater than a 1,200-fold improvement in sensitivity relative to conventional injection methods, giving a limit of detection (S/N = 3) of approximately 4.0 pM for FAD and FMN. Flavin focusing is examined in terms of analyte mobility dependence on buffer pH, borate complexation and SDS interaction. Dynamic pH junction-sweeping extends on-line focusing to both neutral (hydrophobic) and weakly acidic (hydrophilic) species and is considered useful in cases when either conventional sweeping or dynamic pH junction techniques used alone are less effective for certain classes of analytes. Enhanced focusing performance by this hyphenated method was demonstrated by greater than a 4-fold reduction in flavin bandwidth, as compared to either sweeping or dynamic pH junction, reflected by analyte detector bandwidths <0.20 cm. Novel on-line focusing strategies are required to improve sensitivity in CE, which may be applied toward more effective biochemical analysis methods for diverse types of analytes.
NASA Astrophysics Data System (ADS)
Hua, Jianhao; Yang, Jian; Zhu, Yan; Zhao, Chunxi; Yang, Yaling
2017-12-01
A novel carbon quantum dots (CQDs) was successfully prepared through one-step green hydrothermal method using polyacrylamide as carbon source. The prepared CQDs were characterized using TEM, XRD, XPS, FT-IR, UV-Vis, and fluorescence spectroscopy. The CQDs was demonstrated as nanoprobes for mercury ion detection, moreover, it demonstrated excitation-dependent and superior stability in acidic and alkaline media. Besides, the probe exhibited a good linearity range (0.25-50 μM) and a low detection limit (13.48 nM). These attractive properties indicated that this novel CQDs can adapt to a variety of complex pH environment, which had extensive prospect and promising application for detection of mercury ions in complex water samples.
Bae, Ji-Eun; Kim, In Jung; Nam, Ki Hyun
2017-11-04
Many fluorescent proteins (FPs) exhibit fluorescence quenching at a low pH. This pH-induced non-fluorescent state of an FP serves as a useful indicator of the cellular pH. ZsYellow is widely used as an optical marker in molecular biology, but its pH-induced non-fluorescent state has not been characterized. Here, we report the pH-dependent spectral properties of ZsYellow, which exhibited the pH-induced non-fluorescence state at a pH below 4.0. We determined the crystal structures of ZsYellow at pH 3.5 (non-fluorescence state) and 8.0 (fluorescence state), which revealed the cis-configuration of the chromophore without pH-induced isomerization. In the non-fluorescence state, Arg95, which is involved in stabilization of the exited state of the chromophore, was found to more loosely interact with the carbonyl oxygen atom of the chromophore when compared to the interaction at pH 8.0. In the fluorescence state, Glu221, which is involved in the hydrogen bonding network around the chromophore, stably interacted with Gln42 and His202. By contrast, in the non-fluorescence state, the protonated conserved Glu221 residue exhibited a large conformational change and was separated from His202 by 5.46 Å, resulting in breakdown of the hydrogen bond network. Our results provide insight into the critical role of the conserved Glu221 residue for generating the pH-induced non-fluorescent state. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lacassagne, Tom; Simoëns, Serge; El Hajem, Mahmoud; Champagne, Jean-Yves
2018-01-01
Inhibited planar laser-induced fluorescence (I-PLIF) techniques are widely used for heat and mass transfer studies in fluid mechanics. They allow the visualization of instantaneous two-dimensional field of a passive or reactive scalar, providing that this scalar acts as an inhibitor to the fluorescence of a specific molecule, and that this molecule is homogeneously mixed in the fluid at a known concentration. Local scalar values are deduced from fluorescence recordings thanks to preliminary calibration procedure. When confronted with non-optically thin systems, however, the knowledge of the excitation intensity distribution in the region of interest is also required, and this information is most of the time hard to obtain. To overcome that problem, two-color ratiometric PLIF techniques ( {I}^ {r}-PLIF) have been developed. In these methods, the ratio of two different fluorescence wavelengths triggered by the same excitation is used as an indicator of the scalar value. Such techniques have been used for temperature measurements in several studies but never, to the author's knowledge, for pH tracking and acid-base mixing, despite the frequent use of the one-color version in mass transfer studies. In the present work, a ratiometric pH-sensitive-inhibited PLIF technique ( {I}_ {pH}^ {r}-PLIF) using fluorescein sodium as a single dye and applicable to complex geometries and flows is developed. Theoretical considerations show that the ratio of the two-color fluorescence intensities should only depend on the dye's spectral quantum yield, itself pH-dependent. A detailed spectrofluorimetric study of fluorescein reveals that this ratio strictly increases with the pH for two well-chosen spectral bands (fluorescence colors). A similar trend is found when using sCmos cameras equipped with optical filters to record fluorescence signals. The method is then experimented on a test flow, a turbulent acidic jet injected in an initially pH-neutral volume of fluid. The results obtained using the ratiometric version are consistent with single-color technique measurements, but excitation intensity heterogeneity is more efficiently accounted for, with a much smaller time needed for data treatment and without requiring the knowledge of laser paths across the fluid. This new technique is also able to reduce the impact of some unwanted experimental features such as time-varying excitation intensity or reflections at interfaces. It can be of great interest for further applications to multiphase mass transfer studies.
BODIPY-Based Fluorescent Probes for Sensing Protein Surface-Hydrophobicity.
Dorh, Nethaniah; Zhu, Shilei; Dhungana, Kamal B; Pati, Ranjit; Luo, Fen-Tair; Liu, Haiying; Tiwari, Ashutosh
2015-12-18
Mapping surface hydrophobic interactions in proteins is key to understanding molecular recognition, biological functions, and is central to many protein misfolding diseases. Herein, we report synthesis and application of new BODIPY-based hydrophobic sensors (HPsensors) that are stable and highly fluorescent for pH values ranging from 7.0 to 9.0. Surface hydrophobic measurements of proteins (BSA, apomyoglobin, and myoglobin) by these HPsensors display much stronger signal compared to 8-anilino-1-naphthalene sulfonic acid (ANS), a commonly used hydrophobic probe; HPsensors show a 10- to 60-fold increase in signal strength for the BSA protein with affinity in the nanomolar range. This suggests that these HPsensors can be used as a sensitive indicator of protein surface hydrophobicity. A first principle approach is used to identify the molecular level mechanism for the substantial increase in the fluorescence signal strength. Our results show that conformational change and increased molecular rigidity of the dye due to its hydrophobic interaction with protein lead to fluorescence enhancement.
Currents through Hv1 channels deplete protons in their vicinity.
De-la-Rosa, Víctor; Suárez-Delgado, Esteban; Rangel-Yescas, Gisela E; Islas, León D
2016-02-01
Proton channels have evolved to provide a pH regulatory mechanism, affording the extrusion of protons from the cytoplasm at all membrane potentials. Previous evidence has suggested that channel-mediated acid extrusion could significantly change the local concentration of protons in the vicinity of the channel. In this work, we directly measure the proton depletion caused by activation of Hv1 proton channels using patch-clamp fluorometry recordings from channels labeled with the Venus fluorescent protein at intracellular domains. The fluorescence of the Venus protein is very sensitive to pH, thus behaving as a genetically encoded sensor of local pH. Eliciting outward proton currents increases the fluorescence intensity of Venus. This dequenching is related to the magnitude of the current and not to channel gating and is dependent on the pH gradient. Our results provide direct evidence of local proton depletion caused by flux through the proton-selective channel. © 2016 De-la-Rosa et al.
Godde, F; Toulmé, J J; Moreau, S
2000-08-01
We developed a new fluorescent analog of cytosine, the 4-amino-1H-benzo[g]quinazoline-2-one, which constitute a probe sensitive to pH. The 2'-O-Me ribonucleoside derivative of this heterocycle was synthesized and exhibited a fluorescence emission centered at 456 nm, characterized by four major excitation maxima (250, 300, 320 and 370 nm) and a fluorescence quantum yield of Phi = 0.62 at pH 7.1. The fluorescence emission maximum shifted from 456 to 492 nm when pH was decreased from 7.1 to 2.1. The pK(a) (4) was close to that of cytosine (4.17). When introduced in triplex forming oligonucleotides this new nucleoside can be used to reveal the protonation state of triplets in triple-stranded structures. Complex formation was detected by a significant quenching of fluorescence emission (approximately 88%) and the N-3 protonation of the quinazoline ring by a shift of the emission maximum from 485 to 465 nm. Using this probe we unambiguously showed that triplex formation of the pyrimidine motif does not require the protonation of all 4-amino-2-one pyrimidine rings.
Synchronous Bioimaging of Intracellular pH and Chloride Based on LSS Fluorescent Protein.
Paredes, Jose M; Idilli, Aurora I; Mariotti, Letizia; Losi, Gabriele; Arslanbaeva, Lyaysan R; Sato, Sebastian Sulis; Artoni, Pietro; Szczurkowska, Joanna; Cancedda, Laura; Ratto, Gian Michele; Carmignoto, Giorgio; Arosio, Daniele
2016-06-17
Ion homeostasis regulates critical physiological processes in the living cell. Intracellular chloride concentration not only contributes in setting the membrane potential of quiescent cells but it also plays a role in modulating the dynamic voltage changes during network activity. Dynamic chloride imaging demands new tools, allowing faster acquisition rates and correct accounting of concomitant pH changes. Joining a long-Stokes-shift red-fluorescent protein to a GFP variant with high sensitivity to pH and chloride, we obtained LSSmClopHensor, a genetically encoded fluorescent biosensor optimized for the simultaneous chloride and pH imaging and requiring only two excitation wavelengths (458 and 488 nm). LSSmClopHensor allowed us to monitor the dynamic changes of intracellular pH and chloride concentration during seizure like discharges in neocortical brain slices. Only cells with tightly controlled resting potential revealed a narrow distribution of chloride concentration peaking at about 5 and 8 mM, in neocortical neurons and SK-N-SH cells, respectively. We thus showed that LSSmClopHensor represents a new versatile tool for studying the dynamics of chloride and proton concentration in living systems.
Limited by the lack of a sensitive, universal detector, many capillary-based liquid-phase separation techniques might benefit from techniques that overcome modest concentration sensitivity by preconcentrating large injection volumes. The work presented employs selective solid-ph...
Preparation Of Small Diameter Sensors For Continuous Clinical Monitoring
NASA Astrophysics Data System (ADS)
Walt, David R.; Munkholm, Christiane; Jordan, David; Milanovich, Fred P.; Daley, Paul F.
1987-04-01
We have prepared fluorescence-based fiber optic sensors which give rapid and reversible responses. Other investigators have previously prepared sensors in which a membrane, tubing, or a hollow fiber is used to contain a specific reagent near the distal end of the fiber. Such an approach produces fibers with limited signal magnitudes and slow response times. Furthermore, these sensors are cumbersome to assemble, and are difficult to miniaturize and calibrate. We have developed a technique for the covalent chemical modification of the fiber's distal surface which is easily adapted to the smallest diameter glass optical fiber (100 μm). The sensing layer is attached directly to the fiber surface. The layer is extremely thin and highly porous and provides high fluorescence intensity with nearly instantaneous response times. The fibers are moderately stable against bleaching and have long shelf-lives. Our initial efforts have concentrated on the preparation of pH-sensitive optical sensors that are useful in the pH range 4.0 to 8.0. These sensors are reversible in response to pH variation and possess signal-to-noise ratios over 250/1. The fibers are prepared using a glass surface modification followed by a polymerization step for dye immobilization. Both fluorescence and absorbance-based sensors have been prepared using this technique. The absorbance-based pH sensors have 100% response times of less than 3 seconds, are sensitive in the region of pH 6.0 to 8.0, and provide reliable measurement of pH with precision of better than 0.03 pH units.
Li, Haiyin; Chang, Jiafu; Hou, Ting; Ge, Lei; Li, Feng
2016-11-01
Reliable, selective and sensitive approaches for trinitrophenol (TNP) detection are highly desirable with respect to national security and environmental protection. Herein, a simple and novel fluorescent strategy for highly sensitive and specific TNP assay has been successfully developed, which is based on the quenching of the fluorescent poly(thymine)-templated copper nanoclusters (DNA-CuNCs), through the synergetic effects of acid induction and electron transfer. Upon the addition of TNP, donor-acceptor complexes between the electron-deficient nitro-groups in TNP and the electron-donating DNA templates are formed, resulting in the close proximity between TNP and CuNCs. Moreover, the acidity of TNP contributes to the pH decrease of the system. These factors combine to dramatically quench the fluorescence of DNA-CuNCs, providing a "signal-off" strategy for TNP sensing. The as-proposed strategy demonstrates high sensitivity for TNP assay, and a detection limit of 0.03μM is obtained, which is lower than those reported by using organic fluorescent materials. More significantly, this approach shows outstanding selectivity over a number of TNP analogues, such as 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2,4-dinitrophenol (DNP), 3-nitrophenol (NP), nitrobenzene (NB), phenol (BP), and toluene (BT). Compared with previous studies, this method does not need complex DNA sequence design, fluorescent dye labeling, or sophisticated organic reactions, rendering the strategy with additional advantages of simplicity and cost-effectiveness. In addition, the as-proposed strategy has been adopted for the detection of TNP in natural water samples, indicating its great potential to be applied in the fields of public safety and environmental monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.
Ben Gaied, Nouha; Glasser, Nicole; Ramalanjaona, Nick; Beltz, Hervé; Wolff, Philippe; Marquet, Roland; Burger, Alain; Mély, Yves
2005-01-01
We report here the synthesis and the spectroscopic characterization of 8-vinyl-deoxyadenosine (8vdA), a new fluorescent analog of deoxyadenosine. 8vdA was found to absorb and emit in the same wavelength range as 2'-deoxyribosyl-2-aminopurine (2AP), the most frequently used fluorescent nucleoside analog. Though the quantum yield of 8vdA is similar to that of 2AP, its molar absorption coefficient is about twice, enabling a more sensitive detection. Moreover, the fluorescence of 8vdA was found to be sensitive to temperature and solvent but not to pH (around neutrality) or coupling to phosphate groups. Though 8vdA is base sensitive and susceptible to depurination, the corresponding phosphoramidite was successfully prepared and incorporated in oligonucleotides of the type d(CGT TTT XNX TTT TGC) where N = 8vdA and X = A, T or C. The 8vdA-labeled oligonucleotides gave more stable duplexes than the corresponding 2AP-labeled sequences when X = A or T, indicating that 8vdA is less perturbing than 2AP and probably adopts an anti conformation to preserve the Watson-Crick H-bonding. In addition, the quantum yield of 8vdA is significantly higher than 2AP in all tested oligonucleotides in both their single strand and duplex states. The steady-state and time-resolved fluorescence parameters of 8vdA and 2AP were found to depend similarly on the nature of their flanking residues and on base pairing, suggesting that their photophysics are governed by similar mechanisms. Taken together, our data suggest that 8vdA is a non perturbing nucleoside analog that may be used with improved sensitivity for the same applications as 2AP.
Gaied, Nouha Ben; Glasser, Nicole; Ramalanjaona, Nick; Beltz, Hervé; Wolff, Philippe; Marquet, Roland; Burger, Alain; Mély, Yves
2005-01-01
We report here the synthesis and the spectroscopic characterization of 8-vinyl-deoxyadenosine (8vdA), a new fluorescent analog of deoxyadenosine. 8vdA was found to absorb and emit in the same wavelength range as 2′-deoxyribosyl-2-aminopurine (2AP), the most frequently used fluorescent nucleoside analog. Though the quantum yield of 8vdA is similar to that of 2AP, its molar absorption coefficient is about twice, enabling a more sensitive detection. Moreover, the fluorescence of 8vdA was found to be sensitive to temperature and solvent but not to pH (around neutrality) or coupling to phosphate groups. Though 8vdA is base sensitive and susceptible to depurination, the corresponding phosphoramidite was successfully prepared and incorporated in oligonucleotides of the type d(CGT TTT XNX TTT TGC) where N = 8vdA and X = A, T or C. The 8vdA-labeled oligonucleotides gave more stable duplexes than the corresponding 2AP-labeled sequences when X = A or T, indicating that 8vdA is less perturbing than 2AP and probably adopts an anti conformation to preserve the Watson–Crick H-bonding. In addition, the quantum yield of 8vdA is significantly higher than 2AP in all tested oligonucleotides in both their single strand and duplex states. The steady-state and time-resolved fluorescence parameters of 8vdA and 2AP were found to depend similarly on the nature of their flanking residues and on base pairing, suggesting that their photophysics are governed by similar mechanisms. Taken together, our data suggest that 8vdA is a non perturbing nucleoside analog that may be used with improved sensitivity for the same applications as 2AP. PMID:15718302
Schneidereit, D; Vass, H; Reischl, B; Allen, R J; Friedrich, O
2016-01-01
The fluorescent Ca2+ sensitive dyes Fura Red (ratiometric) and Fluo-4 (non-ratiometric) are widely utilized for the optical assessment of Ca2+ fluctuations in vitro as well as in situ. The fluorescent behavior of these dyes is strongly depends on temperature, pH, ionic strength and pressure. It is crucial to understand the response of these dyes to pressure when applying calcium imaging technologies in the field of high pressure bioscience. Therefore, we use an optically accessible pressure vessel to pressurize physiological Ca2+-buffered solutions at different fixed concentrations of free Ca2+ (1 nM to 25.6 μM) and a specified dye concentration (12 μM) to pressures of 200 MPa, and record dye fluorescence intensity. Our results show that Fluo-4 fluorescence intensity is reduced by 31% per 100 MPa, the intensity of Fura Red is reduced by 10% per 100 MPa. The mean reaction volume for the dissociation of calcium from the dye molecules [Formula: see text] is determined to -17.8 ml mol-1 for Fluo-4 and -21.3 ml mol-1 for Fura Red. Additionally, a model is presented that is used to correct for pressure-dependent changes in pH and binding affinity of Ca2+ to EGTA, as well as to determine the influence of these changes on dye fluorescence.
Sahoo, Harekrushna; Hennig, Andreas; Florea, Mara; Roth, Doris; Enderle, Thilo; Nau, Werner M
2007-12-26
The collision-induced fluorescence quenching of a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) by hydrogen atom abstraction from the tyrosine residue in peptide substrates was introduced as a single-labeling strategy to assay the activity of tyrosine kinases and phosphatases. The assays were tested for 12 different combinations of Dbo-labeled substrates and with the enzymes p60c-Src Src kinase, EGFR kinase, YOP protein tyrosine phosphatase, as well as acid and alkaline phosphatases, thereby demonstrating a broad application potential. The steady-state fluorescence changed by a factor of up to 7 in the course of the enzymatic reaction, which allowed for a sufficient sensitivity of continuous monitoring in steady-state experiments. The fluorescence lifetimes (and intensities) were found to be rather constant for the phosphotyrosine peptides (ca. 300 ns in aerated water), while those of the unphosphorylated peptides were as short as 40 ns (at pH 7) and 7 ns (at pH 13) as a result of intramolecular quenching. Owing to the exceptionally long fluorescence lifetime of Dbo, the assays were alternatively performed by using nanosecond time-resolved fluorescence (Nano-TRF) detection, which leads to an improved discrimination of background fluorescence and an increased sensitivity. The potential for inhibitor screening was demonstrated through the inhibition of acid and alkaline phosphatases by molybdate.
Modified Organosilica Core-Shell Nanoparticles for Stable pH Sensing in Biological Solutions.
Robinson, Kye J; Huynh, Gabriel T; Kouskousis, Betty P; Fletcher, Nicholas L; Houston, Zachary H; Thurecht, Kristofer J; Corrie, Simon R
2018-04-19
Continuous monitoring using nanoparticle-based sensors has been successfully employed in complex biological systems, yet the sensors still suffer from poor long-term stability partially because of the scaffold materials chosen to date. Organosilica core-shell nanoparticles containing a mixture of covalently incorporated pH-sensitive (shell) and pH-insensitive (core) fluorophores is presented as a continuous pH sensor for application in biological media. In contrast to previous studies focusing on similar materials, we sought to investigate the sensor characteristics (dynamic range, sensitivity, response time, stability) as a function of material properties. The ratio of the fluorescence intensities at specific wavelengths was found to be highly sensitive to pH over a physiologically relevant range (4.5-8) with a response time of <100 ms, significantly faster than that of previously reported response times using silica-based particles. Particles produced stable, pH-specific signals when stored at room temperature for more than 80 days. Finally, we demonstrated that the nanosensors successfully monitored the pH of a bacterial culture over 15 h and that pH changes in the skin of mouse cadavers could also be observed via in vivo fluorescence imaging following subcutaneous injection. The understanding gained from linking sensor characteristics and material properties will inform the next generation of optical nanosensors for continuous-monitoring applications.
Nanoparticle-based luminescent probes for intracellular sensing and imaging of pH.
Schäferling, Michael
2016-05-01
Fluorescence imaging microscopy is an essential tool in biomedical research. Meanwhile, various fluorescent probes are available for the staining of cells, cell membranes, and organelles. Though, to monitor intracellular processes and dysfunctions, probes that respond to ubiquitous chemical parameters determining the cellular function such as pH, pO2 , and Ca(2+) are required. This review is focused on the progress in the design, fabrication, and application of photoluminescent nanoprobes for sensing and imaging of pH in living cells. The advantages of using nanoprobes carrying fluorescent pH indicators compared to single molecule probes are discussed as well as their limitations due to the mostly lysosomal uptake by cells. Particular attention is paid to ratiometric dual wavelength nanosensors that enable intrinsic referenced measurements. Referencing and proper calibration procedures are basic prerequisites to carry out reliable quantitative pH determinations in complex samples such as living cells. A variety of examples will be presented that highlight the diverseness of nanocarrier materials (polymers, micelles, silica, quantum dots, carbon dots, gold, photon upconversion nanocrystals, or bacteriophages), fluorescent pH indicators for the weak acidic range, and referenced sensing mechanisms, that have been applied intracellularly up to now. WIREs Nanomed Nanobiotechnol 2016, 8:378-413. doi: 10.1002/wnan.1366 For further resources related to this article, please visit the WIREs website. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Nie, Xiang-Kun; Xu, Yi-Ting; Song, Zhi-Ling; Ding, Ding; Gao, Feng; Liang, Hao; Chen, Long; Bian, Xia; Chen, Zhuo; Tan, Weihong
2014-10-01
Molecular self-assembly, a process to design molecular entities to aggregate into desired structures, represents a promising bottom-up route towards precise construction of functional systems. Here we report a multifunctional, self-assembled system based on magnetic-graphitic-nanocapsule (MGN) templated diacetylene assembly and photopolymerization. The as-prepared assembly system maintains the unique color and fluorescence change properties of the polydiacetylene (PDA) polymers, while also pursues the superior Raman, NIR, magnetic and superconducting properties from the MGN template. Based on both fluorescence and magnetic resonance imaging (MRI) T2 relaxivity, the MGN@PDA system could efficiently monitor the pH variations which could be used as a pH sensor. The MGN@PDA system further demonstrates potential as unique ink for anti-counterfeiting applications. Reversible color change, strong and unique Raman scattering and fluorescence emission, sensitive NIR thermal response, and distinctive magnetic properties afford this assembly system with multicoded anti-counterfeiting capabilities.Molecular self-assembly, a process to design molecular entities to aggregate into desired structures, represents a promising bottom-up route towards precise construction of functional systems. Here we report a multifunctional, self-assembled system based on magnetic-graphitic-nanocapsule (MGN) templated diacetylene assembly and photopolymerization. The as-prepared assembly system maintains the unique color and fluorescence change properties of the polydiacetylene (PDA) polymers, while also pursues the superior Raman, NIR, magnetic and superconducting properties from the MGN template. Based on both fluorescence and magnetic resonance imaging (MRI) T2 relaxivity, the MGN@PDA system could efficiently monitor the pH variations which could be used as a pH sensor. The MGN@PDA system further demonstrates potential as unique ink for anti-counterfeiting applications. Reversible color change, strong and unique Raman scattering and fluorescence emission, sensitive NIR thermal response, and distinctive magnetic properties afford this assembly system with multicoded anti-counterfeiting capabilities. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03837a
Screening Fluorescent Voltage Indicators with Spontaneously Spiking HEK Cells
Venkatachalam, Veena; Kralj, Joel M.; Dib-Hajj, Sulayman D.; Waxman, Stephen G.; Cohen, Adam E.
2013-01-01
Development of improved fluorescent voltage indicators is a key challenge in neuroscience, but progress has been hampered by the low throughput of patch-clamp characterization. We introduce a line of non-fluorescent HEK cells that stably express NaV 1.3 and KIR 2.1 and generate spontaneous electrical action potentials. These cells enable rapid, electrode-free screening of speed and sensitivity of voltage sensitive dyes or fluorescent proteins on a standard fluorescence microscope. We screened a small library of mutants of archaerhodopsin 3 (Arch) in spiking HEK cells and identified two mutants with greater voltage-sensitivity than found in previously published Arch voltage indicators. PMID:24391999
Development of a Terbium-Sensitized Fluorescence Method for Analysis of Silibinin.
Ershadi, Saba; Jouyban, Abolghasem; Molavi, Ommoleila; Shayanfar, Ali
2017-05-01
Silibinin is a natural flavonoid with potent anticancer properties, as shown in both in vitro and in vivo experiments. Various methods have been used for silibinin analysis. Terbium-sensitized fluorescence methods have been widely used for the determination of drugs in pharmaceutical preparations and biological samples in recent years. The present work is aimed at providing a simple analytical method for the quantitative determination of silibinin in aqueous solutions based on the formation of a fluorescent complex with terbium ion. Terbium concentration, pH, and volume of buffer, the important effective parameters for the determination of silibinin by the proposed method, were optimized using response surface methodology. The fluorescence intensity of silibinin was measured at 545 nm using λex = 334 nm. The developed method was applied for the determination of silibinin in plasma samples after protein precipitation with acetone. Under optimum conditions, the method provided a linear range between 0.10 and 0.50 mg/L, with a coefficient of determination (R2) of 0.997. The LOD and LOQ were 0.034 and 0.112 mg/L, respectively. These results indicate that the developed method is a simple, low-cost, and suitable analytical method for the quantification of silibinin in aqueous solution and plasma samples.
Mendy, Alphonse; Thiaré, Diène Diégane; Sambou, Souleymane; Khonté, Abdourahmane; Coly, Atanasse; Gaye-Seye, Mame Diabou; Delattre, François; Tine, Alphonse
2016-05-01
Herbicide metolachlor (MET) and insecticide buprofezin (BUP) were determined in natural waters by means of a newly-developed, simple and sensitive thermochemically-induced fluorescence derivatization (TIFD) method. The TIFD approach is based on the thermolysis transformation of naturally non-fluorescent pesticides into fluorescent complex O-phthalaldehyde-thermoproduct(s) in water at 70°C for MET and at 80°C for BUP. The TIFD method was optimized with respect to the temperature, pH, complex formation kinetic and pesticides concentrations. The limit of detection (LOD=0.8ngmL(-1) for MET and 3.0ngmL(-1) for BUP) and quantification (LOQ=2.6ngmL(-1) for MET and 9.5 ngmL(-1) for BUP) values were low, and the relative standard deviation (RSD) values were small (between 1.2% and 1.8%), which indicates a good analytical sensitivity and a great repeatability of TIFD method. Recovery studies were performed on spiked well, sea and draining waters samples collected in the Niayes area by using the solid phase extraction (SPE) procedure. Satisfactory recovery results (84-118%) were obtained for the determination of MET and BUP in these natural waters. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Rui; Hu, Xiao-Jian; Ding, Yu
2017-06-01
The emission spectrum of widely used CyPet is pH-sensitive. In order to synthesize a pH-insensitive cyan fluorescent protein by rational design, we solved the crystal structures of CyPet under different pH conditions. The indole group of the CyPet chromophore adopts a cis-coplanar conformation in acidic and neutral conditions, while it converts to trans-coplanar under basic conditions. His148 and Glu222 play a vital role in this isomerization. The pH-sensitive chromophore isomerization and change in the emission spectrum can be explained by the coexistence of several different fluorescent states. We trap the chromophore in the trans conformation by A167I mutation (CyPet2), which also prevents the multiconformation of the seventh β-strand. CyPet2 exhibits an unchanged emission spectral shape as a function of pH. © 2017 Federation of European Biochemical Societies.
Fabrication of triple-labeled polyelectrolyte microcapsules for localized ratiometric pH sensing.
Song, Xiaoxue; Li, Huanbin; Tong, Weijun; Gao, Changyou
2014-02-15
Encapsulation of pH sensitive fluorophores as reporting molecules provides a powerful approach to visualize the transportation of multilayer capsules. In this study, two pH sensitive dyes (fluorescein and oregon green) and one pH insensitive dye (rhodamine B) were simultaneously labeled on the microcapsules to fabricate ratiometric pH sensors. The fluorescence of the triple-labeled microcapsule sensors was robust and nearly independent of other intracellular species. With a dynamic pH measurement range of 3.3-6.5, the microcapsules can report their localized pH at a real time. Cell culture experiments showed that the microcapsules could be internalized by RAW 246.7 cells naturally and finally accumulated in acidic organelles with a pH value of 5.08 ± 0.59 (mean ± s.d.; n=162). Copyright © 2013 Elsevier Inc. All rights reserved.
Novel cookie-with-chocolate carbon dots displaying extremely acidophilic high luminescence
NASA Astrophysics Data System (ADS)
Lu, Siyu; Zhao, Xiaohuan; Zhu, Shoujun; Song, Yubin; Yang, Bai
2014-10-01
A fluorescent carbon dot with a cookie-with-chocolate film structure (about 5 × 5 μm2) showed a high fluorescence quantum yield (61.12%) at low pH. It was hydrothermally synthesized from l-serine and l-tryptophan. The formation mechanism of the film with carbon dots (CDs) was investigated. The film structure was formed by hydrogen bonding and π-π stacking interactions between aromatic rings. The strong blue fluorescence of the CDs increased under strong acidic conditions owing to the changes in the N-groups. These cookie-like CDs are attractive for their potential use as effective fluorescent probes for the sensitive detection of aqueous H+ and Fe3+.A fluorescent carbon dot with a cookie-with-chocolate film structure (about 5 × 5 μm2) showed a high fluorescence quantum yield (61.12%) at low pH. It was hydrothermally synthesized from l-serine and l-tryptophan. The formation mechanism of the film with carbon dots (CDs) was investigated. The film structure was formed by hydrogen bonding and π-π stacking interactions between aromatic rings. The strong blue fluorescence of the CDs increased under strong acidic conditions owing to the changes in the N-groups. These cookie-like CDs are attractive for their potential use as effective fluorescent probes for the sensitive detection of aqueous H+ and Fe3+. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03965c
Qu, Fei; Zou, Xuan; Kong, Rongmei; You, Jinmao
2016-01-01
In this assay, a tunable pH sensing system was developed based on Ag nanoclusters (Ag NCs) capped by hyperbranched polyethyleneimine (PEI) with different molecular weights (abbreviated as Ag NC-PEIs). For instance, when the molecular weight of PEI was 600 or 1800, the fluorescence intensities of Ag NCs exhibited a linear fashion over the pH range 4.10-7.96; when the molecular weight of PEI was 25,000, the pH linear range was from 4.78 to 7.96; when the molecular weight of PEI was 70,000, the pH linear range was 6.09-8.95. According to the molecular weight of PEI 600/1800, 25,000, and 70,000, the color change point was pH 4.10-4.78, 5.33-6.09, and 6.09-6.80, respectively. Therefore, Ag NC-PEI 600 and 1800 were proper to acid conditions; Ag NC-PEI 25,000 was sensitive to weak acid media; while Ag NC-PEI 70,000 was adapted to neutral solution. The tunable and selective color change points brought an excellent feature of Ag NC-PEIs as visual pH indicators, which was flexible and applicable to a variety of environments. Besides, the ratios of absorbance at 415 nm and 268 nm of Ag NCs also showed linear relationships with pH variations. Therefore, there were three ways of this system for sensing pH values, including fluorescence assay, ultraviolet-visible measurement, and visual detection, suggesting that this tunable pH-sensing platform was more feasible, reliable, and accurate. Copyright © 2015 Elsevier B.V. All rights reserved.
The acidic pH-induced structural changes in Pin1 as revealed by spectral methodologies
NASA Astrophysics Data System (ADS)
Wang, Jing-Zhang; Xi, Lei; Zhu, Guo-Fei; Han, Yong-Guang; Luo, Yue; Wang, Mei; Du, Lin-Fang
2012-12-01
Pin1 is closely associated with the pathogenesis of cancers and Alzheimer's disease (AD). Previously, we have shown the characteristics of the thermal denaturation of Pin1. Herein, the acid-induced denaturation of Pin1 was determined by means of fluorescence emission, synchronous fluorescence, far-UV CD, ANS fluorescence and RLS spectroscopies. The fluorescence emission spectra and the synchronous fluorescence spectra suggested the partially reversible unfolding (approximately from pH 7.0 to 4.0) and refolding (approximately from pH 4.0 to 1.0) of the structures around the chromophores in Pin1, apparently with an intermediate state at about pH 4.0-4.5. The far-UV CD spectra indicated that acidic pH (below pH 4.0) induced the structural transition from α-helix and random coils to β-sheet in Pin1. The ANS fluorescence and the RLS spectra further suggested the exposure of the hydrophobic side-chains of Pin1 and the aggregation of it especially below pH 2.3, and the aggregation possibly resulted in the formation of extra intermolecular β-sheet. The present work primarily shows that acidic pH can induce kinds of irreversible structural changes in Pin1, such as the exposure of the hydrophobic side-chains, the transition from α-helix to β-sheet and the aggregation of Pin1, and also explains why Pin1 loses most of its activity below pH 5.0. The results emphasize the important role of decreased pH in the pathogenesis of some Pin1-related diseases, and support the therapeutic approach for them by targeting acidosis and modifying the intracellular pH gradients.
Leiding, Thom; Górecki, Kamil; Kjellman, Tomas; Vinogradov, Sergei A; Hägerhäll, Cecilia; Arsköld, Sindra Peterson
2009-05-15
Accurate real-time measurements of proton concentration gradients are pivotal to mechanistic studies of proton translocation by membrane-bound enzymes. Here we report a detailed characterization of the pH-sensitive fluorescent nanoprobe Glu(3), which is well suited for pH measurements in microcompartmentalized biological systems. The probe is a polyglutamic porphyrin dendrimer in which multiple carboxylate termini ensure its high water solubility and prevent its diffusion across phospholipid membranes. The probe's pK is in the physiological pH range, and its protonation can be followed ratiometrically by absorbance or fluorescence in the ultraviolet-visible spectral region. The usefulness of the probe was enhanced by using a semiautomatic titration system coupled to a charge-coupled device (CCD) spectrometer, enabling fast and accurate titrations and full spectral coverage of the system at millisecond time resolution. The probe's pK was measured in bulk solutions as well as inside large unilamellar vesicles in the presence of physiologically relevant ions. Glu(3) was found to be completely membrane impermeable, and its distinct spectroscopic features permit pH measurements inside closed membrane vesicles, enabling quantitative mechanistic studies of membrane-spanning proteins. Performance of the probe was demonstrated by monitoring the rate of proton leakage through the phospholipid bilayer in large vesicles with and without the uncoupler gramicidin present. Overall, as a probe for biological proton translocation measurements, Glu(3) was found to be superior to the commercially available pH indicators.
NASA Astrophysics Data System (ADS)
Mathejczyk, Julia Eva; Pauli, Jutta; Dullin, Christian; Resch-Genger, Ute; Alves, Frauke; Napp, Joanna
2012-07-01
We investigated the potential of the pH-sensitive dye, CypHer5E, conjugated to Herceptin (pH-Her) for the sensitive detection of breast tumors in mice using noninvasive time-domain near-infrared fluorescence imaging and different methods of data analysis. First, the fluorescence properties of pH-Her were analyzed as function of pH and/or dye-to-protein ratio, and binding specificity was confirmed in cell-based assays. Subsequently, the performance of pH-Her in nude mice bearing orthotopic HER2-positive (KPL-4) and HER2-negative (MDA-MB-231) breast carcinoma xenografts was compared to that of an always-on fluorescent conjugate Alexa Fluor 647-Herceptin (Alexa-Her). Subtraction of autofluorescence and lifetime (LT)-gated image analyses were performed for background fluorescence suppression. In mice bearing HER2-positive tumors, autofluorescence subtraction together with the selective fluorescence enhancement of pH-Her solely in the tumor's acidic environment provided high contrast-to-noise ratios (CNRs). This led to an improved sensitivity of tumor detection compared to Alexa-Her. In contrast, LT-gated imaging using LTs determined in model systems did not improve tumor-detection sensitivity in vivo for either probe. In conclusion, pH-Her is suitable for sensitive in vivo monitoring of HER2-expressing breast tumors with imaging in the intensity domain and represents a promising tool for detection of weak fluorescent signals deriving from small tumors or metastases.
Rhodamine-based fluorescent probe for direct bio-imaging of lysosomal pH changes.
Shi, Xue-Lin; Mao, Guo-Jiang; Zhang, Xiao-Bing; Liu, Hong-Wen; Gong, Yi-Jun; Wu, Yong-Xiang; Zhou, Li-Yi; Zhang, Jing; Tan, Weihong
2014-12-01
Intracellular pH plays a pivotal role in various biological processes. In eukaryotic cells, lysosomes contain numerous enzymes and proteins exhibiting a variety of activities and functions at acidic pH (4.5-5.5), and abnormal variation in the lysosomal pH causes defects in lysosomal function. Thus, it is important to investigate lysosomal pH in living cells to understand its physiological and pathological processes. In this work, we designed a one-step synthesized rhodamine derivative (RM) with morpholine as a lysosomes tracker, to detect lysosomal pH changes with high sensitivity, high selectivity, high photostability and low cytotoxicity. The probe RM shows a 140-fold fluorescence enhancement over a pH range from 7.4 to 4.5 with a pKa value of 5.23. Importantly, RM can detect the chloroquine-induced lysosomal pH increase and monitor the dexamethasone-induced lysosomal pH changes during apoptosis in live cells. All these features demonstrate its value of practical application in biological systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Xin; Li, Dian-Fan; Wang, Yun; Lu, Ying-Tang
2004-12-17
A rapid and sensitive method for the determination of 1-aminocyclopropane-1-carboxylic acid (ACC) in apple tissues has been described. This method is based on the derivatization of ACC with 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ), and separation and quantification of the resulting FQ-ACC derivative by capillary electrophoresis coupled to laser-induced fluorescence detection (CE-LIF). Our results indicated that ACC derivatized with FQ could be well separated from other interfering amino acids using 20 mM borate buffer (pH 9.35) containing 40 mM sodium dodecyl sulfate and 10 mM Brij 35. The linearity of ACC was determined in the range from 0.05 to 5 microM with a correlation of 0.9967. The concentration detection limit for ACC was 10 nM (signal-to-noise = 3). The sensitivity and selectivity of this described method allows the analysis of ACC in crude apple extracts without extra purification and enrichment procedure.
Lei, Kepeng; Sun, Mingtai; Du, Libo; Zhang, Xiaojie; Yu, Huan; Wang, Suhua; Hayat, Tasawar; Alsaedi, Ahmed
2017-08-01
The sensitive and selective fluorescence probe for hydroxyl radical analysis is of significance because hydroxyl radical plays key roles in many physiological and pathological processes. In this work, a novel organic fluorescence molecular probe OHP for hydroxyl radical is synthesized by a two-step route. The probe employs 4-bora-3a,4a-diaza-s-indacene (difluoroboron dipyrromethene, BODIPY) as the fluorophore and possesses relatively high fluorescence quantum yields (77.14%). Hydroxyl radical can rapidly react with the probe and quench the fluorescence in a good linear relationship (R 2 =0.9967). The limit of detection is determined to be as low as 11nM. In addition, it has been demonstrated that the probe has a good stability against pH and light illumination, low cytotoxicity and high biocompatibility. Cell culture experimental results show that the probe OHP is sensitive and selective for imaging and tracking endogenous hydroxyl radical in live cells. Copyright © 2017 Elsevier B.V. All rights reserved.
A small molecular pH-dependent fluorescent probe for cancer cell imaging in living cell.
Ma, Junbao; Li, Wenqi; Li, Juanjuan; Shi, Rongguang; Yin, Gui; Wang, Ruiyong
2018-05-15
A novel pH-dependent two-photon fluorescent molecular probe ABMP has been prepared based on the fluorophore of 2, 4, 6-trisubstituted pyridine. The probe has an absorption wavelength at 354 nm and corresponding emission wavelength at 475 nm with the working pH range from 2.20 to 7.00, especially owning a good liner response from pH = 2.40 to pH = 4.00. ABMP also has excellent reversibility, photostability and selectivity which promotes its ability in analytical application. The probe can be excited with a two-photon fluorescence microscopy and the fluorescence cell imaging indicated that the probe can distinguish Hela cancer cells out of normal cells with a two-photon fluorescence microscopy which suggested its potential application in tumor cell detection. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Devoisselle, Jean-Marie; Mordon, Serge R.; Soulie-Begu, Sylvie
1995-03-01
Lysosomes and intracellular acidic compartments seem to play an important role in the context of PDT. Some photosensitizers are localized in the lysosomes of tumor-associated macrophages. Liposomes, which are lysosomotropic drug carriers, are used to deliver photosensitizers in tumors. Liposomes are taken up by the liver cells after intravenous injection. Intracellular pathway and liposomes localization in the different liver cells require sacrifice of the animals, cell separation, and observation by electronic microscopy. Little is known about liposomes kinetic uptake by the acidic intracellular compartments in vivo. We propose in this study a new method to follow liposomes uptake in the liver in vivo using a fluorescent pH-sensitive probe. We have already demonstrated the ability of fluorescence spectroscopy and imaging using a pH-dependent probe to monitor pH in living tissues. As pH of lysosome is very low, the kinetic of liposome uptake in this intracellular acidic compartment is followed by monitoring the pH of the whole liver in vivo and ex vivo. Liposomes-encapsulated carboxyfluorescein are prepared by the sonication procedure. Carboxyfluorescein is used at high concentration (100 mM) in order to quench its fluorescence. Liposomes are injected to Wistar rats into the peinil vein. After laparotomy, fluorescence spectra and images are recorded during two hours. Results show a rapid fluorescence increase followed by a slow phase of fluorescence decrease. pH decreases from physiological value to 6.0. After sacrifice and flush with cold saline solution, pH of liver ex vivo is found to be 5.0 - 5.5. These data show a rapid clearance of released dye and an uptake of liposomes by the liver cells and, as liposomes penetrate in the acidic compartment, dye is released from liposomes and is delivered in lysosomes leading to the decrease of pH.
Cofilin and DNase I affect the conformation of the small domain of actin.
Dedova, Irina V; Dedov, Vadim N; Nosworthy, Neil J; Hambly, Brett D; dos Remedios, Cris G
2002-01-01
Cofilin binding induces an allosteric conformational change in subdomain 2 of actin, reducing the distance between probes attached to Gln-41 (subdomain 2) and Cys-374 (subdomain 1) from 34.4 to 31.4 A (pH 6.8) as demonstrated by fluorescence energy transfer spectroscopy. This effect was slightly less pronounced at pH 8.0. In contrast, binding of DNase I increased this distance (35.5 A), a change that was not pH-sensitive. Although DNase I-induced changes in the distance along the small domain of actin were modest, a significantly larger change (38.2 A) was observed when the ternary complex of cofilin-actin-DNase I was formed. Saturation binding of cofilin prevents pyrene fluorescence enhancement normally associated with actin polymerization. Changes in the emission and excitation spectra of pyrene-F actin in the presence of cofilin indicate that subdomain 1 (near Cys-374) assumes a G-like conformation. Thus, the enhancement of pyrene fluorescence does not correspond to the extent of actin polymerization in the presence of cofilin. The structural changes in G and F actin induced by these actin-binding proteins may be important for understanding the mechanism regulating the G-actin pool in cells. PMID:12023237
Dürr, Katharina L.; Tavraz, Neslihan N.; Friedrich, Thomas
2012-01-01
Whereas electrogenic partial reactions of the Na,K-ATPase have been studied in depth, much less is known about the influence of the membrane potential on the electroneutrally operating gastric H,K-ATPase. In this work, we investigated site-specifically fluorescence-labeled H,K-ATPase expressed in Xenopus oocytes by voltage clamp fluorometry to monitor the voltage-dependent distribution between E1P and E2P states and measured Rb+ uptake under various ionic and pH conditions. The steady-state E1P/E2P distribution, as indicated by the voltage-dependent fluorescence amplitudes and the Rb+ uptake activity were highly sensitive to small changes in intracellular pH, whereas even large extracellular pH changes affected neither the E1P/E2P distribution nor transport activity. Notably, intracellular acidification by approximately 0.5 pH units shifted V0.5, the voltage, at which the E1P/E2P ratio is 50∶50, by −100 mV. This was paralleled by an approximately two-fold acceleration of the forward rate constant of the E1P→E2P transition and a similar increase in the rate of steady-state cation transport. The temperature dependence of Rb+ uptake yielded an activation energy of ∼90 kJ/mol, suggesting that ion transport is rate-limited by a major conformational transition. The pronounced sensitivity towards intracellular pH suggests that proton uptake from the cytoplasmic side controls the level of phosphoenzyme entering the E1P→E2P conformational transition, thus limiting ion transport of the gastric H,K-ATPase. These findings highlight the significance of cellular mechanisms contributing to increased proton availability in the cytoplasm of gastric parietal cells. Furthermore, we show that extracellular Na+ profoundly alters the voltage-dependent E1P/E2P distribution indicating that Na+ ions can act as surrogates for protons regarding the E2P→E1P transition. The complexity of the intra- and extracellular cation effects can be rationalized by a kinetic model suggesting that cations reach the binding sites through a rather high-field intra- and a rather low-field extracellular access channel, with fractional electrical distances of ∼0.5 and ∼0.2, respectively. PMID:22448261
El-Kimary, Eman I; El-Yazbi, Amira F
2016-06-15
A new rapid and highly sensitive stability-indicating spectrofluorimetric method was developed for the determination of two stereoisomers anticancer drugs, doxorubicin (DOX) and epirubicin (EPI) in pure form and in pharmaceutical preparations. The fluorescence spectral behavior of DOX and EPI in a sodium dodecyl sulfate (SDS) micellar system was investigated. It was found that the fluorescence intensity of DOX and EPI in an aqueous solution of phosphate buffer pH4.0 and in the presence of SDS was greatly (about two fold) enhanced and the mechanism of fluorescence enhancement effect of SDS on DOX was also investigated. The fluorescence intensity of DOX or EPI was measured at 553nm after excitation at 497nm. The plots of fluorescence intensity versus concentration were rectilinear over a range of 0.03-2μg/mL for both DOX and EPI with good correlation coefficient (r>0.999). High sensitivity to DOX and EPI was attained using the proposed method with limits of detection of 10 and 9ng/mL and limits of quantitation of 29 and 28ng/mL, for DOX and EPI, respectively. The method was successfully applied for the determination of DOX and EPI in biological fluids and in their commercial pharmaceutical preparations and the results were concordant with those obtained using a previously reported method. The application of the proposed method was extended to stability studies of DOX following different forced degradation conditions (acidic, alkaline, oxidative and photolytic) according to ICH guidelines. Moreover, the kinetics of the alkaline and oxidative degradation of DOX was investigated and the apparent first-order rate constants and half-life times were calculated. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Jia; Jiang, Hong; Yu, Shu-quan; Jiang, Fu-wei; Yin, Xiu-min; Lu, Mei-juan
2009-09-01
Taking the seedlings of Quercus glauca, a dominant evergreen broadleaf tree species in subtropical area, as test materials, this paper studied their photosynthesis, chlorophyll fluorescence, and chlorophyll content under effects of simulated acid rain with pH 2.5, 4.0, and 5.6 (CK). After 2-year acid rain stress, the net photosynthetic rate of Q. glauca increased significantly with decreasing pH of acid rain. The acid rain with pH 2.5 and 4.0 increased the stomatal conductance and transpiration rate, and the effect was more significant under pH 2.5. The intercellular CO2 concentration decreased in the order of pH 2.5 > pH 5.6 > pH 4.0. The maximum photosynthetic rate, light compensation point, light saturation point, and dark respiration rate were significantly higher under pH 2.5 and 4.0 than under pH 5.6, while the apparent quantum yield was not sensitive to acid rain stress. The maximal photochemical efficiency of PS II and the potential activity of PS II under pH 2.5 and 4.0 were significantly higher than those under pH 5.6. The relative chlorophyll content was in the order of pH 2.5 > pH 5.6 > pH 4.0, and there was a significant difference between pH 2.5 and 4.0. All the results suggested that the photosynthesis and chlorophyll fluorescence of Q. glauca increased under the effects of acid rain with pH 2.5 and 4.0, and the acid rain with pH 2.5 had more obvious effects.
Gurkov, Anton; Sadovoy, Anton; Shchapova, Ekaterina; Teh, Cathleen; Meglinski, Igor; Timofeyev, Maxim
2017-01-01
In vivo physiological measurement is a major challenge in modern science and technology, as is environment conservation at the global scale. Proper toxicological testing of widely produced mixtures of chemicals is a necessary step in the development of new products, allowing us to minimize the human impact on aquatic ecosystems. However, currently available bioassay-based techniques utilizing small aquatic organisms such as fish embryos for toxicity testing do not allow assessing in time the changes in physiological parameters in the same individual. In this study, we introduce microencapsulated fluorescent probes as a promising tool for in vivo monitoring of internal pH variation in zebrafish embryos. The pH alteration identified under stress conditions demonstrates the applicability of the microencapsulated fluorescent probes for the repeated analysis of the embryo's physiological state. The proposed approach has strong potential to simultaneously measure a range of physiological characteristics using a set of specific fluorescent probes and to finally bring toxicological bioassays and related research fields to a new level of effectiveness and sensitivity.
Vass, H.; Reischl, B.; Allen, R. J.; Friedrich, O.
2016-01-01
The fluorescent Ca2+ sensitive dyes Fura Red (ratiometric) and Fluo-4 (non-ratiometric) are widely utilized for the optical assessment of Ca2+ fluctuations in vitro as well as in situ. The fluorescent behavior of these dyes is strongly depends on temperature, pH, ionic strength and pressure. It is crucial to understand the response of these dyes to pressure when applying calcium imaging technologies in the field of high pressure bioscience. Therefore, we use an optically accessible pressure vessel to pressurize physiological Ca2+-buffered solutions at different fixed concentrations of free Ca2+ (1 nM to 25.6 μM) and a specified dye concentration (12 μM) to pressures of 200 MPa, and record dye fluorescence intensity. Our results show that Fluo-4 fluorescence intensity is reduced by 31% per 100 MPa, the intensity of Fura Red is reduced by 10% per 100 MPa. The mean reaction volume for the dissociation of calcium from the dye molecules Δdv¯ is determined to -17.8 ml mol-1 for Fluo-4 and -21.3 ml mol-1 for Fura Red. Additionally, a model is presented that is used to correct for pressure-dependent changes in pH and binding affinity of Ca2+ to EGTA, as well as to determine the influence of these changes on dye fluorescence. PMID:27764134
Bersani, Sara; Vila-Caballer, Marian; Brazzale, Chiara; Barattin, Michela; Salmaso, Stefano
2014-11-01
Novel, acid-sensitive liposomes that respond to physiopathological pH for tumour targeting applications were obtained by surface decoration with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] (mPEG-DSPE) and stearoyl-poly(ethylene glycol)-poly(methacryloyl sulfadimethoxine) copolymer (stearoyl-PEG-polySDM). The pH-sensitive stearoyl-PEG-polySDM copolymer contained an average of seven methacryloyl sulfadimethoxines per molecule and was found to possess an apparent pKa of 7.2. Preliminary cloud point studies showed that the hydrophilic/hydrophobic copolymer conversion occurred at pH 7.0. The copolymer was soluble above pH 7.0 and underwent aggregation at lower pH. Liposome formulations were prepared with 0.2:0.6:100, 0.5:1.5:100 and 1:3:100 mPEG-DSPE/stearoyl-PEG-polySDM/lipids molar ratios. All of the liposome formulations were stable at pH 7.4, even in the presence of foetal bovine serum, but they underwent rapid size increase at pH 6.5. TEM analysis showed that, at pH 6.5, the formulations coated with a stearoyl-PEG-polySDM/lipids molar ratio greater than 1:100 underwent aggregation. At pH 7.4, the liposomes showed negative zeta potential that significantly decreased after incubation at pH 6.5. Cell-culture studies indicated that the liposomes were not toxic up to 10mg/mL. Fluorescence spectroscopy, cytofluorimetry and confocal microscopy showed that at pH 6.5, the incubation of MCF-7 tumour cells with fluorescein-labelled 1:3:100 mPEG-DSPE/stearoyl-PEG-polySDM/lipids molar ratio liposomes resulted in time-dependent cell association, while at pH 7.4 the cell interaction was significantly lower. The same pH-responsive liposome formulation loaded with gemcitabine (98.2±4.7nmol gemcitabine/lipid μmol loading capacity) was stable at pH 7.4 for several hours, while at pH 6.5 it rapidly aggregated. At pH 6.5, these liposomes displayed higher cytotoxicity than at pH 7.4 or compared to non-responsive control liposomes at both incubation pH. Notably, treatment with free gemcitabine did not yield cytotoxic effects, indicating that the carrier can efficiently deliver the anticancer drug to the cytosolic compartment. Copyright © 2014 Elsevier B.V. All rights reserved.
Morikawa, Takamitsu J.; Fujita, Hideaki; Kitamura, Akira; Horio, Takashi; Yamamoto, Johtaro; Kinjo, Masataka; Sasaki, Akira; Machiyama, Hiroaki; Yoshizawa, Keiko; Ichimura, Taro; Imada, Katsumi; Nagai, Takeharu; Watanabe, Tomonobu M.
2016-01-01
Fluorescent proteins have been widely used in biology because of their compatibility and varied applications in living specimens. Fluorescent proteins are often undesirably sensitive to intracellular conditions such as pH and ion concentration, generating considerable issues at times. However, harnessing these intrinsic sensitivities can help develop functional probes. In this study, we found that the fluorescence of yellow fluorescent protein (YFP) depends on the protein concentration in the solution and that this dependence can be enhanced by adding a glycine residue in to the YFP; we applied this finding to construct an intracellular protein-crowding sensor. A Förster resonance energy transfer (FRET) pair, involving a cyan fluorescent protein (CFP) insensitive to protein concentration and a glycine-inserted YFP, works as a genetically encoded probe to evaluate intracellular crowding. By measuring the fluorescence of the present FRET probe, we were able to detect dynamic changes in protein crowding in living cells. PMID:26956628
Solínová, Veronika; Kasicka, Václav; Koval, Dusan; Barth, Tomislav; Ciencialová, Alice; Záková, Lenka
2004-08-25
Capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) were used for the analysis of new synthetic derivatives of hypophysis neurohormones--vasopressin and oxytocin, and pancreatic hormone--human insulin (HI) and its octapeptide fragment, derivatized by fluorescent probe, 4-chloro-7-nitrobenzo[1,2,5]oxadiazol (NBD). The suitable composition of background electrolytes (BGEs) was selected on the basis of calculated pH dependence of effective charge of analyzed peptides. Basic ionogenic peptides were analyzed by CZE in the acidic BGE composed of 100 mM H3PO4, 50 mM Tris, pH 2.25. The ionogenic peptides with fluorescent label, NBD, were analyzed in 0.5 M acetic acid, pH 2.5. The best MEKC separation of non-ionogenic peptides was achieved in alkaline BGE, 20 mM Tris, 5 mM H3PO4, with micellar pseudophase formed by 50 mM sodium dodecylsulfate (SDS), pH 8.8. Selected characteristics (noise, detectability of substance, sensitivity of detector) of the UV-absorption detectors (single wavelength detector, multiple-wavelength photodiode array detector (PDA), both of them operating at constant wavelength 206 nm) and laser-induced fluorescence (LIF) detector (excitation/emission wavelength 488/520 nm) were determined. The detectability of peptides in the single wavelength detector was 1.3-6.0 micromol dm(-3) and in the PDA detector 1.6-3.1 micromol dm(-3). The LIF detection was more sensitive, the applied concentration of NBD derivative of insulin fragment in CZE analysis with LIF detection was three orders lower than in CZE with UV-absorption detector, and the detectability of this peptide was improved to 15.8 nmol dm(-3).
NASA Astrophysics Data System (ADS)
De Silvestri, S.; Laporta, P.
1984-01-01
Time-resolved and steady-state fluorescence studies of proflavine in aqueous solution are presented. The observation of a monoexponential fluorescence decay with a time constant decreasing with increasing pH and the presence of an anomalous red-shift in the fluorescence spectrum as a function of pH indicate the existence of a complex proton-transfer mechanism in the excited state. A reaction scheme is proposed and the corresponding proton-transfer rates are evaluated. An excited-state pK value of 12.85 is obtained for the equilibrium between the cationic form of proflavine and the same form dissociated at an amino group.
NASA Astrophysics Data System (ADS)
Wang, Zhuosen; Gao, Jinwei; Zhang, Kaibo; Mai, Zhihong; Wang, Qianming
2018-07-01
The availability of lanthanide ciprofloxacin complexes and the exploration of efficient new ways to the target species have made fluorescent signals as essential tools for chemical sensing. Both terbium (III) and europium (III) compounds possess easily distinguished, line-like emission bands occurring in the green and red region respectively. Based on the steps of ionizations and the coordination structure changes, the two molecular probes give rise to unique pH-sensitivities at different conditions. The photoluminescence properties of the mixture for the two complexes are demonstrated. At pH from 3 to 6, the Eu(III) emission is found to be less affected and the solution emits blue light in acidic environment (pH = 3). The terbium (III) characteristic luminescence exhibited off-on changes within a narrow pH range (pH = 5-6). Further spectroscopic pH titrations (pH from 6 to 10) are performed and the Eu (III) red emission has been significantly improved. The molecular-based probes have excellent water solubility, negligible cytotoxicity and enough permeability to across cell membrane. Such pH-responsive performance has been carried out for the investigation of intracellular pH measurement and these novel pH indicators were considered to be suitable for detecting bio-medical samples.
Anticholinesterase activity of the fluorescent zoanthid pigment, parazoanthoxanthin A.
Sepcić, K; Turk, T; Macek, P
1998-06-01
A synthetic linear tetrazacyclopent(f)azulene compound, parazoanthoxanthin A (m.w. 214.2), strongly fluorescent pigment occurring in zoanthids, was characterized and assayed for anticholinesterase activity. The pigment, emitting fluorescence at lambda(em) 420 nm, was found to be a pure competitive inhibitor of cholinesterases. At pH 8.0, a Ki value of 19 and 26 microM was determined with insect recombinant, and electric eel acetylcholinesterase. Horse serum butyrylcholinesterase was less sensitive with a Ki of 70 microM.
NASA Astrophysics Data System (ADS)
Yang, Yumin; Li, Daojin; Xu, Chen
2015-03-01
The study on the binding mode of drug with protein is important to understand the pharmacokinetics and toxicity of the drug as well as the relationship of structure and function of the protein. In the study, the interaction between cepharanthine and lysozyme (Lys) in aqueous solution was first investigated by fluorescence spectroscopic techniques at pH 7.4. The obtained quenching rate constant and binding constant indicated the static quenching mechanism and medium binding force. The effect of cepharanthine on the conformation of Lys was analyzed using synchronous fluorescence and three-dimensional (3D) fluorescence. In addition, the effect of urea on the interaction of cepharanthine with Lys was studied and the binding capacity of cepharanthine to the denatured Lys deceases dramatically, as compared with that of cepharanthine to native Lys. Moreover, influence of pH on the interaction of cepharanthine with Lys was investigated. As compared with that at pH 7.4, the binding abilities of the drug to Lys under other pH conditions (pH 9.0, 5.5, 3.5, and 1.9) deceased. Furthermore, the effect of metal ions on the binding constant of cepharanthine with Lys was investigated.
Enhancement of Skin Penetration of Hydrophilic and Lipophilic Compounds by pH-sensitive Liposomes.
Tokudome, Yoshihiro; Nakamura, Kaoru; Itaya, Yurina; Hashimoto, Fumie
2015-01-01
Enhance skin penetration of hydrophilic and lipophilic compounds using liposomes that are responsible to the pH of the skin surface. pH-sensitive liposomes were prepared by a thin layer and freeze-thaw method with dioleoyl phosphatidyl ethanolamine and cholesteryl hemisuccinate. Liposomal fusion with stratum corneum lipid liposomes was measured using fluorescence resonance energy transfer. Particle diameter and zeta potential of the liposomes after fusion were measured by dynamic light scattering and electrophoresis. Under neutral pH conditions, the diameter of the pH-sensitive liposomes was 130 nm and their zeta potential was -70 mV. In weakly acidic conditions, the diameter was larger than 3,000 nm and the zeta potential was -50 mV. In contrast, the particle diameter and the zeta potential of the non-pH-sensitive liposomes remained constant under various pH conditions. A skin penetration study was performed on hairless mice skin using vertical diffusion cells, showing that the fusion ability of pH-sensitive liposomes was higher than that of non-pH-sensitive liposomes. In the skin penetration study was carried out using hydrophilic (calcein) and lipophilic (N-(7-nitrobenz- 2-oxa-1,3-diazol-4yl)-PE) (NBD-PE) model compounds which were applied to the skin with pH-sensitive liposomes as carrier. The fluorescent compounds contained within the pH-sensitive liposomes permeated the skin more effectively than those within non-pH-sensitive liposomes, and this ability was further enhanced with the lipophilic compound. These studies suggest that pH-sensitive liposomes have potential as an important tool for delivery of compounds into the skin.
Sherstneva, O N; Vodeneev, V A; Katicheva, L A; Surova, L M; Sukhov, V S
2015-06-01
Electrical signals presented in plants by action potential and by variation potential (VP) can induce a reversible inactivation of photosynthesis. Changes in the intracellular and extracellular pH during VP generation are a potential mechanism of photosynthetic response induction; however, this hypothesis requires additional experimental investigation. The purpose of the present work was to analyze the influence of pH changes on induction of the photosynthetic response in pumpkin. It was shown that a burning of the cotyledon induced VP propagation into true leaves of pumpkin seedlings inducing a decrease in the photosynthetic CO2 assimilation and an increase in non-photochemical quenching of fluorescence, whereas respiration was activated insignificantly. The photosynthetic response magnitude depended linearly on the VP amplitude. The intracellular and extracellular concentrations of protons were analyzed using pH-sensitive fluorescent probes, and the VP generation was shown to be accompanied by apoplast alkalization (0.4 pH unit) and cytoplasm acidification (0.3 pH unit). The influence of changes in the incubation medium pH on the non-photochemical quenching of fluorescence of isolated chloroplasts was also investigated. It was found that acidification of the medium stimulated the non-photochemical quenching, and the magnitude of this increase depended on the decrease in pH. Our results confirm the contribution of changes in intracellular and extracellular pH to induction of the photosynthetic response caused by VP. Possible mechanisms of the influence of pH changes on photosynthesis are discussed.
Zhou, Cuihong; Zhong, Wu; Zhou, Jun; Sheng, Fugeng; Fang, Ziyuan; Wei, Yue; Chen, Yingyu; Deng, Xiaoyan; Xia, Bin; Lin, Jian
2012-08-01
Monitoring autophagic flux is important for the analysis of autophagy. Tandem fluorescent-tagged LC3 (mRFP-EGFP-LC3) is a convenient assay for monitoring autophagic flux based on different pH stability of EGFP and mRFP fluorescent proteins. However, it has been reported that there is still weak fluorescence of EGFP in acidic environments (pH between 4 and 5) or acidic lysosomes. So it is possible that autolysosomes are labeled with yellow signals (GFP(+)RFP(+) puncta), which results in misinterpreting autophagic flux results. Therefore, it is desirable to choose a monomeric green fluorescent protein that is more acid sensitive than EGFP in the assay of autophagic flux. Here, we report on an mTagRFP-mWasabi-LC3 reporter, in which mWasabi is more acid sensitive than EGFP and has no fluorescence in acidic lysosomes. Meanwhile, mTagRFP-mWasabi-LC3ΔG was constructed as the negative control for this assay. Compared with mRFP-EGFP-LC3, our results showed that this reporter is more sensitive and accurate in detecting the accumulation of autophagosomes and autolysosomes. Using this reporter, we find that high-dose rapamycin (30 μM) will impair autophagic flux, inducing many more autophagosomes than autolysosomes in HeLa cells, while low-dose rapamycin (500 nM) has an opposite effect. In addition, other chemical autophagy inducers (cisplatin, staurosporine and Z18) also elicit much more autophagosomes at high doses than those at low doses. Our results suggest that the dosage of chemical autophagy inducers would obviously influence autophagic flux in cells.
pH Sensitive Microcapsules for Delivery of Corrosion Inhibitors
NASA Technical Reports Server (NTRS)
Li, Wenyan; Calle, Luz M.
2006-01-01
A considerable number of corrosion problems can be solved by coatings. However, even the best protective coatings can fail by allowing the slow diffusion of oxygen and moisture to the metal surface. Corrosion accelerates when a coating delaminates. Often, the problems start when microscopic nicks or pits on the surface develop during manufacturing or through wear and tear. This problem can be solved by the incorporation of a self-healing function into the coating. Several new concepts are currently under development to incorporate this function into a coating. Conductive polymers, nanoparticles, and microcapsules are used to release corrosion-inhibiting ions at a defect site. The objective of this investigation is to develop a smart coating for the early detection and inhibition of corrosion. The dual function of this new smart coating system is performed by pH-triggered release microcapsules. The microcapsules can be used to deliver healing agents to terminate the corrosion process at its early stage or as corrosion indicators by releasing dyes at the localized corrosion sites. The dyes can be color dyes or fluorescent dyes, with or without pH sensitivity. Microcapsules were formed through the interfacial polymerization process. The average size of the microcapsules can be adjusted from 1 to 100 micron by adjusting the emulsion formula and the microcapsule forming conditions. A typical microcapsule size is around 10 microns with a narrow size distribution. The pH sensitivity of the microcapsule can also be controlled by adjusting the emulsion formula and the polymerization reaction time. Both corrosion indicator (pH indicator) and corrosion inhibitor containing microcapsules were formed and incorporated into paint systems. Test panels of selected steels and aluminum alloys were painted using these paints. Testing of compatibility between the microcapsule system and different paint systems are in progress. Initial experiments with the microcapsule containing paint show visible color changes at induced corrosion sites and improvement of corrosion protection. Further investigation of the performance of the coating using electrochemical techniques and long term exposure are currently underway.
Modeling of mixing in 96-well microplates observed with fluorescence indicators.
Weiss, Svenja; John, Gernot T; Klimant, Ingo; Heinzle, Elmar
2002-01-01
Mixing in 96-well microplates was studied using soluble pH indicators and a fluorescence pH sensor. Small amounts of alkali were added with the aid of a multichannel pipet, a piston pump, and a piezoelectric actuator. Mixing patterns were observed visually using a video camera. Addition of drops each of about 1 nL with the piezoelectric actuator resulted in umbrella and double-disklike shapes. Convective mixing was mainly observed in the upper part of the well, whereas the lower part was only mixed quickly when using the multichannel pipet and the piston pump with an addition volume of 5 microL or larger. Estimated mixing times were between a few seconds and several minutes. Mixing by liquid dispensing was much more effective than by shaking. A mixing model consisting of 21 elements could describe mixing dynamics observed by the dissolved fluorescence dye and by the optical immobilized pH sensor. This model can be applied for designing pH control in microplates or for design of kinetic experiments with liquid addition.
Xue, Yuyuan; Liang, Wanshan; Li, Yuan; Wu, Ying; Peng, Xinwen; Qiu, Xueqing; Liu, Jinbin; Sun, Runcang
2016-12-28
A water-soluble, ratiometric fluorescent pH probe, L-SRhB, was synthesized via grafting spirolactam Rhodamine B (SRhB) to lignosulfonate (LS). As the ring-opening product of L-SRhB, FL-SRhB was also prepared. The pH-response experiment indicated that L-SRhB showed a rapid response to pH changes from 4.60 to 6.20 with a pK a of 5.35, which indicated that L-SRhB has the potential for pH detection of acidic organelle. In addition, the two probes were internalized successfully by living cells through the endocytosis pathway and could distinguish normal cells from cancer cells by different cell staining rates. In addition, L-SRhB showed obvious cytotoxicity to cancer cells, whereas it was nontoxic to normal cells in the same condition. L-SRhB might have potential in cancer therapy. L-SRhB might be a promising ratiometric fluorescent pH sensor and bioimaging dye for the recognition of cancer cells. The results also provided a new perspective to the high-value utilization of lignin.
Characterization of flavin-based fluorescent proteins: an emerging class of fluorescent reporters.
Mukherjee, Arnab; Walker, Joshua; Weyant, Kevin B; Schroeder, Charles M
2013-01-01
Fluorescent reporter proteins based on flavin-binding photosensors were recently developed as a new class of genetically encoded probes characterized by small size and oxygen-independent maturation of fluorescence. Flavin-based fluorescent proteins (FbFPs) address two major limitations associated with existing fluorescent reporters derived from the green fluorescent protein (GFP)-namely, the overall large size and oxygen-dependent maturation of fluorescence of GFP. However, FbFPs are at a nascent stage of development and have been utilized in only a handful of biological studies. Importantly, a full understanding of the performance and properties of FbFPs as a practical set of biological probes is lacking. In this work, we extensively characterize three FbFPs isolated from Pseudomonas putida, Bacillus subtilis, and Arabidopsis thaliana, using in vitro studies to assess probe brightness, oligomeric state, maturation time, fraction of fluorescent holoprotein, pH tolerance, redox sensitivity, and thermal stability. Furthermore, we validate FbFPs as stable molecular tags using in vivo studies by constructing a series of FbFP-based transcriptional constructs to probe promoter activity in Escherichia coli. Overall, FbFPs show key advantages as broad-spectrum biological reporters including robust pH tolerance (4-11), thermal stability (up to 60°C), and rapid maturation of fluorescence (<3 min.). In addition, the FbFP derived from Arabidopsis thaliana (iLOV) emerged as a stable and nonperturbative reporter of promoter activity in Escherichia coli. Our results demonstrate that FbFP-based reporters have the potential to address key limitations associated with the use of GFP, such as pH-sensitive fluorescence and slow kinetics of fluorescence maturation (10-40 minutes for half maximal fluorescence recovery). From this view, FbFPs represent a useful new addition to the fluorescent reporter protein palette, and our results constitute an important framework to enable researchers to implement and further engineer improved FbFP-based reporters with enhanced brightness and tighter flavin binding, which will maximize their potential benefits.
ANTS-anchored Zn-Al-CO{sub 3}-LDH particles as fluorescent probe for sensing of folic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Pengfei; Liu, Dan; Liu, Yanhuan
2016-09-15
A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO{sub 3}-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn{sup 2+} ions of Zn-Al-CO{sub 3}-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO{sub 3}-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO{sub 3}-LDH particles exhibited highly sensitive and selective response to FA over othermore » common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO{sub 3} groups in ANTS-anchored on the surface of Zn-Al-CO{sub 3}-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO{sub 3}-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution. - Highlights: • A novel fluorescent nanosensor has been developed. • The sensor exhibited highly sensitive and selective response to FA. • The fluorescence quenching was fitted to Stern–Volmer equation. • The linear response range was 1–200 μM with a limit of detection of 0.1 μM.« less
Imaging of Intracellular pH in Tumor Spheroids Using Genetically Encoded Sensor SypHer2.
Zagaynova, Elena V; Druzhkova, Irina N; Mishina, Natalia M; Ignatova, Nadezhda I; Dudenkova, Varvara V; Shirmanova, Marina V
2017-01-01
Intracellular pH (pHi) is one of the most important parameters that regulate the physiological state of cells and tissues. pHi homeostasis is crucial for normal cell functioning. Cancer cells are characterized by having a higher (neutral to slightly alkaline) pHi and lower (acidic) extracellular pH (pHe) compared to normal cells. This is referred to as a "reversed" pH gradient, and is essential in supporting their accelerated growth rate, invasion and migration, and in suppressing anti-tumor immunity, the promotion of metabolic coupling with fibroblasts and in preventing apoptosis. Moreover, abnormal pH, both pHi and pHe, contribute to drug resistance in cancers. Therefore, the development of methods for measuring pH in living tumor cells is likely to lead to better understanding of tumor biology and to open new ways for cancer treatment. Genetically encoded, fluorescent, pH-sensitive probes represent promising instruments enabling the subcellular measurement of pHi with unrivaled specificity and high accuracy. Here, we describe a protocol for pHi imaging at a microscopic level in HeLa tumor spheroids, using the genetically encoded ratiometric (dual-excitation) pHi indicator, SypHer2.
Mangalath, Sreejith; Abraham, Silja; Joseph, Joshy
2017-08-22
A pH-sensitive, fluorescence "turn-on" sensor based on a graphene oxide-naphthalimide (GO-NI) nanoconjugate for the detection of acetylcholine (ACh) by monitoring the enzymatic activity of acetylcholinesterase (AChE) in aqueous solution is reported. These nanoconjugates were synthesized by covalently anchoring picolyl-substituted NI derivatives on the GO/reduced GO surface through a 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide coupling strategy, and the morphological and photophysical properties were studied in detail. Synergistic effects of π-π interactions between GO and the NI chromophore, and efficient photoinduced electron- and energy-transfer processes, were responsible for the strong quenching of fluorescence of these nanoconjugates, which were perturbed under acidic pH conditions, leading to significant enhancement of fluorescence emission. This nanoconjugate was successfully employed for the efficient sensing of pH changes caused by the enzymatic activity of AChE, thereby demonstrating its utility as a fluorescence turn-on sensor for ACh in the neurophysiological range. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Yue; Song, Renfeng; Feng, Huan; Guo, Ke; Meng, Qingtao; Chi, Haijun; Zhang, Run; Zhang, Zhiqiang
2016-01-01
A new Gadolinium(III)–coumarin complex, DO3A-Gd-CA, was designed and prepared as a dual-modal probe for simultaneous fluorescence and relaxivity responses to fluoride ions (F−) in aqueous media and mice. DO3A-Gd-CA was designed by using Gd(III) center as an MRI signal output unit and fluoride binding site, and the 4-(diethylamino)-coumarin-3-carboxylic acid (CA) as a fluorescence reporter. Upon the addition of fluoride ions to the solution of DO3A-Gd-CA, the liberation of the coordinated CA ligand led to a 5.7-fold fluorescence enhancement and a 75% increase in the longitudinal relaxivity (r1). The fluorescent detection limit for fluoride ions was determined to be 8 μM based on a 3σ/slope. The desirable features of the proposed DO3A-Gd-CA, such as high sensitivity and specificity, reliability at physiological pH and low cytotoxicity enable its application in visualization of fluoride ion in mice. The successful in vivo imaging indicates that DO3A-Gd-CA could be potentially used in biomedical diagnosis fields. PMID:27999298
Wang, Yue; Song, Renfeng; Feng, Huan; Guo, Ke; Meng, Qingtao; Chi, Haijun; Zhang, Run; Zhang, Zhiqiang
2016-12-16
A new Gadolinium(III)-coumarin complex, DO3A-Gd- CA , was designed and prepared as a dual-modal probe for simultaneous fluorescence and relaxivity responses to fluoride ions (F - ) in aqueous media and mice. DO3A-Gd- CA was designed by using Gd(III) center as an MRI signal output unit and fluoride binding site, and the 4-(diethylamino)-coumarin-3-carboxylic acid ( CA ) as a fluorescence reporter. Upon the addition of fluoride ions to the solution of DO3A-Gd- CA , the liberation of the coordinated CA ligand led to a 5.7-fold fluorescence enhancement and a 75% increase in the longitudinal relaxivity ( r ₁). The fluorescent detection limit for fluoride ions was determined to be 8 μM based on a 3 σ / slope . The desirable features of the proposed DO3A-Gd- CA , such as high sensitivity and specificity, reliability at physiological pH and low cytotoxicity enable its application in visualization of fluoride ion in mice. The successful in vivo imaging indicates that DO3A-Gd- CA could be potentially used in biomedical diagnosis fields.
Diao, Haipeng; Li, Tingting; Zhang, Rong; Kang, Yu; Liu, Wen; Cui, Yanhua; Wei, Shuangyan; Wang, Ning; Li, Lihong; Wang, Haojiang; Niu, Weifen; Sun, Tijian
2018-07-05
Most carbon dots (CDs) conventional fabrication approaches produce single colored fluorescent materials, different methods are required to synthesize distinct carbon dots for specific optical applications. Herein, using one-pot hydrothermal treatment of Syringa obtata Lindl, a facile, low-cost and green assay is achieved in the controllable synthesis of blue and green fluorescent carbon dots. The fluorescent emission of CDs can be well-tuned by adding sodium hydroxide in the precursor solution. Blue fluorescent CDs are applied to Fe 3+ sensing with a low detection limit of 0.11 μM of linear range from 0.5 to 80 μM, and then further extended to analysis river water samples. Green fluorescent CDs can be applied to pH detection, which show a remarkable linear enhancement in the green fluorescence emission region when the pH is increased from 1.98 to 8.95. Eventually, the detection of Fe 3+ and pH are applied for the living cells fluorescent images in MCF-7 cells are achieved successfully, indicating as-synthesized CDs potential toward diverse application as promising candidate. Copyright © 2018 Elsevier B.V. All rights reserved.
Ratiometric Imaging of Extracellular pH in Dental Biofilms.
Schlafer, Sebastian; Dige, Irene
2016-03-09
The pH in bacterial biofilms on teeth is of central importance for dental caries, a disease with a high worldwide prevalence. Nutrients and metabolites are not distributed evenly in dental biofilms. A complex interplay of sorption to and reaction with organic matter in the biofilm reduces the diffusion paths of solutes and creates steep gradients of reactive molecules, including organic acids, across the biofilm. Quantitative fluorescent microscopic methods, such as fluorescence life time imaging or pH ratiometry, can be employed to visualize pH in different microenvironments of dental biofilms. pH ratiometry exploits a pH-dependent shift in the fluorescent emission of pH-sensitive dyes. Calculation of the emission ratio at two different wavelengths allows determining local pH in microscopic images, irrespective of the concentration of the dye. Contrary to microelectrodes the technique allows monitoring both vertical and horizontal pH gradients in real-time without mechanically disturbing the biofilm. However, care must be taken to differentiate accurately between extra- and intracellular compartments of the biofilm. Here, the ratiometric dye, seminaphthorhodafluor-4F 5-(and-6) carboxylic acid (C-SNARF-4) is employed to monitor extracellular pH in in vivo grown dental biofilms of unknown species composition. Upon exposure to glucose the dye is up-concentrated inside all bacterial cells in the biofilms; it is thus used both as a universal bacterial stain and as a marker of extracellular pH. After confocal microscopic image acquisition, the bacterial biomass is removed from all pictures using digital image analysis software, which permits to exclusively calculate extracellular pH. pH ratiometry with the ratiometric dye is well-suited to study extracellular pH in thin biofilms of up to 75 µm thickness, but is limited to the pH range between 4.5 and 7.0.
Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Belausov, Eduard; Kochanek, Betina; Tucker, Mark L.; Meir, Shimon
2015-01-01
In vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2’,7’-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively. Similarly, 1-MCP pre-treatment of tomato inflorescence explants abolished the pH increase in AZ cells and pedicel abscission induced by flower removal. Examination of the pH changes in the AZ cells of Arabidopsis mutants defective in both ethylene-induced (ctr1, ein2, eto4) and ethylene-independent (ida, nev7, dab5) abscission pathways confirmed these results. The data indicate that the pH changes in the AZ cells are part of both the ethylene-sensitive and -insensitive abscission pathways, and occur concomitantly with the execution of organ abscission. pH can affect enzymatic activities and/or act as a signal for gene expression. Changes in pH during abscission could occur via regulation of transporters in AZ cells, which might affect cytosolic pH. Indeed, four genes associated with pH regulation, vacuolar H+-ATPase, putative high-affinity nitrate transporter, and two GTP-binding proteins, were specifically up-regulated in tomato flower AZ following abscission induction, and 1-MCP reduced or abolished the increased expression. PMID:25504336
Xu, Huan; Hu, Meina; Yu, Xiu; Li, Yan; Fu, Yuanshan; Zhou, Xiaoxia; Zhang, Di; Li, Jianying
2015-04-01
In this study, a novel material, poly(2-ethyl-2-oxazoline)-cholesterol hemisuccinate (PEtOz-CHEMS), was synthesized to construct pH-sensitive liposomes. The structure of PEtOz-CHEMS was confirmed by thin-layer chromatography, Fourier transform infrared spectroscopy, and (1)H NMR. Anticancer fluorescent drug doxorubicin (DOX) was encapsulated into the liposomes. Compared with conventional liposomes (CL), CHEMS modified liposomes (CH-L) and PEGylated liposomes (PEG-L), the PEtOzylated liposomes (PEtOz-L) showed an acidic pH-induced increase in particle size. At pH 6.4, the heme release of PEtOz-L group was close to that of the positive control group, whereas that of CL, CH-L and PEG-L was close to that of the negative control group. In vitro drug release studies demonstrated that DOX was released from PEtOz-L in a pH-dependent manner, and the release of DOX from conventional DOX liposomes (CL-DOX), DOX loaded CH-L (CH-DOX-L) and PEGylated DOX liposomes (PEG-DOX-L) had no pronounced differences under each pH medium. In vitro cellular uptake assays showed that PEtOz-DOX-L indicated a significant fluorescence intensity at pH 6.4 compared with at pH 7.4. CL-DOX, CH-DOX-L and PEG-DOX-L did not achieve any obvious diversity at different pH conditions. Confocal laser scanning microscopy images showed that PEtOz-DOX-L can fuse with the endosomal membrane under acidic conditions of endosome, release DOX into the cytoplasm, then gather into the nucleus. Therefore, PEtOz can help liposomes achieve "endosomal escape". The in vitro cytotoxicity experiment results on A375 cells showed that PEtOz-DOX-L resulted in lower cell viability than CL-DOX, CH-DOX-L and PEG-DOX-L under low pH conditions. These results confirm that the pH-responsive PEtOz was a promising material for intracellular targeted delivery system and might be used for overcoming the "PEG dilemma". Copyright © 2015 Elsevier B.V. All rights reserved.
Real-time Fluorescence Polarization Microscopy of the Moving Boundary in Cross-Gradient SDS-PAGE
NASA Astrophysics Data System (ADS)
Hwang, Jeeseong; Giulian, Gary
2003-03-01
Real-time Fluorescence Polarization Microscopy of the Moving Boundary in Cross-Gradient SDS-PAGE Jeeseong Hwang, Jeffrey R. Krogmeier, Angela M. Bardo, Scott N. Goldie, Lori S. Goldner; Optical Technology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 Gary G. Giulian, Carl R. Merril; National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) is a popular method to separate proteins by their apparent molecular weight. However, it is a limited technique due, in part, to its low spatial resolution. In order to improve the resolution and to enhance the detection sensitivity of proteins separated by SDS-PAGE we are studying the detergent properties at the moving boundary of precast Tris-Tricine-Acetate cross-gradient gels using fluorescent cationic and pH indicating dyes. We have developed real-time full-field fluorescence polarization microscopy to monitor the dynamic fluorescence anisotropy from the cationic tetramethylindocarbocyanine dyes localized in the "extended stack", a concentrated detergent zone. We will present quantitative results of the fluorescence anisotropy. Our system is capable of analyzing local structures of the detergent molecules in the moving boundary of SDS-PAGE and the microenvironment(s) near the boundary. We will discuss the significance of these results and their potential role in enhanced protein separation.
Facile synthesis, cytotoxicity and bioimaging of Fe(3+) selective fluorescent chemosensor.
Saleem, Muhammad; Abdullah, Razack; Ali, Anser; Park, Bong Joo; Choi, Eun Ha; Hong, In Seok; Lee, Ki Hwan
2014-04-01
The designing and development of fluorescent chemosensors have recently been intensively explored for sensitive and specific detection of environmentally and biologically relevant metal ions in aqueous solution and living cells. Herein, we report the photophysical results of alanine substituted rhodamine B derivative 3 having specific binding affinity toward Fe(3+) with micro molar concentration level. Through fluorescence titration at 599nm, we were confirmed that ligand 3 exhibited ratiometric fluorescence response with remarkable enhancement in emission intensity by complexation between 3 and Fe(3+) while it appeared no emission in case of the competitive ions (Sc(3+), Yb(3+), In(3+), Ce(3+), Sm(3+), Cr(3+), Sn(2+), Pb(2+), Ni(2+), Co(2+), Cu(2+), Ba(2+), Ca(2+), Mg(2+), Ag(+), Cs(+), Cu(+), K(+)) in aqueous/methanol (60:40, v/v) at neutral pH. However, the fluorescence as well as colorimetric response of ligand-iron complex solution was quenched by addition of KCN which snatches the Fe(3+) from complex and turn off the sensor confirming the recognition process was reversible. Furthermore, bioimaging studies against L-929 cells (mouse fibroblast cells) and BHK-21 (hamster kidney fibroblast), through confocal fluorescence microscopic experiment indicated that ligand showed good permeability and minimum toxicity against the tested cell lines. Copyright © 2014 Elsevier Ltd. All rights reserved.
Two-photon fluorescent sensor for K+ imaging in live cells (Conference Presentation)
NASA Astrophysics Data System (ADS)
Sui, Binglin; Yue, Xiling; Kim, Bosung; Belfield, Kevin D.
2016-03-01
It is difficult to overstate the physiological importance of potassium for life as its indispensable roles in a variety of biological processes are widely known. As a result, efficient methods for determining physiological levels of potassium are of paramount importance. Despite this, relatively few K+ fluorescence sensors have been reported, with only one being commercially available. A new two-photon excited fluorescent K+ sensor is reported. The sensor is comprised of three moieties, a highly selective K+ chelator as the K+ recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (<52-fold) in detecting K+ over other physiological metal cations. Upon binding K+, the sensor switches from non-fluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K+ sensing in living cells.
In vivo optical detection of pH in microscopic tissue samples of Arabidopsis thaliana.
Kašík, Ivan; Podrazký, Ondřej; Mrázek, Jan; Martan, Tomáš; Matějec, Vlastimil; Hoyerová, Klára; Kamínek, Miroslav
2013-12-01
Minimally invasive in vivo measurement of pH in microscopic biological samples of μm or μl size, e.g. plant cells, tissues and saps, may help to explain complex biological processes. Consequently, techniques to achieve such measurements are a focus of interest for botanists. This paper describes a technique for the in vivo measurement of pH in the range pH5.0 to pH7.8 in microscopic plant tissue samples of Arabidopsis thaliana based on a ratiometric fluorescence method using low-loss robust tapered fiber probes. For this purpose tapered fiber probes were prepared and coated with a detection layer containing ion-paired fluorescent pH-transducer 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (c-HPTS). A fluorescence ratiometric approach was employed based on excitation at 415 nm and 450 nm and on the comparison of the fluorescence response at 515 nm. The suitability of tapered fiber probes for local detection of pH between 5.0 and 7.8 was demonstrated. A pH sensitivity of 0.15 pH units was achieved within the pH ranges 5.0-5.9 and 7.1-7.8, and this was improved to 0.04 pH units within the pH range 5.9-7.1. Spatial resolution of the probes was better than 20 μm and a time response within 15-20s was achieved. Despite the minute dimensions of the tapered fiber probes the setup developed was relatively robust and compact in construction and performed reliably. It has been successfully employed for the in vivo local determination of pH of mechanically resistant plant tissues of A. thaliana of microscopic scale. The detection of momentary pH gradients across the intact plant seems to be a good tool for the determination of changes in pH in response to experimental treatments affecting for example enzyme activities, availability of mineral nutrients, hormonal control of plant development and plant responses to environmental cues. © 2013.
Adie, E J; Kalinka, S; Smith, L; Francis, M J; Marenghi, A; Cooper, M E; Briggs, M; Michael, N P; Milligan, G; Game, S
2002-11-01
G protein-coupled receptors (GPCRs) are the largest family of proteins involved in transmembrane signal transduction and are actively studied because of their suitability as therapeutic small-molecule drug targets. Agonist activation of GPCRs almost invariably results in the receptor being desensitized. One of the key events in receptor desensitization is the sequestration of the receptor from the cell surface into acidic intracellular endosomes. Therefore, a convenient, generic, and noninvasive monitor of this process is desirable. A novel, pH-sensitive, red-excited fluorescent dye, CypHer 5, was synthesized. This dye is non-fluorescent at neutral pH and is fluorescent at acidic pH. Anti-epitope antibodies labeled with this dye were internalized in an agonist concentration- and time-dependent manner, following binding on live cells to a range of GPCRs that had been modified to incorporate the epitope tags in their extracellular N-terminal domain. This resulted in a large signal increase over background. When protonated, the red fluorescence of CypHer 5 provides a generic reagent suitable for monitoring the internalization of GPCRs into acidic vesicles. This approach should be amenable to the study of many other classes of cell surface receptors that also internalize following stimulation.
Zhong, Sheng; Navaratnam, Dhasakumar; Santos-Sacchi, Joseph
2014-01-01
Background Chloride is the major anion in cells, with many diseases arising from disordered Cl− regulation. For the non-invasive investigation of Cl− flux, YFP-H148Q and its derivatives chameleon and Cl-Sensor previously were introduced as genetically encoded chloride indicators. Neither the Cl− sensitivity nor the pH-susceptibility of these modifications to YFP is optimal for precise measurements of Cl− under physiological conditions. Furthermore, the relatively poor photostability of YFP derivatives hinders their application for dynamic and quantitative Cl− measurements. Dynamic and accurate measurement of physiological concentrations of chloride would significantly affect our ability to study effects of chloride on cellular events. Methodology/Principal Findings In this study, we developed a series of YFP derivatives to remove pH interference, increase photostability and enhance chloride sensitivity. The final product, EYFP-F46L/Q69K/H148Q/I152L/V163S/S175G/S205V/A206K (monomeric Cl-YFP), has a chloride Kd of 14 mM and pKa of 5.9. The bleach time constant of 175 seconds is over 15-fold greater than wild-type EYFP. We have used the sensor fused to the transmembrane protein prestin (gerbil prestin, SLC26a5), and shown for the first time physiological (mM) chloride flux in HEK cells expressing this protein. This modified fluorescent protein will facilitate investigations of dynamics of chloride ions and their mediation of cell function. Conclusions Modifications to YFP (EYFP-F46L/Q69K/H148Q/I152L/V163S/S175G/S205V/A206K (monomeric Cl-YFP) results in a photostable fluorescent protein that allows measurement of physiological changes in chloride concentration while remaining minimally affected by changes in pH. PMID:24901231
Zhong, Sheng; Navaratnam, Dhasakumar; Santos-Sacchi, Joseph
2014-01-01
Chloride is the major anion in cells, with many diseases arising from disordered Cl- regulation. For the non-invasive investigation of Cl- flux, YFP-H148Q and its derivatives chameleon and Cl-Sensor previously were introduced as genetically encoded chloride indicators. Neither the Cl- sensitivity nor the pH-susceptibility of these modifications to YFP is optimal for precise measurements of Cl- under physiological conditions. Furthermore, the relatively poor photostability of YFP derivatives hinders their application for dynamic and quantitative Cl- measurements. Dynamic and accurate measurement of physiological concentrations of chloride would significantly affect our ability to study effects of chloride on cellular events. In this study, we developed a series of YFP derivatives to remove pH interference, increase photostability and enhance chloride sensitivity. The final product, EYFP-F46L/Q69K/H148Q/I152L/V163S/S175G/S205V/A206K (monomeric Cl-YFP), has a chloride Kd of 14 mM and pKa of 5.9. The bleach time constant of 175 seconds is over 15-fold greater than wild-type EYFP. We have used the sensor fused to the transmembrane protein prestin (gerbil prestin, SLC26a5), and shown for the first time physiological (mM) chloride flux in HEK cells expressing this protein. This modified fluorescent protein will facilitate investigations of dynamics of chloride ions and their mediation of cell function. Modifications to YFP (EYFP-F46L/Q69K/H148Q/I152L/V163S/S175G/S205V/A206K (monomeric Cl-YFP) results in a photostable fluorescent protein that allows measurement of physiological changes in chloride concentration while remaining minimally affected by changes in pH.
Bianchini, L; Nanda, A; Wasan, S; Grinstein, S
1994-01-01
Activated phagocytes undergo a massive burst of metabolic acid generation, yet must be able to maintain their cytosolic pH (pHi) within physiological limits. Peroxides of vanadate (V(4+)-OOH), potent inhibitors of phosphotyrosine phosphatases, have recently been shown to produce activation of the respiratory burst in HL60 granulocytes. We therefore investigated the effects of V(4+)-OOH on pHi homoeostasis in HL60 granulocytes, using a pH-sensitive fluorescent dye. V(4+)-OOH stimulation induced a biphasic pH change: a transient cytosolic acidification followed by a significant alkalinization. The initial acidification was prevented by inhibition of the NADPH oxidase and was absent in undifferentiated cells lacking oxidase activity. Analysis of the alkalinization phase demonstrated the involvement of the Na+/H+ antiporter, and also provided evidence for activation of two alternative H(+)-extrusion pathways: a bafilomycin-sensitive component, likely reflecting vacuolar-type H(+)-ATPase activity, and a Zn(2+)-sensitive H(+)-conductive pathway. Our results indicate that V(4+)-OOH stimulation not only activated the NADPH oxidase but concomitantly stimulated H(+)-extrusion pathways, enabling the cells to compensate for the massive production of intracellular H+ associated with the respiratory burst. PMID:8043000
NASA Astrophysics Data System (ADS)
Akbar, Rifat; Baral, Minati; Kanungo, B. K.
2015-05-01
The synthesis, thermodynamic and photophysical properties of trivalent metal complexes of biomimetic nonadentate analogue, 5,5‧-(2-(((8-hydroxyquinolin-5-yl)methylamino)methyl)-2-methylpropane-1,3-diyl)bis(azanediyl)bis(methylene)diquinolin-8-ol (TAME5OX), have been described. Combination of absorption and emission spectrophotometry, potentiometry, electrospray mass spectrometry, IR, and theoretical investigation were used to fully characterize metal (Fe+3, Al+3 and Cr+3) chelates of TAME5OX. In solution, TAME5OX forms protonated complexes [M(H3L)]3+ below pH 3.4, which consecutively deprotonates through one to three-proton processes with rise of pH. The formation constants (Log β11n) of neutral complexes formed at or above physiological pH, have been determined to be 30.18, 23.27 and 22.02 with pM values of 31.16, 18.07 and 18.12 for Fe+3, Al+3 and Cr+3 ions, respectively, calculated at pH 7.4, indicating TAME5OX is a powerful among synthetic metal chelator. The results clearly demonstrate that the ligand in a tripodal orchestration firmly binds these ions over wide pH range and forms distorted octahedral complexes. The binding and the coordination event could be monitored from absorption and fluorescence spectroscopy. The high thermodynamic stability in water at physiological pH of ferric complex of TAME5OX indicates that these complexes are resistant to hydrolysis and therefore are well suited for the development of device for applications as probes. The ligand displays high sensitive fluorescence enhancement to Al3+ at pH 7.4, in water. Moreover, TAME5OX can distinguish Al3+ from Fe3+ and Cr3+ via two different sensing mechanisms: photoinduced electron transfer (PET) for Al3+ and internal charge transfer (ICT) for Fe3+ and Cr3+. Density functional theory was employed for optimization and evaluation of vibrational modes, NBO analysis, excitation and emission properties of the different species of metal complexes observed by solution studies.
Akbar, Rifat; Baral, Minati; Kanungo, B K
2015-05-05
The synthesis, thermodynamic and photophysical properties of trivalent metal complexes of biomimetic nonadentate analogue, 5,5'-(2-(((8-hydroxyquinolin-5-yl)methylamino)methyl)-2-methylpropane-1,3-diyl)bis(azanediyl)bis(methylene)diquinolin-8-ol (TAME5OX), have been described. Combination of absorption and emission spectrophotometry, potentiometry, electrospray mass spectrometry, IR, and theoretical investigation were used to fully characterize metal (Fe(+3), Al(+3) and Cr(+3)) chelates of TAME5OX. In solution, TAME5OX forms protonated complexes [M(H3L)](3+) below pH 3.4, which consecutively deprotonates through one to three-proton processes with rise of pH. The formation constants (Logβ11n) of neutral complexes formed at or above physiological pH, have been determined to be 30.18, 23.27 and 22.02 with pM values of 31.16, 18.07 and 18.12 for Fe(+3), Al(+3) and Cr(+3) ions, respectively, calculated at pH 7.4, indicating TAME5OX is a powerful among synthetic metal chelator. The results clearly demonstrate that the ligand in a tripodal orchestration firmly binds these ions over wide pH range and forms distorted octahedral complexes. The binding and the coordination event could be monitored from absorption and fluorescence spectroscopy. The high thermodynamic stability in water at physiological pH of ferric complex of TAME5OX indicates that these complexes are resistant to hydrolysis and therefore are well suited for the development of device for applications as probes. The ligand displays high sensitive fluorescence enhancement to Al(3+) at pH 7.4, in water. Moreover, TAME5OX can distinguish Al(3+) from Fe(3+) and Cr(3+) via two different sensing mechanisms: photoinduced electron transfer (PET) for Al(3+) and internal charge transfer (ICT) for Fe(3+) and Cr(3+). Density functional theory was employed for optimization and evaluation of vibrational modes, NBO analysis, excitation and emission properties of the different species of metal complexes observed by solution studies. Copyright © 2015 Elsevier B.V. All rights reserved.
pH and chloride recordings in living cells using two-photon fluorescence lifetime imaging microscopy
NASA Astrophysics Data System (ADS)
Lahn, Mattes; Hille, Carsten; Koberling, Felix; Kapusta, Peter; Dosche, Carsten
2010-02-01
Today fluorescence lifetime imaging microscopy (FLIM) has become an extremely powerful technique in life sciences. The independency of the fluorescence decay time on fluorescence dye concentration and emission intensity circumvents many artefacts arising from intensity based measurements. To minimize cell damage and improve scan depth, a combination with two-photon (2P) excitation is quite promising. Here, we describe the implementation of a 2P-FLIM setup for biological applications. For that we used a commercial fluorescence lifetime microscope system. 2P-excitation at 780nm was achieved by a non-tuneable, but inexpensive and easily manageable mode-locked fs-fiber laser. Time-resolved fluorescence image acquisition was performed by objective-scanning with the reversed time-correlated single photon counting (TCSPC) technique. We analyzed the suitability of the pH-sensitive dye BCECF and the chloride-sensitive dye MQAE for recordings in an insect tissue. Both parameters are quite important, since they affect a plethora of physiological processes in living tissues. We performed a straight forward in situ calibration method to link the fluorescence decay time with the respective ion concentration and carried out spatially resolved measurements under resting conditions. BCECF still offered only a limited dynamic range regarding fluorescence decay time changes under physiologically pH values. However, MQAE proofed to be well suited to record chloride concentrations in the physiologically relevant range. Subsequently, several chloride transport pathways underlying the intracellular chloride homeostasis were investigated pharmacologically. In conclusion, 2P-FLIM is well suited for ion detection in living tissues due to precise and reproducible decay time measurements in combination with reduced cell and dye damages.
Munteanu, Raluca-Elena; Stǎnicǎ, Luciana; Gheorghiu, Mihaela; Gáspár, Szilveszter
2018-05-15
There are only a few tools suitable for measuring the extracellular pH of adherently growing mammalian cells with high spatial resolution, and none of them is widely used in laboratories around the world. Cell biologists very often limit themselves to measuring the intracellular pH with commercially available fluorescent probes. Therefore, we built a voltammetric pH microsensor and investigated its suitability for monitoring the extracellular pH of adherently growing mammalian cells. The voltammetric pH microsensor consisted of a 37 μm diameter carbon fiber microelectrode modified with reduced graphene oxide and syringaldazine. While graphene oxide was used to increase the electrochemically active surface area of our sensor, syringaldazine facilitated pH sensing through its pH-dependent electrochemical oxidation and reduction. The good sensitivity (60 ± 2.5 mV/pH unit), reproducibility (coefficient of variation ≤3% for the same pH measured with 5 different microsensors), and stability (pH drift around 0.05 units in 3 h) of the built voltammetric pH sensors were successfully used to investigate the acidification of the extracellular space of both cancer cells and normal cells. The results indicate that the developed pH microsensor and the perfected experimental protocol based on scanning electrochemical microscopy can reveal details of the pH regulation of cells not attainable with pH sensors lacking spatial resolution or which cannot be reproducibly positioned in the extracellular space.
A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles
Wang, Chensu; Wang, Yiguang; Li, Yang; Bodemann, Brian; Zhao, Tian; Ma, Xinpeng; Huang, Gang; Hu, Zeping; DeBerardinis, Ralph J.; White, Michael A.; Gao, Jinming
2015-01-01
Endosomes, lysosomes and related catabolic organelles are a dynamic continuum of vacuolar structures that impact a number of cell physiological processes such as protein/lipid metabolism, nutrient sensing and cell survival. Here we develop a library of ultra-pH-sensitive fluorescent nanoparticles with chemical properties that allow fine-scale, multiplexed, spatio-temporal perturbation and quantification of catabolic organelle maturation at single organelle resolution to support quantitative investigation of these processes in living cells. Deployment in cells allows quantification of the proton accumulation rate in endosomes; illumination of previously unrecognized regulatory mechanisms coupling pH transitions to endosomal coat protein exchange; discovery of distinct pH thresholds required for mTORC1 activation by free amino acids versus proteins; broad-scale characterization of the consequence of endosomal pH transitions on cellular metabolomic profiles; and functionalization of a context-specific metabolic vulnerability in lung cancer cells. Together, these biological applications indicate the robustness and adaptability of this nanotechnology-enabled ‘detection and perturbation' strategy. PMID:26437053
Kur-Kowalska, Karolina; Przybyt, Małgorzata; Ziółczyk, Paulina; Sowiński, Przemysław; Miller, Ewa
2014-08-14
Preliminary results of a study of the interaction between 3-amino phenylboronic acid and glucose or ZnS:Cu quantum dots are presented in this paper. ZnS:Cu quantum dots with mercaptopropionic acid as a capping agent were obtained and characterized. Quenching of 3-amino phenylboronic acid fluorescence was studied by steady-state and timeresolved measurements. For fluorescence quenching with glucose the results of steady-state measurements fulfill Stern-Volmer equation. The quenching constants are increasing with growing pH. The decay of fluorescence is monoexponential with lifetime about 8.4 ns, which does not depend on pH and glucose concentration indicating static quenching. The quenching constant can be interpreted as apparent equilibrium constant of estrification of boronic group with diol. Quantum dots are also quenching 3-amino phenylboronic acid fluorescence. Fluorescence lifetime, in this case, is slightly decreasing with increasing concentration of quantum dots. The quenching constants are increasing slightly with pH's growth. Quenching mechanism of 3-amino phenylboronic acid fluorescence by quantum dots needs further experiments to be fully explained. Copyright © 2014 Elsevier B.V. All rights reserved.
Ray, Aniruddha; Lee, Yong-Eun Koo; Kim, Gwangseong; Kopelman, Raoul
2012-07-23
A novel nanophotonic method for enhancing the two-photon fluorescence signal of a fluorophore is presented. It utilizes the second harmonic (SH) of the exciting light generated by noble metal nanospheres in whose near-field the dye molecules are placed, to further enhance the dye's fluorescence signal in addition to the usual metal-enhanced fluorescence phenomenon. This method enables demonstration, for the first time, of two-photon fluorescence enhancement inside a biological system, namely live cells. A multishell hydrogel nanoparticle containing a silver core, a protective citrate capping, which serves also as an excitation quenching inhibitor spacer, a pH indicator dye shell, and a polyacrylamide cladding are employed. Utilizing this technique, an enhancement of up to 20 times in the two-photon fluorescence of the indicator dye is observed. Although a significant portion of the enhanced fluorescence signal is due to one-photon processes accompanying the SH generation of the exciting light, this method preserves all the advantages of infrared-excited, two-photon microscopy: enhanced penetration depth, localized excitation, low photobleaching, low autofluorescence, and low cellular damage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lara-Severino, Reyna del Carmen; Camacho-López, Miguel Ángel; García-Macedo, Jessica Marlene; Gómez-Oliván, Leobardo M.; Sandoval-Trujillo, Ángel H.; Isaac-Olive, Keila; Ramírez-Durán, Ninfa
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) are compounds that can be quantified by fluorescence due to their high quantum yield. Haloalkalitolerant bacteria tolerate wide concentration ranges of NaCl and pH. They are potentially useful in the PAHs bioremediation of saline environments. However, it is known that salinity of the sample affects fluorescence signal regardless of the method. The objective of this work was to carry out a comparative study based on the sensitivity, linearity, and detection limits of the excitation, emission, and synchronous fluorescence methods, during the quantification of the residual anthracene concentration from the following haloalkalitolerant actinomycetes cultures Kocuria rosea, Kocuria palustris, Microbacterium testaceum, and 4 strains of Nocardia farcinica, in order to establish the proper fluorescence method to study the PAHs biodegrading capacity of haloalkalitolerant actinobacteria. The study demonstrated statistical differences among the strains and among the fluorescence methods regarding the anthracene residual concentration. The results showed that excitation and emission fluorescence methods performed very similarly but sensitivity in excitation fluorescence is slightly higher. Synchronous fluorescence using Δλ = 150 nm is not the most convenient method. Therefore we propose the excitation fluorescence as the fluorescence method to be used in the study of the PAHs biodegrading capacity of haloalkalitolerant actinomycetes. PMID:26925294
Dual-fluorophore Raspberry-like Nanohybrids for Ratiometric pH Sensing.
Acquah, Isaac; Roh, Jinkyu; Ahn, Dong June
2017-07-18
We report on the development of raspberry-like silica structures formed by the adsorption of 8-hydroxypyrene-1,3,6-trisulfonate (HPTS)@silica nanoparticles (NPs) on rhodamine B isothiocyanate (RBTIC)@silica NPs for ratiometric fluorescence-based pH sensing. To overcome the well-known problem of dye leaching which occurs during encapsulation of anionic HPTS dye in silica NPs, we utilized a polyelectrolyte-assisted incorporation of the anionic HPTS. The morphological and optical characterization of the as-synthesized dye-doped NPs and the resulting nanohybrids were carried out. The pH-sensitive dye, HPTS, incorporated in the HPTS-doped silica NPs provided a pH-dependent fluorescence response while the RBITC-doped silica provided the reference signal for ratiometric sensing. We evaluated the effectiveness of the nanohybrids for pH sensing; the ratio of the fluorescence emission intensity at 510 nm and 583 nm at excitation wavelengths of 454 nm and 555 nm, respectively. The results showed a dynamic response in the acidic pH range. With this approach, nanohybrids containing different dyes or receptors could be developed for multifunctioning and multiplexing applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Park, Chan Ho; Lee, Sangmin; Pornnoppadol, Ghasidit; Nam, Yoon Sung; Kim, Shin-Hyun; Kim, Bumjoon J
2018-03-14
We report the design of a novel microcapsule platform for in situ pH sensing and photothermal heating, which involves the encapsulation of pH-responsive polymer-coated molybdenum disulfide (MoS 2 ) nanosheets (NSs) in microcapsules with an aqueous core and a semipermeable polymeric shell. The MoS 2 NSs were functionalized with pH-responsive polymers having fluorescent groups at the distal end to provide pH-sensitive Förster resonance energy transfer (FRET) effect. The pH-responsive polymers were carefully designed to produce a dramatic change in the polymer conformation, which translated to a change in the FRET efficiency near pH 7.0 in response to subtle pH changes, enabling the detection of cancer cells. The pH-sensitive MoS 2 NSs were microfluidically encapsulated within semipermeable membranes to yield microcapsules with a uniform size and composition. The microcapsules retained the MoS 2 NSs without leakage while allowing the diffusion of small ions and water through the membrane. At the same time, the membranes excluded adhesive proteins and lipids in the surrounding media, protecting the encapsulated MoS 2 NSs from deactivation and enabling in situ pH monitoring. Moreover, the encapsulated MoS 2 NSs showed high-performance photothermal heating, rendering the dual-functional microcapsules highly suitable for cancer diagnosis and treatment.
Liu, Jinchuan; Guan, Zheng; Lv, Zhenzhen; Jiang, Xiaoling; Yang, Shuming; Chen, Ailiang
2014-02-15
Gold nanoparticles (AuNPs) based fluorescence quenching or colorimetric aptasensor have been developed for many analytes recently largely because of the ease of detection, high sensitivity, and potential for high-throughput analysis. However, the effects of remnant non-AuNPs components in the colloid gold solution on these assays performance remain unclear. For the first time, we demonstrated that the remnant sodium citrate and the reaction products of three acids play counteractive roles in AuNPs based fluorescence quenching and colorimetric aptasensor in three ways in this study. First, the remnant sodium citrate in the colloid gold solution could increase the fluorescence intensity of FAM labeled on the aptamer that reduce the efficiency of AuNPs fluorescent quenching. Second, the reaction products of citric acid, HCl and ketoglutaric acid reduce the fluorescence recovery by quenching the fluorescence of FAM labeled on the aptamer dissociated from the surface of AuNPs upon addition of target. Lastly, the reaction products of three acids reduce the pH value of the colloid gold solution that reduce the sensitivity of AuNPs based colorimetric aptasensor by increasing the adsorption of aptamer to surface of AuNPs. With sulfadimethoxine and thrombin as model analytes, we found that water resuspended AuNPs can significantly increase the sensitivity by more than 10-fold for AuNPs based fluorescence quenching aptasensor. In the AuNPs based colorimetric aptasensor for sulfadimethoxine using the water resuspended AuNPs, the sensitivity also was increased by 10-fold compared with that of original AuNPs. The findings in this study provide theoretical guidance for further improving AuNPs based fluorescent quenching and colorimetric aptasensor by adjusting the composition of AuNPs solution. © 2013 Elsevier B.V. All rights reserved.
Heming, T A; Bidani, A
2003-01-01
The acid-base status and functional responses of alveolar macrophages (mphi) are influenced by the activity of plasmalemmal V-type H+-pump (V-ATPase), an electrogenic H+ extruder that provides a possible link between intracellular pH (pHi) and plasma membrane potential (Em). This study examined the relationships among Em, pHi, and plasmalemmal V-ATPase activity in resident alveolar mphi from rabbits. Em and pHi were measured using fluorescent probes. Em was -46 mV and pHi was 7.14 at an extracellular pH (pHo) of 7.4. The pHi declined progressively at lower pHo values. Decrements in pHo, also caused depolarization of the plasma membrane, independent of V-ATPase activity. The pH effects on Em were sensitive to external K+, and hence, probably involved pH-sensitive K+ conductance. H+ were not distributed at equilibrium across the plasma membrane. V-ATPase activity was a major determinant of the transmembrane H+ disequilibrium. Pump inhibition with bafilomycin A1 caused cytosolic acidification, due most likely to the retention of metabolically generated H+. V-ATPase inhibition also caused depolarization of the plasma membrane, but the effects were mediated indirectly via the accompanying pHi changes. V-ATPase activity was sensitive to Em. Em hyperpolarization (valinomycin-clamp) reduced V-ATPase activity, causing an acidic shift in baseline pHi under steady-state conditions and slowing pHi recovery from NH4Cl prepulse acid-loads. The findings indicate that a complex relationship exists among Em, pHi, and pHo that was partially mediated by plasmalemmal V-ATPase activity. This relationship could have important consequences for the expression of pH- and/or voltage-sensitive functions in alveolar mphi.
Valkonen, Mari; Mojzita, Dominik; Penttilä, Merja
2013-01-01
The ability of cells to maintain pH homeostasis in response to environmental changes has elicited interest in basic and applied research and has prompted the development of methods for intracellular pH measurements. Many traditional methods provide information at population level and thus the average values of the studied cell physiological phenomena, excluding the fact that cell cultures are very heterogeneous. Single-cell analysis, on the other hand, offers more detailed insight into population variability, thereby facilitating a considerably deeper understanding of cell physiology. Although microscopy methods can address this issue, they suffer from limitations in terms of the small number of individual cells that can be studied and complicated image processing. We developed a noninvasive high-throughput method that employs flow cytometry to analyze large populations of cells that express pHluorin, a genetically encoded ratiometric fluorescent probe that is sensitive to pH. The method described here enables measurement of the intracellular pH of single cells with high sensitivity and speed, which is a clear improvement compared to previously published methods that either require pretreatment of the cells, measure cell populations, or require complex data analysis. The ratios of fluorescence intensities, which correlate to the intracellular pH, are independent of the expression levels of the pH probe, making the use of transiently or extrachromosomally expressed probes possible. We conducted an experiment on the kinetics of the pH homeostasis of Saccharomyces cerevisiae cultures grown to a stationary phase after ethanol or glucose addition and after exposure to weak acid stress and glucose pulse. Minor populations with pH homeostasis behaving differently upon treatments were identified. PMID:24038689
Valkonen, Mari; Mojzita, Dominik; Penttilä, Merja; Bencina, Mojca
2013-12-01
The ability of cells to maintain pH homeostasis in response to environmental changes has elicited interest in basic and applied research and has prompted the development of methods for intracellular pH measurements. Many traditional methods provide information at population level and thus the average values of the studied cell physiological phenomena, excluding the fact that cell cultures are very heterogeneous. Single-cell analysis, on the other hand, offers more detailed insight into population variability, thereby facilitating a considerably deeper understanding of cell physiology. Although microscopy methods can address this issue, they suffer from limitations in terms of the small number of individual cells that can be studied and complicated image processing. We developed a noninvasive high-throughput method that employs flow cytometry to analyze large populations of cells that express pHluorin, a genetically encoded ratiometric fluorescent probe that is sensitive to pH. The method described here enables measurement of the intracellular pH of single cells with high sensitivity and speed, which is a clear improvement compared to previously published methods that either require pretreatment of the cells, measure cell populations, or require complex data analysis. The ratios of fluorescence intensities, which correlate to the intracellular pH, are independent of the expression levels of the pH probe, making the use of transiently or extrachromosomally expressed probes possible. We conducted an experiment on the kinetics of the pH homeostasis of Saccharomyces cerevisiae cultures grown to a stationary phase after ethanol or glucose addition and after exposure to weak acid stress and glucose pulse. Minor populations with pH homeostasis behaving differently upon treatments were identified.
Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro
2013-01-01
It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg') and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.
An albumin nanocomplex-based endosomal pH-activatable on/off probe system.
Lee, Changkyu; Lee, Seunghyun; Thao, Le Quang; Hwang, Ha Shin; Kim, Jong Oh; Lee, Eun Seong; Oh, Kyung Taek; Shin, Beom Soo; Choi, Han-Gon; Youn, Yu Seok
2016-08-01
Albumin has gained considerable interest as a material for fabricating nanoparticulate systems due to its biomedical advantages, such as biocompatibility and chemical functionality. Here, we report a new pH-sensitive albumin nanocomplex prototype with a zinc-imidazole coordination bond. Albumin was conjugated with 1-(3-aminopropyl)imidazole and mPEG10kDa-NHS, and the resulting albumin conjugate (PBI) was then modified with either Cy5.5 or BHQ-3. The newly formed albumin nanocomplex (C/BQ-PBI Zn NCs: ∼116nm) system was facilely self-assembled around pH 7.4 in the presence of Zn(2+), but it quickly disassembled in an acidic environment (∼pH 5.0). Based on this pH-sensitivity, C/BQ-PBI Zn NCs emitted strong near-infrared fluorescence and released Zn(2+), turning "off" at pH ∼7.4 (e.g., plasma) and "on" at pH ∼5.0 (e.g., endo/lysosomes in tumor cells) on account of fluorescence resonance energy transfer. C/BQ-PBI Zn NCs displayed significant cytotoxicity due to an increase in cellular Zn(2+) in response to endosomal pH (∼5.0) in breast cancer MCF-7 cells and lung adenocarcinoma A549 cells. Particularly, confocal laser scanning microscopic images showed a strong fluorescence signal caused by the disassembly of C/BQ-PBI Zn NCs in the endosomal region of MCF-7 cells. Based on these results, we believe that this albumin nanocomplex is an attractive biocompatible tumor targeting probe carrier for the theranostic purpose. Copyright © 2016 Elsevier B.V. All rights reserved.
Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro
2013-01-01
It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. ‘Iceberg’) and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury. PMID:23451194
Tian, Ye; Wu, Man; Liu, Xiangxiang; Liu, Zhi; Zhou, Quan; Niu, Zhongwei; Huang, Yong
2015-02-18
Viral nanoparticles have attracted extensive research interests in diverse applications of diagnosis and therapy. In particular, filamentous M13 bacteriophages have shown great potential in biomedical applications. However, its pathways entering into cells still remain unclear, and this greatly hinders its further use as a drug or gene carrier. Here, a ratiometric M13 pH probe is designed by conjugating two fluorescent dyes onto the surface of M13. Since the intensity ratio is not influenced by probe concentration, ion strength, temperature, photobleaching, and optical path length, this ratiometric probe can be used to investigate the intracellular pH map of M13. More importantly, the internalization mechanism of M13 can be elucidated. It is found that this filamentous phage shows great cell-type dependence in interaction with cells and internalization mechanism. The phage tends to be bounded on the cell membrane of only epithelial cells, not endothelial cells. Furthermore, the M13 phage enters into cells through endocytosis with specific mechanism: clathrin-mediated endocytosis and macropinocytosis for HeLa; vesicular transport, clathrin-mediated endocytosis, and macropinocytosis for MCF-7; caveolae-mediated endocytosis for human dermal microvascular endothelial cell (HDMEC). This work provides key notes for cancer diagnosis and therapy based on filamentous bacteriophage, especially for design of pH-sensitive drug delivery systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Butler, Thomas M.; MacCraith, Brian D.; McDonagh, Colette M.
1995-09-01
The sol-gel process has been used to entrap pH indicators in porous glass coatings for sensor applications. This sensor is based on evanescent wave absorption using an unclad optical fiber dipcoated with the pH sensitive coating. The entrapped pH indicators show a broadening of the pH range with respect to the behavior in solution giving accurate measurement over three pH units when one indicator is used (bromophenol blue) and over six pH units (pH 3-9) when two indicators are used (bromophenol blue and bromocresol purple). The response of the pH sensor was monitored by measuring absorption at 590 nm referenced against a nonabsorbing region of the spectrum. This enabled the use of LED sources together with low cost photodiodes. The sensor displayed short response time and good repeatability. The thickness and stability of the pH sensitive coatings can be influenced by modifying the composition of the starting sol mixture. The evanescent absorption, and hence the sensitivity of the sensor, can be increased by selectively launching higher order modes in the fiber. These issues together with a full sensor characterization will be reported.
Effect of pH on the Structure and DNA Binding of the FOXP2 Forkhead Domain.
Blane, Ashleigh; Fanucchi, Sylvia
2015-06-30
Forkhead box P2 (FOXP2) is a transcription factor expressed in cardiovascular, intestinal, and neural tissues during embryonic development and is implicated in language development. FOXP2 like other FOX proteins contains a DNA binding domain known as the forkhead domain (FHD). The FHD interacts with DNA by inserting helix 3 into the major groove. One of these DNA-protein interactions is a direct hydrogen bond that is formed with His554. FOXP2 is localized in the nuclear compartment that has a pH of 7.5. Histidine contains an imidazole side chain in which the amino group typically has a pKa of ~6.5. It seems possible that pH fluctuations around 6.5 may result in changes in the protonation state of His554 and thus the ability of the FOXP2 FHD to bind DNA. To investigate the effect of pH on the FHD, both the structure and the binding affinity were studied in the pH range of 5-9. This was done in the presence and absence of DNA. The structure was assessed using size exclusion chromatography, far-UV circular dichroism, and intrinsic and extrinsic fluorescence. The results indicated that while pH did not affect the secondary structure in the presence or absence of DNA, the tertiary structure was pH sensitive and the protein was less compact at low pH. Furthermore, the presence of DNA caused the protein to become more compact at low pH and also had the potential to increase the dimerization propensity. Fluorescence anisotropy was used to investigate the effect of pH on the FOXP2 FHD DNA binding affinity. It was found that pH had a direct effect on binding affinity. This was attributed to the altered hydrogen bonding patterns upon protonation or deprotonation of His554. These results could implicate pH as a means of regulating transcription by the FOXP2 FHD, which may also have repercussions for the behavior of this protein in cancer cells.
Liu, Yihua; Inoue, Yuuki; Ishihara, Kazuhiko
2015-11-01
To add novel functionality to quantum dots (QDs), we synthesized water-soluble and pH-responsive block-type polymers by reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were composed of cytocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer segments, which contain a small fraction of active ester groups and can be used to conjugate biologically active compounds to the polymer, and pH-responsive poly(2-(N,N-diethylamino) ethyl methacrylate (DEAEMA)) segments. One terminal of the polymer chain had a hydrophobic alkyl group that originated from the RAFT initiator. This hydrophobic group can bind to the hydrophobic layer on the QD surface. A fluorescent dye was conjugated to the polymer chains via the active ester group. The block-type polymers have an amphiphilic nature in aqueous medium. The polymers were thus easily bound to the QD surface upon evaporation of the solvent from a solution containing the block-type polymer and QDs, yielding QD/fluorescence dye-conjugated polymer hybrid nanoparticles. Fluorescence resonance energy transfer (FRET) between the QDs (donors) and the fluorescent dye molecules (acceptors) was used to obtain information on the conformational dynamics of the immobilized polymers. Higher FRET efficiency of the QD/fluorescent dye-conjugated polymer hybrid nanoparticles was observed at pH 7.4 as compared to pH 5.0 due to a stretching-shrinking conformational motion of the poly(DEAEMA) segments in response to changes in pH. We concluded that the block-type MPC polymer-modified nanoparticles could be used to evaluate the pH of cells via FRET fluorescence based on the cytocompatibility of the MPC polymer. Copyright © 2015 Elsevier B.V. All rights reserved.
ANTS-anchored Zn-Al-CO3-LDH particles as fluorescent probe for sensing of folic acid
NASA Astrophysics Data System (ADS)
Liu, Pengfei; Liu, Dan; Liu, Yanhuan; Li, Lei
2016-09-01
A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO3-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn2+ ions of Zn-Al-CO3-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO3-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO3-LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO3 groups in ANTS-anchored on the surface of Zn-Al-CO3-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO3-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution.
Development of an optical Zn 2+ probe based on a single fluorescent protein
Qin, Yan; Sammond, Deanne W.; Braselmann, Esther; ...
2016-07-28
Various fluorescent probes have been developed to reveal the biological functions of intracellular labile Zn 2+. Here we present Green Zinc Probe (GZnP), a novel genetically encoded Zn 2+ sensor design based on a single fluorescent protein (single-FP). The GZnP sensor is generated by attaching two zinc fingers (ZF) of the transcription factor Zap1 (ZF1 and ZF2) to the two ends of a circularly permuted green fluorescent protein (cpGFP). Formation of ZF folds induces interaction between the two ZFs, which induces a change in the cpGFP conformation, leading to an increase in fluorescence. A small sensor library is created tomore » include mutations in the ZFs, cpGFP and linkers between ZF and cpGFP to improve signal stability, sensor brightness and dynamic range based on rational protein engineering and computational design by Rosetta. Using a cell-based library screen, we identify sensor GZnP1 which demonstrates a stable maximum signal, decent brightness (QY = 0.42 at apo state), as well as specific and sensitive response to Zn 2+ in HeLa cells (F max/F min = 2.6, K d = 58 pM, pH 7.4). The subcellular localizing sensors mito-GZnP1 (in mitochondria matrix) and Lck-GZnP1 (on plasma membrane) display sensitivity to Zn 2+ (F max/F min = 2.2). In conclusion, this sensor design provides freedom to be used in combination with other optical indicators and optogenetic tools for simultaneous imaging and advancing our understanding of cellular Zn 2+ function.« less
Roy Chowdhury, Additi; Mondal, Amita; Roy, Biswajit Gopal; K, Jagadeesh C Bose; Mukhopadhyay, Sudit; Banerjee, Priyabrata
2017-11-08
Two novel hydrazine based sensors, BPPIH (N 1 ,N 3 -bis(perfluorophenyl)isophthalohydrazide) and BPBIH (N 1' ,N 3' -bis(perfluorobenzylidene)isophthalohydrazide), are presented here. BPPIH is found to be a highly sensitive pH sensor in the pH range 5.0 to 10.0 in a DMSO-water solvent mixture with a pK a value of 9.22. Interesting optical responses have been observed for BPPIH in the above mentioned pH range. BPBIH on the other hand turns out to be a less effective pH sensor in the above mentioned pH range. The increase in fluorescence intensity at a lower pH for BPPIH was explained by using density functional theory. The ability of BPPIH to monitor the pH changes inside cancer cells is a useful application of the sensor as a functional material. In addition fluoride (F - ) selectivity studies of these two chemosensors have been performed and show that between them, BPBIH shows greater selectivity towards F - . The interaction energy calculated from the DFT-D3 supports the experimental findings. The pH sensor (BPPIH) can be further interfaced with suitable circuitry interfaced with desired programming for ease of access and enhancement of practical applications.
NASA Astrophysics Data System (ADS)
Chen, Muhua; Zheng, Yuhui; Gao, Jinwei; Wang, Qianming
2016-10-01
A new type of Eu(III)-gatifloxacin complex with characteristic red luminescence has been prepared. Due to the presence of ionization effect linked to the organic chromophore, the molecular fluorescent sensor demonstrated variable pH-sensitive absorption and emission curves. The red emission derived from europium ions was strong during pH range 8-10. Between pH = 7 and 4, the europium emission remained relatively stable and fluorescence signals of gatifloxacin has been improved substantially. Under acidic conditions (pH = 1 to 3), the dramatic changes in the emission colors (from red, yellow to green) were clearly observed. Moreover, the excitation wavelength can be extended into the visible light range (Ex = 411 nm) by using the concentration effect experiment. Importantly, it gave turn-off emissions in the presence of Cu2+ or Fe3+ and the detection limits were determined to be 6.5 μM for Cu2+ and 6.2 μM for Fe3+ respectively.
Quantification of nanoparticle endocytosis based on double fluorescent pH-sensitive nanoparticles.
Kurtz-Chalot, Andréa; Klein, Jean-Philippe; Pourchez, Jérémie; Boudard, Delphine; Bin, Valérie; Sabido, Odile; Marmuse, Laurence; Cottier, Michèle; Forest, Valérie
2015-04-01
Amorphous silica is a particularly interesting material because of its inertness and chemical stability. Silica nanoparticles have been recently developed for biomedical purposes but their innocuousness must be carefully investigated before clinical use. The relationship between nanoparticles physicochemical features, their uptake by cells and their biological activity represents a crucial issue, especially for the development of nanomedicine. This work aimed at adapting a method for the quantification of nanoparticle endocytosis based on pH-sensitive and double fluorescent particles. For that purpose, silica nanoparticles containing two fluorophores: FITC and pHrodo(TM) were developed, their respective fluorescence emission depends on the external pH. Indeed, FITC emits a green fluorescence at physiological pH and pHrodo(TM) emits a red fluorescence which intensity increased with acidification. Therefore, nanoparticles remained outside the cells could be clearly distinguished from nanoparticles uptaken by cells as these latter could be spotted inside cellular acidic compartments (such as phagolysosomes, micropinosomes…). Using this model, the endocytosis of 60 nm nanoparticles incubated with the RAW 264.7 macrophages was quantified using time-lapse microscopy and compared to that of 130 nm submicronic particles. The amount of internalized particles was also evaluated by fluorimetry. The biological impact of the particles was also investigated in terms of cytotoxicity, pro-inflammatory response and oxidative stress. Results clearly demonstrated that nanoparticles were more uptaken and more reactive than submicronic particles. Moreover, we validated a method of endocytosis quantification.
NASA Astrophysics Data System (ADS)
Khandelwal, Puneet; Singh, Dheeraj K.; Sadhu, Subha; Poddar, Pankaj
2015-11-01
Herein, we report a detailed experimental study supported by DFT calculations to understand the mechanism behind the synthesis of cefradine (CFD - an antibiotic) labeled gold nanoparticles (Au NPs) by employing CFD as both a mild reducing and capping agent. The analysis of the effect of growth conditions reveals that a higher concentration of HAuCl4 results in the formation of an increasing fraction of anisotropic structures, higher temperature leads to the formation of quasi-spherical particles instead of anisotropic ones, and larger pH leads to the formation of much smaller particles. The cyclic voltammetry (CV) results show that when the pH of the reaction medium increases from 4 to 6, the reduction potential of CFD increases which leads to the synthesis of nanoparticles (in a pH 4 reaction) to quantum clusters (in a pH 6 reaction). The MALDI-TOF mass spectrometry results of supernatant of the pH 6 reaction indicate the formation of [Au8(CFD)2S6] QCs which show fluorescence at ca. 432 nm with a Stokes shift of ca. 95 nm. The blue luminescence from Au8 QCs was applied for sensing of Hg2+ ions on the basis of an aggregation-induced fluorescence quenching mechanism and offers good selectivity and a high sensitivity with a limit of detection ca. 2 nM which is lower than the detection requirement of 10 nM by the U.S. EPA and 30 nM by WHO for drinking water. We have also applied the sensing probe to detect Hg2+ ions in bacterial samples. Further, we have investigated the antibacterial property of as-synthesized Au NPs using MIC, growth curve and cell survival assay. The results show that Au NPs could reduce the cell survival very efficiently rather than the cell growth in comparison to the antibiotic itself. The scanning electron microscopy study shows the degradation and blebbing of the bacterial cell wall upon exposure with Au NPs which was further supported by fluorescence microscopy results. These Au NPs did not show reactive oxygen species generation. We believe that the bacterial cytotoxicity is due to the direct contact of the Au NPs with bacterial cells.Herein, we report a detailed experimental study supported by DFT calculations to understand the mechanism behind the synthesis of cefradine (CFD - an antibiotic) labeled gold nanoparticles (Au NPs) by employing CFD as both a mild reducing and capping agent. The analysis of the effect of growth conditions reveals that a higher concentration of HAuCl4 results in the formation of an increasing fraction of anisotropic structures, higher temperature leads to the formation of quasi-spherical particles instead of anisotropic ones, and larger pH leads to the formation of much smaller particles. The cyclic voltammetry (CV) results show that when the pH of the reaction medium increases from 4 to 6, the reduction potential of CFD increases which leads to the synthesis of nanoparticles (in a pH 4 reaction) to quantum clusters (in a pH 6 reaction). The MALDI-TOF mass spectrometry results of supernatant of the pH 6 reaction indicate the formation of [Au8(CFD)2S6] QCs which show fluorescence at ca. 432 nm with a Stokes shift of ca. 95 nm. The blue luminescence from Au8 QCs was applied for sensing of Hg2+ ions on the basis of an aggregation-induced fluorescence quenching mechanism and offers good selectivity and a high sensitivity with a limit of detection ca. 2 nM which is lower than the detection requirement of 10 nM by the U.S. EPA and 30 nM by WHO for drinking water. We have also applied the sensing probe to detect Hg2+ ions in bacterial samples. Further, we have investigated the antibacterial property of as-synthesized Au NPs using MIC, growth curve and cell survival assay. The results show that Au NPs could reduce the cell survival very efficiently rather than the cell growth in comparison to the antibiotic itself. The scanning electron microscopy study shows the degradation and blebbing of the bacterial cell wall upon exposure with Au NPs which was further supported by fluorescence microscopy results. These Au NPs did not show reactive oxygen species generation. We believe that the bacterial cytotoxicity is due to the direct contact of the Au NPs with bacterial cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05619e
Multiparameter flow cytometry of a pH sensitive ligand bound to receptors and inside cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fay, S.P.; Habbersett, R.; Posner, R.G.
1993-01-01
Because fluoresceinated ligands of the neutrophil formyl peptide receptor can be protonated either upon binding to the receptor on the cell surface or in acidified intracellular compartments, the authors synthesized a ligand conjugated to the pH sensitive fluorescent probe SNAFL (CHO-Met-Leu-Phe-Phe-Lys-SNAFL). In the three laser flow cytometer at LANL, protonated dye is excited at 488 nm and emits at 530 nm; unprotonated dye is excited at 568 nm and emits at 650 nm. Detection at the isobestic and isoemissive points at 528 and 600 nm is used to keep track of variations in ligand concentration from sample to sample. Themore » SNAFL-ligand bound to HL-60 cells (which overexpress the formyl peptide receptor) was compared to the free ligand in solution over a pH range from 6.5 to 9.0. The results suggest that the ligand bound to cell surface receptors was protonated in the binding pocket, possibly by virtue of its proximity to His 90, based on sequence data. When the cells were raised from 4[degrees] to 37[degrees], they also observed a time-dependent acidification of the ligand, indicative of ligand-receptor processing beginning 3-4 minutes after internalization.« less
Macro-/micro-environment-sensitive chemosensing and biological imaging.
Yang, Zhigang; Cao, Jianfang; He, Yanxia; Yang, Jung Ho; Kim, Taeyoung; Peng, Xiaojun; Kim, Jong Seung
2014-07-07
Environment-related parameters, including viscosity, polarity, temperature, hypoxia, and pH, play pivotal roles in controlling the physical or chemical behaviors of local molecules. In particular, in a biological environment, such factors predominantly determine the biological properties of the local environment or reflect corresponding status alterations. Abnormal changes in these factors would cause cellular malfunction or become a hallmark of the occurrence of severe diseases. Therefore, in recent years, they have increasingly attracted research interest from the fields of chemistry and biological chemistry. With the emergence of fluorescence sensing and imaging technology, several fluorescent chemosensors have been designed to respond to such parameters and to further map their distributions and variations in vitro/in vivo. In this work, we have reviewed a number of various environment-responsive chemosensors related to fluorescent recognition of viscosity, polarity, temperature, hypoxia, and pH that have been reported thus far.
Kongsamut, S; Nachshen, D A
1988-05-24
A method for the measurement of the cytosolic Na+ concentration in intact synaptosomes is described. This method makes use of a pH sensitive dye (BCECF) that can be loaded into the cytosol and a relatively specific ionophore (monensin) that can exchange Na+ for H+ across the synaptosomal membrane. By setting conditions such that there is no electrochemical potential difference for H+ across the membrane (no membrane potential and pHi = pHo), addition of ionophore would induce a H+ flux only if there is a concentration difference for Na+. Thus, when there is no fluorescence change (no cytosolic pH change) extracellular [Na+] equals intrasynaptosomal [Na+]. The intrasynaptosomal [Na+] concentration was determined to be 7 +/- 3 mM (n = 5; mean +/- S.E.). The results obtained with this fluorescence method are compared with estimates obtained by atomic absorption spectrometry. Limitations and applications of the method are discussed.
NASA Astrophysics Data System (ADS)
Ishii, Marina; Kunimura, Juliana Sayuri; Jeng, Hélio Tallon; Vessoni Penna, Thereza Christina; Cholewa, Olivia
The thermal stability of recombinant green fluorescent protein (GFP) in sodium chloride (NaCl) solutions at different concentrations, pH, and temperatures was evaluated by assaying the loss of fluorescence intensity as a measure of denaturation. GFP, extracted from Escherichia coli cells by the three-phase partitioning method and purified through a butyl hydrophobic interaction chromatography (HIC) column, was diluted in water for injection (WFI) (pH 6.0-7.0) and in 10 mM buffer solutions (acetate, pH 5.0; phosphate, pH 7.0; and Tris-EDTA, pH 8.0) with 0.9-30% NaCl or without and incubated at 80-95°C. The extent of protein denaturation was expressed as a percentage of the calculated decimal reduction time (D-value). In acetate buffer (pH 4.84 ±0.12), the mean D-values for 90% reduction in GFP fluorescence ranged from 2.3 to 3.6 min, independent of NaCl concentration and temperature. GFP thermal stability diluted in WFI (pH 5.94±0.60) was half that observed in phosphate buffer (pH 6.08±0.60); but in both systems, D-values decreased linearly with increasing NaCl concentration, with D-values (at 80°C) ranging from 3.44, min (WFI) to 6.1 min (phosphate buffer), both with 30% NaCl. However, D-values in Tris-EDTA (pH 7.65±0.17) were directly dependent on the NaCl concentration and 5-10 times higher than D-values for GFP in WFI at 80°C. GFP pH-and thermal stability can be easily monitored by the convenient measure of fluorescence intensity and potentially be used as an indicator to monitor that processing times and temperatures were attained.
NASA Astrophysics Data System (ADS)
Kanazashi, Yasuaki; Takara, Naoshi; Iwami, Kentaro; Ohta, Yoshihiro; Umeda, Norihiro
2018-04-01
pH measurements enable the direct monitoring and evaluation of mitochondrial activity. We constructed a scanning near-field optical microscopy system with multioptical fiber probes using the two-photon absorption of a pH-sensitive fluorescent dye, SNARF-4F, to measure the activity difference of mitochondrial aggregates. pH can be monitored through the fluorescence intensity ratio (FIR) of SNARF-4F. We derived a calibration curve of the FIR as a function of pH. The FIR dynamic responses were measured by adding hydrochloric acid to the buffer solution. Using the developed system, we simultaneously measured the pH changes at two different locations in the SNARF-4F solution. Mitochondrial samples were prepared using optical tweezers to control the number and position of mitochondria. Mitochondrial pH changes (ΔpH) between 0.05 and 0.57 were observed after adding a nutritional supplement (malate and glutamate). In addition, in the comparative experiment on the activities of two mitochondrial populations, the obtained result suggested that the activity differs depending on the difference in the number of mitochondria.
Puissant, Madeleine M.; Mouradian, Gary C.; Liu, Pengyuan; Hodges, Matthew R.
2017-01-01
Ventilation is continuously adjusted by a neural network to maintain blood gases and pH. Acute CO2 and/or pH regulation requires neural feedback from brainstem cells that encode CO2/pH to modulate ventilation, including but not limited to brainstem serotonin (5-HT) neurons. Brainstem 5-HT neurons modulate ventilation and are stimulated by hypercapnic acidosis, the sensitivity of which increases with increasing postnatal age. The proper function of brainstem 5-HT neurons, particularly during post-natal development is critical given that multiple abnormalities in the 5-HT system have been identified in victims of Sudden Infant Death Syndrome. Here, we tested the hypothesis that there are age-dependent increases in expression of pH-sensitive ion channels in brainstem 5-HT neurons, which may underlie their cellular CO2/pH sensitivity. Midline raphe neurons were acutely dissociated from neonatal and mature transgenic SSePet-eGFP rats [which have enhanced green fluorescent protein (eGFP) expression in all 5-HT neurons] and sorted with fluorescence-activated cell sorting (FACS) into 5-HT-enriched and non-5-HT cell pools for subsequent RNA extraction, cDNA library preparation and RNA sequencing. Overlapping differential expression analyses pointed to age-dependent shifts in multiple ion channels, including but not limited to the pH-sensitive potassium ion (K+) channel genes kcnj10 (Kir4.1), kcnj16 (Kir5.1), kcnk1 (TWIK-1), kcnk3 (TASK-1) and kcnk9 (TASK-3). Intracellular contents isolated from single adult eGFP+ 5-HT neurons confirmed gene expression of Kir4.1, Kir5.1 and other K+ channels, but also showed heterogeneity in the expression of multiple genes. 5-HT neuron-enriched cell pools from selected post-natal ages showed increases in Kir4.1, Kir5.1, and TWIK-1, fitting with age-dependent increases in Kir4.1 and Kir5.1 protein expression in raphe tissue samples. Immunofluorescence imaging confirmed Kir5.1 protein was co-localized to brainstem neurons and glia including 5-HT neurons as expected. However, Kir4.1 protein expression was restricted to glia, suggesting that it may not contribute to 5-HT neuron pH sensitivity. Although there are caveats to this approach, the data suggest that pH-sensitive Kir5.1 channels may underlie cellular CO2/pH chemosensitivity in brainstem 5-HT neurons. PMID:28270749
Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors
NASA Astrophysics Data System (ADS)
Sun, Zhijuan; Cai, Chenxin; Guo, Fei; Ye, Changhuai; Luo, Yingwu; Ye, Shuming; Luo, Jianchao; Zhu, Fan; Jiang, Chunyue
2018-04-01
Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor’s work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.
Zhang, Wei; Jin, Xin; Li, Heng; Zhang, Run-Run; Wu, Cheng-Wei
2018-04-15
Hydrogels based on chitosan/hyaluronic acid/β-sodium glycerophosphate demonstrate injectability, body temperature sensitivity, pH sensitive drug release and adhesion to cancer cell. The drug (doxorubicin) loaded hydrogel precursor solutions are injectable and turn to hydrogels when the temperature is increased to body temperature. The acidic condition (pH 4.00) can trigger the release of drug and the cancer cell (Hela) can adhere to the surface of the hydrogels, which will be beneficial for tumor site-specific administration of drug. The mechanical strength, the gelation temperature, and the drug release behavior can be tuned by varying hyaluronic acid content. The mechanisms were characterized using dynamic mechanical analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and fluorescence microscopy. The carboxyl group in hyaluronic acid can form the hydrogen bondings with the protonated amine in chitosan, which promotes the increase of mechanical strength of the hydrogels and depresses the initial burst release of drug from the hydrogel. Copyright © 2018 Elsevier Ltd. All rights reserved.
Webb, Jeremy S.; Barratt, Sarah R.; Sabev, Hristo; Nixon, Marianne; Eastwood, Ian M.; Greenhalgh, Malcolm; Handley, Pauline S.; Robson, Geoffrey D.
2001-01-01
Presently there is no method available that allows noninvasive and real-time monitoring of fungal susceptibility to antimicrobial compounds. The green fluorescent protein (GFP) of the jellyfish Aequoria victoria was tested as a potential reporter molecule for this purpose. Aureobasidium pullulans was transformed to express cytosolic GFP using the vector pTEFEGFP (A. J. Vanden Wymelenberg, D. Cullen, R. N. Spear, B. Schoenike, and J. H. Andrews, BioTechniques 23:686–690, 1997). The transformed strain Ap1 gfp showed bright fluorescence that was amenable to quantification using fluorescence spectrophotometry. Fluorescence levels in Ap1 gfp blastospore suspensions were directly proportional to the number of viable cells determined by CFU plate counts (r2 > 0.99). The relationship between cell viability and GFP fluorescence was investigated by adding a range of concentrations of each of the biocides sodium hypochlorite and 2-n-octylisothiozolin-3-one (OIT) to suspensions of Ap1 gfp blastospores (pH 5 buffer). These biocides each caused a rapid (<25-min) loss of fluorescence of greater than 90% when used at concentrations of 150 μg of available chlorine ml−1 and 500 μg ml−1, respectively. Further, loss of GFP fluorescence from A. pullulans cells was highly correlated with a decrease in the number of viable cells (r2 > 0.92). Losses of GFP fluorescence and cell viability were highly dependent on external pH; maximum losses of fluorescence and viability occurred at pH 4, while reduction of GFP fluorescence was absent at pH 8.0 and was associated with a lower reduction in viability. When A. pullulans was attached to the surface of plasticized poly(vinylchloride) containing 500 ppm of OIT, fluorescence decreased more slowly than in cell suspensions, with >95% loss of fluorescence after 27 h. This technique should have broad applications in testing the susceptibility of A. pullulans and other fungal species to antimicrobial compounds. PMID:11722914
NASA Astrophysics Data System (ADS)
Chao, Jianbin; Liu, Yuhong; Zhang, Yan; Zhang, Yongbin; Huo, Fangjun; Yin, Caixia; Wang, Yu; Qin, Liping
2015-07-01
A new fluorescent enhanced probe based on (E)-9-(2-nitrovinyl)-anthracene is developed, which shows high selectivity and sensitivity for the detection of bisulfite anions at Na2HPO4 citric acid buffer solutions (pH 5.0). When addition of HSO3-, the fluorescence intensity is significantly enhanced and the probe displays apparent fluorescence color changes from non-fluorescence to blue under a UV lamp illumination, the solution color also changes from yellow to colorless. The detection limit is determined to be as low as 6.30 μM. This offers another specific colorimetric and fluorescent probe for bisulfite anions detection, furthermore it is applied in detecting the level of bisulfite in sugar samples.
Wu, Shanshan; Wu, Siying; Yi, Zheyuan; Zeng, Fei; Wu, Weizhen; Qiao, Yuan; Zhao, Xingzhong; Cheng, Xing; Tian, Yanqing
2018-02-13
In this study, we developed fluorescent dual pH and oxygen sensors loaded in multi-well plates for in-situ and high-throughput monitoring of oxygen respiration and extracellular acidification during microbial cell growth for understanding metabolism. Biocompatible PHEMA-co-PAM materials were used as the hydrogel matrix. A polymerizable oxygen probe (OS2) derived from PtTFPP and a polymerizable pH probe (S2) derived from fluorescein were chemically conjugated into the matrix to solve the problem of the probe leaching from the matrix. Gels were allowed to cure directly on the bottom of 96-well plates at room-temperature via redox polymerization. The influence of matrix's composition on the sensing behaviors was investigated to optimize hydrogels with enough robustness for repeatable use with good sensitivity. Responses of the dual sensing hydrogels to dissolved oxygen (DO) and pH were studied. These dual oxygen-pH sensing plates were successfully used for microbial cell-based screening assays, which are based on the measurement of fluorescence intensity changes induced by cellular oxygen consumption and pH changes during microbial growth. This method may provide a real-time monitoring of cellular respiration, acidification, and a rapid kinetic assessment of multiple samples for cell viability as well as high-throughput drug screening. All of these assays can be carried out by a conventional plate reader.
A six-membered-ring incorporated Si-rhodamine for imaging of copper(ii) in lysosomes.
Wang, Baogang; Cui, Xiaoyan; Zhang, Zhiqiang; Chai, Xiaoyun; Ding, Hao; Wu, Qiuye; Guo, Zhongwu; Wang, Ting
2016-07-12
The regulation of copper homeostasis in lysosomes of living cells is closely related to various physiological and pathological processes. Thus, it is of urgent need to develop a fluorescent probe for selectively and sensitively monitoring the location and concentration of lysosomal Cu(2+). Herein, a six-membered ring, thiosemicarbazide, was incorporated into a Si-rhodamine (SiR) scaffold for the first time, affording a SiR-based fluorescent probe SiRB-Cu. Through the effective Cu(2+)-triggered ring-opening process, the probe exhibits fast NIR chromogenic and fluorogenic responses to Cu(2+) within 2 min as the result of formation of a highly fluorescent product SiR-NCS. Compared with a five-membered ring, the expanded ring retains great tolerance to H(+), ensuring the superior sensitivity with a detection limit as low as 7.7 nM and 200-fold enhancement of relative fluorescence in the presence of 1.0 equiv. of Cu(2+) in pH = 5.0 solution, the physiological pH of lysosome. Moreover, the thiosemicarbazide moiety acts not only as the chelating and reactive site, but also as an efficient lysosome-targeting group, leading to the proactive accumulation of the probe into lysosomes. Taking advantage of these distinct properties, SiRB-Cu provides a functional probe suitable for imaging exogenous and endogenous lysosomal Cu(2+) with high imaging contrast and fidelity.
Reddy, Kumbam Lingeshwar; Kumar, Anabathula Manoj; Dhir, Abhimanew; Krishnan, Venkata
2016-11-01
New pyrene and anthracene based copper complexes 4 and 7 respectively were designed, synthesized and characterized. The fluorescence behaviour of both 4 and 7 were evaluated towards nitro aromatics and anions. Both 4 and 7 possess high selectivity for the detection of well-known explosive picric acid (PA) by showing maximum fluorescence affinity. Furthermore, complex 4 showed similar sensing efficiency towards PA at different pH ranges. It was also used for real world applications, as illustrated by the very fast detection of PA from soil samples observed directly by naked eye.
Proton-Fueled, Reversible DNA Hybridization Chain Assembly for pH Sensing and Imaging.
Liu, Lan; Liu, Jin-Wen; Huang, Zhi-Mei; Wu, Han; Li, Na; Tang, Li-Juan; Jiang, Jian-Hui
2017-07-05
Design of DNA self-assembly with reversible responsiveness to external stimuli is of great interest for diverse applications. We for the first time develop a pH-responsive, fully reversible hybridization chain reaction (HCR) assembly that allows sensitive sensing and imaging of pH in living cells. Our design relies on the triplex forming sequences that form DNA triplex with toehold regions under acidic conditions and then induce a cascade of strand displacement and DNA assembly. The HCR assembly has shown dynamic responses in physiological pH ranges with excellent reversibility and demonstrated the potential for in vitro detection and live-cell imaging of pH. Moreover, this method affords HCR assemblies with highly localized fluorescence responses, offering advantages of improving sensitivity and better selectivity. The proton-fueled, reversible HCR assembly may provide a useful approach for pH-related cell biology study and disease diagnostics.
Gotor, Raúl; Ashokkumar, Pichandi; Hecht, Mandy; Keil, Karin; Rurack, Knut
2017-08-15
In this work, a family of pH-responsive fluorescent probes has been designed in a rational manner with the aid of quantum chemistry tools, covering the entire pH range from 0-14. Relying on the boron-dipyrromethene (BODIPY) core, all the probes as well as selected reference dyes display very similar spectroscopic properties with ON-OFF fluorescence switching responses, facilitating optical readout in simple devices used for detection and analysis. Embedding of the probes and reference dyes into hydrogel spots on a plastic strip yielded a test strip that reversibly indicates pH with a considerably small uncertainty of ∼0.1 pH units. These strips are not only reusable but, combined with a 3D-printed case that can be attached to a smartphone, the USB port of which drives the integrated LED used for excitation, allows for autonomous operation in on-site or in-the-field applications; the developed Android application software ("app") further simplifies operation for unskilled users.
A far-field-viewing sensor for making analytical measurements in remote locations.
Michael, K L; Taylor, L C; Walt, D R
1999-07-15
We demonstrate a far-field-viewing GRINscope sensor for making analytical measurements in remote locations. The GRINscope was fabricated by permanently affixing a micro-Gradient index (GRIN) lens on the distal face of a 350-micron-diameter optical imaging fiber. The GRINscope can obtain both chemical and visual information. In one application, a thin, pH-sensitive polymer layer was immobilized on the distal end of the GRINscope. The ability of the GRINscope to visually image its far-field surroundings and concurrently detect pH changes in a flowing stream was demonstrated. In a different application, the GRINscope was used to image pH- and O2-sensitive particles on a remote substrate and simultaneously measure their fluorescence intensity in response to pH or pO2 changes.
van Beilen, Johan W A; Brul, Stanley
2013-01-01
The internal pH (pHi) of a living cell is one of its most important physiological parameters. To monitor the pH inside Bacillus subtilis during various stages of its life cycle, we constructed an improved version (IpHluorin) of the ratiometric, pH-sensitive fluorescent protein pHluorin by extending it at the 5' end with the first 24 bp of comGA. The new version, which showed an approximate 40% increase in fluorescence intensity, was expressed from developmental phase-specific, native promoters of B. subtilis that are specifically active during vegetative growth on glucose (PptsG) or during sporulation (PspoIIA, PspoIIID, and PsspE). Our results show strong, compartment-specific expression of IpHluorin that allowed accurate pHi measurements of live cultures during exponential growth, early and late sporulation, spore germination, and during subsequent spore outgrowth. Dormant spores were characterized by an pHi of 6.0 ± 0.3. Upon full germination the pHi rose dependent on the medium to 7.0-7.4. The presence of sorbic acid in the germination medium inhibited a rise in the intracellular pH of germinating spores and inhibited germination. Such effects were absent when acetic was added at identical concentrations.
NASA Astrophysics Data System (ADS)
Li, Wenyan; Houston, Kevin D.; Houston, Jessica P.
2017-01-01
Phase-sensitive flow cytometry (PSFC) is a technique in which fluorescence excited state decay times are measured as fluorescently labeled cells rapidly transit a finely focused, frequency-modulated laser beam. With PSFC the fluorescence lifetime is taken as a cytometric parameter to differentiate intracellular events that are challenging to distinguish with standard flow cytometry. For example PSFC can report changes in protein conformation, expression, interactions, and movement, as well as differences in intracellular microenvironments. This contribution focuses on the latter case by taking PSFC measurements of macrophage cells when inoculated with enhanced green fluorescent protein (EGFP)-expressing E. coli. During progressive internalization of EGFP-E. coli, fluorescence lifetimes were acquired and compared to control groups. It was hypothesized that fluorescence lifetimes would correlate well with phagocytosis because phagosomes become acidified and the average fluorescence lifetime of EGFP is known to be affected by pH. We confirmed that average EGFP lifetimes consistently decreased (3 to 2 ns) with inoculation time. The broad significance of this work is the demonstration of how high-throughput fluorescence lifetime measurements correlate well to changes that are not easily tracked by intensity-only cytometry, which is affected by heterogeneous protein expression, cell-to-cell differences in phagosome formation, and number of bacterium engulfed.
New highly sensitive and selective fluorescent terbium complex for the detection of aluminium ions
NASA Astrophysics Data System (ADS)
Anwar, Zeinab M.; Ibrahim, Ibrahim A.; Kamel, Rasha M.; Abdel-Salam, Enas T.; El-Asfoury, Mahmoud H.
2018-02-01
A highly sensitive and selective spectrofluorimetric method has been developed for the rapid determination of aluminium ions. The method is based on the fluorescence enhancement of Tb complex with 3,4-dimetyl-thieno[2,3 b] thiophene-2,5-dicarboxylic acid (LN) after addition trace amount of aluminium ions. The fluorescence of the probe is monitored at the characteristic an emission wavelength of Tb3+ at 545 nm with excitation at 300 nm. Optimum detection was obtained in DMSO-H2O (2:8, v/v) and at pH 6.0 using MOPSO buffer. Under the optimum conditions linear calibration curves were obtained from 0.5 μ mol L-1 to 20 μ mol L-1 with detection limit of 0.1 μ mol L-1. Effect of interference of other ions was studied.
Seo, Kwangwon; Kim, Dukjoon
2006-09-15
New pH-sensitive polyaspartamide derivatives were synthesized by grafting 1-(3-aminopropyl)imidazole and/or O-(2-aminoethyl)-O'-methylpoly(ethylene glycol) 5000 on polysuccinimide for application in intracellular drug delivery systems. The DS of 1-(3-aminopropyl)imidazole was adjusted by the feed molar ratio, and the structure of the prepared polymer was confirmed using FT-IR and 1H NMR spectroscopy. Their pH-sensitive properties were characterized by light transmittance measurements, and the particle size and its distribution were investigated by dynamic light scattering measurements at varying pH values. The pH-sensitive phase transition was clearly observed in polymer solutions with a high substitution of 1-(3-aminopropyl)imidazole. The prepared polymers showed a high buffering capacity between pH 5 and 7, and this increased with the DS of 1-(3-aminopropyl)imidazole. The pH dependence of the aggregation and de-aggregation behavior was examined using a fluorescence spectrometer. For MPEG/imidazole-g-polyaspartamides with a DS of 1-(3-aminopropyl)imidazole over 82%, self aggregates associated with the hydrophobic interactions of the unprotonated imidazole groups were observed at pH values above 7, and their mean size was over 200 nm, while the aggregates of polymers were dissociated at pH values below 7 by the protonation of imidazole groups. These pH-sensitive polyaspartamide derivatives are potential basic candidates for intracellular drug delivery carriers triggered by small pH changes.
Liu, Xiaofei; Ying, Guangyao; Sun, Chaonan; Yang, Meihua; Zhang, Lei; Zhang, Shanshan; Xing, Xiaoyan; Li, Qian; Kong, Weijun
2018-01-01
The high acidity and complex components of Hibiscus sabdariffa have provided major challenges for sensitive determination of trace aflatoxins. In this study, sample pretreatment of H. sabdariffa was systematically developed for sensitive high performance liquid chromatography-fluorescence detection (HPLC-FLD) after ultrasonication-assisted extraction, immunoaffinity column (IAC) clean-up and on-line post-column photochemical derivatization (PCD). Aflatoxins B1, B2, G1, G2 were extracted from samples by using methanol/water (70:30, v/v) with the addition of NaCl. The solutions were diluted 1:8 with 0.1 M phosphate buffer (pH 8.0) to negate the issues of high acidity and matrix interferences. The established method was validated with satisfactory linearity (R > 0.999), sensitivity (limits of detection (LODs) and limits of quantitation (LOQs) of 0.15–0.65 and 0.53–2.18 μg/kg, respectively), precision (RSD <11%), stability (RSD of 0.2–3.6%), and accuracy (recovery rates of 86.0–102.3%), which all met the stipulated analytical requirements. Analysis of 28 H. sabdariffa samples indicated that one sample incubated with Aspergillus flavus was positive with aflatoxin B1 (AFB1) at 3.11 μg/kg. The strategy developed in this study also has the potential to reliably extract and sensitively detect more mycotoxins in other complex acidic matrices, such as traditional Chinese medicines, foodstuffs, etc. PMID:29681848
Liu, Xiaofei; Ying, Guangyao; Sun, Chaonan; Yang, Meihua; Zhang, Lei; Zhang, Shanshan; Xing, Xiaoyan; Li, Qian; Kong, Weijun
2018-01-01
The high acidity and complex components of Hibiscus sabdariffa have provided major challenges for sensitive determination of trace aflatoxins. In this study, sample pretreatment of H. sabdariffa was systematically developed for sensitive high performance liquid chromatography-fluorescence detection (HPLC-FLD) after ultrasonication-assisted extraction, immunoaffinity column (IAC) clean-up and on-line post-column photochemical derivatization (PCD). Aflatoxins B 1 , B 2 , G 1 , G 2 were extracted from samples by using methanol/water (70:30, v/v ) with the addition of NaCl. The solutions were diluted 1:8 with 0.1 M phosphate buffer (pH 8.0) to negate the issues of high acidity and matrix interferences. The established method was validated with satisfactory linearity ( R > 0.999), sensitivity (limits of detection (LODs) and limits of quantitation (LOQs) of 0.15-0.65 and 0.53-2.18 μg/kg, respectively), precision (RSD <11%), stability (RSD of 0.2-3.6%), and accuracy (recovery rates of 86.0-102.3%), which all met the stipulated analytical requirements. Analysis of 28 H. sabdariffa samples indicated that one sample incubated with Aspergillus flavus was positive with aflatoxin B 1 (AFB 1 ) at 3.11 μg/kg. The strategy developed in this study also has the potential to reliably extract and sensitively detect more mycotoxins in other complex acidic matrices, such as traditional Chinese medicines, foodstuffs, etc.
Rossano, Adam J; Romero, Michael F
2017-08-11
Epithelial ion transport is vital to systemic ion homeostasis as well as maintenance of essential cellular electrochemical gradients. Intracellular pH (pHi) is influenced by many ion transporters and thus monitoring pHi is a useful tool for assessing transporter activity. Modern Genetically Encoded pH-Indicators (GEpHIs) provide optical quantification of pHi in intact cells on a cellular and subcellular scale. This protocol describes real-time quantification of cellular pHi regulation in Malpighian Tubules (MTs) of Drosophila melanogaster through ex vivo live-imaging of pHerry, a pseudo-ratiometric GEpHI with a pKa well-suited to track pH changes in the cytosol. Extracted adult fly MTs are composed of morphologically and functionally distinct sections of single-cell layer epithelia, and can serve as an accessible and genetically tractable model for investigation of epithelial transport. GEpHIs offer several advantages over conventional pH-sensitive fluorescent dyes and ion-selective electrodes. GEpHIs can label distinct cell populations provided appropriate promoter elements are available. This labeling is particularly useful in ex vivo, in vivo, and in situ preparations, which are inherently heterogeneous. GEpHIs also permit quantification of pHi in intact tissues over time without need for repeated dye treatment or tissue externalization. The primary drawback of current GEpHIs is the tendency to aggregate in cytosolic inclusions in response to tissue damage and construct over-expression. These shortcomings, their solutions, and the inherent advantages of GEpHIs are demonstrated in this protocol through assessment of basolateral proton (H + ) transport in functionally distinct principal and stellate cells of extracted fly MTs. The techniques and analysis described are readily adaptable to a wide variety of vertebrate and invertebrate preparations, and the sophistication of the assay can be scaled from teaching labs to intricate determination of ion flux via specific transporters.
Su, Pai-Hsiang; Lai, Yen-Hsun
2017-01-01
The proton gradient established by the pH difference across a biological membrane is essential for many physiological processes, including ATP synthesis and ion and metabolite transport. Currently, ionophores are used to study proton gradients, and determine their importance to biological functions of interest. Because of the lack of an easy method for monitoring the proton gradient across the inner envelope membrane of chloroplasts (ΔpH env ), whether the concentration of ionophores used can effectively abolish the ΔpH env is not proven for most experiments. To overcome this hindrance, we tried to setup an easy method for real-time monitoring of the stromal pH in buffered, isolated chloroplasts by using fluorescent pH probes; using this method the ΔpH env can be calculated by subtracting the buffer pH from the measured stromal pH. When three fluorescent dyes, BCECF-AM [2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester], CFDA-SE [5(6)-Carboxyfluorescein diacetate succinimidyl ester] and SNARF-1 carboxylic acid acetate succinimidyl ester were incubated with isolated chloroplasts, BCECF-AM and CFDA-SE, but not the ester-formed SNARF-1 were taken up by chloroplasts and digested with esterase to release high levels of fluorescence. According to its relatively higher pKa value (6.98, near the physiological pH of the stroma), BCECF was chosen for further development. Due to shielding of the excitation and emission lights by chloroplast pigments, the ratiometric fluorescence of BCECF was highly dependent on the concentration of chloroplasts. By using a fixed concentration of chloroplasts, a highly correlated standard curve of pH to the BCECF ratiometric fluorescence with an r -square value of 0.98 was obtained, indicating the reliability of this method. Consistent with previous reports, the light-dependent formation of ΔpH env can be detected ranging from 0.15 to 0.33 pH units upon illumination. The concentration of the ionophore nigericin required to collapse the ΔpH env was then studied. The establishment of a non-destructive method of monitoring the stromal pH will be valuable for studying the roles of the ΔpH env in chloroplast physiology.
Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Belausov, Eduard; Kochanek, Betina; Tucker, Mark L; Meir, Shimon
2015-03-01
In vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively. Similarly, 1-MCP pre-treatment of tomato inflorescence explants abolished the pH increase in AZ cells and pedicel abscission induced by flower removal. Examination of the pH changes in the AZ cells of Arabidopsis mutants defective in both ethylene-induced (ctr1, ein2, eto4) and ethylene-independent (ida, nev7, dab5) abscission pathways confirmed these results. The data indicate that the pH changes in the AZ cells are part of both the ethylene-sensitive and -insensitive abscission pathways, and occur concomitantly with the execution of organ abscission. pH can affect enzymatic activities and/or act as a signal for gene expression. Changes in pH during abscission could occur via regulation of transporters in AZ cells, which might affect cytosolic pH. Indeed, four genes associated with pH regulation, vacuolar H(+)-ATPase, putative high-affinity nitrate transporter, and two GTP-binding proteins, were specifically up-regulated in tomato flower AZ following abscission induction, and 1-MCP reduced or abolished the increased expression. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
NASA Astrophysics Data System (ADS)
Fu, Jingni; Zhang, Luning
2018-03-01
The protonation/deprotonation equilibrium of a fluorescent pH probe (carboxy-seminaphthorhodafluor-1, SNARF-1) within the nanoscale water layer confined in common black films (CBFs) has been studied. We find that SNARF-1 molecules feel a more acidic environment in CBFs than when they are in the bulk micellar solution, using the base/acid peak area ratio of the dye to indicate its microenvironment pH. Three surfactants are used to study the dependence of the pH drop versus charge: cationic (cetyltrimethylammonium bromide, CTAB), anionic (sodium dodecylsulphate, SDS) and nonionic (Triton X-100) species. The decrease of CBFs pH versus the pH of the micellar solution is the following: ΔpH ≈ 1.5 for CTAB (pH: 7.0-9.0), ΔpH ≈ 0.8 for SDS, and ΔpH ≈ 0.4 for Triton X-100. With the addition of electrolyte in CBFs, we observe large decrease the amplitude of the pH anomaly, thus suggesting an electrostatic origin of the pH change at nanoscale environment.
A novel fluorescent assay for sucrose transporters.
Gora, Peter J; Reinders, Anke; Ward, John M
2012-04-04
We have developed a novel assay based on the ability of type I sucrose uptake transporters (SUTs) to transport the fluorescent coumarin β-glucoside, esculin. Budding yeast (Saccharomyces cerevisiae) is routinely used for the heterologous expression of SUTs and does not take up esculin. When type I sucrose transporters StSUT1 from potato or AtSUC2 from Arabidopsis were expressed in yeast, the cells were able to take up esculin and became brightly fluorescent. We tested a variety of incubation times, esculin concentrations, and buffer pH values and found that for these transporters, a 1 hr incubation at 0.1 to 1 mM esculin at pH 4.0 produced fluorescent cells that were easily distinguished from vector controls. Esculin uptake was assayed by several methods including fluorescence microscopy, spectrofluorometry and fluorescence-activiated cell sorting (FACS). Expression of the type II sucrose transporter OsSUT1 from rice did not result in increased esculin uptake under any conditions tested. Results were reproduced successfully in two distinct yeast strains, SEY6210 (an invertase mutant) and BY4742. The esculin uptake assay is rapid and sensitive and should be generally useful for preliminary tests of sucrose transporter function by heterologous expression in yeast. This assay is also suitable for selection of yeast showing esculin uptake activity using FACS.
Wang, Ling; Zhang, Junxian; Bai, Haili; Li, Xuan; Lv, Pintian; Guo, Ailing
2014-07-01
In this study, anti-Vibrio parahaemolyticus polyclonal and monoclonal antibodies were prepared through intradermal injection immune and lymphocyte hybridoma technique respectively. CdTe quantum dots (QDs) were synthesized at pH 9.3, 98 °C for 1 h with stabilizer of 2.7:1. The fluorescence intensity was 586.499, and the yield was 62.43%. QD probes were successfully prepared under the optimized conditions of pH 7.4, 37 °C for 1 h, 250 μL of 50 mg/mL EDC · HCl, 150 μL of 4 mg/mL NHS, buffer system of Na2HPO4-citric acid, and 8 μL of 2.48 mg/mL polyclonal antibodies. As gold nanoparticles could quench fluorescence of quantum dots, the concentration of V. parahaemolyticus could be detected through measuring the reduction of fluorescence intensity in immune sandwich reaction composed of quantum dot probe, gold-labeled antibody, and the sample. For pure culture, fluorescence intensity of the system was proportional with logarithm concentration of antigen, and the correlation coefficient was 99.764%. The fluorescence quenching immunoassay based on quantum dots is established for the first time to detect Vibrio parahaemolyticus. This method may be used as rapid testing procedure due to its high simplicity and sensitivity.
Polymer immobilized enzyme optrodes for the detection of penicillin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulp, T.J.; Camins, I.; Angel, S.M.
The preparation and performance of two enzyme-based fiber-optic sensors (optrodes) capable of detecting penicillin are described. Each sensor consists of a polymer membrane that is covalently attached to the tip of a glass optical fiber. The membrane contains the enzyme penicillinase and a pH-sensitive fluorescent dye. A signal is produced when the enzyme catalyzes the cleavage of the ..beta..-lactam ring of penicillin to produce penicilloic acid and, consequently, a pH change in the microenvironment of the membrane. The sensors differ in the way the polymer membrane is constructed and in the type of pH indicator dye used. Both optrodes exhibitmore » response times (40-60 s) significantly lower than those of the corresponding enzyme electrodes (2 min). Each gives a linear response over the concentration range of 0.00025 to 0.01 M penicillin G, when measured in a 0.005 M phosphate buffer. The data indicate that these immobilization strategies produce similar results and may be considered complementary alternatives in future enzyme optrode applications.« less
Victor, Sunita Prem; Sharma, Chandra P
2013-08-01
The objective of this study was to prepare pH sensitive polymethacrylic acid-calcium deficient hydroxyapatite (CDHA) nanocomposites. The CDHA nanoparticles were prepared by coprecipitation method. The modification of CDHA by methacrylic acid (MA) was achieved by AIBN initiated free radical polymerization with sodium bisulphite as catalyst followed by emulsion technique. These nanocomposites with a half life of 8h consisted of high aspect ratio, needle like particles and exhibited an increase in swelling behaviour with pH. The in vivo potential of the nanocomposites was evaluated in vitro by the results of cell aggregation, protein adsorption, MTT assay and haemolytic activity. The invitro loading and release studies using albumin as a model drug indicate that the nanocomposites gave better loading when compared to the CDHA nanoparticles and altered the drug release rates. The nanocomposites also exhibited good uptake on C6 glioma cells as studied by fluorescence microscopy. The results obtained suggest that these nanocomposites have great potential for oral controlled protein delivery and can be extended further for intracellular drug delivery applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Saccharide sensing molecules having enhanced fluorescent properties
Satcher Jr., Joe H.; Lane, Stephen M.; Darrow, Christopher B.; Cary, Douglas R.; Tran, Joe Anh
2004-01-06
The present invention provides formulae for fluorescent compounds that have a number of properties which make them uniquely suited for use in sensors of analytes such as saccharides. The advantageous fluorescent properties include favorable excitation wavelengths, emission wavelengths, fluorescence lifetimes, and photostability. Additional advantageous properties include enhanced aqueous solubility, as well as temperature and pH sensitivity. The compound comprises an aryl or a substituted phenyl botonic acid that acts as a substrate recognition component, a fluorescence switch component, and a fluorophore. Fluorescent compounds are described that are excited at wavelengths greater than 400 nm and emit at wavelengths greater than 450 nm, which is advantageous for optical transmission through skin. The fluorophore is typically selected from transition metal-ligand complexes and thiazine, oxazine, oxazone, or oxazine-one as well as anthracene compounds. The fluorescent compound can be immobilized in a glucose permeable biocompatible polymer matrix that is implantable below the skin.
Liu, Xiaodong; Chen, Bizheng; Li, Xiaojun; Zhang, Lifen; Xu, Yujie; Liu, Zhuang; Cheng, Zhenping; Zhu, Xiulin
2015-10-21
Responsive block copolymer micelles emerging as promising imaging and drug delivery systems show high stability and on-demand drug release activities. Herein, we developed self-assembled pH-responsive NIR emission micelles entrapped with doxorubicin (DOX) within the cores by the electrostatic interactions for fluorescence imaging and chemotherapy applications. The block copolymer, poly(methacrylic acid)-block-poly[(poly(ethylene glycol) methyl ether methacrylate)-co-boron dipyrromethene derivatives] (PMAA-b-P(PEGMA-co-BODIPY), was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and the molecular weight distribution of this copolymer was narrow (Mw/Mn = 1.31). The NIR fluorescence enhancement induced by the phenol/phenolate interconversion equilibrium works as a switch in response to the intracellular pH fluctuations. DOX-loaded PMAA-b-P(PEGMA-co-BODIPY) micelles can detect the physiological pH fluctuations with a pKa near physiological conditions (∼7.52), and showed pH-responsive collapse and an obvious acid promoted anticancer drug release behavior (over 58.8-62.8% in 10 h). Real-time imaging of intracellular pH variations was performed and a significant chemotherapy effect was demonstrated against HeLa cells.
Dong, Jiang Xue; Gao, Zhong Feng; Zhang, Ying; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun
2017-05-15
In this paper, a simple sensor platform is presented for highly selective and sensitive detection of dissolved ammonia in aqueous solutions without pretreatment based on temperature gradient headspace single drop microextraction (HS-SDME) technique, and fluorescence and UV-vis spectrophotometry are utilized with the Ag nanoclusters (Ag NCs) functioned by citrate and glutathione as the probe. The sensing mechanism is based on the volatility of ammonia gas and the active response of Ag NCs to pH change caused by the introduction of ammonia. High pH can make the Ag NCs agglomerate and lead to the obvious decrease of fluorescence intensity and absorbance of Ag NCs solution. Moreover, the presented method exhibits a remarkably high selectivity toward dissolved ammonia over most of inorganic ions and amino acid, and shows a good linear range of 10-350μM (0.14-4.9mgNL -1 ) with a low detection limit of 336nM (4.70μgNL -1 ) at a signal-to-noise ratio of 3. In addition, the practical applications of the sensor have been successfully demonstrated by detecting dissolved ammonia in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Chao, Jianbin; Wang, Huijuan; Zhang, Yongbin; Yin, Caixia; Huo, Fangjun; Song, Kailun; Li, Zhiqing; Zhang, Ting; Zhao, Yaqin
2017-11-01
A novel pH fluorescent probe 1-(pyren-1-yl)-3-(6-methoxypridin-3-yl)-acrylketone, (PMPA), which had a pyrene structure attached to methoxypyridine, was synthesized for monitoring extremely acidic and alkaline pH. The pH titrations indicated that PMPA displayed a remarkable emission enhancement with a pK a of 2.70 and responded linearly to minor pH fluctuations within the extremely acidic range of 1.26-3.97. Interestingly, PMPA also exhibited strong pH-dependent characteristics with pK a 9.32 and linear response to extreme-alkalinity range of 8.54-10.36. In addition, PMPA displayed a good selectivity, excellent photostability and large Stokes shift (167nm). Furthermore, the probe PMPA had excellent cell membrane permeability and was applied successfully to rapidly detect pH in living cells. pH value in these organs was closely related to many diseases, so these findings suggested that the probe had potential application in pH detecting for disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
A functional applied material on recognition of metal ion zinc based on the double azine compound.
Wei, Taibao; Liang, Guoyan; Chen, Xiaopeng; Qi, Jin; Lin, Qi; Zhang, Youming; Yao, Hong
2017-05-18
A colorimetric and fluorescent probe L has been designed and synthesized, which bearing the double azine moiety and showing a detection limit of 2.725 × 10 -7 M towards Zn 2+ . Based on the basic recognition mechanism of ESIPT and CHEF effect, the L has high selectivity and sensitivity to only Zn 2+ (not Fe 3+ , Hg 2+ , Ag + , Ca 2+ , Co 2+ , Ni 2+ , Cd 2+ , Pb 2+ , Cr 3+ , and Mg 2+ ) within the physiological pH range (pH = 7.0-8.4) and showed a fluorescence switch. Moreover, this detection progress occured in the DMSO/H 2 O ∼ HEPES buffer (80/20, v/v; pH 7.23) solution which can conveniently used on test strip.
pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita.
Funamoto, Rintaro; Saito, Katsuharu; Oyaizu, Hiroshi; Aono, Toshihiro; Saito, Masanori
2015-01-01
Arbuscular mycorrhizal fungi play an important role in phosphate supply to the host plants. The fungal hyphae contain tubular vacuoles where phosphate compounds such as polyphosphate are accumulated. Despite their importance for the phosphate storage, little is known about the physiological properties of the tubular vacuoles in arbuscular mycorrhizal fungi. As an indicator of the physiological state in vacuoles, we measured pH of tubular vacuoles in living hyphae of arbuscular mycorrhizal fungus Gigaspora margarita using ratio image analysis with pH-dependent fluorescent probe, 6-carboxyfluorescein. Fluorescent images of the fine tubular vacuoles were obtained using a laser scanning confocal microscope, which enabled calculation of vacuolar pH with high spatial resolution. The tubular vacuoles showed mean pH of 5.6 and a pH range of 5.1-6.3. These results suggest that the tubular vacuoles of arbuscular mycorrhizal fungi have a mildly acidic pH just like vacuoles of other fungal species including yeast and ectomycorrhizal fungi.
NASA Astrophysics Data System (ADS)
Nistor, Oana Viorela; Stănciuc, Nicoleta; Aprodu, Iuliana; Botez, Elisabeta
2014-07-01
Heat-induced structural changes of Aspergillus oryzae pectin methylesterase (PME) were studied by means of fluorescence spectroscopy and molecular modeling, whereas the functional enzyme stability was monitored by inactivation studies. The fluorescence spectroscopy experiments were performed at two pH value (4.5 and 7.0). At both pH values, the phase diagrams were linear, indicating the presence of two molecular species induced by thermal treatment. A red shift of 7 nm was observed at neutral pH by increasing temperature up to 60 °C, followed by a blue shift of 4 nm at 70 °C, suggesting significant conformational rearrangements. The quenching experiments using acrylamide and iodide demonstrate a more flexible conformation of enzyme with increasing temperature, especially at neutral pH. The experimental results were complemented with atomic level observations on PME model behavior after performing molecular dynamics simulations at different temperatures. The inactivation kinetics of PME in buffer solutions was fitted using a first-order kinetics model, resulting in activation energy of 241.4 ± 7.51 kJ mol-1.
Ramos, Macarena; Aranda, Angela; Garcia, Elena; Reuvers, Thea; Hooghuis, Henny
2003-06-15
A simple and sensitive high-performance liquid chromatographic (HPLC) method has been developed for the determination of five different quinolones: enrofloxacin, ciprofloxacin, sarafloxacin, oxolinic acid and flumequine in pork and salmon muscle. The method includes one extraction and clean-up step for the five quinolones together which are detected in two separated HPLC runs by means of their fluorescence. The proposed analytical method involves homogenizing of the tissue sample with 0.05 M phosphate buffer, pH 7.4 and clean-up by Discovery DS-18 cartridges. For chromatographic separation a Symmetry C(18) column is used in two different runs: (1) ciprofloxacin, enrofloxacin and sarafloxacin with acetonitrile-0.02 M phosphate buffer pH 3.0 (18:82) as mobile phase and the detector at excitation wavelength: 280 nm and emission wavelength 450 nm; and (2) oxolinic acid and flumequine with acetonitrile-0.02 M phosphate buffer pH 3.0 (34:66) as mobile phase and excitation wavelength: 312 nm and emission wavelength: 366 nm. Detection limit was as low as 5 ng g(-1), except for sarafloxacin which had a limit of 10 ng g(-1). Standard curves using blank muscle tissues spiked at different levels showed a good linear correlation coefficient, r(2) higher than 0.999 for all quinolones.
Alcohol-induced versus anion-induced states of alpha-chymotrypsinogen A at low pH.
Khan, F; Khan, R H; Muzammil, S
2000-09-29
Characterization of conformational transition and folding intermediates is central to the study of protein folding. We studied the effect of various alcohols (trifluoroethanol (TFE), butanol, propanol, ethanol and methanol) and salts (K(3)FeCN(6), Na(2)SO(4), KClO(4) and KCl) on the acid-induced state of alpha-chymotrypsinogen A, a predominantly beta-sheet protein, at pH 2.0 by near-UV circular dichroism (CD), far-UV CD and 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence measurements. Addition of alcohols led to an increase in ellipticity value at 222 nm indicating the formation of alpha-helical structure. The order of effectiveness of alcohols was shown to be TFE>butanol>propanol>ethanol>methanol. ANS fluorescence data showed a decrease in fluorescence intensity on alcohol addition, suggesting burial of hydrophobic patches. The near-UV CD spectra showed disruption of tertiary structure on alcohol addition. No change in ellipticity was observed on addition of salts at pH 2.0, whereas in the presence of 2 M urea, salts were found to induce a molten globule-like state as evident from the increases in ellipticity at 222 nm and ANS fluorescence indicating exposure of hydrophobic regions of the protein. The effectiveness in inducing the molten globule-like state, i.e. both increase in ellipticity at 222 nm and increase in ANS fluorescence, followed the order K(3)FeCN(6)>Na(2)SO(4)>KClO(4)>KCl. The loss of signal in the near-UV CD spectrum on addition of alcohols indicating disordering of tertiary structure results suggested that the decrease in ANS fluorescence intensity may be attributed to the unfolding of the ANS binding sites. The results imply that the alcohol-induced state had characteristics of an unfolded structure and lies between the molten globule and the unfolded state. Characterization of such partially folded states has important implications for protein folding.
Glutathione-stabilized Cu nanoclusters as fluorescent probes for sensing pH and vitamin B1.
Luo, Yawen; Miao, Hong; Yang, Xiaoming
2015-11-01
Glutathione (GSH), playing roles as both a reducing reagent and protecting ligand, has been successfully employed for synthesizing Cu nanoclusters (CuNCs@GSH) on the basis of a simple and facile approach. The as-prepared CuNCs exhibited a fluorescence emission at 600nm with a quantum yield (QY) of approximately 3.6%. Subsequently, the CuNCs described here was employed as a broad-range pH sensor by virtue of the fluorescence intensity of CuNCs responding sensitively to pH fluctuating in a linear range of 4.0-12.0. Meanwhile, these prepared CuNCs were applied for detections of vitamin B1 (VB1) on the basis of positively charged VB1 neutralizing the negative surface charge of CuNCs, thus leading to the instability and aggregations of CuNCs, and further facilitating to quench their fluorescence. In addition, the proposed analytical method permitted detecting VB1 with a linear range of 2.0×10(-8)-1.0×10(-4) mol L(-1) as well as a detection limit of 4.6×10(-9) mol L(-1). Eventually, the practicability of this sensing approach was validated by assaying VB1 in human urine samples and pharmaceutical tablets, confirming its potential to broaden avenues for assaying VB1. Copyright © 2015 Elsevier B.V. All rights reserved.
van Beilen, Johan W. A.; Brul, Stanley
2013-01-01
The internal pH (pHi) of a living cell is one of its most important physiological parameters. To monitor the pH inside Bacillus subtilis during various stages of its life cycle, we constructed an improved version (IpHluorin) of the ratiometric, pH-sensitive fluorescent protein pHluorin by extending it at the 5′ end with the first 24 bp of comGA. The new version, which showed an approximate 40% increase in fluorescence intensity, was expressed from developmental phase-specific, native promoters of B. subtilis that are specifically active during vegetative growth on glucose (PptsG) or during sporulation (PspoIIA, PspoIIID, and PsspE). Our results show strong, compartment-specific expression of IpHluorin that allowed accurate pHi measurements of live cultures during exponential growth, early and late sporulation, spore germination, and during subsequent spore outgrowth. Dormant spores were characterized by an pHi of 6.0 ± 0.3. Upon full germination the pHi rose dependent on the medium to 7.0–7.4. The presence of sorbic acid in the germination medium inhibited a rise in the intracellular pH of germinating spores and inhibited germination. Such effects were absent when acetic was added at identical concentrations. PMID:23785365
Production, fixation, and staining of cells on slides for maximum photometric sensitivity
NASA Astrophysics Data System (ADS)
Leif, Robert C.; Harlow, Patrick M.; Vallarino, Lidia M.
1994-07-01
The need to detect increasingly low levels of antigens or polynucleotides in cells requires improvements in both the preparation and the staining of samples. The combination of centrifugal cytology with the use of glyoxal as cross-linking fixative produces monolayers of cells having minimum background fluorescence. Detection can be further improved by the use of a recently developed type of luminescent tag containing a lanthanide(III) ion as the light- emitting center. These novel tags are macrocyclic complexes functionalized with an isothiocyanate group to allow covalent coupling to a biosubstrate. The Eu(III) complex possesses a set of properties -- water solubility, inertness to metal release over a wide pH range, ligand-sensitized narrow-band luminescence, large Stoke's shift, and long excited-state lifetime -- that provides ease of staining as well as maximum signal with minimum interference from background autofluorescence. Luminescence efficiency studies indicate significant solvent effects.
Soršak, Eva; Volmajer Valh, Julija; Korent Urek, Špela; Lobnik, Aleksandra
2018-04-14
This study presents chemical modification of a Rhodamine B (RhB) sensor probe by ethylenediamine (EDA), and investigation of its spectral as well as sensor properties to the various metals. The synthesised N -(Rhodamine-B)-lactam-ethylenediamine (RhB-EDA) fluorescent probe shows interesting optical sensor properties, and high sensitivity and selectivity to Ag⁺ ions among all the tested metal ions (K⁺, Mg 2+ , Cu 2+ , Ni 2+ , Fe 2+ , Pb 2+ , Na⁺, Mn 2+ , Li⁺, Al 3+ , Co 2+ , Hg 2+ , Sr 2+ , Ca 2+ , Ag⁺, Cd 2+ and Zn 2+ ), while the well-known Rhodamine B (RhB) fluorescent probe shows much less sensitivity to Ag⁺ ions, but high sensitivity to Fe 2+ ions. The novel fluorescent sensor probe RhB-EDA has the capabilities to sense Ag⁺ ions up to µM ranges by using the fluorescence quenching approach. The probe displayed a dynamic response to Ag⁺ in the range of 0.43 × 10 -3 -10 -6 M with a detection limit of 0.1 μM. The sensing system of an RhB-EDA novel fluorescent probe was optimised according to the spectral properties, effect of pH and buffer, photostability, incubation time, sensitivity, and selectivity. Since all the spectral and sensing properties were tested in green aqueous media, although many other similar sensor systems rely on organic solvent solutions, the RhB-EDA sensing probe may be a good candidate for measuring Ag⁺ ions in real-life applications.
Xu, Quan; Liu, Yao; Su, Rigu; Cai, Lulu; Li, Bofan; Zhang, Yingyuan; Zhang, Linzhou; Wang, Yajun; Wang, Yan; Li, Neng; Gong, Xiao; Gu, Zhipeng; Chen, Yusheng; Tan, Yanglan; Dong, Chenbo; Sreeprasad, Theruvakkattil Sreenivasan
2016-10-20
Heteroatom doped carbon dots (CDs), with high photoluminescence quantum yield (PLQY), are of keen interest in various applications such as chemical sensors, bio-imaging, electronics, and photovoltaics. Zinc, an important element assisting the electron-transfer process and an essential trace element for cells, is a promising metal dopant for CDs, which could potentially lead to multifunctional CDs. In this contribution, we report a single-step, high efficiency, hydrothermal method to synthesize Zn-doped carbon dots (Zn-CDs) with a superior PLQY. The PLQY and luminescence characteristic of Zn-CDs can be tuned by controlling the precursor ratio, and the surface oxidation in the CDs. Though a few studies have reported metal doped CDs with good PLQY, the as prepared Zn-Cds in the present method exhibited a PLQY up to 32.3%. To the best of our knowledge, there is no report regarding the facile preparation of single metal-doped CDs with a QY more than 30%. Another unique attribute of the Zn-CDs is the high monodispersity and the resultant highly robust excitation-independent luminescence that is stable over a broad range of pH values. Spectroscopic investigations indicated that the superior PLQY and luminescence of Zn-CDs are due to the heteroatom directed, oxidized carbon-based surface passivation. Furthermore, we developed a novel and sensitive biosensor for the detection of hydrogen peroxide and glucose leveraging the robust fluorescence properties of Zn-CDs. Under optimal conditions, Zn-CDs demonstrated high sensitivity and response to hydrogen peroxide and glucose over a wide range of concentrations, with a linear range of 10-80 μM and 5-100 μM, respectively, indicating their great potential as a fluorescent probe for chemical sensing.
Gabriel, Gabriele V M; Viviani, Vadim R
2016-12-01
Most luminescent biosensors for heavy metals are fluorescent and rely on intensity measurements, whereas a few are ratiometric and rely on spectral changes. Bioluminescent biosensors for heavy metals are less common. Firefly luciferases have been coupled to responsive promoters for mercury and arsenium, and used as light on biosensors. Firefly luciferase bioluminescence spectrum is naturally sensitive to heavy metal cations such as zinc and mercury and to pH. Although pH sensitivity of firefly luciferases was shown to be useful for ratiometric estimation of intracellular pH, its potential use for ratiometric estimation of heavy metals was never considered. Using the yellow-emitting Macrolampis sp2 firefly luciferase and site-directed mutagenesis, we show that the residues H310 and E354 constitute two critical sites for metal sensitivity that can be engineered to increase sensitivity to zinc, nickel, and mercury. A linear relationship between cation concentration and the ratio of bioluminescence intensities at 550 and 610 nm allowed, for the first time, the ratiometric estimation of heavy metals concentrations down to 0.10 mM, demonstrating the potential applicability of firefly luciferases as enzymatic and intracellular ratiometric metal biosensors.
A fluorescence spectroscopy study of traditional Chinese medicine Angelica
NASA Astrophysics Data System (ADS)
Zhao, Hongyan; Song, Feng; Liu, Shujing; Chen, Guiyang; Wei, Chen; Liu, Yanling; Liu, Jiadong
2013-10-01
By measuring the fluorescence spectra of Chinese medicine (CM) Angelica water solutions with different concentrations from 0.025 to 2.5 mg/mL, results showed that the fluorescence intensity was proportional to the concentration. Through fluorescence spectra of Angelica solution under different pH values, results indicated coumarin compounds were the active ingredients of Angelica. We also observed fluorescence quenching of the Angelica solution in the presence of spherical silver nanoparticles with radius of 12 nm. Keeping a certain value for the volume of the silver nanoparticles, the fluorescence intensity at 402 nm was linearly proportional to the Angelica in the range of 1-3 mg/mL.
Xiao, Meng-Wei; Bai, Xiao-Lin; Xu, Pei-Li; Zhao, Yan; Yang, Li; Liu, Yi-Ming; Liao, Xun
2017-05-01
Sensitive detection of gizzerosine, a causative agent for deadly gizzard erosion in chicken feeds, is very important to the poultry industry. In this work, a new method was developed based on microchip capillary electrophoresis (MCE) with laser-induced fluorescence (LIF) detection for rapid analysis of gizzerosine, a biogenic amine in fish meals. The MCE separation was performed on a glass microchip using sodium dodecyl sulfate (SDS) as dynamic coating modifier. Separation conditions, including running buffer pH and concentration, SDS concentration, and the separation voltage were investigated to achieve fast and sensitive quantification of gizzerosine. The assay proposed was very quick and could be completed within 65 s. A linear calibration curve was obtained in the range from 0.04 to 1.8 μg ml -1 gizzerosine. The detection limit was 0.025 μg ml -1 (0.025 mg kg -1 ), which was far more sensitive than those previously reported. Gizzerosine was well separated from other endogenous components in fish meal samples. Recovery of gizzerosine from this sample matrix (n = 3) was determined to be 97.2-102.8%. The results from analysing fish meal samples indicated that the present MCE-LIF method might hold the potential for rapid detection of gizzerosine in poultry feeds.
NASA Astrophysics Data System (ADS)
Song, Xuezhen; Dong, Baoli; Kong, Xiuqi; Wang, Chao; Zhang, Nan; Lin, Weiying
2018-01-01
Hypochlorite is one of the important reactive oxygen species (ROS) and plays critical roles in many biologically vital processes. Herein, we present a unique ratiometric fluorescent probe (CBP) with an extremely large emission shift for detecting hypochlorite in living cells. Utilizing positively charged α,β-unsaturated carbonyl group as the reaction site, the probe CBP itself exhibited near-infrared (NIR) fluorescence at 662 nm, and can display strong blue fluorescence at 456 nm when responded to hypochlorite. Notably, the extremely large emission shift of 206 nm could enable the precise measurement of the fluorescence peak intensities and ratios. CBP showed high sensitivity, excellent selectivity, desirable performance at physiological pH, and low cytotoxicity. The bioimaging experiments demonstrate the biological application of CBP for the ratiometric imaging of hypochlorite in living cells.
Dumitraşcu, Loredana; Stănciuc, Nicoleta; Bahrim, Gabriela Elena; Ciumac, Alexandrina; Aprodu, Iuliana
2016-04-01
In the food industry, glucose oxidase (GOX) is used to improve the shelf life of food materials. The pH- and heat-induced conformational changes of glucose oxidase from Aspergillus niger were quantified by means of fluorescence spectroscopy and molecular dynamics simulations. The phase diagram showed an all-or-none transition process, indicating that pH and temperature largely influence the conformational state of GOX. Shifts in maximum wavelength of Trp, Tyr were registered as the protein encounters a lower pH (pH 4.0), suggesting significant changes of the polarity around the chromophore molecule. Quenching experiments using KI showed higher quenching constants of Trp and flavin adenine dinucleotide upon heating or by changing pH value, and were mainly correlated with the conformational changes upon protein matrix. Finally, valuable insights into the thermal behaviour of GOX were obtained from molecular modelling results. The conformation and structure of GOX protein is dependent upon the pH and heat treatment applied. Molecular dynamics simulation indicated significant changes in the substrate binding region at temperatures over 60 °C that might affect enzyme activity. Moreover, an important alteration of the small pocket hosting the positively charged His(516) residue responsible for oxygen activation appears evident at high temperatures. © 2015 Society of Chemical Industry.
Glucose sensing molecules having selected fluorescent properties
Satcher, Jr., Joe H.; Lane, Stephen M.; Darrow, Christopher B.; Cary, Douglas R.; Tran, Joe Anh
2004-01-27
An analyte sensing fluorescent molecule that employs intramolecular electron transfer is designed to exhibit selected fluorescent properties in the presence of analytes such as saccharides. The selected fluorescent properties include excitation wavelength, emission wavelength, fluorescence lifetime, quantum yield, photostability, solubility, and temperature or pH sensitivity. The compound comprises an aryl or a substituted phenyl boronic acid that acts as a substrate recognition component, a fluorescence switch component, and a fluorophore. The fluorophore and switch component are selected such that the value of the free energy for electron transfer is less than about 3.0 kcal mol.sup.-1. Fluorescent compounds are described that are excited at wavelengths greater than 400 nm and emit at wavelengths greater than 450 nm, which is advantageous for optical transmission through skin. The fluorophore is typically selected from transition metal-ligand complexes and thiazine, oxazine, oxazone, or oxazine-one as well as anthracene compounds. The fluorescent compound can be immobilized in a glucose permeable biocompatible polymer matrix that is implantable below the skin.
NASA Astrophysics Data System (ADS)
Hope, Christopher K.; Higham, Susan M.
2016-08-01
A number of anaerobic oral bacteria, notably Prevotellaceae, exhibit red fluorescence when excited by short-wavelength visible light due to their accumulation of porphyrins, particularly protoporphyrin IX. pH affects the fluorescence of abiotic preparations of porphyrins due to transformations in speciation between monomers, higher aggregates, and dimers. To elucidate whether the porphyrin speciation phenomenon could be manifested within a microbiological system, suspensions of Prevotella intermedia and Prevotella nigrescens were examined by fluorescence spectrophotometry while being titrated against NaOH. The initial pH of the samples was <6, which was then raised toward the maximum found within a diseased periodontal pocket, being ˜pH 8.7. The intensity of the fluorescence emissions increased between 600 and 650 nm with increasing pH. Peak fluorescence emissions occurred at 635±1 nm with a second emission peak developing with increasing pH at 622 nm. A linear relationship was demonstrated between pH and the log10 ratio of 635:622 nm excitation fluorescence intensities. These findings suggest that the pH range found within the oral cavity could affect the fluorescence of oral bacteria in vivo, which may in turn have connotations for any clinical diagnoses that may be inferred from dental plaque fluorescence.
Urra, Javier; Sandoval, Moisés; Cornejo, Isabel; Barros, L Felipe; Sepúlveda, Francisco V; Cid, L Pablo
2008-10-01
Extracellular pH, especially in relatively inaccessible microdomains between cells, affects transport membrane protein activity and might have an intercellular signaling role. We have developed a genetically encoded extracellular pH sensor capable of detecting pH changes in basolateral spaces of epithelial cells. It consists of a chimerical membrane protein displaying concatenated enhanced variants of cyan fluorescence protein (ECFP) and yellow fluorescence protein (EYFP) at the external aspect of the cell surface. The construct, termed pHCECSensor01, was targeted to basolateral membranes of Madin-Darby canine kidney (MDCK) cells by means of a sequence derived from the aquaporin AQP4. The fusion of pH-sensitive EYFP with pH-insensitive ECFP allows ratiometric pH measurements. The titration curve of pHCECSensor01 in vivo had a pK (a) value of 6.5 +/- 0.04. Only minor effects of extracellular chloride on pHCECSensor01 were observed around the physiological concentrations of this anion. In MDCK cells, the sensor was able to detect changes in pH secondary to H(+) efflux into the basolateral spaces elicited by an ammonium prepulse or lactate load. This genetically encoded sensor has the potential to serve as a noninvasive tool for monitoring changes in extracellular pH microdomains in epithelial and other tissues in vivo.
Kazakova, Lyubov I; Shabarchina, Lyudmila I; Sukhorukov, Gleb B
2011-06-21
Enzyme based micron sized sensing system with optical readout was fabricated by co-encapsulation of urease and dextran couple with pH sensitive dye SNARF-1 into polyelectrolyte multilayer capsules. Co-precipitation of calcium carbonate, urease and dextran followed up by multilayer film coating and Ca-extracting by EDTA resulted in the formation of 3.5-4 micron capsules, what enable the calibrated fluorescence response to urea in concentration range from 10(-6) to 10(-1) M. The presence of urea can be monitored on a single capsule level as illustrated by confocal fluorescent microscopy. Variations in urease:dye ratio in capsules, applicability and limits of use of that type multi-component microencapsulated sensors are discussed.
Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes.
Wang, Chensu; Zhao, Tian; Li, Yang; Huang, Gang; White, Michael A; Gao, Jinming
2017-04-01
Endosomes and lysosomes play a critical role in various aspects of cell physiology such as nutrient sensing, receptor recycling, protein/lipid catabolism, and cell death. In drug delivery, endosomal release of therapeutic payloads from nanocarriers is also important in achieving efficient delivery of drugs to reach their intracellular targets. Recently, we invented a library of ultra pH-sensitive (UPS) nanoprobes with exquisite fluorescence response to subtle pH changes. The UPS nanoprobes also displayed strong pH-specific buffer effect over small molecular bases with broad pH responses (e.g., chloroquine and NH 4 Cl). Tunable pH transitions from 7.4 to 4.0 of UPS nanoprobes cover the entire physiological pH of endocytic organelles (e.g., early and late endosomes) and lysosomes. These unique physico-chemical properties of UPS nanoprobes allowed a 'detection and perturbation' strategy for the investigation of luminal pH in cell signaling and metabolism, which introduces a nanotechnology-enabled paradigm for the biological studies of endosomes and lysosomes. Published by Elsevier B.V.
Dembska, Anna; Kierzek, Elzbieta; Juskowiak, Bernard
2017-10-16
Intracellular sensing using fluorescent molecular beacons is a potentially useful strategy for real-time, in vivo monitoring of important cellular events. This work is focused on evaluation of pyrene excimer signaling molecular beacons (MBs) for the monitoring of pH changes in vitro as well as inside living cells. The recognition element in our MB called pHSO (pH-sensitive oligonucleotide) is the loop enclosing cytosine-rich fragment that is able to form i-motif structure in a specific pH range. However, alteration of a sequence of the 6 base pairs containing stem of MB allowed the design of pHSO probes that exhibited different dynamic pH range and possessed slightly different transition midpoint between i-motif and open loop configuration. Moreover, this conformational transition was accompanied by spectral changes showing developed probes different pyrene excimer-monomer emission ratio triggered by pH changes. The potential of these MBs for intracellular pH sensing is demonstrated on the example of HeLa cells line. Copyright © 2017 Elsevier B.V. All rights reserved.
Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao
2004-07-01
The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F = 66.871 + 6.605 pH (F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.
NASA Astrophysics Data System (ADS)
Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao
2004-07-01
The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F=66.871+6.605 pH ( F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.
Clarke, Jennifer S; Achterberg, Eric P; Rérolle, Victoire M C; Abi Kaed Bey, Samer; Floquet, Cedric F A; Mowlem, Matthew C
2015-10-15
The oceans are a major sink for anthropogenic atmospheric carbon dioxide, and the uptake causes changes to the marine carbonate system and has wide ranging effects on flora and fauna. It is crucial to develop analytical systems that allow us to follow the increase in oceanic pCO2 and corresponding reduction in pH. Miniaturised sensor systems using immobilised fluorescence indicator spots are attractive for this purpose because of their simple design and low power requirements. The technology is increasingly used for oceanic dissolved oxygen measurements. We present a detailed method on the use of immobilised fluorescence indicator spots to determine pH in ocean waters across the pH range 7.6-8.2. We characterised temperature (-0.046 pH/°C from 5 to 25 °C) and salinity dependences (-0.01 pH/psu over 5-35), and performed a preliminary investigation into the influence of chlorophyll on the pH measurement. The apparent pKa of the sensor spots was 6.93 at 20 °C. A drift of 0.00014 R (ca. 0.0004 pH, at 25 °C, salinity 35) was observed over a 3 day period in a laboratory based drift experiment. We achieved a precision of 0.0074 pH units, and observed a drift of 0.06 pH units during a test deployment of 5 week duration in the Southern Ocean as an underway surface ocean sensor, which was corrected for using certified reference materials. The temperature and salinity dependences were accounted for with the algorithm, R=0.00034-0.17·pH+0.15·S(2)+0.0067·T-0.0084·S·1.075. This study provides a first step towards a pH optode system suitable for autonomous deployment. The use of a short duration low power illumination (LED current 0.2 mA, 5 μs illumination time) improved the lifetime and precision of the spot. Further improvements to the pH indicator spot operations include regular application of certified reference materials for drift correction and cross-calibration against a spectrophotometric pH system. Desirable future developments should involve novel fluorescence spots with improved response time and apparent pKa values closer to the pH of surface ocean waters. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Mazáň, Marián; Ragni, Enrico; Popolo, Laura; Farkaš, Vladimír
2011-09-01
BGTs [β-(1,3)-glucanosyltransglycosylases; EC 2.4.1.-] of the GH72 (family 72 of glycosylhydrolases) are GPI (glycosylphosphatidylinositol)-anchored proteins that play an important role in the biogenesis of fungal cell walls. They randomly cleave glycosidic linkages in β-(1,3)-glucan chains and ligate the polysaccharide portions containing newly formed reducing ends to C(3)(OH) at non-reducing ends of other β-(1,3)-glucan molecules. We have developed a sensitive fluorescence-based method for the assay of transglycosylating activity of GH72 enzymes. In the new assay, laminarin [β-(1,3)-glucan] is used as the glucanosyl donor and LamOS (laminarioligosaccharides) fluorescently labelled with SR (sulforhodamine) serve as the acceptors. The new fluorescent assay was employed for partial biochemical characterization of the heterologously expressed Gas family proteins from the yeast Saccharomyces cerevisiae. All the Gas enzymes specifically used laminarin as the glucanosyl donor and a SR-LamOS of DP (degree of polymerization) ≥5 as the acceptors. Gas proteins expressed in distinct stages of the yeast life cycle showed differences in their pH optima. Gas1p and Gas5p, which are expressed during vegetative growth, had the highest activity at pH 4.5 and 3.5 respectively, whereas the sporulation-specific Gas2p and Gas4p were most active between pH 5 and 6. The novel fluorescent assay provides a suitable tool for the screening of potential glucanosyltransferases or their inhibitors.
SERS+MEF of the anti-tumoral drug emodin adsorbed on silver nanoparticles
NASA Astrophysics Data System (ADS)
Sevilla, Paz; De Llanos, Raquel; Domingo, Concepción; Sánchez-Cortés, Santiago; García-Ramos, José V.
2010-02-01
Metal nanostructures are known to amplify the spontaneous emission of fluorescent molecules by resonant coupling to external electromagnetic fields. We have used spectroscopy to characterize the structural properties of emodin molecules, a natural anthraquinone dye, and bovine serum albumin, the most abundant protein in plasma, in the presence of silver nanoparticles. Aggregation of emodin at pH=10 and pH=6 gives rise to SERS and MEF effects in silver colloid. We have obtained MEF spectra at acidic pH=2.9 using two different silver nanostructures. We have also studied the change in the secondary structure of bovine serum albumin adsorbed on metal nanoparticles surface. Circular dichroism, fluorescence emission and fluorescence lifetime measurements indicate an increase in the alfa-helical content of the protein and a change in the environment of the tryptophan residues that bury in the interior of the biomolecule. This variation on the secondary structure could have further influence in the binding of the drug to form transport and regulatory complexes.
Dual fluorescence of syringaldazine
NASA Astrophysics Data System (ADS)
Rajendiran, N.; Balasubramanian, T.
2007-11-01
The absorption and fluorescence spectra of syringaldazine (SYAZ) has been recorded in solvents of different polarity, pH and β-cyclodextrin (β-CD) and compared with syringaldehyde (SYAL). The inclusion complex of SYAZ with β-CD is investigated by UV-vis, fluorimetry, AM 1, FT-IR, 1H NMR and scanning electron microscope (SEM). Δ G value suggests the inclusion process is an exothermic and spontaneous. In all solvents a dual fluorescence is observed for SYAZ, whereas, SYAL shows a dual luminescence only in polar solvents. The excitation spectra for the 410 nm is different from 340 nm indicate two different species present in this molecule. In pH solutions: (i) a large red shifted maxima is observed in the dianion and is due to large interactions between the aromatic ring and (ii) the large blue shift at pH ˜4.5, is due to dissociation of azine group and formation of aldehyde. β-CD studies reveal that, SYAZ forms a 1:2 complex from 1:1 complex with β-CD.
Hirayama, Yutaka; Iinuma, Yasushi; Yokoyama, Naoyuki; Otani, Tetsuya; Masui, Daisuke; Komatsuzaki, Naoko; Higashidate, Naruki; Tsuruhisa, Shiori; Iida, Hisataka; Nakaya, Kengo; Naito, Shinichi; Nitta, Koju; Yagi, Minoru
2015-12-01
Hepatoportoenterostomy (HPE) with the Kasai procedure is the treatment of choice for biliary atresia (BA) as the initial surgery. However, the appropriate level of dissection level of the fibrous cone (FC) of the porta hepatis (PH) is frequently unclear, and the procedure sometimes results in unsuccessful outcomes. Recently, indocyanine green near-infrared fluorescence imaging (ICG-FCG) has been developed as a form of real-time cholangiography. We applied this technique in five patients with BA to visualize the biliary flow at the PH intraoperatively. ICG was injected intravenously the day before surgery as the liver function test, and the liver was observed with a near-infrared camera system during the operation while the patient's feces was also observed. In all patients, the whole liver fluoresced diffusely with ICG-containing stagnant bile, whereas no extrahepatic structures fluoresced. The findings of the ICG fluorescence pattern of the PH after dissection of the FC were classified into three types: spotty fluorescence, one patient; diffuse weak fluorescence, three patients; and diffuse strong fluorescence, one patient. In all five patients, the feces evacuated after HPE showed distinct fluorescent spots, although that obtained before surgery showed no fluorescence. One patient with diffuse strong fluorescence who did not achieve JF underwent living related liver transplantation six months after the initial HPE procedure. Four patients, including three cases involving diffuse weak fluorescence and one case involving spotty fluorescence showed weak fluorescence compared to that of the surrounding liver surface. We were able to detect the presence of bile excretion at the time of HPE intraoperatively and successfully evaluated the extent of bile excretion using this new technique. Furthermore, the ICG-FCG findings may provide information leading to a new classification and potentially function as an indicator predicting the clinical outcomes after HPE.
Zhu, Yaqiong; Ni, Yonghong; Sheng, Enhong
2016-06-07
LaVO4:Eu(3+) micro/nanocrystals with various shapes were hydrothermally synthesized by adjusting the pH of the system at 180 °C for 12 h in the presence of ethylenediaminetetraacetic acid (EDTA). The shape and phase of the final product were characterized by field emission scanning electron microscopy (FESEM) and X-ray powder diffraction (XRD). Experiments showed that when the other conditions were kept unchanged, the shape of the final product changed from hollow microspheres constructed by nanorods to long nanorods, to short nanorods and finally to grains with microscale sizes with the pH increase from 4.0, 7.0, 11.0 to 13.0 in the system. Meanwhile, the t-LaVO4 phase was always obtained from the system at pH below 13.0 and the m-LaVO4 phase was formed at pH 13.0. It was found that the final product with various shapes presented different luminescence performances. LaVO4:Eu(3+) nanorods obtained from the system at pH 11.0 displayed the strongest luminescence and good fluorescence stability in water. Also, the above strong PL spectrum could be quenched by Fe(3+) ions without the interference of other ions, indicating that the present product could be used as an efficient fluorescent probe for highly selective detection of Fe(3+) ions in water systems. The fluorescence quenching mechanism was investigated simultaneously.
A novel fiber optic sensor for the measurement of pH of blood based on colorimetry
NASA Astrophysics Data System (ADS)
Chaudhari, A. L.; Patil, D. D.; Shaligram, Arvind D.
2005-04-01
Fiber optic sensors designed to the date are largely based on monitoring the absorption change of several immobilized indicators or change in fluorescence of fluorometric indicators. The present paper reports a new type of fiber optic sensor for the measurement of blood pH based on Colorimetric principle. The sensor consists of two multimode step index fibers, mirror as reflector and blood serum with universal indicator as medium. LED is used as source and photodiode as detector. The intensity of color produced due to addition of indicator to blood serum depends upon hydrogen ion concentration. The output intensity from receiving fiber is measured as a function of pH of blood. The developed sensor is calibrated against the standard pH meter. The design, construction and calibration details are presented in paper.
Kim, Min Sang; Gao, Guang Hui; Kang, Seong Woo; Lee, Doo Sung
2011-07-07
In this study, some possible biomedical applications of a pH-sensitive and amphiphilic copolymer as a pH sensor and protein delivery system are reported. PAE-g-PEG was used as a pH-sensitive polymer that can exhibit a sharp pH-dependent transition. Various fluorescent dyes including pyrene and RITC can be used to label the pH-sensitive polymer PAE-g-PEG, which was evaluated for protein encapsulation. pH-sensing was possible by observing excimer formation of the labeled pyrene via pH-dependent expansion of the polymeric chain. Also, it was confirmed that FITC-BSA could be entrapped in RITC-labeled pH-sensitive micelles of PAE-g-PEG by FRET. As a result, PAE-g-PEG can be a pH sensor and carrier for protein delivery. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaluating nanoparticle sensor design for intracellular pH measurements.
Benjaminsen, Rikke V; Sun, Honghao; Henriksen, Jonas R; Christensen, Nynne M; Almdal, Kristoffer; Andresen, Thomas L
2011-07-26
Particle-based nanosensors have over the past decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors are challenging, and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time-resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle-based sensor systems that are internalized by endocytosis and elucidated important factors in nanosensor design that should be considered in future development of new sensors. From our experiments it is clear that it is highly important to use sensors that have a broad measurement range, as erroneous quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pK(a) to each sensor, seem to be a solution to some of the earlier problems found when measuring pH in the endosome-lysosome pathway.
Acid-base equilibria inside amine-functionalized mesoporous silica.
Yamaguchi, Akira; Namekawa, Manato; Kamijo, Toshio; Itoh, Tetsuji; Teramae, Norio
2011-04-15
Acid-base equilibria and effective proton concentration inside a silica mesopore modified with a trimethyl ammonium (TMAP) layer were studied by steady-state fluorescence experiments. The mesoporous silica with a dense TMAP layer (1.4 molecules/nm(2)) was prepared by a post grafting of N-trimethoxysilylpropyl-N,N,N-trimethylammonium at surfactant-templated mesoporous silica (diameter of silica framework =3.1 nm). The resulting TMAP-modified mesoporous silica strongly adsorbed of anionic fluorescence indicator dyes (8-hydroxypyrene-1,3,6-trisulfonate (pyranine), 8-aminopyrene-1,3,6-trisulfonate (APTS), 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid disulfuric acid (TPPS), 2-naphthol-3,6-disulfonate (2NT)) and fluorescence excitation spectra of these dyes within TMAP-modified mesoporous silica were measured by varying the solution pH. The fluorescence experiments revealed that the acid-base equilibrium reactions of all pH indicator dyes within the TMAP-modified silica mesopore were quite different from those in bulk water. From the analysis of the acid-base equilibrium of pyranine, the following relationships between solution pH (pH(bulk)) and the effective proton concentration inside the pore (pH(pore)) were obtained: (1) shift of pH(pore) was 1.8 (ΔpH(pore)=1.8) for the pH(bulk) change from 2.1 to 9.1 (ΔpH(bulk)=7.0); (2) pH(pore) was not simply proportional to pH(bulk); (3) the inside of the TMAP-modified silica mesopore was suggested to be in a weak acidic or neutral condition when pH(bulk) was changed from 2.0 to 9.1. Since these relationships between pH(bulk) and pH(pore) could explain the acid-base equilibria of other pH indicator dyes (APTS, TPPS, 2NT), these relationships were inferred to describe the effective proton concentration inside the TMAP-modified silica mesopore. © 2011 American Chemical Society
Sensitivity of early-life stage golden trout to low pH and elevated aluminum
Delonay, Aaron J.; Little, Edward E.; Woodward, Daniel F.; Brumbaugh, William G.; Farag, Aïda M.; Rabeni, Charles F.
1993-01-01
Early-life-stage golden trout (Oncorhynchus aguabonita aguabonita) were exposed to acid and Al to examine the response and determine the sensitivity of a western, alpine salmonid to conditions simulating an episodic pH depression. Freshly fertilized eggs, alevins, and swim-up larvae were exposed for 7 d to one of 12 combinations of pH and Al, and surviving fish were held to 40 d post-hatch to determine the effect of exposure on subsequent survival and recovery. Golden trout are sensitive to conditions simulating episodic acidification events typically observed in the field. Significant mortality occurred when the pH of test waters was below 5.0 in the absence of Al or when pH was 5.5 in the presence of 100 μg/L total Al. Behavioral impairments were sensitive indicators of low pH and Al stress. Impaired locomotory and feeding behavior occurred at pH 5.5 without Al and at Al concentrations > 50 μg/L. In contrast, growth, RNA-to-DNA ratio, and whole-body ion concentration were relatively less sensitive indicators of sublethal acid and Al stress.
Sinha, Sanghamitra; Chowdhury, Bijit; Adarsh, Nayarassery N; Ghosh, Pradyut
2018-05-15
A quinoline-based C3-symmetric fluorescent probe (1), N,N',N''-((2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene))tris(1-(quinolin-2-yl)-N-(quinolin-2-ylmethyl)methanamine), has been developed which can selectively detect Zn2+ without the interference of Cd2+via significant enhancement in emission intensity (fluorescence "turn-ON") associated with distinct fluorescence colour changes and very low detection limits (35.60 × 10-9 M in acetonitrile and 29.45 × 10-8 M in 50% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile media). Importantly, this sensor is operative with a broad pH window (pH 4-10). The sensing phenomenon has been duly studied through UV-vis, steady-state, and time-resolved fluorescence spectroscopic methods indicating 1 : 3 stoichiometric binding between 1 and Zn2+ which is further corroborated by 1H NMR studies. Density functional theoretical (DFT) calculations provide the optimized molecular geometry and properties of the zinc complex, 1[Zn(ClO4)]33+, which is proposed to be formed in acetonitrile. The results are in line with the solution-state experimental findings. The single crystal X-ray study provides the solid state structure of the trinuclear Zn2+ complex showing solubility in an aqueous buffer (10 mM HEPES, pH = 7.4). Finally, the resulting trinuclear Zn2+ complex has been utilized as a fluorescence "turn-OFF" sensor for the selective detection of pyrophosphate in a 70% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile solvent with a nanomolar detection limit (45.37 × 10-9 M).
Valencia, Sergio; Marín, Juan M; Restrepo, Gloria; Frimmel, Fritz H
2014-03-15
This study shows the changes of natural organic matter (NOM) from Lake Hohloh, (Black Forest, Germany) during heterogeneous photocatalysis with TiO2 (TiO2/UV). The effect of pH on the adsorption of NOM onto TiO2 in the dark and TiO2/UV degradation of NOM was followed using three-dimensional excitation-emission matrix (EEM) fluorescence. At pH values between 4 and 9, the NOM was adsorbed onto TiO2 in the dark with a greater decrease in the fluorescence intensity and in the spectral shapes, especially under acidic pH conditions. However, at pH = 10 there was not adsorption on NOM which led to a negligible changes the fluorescence intensity. A significant high linear correlation was observed between the DOC adsorption onto TiO2 and the maximum fluorescence intensity. Additionally, the NOM adsorption onto TiO2 and its TiO2/UV degradation shifted the fluorescence maxima toward shorter wavelengths in the EEM contour plots, with a decrease in aromaticity. These changes were accompanied by a substantial decrease in the organically bound halogens adsorbable on activated carbon (AOXFP) and the trihalomethane formation potential (THMFP). Thus, the decrease in maximum fluorescence intensity can be used as an indicator of AOXFP and TTHMFP removal efficiency. Therefore, fluorescence spectroscopy is a robust analytical technique for evaluate TiO2/UV removal of NOM. Copyright © 2013 Elsevier Ltd. All rights reserved.
Analytical nanosphere sensors using quantum dot-enzyme conjugates for urea and creatinine.
Ruedas-Rama, Maria J; Hall, Elizabeth A H
2010-11-01
An enzyme-linked analytical nanosphere sensor (ANSor) is described, responding to enzyme-substrate turnover in the vicinity of a quantum dot (QD) due to coimmobilized enzyme and pH sensitive ligand. QD capping by mercapto-alkanoic acids were rejected as a pH sensitive ligand, but with the use of a layer-by-layer assembly on mercaptopropionic capped QDs and an intermediate poly(allylamine hydrochloride) layer, anthraquinone sulfonate (calcium red, CaR) was introduced to modify the pKa in the immobilized system > 8. QD-CaR absorption shows spectral overlap with QD530 emission at all pHs and gives a complex pH dependent fluorescence resonance energy transfer (FRET) efficiency, due to excited state proton transfer (λ(ex) = 540 nm; λ(em) = 585 nm). In contrast QD615-CaR with spectral overlap between the QD and CaR gave a strong and reproducible pH response. QD-urease and QD-creatinine deiminase conjugates could be linked with pH changes produced by enzyme degradation of urea and creatinine, respectively. Close coupling between the pH sensitive QD and enzyme conjugate maximized signal compared with solution based assays: QD-urease and QD-CD bioconjugates were tested in model biological media (Dulbecco's modified Eagle's Medium and fetal calf serum) and in urine, showing a response in 3-4 min.
The Metalloprotease of Listeria monocytogenes Is Regulated by pH▿
Forster, Brian M.; Bitar, Alan Pavinski; Slepkov, Emily R.; Kota, Karthik J.; Sondermann, Holger; Marquis, Hélène
2011-01-01
Listeria monocytogenes is an intracytosolic bacterial pathogen. Among the factors contributing to escape from vacuoles are a phosphatidylcholine phospholipase C (PC-PLC) and a metalloprotease (Mpl). Both enzymes are translocated across the bacterial membrane as inactive proproteins, whose propeptides serve in part to maintain them in association with the bacterium. We have shown that PC-PLC maturation is regulated by Mpl and pH and that Mpl maturation occurs by autocatalysis. In this study, we tested the hypothesis that Mpl activity is pH regulated. To synchronize the effect of pH on bacteria, the cytosolic pH of infected cells was manipulated immediately after radiolabeling de novo-synthesized bacterial proteins. Immunoprecipitation of secreted Mpl from host cell lysates revealed the presence of the propeptide and catalytic domain in samples treated at pH 6.5 but not at pH 7.3. The zymogen was present in small amounts under all conditions. Since proteases often remain associated with their respective propeptide following autocatalysis, we aimed at determining whether pH regulates autocatalysis or secretion of the processed enzyme. For this purpose, we used an Mpl construct that contains a Flag tag at the N terminus of its catalytic domain and antibodies that can distinguish N-terminal and non-N-terminal Flag. By fluorescence microscopy, we observed the Mpl zymogen associated with the bacterium at physiological pH but not following acidification. Mature Mpl was not detected in association with the bacterium at either pH. Using purified proteins, we determined that processing of the PC-PLC propeptide by mature Mpl is also pH sensitive. These results indicate that pH regulates the activity of Mpl on itself and on PC-PLC. PMID:21803995
Certain tricyclic and pentacyclic-hetero nitrogen rhodol dyes
Haugland, Richard P.; Whitaker, James E.
1993-01-01
Novel fluorescent dyes based on the rhodol structure are provided. The new reagents contain functional groups capable of forming a stable fluorescent product with functional groups typically found in biomolecules or polymers including amines, phenols, thiols, acids, aldehydes and ketones. Reactive groups in the rhodol dyes include activated esters, isothiocyanates, amines, hydrazines, halides, acids, azides, maleimides, aldehydes, alcohols, acrylamides and haloacetamides. The products are detected by their absorbance or fluorescence properties. The spectral properties of the fluorescent dyes are sufficiently similar in wavelengths and intensity to fluorescein or rhodamine derivatives as to permit use of the same equipment. The dyes, however, show less spectral sensitivity to pH in the physiological range than does fluorescein, have higher solubility in non-polar solvents and have improved photostability and quantum yields.
NASA Astrophysics Data System (ADS)
Slavik, Jan; Cimprich, Petr; Gregor, Martin; Smetana, Karel, Jr.
1997-12-01
The application possibilities of fluorescent probes have increased dramatically in the last few years. The main areas are as follows (Slavik, 1994, 1996, 1998). Intracellular ionic cell composition: There are selective ion-sensitive dyes for H+, Ca2+, Mg2+, K+, Na+, Fe3+, Cl-, Zn2+, Cd2+, Hg2+, Pb2+, Ba2+, La3+. Membrane potential: Using the so-called slow (Nernstian dyes) or electrochromic dyes one can assess the value of the transmembrane potential. Membrane fluidity: Fluorescent probes inform about the freedom of rotational and translational movement of membrane proteins and lipids. Selective labeling: Almost any object of interest inside the cell or on its surface can be selectively fluorescently labeled. There are dyes specific for DNA, RNA, oligonucleotides (FISH), Golgi, endoplasmic reticulum, mitochondria, vacuoles, cytoskeleton, etc. Using fluorescent dyes specific receptors may be localized, their conformational changes followed and the polarity of corresponding binding sites accessed. The endocytic pathway may be followed, enzymes and their local enzymatic activity localized. For really selective labeling fluorescent labeled antibodies exist. Imaging: One of the main advantages of fluorescence imaging is its versatility. It allow choice among ratio imaging in excitation, ratio imaging in emission and lifetime imaging. These approaches can be applied to both the classical wide-field fluorescence microscopy and to the laser confocal fluorescence microscopy, one day possibly to the scanning near field optical microscopy. Simultaneous application of several fluorescent dyes: The technical progress in both excitation sources and in detectors allows to extend the excitation deeper in the blue and ultraviolet side and the detection further in the NIR and IR. Consequently, up to 6 peaks in excitation and up to 6 peaks in emission can be followed without any substantial difficulties. Application of dyes such with longer fluorescence lifetimes such as rare earth dyes gives chance for the separated detection of another six peak pairs. The literature data on simultaneous applications of several fluorescent dyes are rare, usually it is only pH and calcium, pH and membrane potential or pH and cytoskeleton changes that are mentioned. Nevertheless, I am sure that in the near future it will be quite common to employ several fluorescent dyes simultaneously. So, in a few years, you may expect to be comfortably seated in an armchair in front of the monitor screen, sip your coffee and follow simultaneously several physiological parameters trying to find out new relations among them. In this respect the potential of fluorescent probes is unsurpassed if you just recall only the discovery of calcium waves and calcium spikes during the past years.
Jin, Pengkang; Song, Jina; Wang, Xiaochang C; Jin, Xin
2018-02-01
In this study, two-dimensional correlation spectroscopy integrated with synchronous fluorescence and infrared absorption spectroscopy was employed to investigate the interaction between humic acids and aluminum coagulant at slightly acidic and neutral pH. Higher fluorescence quenching was produced for fulvic-like and humic-like fractions at pH5. At pH5, the humic-like fractions originating from the carboxylic acid, carboxyl and polysaccharide compounds were bound to aluminum first, followed by the fulvic-like fractions originating from the carboxyl and polysaccharide compounds. This finding also demonstrated that the activated functional groups of HA were involved in forming the Al-HA complex, which was accompanied by the removal of other groups by co-precipitation. Meanwhile, at pH7, almost no fluorescence quenching occurred, and surface complexation was observed to occur, in which the activated functional groups were absorbed on the amorphous Al(OH) 3 . Two-dimensional FT-IR correlation spectroscopy indicated the sequence of HA structural change during coagulation with aluminum, with IR bands affected in the order of COOH>COO - >NH deformation of amide II>aliphatic hydroxyl COH at pH5, and COO - >aliphatic hydroxyl COH at pH7. This study provides a promising pathway for analysis and insight into the priority of functional groups in the interaction between organic matters and metal coagulants. Copyright © 2017. Published by Elsevier B.V.
Zhao, Xue Qiang; Bao, Xue Min; Wang, Chao; Xiao, Zuo Yi; Hu, Zhen Min; Zheng, Chun Li; Shen, Ren Fang
2017-10-01
Aluminum (Al) is ubiquitous and toxic to microbes. High Al 3+ concentration and low pH are two key factors responsible for Al toxicity, but our present results contradict this idea. Here, an Al-tolerant yeast strain Rhodotorula taiwanensis RS1 was incubated in glucose media containing Al with a continuous pH gradient from pH 3.1-4.2. The cells became more sensitive to Al and accumulated more Al when pH increased. Calculations using an electrostatic model Speciation Gouy Chapman Stern indicated that, the increased Al sensitivity of cells was associated with AlOH 2+ and Al(OH) 2 + rather than Al 3+ . The alcian blue (a positively charged dye) adsorption and zeta potential determination of cell surface indicated that, higher pH than 3.1 increased the negative charge and Al adsorption at the cell surface. Taken together, the enhanced sensitivity of R. taiwanensis RS1 to Al from pH 3.1-4.2 was associated with increased hydroxy-Al and cell-surface negativity.
High-quality substrate for fluorescence enhancement using agarose-coated silica opal film.
Xu, Ming; Li, Juan; Sun, Liguo; Zhao, Yuanjin; Xie, Zhuoying; Lv, Linli; Zhao, Xiangwei; Xiao, Pengfeng; Hu, Jing; Lv, Mei; Gu, Zhongze
2010-08-01
To improve the sensitivity of fluorescence detection in biochip, a new kind of substrates was developed by agarose coating on silica opal film. In this study, silica opal film was fabricated on glass substrate using the vertical deposition technique. It can provide stronger fluorescence signals and thus improve the detection sensitivity. After coating with agarose, the hybrid film could provide a 3D support for immobilizing sample. Comparing with agarose-coated glass substrate, the agarose-coated opal substrates could selectively enhance particular fluorescence signals with high sensitivity when the stop band of the silica opal film in the agarose-coated opal substrate overlapped the fluorescence emission wavelength. A DNA hybridization experiment demonstrated that fluorescence intensity of special type of agarose-coated opal substrates was about four times that of agarose-coated glass substrate. These results indicate that the optimized agarose-coated opal substrate can be used for improving the sensitivity of fluorescence detection with high quality and selectivity.
Przybyt, Małgorzata; Miller, Ewa; Szreder, Tomasz
2011-04-04
The thermostability of glucose oxidase entrapped in silica gel obtained by sol-gel method was studied by thermostimulated fluorescence of FAD at pH 5 and 7 and compared with that of the native enzyme in the solution and at the presence of ethanol. The unfolding temperatures were found to be lower for the enzyme immobilised in gel as compared with the native enzyme but higher as for the enzyme at the presence of ethanol. In gel, the thermal denaturation of glucose oxidase is independent on pH while in solution the enzyme is more stable at pH 5. The investigation the enzyme in different environment by steady-state fluorescence of FAD and tryptophan, synchronous fluorescence and time-resolved fluorescence of tryptophan indicates that the state of the molecule (tertiary structure and molecular dynamics) is different in gel and in solution. The ethanol produced during gel precursor hydrolysis is not the main factor influencing the thermostability of the enzyme but more important are interactions of the protein with the gel lattice. Copyright © 2011 Elsevier B.V. All rights reserved.
Anthrax vaccine powder formulations for nasal mucosal delivery.
Jiang, Ge; Joshi, Sangeeta B; Peek, Laura J; Brandau, Duane T; Huang, Juan; Ferriter, Matthew S; Woodley, Wendy D; Ford, Brandi M; Mar, Kevin D; Mikszta, John A; Hwang, C Robin; Ulrich, Robert; Harvey, Noel G; Middaugh, C Russell; Sullivan, Vincent J
2006-01-01
Anthrax remains a serious threat worldwide as a bioterror agent. A second-generation anthrax vaccine currently under clinical evaluation consists of a recombinant Protective Antigen (rPA) of Bacillus anthracis. We have previously demonstrated that complete protection against inhalational anthrax can be achieved in a rabbit model, by intranasal delivery of a powder rPA formulation. Here we describe the preformulation and formulation development of such powder formulations. The physical stability of rPA was studied in solution as a function of pH and temperature using circular dichroism (CD), and UV-visible absorption and fluorescence spectroscopies. Extensive aggregation of rPA was observed at physiological temperatures. An empirical phase diagram, constructed using a combination of CD and fluorescence data, suggests that rPA is most thermally stable within the pH range of 6-8. To identify potential stabilizers, a library of GRAS excipients was screened using an aggregation sensitive turbidity assay, CD, and fluorescence. Based on these stability profiles, spray freeze-dried (SFD) formulations were prepared at pH 7-8 using trehalose as stabilizer and a CpG-containing oligonucleotide adjuvant. SFD formulations displayed substantial improvement in storage stability over liquid formulations. In combination with noninvasive intranasal delivery, such powder formulations may offer an attractive approach for mass biodefense immunization.
Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor.
Tantama, Mathew; Hung, Yin Pun; Yellen, Gary
2011-07-06
Intracellular pH affects protein structure and function, and proton gradients underlie the function of organelles such as lysosomes and mitochondria. We engineered a genetically encoded pH sensor by mutagenesis of the red fluorescent protein mKeima, providing a new tool to image intracellular pH in live cells. This sensor, named pHRed, is the first ratiometric, single-protein red fluorescent sensor of pH. Fluorescence emission of pHRed peaks at 610 nm while exhibiting dual excitation peaks at 440 and 585 nm that can be used for ratiometric imaging. The intensity ratio responds with an apparent pK(a) of 6.6 and a >10-fold dynamic range. Furthermore, pHRed has a pH-responsive fluorescence lifetime that changes by ~0.4 ns over physiological pH values and can be monitored with single-wavelength two-photon excitation. After characterizing the sensor, we tested pHRed's ability to monitor intracellular pH by imaging energy-dependent changes in cytosolic and mitochondrial pH.
Plasmonic gold nanostar for biomedical sensing
NASA Astrophysics Data System (ADS)
Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew M.; Vo-Dinh, Tuan
2014-03-01
Cancer has become one of most significant death reasons and causes approximately 7.9 million human deaths worldwide each year. The challenge to detect cancer at an early stage makes cancer-related biomarkers sensing attract more and more research interest and efforts. Surface-enhanced Raman scattering (SERS) provides a promising method for various biomarkers (DNA, RNA, protein, et al.) detection due to its high sensitivity, specificity and capability for multiple analytes detection. Raman spectroscopy is a non-destructive photon-scattering technique, which provides molecule-specific information on molecular vibrational energy levels. SERS takes advantage of plasmonic effects and can enhance Raman signal up to 1015 at "hot spots". Due to its excellent sensitivity, SERS has been capable of achieving single-molecule detection limit. Local pH environment has been identified to be a potential biomarker for cancer diagnosis since solid cancer contains highly acidic environments. A near-infrared (NIR) SERS nanoprobe based on gold nanostars for pH sensing is developed for future cancer detection. Near-infrared (NIR) light is more suitable for in vivo applications because of its low attenuation rate and tissue auto fluorescence. SERS spectrum of pH reporter under various pH environments is monitored and used for pH sensing. Furthermore, density functional theory (DFT) calculation is performed to investigate Raman spectra changes with pH at the molecular level. The study demonstrates that SERS is a sensitive tool to monitor minor molecular structural changes due to local pH environment for cancer detection.
Consolati, Tanja; Bolivar, Juan M; Petrasek, Zdenek; Berenguer, Jose; Hidalgo, Aurelio; Guisán, Jose M; Nidetzky, Bernd
2018-02-28
The pH is fundamental to biological function and its measurement therefore crucial across all biosciences. Unlike homogenous bulk solution, solids often feature internal pH gradients due to partition effects and confined biochemical reactions. Thus, a full spatiotemporal mapping for pH characterization in solid materials with biological systems embedded in them is essential. In here, therefore, a fully biocompatible methodology for real-time optical sensing of pH within porous materials is presented. A genetically encoded ratiometric pH sensor, the enhanced superfolder yellow fluorescent protein (sYFP), is used to functionalize the internal surface of different materials, including natural and synthetic organic polymers as well as silica frameworks. By using controlled, tailor-made immobilization, sYFP is homogenously distributed within these materials and so enables, via self-referenced imaging analysis, pH measurements in high accuracy and with useful spatiotemporal resolution. Evolution of internal pH is monitored in consequence of a proton-releasing enzymatic reaction, the hydrolysis of penicillin by a penicillin acylase, taking place in solution or confined to the solid surface of the porous matrix. Unlike optochemical pH sensors, which often interfere with biological function, labeling with sYFP enables pH sensing without altering the immobilized enzyme's properties in any of the materials used. Fast response of sYFP to pH change permits evaluation of biochemical kinetics within the solid materials. Thus, pH sensing based on immobilized sYFP represents a broadly applicable technique to the study of biology confined to the internally heterogeneous environment of solid matrices.
Zhou, Yongqiang; Yao, Xiaolong; Zhang, Yibo; Shi, Kun; Zhang, Yunlin; Jeppesen, Erik; Gao, Guang; Zhu, Guangwei; Qin, Boqiang
2017-05-01
Perturbations of rainwater chromophoric dissolved organic matter (CDOM) fluorescence induced by changes in rainfall intensity and pH were investigated by field observations and laboratory pH titrations. Microbial humic-like fluorophores dominated the rainwater CDOM pool, followed by tryptophan-like and tyrosine-like substances. Increased rainfall intensity had notable dilution effects on all six fluorescent components (C1-C6) identified using parallel factor (PARAFAC) analysis, the effect being especially pronounced for the microbial humic-like C1, tryptophan-like C3, and tyrosine-like C5. The results also indicated that increasing pH from 7 to 9 led to decreased fluorescence intensity (F max ) of all the six components, while a pH increase from 5 to 7, resulted in increasing F max of terrestrial humic-like C2, tyrosine-like C5, and tryptophan-like C6 and decreasing microbial humic-like C1, tryptophan-like C3, and fulvic-like C4. Two-dimensional correlation spectroscopy (2D-COS) demonstrated that synchronous fluorescence responded first to pH modifications at fulvic-like wavelength (λ Ex /λ Em = ∼316/416 nm), followed by tyrosine-like wavelength (λ Ex /λ Em = ∼204/304 nm), tryptophan-like wavelength (λ Ex /λ Em = ∼226/326 nm), microbial humic-like wavelength (∼295/395 nm), and finally terrestrial humic-like wavelength (∼360/460 nm). Our results suggest that a decrease in areas affected by acid rain in South China occurring at present may possibly result in apparent compositional changes of CDOM fluorescence. The decreased rainfall in South-West China and increased rainfall in North-West China during the past five decades may possibly accordingly result in increased and decreased F max of all the six components identified in South-West and North-West China, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Digman, Michelle A.; Gratton, Enrico; Storti, Barbara; Beltram, Fabio
2013-01-01
A versatile pH-dependent fluorescent protein was applied to intracellular pH measurements by means of the phasor approach to fluorescence lifetime imaging. By this fit-less method we obtain intracellular pH maps under resting or altered physiological conditions by single-photon confocal or two-photon microscopy. PMID:22517076
NASA Astrophysics Data System (ADS)
Stănciuc, Nicoleta; Aprodu, Iuliana; Ioniță, Elena; Bahrim, Gabriela; Râpeanu, Gabriela
2015-08-01
Given the importance of peroxidase as an indicator for the preservation of vegetables by heat treatment, the present study is focused on enzyme behavior under different pH and temperature conditions, in terms of process-structure-function relationships. Thus, the process-structure-function relationship of peroxidase was investigated by combining fluorescence spectroscopy, in silico prediction methods and inactivation kinetic studies. The fluorescence spectra indicated that at optimum pH value, the Trp117 residue is not located in the hydrophobic core of the protein. Significant blue- and red-shifts were obtained at different pH values, whereas the heat-treatment did not cause significant changes in Trp and Tyr environment. The ANS and quenching experiments demonstrated a more flexible conformation at lower pH and respectively at higher temperature. On the other hand molecular dynamics simulations at different temperatures highlighted that the secondary structure appeared better preserved against temperature, whereas the tertiary structure around the heme was more affected. Temperature dependent changes in the hydrogen bonding and ion paring involving amino acids from the heme-binding region (His170 and Asp247) might trigger miss-coordination of the heme iron atom by His170 residue and further enzyme activity loss.
NASA Astrophysics Data System (ADS)
Wang, Wang; Li, Xue; Wang, Qiuying; Zhu, Xixi; Zhang, Qingyan; Du, Linfang
2018-01-01
CP43 is closely associated with the photosystem II and exists the plant thylakoid membranes. The acidic pH-induced structural changes had been investigated by fluorescence spectrum, ANS spectrum, RLS spectrum, energy transfer experiment, acrylamide fluorescence quenching assay and MD simulation. The fluorescence spectrum indicated that the structural changes in acidic pH-induced process were a four-state model, which was nature state (N), partial unfolding state (PU), refolding state (R), and molten-globule state (M), respectively. Analysis of ANS spectrum illustrated that inner hydrophobic core exposed partially to surface below pH 2.0 and inferred also that the molten-globule state existed. The RLS spectrum showed the aggregation of apo-CP43 around the pI (pH 4.5-4.0). The alterations of apo-CP43 secondary structure with different acidic treatments were confirmed by FTIR spectrum. The energy transfer experiment and quenching research demonstrated structural change at pH 4.0 was loosest. The RMSF suggested two terminals played an important function in acidic denaturation process. The distance of two terminals shown slight difference in acidic pH-induced process during the unfolding process, both N-terminal and C-terminal occupied the dominant role. However, the N-terminal accounted for the main part in the refolding process. All kinds of SASA values corresponded to spectral results. The tertiary and secondary structure by MD simulation indicated that the part transmembrane α-helix was destroyed at low pH.
A new FRET ratiometric fluorescent chemosensor for Hg2+ and its application in living EC 109 cells
NASA Astrophysics Data System (ADS)
Song, Jianhua; Huai, Manxiu; Wang, Cuicui; Xu, Zhanhui; Zhao, Yufen; Ye, Yong
2015-03-01
On the basis of fluorescent resonance energy transfer, a new fluorophore dyad (L) bearing rhodamine B and naphthalimide was developed as fluorescent ratiometric chemosensor for Hg2+ in aqueous solution. L exhibited high selectivity and excellent sensitivity towards Hg2+ with a broad pH span (1.0-8.0) and the detection limit of L was 2.11 × 10-8 M. Sensor L for the detection of Hg2+ was rapid and the recognizing event could complete in 2.5 min. A significant change in the color could be used for naked-eye detection. The selective fluorescence response of L to Hg2+ is due to the Hg2+-promoted ring opening of spirolactam of rhodamine moiety, leading to a cyclization reaction of thiourea moiety. In addition, fluorescence imaging experiments of Hg2+ in living EC 109 cells demonstrated its value of practical applications in biological systems.
NASA Astrophysics Data System (ADS)
Guo, Ping; Liu, Lijuan; Shi, Qian; Yin, Chunyan; Shi, Xuefang
2017-02-01
A fluorescent and colorimetric pH probe based on a rhodamine 6G derivative, RP1, was designed and synthesized. The probe was based on the pH induced change in the structure between the spirocyclic (non-fluorescent, colorless) and quinoid (fluorescent, pink) forms of rhodamine 6G. The effect of the acid concentration on the fluorescence "off-on" behaviors of RP1 was investigated. RP1 was fluorescent in the pH range of 1.1-3.1 and has a pKa value of 2.08 (±0.07). Thus RP1 should be useful for studies in strongly acidic environments. Possible interferences from fourteen common metal ions were tested and excluded showing the excellent selectivity of the probe. Finally, the probe exhibits an intense color change at pH values lower than 3.1 which makes it useful for naked-eye pH detection.
Obermann, Dana; Bickmeyer, Ulf; Wägele, Heike
2012-11-01
The sequestration of nematocysts (a special group of cnidocysts) from cnidarian prey with subsequent use in defence is described for few metazoan phyla. Members of the taxon Aeolidoidea (Nudibranchia, Gastropoda) are well-known for this. Questions regarding the reasons some nematocysts do not discharge when the gastropod feeds and how these same nematocysts can be transported along the digestive tract into specialized morphological structures called cnidosacs, remain unanswered. Within the cnidosac, nematocysts are incorporated in cells and finally be used for defence against predators. The most plausible explanation for this phenomenon suggests there are immature and therefore non-functional nematocysts in the food. A recent study by Berking and Herrmann (2005) on cnidarians suggested that the nematocysts mature by acidification via proton transfer into the nematocyst capsule. According to this hypothesis only immature nematocysts are transported into the cnidosac where they are then made functional through an accumulation of protons. In this study we present a fluorescence staining method that tests the hypothesis by Berking and Herrmann (2005) and detects changes in the pH values of incorporated nematocysts, interpreted as changes in maturation stages. This marker, the fluorescent dye Ageladine A, stains nematocyst capsules according to their pH values. With Ageladine A we were able to show that kleptocnides indeed change their pH value after incorporation into the aeolidoidean cnidosac. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mitochondrial flashes: From indicator characterization to in vivo imaging.
Wang, Wang; Zhang, Huiliang; Cheng, Heping
2016-10-15
Mitochondrion is an organelle critically responsible for energy production and intracellular signaling in eukaryotic cells and its dysfunction often accompanies and contributes to human disease. Superoxide is the primary reactive oxygen species (ROS) produced in mitochondria. In vivo detection of superoxide has been a challenge in biomedical research. Here we describe the methods used to characterize a circularly permuted yellow fluorescent protein (cpYFP) as a biosensor for mitochondrial superoxide and pH dynamics. In vitro characterization reveals the high selectivity of cpYFP to superoxide over other ROS species and its dual sensitivity to pH. Confocal and two-photon imaging in conjunction with transgenic expression of the biosensor cpYFP targeted to the mitochondrial matrix detects mitochondrial flash events in living cells, perfused intact hearts, and live animals. The mitochondrial flashes are discrete and stochastic single mitochondrial events triggered by transient mitochondrial permeability transition (tMPT) and composed of a bursting superoxide signal and a transient alkalization signal. The real-time monitoring of single mitochondrial flashes provides a unique tool to study the integrated dynamism of mitochondrial respiration, ROS production, pH regulation and tMPT kinetics under diverse physiological and pathophysiological conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
Sun, Mingtai; Du, Libo; Yu, Huan; Zhang, Kui; Liu, Yang; Wang, Suhua
2017-01-01
It is crucial to monitor intracellular pH values and their fluctuation since the organelles of cells have different pH distribution. Herein we construct a new small molecule fluorescent probe HBT-O for monitoring the subtle pH values within the scope of neutral to acid in living cells. The probe exhibited good water solubility, a marked turquoise to olivine emission color change in response to pH, and tremendous fluorescence hypochromatic shift of ∼50nm (1718cm -1 ) as well as the increased fluorescence intensity when the pH value changed from neutral to acid. Thus, the probe HBT-O can distinguish the subtle changes in the range of normal pH values from neutral to acid with significant fluorescence changes. These properties can be attributed to the intramolecular charge transfer (ICT) process of the probe upon protonation in buffer solutions at varied pH values. Moreover, the probe was reversible and nearly non-toxic for living cells. Then the probe was successfully used to detect pH fluctuation in living cells by exhibiting different fluorescence colors and intensity. These findings demonstrate that the probe will find useful applications in biology and biomedical research. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ray, Aniruddha; Lee, Yong-Eun Koo; Elbez, Remy; Kopelman, Raoul
2012-03-01
Tumors are generally characterized by a pH lower than the surrounding tissues. The mapping of tumor pH is of great importance as it plays a critical role in drug delivery and its effectiveness. Here we present a pH mapping technique in tumor spheroids, using targeted, ratiometric, fluorescent, pH nano-sensor that is based on two-photon excitation. Spheroids are micro-tumors that are widely used as an in-vitro three dimensional tumor model to study the different properties of the tumor for the purpose of drug delivery, therapy etc. The nanosensor consists of 8-Hydroxypyrene- 1,3,6-trisulfonic acid (HPTS), a pH sensitive dye, encapsulated in polyacrylamide hydrogel nanoparticle matrix and F3 peptide, conjugated to the nanoparticle's surface. The nanosensor has an average size of 68nm and contains approximately 0.5% dye by weight. The fluorescence intensity ratio, at the two-photon excitation wavelengths of 900nm and 750nm, increases linearly in the pH range from 6.0 to 8.0 and is used to determine the pH of the local environment. Our study reveals the pH distribution inside human cervix cancer spheroids (of different sizes) during the various stages of their formation. This information can be used to develop more efficient drug delivery mechanisms. The two-photon excitation used for this purpose is especially useful as it drastically minimizes both photobleaching and autofluorescence, thus leading to an increase in the signal-to-noise ratio. It also enables deep tissue imaging due to higher photon penetration depth.
A fluorescence study of liposomes entrapped in sol-gel materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanaka, S.A.; Singh, S.; Sasaki, D.Y.
1997-12-31
Liposomes of phosphatidylcholine lipids were successfully entrapped in silicates using the sol-gel method with complete retention of the molecular aggregates over long periods in aqueous solution. Fluorescent studies of the small unilamellar vesicles of 5% pyrene labeled lipid PSIDA with DSPC remobilized in the gel found significant lipid reorganization upon aging in aqueous solutions. Monitoring of pyrene excimer (470 nm) to monomer (375 nm) ratios in the bilayer reveals that the silicate matrix tends to disperse PSIDA lipid aggregates from that observed in free solution. On an interesting note, the liposomes in the gel at pH 7.5. The PSIDA/DSPC liposomes,more » sensitive to heavy metal ions in free solution, maintain similar sensitivity in the gel yet the sensor material can not be recycled.« less
In, Byunggyu; Hwang, Gi Won; Lee, Keun-Hyeung
2016-09-15
A fluorescent sensor based on a tripeptide (SerGluGlu) with a dansyl fluorophore detected selectively Al(III) among 16 metal ions in aqueous buffered solutions without any organic cosolvent. The peptide-based sensor showed a highly sensitive turn on response to aluminium ion with high binding affinity (1.84×10(4)M(-1)) in aqueous buffered solutions. The detection limit (230nM, 5.98ppb) of the peptide-based sensor was much lower than the maximum allowable level (7.41μM) of aluminium ions in drinking water demanded by EPA. The binding mode of the peptide sensor with aluminium ions was characterized using ESI mass spectrometry, NMR titration, and pH titration experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bao, Xiaofeng; Cao, Qiansheng; Xu, Yazhou; Gao, Yuanxue; Xu, Yuan; Nie, Xuemei; Zhou, Baojing; Pang, Tao; Zhu, Jing
2015-02-15
A new Rhodamine B derivative (RBDPA), namely, N(1)-(2-(3',6'-bis(diethylamino)-3-oxospiro[isoindoline-1,9'-xanthen]-2-yl)ethyl)-N(4),N(4)-bis(pyridin-2-ylmethyl)succinamide, was designed, synthesized and structurally characterized to develop a chemosensor. The studies show that RBDPA exhibits high sensitivity and selectivity toward Al(3+) among many other metal cations in an ethanol/H2O (1:1, v/v, pH=7.2, HEPES buffer, 0.1mM) solution. Fluorescence microscopy experiments further demonstrate that RBDPA can be used as a fluorescent probe to detect Al(3+) in living cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Szunerits, Sabine; Walt, David R
2002-02-15
The localized corrosion behavior of a galvanic aluminum copper couple was investigated by in situ fluorescence imaging with a fiber-optic imaging sensor. Three different, but complementary methods were used for visualizing remote corrosion sites, mapping the topography of the metal surface, and measuring local chemical concentrations of H+, OH-, and Al3+. The first method is based on a pH-sensitive imaging fiber, where the fluorescent dye SNAFL was covalently attached to the fiber's distal end. Fluorescence images were acquired as a function of time at different areas of the galvanic couple. In a second method, the fluorescent dye morin was immobilized on the fiber-optic imaging sensor, which allowed the in situ localization of corrosion processes on pure aluminum to be visualized over time by monitoring the release of Al3+. The development of fluorescence on the aluminum surface defined the areas associated with the anodic dissolution of aluminum. We also investigated the inhibition of corrosion of pure aluminum by CeCl3 and 8-hydroxyquinoline. The decrease in current, the decrease in the number of active sites on the aluminum surface, and the faster surface passivation are all consistent indications that cerium chloride and 8-hydroxyquinoline inhibit corrosion effectively. From the number and extent of corrosion sites and the release of aluminum ions monitored with the fiber, it was shown that 8-hydroxyquinoline is a more effective inhibitor than cerium chloride.
Zhang, Jingtuo; Yang, Mu; Mazi, Wafa; Adhikari, Kapil; Fang, Mingxi; Xie, Fei; Valenzano, Loredana; Tiwari, Ashutosh; Luo, Fen-Tair; Liu, Haiying
2016-01-01
Three uncommon morpholine-based fluorescent probes (A, B and C) for pH were prepared by introducing morpholine residues to BODIPY dyes at 4,4’- and 2,6-positions, respectively. In contrast to morpholine-based fluorescent probes for pH reported in literature, these fluorescent probes display high fluorescence in a basic condition while they exhibit very weak fluorescence in an acidic condition. The theoretical calculation confirmed that morpholine is unable to function as either an electron donor or an electron acceptor to quench the BODIPY fluorescence in the neutral and basic condition via photo-induced electron transfer (PET) mechanism because the LUMO energy of morpholine is higher than those of the BODIPY dyes while its HOMO energy is lower than those of the BODIPY dyes. However, the protonation of tertiary amines of the morpholine residues in an acidic environment leads to fluorescence quenching of the BODIPY dyes via d-PET mechanism. The fluorescence quenching is because the protonation effectively decreases the LUMO energy which locates between the HOMO and LUMO energies of the BODIPY dyes. Fluorescent probe C with deep-red emission has been successfully used to detect pH changes in mammalian cells. PMID:27547822
Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei
2016-04-06
Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators-depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance-to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O₂-A and O₂-B bands (111.4% and 77.1% in the O₂-A band; and 27.5% and 32.6% in the O₂-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R² = 0.91 for Damm vs. SCOPE SIF; R² = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence.
Fluorescence-based methods for the detection of pressure-induced spore germination and inactivation
NASA Astrophysics Data System (ADS)
Baier, Daniel; Reineke, Kai; Doehner, Isabel; Mathys, Alexander; Knorr, Dietrich
2011-03-01
The application of high pressure (HP) provides an opportunity for the non-thermal preservation of high-quality foods, whereas highly resistant bacterial endospores play an important role. It is known that the germination of spores can be initiated by the application of HP. Moreover, the resistance properties of spores are highly dependent on their physiological states, which are passed through during the germination. To distinguish between different physiological states and to detect the amount of germinated spores after HP treatments, two fluorescence-based methods were applied. A flow cytometric method using a double staining with SYTO 16 as an indicator for germination and propidium iodide as an indicator for membrane damage was used to detect different physiological states of the spores. During the first step of germination, the spore-specific dipicolinic acid (DPA) is released [P. Setlow, Spore germination, Curr. Opin. Microbiol. 6 (2003), pp. 550-556]. DPA reacts with added terbium to form a distinctive fluorescent complex. After measuring the fluorescence intensity at 270 nm excitation wavelength in a fluorescence spectrophotometer, the amount of germinated spores can be determined. Spores of Bacillus subtilis were treated at pressures from 150 to 600 MPa and temperatures from 37 °C to 60 °C in 0.05 M ACES buffer solution (pH 7) for dwell times of up to 2 h. During the HP treatments, inactivation up to 2log 10 cycles and thermal sensitive populations up to 4log 10 cycles could be detected by plate counts. With an increasing number of thermal sensitive spores, an increased proportion of spores in germinated states was detected by flow cytometry. Also the released amount of DPA increased during the dwell times. Moreover, a clear pressure-temperature-time-dependency was shown by screening different conditions. The fluorescence-based measurement of the released DPA can provide the opportunity of an online monitoring of the germination of spores under HP inside the HP vessel. Implementation can be done using diamond anvil cells, units with inspection glasses or by inserting an optical fiber into the HP vessel. The analytical methods used can help to understand the complex mechanism of germination and inactivation of bacterial spores. Due to its universal, process-independent character, the application of these methods is feasible for established and emerging technologies.
Simple apparatus for polarization sensing of analytes
NASA Astrophysics Data System (ADS)
Gryczynski, Zygmunt; Gryczynski, Ignacy; Lakowicz, Joseph R.
2000-09-01
We describe a simple device for fluorescence sensing based on an unexpansive light source, a dual photocell and a Watson bridge. The emission is detected from two fluorescent samples, one of which changes intensity in response to the analyte. The emission from these two samples is observed through two orthogonally oriented polarizers and an analyzer polarizer. The latter polarizer is rotated to yield equal intensities from both sides of the dual photocell, as determined by a zero voltage from the Watson bridge. Using this device, we are able to measure fluorescein concentration to an accuracy near 2% at 1 (mu) M fluorescein, and pH values accurate to +/- 0.02 pH units. We also use this approach with a UV hand lamp and a glucose-sensitive protein to measure glucose concentrations near 2 (mu) M to an accuracy of +/- 0.1 (mu) M. This approach requires only simple electronics, which can be battery powered. Additionally, the method is generic, and can be applied with any fluorescent sample that displays a change in intensity. One can imagine this approach being used to develop portable point-of-care clinical devices.
A fluorescent colorimetric pH sensor and the influences of matrices on sensing performances
Tian, Yanqing; Fuller, Emily; Klug, Summer; Lee, Fred; Su, Fengyu; Zhang, Liqiang; Chao, Shih-hui; Meldrum, Deirdre R.
2013-01-01
A fluorescent colorimetric pH sensor was developed by a polymerization of a monomeric fluorescein based green emitter (SM1) with a monomeric 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran derived red emitter (SM2) in poly(2-hydroxyethyl methacrylate)-co-polyacrylamide (PHEMA-co-PAM) matrices. Polymerized SM1 (PSM1) in the polymer matrices showed bright emissions at basic conditions and weak emissions at acidic conditions. Polymerized SM2 (PSM2) in the polymer matrices exhibited a vastly different response when compared to PSM1. The emissions of PSM2 are stronger under acidic conditions than those under basic conditions. When SM1 and SM2 were polymerized in the same polymer matrix, a dual emission sensor acting as a ratiometric pH sensor (PSM1,2) was successfully developed. Because the PSM1 and PSM2 exhibited different pH responses and separated emission windows, the changes in the emission colors were clearly observed in their dual color sensor of PSM1,2, which changed emission colors dramatically from green at pH 7 to red at pH 4, which was detected visually and/or by using a color camera under an excitation of 488 nm. In addition to the development of the dual color ratiometric pH sensor, we also studied the effects of different matrix compositions, crosslinkers, and charges on the reporting capabilities of the sensors (sensitivity and pKa). PMID:24078772
A fluorescent colorimetric pH sensor and the influences of matrices on sensing performances.
Tian, Yanqing; Fuller, Emily; Klug, Summer; Lee, Fred; Su, Fengyu; Zhang, Liqiang; Chao, Shih-Hui; Meldrum, Deirdre R
2013-10-01
A fluorescent colorimetric pH sensor was developed by a polymerization of a monomeric fluorescein based green emitter ( SM1 ) with a monomeric 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran derived red emitter ( SM2 ) in poly(2-hydroxyethyl methacrylate)- co -polyacrylamide (PHEMA-co-PAM) matrices. Polymerized SM1 ( PSM1 ) in the polymer matrices showed bright emissions at basic conditions and weak emissions at acidic conditions. Polymerized SM2 ( PSM2 ) in the polymer matrices exhibited a vastly different response when compared to PSM1 . The emissions of PSM2 are stronger under acidic conditions than those under basic conditions. When SM1 and SM2 were polymerized in the same polymer matrix, a dual emission sensor acting as a ratiometric pH sensor ( PSM1,2 ) was successfully developed. Because the PSM1 and PSM2 exhibited different pH responses and separated emission windows, the changes in the emission colors were clearly observed in their dual color sensor of PSM1,2 , which changed emission colors dramatically from green at pH 7 to red at pH 4, which was detected visually and/or by using a color camera under an excitation of 488 nm. In addition to the development of the dual color ratiometric pH sensor, we also studied the effects of different matrix compositions, crosslinkers, and charges on the reporting capabilities of the sensors (sensitivity and p K a ).
Effects of gaseous ammonia on intracellular pH values in leaves of C 3- and C 4-plants
NASA Astrophysics Data System (ADS)
Yin, Zu-Hua; Kaiser, Werner; Heber, Ulrich; Raven, John A.
Responses of cytosolic and vacuolar pH to different concentrations (1.3-5.4 μmol NH 3 mol -1 gas or 0.940-3.825 mg NH 3 m -3 gas) of gaseous NH 3 were studied in experiments of 3 h duration by recording changes in fluorescence of pyranine and esculin in leaves of C 3 and C 4 plants. After a lag phase of 0.5-4 min, the uptake of NH 3 at 50-200 nmol m -2 leaf area s -1 increased pyranine fluorescence, indicating cytosolic alkalinization in leaves of Pelargonium zonale L. (C 3) and Amaranthus caudatus L. (C 4). A smaller increase in esculin fluorescence induced by NH 3 indicated some vacuolar alkalization in a Spinacia oleracea L. leaf. Photosynthesis and transpiration remained unchanged during exposure of illuminated leaves to NH 3 for up to 30 min (the maximum tested). CO 2 concentrations influenced the extent of cytosolic alkalinization. 500 μmol CO 2 mol -1 gas suppressed the NH 3-induced cytosolic alkalinization relative to that found in 16 μmol CO 2 mol -1 gas. The suppressing effect of CO 2 on NH 3-induced alkalization was larger in illuminated leaves of the C 4Amaranthus than the C 3Pelargonium. These results indicate that the alkaline pH shift caused by solution and protonation of NH 3 in aqueous leaf compartments is affected by assimilation of NH 3.
A Direct Demonstration of Closed-State Inactivation of K+ Channels at Low pH
Claydon, Thomas W.; Vaid, Moni; Rezazadeh, Saman; Kwan, Daniel C.H.; Kehl, Steven J.; Fedida, David
2007-01-01
Lowering external pH reduces peak current and enhances current decay in Kv and Shaker-IR channels. Using voltage-clamp fluorimetry we directly determined the fate of Shaker-IR channels at low pH by measuring fluorescence emission from tetramethylrhodamine-5-maleimide attached to substituted cysteine residues in the voltage sensor domain (M356C to R362C) or S5-P linker (S424C). One aspect of the distal S3-S4 linker α-helix (A359C and R362C) reported a pH-induced acceleration of the slow phase of fluorescence quenching that represents P/C-type inactivation, but neither site reported a change in the total charge movement at low pH. Shaker S424C fluorescence demonstrated slow unquenching that also reflects channel inactivation and this too was accelerated at low pH. In addition, however, acidic pH caused a reversible loss of the fluorescence signal (pKa = 5.1) that paralleled the reduction of peak current amplitude (pKa = 5.2). Protons decreased single channel open probability, suggesting that the loss of fluorescence at low pH reflects a decreased channel availability that is responsible for the reduced macroscopic conductance. Inhibition of inactivation in Shaker S424C (by raising external K+ or the mutation T449V) prevented fluorescence loss at low pH, and the fluorescence report from closed Shaker ILT S424C channels implied that protons stabilized a W434F-like inactivated state. Furthermore, acidic pH changed the fluorescence amplitude (pKa = 5.9) in channels held continuously at −80 mV. This suggests that low pH stabilizes closed-inactivated states. Thus, fluorescence experiments suggest the major mechanism of pH-induced peak current reduction is inactivation of channels from closed states from which they can activate, but not open; this occurs in addition to acceleration of P/C-type inactivation from the open state. PMID:17470663
Spectrofluorimetric assay method for glutathione and glutathione transferase using monobromobimane.
Yakubu, S I; Yakasai, I A; Musa, A
2011-06-01
The primary role of glutathione transferase is to defend an organism from toxicities through catalyzing the reaction of glutathione (GSH) with potentially toxic compounds or metabolites to their chemically and biologically inert conjugates. The objective of the study was to develop a simple and sensitive spectrofluorimetric assay method for glutathione transferase using monobromobimane (MBB), a non fluorescent compound with electrophilic site. MBB slowly reacted with glutathione to form fluorescent glutathione conjugate and that the reaction was catalysed by glutathione transferase. Both non-enzymatic and enzymatic reaction products of MBB, in presence of GSH in phosphate buffer (pH 6.5), were measured by following increase of fluorescence at wavelength of 475nm. For validation of the assay method, the kinetic parameters such as the apparent Michaelis-Mente constants and maximum rates of conjugate formation as well as the specific activity of rat hepatic glutathione transferase were determined. The method was found to be sensitive, thus, applied to measure glutathione contents of crude preparation of rat hepatic cytosol fraction.
Xue, Pengchong; Yao, Boqi; Wang, Panpan; Gong, Peng; Zhang, Zhenqi; Lu, Ran
2015-11-23
An L-phenylalanine derivative (C12PhBPCP) consisting of a strong emission fluorophore with benzoxazole and cyano groups is designed and synthesized to realize dual responses to volatile acid and organic amine vapors. The photophysical properties and self-assembly of the said derivative in the gel phase are also studied. C12PhBPCP can gelate organic solvents and self-assemble into 1 D nanofibers in the gels. UV/Vis absorption spectral results show H-aggregate formation during gelation, which indicates strong exciton coupling between fluorophores. Both wet gel and xerogel emit strong green fluorescence because the cyano group suppresses fluorescence quenching in the self-assemblies. Moreover, the xerogel film with strong green fluorescence can be used as a dual chemosensor for quantitative detection of volatile acid and organic amine vapors with fast response times and low detection limits owing to its large surface area and amplified fluorescence quenching. The detection limits are 796 ppt and 25 ppb for gaseous aniline and trifluoroacetic acid (TFA), respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Motevich, I. G.; Strekal, N. D.; Shulha, A. V.; Maskevich, S. A.
2016-05-01
We consider the dependence of the spectral properties of eosin and hematoxylin (dyes routinely used in histology as contrast agents) on their localization in biological tissues with different levels of pathology: benign and malignant neoplasms and sigmoid colonic crypts. We have analyzed the fluorescent images and fluorescence spectra of the parenchyma and stromal elements. We have established that on going from physiologically normal cells to tumor cells, the contribution to the absorption cross section of histologic sections due to hematoxylin increases. In pathologically altered cells in a colonic crypt, we observe a hypsochromic effect in the fluorescence spectra of the samples with appreciable quenching of the fluorescence, while in the model systems the reverse effect occurs: a shift of the fluorescence maximum toward the red region. We discuss the influence on the indicated effects from local pH and the polarity of the dye environment in the model systems and histologic sections. As the systems modeling the polarity and acidity of the biological media, we use aqueous solutions of the dyes with different pH values and synthetic polyelectrolytes.
NASA Astrophysics Data System (ADS)
Liu, Xiaodong; Chen, Bizheng; Li, Xiaojun; Zhang, Lifen; Xu, Yujie; Liu, Zhuang; Cheng, Zhenping; Zhu, Xiulin
2015-10-01
Responsive block copolymer micelles emerging as promising imaging and drug delivery systems show high stability and on-demand drug release activities. Herein, we developed self-assembled pH-responsive NIR emission micelles entrapped with doxorubicin (DOX) within the cores by the electrostatic interactions for fluorescence imaging and chemotherapy applications. The block copolymer, poly(methacrylic acid)-block-poly[(poly(ethylene glycol) methyl ether methacrylate)-co-boron dipyrromethene derivatives] (PMAA-b-P(PEGMA-co-BODIPY)), was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and the molecular weight distribution of this copolymer was narrow (Mw/Mn = 1.31). The NIR fluorescence enhancement induced by the phenol/phenolate interconversion equilibrium works as a switch in response to the intracellular pH fluctuations. DOX-loaded PMAA-b-P(PEGMA-co-BODIPY) micelles can detect the physiological pH fluctuations with a pKa near physiological conditions (~7.52), and showed pH-responsive collapse and an obvious acid promoted anticancer drug release behavior (over 58.8-62.8% in 10 h). Real-time imaging of intracellular pH variations was performed and a significant chemotherapy effect was demonstrated against HeLa cells.Responsive block copolymer micelles emerging as promising imaging and drug delivery systems show high stability and on-demand drug release activities. Herein, we developed self-assembled pH-responsive NIR emission micelles entrapped with doxorubicin (DOX) within the cores by the electrostatic interactions for fluorescence imaging and chemotherapy applications. The block copolymer, poly(methacrylic acid)-block-poly[(poly(ethylene glycol) methyl ether methacrylate)-co-boron dipyrromethene derivatives] (PMAA-b-P(PEGMA-co-BODIPY)), was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and the molecular weight distribution of this copolymer was narrow (Mw/Mn = 1.31). The NIR fluorescence enhancement induced by the phenol/phenolate interconversion equilibrium works as a switch in response to the intracellular pH fluctuations. DOX-loaded PMAA-b-P(PEGMA-co-BODIPY) micelles can detect the physiological pH fluctuations with a pKa near physiological conditions (~7.52), and showed pH-responsive collapse and an obvious acid promoted anticancer drug release behavior (over 58.8-62.8% in 10 h). Real-time imaging of intracellular pH variations was performed and a significant chemotherapy effect was demonstrated against HeLa cells. Electronic supplementary information (ESI) available: GPC, UV/vis, fluorescence, and MTT data of the as-prepared polymers; 1H NMR, 13C NMR, HRMS and FT-IR of organic molecules and polymers. See DOI: 10.1039/c5nr04655f
Miao, Luyang; Zhu, Chengzhou; Jiao, Lei; Li, He; Du, Dan; Lin, Yuehe; Wei, Qin
2018-02-06
Numerous analytical techniques have been undertaken for the detection of protein biomarkers because of their extensive and significant applications in clinical diagnosis, whereas there are few strategies to develop dual-readout immunosensors to achieve more accurate results. To the best of our knowledge, inspired by smart drug delivery system (DDS), a novel pH-responsive modified enzyme-linked immunosorbent assay (ELISA) was innovatively developed for the first time, realizing dual-modal colorimetric and fluorescent detection of cardiac troponin I (cTnI). Curcumin (CUR) was elaborately selected as a reporter molecule, which played the same role of drugs in DDS based on the following considerations: (1) CUR can be used as a kind of pH indicator by the inherited allochroic effect induced by basic pH value; (2) the fluorescence of CUR can be quenched by certain nanocarriers as the acceptor because of the occurrence of fluorescence resonance energy transfer (FRET), while recovered by the stimuli of basic pH value, which can produce "signal-on" fluorescence detection. Three-dimensional MoS 2 nanoflowers (3D-MoS 2 NFs) were employed in immobilizing CUR to constitute a nanoprobe for the determination of cTnI by virtue of good biocompatibility, high absorption capacity, and fluorescence quench efficiency toward CUR. The proposed DDS-inspired ELISA offered dual-modal colorimetric and fluorescent detection of cTnI, thereby meeting the reliable and precise analysis requirements. We believe that the developed dual-readout ELISA will create a new avenue and bring innovative inspirations for biological detections.
Wang, Xin Rui; Wang, Xing Ze; Li, Yong; Liu, Kun; Liu, Shi Xin; Du, Jing; Huang, Zhuo; Luo, Yan; Huo, Jian Zhong; Wu, Xiang Xia; Liu, Yuan Yuan; Ding, Bin
2018-06-01
In this work, a novel water-stable coordination polymer with {4 4 } network topology {[Zn(L) 2 (NO 3 ) 2 ]} n (1) (L = 4,4'-Bis(triazol-1-ylmethyl)biphenyl) has been synthesized through the hydrothermal and sonochemical approaches. 1 has been characterized by single crystal X-ray diffraction, powder X-ray diffraction (PXRD), Fourier Transform Infrared Spectroscopy, UV-vis absorption spectrum and scanning electron microscopy (SEM). PXRD patterns of the as-synthesized samples 1 have confirmed the purity of the bulky samples. In the sonochemical preparation approaches, different ultrasound irradiation power and ultrasound time were also used in order to investigate the impact factor for morphology and size of nano-structured 1. Photo-luminescence studies have revealed that 1 can efficiently distinguish Fe 3+ from Fe 2+ and other metal ions. On the other hand, 1 also can exhibit a highly sensitive, excellently selective and real-time detection of benzaldehyde and pH through photo-luminescence quenching process. As for 1, density functional theory (DFT) and time-dependent DFT (TDDFT) theory has been applied to calculate these spectroscopic data, the result agree with the experimental results for detection of benzaldehyde. Photo-luminescent recyclability results indicated 1 can be reused at least five times in the detection process. To the best of our knowledge, this is the first example of a multi-responsive regenerable luminescent sensor for highly selective, sensitive and real-time sensing of Fe 3+ over Fe 2+ , benzaldehyde and pH values. Copyright © 2018 Elsevier B.V. All rights reserved.
Huang, Yong; Zhao, Shulin; Shi, Ming; Liu, Jinwen; Liang, Hong
2011-05-23
A microchip electrophoresis method with laser induced fluorescence detection was developed for the immunoassay of phenobarbital. The detection was based on the competitive immunoreaction between analyte phenobarbital and fluorescein isothiocyanate (FITC) labeled phenobarbital with a limited amount of antibody. The assay was developed by varying the borate concentration, buffer pH, separation voltage, and incubation time. A running buffer system containing 35 mM borate and 15 mM sodium dodecyl sulfate (pH 9.5), and 2800 V separation voltage provided analysis conditions for a high-resolution, sensitive, and repeatable assay of phenobarbital. Free FITC-labeled phenobarbital and immunocomplex were separated within 30s. The calibration curve for phenobarbital had a detection limit of 3.4 nM and a range of 8.6-860.0 nM. The assay could be used to determine the phenobarbital plasma concentration in clinical plasma sample. Copyright © 2011 Elsevier B.V. All rights reserved.
Yang, Qiaoyu; Ye, Zhongju; Zhong, Meile; Chen, Bo; Chen, Jian; Zeng, Rongjin; Wei, Lin; Li, Hung-wing; Xiao, Lehui
2016-04-20
In this work, we demonstrated a new ratiometric method for the quantitative analysis of pH inside living cells. The structure of the nanosensor comprises a biofriendly fluorescent bovine serum albumin (BSA) matrix, acting as a pH probe, and pH-insensitive reference dye Alexa 594 enabling ratiometric quantitative pH measurement. The fluorescent BSA matrix was synthesized by cross-linking of the denatured BSA proteins in ethanol with glutaraldehyde. The size of the as-synthesized BSA nanoparticles can be readily manipulated from 30 to 90 nm, which exhibit decent fluorescence at the peak wavelength of 535 nm with a pH response range of 6-8. The potential of this pH sensor for intracellular pH monitoring was demonstrated inside living HeLa cells, whereby a significant change in fluorescence ratio was observed when the pH of the cell was switched from normal to acidic with anticancer drug treatment. The fast response of the nanosensor makes it a very powerful tool in monitoring the processes occurring within the cytosol.
Yan, Weiying; Colyer, Christa L
2005-08-01
1,1',3,3,3',3'-Hexamethylindotricarbocyanine iodide (HITCI) is a commercially available, positively charged, indocarbocyanine dye used typically as a laser dye in the near infrared (NIR). The absorbance and fluorescence properties of HITCI in a variety of solvent systems were determined. Results indicate that the fluorescence of HITCI is not significantly affected by the pH. Titration of HITCI with human serum albumin (HSA) and trypsinogen was carried out to investigate the interactions between this dye and proteins. These studies revealed that the absorbance and fluorescence properties of the dye change upon binding to protein in a wide range of solution pH's. The potential use of HITCI as a noncovalent protein labeling probe, therefore, was explored. Determination and separation of HITCI and HITCI-protein complexes was performed by capillary electrophoresis with diode-laser induced fluorescence detection (CE-LIF). Both pre-column and on-column noncovalent labeling methods are demonstrated.
NASA Astrophysics Data System (ADS)
Rahmanseresht, Sheema; Milas, Peker; Ramos, Kieran P.; Gamari, Ben D.; Goldner, Lori S.
2015-05-01
Fluorescence resonance energy transfer (FRET) from individual, dye-labeled RNA molecules confined in freely-diffusing attoliter-volume aqueous droplets is carefully compared to FRET from unconfined RNA in solution. The use of freely-diffusing droplets is a remarkably simple and high-throughput technique that facilitates a substantial increase in signal-to-noise for single-molecular-pair FRET measurements. We show that there can be dramatic differences between FRET in solution and in droplets, which we attribute primarily to an altered pH in the confining environment. We also demonstrate that a sufficient concentration of a non-ionic surfactant mitigates this effect and restores FRET to its neutral-pH solution value. At low surfactant levels, even accounting for pH, we observe differences between the distribution of FRET values in solution and in droplets which remain unexplained. Our results will facilitate the use of nanoemulsion droplets as attoliter volume reactors for use in biophysical and biochemical assays, and also in applications such as protein crystallization or nanoparticle synthesis, where careful attention to the pH of the confined phase is required.
A facile fluorescent "turn-off" method for sensing paraquat based on pyranine-paraquat interaction
NASA Astrophysics Data System (ADS)
Zhao, Zuzhi; Zhang, Fengwei; Zhang, Zipin
2018-06-01
Development of a technically simple yet effective method for paraquat (PQ) detection is of great importance due to its high clinical and environmental relevance. In this study, we developed a pyranine-based fluorescent "turn-off" method for PQ sensing based on pyranine-PQ interaction. We investigated the dependence of analytical performance of this method on the experimental conditions, such as the ion strength, medium pH, and so on. Under the optimized conditions, the method is sensitive and selective, and could be used for PQ detection in real-world sample. This study essentially provides a readily accessible fluorescent system for PQ sensing which is cheap, robust, and technically simple, and it is envisaged to find more interesting clinical and environmental applications.
A Fiber Optic Ammonia Sensor Using a Universal pH Indicator
Rodríguez, Adolfo J.; Zamarreño, Carlos R.; Matías, Ignacio R.; Arregui, Francisco. J.; Domínguez Cruz, Rene F.; May-Arrioja, Daniel. A.
2014-01-01
A universal pH indicator is used to fabricate a fiber optic ammonia sensor. The advantage of this pH indicator is that it exhibits sensitivity to ammonia over a broad wavelength range. This provides a differential response, with a valley around 500 nm and a peak around 650 nm, which allows us to perform ratiometric measurements. The ratiometric measurements provide not only an enhanced signal, but can also eliminate any external disturbance due to humidity or temperature fluctuations. In addition, the indicator is embedded in a hydrophobic and gas permeable polyurethane film named Tecoflex®. The film provides additional advantages to the sensor, such as operation in dry environments, efficient transport of the element to be measured to the sensitive area of the sensor, and prevent leakage or detachment of the indicator. The combination of the universal pH indicator and Tecoflex® film provides a reliable and robust fiber optic ammonia sensor. PMID:24583969
Li, Dan; Li, Chun-Yan; Li, Yong-Fei; Li, Zhi; Xu, Fen
2016-08-31
A rhodamine spirolactam derivative (1) bearing a hydrophilic carboxylic acid group is developed as a fluorescent chemodosimeter for bivalent mercury ions (Hg(2+)) in 100% aqueous solution. It exhibits a highly sensitive "turn-on" fluorescent response toward Hg(2+) with a 42-fold fluorescence intensity enhancement under 1 equiv. of Hg(2+) added. The chemodosimeter can be applied to the quantification of Hg(2+) with a linear range covering from 3.0 × 10(-7) to 1.0 × 10(-5) M and a detection limit of 9.7 × 10(-8) M. Most importantly, the fluorescence changes of the chemodosimeter are remarkably specific for Hg(2+) in the presence of other metal ions, which meet the selective requirements for practical application. Moreover, the experiment results show that the response behavior of 1 towards Hg(2+) is pH independent in neutral condition (pH 5.0-8.0) and the response is fast (response time less than 3 min). Furthermore, the ring-opening mechanism of the rhodamine spirolactam induced by Hg(2+) was supported by NMR, MS, and DFT theoretical calculations. In addition, the proposed chemodosimeter has been used to detect Hg(2+) in water samples and image Hg(2+) in living cells with satisfying results. Copyright © 2016 Elsevier B.V. All rights reserved.
Climent, Estela; Biyikal, Mustafa; Gawlitza, Kornelia; Dropa, Tomáš; Urban, Martin; Costero, Ana M; Martínez-Máñez, Ramón; Rurack, Knut
2016-08-01
Test strips that in combination with a portable fluorescence reader or digital camera can rapidly and selectively detect chemical warfare agents (CWAs) such as Tabun (GA), Sarin (GB), and Soman (GD) and their simulants in the gas phase have been developed. The strips contain spots of a hybrid indicator material consisting of a fluorescent BODIPY indicator covalently anchored into the channels of mesoporous SBA silica microparticles. The fluorescence quenching response allows the sensitive detection of CWAs in the μg m(-3) range in a few seconds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Do, T. D.; Pifer, A.; Chowdhury, Z.; Wahman, D.; Zhang, W.; Fairey, J.
2017-12-01
Detection of nitrification events in chloraminated drinking water distribution systems remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification events that necessitate extensive flushing, resulting in the loss of billions of gallons of finished water. Biological techniques used to quantify the activity of nitrifying bacteria are impractical for real-time monitoring because they require significant laboratory efforts and/or lengthy incubation times. At present, DWU and CoH regularly rely on physicochemical parameters including total chlorine and monochloramine residual, and free ammonia, nitrite, and nitrate as indicators of nitrification, but these metrics lack specificity to nitrifying bacteria. To improve detection of nitrification in chloraminated drinking water distribution systems, we seek to develop a real-time fluorescence-based sensor system to detect the early onset of nitrification events by measuring the fluorescence of soluble microbial products (SMPs) specific to nitrifying bacteria. Preliminary data indicates that fluorescence-based metrics have the sensitivity to detect these SMPs in the early stages of nitrification, but several remaining challenges will be explored in this presentation. We will focus on benchtop and sensor results from ongoing batch and annular reactor experiments designed to (1) identify fluorescence wavelength pairs and data processing techniques suitable for measurement of SMPs from nitrification and (2) assess and correct potential interferences, such as those from monochloramine, pH, iron, nitrite, nitrate and humic substances. This work will serve as the basis for developing fluorescence sensor packages for full-scale testing and validation in the DWU and CoH systems. Findings from this research could be leveraged to identify nitrification events in their early stages, facilitating proactive interventions and decreasing the severity and frequency of nitrification episodes and water loss due to flushing.
Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing.
Shen, Yanting; Liang, Lijia; Zhang, Shuqin; Huang, Dianshuai; Zhang, Jing; Xu, Shuping; Liang, Chongyang; Xu, Weiqing
2018-01-25
The pH value of subcellular organelles in living cells is a significant parameter in the physiological activities of cells. Its abnormal fluctuations are commonly believed to be associated with cancers and other diseases. Herein, a series of surface-enhanced Raman scattering (SERS) nanosensors with high sensitivity and targeting function was prepared for the quantification and monitoring of pH values in mitochondria, nucleus, and lysosome. The nanosensors were composed of gold nanorods (AuNRs) functionalized with a pH-responsive molecule (4-mercaptopyridine, MPy) and peptides that could specifically deliver the AuNRs to the targeting subcellular organelles. The localization of our prepared nanoprobes in specific organelles was confirmed by super-high resolution fluorescence imaging and bio-transmission electron microscopy (TEM) methods. By the targeting ability, the pH values of the specific organelles can be determined by monitoring the vibrational spectral changes of MPy with different pH values. Compared to the cases of reported lysosome and cytoplasm SERS pH sensors, more accurate pH values of mitochondria and nucleus, which could be two additional intracellular tracers for subcellular microenvironments, were disclosed by this SERS approach, further improving the accuracy of discrimination of related diseases. Our sensitive SERS strategy can also be employed to explore crucial physiological and biological processes that are related to subcellular pH fluctuations.
Fluorophotometric measurement of the buffering action of human tears in vivo.
Yamada, M; Kawai, M; Mochizuki, H; Hata, Y; Mashima, Y
1998-10-01
The buffering action of human tears is thought to be important to keep its pH constant. We measured the change in pH in the precorneal tear film in vivo when the acidic solution is challenged, using a fluorophotometric technique. Twelve eyes from 6 healthy subjects were entered in this study. Each subject was pretreated with either one drop of 0.4% oxybuprocaine for once (light anesthesia), three times (deep anesthesia), or none (controls). The measurement was initiated by instilling 20 microl of 0.067 M phosphate buffer at pH 5.5 containing 2 mM bis-carboxyethyl-carboxyfluorescein free acid, a pH sensitive dye, into the subject's eye. The pH was determined by the ratio of fluorescent intensities at two excitation wavelengths (490 and 430 nm). pH recovery time (PHRT) as defined by the time required for pH to reach 95% of pH at equilibrium was used for the marker of tear buffering action. Tear turnover rate was also determined using the fluorescent decay curve at 430 nm, which was independent of pH, but dependent on dye concentration. Immediately after the instillation, the pH value in the tear film was around 6.0-6.5 in all cases. The tear film rapidly became more alkaline, reaching its normal value in 2.3 +/- 0.5 min in untreated eyes. The pretreatment with 0.4% oxybuprocaine retarded the neutralization process. A single regression analysis revealed that the PHRT had a significant negative correlation with the tear turnover rate (r = -0.78). Our results suggest that the neutralization process of tears largely depends on the tear turnover rate. The buffering action of tears in vivo consists of the tear turnover as well as its chemical buffering capacity.
Hrynevich, Sviatlana V; Pekun, Tatyana G; Waseem, Tatyana V; Fedorovich, Sergei V
2015-06-01
Hypoglycemia can cause neuronal cell death similar to that of glutamate-induced cell death. In the present paper, we investigated the effect of glucose removal from incubation medium on changes of mitochondrial and plasma membrane potentials in rat brain synaptosomes using the fluorescent dyes DiSC3(5) and JC-1. We also monitored pH gradients in synaptic vesicles and their recycling by the fluorescent dye acridine orange. Glucose deprivation was found to cause an inhibition of K(+)-induced Ca(2+)-dependent exocytosis and a shift of mitochondrial and plasma membrane potentials to more positive values. The sensitivity of these parameters to the energy deficit caused by the removal of glucose showed the following order: mitochondrial membrane potential > plasma membrane potential > pH gradient in synaptic vesicles. The latter was almost unaffected by deprivation compared with the control. The pH-dependent dye acridine orange was used to investigate synaptic vesicle recycling. However, the compound's fluorescence was shown to be enhanced also by the mixture of mitochondrial toxins rotenone (10 µM) and oligomycin (5 µg/mL). This means that acridine orange can presumably be partially distributed in the intermembrane space of mitochondria. Glucose removal from the incubation medium resulted in a 3.7-fold raise of acridine orange response to rotenone + oligomycin suggesting a dramatic increase in the mitochondrial pH gradient. Our results suggest that the biophysical characteristics of neuronal presynaptic endings do not favor excessive non-controlled neurotransmitter release in case of hypoglycemia. The inhibition of exocytosis and the increase of the mitochondrial pH gradient, while preserving the vesicular pH gradient, are proposed as compensatory mechanisms.
Regulation of intracellular pH in LLC-PK1 cells by Na+/H+ exchange.
Montrose, M H; Murer, H
1986-01-01
Suspensions of LLC-PK1 cells (a continuous epitheliod cell line with renal characteristics) are examined for mechanisms of intracellular pH regulation using the fluorescent probe BCECF. Initial experiments determine suitable calibration procedures for use of the BCECF fluorescent signal. They also determine that the cell suspension contains cells which (after 4 hr in suspension) have Na+ and K+ gradients comparable to those of cells in monolayer culture. The steady-state intracellular pH (7.05 +/- 0.01, n = 5) of cells which have recovered in (pH 7.4) Na+-containing medium is not affected over several minutes by addition of 100 microM amiloride or removal of extracellular Na+ (Na+o less than 1 mM). In contrast, when the cells recover from an acid load (caused by NH4 preincubation and removal), the recovery is largely Na+ dependent and is sensitive to 100 microM amiloride. These results suggest that with resting pH near neutrality, both Na+o/H+i and Na+i/H+o exchange reactions are functionally inactive (compared to cellular buffering capacity). In contrast, Na+o/H+i exchange is activated by an increased cellular acid load. This activation may be observed directly either as a stimulation of net H+ efflux or net Na+ influx with decreasing intracellular pH. The extrapolation of this latter data suggests a "set point" of Na+/H+ exchange of approximately pH 7.0, consistent with the observed resting intracellular pH of approximately 7.05.
NASA Astrophysics Data System (ADS)
Liu, Yagang
A novel technique that combines microfluorometric detection and optical laser trapping has been developed for in-situ assessing the physiological state of an optically trapped biological sample. This optical diagnostic technique achieves high sensitivity (>30 dB signal -to-noise ratio) and high spatial resolution (~ 1 μm) over a broad spectral range (>400 nm). The fluorescence spectra derived from exogenous fluorescent probes, including laurdan, acridine orange, propidium iodide and Snarf, are used to assess the effects of optical confinement with respect to temperature, DNA structure, cell viability, and intracellular pH, respectively. In the latter three cases, fluorescence is excited via a two-photon absorption process, using the cw laser trap itself as the fluorescence excitation source. This enables the cw near infrared laser trapping beam to be used simultaneously as an optical diagnostic probe as well as an optical micromanipulator. Using microfluorometry, a temperature increase of less than several degrees centigrade was measured for test samples, including liposomes, Chinese hamster ovary (CHO) cells and human sperm cells that were held stationary by 1064 nm optical tweezers having a power density of ~10^7 W/cm^2. Additional physiological monitoring experiments indicated that there is no observable denaturation of DNA, or change of intracellular pH under typical continuous wave laser trapping conditions (P <= 400 mW). Under some circumstances, however, it was possible to achieve a decrease in cell viability with cw trapping, as monitored by a live/dead vital stain. In comparison, significant DNA denaturation and cellular physiological changes (e.g. cell death) were observed when a Q-switched pulsed laser at a threshold of ~30mu J/pulse was used as trapping source. These results generally support the conclusion that cw laser trapping at 1064 nm wavelength is a safe, non-invasive process and should prove to be of great value for understanding the mechanisms of laser microirradiation effects on living cells held stationary in a near-infrared trapping beam.
Transepithelial SCFA fluxes link intracellular and extracellular pH regulation of mouse colonocytes.
Chu, S; Montrose, M H
1997-10-01
We have studied pH regulation in both intracellular and extracellular compartments of mouse colonic crypts, using distal colonic mucosa with intact epithelial architecture. In this work, we question how transepithelial SCFA gradients affect intracellular pH (pHi) and examine interactions between extracellular pH (pHo) and pHi regulation in crypts of distal colonic epithelium from mouse. We studied pH regulation in three adjacent compartments of distal colonic epithelium (crypt lumen, crypt epithelial cell cytosol, and lamina propria) with SNARF-1 (a pH sensitive fluorescent dye), digital imaging microscopy (for pHi), and confocal microscopy (for pHo). Combining results from the three compartments allows us to find how pHi and pHo are regulated and related under the influence of physiological transepithelial SCFA gradients, and develop a better understanding of pH regulation mechanisms in colonic crypts. Results suggest a complex interdependency between SCFA fluxes and pHo values, which can directly affect how strongly SCFAs acidify colonocytes.
NASA Astrophysics Data System (ADS)
Omar, Mahmoud A.; Mohamed, Abdel-Maaboud I.; Derayea, Sayed M.; Hammad, Mohamed A.; Mohamed, Abobakr A.
2018-04-01
A new, selective and sensitive spectrofluorimetric method was designed for the quantitation of doxazosin (DOX), terazosin (TER) and alfuzosin (ALF) in their dosage forms and human plasma. The method adopts efficient derivatization of the studied drugs with ortho-phthalaldehyde (OPA), in the presence of 2-mercaptoethanol in borate buffer (pH 9.7) to generate a highly fluorescent isoindole derivatives, which can strongly enhance the fluorescence intensities of the studied drugs, allowing their sensitive determination at 430 nm after excitation at 337 nm. The fluorescence-concentration plots were rectilinear over the ranges (10.0-400.0) ng/mL. Detection and quantification limits were found to be (0.52-3.88) and (1.59-11.76) ng/mL, respectively. The proposed method was validated according to ICH guidelines, and successfully applied for the determination of pharmaceutical preparations of the studied drugs. Moreover, the high sensitivity of the proposed method permits its successful application to the analysis of the studied drugs in spiked human plasma with % recovery (96.12 ± 1.34-100.66 ± 0.57, n = 3). A proposal for the reaction mechanism was presented.
Sethuraman, Vijay A; Bae, You Han
2007-01-01
A novel drug targeting system for acidic solid tumors has been developed based on ultra pH sensitive polymer and cell penetrating TAT. The delivery system consisted of two components: 1) A polymeric micelle that has a hydrophobic core made of Poly(L-lactic acid) (PLLA) and a hydrophilic shell consisting of Polyethylene Glycol (PEG) conjugated to TAT (TATmicelle), 2) An ultra pH sensitive diblock copolymer of poly(methacryloyl sulfadimethoxine) (PSD) and PEG (PSD-b-PEG). The anionic PSD is complexed with cationic TAT of the micelles to achieve the final carrier, which could systemically shield the micelles and expose them at slightly acidic tumor pH. TATmicelles had particle sizes between 20 to 45 nm and their critical micelle concentrations were 3.5 mg/L to 5.5 mg/L. The TATmicelles, upon mixing with pH sensitive PSD-b-PEG, showed slight increase in particle size between pH 8.0 and 6.8 (60–90 nm), indicating complexation. As the pH was decreased (pH 6.6 to 6.0) two populations were observed, one that of normal TAT micelles (45 nm) and the other of aggregated hydrophobic PSD-b-PEG. Zeta potential measurements showed similar trend substantiating the shielding/deshielding process. Flowcytometry and confocal microscopy showed significantly higher uptake of TAT micelles at pH 6.6 compared to pH 7.4 indicating shielding at normal pH and deshielding at tumor pH. The flowcytometry indicated that the TAT not only translocates into the cells but is also seen on the surface of the nucleus. These results strongly indicate that the above drug loaded micelles would be able to target any hydrophobic drug near the nucleus. PMID:17239466
Fluorescence Imaging Study of Extracellular Zinc at the Hippocampal Mossy Fiber Synapse
Bastian, Chinthasagar; Li, Yang V
2010-01-01
Although synaptically-released, vesicular Zn2+ has been proposed to play a neuromodulatory or neuronal signaling role at the mossy fiber-CA3 synapse, Zn2+ release remains controversial, especially when detected using fluorescent imaging. In the present study, we investigated synaptically released Zn2+ at the mossy fiber synapse in rat hippocampal slices using three chemically distinct, fluorescent Zn2+ indicators. The indicators employed for this study were cell membrane impermeable (or extracellular) Newport Green (KD Zn2+ ~ 1 μM), Zinpyr-4 (KD Zn2+ ~ 1 nM) and FluoZin-3 (KD Zn2+ ~ 15 nM), chosen, in part, for their distinct dissociation constants. Among the three indicators, FluoZin-3 was also sensitive to Ca2+ (KD Ca2+ ~ 100 μM) which was present in the extracellular medium ([Ca2+]o > 2mM). Hippocampal slices loaded with either Newport Green or FluoZin-3 showed increases in fluorescence after electrical stimulation of the mossy fiber pathway. These results are consistent with previous studies suggesting the presence of synaptically-released Zn2+ in the extracellular space during neuronal activities; however, the rise in FluoZin-3 fluorescence observed was complicated by the data that the addition of exogenous Zn2+ onto FluoZin-3 loaded slices gave little change in fluorescence. In the slices loaded with the high-affinity indicator Zinpyr-4, there was little change in fluorescence after mossy fiber activation by electrical stimulation. Further study revealed that the sensitivity of Zinpyr-4 was mitigated by saturation with Zn2+ contamination from the slice. These data suggest that the sensitivity and selectivity of a probe may affect individual outcomes in a given experimental system. PMID:17485170
NASA Astrophysics Data System (ADS)
Li, Daojin; Zhu, Mei; Xu, Chen; Chen, Jianjun; Ji, Baoming
2011-01-01
The interaction of rutin to bovine serum albumin (BSA) in aqueous solution was investigated by fluorescence spectra and ultraviolet-visible (UV-vis) spectra at pH 7.40. There are also some metal ions present in blood plasma, thus the research about the effect of metal ions on the interaction of drugs with proteins is crucial. Therefore, we have studied the effect of Cu 2+ or Fe 3+ on the interaction between rutin and BSA by using spectroscopic technique at pH 7.40, for the first time. The results of fluorescence titration indicated that rutin could quench the intrinsic fluorescence of BSA in a static quenching way. The binding sites number ( n), the binding constant ( K) and the spatial-distance ( r) of rutin with BSA without or with Cu 2+ or Fe 3+ at 310 K were calculated. The result showed that the presence of Cu 2+ or Fe 3+ increased the binding constant and changed the binding distance between the acceptor and the donor, which possibly results from the formation of metal ions-BSA complex. The effect of rutin on the conformation of BSA was also analyzed using UV under experimental conditions. Furthermore, the fluorescence displacement experiments indicated that rutin is situated within subdomain IIA of BSA.
Obara-Michlewska, Marta; Ding, Fengfei; Popek, Mariusz; Verkhratsky, Alexei; Nedergaard, Maiken; Zielinska, Magdalena; Albrecht, Jan
2018-05-14
Acute toxic liver failure (ATLF) rapidly leads to brain oedema and neurological decline. We evaluated the ability of ATLF-affected brain to control the ionic composition and acid-base balance of the interstitial fluid. ATLF was induced in 10-12 weeks old male C57Bl mice by single intraperitoneal (i.p.) injection of 100 μg/g azoxymethane (AOM). Analyses were carried out in cerebral cortex of precomatous mice 20-24 h after AOM administration. Brain fluid status was evaluated by measuring apparent diffusion coefficient [ADC] using NMR spectroscopy, Evans Blue extravasation, and accumulation of an intracisternally-injected fluorescent tracer. Extracellular pH ([pH] e ) and ([K + ] e ) were measured in situ with ion-sensitive microelectrodes. Cerebral cortical microdialysates were subjected to photometric analysis of extracellular potassium ([K + ] e ), sodium ([Na + ] e ) and luminometric assay of extracellular lactate ([Lac] e ). Potassium transport in cerebral cortical slices was measured ex vivo as 86 Rb uptake. Cerebral cortex of AOM-treated mice presented decreased ADC supporting the view that ATLF-induced brain oedema is primarily cytotoxic in nature. In addition, increased Evans blue extravasation indicated blood brain barrier leakage, and increased fluorescent tracer accumulation suggested impaired interstitial fluid passage. However, [K + ] e , [Na + ] e , [Lac] e , [pH] e and potassium transport in brain of AOM-treated mice was not different from control mice. We conclude that in spite of cytotoxic oedema and deregulated interstitial fluid passage, brain of mice with ATLF retains the ability to maintain interstitial ion homeostasis and acid-base balance. Tentatively, uncompromised brain ion homeostasis and acid-base balance may contribute to the relatively frequent brain function recovery and spontaneous survival rate in human patients with ATLF. Copyright © 2018. Published by Elsevier Ltd.
A sensitive pressure sensor for diamond anvil cell experiments up to 2 GPa: FluoSpheres[reg
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picard, Aude; Oger, Phil M.; Daniel, Isabelle
2006-08-01
We present an optical pressure sensor suitable for experiments in diamond anvil cell in the 0.1 MPa-2 GPa pressure range, for temperatures between ambient and 323 K. It is based on the pressure-dependent fluorescence spectrum of FluoSpheres[reg], which are commercially available fluorescent microspheres commonly used to measure blood flow in experimental biology. The fluorescence of microspheres is excited by the 514.5 nm line of an Ar{sup +} laser, and the resulting spectrum displays three very intense broad bands at 534, 558, and 598 nm, respectively. The reference wavelength and pressure gauge is that of the first inflection point of themore » spectrum, located at 525.6{+-}0.2 nm at ambient pressure. It is characterized by an instantaneous and large linear pressure shift of 9.93({+-}0.08) nm/GPa. The fluorescence of the FluoSpheres[reg] has been investigated as a function of pressure (0.1-4 GPa), temperature (295-343 K), pH (3-12), salinity, and pressure transmitting medium. These measurements show that, for pressures comprised between 0.1 MPa and 2 GPa, at temperatures not exceeding 323 K, at any pH, in aqueous pressure transmitting media, pressure can be calculated from the wavelength shift of two to three beads, according to the relation P=0.100 ({+-}0.001) {delta}{lambda}{sub i}(P) with {delta}{lambda}{sub i}(P)={lambda}{sub i}(P)-{lambda}{sub i}(0) and {lambda}{sub i}(P) as the wavelength of the first inflection point of the spectrum at the pressure P. This pressure sensor is approximately thirty times more sensitive than the ruby scale and responds instantaneously to pressure variations.« less
Presynaptic pH and vesicle fusion in Drosophila larvae neurones.
Caldwell, Lesley; Harries, Peter; Sydlik, Sebastian; Schwiening, Christof J
2013-11-01
Both intracellular pH (pHi) and synaptic cleft pH change during neuronal activity yet little is known about how these pH shifts might affect synaptic transmission by influencing vesicle fusion. To address this we imaged pH- and Ca(2+) -sensitive fluorescent indicators (HPTS, Oregon green) in boutons at neuromuscular junctions. Electrical stimulation of motor nerves evoked presynaptic Ca(2+) i rises and pHi falls (∼0.1 pH units) followed by recovery of both Ca(2+) i and pHi. The plasma-membrane calcium ATPase (PMCA) inhibitor, 5(6)-carboxyeosin diacetate, slowed both the calcium recovery and the acidification. To investigate a possible calcium-independent role for the pHi shifts in modulating vesicle fusion we recorded post-synaptic miniature end-plate potential (mEPP) and current (mEPC) frequency in Ca(2+) -free solution. Acidification by propionate superfusion, NH(4)(+) withdrawal, or the inhibition of acid extrusion on the Na(+)/H(+) exchanger (NHE) induced a rise in miniature frequency. Furthermore, the inhibition of acid extrusion enhanced the rise induced by propionate addition and NH(4)(+) removal. In the presence of NH(4)(+), 10 out of 23 cells showed, after a delay, one or more rises in miniature frequency. These findings suggest that Ca(2+) -dependent pHi shifts, caused by the PMCA and regulated by NHE, may stimulate vesicle release. Furthermore, in the presence of membrane permeant buffers, exocytosed acid or its equivalents may enhance release through positive feedback. This hitherto neglected pH signalling, and the potential feedback role of vesicular acid, could explain some important neuronal excitability changes associated with altered pH and its buffering. Copyright © 2013 Wiley Periodicals, Inc.
Tekkeli, Serife Evrim Kepekci; Önal, Armağan; Sağırlı, A Olcay
2014-02-01
A simple, sensitive and selective spectrofluorimetric method has been developed for the determination of tobramycin (TOB) in human serum and pharmaceutical preparations. The method is based on the reaction between the primary amino group of TOB and fluorescamine in borate buffer, pH 8.5, to give a highly fluorescent derivative which is measured at 469 nm after excitation at 388 nm. The fluorescence intensity was directly proportional to the concentration over the range 300-1500 ng/mL, with a limit of detection of 65 ng/mL and limit of quantitation of 215 ng/mL. All variables were investigated to optimize the reaction conditions. The method was validated according to International Conference on Harmonization guidelines in terms of specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. Good recoveries were obtained ranging from 97.4 to 100.64%, indicating that no interference was observed from concomitants usually present in pharmaceutical dosage forms. The method was successfully, applied for the analysis of the drug substance in its pharmaceutical preparations and spiked serum samples. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui
2016-12-01
Accurate quantitation of intracellular pH (pHi) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pHi sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pHi. Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pHi, in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF4:Yb3+, Tm3+ UCNPs were used as pHi response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pHi value 3.0-7.0 with deviation less than 0.43. This approach shall facilitate the researches in pHi related areas and development of the intracellular drug delivery systems.
Sergeeva, Tatiana F; Shirmanova, Marina V; Zlobovskaya, Olga A; Gavrina, Alena I; Dudenkova, Varvara V; Lukina, Maria M; Lukyanov, Konstantin A; Zagaynova, Elena V
2017-03-01
A complex cascade of molecular events occurs in apoptotic cells but cell-to-cell variability significantly complicates determination of the order and interconnections between different processes. For better understanding of the mechanisms of programmed cell death, dynamic simultaneous registration of several parameters is required. In this paper we used multiparameter fluorescence microscopy to analyze energy metabolism, intracellular pH and caspase-3 activation in living cancer cells in vitro during staurosporine-induced apoptosis. We performed metabolic imaging of two co-factors, NAD(P)H and FAD, and used the genetically encoded pH-indicator SypHer1 and the FRET-based sensor for caspase-3 activity, mKate2-DEVD-iRFP, to visualize these parameters by confocal fluorescence microscopy and two-photon fluorescence lifetime imaging microscopy. The correlation between energy metabolism, intracellular pH and caspase-3 activation and their dynamic changes were studied in CT26 cancer cells during apoptosis. Induction of apoptosis was accompanied by a switch to oxidative phosphorylation, cytosol acidification and caspase-3 activation. We showed that alterations in cytosolic pH and the activation of oxidative phosphorylation are relatively early events associated with the induction of apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Peña, A; Ramírez, J; Rosas, G; Calahorra, M
1995-01-01
The internal pH of yeast cells was determined by measuring the fluorescence changes of pyranine (8-hydroxy-1,3,6-pyrene-trisulfonic acid), which was introduced into the cells by electroporation. This may be a suitable procedure for the following reasons. (i) Only minor changes in the physiological status of the cells seemed to be produced. (ii) The dye did not seem to leak at a significant rate from the cells. (iii) Different incubation conditions produced large fluorescence changes in the dye, which in general agree with present knowledge of the proton movements of the yeast cell under different conditions. (iv) Pyranine introduced by electroporation seemed to be located in the cytoplasm and to avoid the vacuole, and therefore it probably measured actual cytoplasmic pH. (v) Correction factors to obtain a more precise estimation of the internal pH are not difficult to apply, and the procedure may be useful for other yeasts and microorganisms, as well as for the introduction of other substances into cells. Values for the cytoplasmic pHs of yeast cells that were higher than those reported previously were obtained, probably because this fluorescent indicator did not seem to penetrate into the cell vacuole. PMID:7860582
Zhang, Ci-an; Wu, Feng; Mao, Zhu-jun; Wei, Zhen; Li, Yong-jin; Wei, Pin-kang
2011-08-01
To observe the effects of ethanol extract of Rhizome Pinelliae Preparata on the intracellular pH value of human gastric cancer SGC7901 cells. After coculturing SGC7901 cells with ethanol extract of Rhizome Pinelliae Preparata (1, 0.5, 0.25 and 0.125 mg/mL), cell viability was evaluated by chromatometry with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining. Intracellular pH value of SGC7901 cells was measured in the monolayer by using the pH-sensitive fluorescent probe 2,7-bis-(2-carboxyethyl)-5-carboxyfluorescein-acetoxymethyl ester. The extracellular pH value of culture medium was measured by a pH211 Calibration Check Microprocessor pH Meter. Half-inhibitory concentration (IC(50)) of ethanol extract culture to SGC7901 cells was decided by the MTT method and expressions of vacuolar-H(+)-ATPase (V-ATPase) and Na(+)/H(+) exchanger isoform 1 (NHE1) mRNAs were examined by the method of fluorescence quantitative-polymerase chain reaction after 72 h of drug treatment. Ethanol extract of Rhizome Pinelliae Preparata at different concentrations significantly inhibited the proliferation of SGC7901 cells, lowered the intracellular pH values and heightened the extracellular pH values. The IC(50) of 72 h culture was 0.5mg/mL and it inhibited the expressions of V-ATPase and NHE1 mRNAs. Ethanol extract of Rhizome Pinelliae Preparata can lower down the intracellular pH value of SGC7901 cells. The mechanism may be related to inhibiting the expressions of V-ATPase and NHE1 mRNAs.
Novel fluorimetric assay of trace analysis of epinephrine in human serum
NASA Astrophysics Data System (ADS)
Adeniyi, William K.; Wright, Ashleigh R.
2009-12-01
A simple, rapid, and sensitive spectrofluorimetric technique for the microdetermination of epinephrine in human serum is described. The investigation shows that trace amounts of epinephrine, antidepressant of clinical importance, can be determined without the conventional derivatization or use of fluorophores by diazotization. The method is based on the optimization of experimental parameters, such as pH, temperature, careful selection of excitation and emission wavelengths and on the use of anionic surfactant, sodium dodecyl sulfate (SDS), to enhance sensitivity. The measurement was carried out at 360 nm with excitation at 286 nm. Under the optimum conditions, a linear relationship was obtained between the fluorescence intensity and epinephrine concentration in the range of 0.10 and 1.0 μg/mL; the correlation coefficient and detection limit are 0.9953 and 0.05 μg/mL, respectively. Recovery tests indicated an efficiency of 95.5-98.7% by using known amounts of epinephrine spiked with human serum.
Tracking bacterial infection of macrophages using a novel red-emission pH sensor.
Jin, Yuguang; Tian, Yanqing; Zhang, Weiwen; Jang, Sei-Hum; Jen, Alex K-Y; Meldrum, Deirdre R
2010-10-01
The relationship between bacteria and host phagocytic cells is key to the induction of immunity. To visualize and monitor bacterial infection, we developed a novel bacterial membrane permeable pH sensor for the noninvasive monitoring of bacterial entry into murine macrophages. The pH sensor was constructed using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) as an electron-withdrawing group and aniline as an electron-donating group. A piperazine moiety was used as the pH-sensitive group. Because of the strong electron-donating and -withdrawing units conjugated in the sensing moiety M, the fluorophore emitted in the red spectral window, away from the autofluorescence regions of the bacteria. Following the engulfment of sensor-labeled bacteria by macrophages and their subsequent merger with host lysosomes, the resulting low-pH environment enhances the fluorescence intensity of the pH sensors inside the bacteria. Time-lapse analysis of the fluorescent intensity suggested significant heterogeneity of bacterial uptake among macrophages. In addition, qRT-PCR analysis of the bacterial 16 S rRNA gene expression within single macrophage cells suggested that the 16 S rRNA of the bacteria was still intact 120 min after they had been engulfed by macrophages. A toxicity assay showed that the pH sensor has no cytotoxicity towards either E. coli or murine macrophages. The sensor shows good repeatability, a long lifetime, and a fast response to pH changes, and can be used for a variety of bacteria.
A theoretical investigation of two typical two-photon pH fluorescent probes.
Xu, Zhong; Ren, Ai-Min; Guo, Jing-Fu; Liu, Xiao-Ting; Huang, Shuang; Feng, Ji-Kang
2013-01-01
Intracellular pH plays an important role in many cellular events, such as cell growth, endocytosis, cell adhesion and so on. Some pH fluorescent probes have been reported, but most of them are one-photon fluorescent probes, studies about two-photon fluorescent probes are very rare. In this work, the geometrical structure, electronic structure and one-photon properties of a series of two-photon pH fluorescent probes have been theoretically studied by using density functional theory (DFT) method. Their two-photon absorption (TPA) properties are calculated using the method of ZINDO/sum-over-states method. Two types of two-photon pH fluorescent probes have been investigated by theoretical methods. The mechanisms of the Photoinduced Charge Transfer (PCT) probes and the Photoinduced Electron Transfer (PET) probes are verified specifically. Some designed strategies of good two-photon pH fluorescent probes are suggested on the basis of the investigated results of two mechanisms. For the PCT probes, substituting a stronger electron-donating group for the terminal methoxyl group is an advisable choice to increase the TPA cross section. For the PET probes, the TPA cross sections increase upon protonation. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.
pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids.
Kamp, F; Hamilton, J A
1992-01-01
A central, unresolved question in cell physiology is how fatty acids move across cell membranes and whether protein(s) are required to facilitate transbilayer movement. We have developed a method for monitoring movement of fatty acids across protein-free model membranes (phospholipid bilayers). Pyranin, a water-soluble, pH-sensitive fluorescent molecule, was trapped inside well-sealed phosphatidylcholine vesicles (with or without cholesterol) in Hepes buffer (pH 7.4). Upon addition of a long-chain fatty acid (e.g., oleic acid) to the external buffer (also Hepes, pH 7.4), a decrease in fluorescence of pyranin was observed immediately (within 10 sec). This acidification of the internal volume was the result of the "flip" of un-ionized fatty acids to the inner leaflet, followed by a release of protons from approximately 50% of these fatty acid molecules (apparent pKa in the bilayer = 7.6). The proton gradient thus generated dissipated slowly because of slow cyclic proton transfer by fatty acids. Addition of bovine serum albumin to vesicles with fatty acids instantly removed the pH gradient, indicating complete removal of fatty acids, which requires rapid "flop" of fatty acids from the inner to the outer monolayer layer. Using a four-state kinetic diagram of fatty acids in membranes, we conclude that un-ionized fatty acid flip-flops rapidly (t1/2 < or = 2 sec) whereas ionized fatty acid flip-flops slowly (t1/2 of minutes). Since fatty acids move across phosphatidylcholine bilayers spontaneously and rapidly, complex mechanisms (e.g., transport proteins) may not be required for translocation of fatty acids in biological membranes. The proton movement accompanying fatty acid flip-flop is an important consideration for fatty acid metabolism in normal physiology and in disease states such as cardiac ischemia. Images PMID:1454821
Guo, Zongrang; Niu, Qingfen; Li, Tianduo
2018-07-05
Developing low-cost and efficient sensors for rapid, selective and sensitive detection of the transition metal ions in environmental and food science is very important. In this study, a novel dual-functional fluorescent "turn-on" sensor 3TP based on oligothiophene-phenylamine Schiff base has been synthesized for discrimination and simultaneous detection of both Al 3+ and Fe 3+ ions with high selectivity and anti-interference over other metal ions. Sensor 3TP displayed a very fast fluorescence-enhanced response towards Al 3+ and Fe 3+ ions with low detection limits (0.177μM for Al 3+ and 0.172μM for Fe 3+ ) and wide pH response range (4.0-12.0). The Al 3+ /Fe 3+ sensing mechanisms were investigated by fluorescence experiments, 1 H NMR titrations, FT-IR and ESI-MS spectra. Importantly, sensor 3TP was served as an efficient solid material for the highly sensitive and selective detection of Fe 3+ on TLC plates. Moreover, the sensor 3TP has been successfully used to detect trace Al 3+ and Fe 3+ in environment and food samples with satisfactory results and good recoveries, revealing a convenient, reliable and accurate method for Al 3+ and Fe 3+ analysis in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Studies on the formation and stability of triplex DNA using fluorescence correlation spectroscopy.
Hu, Hongyan; Huang, Xiangyi; Ren, Jicun
2016-05-01
Triplex DNA has become one of the most useful recognition motifs in the design of new molecular biology tools, therapeutic agents and sophisticated DNA-based nanomaterials because of its direct recognition of natural double-stranded DNA. In this paper, we developed a sensitive and microscale method to study the formation and stability characterization of triplex DNA using fluorescence correlation spectroscopy (FCS). The principle of this method is mainly based on the excellent capacity of FCS for sensitively distinguishing between free single-strand DNA (ssDNA) fluorescent probes and fluorescent probe-double-strand DNA (dsDNA) hybridized complexes. First, we systematically investigated the experimental conditions of triplex DNA formation. Then, we evaluated the equilibrium association constants (K(a)) under different ssDNA probe lengths, composition and pH. Finally, we used FCS to measure the hybridization fraction of a 20-mer perfectly matched ssDNA probe and three single-base mismatched ssDNA probes with 146-mer dsDNA. Our data illustrated that FCS is a useful tool for the direct determination of the thermodynamic parameters of triplex DNA formation and discrimination of a single-base mismatch of triplex DNA without denaturation. Compared with current methods, our method is characterized by high sensitivity, good universality and small sample and reagent requirements. More importantly, our method has the potential to become a platform for triplex DNA research in vitro. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Guo, Zongrang; Niu, Qingfen; Li, Tianduo
2018-07-01
Developing low-cost and efficient sensors for rapid, selective and sensitive detection of the transition metal ions in environmental and food science is very important. In this study, a novel dual-functional fluorescent "turn-on" sensor 3TP based on oligothiophene-phenylamine Schiff base has been synthesized for discrimination and simultaneous detection of both Al3+ and Fe3+ ions with high selectivity and anti-interference over other metal ions. Sensor 3TP displayed a very fast fluorescence-enhanced response towards Al3+ and Fe3+ ions with low detection limits (0.177 μM for Al3+ and 0.172 μM for Fe3+) and wide pH response range (4.0-12.0). The Al3+/Fe3+ sensing mechanisms were investigated by fluorescence experiments, 1H NMR titrations, FT-IR and ESI-MS spectra. Importantly, sensor 3TP was served as an efficient solid material for the highly sensitive and selective detection of Fe3+ on TLC plates. Moreover, the sensor 3TP has been successfully used to detect trace Al3+ and Fe3+ in environment and food samples with satisfactory results and good recoveries, revealing a convenient, reliable and accurate method for Al3+ and Fe3+ analysis in real samples.
Sharker, Shazid Md; Lee, Jung Eun; Kim, Sung Han; Jeong, Ji Hoon; In, Insik; Lee, Haeshin; Park, Sung Young
2015-08-01
We have synthesized a pH-dependent, NIR-sensitive, reduced graphene oxide (rGO) hybrid nano-composite via electrostatic interaction with indocyanine green (ICG) which is designed not only to destroy localized cancer cells but also be minimally invasive to surrounding normal cells. The near-infrared (NIR) irradiated hybrid nano-composites showed pH dependent photo-thermal heat generation capability from pH 5.0 to 7.4 due to the pH response relief and quenching effects of poly(2-dimethyl amino ethyl methacrylate) [poly(PDMAEMA)] with ICG on a single rGO sheet. This pH-triggered relief and quenching mechanism regulated in vitro photo-thermolysis as the pH changed from 5.0 to 7.4. The in vitro cellular uptake and confocal laser scan microscopic (CLSM) images at different pH values show promise for environment sensitive bio-imaging. The NIR-absorbing hybrid nanomaterials showed a remarkably improved in vitro cancer cell targeted photothermal destruction compared to free ICG. Upon local NIR irradiation, these hybrid nano-composites-treated tumors showed necrotic, shrunken, ablation of malignant cells and totally healed after 18 days treatment. Our finding regarding the acidic pH stimulus of cancer cellular environment has proven to be a wining platform for the fight against cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lee, Seul Ah; You, Ga Rim; Choi, Ye Won; Jo, Hyun Yong; Kim, Ah Ram; Noh, Insup; Kim, Sung-Jin; Kim, Youngmee; Kim, Cheal
2014-05-14
A multifunctional fluorescent and colorimetric receptor 1 ((E)-N'-((8-hydroxy-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-9-yl)methylene)benzohydrazide) for the detection of both Al(3+) and CN(-) in aqueous solution has been developed. Receptor 1 exhibited an excellent selective fluorescence response toward Al(3+). The sensitivity of the fluorescent based assay (0.193 μM) for Al(3+) is far below the limit in the World Health Organization (WHO) guidelines for drinking water (7.41 μM). In addition, receptor 1 showed an excellent detection ability in a wide pH range of 4-10 and also in living cells. Moreover, receptor 1 showed a highly selective colorimetric response to CN(-) by changing its color from colorless to yellow immediately without any interference from other anions.
Multiparametric analysis of cisplatin-induced changes in cancer cells using FLIM
NASA Astrophysics Data System (ADS)
Shirmanova, Marina V.; Sergeeva, Tatiana F.; Gavrina, Alena I.; Dudenkova, Varvara V.; Lukyanov, Konstantin A.; Zagaynova, Elena V.
2018-02-01
Cisplatin is an effective anticancer drug commonly used in the treatment of solid tumors. Although DNA is considered as the primary target, the cisplatin action at the cellular level remains unknown. Advanced fluorescence microscopy techniques allow probing various physiological and physicochemical parameters in living cells and tissues with unsurpassed sensitivity in real time. This study was focused on the investigation of cellular bioenergetics and cytosolic pH in colorectal cancer cells during chemotherapy with cisplatin. Special attention was given to the changes in cisplatininduced apoptosis that was identified using genetically encoded FLIM/FRET sensor of caspase-3 activity. Metabolic measurements using FLIM of the metabolic cofactor NAD(P)H showed decreased contribution from free NAD(P)H (a1, %) in all treated cells with more pronounced alterations in the cells undergoing apoptosis. Analysis of cytosolic pH using genetically encoded fluorescent sensor SypHer1 revealed a rapid increase of the pH value upon cisplatin exposure irrespective of the induction of apoptosis. To the best of our knowledge, a simultaneous assessment of metabolic state, cytosolic pH and caspase-3 activity after treatment with cisplatin was performed for the first time. These findings improve our understanding of the cell response to chemotherapy and mechanisms of cisplatin action.
Diaw, A K D; Gningue-Sall, D; Yassar, A; Brochon, J-C; Henry, E; Aaron, J-J
2015-01-25
Electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles (N-PhPys), including HOPhPy, MeOPhPy, ThPhPy, PhDPy, DPhDPy, PyPhThThPhPy, and their available, electrosynthesized polymers were investigated. Electronic absorption spectra, fluorescence excitation and emission spectra, fluorescence quantum yields (ΦF) and lifetimes (τF), and other photophysical parameters of these N-PhPy derivatives and their polymers were measured in DMF, DMSO diluted solutions and/or solid state at room temperature. The electronic absorption spectra of N-PhPy derivatives and their polymers included one to several bands, located in the 270-395 nm region, according to the p-phenyl substituent electron-donating effect and conjugated heteroaromatic system length. The fluorescence excitation spectra were characterized by one broad main peak, with, in most cases, one (or more) poorly resolved shoulder (s), appearing in the 270-405 nm region, and their emission spectra were generally constituted of several bands located in the 330-480 nm region. No significant shift of the absorption, fluorescence excitation and emission spectra wavelengths was found upon going from the monomers to the corresponding polymers. ΦF values were high, varying between 0.11 and 0.63, according to the nature of substituents(s) and to the conjugated system extension. Fluorescence decays were mono-exponential for the monomers and poly-exponential for PyPhThThPhPy and for polymers. τF values were relatively short (0.35-5.17 ns), and markedly decreased with the electron-donor character of the phenyl group p-substituent and the conjugated system extension. Copyright © 2014 Elsevier B.V. All rights reserved.
Griesbeck, Axel G; Schieffer, Stefan
2003-02-01
The fluorescent 4,5-dimethoxyphthalimides 1-10 were applied as sensors for intra- and intermolecular photoinduced electron transfer processes. Strong intramolecular fluorescence quenching was detected for the thioether 2 and the tertiary amine 3. The fluorescence of the carboxylic acids 4-7 is pH-dependent accounting for PET-quenching of the singlet excited phthalimide at pH > pKs. At low pH, chromophore protonation might contribute to moderate fluorescence quenching. The arylated phthalimides 9 and 10 show remarkable low fluorescence independent of pH and substituent pattern. Intermolecular fluorescence quenching was detected for the combinations of 1 with dimethyl sulfide, and 1 with triethylamine but not with metal carboxylates.
NASA Astrophysics Data System (ADS)
Wang, Xue F.; Periasamy, Ammasi; Wodnicki, Pawel; Siadat-Pajouh, M.; Herman, Brian
1995-04-01
We have been interested in the role of Human Papillomavirus (HPV) in cervical cancer and its diagnosis; to that end we have been developing microscopic imaging and fluorescent in situ hybridization (FISH) techniques to genotype and quantitate the amount of HPV present at a single cell level in cervical PAP smears. However, we have found that low levels of HPV DNA are difficult to detect accurately because theoretically obtainable sensitivity is never achieved due to nonspecific autofluorescence, fixative induced fluorescence of cells and tissues, and autofluorescence of the optical components in the microscopic system. In addition, the absorption stains used for PAP smears are intensely autofluorescent. Autofluorescence is a rapidly decaying process with lifetimes in the range of 1-100 nsec, whereas phosphorescence and delayed fluorescence have lifetimes in the range of 1 microsecond(s) ec-10 msec. The ability to discriminate between specific fluorescence and autofluorescence in the time-domain has improved the sensitivity of diagnostic test such that they perform comparably to, or even more sensitive than radioisotopic assays. We have developed a novel time-resolved fluorescence microscope to improve the sensitivity of detection of specific molecules of interest in slide based specimens. This time-resolved fluorescence microscope is based on our recently developed fluorescence lifetime imaging microscopy (FILM) in conjunction with the use of long lifetime fluorescent labels. By using fluorescence in situ hybridization and the long lifetime probe (europium), we have demonstrated the utility of this technique for detection of HPV DNA in cervicovaginal cells. Our results indicate that the use of time-resolved fluorescence microscopy and long lifetime probes increases the sensitivity of detection by removing autofluorescence and will thus lead to improved early diagnosis of cervical cancer. Since the highly sensitive detection of DNA in clinical samples using fluorescence in situ hybridization image is useful for the diagnosis of many other type of diseases, the system we have developed should find numerous applications for the diagnosis of disease states.
Stimulatory effect of calcium on metabolism and its sensitivity to pH in kidney mitochondria.
Drewnowska, K; Schoolwerth, A C
1994-07-01
The relationship between mitochondrial matrix free Ca2+ concentration ([Ca2+]m) and pH was evaluated by incubating isolated rat kidney mitochondria with different extramitochondrial Ca2+ concentrations ([Ca2+]e) at medium pH (pHe) 7.0 and 7.4. [Ca2+]m was monitored using the fluorescent signal from mitochondria loaded with the Ca2+ indicator fura 2. The changes in [Ca2+]m were compared with alpha-ketoglutarate dehydrogenase (alpha-KGDH) flux, measured as O2 consumption (nmol.min-1.mg protein-1) from 185 microM alpha-ketoglutarate (alpha-KG). The apparent dissociation constant of the matrix fluorescent probe for Ca2+ was determined in each experiment and was 323 +/- 45 nM (n = 14). When mitochondria were exposed to [Ca2+]e below 160 nM, [Ca2+]m was greater at pHe 7.0 than at pHe 7.4. However, above 160 nM [Ca2+]e, [Ca2+]m plateaued at pHe 7.0 but rose progressively at pHe 7.4. Increasing [Ca2+]m by consecutive additions of Ca2+ to the medium had a significantly more pronounced acceleratory effect on alpha-KG oxidation at pHe 7.0 than at pHe 7.4. Kinetic analysis of alpha-KGDH revealed a 45% decrease in the Michaelis constant (Km) for alpha-KG at pHe 7.0, but the Km was unchanged at pHe 7.4 with elevation of [Ca2+]m from 32 to 751 nM. Maximal velocity (Vmax) increased significantly at both pHe values. Half-maximal alpha-KG oxidation occurred at [Ca2+]m of 76 +/- 11 nM and 105 +/- 31 nM at pHe 7.0 and 7.4, respectively. These studies demonstrate a direct, pH-sensitive correlation between [Ca2+]e and [Ca2+]m; [Ca2+]m changed over a range that may regulate alpha-KGDH flux in intact kidney mitochondria.(ABSTRACT TRUNCATED AT 250 WORDS)
Soni, Disha; Duvva, Naresh; Badgurjar, Deepak; Roy, Tapta Kanchan; Nimesh, Surendra; Arya, Geeta; Giribabu, Lingamallu; Chitta, Raghu
2018-04-16
A highly water-soluble phenothiazine (PTZ)-boron dipyrromethene (BODIPY)-based electron donor-acceptor dyad (WS-Probe), which contains BODIPY as the signaling antennae and PTZ as the OCl - reactive group, was designed and used as a fluorescent chemosensor for the detection of OCl - . Upon addition of incremental amounts of NaOCl, the quenched fluorescence of WS-Probe was enhanced drastically, which indicated the inhibition of reductive photoinduced electron transfer (PET) from PTZ to 1 BODIPY*; the detection limit was calculated to be 26.7 nm. Selectivity studies with various reactive oxygen species, cations, and anions revealed that WS-Probe was able to detect OCl - selectively. Steady-state fluorescence studies performed at varied pH suggested that WS-Probe can detect NaOCl and exhibits maximum fluorescence in the pH range of 7 to 8, similar to physiological conditions. ESI-MS analysis and 1 H NMR spectroscopy titrations showed the formation of sulfoxide as the major oxidized product upon addition of hypochlorite. More interestingly, when WS-Probe was treated with real water samples, the fluorescence response was clearly visible with tap water and disinfectant, which indicated the presence of OCl - in these samples. The in vitro cell viability assay performed with human embryonic kidney 293 (HEK 293) cells suggested that WS-probe is non-toxic up to 10 μm and implicates the use of the probe for biological applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Fangfang; Huang, Lingyun; Na, Na; He, Dacheng; Sun, Dezhi; Ouyang, Jin
2012-05-21
In this paper, a simple and sensitive small-molecule fluorescent probe, 2,5-dihydroxy-4'-dimethylaminochalcone (DHDMAC), was designed and synthesized for the detection of human serum proteins via hydrophobic interactions after polyacrylamide gel electrophoresis (PAGE). This probe produced lower fluorescence emission in the absence of proteins, and the emission intensity was significantly increased after the interaction with serum proteins. To demonstrate the imaging performance of this probe as a fluorescent dye, a series of experiments was conducted that included sensitivity comparison and 2D-PAGE. The results indicated that the sensitivity of DHDMAC staining is comparable to that of the most widely used fluorescent dye, SYPRO Ruby, and more protein spots (including thyroxine-binding globulin, angiotensinogen, afamin, zinc-α-2-glycoprotein and α-1-antichymotrypsin) were detected after 2D-PAGE. Therefore, DHDMAC is a good protein reporter due to its fast staining procedure, low detection limits and high resolution.
Development of a fluorescent chelating ligand for scandium ion having a Schiff base moiety
NASA Astrophysics Data System (ADS)
Yamada, Hiroshi; Kojo, Masahito; Nakahara, Tomomi; Murakami, Kumi; Kakima, Takashi; Ichiba, Hideaki; Yajima, Takehiko; Fukushima, Takeshi
2012-05-01
A fluorescent ligand, 1-(2-hydroxy-3-methoxybenzaldehyde)-4-aminosalicylhydrazone (HMB-ASH), was newly designed and synthesized, and its fluorescence characteristics for metal ions were investigated in the pH range 3.0-10.5 (at a difference of 0.5 for each metal). After testing 31 different metal ions, it was found that HMB-ASH was able to emit fluorescence intensely at 512 nm with an excitation wavelength of 353 nm in the presence of Sc3+, one of the rare earth metals, at pH values around 3.5 and 8.0. The other metal ions hardly showed fluorescence with HMB-ASH. The fluorescence was more intense at pH 8.0, and the detection limit of Sc3+ in a buffer solution (pH 8.0) was approximately 18.8 nmol L-1 (0.85 ppb).
NASA Astrophysics Data System (ADS)
Makarska-Bialokoz, Magdalena
2017-05-01
The binding interaction between human hemoglobin and uric acid has been studied for the first time, by UV-vis absorption and steady-state, synchronous and three-dimensional fluorescence techniques. Characteristic effects observed for human hemoglobin intrinsic fluorescence during interaction with uric acid at neutral pH point at the formation of stacking non-covalent and non-fluorescent complexes. All the calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants, as well as Förster resonance energy transfer parameters confirm the existence of static quenching. The results of synchronous fluorescence measurements indicate that the fluorescence quenching of human hemoglobin originates both from Trp and Tyr residues and that the addition of uric acid could significantly hinder the physiological functions of human hemoglobin.
Anumula, K R; Dhume, S T
1998-07-01
Facile labeling of oligosaccharides (acidic and neutral) in a nonselective manner was achieved with highly fluorescent anthranilic acid (AA, 2-aminobenzoic acid) (more than twice the intensity of 2-aminobenzamide, AB) for specific detection at very high sensitivity. Quantitative labeling in acetate-borate buffered methanol (approximately pH 5.0) at 80 degreesC for 60 min resulted in negligible or no desialylation of the oligosaccharides. A high resolution high performance liquid chromatographic method was developed for quantitative oligosaccharide mapping on a polymeric-NH2bonded (Astec) column operating under normal phase and anion exchange (NP-HPAEC) conditions. For isolation of oligosaccharides from the map by simple evaporation, the chromatographic conditions developed use volatile acetic acid-triethylamine buffer (approximately pH 4.0) systems. The mapping and characterization technology was developed using well characterized standard glycoproteins. The fluorescent oligosaccharide maps were similar to the maps obtained by the high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), except that the fluorescent maps contained more defined peaks. In the map, the oligosaccharides separated into groups based on charge, size, linkage, and overall structure in a manner similar to HPAEC-PAD with contribution of -COOH function from the label, anthranilic acid. However, selectivity of the column for sialic acid linkages was different. A second dimension normal phase HPLC (NP-HPLC) method was developed on an amide column (TSK Gel amide-80) for separation of the AA labeled neutral complex type and isomeric structures of high mannose type oligosaccharides. The oligosaccharides labeled with AA are compatible with biochemical and biophysical techniques, and use of matrix assisted laser desorption mass spectrometry for rapid determination of oligosaccharide mass map of glycoproteins is demonstrated. High resolution of NP-HPAEC and NP-HPLC methods combined with mass spectrometry (MALDI-TOF) can provide an effective technology for analyzing a wide repertoire of oligosaccharide structures and for determining the action of both transferases and glycosidases.
Qu, Xiaosheng; Fan, LanLan; Zhong, Taozheng; Li, Gang; Xia, Xianghua; Long, Hairong; Huang, Danna; Shu, Wei
2016-02-01
The present work investigated the effects of the nematocysts venom (NV) from the Chrysaora helvola Brandt (C. helvola) jellyfish on the human nasopharyngeal carcinoma cell line, CNE-2. The medium lethal concentration (LC50), quantified by MTT assays, was 1.7 ± 0.53 μg/mL (n = 5). An atypical apoptosis-like cell death was confirmed by LDH release assay and Annexin V-FITC/PI staining-based flow cytometry. Interestingly, activation of caspase-4 other than caspase-3, -8, -9 and -1 was observed. Moreover, the NV stimuli caused a time-dependent loss of mitochondrial membrane potential (ΔΨm) as was an intracellular ROS burst. These results indicated that there was uncoupling of oxidative phosphorylation (UOP). An examination of the intracellular pH value by a pH-sensitive fluorescent probe, BCECF, suggested that the UOP was due to the time-dependent increase in the intracellular pH. This is the first report that jellyfish venom can induce UOP. Copyright © 2015 Elsevier Ltd. All rights reserved.
Everett, Katy L.; Cooper, Dermot M. F.
2013-01-01
Here we describe an improved sensor with reduced pH sensitivity tethered to adenylyl cyclase (AC) 8. The sensor was used to study cAMP dynamics in the AC8 microdomain of MIN6 cells, a pancreatic β-cell line. In these cells, AC8 was activated by Ca2+ entry through L-type voltage-gated channels following depolarisation. This activation could be reconstituted in HEK293 cells co-expressing AC8 and either the α1C or α1D subunit of L-type voltage-gated Ca2+ channels. The development of this improved sensor opens the door to the study of cAMP microdomains in excitable cells that have previously been challenging due to the sensitivity of fluorescent proteins to pH changes. PMID:24086669
Bao, Xiaofeng; Cao, Xiaowei; Nie, Xuemei; Jin, Yanyan; Zhou, Baojing
2014-06-11
A new fluorescent chemosensor based on a Rhodamine B and a benzyl 3-aminopropanoate conjugate (RBAP) was designed, synthesized, and structurally characterized. Its single crystal structure was obtained and analyzed by X-ray analysis. In a MeOH/H2O (2:3, v/v, pH 5.95) solution RBAP exhibits a high selectivity and excellent sensitivity for Sn2+ ions in the presence of many other metal cations. The binding analysis using the Job's plot suggested the RBAP formed a 1:1 complex with Sn2+.
NASA Astrophysics Data System (ADS)
Deng, Shijie; McAuliffe, Michael A. P.; Salaj-Kosla, Urszula; Wolfe, Raymond; Lewis, Liam; Huyet, Guillaume
2017-02-01
In this work, a low cost optical pH sensing system that allows for small volume sample measurements was developed. The system operates without the requirement of laboratory instruments (e.g. laser source, spectrometer and CCD camera), this lowers the cost and enhances the portability. In the system, an optical arrangement employing a dichroic filter was used which allows the excitation and emission light to be transmitted using a single fibre thus improving the collection efficiency of the fluorescence signal and also the ability of inserting measurement. The pH sensor in the system uses bromocresol purple as the indicator which is immobilised by sol-gel technology through a dip-coating process. The sensor material was coated on the tip of a 1 mm diameter optical fibre which makes it possible for inserting into very small volume samples to measure the pH. In the system, a LED with a peak emission wavelength of 465 nm is used as the light source and a silicon photo-detector is used to detect the uorescence signal. Optical filters are applied after the LED and in front of the photo-detector to separate the excitation and emission light. The fluorescence signal collected is transferred to a PC through a DAQ and processed by a Labview-based graphic-user-interface (GUI). Experimental results show that the system is capable of sensing pH values from 5.3 to 8.7 with a linear response of R2=0.969. Results also show that the response times for a pH changes from 5.3 to 8.7 is approximately 150 s and for a 0.5 pH changes is approximately 50 s.
Wu, Lin; Chen, Mingyu; Mao, Huijuan; Wang, Ningning; Zhang, Bo; Zhao, Xiufen; Qian, Jun; Xing, Changying
2017-01-01
Glucocorticoids (GCs) are commonly used in the treatment of nephrotic syndrome. However, high doses and long periods of GC therapy can result in severe side effects. The present study aimed to selectively deliver albumin-methylprednisolone (MP) nanoparticles towards glomerular podocytes, which highly express the specific neonatal Fc receptor (FcRn) of albumin. Bovine serum albumin (BSA) was labeled with a fluorescent dye and linked with modified MP via an amide bond. The outcome nanoparticle named BSA633-MP showed a uniform size with a diameter of approximately 10 nm and contained 12 drug molecules on average. The nanoconjugates were found to be stable at pH 7.4 and acid-sensitive at pH 4.0, with approximately 72% release of the MP drug after 48 h of incubation. The nanoparticle demonstrated a 36-fold uptake in receptor-specific cellular delivery in the FcRn-expressing human podocytes compared to the uptake in the non-FcRn-expressing control cells. Co-localization further confirmed that uptake of the nanoconjugates involved receptor-mediated endocytosis followed by lysosome associated transportation. In vitro cellular experiments indicated that the BSA633-MP ameliorated puromycin aminonucleoside-induced podocyte apoptosis. Moreover, in vivo fluorescence molecular imaging showed that BSA633-MP was mainly accumulated in the liver and kidney after intravenous dosing for 24 h. Collectively, this study may provide an approach for the effective and safe therapy of nephrotic syndrome. PMID:28259932
Making Optical-Fiber Chemical Detectors More Sensitive
NASA Technical Reports Server (NTRS)
Rogowski, Robert S.; Egalon, Claudio O.
1993-01-01
Calculations based on exact theory of optical fiber shown how to increase optical efficiency and sensitivity of active-cladding step-index-profile optical-fiber fluorosensor using evanescent wave coupling. Optical-fiber fluorosensor contains molecules fluorescing when illuminated by suitable light in presence of analyte. Fluorescence coupled into and launched along core by evanescent-wave interaction. Efficiency increases with difference in refractive indices.
NASA Astrophysics Data System (ADS)
Jukl, Jennifer Marie
Although biosensor technology is a broad and well-studied field, the progress of many novel sensor technologies faces challenges. These challenges range from simple design considerations to fundamental issues with the concept or approach. One of the most active fields of sensor research integrates fiber optics with specially engineered fluorescent molecules. This type of sensor typically utilizes a porous polymer or porous glass substrate to entrap the fluorescent (or fluorescently-tagged) molecule. Porous polymer hydrogels are generally favored due to their ease of fabrication, low cost, adaptability, and biocompatibility. While hydrogels are ideal for both functional molecule suspension and fluid diffusion, their porosity and hydrophilicity are not always advantageous. The largest drawback of these properties is the hydrogel swelling they produce and the resulting geometric changes. This project investigated the limitations of fluorescent hydrogel-based sensors and the effects of unpredictable structural changes hydrogels undergo during typical, unrestrained swelling. The significance of covalent incorporation of the sensing fluorophore into the hydrogel matrix is also explored. Leaching tests were conducted using polyacrylamide (PAm) hydrogels which were impregnated with one of two pH sensitive fluorophores, one which bonded covalently with the hydrogel matrix during polymerization (fluorescein o-acrylate), and one which did not (fluorescein sodium). Once determined to be effective, the covalently bonding fluorophore was used to create constrained-dimension fluorescent pH sensors. These sensors were tested for effectiveness and reproducibility. All data was collected using a laboratory grade optical fibers, a USB spectrometer, and SpectraSuite software (Ocean Optics, 2010) unless otherwise specified.
Tao, Rongkun; Shi, Mei; Zou, Yejun; Cheng, Di; Wang, Qiaohui; Liu, Renmei; Wang, Aoxue; Zhu, Jiahuan; Deng, Lei; Hu, Hanyang; Chen, Xianjun; Du, Jiulin; Zhu, Weiping; Zhao, Yuzheng; Yang, Yi
2018-06-01
Engineered fluorescent indicators for visualizing mercury ion (Hg 2+ ) are powerful tools to illustrate the intracellular distribution and serious toxicity of the ion. However, the sensitive and specific detection of Hg 2+ in living cells and in vivo is challenging. This paper reported the development of fluorescent indicators for Hg 2+ in green or red color by inserting a circularly permuted fluorescent protein into a highly mercury-specific repressor. These sensors provided a rapid, sensitive, specific, and real-time read-out of Hg 2+ dynamics in solutions, bacteria, subcellular organelles of mammalian cells, and zebrafish, thereby providing a useful new method for Hg 2+ detection and bioimaging. In conjunction with the hydrogen peroxide sensor HyPer, we found mercury uptake would trigger subcellular oxidative events at the single-cell level, and provided visual evidence of the causality of mercury and oxidative damage. These sensors would paint the landscape of mercury toxicity to cell functions. Copyright © 2018 Elsevier Inc. All rights reserved.
Cytoplasmic calcium levels in protoplasts from the cap and elongation zone of maize roots
NASA Technical Reports Server (NTRS)
Kiss, H. G.; Evans, M. L.; Johnson, J. D.
1991-01-01
Calcium has been implicated as a key component in the signal transduction process of root gravitropism. We measured cytoplasmic free calcium in protoplasts isolated from the elongation zone and cap of primary roots of light-grown, vertically oriented seedlings of Zea mays L. Protoplasts were loaded with the penta-potassium salts of fura-2 and indo-1 by incubation in acidic solutions of these calcium indicators. Loading increased with decreasing pH but the pH dependence was stronger for indo-1 than for fura-2. In the case of fura-2, loading was enhanced only at the lowest pH (4.5) tested. Dyes loaded in this manner were distributed predominantly in the cytoplasm as indicated by fluorescence patterns. As an alternative method of loading, protoplasts were incubated with the acetoxymethylesters of fura-2 and indo-1. Protoplasts loaded by this method exhibited fluorescence both in the cytoplasm and in association with various organelles. Cytoplasmic calcium levels measured using spectrofluorometry, were found to be 160 +/- 40 nM and 257 +/- 27 nM, respectively, in populations of protoplasts from the root cap and elongation zone. Cytoplasmic free calcium did not increase upon addition of calcium to the incubation medium, indicating that the passive permeability to calcium was low.
Changes in root cap pH are required for the gravity response of the Arabidopsis root
NASA Technical Reports Server (NTRS)
Fasano, J. M.; Swanson, S. J.; Blancaflor, E. B.; Dowd, P. E.; Kao, T. H.; Gilroy, S.
2001-01-01
Although the columella cells of the root cap have been identified as the site of gravity perception, the cellular events that mediate gravity signaling remain poorly understood. To determine if cytoplasmic and/or wall pH mediates the initial stages of root gravitropism, we combined a novel cell wall pH sensor (a cellulose binding domain peptide-Oregon green conjugate) and a cytoplasmic pH sensor (plants expressing pH-sensitive green fluorescent protein) to monitor pH dynamics throughout the graviresponding Arabidopsis root. The root cap apoplast acidified from pH 5.5 to 4.5 within 2 min of gravistimulation. Concomitantly, cytoplasmic pH increased in columella cells from 7.2 to 7.6 but was unchanged elsewhere in the root. These changes in cap pH preceded detectable tropic growth or growth-related pH changes in the elongation zone cell wall by 10 min. Altering the gravity-related columella cytoplasmic pH shift with caged protons delayed the gravitropic response. Together, these results suggest that alterations in root cap pH likely are involved in the initial events that mediate root gravity perception or signal transduction.
Rastogi, Shiva K; Pal, Parul; Aston, D Eric; Bitterwolf, Thomas E; Branen, A Larry
2011-05-01
Zinc is one of the most important transition metal of physiological importance, existing primarily as a divalent cation. A number of sensors have been developed for Zn(II) detection. Here, we present a novel fluorescent nanosensor for Zn(II) detection using a derivative of 8-aminoquinoline (N-(quinolin-8-yl)-2-(3 (triethoxysilyl)propylamino)acetamide (QTEPA) grafted on silica nanoparticles (SiNPs). These functionalized SiNPs were used to demonstrate specific detection of Zn(II) in tris-HCl buffer (pH 7.22), in yeast cell (Saccharomyces cerevisiae) suspension, and in tap water. The silane QTEPA, SiNPs and final product were characterized using solution and solid state nuclear magnetic resonance, Fourier transform infrared, ultraviolet-visible absorption spectroscopy, transmission electron microscopy, elemental analysis, thermogravimetric techniques, and fluorescence spectroscopy. The nanosensor shows almost 2.8-fold fluorescence emission enhancement and about 55 nm red-shift upon excitation with 330 ± 5 nm wavelength in presence of 1 μM Zn(II) ions in tris-HCl (pH 7.22). The presence of other metal ions has no observable effect on the sensitivity and selectivity of nanosensor. This sensor selectively detects Zn(II) ions with submicromolar detection to a limit of 0.1 μM. The sensor shows good applicability in the determination of Zn(II) in tris-HCl buffer and yeast cell environment. Further, it shows enhancement in fluorescence intensity in tap water samples.
Su, Fengyu; Agarwal, Shubhangi; Pan, Tingting; Qiao, Yuan; Zhang, Liqiang; Shi, Zhengwei; Kong, Xiangxing; Day, Kevin; Chen, Meiwan; Meldrum, Deirdre; Kodibagkar, Vikram D; Tian, Yanqing
2018-01-17
In this paper, we report synthesis and characterization of a novel multimodality (MRI/fluorescence) probe for pH sensing and imaging. A multifunctional polymer was derived from poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and integrated with a naphthalimide-based-ratiometric fluorescence probe and a gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid complex (Gd-DOTA complex). The polymer was characterized using UV-vis absorption spectrophotometry, fluorescence spectrofluorophotometry, magnetic resonance imaging (MRI), and confocal microscopy for optical and MRI-based pH sensing and cellular imaging. In vitro labeling of macrophage J774 and esophageal CP-A cell lines shows the polymer's ability to be internalized in the cells. The transverse relaxation time (T 2 ) of the polymer was observed to be pH-dependent, whereas the spin-lattice relaxation time (T 1 ) was not. The pH probe in the polymer shows a strong fluorescence-based ratiometric pH response with emission window changes, exhibiting blue emission under acidic conditions and green emission under basic conditions, respectively. This study provides new materials with multimodalities for pH sensing and imaging.
Reineck, Philipp; Lau, Desmond W M; Wilson, Emma R; Nunn, Nicholas; Shenderova, Olga A; Gibson, Brant C
2018-02-06
Detonation nanodiamonds are of vital significance to many areas of science and technology. However, their fluorescence properties have rarely been explored for applications and remain poorly understood. We demonstrate significant fluorescence from the visible to near-infrared spectral regions from deaggregated, single-digit detonation nanodiamonds dispersed in water produced via post-synthesis oxidation. The excitation wavelength dependence of this fluorescence is analyzed in the spectral region from 400 nm to 700 nm as well as the particles' absorption characteristics. We report a strong pH dependence of the fluorescence and compare our results to the pH dependent fluorescence of aromatic hydrocarbons. Our results significantly contribute to the current understanding of the fluorescence of carbon-based nanomaterials in general and detonation nanodiamonds in particular.
Nauš, Jan; Šmecko, Slavomír; Špundová, Martina
2016-08-01
In the context of global climate change, drought is one of the major stress factors with negative effect on photosynthesis and plant productivity. Currently, chlorophyll fluorescence parameters are widely used as indicators of plant stress, mainly owing to the rapid, non-destructive and simple measurements this technique allows. However, these parameters have been shown to have limited sensitivity for the monitoring of water deficit as leaf desiccation has relatively small effect on photosystem II photochemistry. In this study, we found that blue light-induced increase in leaf transmittance reflecting chloroplast avoidance movement was much more sensitive to a decrease in relative water content (RWC) than chlorophyll fluorescence parameters in dark-desiccating leaves of tobacco (Nicotiana tabacum L.) and barley (Hordeum vulgare L.). Whereas the inhibition of chloroplast avoidance movement was detectable in leaves even with a small RWC decrease, the chlorophyll fluorescence parameters (F V/F M, V J, Ф PSII, NPQ) changed markedly only when RWC dropped below 70 %. For this reason, we propose light-induced chloroplast avoidance movement as a sensitive indicator of the decrease in leaf RWC. As our measurement of chloroplast movement using collimated transmittance is simple and non-destructive, it may be more suitable in some cases for the detection of plant stresses including water deficit than the conventionally used chlorophyll fluorescence methods.
Greenhalgh, Richard; Greenhalgh, Malcolm; Alshareef, Fadwa; Robson, Geoffrey D
2017-10-01
Industrial antimicrobials have been extensively used to control unwanted microbial growth by incorporation into a variety of products such as plastics and paints, reducing biodeterioration and biofouling and extending the lifespan of the product. Industrial antimicrobials generally have broad sites of action affecting core cellular functions such as central metabolism, enzyme function, cell wall or DNA synthesis and can either be biocidal or biostatic. In addition, susceptibility can be affected by the metabolic state of the microbe, with metabolically inactive cells generally more resistant than metabolically active cells. Previously it was demonstrated that cytosolically expressed green fluorescent protein could be used as a real-time viability indicator in the yeast Aureobasidium pullulans based on the pH dependent fluorescence of GFP and the collapse of the proton gradient across the cell membrane during cell death. In this study we report on the development and validation of an equivalent GFP fluorescence viability assay in Escherichia coli and used this assay to study the effect of five antimicrobials commonly used in plastics; 4,5-dichloro-2-octyl-isothiazol-3-one (DCOIT), sodium pyrithione, 1,2-benzisothiazol-3-one (BIT), 2-octyl-isothiazol-3-one (OIT) and n-butyl-1,2-benzisothiazol-3-one (BBIT). The results demonstrate broad differences amongst the antimicrobials in both relative efficacy, rate of effect and for some antimicrobials, marked differences in sensitivity toward growing and non-growing cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Lv, Zhengxian; Sun, Zhiwei; Song, Cuihua; Lu, Shuaimin; Chen, Guang; You, Jinmao
2016-12-01
A sensitive and background-free pre-column derivatization method for the determination of thiol compounds using metal-organic framework material (MOF-5) as dispersive solid-phase extraction (DSPE) adsorbent followed by high-performance liquid chromatography fluorescence detection (HPLC-FLD) has been developed. In this paper, a novel labeling reagent, carbazole-9-ethyl-2-maleimide(CAEM), was synthesized and reacted with thiols at 40°C for 10min in the presence of PBS buffer (0.02mol/L, pH 7.5). Interestingly, CAEM itself had no fluorescence, while its derivatives exhibited intense fluorescence with an excitation maximum at λ ex 274nm and an emission maximum at λ em 363nm, which greatly reduced the background interference and improved the sensitivity of the method. Furthermore, the MOF-5 was prepared and used as DSPE adsorbent for the selective adsorption of thiols from wastewater sample. Under the optimized experimental conditions, an excellent linearity for all analytes over their concentration ranges of 0.01-1.0μmol/L (R 2 >0.9986)were obtained with the limit of detection (LOD) ranging from 8 to 17.1pmol/L for nine tested thiols. The feasibility of this method for the determination of thiols in wastewater samples had been evaluated and satisfactory average recoveries (n=3) were achieved with the range of 86.6-98.5%. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Fenfen; Wang, Hongqing; Liu, Pengying; Hu, Qinghua; Wang, Yuyuan; Liu, Can; Hu, Jiangke
2018-02-01
A reversible Schiff's base fluorescence probe for Al3+, (3,5-dichloro-2- hydroxybenzylidene) quinoline-2-carbohydrazide (QC), based on quinoline derivative has been designed, synthesized and evaluated. The QC exhibited a high sensitivity and selectivity toward Al3+ in EtOH-H2O (v/v = 1:9, pH = 6) by forming a 1:1 complex with Al3+ and the detection limit of QC for Al3+ was as low as 0.012 μM. Furthermore, these results displayed that the binding of QCsbnd Al3+ was broken by F-, so this system could be used to monitor F- in the future. The enhancement fluorescence of the QC could be attributed to the inhibition of PET and ESIPT and the emergency of CHEF process induced by Al3+. More importantly, QC was not only successfully used for the determination of trace Al3+ in the tap water and the human blood serum, but was valid for fluorescence imaging of Al3+ in the Hela cells.
Talio, María Carolina; Acosta, María Gimena; Acosta, Mariano; Olsina, Roberto; Fernández, Liliana P
2015-05-15
A new method for zinc pre-concentration/separation and determination by molecular fluorescence is proposed. The metal was complexed with o-phenanthroline and eosin at pH 7.5 in Tris; a piece of filter paper was used as a solid support and solid fluorescent emission measured using a conventional quartz cuvette. Under optimal conditions, the limits of detection and quantification were 0.36 × 10(-3) and 1.29 × 10(-3) μg L(-1), respectively, and the linear range from 1.29 × 10(-3) to 4.50 μg L(-1). This method showed good sensitivity and selectivity, and it was applied to the determination of zinc in foods and tap water. The absence of filtration reduced the consumption of water and electricity. Additionally, the use of common filter papers makes it a simpler and more rapid alternative to conventional methods, with sensitivity and accuracy similar to atomic spectroscopies using a typical laboratory instrument. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Flores, Rosa V.; Sola, Hilda M.; Torres, Juan C.; Torres, Rafael E.; Guzman, Ernick E.
2013-01-01
A fluorescence spectroscopy experiment is described where students integrated biochemistry and instrumental analysis, while characterizing the green fluorescent protein excitation and emission spectra in terms of its phenolic and phenolate chromophores. Students studied the combined effect of pH and temperature on the protein's fluorescence,…
Optical fibre PH sensor based on immobilized indicator
NASA Astrophysics Data System (ADS)
Cai, Defu; Cao, Qiang; Han, JingHong; Cai, Jine; Li, YaTing; Zhu, ZeMin; Fan, Jie; Gao, Ning
1991-08-01
An optical fiber pH sensor which has the immobilized pH sensitive indicator dye reagents on the tip of the optical fiber has been studied. The probe is made by covalently immobilizing the phenol red, bromine phenol blue, or bromothymol blue on the polyacrylamide microsphere fixed by polyterafluoroethylene (PTFE) film. A gap between the dye and optical fiber was used to make the diffusion of the hydrogen ions easier. The parameters of the optical fiber pH sensor have been given completely. The ranges of measurement are 3.0 - 5.0 pH, 7.0 - 8.5 pH, and 8.0 - 10.0 pH for bromine phenol blue, phenol red, and bromothymol blue, respectively. The sensitivity is 66.6 mV/pH. The probe has a precision of better than 0.55 pH. The linear correlation coefficient is 0.999. The response time is 1 - 2 min. The hysteresis is 0.52%. The repeatability is 0.013 mV, while the stability is 0.015 pH/h.
Liu, Hui; Cao, Xiaodan; Wang, Ping; Ma, Xingyuan
2017-07-01
This work examines the feasibility of using a pH-sensitive fluorescent protein as a molecular reporter for enzyme-catalyzed prodrug activation reaction. Specifically, a ratiometric pHluorins was examined for detection of the activity of horseradish peroxidase (HRP) for the activation of indole-3-acetic acid. The pHluorins and HRP were conjugated chemically, forming a biocatalyst with a self-reporting function. Results showed that the characteristic fluorescence intensity ratio of the conjugate shifted from 1.47 to 1.40 corresponding to the progress of the prodrug activation reaction. The effectiveness of applying the conjugate for inhibition of the growth of Bcap-37 cells was also demonstrated simultaneously with reaction monitoring. The results reveal a very promising approach to realizing in situ monitoring of enzyme activities based on pH shifting for enzyme-based prodrug therapy applications. © 2016 International Union of Biochemistry and Molecular Biology, Inc.
Yoshida, Terumitsu; Takahashi, Ryohei; Imai, Koichi; Uchida, Hiroshi; Arai, Yasutoshi; Oh-ishi, Tsutomu
2010-03-01
This study developed a simple and sensitive method using reversed-phase high-performance liquid chromatography (HPLC) for ganciclovir (GCV) plasma concentrations in cytomegalovirus infectious infants with hearing loss. The method involves a simple protein precipitation procedure that uses no solid-phase or liquid-liquid extraction. The HPLC separation was carried out on a Cadenza CD-C(18) column (3 microm, 4.6 mm x 150 mm) with phosphate buffer (pH 2.5, 25 mM) containing 1% methanol-acetonitrile mixture (4:3, v/v) as a mobile phase at a 0.7 mL/min flow rate. GCV was detected using a fluorescence detection (lambdaex/em: 265/380 nm). The quantification limit was 0.025 microg/mL for 100 microL of plasma sample at which good intra- and inter-assay coefficient of variation values (< 4.96%) and recoveries (94.9-96.5%) were established.
Combining inkjet printing and sol-gel chemistry for making pH-sensitive surfaces.
Orsi, Gianni; De Maria, Carmelo; Montemurro, Francesca; Chauhan, Veeren M; Aylott, Jonathan W; Vozzi, Giovanni
2015-01-01
Today biomedical sciences are experiencing the importance of imaging biological parameters with luminescence methods. Studying 2D pH distribution with those methods allows building knowledge about complex cellular processes. Immobilizing pH sensitive nanoparticles inside hydrogel matrixes, in order to guarantee a proper SNR, could easily make stable and biocompatible 2D sensors. Inkjet printing is also well known as tool for printing images onto porous surfaces. Recently it has been used as a free-form fabrication method for building three-dimensional parts, and now is being explored as a way of printing electrical and optical devices. Inkjet printing was used either as a rapid prototyping method for custom biosensors. Sol-gel method is naturally bound with inkjet, because the picoliter-sized ink droplets evaporate quickly, thus allowing quick sol-gel transitions on the printed surface. In this work will be shown how to merge those technologies, in order to make a nanoparticles doped printable hydrogel, which could be used for making 2D/3D smart scaffolds able to monitor cell activities. An automated image analysis system was developed in order to quickly have the pH measurements from pH nanosensors fluorescence images.
Chen, Jian; Tang, Ying; Wang, Hong; Zhang, Peisheng; Li, Ya; Jiang, Jianhui
2016-12-15
The design of effective tools capable of sensing lysosome pH is highly desirable for better understanding its biological functions in cellular behaviors and various diseases. Herein, a lysosome-targetable ratiometric fluorescent polymer nanoparticle pH sensor (RFPNS) was synthesized via incorporation of miniemulsion polymerization and surface modification technique. In this system, the donor: 4-ethoxy-9-allyl-1,8-naphthalimide (EANI) and the acceptor: fluorescein isothiocyanate (FITC) were covalently linked to the polymer nanoparticle to construct pH-responsive fluorescence resonance energy transfer (FRET) system. The FITC moieties on the surface of RFPNS underwent structural and spectral transformation as the presence of pH changes, resulting in ratiometric fluorescent sensing of pH. The as-prepared RFPNS displayed favorable water dispersibility, good pH-induced spectral reversibility and so on. Following the living cell uptake, the as-prepared RFPNS with good cell-membrane permeability can mainly stain in the lysosomes; and it can facilitate visualization of the intracellular lysosomal pH changes. This nanosensor platform offers a novel method for future development of ratiometric fluorescent probes for targeting other analytes, like ions, metabolites,and other biomolecules in biosamples. Copyright © 2016 Elsevier Inc. All rights reserved.
Assessment of drinking water quality at the tap using fluorescence spectroscopy.
Heibati, Masoumeh; Stedmon, Colin A; Stenroth, Karolina; Rauch, Sebastien; Toljander, Jonas; Säve-Söderbergh, Melle; Murphy, Kathleen R
2017-11-15
Treated drinking water may become contaminated while travelling in the distribution system on the way to consumers. Elevated dissolved organic matter (DOM) at the tap relative to the water leaving the treatment plant is a potential indicator of contamination, and can be measured sensitively, inexpensively and potentially on-line via fluorescence and absorbance spectroscopy. Detecting elevated DOM requires potential contamination events to be distinguished from natural fluctuations in the system, but how much natural variation to expect in a stable distribution system is unknown. In this study, relationships between DOM optical properties, microbial indicator organisms and trace elements were investigated for households connected to a biologically-stable drinking water distribution system. Across the network, humic-like fluorescence intensities showed limited variation (RSD = 3.5-4.4%), with half of measured variation explained by interactions with copper. After accounting for quenching by copper, fluorescence provided a very stable background signal (RSD < 2.2%) against which a ∼2% infiltration of soil water would be detectable. Smaller infiltrations would be detectable in the case of contamination by sewage with a strong tryptophan-like fluorescence signal. These findings indicate that DOM fluorescence is a sensitive indicator of water quality changes in drinking water networks, as long as potential interferents are taken into account. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ultrafine fibers of zein and anthocyanins as natural pH indicator.
Prietto, Luciana; Pinto, Vania Zanella; El Halal, Shanise Lisie Mello; de Morais, Michele Greque; Costa, Jorge Alberto Vieira; Lim, Loong-Tak; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa
2018-05-01
pH-sensitive indicator membranes, which are useful for pharmaceutical, food, and packaging applications, can be formed by encapsulating halochromic compounds within various solid supports. Accordingly, electrospinning is a versatile technique for the development of these indicators, by entrapping pH dyes within ultrafine polymer fibers. The ultrafine zein fibers, containing 5% (w/v) anthocyanins, had an average diameter of 510 nm. The pH-sensitive membrane exhibited color changes from pink to green when exposed to acidic and alkaline buffers, respectively. The contact angle was negligible after 10 and 2 s for neat and 5% anthocyanin-loaded zein membranes, respectively. The pH membranes exhibited color changes in a board pH range, which can potentially be used in various active packaging applications. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Fluorogenic pH-sensitive polydiacetylene (PDA) liposomes as a drug carrier.
Won, Sang Ho; Lee, Jong Uk; Sim, Sang Jun
2013-06-01
A crucial issue for current liposomal carriers in clinical applications is the sustained-release property of the encapsulated drugs. We have developed novel fluorogenic pH-sensitive polymerized liposomes composed of polydiacetylene (PDA) lipids and other types of lipids. Unilamellar liposomes containing 10,12-pentacosadiynoic acid (PCDA), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and N-palmitoyl homocysteine (PHC) were loaded with ampicillin. These liposomes fused to each other rapidly when the medium pH was lowered from 7 to 4. The polymerized liposomes were characterized in terms of particle size distribution. The liposome size increased approximately 20-fold from 110.0 +/- 19.3 nm to 2046.7 +/- 487.4 nm as the pH was lowered. Cross-linking of the diacetylene lipids prevents drug leakage and the encapsulated drug can be instantaneously released at acidic pH condition. The ampicillin was nearly completely released (74.4 +/- 3.9%) from liposomes within 4 h under acidic pH conditions and the released amounts of ampicillin were analyzed by HPLC. Finally, the therapeutic effect was observed by the appearance of plaques on a lawn of E. coli, and fluorescent images of the PDA liposomes were taken from the plaques for drug release monitoring. As a result, this research demonstrates that such novel pH-sensitive polymerized liposomes have great prospects as a drug carrier.
Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei
2016-01-01
Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators—depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance—to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O2-A and O2-B bands (111.4% and 77.1% in the O2-A band; and 27.5% and 32.6% in the O2-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R2 = 0.91 for Damm vs. SCOPE SIF; R2 = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence. PMID:27058542
Single-Virus Fusion Experiments Reveal Proton Influx into Vaccinia Virions and Hemifusion Lag Times
Schmidt, Florian I.; Kuhn, Phillip; Robinson, Tom; Mercer, Jason; Dittrich, Petra S.
2013-01-01
Recent studies have revealed new insights into the endocytosis of vaccinia virus (VACV). However, the mechanism of fusion between viral and cellular membranes remains unknown. We developed a microfluidic device with a cell-trap array for immobilization of individual cells, with which we analyzed the acid-dependent fusion of single virions. VACV particles incorporating enhanced green fluorescent protein (EGFP) and labeled with self-quenching concentrations of R18 membrane dye were used in combination with total internal reflection fluorescence microscopy to measure the kinetics of R18 dequenching and thus single hemifusion events initiated by a fast low-pH trigger. These studies revealed unexpectedly long lag phases between pH change and hemifusion. In addition, we found that EGFP fluorescence in the virus was quenched upon acidification, indicating that protons could access the virus core, possibly through a proton channel. In a fraction of virus particles, EGFP fluorescence was recovered, presumably after fusion-pore formation and exposure of the core to the physiological pH of the host-cell cytosol. Given that virus-encoded cation channels play a crucial role in the life cycle of many viruses and can serve as antiviral drug targets, further investigations into a potential VACV viroporin are justified. Our findings indicate that the microfluidic device described may be highly beneficial to similar studies requiring fast kinetic measurements. PMID:23870263
Cellular Oxygen and Nutrient Sensing in Microgravity Using Time-Resolved Fluorescence Microscopy
NASA Technical Reports Server (NTRS)
Szmacinski, Henryk
2003-01-01
Oxygen and nutrient sensing is fundamental to the understanding of cell growth and metabolism. This requires identification of optical probes and suitable detection technology without complex calibration procedures. Under this project Microcosm developed an experimental technique that allows for simultaneous imaging of intra- and inter-cellular events. The technique consists of frequency-domain Fluorescence Lifetime Imaging Microscopy (FLIM), a set of identified oxygen and pH probes, and methods for fabrication of microsensors. Specifications for electronic and optical components of FLIM instrumentation are provided. Hardware and software were developed for data acquisition and analysis. Principles, procedures, and representative images are demonstrated. Suitable lifetime sensitive oxygen, pH, and glucose probes for intra- and extra-cellular measurements of analyte concentrations have been identified and tested. Lifetime sensing and imaging have been performed using PBS buffer, culture media, and yeast cells as a model systems. Spectral specifications, calibration curves, and probes availability are also provided in the report.
Wang, Qing; Qiu, Bin; Chen, Xianbo; Wang, Bin; Zhang, Hui; Zhang, Xiaoyuan
2017-06-01
A novel mixed hemimicelles and magnetic dispersive solid-phase extraction method based on long-chain ionic liquids for the extraction of five fluorescent whitening agents was established. The factors influenced on extraction efficiency were investigated. Under the optimal conditions, namely, the pH of sample solution at 8.0, the concentration of long chain ionic liquid at 0.5 mmol/L, the amount of Fe 3 O 4 nanoparticle at 12 mg, extraction time at 10 min, pH 6.0 of methanol as eluent, and the desorption time at 1 min, satisfactory results were obtained. Wide linear ranges (0.02-10 ng/mL) and good linearity were attained (0.9997-0.9999). The intraday and interday RSDs were 2.1-8.3%. Limits of detection were 0.004-0.01 ng/mL, which were decreased by almost an order of magnitude compared to direct detection without extraction. The present method was applied to extract the fluorescent whitening agents in two kinds of paper samples, obtaining satisfactory results. All showed results illustrated that the detection sensitivity was improved and the proposed method was a good choice for the enriching and monitoring of trace fluorescent whitening agents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Near infrared fluorescence-based bacteriophage particles for ratiometric pH imaging.
Hilderbrand, Scott A; Kelly, Kimberly A; Niedre, Mark; Weissleder, Ralph
2008-08-01
Fluorogenic imaging agents emitting in the near-infrared are becoming important research tools for disease investigation in vivo. Often pathophysiological states such as cancer and cystic fibrosis are associated with disruptions in acid/base homeostasis. The development of optical sensors for pH imaging would facilitate the investigation of these diseased conditions. In this report, the design and synthesis of a ratiometric near-infrared emitting probe for pH quantification is detailed. The pH-responsive probe is prepared by covalent attachment of pH-sensitive and pH-insensitive fluorophores to a bacteriophage particle scaffold. The pH-responsive cyanine dye, HCyC-646, used to construct the probe, has a fluorogenic pKa of 6.2, which is optimized for visualization of acidic pH often associated with tumor hypoxia and other diseased states. Incorporation of pH-insensitive reference dyes enables the ratiometric determination of pH independent of the probe concentration. With the pH-responsive construct, measurement of intracellular pH and accurate determination of pH through optically diffuse biological tissue is demonstrated.
Duval, Jérôme F L; Slaveykova, Vera I; Hosse, Monika; Buffle, Jacques; Wilkinson, Kevin J
2006-10-01
The electrostatic, hydrodynamic and conformational properties of aqueous solutions of succinoglycan have been analyzed by fluorescence correlation spectroscopy (FCS), proton titration, and capillary electrophoresis (CE) over a large range of pH values and electrolyte (NaCl) concentrations. Using the theoretical formalism developed previously for the electrokinetic properties of soft, permeable particles, a quantitative analysis for the electro-hydrodynamics of succinoglycan is performed by taking into account, in a self-consistent manner, the measured values of the diffusion coefficients, electric charge densities, and electrophoretic mobilities. For that purpose, two limiting conformations for the polysaccharide in solution are tested, i.e. succinoglycan behaves as (i) a spherical, random coil polymer or (ii) a rodlike particle with charged lateral chains. The results show that satisfactory modeling of the titration data for ionic strengths larger than 50 mM can be accomplished using both geometries over the entire range of pH values. Electrophoretic mobilities measured for sufficiently large pH values (pH > 5-6) are in line with predictions based on either model. The best manner to discriminate between these two conceptual models is briefly discussed. For low pH values (pH < 5), both models indicate aggregation, resulting in an increase of the hydrodynamic permeability and a decrease of the diffusion coefficient.
Desai, Netaji K; Mahajan, Prasad G; Bhopate, Dhanaji P; Dalavi, Dattatray K; Kamble, Avinash A; Gore, Anil H; Dongale, Tukaram D; Kolekar, Govind B; Patil, Shivajirao R
2018-01-01
A simple solid state reaction technique was employed for the preparation of polycrystalline luminophors of p-terphenyl containing different amounts of perylene followed by spectral characterization techniques viz. XRD, SEM, TGA-DSC, UV-Visible spectroscopy, thermo-electrical conductivity, fluorescence spectroscopy, fluorescence life time spectroscopy and temperature dependent fluorescence. X-ray diffraction profiles of the doped p-terphenyl reveal well-defined and sharp peaks indicate homogeneity and crystallinity. The SEM micrograph of pure p-terphenyl exhibit flakes like grains and then compact and finally gets separately with perylene amounts. The observed results indicate that closed packed crystal structures of doped p-terphenyl during crystal formation. The band gaps estimated from UV-visible spectroscopy decreased from 5.20 to 4.10 eV, while thermo-electrical conductivity increases with perylene content. The fluorescence spectra showed partial quenching of p-terphenyl fluorescence and simultaneously sensitization of perylene fluorescence at the excitation wavelength of p-terphenyl (290 nm) due to excitation energy transfer from p-terphenyl to perylene. The observed sensitization results are in harmony with intense blue color seen in fluorescence microscopy images and has high demand in scintillation process.
Light-induced Changes in Allophycocyanin 1
Ohad, Itzhak; Schneider, Hans-Jörg A. W.; Gendel, Steven; Bogorad, Lawrence
1980-01-01
Several lines of evidence indicate that allophycocyanin is the previously unidentified “phycochrome” observed in extracts of blue-green algae. Fractions containing phycoerythrin, phycocyanin, and allophycocyanin and exhibiting light-induced absorbance changes were prepared from extracts of Nostoc muscorum and Fremyella diplosiphon by isoelectric focusing. Illumination of such fractions with red light (650 nanometers) causes a reduction in absorbance at 620 nm (≃1 to 2%) and an increase at 560 nm. The effect, (previously observed by Björn and Björn [1976 Physiol Plant 36: 297-304]) is reversible, upon illumination with green light (550 nm). Selective immunoprecipitation of the phycobiliproteins indicates that allophycocyanin is the photoresponsive pigment. At pH 4.0 to 4.2, allophycocyanin purified from the same algae or from Phormidium luridum exhibits a light-induced absorbance change at 620 nm, which coincides with its absorption maximum at this pH; the fluorescence emission of allophycocyanin under these conditions is at 647 nm and its S20,w is 2.28, compatible with an α1β1 polypeptide composition. At neutral pH (5.8 to 7.0), allophycocyanin aggregates have a sedimentation coefficient of 4.8 (≃α3β3) and an additional absorption peak at 640 nm appears while that at 620 nm remains unaffected. The fluorescence emission maximum of the larger aggregate is at 667 nm and the light-induced change in its absorption is shifted to 650 nm. The effect of pH changes in the range 4.0 to 7.0 on the spectral and aggregation properties of allophycocyanin is completely reversible. Changes in pH which affect allophycocyanin aggregation have parallel effects on absorption and fluorescence maxima as well as on the light-induced absorbance changes of the biliprotein. No evidence is provided to resolve whether this phycochrome plays the role of an adaptochrome. PMID:16661143
Zhu, Lixuan; Qing, Zhihe; Hou, Lina; Yang, Sheng; Zou, Zhen; Cao, Zhong; Yang, Ronghua
2017-08-25
As is well-known, the nucleic acid indicator-based strategy is one of the major approaches to monitor the nucleic acid hybridization-mediated recognition events in biochemical analysis, displaying obvious advantages including simplicity, low cost, convenience, and generality. However, conventional indicators either hold strong self-fluorescence or can be lighted by both ssDNA and dsDNA, lacking absolute selectivity for a certain conformation, always with high background interference and low sensitivity in sensing; and additional processing (e.g., nanomaterial-mediated background suppression, and enzyme-catalyzed signal amplification) is generally required to improve the detection performance. In this work, a carbazole derivative, EBCB, has been synthesized and screened as a dsDNA-specific fluorescent indicator. Compared with conventional indicators under the same conditions, EBCB displayed a much higher selective coefficient for dsDNA, with little self-fluorescence and negligible effect from ssDNA. Based on its superior capability in DNA conformation-discrimination, high sensitivity with minimizing background interference was demonstrated for direct detection of nucleic acid, and monitoring nucleic acid-based circuitry with good reversibity, resulting in low detection limit and high capability for discriminating base-mismatching. Thus, we expect that this highly specific DNA conformation-discriminating indicator will hold good potential for application in biochemical sensing and molecular logic switching.
NASA Astrophysics Data System (ADS)
Guo, Changchuan; Wang, Lei; Hou, Zhun; Jiang, Wei; Sang, Lihong
2009-05-01
A terbium-sensitized spectrofluorimetric method using an anionic surfactant, sodium dodecyl benzene sulfonate (SDBS), was developed for the determination of gatifloxacin (GFLX). A coordination complex system of GFLX-Tb 3+-SDBS was studied. It was found that SDBS significantly enhanced the fluorescence intensity of the complex (about 11-fold). Optimal experimental conditions were determined as follows: excitation and emission wavelengths of 331 and 547 nm, pH 7.0, 2.0 × 10 -4 mol l -1 terbium (III), and 2.0 × 10 -4 mol l -1 SDBS. The enhanced fluorescence intensity of the system (Δ If) showed a good linear relationship with the concentration of GFLX over the range of 5.0 × 10 -10 to 5.0 × 10 -8 mol l -1 with a correlation coefficient of 0.9996. The detection limit (3 σ) was determined as 6.0 × 10 -11 mol l -1. This method has been successfully applied to the determination of GFLX in pharmaceuticals and human urine/serum samples. Compared with most of other methods reported, the rapid and simple procedure proposed in the text offers higher sensitivity, wider linear range, and better stability. The interaction mechanism of the system is also studied by the research of ultraviolet absorption spectra, surface tension, solution polarity and fluorescence polarization.
A Preliminary Study of the Effects of pH upon Fluorescence in Suspensions of Prevotella intermedia.
Hope, Christopher K; Billingsley, Karen; de Josselin de Jong, Elbert; Higham, Susan M
2016-01-01
The quantification of fluorescence in dental plaque is currently being developed as a diagnostic tool to help inform and improve oral health. The oral anaerobe Prevotella intermedia exhibits red fluorescence due to the accumulation of porphyrins. pH affects the fluorescence of abiotic preparations of porphyrins caused by changes in speciation between monomers, higher aggregates and dimers, but this phenomenon has not been demonstrated in bacteria. Fluorescence spectra were obtained from suspensions of P. intermedia that were adjusted to pHs commensurate with the range found within dental plaque. Two fluorescent motifs were identified; 410 nm excitation / 634 nm emission (peak A) and 398 nm excitation / 622 nm emission (peak B). A transition in the fluorescence spectra was observed from peak A to peak B with increasing pH which was also evident as culture age increased from 24 hours to 96 hours. In addition to these 'blue-shifts', the intensity of peak A increased with pH whilst decreasing with culture age from 24 to 96 hours. A bacterium's relationship with the local physiochemical environment at the time of image capture may therefore affect the quantification of dental plaque fluorescence.
Chantada-Vázquez, María Pilar; Sánchez-González, Juan; Peña-Vázquez, Elena; Tabernero, María Jesús; Bermejo, Ana María; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio
2016-03-01
A new molecularly imprinted polymer (MIP)-based fluorescent artificial receptor has been prepared by anchoring a selective MIP for cocaine (COC) on the surface of polyethylene glycol (PEG) modified Mn-doped ZnS quantum dots (QDs). The prepared material combines the high selectivity attributed to MIPs and the sensitive fluorescent property of the Mn-doped ZnS QDs. Simple and low cost methods have therefore been optimized for assessing cocaine abuse in urine by monitoring the fluorescence quenching when the template (COC) and also metabolites from COC [benzoylecgonine (BZE) and ecgonine methyl ester (EME)] are present. Fluorescence quenching was not observed when performing experiments with other drugs of abuse (and their metabolites) or when using nonimprinted polymer (NIP)-coated QDs. Under optimized operating conditions (1.5 mL of 200 mg L(-1) MIP-coated QDs solution, pH 5.5, and 15 min before fluorescence scanning) two analytical methods were developed/validated. One of the procedures (direct method) consisted of urine sample 1:20 dilution before fluorescence measurements. The method has been found to be fast, precise, and accurate, but the standard addition technique for performing the analysis was required because of the existence of matrix effect. The second procedure performed a solid phase extraction (SPE) first, avoiding matrix effect and allowing external calibration. The limits of detection of the methods were 0.076 mg L(-1) (direct method) and 0.0042 mg L(-1) (SPE based method), which are lower than the cutoff values for confirmative conclusions regarding cocaine abuse.
Zottig, Ximena; Meddeb-Mouelhi, Fatma; Beauregard, Marc
2016-03-01
A fluorescence-based assay for the determination of lipase activity using rhodamine B as an indicator, and natural substrates such as olive oil, is described. It is based on the use of a rhodamine B-natural substrate emulsion in liquid state, which is advantageous over agar plate assays. This high-throughput method is simple and rapid and can be automated, making it suitable for screening and metagenomics application. Reaction conditions such as pH and temperature can be varied and controlled. Using triolein or olive oil as a natural substrate allows monitoring of lipase activity in reaction conditions that are closer to those used in industrial settings. The described method is sensitive over a wide range of product concentrations and offers good reproducibility. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Qingye; Lin, Chenyin; Zhang, Xinghui; Wen, Guiqing; Liang, Aihui
2014-12-01
The ozone in an air sample was trapped by H3 BO3 -LK solution to produce iodine (I2) that interacted with excess I(-) to form I3(-). In pH 4.0 acetate buffer solutions, the I3(-) reacted with acridine red to form acridine red-I3 ion association particles that resulted in the fluorescence peak decreased at 553 nm. The decreased value ΔF553 nm is linear to the O3 concentration in the range 0.08-53.3 × 10(-6) mol/L, with a detection limit of 4 × 10(-8) mol/L. This fluorescence method was used to determine ozone in air samples, and the results were in agreement with that of indigo carmine spectrophotometry. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Schalkhammer, Thomas G. M.; Weiss-Wichert, Christof; Smetazko, Michaela M.; Valina-Saba, Miriam
1997-06-01
Signal amplification using labels should be replaced by a technique monitoring the biochemical binding event directly. The use of a ligand coupled to an artificial gated membrane ion channel is a new promising strategy. Binding of protein- or DNA/RNA-analytes at ligand modified peptide channels results in an on/off-response of the channel current due to channel closure or distortion. The sensor consists of stable transmembrane channels with a ligand bound covalently at the peptide channel entrance, a sensor chip with a photostructurized hydrophobic polymer frame, a hydrophilic ion conducting membrane support, a lipid membrane incorporating the engineered ion channels, and a current amplifier or a sensitive fluorescence monitor. Detection of channel opening or closure can ether be obtained by directly monitoring membrane conductivity or a transient change of pH or ion concentration within the membrane compartment. This change can be induced by electrochemical or optical means and its decay is directly correlated to the permeability of the membrane. The ion concentration in the sub membrane compartment was monitored by incorporation of fluorescent indicator dyes. To obtain the stable sensor membrane the lipid layer had to be attached on a support and the floating of the second lipid membrane on top of the first one had to be prevented. Both problems do not occur using our new circular C44-C76 bolaamphiphilic lipids consisting of a long hydrophobic core region and two hydrophilic heads. Use of maleic ester-head groups enabled us to easily modify the lipids with amines, thioles, alcohols, phosphates, boronic acid as well as fluorescent dyes. The properties of these membranes were studied using LB and fluorescence techniques. Based on this detection principle miniaturized sensor chips with significantly enhanced sensitivity and large multi analyte arrays are under construction.
Vaudour, Emmanuelle; Cerovic, Zoran G; Ebengo, Dav M; Latouche, Gwendal
2018-04-10
For adequate crop and soil management, rapid and accurate techniques for monitoring soil properties are particularly important when a farmer starts up his activities and needs a diagnosis of his cultivated fields. This study aimed to evaluate the potential of fluorescence measured directly on 146 whole soil solid samples, for predicting key soil properties at the scale of a 6 ha Mediterranean wine estate with contrasting soils. UV-Vis fluorescence measurements were carried out in conjunction with reflectance measurements in the Vis-NIR-SWIR range. Combining PLSR predictions from Vis-NIR-SWIR reflectance spectra and from a set of fluorescence signals enabled us to improve the power of prediction of a number of key agronomic soil properties including SOC, N tot , CaCO₃, iron, fine particle-sizes (clay, fine silt, fine sand), CEC, pH and exchangeable Ca 2+ with cross-validation RPD ≥ 2 and R² ≥ 0.75, while exchangeable K⁺, Na⁺, Mg 2+ , coarse silt and coarse sand contents were fairly predicted (1.42 ≤ RPD < 2 and 0.54 ≤ R² < 0.75). Predictions of SOC, N tot , CaCO₃, iron contents, and pH were still good (RPD ≥ 1.8, R² ≥ 0.68) when using a single fluorescence signal or index such as SFR_R or FERARI, highlighting the unexpected importance of red excitations and indices derived from plant studies. The predictive ability of single fluorescence indices or original signals was very significant for topsoil: this is very important for a farmer who wishes to update information on soil nutrient for the purpose of fertility diagnosis and particularly nitrogen fertilization. These results open encouraging perspectives for using miniaturized fluorescence devices enabling red excitation coupled with red or far-red fluorescence emissions directly in the field.
Vaudour, Emmanuelle; Cerovic, Zoran G.; Ebengo, Dav M.; Latouche, Gwendal
2018-01-01
For adequate crop and soil management, rapid and accurate techniques for monitoring soil properties are particularly important when a farmer starts up his activities and needs a diagnosis of his cultivated fields. This study aimed to evaluate the potential of fluorescence measured directly on 146 whole soil solid samples, for predicting key soil properties at the scale of a 6 ha Mediterranean wine estate with contrasting soils. UV-Vis fluorescence measurements were carried out in conjunction with reflectance measurements in the Vis-NIR-SWIR range. Combining PLSR predictions from Vis-NIR-SWIR reflectance spectra and from a set of fluorescence signals enabled us to improve the power of prediction of a number of key agronomic soil properties including SOC, Ntot, CaCO3, iron, fine particle-sizes (clay, fine silt, fine sand), CEC, pH and exchangeable Ca2+ with cross-validation RPD ≥ 2 and R² ≥ 0.75, while exchangeable K+, Na+, Mg2+, coarse silt and coarse sand contents were fairly predicted (1.42 ≤ RPD < 2 and 0.54 ≤ R² < 0.75). Predictions of SOC, Ntot, CaCO3, iron contents, and pH were still good (RPD ≥ 1.8, R² ≥ 0.68) when using a single fluorescence signal or index such as SFR_R or FERARI, highlighting the unexpected importance of red excitations and indices derived from plant studies. The predictive ability of single fluorescence indices or original signals was very significant for topsoil: this is very important for a farmer who wishes to update information on soil nutrient for the purpose of fertility diagnosis and particularly nitrogen fertilization. These results open encouraging perspectives for using miniaturized fluorescence devices enabling red excitation coupled with red or far-red fluorescence emissions directly in the field. PMID:29642640
Sethuraman, Vijay A; Bae, You Han
2007-04-02
A novel drug targeting system for acidic solid tumors has been developed based on ultra pH-sensitive polymer and cell penetrating TAT. The delivery system consisted of two components: 1) A polymeric micelle that has a hydrophobic core made of poly(l-lactic acid) (PLLA) and a hydrophilic shell consisting of polyethylene glycol (PEG) conjugated to TAT (TAT micelle), 2) an ultra pH-sensitive diblock copolymer of poly(methacryloyl sulfadimethoxine) (PSD) and PEG (PSD-b-PEG). The anionic PSD is complexed with cationic TAT of the micelles to achieve the final carrier, which could systemically shield the micelles and expose them at slightly acidic tumor pH. TAT micelles had particle sizes between 20 and 45 nm and their critical micelle concentrations were 3.5 mg/l to 5.5 mg/l. The TAT micelles, upon mixing with pH-sensitive PSD-b-PEG, showed a slight increase in particle size between pH 8.0 and 6.8 (60-90 nm), indicating complexation. As the pH was decreased (pH 6.6 to 6.0) two populations were observed, one that of normal TAT micelles (45 nm) and the other of aggregated hydrophobic PSD-b-PEG. Zeta potential measurements showed similar trend substantiating the shielding/deshielding process. Flow cytometry and confocal microscopy showed significantly higher uptake of TAT micelles at pH 6.6 compared to pH 7.4 indicating shielding at normal pH and deshielding at tumor pH. The confocal microscopy indicated that the TAT not only translocates into the cells but is also seen on the surface of the nucleus. These results strongly indicate that the above micelles would be able to target any hydrophobic drug near the nucleus.
AN INVESTIGATION OF THE BENZOIN METHOD FOR THE FLUORIMETRIC DETERMINATION OF BORON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, G.; Radley, J.A.
1961-01-01
The development of the boron -benzoin fluorescence at microgram concentrations of boron was investigated; a simple, but sensitive, fluorimeter was used. The development and decay of fluorescence intensity with time were observed in various solvents in the presence of different basic compounds. The fluorescence produced when formamide and its N-derivatives are used as the solvent media is stronger than that found when ethanol is used. A glycine buffer solution of pH 12.8 is effective in producing the correct conditions for developing fluorescence with ethanol as solvent, but is not effective in the formamide series of solvents. Isopropylamine and isobutylamine aremore » effective bases in both ethanol and the formamide series. For a series of solvents of a given chemical type, e.g., the formamides, there may be an increase in fluorescence intensity with dielectric constant, although this is not true for the alcohols. Oxygen has a pronounced inhibiting action on the development of fluorescence in ethanol, but has much less effect in formamide. There is a linear relationship between fluorescence intensity and amount of boron present in the range studied (0.05 to 0.5 - g). (auth)« less
Tsujikawa, Hiroto; Yu, Albert S; Xie, Jia; Yue, Zhichao; Yang, Wenzhong; He, Yanlin; Yue, Lixia
2015-11-18
Changes of intracellular and extracellular pH are involved in a variety of physiological and pathological processes, in which regulation of the Ca(2+) release activated Ca(2+) channel (I CRAC) by pH has been implicated. Ca(2+) entry mediated by I CRAC has been shown to be regulated by acidic or alkaline pH. Whereas several amino acid residues have been shown to contribute to extracellular pH (pHo) sensitivity, the molecular mechanism for intracellular pH (pHi) sensitivity of Orai1/STIM1 is not fully understood. By investigating a series of mutations, we find that the previously identified residue E106 is responsible for pHo sensitivity when Ca(2+) is the charge carrier. Unexpectedly, we identify that the residue E190 is responsible for pHo sensitivity when Na(+) is the charge carrier. Furthermore, the intracellular mutant H155F markedly diminishes the response to acidic and alkaline pHi, suggesting that H155 is responsible for pHi sensitivity of Orai1/STIM1. Our results indicate that, whereas H155 is the intracellular pH sensor of Orai1/STIM1, the molecular mechanism of external pH sensitivity varies depending on the permeant cations. As changes of pH are involved in various physiological/pathological functions, Orai/STIM channels may be an important mediator for various physiological and pathological processes associated with acidosis and alkalinization.
NASA Astrophysics Data System (ADS)
Liu, Wei; Chen, Wen; Liu, Si-Jia; Jiang, Jian-Hui
2017-03-01
Small molecule probes suitable for selective and specific fluorescence imaging of some important but low-concentration intracellular reactive sulfur species such as cysteine (Cys) pose a challenge in chemical biology. We present a readily available, fast-response fluorescence probe CHCQ-Ac, with 2-(5‧-chloro-2-hydroxyl-phenyl)-6-chloro-4(3 H)-quinazolinone (CHCQ) as the fluorophore and acrylate group as the functional moiety, that enables high-selectivity and high-sensitivity for detecting Cys in both solution and biological system. After specifically reacted with Cys, the probe undergoes a seven-membered intramolecular cyclization and released the fluorophore CHCQ with excited-state intramolecular photon transfer effect. A highly fluorescent, insoluble aggregate was then formed to facilitate high-sensitivity and high-resolution imaging. The results showed that probe CHCQ-Ac affords a remarkably large Stokes shift and can detect Cys under physiological pH condition with no interference from other analytes. Moreover, this probe was proved to have excellent chemical stability, low cytotoxicity and good cell permeability. Our design of this probe provides a novel potential tool to visualize and localize cysteine in bioimaging of live cells that would greatly help to explore various Cys-related physiological and pathological cellular processes in cell biology and diagnostics.
Oskoei, Yones Mosaei; Fattahi, Hassan; Hassanzadeh, Javad; Azar, Ali Mousavi
2016-01-01
A fluorescence resonance energy transfer (FRET) system between carbon dots (C-dots) and amine-capped gold nanoparticles (AuNPs) was developed for the selective determination of 2,4,6-trinitrotoluene (TNT). C-dots have an intrinsic florescence emission depending on their exciting wavelength. In the presence of AuNPs, C-dots adsorb on the Au surfaces, and NPs treat as energy acceptor, which can receive light emitted by C-dots, leading to decrease the fluorescence intensity of C-dots. Furthermore, it is observed that nitroaromatic compounds, especially TNT, could restore this fluorescence due to selective interaction with AuNPs via amine groups, and so releasing the C-dots. Based on this effect, a sensitive and selective fluorescence turn-on probe was designed for the determination of TNT. Some important factors including AuNPs and C-dot concentrations and media pH, which would affect the efficiency of the probe, were optimized. Under the optimum experimental conditions, good linear relationships in the range of 7 - 250 nmol L(-1) TNT with the detection limit of 2.2 nmol L(-1) were obtained. The proposed method was satisfactorily applied to the determination of TNT in the environmental water samples. Compared with previous reports, the developed method has relatively high sensitivity, short analysis time, low cost and ease of operation.
Rhaman, Md Mhahabubur; Hasan, Mohammad H; Alamgir, Azmain; Xu, Lihua; Powell, Douglas R; Wong, Bryan M; Tandon, Ritesh; Hossain, Md Alamgir
2018-01-10
The selective detection of citrate anions is essential for various biological functions in living systems. A quantitative assessment of citrate is required for the diagnosis of various diseases in the human body; however, it is extremely challenging to develop efficient fluorescence and color-detecting molecular probes for sensing citrate in water. Herein, we report a macrocycle-based dinuclear foldamer (1) assembled with eosin Y (EY) that has been studied for anion binding by fluorescence and colorimetric techniques in water at neutral pH. Results from the fluorescence titrations reveal that the 1·EY ensemble strongly binds citrate anions, showing remarkable selectivity over a wide range of inorganic and carboxylate anions. The addition of citrate anions to the 1·EY adduct led to a large fluorescence enhancement, displaying a detectable color change under both visible and UV light in water up to 2 μmol. The biocompatibility of 1·EY as an intracellular carrier in a biological system was evaluated on primary human foreskin fibroblast (HF) cells, showing an excellent cell viability. The strong binding properties of the ensemble allow it to be used as a highly sensitive, detective probe for biologically relevant citrate anions in various applications.
NASA Astrophysics Data System (ADS)
Aabo, Thomas; Banás, Andrew Raphael; Glückstad, Jesper; Siegumfeldt, Henrik; Arneborg, Nils
2011-08-01
In this study we have modified the BioPhotonics workstation (BWS), which allows for using long working distance objective for optical trapping, to include traditional epi-fluorescence microscopy, using the trapping objectives. We have also added temperature regulation of sample stage, allowing for fast temperature variations while trapping. Using this modified BWS setup, we investigated the internal pH (pHi) response and membrane integrity of an optically trapped Saccharomyces cerevisiae cell at 5 mW subject to increasing temperatures. The pHi of the cell is obtained from the emission of 5-(and-6)-carboxyfluorescein diacetate, succinimidyl ester, at 435 and 485 nm wavelengths, while the permeability is indicated by the fluorescence of propidium iodide. We present images mapping the pHi and permeability of the cell at different temperatures and with enough spatial resolution to localize these attributes within the cell. The combined capability of optical trapping, fluorescence microscopy and temperature regulation offers a versatile tool for biological research.
Chen, Daquan; Sun, Kaoxiang; Mu, Hongjie; Tang, Mingtan; Liang, Rongcai; Wang, Aiping; Zhou, Shasha; Sun, Haijun; Zhao, Feng; Yao, Jianwen; Liu, Wanhui
2012-01-01
Background In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS) polymer was used for vaginal administration. Methods The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment. Results A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0). Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0. Conclusion This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery. PMID:22679372
Christensen, Henriette L; Păunescu, Teodor G; Matchkov, Vladimir; Barbuskaite, Dagne; Brown, Dennis; Damkier, Helle H; Praetorius, Jeppe
2017-01-01
The cerebrospinal fluid (CSF) pH influences brain interstitial pH and, therefore, brain function. We hypothesized that the choroid plexus epithelium (CPE) expresses the vacuolar H + -ATPase (V-ATPase) as an acid extrusion mechanism in the luminal membrane to counteract detrimental elevations in CSF pH. The expression of mRNA corresponding to several V-ATPase subunits was demonstrated by RT-PCR analysis of CPE cells (CPECs) isolated by fluorescence-activated cell sorting. Immunofluorescence and electron microscopy localized the V-ATPase primarily in intracellular vesicles with only a minor fraction in the luminal microvillus area. The vesicles did not translocate to the luminal membrane in two in vivo models of hypocapnia-induced alkalosis. The Na + -independent intracellular pH (pH i ) recovery from acidification was studied in freshly isolated clusters of CPECs. At extracellular pH (pH o ) 7.4, the cells failed to display significant concanamycin A-sensitive pH i recovery (i.e., V-ATPase activity). The recovery rate in the absence of Na + amounted to <10% of the pH i recovery rate observed in the presence of Na + Recovery of pH i was faster at pH o 7.8 and was abolished at pH o 7.0. The concanamycin A-sensitive pH i recovery was stimulated by cAMP at pH 7.4 in vitro, but intraventricular infusion of the membrane-permeant cAMP analog 8-CPT-cAMP did not result in trafficking of the V-ATPase. In conclusion, we find evidence for the expression of a minor fraction of V-ATPase in the luminal membrane of CPECs. This fraction does not contribute to enhanced acid extrusion at high extracellular pH, but seems to be activated by cAMP in a trafficking-independent manner. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Fluorescent determination of chloride in nanoliter samples.
García, N H; Plato, C F; Garvin, J L
1999-01-01
Measurements of Cl- in nanoliter samples, such as those collected during isolated, perfused tubule experiments, have been difficult, somewhat insensitive, and/or require custom-made equipment. We developed a technique using a fluorescent Cl- indicator, 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ), to make these measurements simple and reliable. This is a simple procedure that relies on the selectivity of the dye and the fact that Cl-quenches its fluorescence. To measure millimolar quantities of Cl- in nanoliter samples, we prepared a solution of 0.25 mm SPQ and loaded it into the reservoir of a continuous-flow ultramicrofluorometer, which can be constructed from commercially available components. Samples were injected with a calibrated pipette via an injection port, and the resultant peak fluorescent deflections were recorded. The deflections represent a decrease in fluorescence caused by the quenching effect of the Cl- injected. The method yielded a linear response with Cl- concentrations from 5 to 200 mm NaCl. The minimum detectable Cl- concentration was approximately 5 mm. The coefficient of variation between 5 and 200 mm was 1.7%. Resolution, defined as two times the standard error divided by the slope, between 10 and 50 mm and between 50 and 200 mm was 1 mm and 2.6 mm, respectively. Furosemide, diisothiocyanostilbene-2,2'-disulfonic acid and other nonchloride anions (HEPES, HCO3, SO4, and PO4) did not interfere with the assay, whereas 150 mm NaBr resulted in a peak height greater than 150 NaCl. In addition, the ability to measure Cl- did not vary with pH within the physiological range. We developed an easy, accurate, and sensitive method to measure Cl- concentration in small aqueous solution samples.
Wolf, B H; Weening, R S; Schutgens, R B; van Noorden, C J; Vogels, I M; Nagelkerke, N J
1987-09-30
The results of a quantitative spectrophotometric enzyme assay, a fluorescent spot test and a cytochemical assay for glucose-6-phosphate dehydrogenase deficiency were compared systematically. The high sensitivity of the spectrophotometric assay and the fluorescent spot test in the detection of severely deficient individuals was confirmed. For the detection of heterozygote females, however both tests were unreliable; the sensitivities of the fluorescent spot test and the spectrophotometric assay being 32% and 11% respectively. Specificities for both tests were high (99%). Introduction of the ratio of glucose-6-phosphate dehydrogenase and pyruvate kinase (G-6-PD/PK ratio) activities increased the sensitivity of the spectrophotometric assay to nearly 100%. It is concluded that the fluorescent spot test should be used for the diagnosis of G-6-PD deficiency in developing countries; whereas if spectrophotometric enzyme assays are available, the G-6-PD/PK ratio should always be performed. In cases where the ratio is less than 0.70, cytochemical analysis is indicated.
Elmehriki, Adam AH; Suchý, Mojmír; Chicas, Kirby J; Wojciechowski, Filip; Hudson, Robert HE
2014-01-01
Herein, we describe the synthesis and spectroscopic properties of five novel pyrrolodeoxycytidine analogs, and the related 5-(1-pyrenylethynyl)-2’-deoxycytidine analog; as well as fluorescence characterization of 5-(p-methoxyphenylethynyl)-2’-deoxyuridine. Within this series of compounds, rigidification of the structure from 6-phenylpyrrolodeoxycytidine to 5,6-benzopyrroldeoxycytidine made remarkable improvement of the fluorescence quantum yield (Φ ~1, EtOH) and substantially increased the Stokes shift. Exchange of the phenyl group of 6-phenylpyrrolodeoxycytidine for other heterocycles (benzofuryl or indolyl) produced an increase in the extinction coefficient at the excitation wavelength while preserving high quantum yields. The steady-state fluorescence response to the environment was determined by sensitivity of Stokes shift to solvent polarity. The effect of solvent polarity on fluorescence emission intensity was concurrently examined and showed that 5,6-benzopyrrolodeoxycytidine is highly sensitive to the presence of water. On the other hand, the previously synthesized 5-(p-methoxyphenylethynyl)-2’-deoxyuridine was found to be sensitive to solvent viscosity indicating molecular rotor behavior. PMID:25483932
Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye.
Nath, Nidhi; Godat, Becky; Zimprich, Chad; Dwight, Stephen J; Corona, Cesear; McDougall, Mark; Urh, Marjeta
2016-04-01
Receptor-mediated antibody internalization is a key mechanism underlying several anti-cancer antibody therapeutics. Delivering highly toxic drugs to cancer cells, as in the case of antibody drug conjugates (ADCs), efficient removal of surface receptors from cancer cells and changing the pharmacokinetics profile of the antibody drugs are some of key ways that internalization impacts the therapeutic efficacy of the antibodies. Over the years, several techniques have been used to study antibody internalization including radiolabels, fluorescent microscopy, flow cytometry and cellular toxicity assays. While these methods allow analysis of internalization, they have limitations including a multistep process and limited throughput and are generally endpoint assays. Here, we present a new homogeneous method that enables time and concentration dependent measurements of antibody internalization. The method uses a new hydrophilic and bright pH sensor dye (pHAb dye), which is not fluorescent at neutral pH but becomes highly fluorescent at acidic pH. For receptor mediated antibody internalization studies, antibodies against receptors are conjugated with the pHAb dye and incubated with the cells expressing the receptors. Upon binding to the receptor, the dyes conjugated to the antibody are not fluorescent because of the neutral pH of the media, but upon internalization and trafficking into endosomal and lysosomal vesicles the pH drops and dyes become fluorescent. The enabling attributes of the pHAb dyes are the hydrophilic nature to minimize antibody aggregation and bright fluorescence at acidic pH which allows development of simple plate based assays using a fluorescent reader. Using two different therapeutic antibodies--Trastuzumab (anti-HER2) and Cetuximab (anti-EGFR)--we show labeling with pHAb dye using amine and thiol chemistries and impact of chemistry and dye to antibody ration on internalization. We finally present two new approaches using the pHAb dye, which will be beneficial for screening a large number of antibody samples during early monoclonal development phase. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Yue, Yongkang; Huo, Fangjun; Zhang, Yongbin; Chao, Jianbin; Martínez-Máñez, Ramón; Yin, Caixia
2016-11-01
We report herein a highly selective and sensitive turn-on fluorescent probe (compound 1) with a fast response time (less than 2 min) for thiophenol detection based on an "enhanced S N Ar" reaction between thiophenols and a sulfonyl-ester moiety covalently attach to curcumin. Reaction of 1 in Hepes-MeOH (1:1, v/v, pH 7.4) in the presence of 4-methylthiophenol (MTP) resulted in a remarkable enhancement of the fluorescence. A linear response in the presence of MTP of the relative fluorescent intensity (F - F 0 ) of 1 at 536 nm in the 0-40 μM MTP concentration range was found. A limit of detection (LOD) for the detection of MTP of 26 nM, based on the definition by IUPAC (C DL = 3 Sb/m), was calculated. Probe 1 was applied to monitor and imaging exogenous MTP in live cells and to the detection of MTP in real water samples.
Fluorescent chemosensor for pyridine based on N-doped carbon dots.
Campos, B B; Abellán, C; Zougagh, M; Jimenez-Jimenez, J; Rodríguez-Castellón, E; Esteves da Silva, J C G; Ríos, A; Algarra, M
2015-11-15
Fluorescent carbon dots (CDs) and its nitrogen doped (N-CDs) nanoparticles have been synthesized from lactose as precursor using a bottom-up hydrothermal methodology. The synthesized nanoparticles have been characterized by elemental analysis, FTIR, Raman, TEM, DLS, XPS, and steady-state and life-time fluorescence. The synthesized carbon nanoparticles, CDs and N-CDs, have a size at about 7.7±2.4 and 50±15nm, respectively, and quantum yields of 8% (CDs) and 11% (N-CDs). These techniques demonstrated the effectiveness of the synthesis procedure and the functionalization of the CDs surface with amine and amide groups in the presence of NH3 in aqueous media. The effect of excitation wavelength and pH on the luminescent properties was studied. Under the optimal conditions, the nitrogen doped nanoparticles can be used as pyridine sensor in aqueous media because they show an enhancement of its fluorescence with a good linear relationship. The analytical method is simple, reproducible and very sensitive for pyridine determination. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaur, Manjot; Mehta, Surinder K.; Kansal, Sushil Kumar
2017-06-01
This paper reports the carbonization assisted green approach for the fabrication of nitrogen doped graphene quantum dots (N-GQDs). The obtained N-GQDs displayed good water dispersibility and stability in the wide pH range. The as synthesized N-GQDs were used as a fluorescent probe for the sensing of explosive 2,4,6-trinitrophenol (TNP) in aqueous medium based on fluorescence resonance energy transfer (FRET), molecular interactions and charge transfer mechanism. The quenching efficiency was found to be linear in proportion to the TNP concentration within the range of 0-16 μM with detection limit (LOD) of 0.92 μM. The presented method was successfully applied to the sensing of TNP in tap and lake water samples with satisfactory results. Thus, N-GQDs were used as a selective, sensitive and turn off fluorescent sensor for the detection of perilous water contaminant i.e. TNP.
NASA Astrophysics Data System (ADS)
Peng, Qian; Hou, Faju; Jiang, Chongqiu
2006-09-01
A new spectrofluorimetric method was developed for determination of trace amount of Coenzyme II (NADP). Using europium ion-doxycycline (DC) as a fluorescent probe, in the buffer solution of pH 8.44, NADP can remarkably enhance the fluorescence intensity of the Eu 3+-DC complex at λ = 612 nm and the enhanced fluorescence intensity is in proportion to the concentration of NADP. Optimum conditions for the determination of NADP were also investigated. The dynamic range for the determination of NADP is 3.3 × 10 -7 to 6.1 × 10 -6 mol l -1 with detection limit of 6.8 × 10 -8 mol l -1. This method is simple, practical and relatively free interference from coexisting substances and can be successfully applied to determination of NADP in synthetic water samples and in serum samples. Moreover, the enhancement mechanisms of the fluorescence intensity in the Eu 3+-DC system and the Eu 3+-DC-NADP system have been also discussed.
Analysis of quetiapine in human plasma using fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Mostafa, Islam M.; Omar, Mahmoud A.; Nagy, Dalia M.; Derayea, Sayed M.
2018-05-01
A simple and sensitive spectrofluorimetric method has been development for the assurance of quetiapine fumarate (QTF). The proposed method was utilized for measuring the fluorescence intensity of the yellow fluorescent product at 510 nm (λex 470 nm). The fluorescent product has resulted from the nucleophilic substitution reaction of QTF with 4-chloro-7-nitrobenzofurazane (NBD-Cl) in Mcllvaine buffer (pH 7.0). The diverse variables influencing the development of the reaction product were deliberately changed and optimized. The linear concentration range of the proposed method was of 0.2-2.0 μg ml-1.The limits of detection and quantitation were 0.05 and 0.17 μg ml-1, respectively. The proposed method was applied for the assurance of QTF in its tablets without interference from basic excipients. In addition, the proposed method was used for in vitro analysis of the QTF in spiked human plasma, the percent mean recovery was (n = 3) 98.82 ± 1.484%.
Kaur, Manjot; Mehta, Surinder K; Kansal, Sushil Kumar
2017-06-05
This paper reports the carbonization assisted green approach for the fabrication of nitrogen doped graphene quantum dots (N-GQDs). The obtained N-GQDs displayed good water dispersibility and stability in the wide pH range. The as synthesized N-GQDs were used as a fluorescent probe for the sensing of explosive 2,4,6-trinitrophenol (TNP) in aqueous medium based on fluorescence resonance energy transfer (FRET), molecular interactions and charge transfer mechanism. The quenching efficiency was found to be linear in proportion to the TNP concentration within the range of 0-16μM with detection limit (LOD) of 0.92μM. The presented method was successfully applied to the sensing of TNP in tap and lake water samples with satisfactory results. Thus, N-GQDs were used as a selective, sensitive and turn off fluorescent sensor for the detection of perilous water contaminant i.e. TNP. Copyright © 2017 Elsevier B.V. All rights reserved.
Determination of ethambutol by a sensitive fluorescent probe
NASA Astrophysics Data System (ADS)
Wu, Wen-Ying; Yang, Ji-Yuan; Du, Li-Ming; Wu, Hao; Li, Chang-Feng
2011-08-01
The competitive reaction between ethambutol and two fluorescent probes (i.e., berberine and palmatine) for occupancy of the cucurbit[7]uril (CB[7]) cavity was studied by spectrofluorometry. The CB[7] reacts with these probes to form stable complexes, and the fluorescence intensity of the complexes is greatly enhanced. In addition, the excitation and emission wavelengths of their complexes moved to wavelengths of 343 nm and 495 nm, respectively. However, the addition of ethambutol dramatically quenches the fluorescence intensity of the two complexes. Accordingly, a couple of new fluorescence quenching methods for the determination of ethambutol were established. The methods can be applied for quantifying ethambutol. A linear relationship between the fluorescence quenching values (Δ F) and ethambutol concentration exists in the range of 5.0-1000.0 ng mL -1, with a correlation coefficient ( r) of 0.9997. The detection limit is 1.7 ng mL -1. The fluorescent probe of berberine has higher sensitivity than palmatine. This paper also discusses the mechanism of fluorescence indicator probes.
NASA Astrophysics Data System (ADS)
Xu, Chen; Zhang, Cheng; Wang, Yingxi; Li, Liu; Li, Ling; Whittaker, Andrew K.
2017-12-01
In this study, novel magnetic core-shell nanoparticles Fe3O4@La-BTC/GO have been synthesized by the layer-by-layer self-assembly (LBL) method and further modified by attachment of amino-modified PEG chains. The nanoparticles were thoroughly characterized by x-ray diffraction, FTIR, scanning electron microscopy and transmission electron microscopy. The core-shell structure was shown to be controlled by the LBL method. The drug loading of doxorubicin (DOX) within the Fe3O4@La-BTC/GO-PEG nanoparticles with different numbers of deposited layers was investigated. It was found that DOX loading increased with increasing number of metal organic framework coating layers, indicating that the drug loading can be controlled through the controllable LBL method. Cytotoxicity assays indicated that the Fe3O4@La-BTC/GO-PEG nanoparticles were biocompatible. The DOX was released rapidly at pH 3.8 and pH 5.8, but at pH 7.4 the rate and extent of release was greatly attenuated. The nanoparticles therefore demonstrate an excellent pH-triggered drug release. In addition, the particles could be tracked by magnetic resonance imaging (MRI) and fluorescence optical imaging (FOI). A clear dose-dependent contrast enhancement in T 2-weighted MR images and fluorescence images indicate the potential of these nanoparticles as dual-mode MRI/FOI contrast agents.
Laser photolysis of caged calcium: rates of calcium release by nitrophenyl-EGTA and DM-nitrophen.
Ellis-Davies, G C; Kaplan, J H; Barsotti, R J
1996-01-01
Nitrophenyl-EGTA and DM-nitrophen are Ca2+ cages that release Ca2+ when cleaved upon illumination with near-ultraviolet light. Laser photolysis of nitrophenyl-EGTA produced transient intermediates that decayed biexponentially with rates of 500,000 s-1 and 100,000 s-1 in the presence of saturating Ca2+ and 290,000 s-1 and 68,000 s-1 in the absence of Ca2+ at pH 7.2 and 25 degrees C. Laser photolysis of nitrophenyl-EGTA in the presence of Ca2+ and the Ca2+ indicator Ca-orange-5N produced a monotonic increase in the indicator fluorescence, which had a rate of 68,000 s-1 at pH 7.2 and 25 degrees C. Irradiation of DM-nitrophen produced similar results with somewhat slower kinetics. The transient intermediates decayed with rates of 80,000 s-1 and 11,000 s-1 in the presence of Ca2+ and 59,000 s-1 and 3,600 s-1 in the absence of Ca2+ at pH 7.2 and 25 degrees C. The rate of increase in Ca(2+)-indicator fluorescence produced upon photolysis of the DM-nitrophen: Ca2+ complex was 38,000 s-1 at pH 7.2 and 25 degrees C. In contrast, pulses in Ca2+ concentration were generated when the chelator concentrations were more than the total Ca2+ concentration. Photoreleased Ca2+ concentration stabilized under these circumstances to a steady state within 1-2 ms. PMID:8789118
Xu, Huan; Zhang, Wei; Li, Yan; Ye, Fei F; Yin, Peng P; Yu, Xiu; Hu, Mei N; Fu, Yuan S; Wang, Che; Shang, De J
2014-11-01
A novel bifunctional liposome with long-circulating and pH-sensitive properties was constructed using poly(2-ethyl-oxazoline)-cholesteryl methyl carbonate (PEtOz-CHMC) in this study. PEtOz-CHMC was synthesized and characterized by TLC, IR and (1)H-NMR. The obtained PEtOz lipid was inserted into liposomes by the post-insertion method. Through a series of experiments, such as drug release, tumor cell uptake, cytotoxicity, calcium-induced aggregation, pharmacokinetic experiments, etc., the pH-sensitive and long-circulating properties of PEtOzylated liposomes was identified. PEtOz-CHMC modified liposomes (PEtOz-L) showed increased calcein release at low pH. Flow cytometric analysis results showed that the fusion and cellular uptake of PEtOz-L could be promoted significantly at pH 6.4 compared with those at pH 7.4. Confocal laser scanning microscope observations revealed that PEtOz-L could respond to low endosomal pH and directly released the fluorescent tracer into the cytoplasm. MTT assays in HeLa cells demonstrated that doxorubicin hydrochloride (DOX) loaded PEtOz-L exhibited stronger anti-tumor activity in a medium at pH 6.4 than in a medium pH 7.4. PEtOz-L remained stable when these liposomes were incubated in calcium chloride solution. The cumulative calcein release rate of PEtOz-L was significantly lower than that of CL when the liposomes were dialysed in PBS. The pharmacokinetic experiments of liposomes in rats showed that t 1/2 and AUC of PEtOz-L were 4.13 times and 4.71 times higher than those of CL. PEtOzylated liposomes exhibits excellent long-circulating and pH-sensitive properties. Our results suggest that PEtOz is a promising biomaterial for the modification of liposome in drug delivery.
Cheng, Jinghui; Gou, Fei; Zhang, Xiaohong; Shen, Guangyu; Zhou, Xiangge; Xiang, Haifeng
2016-09-19
We report a class of multiresponsive colorimetric and fluorescent pH probes based on three different reaction mechanisms including cation exchange, protonation, and hydrolysis reaction of K(I), Ca(II), Zn(II), Cu(II), Al(III), and Pd(II) Salen complexes. Compared with traditional pure organic pH probes, these complex-based pH probes exhibited a much better selectivity due to the shielding function of the filled-in metal ion in the complex. Their pH sensing performances were affected by the ligand structure and the central metal ion. This work is the first report of "off-on-on'-off" colorimetric and fluorescent pH probes that possess three different reaction mechanisms and should inspire the design of multiple-responsive probes for important analytes in biological systems.
NASA Astrophysics Data System (ADS)
Megyesi, Mónika; Biczók, László
2006-06-01
Remarkably strong binding of berberine to 4-sulfonatocalix[8]arene was found in aqueous solution, which led to fluorescence quantum yield increase of a factor about 40 at pH 2. The hypsochromic shift of the fluorescence maximum implied that berberine sensed less polar microenvironment when confined to SCX8. The stability of the supramolecular complex significantly diminished when sulfocalixarenes of smaller ring size served as host compounds but the pH affected the association strength to a much lesser extent. All berberine complexes proved to be barely fluorescent at pH 12.2 because of excited state quenching by the hosts via electron transfer.
Dual responsive PNIPAM-chitosan targeted magnetic nanopolymers for targeted drug delivery
NASA Astrophysics Data System (ADS)
Yadavalli, Tejabhiram; Ramasamy, Shivaraman; Chandrasekaran, Gopalakrishnan; Michael, Isaac; Therese, Helen Annal; Chennakesavulu, Ramasamy
2015-04-01
A dual stimuli sensitive magnetic hyperthermia based drug delivery system has been developed for targeted cancer treatment. Thermosensitive amine terminated poly-N-isopropylacrylamide complexed with pH sensitive chitosan nanoparticles was prepared as the drug carrier. Folic acid and fluorescein were tagged to the nanopolymer complex via N-hydroxysuccinimide and ethyl-3-(3-dimethylaminopropyl)carbodiimide reaction to form a fluorescent and cancer targeting magnetic carrier system. The formation of the polymer complex was confirmed using infrared spectroscopy. Gadolinium doped nickel ferrite nanoparticles prepared by a hydrothermal method were encapsulated in the polymer complex to form a magnetic drug carrier system. The proton relaxation studies on the magnetic carrier system revealed a 200% increase in the T1 proton relaxation rate. These magnetic carriers were loaded with curcumin using solvent evaporation method with a drug loading efficiency of 86%. Drug loaded nanoparticles were tested for their targeting and anticancer properties on four cancer cell lines with the help of MTT assay. The results indicated apoptosis of cancer cell lines within 3 h of incubation.
Yang, Qingbo; Wang, Hanzheng; Lan, Xinwei; Cheng, Baokai; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa
2015-02-01
pH sensing at the single-cell level without negatively affecting living cells is very important but still a remaining issue in the biomedical studies. A 70 μm reflection-mode fiber-optic micro-pH sensor was designed and fabricated by dip-coating thin layer of organically modified aerogel onto a tapered spherical probe head. A pH sensitive fluorescent dye 2', 7'-Bis (2-carbonylethyl)-5(6)-carboxyfluorescein (BCECF) was employed and covalently bonded within the aerogel networks. By tuning the alkoxide mixing ratio and adjusting hexamethyldisilazane (HMDS) priming procedure, the sensor can be optimized to have high stability and pH sensing ability. The in vitro real-time sensing capability was then demonstrated in a simple spectroscopic way, and showed linear measurement responses with a pH resolution up to an average of 0.049 pH unit within a narrow, but biological meaningful pH range of 6.12-7.81. Its novel characterizations of high spatial resolution, reflection mode operation, fast response and high stability, great linear response within biological meaningful pH range and high pH resolutions, make this novel pH probe a very cost-effective tool for chemical/biological sensing, especially within the single cell level research field.
Yang, Qingbo; Wang, Hanzheng; Lan, Xinwei; Cheng, Baokai; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa
2014-01-01
pH sensing at the single-cell level without negatively affecting living cells is very important but still a remaining issue in the biomedical studies. A 70 μm reflection-mode fiber-optic micro-pH sensor was designed and fabricated by dip-coating thin layer of organically modified aerogel onto a tapered spherical probe head. A pH sensitive fluorescent dye 2′, 7′-Bis (2-carbonylethyl)-5(6)-carboxyfluorescein (BCECF) was employed and covalently bonded within the aerogel networks. By tuning the alkoxide mixing ratio and adjusting hexamethyldisilazane (HMDS) priming procedure, the sensor can be optimized to have high stability and pH sensing ability. The in vitro real-time sensing capability was then demonstrated in a simple spectroscopic way, and showed linear measurement responses with a pH resolution up to an average of 0.049 pH unit within a narrow, but biological meaningful pH range of 6.12–7.81. Its novel characterizations of high spatial resolution, reflection mode operation, fast response and high stability, great linear response within biological meaningful pH range and high pH resolutions, make this novel pH probe a very cost-effective tool for chemical/biological sensing, especially within the single cell level research field. PMID:25530670
Das, Poushali; Ganguly, Sayan; Bose, Madhuparna; Mondal, Subhadip; Choudhary, Sumita; Gangopadhyay, Subhashis; Das, Amit Kumar; Banerjee, Susanta; Das, Narayan Chandra
2018-07-01
Carbon dots with heteroatom co-doping associated with consummate luminescence features are of acute interest in diverse applications such as biomolecule markers, chemical sensing, photovoltaic, and trace element detection. Herein, we demonstrate a straightforward, highly efficient hydrothermal dehydration technique to synthesize zinc and nitrogen co-doped multifunctional carbon dots (N, Zn-CDs) with superior quantum yield (50.8%). The luminescence property of the carbon dots can be tuned by regulating precursor ratio and surface oxidation states in the carbon dots. A unique attribution of the as-prepared carbon dots is the high monodispersity and robust excitation-independent emission behavior that is stable in enormously reactive environment and over a wide range of pH. These N, Zn-CDs unveils captivating bacteriostatic activity against gram-negative bacteria Escherichia coli. Furthermore, the excellent luminescence properties of these carbon dots were applied as a platform of sensitive biosensor for the detection of hydrogen peroxide. Under optimized conditions, these N, Zn-CDs reveals high sensitivity over a broad range of concentrations with an ultra-low limit of detection (LOD) indicating their pronounced prospective as a fluorescent probe for chemical sensing. Overall, the experimental outcomes propose that these zero-dimensional nano-dots could be developed as bacteriostatic agents to control and prevent the persistence and spreading of bacterial infections and as a fluorescent probe for hydrogen peroxide detection. Copyright © 2018 Elsevier B.V. All rights reserved.
El-Zaher, Asmaa A; Mahrouse, Marianne A
2013-01-01
A novel, selective, and sensitive reversed phase high-performance liquid chromatography (HPLC) method coupled with fluorescence detection has been developed for the determination of tobramycin (TOB) in pure form, in ophthalmic solution and in spiked human plasma. Since TOB lacks UV absorbing chromophores and native fluorescence, pre-column derivatization of TOB was carried out using fluorescamine reagent (0.01%, 1.5 mL) and borate buffer (pH 8.5, 2 mL). Experimental design was applied for optimization of the derivatization step. The resulting highly fluorescent stable derivative was chromatographed on C18 column and eluted using methanol:water (60:40, v/v) at a flow rate of 1 mL min(-1). A fluorescence detector (λex 390 and λem 480 nm) was used. The method was linear over the concentration range 20-200 ng mL(-1). The structure of the fluorescent product was proposed, the method was then validated and applied for the determination of TOB in human plasma. The results were statistically compared with the reference method, revealing no significant difference.
El-Zaher, Asmaa A.; Mahrouse, Marianne A.
2013-01-01
A novel, selective, and sensitive reversed phase high-performance liquid chromatography (HPLC) method coupled with fluorescence detection has been developed for the determination of tobramycin (TOB) in pure form, in ophthalmic solution and in spiked human plasma. Since TOB lacks UV absorbing chromophores and native fluorescence, pre-column derivatization of TOB was carried out using fluorescamine reagent (0.01%, 1.5 mL) and borate buffer (pH 8.5, 2 mL). Experimental design was applied for optimization of the derivatization step. The resulting highly fluorescent stable derivative was chromatographed on C18 column and eluted using methanol:water (60:40, v/v) at a flow rate of 1 mL min−1. A fluorescence detector (λex 390 and λem 480 nm) was used. The method was linear over the concentration range 20–200 ng mL−1. The structure of the fluorescent product was proposed, the method was then validated and applied for the determination of TOB in human plasma. The results were statistically compared with the reference method, revealing no significant difference. PMID:23700362
NASA Astrophysics Data System (ADS)
Luo, Aoheng; Wang, Hongqing; Wang, Yuyuan; Huang, Qiao; Zhang, Qin
2016-11-01
A novel rhodamine-based dual probe Rh-2 for trivalent ferric ions (Fe3 +) was successfully designed and synthesized, which exhibited a highly sensitive and selective recognition towards Fe3 + with an enhanced fluorescence emission in methanol-water media (v/v = 7/3, pH = 7.2). The probe Rh-2 could be applied to the determination of Fe3 + with a linear range covering from 3.0 × 10- 7 to 1.4 × 10- 5 M and a detection limit of 1.24 × 10- 8 M. Meanwhile, the binding ratio of Rh-2 and Fe3 + was found to be 1:1. Most importantly, the fluorescence and color signal changes of the Rh-2 solution were specific to Fe3 + over other commonly coexistent metal ions. Moreover, the probe Rh-2 has been used to image Fe3 + in living cells with satisfying results.
A novel Schiff-base as a Cu(II) ion fluorescent sensor in aqueous solution
NASA Astrophysics Data System (ADS)
Gündüz, Z. Yurtman; Gündüz, C.; Özpınar, C.; Urucu, O. Aydın
2015-02-01
A new fluorescent Cu(II) sensor (L) obtained from the Schiff base of 5,5‧-methylene-bis-salicylaldehyde with amidol (2,4-diaminophenol) was synthesized and characterized by FT-IR, MS, 1H NMR, 13C NMR techniques. In the presence of pH 6.5 (KHPO4-Na2HPO4) buffer solutions, copper reacted with L to form a stable 2:1 complex. Fluorescence spectroscopic study showed that Schiff base is highly sensitive towards Cu(II) over other metal ions (K+, Na+, Al3+, Ni2+, Co2+, Fe3+, Zn2+, Pb2+) in DMSO/H2O (30%, v/v). The sensor L was successfully applied to the determination of copper in standard reference material. The structural properties and molecular orbitals of the complex formed between L and Cu2+ ions were also investigated using quantum chemical computations.
NASA Astrophysics Data System (ADS)
Shtykov, Sergei N.; Smirnova, Tatyana D.; Kalashnikova, Natalja V.; Bylinkin, Yurii G.; Zhemerichkin, Dmitry A.
2006-07-01
Fluorescence enhancement of the Eu 3+ - oxytetracycline (OTC) chelate by addition of phenanthroline (Phen) and trioctyiphosphine oxide (TOPO) as well as micelles of anionic, catiomic and nonionic surfactants has been studied. As was found, in the presence of Phen as co-ligand and micelles of dodecylbenzene sulfonate as anionic surfactant the analytical signal increased by a factor of 8.5 and reached maximum value at pH 8.0 +/- 0.5. The dynamic concentration range of OTC determination was found to be 8.0 x 10 -8 - 4.0 × 10 -5 M (R2 = 0.991) and the detection limit 5.3 × 10 -8 M (3 σ criterion). The procedure based on europium-sensitized fluorescence has been developed for the determination of OTC in chicken meat with the recovery of 98.0-103.3%.
Nandi, Debabrata; Saha, Indranil; Ray, Suprakas Sinha; Maity, Arjun
2015-09-15
Reduced-graphene-oxide based superparamagnetic nanocomposite (GC) was fabricated and applied for the remediation of Ni(II) from an aqueous medium. The as-prepared GC was extensively characterized by Raman, TEM, AFM, SEM-EDX, SQUID, and BET analyses. Quantitative immobilization of Ni(II) in an aqueous solution by the fluorescent sensor platform of GC was explored at varying pH, doses, contact times, and temperatures. The pseudo-second-order kinetics equation governed the overall sorption process at optimized pH of 5 (±0.2). The superior monolayer sorption capacity was 228mgg(-1) at 300K. Negative ΔG(0) indicated the spontaneous sorption nature, whereas the positive ΔH(0) resulted from an increase in entropy (positive ΔS(0)) at the solid-liquid interface during the endothermic reaction. The lower enthalpy agreed with the relatively high regeneration (approximately 91%) of the GC by 0.1M HCl, because of the formation of stable tetrahedral complex. The physisorption was well corroborated by calculated sorption energy (EDR ∼7kJmol(-1)) and the nature of the Stern-Volmer plot of the fluorescence-quenching data with reaction time. The GC played a pivotal role as a static fluorescent sensor platform (fluorophore) for Ni(II) adsorption. Magnetic property also indicated that GC could be easily separated from fluids by exploiting its superparamagnetic property. Copyright © 2015 Elsevier Inc. All rights reserved.
Single-virus fusion experiments reveal proton influx into vaccinia virions and hemifusion lag times.
Schmidt, Florian I; Kuhn, Phillip; Robinson, Tom; Mercer, Jason; Dittrich, Petra S
2013-07-16
Recent studies have revealed new insights into the endocytosis of vaccinia virus (VACV). However, the mechanism of fusion between viral and cellular membranes remains unknown. We developed a microfluidic device with a cell-trap array for immobilization of individual cells, with which we analyzed the acid-dependent fusion of single virions. VACV particles incorporating enhanced green fluorescent protein (EGFP) and labeled with self-quenching concentrations of R18 membrane dye were used in combination with total internal reflection fluorescence microscopy to measure the kinetics of R18 dequenching and thus single hemifusion events initiated by a fast low-pH trigger. These studies revealed unexpectedly long lag phases between pH change and hemifusion. In addition, we found that EGFP fluorescence in the virus was quenched upon acidification, indicating that protons could access the virus core, possibly through a proton channel. In a fraction of virus particles, EGFP fluorescence was recovered, presumably after fusion-pore formation and exposure of the core to the physiological pH of the host-cell cytosol. Given that virus-encoded cation channels play a crucial role in the life cycle of many viruses and can serve as antiviral drug targets, further investigations into a potential VACV viroporin are justified. Our findings indicate that the microfluidic device described may be highly beneficial to similar studies requiring fast kinetic measurements. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Imaging of Brain Slices with a Genetically Encoded Voltage Indicator.
Quicke, Peter; Barnes, Samuel J; Knöpfel, Thomas
2017-01-01
Functional fluorescence microscopy of brain slices using voltage sensitive fluorescent proteins (VSFPs) allows large scale electrophysiological monitoring of neuronal excitation and inhibition. We describe the equipment and techniques needed to successfully record functional responses optical voltage signals from cells expressing a voltage indicator such as VSFP Butterfly 1.2. We also discuss the advantages of voltage imaging and the challenges it presents.
A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH
NASA Astrophysics Data System (ADS)
Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed
2015-06-01
Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (Ka = 3582.88 M-1) and selectivity for fructose over glucose at pH = 7.4. The sensor 1 showed a linear response toward D-fructose in the concentrations ranging from 2.5 × 10-5 to 4 × 10-4 mol L-1 with the detection limit of 1.3 × 10-5 mol L-1.
Lin, Jia-Hui; Yang, Ya-Chun; Shih, Ya-Chen; Hung, Szu-Ying; Lu, Chi-Yu; Tseng, Wei-Lung
2016-03-15
Fluorescent boron dipyrromethene (BODIPY) analogs are often used as sensors for detecting various species because of their relatively high extinction coefficients, outstanding fluorescence quantum yields, photostability, and pH-independent fluorescence. However, there is little-to-no information in the literature that describes the use of BODIPY analogs for detecting alkaline phosphatase (ALP) activity and inhibition. This study discovered that the fluorescence of BODIPY-conjugated adenosine triphosphate (BODIPY-ATP) was quenched by Fe(III) ions through photoinduced electron transfer. The ALP-catalyzed hydrolysis of BODIPY-ATP resulted in the formation of BODIPY-adenosine and phosphate ions. The fluorescence of the generated BODIPY-adenosine was insensitive to the change in the concentration of Fe(III) ions. Thus, the Fe(III)-induced fluorescence quenching of BODIPY-ATP can be paired with its ALP-mediated dephosphorylation to design a turn-on fluorescence probe for ALP sensing. A method detection limit at a signal-to-noise ratio of 3 for ALP was estimated to be 0.02 units/L (~6 pM; 1 ng/mL). This probe was used for the screening of ALP inhibitors, including Na3VO4, imidazole, and arginine. Because ALP is widely used in enzyme-linked immunosorbent assays, the probe was coupled to an ALP-linked immunosorbent assay for the sensitive and selective detection of immunoglobulin G (IgG). The lowest detectable concentration for IgG in this system was 5 ng/mL. Compared with the use of 3,6-fluorescein diphosphate as a signal reporter in an ALP-linked immunosorbent assay, the proposed system provided comparable sensitivity, large linear range, and high stability over temperature and pH changes. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Li; Yang, Guancao; Wu, Ping; Cai, Chenxin
2017-10-15
This work reports a convenient and real-time assay of alkaline phosphatase (ALP) in living cells based on a fluorescence quench-recovery process at a physiological pH using the boron-doped graphene quantum dots (BGQDs) as fluorophore. The fluorescence of BGQDs is found to be effectively quenched by Ce 3+ ions because of the coordination of Ce 3+ ions with the carboxyl group of BGQDs. Upon addition of adenosine triphosphate (ATP) into the system, the quenched fluorescence can be recovered by the ALP-positive expressed cells (such as MCF-7 cells) due to the removal of Ce 3+ ions from BGQDs surface by phosphate ions, which are generated from ATP under catalytic hydrolysis of ALP that expressed in cells. The extent of fluorescence signal recovery depends on the level of ALP in cells, which establishes the basis of ALP assay in living cells. This approach can also be used for specific discrimination of the ALP expression levels in different type of cells and thus sensitive detection of those ALP-positive expressed cells (for example MCF-7 cells) at a very low abundance (10±5 cells mL -1 ). The advantages of this approach are that it has high sensitivity because of the significant suppression of the background due to the Ce 3+ ion quenching the fluorescence of BGQDs, and has the ability of avoiding false signals arising from the nonspecific adsorption of non-target proteins because it operates via a fluorescence quench-recovery process. In addition, it can be extended to other enzyme systems, such as ATP-related kinases. Copyright © 2017 Elsevier B.V. All rights reserved.
Mandal, Tripti; Hossain, Anowar; Dhara, Anamika; Al Masum, Abdulla; Konar, Saugata; Manna, Saikat Kumar; Seth, Saikat Kumar; Pathak, Sudipta; Mukhopadhyay, Subrata
2018-06-20
A terpyridine based compound L1 was designed and synthesized as an "off-on" chemosensor for the detection of Zn2+. Chemosensor L1 showed excellent selectivity and sensitivity toward Zn2+ by exhibiting a large fluorescence enhancement (∼51-fold) at 370 nm whereas other competitive metal ions did not show any noticeable change in the emission spectra of chemosensor L1. The chemosensor (L1) was shown to detect Zn2+ ions down to 9.76 μM at pH 7.4. However, chemosensor L1 binds Zn2+ in a 1 : 2 ratio (receptor : metal) with an association constant of 1.85 × 104 (R2 = 0.993) and this 1 : 2 stoichiometric fashion is established on the basis of a Job plot and mass spectroscopy. DFT/TD-DFT calculations were carried out to understand the binding nature, coordination features and electronic properties of L1 and the L1-2Zn2+ complex. In addition, this "turn-on" fluorescence probe was effectively used to image intracellular Zn2+ ions in cultured MDA-MB-468 cells.
Kamimura, Masao; Kim, Jong Oh; Kabanov, Alexander V; Bronich, Tatiana K; Nagasaki, Yukio
2012-06-28
A new family of block ionomer complexes (BIC) formed by poly(ethylene glycol)-block-poly(4-vinylbenzylphosphonate) (PEG-b-PVBP) and various cationic surfactants was prepared and characterized. These complexes spontaneously self-assembled in aqueous solutions into particles with average size of 40-60nm and remained soluble over the entire range of the compositions of the mixtures including stoichiometric electroneutral complexes. Solution behavior and physicochemical properties of such BIC were very sensitive to the structure of cationic surfactants. Furthermore, such complexation was used for incorporation of cationic anti-cancer drug, doxorubicin (DOX), into the core of BIC with high loading capacity and efficiency. The DOX/PEG-b-PVBP BIC also displayed high stability against dilution, changes in ionic strength. Furthermore, DOX release at the extracellular pH of DOX/PEG-b-PVBP BIC was slow. It was greatly increased at the acidic pH mimicking the endosomal/lysosomal environment. Confocal fluorescence microscopy using live MCF-7 breast cancer cells suggested that DOX/PEG-b-PVBP BICs are transported to lysosomes. Subsequently, the drugs are released and exert cytotoxic effect killing these cancer cells. These findings indicate that the obtained complexes can be attractive candidates for delivery of cationic drugs to tumors. Copyright © 2012 Elsevier B.V. All rights reserved.
Watts, Spencer D.; Suchland, Katherine L.; Amara, Susan G.; Ingram, Susan L.
2012-01-01
Background Regulation of chloride gradients is a major mechanism by which excitability is regulated in neurons. Disruption of these gradients is implicated in various diseases, including cystic fibrosis, neuropathic pain and epilepsy. Relatively few studies have addressed chloride regulation in neuronal processes because probes capable of detecting changes in small compartments over a physiological range are limited. Methodology/Principal Findings In this study, a palmitoylation sequence was added to a variant of the yellow fluorescent protein previously described as a sensitive chloride indicator (YFPQS) to target the protein to the plasma membrane (mbYFPQS) of cultured midbrain neurons. The reporter partitions to the cytoplasmic face of the cellular membranes, including the plasma membrane throughout the neurons and fluorescence is stable over 30–40 min of repeated excitation showing less than 10% decrease in mbYFPQS fluorescence compared to baseline. The mbYFPQS has similar chloride sensitivity (k50 = 41 mM) but has a shifted pKa compared to the unpalmitoylated YFPQS variant (cytYFPQS) that remains in the cytoplasm when expressed in midbrain neurons. Changes in mbYFPQS fluorescence were induced by the GABAA agonist muscimol and were similar in the soma and processes of the midbrain neurons. Amphetamine also increased mbYFPQS fluorescence in a subpopulation of cultured midbrain neurons that was reversed by the selective dopamine transporter (DAT) inhibitor, GBR12909, indicating that mbYFPQS is sensitive enough to detect endogenous DAT activity in midbrain dopamine (DA) neurons. Conclusions/Significance The mbYFPQS biosensor is a sensitive tool to study modulation of intracellular chloride levels in neuronal processes and is particularly advantageous for simultaneous whole-cell patch clamp and live-cell imaging experiments. PMID:22506078