Science.gov

Sample records for phages infecting marine

  1. Phage treatment of human infections

    PubMed Central

    Abedon, Stephen T; Kuhl, Sarah J; Blasdel, Bob G

    2011-01-01

    Phages as bactericidal agents have been employed for 90 years as a means of treating bacterial infections in humans as well as other species, a process known as phage therapy. In this review we explore both the early historical and more modern use of phages to treat human infections. We discuss in particular the little-reviewed French early work, along with the Polish, US, Georgian and Russian historical experiences. We also cover other, more modern examples of phage therapy of humans as differentiated in terms of disease. In addition, we provide discussions of phage safety, other aspects of phage therapy pharmacology, and the idea of phage use as probiotics. PMID:22334863

  2. Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchanges.

    PubMed

    Huang, Sijun; Wang, Kui; Jiao, Nianzhi; Chen, Feng

    2012-02-01

    Investigating the interactions between marine cyanobacteria and their viruses (phages) is important towards understanding the dynamic of ocean's primary productivity. Genome sequencing of marine cyanophages has greatly advanced our understanding about their ecology and evolution. Among 24 reported genomes of cyanophages that infect marine picocyanobacteria, 17 are from cyanomyoviruses and six from cyanopodoviruses, and only one from cyanosiphovirus (Prochlorococcus phage P-SS2). Here we present four complete genome sequences of siphoviruses (S-CBS1, S-CBS2, S-CBS3 and S-CBS4) that infect four different marine Synechococcus strains. Three distinct subtypes were recognized among the five known marine siphoviruses (including P-SS2) in terms of morphology, genome architecture, gene content and sequence similarity. Our study revealed that cyanosiphoviruses are genetically diverse with polyphyletic origin. No core genes were found across these five cyanosiphovirus genomes, and this is in contrast to the fact that many core genes have been found in cyanomyovirus or cyanopodovirus genomes. Interestingly, genes encoding three structural proteins and a lysozyme of S-CBS1 and S-CBS3 showed homology to a prophage-like genetic element in two freshwater Synechococcus elongatus genomes. Re-annotation of the prophage-like genomic region suggests that S. elongatus may contain an intact prophage. Cyanosiphovirus genes involved in DNA metabolism and replication share high sequence homology with those in cyanobacteria, and further phylogenetic analysis based on these genes suggests that ancient and selective genetic exchanges occurred, possibly due to past prophage integration. Metagenomic analysis based on the Global Ocean Sampling database showed that cyanosiphoviruses are present in relatively low abundance in the ocean surface water compared to cyanomyoviruses and cyanopodoviruses. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Complete genome sequences of bacteriophages P12002L and P12002S, two lytic phages that infect a marine Polaribacter strain.

    PubMed

    Kang, Ilnam; Jang, Hani; Cho, Jang-Cheon

    2015-01-01

    The bacterial genus Polaribacter is distributed widely in marine environments; however, there have been no reports of phages infecting Polaribacter strains. Here, we describe the isolation and genome sequencing of two lytic siphophages, P12002L and P12002S, that infect Polaribacter sp. strain IMCC12002. The two phages and host strain were isolated from coastal seawater of Korea. Complete genome sequences of the two phages were similar to each other and about 50 kb in length, with a G + C content of 28.9 %. The two genomes showed typical characteristics of phage genomes: a modular structure and high proportion of hypothetical proteins. The genome sequences have been deposited in GenBank under accession numbers KR136259 (P12002L) and KR136260 (P12002S).

  4. Preparation of RNA from bacteria infected with bacteriophages: a case study from the marine unicellular Synechococcus sp. WH7803 infected by phage S-PM2.

    PubMed

    Shan, Jinyu; Clokie, Martha

    2009-01-01

    Bacteriophages manipulate bacterial gene expression in order to express their own genes or influence bacterial metabolism. Gene expression can be studied using real-time PCR or microarrays. Either technique requires the prior isolation of high quality RNA uncontaminated by the presence of genomic DNA. We outline the considerations necessary when working with bacteriophage infected bacterial cells. We also give an example of a protocol for extraction and quantification of high quality RNA from infected bacterial cells, using the marine cyanobacterium WH7803 and the phage S-PM2 as a case study. This protocol can be modified to extract RNA from the host/bacteriophage of interest.

  5. Phage therapy of pulmonary infections

    PubMed Central

    Abedon, Stephen T

    2015-01-01

    It is generally agreed that a bacteriophage-associated phenomenon was first unambiguously observed one-hundred years ago with the findings of Twort in 1915. This was independently followed by complementary observations by d'Hérelle in 1917. D'Hérelle's appreciation of the bacteriophage phenomenon appears to have directly led to the development of phages as antibacterial agents within a variety of contexts, including medical and agricultural. Phage use to combat nuisance bacteria appears to be especially useful where targets are sufficiently problematic, suitably bactericidal phages exist, and alternative approaches are lacking in effectiveness, availability, safety, or cost effectiveness, etc. Phage development as antibacterial agents has been strongest particularly when antibiotics have been less available or useful, e.g., such as in the treatment of chronic infections by antibiotic-resistant bacteria. One relatively under-explored or at least not highly reported use of phages as therapeutic agents has been to combat bacterial infections of the lungs and associated tissues. These infections are diverse in terms of their etiologies, manifestations, and also in terms of potential strategies of phage delivery. Here I review the literature considering the phage therapy of pulmonary and pulmonary-related infections, with emphasis on reports of clinical treatment along with experimental treatment of pulmonary infections using animal models. PMID:26442188

  6. Phage-bacteria infection networks: From nestedness to modularity

    NASA Astrophysics Data System (ADS)

    Flores, Cesar O.; Valverde, Sergi; Weitz, Joshua S.

    2013-03-01

    Bacteriophages (viruses that infect bacteria) are the most abundant biological life-forms on Earth. However, very little is known regarding the structure of phage-bacteria infections. In a recent study we re-evaluated 38 prior studies and demonstrated that phage-bacteria infection networks tend to be statistically nested in small scale communities (Flores et al 2011). Nestedness is consistent with a hierarchy of infection and resistance within phages and bacteria, respectively. However, we predicted that at large scales, phage-bacteria infection networks should be typified by a modular structure. We evaluate and confirm this hypothesis using the most extensive study of phage-bacteria infections (Moebus and Nattkemper 1981). In this study, cross-infections were evaluated between 215 marine phages and 286 marine bacteria. We develop a novel multi-scale network analysis and find that the Moebus and Nattkemper (1981) study, is highly modular (at the whole network scale), yet also exhibits nestedness and modularity at the within-module scale. We examine the role of geography in driving these modular patterns and find evidence that phage-bacteria interactions can exhibit strong similarity despite large distances between sites. CFG acknowledges the support of CONACyT Foundation. JSW holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and acknowledges the support of the James S. McDonnell Foundation

  7. Phages targeting infected tissues: novel approach to phage therapy.

    PubMed

    Górski, Andrzej; Dąbrowska, Krystyna; Hodyra-Stefaniak, Katarzyna; Borysowski, Jan; Międzybrodzki, Ryszard; Weber-Dąbrowska, Beata

    2015-01-01

    While the true efficacy of phage therapy still requires formal confirmation in clinical trials, it continues to offer realistic potential treatment in patients in whom antibiotics have failed. Novel developments and approaches are therefore needed to ascertain that future clinical trials would evaluate the therapy in its optimal form thus allowing for reliable conclusions regarding the true value of phage therapy. In this article, we present our vision to develop and establish a bank of phages specific to most threatening pathogens and armed with homing peptides enabling their localization in infected tissues in densities assuring efficient and stable eradication of infection.

  8. Elevated lytic phage production as a consequence of particle colonization by a marine Flavobacterium (Cellulophaga sp.).

    PubMed

    Riemann, Lasse; Grossart, Hans-Peter

    2008-10-01

    Bacteria growing on marine particles generally have higher densities and cell-specific activities than free-living bacteria. Since rapidity of phage adsorption is dependent on host density, while infection productivity is a function of host physiological status, we hypothesized that marine particles are sites of elevated phage production. In the present study, organic-matter-rich agarose beads and a marine phage-host pair (Cellulophaga sp., PhiS(M)) were used as a model system to examine whether bacterial colonization of particles increases phage production. While no production of phages was observed in plain seawater, the presence of beads enhanced attachment and growth of bacteria, as well as phage production. This was observed because of extensive lysis of bacteria in the presence of beads and a subsequent increase in phage abundance both on beads and in the surrounding water. After 12 h, extensive phage lysis reduced the density of attached bacteria; however, after 32 h, bacterial abundance increased again. Reexposure to phages and analyses of bacterial isolates suggested that this regrowth on particles was by phage-resistant clones. The present demonstration of elevated lytic phage production associated with model particles illustrates not only that a marine phage has the ability to successfully infect and lyse surface-attached bacteria but also that acquisition of resistance may affect temporal phage-host dynamics on particles. These findings from a model system may have relevance to the distribution of phage production in environments rich in particulate matter (e.g., in coastal areas or during phytoplankton blooms) where a significant part of phage production may be directly linked to these nutrient-rich "hot spots."

  9. Characterization of two polyvalent phages infecting Enterobacteriaceae

    PubMed Central

    Hamdi, Sana; Rousseau, Geneviève M.; Labrie, Simon J.; Tremblay, Denise M.; Kourda, Rim Saïed; Ben Slama, Karim; Moineau, Sylvain

    2017-01-01

    Bacteriophages display remarkable genetic diversity and host specificity. In this study, we explore phages infecting bacterial strains of the Enterobacteriaceae family because of their ability to infect related but distinct hosts. We isolated and characterized two novel virulent phages, SH6 and SH7, using a strain of Shigella flexneri as host bacterium. Morphological and genomic analyses revealed that phage SH6 belongs to the T1virus genus of the Siphoviridae family. Conversely, phage SH7 was classified in the T4virus genus of the Myoviridae family. Phage SH6 had a short latent period of 16 min and a burst size of 103 ± 16 PFU/infected cell while the phage SH7 latent period was 23 min with a much lower burst size of 26 ± 5 PFU/infected cell. Moreover, phage SH6 was sensitive to acidic conditions (pH < 5) while phage SH7 was stable from pH 3 to 11 for 1 hour. Of the 35 bacterial strains tested, SH6 infected its S. flexneri host strain and 8 strains of E. coli. Phage SH7 lysed additionally strains of E. coli O157:H7, Salmonella Paratyphi, and Shigella dysenteriae. The broader host ranges of these two phages as well as their microbiological properties suggest that they may be useful for controlling bacterial populations. PMID:28091598

  10. Experimental Phage Therapy for Burkholderia pseudomallei Infection

    PubMed Central

    Leang-Chung, Choh; Vellasamy, Kumutha Malar; Mariappan, Vanitha; Li-Yen, Chang; Vadivelu, Jamuna

    2016-01-01

    Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen intrinsically resistant to a variety of antibiotics. Phages have been developed for use as an alternative treatment therapy, particularly for bacterial infections that do not respond to conventional antibiotics. In this study, we investigated the use of phages to treat cells infected with B. pseudomallei. Phage C34 isolated from seawater was purified and characterised on the basis of its host range and morphology using transmission electron microscopy (TEM). Phage C34 was able to lyse 39.5% of B. pseudomallei clinical strains. Due to the presence of contractile tail, phage C34 is classified as a member of the family Myoviridae, a tailed double-stranded DNA virus. When 2 × 105 A549 cells were exposed to 2 × 107 PFU of phage C34, 24 hours prior to infection with 2 × 106 CFU of B. pseudomallei, it was found that the survivability of the cells increased to 41.6 ± 6.8% as compared to 22.8 ± 6.0% in untreated control. Additionally, application of phage successfully rescued 33.3% of mice infected with B. pseudomallei and significantly reduced the bacterial load in the spleen of the phage-treated mice. These findings indicate that phage can be a potential antimicrobial agent for B. pseudomallei infections. PMID:27387381

  11. [Phage therapy for bacterial infection of burn].

    PubMed

    Peng, Y Z; Huang, G T

    2016-09-20

    With the long-term and widespread use of antibiotics, drug resistance of bacteria has become a major problem in the treatment of burn infection. For treating multidrug resistant bacteria, phage therapy has become the focus of attention. Development of phage therapy to fill the blank of this field in China is extremely urgent.

  12. Phage resistance of a marine bacterium, Roseobacter denitrificans OCh114, as revealed by comparative proteomics.

    PubMed

    Huang, Chunxiao; Zhang, Yongyu; Jiao, Nianzhi

    2010-08-01

    Roseobacter is a dominant lineage in the marine environment. This group of bacteria is diverse in terms of both their phylogenetic composition and their physiological potential. Roseobacter denitrificans OCh114 is one of the most studied bacteria of the Roseobacter lineage. Recently, a lytic phage (RDJLPhi1) that infects this bacterium was isolated and a mutant strain (M1) of OCh114 that is resistant to RDJLPhi1 was also obtained. Here, we investigate the mechanisms supporting phage resistance of M1. Our results excluded the possibilities of several phage resistance mechanisms, including abortive infection, lysogeny, and the clustered regularly interspaced short palindromic repeats (CRISPRs) related mechanism. Adsorption kinetics assays revealed that adsorption inhibition might be a potential cause for the phage resistance of M1. Comparative proteomic analysis of M1 and OCh114 revealed significant changes in the membrane protein compliment of these bacteria. Five membrane proteins with important biological functions were significantly down-regulated in the phage-resistant M1. Meanwhile, several outer membrane porins with different modifications and an OmpA family domain protein were markedly up-regulated. We hypothesize that the down-regulated membrane proteins in M1 may serve as the potential phage receptors, whose absence prevented the adsorption of phage RDJLPhi1 to host cells and subsequent infection.

  13. Comparative Omics and Trait Analyses of Marine Pseudoalteromonas Phages Advance the Phage OTU Concept

    PubMed Central

    Duhaime, Melissa B.; Solonenko, Natalie; Roux, Simon; Verberkmoes, Nathan C.; Wichels, Antje; Sullivan, Matthew B.

    2017-01-01

    Viruses influence the ecology and evolutionary trajectory of microbial communities. Yet our understanding of their roles in ecosystems is limited by the paucity of model systems available for hypothesis generation and testing. Further, virology is limited by the lack of a broadly accepted conceptual framework to classify viral diversity into evolutionary and ecologically cohesive units. Here, we introduce genomes, structural proteomes, and quantitative host range data for eight Pseudoalteromonas phages isolated from Helgoland (North Sea, Germany) and use these data to advance a genome-based viral operational taxonomic unit (OTU) definition. These viruses represent five new genera and inform 498 unaffiliated or unannotated protein clusters (PCs) from global virus metagenomes. In a comparison of previously sequenced Pseudoalteromonas phage isolates (n = 7) and predicted prophages (n = 31), the eight phages are unique. They share a genus with only one other isolate, Pseudoalteromonas podophage RIO-1 (East Sea, South Korea) and two Pseudoalteromonas prophages. Mass-spectrometry of purified viral particles identified 12–20 structural proteins per phage. When combined with 3-D structural predictions, these data led to the functional characterization of five previously unidentified major capsid proteins. Protein functional predictions revealed mechanisms for hijacking host metabolism and resources. Further, they uncovered a hybrid sipho-myovirus that encodes genes for Mu-like infection rarely described in ocean systems. Finally, we used these data to evaluate a recently introduced definition for virus populations that requires members of the same population to have >95% average nucleotide identity across at least 80% of their genes. Using physiological traits and genomics, we proposed a conceptual model for a viral OTU definition that captures evolutionarily cohesive and ecologically distinct units. In this trait-based framework, sensitive hosts are considered viral

  14. Bacteriophages drive strain diversification in a marine Flavobacterium: implications for phage resistance and physiological properties.

    PubMed

    Middelboe, Mathias; Holmfeldt, Karin; Riemann, Lasse; Nybroe, Ole; Haaber, Jakob

    2009-08-01

    Genetic, structural and physiological differences between strains of the marine bacterium Cellulophaga baltica MM#3 (Flavobacteriaceae) developing in response to the activity of two virulent bacteriophages, Phi S(M) and Phi S(T), was investigated during 3 weeks incubation in chemostat cultures. A distinct strain succession towards increased phage resistance and a diversification of the metabolic properties was observed. During the incubation the bacterial population diversified from a single strain, which was sensitive to 24 tested Cellulophaga phages, into a multistrain and multiresistant population, where the dominant strains had lost susceptibility to up to 22 of the tested phages. By the end of the experiment the cultures reached a quasi steady state dominated by Phi S(T)-resistant and Phi S(M) + Phi S(T)-resistant strains coexisting with small populations of phage-sensitive strains sustaining both phages at densities of > 10(6) plaque forming units (pfu) ml(-1). Loss of susceptibility to phage infection was associated with a reduction in the strains' ability to metabolize various carbon sources as demonstrated by BIOLOG assays. This suggested a cost of resistance in terms of reduced physiological capacity. However, there was no direct correlation between the degree of resistance and the loss of metabolic properties, suggesting either the occurrence of compensatory mutations in successful strains or that the cost of resistance in some strains was associated with properties not resolved by the BIOLOG assay. The study represents the first direct demonstration of phage-driven generation of functional diversity within a marine bacterial host population with significant implications for both phage susceptibility and physiological properties. We propose, therefore, that phage-mediated selection for resistant strains contributes significantly to the extensive microdiversity observed within specific bacterial species in marine environments.

  15. A Virulent Phage Infecting Lactococcus garvieae, with Homology to Lactococcus lactis Phages

    PubMed Central

    Eraclio, Giovanni; Tremblay, Denise M.; Lacelle-Côté, Alexia; Labrie, Simon J.; Fortina, Maria Grazia

    2015-01-01

    A new virulent phage belonging to the Siphoviridae family and able to infect Lactococcus garvieae strains was isolated from compost soil. Phage GE1 has a prolate capsid (56 by 38 nm) and a long noncontractile tail (123 nm). It had a burst size of 139 and a latent period of 31 min. Its host range was limited to only two L. garvieae strains out of 73 tested. Phage GE1 has a double-stranded DNA genome of 24,847 bp containing 48 predicted open reading frames (ORFs). Putative functions could be assigned to only 14 ORFs, and significant matches in public databases were found for only 17 ORFs, indicating that GE1 is a novel phage and its genome contains several new viral genes and encodes several new viral proteins. Of these 17 ORFs, 16 were homologous to deduced proteins of virulent phages infecting the dairy bacterium Lactococcus lactis, including previously characterized prolate-headed phages. Comparative genome analysis confirmed the relatedness of L. garvieae phage GE1 to L. lactis phages c2 (22,172 bp) and Q54 (26,537 bp), although its genome organization was closer to that of phage c2. Phage GE1 did not infect any of the 58 L. lactis strains tested. This study suggests that phages infecting different lactococcal species may have a common ancestor. PMID:26407890

  16. Current taxonomy of phages infecting lactic acid bacteria

    PubMed Central

    Mahony, Jennifer; van Sinderen, Douwe

    2013-01-01

    Phages infecting lactic acid bacteria have been the focus of significant research attention over the past three decades. Through the isolation and characterization of hundreds of phage isolates, it has been possible to classify phages of the dairy starter and adjunct bacteria Lactococus lactis, Streptococcus thermophilus, Leuconostoc spp., and Lactobacillus spp. Among these, phages of L. lactis have been most thoroughly scrutinized and serve as an excellent model system to address issues that arise when attempting taxonomic classification of phages infecting other LAB species. Here, we present an overview of the current taxonomy of phages infecting LAB genera of industrial significance, the methods employed in these taxonomic efforts and how these may be employed for the taxonomy of phages of currently underrepresented and emerging phage species. PMID:24478767

  17. Aerosol Phage Therapy Efficacy in Burkholderia cepacia Complex Respiratory Infections

    PubMed Central

    Semler, Diana D.; Goudie, Amanda D.; Finlay, Warren H.

    2014-01-01

    Phage therapy has been suggested as a potential treatment for highly antibiotic-resistant bacteria, such as the species of the Burkholderia cepacia complex (BCC). To address this hypothesis, experimental B. cenocepacia respiratory infections were established in mice using a nebulizer and a nose-only inhalation device. Following infection, the mice were treated with one of five B. cenocepacia-specific phages delivered as either an aerosol or intraperitoneal injection. The bacterial and phage titers within the lungs were assayed 2 days after treatment, and mice that received the aerosolized phage therapy demonstrated significant decreases in bacterial loads. Differences in phage activity were observed in vivo. Mice that received phage treatment by intraperitoneal injection did not demonstrate significantly reduced bacterial loads, although phage particles were isolated from their lung tissue. Based on these data, aerosol phage therapy appears to be an effective method for treating highly antibiotic-resistant bacterial respiratory infections, including those caused by BCC bacteria. PMID:24798268

  18. Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections.

    PubMed

    Semler, Diana D; Goudie, Amanda D; Finlay, Warren H; Dennis, Jonathan J

    2014-07-01

    Phage therapy has been suggested as a potential treatment for highly antibiotic-resistant bacteria, such as the species of the Burkholderia cepacia complex (BCC). To address this hypothesis, experimental B. cenocepacia respiratory infections were established in mice using a nebulizer and a nose-only inhalation device. Following infection, the mice were treated with one of five B. cenocepacia-specific phages delivered as either an aerosol or intraperitoneal injection. The bacterial and phage titers within the lungs were assayed 2 days after treatment, and mice that received the aerosolized phage therapy demonstrated significant decreases in bacterial loads. Differences in phage activity were observed in vivo. Mice that received phage treatment by intraperitoneal injection did not demonstrate significantly reduced bacterial loads, although phage particles were isolated from their lung tissue. Based on these data, aerosol phage therapy appears to be an effective method for treating highly antibiotic-resistant bacterial respiratory infections, including those caused by BCC bacteria.

  19. Characterization of Marine Temperate Phage-Host Systems Isolated from Mamala Bay, Oahu, Hawaii

    PubMed Central

    Jiang, Sunny C.; Kellogg, Christina A.; Paul, John H.

    1998-01-01

    To understand the ecological and genetic role of viruses in the marine environment, it is critical to know the infectivity of viruses and the types of interactions that occur between marine viruses and their hosts. We isolated four marine phages from turbid plaques by using four indigenous bacterial hosts obtained from concentrated water samples from Mamala Bay, Oahu, Hawaii. Two of the rod-shaped bacterial hosts were identified as Sphingomonas paucimobilis and Flavobacterium sp. All of the phage isolates were tailed phages and contained double-stranded DNA. Two of the phage isolates had morphologies typical of the family Siphoviridae, while the other two belonged to the families Myoviridae and Podoviridae. The head diameters of these viruses ranged from 47 to 70.7 nm, and the tail lengths ranged from 12 to 146 nm. The burst sizes ranged from 7.8 to 240 phage/bacterial cell, and the genome sizes, as determined by restriction digestion, ranged from 36 to 112 kb. The members of the Siphoviridae, T-φHSIC, and T-φD0, and the member of the Myoviridae, T-φD1B, were found to form lysogenic associations with their bacterial hosts, which were isolated from the same water samples. Hybridization of phage T-φHSIC probe with lysogenic host genomic DNA was observed in dot blot hybridization experiments, indicating that prophage T-φHSIC was integrated within the host genome. These phage-host systems are available for use in studies of marine lysogeny and transduction. PMID:9464390

  20. Selection of phages and conditions for the safe phage therapy against Pseudomonas aeruginosa infections.

    PubMed

    Krylov, Victor; Shaburova, Olga; Pleteneva, Elena; Krylov, Sergey; Kaplan, Alla; Burkaltseva, Maria; Polygach, Olga; Chesnokova, Elena

    2015-02-01

    The emergence of multidrug-resistant bacterial pathogens forced us to consider the phage therapy as one of the possible alternative approaches to treatment. The purpose of this paper is to consider the conditions for the safe, long-term use of phage therapy against various infections caused by Pseudomonas aeruginosa. We describe the selection of the most suitable phages, their most effective combinations and some approaches for the rapid recognition of phages unsuitable for use in therapy. The benefits and disadvantages of the various different approaches to the preparation of phage mixtures are considered, together with the specific conditions that are required for the safe application of phage therapy in general hospitals and the possibilities for the development of personalized phage therapy.

  1. Phage therapy in clinical practice: treatment of human infections.

    PubMed

    Kutter, Elizabeth; De Vos, Daniel; Gvasalia, Guram; Alavidze, Zemphira; Gogokhia, Lasha; Kuhl, Sarah; Abedon, Stephen T

    2010-01-01

    Phage therapy is the application of bacteria-specific viruses with the goal of reducing or eliminating pathogenic or nuisance bacteria. While phage therapy has become a broadly relevant technology, including veterinary, agricultural, and food microbiology applications, it is for the treatment or prevention of human infections that phage therapy first caught the world's imagination--see, especially, Arrowsmith by Sinclair Lewis (1925)--and which today is the primary motivator of the field. Nonetheless, though the first human phage therapy took place in the 1920s, by the 1940s the field, was in steep decline despite early promise. The causes were at least three-fold: insufficient understanding among researchers of basic phage biology; over exuberance, which led, along with ignorance, to carelessness; and the advent of antibiotics, an easier to handle as well as highly powerful category of antibacterials. The decline in phage therapy was neither uniform nor complete, especially in the former Soviet Republic of Georgia, where phage therapy traditions and practice continue to this day. In this review we strive toward three goals: 1. To provide an overview of the potential of phage therapy as a means of treating or preventing human diseases; 2. To explore the phage therapy state of the art as currently practiced by physicians in various pockets of phage therapy activity around the world, including in terms of potential commercialization; and 3. To avert a recapitulation of phage therapy's early decline by outlining good practices in phage therapy practice, experimentation, and, ultimately, commercialization.

  2. Temperate phages enhance pathogen fitness in chronic lung infection.

    PubMed

    Davies, Emily V; James, Chloe E; Kukavica-Ibrulj, Irena; Levesque, Roger C; Brockhurst, Michael A; Winstanley, Craig

    2016-10-01

    The Liverpool Epidemic Strain (LES) is a polylysogenic, transmissible strain of Pseudomonas aeruginosa, capable of superinfecting existing P. aeruginosa respiratory infections in individuals with cystic fibrosis (CF). The LES phages are highly active in the CF lung and may have a role in the competitiveness of the LES in vivo. In this study, we tested this by competing isogenic PAO1 strains that differed only by the presence or absence of LES prophages in a rat model of chronic lung infection. Lysogens invaded phage-susceptible populations, both in head-to-head competition and when invading from rare, in the spatially structured, heterogeneous lung environment. Appreciable densities of free phages in lung tissue confirmed active phage lysis in vivo. Moreover, we observed lysogenic conversion of the phage-susceptible competitor. These results suggest that temperate phages may have an important role in the competitiveness of the LES in chronic lung infection by acting as anti-competitor weapons.

  3. Marine phages as excellent tracers for reactive colloidal transport in porous media

    NASA Astrophysics Data System (ADS)

    Ghanem, Nawras; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.

    2016-04-01

    Question: Here we evaluate marine phages as specific markers of hydrological flow and reactive transport of colloidal particles in the Earth's critical zone (CZ). Marine phages and their bacterial hosts are naturally absent in the CZ, and can be detected with extremely high sensitivity. In the framework of the DFG Collaborative Research Center AquaDiva, we asked the following questions: (1) Are marine phages useful specific markers of hydrological flow and reactive transport in porous media? and (2) Which phage properties are relevant drivers for the transport of marine phages in porous media? Methods: Seven marine phages from different families (as well two commonly used terrestrial phages) were selected based on their morphology, size and physico-chemical surface properties (surface charge and hydrophobicity). Phage properties were assessed by electron microscopy, dynamic light scattering and water contact angle analysis (CA). Sand-filled laboratory percolation columns were used to study transport. The breakthrough curves of the phages were analyzed using the clean bed filtration theory and the XDLVO theory of colloid stability, respectively. Phages were quantified by a modified high- throughput plaque assay and a culture-independent particle counting method approach. Results: Our data show that most marine tested phages exhibited highly variable transport rates and deposition efficiency, yet generally high colloidal stability and viability. We find that size, morphology and hydrophobicity are key factors shaping the transport efficiency of phages. Differing deposition efficiencies of the phages were also supported by calculated XDLVO interaction energy profile. Conclusion: Marine phages have a high potential for the use as sensitive tracers in terrestrial habitats with their surface properties playing a crucial role for their transport. Marine phages however, exhibit differences in their deposition efficiency depending on their morphology, hydrophobicity and

  4. [Advances in the treatment of wound bacterial infection with phage].

    PubMed

    Cui, Zelong

    2015-10-01

    The treatment of wound bacterial infection is an extremely difficult problem in clinic, especially in patients with large wounds which are infected by multidrug resistant, pan-resistant or omni-resistant bacteria. In recent years, with a grim prospect of antibiotic resistance, phage therapy is re-valued by researchers after being ignored for nearly half a century. Phage therapy has made great achievements in prevention and control of bacterial infection of open wounds. This review is mainly focused on the latest research progress of phage therapy in wound bacterial infection.

  5. Characterization of Five Podoviridae Phages Infecting Citrobacter freundii

    PubMed Central

    Hamdi, Sana; Rousseau, Geneviève M.; Labrie, Simon J.; Kourda, Rim S.; Tremblay, Denise M.; Moineau, Sylvain; Slama, Karim B.

    2016-01-01

    Citrobacter freundii causes opportunistic infections in humans and animals, which are becoming difficult to treat due to increased antibiotic resistance. The aim of this study was to explore phages as potential antimicrobial agents against this opportunistic pathogen. We isolated and characterized five new virulent phages, SH1, SH2, SH3, SH4, and SH5 from sewage samples in Tunisia. Morphological and genomic analyses revealed that the five C. freundii phages belong to the Caudovirales order, Podoviridae family, and Autographivirinae subfamily. Their linear double-stranded DNA genomes range from 39,158 to 39,832 bp and are terminally redundant with direct repeats between 183 and 242 bp. The five genomes share the same organization as coliphage T7. Based on genomic comparisons and on the phylogeny of the DNA polymerases, we assigned the five phages to the T7virus genus but separated them into two different groups. Phages SH1 and SH2 are very similar to previously characterized phages phiYeO3-12 and phiSG-JL2, infecting, respectively, Yersinia enterocolitica and Salmonella enterica, as well as sharing more than 80% identity with most genes of coliphage T7. Phages SH3, SH4, and SH5 are very similar to phages K1F and Dev2, infecting, respectively, Escherichia coli and Cronobacter turicensis. Several structural proteins of phages SH1, SH3, and SH4 were detected by mass spectrometry. The five phages were also stable from pH 5 to 10. No genes coding for known virulence factors or integrases were found, suggesting that the five isolated phages could be good candidates for therapeutic applications to prevent or treat C. freundii infections. In addition, this study increases our knowledge about the evolutionary relationships within the T7virus genus. PMID:27446058

  6. Changes in Environmental Conditions Modify Infection Kinetics of Dairy Phages.

    PubMed

    Zaburlin, Delfina; Quiberoni, Andrea; Mercanti, Diego

    2017-04-08

    Latent period, burst time, and burst size, kinetic parameters of phage infection characteristic of a given phage/host system, have been measured for a wide variety of lactic acid bacteria. However, most studies to date were conducted in optimal growth conditions of host bacteria and did not consider variations due to changes in external factors. In this work, we determined the effect of temperature, pH, and starvation on kinetic parameters of phages infecting Lactobacillus paracasei, Lactobacillus plantarum, and Leuconostoc mesenteroides. For kinetics assessment, one-step growth curves were carried out in MRS broth at optimal conditions (control), lower temperature, pH 6.0 and 5.0 (MRS6 and MRS5, respectively), or in medium lacking carbon (MRSN) or nitrogen (MRSC) sources. Phage infection was progressively impaired as environmental conditions were modified from optimal. At lower temperature or pH, infection was delayed, as perceived by longer latent and burst times. Burst size, however, was lower, equal or higher than for controls, but this effect was highly dependent on the particular phage-host system studied. Phage infection was strongly inhibited in MRSC, but only mildly impaired in MRSN. Nevertheless, growth of all the bacterial strains tested was severely compromised by starvation, without significant differences between MRSC and MRSN, indicating that nitrogen compounds are specifically required for a successful phage infection, beyond their influence on bacterial growth.

  7. Phage abortive infection in lactococci: variations on a theme.

    PubMed

    Chopin, Marie-Christine; Chopin, Alain; Bidnenko, Elena

    2005-08-01

    Abortive infection (Abi) systems, also called phage exclusion, block phage multiplication and cause premature bacterial cell death upon phage infection. This decreases the number of progeny particles and limits their spread to other cells allowing the bacterial population to survive. Twenty Abi systems have been isolated in Lactococcus lactis, a bacterium used in cheese-making fermentation processes, where phage attacks are of economical importance. Recent insights in their expression and mode of action indicate that, behind diverse phenotypic and molecular effects, lactococcal Abis share common traits with the well-studied Escherichia coli systems Lit and Prr. Abis are widespread in bacteria, and recent analysis indicates that Abis might have additional roles other than conferring phage resistance.

  8. Isolation and Characterization of Phages Infecting Bacillus subtilis

    PubMed Central

    Krasowska, Anna; Biegalska, Anna; Augustyniak, Daria; Łoś, Marcin; Richert, Malwina; Łukaszewicz, Marcin

    2015-01-01

    Bacteriophages have been suggested as an alternative approach to reduce the amount of pathogens in various applications. Bacteriophages of various specificity and virulence were isolated as a means of controlling food-borne pathogens. We studied the interaction of bacteriophages with Bacillus species, which are very often persistent in industrial applications such as food production due to their antibiotic resistance and spore formation. A comparative study using electron microscopy, PFGE, and SDS-PAGE as well as determination of host range, pH and temperature resistance, adsorption rate, latent time, and phage burst size was performed on three phages of the Myoviridae family and one phage of the Siphoviridae family which infected Bacillus subtilis strains. The phages are morphologically different and characterized by icosahedral heads and contractile (SIOΦ, SUBω, and SPOσ phages) or noncontractile (ARπ phage) tails. The genomes of SIOΦ and SUBω are composed of 154 kb. The capsid of SIOΦ is composed of four proteins. Bacteriophages SPOσ and ARπ have genome sizes of 25 kbp and 40 kbp, respectively. Both phages as well as SUBω phage have 14 proteins in their capsids. Phages SIOΦ and SPOσ are resistant to high temperatures and to the acid (4.0) and alkaline (9.0 and 10.0) pH. PMID:26273592

  9. Prolyl isomerization as a molecular timer in phage infection.

    PubMed

    Eckert, Barbara; Martin, Andreas; Balbach, Jochen; Schmid, Franz X

    2005-07-01

    Prolyl cis-trans isomerizations are intrinsically slow reactions and known to be rate-limiting in many protein folding reactions. Here we report that a proline is used as a molecular timer in the infection of Escherichia coli cells by the filamentous phage fd. The phage is activated for infection by the disassembly of the two N-terminal domains, N1 and N2, of its gene-3-protein, which is located at the phage tip. Pro213, in the hinge between N1 and N2, sets a timer for the infective state. The timer is switched on by cis-to-trans and switched off by the unusually slow trans-to-cis isomerization of the Gln212-Pro213 peptide bond. The switching rate and thus the infectivity of the phage are determined by the local sequence around Pro213, and can be tuned by mutagenesis.

  10. Stochastic cellular fate decision making by multiple infecting lambda phage.

    PubMed

    Robb, Matthew L; Shahrezaei, Vahid

    2014-01-01

    Bacteriophage lambda is a classic system for the study of cellular decision making. Both experiments and mathematical models have demonstrated the importance of viral concentration in the lysis-lysogeny decision outcome in lambda phage. However, a recent experimental study using single cell and single phage resolution reported that cells with the same viral concentrations but different numbers of infecting phage (multiplicity of infection) can have markedly different rates of lysogeny. Thus the decision depends on not only viral concentration, but also directly on the number of infecting phage. Here, we attempt to provide a mechanistic explanation of these results using a simple stochastic model of the lambda phage genetic network. Several potential factors including intrinsic gene expression noise, spatial dynamics and cell-cycle effects are investigated. We find that interplay between the level of intrinsic noise and viral protein decision threshold is a major factor that produces dependence on multiplicity of infection. However, simulations suggest spatial segregation of phage particles does not play a significant role. Cellular image processing is used to re-analyse the original time-lapse movies from the recent study and it is found that higher numbers of infecting phage reduce the cell elongation rate. This could also contribute to the observed phenomena as cellular growth rate can affect transcription rates. Our model further predicts that rate of lysogeny is dependent on bacterial growth rate, which can be experimentally tested. Our study provides new insight on the mechanisms of individual phage decision making. More generally, our results are relevant for the understanding of gene-dosage compensation in cellular systems.

  11. Review: phage therapy: a modern tool to control bacterial infections.

    PubMed

    Qadir, Muhammad Imran

    2015-01-01

    The evolution of antibiotic-resistant in bacteria has aggravated curiosity in development of alternative therapy to conventional drugs. One of the emerging drugs that can be used alternative to antibiotics is bacteriophage therapy. The use of living phages in the cure of lethal infectious life threatening diseases caused by Gram positive and Gram negative bacteria has been reported. Another development in the field of bacteriophage therapy is the use of genetically modified and non replicating phages in the treatment of bacterial infection. Genetically engineered bacteriophages can be used as adjuvant along with antibiotic therapy. Phages encoded with lysosomal enzymes are also effectual in the treatment of infectious diseases.

  12. Stumbling across the Same Phage: Comparative Genomics of Widespread Temperate Phages Infecting the Fish Pathogen Vibrio anguillarum

    PubMed Central

    Kalatzis, Panos G.; Rørbo, Nanna; Castillo, Daniel; Mauritzen, Jesper Juel; Jørgensen, Jóhanna; Kokkari, Constantina; Zhang, Faxing; Katharios, Pantelis; Middelboe, Mathias

    2017-01-01

    Nineteen Vibrio anguillarum-specific temperate bacteriophages isolated across Europe and Chile from aquaculture and environmental sites were genome sequenced and analyzed for host range, morphology and life cycle characteristics. The phages were classified as Siphoviridae with genome sizes between 46,006 and 54,201 bp. All 19 phages showed high genetic similarity, and 13 phages were genetically identical. Apart from sporadically distributed single nucleotide polymorphisms (SNPs), genetic diversifications were located in three variable regions (VR1, VR2 and VR3) in six of the phage genomes. Identification of specific genes, such as N6-adenine methyltransferase and lambda like repressor, as well as the presence of a tRNAArg, suggested a both mutualistic and parasitic interaction between phages and hosts. During short term phage exposure experiments, 28% of a V. anguillarum host population was lysogenized by the temperate phages and a genomic analysis of a collection of 31 virulent V. anguillarum showed that the isolated phages were present as prophages in >50% of the strains covering large geographical distances. Further, phage sequences were widely distributed among CRISPR-Cas arrays of publicly available sequenced Vibrios. The observed distribution of these specific temperate Vibriophages across large geographical scales may be explained by efficient dispersal of phages and bacteria in the marine environment combined with a mutualistic interaction between temperate phages and their hosts which selects for co-existence rather than arms race dynamics. PMID:28531104

  13. Diversity and geographical distribution of Flavobacterium psychrophilum isolates and their phages: patterns of susceptibility to phage infection and phage host range.

    PubMed

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Espejo, Romilio; Middelboe, Mathias

    2014-05-01

    Flavobacterium psychrophilum is an important fish pathogen worldwide that causes cold water disease (CWD) or rainbow trout fry syndrome (RTFS). Phage therapy has been suggested as an alternative method for the control of this pathogen in aquaculture. However, effective use of bacteriophages in disease control requires detailed knowledge about the diversity and dynamics of host susceptibility to phage infection. For this reason, we examined the genetic diversity of 49 F. psychrophilum strains isolated in three different areas (Chile, Denmark, and USA) through direct genome restriction enzyme analysis (DGREA) and their susceptibility to 33 bacteriophages isolated in Chile and Denmark, thus covering large geographical (>12,000 km) and temporal (>60 years) scales of isolation. An additional 40 phage-resistant isolates obtained from culture experiments after exposure to specific phages were examined for changes in phage susceptibility against the 33 phages. The F. psychrophilum and phage populations isolated from Chile and Denmark clustered into geographically distinct groups with respect to DGREA profile and host range, respectively. However, cross infection between Chilean phage isolates and Danish host isolates and vice versa was observed. Development of resistance to certain bacteriophages led to susceptibility to other phages suggesting that "enhanced infection" is potentially an important cost of resistance in F. psychrophilum, possibly contributing to the observed co-existence of phage-sensitive F. psychrophilum strains and lytic phages across local and global scales. Overall, our results showed that despite the identification of local communities of phages and hosts, some key properties determining phage infection patterns seem to be globally distributed.

  14. Ecogenomics and genome landscapes of marine Pseudoalteromonas phage H105/1

    PubMed Central

    Duhaime, Melissa Beth; Wichels, Antje; Waldmann, Jost; Teeling, Hanno; Glöckner, Frank Oliver

    2011-01-01

    Marine phages have an astounding global abundance and ecological impact. However, little knowledge is derived from phage genomes, as most of the open reading frames in their small genomes are unknown, novel proteins. To infer potential functional and ecological relevance of sequenced marine Pseudoalteromonas phage H105/1, two strategies were used. First, similarity searches were extended to include six viral and bacterial metagenomes paired with their respective environmental contextual data. This approach revealed ‘ecogenomic' patterns of Pseudoalteromonas phage H105/1, such as its estuarine origin. Second, intrinsic genome signatures (phylogenetic, codon adaptation and tetranucleotide (tetra) frequencies) were evaluated on a resolved intra-genomic level to shed light on the evolution of phage functional modules. On the basis of differential codon adaptation of Phage H105/1 proteins to the sequenced Pseudoalteromonas spp., regions of the phage genome with the most ‘host'-adapted proteins also have the strongest bacterial tetra signature, whereas the least ‘host'-adapted proteins have the strongest phage tetra signature. Such a pattern may reflect the evolutionary history of the respective phage proteins and functional modules. Finally, analysis of the structural proteome identified seven proteins that make up the mature virion, four of which were previously unknown. This integrated approach combines both novel and classical strategies and serves as a model to elucidate ecological inferences and evolutionary relationships from phage genomes that typically abound with unknown gene content. PMID:20613791

  15. Development of phoH as a Novel Signature Gene for Assessing Marine Phage Diversity▿

    PubMed Central

    Goldsmith, Dawn B.; Crosti, Giuseppe; Dwivedi, Bhakti; McDaniel, Lauren D.; Varsani, Arvind; Suttle, Curtis A.; Weinbauer, Markus G.; Sandaa, Ruth-Anne; Breitbart, Mya

    2011-01-01

    Phages play a key role in the marine environment by regulating the transfer of energy between trophic levels and influencing global carbon and nutrient cycles. The diversity of marine phage communities remains difficult to characterize because of the lack of a signature gene common to all phages. Recent studies have demonstrated the presence of host-derived auxiliary metabolic genes in phage genomes, such as those belonging to the Pho regulon, which regulates phosphate uptake and metabolism under low-phosphate conditions. Among the completely sequenced phage genomes in GenBank, this study identified Pho regulon genes in nearly 40% of the marine phage genomes, while only 4% of nonmarine phage genomes contained these genes. While several Pho regulon genes were identified, phoH was the most prevalent, appearing in 42 out of 602 completely sequenced phage genomes. Phylogenetic analysis demonstrated that phage phoH sequences formed a cluster distinct from those of their bacterial hosts. PCR primers designed to amplify a region of the phoH gene were used to determine the diversity of phage phoH sequences throughout a depth profile in the Sargasso Sea and at six locations worldwide. phoH was present at all sites examined, and a high diversity of phoH sequences was recovered. Most phoH sequences belonged to clusters without any cultured representatives. Each depth and geographic location had a distinct phoH composition, although most phoH clusters were recovered from multiple sites. Overall, phoH is an effective signature gene for examining phage diversity in the marine environment. PMID:21926220

  16. Marine phage genomics: the tip of the iceberg

    PubMed Central

    Perez Sepulveda, Blanca; Redgwell, Tamsin; Rihtman, Branko; Pitt, Frances; Scanlan, David J.; Millard, Andrew

    2016-01-01

    Marine viruses are the most abundant biological entity in the oceans, the majority of which infect bacteria and are known as bacteriophages. Yet, the bulk of bacteriophages form part of the vast uncultured dark matter of the microbial biosphere. In spite of the paucity of cultured marine bacteriophages, it is known that marine bacteriophages have major impacts on microbial population structure and the biogeochemical cycling of key elements. Despite the ecological relevance of marine bacteriophages, there are relatively few isolates with complete genome sequences. This minireview focuses on knowledge gathered from these genomes put in the context of viral metagenomic data and highlights key advances in the field, particularly focusing on genome structure and auxiliary metabolic genes. PMID:27338950

  17. CRISPR-Cas systems in the marine actinomycete Salinispora: linkages with phage defense, microdiversity and biogeography.

    PubMed

    Wietz, Matthias; Millán-Aguiñaga, Natalie; Jensen, Paul R

    2014-10-25

    Prokaryotic CRISPR-Cas systems confer resistance to viral infection and thus mediate bacteria-phage interactions. However, the distribution and functional diversity of CRISPRs among environmental bacteria remains largely unknown. Here, comparative genomics of 75 Salinispora strains provided insight into the diversity and distribution of CRISPR-Cas systems in a cosmopolitan marine actinomycete genus. CRISPRs were found in all Salinispora strains, with the majority containing multiple loci and different Cas array subtypes. Of the six subtypes identified, three have not been previously described. A lower prophage frequency in S. arenicola was associated with a higher fraction of spacers matching Salinispora prophages compared to S. tropica, suggesting differing defensive capacities between Salinispora species. The occurrence of related prophages in strains from distant locations, as well as spacers matching those prophages inserted throughout spacer arrays, indicate recurring encounters with widely distributed phages over time. Linkages of CRISPR features with Salinispora microdiversity pointed to subclade-specific contacts with mobile genetic elements (MGEs). This included lineage-specific spacer deletions or insertions, which may reflect weak selective pressures to maintain immunity or distinct temporal interactions with MGEs, respectively. Biogeographic patterns in spacer and prophage distributions support the concept that Salinispora spp. encounter localized MGEs. Moreover, the presence of spacers matching housekeeping genes suggests that CRISPRs may have functions outside of viral defense. This study provides a comprehensive examination of CRISPR-Cas systems in a broadly distributed group of environmental bacteria. The ubiquity and diversity of CRISPRs in Salinispora suggests that CRISPR-mediated interactions with MGEs represent a major force in the ecology and evolution of this cosmopolitan marine actinomycete genus.

  18. Effect of phage on the infectivity of Vibrio cholerae and emergence of genetic variants.

    PubMed

    Zahid, M Shamim Hasan; Udden, S M Nashir; Faruque, A S G; Calderwood, Stephen B; Mekalanos, John J; Faruque, Shah M

    2008-11-01

    Seasonal epidemics of cholera in Bangladesh are self-limited in nature, presumably due to phage predation of the causative Vibrio cholerae during the late stage of an epidemic, when cholera patients excrete large quantities of phage in their stools. To further understand the mechanisms involved, we studied the effect of phage on the infectivity and survival of V. cholerae shed in stools. The 50% infectious dose of stool vibrios in infant mice was approximately 10-fold higher when the stools contained a phage (1.8 x 10(3) to 5.7 x 10(6) PFU/ml) than when stools did not contain a detectable phage. In competition assays in mice using a reference strain and phage-negative cholera stools, the infectivity of biofilm-like clumped cells was 3.9- to 115.9-fold higher than that of the corresponding planktonic cells. However, the difference in infectivity of these two cell populations in phage-positive stools was significantly less than that in phage-negative stools (P = 0.0006). Coculture of a phage and V. cholerae or dilutions of phage-positive cholera stools in nutrient medium, but not in environmental water, caused rapid emergence of phage-resistant derivatives of the bacteria, and these derivatives lost their O1 antigen. In cholera stools and in intestinal contents of mice prechallenged with a mixture of V. cholerae and phage, the bacteria remained completely phage susceptible, suggesting that the intestinal environment did not favor the emergence of phage-resistant derivatives that lost the O1 antigen. Our results indicate that phages lead to the collapse of epidemics by modulating the required infectious dose of the bacteria. Furthermore, the dominance of phage-resistant variants due to the bactericidal selective mechanism occurs rarely in natural settings, and the emerging variants are thus unable to sustain the ongoing epidemic.

  19. Diversity of phage infection types and associated terminology: the problem with 'Lytic or lysogenic'.

    PubMed

    Hobbs, Zack; Abedon, Stephen T

    2016-04-01

    Bacteriophages, or phages, are viruses of members of domain Bacteria. These viruses play numerous roles in shaping the diversity of microbial communities, with impact differing depending on what infection strategies specific phages employ. From an applied perspective, these especially are communities containing undesired or pathogenic bacteria that can be modified through phage-mediated bacterial biocontrol, that is, through phage therapy. Here we seek to categorize phages in terms of their infection strategies as well as review or suggest more descriptive, accurate or distinguishing terminology. Categories can be differentiated in terms of (1) whether or not virion release occurs (productive infections versus lysogeny, pseudolysogeny and/or the phage carrier state), (2) the means of virion release (lytic versus chronic release) and (3) the degree to which phages are genetically equipped to display lysogenic cycles (temperate versus non-temperate phages). We address in particular the use or overuse of what can be a somewhat equivocal phrase, 'Lytic or lysogenic', especially when employed as a means of distinguishing among phages types. We suggest that the implied dichotomy is inconsistent with both modern as well as historical understanding of phage biology. We consider, therefore, less ambiguous terminology for distinguishing between 'Lytic' versus 'Lysogenic' phage types.

  20. Marine Viruses that infect Eukaryotic Microalgae.

    PubMed

    Kimura, Kei; Tomaru, Yuji

    2015-01-01

    Marine microalgae, in general, explain large amount of the primary productions on the planet. Their huge biomass through photosynthetic activities is significant to understand the global geochemical cycles. Many researchers are, therefore, focused on studies of marine microalgae, i.e. phytoplankton. Since the first report of high abundance of viruses in the sea at late 1980's, the marine viruses have recognized as an important decreasing factor of its host populations. They seem to be composed of diverse viruses infectious to different organism groups; most of them are considered to be phages infectious to prokaryotes, and viruses infecting microalgae might be ranked in second level. Over the last quarter of a century, the knowledge on marine microalgal viruses has been accumulated in many aspects. Until today, ca. 40 species of marine microalgal viruses have been discovered, including dsDNA, ssDNA, dsRNA and ssRNA viruses. Their features are unique and comprise new ideas and discoveries, indicating that the marine microalgal virus research is still an intriguing unexplored field. In this review, we summarize their basic biology and ecology, and discuss how and what we should research in this area for further progress.

  1. Viruses infecting marine molluscs.

    PubMed

    Arzul, Isabelle; Corbeil, Serge; Morga, Benjamin; Renault, Tristan

    2017-02-09

    Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations.

  2. Expression of Cre recombinase during transient phage infection permits efficient marker removal in Streptomyces

    PubMed Central

    Khodakaramian, Gholam; Lissenden, Sarah; Gust, Bertolt; Moir, Laura; Hoskisson, Paul A.; Chater, Keith F.; Smith, Margaret C. M.

    2006-01-01

    We report a system for the efficient removal of a marker flanked by two loxP sites in Streptomyces coelicolor, using a derivative of the temperate phage φC31 that expresses Cre recombinase during a transient infection. As the test case for this recombinant phage (called Cre-phage), we present the construction of an in-frame deletion of a gene, pglW, required for phage growth limitation or Pgl in S.coelicolor. Cre-phage was also used for marker deletion in other strains of S.coelicolor. PMID:16473843

  3. Phage therapy of staphylococcal infections (including MRSA) may be less expensive than antibiotic treatment.

    PubMed

    Miedzybrodzki, Ryszard; Fortuna, Wojciech; Weber-Dabrowska, Beata; Górski, Andrzej

    2007-08-03

    The current drama of antibiotic resistance has revived interest in phage therapy. In response to this challenge, a phage therapy center was established at our Institute in 2005 which accepts patients from Poland and abroad with antibiotic-resistant infections. We now present data showing that efficient phage therapy of staphylococcal infections is no longer a treatment of last resort (when all antibiotics fail), but allows for significant savings in the costs of healthcare.

  4. Stochasticity in the Expression of LamB and its Affect on λ phage Infection

    NASA Astrophysics Data System (ADS)

    Chapman, Emily; Wu, Xiao-Lun

    2006-03-01

    λ phage binds to E. Coli's lamB protein and injects its DNA into the cell. The phage quickly replicates and after a latent period the bacteria bursts, emitting mature phages. We developed a mathematical model based on the known physical events that occur when a λ phage infects an E.Coli cell. The results of these models predict that the bacteria and phage populations become extinct unless the parameters of the model are very finely tuned, which is untrue in the nature. The lamB protein is part of the maltose regulon and can be repressed to minimal levels when grown in the absence of inducer. Therefore, a cell that is not expressing any lamB protein at that moment is resistant against phage infection. We studied the dynamic relationship between λ phage and E. Coli when the concentration of phage greatly outnumbers the concentration of bacteria. We study how the stochasticity of the expression of lamB affects the percentage of cells that the λ phage infects. We show that even in the case when the maltose regulon is fully induced a percentage of cells continue to persist against phage infection.

  5. Injected phage-displayed-VP28 vaccine reduces shrimp Litopenaeus vannamei mortality by white spot syndrome virus infection.

    PubMed

    Solís-Lucero, G; Manoutcharian, K; Hernández-López, J; Ascencio, F

    2016-08-01

    White spot syndrome virus (WSSV) is the most important viral pathogen for the global shrimp industry causing mass mortalities with huge economic losses. Recombinant phages are capable of expressing foreign peptides on viral coat surface and act as antigenic peptide carriers bearing a phage-displayed vaccine. In this study, the full-length VP28 protein of WSSV, widely known as potential vaccine against infection in shrimp, was successfully cloned and expressed on M13 filamentous phage. The functionality and efficacy of this vaccine immunogen was demonstrated through immunoassay and in vivo challenge studies. In ELISA assay phage-displayed VP28 was bind to Litopenaeus vannamei immobilized hemocyte in contrast to wild-type M13 phage. Shrimps were injected with 2 × 10(10) cfu animal(-1) single dose of VP28-M13 and M13 once and 48 h later intramuscularly challenged with WSSV to test the efficacy of the vaccine against the infection. All dead challenged shrimps were PCR WSSV-positive. The accumulative mortality of the vaccinated and challenged shrimp groups was significantly lower (36.67%) than the unvaccinated group (66.67%). Individual phenoloxidase and superoxide dismutase activity was assayed on 8 and 48 h post-vaccination. No significant difference was found in those immunological parameters among groups at any sampled time evaluated. For the first time, phage display technology was used to express a recombinant vaccine for shrimp. The highest percentage of relative survival in vaccinated shrimp (RPS = 44.99%) suggest that the recombinant phage can be used successfully to display and deliver VP28 for farmed marine crustaceans.

  6. Extensive phage dynamics in Staphylococcus aureus contributes to adaptation to the human host during infection.

    PubMed

    Goerke, Christiane; Wirtz, Christiane; Flückiger, Ursula; Wolz, Christiane

    2006-09-01

    Bacteriophages serve as a driving force in microbial evolution, adaptation to new environments and the pathogenesis of human bacterial infections. In Staphylococcus aureus phages encoding immune evasion molecules (SAK, SCIN, CHIPS), which integrate specifically into the beta-haemolysin (Hlb) gene, are widely distributed. When comparing S. aureus strain collections from infectious and colonizing situations we could detect a translocation of sak-encoding phages to atypical genomic integration sites in the bacterium only in the disease-related isolates. Additionally, significantly more Hlb producing strains were detected in the infectious strain collection. Extensive phage dynamics (intragenomic translocation, duplication, transfer between hosts, recombination events) during infection was shown by analysing cocolonizing and consecutive isolates of patients. This activity leads to the splitting of the strain population into various subfractions exhibiting different virulence potentials (Hlb-production and/or production of immune evasion molecules). Thus, phage-inducing conditions and strong selection for survival of the bacterial host after phage movement are typical for the infectious situation. Further in vitro characterization of phages revealed that: (i) SAK is encoded not only on serogroup F phages showing a conserved tropism for hlb but also on serogroup B phages which always integrate in a distinct intergenic region, (ii) the level of sak transcription correlates to phage inducibility but is independent of the phage localization in the chromosome, and (iii) phages can be stabilized extra-chromosomally during their life cycle.

  7. Genomic Diversity of Phages Infecting Probiotic Strains of Lactobacillus paracasei

    PubMed Central

    Rousseau, Geneviève M.; Capra, María L.; Quiberoni, Andrea; Tremblay, Denise M.; Labrie, Simon J.

    2015-01-01

    Strains of the Lactobacillus casei group have been extensively studied because some are used as probiotics in foods. Conversely, their phages have received much less attention. We analyzed the complete genome sequences of five L. paracasei temperate phages: CL1, CL2, iLp84, iLp1308, and iA2. Only phage iA2 could not replicate in an indicator strain. The genome lengths ranged from 34,155 bp (iA2) to 39,474 bp (CL1). Phages iA2 and iLp1308 (34,176 bp) possess the smallest genomes reported, thus far, for phages of the L. casei group. The GC contents of the five phage genomes ranged from 44.8 to 45.6%. As observed with many other phages, their genomes were organized as follows: genes coding for DNA packaging, morphogenesis, lysis, lysogeny, and replication. Phages CL1, CL2, and iLp1308 are highly related to each other. Phage iLp84 was also related to these three phages, but the similarities were limited to gene products involved in DNA packaging and structural proteins. Genomic fragments of phages CL1, CL2, iLp1308, and iLp84 were found in several genomes of L. casei strains. Prophage iA2 is unrelated to these four phages, but almost all of its genome was found in at least four L. casei strains. Overall, these phages are distinct from previously characterized Lactobacillus phages. Our results highlight the diversity of L. casei phages and indicate frequent DNA exchanges between phages and their hosts. PMID:26475105

  8. Genomic Diversity of Phages Infecting Probiotic Strains of Lactobacillus paracasei.

    PubMed

    Mercanti, Diego J; Rousseau, Geneviève M; Capra, María L; Quiberoni, Andrea; Tremblay, Denise M; Labrie, Simon J; Moineau, Sylvain

    2015-10-16

    Strains of the Lactobacillus casei group have been extensively studied because some are used as probiotics in foods. Conversely, their phages have received much less attention. We analyzed the complete genome sequences of five L. paracasei temperate phages: CL1, CL2, iLp84, iLp1308, and iA2. Only phage iA2 could not replicate in an indicator strain. The genome lengths ranged from 34,155 bp (iA2) to 39,474 bp (CL1). Phages iA2 and iLp1308 (34,176 bp) possess the smallest genomes reported, thus far, for phages of the L. casei group. The GC contents of the five phage genomes ranged from 44.8 to 45.6%. As observed with many other phages, their genomes were organized as follows: genes coding for DNA packaging, morphogenesis, lysis, lysogeny, and replication. Phages CL1, CL2, and iLp1308 are highly related to each other. Phage iLp84 was also related to these three phages, but the similarities were limited to gene products involved in DNA packaging and structural proteins. Genomic fragments of phages CL1, CL2, iLp1308, and iLp84 were found in several genomes of L. casei strains. Prophage iA2 is unrelated to these four phages, but almost all of its genome was found in at least four L. casei strains. Overall, these phages are distinct from previously characterized Lactobacillus phages. Our results highlight the diversity of L. casei phages and indicate frequent DNA exchanges between phages and their hosts.

  9. Phage Therapy in Bacterial Infections Treatment: One Hundred Years After the Discovery of Bacteriophages.

    PubMed

    Cisek, Agata Anna; Dąbrowska, Iwona; Gregorczyk, Karolina Paulina; Wyżewski, Zbigniew

    2017-02-01

    The therapeutic use of bacteriophages has seen a renewal of interest blossom in the last few years. This reversion is due to increased difficulties in the treatment of antibiotic-resistant strains of bacteria. Bacterial resistance to antibiotics, a serious problem in contemporary medicine, does not implicate resistance to phage lysis mechanisms. Lytic bacteriophages are able to kill antibiotic-resistant bacteria at the end of the phage infection cycle. Thus, the development of phage therapy is potentially a way to improve the treatment of bacterial infections. However, there are antibacterial phage therapy difficulties specified by broadening the knowledge of the phage nature and influence on the host. It has been shown during experiments that both innate and adaptive immunity are involved in the clearance of phages from the body. Immunological reactions against phages are related to the route of administration and may vary depending on the type of bacterial viruses. For that reason, it is very important to test the immunological response of every single phage, particularly if intravenous therapy is being considered. The lack of these data in previous years was one of the reasons for phage therapy abandonment despite its century-long study. Promising results of recent research led us to look forward to a phage therapy that can be applied on a larger scale and subsequently put it into practice.

  10. Quorum sensing influences phage infection efficiency via affecting cell population and physiological state.

    PubMed

    Qin, Xuying; Sun, Qinghui; Yang, Baixue; Pan, Xuewei; He, Yang; Yang, Hongjiang

    2017-02-01

    Bacterial growth phase has been reported affecting phage infection. To underpin the related mechanism, infection efficiency of Pseudomonas aeruginosa phage K5 is characterized. When infecting the logarithmic cells, phage K5 produced significantly more infection centers than the stationary cells, well concordant with the viable cell ratio in the different growth phases. Additionally, the burst size decreased dramatically in the stationary cells, implying that the physiological state of the viable cells contributed to the productivity of phage K5, and it was consistent with the expression variation of the phage RNA polymerase. Quorum sensing inhibitor penicillic acid was applied and could significantly improve the viable cell proportion and the infection center numbers, but had less effect on the corresponding burst sizes. Moreover, the effect of penicillic acid and the quorum sensing regulator mutants on the production of phage C11 was also analyzed. Taken together, our data suggest that quorum sensing is involved in the defense of phage K5 infection by influencing the viable cell population and their physiological state, and it is an efficient and intrinsic pathway allowing bacteria to resist phage attacks in natural environment.

  11. Treatment of in vitro enterohemorrhagic Escherichia coli infection using phage and probiotics.

    PubMed

    Dini, C; Bolla, P A; de Urraza, P J

    2016-07-01

    To assay the combination of phage and probiotics against EHEC in vitro on infected Hep-2 cells. Phage and probiotics treatments on EHEC O157:H7-infected Hep-2 cells were assayed individually or combined. The effect of freeze-drying on phage and probiotic antimicrobial activity was also studied. While treatment with phage alone increased cell detachment caused by EHEC infection, the treatments with MM alone or in combination with phage proved to effectively diminish cell damage caused by EHEC infection. Combined treatment showed a decrease in apoptotic cell count of 57·3% and a reduction in EHEC adhesion to cell monolayer of 1·2 log CFU. The simultaneous use of phage and probiotics showed no antagonistic effect, and freeze-drying did not affect their antipathogenic activity. The combination of phage and probiotics has great potential for reducing the number of pathogens adhered to epithelial cells during EHEC O157:H7 infection and attenuating the cytotoxic effect derived from it. Further in vivo assays are needed for assessing the actual effectiveness of the treatment. This study presents a freeze-dried formulation of phage and probiotics capable of controlling EHEC infections and reducing epithelial cell damage in vitro. © 2016 The Society for Applied Microbiology.

  12. Micron-scale holes terminate the phage infection cycle.

    PubMed

    Dewey, Jill S; Savva, Christos G; White, Rebecca L; Vitha, Stanislav; Holzenburg, Andreas; Young, Ry

    2010-02-02

    Holins are small phage-encoded proteins that accumulate harmlessly in the cytoplasmic membrane during the infection cycle until suddenly, at an allele-specific time, triggering to form lethal lesions, or "holes." In the phages lambda and T4, the holes have been shown to be large enough to allow release of prefolded active endolysin from the cytoplasm, which results in destruction of the cell wall, followed by lysis within seconds. Here, the holes caused by S105, the lambda-holin, have been captured in vivo by cryo-EM. Surprisingly, the scale of the holes is at least an order of magnitude greater than any previously described membrane channel, with an average diameter of 340 nm and some exceeding 1 microm. Most cells exhibit only one hole, randomly positioned in the membrane, irrespective of its size. Moreover, on coexpression of holin and endolysin, the degradation of the cell wall leads to spherically shaped cells and a collapsed inner membrane sac. To obtain a 3D view of the hole by cryo-electron tomography, we needed to reduce the average size of the cells significantly. By taking advantage of the coupling of bacterial cell size and growth rate, we achieved an 80% reduction in cell mass by shifting to succinate minimal medium for inductions of the S105 gene. Cryotomographic analysis of the holes revealed that they were irregular in shape and showed no evidence of membrane invagination. The unexpected scale of these holes has implications for models of holin function.

  13. Comparative genomic analysis of Pseudomonas aeruginosa phage PaMx25 reveals a novel siphovirus group related to phages infecting hosts of different taxonomic classes.

    PubMed

    Flores, Víctor; Sepúlveda-Robles, Omar; Cazares, Adrián; Kameyama, Luis; Guarneros, Gabriel

    2017-08-01

    Bacteriophages (phages) are estimated to be the most abundant and diverse entities in the biosphere harboring vast amounts of novel genetic information. Despite the genetic diversity observed, many phages share common features, such as virion morphology, genome size and organization, and can readily be associated with clearly defined phage groups. However, other phages display unique genomes or, alternatively, mosaic genomes composed of regions that share homology with those of phages of diverse origins; thus, their relationships cannot be easily assessed. In this work, we present a functional and comparative genomic analysis of Pseudomonas aeruginosa phage PaMx25, a virulent member of the Siphoviridae family. The genomes of PaMx25 and a highly homologous phage NP1, bore sequence homology and synteny with the genomes of phages that infect hosts different than Pseudomonas. In order to understand the relationship of the PaMx25 genome with that of other phages, we employed several computational approaches. We found that PaMx25 and NP1 effectively bridged several phage groups. It is expected that as more phage genomes become available, more gaps will be filled, blurring the boundaries that currently separate phage groups.

  14. The presence of phage-infected Actinobacillus actinomycetemcomitans in localized juvenile periodontitis patients.

    PubMed

    Preus, H R; Olsen, I; Namork, E

    1987-11-01

    Electron microscopy revealed 2 different types of bacteriophages isolated from Actinobacillus actinomycetemcomitans colonizing exclusively diseased sites in 4 patients with localized juvenile periodontitis (LJP). All sites infected with phage were undergoing periodontal destruction, as judged from consecutive routine radiographs. The phages isolated had a wide host range as assessed from their ability to infect a series of reference strains of A. actinomycetemcomitans. A 5th patient harboured non-infected A. actinomycetemcomitans in a surgically treated site which had undergone no bone destruction during the last 12 months. The present findings suggested that the pathogenic potential of A. actinomycetemcomitans in LJP may increase due to phage infection.

  15. Lytic and inhibition responses to bacteriophages among marine bacteria, with special reference to the origin of phage-host systems

    NASA Astrophysics Data System (ADS)

    Moebus, K.

    1983-12-01

    The results of phage-host cross-reaction tests reported by Moebus & Nattkemper (1981) were re-examined using serially diluted bacteriophage suspensions to elicit the actual type of reaction between the bacteria and phage lysates tested. More than 1450 phage-host systems were studied at 25 °C incubation temperature. Among the nearly 300 phage strains used, 29 were identified as temperate ones. In about 65 % of the phage-host systems bacteriophage propagation was indicated by plaque formation. The remaining systems were characterized by the “inhibition” reaction of bacteria to phage lysates indicated by homogenously reduced bacterial growth within the test area without production of progeny phages. Since crude phage lysates had to be used, it remains obscure whether agents other than infective phage particles (defective ones or bacteriocins) caused this reaction. Among 269 systems of the inhibition type which were also tested at 5° and 15 °C, 54 were observed to propagate phages at one of or both the lower temperatures. Plaques produced at 15 °C with several phage-host systems were found to yield only few progeny phages which generally could not be propagated to produce high-titer phage stocks. With one system temperature-sensitive phage mutants were isolated. The probability of inhibition reactions occurring was found to be higher with phage-host systems isolated east of the Azores than with systems derived from the western Atlantic. With systems from the last mentioned area the proportion of inhibition versus lytic responses of bacteria to phages was observed to increase with the distance between the stations where both parts of the systems were derived. The latter findings are discussed in view of the assumption that bacterial and bacteriophage populations undergo genetic changes while being transported from west to east.

  16. Recombinant Phage Elicits Protective Immune Response against Systemic S. globosa Infection in Mouse Model

    PubMed Central

    Chen, Feng; Jiang, Rihua; Wang, Yicun; Zhu, Mingji; Zhang, Xu; Dong, Shuai; Shi, Hongxi; Wang, Li

    2017-01-01

    Sporothrix globosa is a type of fungus that typically infects immunocompromised patients. Its prevention continues to pose a challenge. A 70-KDa glycoprotein (Gp70) of Sporothrix has been previously reported to protect host against infection from this fungus. Here, we displayed an epitope peptide (kpvqhalltplgldr) of Gp70 on the major coat protein (pIII), and investigated its efficiency as a vaccine for preventing S. globosa infection. The recombinant phage and the heat-killed S. globosa were used to immunize mice separately. In this study, we evaluated the humoral and cellular immune responses in the mice and demonstrated that recombinant phage could induce mice to produce a stronger immune response and generate antibodies to inhibit S. globosa infection. Furthermore, immunization with recombinant phage could increase the survival rate of S. globosa infection in mice. All these results together indicated that recombinant phages displaying kpvqhalltplgldr are a potential vaccine candidate against S. globosa infection. PMID:28165018

  17. Genomic Characterization of a Novel Phage Found in Black Abalone (Haliotis cracherodii) Infected with Withering Syndrome

    NASA Astrophysics Data System (ADS)

    Closek, C. J.; Langevin, S.; Burge, C. A.; Crosson, L.; White, S.; Friedman, C. S.

    2016-02-01

    Withering syndrome (WS), caused by the bacterium Candidatus Xenohaliotis californiensis, a Rickettsia-like organism (RLO), infects many species of abalone. Black abalone (Haliotis cracherodii), one of two endangered species of abalone, has experienced high population losses along the California coast due to WS. Recently, we observed reduced pathogenicity and mortality events in RLO-infected abalone when a novel bacteriophage (phage) was also present. To better understand phage-bacterium dynamics and develop more informative diagnostic tools, we sequenced the genome of the novel phage associated with the RLO responsible for WS. Metagenomic sequencing libraries were prepared with extracted genomic DNA from two experimentally infected H. cracherodii and phage sequences were enriched using hydroxyapatite chromatography normalization. Normalized libraries were individually barcoded and sequenced with Illumina MiSeq. Raw sequence reads were processed using VIrominer and de novo assembly produced one single phage-like contig (35.7Kb) from the experimentally infected abalone. This highly divergent genome had closest homology with a virus associated with abalone shriveling syndrome (SS). Of the 34 predicted ORFs, overlapping homology with the SS virus ranged from 20-72%, demonstrating the phage sequenced is genetically distinct from any known phage. The phage-like sequences represented a significant portion of the total reads sequenced ( 2 million of the 12 million paired-end reads; 17%) and we obtained 94,000X coverage across the novel phage genome. Beyond characterization of this novel phage, which appears to reduce pathogenicity of the RLO, the genome enabled us to develop quantitative PCR and in situ hybridization assays as diagnostic tools. These tools allow us to detect and quantify this phage in the endangered H. cracherodii.

  18. Complete Genome Sequences of Nine Phages Capable of Infecting Paenibacillus larvae, the Causative Agent of American Foulbrood Disease in Honeybees

    PubMed Central

    Yost, Diane G.; Krohn, Andrew; LeBlanc, Lucy; Zhang, Anna; Stamereilers, Casey; Amy, Penny S.

    2015-01-01

    We present here the complete genome sequences of nine phages that infect Paenibacillus larvae, the causative agent of American foulbrood disease in honeybees. The phages were isolated from soil, propolis, and infected bees from three U.S. states. This is the largest number of P. larvae phage genomes sequenced in a single publication to date. PMID:26472825

  19. Novel phage group infecting Lactobacillus delbrueckii subsp. lactis, as revealed by genomic and proteomic analysis of bacteriophage Ldl1.

    PubMed

    Casey, Eoghan; Mahony, Jennifer; Neve, Horst; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe

    2015-02-01

    Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 +/- 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species.

  20. Micron-scale holes terminate the phage infection cycle

    PubMed Central

    Dewey, Jill S.; Savva, Christos G.; White, Rebecca L.; Vitha, Stanislav; Holzenburg, Andreas; Young, Ry

    2010-01-01

    Holins are small phage-encoded proteins that accumulate harmlessly in the cytoplasmic membrane during the infection cycle until suddenly, at an allele-specific time, triggering to form lethal lesions, or “holes.” In the phages λ and T4, the holes have been shown to be large enough to allow release of prefolded active endolysin from the cytoplasm, which results in destruction of the cell wall, followed by lysis within seconds. Here, the holes caused by S105, the λ-holin, have been captured in vivo by cryo-EM. Surprisingly, the scale of the holes is at least an order of magnitude greater than any previously described membrane channel, with an average diameter of 340 nm and some exceeding 1 μm. Most cells exhibit only one hole, randomly positioned in the membrane, irrespective of its size. Moreover, on coexpression of holin and endolysin, the degradation of the cell wall leads to spherically shaped cells and a collapsed inner membrane sac. To obtain a 3D view of the hole by cryo-electron tomography, we needed to reduce the average size of the cells significantly. By taking advantage of the coupling of bacterial cell size and growth rate, we achieved an 80% reduction in cell mass by shifting to succinate minimal medium for inductions of the S105 gene. Cryotomographic analysis of the holes revealed that they were irregular in shape and showed no evidence of membrane invagination. The unexpected scale of these holes has implications for models of holin function. PMID:20080651

  1. Phage Therapy: a Step Forward in the Treatment of Pseudomonas aeruginosa Infections

    PubMed Central

    Pires, Diana P.; Vilas Boas, Diana; Sillankorva, Sanna

    2015-01-01

    Antimicrobial resistance constitutes one of the major worldwide public health concerns. Bacteria are becoming resistant to the vast majority of antibiotics, and nowadays, a common infection can be fatal. To address this situation, the use of phages for the treatment of bacterial infections has been extensively studied as an alternative therapeutic strategy. Since Pseudomonas aeruginosa is one of the most common causes of health care-associated infections, many studies have reported the in vitro and in vivo antibacterial efficacy of phage therapy against this bacterium. This review collects data of all the P. aeruginosa phages sequenced to date, providing a better understanding about their biodiversity. This review further addresses the in vitro and in vivo results obtained by using phages to treat or prevent P. aeruginosa infections as well as the major hurdles associated with this therapy. PMID:25972556

  2. Emergence of new Salmonella Enteritidis phage types in Europe? Surveillance of infections in returning travellers

    PubMed Central

    Nygård, Karin; de Jong, Birgitta; Guerin, Philippe J; Andersson, Yvonne; Olsson, Agneta; Giesecke, Johan

    2004-01-01

    Background Among human Salmonella Enteritidis infections, phage type 4 has been the dominant phage type in most countries in Western Europe during the last years. This is reflected in Salmonella infections among Swedish travellers returning from abroad. However, there are differences in phage type distribution between the countries, and this has also changed over time. Methods We used data from the Swedish infectious disease register and the national reference laboratory to describe phage type distribution of Salmonella Enteritidis infections in Swedish travellers from 1997 to 2002, and have compared this with national studies conducted in the countries visited. Results Infections among Swedish travellers correlate well with national studies conducted in the countries visited. In 2001 a change in phage type distribution in S. Enteritidis infections among Swedish travellers returning from some countries in southern Europe was observed, and a previously rare phage type (PT 14b) became one of the most commonly diagnosed that year, continuing into 2002 and 2003. Conclusions Surveillance of infections among returning travellers can be helpful in detecting emerging infections and outbreaks in tourist destinations. The information needs to be communicated rapidly to all affected countries in order to expedite the implementation of appropriate investigations and preventive measures. PMID:15345058

  3. Bacteriophage T4 Infection of Stationary Phase E. coli: Life after Log from a Phage Perspective

    PubMed Central

    Bryan, Daniel; El-Shibiny, Ayman; Hobbs, Zack; Porter, Jillian; Kutter, Elizabeth M.

    2016-01-01

    Virtually all studies of phage infections investigate bacteria growing exponentially in rich media. In nature, however, phages largely encounter non-growing cells. Bacteria entering stationary phase often activate well-studied stress defense mechanisms that drastically alter the cell, facilitating its long-term survival. An understanding of phage-host interactions in such conditions is of major importance from both an ecological and therapeutic standpoint. Here, we show that bacteriophage T4 can efficiently bind to, infect and kill E. coli in stationary phase, both in the presence and absence of a functional stationary-phase sigma factor, and explore the response of T4-infected stationary phase cells to the addition of fresh nutrients 5 or 24 h after that infection. An unexpected new mode of response has been identified. “Hibernation” mode is a persistent but reversible dormant state in which the infected cells make at least some phage enzymes, but halt phage development until appropriate nutrients become available before producing phage particles. Our evidence indicates that the block in hibernation mode occurs after the middle-mode stage of phage development; host DNA breakdown and the incorporation of the released nucleotides into phage DNA indicate that the enzymes of the nucleotide synthesizing complex, under middle-mode control, have been made and assembled into a functional state. Once fresh glucose and amino acids become available, the standard lytic infection process rapidly resumes and concentrations of up to 1011 progeny phage (an average of about 40 phage per initially present cell) are produced. All evidence is consistent with the hibernation-mode control point lying between middle mode and late mode T4 gene expression. We have also observed a “scavenger” response, where the infecting phage takes advantage of whatever few nutrients are available to produce small quantities of progeny within 2 to 5 h after infection. The scavenger response seems

  4. Phage Therapy as an Approach to Prevent Vibrio anguillarum Infections in Fish Larvae Production

    PubMed Central

    Silva, Yolanda J.; Costa, Liliana; Pereira, Carla; Mateus, Cristiana; Cunha, Ângela; Calado, Ricardo; Gomes, Newton C. M.; Pardo, Miguel A.; Hernandez, Igor; Almeida, Adelaide

    2014-01-01

    Fish larvae in aquaculture have high mortality rates due to pathogenic bacteria, especially the Vibrio species, and ineffective prophylactic strategies. Vaccination is not feasible in larvae and antibiotics have reduced efficacy against multidrug resistant bacteria. A novel approach to controlling Vibrio infections in aquaculture is needed. The potential of phage therapy to combat vibriosis in fish larvae production has not yet been examined. We describe the isolation and characterization of two bacteriophages capable of infecting pathogenic Vibrio and their application to prevent bacterial infection in fish larvae. Two groups of zebrafish larvae were infected with V. anguillarum (∼106 CFU mL−1) and one was later treated with a phage lysate (∼108 PFU mL−1). A third group was only added with phages. A fourth group received neither bacteria nor phages (fish control). Larvae mortality, after 72 h, in the infected and treated group was similar to normal levels and significantly lower than that of the infected but not treated group, indicating that phage treatment was effective. Thus, directly supplying phages to the culture water could be an effective and inexpensive approach toward reducing the negative impact of vibriosis in larviculture. PMID:25464504

  5. Factors Affecting Phage D29 Infection: A Tool to Investigate Different Growth States of Mycobacteria

    PubMed Central

    Swift, Benjamin M. C.; Gerrard, Zara E.; Huxley, Jonathan N.; Rees, Catherine E. D.

    2014-01-01

    Bacteriophages D29 and TM4 are able to infect a wide range of mycobacteria, including pathogenic and non-pathogenic species. Successful phage infection of both fast- and slow-growing mycobacteria can be rapidly detected using the phage amplification assay. Using this method, the effect of oxygen limitation during culture of mycobacteria on the success of phage infection was studied. Both D29 and TM4 were able to infect cultures of M. smegmatis and Mycobacterium avium subspecies paratuberculosis (MAP) grown in liquid with aeration. However when cultures were grown under oxygen limiting conditions, only TM4 could productively infect the cells. Cell attachment assays showed that D29 could bind to the cells surface but did not complete the lytic cycle. The ability of D29 to productively infect the cells was rapidly recovered (within 1 day) when the cultures were returned to an aerobic environment and this recovery required de novo RNA synthesis. These results indicated that under oxygen limiting conditions the cells are entering a growth state which inhibits phage D29 replication, and this change in host cell biology which can be detected by using both phage D29 and TM4 in the phage amplification assay. PMID:25184428

  6. Factors affecting phage D29 infection: a tool to investigate different growth states of mycobacteria.

    PubMed

    Swift, Benjamin M C; Gerrard, Zara E; Huxley, Jonathan N; Rees, Catherine E D

    2014-01-01

    Bacteriophages D29 and TM4 are able to infect a wide range of mycobacteria, including pathogenic and non-pathogenic species. Successful phage infection of both fast- and slow-growing mycobacteria can be rapidly detected using the phage amplification assay. Using this method, the effect of oxygen limitation during culture of mycobacteria on the success of phage infection was studied. Both D29 and TM4 were able to infect cultures of M. smegmatis and Mycobacterium avium subspecies paratuberculosis (MAP) grown in liquid with aeration. However when cultures were grown under oxygen limiting conditions, only TM4 could productively infect the cells. Cell attachment assays showed that D29 could bind to the cells surface but did not complete the lytic cycle. The ability of D29 to productively infect the cells was rapidly recovered (within 1 day) when the cultures were returned to an aerobic environment and this recovery required de novo RNA synthesis. These results indicated that under oxygen limiting conditions the cells are entering a growth state which inhibits phage D29 replication, and this change in host cell biology which can be detected by using both phage D29 and TM4 in the phage amplification assay.

  7. Phage therapy as an approach to prevent Vibrio anguillarum infections in fish larvae production.

    PubMed

    Silva, Yolanda J; Costa, Liliana; Pereira, Carla; Mateus, Cristiana; Cunha, Angela; Calado, Ricardo; Gomes, Newton C M; Pardo, Miguel A; Hernandez, Igor; Almeida, Adelaide

    2014-01-01

    Fish larvae in aquaculture have high mortality rates due to pathogenic bacteria, especially the Vibrio species, and ineffective prophylactic strategies. Vaccination is not feasible in larvae and antibiotics have reduced efficacy against multidrug resistant bacteria. A novel approach to controlling Vibrio infections in aquaculture is needed. The potential of phage therapy to combat vibriosis in fish larvae production has not yet been examined. We describe the isolation and characterization of two bacteriophages capable of infecting pathogenic Vibrio and their application to prevent bacterial infection in fish larvae. Two groups of zebrafish larvae were infected with V. anguillarum (∼106 CFU mL-1) and one was later treated with a phage lysate (∼108 PFU mL-1). A third group was only added with phages. A fourth group received neither bacteria nor phages (fish control). Larvae mortality, after 72 h, in the infected and treated group was similar to normal levels and significantly lower than that of the infected but not treated group, indicating that phage treatment was effective. Thus, directly supplying phages to the culture water could be an effective and inexpensive approach toward reducing the negative impact of vibriosis in larviculture.

  8. Efficacy of cocktail phage therapy in treating Vibrio cholerae infection in rabbit model.

    PubMed

    Jaiswal, Abhishek; Koley, Hemanta; Ghosh, Amit; Palit, Anup; Sarkar, Banwarilal

    2013-02-01

    Ability of a cocktail of five lytic vibriophages to combatting Vibrio cholerae O1 infection in rabbit model was examined. In one group, rabbits were administered 1 × 10(8) plaque forming unit of phage cocktail 6 and 12 h prior to the administration of V. cholerae O1, while in the other group, same procedure was applied 6 and 12 h post infection. It was observed that oral administration of the phage cocktail after oral bacterial challenge lowered the shedding of bacteria significantly (p < 0.01). In contrast phage treatment prior to bacterial challenge had no such effect (p > 0.05). Results suggest that oral administration of phage subsequent to V. cholerae challenge could provide a possible means of combatting V. cholerae infection. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Personalized Therapeutic Cocktail of Wild Environmental Phages Rescues Mice from Acinetobacter baumannii Wound Infections

    PubMed Central

    Regeimbal, James M.; Jacobs, Anna C.; Corey, Brendan W.; Henry, Matthew S.; Thompson, Mitchell G.; Pavlicek, Rebecca L.; Quinones, Javier; Hannah, Ryan M.; Ghebremedhin, Meron; Crane, Nicole J.; Zurawski, Daniel V.; Teneza-Mora, Nimfa C.; Hall, Eric R.

    2016-01-01

    Multidrug-resistant bacterial pathogens are an increasing threat to public health, and lytic bacteriophages have reemerged as a potential therapeutic option. In this work, we isolated and assembled a five-member cocktail of wild phages against Acinetobacter baumannii and demonstrated therapeutic efficacy in a mouse full-thickness dorsal infected wound model. The cocktail lowers the bioburden in the wound, prevents the spread of infection and necrosis to surrounding tissue, and decreases infection-associated morbidity. Interestingly, this effective cocktail is composed of four phages that do not kill the parent strain of the infection and one phage that simply delays bacterial growth in vitro via a strong but incomplete selection event. The cocktail here appears to function in a combinatorial manner, as one constituent phage targets capsulated A. baumannii bacteria and selects for loss of receptor, shifting the population to an uncapsulated state that is then sensitized to the remaining four phages in the cocktail. Additionally, capsule is a known virulence factor for A. baumannii, and we demonstrated that the emergent uncapsulated bacteria are avirulent in a Galleria mellonella model. These results highlight the importance of anticipating population changes during phage therapy and designing intelligent cocktails to control emergent strains, as well as the benefits of using phages that target virulence factors. Because of the efficacy of this cocktail isolated from a limited environmental pool, we have established a pipeline for developing new phage therapeutics against additional clinically relevant multidrug-resistant pathogens by using environmental phages sourced from around the globe. PMID:27431214

  10. On size-dependent stability and infectivity of λ bacterial phages

    NASA Astrophysics Data System (ADS)

    Li, Long; Wang, Jizeng

    2015-02-01

    The elastic icosahedral capsid of λ phages plays an important role in the life cycle of these phages, such as holding the viral genome and releasing confinement for DNA ejection. Understanding how a nanosized elastic capsid guarantees the stability and infectivity of λ phages is challenging. In this article, we propose a combined nonlinear continuum and statistical mechanics model by considering the effects of DNA bending deformation, electrostatic repulsion between DNA-DNA strands, and elastic deformation of phage capsid to investigate the coupled process between capsid and DNA in packaging and ejection. Based on this model, we show that packaging DNA into immature λ phage capsid uses less force than packaging DNA into mature λ phage because of the deformability and softness of the former. Consequently, resistance to DNA packaging inside capsid decreases compared with mature ones. We also observe relationships between phage capsid size and the maximum shear stress on the inner surface of capsid and required osmotic pressure for the complete inhibition of DNA ejection. An optimized radius of capsid, i.e., around 30 nm, is found for both stable DNA packaging and effective viral infection from mechanical standpoints, which may result from physical evolution. All these findings may be interesting to toxicologists, nanotechnologists, and virologists.

  11. Inferring phage-bacteria infection networks from time-series data.

    PubMed

    Jover, Luis F; Romberg, Justin; Weitz, Joshua S

    2016-11-01

    In communities with bacterial viruses (phage) and bacteria, the phage-bacteria infection network establishes which virus types infect which host types. The structure of the infection network is a key element in understanding community dynamics. Yet, this infection network is often difficult to ascertain. Introduced over 60 years ago, the plaque assay remains the gold standard for establishing who infects whom in a community. This culture-based approach does not scale to environmental samples with increased levels of phage and bacterial diversity, much of which is currently unculturable. Here, we propose an alternative method of inferring phage-bacteria infection networks. This method uses time-series data of fluctuating population densities to estimate the complete interaction network without having to test each phage-bacteria pair individually. We use in silico experiments to analyse the factors affecting the quality of network reconstruction and find robust regimes where accurate reconstructions are possible. In addition, we present a multi-experiment approach where time series from different experiments are combined to improve estimates of the infection network. This approach also mitigates against the possibility of evolutionary changes to relevant phenotypes during the time course of measurement.

  12. Assessing phage therapy against Pseudomonas aeruginosa using a Galleria mellonella infection model.

    PubMed

    Beeton, M L; Alves, D R; Enright, M C; Jenkins, A T A

    2015-08-01

    The Galleria mellonella infection model was used to assess the in vivo efficacy of phage therapy against laboratory and clinical strains of Pseudomonas aeruginosa. In a first series of experiments, Galleria were infected with the laboratory strain P. aeruginosa PAO1 and were treated with varying multiplicity of infection (MOI) of phages either 2h post-infection (treatment) or 2h pre-infection (prevention) via injection into the haemolymph. To address the kinetics of infection, larvae were bled over a period of 24h for quantification of bacteria and phages. Survival rates at 24h when infected with 10 cells/larvae were greater in the prevention versus treatment model (47% vs. 40%, MOI=10; 47% vs. 20%, MOI=1; and 33% vs. 7%, MOI=0.1). This pattern held true when 100 cells/larvae were used (87% vs. 20%, MOI=10; 53% vs. 13%, MOI=1; 67% vs. 7%, MOI=0.1). By 24h post-infection, phages kept bacterial cell numbers in the haemolymph 1000-fold lower than in the non-treated group. In a second series of experiments using clinical strains to further validate the prevention model, phages protected Galleria when infected with both a bacteraemia (0% vs. 85%) and a cystic fibrosis (80% vs. 100%) isolate. Therefore, this study validates the use of G. mellonella as a simple, robust and cost-effective model for initial in vivo examination of P. aeruginosa-targeted phage therapy, which may be applied to other pathogens with similarly low infective doses.

  13. Characteristics and complete genome analysis of a novel jumbo phage infecting pathogenic Bacillus pumilus causing ginger rhizome rot disease.

    PubMed

    Yuan, Yihui; Gao, Meiying

    2016-12-01

    Tailed phages with genomes larger than 200 kbp are classified as jumbo phage and exhibit extremely high diversity. In this study, a novel jumbo phage, vB_BpuM_BpSp, infecting pathogenic Bacillus pumilus, the cause of ginger rhizome rot disease, was isolated. Notable features of phage vB_BpuM_BpSp are the large phage capsid of 137 nm and baseplate-attached curly tail fibers. The genome of the phage is 255,569 bp in size with G+C content of 25.9 %, and it shows low similarity to known biological entities. The phage genome contains 318 predicted coding sequences. Among these predicted coding sequences, 26 genes responsible for nucleotide metabolism were found, and seven structural genes could be identified. The findings of this study provide new understanding of the genetic diversity of phages.

  14. Development of a Phage Cocktail to Control Proteus mirabilis Catheter-associated Urinary Tract Infections

    PubMed Central

    Melo, Luís D. R.; Veiga, Patrícia; Cerca, Nuno; Kropinski, Andrew M.; Almeida, Carina; Azeredo, Joana; Sillankorva, Sanna

    2016-01-01

    Proteus mirabilis is an enterobacterium that causes catheter-associated urinary tract infections (CAUTIs) due to its ability to colonize and form crystalline biofilms on the catheters surface. CAUTIs are very difficult to treat, since biofilm structures are highly tolerant to antibiotics. Phages have been used widely to control a diversity of bacterial species, however, a limited number of phages for P. mirabilis have been isolated and studied. Here we report the isolation of two novel virulent phages, the podovirus vB_PmiP_5460 and the myovirus vB_PmiM_5461, which are able to target, respectively, 16 of the 26 and all the Proteus strains tested in this study. Both phages have been characterized thoroughly and sequencing data revealed no traces of genes associated with lysogeny. To further evaluate the phages’ ability to prevent catheter’s colonization by Proteus, the phages adherence to silicone surfaces was assessed. Further tests in phage-coated catheters using a dynamic biofilm model simulating CAUTIs, have shown a significant reduction of P. mirabilis biofilm formation up to 168 h of catheterization. These results highlight the potential usefulness of the two isolated phages for the prevention of surface colonization by this bacterium. PMID:27446059

  15. Mechanisms of multi-strain coexistence in host-phage systems with nested infection networks.

    PubMed

    Jover, Luis F; Cortez, Michael H; Weitz, Joshua S

    2013-09-07

    Bacteria and their viruses (bacteriophages) coexist in natural environments forming complex infection networks. Recent empirical findings suggest that phage-bacteria infection networks often possess a nested structure such that there is a hierarchical relationship among who can infect whom. Here we consider how nested infection networks may affect phage and bacteria dynamics using a multi-type Lotka-Volterra framework with cross-infection. Analysis of similar models has, in the past, assumed simpler interaction structures as a first step towards tractability. We solve the proposed model, finding trade-off conditions on the life-history traits of both bacteria and viruses that allow coexistence in communities with nested infection networks. First, we find that bacterial growth rate should decrease with increasing defense against infection. Second, we find that the efficiency of viral infection should decrease with host range. Next, we establish a relationship between relative densities and the curvature of life history trade-offs. We compare and contrast the current findings to the "Kill-the-Winner" model of multi-species phage-bacteria communities. Finally, we discuss a suite of testable hypotheses stemming from the current model concerning relationships between infection range, life history traits and coexistence in complex phage-bacteria communities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections.

    PubMed

    Pires, D P; Melo, Ldr; Vilas Boas, D; Sillankorva, S; Azeredo, J

    2017-09-28

    The complex heterogeneous structure of biofilms confers to bacteria an important survival strategy. Biofilms are frequently involved in many chronic infections in consequence of their low susceptibility to antibiotics as well as resistance to host defences. The increasing need of novel and effective treatments to target these complex structures has led to a growing interest on bacteriophages (phages) as a strategy for biofilm control and prevention. Phages can be used alone, as a cocktail to broaden the spectra of activity, or in combination with other antimicrobials to improve their efficacy. Here, we summarize the studies involving the use of phages for the treatment or prevention of bacterial biofilms, highlighting the biofilm features that can be tackled with phages or combined therapy approaches. Copyright © 2017. Published by Elsevier Ltd.

  17. Genome sequence of the phage clP1, which infects the beer spoilage bacterium Pediococcus damnosus.

    PubMed

    Kelly, David; O'Sullivan, Orla; Mills, Susan; McAuliffe, Olivia; Ross, R Paul; Neve, Horst; Coffey, Aidan

    2012-08-01

    Pediococcus damnosus (P. damnosus) bacteriophage (phage) clP1 is a novel virulent phage isolated from a municipal sewage sample collected in Southern Ireland. This phage infects the beer spoilage strain P. damnosus P82 which was isolated from German breweries. Sequencing of the phage has revealed a linear double stranded DNA genome of 38,013 base pairs (bp) with an overall GC content of 47.6%. Fifty seven open reading frames (ORFs) were identified of which 30 showed homology to previously sequenced proteins, and as a consequence 20 of these were assigned predicted functions. The majority of genes displayed homology with genes from the Lactobacillus plantarum phage phiJL-1. All genes were located on the same coding strand and in the same orientation. Morphological characterisation placed phage clP1 as a member of the Siphoviridae family with an isometric head (59 nm diameter) and non-contractile tail (length 175 nm; diameter 10nm. Interestingly, the phage clP1 genome was found to share very limited identity with other phage genome sequences in the database, and was hence considered unique. This was highlighted by the genome organisation which differed slightly to the consensus pattern of genomic organisation usually found in Siphoviridae phages. With the genetic machinery present for a lytic lifecycle and the absence of potential endotoxin factors, this phage may have applications in the biocontrol of beer spoilage bacteria. To our knowledge, this study represents the first reported P. damnosus phage genome sequence.

  18. Development of Anti-Infectives Using Phage Display: Biological Agents against Bacteria, Viruses, and Parasites

    PubMed Central

    Huang, Johnny X.; Bishop-Hurley, Sharon L.

    2012-01-01

    The vast majority of anti-infective therapeutics on the market or in development are small molecules; however, there is now a nascent pipeline of biological agents in development. Until recently, phage display technologies were used mainly to produce monoclonal antibodies (MAbs) targeted against cancer or inflammatory disease targets. Patent disputes impeded broad use of these methods and contributed to the dearth of candidates in the clinic during the 1990s. Today, however, phage display is recognized as a powerful tool for selecting novel peptides and antibodies that can bind to a wide range of antigens, ranging from whole cells to proteins and lipid targets. In this review, we highlight research that exploits phage display technology as a means of discovering novel therapeutics against infectious diseases, with a focus on antimicrobial peptides and antibodies in clinical or preclinical development. We discuss the different strategies and methods used to derive, select, and develop anti-infectives from phage display libraries and then highlight case studies of drug candidates in the process of development and commercialization. Advances in screening, manufacturing, and humanization technologies now mean that phage display can make a significant contribution in the fight against clinically important pathogens. PMID:22664969

  19. Genome sequence of the phage-gene rich marine Phaeobacter arcticus type strain DSM 23566T

    PubMed Central

    Freese, Heike M.; Dalingault, Hajnalka; Petersen, Jörn; Pradella, Silke; Davenport, Karen; Teshima, Hazuki; Chen, Amy; Pati, Amrita; Ivanova, Natalia; Goodwin, Lynne A.; Chain, Patrick; Detter, John C.; Rohde, Manfred; Gronow, Sabine; Kyrpides, Nikos C.; Woyke, Tanja; Brinkhoff, Thorsten; Göker, Markus; Overmann, Jörg; Klenk, Hans-Peter

    2013-01-01

    Phaeobacter arcticus Zhang et al. 2008 belongs to the marine Roseobacter clade whose members are phylogenetically and physiologically diverse. In contrast to the type species of this genus, Phaeobacter gallaeciensis, which is well characterized, relatively little is known about the characteristics of P. arcticus. Here, we describe the features of this organism including the annotated high-quality draft genome sequence and highlight some particular traits. The 5,049,232 bp long genome with its 4,828 protein-coding and 81 RNA genes consists of one chromosome and five extrachromosomal elements. Prophage sequences identified via PHAST constitute nearly 5% of the bacterial chromosome and included a potential Mu-like phage as well as a gene-transfer agent (GTA). In addition, the genome of strain DSM 23566T encodes all of the genes necessary for assimilatory nitrate reduction. Phylogenetic analysis and intergenomic distances indicate that the classification of the species might need to be reconsidered. PMID:24501630

  20. Dispersal network structure and infection mechanism shape diversity in a coevolutionary bacteria-phage system.

    PubMed

    Sieber, Michael; Robb, Matthew; Forde, Samantha E; Gudelj, Ivana

    2014-03-01

    Resource availability, dispersal and infection genetics all have the potential to fundamentally alter the coevolutionary dynamics of bacteria-bacteriophage interactions. However, it remains unclear how these factors synergise to shape diversity within bacterial populations. We used a combination of laboratory experiments and mathematical modeling to test how the structure of a dispersal network affects host phenotypic diversity in a coevolving bacteria-phage system in communities of differential resource input. Unidirectional dispersal of bacteria and phage from high to low resources consistently increased host diversity compared with a no dispersal regime. Bidirectional dispersal, on the other hand, led to a marked decrease in host diversity. Our mathematical model predicted these opposing outcomes when we incorporated modified gene-for-gene infection genetics. To further test how host diversity depended on the genetic underpinnings of the bacteria-phage interaction, we expanded our mathematical model to include different infection mechanisms. We found that the direction of dispersal had very little impact on bacterial diversity when the bacteria-phage interaction was mediated by matching alleles, gene-for-gene or related infection mechanisms. Our experimental and theoretical results demonstrate that the effects of dispersal on diversity in coevolving host-parasite systems depend on an intricate interplay of the structure of the underlying dispersal network and the specifics of the host-parasite interaction.

  1. In vivo efficacy of single phage versus phage cocktail in resolving burn wound infection in BALB/c mice.

    PubMed

    Chadha, Parul; Katare, Om Prakash; Chhibber, Sanjay

    2016-10-01

    Klebsiella pneumoniae is one of the most predominant pathogens associated with burn wound infections, causing considerable morbidity and mortality. The indiscriminate usage of antibiotics has led to the development of resistant strains, which have contributed towards the inefficacy of antibiotics. Phage therapy is a promising alternative to hinder the progression of pathogenic bacteria. However, phage bacterial resistance is already well known but the use of phage cocktails can overcome this drawback. The aim of the study was to evaluate the therapeutic efficacy of monophage (Kpn1, Kpn2, Kpn3, Kpn4 and Kpn5) in comparison to phage cocktail in resolving the course of burn wound infection in mice. Although, animals receiving monophage therapy exhibited efficacy in resolving the course of infection but phage cocktail was highly effective in arresting the entire infection process (bacterial load, wound contraction, skin myeloperoxidase activity, collagen formation and histopathological analysis). In comparison to untreated control mice, a significant reduction in bacterial load to 4.32, 4.64, 4.42, 4.11 and 4.27 log CFU/ml in Kpn1, Kpn2, Kpn3 Kpn4 and Kpn5 treated animals was obtained respectively was on peak day (3rd day). However, the group receiving phage cocktail (group 7) showed maximum reduction in bacterial load in the skin tissue. The bacterial load was significantly reduced to 3.01 log CFU/ml on peak day. This accounts for a significant reduction of 6 log cycles (p < 0.01) as compared to that of untreated control animals where a peak of 8.81 log CFU/ml was seen followed by steady decrease thereafter. Thus, phage cocktail gave maximum protection against burn wound infection by K. pneumoniae B5055. Compared to any single phage, phage cocktail significantly checked the emergence of resistant mutants. Hence this approach can serve as an effective strategy in treating Klebsiella mediated burn wound infections in individuals who do not respond to conventional

  2. Phages of non-dairy lactococci: isolation and characterization of ΦL47, a phage infecting the grass isolate Lactococcus lactis ssp. cremoris DPC6860

    PubMed Central

    Cavanagh, Daniel; Guinane, Caitriona M.; Neve, Horst; Coffey, Aidan; Ross, R. Paul; Fitzgerald, Gerald F.; McAuliffe, Olivia

    2014-01-01

    Lactococci isolated from non-dairy sources have been found to possess enhanced metabolic activity when compared to dairy strains. These capabilities may be harnessed through the use of these strains as starter or adjunct cultures to produce more diverse flavor profiles in cheese and other dairy products. To understand the interactions between these organisms and the phages that infect them, a number of phages were isolated against lactococcal strains of non-dairy origin. One such phage, ΦL47, was isolated from a sewage sample using the grass isolate L. lactis ssp. cremoris DPC6860 as a host. Visualization of phage virions by transmission electron microscopy established that this phage belongs to the family Siphoviridae and possesses a long tail fiber, previously unseen in dairy lactococcal phages. Determination of the lytic spectrum revealed a broader than expected host range, with ΦL47 capable of infecting 4 industrial dairy strains, including ML8, HP and 310, and 3 additional non-dairy isolates. Whole genome sequencing of ΦL47 revealed a dsDNA genome of 128, 546 bp, making it the largest sequenced lactococcal phage to date. In total, 190 open reading frames (ORFs) were identified, and comparative analysis revealed that the predicted products of 117 of these ORFs shared greater than 50% amino acid identity with those of L. lactis phage Φ949, a phage isolated from cheese whey. Despite their different ecological niches, the genomic content and organization of ΦL47 and Φ949 are quite similar, with both containing 4 gene clusters oriented in different transcriptional directions. Other features that distinguish ΦL47 from Φ949 and other lactococcal phages, in addition to the presence of the tail fiber and the genome length, include a low GC content (32.5%) and a high number of predicted tRNA genes (8). Comparative genome analysis supports the conclusion that ΦL47 is a new member of the 949 lactococcal phage group which currently includes the dairy Φ949. PMID

  3. Strain Specific Phage Treatment for Staphylococcus aureus Infection Is Influenced by Host Immunity and Site of Infection

    PubMed Central

    Pincus, Nathan B.; Jammeh, Momodou L.; Datta, Sandip K.; Myles, Ian A.

    2015-01-01

    The response to multi-drug resistant bacterial infections must be a global priority. While mounting resistance threatens to create what the World Health Organization has termed a “post-antibiotic era”, the recent discovery that antibiotic use may adversely impact the microbiome adds further urgency to the need for new developmental approaches for anti-pathogen treatments. Methicillin-resistant Staphylococcus aureus (MRSA), in particular, has declared itself a serious threat within the United States and abroad. A potential solution to the problem of antibiotic resistance may not entail looking to the future for completely novel treatments, but instead looking into our history of bacteriophage therapy. This study aimed to test the efficacy, safety, and commercial viability of the use of phages to treat Staphylococcus aureus infections using the commercially available phage SATA-8505. We found that SATA-8505 effectively controls S. aureus growth and reduces bacterial viability both in vitro and in a skin infection mouse model. However, this killing effect was not observed when phage was cultured in the presence of human whole blood. SATA-8505 did not induce inflammatory responses in peripheral blood mononuclear cultures. However, phage did induce IFN gamma production in primary human keratinocyte cultures and induced inflammatory responses in our mouse models, particularly in a mouse model of chronic granulomatous disease. Our findings support the potential efficacy of phage therapy, although regulatory and market factors may limit its wider investigation and use. PMID:25909449

  4. The tail-associated depolymerase of Erwinia amylovora phage L1 mediates host cell adsorption and enzymatic capsule removal, which can enhance infection by other phage.

    PubMed

    Born, Yannick; Fieseler, Lars; Klumpp, Jochen; Eugster, Marcel R; Zurfluh, Katrin; Duffy, Brion; Loessner, Martin J

    2014-07-01

    The depolymerase enzyme (DpoL1) encoded by the T7-like phage L1 efficiently degrades amylovoran, an important virulence factor and major component of the extracellular polysaccharide (EPS) of its host, the plant pathogen Erwinia amylovora. Mass spectrometry analysis of hydrolysed EPS revealed that DpoL1 cleaves the galactose-containing backbone of amylovoran. The enzyme is most active at pH 6 and 50°C, and features a modular architecture. Removal of 180 N-terminal amino acids was shown not to affect enzyme activity. The C-terminus harbours the hydrolase activity, while the N-terminal domain links the enzyme to the phage particle. Electron microscopy demonstrated that DpoL1-specific antibodies cross-link phage particles at their tails, either lateral or frontal, and immunogold staining confirmed that DpoL1 is located at the tail spikes. Exposure of high-level EPS-producing Er. amylovora strain CFBP1430 to recombinant DpoL1 dramatically increased sensitivity to the Dpo-negative phage Y2, which was not the case for EPS-negative mutants or low-level EPS-producing Er. amylovora. Our findings indicate that enhanced phage susceptibility is based on enzymatic removal of the EPS capsule, normally a physical barrier to Y2 infection, and that use of DpoL1 together with the broad host range, virulent phage Y2 represents an attractive combination for biocontrol of fire blight.

  5. Twelve previously unknown phage genera are ubiquitous in global oceans.

    PubMed

    Holmfeldt, Karin; Solonenko, Natalie; Shah, Manesh; Corrier, Kristen; Riemann, Lasse; Verberkmoes, Nathan C; Sullivan, Matthew B

    2013-07-30

    Viruses are fundamental to ecosystems ranging from oceans to humans, yet our ability to study them is bottlenecked by the lack of ecologically relevant isolates, resulting in "unknowns" dominating culture-independent surveys. Here we present genomes from 31 phages infecting multiple strains of the aquatic bacterium Cellulophaga baltica (Bacteroidetes) to provide data for an underrepresented and environmentally abundant bacterial lineage. Comparative genomics delineated 12 phage groups that (i) each represent a new genus, and (ii) represent one novel and four well-known viral families. This diversity contrasts the few well-studied marine phage systems, but parallels the diversity of phages infecting human-associated bacteria. Although all 12 Cellulophaga phages represent new genera, the podoviruses and icosahedral, nontailed ssDNA phages were exceptional, with genomes up to twice as large as those previously observed for each phage type. Structural novelty was also substantial, requiring experimental phage proteomics to identify 83% of the structural proteins. The presence of uncommon nucleotide metabolism genes in four genera likely underscores the importance of scavenging nutrient-rich molecules as previously seen for phages in marine environments. Metagenomic recruitment analyses suggest that these particular Cellulophaga phages are rare and may represent a first glimpse into the phage side of the rare biosphere. However, these analyses also revealed that these phage genera are widespread, occurring in 94% of 137 investigated metagenomes. Together, this diverse and novel collection of phages identifies a small but ubiquitous fraction of unknown marine viral diversity and provides numerous environmentally relevant phage-host systems for experimental hypothesis testing.

  6. Twelve previously unknown phage genera are ubiquitous in global oceans

    SciTech Connect

    Holmfeldt, Karin; Solonenko, Natalie; Shah, Manesh B; Corrier, Kristen L; Riemann, Lasse; Verberkmoes, Nathan C; Sullivan, Matthew B

    2013-01-01

    Viruses are fundamental to ecosystems ranging from oceans to humans, yet our ability to study them is bottlenecked by the lack of ecologically relevant isolates, resulting in unknowns dominating culture-independent surveys. Here we present genomes from 31 phages infecting multiple strains of the aquatic bacterium Cellulophaga baltica (Bacteroidetes) to provide data for an underrepresented and environmentally abundant bacterial lineage. Comparative genomics delineated 12 phage groups that (i) each represent a new genus, and (ii) represent one novel and four wellknown viral families. This diversity contrasts the few well-studied marine phage systems, but parallels the diversity of phages infecting human-associated bacteria. Although all 12 Cellulophaga phages represent new genera, the podoviruses and icosahedral, nontailed ssDNA phages were exceptional, with genomes up to twice as large as those previously observed for each phage type. Structural novelty was also substantial, requiring experimental phage proteomics to identify 83% of the structural proteins. The presence of uncommon nucleotide metabolism genes in four genera likely underscores the importance of scavenging nutrient-rich molecules as previously seen for phages in marine environments. Metagenomic recruitment analyses suggest that these particular Cellulophaga phages are rare and may represent a first glimpse into the phage side of the rare biosphere. However, these analyses also revealed that these phage genera are widespread, occurring in 94% of 137 investigated metagenomes. Together, this diverse and novel collection of phages identifies a small but ubiquitous fraction of unknown marine viral diversity and provides numerous environmentally relevant phage host systems for experimental hypothesis testing.

  7. Use of phages to control Vibrio splendidus infection in the juvenile sea cucumber Apostichopus japonicus.

    PubMed

    Li, Zhen; Li, Xiaoyu; Zhang, Jiancheng; Wang, Xitao; Wang, Lili; Cao, Zhenhui; Xu, Yongping

    2016-07-01

    , ingestion rate or feed conversion among sea cucumber fed the 4 phage treatments compared with those fed the unsupplemented diet (P > 0.05). The levels of nitric oxide synthase and acid phosphatase of sea cucumbers fed phage-containing diets were significantly (P < 0.05) increased compared with those fed the control diet. However, no significant differences (P > 0.05) were detected among the 4 phage-fed treatments. An additional study was conducted in which 60 healthy sea cucumbers (23 ± 2 g) were randomly assigned to a control, an untreated group and a test group to investigate the effects of injecting phages by coelomic injection on the survival rate and enzyme activities in the coelomic fluid of the sea cucumbers. The control was injected with 1 ml of sterilized seawater while the untreated group and the test group were injected with the same volume of V. splendidus-ABTNL culture (3 × 10(5) CFU/mL). Then, the test group was injected with 1 ml of the 3 phage cocktail (MOI = 10). After 48 h, the activities of lysozyme, acid phosphatase and superoxide dismutase were elevated in the untreated group while the levels of these enzymes in the test group were similar to the blank control. After 10-day observation, the survival rate of the sea cucumber was 100% for the blank control, 80% for the test group and 20% for the negative control. The overall results of this experiment indicate that phage therapy increased the survival of sea cucumber infected with V. splendidus VS-ABTNL. The above results demonstrate that using phages, especially a combination of different phages, may be a feasible way to control Vibrio infection in the sea cucumber industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Photosynthesis genes in marine viruses yield proteins during host infection.

    PubMed

    Lindell, Debbie; Jaffe, Jacob D; Johnson, Zackary I; Church, George M; Chisholm, Sallie W

    2005-11-03

    Cyanobacteria, and the viruses (phages) that infect them, are significant contributors to the oceanic 'gene pool'. This pool is dynamic, and the transfer of genetic material between hosts and their phages probably influences the genetic and functional diversity of both. For example, photosynthesis genes of cyanobacterial origin have been found in phages that infect Prochlorococcus and Synechococcus, the numerically dominant phototrophs in ocean ecosystems. These genes include psbA, which encodes the photosystem II core reaction centre protein D1, and high-light-inducible (hli) genes. Here we show that phage psbA and hli genes are expressed during infection of Prochlorococcus and are co-transcribed with essential phage capsid genes, and that the amount of phage D1 protein increases steadily over the infective period. We also show that the expression of host photosynthesis genes declines over the course of infection and that replication of the phage genome is a function of photosynthesis. We thus propose that the phage genes are functional in photosynthesis and that they may be increasing phage fitness by supplementing the host production of these proteins.

  9. Biotechnological war against biofilms. Could phages mean the end of device-related infections?

    PubMed

    Del Pozo, J L; Alonso, M; Arciola, C R; Gonzalez, R; Leiva, J; Lasa, I; Penades, J

    2007-09-01

    Microorganisms universally attach to surfaces, resulting in biofilm formation. These biofilms entail a serious problem in daily clinical practice because of the great prevalence of implantable device-related infections. Differences in antibiotic activity against planktonic and sessile bacteria may relate to clinical failures in the treatment of biofilm-related infections (BRI). Bacteriophages have several characteristics that make them potentially attractive therapeutic agents in some selected clinical settings, like for example BRI. They are highly specific and very effective in lysing targeted bacteria, moreover, they appear to be safe for humans. Many studies have shown the potential of phages for the treatment of infectious diseases in plants and animals, including infections with highly drug-resistant bacteria. The therapeutic use of bacteriophages, possibly in combination with antibiotics, may be a valuable approach in BRI. However, many important questions still remain that must be addressed before phages can be endorsed for therapeutic use in humans.

  10. Characterisation of technologically proficient wild Lactococcus lactis strains resistant to phage infection.

    PubMed

    Madera, Carmen; García, Pilar; Janzen, Thomas; Rodríguez, Ana; Suárez, Juan E

    2003-09-15

    The aim of this work was to establish whether Lactococcus lactis strains isolated from spontaneous dairy fermentations exhibited useful milk-processing capabilities and resistance to bacteriophage infection in order to be used as components in starter formulations. The 33 out of 100 isolates of L. lactis, originated from farmhouse cheeses, were found to be resistant to a collection of 34 phages belonging to the c2 and 936 groups. Six of the isolates were discarded as potential starters because they were lysogenic and other five because they produced tyramine. Plasmid and chromosomal profiles of the 22 remaining isolates allowed their classification into 16 different strains. All of these were good lactic acid producers from lactose, moderately proteolytic and, in eight cases, diacetyl production from citrate was observed. The mechanism(s) leading to the phenotype of phage resistance was identified for all the strains used in this study. Inhibition of adsorption was the most frequent one, although genetic determinants for some abortive infection systems were also detected (abiB, abiG and abiI). Frequently, more than one mechanism was present in the same strain. One of the strains, L. lactis IPLA542, was selected as a model starter for pilot fermentations. It clotted milk normally both in the absence and in the presence of phage at concentrations that completely abolished the process when promoted by a phage-susceptible strain.

  11. Transcription Profiling of Bacillus subtilis Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases.

    PubMed

    Lavysh, Daria; Sokolova, Maria; Slashcheva, Marina; Förstner, Konrad U; Severinov, Konstantin

    2017-02-14

    Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5' ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases.IMPORTANCE Phages regulate the timing of the expression of their own genes to coordinate processes in the infected cell and maximize the release of viral progeny. Phages also alter the levels of host transcripts. Here we present the results of a temporal analysis of the host and viral transcriptomes of Bacillus subtilis infected with a giant phage, AR9. We identify viral promoters recognized by two virus-encoded RNA polymerases that are a unique feature of the phiKZ-related group of phages to which AR9 belongs. Our results set the stage for future analyses of highly unusual RNA polymerases encoded by AR9 and other phiKZ-related phages.

  12. Twelve previously unknown phage genera are ubiquitous in global oceans

    PubMed Central

    Holmfeldt, Karin; Solonenko, Natalie; Shah, Manesh; Corrier, Kristen; Riemann, Lasse; VerBerkmoes, Nathan C.; Sullivan, Matthew B.

    2013-01-01

    Viruses are fundamental to ecosystems ranging from oceans to humans, yet our ability to study them is bottlenecked by the lack of ecologically relevant isolates, resulting in “unknowns” dominating culture-independent surveys. Here we present genomes from 31 phages infecting multiple strains of the aquatic bacterium Cellulophaga baltica (Bacteroidetes) to provide data for an underrepresented and environmentally abundant bacterial lineage. Comparative genomics delineated 12 phage groups that (i) each represent a new genus, and (ii) represent one novel and four well-known viral families. This diversity contrasts the few well-studied marine phage systems, but parallels the diversity of phages infecting human-associated bacteria. Although all 12 Cellulophaga phages represent new genera, the podoviruses and icosahedral, nontailed ssDNA phages were exceptional, with genomes up to twice as large as those previously observed for each phage type. Structural novelty was also substantial, requiring experimental phage proteomics to identify 83% of the structural proteins. The presence of uncommon nucleotide metabolism genes in four genera likely underscores the importance of scavenging nutrient-rich molecules as previously seen for phages in marine environments. Metagenomic recruitment analyses suggest that these particular Cellulophaga phages are rare and may represent a first glimpse into the phage side of the rare biosphere. However, these analyses also revealed that these phage genera are widespread, occurring in 94% of 137 investigated metagenomes. Together, this diverse and novel collection of phages identifies a small but ubiquitous fraction of unknown marine viral diversity and provides numerous environmentally relevant phage–host systems for experimental hypothesis testing. PMID:23858439

  13. Two asian jumbo phages, ϕRSL2 and ϕRSF1, infect Ralstonia solanacearum and show common features of ϕKZ-related phages.

    PubMed

    Bhunchoth, Anjana; Blanc-Mathieu, Romain; Mihara, Tomoko; Nishimura, Yosuke; Askora, Ahmed; Phironrit, Namthip; Leksomboon, Chalida; Chatchawankanphanich, Orawan; Kawasaki, Takeru; Nakano, Miyako; Fujie, Makoto; Ogata, Hiroyuki; Yamada, Takashi

    2016-07-01

    Jumbo phages infecting Ralstonia solanacearum were isolated in Thailand (ϕRSL2) and Japan (ϕRSF1). They were similar regarding virion morphology, genomic arrangement, and host range. Phylogenetic and proteomic tree analyses demonstrate that the ϕRSL2 and ϕRSF1 belong to a group of evolutionary related phages, including Pseudomonas phages ϕKZ, 201ϕ2-1 and all previously described ϕKZ-related phages. Despite conserved genomic co-linearity between the ϕRSL2 and ϕRSF1, they differ in protein separation patterns. A major difference was seen in the detection of virion-associated-RNA polymerase subunits. All β- and β'-subunits were detected in ϕRSF1, but one β'-subunit was undetected in ϕRSL2. Furthermore, ϕRSF1 infected host cells faster (latent period: 60 and 150min for ϕRSF1 and ϕRSL2, respectively) and more efficiently than ϕRSL2. Therefore, the difference in virion-associated-RNA polymerase may affect infection efficiency. Finally, we show that ϕRSF1 is able to inhibit bacterial wilt progression in tomato plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Designing phage therapeutics.

    PubMed

    Goodridge, Lawrence D

    2010-01-01

    Phage therapy is the application of phages to bodies, substances, or environments to effect the biocontrol of pathogenic or nuisance bacteria. To be effective, phages, minimally, must be capable of attaching to bacteria (adsorption), killing those bacteria (usually associated with phage infection), and otherwise surviving (resisting decay) until they achieve attachment and subsequent killing. While a strength of phage therapy is that phages that possess appropriate properties can be chosen from a large diversity of naturally occurring phages, a more rational approach to phage therapy also can include post-isolation manipulation of phages genetically, phenotypically, or in terms of combining different products into a single formulation. Genetic manipulation, especially in these modern times, can involve genetic engineering, though a more traditional approach involves the selection of spontaneously occurring phage mutants during serial transfer protocols. While genetic modification typically is done to give rise to phenotypic changes in phages, phage phenotype alone can also be modified in vitro, prior to phage application for therapeutic purposes, as for the sake of improving phage lethality (such as by linking phage virions to antibacterial chemicals such as chloramphenicol) or survival capabilities (e.g., via virion PEGylation). Finally, phages, both naturally occurring isolates or otherwise modified constructs, can be combined into cocktails which provide collectively enhanced capabilities such as expanded overall host range. Generally these strategies represent different routes towards improving phage therapy formulations and thereby efficacy through informed design.

  15. Influence of Internal Capsid Pressure on Viral Infection by Phage λ

    PubMed Central

    Köster, Sarah; Evilevitch, Alex; Jeembaeva, Meerim; Weitz, David A.

    2009-01-01

    Ejection of the genome from the virus, phage λ, is the initial step in the infection of its host bacterium. In vitro, the ejection depends sensitively on internal pressure within the virus capsid; however, the in vivo effect of internal pressure on infection of bacteria is unknown. Here, we use microfluidics to monitor individual cells and determine the temporal distribution of lysis due to infection as the capsid pressure is varied. The lysis probability decreases markedly with decreased capsid pressure. Of interest, the average lysis times remain the same but the distribution is broadened as the pressure is lowered. PMID:19751656

  16. Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea ice.

    PubMed

    Borriss, Michael; Helmke, Elisabeth; Hanschke, Renate; Schweder, Thomas

    2003-10-01

    Phage-host systems from extreme cold environments have rarely been surveyed. This study is concerned with the isolation and characterization of three different phage-host systems from Arctic sea ice and melt pond samples collected north-west of Svalbard (Arctic). On the basis of 16S rDNA sequences, the three bacterial phage hosts exhibited the greatest similarity to the species Shewanella frigidimarina (96.0%), Flavobacterium hibernum (94.0%), and Colwellia psychrerythraea (98.4%), respectively. The host bacteria are psychrophilic with good growth at 0 degrees C, resulting in a rapid formation of visible colonies at this temperature. The phages showed an even more pronounced adaptation to cold temperatures than the bacteria, with growth maxima below 14 degrees C and good plaque formation at 0 degrees C. Transmission electron microscopy (TEM) examinations revealed that the bacteriophages belonged to the tailed, double-stranded DNA phage families Siphoviridae and Myoviridae. All three phages were host-specific.

  17. Genetic Evidence for the Involvement of the S-Layer Protein Gene sap and the Sporulation Genes spo0A, spo0B, and spo0F in Phage AP50c Infection of Bacillus anthracis

    PubMed Central

    Beaber, John W.; Zemansky, Jason; Kaur, Ajinder P.; George, Matroner; Biswas, Biswajit; Henry, Matthew; Bishop-Lilly, Kimberly A.; Mokashi, Vishwesh; Hannah, Ryan M.; Pope, Robert K.; Read, Timothy D.; Stibitz, Scott; Calendar, Richard; Sozhamannan, Shanmuga

    2014-01-01

    In order to better characterize the Bacillus anthracis typing phage AP50c, we designed a genetic screen to identify its bacterial receptor. Insertions of the transposon mariner or targeted deletions of the structural gene for the S-layer protein Sap and the sporulation genes spo0A, spo0B, and spo0F in B. anthracis Sterne resulted in phage resistance with concomitant defects in phage adsorption and infectivity. Electron microscopy of bacteria incubated with AP50c revealed phage particles associated with the surface of bacilli of the Sterne strain but not with the surfaces of Δsap, Δspo0A, Δspo0B, or Δspo0F mutants. The amount of Sap in the S layer of each of the spo0 mutant strains was substantially reduced compared to that of the parent strain, and incubation of AP50c with purified recombinant Sap led to a substantial reduction in phage activity. Phylogenetic analysis based on whole-genome sequences of B. cereus sensu lato strains revealed several closely related B. cereus and B. thuringiensis strains that carry sap genes with very high similarities to the sap gene of B. anthracis. Complementation of the Δsap mutant in trans with the wild-type B. anthracis sap or the sap gene from either of two different B. cereus strains that are sensitive to AP50c infection restored phage sensitivity, and electron microscopy confirmed attachment of phage particles to the surface of each of the complemented strains. Based on these data, we postulate that Sap is involved in AP50c infectivity, most likely acting as the phage receptor, and that the spo0 genes may regulate synthesis of Sap and/or formation of the S layer. PMID:24363347

  18. Genetic evidence for the involvement of the S-layer protein gene sap and the sporulation genes spo0A, spo0B, and spo0F in Phage AP50c infection of Bacillus anthracis.

    PubMed

    Plaut, Roger D; Beaber, John W; Zemansky, Jason; Kaur, Ajinder P; George, Matroner; Biswas, Biswajit; Henry, Matthew; Bishop-Lilly, Kimberly A; Mokashi, Vishwesh; Hannah, Ryan M; Pope, Robert K; Read, Timothy D; Stibitz, Scott; Calendar, Richard; Sozhamannan, Shanmuga

    2014-03-01

    In order to better characterize the Bacillus anthracis typing phage AP50c, we designed a genetic screen to identify its bacterial receptor. Insertions of the transposon mariner or targeted deletions of the structural gene for the S-layer protein Sap and the sporulation genes spo0A, spo0B, and spo0F in B. anthracis Sterne resulted in phage resistance with concomitant defects in phage adsorption and infectivity. Electron microscopy of bacteria incubated with AP50c revealed phage particles associated with the surface of bacilli of the Sterne strain but not with the surfaces of Δsap, Δspo0A, Δspo0B, or Δspo0F mutants. The amount of Sap in the S layer of each of the spo0 mutant strains was substantially reduced compared to that of the parent strain, and incubation of AP50c with purified recombinant Sap led to a substantial reduction in phage activity. Phylogenetic analysis based on whole-genome sequences of B. cereus sensu lato strains revealed several closely related B. cereus and B. thuringiensis strains that carry sap genes with very high similarities to the sap gene of B. anthracis. Complementation of the Δsap mutant in trans with the wild-type B. anthracis sap or the sap gene from either of two different B. cereus strains that are sensitive to AP50c infection restored phage sensitivity, and electron microscopy confirmed attachment of phage particles to the surface of each of the complemented strains. Based on these data, we postulate that Sap is involved in AP50c infectivity, most likely acting as the phage receptor, and that the spo0 genes may regulate synthesis of Sap and/or formation of the S layer.

  19. A proposed integrated approach for the preclinical evaluation of phage therapy in Pseudomonas infections

    NASA Astrophysics Data System (ADS)

    Danis-Wlodarczyk, Katarzyna; Vandenheuvel, Dieter; Jang, Ho Bin; Briers, Yves; Olszak, Tomasz; Arabski, Michal; Wasik, Slawomir; Drabik, Marcin; Higgins, Gerard; Tyrrell, Jean; Harvey, Brian J.; Noben, Jean-Paul; Lavigne, Rob; Drulis-Kawa, Zuzanna

    2016-06-01

    Bacteriophage therapy is currently resurging as a potential complement/alternative to antibiotic treatment. However, preclinical evaluation lacks streamlined approaches. We here focus on preclinical approaches which have been implemented to assess bacteriophage efficacy against Pseudomonas biofilms and infections. Laser interferometry and profilometry were applied to measure biofilm matrix permeability and surface geometry changes, respectively. These biophysical approaches were combined with an advanced Airway Surface Liquid infection model, which mimics in vitro the normal and CF lung environments, and an in vivo Galleria larvae model. These assays have been implemented to analyze KTN4 (279,593 bp dsDNA genome), a type-IV pili dependent, giant phage resembling phiKZ. Upon contact, KTN4 immediately disrupts the P. aeruginosa PAO1 biofilm and reduces pyocyanin and siderophore production. The gentamicin exclusion assay on NuLi-1 and CuFi-1 cell lines revealed the decrease of extracellular bacterial load between 4 and 7 logs and successfully prevents wild-type Pseudomonas internalization into CF epithelial cells. These properties and the significant rescue of Galleria larvae indicate that giant KTN4 phage is a suitable candidate for in vivo phage therapy evaluation for lung infection applications.

  20. A proposed integrated approach for the preclinical evaluation of phage therapy in Pseudomonas infections

    PubMed Central

    Danis-Wlodarczyk, Katarzyna; Vandenheuvel, Dieter; Jang, Ho Bin; Briers, Yves; Olszak, Tomasz; Arabski, Michal; Wasik, Slawomir; Drabik, Marcin; Higgins, Gerard; Tyrrell, Jean; Harvey, Brian J.; Noben, Jean-Paul; Lavigne, Rob; Drulis-Kawa, Zuzanna

    2016-01-01

    Bacteriophage therapy is currently resurging as a potential complement/alternative to antibiotic treatment. However, preclinical evaluation lacks streamlined approaches. We here focus on preclinical approaches which have been implemented to assess bacteriophage efficacy against Pseudomonas biofilms and infections. Laser interferometry and profilometry were applied to measure biofilm matrix permeability and surface geometry changes, respectively. These biophysical approaches were combined with an advanced Airway Surface Liquid infection model, which mimics in vitro the normal and CF lung environments, and an in vivo Galleria larvae model. These assays have been implemented to analyze KTN4 (279,593 bp dsDNA genome), a type-IV pili dependent, giant phage resembling phiKZ. Upon contact, KTN4 immediately disrupts the P. aeruginosa PAO1 biofilm and reduces pyocyanin and siderophore production. The gentamicin exclusion assay on NuLi-1 and CuFi-1 cell lines revealed the decrease of extracellular bacterial load between 4 and 7 logs and successfully prevents wild-type Pseudomonas internalization into CF epithelial cells. These properties and the significant rescue of Galleria larvae indicate that giant KTN4 phage is a suitable candidate for in vivo phage therapy evaluation for lung infection applications. PMID:27301427

  1. A Genetic Approach to the Development of New Therapeutic Phages to Fight Pseudomonas Aeruginosa in Wound Infections

    PubMed Central

    Krylov, Victor; Shaburova, Olga; Krylov, Sergey; Pleteneva, Elena

    2012-01-01

    Pseudomonas aeruginosa is a frequent participant in wound infections. Emergence of multiple antibiotic resistant strains has created significant problems in the treatment of infected wounds. Phage therapy (PT) has been proposed as a possible alternative approach. Infected wounds are the perfect place for PT applications, since the basic condition for PT is ensured; namely, the direct contact of bacteria and their viruses. Plenty of virulent (“lytic”) and temperate (“lysogenic”) bacteriophages are known in P. aeruginosa. However, the number of virulent phage species acceptable for PT and their mutability are limited. Besides, there are different deviations in the behavior of virulent (and temperate) phages from their expected canonical models of development. We consider some examples of non-canonical phage-bacterium interactions and the possibility of their use in PT. In addition, some optimal approaches to the development of phage therapy will be discussed from the point of view of a biologist, considering the danger of phage-assisted horizontal gene transfer (HGT), and from the point of view of a surgeon who has accepted the Hippocrates Oath to cure patients by all possible means. It is also time now to discuss the possible approaches in international cooperation for the development of PT. We think it would be advantageous to make phage therapy a kind of personalized medicine. PMID:23344559

  2. Production of inhalation phage powders using spray freeze drying and spray drying techniques for treatment of respiratory infections

    PubMed Central

    Leung, Sharon S.Y.; Parumasivam, Thaigarajan; Gao, Fiona G.; Carrigy, Nicholas B.; Vehring, Reinhard; Finlay, Warren H.; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim

    2016-01-01

    Purpose The potential of aerosol phage therapy for treating lung infections has been demonstrated in animal models and clinical studies. This work compared the performance of two dry powder formation techniques, spray freeze drying (SFD) and spray drying (SD), in producing inhalable phage powders. Method A Pseudomonas podoviridae phage, PEV2, was incorporated into multi-component formulation systems consisting of trehalose, mannitol and L-leucine (F1 = 60:20:20 and F2 = 40:40:20). The phage titer loss after the SFD and SD processes and in vitro aerosol performance of the produced powders were assessed. Results A significant titer loss (~ 2 log) was noted for droplet generation using an ultrasonic nozzle employed in the SFD method, but the conventional two-fluid nozzle used in the SD method was less destructive for the phage (~0.75 log loss). The phage were more vulnerable during the evaporative drying process (~0.75 log further loss) compared with the freeze drying step, which caused negligible phage loss. In vitro aerosol performance showed that the SFD powders (~80% phage recovery) provided better phage protection than the SD powders (~20% phage recovery) during the aerosolization process. Despite this, higher total lung doses were obtained for the SD formulations (SD-F1 = 13.1 ± 1.7 × 104 pfu and SD-F2 = 11.0 ± 1.4 × 104 pfu) than from their counterpart SFD formulations (SFD-F1 = 8.3 ± 1.8 × 104 pfu and SFD-F2 = 2.1 ± 0.3 × 104 pfu). Conclusion Overall, the SD method caused less phage reduction during the powder formation process and the resulted powders achieved better aerosol performance for PEV2. PMID:26928668

  3. Structural rearrangements in the phage head-to-tail interface during assembly and infection

    PubMed Central

    Chaban, Yuriy; Lurz, Rudi; Brasilès, Sandrine; Cornilleau, Charlène; Karreman, Matthia; Zinn-Justin, Sophie; Tavares, Paulo; Orlova, Elena V.

    2015-01-01

    Many icosahedral viruses use a specialized portal vertex to control genome encapsidation and release from the viral capsid. In tailed bacteriophages, the portal system is connected to a tail structure that provides the pipeline for genome delivery to the host cell. We report the first, to our knowledge, subnanometer structures of the complete portal–phage tail interface that mimic the states before and after DNA release during phage infection. They uncover structural rearrangements associated with intimate protein–DNA interactions. The portal protein gp6 of bacteriophage SPP1 undergoes a concerted reorganization of the structural elements of its central channel during interaction with DNA. A network of protein–protein interactions primes consecutive binding of proteins gp15 and gp16 to extend and close the channel. This critical step that prevents genome leakage from the capsid is achieved by a previously unidentified allosteric mechanism: gp16 binding to two different regions of gp15 drives correct positioning and folding of an inner gp16 loop to interact with equivalent loops of the other gp16 subunits. Together, these loops build a plug that closes the channel. Gp16 then fastens the tail to yield the infectious virion. The gatekeeper system opens for viral genome exit at the beginning of infection but recloses afterward, suggesting a molecular diaphragm-like mechanism to control DNA efflux. The mechanisms described here, controlling the essential steps of phage genome movements during virus assembly and infection, are likely to be conserved among long-tailed phages, the largest group of viruses in the Biosphere. PMID:25991862

  4. The genomes, proteomes, and structures of three novel phages that infect the Bacillus cereus group and carry putative virulence factors.

    PubMed

    Grose, Julianne H; Belnap, David M; Jensen, Jordan D; Mathis, Andrew D; Prince, John T; Merrill, Bryan D; Burnett, Sandra H; Breakwell, Donald P

    2014-10-01

    This article reports the results of studying three novel bacteriophages, JL, Shanette, and Basilisk, which infect the pathogen Bacillus cereus and carry genes that may contribute to its pathogenesis. We analyzed host range and superinfection ability, mapped their genomes, and characterized phage structure by mass spectrometry and transmission electron microscopy (TEM). The JL and Shanette genomes were 96% similar and contained 217 open reading frames (ORFs) and 220 ORFs, respectively, while Basilisk has an unrelated genome containing 138 ORFs. Mass spectrometry revealed 23 phage particle proteins for JL and 15 for Basilisk, while only 11 and 4, respectively, were predicted to be present by sequence analysis. Structural protein homology to well-characterized phages suggested that JL and Shanette were members of the family Myoviridae, which was confirmed by TEM. The third phage, Basilisk, was similar only to uncharacterized phages and is an unrelated siphovirus. Cryogenic electron microscopy of this novel phage revealed a T=9 icosahedral capsid structure with the major capsid protein (MCP) likely having the same fold as bacteriophage HK97 MCP despite the lack of sequence similarity. Several putative virulence factors were encoded by these phage genomes, including TerC and TerD involved in tellurium resistance. Host range analysis of all three phages supports genetic transfer of such factors within the B. cereus group, including B. cereus, B. anthracis, and B. thuringiensis. This study provides a basis for understanding these three phages and other related phages as well as their contributions to the pathogenicity of B. cereus group bacteria. Importance: The Bacillus cereus group of bacteria contains several human and plant pathogens, including B. cereus, B. anthracis, and B. thuringiensis. Phages are intimately linked to the evolution of their bacterial hosts and often provide virulence factors, making the study of B. cereus phages important to understanding the

  5. The Genomes, Proteomes, and Structures of Three Novel Phages That Infect the Bacillus cereus Group and Carry Putative Virulence Factors

    PubMed Central

    Belnap, David M.; Jensen, Jordan D.; Mathis, Andrew D.; Prince, John T.; Merrill, Bryan D.; Burnett, Sandra H.; Breakwell, Donald P.

    2014-01-01

    ABSTRACT This article reports the results of studying three novel bacteriophages, JL, Shanette, and Basilisk, which infect the pathogen Bacillus cereus and carry genes that may contribute to its pathogenesis. We analyzed host range and superinfection ability, mapped their genomes, and characterized phage structure by mass spectrometry and transmission electron microscopy (TEM). The JL and Shanette genomes were 96% similar and contained 217 open reading frames (ORFs) and 220 ORFs, respectively, while Basilisk has an unrelated genome containing 138 ORFs. Mass spectrometry revealed 23 phage particle proteins for JL and 15 for Basilisk, while only 11 and 4, respectively, were predicted to be present by sequence analysis. Structural protein homology to well-characterized phages suggested that JL and Shanette were members of the family Myoviridae, which was confirmed by TEM. The third phage, Basilisk, was similar only to uncharacterized phages and is an unrelated siphovirus. Cryogenic electron microscopy of this novel phage revealed a T=9 icosahedral capsid structure with the major capsid protein (MCP) likely having the same fold as bacteriophage HK97 MCP despite the lack of sequence similarity. Several putative virulence factors were encoded by these phage genomes, including TerC and TerD involved in tellurium resistance. Host range analysis of all three phages supports genetic transfer of such factors within the B. cereus group, including B. cereus, B. anthracis, and B. thuringiensis. This study provides a basis for understanding these three phages and other related phages as well as their contributions to the pathogenicity of B. cereus group bacteria. IMPORTANCE The Bacillus cereus group of bacteria contains several human and plant pathogens, including B. cereus, B. anthracis, and B. thuringiensis. Phages are intimately linked to the evolution of their bacterial hosts and often provide virulence factors, making the study of B. cereus phages important to understanding

  6. Case-control study of infections with Salmonella enteritidis phage type 4 in England.

    PubMed Central

    Cowden, J. M.; Lynch, D.; Joseph, C. A.; O'Mahony, M.; Mawer, S. L.; Rowe, B.; Bartlett, C. L.

    1989-01-01

    OBJECTIVE--To determine the source of indigenous sporadic infection with Salmonella enteritidis phage type 4. DESIGN--Case-control study of primary sporadic cases identified by the Public Health Laboratory Service between 1 August and 30 September 1988. SETTING--PHLS Communicable Disease Surveillance Centre, Division of Enteric Pathogens, 11 PHLS laboratories, and 42 local authority environmental health departments in England. SUBJECTS--232 Patients (cases) with confirmed primary sporadic infection, for 160 of whom (88 female) (median age 30 years, age range 4 months to 85 years) data were obtained by questionnaire about consumption of fresh eggs, egg products, precooked chicken, and minced meat in the three days and one week before onset of the symptoms. Up to three controls, matched for neighbourhood, age, and sex (if aged greater than 11 years), were asked the same questions for the same calendar period. MAIN OUTCOME MEASURE--Association of primary sporadic infection with consumption of suspected food items. RESULTS--Illness due to S enteritidis phage type 4 was significantly associated with consumption of raw shell egg products (homemade mayonnaise, ice cream, and milk drinks containing eggs) (matched p = 0.02) and shop bought sandwiches containing mayonnaise (matched p = 0.00004) or eggs (matched p = 0.02). Illness was also significantly associated with eating lightly cooked eggs (unmatched p = 0.02), but not soft boiled eggs, and precooked hot chicken (matched p = 0.006). Reported consumption of eggs was not appreciably different between cases and controls before or after the median date of interview. CONCLUSIONS--Fresh shell eggs, egg products, and precooked hot chicken are vehicles of S enteritidis phage type 4 infection in indigenous sporadic cases. Public health education and reduction in contamination of eggs and infection of poultry with S enteritidis are needed to reduce the incidence of human infection. PMID:2508916

  7. Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model.

    PubMed

    Trigo, Gabriela; Martins, Teresa G; Fraga, Alexandra G; Longatto-Filho, Adhemar; Castro, António G; Azeredo, Joana; Pedrosa, Jorge

    2013-01-01

    Buruli Ulcer (BU) is a neglected, necrotizing skin disease caused by Mycobacterium ulcerans. Currently, there is no vaccine against M. ulcerans infection. Although the World Health Organization recommends a combination of rifampicin and streptomycin for the treatment of BU, clinical management of advanced stages is still based on the surgical resection of infected skin. The use of bacteriophages for the control of bacterial infections has been considered as an alternative or to be used in association with antibiotherapy. Additionally, the mycobacteriophage D29 has previously been shown to display lytic activity against M. ulcerans isolates. We used the mouse footpad model of M. ulcerans infection to evaluate the therapeutic efficacy of treatment with mycobacteriophage D29. Analyses of macroscopic lesions, bacterial burdens, histology and cytokine production were performed in both M. ulcerans-infected footpads and draining lymph nodes (DLN). We have demonstrated that a single subcutaneous injection of the mycobacteriophage D29, administered 33 days after bacterial challenge, was sufficient to decrease pathology and to prevent ulceration. This protection resulted in a significant reduction of M. ulcerans numbers accompanied by an increase of cytokine levels (including IFN-γ), both in footpads and DLN. Additionally, mycobacteriophage D29 treatment induced a cellular infiltrate of a lymphocytic/macrophagic profile. Our observations demonstrate the potential of phage therapy against M. ulcerans infection, paving the way for future studies aiming at the development of novel phage-related therapeutic approaches against BU.

  8. ``Fatal Scream'' Of Bacteria Infected By Phages: Nanoscale Detection Of Bacteriophage Triggered Ion Cascade

    NASA Astrophysics Data System (ADS)

    King, Maria D.; Seo, Sungkyu; Kim, Jong; Cheng, Mosong; Young, Ryland; Biard, Robert J.; Bezrukov, Sergey M.; Granqvist, Claes-Goran; Kish, Laszlo B.

    2005-11-01

    A rapid, inexpensive and specific identification of arbitrary bacteria under field conditions is urgently needed. To this end, we have introduced and tested a new technology, called SEPTIC, SEnsing of Phage-Triggered Ion Cascade. In its prototype form based on a nanowell chip, SEPTIC has already been shown to be capable of unambiguous identification of live bacteria on a time scale of seconds to minutes, many times faster than any other system. The technology is based on using noise analysis to detect the massive ionic fluxes associated with the initial step of bacteriophage infection, the injection of the phage DNA into the cell. Here we show the results and pose a number of unsolved problems of noise. Ultimately, sensors based on this new technology would be able to save many lifes.

  9. Phages infecting Vibrio vulnificus are abundant and diverse in oysters (Crassostrea virginica) collected from the Gulf of Mexico.

    PubMed

    DePaola, A; Motes, M L; Chan, A M; Suttle, C A

    1998-01-01

    Phages infecting Vibrio vulnificus were abundant (> 10(4) phages g of oyster tissue-1) throughout the year in oysters (Crassostrea virginica) collected from estuaries adjacent to the Gulf of Mexico (Apalachicola Bay, Fla.; Mobile Bay, Ala.; and Black Bay, La.). Estimates of abundance ranged from 10(1) to 10(5) phages g of oyster tissue-1 and were dependent on the bacterial strain used to assay the sample. V. vulnificus was near or below detection limits (< 0.3 cell g-1) from January through March and was most abundant (10(3) to 10(4) cells g-1) during the summer and fall, when phage abundances also tended to be greatest. The phages isolated were specific to strains of V. vulnificus, except for one isolate that caused lysis in a few strains of V. parahaemolyticus. Based on morphological evidence obtained by transmission electron microscopy, the isolates belonged to the Podoviridae, Styloviridae, and Myoviridae, three families of double-stranded DNA phages. One newly described morphotype belonging to the Podoviridae appears to be ubiquitous in Gulf Coast oysters. Isolates of this morphotype have an elongated capsid (mean, 258 nm; standard deviation, 4 nm; n = 35), with some isolates having a relatively broad host range among strains of V. vulnificus. Results from this study indicate that a morphologically diverse group of phages which infect V. vulnificus is abundant and widely distributed in oysters from estuaries bordering the northeastern Gulf of Mexico.

  10. Biological control of Aeromonas salmonicida subsp. salmonicida infection in rainbow trout (Oncorhynchus mykiss) using Aeromonas phage PAS-1.

    PubMed

    Kim, J H; Choresca, C H; Shin, S P; Han, J E; Jun, J W; Park, S C

    2015-02-01

    The potential control efficacy of Aeromonas phage PAS-1 was evaluated against Aeromonas salmonicida subsp. salmonicida infection in rainbow trout (Oncorhynchus mykiss) model in this study. The phage was co-cultured with the virulent A. salmonicida subsp. salmonicida strain AS05 that possesses the type III secretion system (TTSS) ascV gene, and efficient bacteriolytic activity was observed against the bacteria. The administration of PAS-1 in rainbow trout demonstrated that the phage was cleared from the fish within 200 h post-administration, and a temporal neutralizing activity against the phage was detected in the sera of phage-administrated fish. The administration of PAS-1 (multiplicity of infection: 10 000) in A. salmonicida subsp. salmonicida infected rainbow trout model showed notable protective effects, with increased survival rates and mean times to death. These results demonstrated that Aeromonas phage PAS-1 could be considered as an alternative biological control agent against A. salmonicida subsp. salmonicida infections in rainbow trout culture. © 2013 Blackwell Verlag GmbH.

  11. Phage therapy pharmacology: calculating phage dosing.

    PubMed

    Abedon, Stephen

    2011-01-01

    Phage therapy, which can be described as a phage-mediated biocontrol of bacteria (or, simply, biocontrol), is the application of bacterial viruses-also bacteriophages or phages-to reduce densities of nuisance or pathogenic bacteria. Predictive calculations for phage therapy dosing should be useful toward rational development of therapeutic as well as biocontrol products. Here, I consider the theoretical basis of a number of concepts relevant to phage dosing for phage therapy including minimum inhibitory concentration (but also "inundation threshold"), minimum bactericidal concentration (but also "clearance threshold"), decimal reduction time (D value), time until bacterial eradication, threshold bacterial density necessary to support phage population growth ("proliferation threshold"), and bacterial density supporting half-maximal phage population growth rates (K(B)). I also address the concepts of phage killing titers, multiplicity of infection, and phage peak densities. Though many of the presented ideas are not unique to this chapter, I nonetheless provide variations on derivations and resulting formulae, plus as appropriate discuss relative importance. The overriding goal is to present a variety of calculations that are useful toward phage therapy dosing so that they may be found in one location and presented in a manner that allows facile appreciation, comparison, and implementation. The importance of phage density as a key determinant of the phage potential to eradicate bacterial targets is stressed throughout the chapter.

  12. Phages in the Human Body

    PubMed Central

    Navarro, Ferran; Muniesa, Maite

    2017-01-01

    Bacteriophages, viruses that infect bacteria, have re-emerged as powerful regulators of bacterial populations in natural ecosystems. Phages invade the human body, just as they do other natural environments, to such an extent that they are the most numerous group in the human virome. This was only revealed in recent metagenomic studies, despite the fact that the presence of phages in the human body was reported decades ago. The influence of the presence of phages in humans has yet to be evaluated; but as in marine environments, a clear role in the regulation of bacterial populations could be envisaged, that might have an impact on human health. Moreover, phages are excellent vehicles of genetic transfer, and they contribute to the evolution of bacterial cells in the human body by spreading and acquiring DNA horizontally. The abundance of phages in the human body does not pass unnoticed and the immune system reacts to them, although it is not clear to what extent. Finally, the presence of phages in human samples, which most of the time is not considered, can influence and bias microbiological and molecular results; and, in view of the evidences, some studies suggest that more attention needs to be paid to their interference. PMID:28421059

  13. Phages in the Human Body.

    PubMed

    Navarro, Ferran; Muniesa, Maite

    2017-01-01

    Bacteriophages, viruses that infect bacteria, have re-emerged as powerful regulators of bacterial populations in natural ecosystems. Phages invade the human body, just as they do other natural environments, to such an extent that they are the most numerous group in the human virome. This was only revealed in recent metagenomic studies, despite the fact that the presence of phages in the human body was reported decades ago. The influence of the presence of phages in humans has yet to be evaluated; but as in marine environments, a clear role in the regulation of bacterial populations could be envisaged, that might have an impact on human health. Moreover, phages are excellent vehicles of genetic transfer, and they contribute to the evolution of bacterial cells in the human body by spreading and acquiring DNA horizontally. The abundance of phages in the human body does not pass unnoticed and the immune system reacts to them, although it is not clear to what extent. Finally, the presence of phages in human samples, which most of the time is not considered, can influence and bias microbiological and molecular results; and, in view of the evidences, some studies suggest that more attention needs to be paid to their interference.

  14. Phage Inhibit Pathogen Dissemination by Targeting Bacterial Migrants in a Chronic Infection Model

    PubMed Central

    Darch, Sophie E.; Kragh, Kasper N.; Abbott, Evelyn A.; Bjarnsholt, Thomas; Bull, James J.

    2017-01-01

    ABSTRACT The microbial communities inhabiting chronic infections are often composed of spatially organized micrometer-sized, highly dense aggregates. It has recently been hypothesized that aggregates are responsible for the high tolerance of chronic infections to host immune functions and antimicrobial therapies. Little is currently known regarding the mechanisms controlling aggregate formation and antimicrobial tolerance primarily because of the lack of robust, biologically relevant experimental systems that promote natural aggregate formation. Here, we developed an in vitro model based on chronic Pseudomonas aeruginosa infection of the cystic fibrosis (CF) lung. This model utilizes a synthetic sputum medium that readily promotes the formation of P. aeruginosa aggregates with sizes similar to those observed in human CF lung tissue. Using high-resolution imaging, we exploited this model to elucidate the life history of P. aeruginosa and the mechanisms that this bacterium utilizes to tolerate antimicrobials, specifically, bacteriophage. In the early stages of growth in synthetic sputum, planktonic cells form aggregates that increase in size over time by expansion. In later growth, migrant cells disperse from aggregates and colonize new areas, seeding new aggregates. When added simultaneously with phage, P. aeruginosa was readily killed and aggregates were unable to form. When added after initial aggregate formation, phage were unable to eliminate all of the aggregates because of exopolysaccharide production; however, seeding of new aggregates by dispersed migrants was inhibited. We propose a model in which aggregates provide a mechanism that allows P. aeruginosa to tolerate phage therapy during chronic infection without the need for genetic mutation. PMID:28377527

  15. Genomic and functional analysis of Vibrio phage SIO-2 reveals novel insights into ecology and evolution of marine siphoviruses

    PubMed Central

    Baudoux, A-C.; Hendrix, R.W.; Lander, G.C.; Bailly, X.; Podell, S.; Paillard, C.; Johnson, J.E.; Potter, C.S.; Carragher, B.; Azam, F.

    2011-01-01

    We report on a genomic and functional analysis of a novel marine siphovirus, the Vibrio phage SIO-2. This phage is lytic for related Vibrio species of great ecological interest including the broadly antagonistic bacterium Vibrio sp. SWAT3 as well as notable members of the Harveyi clade (V. harveyi ATTC BAA-1116 and V. campbellii ATCC 25920). Vibrio phage SIO-2 has a circularly permuted genome of 80,598 bp, which displays unusual features. This genome is larger than that of most known siphoviruses and only 38 of the 116 predicted proteins had homologues in databases. Another divergence is manifest by the origin of core genes, most of which share robust similarities with unrelated viruses and bacteria spanning a wide range of phyla. These core genes are arranged in the same order as in most bacteriophages but they are unusually interspaced at two places with insertions of DNA comprising a high density of uncharacterized genes. The acquisition of these DNA inserts is associated with morphological variation of SIO-2 capsid, which assembles as a large (80 nm) shell with a novel T=12 symmetry. These atypical structural features confer on SIO-2 a remarkable stability to a variety of physical, chemical and environmental factors. Given this high level of functional and genomic novelty, SIO-2 emerges as a model of considerable interest in ecological and evolutionary studies. PMID:22225728

  16. Rapid Multiplex Creation of Escherichia coli Strains Capable of Interfering with Phage Infection Through CRISPR.

    PubMed

    Strotksaya, Alexandra; Semenova, Ekaterina; Savitskaya, Ekaterina; Severinov, Konstantin

    2015-01-01

    In Escherichia coli, acquisition of new spacers in the course of CRISPR-Cas adaptation is dramatically stimulated by preexisting partial matches between a bacterial CRISPR cassette spacer and a protospacer sequence in the DNA of the infecting bacteriophage or plasmid. This phenomenon, which we refer to as "priming," can be used for very simple and rapid construction of multiple E. coli strains capable of targeting, through CRISPR interference, any phage or plasmid of interest. Availability of such strains should allow rapid progress in the analysis of CRISPR-Cas system function against diverse mobile genetic elements.

  17. Isolation and characterization of a Siphoviridae phage infecting Bacillus megaterium from a heavily trafficked holy site in Saudi Arabia.

    PubMed

    Othman, B A; Askora, Ahmed; Abo-Senna, Amel S M

    2015-07-01

    In this study, we isolated and characterized a Siphoviridae phage isolated from the vicinity of a religious structure (Kaaba) in Makkah, Saudi Arabia. The phage was designated as φBM and characterized using transmission electron microscopy, restriction digestion of its DNA, and host range. Electron micrograph indicated that φBM phage has an icosahedral head with diameter of about 65 ± 5 nm and long, non-contractile tail with length of about 300 ± 10 nm and width of about 17 ± 2 nm, respectively. On the basis of the φBM phage morphology, we thus propose that φBM represents a member of Siphoviridae phages. The φBM phage was shown to be able to infect Bacillus megaterium and two other Bacillus species and has no effect on other tested bacteria. φBM was stable over the pH range of 5-9, chloroform resistant and stable at 4 °C. A one-step growth experiment showed a latent period of about 40 min and a burst size of approximately 65 per infected cell. The purified bacteriophage appeared to consist of ten proteins. The genome size was estimated to be ∼38 kb. To our knowledge, this is the first report on the isolation of a bacteriophage from Kaaba a heavily trafficked holy site in Saudi Arabia.

  18. Altruism can evolve when relatedness is low: evidence from bacteria committing suicide upon phage infection.

    PubMed

    Refardt, Dominik; Bergmiller, Tobias; Kümmerli, Rolf

    2013-05-22

    High relatedness among interacting individuals has generally been considered a precondition for the evolution of altruism. However, kin-selection theory also predicts the evolution of altruism when relatedness is low, as long as the cost of the altruistic act is minor compared with its benefit. Here, we demonstrate evidence for a low-cost altruistic act in bacteria. We investigated Escherichia coli responding to the attack of an obligately lytic phage by committing suicide in order to prevent parasite transmission to nearby relatives. We found that bacterial suicide provides large benefits to survivors at marginal costs to committers. The cost of suicide was low, because infected cells are moribund, rapidly dying upon phage infection, such that no more opportunity for reproduction remains. As a consequence of its marginal cost, host suicide was selectively favoured even when relatedness between committers and survivors approached zero. Altogether, our findings demonstrate that low-cost suicide can evolve with ease, represents an effective host-defence strategy, and seems to be widespread among microbes. Moreover, low-cost suicide might also occur in higher organisms as exemplified by infected social insect workers leaving the colony to die in isolation.

  19. Phage Therapy: Combating Infections with Potential for Evolving from Merely a Treatment for Complications to Targeting Diseases.

    PubMed

    Górski, Andrzej; Międzybrodzki, Ryszard; Weber-Dąbrowska, Beata; Fortuna, Wojciech; Letkiewicz, Sławomir; Rogóż, Paweł; Jończyk-Matysiak, Ewa; Dąbrowska, Krystyna; Majewska, Joanna; Borysowski, Jan

    2016-01-01

    Antimicrobial resistance is considered to be one of the greatest challenges of medicine and our civilization. Lack of progress in developing new anti-bacterial agents has greatly revived interest in using phage therapy to combat antibiotic-resistant infections. Although a number of clinical trials are underway and more are planned, the realistic perspective of registration of phage preparations and their entering the health market and significantly contributing to the current antimicrobial crisis is rather remote. Therefore, in addition to planning further clinical trials, our present approach of phage treatment carried out as experimental therapy (compassionate use) should be expanded to address the growing and urgent needs of increasing cohorts of patients for whom no alternative treatment is currently available. During the past 11 years of our phage therapy center's operation, we have obtained relevant clinical and laboratory data which not only confirm the safety of the therapy but also provide important information shedding more light on many aspects of the therapy, contributing to its optimization and allowing for construction of the most appropriate clinical trials. New data on phage biology and interactions with the immune system suggest that in the future phage therapy may evolve from dealing with complications to targeting diseases. However, further studies are necessary to confirm this promising trend.

  20. Phage Therapy: Combating Infections with Potential for Evolving from Merely a Treatment for Complications to Targeting Diseases

    PubMed Central

    Górski, Andrzej; Międzybrodzki, Ryszard; Weber-Dąbrowska, Beata; Fortuna, Wojciech; Letkiewicz, Sławomir; Rogóż, Paweł; Jończyk-Matysiak, Ewa; Dąbrowska, Krystyna; Majewska, Joanna; Borysowski, Jan

    2016-01-01

    Antimicrobial resistance is considered to be one of the greatest challenges of medicine and our civilization. Lack of progress in developing new anti-bacterial agents has greatly revived interest in using phage therapy to combat antibiotic-resistant infections. Although a number of clinical trials are underway and more are planned, the realistic perspective of registration of phage preparations and their entering the health market and significantly contributing to the current antimicrobial crisis is rather remote. Therefore, in addition to planning further clinical trials, our present approach of phage treatment carried out as experimental therapy (compassionate use) should be expanded to address the growing and urgent needs of increasing cohorts of patients for whom no alternative treatment is currently available. During the past 11 years of our phage therapy center’s operation, we have obtained relevant clinical and laboratory data which not only confirm the safety of the therapy but also provide important information shedding more light on many aspects of the therapy, contributing to its optimization and allowing for construction of the most appropriate clinical trials. New data on phage biology and interactions with the immune system suggest that in the future phage therapy may evolve from dealing with complications to targeting diseases. However, further studies are necessary to confirm this promising trend. PMID:27725811

  1. Phylogenomic network and comparative genomics reveal a diverged member of the ΦKZ-related group, marine vibrio phage ΦJM-2012.

    PubMed

    Jang, Ho Bin; Fagutao, Fernand F; Nho, Seong Won; Park, Seong Bin; Cha, In Seok; Yu, Jong Earn; Lee, Jung Seok; Im, Se Pyeong; Aoki, Takashi; Jung, Tae Sung

    2013-12-01

    Bacteriophages are the largest reservoir of genetic diversity. Here we describe the novel phage ΦJM-2012. This natural isolate from marine Vibrio cyclitrophicus possesses very few gene contents relevant to other well-studied marine Vibrio phages. To better understand its evolutionary history, we built a mathematical model of pairwise relationships among 1,221 phage genomes, in which the genomes (nodes) are linked by edges representing the normalized number of shared orthologous protein families. This weighted network revealed that ΦJM-2012 was connected to only five members of the Pseudomonas ΦKZ-like phage family in an isolated network, strongly indicating that it belongs to this phage group. However, comparative genomic analyses highlighted an almost complete loss of colinearity with the ΦKZ-related genomes and little conservation of gene order, probably reflecting the action of distinct evolutionary forces on the genome of ΦJM-2012. In this phage, typical conserved core genes, including six RNA polymerase genes, were frequently displaced and the hyperplastic regions were rich in both unique genes and predicted unidirectional promoters with highly correlated orientations. Further, analysis of the ΦJM-2012 genome showed that segments of the conserved N-terminal parts of ΦKZ tail fiber paralogs exhibited evidence of combinatorial assortment, having switched transcriptional orientation, and there was recruitment and/or structural changes among phage endolysins and tail spike protein. Thus, this naturally occurring phage appears to have branched from a common ancestor of the ΦKZ-related groups, showing a distinct genomic architecture and unique genes that most likely reflect adaptation to its chosen host and environment.

  2. Histopathology of marine vibrio wound infections.

    PubMed

    Beckman, E N; Leonard, G L; Castillo, L E; Genre, C F; Pankey, G A

    1981-12-01

    Although marine vibrio wound infections and septicemia are being reported with increasing frequency, description of the histopathologic changes has been scanty. The histologic alterations in three patients with primary marine vibrio wound infections are presented. The lesions are characterized by intense acute cellulitis of the subcutis with much tissue destruction and extension into the adjacent dermis. The superficial dermis is devitalized and lacks an inflammatory cellular infiltrate. Subepidermal noninflammatory bullae are formed. Many organisms are seen both within the areas of intense acute inflammation and in devitalized areas. Organisms and inflammation are especially oriented around vessels, with associated acute vasculitis. It is concluded that the morphologic picture in marine vibrio wound infections is nonspecific yet characteristic.

  3. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae

    PubMed Central

    Grose, Julianne H.; Casjens, Sherwood R.

    2014-01-01

    Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships. PMID:25240328

  4. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae.

    PubMed

    Grose, Julianne H; Casjens, Sherwood R

    2014-11-01

    Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships.

  5. Metagenomic recovery of phage genomes of uncultured freshwater actinobacteria.

    PubMed

    Ghai, Rohit; Mehrshad, Maliheh; Megumi Mizuno, Carolina; Rodriguez-Valera, Francisco

    2017-01-01

    Low-GC Actinobacteria are among the most abundant and widespread microbes in freshwaters and have largely resisted all cultivation efforts. Consequently, their phages have remained totally unknown. In this work, we have used deep metagenomic sequencing to assemble eight complete genomes of the first tailed phages that infect freshwater Actinobacteria. Their genomes encode the actinobacterial-specific transcription factor whiB, frequently found in mycobacteriophages and also in phages infecting marine pelagic Actinobacteria. Its presence suggests a common and widespread strategy of modulation of host transcriptional machinery upon infection via this transcriptional switch. We present evidence that some whiB-carrying phages infect the acI lineage of Actinobacteria. At least one of them encodes the ADP-ribosylating component of the widespread bacterial AB toxins family (for example, clostridial toxin). We posit that the presence of this toxin reflects a 'trojan horse' strategy, providing protection at the population level to the abundant host microbes against eukaryotic predators.

  6. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808.

    PubMed

    Munsch-Alatossava, Patricia; Alatossava, Tapani

    2013-12-24

    The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lactobacillus delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimize the risks associated with the appearance and attack of phages in the manufacture of yogurt, and Swiss or Italian hard type cheeses, which typically use thermophilic lactic acid bacteria starter cultures containing L. delbrueckii strains among others. This mini review article summarizes the present data concerning (i) the special features, particle structure, and components of phage LL-H and (ii) the structure and properties of lipoteichoic acids (LTAs), which are the phage LL-H receptor components of L. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of L. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed.

  7. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells.

    PubMed

    Arkin, A; Ross, J; McAdams, H H

    1998-08-01

    Fluctuations in rates of gene expression can produce highly erratic time patterns of protein production in individual cells and wide diversity in instantaneous protein concentrations across cell populations. When two independently produced regulatory proteins acting at low cellular concentrations competitively control a switch point in a pathway, stochastic variations in their concentrations can produce probabilistic pathway selection, so that an initially homogeneous cell population partitions into distinct phenotypic subpopulations. Many pathogenic organisms, for example, use this mechanism to randomly switch surface features to evade host responses. This coupling between molecular-level fluctuations and macroscopic phenotype selection is analyzed using the phage lambda lysis-lysogeny decision circuit as a model system. The fraction of infected cells selecting the lysogenic pathway at different phage:cell ratios, predicted using a molecular-level stochastic kinetic model of the genetic regulatory circuit, is consistent with experimental observations. The kinetic model of the decision circuit uses the stochastic formulation of chemical kinetics, stochastic mechanisms of gene expression, and a statistical-thermodynamic model of promoter regulation. Conventional deterministic kinetics cannot be used to predict statistics of regulatory systems that produce probabilistic outcomes. Rather, a stochastic kinetic analysis must be used to predict statistics of regulatory outcomes for such stochastically regulated systems.

  8. Evaluating seasonal dynamics of bacterial communities in marine fish aquaculture: a preliminary study before applying phage therapy.

    PubMed

    Pereira, Carla; Salvador, Sara; Arrojado, Cátia; Silva, Yolanda; Santos, Ana L; Cunha, Angela; Gomes, Newton C M; Gomes, Newton; Almeida, Adelaide

    2011-04-01

    The increasing problem of antibiotic resistance in common pathogenic bacteria and the concern about the spreading of antibiotics in the environment bring the need to find new methods to control fish pathogens. Phage therapy represents a potential alternative to antibiotics, but its use in aquaculture requires a detailed understanding of bacterial communities, namely of fish pathogenic bacteria. Therefore, in this study the seasonal dynamics of the overall bacterial communities, microbiological water quality and disease-causing bacteria were followed in a marine aquaculture system of Ria de Aveiro (Portugal). Analysis of the bacterial diversity of the water samples by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments indicates that the bacterial community structure varied seasonally, showing a higher complexity during the warm season. The diversity of the main fish pathogenic bacteria, assessed by DGGE targeting the Vibrio genus, showed lower seasonal variation, with new dominating populations appearing mainly in the spring. Bacterial indicators, faecal coliforms and enterococci, enumerated by the filter-membrane method, also varied seasonally. The fluorescent in situ hybridization (FISH) results showed that the specific groups of bacteria varied during the study period and that the non-indigenous Enterobactereaceae family was the most abundant group followed by Vibrio and Aeromonas. The seasonal variation detected in terms of density and structure of total and pathogenic bacterial communities demonstrates the need for a careful monitoring of water through the year in order to select the suitable phages to inactivate fish pathogenic bacteria. The spring season seems to be the critical time period when phage therapy should be applied.

  9. Transcription Profiling of Bacillus subtilis Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases

    PubMed Central

    Lavysh, Daria; Slashcheva, Marina; Förstner, Konrad U.

    2017-01-01

    ABSTRACT Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis. Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5′ ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases. PMID:28196958

  10. Infection of phytoplankton by aerosolized marine viruses.

    PubMed

    Sharoni, Shlomit; Trainic, Miri; Schatz, Daniella; Lehahn, Yoav; Flores, Michel J; Bidle, Kay D; Ben-Dor, Shifra; Rudich, Yinon; Koren, Ilan; Vardi, Assaf

    2015-05-26

    Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host-virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host-virus "arms race" during bloom succession and consequently the turnover of carbon in the ocean.

  11. Infection of phytoplankton by aerosolized marine viruses

    PubMed Central

    Sharoni, Shlomit; Trainic, Miri; Schatz, Daniella; Lehahn, Yoav; Flores, Michel J.; Bidle, Kay D.; Ben-Dor, Shifra; Rudich, Yinon; Vardi, Assaf

    2015-01-01

    Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host–virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host–virus “arms race” during bloom succession and consequently the turnover of carbon in the ocean. PMID:25964340

  12. The involvement of the PilQ secretin of type IV pili in phage infection in Ralstonia solanacearum.

    PubMed

    Narulita, Erlia; Addy, Hardian Susilo; Kawasaki, Takeru; Fujie, Makoto; Yamada, Takashi

    2016-01-22

    PilQ is a member of the secretin family of outer membrane proteins and specifically involved in type IV secretion. Here we report the effects of pilQ mutation in Ralstonia solanacearum on the host physiology including susceptibility to several phage types (Inoviridae, Podoviridae and Myoviridae). With three lines of cells, namely wild type, ΔpilQ and pilQ-complemented cells, the cell surface proteins, twitching motility and sensitivity to phages were compared. SDS-PAGE analysis revealed that the major TFP pilin (PilA) was specifically lost in pilQ mutants and was recovered in the complemented cells. Drastically inactivated twitching motility in pilQ mutants was recovered to the wild type level in the complemented cells. Several phages of different types including those of Inoviridae, Podoviridae, and Myoviridae that infect wild type cells could not form plaques on pilQ mutants but showed infectivity to pilQ-complemented cells. These results indicate that PilQ function is generally required for phage infection in R. solanacearum. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. N15: the linear phage-plasmid.

    PubMed

    Ravin, Nikolai V

    2011-03-01

    The lambdoid phage N15 of Escherichia coli is very unusual among temperate phages in that its prophage is not integrated into chromosome but is a linear plasmid molecule with covalently closed ends. Upon infection the phage DNA circularises via cohesive ends, then phage-encoded enzyme, protelomerase, cuts at an inverted repeat site and forms hairpin ends (telomeres) of the linear plasmid prophage. Replication of the N15 prophage is initiated at an internally located ori site and proceeds bidirectionally resulting in formation of duplicated telomeres. Then the N15 protelomerase cuts duplicated telomeres generating two linear plasmid molecules with hairpin telomeres. Stable inheritance of the plasmid prophage is ensured by partitioning operon similar to the F factor sop operon. Unlike F sop, the N15 centromere consists of four inverted repeats dispersed in the genome. The multiplicity and dispersion of centromeres are required for efficient partitioning of a linear plasmid. The centromeres are located in N15 genome regions involved in phage replication and control of lysogeny, and binding of partition proteins at these sites regulates these processes. Two N15-related lambdoid Siphoviridae phages, φKO2 in Klebsiella oxytoca and pY54 in Yersinia enterocolitica, also lysogenize their hosts as linear plasmids, as well as Myoviridae marine phages VP882 and VP58.5 in Vibrio parahaemolyticus and ΦHAP-1 in Halomonas aquamarina. The genomes of all these phages contain similar protelomerase genes, lysogeny modules and replication genes, as well as plasmid-partitioning genes, suggesting that these phages may belong to a group diverged from a common ancestor.

  14. Genes and Structural Proteins of the Phage Syn5 of the Marine Cyanobacteria Synechococcus

    DTIC Science & Technology

    2005-09-01

    interior of the cell (Liao and Syu, 2002). Other known phage secondary receptors include 22 the LamB protein in the maltose transporter (lambda) (Szmelcman...Nature, 271, 573-574. Szmelcman, S. and Hofnung, M. (1975) Maltose transport in Escherichia coli K-12: involvement of the bacteriophage lambda receptor...made of 20% sucrose (w/v), p=1. 4 CsCl, and p=1.6 CsCI. Each gradient layer was made with SN. The gradients were ultracentrifuged at 40,000 rpm for

  15. Influenza Virus Infection of Marine Mammals.

    PubMed

    Fereidouni, Sasan; Munoz, Olga; Von Dobschuetz, Sophie; De Nardi, Marco

    2016-03-01

    Interspecies transmission may play a key role in the evolution and ecology of influenza A viruses. The importance of marine mammals as hosts or carriers of potential zoonotic pathogens such as highly pathogenic H5 and H7 influenza viruses is not well understood. The fact that influenza viruses are some of the few zoonotic pathogens known to have caused infection in marine mammals, evidence for direct transmission of influenza A virus H7N7 subtype from seals to man, transmission of pandemic H1N1 influenza viruses to seals and also limited evidence for long-term persistence of influenza B viruses in seal populations without significant genetic change, makes monitoring of influenza viruses in marine mammal populations worth being performed. In addition, such monitoring studies could be a great tool to better understand the ecology of influenza viruses in nature.

  16. Salmonella typhimurium phage type 141 infections in Sheffield during 1984 and 1985: association with hens' eggs.

    PubMed Central

    Chapman, P. A.; Rhodes, P.; Rylands, W.

    1988-01-01

    Food poisoning due to Salmonella typhimurium phage type 141 was unusual in the Sheffield area before 1984. The sudden increase in incidence of this phage type during 1984 and 1985, and its causative role in several small outbreaks in this period have been investigated. Epidemiological and laboratory investigations suggested that hens' eggs were the most likely source of S. typhimurium phage type 141. PMID:3042440

  17. Further investigations on the concentration of marine bacteriophages in the water around Helgoland, with reference to the phage-host systems encountered

    NASA Astrophysics Data System (ADS)

    Moebus, K.

    1992-09-01

    Between April 3 and September 24, 1991, the concentrations of bacteriophages infecting bacterial strains, isolated in 1990 and during this investigations, were determined in 35 samples of seawater taken at station ‘Kabeltonne’ adjacent to Helgoland. Similar to the findings of 1990, phage concentrations of several hundred plaque forming units (PFU) ml-1 were observed with a number of indicator strains, the maximum concentration being at least 1.5×103 PFU ml-1. These high concentrations lasted for only a few days, generally decreasing at rates between 0.6 and 0.9 day-1. Phage concentrations of 0 to 2 PFU ml-1 were found to be predominant until the end of June, occasionally attaining 5 PFU ml-1. From July through September, when high phage concentrations were observed with some indicator strains, between 0 and 10 PFU ml-1 were found in the majority of tests. As revealed by a final phage-host cross-reaction test, the greater part of 138 indicator bacteria is genetically related, and almost half of the 200 phage strains tested are propagated only by their original indicator bacterium. The possible importance of mutational events for the maintenance of phage-host systems in nature is discussed.

  18. A novel roseobacter phage possesses features of podoviruses, siphoviruses, prophages and gene transfer agents

    PubMed Central

    Zhan, Yuanchao; Huang, Sijun; Voget, Sonja; Simon, Meinhard; Chen, Feng

    2016-01-01

    Bacteria in the Roseobacter lineage have been studied extensively due to their significant biogeochemical roles in the marine ecosystem. However, our knowledge on bacteriophage which infects the Roseobacter clade is still very limited. Here, we report a new bacteriophage, phage DSS3Φ8, which infects marine roseobacter Ruegeria pomeroyi DSS-3. DSS3Φ8 is a lytic siphovirus. Genomic analysis showed that DSS3Φ8 is most closely related to a group of siphoviruses, CbK-like phages, which infect freshwater bacterium Caulobacter crescentus. DSS3Φ8 contains a smaller capsid and has a reduced genome size (146 kb) compared to the CbK-like phages (205–279 kb). DSS3Φ8 contains the DNA polymerase gene which is closely related to T7-like podoviruses. DSS3Φ8 also contains the integrase and repressor genes, indicating its potential to involve in lysogenic cycle. In addition, four GTA (gene transfer agent) genes were identified in the DSS3Φ8 genome. Genomic analysis suggests that DSS3Φ8 is a highly mosaic phage that inherits the genetic features from siphoviruses, podoviruses, prophages and GTAs. This is the first report of CbK-like phages infecting marine bacteria. We believe phage isolation is still a powerful tool that can lead to discovery of new phages and help interpret the overwhelming unknown sequences in the viral metagenomics. PMID:27460944

  19. A novel roseobacter phage possesses features of podoviruses, siphoviruses, prophages and gene transfer agents

    NASA Astrophysics Data System (ADS)

    Zhan, Yuanchao; Huang, Sijun; Voget, Sonja; Simon, Meinhard; Chen, Feng

    2016-07-01

    Bacteria in the Roseobacter lineage have been studied extensively due to their significant biogeochemical roles in the marine ecosystem. However, our knowledge on bacteriophage which infects the Roseobacter clade is still very limited. Here, we report a new bacteriophage, phage DSS3Φ8, which infects marine roseobacter Ruegeria pomeroyi DSS-3. DSS3Φ8 is a lytic siphovirus. Genomic analysis showed that DSS3Φ8 is most closely related to a group of siphoviruses, CbK-like phages, which infect freshwater bacterium Caulobacter crescentus. DSS3Φ8 contains a smaller capsid and has a reduced genome size (146 kb) compared to the CbK-like phages (205–279 kb). DSS3Φ8 contains the DNA polymerase gene which is closely related to T7-like podoviruses. DSS3Φ8 also contains the integrase and repressor genes, indicating its potential to involve in lysogenic cycle. In addition, four GTA (gene transfer agent) genes were identified in the DSS3Φ8 genome. Genomic analysis suggests that DSS3Φ8 is a highly mosaic phage that inherits the genetic features from siphoviruses, podoviruses, prophages and GTAs. This is the first report of CbK-like phages infecting marine bacteria. We believe phage isolation is still a powerful tool that can lead to discovery of new phages and help interpret the overwhelming unknown sequences in the viral metagenomics.

  20. Bioinformatic analysis of phage AB3, a phiKMV-like virus infecting Acinetobacter baumannii.

    PubMed

    Zhang, J; Liu, X; Li, X-J

    2015-01-16

    The phages of Acinetobacter baumannii has drawn increasing attention because of the multi-drug resistance of A. baumanni. The aim of this study was to sequence Acinetobacter baumannii phage AB3 and conduct bioinformatic analysis to lay a foundation for genome remodeling and phage therapy. We isolated and sequenced A. baumannii phage AB3 and attempted to annotate and analyze its genome. The results showed that the genome is a double-stranded DNA with a total length of 31,185 base pairs (bp) and 97 open reading frames greater than 100 bp. The genome includes 28 predicted genes, of which 24 are homologous to phage AB1. The entire coding sequence is located on the negative strand, representing 90.8% of the total length. The G+C mol% was 39.18%, without areas of high G+C content over 200 bp in length. No GC island, tRNA gene, or repeated sequence was identified. Gene lengths were 120-3099 bp, with an average of 1011 bp. Six genes were found to be greater than 2000 bp in length. Genomic alignment and phylogenetic analysis of the RNA polymerase gene showed that similar to phage AB1, phage AB3 is a phiKMV-like virus in the T7 phage family.

  1. The cell surface protein Ag43 facilitates phage infection of Escherichia coli in the presence of bile salts and carbohydrates.

    PubMed

    Gabig, Magdalena; Herman-Antosiewicz, Anna; Kwiatkowska, Marta; Los, Marcin; Thomas, Mark S; Wegrzyn, Grzegorz

    2002-05-01

    It was found that infection of Escherichia coli by bacteriophage lambda is inhibited in the presence of certain bile salts and carbohydrates when cells are in the "OFF" state for production of the phase-variable cell surface protein antigen 43 (Ag43). The inhibition of phage growth was found to be due to a significant impairment in the process of phage adsorption. Expression of the gene encoding Ag43 (agn43) from a plasmid or inactivation of the oxyR gene (encoding an activator of genes important for defence against oxidative stress) suppressed this inhibition. A mutation, rpoA341, in the gene encoding the alpha subunit of RNA polymerase also facilitated phage adsorption in the presence of bile salts and carbohydrates. The rpoA341 mutation promoted efficient production of Ag43 in a genetic background that would otherwise be in the "OFF" phase for expression of the agn43 gene. Analysis of a reporter gene fusion demonstrated that the promoter for the agn43 gene was more active in the rpoA341 mutant than in the otherwise isogenic rpoA(+) strain. The combined inhibitory action of bile salts and carbohydrates on phage adsorption and the abolition of this inhibition by production of Ag43 was not restricted to lambda, as a similar phenomenon was observed for the coliphages P1 and T4.

  2. Hyperthermostable binding molecules on phage: Assay components for point-of-care diagnostics for active tuberculosis infection.

    PubMed

    Zhao, Ning; Spencer, John; Schmitt, Margaret A; Fisk, John D

    2017-03-15

    Tuberculosis is the leading cause of death from infectious disease worldwide. The low sensitivity, extended processing time, and high expense of current diagnostics are major challenges to the detection and treatment of tuberculosis. Mycobacterium tuberculosis ornithine transcarbamylase (Mtb OTC, Rv1656) has been identified in the urine of patients with active TB infection and is a promising target for point-of-care diagnostics. Specific binding proteins with low nanomolar affinities for Mtb OTC were selected from a phage display library built upon a hyperthermostable Sso7d scaffold. Phage particles displaying Sso7d variants were utilized to generate a sandwich ELISA-based assay for Mtb OTC. The assay response is linear between 2 ng/mL and 125 ng/mL recombinant Mtb OTC and has a limit of detection of 400 pg/mL recombinant Mtb OTC. The assay employing a phage-based detection reagent is comparable to commercially-available antibody-based biosensors. Importantly, the assay maintains functionality at both neutral and basic pH in presence of salt and urea over the range of concentrations typical for human urine. Phage-based diagnostic systems may feature improved physical stability and cost of production relative to traditional antibody-based reagents, without sacrificing specificity and sensitivity.

  3. Coevolutionary diversification creates nested-modular structure in phage-bacteria interaction networks.

    PubMed

    Beckett, Stephen J; Williams, Hywel T P

    2013-12-06

    Phage and their bacterial hosts are the most diverse and abundant biological entities in the oceans, where their interactions have a major impact on marine ecology and ecosystem function. The structure of interaction networks for natural phage-bacteria communities offers insight into their coevolutionary origin. At small phylogenetic scales, observed communities typically show a nested structure, in which both hosts and phages can be ranked by their range of resistance and infectivity, respectively. A qualitatively different multi-scale structure is seen at larger phylogenetic scales; a natural assemblage sampled from the Atlantic Ocean displays large-scale modularity and local nestedness within each module. Here, we show that such 'nested-modular' interaction networks can be produced by a simple model of host-phage coevolution in which infection depends on genetic matching. Negative frequency-dependent selection causes diversification of hosts (to escape phages) and phages (to track their evolving hosts). This creates a diverse community of bacteria and phage, maintained by kill-the-winner ecological dynamics. When the resulting communities are visualized as bipartite networks of who infects whom, they show the nested-modular structure characteristic of the Atlantic sample. The statistical significance and strength of this observation varies depending on whether the interaction networks take into account the density of the interacting strains, with implications for interpretation of interaction networks constructed by different methods. Our results suggest that the apparently complex community structures associated with marine bacteria and phage may arise from relatively simple coevolutionary origins.

  4. Effect of benzo[a]pyrene-diolepoxide on infectivity and in vitro translation of phage MS2 RNA.

    PubMed Central

    Sagher, D; Harvey, R G; Hsu, W T; Weiss, S B

    1979-01-01

    Previous studies have shown that alkylation of MS2 RNA by certain derivatives of polycyclic aromatic hydrocarbons renders it noninfectious. Since phage RNA serves as a template for translation and transcription, either of these RNA-directed processes, or both, could be responsible in vivo for the inhibition of phage replication by metabolically activated hydrocarbons. The present study correlates the degree of inhibition of MS2 RNA infectivity, at various levels of alkylation by (+/-)-trans, 7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzol[a]pyrene, with the translation efficiency in vitro of the same alkylated RNA for the synthesis of viral synthetase and of maturation and coat proteins. The results indicate that dihydroxyepoxy-tetrahydrobenzo[a]pyrene modification of MS2 RNA impairs its template capacity for the synthesis of phage-specific proteins; this inhibition is insufficient, however, to account for the loss of RNA infectivity at lower molar ratios of alkylation. For the three viral proteins synthesized in vitro, the translation of RNA synthetase is much more sensitive to MS2 RNA modification than either coat or maturation protein synthesis. Our results also indicate that the loss of viral RNA infectivity follows a single-hit inactivation mechanism, whereas several alkylation events in the viral RNA synthetase cistron may be necessary to block translation of this gene product. Images PMID:284386

  5. Marine Viruses: Truth or Dare

    NASA Astrophysics Data System (ADS)

    Breitbart, Mya

    2012-01-01

    Over the past two decades, marine virology has progressed from a curiosity to an intensely studied topic of critical importance to oceanography. At concentrations of approximately 10 million viruses per milliliter of surface seawater, viruses are the most abundant biological entities in the oceans. The majority of these viruses are phages (viruses that infect bacteria). Through lysing their bacterial hosts, marine phages control bacterial abundance, affect community composition, and impact global biogeochemical cycles. In addition, phages influence their hosts through selection for resistance, horizontal gene transfer, and manipulation of bacterial metabolism. Recent work has also demonstrated that marine phages are extremely diverse and can carry a variety of auxiliary metabolic genes encoding critical ecological functions. This review is structured as a scientific "truth or dare," revealing several well-established "truths" about marine viruses and presenting a few "dares" for the research community to undertake in future studies.

  6. Marine viruses: truth or dare.

    PubMed

    Breitbart, Mya

    2012-01-01

    Over the past two decades, marine virology has progressed from a curiosity to an intensely studied topic of critical importance to oceanography. At concentrations of approximately 10 million viruses per milliliter of surface seawater, viruses are the most abundant biological entities in the oceans. The majority of these viruses are phages (viruses that infect bacteria). Through lysing their bacterial hosts, marine phages control bacterial abundance, affect community composition, and impact global biogeochemical cycles. In addition, phages influence their hosts through selection for resistance, horizontal gene transfer, and manipulation of bacterial metabolism. Recent work has also demonstrated that marine phages are extremely diverse and can carry a variety of auxiliary metabolic genes encoding critical ecological functions. This review is structured as a scientific "truth or dare," revealing several well-established "truths" about marine viruses and presenting a few "dares" for the research community to undertake in future studies.

  7. Genome of Staphylococcal Phage K: a New Lineage of Myoviridae Infecting Gram-Positive Bacteria with a Low G+C Content

    PubMed Central

    O'Flaherty, S.; Coffey, A.; Edwards, R.; Meaney, W.; Fitzgerald, G. F.; Ross, R. P.

    2004-01-01

    Phage K is a polyvalent phage of the Myoviridae family which is active against a wide range of staphylococci. Phage genome sequencing revealed a linear DNA genome of 127,395 bp, which carries 118 putative open reading frames. The genome is organized in a modular form, encoding modules for lysis, structural proteins, DNA replication, and transcription. Interestingly, the structural module shows high homology to the structural module from Listeria phage A511, suggesting intergenus horizontal transfer. In addition, phage K exhibits the potential to encode proteins necessary for its own replisome, including DNA ligase, primase, helicase, polymerase, RNase H, and DNA binding proteins. Phage K has a complete absence of GATC sites, making it insensitive to restriction enzymes which cleave this sequence. Three introns (lys-I1, pol-I2, and pol-I3) encoding putative endonucleases were located in the genome. Two of these (pol-I2 and pol-I3) were found to interrupt the DNA polymerase gene, while the other (lys-I1) interrupts the lysin gene. Two of the introns encode putative proteins with homology to HNH endonucleases, whereas the other encodes a 270-amino-acid protein which contains two zinc fingers (CX2CX22CX2C and CX2CX23CX2C). The availability of the genome of this highly virulent phage, which is active against infective staphylococci, should provide new insights into the biology and evolution of large broad-spectrum polyvalent phages. PMID:15090528

  8. Isolation and characterisation of a novel Podoviridae-phage infecting Weissella cibaria N 22 from Nham, a Thai fermented pork sausage.

    PubMed

    Pringsulaka, Onanong; Patarasinpaiboon, Nuttaporn; Suwannasai, Nuttika; Atthakor, Wisrutta; Rangsiruji, Achariya

    2011-05-01

    A novel Podoviridae lactic acid bacteria (LAB) phage from Nham, a Thai fermented pork sausage, is reported. From a total of 36 samples, 41 isolates of LAB were obtained and employed as hosts for the isolation of phages. From these LAB, only one phage, designated Φ 22, was isolated. The lactic acid bacterial isolate named N 22, sensitive to phage Φ 22 infection was identified by an API 50 CHL kit and N 22's complete sequence of the 16S rDNA sequence. BLASTN analysis of the 16S rDNA sequence revealed a 99% similarity to the 16S rDNA sequence of Weissella cibaria in the GenBank database. Electron micrographs indicated that the phage head was icosahedral with head size and tail length of 92 × 50 nm and 27 nm, respectively. On the basis of the morphology, this phage belongs to the family Podoviridae. Host-range determination revealed that the phage Φ 22 was not capable of infecting the other 40 isolates of LAB and referenced Weissella strains used. A one-step growth experiment showed that the latent period and burst size were estimated at 110 min and 55 phage particles/infected cell, respectively. Furthermore, the phage was infective over a wide range of pH (pH 5.0-8.0) and the D time of Φ 22 was calculated as 88 s at 70 °C and 15s at 80 °C. Phage titers decreased below the detection limit (20 PFU/ml) after heating for more than 60s at 80 °C, or 20s at 90 °C or less than 10s at 100 °C. The results from the study of Nham revealed that Φ 22 was active against the potential starter culture (W. cibaria N 22) for Nham fermentation. Phage infection could adversely affect the fermentation process of Nham by delaying acidification when using W. cibaria N 22 as a starter. However, the results from a sensory test revealed that the panelists did not detect any defects in the final products. This is the first report on the isolation of W. cibaria phage. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Phage-fused epitopes from Leishmania infantum used as immunogenic vaccines confer partial protection against Leishmania amazonensis infection.

    PubMed

    Costa, Lourena Emanuele; Chávez-Fumagalli, Miguel Angel; Martins, Vivian Tamietti; Duarte, Mariana Costa; Lage, Daniela Pagliara; Lima, Mayara I S; Pereira, Nathália Cristina De Jesus; Soto, Manuel; Tavares, Carlos Alberto Pereira; Goulart, Luiz Ricardo; Coelho, Eduardo Antonio Ferraz

    2015-09-01

    Two mimotopes of Leishmania infantum identified by phage display were evaluated as vaccine candidates in BALB/c mice against Leishmania amazonensis infection. The epitope-based immunogens, namely B10 and C01, presented as phage-fused peptides; were used without association of a Th1 adjuvant, and they were administered isolated or in combination into animals. Both clones showed a specific production of interferon-gamma (IFN-γ), interleukin-12 (IL-12) and granulocyte/macrophage colony-stimulating factor (GM-CSF) after in vitro spleen cells stimulation, and they were able to induce a partial protection against infection. Significant reductions of parasite load in the infected footpads, liver, spleen, bone marrow and paws' draining lymph nodes were observed in the immunized mice, in comparison with the control groups (saline, saponin, wild-type and non-relevant clones). Protection was associated with an IL-12-dependent production of IFN-γ, mediated mainly by CD8(+) T cells, against parasite proteins. Protected mice also presented low levels of IL-4 and IL-10, as well as increased levels of parasite-specific IgG2a antibodies. The association of both clones resulted in an improved protection in relation to their individual use. More importantly, the absence of adjuvant did not diminish the cross-protective efficacy against Leishmania spp. infection. This study describes for the first time two epitope-based immunogens selected by phage display technology against L. infantum infected dogs sera, which induced a partial protection in BALB/c mice infected with L. amazonensis.

  10. Genome of a SAR116 bacteriophage shows the prevalence of this phage type in the oceans.

    PubMed

    Kang, Ilnam; Oh, Hyun-Myung; Kang, Dongmin; Cho, Jang-Cheon

    2013-07-23

    The abundance, genetic diversity, and crucial ecological and evolutionary roles of marine phages have prompted a large number of metagenomic studies. However, obtaining a thorough understanding of marine phages has been hampered by the low number of phage isolates infecting major bacterial groups other than cyanophages and pelagiphages. Therefore, there is an urgent requirement for the isolation of phages that infect abundant marine bacterial groups. In this study, we isolated and characterized HMO-2011, a phage infecting a bacterium of the SAR116 clade, one of the most abundant marine bacterial lineages. HMO-2011, which infects "Candidatus Puniceispirillum marinum" strain IMCC1322, has an ~55-kb dsDNA genome that harbors many genes with novel features rarely found in cultured organisms, including genes encoding a DNA polymerase with a partial DnaJ central domain and an atypical methanesulfonate monooxygenase. Furthermore, homologs of nearly all HMO-2011 genes were predominantly found in marine metagenomes rather than cultured organisms, suggesting the novelty of HMO-2011 and the prevalence of this phage type in the oceans. A significant number of the viral metagenome sequences obtained from the ocean surface were best assigned to the HMO-2011 genome. The number of reads assigned to HMO-2011 accounted for 10.3%-25.3% of the total reads assigned to viruses in seven viromes from the Pacific and Indian Oceans, making the HMO-2011 genome the most or second-most frequently assigned viral genome. Given its ability to infect the abundant SAR116 clade and its widespread distribution, Puniceispirillum phage HMO-2011 could be an important resource for marine virus research.

  11. Genome of a SAR116 bacteriophage shows the prevalence of this phage type in the oceans

    PubMed Central

    Kang, Ilnam; Oh, Hyun-Myung; Kang, Dongmin; Cho, Jang-Cheon

    2013-01-01

    The abundance, genetic diversity, and crucial ecological and evolutionary roles of marine phages have prompted a large number of metagenomic studies. However, obtaining a thorough understanding of marine phages has been hampered by the low number of phage isolates infecting major bacterial groups other than cyanophages and pelagiphages. Therefore, there is an urgent requirement for the isolation of phages that infect abundant marine bacterial groups. In this study, we isolated and characterized HMO-2011, a phage infecting a bacterium of the SAR116 clade, one of the most abundant marine bacterial lineages. HMO-2011, which infects “Candidatus Puniceispirillum marinum” strain IMCC1322, has an ∼55-kb dsDNA genome that harbors many genes with novel features rarely found in cultured organisms, including genes encoding a DNA polymerase with a partial DnaJ central domain and an atypical methanesulfonate monooxygenase. Furthermore, homologs of nearly all HMO-2011 genes were predominantly found in marine metagenomes rather than cultured organisms, suggesting the novelty of HMO-2011 and the prevalence of this phage type in the oceans. A significant number of the viral metagenome sequences obtained from the ocean surface were best assigned to the HMO-2011 genome. The number of reads assigned to HMO-2011 accounted for 10.3%–25.3% of the total reads assigned to viruses in seven viromes from the Pacific and Indian Oceans, making the HMO-2011 genome the most or second-most frequently assigned viral genome. Given its ability to infect the abundant SAR116 clade and its widespread distribution, Puniceispirillum phage HMO-2011 could be an important resource for marine virus research. PMID:23798439

  12. Genotyping, morphology and molecular characteristics of a lytic phage of Neisseria strain obtained from infected human dental plaque.

    PubMed

    Aljarbou, Ahmed N; Aljofan, Mohamad

    2014-07-01

    The lytic bacteriaphage (phage) A2 was isolated from human dental plaques along with its bacterial host. The virus was found to have an icosahedron-shaped head (60±3 nm), a sheathed and rigid long tail (∼175 nm) and was categorized into the family Siphoviridae of the order Caudovirales, which are dsDNA viral family, characterised by their ability to infect bacteria and are nonenveloped with a noncontractile tail. The isolated phage contained a linear dsDNA genome having 31,703 base pairs of unique sequence, which were sorted into three contigs and 12 single sequences. A latent period of 25 minutes and burst size of 24±2 particles was determined for the virus. Bioinformatics approaches were used to identify ORFs in the genome. A phylogenetic analysis confirmed the species inter-relationship and its placement in the family.

  13. Genome and proteome analysis of phage E3 infecting the soil-borne actinomycete Rhodococcus equi.

    PubMed

    Salifu, Samson P; Valero-Rello, Ana; Campbell, Samantha A; Inglis, Neil F; Scortti, Mariela; Foley, Sophie; Vázquez-Boland, José A

    2013-02-01

    We report on the characterization and genomic analysis of bacteriophage E3 isolated from soil and propagating in Rhodococcus equi strains. Phage E3 has a circular genome of 142 563 bp and is the first Myoviridae reported for the genus Rhodococcus and for a non-mycobacterial actinomycete. Phylogenetic analyses placed E3 in a distinct Myoviridae clade together with Mycobacterium phages Bxz1 and Myrna. The highly syntenic genomes of this myoviridal group comprise vertically evolving core phage modules flanked by hyperplastic regions specific to each phage and rich in horizontally acquired DNA. The hyperplastic regions contain numerous tRNA genes in the mycobacteriophages which are absent in E3, possibly reflecting bacterial host-specific translation-related phage fitness constraints associated with rate-limiting tRNAs. A structural proteome analysis identified 28 E3 polypeptides, including 15 not previously known to be virion-associated proteins. The E3 genome and comparative analysis provide insight into short-term genome evolution and adaptive plasticity in tailed phages from the environmental microbiome. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. The presence of Chlamydia phage PhiCPG1 capsid protein VP1 genes and antibodies in patients infected with Chlamydia trachomatis.

    PubMed

    Ma, Jingyue; Liu, Yuan; Liu, Yuanjun; Li, Lingjie; Hou, Shuping; Gao, Xibo; Qi, Manli; Liu, Quanzhong

    2016-01-01

    Chlamydia phage PhiCPG1 has been found in Chlamydia caviae in a guinea pig model for inclusion conjunctivitis, raising the possibility that Chlamydia phage is also present in patients infected with C. trachomatis (Ct). In the present study, we assayed for presence of Chlamydia phage capsid protein VP1 genes and antibodies in 84 non-Ct controls and 206 Ct patients using an enzyme-linked immunoassay (ELISA), followed by verification with Western blot. None of the subjects were exposed to an antibiotic treatment or had a C. pneumoniae infection. The VP1 antibody test was positive in both, the ELISA and Western blot assay, in 4 Ct patients. PCR amplification experiments revealed presence of the VP1 gene in 5 Ct patients. The results suggest that Chlamydia phage capsid protein VP1 may exist in some Ct patients.

  15. Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus

    DOE PAGES

    Howard-Varona, Cristina; Roux, Simon; Dore, Hugo; ...

    2016-05-17

    Microbes impact human health and disease, industrial processes and natural ecosystems, but do so under the influence of viruses. Problematically, knowledge of viral infection efficiencies and outcomes (e.g. lysis, lysogeny) derives from few model systems that over-represent efficient, lytic infections and under-represent virus-host natural diversity. Here we sought to understand how infection efficiency is regulated in an environmental Bacteroidetes virus that represents a globally abundant viral group and has drastically different infection efficiencies when infecting two nearly identical bacterial strains. To this end, we quantified bacterial virus (phage) and host DNA, transcripts and phage particles throughout the infection of bothmore » bacterial hosts. While the phage transcriptome was similar during both infections, host transcriptional differences appeared to have altered infection efficiency. Specifically, host transcriptomes suggested that the phage failed to repress early host expression in the inefficient nfection, thereby allowing the host to respond against infection by delaying phage DNA replication and protein translation. Further measurements showed that phage DNA and particle production were delayed (by >30 minutes) and reduced (by >50%) in the inefficient versus efficient infection as the host over-expressed DNA degradation genes and under-expressed translation genes, respectively. Together these results suggest that multiple levels of regulation can impact infection efficiencies as failure to repress host transcription allowed the host to defend against both phage DNA and protein production. Given that this phage type is ubiquitous and abundant in the global oceans and that variably efficient viral infections are likely common in any ecosystem with varying phage-host abundances and physiological states, these data provide a critically needed foundation for understanding and modeling viral infection efficiency in nature.« less

  16. Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus

    SciTech Connect

    Howard-Varona, Cristina; Roux, Simon; Dore, Hugo; Solonenko, Natalie E.; Holmfeldt, Karin; Markillie, Lye M.; Orr, Galya; Sullivan, Matthew B.

    2016-05-17

    Microbes impact human health and disease, industrial processes and natural ecosystems, but do so under the influence of viruses. Problematically, knowledge of viral infection efficiencies and outcomes (e.g. lysis, lysogeny) derives from few model systems that over-represent efficient, lytic infections and under-represent virus-host natural diversity. Here we sought to understand how infection efficiency is regulated in an environmental Bacteroidetes virus that represents a globally abundant viral group and has drastically different infection efficiencies when infecting two nearly identical bacterial strains. To this end, we quantified bacterial virus (phage) and host DNA, transcripts and phage particles throughout the infection of both bacterial hosts. While the phage transcriptome was similar during both infections, host transcriptional differences appeared to have altered infection efficiency. Specifically, host transcriptomes suggested that the phage failed to repress early host expression in the inefficient nfection, thereby allowing the host to respond against infection by delaying phage DNA replication and protein translation. Further measurements showed that phage DNA and particle production were delayed (by >30 minutes) and reduced (by >50%) in the inefficient versus efficient infection as the host over-expressed DNA degradation genes and under-expressed translation genes, respectively. Together these results suggest that multiple levels of regulation can impact infection efficiencies as failure to repress host transcription allowed the host to defend against both phage DNA and protein production. Given that this phage type is ubiquitous and abundant in the global oceans and that variably efficient viral infections are likely common in any ecosystem with varying phage-host abundances and physiological states, these data provide a critically needed foundation for understanding and modeling viral infection efficiency in nature.

  17. Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus

    PubMed Central

    Howard-Varona, Cristina; Roux, Simon; Dore, Hugo; Solonenko, Natalie E; Holmfeldt, Karin; Markillie, Lye M; Orr, Galya; Sullivan, Matthew B

    2017-01-01

    Bacteria impact humans, industry and nature, but do so under viral constraints. Problematically, knowledge of viral infection efficiencies and outcomes derives from few model systems that over-represent efficient lytic infections and under-represent virus–host natural diversity. Here we sought to understand infection efficiency regulation in an emerging environmental Bacteroidetes–virus model system with markedly different outcomes on two genetically and physiologically nearly identical host strains. For this, we quantified bacterial virus (phage) and host DNA, transcripts and phage particles throughout both infections. While phage transcriptomes were similar, transcriptional differences between hosts suggested host-derived regulation of infection efficiency. Specifically, the alternative host overexpressed DNA degradation genes and underexpressed translation genes, which seemingly targeted phage DNA particle production, as experiments revealed they were both significantly delayed (by >30 min) and reduced (by >50%) in the inefficient infection. This suggests phage failure to repress early alternative host expression and stress response allowed the host to respond against infection by delaying phage DNA replication and protein translation. Given that this phage type is ubiquitous and abundant in the global oceans and that variable viral infection efficiencies are central to dynamic ecosystems, these data provide a critically needed foundation for understanding and modeling viral infections in nature. PMID:27187794

  18. Replication and Maintenance of Linear Phage-Plasmid N15.

    PubMed

    Ravin, Nikolai V

    2015-02-01

    The lambdoid phage N15 of Escherichia coli is very unusual among temperate phages in that its prophage is not integrated into the chromosome but is a linear plasmid molecule with covalently closed ends (telomeres). Upon infection, the phage DNA circularizes via cohesive ends, and then a special phage enzyme of the tyrosine recombinase family, protelomerase, cuts at another site and joins the ends, forming hairpin telomeres of the linear plasmid prophage. Replication of the N15 prophage is initiated at an internally located ori site and proceeds bidirectionally, resulting in the formation of duplicated telomeres. The N15 protelomerase cuts them, generating two linear plasmid molecules with hairpin telomeres. Stable inheritance of the plasmid prophage is ensured by a partitioning operon similar to the F factor sop operon. Unlike the F centromere, the N15 centromere consists of four inverted repeats dispersed in the genome. The multiplicity and dispersion of centromeres are required for efficient partitioning of a linear plasmid. The centromeres are located in the N15 genome regions involved in phage replication and control of lytic development, and binding of partition proteins at these sites regulates these processes. The family of N15-like linear phage-plasmids includes lambdoid phages ɸKO2 and pY54, as well as Myoviridae phages ΦHAP-1, VHML, VP882, Vp58.5, and vB_VpaM_MAR of marine gamma-proteobacteria. The genomes of these phages contain similar protelomerase genes, lysogeny control modules, and replication genes, suggesting that these phages may belong to a group diverged from a common ancestor.

  19. Large outbreak of salmonella phage type 1 infection with high infection rate and severe illness associated with fast food premises.

    PubMed

    Giraudon, I; Cathcart, S; Blomqvist, S; Littleton, A; Surman-Lee, S; Mifsud, A; Anaraki, S; Fraser, G

    2009-06-01

    To describe the epidemiology of an outbreak of Salmonella enteritidis phage type 1 (PT1) infection associated with a fast food premises, and to identify the causative factors leading to an acute outbreak with high attack rate and severe illness including hospital admission. Integrated descriptive study of epidemiology, food and environmental microbiology, and professional environmental health assessment, supplemented by a case-case analytical study. Cases were identified through multiple sources and were interviewed to identify food items consumed. Descriptive epidemiology of all cases and a case-case analytical study of risk factors for severe illness were undertaken. Microbiological investigation included analysis and typing of pathogens from stools, blood and environmental surfaces. Professional environmental heath assessment of the premises was undertaken. S. enteritidis PT1 was recovered from two-thirds of faecal samples. Three cases had dual infection with enterotoxin-producing Clostridium perfringens. S. enteritidis PT1 was isolated from 14 of 40 food samples examined and C. perfringens was isolated from eight food samples. Environmental health inspection of the premises revealed multiple deficiencies, including deficits in food preparation and hygiene consistent with multiple cross-contamination, and time-temperature abuse of sauces widely used across menu items. Severe cases were associated with consumption of chips and salad. Outbreaks from fast food premises have been infrequently described. This outbreak demonstrates the potential for fast food premises, with multiple deficiencies in food preparation and hygiene, to produce large, intense community outbreaks with high attack rates and severe illness, highly confined in space and time.

  20. Enriching public descriptions of marine phages using the Genomic Standards Consortium MIGS standard

    PubMed Central

    Duhaime, Melissa Beth; Kottmann, Renzo; Field, Dawn; Glöckner, Frank Oliver

    2011-01-01

    In any sequencing project, the possible depth of comparative analysis is determined largely by the amount and quality of the accompanying contextual data. The structure, content, and storage of this contextual data should be standardized to ensure consistent coverage of all sequenced entities and facilitate comparisons. The Genomic Standards Consortium (GSC) has developed the “Minimum Information about Genome/Metagenome Sequences (MIGS/MIMS)” checklist for the description of genomes and here we annotate all 30 publicly available marine bacteriophage sequences to the MIGS standard. These annotations build on existing International Nucleotide Sequence Database Collaboration (INSDC) records, and confirm, as expected that current submissions lack most MIGS fields. MIGS fields were manually curated from the literature and placed in XML format as specified by the Genomic Contextual Data Markup Language (GCDML). These “machine-readable” reports were then analyzed to highlight patterns describing this collection of genomes. Completed reports are provided in GCDML. This work represents one step towards the annotation of our complete collection of genome sequences and shows the utility of capturing richer metadata along with raw sequences. PMID:21677864

  1. Enriching public descriptions of marine phages using the Genomic Standards Consortium MIGS standard.

    PubMed

    Duhaime, Melissa Beth; Kottmann, Renzo; Field, Dawn; Glöckner, Frank Oliver

    2011-04-29

    In any sequencing project, the possible depth of comparative analysis is determined largely by the amount and quality of the accompanying contextual data. The structure, content, and storage of this contextual data should be standardized to ensure consistent coverage of all sequenced entities and facilitate comparisons. The Genomic Standards Consortium (GSC) has developed the "Minimum Information about Genome/Metagenome Sequences (MIGS/MIMS)" checklist for the description of genomes and here we annotate all 30 publicly available marine bacteriophage sequences to the MIGS standard. These annotations build on existing International Nucleotide Sequence Database Collaboration (INSDC) records, and confirm, as expected that current submissions lack most MIGS fields. MIGS fields were manually curated from the literature and placed in XML format as specified by the Genomic Contextual Data Markup Language (GCDML). These "machine-readable" reports were then analyzed to highlight patterns describing this collection of genomes. Completed reports are provided in GCDML. This work represents one step towards the annotation of our complete collection of genome sequences and shows the utility of capturing richer metadata along with raw sequences.

  2. The discovery of phiAGATE, a novel phage infecting Bacillus pumilus, leads to new insights into the phylogeny of the subfamily Spounavirinae.

    PubMed

    Barylski, Jakub; Nowicki, Grzegorz; Goździcka-Józefiak, Anna

    2014-01-01

    The Bacillus phage phiAGATE is a novel myovirus isolated from the waters of Lake Góreckie (a eutrophic lake in western Poland). The bacteriophage infects Bacillus pumilus, a bacterium commonly observed in the mentioned reservoir. Analysis of the phiAGATE genome (149844 base pairs) resulted in 204 predicted protein-coding sequences (CDSs), of which 53 could be functionally annotated. Further investigation revealed that the bacteriophage is a member of a previously undescribed cluster of phages (for the purposes of this study we refer to it as "Bastille group") within the Spounavirinae subfamily. Here we demonstrate that these viruses constitute a distinct branch of the Spounavirinae phylogenetic tree, with limited similarity to phages from the Twortlikevirus and Spounalikevirus genera. The classification of phages from the Bastille group into any currently accepted genus proved extremely difficult, prompting concerns about the validity of the present taxonomic arrangement of the subfamily.

  3. The Discovery of phiAGATE, A Novel Phage Infecting Bacillus pumilus, Leads to New Insights into the Phylogeny of the Subfamily Spounavirinae

    PubMed Central

    Barylski, Jakub; Nowicki, Grzegorz; Goździcka-Józefiak, Anna

    2014-01-01

    The Bacillus phage phiAGATE is a novel myovirus isolated from the waters of Lake Góreckie (a eutrophic lake in western Poland). The bacteriophage infects Bacillus pumilus, a bacterium commonly observed in the mentioned reservoir. Analysis of the phiAGATE genome (149844 base pairs) resulted in 204 predicted protein-coding sequences (CDSs), of which 53 could be functionally annotated. Further investigation revealed that the bacteriophage is a member of a previously undescribed cluster of phages (for the purposes of this study we refer to it as “Bastille group”) within the Spounavirinae subfamily. Here we demonstrate that these viruses constitute a distinct branch of the Spounavirinae phylogenetic tree, with limited similarity to phages from the Twortlikevirus and Spounalikevirus genera. The classification of phages from the Bastille group into any currently accepted genus proved extremely difficult, prompting concerns about the validity of the present taxonomic arrangement of the subfamily. PMID:24466180

  4. Phage Therapy: Future Inquiries

    PubMed Central

    Wu, Sijia; Zachary, Elisabeth; Wells, Keenan; Loc-Carrillo, Catherine

    2016-01-01

    Western scientists have steadily been gaining interest in phage therapy since the mid-1980’s due to the rising problem of antibiotic resistance. Its introduction in the 20th century by Felix d’Herelle marked the beginning for the uses of bacteriophages as antibacterial agents. However, a lack in understanding phage biology, as well as the arrival of broad-spectrum antibiotics deprioritized using phage therapy to treat bacterial infections in the West. With the advent of molecular biology, we are now better able to understand the predator-prey relationships with which phage co-evolve with their hosts as well as the specificity of phage-host interactions which could lend itself into personalized treatments for infection. These discoveries give us greater insights on how to most effectively use bacteriophage as potential therapeutic agents. It is encouraging to note that bacteriophages are used as food additives in the U.S., suggesting that the FDA acknowledges the positive potential of bacteriophages for human applications. Unfortunately, there are only a few examples to date of bacteriophages used on humans in controlled clinical trials. Rigorous studies in-vitro and especially in-vivo are critically important to avoid the mishaps of our predecessors. Phage biologists must strive to meet regulatory standards and to design thorough, rugged studies in order to establish a substantiated need for phage therapy in health care. PMID:28286802

  5. Phages in nature

    PubMed Central

    Millard, Andrew D; Letarov, Andrey V; Heaphy, Shaun

    2011-01-01

    Bacteriophages or phages are the most abundant organisms in the biosphere and they are a ubiquitous feature of prokaryotic existence. A bacteriophage is a virus which infects a bacterium. Archaea are also infected by viruses, whether these should be referred to as ‘phages’ is debatable, but they are included as such in the scope this article. Phages have been of interest to scientists as tools to understand fundamental molecular biology, as vectors of horizontal gene transfer and drivers of bacterial evolution, as sources of diagnostic and genetic tools and as novel therapeutic agents. Unraveling the biology of phages and their relationship with their hosts is key to understanding microbial systems and their exploitation. In this article we describe the roles of phages in different host systems and show how modeling, microscopy, isolation, genomic and metagenomic based approaches have come together to provide unparalleled insights into these small but vital constituents of the microbial world. PMID:21687533

  6. Osmotic pressure: resisting or promoting DNA ejection from phage? Internal capsid-pressure dependence of viral infection

    NASA Astrophysics Data System (ADS)

    Evilevitch, Alex; Jeembaeva, Meerim; Koester, Sarah; Castelnovo, Martin; Weitz, David

    2009-03-01

    Recent in vitro experiments have shown that DNA ejection from phage can be partially stopped by surrounding osmotic pressure when ejected DNA is digested by DNase I on the course of ejection. We argue in this work by combination of experimental techniques (UV absorbance, pulse-field electrophoresis, and cryo-EM) that intact genome (i.e. undigested) ejection in a crowded environment is, on the contrary, enhanced or eventually complete with the help of a pulling force resulting from DNA condensation induced by the osmotic stress itself. This demonstrates that in vivo, the osmotically stressed cell cytoplasm will promote phage DNA ejection rather than resisting it. While, in vitro, the ejection depends sensitively on internal pressure within the virus capsid, the effect of internal pressure on infection of bacteria is unknown. We use microfluidics to monitor individual cells and determine the distribution of lysis due to infection as the capsid pressure is varied. The lysis probability decreases markedly with decreased capsid pressure.

  7. Use of Phage Display To Identify Potential Pseudomonas aeruginosa Gene Products Relevant to Early Cystic Fibrosis Airway Infections

    PubMed Central

    Beckmann, Christiane; Brittnacher, Mitchell; Ernst, Robert; Mayer-Hamblett, Nicole; Miller, Samuel I.; Burns, Jane L.

    2005-01-01

    Pseudomonas aeruginosa airway infections are a major cause of morbidity and mortality in patients with cystic fibrosis. Treatment of established infections is difficult, even with microbiologically active agents. Thus, prevention of infection is an important goal of management. Isolates from cystic fibrosis patients appear to originate from the environment but adapt to the milieu of the airway of the cystic fibrosis patient and evolve toward a common phenotype. Identification of the antigens expressed early in infection may lead to novel targets for vaccine development. Immunogenic peptides were identified in a J404 random nonapeptide phage display library with serum from cystic fibrosis patients obtained within the first year of P. aeruginosa infection. One hundred sixty-five reactive clones were verified by plaque lift assays, and their inserts were sequenced. The sequenced nonapeptides were compared with the published sequence of strain PAO1, identifying homologies to 76 genes encoding outer membrane and secreted proteins. The majority of these were proteins involved in small-molecule transport, membrane structural proteins, and secreted factors. An in silico analysis was performed that suggested that the occurrence of multiple matches to predominantly outer membrane and secreted proteins was not attributable to random chance. Finally, gene expression array data from early isolates of P. aeruginosa from cystic fibrosis patients was compared with the results from phage display analysis. Eleven outer membrane and secreted proteins were common between the two data sets. These included genes involved in iron acquisition, antibiotic efflux, fimbrial biogenesis, and pyocin synthesis. These results demonstrate the feasibility and validity of this novel approach and suggest potential targets for future development. PMID:15618183

  8. Regulated CRISPR Modules Exploit a Dual Defense Strategy of Restriction and Abortive Infection in a Model of Prokaryote-Phage Coevolution

    PubMed Central

    Kumar, M. Senthil; Plotkin, Joshua B.; Hannenhalli, Sridhar

    2015-01-01

    CRISPRs offer adaptive immunity in prokaryotes by acquiring genomic fragments from infecting phage and subsequently exploiting them for phage restriction via an RNAi-like mechanism. Here, we develop and analyze a dynamical model of CRISPR-mediated prokaryote-phage coevolution that incorporates classical CRISPR kinetics along with the recently discovered infection-induced activation and autoimmunity side effects. Our analyses reveal two striking characteristics of the CRISPR defense strategy: that both restriction and abortive infections operate during coevolution with phages, driving phages to much lower densities than possible with restriction alone, and that CRISPR maintenance is determined by a key dimensionless combination of parameters, which upper bounds the activation level of CRISPRs in uninfected populations. We contrast these qualitative observations with experimental data on CRISPR kinetics, which offer insight into the spacer deletion mechanism and the observed low CRISPR prevalence in clinical isolates. More generally, we exploit numerical simulations to delineate four regimes of CRISPR dynamics in terms of its host, kinetic, and regulatory parameters. PMID:26544847

  9. Marine peptides and their anti-infective activities.

    PubMed

    Kang, Hee Kyoung; Seo, Chang Ho; Park, Yoonkyung

    2015-01-16

    Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish) from 2006 to the present.

  10. Marine Peptides and Their Anti-Infective Activities

    PubMed Central

    Kang, Hee Kyoung; Seo, Chang Ho; Park, Yoonkyung

    2015-01-01

    Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish) from 2006 to the present. PMID:25603351

  11. Characterization of poly-gamma-glutamate hydrolase encoded by a bacteriophage genome: possible role in phage infection of Bacillus subtilis encapsulated with poly-gamma-glutamate.

    PubMed

    Kimura, Keitarou; Itoh, Yoshifumi

    2003-05-01

    Some Bacillus subtilis strains, including natto (fermented soybeans) starter strains, produce a capsular polypeptide of glutamate with a gamma-linkage, called poly-gamma-glutamate (gamma-PGA). We identified and purified a monomeric 25-kDa degradation enzyme for gamma-PGA (designated gamma-PGA hydrolase, PghP) from bacteriophage PhiNIT1 in B. subtilis host cells. The monomeric PghP internally hydrolyzed gamma-PGA to oligopeptides, which were then specifically converted to tri-, tetra-, and penta-gamma-glutamates. Monoiodoacetate and EDTA both inhibited the PghP activity, but Zn(2+) or Mn(2+) ions fully restored the enzyme activity inhibited by the chelator, suggesting that a cysteine residue(s) and these metal ions participate in the catalytic mechanism of the enzyme. The corresponding pghP gene was cloned and sequenced from the phage genome. The deduced PghP sequence (208 amino acids) with a calculated M(r) of 22,939 was not significantly similar to any known enzyme. Thus, PghP is a novel gamma-glutamyl hydrolase. Whereas phage PhiNIT1 proliferated in B. subtilis cells encapsulated with gamma-PGA, phage BS5 lacking PghP did not survive well on such cells. Moreover, all nine phages that contaminated natto during fermentation produced PghP, supporting the notion that PghP is important in the infection of natto starters that produce gamma-PGA. Analogous to polysaccharide capsules, gamma-PGA appears to serve as a physical barrier to phage absorption. Phages break down the gamma-PGA barrier via PghP so that phage progenies can easily establish infection in encapsulated cells.

  12. Previously unknown virus infects marine diatom.

    PubMed

    Nagasaki, Keizo; Tomaru, Yuji; Takao, Yoshitake; Nishida, Kensho; Shirai, Yoko; Suzuki, Hidekazu; Nagumo, Tamotsu

    2005-07-01

    Diatoms are a major phytoplankton group that play important roles in maintaining oxygen levels in the atmosphere and sustaining the primary nutritional production of the aquatic environment. Among diatoms, the genus Chaetoceros is one of the most abundant and widespread. Temperature, climate, salinity, nutrients, and predators were regarded as important factors controlling the abundance and population dynamics of diatoms. Here we show that a viral infection can occur in the genus Chaetoceros and should therefore be considered as a potential mortality source. Chaetoceros salsugineum nuclear inclusion virus (CsNIV) is a 38-nm icosahedral virus that replicates within the nucleus of C. salsugineum. The latent period was estimated to be between 12 and 24 h, with a burst size of 325 infectious units per host cell. CsNIV has a genome structure unlike that of other viruses that have been described. It consists of a single molecule of covalently closed circular single-stranded DNA (ssDNA; 6,005 nucleotides), as well as a segment of linear ssDNA (997 nucleotides). The linear segment is complementary to a portion of the closed circle creating a partially double-stranded genome. Sequence analysis reveals a low but significant similarity to the replicase of circoviruses that have a covalently closed circular ssDNA genome. This new host-virus system will be useful for investigating the ecological relationships between bloom-forming diatoms and other viruses in the marine system. Our study supports the view that, given the diversity and abundance of plankton, the ocean is a treasury of undiscovered viruses.

  13. Previously Unknown Virus Infects Marine Diatom

    PubMed Central

    Nagasaki, Keizo; Tomaru, Yuji; Takao, Yoshitake; Nishida, Kensho; Shirai, Yoko; Suzuki, Hidekazu; Nagumo, Tamotsu

    2005-01-01

    Diatoms are a major phytoplankton group that play important roles in maintaining oxygen levels in the atmosphere and sustaining the primary nutritional production of the aquatic environment. Among diatoms, the genus Chaetoceros is one of the most abundant and widespread. Temperature, climate, salinity, nutrients, and predators were regarded as important factors controlling the abundance and population dynamics of diatoms. Here we show that a viral infection can occur in the genus Chaetoceros and should therefore be considered as a potential mortality source. Chaetoceros salsugineum nuclear inclusion virus (CsNIV) is a 38-nm icosahedral virus that replicates within the nucleus of C. salsugineum. The latent period was estimated to be between 12 and 24 h, with a burst size of 325 infectious units per host cell. CsNIV has a genome structure unlike that of other viruses that have been described. It consists of a single molecule of covalently closed circular single-stranded DNA (ssDNA; 6,005 nucleotides), as well as a segment of linear ssDNA (997 nucleotides). The linear segment is complementary to a portion of the closed circle creating a partially double-stranded genome. Sequence analysis reveals a low but significant similarity to the replicase of circoviruses that have a covalently closed circular ssDNA genome. This new host-virus system will be useful for investigating the ecological relationships between bloom-forming diatoms and other viruses in the marine system. Our study supports the view that, given the diversity and abundance of plankton, the ocean is a treasury of undiscovered viruses. PMID:16000758

  14. Phage therapy pharmacology phage cocktails.

    PubMed

    Chan, Benjamin K; Abedon, Stephen T

    2012-01-01

    Phage therapy is the clinical or veterinary application of bacterial viruses (bacteriophages) as antibacterial "drugs." More generally, phages can be used as biocontrol agents against plant as well as foodborne pathogens. In this chapter, we consider the therapeutic use of phage cocktails, which is the combining of two or more phage types to produce more pharmacologically diverse formulations. The primary motivation for the use of cocktails is their broader spectra of activity in comparison to individual phage isolates: they can impact either more bacterial types or achieve effectiveness under a greater diversity of conditions. The combining of phages can also facilitate better targeting of multiple strains making up individual bacterial species or covering multiple species that might be responsible for similar disease states, in general providing, relative to individual phage isolates, a greater potential for presumptive or empirical treatment. Contrasting the use of phage banks, or even phage isolation against specific etiologies that have been obtained directly from patients under treatment, here we consider the utility as well as potential shortcomings associated with the use of phage cocktails as therapeutic antibacterial agents.

  15. An investigation into an outbreak of Salmonella enteritidis phage-type 4 infection and the consumption of custard slices and trifles.

    PubMed Central

    Barnes, G. H.; Edwards, A. T.

    1992-01-01

    Epidemiological investigation into an outbreak of food poisoning in 17 patients caused by Salmonella enteritidis phage-type 4 demonstrated a highly significant association with consumption of custard, retailed in custard slices and trifles from a bakery on one day. The bakery had changed their recipe for custard 2 weeks earlier to include fresh shell eggs and had not followed earlier national advice on cooking eggs for human consumption. The case-control study supports earlier work associating Salmonella enteritidis phage-type 4 infection with consumption of uncooked or lightly cooked shell eggs. PMID:1468524

  16. An investigation into an outbreak of Salmonella enteritidis phage-type 4 infection and the consumption of custard slices and trifles.

    PubMed

    Barnes, G H; Edwards, A T

    1992-12-01

    Epidemiological investigation into an outbreak of food poisoning in 17 patients caused by Salmonella enteritidis phage-type 4 demonstrated a highly significant association with consumption of custard, retailed in custard slices and trifles from a bakery on one day. The bakery had changed their recipe for custard 2 weeks earlier to include fresh shell eggs and had not followed earlier national advice on cooking eggs for human consumption. The case-control study supports earlier work associating Salmonella enteritidis phage-type 4 infection with consumption of uncooked or lightly cooked shell eggs.

  17. Bacteria-phage interactions in natural environments.

    PubMed

    Díaz-Muñoz, Samuel L; Koskella, Britt

    2014-01-01

    Phages are considered the most abundant and diverse biological entities on Earth and are notable not only for their sheer abundance, but also for their influence on bacterial hosts. In nature, bacteria-phage relationships are complex and have far-reaching consequences beyond particular pairwise interactions, influencing everything from bacterial virulence to eukaryotic fitness to the carbon cycle. In this review, we examine bacteria and phage distributions in nature first by highlighting biogeographic patterns and nonhost environmental influences on phage distribution, then by considering the ways in which phages and bacteria interact, emphasizing phage life cycles, bacterial responses to phage infection, and the complex patterns of phage host specificity. Finally, we discuss phage impacts on bacterial abundance, genetics, and physiology, and further aim to clarify distinctions between current theoretical models and point out areas in need of future research.

  18. Immune TB Antibody Phage Display Library as a Tool To Study B Cell Immunity in TB Infections.

    PubMed

    Hamidon, Nurul Hamizah; Suraiya, Siti; Sarmiento, Maria E; Acosta, Armando; Norazmi, Mohd Nor; Lim, Theam Soon

    2017-09-07

    B cells and in particular antibodies has always played second fiddle to cellular immunity in regard to tuberculosis (TB). However, recent studies has helped position humoral immunity especially antibodies back into the foray in relation to TB immunity. Therefore, the ability to correlate the natural antibody responses of infected individuals toward TB antigens would help strengthen this concept. Phage display is an intriguing approach that can be utilized to study antibody-mediated responses against a particular infection via harvesting the B cell repertoire from infected individuals. The development of disease-specific antibody libraries or immune libraries is useful to better understand antibody-mediated immune responses against specific disease antigens. This study describes the generation of an immune single-chain variable fragment (scFv) library derived from TB-infected individuals. The immune library with an estimated diversity of 10(9) independent clones was then applied for the identification of monoclonal antibodies against Mycobacterium tuberculosis α-crystalline as a model antigen. Biopanning of the library isolated three monoclonal antibodies with unique gene usage. This strengthens the role of antibodies in TB immunity in addition to the role played by cellular immunity. The developed library can be applied against other TB antigens and aid antibody-derived TB immunity studies in the future.

  19. Seroprevalence of Toxoplasma gondii infection in marine mammals in Mexico

    USDA-ARS?s Scientific Manuscript database

    Toxoplasma gondii infection in marine mammals is important because they are considered as a sentinel for contamination of seas with T. gondii oocysts, and toxoplasmosis causes mortality in these animals, particularly sea otters. Seroprevalence of T. gondii infection was determined in 75 captive mari...

  20. Envisaging bacteria as phage targets

    PubMed Central

    Abedon, Stephen T.

    2011-01-01

    It can be difficult to appreciate just how small bacteria and phages are or how large, in comparison, the volumes that they occupy. A single milliliter, for example, can represent to a phage what would be, with proper scaling, an “ocean” to you and me. Here I illustrate, using more easily visualized macroscopic examples, the difficulties that a phage, as a randomly diffusing particle, can have in locating bacteria to infect. I conclude by restating the truism that the rate of phage adsorption to a given target bacterium is a function of phage density, that is, titer, in combination with the degree of bacterial susceptibility to adsorption by an encountering phage. PMID:23616932

  1. Characterization and Complete Genome Sequences of Three N4-Like Roseobacter Phages Isolated from the South China Sea.

    PubMed

    Li, Baolian; Zhang, Si; Long, Lijuan; Huang, Sijun

    2016-09-01

    Three bacteriophages (RD-1410W1-01, RD-1410Ws-07, and DS-1410Ws-06) were isolated from the surface water of Sanya Bay, northern South China Sea, on two marine bacteria type strains of the Roseobacter lineage. These phages have an isometric head and a short tail, morphologically belonging to the Podoviridae family. Two of these phages can infect four of seven marine roseobacter strains tested and the other one can infect three of them, showing relatively broader host ranges compared to known N4-like roseophages. One-step growth curves showed that these phages have similar short latent periods (1-2 h) but highly variable burst sizes (27-341 pfu cell(-1)). Their complete genomes show high level of similarities to known N4-like roseophages in terms of genome size, G + C content, gene content, and arrangement. The morphological and genomic features of these phages indicate that they belong to the N4likevirus genus. Moreover, comparative genomic analysis based on 43 N4-like phages (10 roseobacter phages and 33 phages infecting other lineages of bacteria) revealed a core genome of 18 genes shared by all the 43 phages and 38 genes shared by all the ten roseophages. The 38 core genes of N4-like roseophages nearly make up 70 % of each genome in length. Phylogenetic analysis based on the concatenated core gene products showed that our phage isolates represent two new phyletic branches, suggesting the broad genetic diversity of marine N4-like roseophages remains.

  2. Phage therapy--constraints and possibilities.

    PubMed

    Nilsson, Anders S

    2014-05-01

    The rise of antibiotic-resistant bacterial strains, causing intractable infections, has resulted in an increased interest in phage therapy. Phage therapy preceded antibiotic treatment against bacterial infections and involves the use of bacteriophages, bacterial viruses, to fight bacteria. Virulent phages are abundant and have proven to be very effective in vitro, where they in most cases lyse any bacteria within the hour. Clinical trials on animals and humans show promising results but also that the treatments are not completely effective. This is partly due to the studies being carried out with few phages, and with limited experimental groups, but also the fact that phage therapy has limitations in vivo. Phages are large compared with small antibiotic molecules, and each phage can only infect one or a few bacterial strains. A very large number of different phages are needed to treat infections as these are caused by genetically different strains of bacteria. Phages are effective only if enough of them can reach the bacteria and increase in number in situ. Taken together, this entails high demands on resources for the construction of phage libraries and the testing of individual phages. The effectiveness and host range must be characterized, and immunological risks must be assessed for every single phage.

  3. An outbreak of Salmonella enteritidis phage type 5a infection in a residential home for elderly people.

    PubMed

    Hansell, A L; Sen, S; Sufi, F; McCallum, A

    1998-09-01

    The first outbreak of Salmonella enteritidis phage type (PT) 5a infection to be reported occurred after a party in a residential home for elderly people in May 1995. The party was attended attended by 96 residents, staff and guests. S. enteritidis PT5a was isolated from 14 of the 25 clinical cases identified after the party and S. enteritidis PT4 from another clinical case. Two elderly residents with S. enteritidis PT5a infection died. Infection with S. enteritidis PT5a was associated with consumption of prawn in mayonnaise vol-au-vents, sausage rolls, corned beef sandwiches, and sausages. The investigation of this outbreak illustrated the difficulty that elderly people may have in the completion of questionnaires. It also highlighted areas for intervention; such as reminders about basic hygiene precautions to prevent secondary spread and the importance of coordinated reinforcement in the workplace of formal food hygiene training for cooks. The Food Safety Regulations 1995 came into force soon after this outbreak: their implementation would probably have prevented it.

  4. Synergy as a rationale for phage therapy using phage cocktails

    PubMed Central

    Schmerer, Matthew; Molineux, Ian J.

    2014-01-01

    Where phages are used to treat bacterial contaminations and infections, multiple phages are typically applied at once as a cocktail. When two or more phages in the cocktail attack the same bacterium, the combination may produce better killing than any single phage (synergy) or the combination may be worse than the best single phage (interference). Synergy is of obvious utility, especially if it can be predicted a priori, but it remains poorly documented with few examples known. This study addresses synergy in which one phage improves adsorption by a second phage. It first presents evidence of synergy from an experimental system of two phages and a mucoid E. coli host. The synergy likely stems from a tailspike enzyme produced by one of the phages. We then offer mathematical models and simulations to understand the dynamics of synergy and the enhanced magnitude of bacterial control possible. The models and observations complement each other and suggest that synergy may be of widespread utility and may be predictable from easily observed phenotypes. PMID:25279269

  5. Characterization, Genome Sequence, and Analysis of Escherichia Phage CICC 80001, a Bacteriophage Infecting an Efficient L-Aspartic Acid Producing Escherichia coli.

    PubMed

    Xu, Youqiang; Ma, Yuyue; Yao, Su; Jiang, Zengyan; Pei, Jiangsen; Cheng, Chi

    2016-03-01

    Escherichia phage CICC 80001 was isolated from the bacteriophage contaminated medium of an Escherichia coli strain HY-05C (CICC 11022S) which could produce L-aspartic acid. The phage had a head diameter of 45-50 nm and a tail of about 10 nm. The one-step growth curve showed a latent period of 10 min and a rise period of about 20 min. The average burst size was about 198 phage particles per infected cell. Tests were conducted on the plaques, multiplicity of infection, and host range. The genome of CICC 80001 was sequenced with a length of 38,810 bp, and annotated. The key proteins leading to host-cell lysis were phylogenetically analyzed. One protein belonged to class II holin, and the other two belonged to the endopeptidase family and N-acetylmuramoyl-L-alanine amidase family, respectively. The genome showed the sequence identity of 82.7% with that of Enterobacteria phage T7, and carried ten unique open reading frames. The bacteriophage resistant E. coli strain designated CICC 11021S was breeding and its L-aspartase activity was 84.4% of that of CICC 11022S.

  6. The use of hybrid phage displaying antigen epitope and recombinant protein in the diagnosis of systemic Candida albicans infection in rabbits and cancer patients.

    PubMed

    Quanping, Su; Yanyan, Huai; Yicun, Wang; Zhigang, Ju; Yuling, Geng; Li, Wang

    2010-12-01

    Hsp90 and Sap2 are 2 immunodominant antigens of Candida albicans. Both of them can induce the production of antibody. In this article, systemically infected rabbits were used to study the Hsp90 and Sap2 antibody production. Also, pET28a-Hsp90 protein, pET28a-Sap2 protein, hybrid phage displaying LKVIRK epitope, and hybrid phage displaying VKYTS epitope were used for diagnosis of the antibody in cancer patients. The results showed that the Sap2 antibody appeared earlier than Hsp90 antibody in systemically infected rabbits. Meanwhile, both of the antibodies can perform protection in rabbits. The conclusion is that Sap2 antibody, which appears at early stage in systemic candidiasis, may be better than Hsp90 antibody for the diagnosis of invasive candidiasis. For 141 sera of cancer patients, 52 sera were detected Sap2 antibody and 57 sera were detected Hsp90 antibody. Only 14 sera contained both the 2 antibodies. Although recombinant protein was slightly more sensitive than hybrid phage, there was no significant difference between them. For its easy preparation, less expensive hybrid phage displaying antigen epitope may be a better agent for diagnosis of candidiasis.

  7. The Global Reciprocal Reprogramming between Mycobacteriophage SWU1 and Mycobacterium Reveals the Molecular Strategy of Subversion and Promotion of Phage Infection.

    PubMed

    Fan, Xiangyu; Duan, Xiangke; Tong, Yan; Huang, Qinqin; Zhou, Mingliang; Wang, Huan; Zeng, Lanying; Young, Ry F; Xie, Jianping

    2016-01-01

    Bacteriophages are the viruses of bacteria, which have contributed extensively to our understanding of life and modern biology. The phage-mediated bacterial growth inhibition represents immense untapped source for novel antimicrobials. Insights into the interaction between mycobacteriophage and Mycobacterium host will inform better utilizing of mycobacteriophage. In this study, RNA sequencing technology (RNA-seq) was used to explore the global response of Mycobacterium smegmatis mc(2)155 at an early phase of infection with mycobacteriophage SWU1, key host metabolic processes of M. smegmatis mc(2)155 shut off by SWU1, and the responsible phage proteins. The results of RNA-seq were confirmed by Real-time PCR and functional assay. 1174 genes of M. smegmatis mc(2)155 (16.9% of the entire encoding capacity) were differentially regulated by phage infection. These genes belong to six functional categories: (i) signal transduction, (ii) cell energetics, (iii) cell wall biosynthesis, (iv) DNA, RNA, and protein biosynthesis, (v) iron uptake, (vi) central metabolism. The transcription patterns of phage SWU1 were also characterized. This study provided the first global glimpse of the reciprocal reprogramming between the mycobacteriophage and Mycobacterium host.

  8. The Global Reciprocal Reprogramming between Mycobacteriophage SWU1 and Mycobacterium Reveals the Molecular Strategy of Subversion and Promotion of Phage Infection

    PubMed Central

    Fan, Xiangyu; Duan, Xiangke; Tong, Yan; Huang, Qinqin; Zhou, Mingliang; Wang, Huan; Zeng, Lanying; Young, Ry F.; Xie, Jianping

    2016-01-01

    Bacteriophages are the viruses of bacteria, which have contributed extensively to our understanding of life and modern biology. The phage-mediated bacterial growth inhibition represents immense untapped source for novel antimicrobials. Insights into the interaction between mycobacteriophage and Mycobacterium host will inform better utilizing of mycobacteriophage. In this study, RNA sequencing technology (RNA-seq) was used to explore the global response of Mycobacterium smegmatis mc2155 at an early phase of infection with mycobacteriophage SWU1, key host metabolic processes of M. smegmatis mc2155 shut off by SWU1, and the responsible phage proteins. The results of RNA-seq were confirmed by Real-time PCR and functional assay. 1174 genes of M. smegmatis mc2155 (16.9% of the entire encoding capacity) were differentially regulated by phage infection. These genes belong to six functional categories: (i) signal transduction, (ii) cell energetics, (iii) cell wall biosynthesis, (iv) DNA, RNA, and protein biosynthesis, (v) iron uptake, (vi) central metabolism. The transcription patterns of phage SWU1 were also characterized. This study provided the first global glimpse of the reciprocal reprogramming between the mycobacteriophage and Mycobacterium host. PMID:26858712

  9. Phage Neutralization by Sera of Patients Receiving Phage Therapy

    PubMed Central

    Żaczek, Maciej; Weber-Dąbrowska, Beata; Międzybrodzki, Ryszard; Kłak, Marlena; Fortuna, Wojciech; Letkiewicz, Sławomir; Rogóż, Paweł; Szufnarowski, Krzysztof; Jończyk-Matysiak, Ewa; Owczarek, Barbara; Górski, Andrzej

    2014-01-01

    Abstract The aim of our investigation was to verify whether phage therapy (PT) can induce antiphage antibodies. The antiphage activity was determined in sera from 122 patients from the Phage Therapy Unit in Wrocław with bacterial infections before and during PT, and in sera from 30 healthy volunteers using a neutralization test. Furthermore, levels of antiphage antibodies were investigated in sera of 19 patients receiving staphylococcal phages and sera of 20 healthy volunteers using enzyme-linked immunosorbent assay. The phages were administered orally, locally, orally/locally, intrarectally, or orally/intrarectally. The rate of phage inactivation (K) estimated the level of phages' neutralization by human sera. Low K rates were found in sera of healthy volunteers (K≤1.73). Low K rates were detected before PT (K≤1.64). High antiphage activity of sera K>18 was observed in 12.3% of examined patients (n=15) treated with phages locally (n=13) or locally/orally (n=2) from 15 to 60 days of PT. High K rates were found in patients treated with some Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis phages. Low K rates were observed during PT in sera of patients using phages orally (K≤1.04). Increased inactivation of phages by sera of patients receiving PT decreased after therapy. These results suggest that the antiphage activity in patients' sera depends on the route of phage administration and phage type. The induction of antiphage activity of sera during or after PT does not exclude a favorable result of PT. PMID:24893003

  10. Phage neutralization by sera of patients receiving phage therapy.

    PubMed

    Łusiak-Szelachowska, Marzanna; Zaczek, Maciej; Weber-Dąbrowska, Beata; Międzybrodzki, Ryszard; Kłak, Marlena; Fortuna, Wojciech; Letkiewicz, Sławomir; Rogóż, Paweł; Szufnarowski, Krzysztof; Jończyk-Matysiak, Ewa; Owczarek, Barbara; Górski, Andrzej

    2014-08-01

    The aim of our investigation was to verify whether phage therapy (PT) can induce antiphage antibodies. The antiphage activity was determined in sera from 122 patients from the Phage Therapy Unit in Wrocław with bacterial infections before and during PT, and in sera from 30 healthy volunteers using a neutralization test. Furthermore, levels of antiphage antibodies were investigated in sera of 19 patients receiving staphylococcal phages and sera of 20 healthy volunteers using enzyme-linked immunosorbent assay. The phages were administered orally, locally, orally/locally, intrarectally, or orally/intrarectally. The rate of phage inactivation (K) estimated the level of phages' neutralization by human sera. Low K rates were found in sera of healthy volunteers (K ≤ 1.73). Low K rates were detected before PT (K ≤ 1.64). High antiphage activity of sera K > 18 was observed in 12.3% of examined patients (n = 15) treated with phages locally (n = 13) or locally/orally (n = 2) from 15 to 60 days of PT. High K rates were found in patients treated with some Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis phages. Low K rates were observed during PT in sera of patients using phages orally (K ≤ 1.04). Increased inactivation of phages by sera of patients receiving PT decreased after therapy. These results suggest that the antiphage activity in patients' sera depends on the route of phage administration and phage type. The induction of antiphage activity of sera during or after PT does not exclude a favorable result of PT.

  11. Portrait of a viral infection: The infection cycle of Vibrio vulnificus phage VvAW1 visualized through plaque assay, electron microscopy, and proteomics

    NASA Astrophysics Data System (ADS)

    Clah, K. E. Y.; Nigro, O. D.; Miranda, J.; Schvarcz, C.; Culley, A.; Saito, M. A.; Steward, G.

    2016-02-01

    The bacterium Vibrio vulnificus is an opportunistic human pathogen that thrives in warm brackish waters. Viral infection is one of several mechanisms influencing the population dynamics of this bacterium in the natural environment. V. vulnificus-specific viruses have been isolated; however, the details of their infection cycle have not been reported. As a result, our current understanding of the interaction between the bacterium and its viruses in the environment is limited. To better understand the infection process, a strain of V. vulnificus (V93D1V) and its bacteriophage, Vibrio phage VvAW1, were isolated from the estuarine waters of the Ala Wai Canal, HI. A time-series infection experiment was conducted with the virus-host pair in which samples were collected every ten minutes for eighty minutes post-infection for analysis by plaque assay, electron microscopy, and proteomics. Using electron microscopy, visibly infected bacteria were observed forty minutes after the introduction of the virus, signaling the end of the eclipse period. The peak of infection occurred at seventy minutes with an average viral load of 78 viruses per bacterium. The percentage of visibly infected bacteria reached a maximum just prior to a rise in free viruses in the culture, indicating the end of the latent period. The percentage of infected cells that lysed was low and there was little effect on the bacterial population growth rate. Analysis of the proteome revealed that protein expression patterns, in particular capsid and other structural proteins, closely follow the timing of the observed infection cycle. Together, these analyses provided the first detailed view of a viral infection in a highly lethal aquatic bacterium. The apparent temperate nature of this virus suggests that it can be a source of mortality to V. vulnificus, but has evolved to avoid total destruction of its host by complete lysis, a characteristic that helps ensure its replication in subsequent generations.

  12. In Vivo Assessment of Phage and Linezolid Based Implant Coatings for Treatment of Methicillin Resistant S. aureus (MRSA) Mediated Orthopaedic Device Related Infections

    PubMed Central

    Kaur, Sandeep; Harjai, Kusum; Chhibber, Sanjay

    2016-01-01

    Staphylococcus comprises up to two-thirds of all pathogens in orthopaedic implant infections with two species respectively Staphylococcus aureus and Staphylococcus epidermidis, being the predominate etiological agents isolated. Further, with the emergence of methicillin-resistant S. aureus (MRSA), treatment of S. aureus implant infections has become more difficult, thus representing a devastating complication. Use of local delivery system consisting of S.aureus specific phage along with linezolid (incorporated in biopolymer) allowing gradual release of the two agents at the implant site represents a new, still unexplored treatment option (against orthopaedic implant infections) that has been studied in an animal model of prosthetic joint infection. Naked wire, hydroxypropyl methylcellulose (HPMC) coated wire and phage and /or linezolid coated K-wire were surgically implanted into the intra-medullary canal of mouse femur bone of respective groups followed by inoculation of S.aureus ATCC 43300(MRSA). Mice implanted with K-wire coated with both the agents i.e phage as well as linezolid (dual coated wires) showed maximum reduction in bacterial adherence, associated inflammation of the joint as well as faster resumption of locomotion and motor function of the limb. Also, all the coating treatments showed no emergence of resistant mutants. Use of dual coated implants incorporating lytic phage (capable of self-multiplication) as well as linezolid presents an attractive and aggressive early approach in preventing as well as treating implant associated infections caused by methicillin resistant S. aureus strains as assessed in a murine model of experimental joint infection. PMID:27333300

  13. Clostridium difficile phages: still difficult?

    PubMed Central

    Hargreaves, Katherine R.; Clokie, Martha R. J.

    2014-01-01

    Phages that infect Clostridium difficile were first isolated for typing purposes in the 1980s, but their use was short lived. However, the rise of C. difficile epidemics over the last decade has triggered a resurgence of interest in using phages to combat this pathogen. Phage therapy is an attractive treatment option for C. difficile infection, however, developing suitable phages is challenging. In this review we summarize the difficulties faced by researchers in this field, and we discuss the solutions and strategies used for the development of C. difficile phages for use as novel therapeutics. Epidemiological data has highlighted the diversity and distribution of C. difficile, and shown that novel strains continue to emerge in clinical settings. In parallel with epidemiological studies, advances in molecular biology have bolstered our understanding of C. difficile biology, and our knowledge of phage–host interactions in other bacterial species. These three fields of biology have therefore paved the way for future work on C. difficile phages to progress and develop. Benefits of using C. difficile phages as therapeutic agents include the fact that they have highly specific interactions with their bacterial hosts. Studies also show that they can reduce bacterial numbers in both in vitro and in vivo systems. Genetic analysis has revealed the genomic diversity among these phages and provided an insight into their taxonomy and evolution. No strictly virulent C. difficile phages have been reported and this contributes to the difficulties with their therapeutic exploitation. Although treatment approaches using the phage-encoded endolysin protein have been explored, the benefits of using “whole-phages” are such that they remain a major research focus. Whilst we don’t envisage working with C. difficile phages will be problem-free, sufficient study should inform future strategies to facilitate their development to combat this problematic pathogen. PMID:24808893

  14. A novel Omp25-binding peptide screened by phage display can inhibit Brucella abortus 2308 infection in vitro and in vivo

    PubMed Central

    Zhang, Junbo; Guo, Fei; Huang, Xiaoqiang; Zhang, Hui; Wang, Yuanzhi; Yin, Shuanghong; Li, Zhiqiang

    2014-01-01

    Brucellosis is a globally distributed zoonotic disease affecting animals and humans, and current antibiotic and vaccine strategies are not optimal. The surface-exposed protein Omp25 is involved in Brucella virulence and plays an important role in Brucella pathogenesis during infection, suggesting that Omp25 could be a useful target for selecting potential therapeutic molecules to inhibit Brucella pathogenesis. In this study, we identified, we believe for the first time, peptides that bind specifically to the Omp25 protein of pathogens, using a phage panning technique, After four rounds of panning, 42 plaques of eluted phages were subjected to pyrosequencing. Four phage clones that bound better than the other clones were selected following confirmation by ELISA and affinity constant determination. The peptides selected could significantly inhibit Brucella abortus 2308 (S2308) internalization and intracellular growth in RAW264.7 macrophages, and significantly induce secretion of TNF-α and IL-12 in peptide- and S2308-treated cells. Any observed peptide (OP11, OP27, OP35 or OP40) could significantly inhibit S2308 infection in BALB/c mice. Moreover, the peptide OP11 was the best candidate peptide for inhibiting S2308 infection in vitro and in vivo. These results suggest that peptide OP11 has potential for exploitation as a peptide drug in resisting S2308 infection. PMID:24722798

  15. Phage cocktails and the future of phage therapy.

    PubMed

    Chan, Benjamin K; Abedon, Stephen T; Loc-Carrillo, Catherine

    2013-06-01

    Viruses of bacteria, known as bacteriophages or phages, were discovered nearly 100 years ago. Their potential as antibacterial agents was appreciated almost immediately, with the first 'phage therapy' trials predating Fleming's discovery of penicillin by approximately a decade. In this review, we consider phage therapy that can be used for treating bacterial infections in humans, domestic animals and even biocontrol in foods. Following an overview of the topic, we explore the common practice - both experimental and, in certain regions of the world, clinical - of mixing therapeutic phages into cocktails consisting of multiple virus types. We conclude with a discussion of the commercial and medical context of phage cocktails as therapeutic agents. In comparing off-the-shelf versus custom approaches, we consider the merits of a middle ground, which we deem 'modifiable'. Finally, we explore a regulatory framework for such an approach based on an influenza vaccine model.

  16. Phage therapy to reduce pre-proccessing Salmonella infections in market-weight swine

    USDA-ARS?s Scientific Manuscript database

    Contamination of meat and meat products with foodborne pathogens is usually the result of the carcass coming in contact with the feces of an infected animal during processing. In the case of Salmonella, several recent studies have reported that pigs become rapidly infected with the organism during p...

  17. Genome and proteome analysis of 7-7-1, a flagellotropic phage infecting Agrobacterium sp H13-3

    PubMed Central

    2012-01-01

    Background The flagellotropic phage 7-7-1 infects motile cells of Agrobacterium sp H13-3 by attaching to and traveling along the rotating flagellar filament to the secondary receptor at the base, where it injects its DNA into the host cell. Here we describe the complete genomic sequence of 69,391 base pairs of this unusual bacteriophage. Methods The sequence of the 7-7-1 genome was determined by pyro(454)sequencing to a coverage of 378-fold. It was annotated using MyRAST and a variety of internet resources. The structural proteome was analyzed by SDS-PAGE coupled electrospray ionization-tandem mass spectrometry (MS/MS). Results Sequence annotation and a structural proteome analysis revealed 127 open reading frames, 84 of which are unique. In six cases 7-7-1 proteins showed sequence similarity to proteins from the virulent Burkholderia myovirus BcepB1A. Unique features of the 7-7-1 genome are the physical separation of the genes encoding the small (orf100) and large (orf112) subunits of the DNA packaging complex and the apparent lack of a holin-lysin cassette. Proteomic analysis revealed the presence of 24 structural proteins, five of which were identified as baseplate (orf7), putative tail fibre (orf102), portal (orf113), major capsid (orf115) and tail sheath (orf126) proteins. In the latter case, the N-terminus was removed during capsid maturation, probably by a putative prohead protease (orf114). PMID:22650361

  18. The origin of phage virology.

    PubMed

    Pennazio, Sergio

    2006-01-01

    The history of bacteriophage (phage) had its start in 1915, when Twort isolated an unusual filterable and infectious agent from excrete of patients struck by diarrhoea; this discovery was followed by an analogous, and probably independent, finding of d'Hérelle in 1917. For several years phage research made scant progress but great attention was paid to the question of phage nature, which saw the contrast between d'Hérelle and Bordet's views (living against chemical nature, respectively). This situation changed with the independent discovery of lysogeny, in 1925, thanks to Bordet and Bail: this phenomenon was considered of genetical origin, a view that Wollman interpreted by assimilating the properties of phage to those of gene (according to a previous idea of Muller). In the 1930s, Burnet's work opened a new era by demonstrating the occurrence of several species of phages and their antigenic property. In the same period, the physical and chemical characteristics of these viruses were disclosed thanks, in particular, to the work of Schlesinger, who first demonstrated that a virus (phage) was constituted of nucleoproteins. The peculiarity of phage was finally shown after the invention of electron microscope: H. Ruska, in 1940, and Anderson and Luria in the next years, obtained the first images of tailed phages, a finding that strongly helped the investigation on the first steps of the infection process. The decisive impulse to phage virology came from Delbrück, a physicist who entered biology giving it a new arrangement. The so-called "phage group" assembled brilliant minds (Luria, Hershey and Delbrück himself, and later a dozen of other scientists): this group faced three fundamental questions of phage virology, i.e., the mechanisms of attack, multiplication and lysis. In ten years' time, phage virology became an integrant part of molecular biology, also thanks to the discovery of the genetical properties of DNA: in such scientific context, Delbrück, Luria and

  19. Statistical structure of host-phage interactions.

    PubMed

    Flores, Cesar O; Meyer, Justin R; Valverde, Sergi; Farr, Lauren; Weitz, Joshua S

    2011-07-12

    Interactions between bacteria and the viruses that infect them (i.e., phages) have profound effects on biological processes, but despite their importance, little is known on the general structure of infection and resistance between most phages and bacteria. For example, are bacteria-phage communities characterized by complex patterns of overlapping exploitation networks, do they conform to a more ordered general pattern across all communities, or are they idiosyncratic and hard to predict from one ecosystem to the next? To answer these questions, we collect and present a detailed metaanalysis of 38 laboratory-verified studies of host-phage interactions representing almost 12,000 distinct experimental infection assays across a broad spectrum of taxa, habitat, and mode of selection. In so doing, we present evidence that currently available host-phage infection networks are statistically different from random networks and that they possess a characteristic nested structure. This nested structure is typified by the finding that hard to infect bacteria are infected by generalist phages (and not specialist phages) and that easy to infect bacteria are infected by generalist and specialist phages. Moreover, we find that currently available host-phage infection networks do not typically possess a modular structure. We explore possible underlying mechanisms and significance of the observed nested host-phage interaction structure. In addition, given that most of the available host-phage infection networks examined here are composed of taxa separated by short phylogenetic distances, we propose that the lack of modularity is a scale-dependent effect, and then, we describe experimental studies to test whether modular patterns exist at macroevolutionary scales.

  20. The habits of highly effective phages: population dynamics as a framework for identifying therapeutic phages

    PubMed Central

    Bull, James J.; Gill, Jason J.

    2014-01-01

    The use of bacteriophages as antibacterial agents is being actively researched on a global scale. Typically, the phages used are isolated from the wild by plating on the bacteria of interest, and a far larger set of candidate phages is often available than can be used in any application. When an excess of phages is available, how should the best phages be identified? Here we consider phage-bacterial population dynamics as a basis for evaluating and predicting phage success. A central question is whether the innate dynamical properties of phages are the determinants of success, or instead, whether extrinsic, indirect effects can be responsible. We address the dynamical perspective, motivated in part by the absence of dynamics in previously suggested principles of phage therapy. Current mathematical models of bacterial-phage dynamics do not capture the realities of in vivo dynamics, nor is this likely to change, but they do give insight to qualitative properties that may be generalizable. In particular, phage adsorption rate may be critical to treatment success, so understanding the effects of the in vivo environment on host availability may allow prediction of useful phages prior to in vivo experimentation. Principles for predicting efficacy may be derived by developing a greater understanding of the in vivo system, or such principles could be determined empirically by comparing phages with known differences in their dynamic properties. The comparative approach promises to be a powerful method of discovering the key to phage success. We offer five recommendations for future study: (i) compare phages differing in treatment efficacy to identify the phage properties associated with success, (ii) assay dynamics in vivo, (iii) understand mechanisms of bacterial escape from phages, (iv) test phages in model infections that are relevant to the intended clinical applications, and (v) develop new classes of models for phage growth in spatially heterogeneous environments

  1. Efficacy of potential phage cocktails against Vibrio harveyi and closely related Vibrio species isolated from shrimp aquaculture environment in the south east coast of India.

    PubMed

    Stalin, Nattan; Srinivasan, Pappu

    2017-08-01

    A diverse set of novel phages infecting the marine pathogenic Vibrio harveyi was isolated from shrimp aquaculture environments in the south east coast of India. Based on initial screening, three phages with a broad host range revealed that the growth inhibition of phage is relatively specific to V. harveyi. They were also able to infect V. alginolyticus and V. parahemolyticus that belonged to the Harveyi clade species from shrimp pond and sea coast environment samples. However, the impact of these phages on their host bacterium are well understood; a one-step growth curve experiment and transmission electron microscope (TEM) revealed three phages grouped under the Myoviridae (VHM1 and VHM2); Siphoviridae (VHS1) family. These phages were further molecular characterized with respect to phage genomic DNA isolates. The randomly amplified polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP) digestion with HindIII, and major structural proteins were distinguished by sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) clearly indicated that all the phage isolates were different, even when they came from the same source, giving an insight into the diversity of phages. Evaluation of microcosm studies of Penaeus monodon larvae infected with V. harveyi (105 CFU mL-1) showed that larvae survival after 96 h in the presence of phage treatment at 109 PFU mL-1 was enhanced when compared with the control. The resolution in over survival highly recommended that this study provides the phage-based therapy which could be an innovative and eco-friendly solution against Vibrio disease in shrimp aquaculture and in the natural environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Influenza A virus infections in marine mammals and terrestrial carnivores.

    PubMed

    Harder, Timm C; Siebert, Ursula; Wohlsein, Peter; Vahlenkamp, Thomas

    2013-01-01

    Influenza A viruses (IAV), members of the Orthomyxoviridae, cover a wide host spectrum comprising a plethora of avian and, in comparison, a few mammalian species. The viral reservoir and gene pool are kept in metapopulations of aquatic wild birds. The mammalian-adapted IAVs originally arose by transspecies transmission from avian sources. In swine, horse and man, species-adapted IAV lineages circulate independently of the avian reservoir and cause predominantly respiratory disease of highly variable severity. Sporadic outbreaks of IAV infections associated with pneumonic clinical signs have repeatedly occurred in marine mammals (harbour seals [Phoca vitulina]) off the New England coast of the U.S.A. due to episodic transmission of avian IAV. However, no indigenous marine mammal IAV lineages are described. In contrast to marine mammals, avian- and equine-derived IAVs have formed stable circulating lineages in terrestrial carnivores: IAVs of subtype H3N2 and H3N8 are found in canine populations in South Korea, China, and the U.S.A. Experimental infections revealed that dogs and cats can be infected with an even wider range of avian IAVs. Cats, in particular, also proved susceptible to native infection with human pandemic H1N1 viruses and, according to serological data, may be vulnerable to infection with further human-adapted IAVs. Ferrets are susceptible to a variety of avian and mammalian IAVs and are an established animal model of human IAV infection. Thus, a potential role of pet cats, dogs and ferrets as mediators of avian-derived viruses to the human population does exist. A closer observation for influenza virus infections and transmissions at this animal-human interface is indicated.

  3. Marine netpen farming leads to infections with some unusual parasites.

    PubMed

    Kent, M L

    2000-03-01

    Marine netpen farming of salmonid fishes is a rapidly growing industry in several countries. With this relatively recent industry, new or unusual infections by parasitic pathogens have been observed. This is due to different hosts being reared in new geographic areas, or by indigenous species being reared in a different environmental condition, i.e. the marine netpen. Examples of the former include Kudoa thyrsites (Myxozoa) and Hemobaphes disphaerocephalus (Copepoda) infections in Atlantic salmon (Salmo salar) reared in the Pacific Northwest, Ceratothoa gaudichaudii (Isopoda) infections in Atlantic salmon reared in Chile, Neoparamoeba (=Paramoeba) sp. (Sacromastigophora) from salmonids reared in Tasmania, and Stephanostomum tenue (Digenea) infections in rainbow trout (Oncorhynchus mykiss) reared in Atlantic Canada. Chinook salmon (Oncorhynchus tshawytscha) reared in its native region, the Pacific Northwest, provides some examples of unusual or more severe infections than those normally seen in wild or freshwater reared chinook salmon. These include infections by Loma salmonae (Microsporidia), Gilguina squali (Cestoda) and the rosette agent, an undescribed fungus-like organism related to choanoflagellates. As the industry continues to expand, it is certain that more novel host-parasite relationships will be observed, providing challenges for fish farmers and parasitologists.

  4. Two flagellotropic phages and one pilus-specific phage active against Asticcacaulis biprosthecum.

    PubMed

    Pate, J L; Petzold, S J; Umbreit, T H

    1979-04-15

    Three phages active against cells of Asticcacaulis biprosthecum attach to receptor sites located at the pole of the cell where pili, flagella, and holdfast are produced. Phage phiAcS2, a large phage with a prolate cylindrical head and flexible, noncontractile tail, attaches to flagella as well as to receptor sites at the pole of the cell. Attachment to flagella occurs at the region where head and tail of the phage are joined, leaving the distal end of the tail free for attachment to receptor sites at the cell surface. Phages phiAcM2 and phiAcM4, are identical in appearance to each other, possessing prolate cylindrical heads and flexible, noncontractile tails, and are smaller than phage phiAcS2. Phage phiAcM4, exhibits the same flagellotropic characteristic as described for phage phiAcS2, including the manner of attachment to flagella. Phage phiAcM2 has no affinity for flagella, but attaches by the distal end of the tail to pili and to receptor sites at the pole of the cell. Mechanical removal of flagella and pili protects against infection by all three phages. Studies with phage-resistant mutants and with KCN-treated cells suggest that pili are required for infection by both flagellotropic and pilus-specific phages.

  5. Mammalian Host-Versus-Phage immune response determines phage fate in vivo

    PubMed Central

    Hodyra-Stefaniak, Katarzyna; Miernikiewicz, Paulina; Drapała, Jarosław; Drab, Marek; Jończyk-Matysiak, Ewa; Lecion, Dorota; Kaźmierczak, Zuzanna; Beta, Weronika; Majewska, Joanna; Harhala, Marek; Bubak, Barbara; Kłopot, Anna; Górski, Andrzej; Dąbrowska, Krystyna

    2015-01-01

    Emerging bacterial antibiotic resistance draws attention to bacteriophages as a therapeutic alternative to treat bacterial infection. Examples of phage that combat bacteria abound. However, despite careful testing of antibacterial activity in vitro, failures nevertheless commonly occur. We investigated immunological response of phage antibacterial potency in vivo. Anti-phage activity of phagocytes, antibodies, and serum complement were identified by direct testing and by high-resolution fluorescent microscopy. We accommodated the experimental data into a mathematical model. We propose a universal schema of innate and adaptive immunity impact on phage pharmacokinetics, based on the results of our numerical simulations. We found that the mammalian-host response to infecting bacteria causes the concomitant removal of phage from the system. We propose the notion that this effect as an indirect pathway of phage inhibition by bacteria with significant relevance for the clinical outcome of phage therapy. PMID:26440922

  6. Influence of Environmental Factors on Phage–Bacteria Interaction and on the Efficacy and Infectivity of Phage P100

    PubMed Central

    Fister, Susanne; Robben, Christian; Witte, Anna K.; Schoder, Dagmar; Wagner, Martin; Rossmanith, Peter

    2016-01-01

    When using bacteriophages to control food-borne bacteria in food production plants and processed food, it is crucial to consider that environmental conditions influence their stability. These conditions can also affect the physiological state of bacteria and consequently host–virus interaction and the effectiveness of the phage ability to reduce bacteria numbers. In this study we investigated the stability, binding, and replication capability of phage P100 and its efficacy to control Listeria monocytogenes under conditions typically encountered in dairy plants. The influences of SDS, Lutensol AO 7, salt, smear water, and different temperatures were investigated. Results indicate that phage P100 is stable and able to bind to the host under most conditions tested. Replication was dependent upon the growth of L. monocytogenes and efficacy was higher when bacterial growth was reduced by certain environmental conditions. In long-term experiments at different temperatures phages were initially able to reduce bacteria up to seven log10 units after 2 weeks at 4°C. However, thereafter, re-growth and development of phage-resistant L. monocytogenes isolates were encountered. PMID:27516757

  7. Phage Therapy: Eco-Physiological Pharmacology

    PubMed Central

    Abedon, Stephen T.

    2014-01-01

    Bacterial virus use as antibacterial agents, in the guise of what is commonly known as phage therapy, is an inherently physiological, ecological, and also pharmacological process. Physiologically we can consider metabolic properties of phage infections of bacteria and variation in those properties as a function of preexisting bacterial states. In addition, there are patient responses to pathogenesis, patient responses to phage infections of pathogens, and also patient responses to phage virions alone. Ecologically, we can consider phage propagation, densities, distribution (within bodies), impact on body-associated microbiota (as ecological communities), and modification of the functioning of body “ecosystems” more generally. These ecological and physiological components in many ways represent different perspectives on otherwise equivalent phenomena. Comparable to drugs, one also can view phages during phage therapy in pharmacological terms. The relatively unique status of phages within the context of phage therapy as essentially replicating antimicrobials can therefore result in a confluence of perspectives, many of which can be useful towards gaining a better mechanistic appreciation of phage therapy, as I consider here. Pharmacology more generally may be viewed as a discipline that lies at an interface between organism-associated phenomena, as considered by physiology, and environmental interactions as considered by ecology. PMID:25031881

  8. Phage therapy: the Escherichia coli experience.

    PubMed

    Brüssow, Harald

    2005-07-01

    Phages have been proposed as natural antimicrobial agents to fight bacterial infections in humans, in animals or in crops of agricultural importance. Phages have also been discussed as hygiene measures in food production facilities and hospitals. These proposals have a long history, but are currently going through a kind of renaissance as documented by a spate of recent reviews. This review discusses the potential of phage therapy with a specific example, namely Escherichia coli.

  9. Evaluating risk factors for endemic human Salmonella Enteritidis infections with different phage types in Ontario, Canada using multinomial logistic regression and a case-case study approach

    PubMed Central

    2012-01-01

    Background Identifying risk factors for Salmonella Enteritidis (SE) infections in Ontario will assist public health authorities to design effective control and prevention programs to reduce the burden of SE infections. Our research objective was to identify risk factors for acquiring SE infections with various phage types (PT) in Ontario, Canada. We hypothesized that certain PTs (e.g., PT8 and PT13a) have specific risk factors for infection. Methods Our study included endemic SE cases with various PTs whose isolates were submitted to the Public Health Laboratory-Toronto from January 20th to August 12th, 2011. Cases were interviewed using a standardized questionnaire that included questions pertaining to demographics, travel history, clinical symptoms, contact with animals, and food exposures. A multinomial logistic regression method using the Generalized Linear Latent and Mixed Model procedure and a case-case study design were used to identify risk factors for acquiring SE infections with various PTs in Ontario, Canada. In the multinomial logistic regression model, the outcome variable had three categories representing human infections caused by SE PT8, PT13a, and all other SE PTs (i.e., non-PT8/non-PT13a) as a referent category to which the other two categories were compared. Results In the multivariable model, SE PT8 was positively associated with contact with dogs (OR=2.17, 95% CI 1.01-4.68) and negatively associated with pepper consumption (OR=0.35, 95% CI 0.13-0.94), after adjusting for age categories and gender, and using exposure periods and health regions as random effects to account for clustering. Conclusions Our study findings offer interesting hypotheses about the role of phage type-specific risk factors. Multinomial logistic regression analysis and the case-case study approach are novel methodologies to evaluate associations among SE infections with different PTs and various risk factors. PMID:23057531

  10. Clinical aspects of phage therapy.

    PubMed

    Międzybrodzki, Ryszard; Borysowski, Jan; Weber-Dąbrowska, Beata; Fortuna, Wojciech; Letkiewicz, Sławomir; Szufnarowski, Krzysztof; Pawełczyk, Zdzisław; Rogóż, Paweł; Kłak, Marlena; Wojtasik, Elżbieta; Górski, Andrzej

    2012-01-01

    Phage therapy (PT) is a unique method of treatment of bacterial infections using bacteriophages (phages)-viruses that specifically kill bacteria, including their antibiotic-resistant strains. Over the last decade a marked increase in interest in the therapeutic use of phages has been observed, which has resulted from a substantial rise in the prevalence of antibiotic resistance of bacteria, coupled with an inadequate number of new antibiotics. The first, and so far the only, center of PT in the European Union is the Phage Therapy Unit (PTU) established at the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland in 2005. This center continues the rich tradition of PT in Poland, which dates from the early 1920s. The main objective of this chapter is to present a detailed retrospective analysis of the results of PT of 153 patients with a wide range of infections resistant to antibiotic therapy admitted for treatment at the PTU between January 2008 and December 2010. Analysis includes the evaluation of both the efficacy and the safety of PT. In general, data suggest that PT can provide good clinical results in a significant cohort of patients with otherwise untreatable chronic bacterial infections and is essentially well tolerated. In addition, the whole complex procedure employed to obtain and characterize therapeutic phage preparations, as well as ethical aspects of PT, is discussed.

  11. Information Phage Therapy Research Should Report.

    PubMed

    Abedon, Stephen T

    2017-04-30

    Bacteriophages, or phages, are viruses which infect bacteria. A large subset of phages infect bactericidally and, consequently, for nearly one hundred years have been employed as antibacterial agents both within and outside of medicine. Clinically these applications are described as phage or bacteriophage therapy. Alternatively, and especially in the treatment of environments, this practice instead may be described as a phage-mediated biocontrol of bacteria. Though the history of phage therapy has involved substantial clinical experimentation, current standards along with drug regulations have placed a premium on preclinical approaches, i.e., animal experiments. As such, it is important for preclinical experiments not only to be held to high standards but also to be reported in a manner which improves translation to clinical utility. Here I address this latter issue, that of optimization of reporting of preclinical as well as clinical experiments. I do this by providing a list of pertinent information and data which, in my opinion, phage therapy experiments ought to present in publications, along with tips for best practices. The goal is to improve the ability of readers to gain relevant information from reports on phage therapy research, to allow other researchers greater potential to repeat or extend findings, to ease transitions from preclinical to clinical development, and otherwise simply to improve phage therapy experiments. Targeted are not just authors but also reviewers, other critical readers, writers of commentaries, and, perhaps, formulators of guidelines or policy. Though emphasizing therapy, many points are applicable to phage-mediated biocontrol of bacteria more generally.

  12. Characterization of Two Virulent Phages of Lactobacillus plantarum

    PubMed Central

    Briggiler Marcó, Mariángeles; Garneau, Josiane E.; Tremblay, Denise; Quiberoni, Andrea

    2012-01-01

    We characterized two Lactobacillus plantarum virulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eight L. plantarum strains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least two L. plantarum strains, LMG9211 and WCSF1. The linear double-stranded DNA genome of the pac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that of Pediococcus damnosus phage clP1 and 77% identity with that of L. plantarum phage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of the cos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those of Bacillus and Lactobacillus strains as well as phages. Some phage B2 genes were similar to ORFs from L. plantarum phage LP65 of the Myoviridae family. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria. PMID:23042172

  13. Characterization of two virulent phages of Lactobacillus plantarum.

    PubMed

    Briggiler Marcó, Mariángeles; Garneau, Josiane E; Tremblay, Denise; Quiberoni, Andrea; Moineau, Sylvain

    2012-12-01

    We characterized two Lactobacillus plantarum virulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eight L. plantarum strains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least two L. plantarum strains, LMG9211 and WCSF1. The linear double-stranded DNA genome of the pac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that of Pediococcus damnosus phage clP1 and 77% identity with that of L. plantarum phage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of the cos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those of Bacillus and Lactobacillus strains as well as phages. Some phage B2 genes were similar to ORFs from L. plantarum phage LP65 of the Myoviridae family. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria.

  14. Peptides Derived from a Phage Display Library Inhibit Adhesion and Protect the Host against Infection by Paracoccidioides brasiliensis and Paracoccidioides lutzii.

    PubMed

    de Oliveira, Haroldo C; Michaloski, Jussara S; da Silva, Julhiany F; Scorzoni, Liliana; de Paula E Silva, Ana C A; Marcos, Caroline M; Assato, Patrícia A; Yamazaki, Daniella S; Fusco-Almeida, Ana M; Giordano, Ricardo J; Mendes-Giannini, Maria J S

    2016-01-01

    Paracoccidioides brasiliensis and Paracoccidioides lutzii are dimorphic fungi and are the etiological agents of paracoccidioidomycosis (PCM). Adhesion is one of the most important steps in infections with Paracoccidioides and is responsible for the differences in the virulence of isolates of these fungi. Because of the importance of adhesion to the establishment of an infection, this study focused on the preliminary development of a new therapeutic strategy to inhibit adhesion by Paracoccidioides, thus inhibiting infection and preventing the disease. We used two phage display libraries to select peptides that strongly bind to the Paracoccidioides cell wall to inhibit adhesion to host cells and extracellular matrix (ECM) components (laminin, fibronectin, and type I and type IV collagen). This approach allowed us to identify four peptides that inhibited up to 64% of the adhesion of Paracoccidioides to pneumocytes in vitro and inhibited the adhesion to the ECM components by up to 57%. Encouraged by these results, we evaluated the ability of these peptides to protect Galleria mellonella from Paracoccidioides infection by treating G. mellonella larvae with the different peptides prior to infection with Paracoccidioides and observing larval survival. The results show that all of the peptides tested increased the survival of the larvae infected with P. brasiliensis by up to 64% and by up to 60% in those infected with P. lutzii. These data may open new horizons for therapeutic strategies to prevent PCM, and anti-adhesion therapy could be an important strategy.

  15. Peptides Derived from a Phage Display Library Inhibit Adhesion and Protect the Host against Infection by Paracoccidioides brasiliensis and Paracoccidioides lutzii

    PubMed Central

    de Oliveira, Haroldo C.; Michaloski, Jussara S.; da Silva, Julhiany F.; Scorzoni, Liliana; de Paula e Silva, Ana C. A.; Marcos, Caroline M.; Assato, Patrícia A.; Yamazaki, Daniella S.; Fusco-Almeida, Ana M.; Giordano, Ricardo J.; Mendes-Giannini, Maria J. S.

    2016-01-01

    Paracoccidioides brasiliensis and Paracoccidioides lutzii are dimorphic fungi and are the etiological agents of paracoccidioidomycosis (PCM). Adhesion is one of the most important steps in infections with Paracoccidioides and is responsible for the differences in the virulence of isolates of these fungi. Because of the importance of adhesion to the establishment of an infection, this study focused on the preliminary development of a new therapeutic strategy to inhibit adhesion by Paracoccidioides, thus inhibiting infection and preventing the disease. We used two phage display libraries to select peptides that strongly bind to the Paracoccidioides cell wall to inhibit adhesion to host cells and extracellular matrix (ECM) components (laminin, fibronectin, and type I and type IV collagen). This approach allowed us to identify four peptides that inhibited up to 64% of the adhesion of Paracoccidioides to pneumocytes in vitro and inhibited the adhesion to the ECM components by up to 57%. Encouraged by these results, we evaluated the ability of these peptides to protect Galleria mellonella from Paracoccidioides infection by treating G. mellonella larvae with the different peptides prior to infection with Paracoccidioides and observing larval survival. The results show that all of the peptides tested increased the survival of the larvae infected with P. brasiliensis by up to 64% and by up to 60% in those infected with P. lutzii. These data may open new horizons for therapeutic strategies to prevent PCM, and anti-adhesion therapy could be an important strategy. PMID:28066254

  16. Phage-host interplay: examples from tailed phages and Gram-negative bacterial pathogens.

    PubMed

    Chaturongakul, Soraya; Ounjai, Puey

    2014-01-01

    Complex interactions between bacteriophages and their bacterial hosts play significant roles in shaping the structure of environmental microbial communities, not only by genetic transduction but also by modification of bacterial gene expression patterns. Survival of phages solely depends on their ability to infect their bacterial hosts, most importantly during phage entry. Successful dynamic adaptation of bacteriophages when facing selective pressures, such as host adaptation and resistance, dictates their abundance and diversification. Co-evolution of the phage tail fibers and bacterial receptors determine bacterial host ranges, mechanisms of phage entry, and other infection parameters. This review summarizes the current knowledge about the physical interactions between tailed bacteriophages and bacterial pathogens (e.g., Salmonella enterica and Pseudomonas aeruginosa) and the influences of the phage on host gene expression. Understanding these interactions can offer insights into phage-host dynamics and suggest novel strategies for the design of bacterial pathogen biological controls.

  17. A Bacteriophage-Related Chimeric Marine Virus Infecting Abalone

    PubMed Central

    Zhuang, Jun; Cai, Guiqin; Lin, Qiying; Wu, Zujian; Xie, Lianhui

    2010-01-01

    Marine viruses shape microbial communities with the most genetic diversity in the sea by multiple genetic exchanges and infect multiple marine organisms. Here we provide proof from experimental infection that abalone shriveling syndrome-associated virus (AbSV) can cause abalone shriveling syndrome. This malady produces histological necrosis and abnormally modified macromolecules (hemocyanin and ferritin). The AbSV genome is a 34.952-kilobase circular double-stranded DNA, containing putative genes with similarity to bacteriophages, eukaryotic viruses, bacteria and endosymbionts. Of the 28 predicted open reading frames (ORFs), eight ORF-encoded proteins have identifiable functional homologues. The 4 ORF products correspond to a predicted terminase large subunit and an endonuclease in bacteriophage, and both an integrase and an exonuclease from bacteria. The other four proteins are homologous to an endosymbiont-derived helicase, primase, single-stranded binding (SSB) protein, and thymidylate kinase, individually. Additionally, AbSV exhibits a common gene arrangement similar to the majority of bacteriophages. Unique to AbSV, the viral genome also contains genes associated with bacterial outer membrane proteins and may lack the structural protein-encoding ORFs. Genomic characterization of AbSV indicates that it may represent a transitional form of microbial evolution from viruses to bacteria. PMID:21079776

  18. On The Influence Of Vector Design On Antibody Phage Display

    PubMed Central

    Soltes, Glenn; Hust, Michael; Ng, Kitty K.Y.; Bansal, Aasthaa; Field, Johnathan; Stewart, Donald I.H.; Dübel, Stefan; Cha, Sanghoon; Wiersma, Erik J

    2007-01-01

    Phage display technology is an established technology particularly useful for the generation of monoclonal antibodies (mAbs). The isolation of phagemid-encoded mAb fragments depends on several features of a phage preparation. The aims of this study were to optimize phage display vectors, and to ascertain if different virion features can be optimized independently of each other. Comparisons were made between phagemid virions assembled by g3p-deficient helper phage, Hyperphage, Ex-phage or Phaberge, or corresponding g3p-sufficient helper phage, M13K07. All g3p-deficient helper phage provided a similar level of antibody display, significantly higher than that of M13K07. Hyperphage packaged virions at least 100-fold more efficiently than did Ex-phage or Phaberge. Phaberge's packaging efficiency improved by using a SupE strain. Different phagemids were also compared. Removal of a 56 base pair fragment from the promoter region resulted in increased display level and increased virion production. This critical fragment encodes a lacZ'-like peptide and is also present in other commonly used phagemids. Increasing display level did not show statistical correlation with phage production, phage infectivity or bacterial growth rate. However, phage production was positively correlated to phage infectivity. In summary, this study demonstrates simultaneously optimization of multiple and independent features of importance for phage selection. PMID:16996161

  19. Population Dynamics of Phage and Bacteria in Spatially Structured Habitats Using Phage λ and Escherichia coli

    PubMed Central

    Brown, Stanley; Sneppen, Kim

    2016-01-01

    ABSTRACT Bacteria living in physically structured habitats are exposed heterogeneously to both resources and different types of phages. While there have been numerous experimental approaches to examine spatially distributed bacteria exposed to phages, there is little theory to guide the design of these experiments, interpret their results, or expand the inferences drawn to a broader ecological and evolutionary context. Plaque formation provides a window into understanding phage-bacterium interactions in physically structured populations, including surfaces, semisolids, and biofilms. We develop models to address the plaque dynamics for a temperate phage and its virulent mutants. The models are compared with phage λ-Escherichia coli system to quantify their applicability. We found that temperate phages gave an increasing number of gradually smaller colonies as the distance increased from the plaque center. For low-lysogen frequency this resulted in plaques with most of the visible colonies at an intermediate distance between the center and periphery. Using spot inoculation, where phages in excess of bacteria were inoculated in a circular area, we measured the frequency and spatial distribution of lysogens. The spot morphology of cII-negative (cII−) and cIII− mutants of phage λ displays concentric rings of high-density lysogenic colonies. The simplest of these ring morphologies was reproduced by including multiplicity of infection (MOI) sensitivity in lysis-lysogeny decisions, but its failure to explain the occasional observation of multiple rings in cIII− mutant phages highlights unknown features of this phage. Our findings demonstrated advantages of temperate phages over virulent phages in exploiting limited resources in spatially distributed microbial populations. IMPORTANCE Phages are the most abundant organisms on earth, and yet little is known about how phages and bacterial hosts are influencing each other in density and evolution. Phages can be either

  20. Enhancing and initiating phage-based therapies

    PubMed Central

    Serwer, Philip; Wright, Elena T; Chang, Juan T; Liu, Xiangan

    2014-01-01

    Drug development has typically been a primary foundation of strategy for systematic, long-range management of pathogenic cells. However, drug development is limited in speed and flexibility when response is needed to changes in pathogenic cells, especially changes that produce drug-resistance. The high replication speed and high diversity of phages are potentially useful for increasing both response speed and response flexibility when changes occur in either drug resistance or other aspects of pathogenic cells. We present strategy, with some empirical details, for (1) using modern molecular biology and biophysics to access these advantages during the phage therapy of bacterial infections, and (2) initiating use of phage capsid-based drug delivery vehicles (DDVs) with procedures that potentially overcome both drug resistance and other present limitations in the use of DDVs for the therapy of neoplasms. The discussion of phage therapy includes (a) historical considerations, (b) changes that appear to be needed in clinical tests if use of phage therapy is to be expanded, (c) recent work on novel phages and its potential use for expanding the capabilities of phage therapy and (d) an outline for a strategy that encompasses both theory and practice for expanding the applications of phage therapy. The discussion of DDVs starts by reviewing current work on DDVs, including work on both liposomal and viral DDVs. The discussion concludes with some details of the potential use of permeability constrained phage capsids as DDVs. PMID:26713220

  1. Phages of dairy bacteria.

    PubMed

    Brussow, H

    2001-01-01

    Bacteriophages of lactic acid bacteria are a threat to industrial milk fermentation. Owing to their economical importance, dairy phages became the most thoroughly sequenced phage group in the database. Comparative genomics identified related cos-site and pac-site phages, respectively, in lactococci, lactic streptococci and lactobacilli. Each group was represented with closely related temperate and virulent phages. Over the structural genes their gene maps resembled that of lambdoid coliphages, suggesting distant evolutionary relationships. Despite a lack of sequence similarity, a number of biochemical characteristics of these dairy phages are lambda-like (genetic switch, DNA packaging, head and tail morphogenesis, and integration, but not excision). These dairy phages thus provide interesting variations to the phage lambda paradigm. The structural gene cluster of Lactococcus phage r1t resembled that of phages from mycobacteria. Virulent lactococcal phages with prolate heads (c2-like genus of Siphoviridae), in contrast, have no known counterparts in other bacterial genera.

  2. Consumer attitudes and behaviours--key risk factors in an outbreak of Salmonella typhimurium phage type 12 infection sourced to chicken nuggets.

    PubMed

    Kenny, B; Hall, R; Cameron, S

    1999-04-01

    To identify the source and intervention methods for an outbreak of Salmonella Typhimurium phage type 12 in South Australia. Ten cases of S. Typhimurium phage type (PT) 12 infection were notified in South Australia in a four-week period from 7 May 1998. Nine cases and 27 controls were included in a case control study to test the hypothesis that illness was associated with the consumption of chicken nuggets. A significant association between illness and the consumption of one brand of chicken nuggets was determined, odds ratio undefined (95% CI undefined; p = undefined). Nine of nine cases and one of 27 controls reported eating these chicken nuggets. S. Typhimurium PT 12 was isolated from an opened sample of this particular brand of nuggets which had been retrieved from the home of one case. The implicated nuggets were essentially a raw product which had been 'flash fried' in contrast with other brands which were fully cooked. The investigation highlighted issues of inadequate labelling and consumer responses to labelling information which affect food safety. A media release to highlight to the consumer the need to cook frozen food properly and a voluntary recall of the 'flash fried' product was instigated as a result of these conclusions. Further action is needed to eliminate the potential hazard that consumers will perceive and handle 'flash fried' nuggets as if they are a cooked chicken product.

  3. Novel group of podovirus infecting the marine bacterium Alteromonas macleodii

    PubMed Central

    Garcia-Heredia, Inmaculada; Rodriguez-Valera, Francisco; Martin-Cuadrado, Ana-Belen

    2013-01-01

    Four novel, closely related podoviruses, which displayed lytic activity against the gamma-proteobacterium Alteromonas macleodii, have been isolated and sequenced. Alterophages AltAD45-P1 to P4 were obtained from water recovered near a fish farm in the Mediterranean Sea. Their morphology indicates that they belong to the Podoviridae. Their linear and dsDNA genomes are 100–104 kb in size, remarkably larger than any other described podovirus. The four AltAD45-phages share 99% nucleotide sequence identity over 97% of their ORFs, although an insertion was found in AltAD45-P1 and P2 and some regions were slightly more divergent. Despite the high overall sequence similarity among these four phages, the group with the insertion and the group without it, have different host ranges against the A. macleodii strains tested. The AltAD45-P1 to P4 phages have genes for DNA replication and transcription as well as structural genes, which are similar to the N4-like Podoviridae genus that is widespread in proteobacteria. However, in terms of their genomic structure, AltAD45-P1 to P4 differ from that of the N4-like phages. Some distinguishing features include the lack of a large virion encapsidated RNA polymerase gene, very well conserved among all the previously described N4-like phages, a single-stranded DNA binding protein and different tail protein genes. We conclude that the AltAD45 phages characterized in this study constitute a new genus within the Podoviridae. PMID:24228219

  4. Heterogeneity in Induction Level, Infection Ability, and Morphology of Shiga Toxin-Encoding Phages (Stx Phages) from Dairy and Human Shiga Toxin-Producing Escherichia coli O26:H11 Isolates

    PubMed Central

    Bonanno, Ludivine; Petit, Marie-Agnès; Loukiadis, Estelle; Michel, Valérie

    2016-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria are foodborne pathogens responsible for diarrhea and hemolytic-uremic syndrome (HUS). Shiga toxin, the main STEC virulence factor, is encoded by the stx gene located in the genome of a bacteriophage inserted into the bacterial chromosome. The O26:H11 serotype is considered to be the second-most-significant HUS-causing serotype worldwide after O157:H7. STEC O26:H11 bacteria and their stx-negative counterparts have been detected in dairy products. They may convert from the one form to the other by loss or acquisition of Stx phages, potentially confounding food microbiological diagnostic methods based on stx gene detection. Here we investigated the diversity and mobility of Stx phages from human and dairy STEC O26:H11 strains. Evaluation of their rate of in vitro induction, occurring either spontaneously or in the presence of mitomycin C, showed that the Stx2 phages were more inducible overall than Stx1 phages. However, no correlation was found between the Stx phage levels produced and the origin of the strains tested or the phage insertion sites. Morphological analysis by electron microscopy showed that Stx phages from STEC O26:H11 displayed various shapes that were unrelated to Stx1 or Stx2 types. Finally, the levels of sensitivity of stx-negative E. coli O26:H11 to six Stx phages differed among the 17 strains tested and our attempts to convert them into STEC were unsuccessful, indicating that their lysogenization was a rare event. PMID:26826235

  5. Viruses infecting marine picoplancton encode functional potassium ion channels.

    PubMed

    Siotto, Fenja; Martin, Corinna; Rauh, Oliver; Van Etten, James L; Schroeder, Indra; Moroni, Anna; Thiel, Gerhard

    2014-10-01

    Phycodnaviruses are dsDNA viruses, which infect algae. Their large genomes encode many gene products, like small K(+) channels, with homologs in prokaryotes and eukaryotes. Screening for K(+) channels revealed their abundance in viruses from fresh-water habitats. Recent sequencing of viruses from marine algae or from salt water in Antarctica revealed sequences with the predicted characteristics of K(+) channels but with some unexpected features. Two genes encode either 78 or 79 amino acid proteins, which are the smallest known K(+) channels. Also of interest is an unusual sequence in the canonical α-helixes in K(+) channels. Structural prediction algorithms indicate that the new channels have the conserved α-helix folds but the algorithms failed to identify the expected transmembrane domains flanking the K(+) channel pores. In spite of these unexpected properties electophysiological studies confirmed that the new proteins are functional K(+) channels. Copyright © 2014. Published by Elsevier Inc.

  6. The Phage Shock Protein Response.

    PubMed

    Flores-Kim, Josué; Darwin, Andrew J

    2016-09-08

    The phage shock protein (Psp) system was identified as a response to phage infection in Escherichia coli, but rather than being a specific response to a phage, it detects and mitigates various problems that could increase inner-membrane (IM) permeability. Interest in the Psp system has increased significantly in recent years due to appreciation that Psp-like proteins are found in all three domains of life and because the bacterial Psp response has been linked to virulence and other important phenotypes. In this article, we summarize our current understanding of what the Psp system detects and how it detects it, how four core Psp proteins form a signal transduction cascade between the IM and the cytoplasm, and current ideas that explain how the Psp response keeps bacterial cells alive. Although recent studies have significantly improved our understanding of this system, it is an understanding that is still far from complete.

  7. Three New Escherichia coli Phages from the Human Gut Show Promising Potential for Phage Therapy

    PubMed Central

    Dalmasso, Marion; Strain, Ronan; Neve, Horst; Franz, Charles M. A. P.; Cousin, Fabien J.; Ross, R. Paul; Hill, Colin

    2016-01-01

    With the emergence of multi-drug resistant bacteria the use of bacteriophages (phages) is gaining renewed interest as promising anti-microbial agents. The aim of this study was to isolate and characterize phages from human fecal samples. Three new coliphages, ɸAPCEc01, ɸAPCEc02 and ɸAPCEc03, were isolated. Their phenotypic and genomic characteristics, and lytic activity against biofilm, and in combination with ciprofloxacin, were investigated. All three phages reduced the growth of E. coli strain DPC6051 at multiplicity of infection (MOI) between 10−3 and 105. A cocktail of all three phages completely inhibited the growth of E. coli. The phage cocktail also reduced biofilm formation and prevented the emergence of phage-resistant mutants which occurred with single phage. When combined with ciprofloxacin, phage alone or in cocktail inhibited the growth of E. coli and prevented the emergence of resistant mutants. These three new phages are promising biocontrol agents for E. coli infections. PMID:27280590

  8. GROWTH AND PHAGE PRODUCTION OF B. MEGATHERIUM

    PubMed Central

    Northrop, John H.

    1953-01-01

    I. Lysogenic B. megatherium 899a (de Jong, 1931) produces two types of phage (Gratia, 1936 c) T and C. The T phage forms cloudy plaques and gives rise to fresh lysogenic strains (Gratia, 1936 b) when added to the sensitive strain of megatherium. It may or may not cause lysis, depending on the media (Northrop, 1951). The C phage occurs very rarely) forms clear plaques, does not give rise to lysogenic strains, and causes complete lysis of the sensitive strain under all conditions tested, provided infection occurs. If C phage is added to the sensitive strain, and the mixture allowed to stand, or made into a hanging drop preparation, the infected cells stop growing and lyse completely after 60 to 80 minutes with the liberation of from 50 to 200 phage particles per cell. If, however, C phage is added to a rapidly growing culture of B. megatherium and the suspension shaken at 34°, the cells continue to grow and divide for 50 to 60 minutes, after infection has occurred. They then lyse, with the liberation of from 1000 to 2500 phage particles per cell. II. The following determinations have been made on megatherium sensitive cells growing in 5 per cent peptone at different stages of growth. (1) Growth rate of infected and uninfected cells; (2) RNA, DNA, and protein content; (3) volume of the cell; (4) phage yield per cell by plaque count; (5) phage yield per cell by cell and plaque count; (6) lysis time. The growth rate decreases as the cell concentration increases. The lysis time and the protein N per cell are nearly independent of the growth rate; all the other values increase as the growth rate increases. The ratio See PDF for Equation is nearly constant. RNA and DNA per cell increase less rapidly than the volume, so that NA per unit volume is not constant, but decreases as the size of the cell increases. The phage yield measured under conditions in which the infected cells do not grow (by plaque count) is very nearly proportional to the size of the cell. The phage

  9. Mimotope peptides selected from phage display combinatorial library by serum antibodies of pigs experimentally infected with Taenia solium as leads to developing diagnostic antigens for human neurocysticercosis.

    PubMed

    Gazarian, Karlen; Rowlay, Merril; Gazarian, Tatiana; Vazquez Buchelli, Jorge Enrique; Hernández Gonzáles, Marisela

    2012-12-01

    Neurocysticercosis is caused by penetration of the tapeworm Taenia solium larvae into the central nervous system resulting in a diverse range of neurologic complications including epilepsy in endemic areas that globalization spreads worldwide. Sensitive and specific immunodiagnosis is needed for the early detection and elimination of the parasite, but the lack of standardized, readily obtainable antigens is a challenge. Here, we used the phage display for resolving the problem. The rationale of the strategy rests on the concept that the screening of combinatorial libraries with polyclonal serum to pathogens reveals families of peptides mimicking the pathogen most immunodominant epitopes indispensable for the successful diagnosis. The screening of a 7mer library with serum IgG of four pigs experimentally infected with parasite followed by computer aided segregation of the selected sequences resulted in the discovery of four clusters of homologous sequences of which one presented a family of ten mimotopes selected by three infected pig serum IgGs; the common motif sequence LSPF carried by the family was considered to be the core of an immunodominant epitope of the parasite critical for the binding with the antibody that selected the mimotopes. The immunoassay testing permitted to select a mimotope whose synthetic peptide free of the phage with the amino acid sequence Leu-Ser-Fen-Pro-Ser-Val-Val that distinguished well a panel of 21 cerebrospinal fluids of neurocysticercosis patients from the fluids of individuals with neurological complications of other etiology. This peptide is proposed as a lead for developing a novel molecularly defined diagnostic antigen(s) for the neurocysticercosis.

  10. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    PubMed Central

    Gillis, Annika; Mahillon, Jacques

    2014-01-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767

  11. Development of transient phage resistance in Campylobacter coli against the group II phage CP84.

    PubMed

    Orquera, Stefanie; Hertwig, Stefan; Alter, Thomas; Hammerl, Jens A; Jirova, Alice; Gölz, Greta

    2015-01-01

    Recently, there is a growing interest in the use of bacteriophages for pre- and post-harvest applications to reduce foodborne pathogens (including Campylobacter) along the food chain. Quantitative Campylobacter reductions of up to three log10 units have been achieved by phage application. However, possible phage resistance might limit this approach. In Campylobacter (C.) jejuni, phage resistance mechanisms have been described in detail but data on these mechanisms in C. coli are still missing. To study phage resistance in C. coli, strain NCTC 12668 was infected with the lytic phage CP84, belonging to group II of Campylobacter phages. Resistant and sensitive clones were analysed using phenotypic and genotypic assays. C. coli clones acquired only transient resistance against CP84. The resistance led to cross-protection to one out of five other group II phages tested. Phage resistance was apparently neither caused by large genomic rearrangements nor by a CRISPR system. Binding assays demonstrated that CP84 could not adsorb to resistant C. coli clones suggesting a bacterial phage receptor to be involved in resistance. However, phage resistant C. coli clones did not reveal an altered motility or modified flaA sequence. Considering the loss of binding capacity and the reversion to a phage sensitive phenotype we hypothesize that acquired resistance depends on temporal phase variable switch-off modifications of the phage receptor genes, even though the resistance mechanism could not be elucidated in detail. We further speculate that even closely related phages of the same group use different bacterial receptors for binding on C. coli.

  12. Characterization and adsorption of Lactobacillus virulent phage P1.

    PubMed

    Chen, X; Xi, Y; Zhang, H; Wang, Z; Fan, M; Liu, Y; Wu, W

    2016-09-01

    Bacteriophage infection of lactic acid bacteria is considered an important problem worldwide in the food fermentation industry, as it may produce low quality or unsafe foods, cause fermentation failure, and result in economic losses. To increase current knowledge on the properties of Lactobacillus virulent phages, we evaluated the effect of divalent cations, temperature, pH, and chloramphenicol on the adsorption ability of Lactobacillus virulent phage P1. Phage P1 was isolated from the abnormal fermentation liquid of Lactobacillus plantarum IMAU10120. The results showed that this phage belonged to the Siphoviridae family. The latent period of this phage was 45min, and the burst time was 90min. Burst size was 132.88±2.37 phage counts expressed per milliliter per infective center. This phage showed good tolerance at different temperatures, but incubation at 50°C only affected its adsorption. Adsorption rate reached a maximum value between 30 and 42°C. A high adsorption value of phage infectivity was obtained from pH 6 to 8. Moreover, calcium ions promoted and increased the adsorption capacity of phage P1, but magnesium ions had negative effects. Chloramphenicol had no effect on phage adsorption. This study increased current knowledge on the characterization and biological aspects of Lactobacillus virulent phages, and may provide some basic information that can be used to design successful antiphage strategies in the food industry. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Yersinia enterocolitica-Specific Infection by Bacteriophages TG1 and ϕR1-RT Is Dependent on Temperature-Regulated Expression of the Phage Host Receptor OmpF.

    PubMed

    Leon-Velarde, Carlos G; Happonen, Lotta; Pajunen, Maria; Leskinen, Katarzyna; Kropinski, Andrew M; Mattinen, Laura; Rajtor, Monika; Zur, Joanna; Smith, Darren; Chen, Shu; Nawaz, Ayesha; Johnson, Roger P; Odumeru, Joseph A; Griffiths, Mansel W; Skurnik, Mikael

    2016-09-01

    Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This potential is also valid for bacteriophages specific for Yersinia enterocolitica To increase our knowledge of Y. enterocolitica-specific phages, we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp, respectively. Their genomes comprise 262 putative coding sequences and 4 tRNA genes and share 91% overall nucleotide identity. Based on phylogenetic analyses of their whole-genome sequences and large terminase subunit protein sequences, a genus named Tg1virus within the family Myoviridae is proposed, with TG1 and ϕR1-RT (R1RT in the ICTV database) as member species. These bacteriophages exhibit a host range restricted to Y. enterocolitica and display lytic activity against the epidemiologically significant serotypes O:3, O:5,27, and O:9 at and below 25°C. Adsorption analyses of lipopolysaccharide (LPS) and OmpF mutants demonstrate that these phages use both the LPS inner core heptosyl residues and the outer membrane protein OmpF as phage receptors. Based on RNA sequencing and quantitative proteomics, we also demonstrate that temperature-dependent infection is due to strong repression of OmpF at 37°C. In addition, ϕR1-RT was shown to be able to enter into a pseudolysogenic state. Together, this work provides further insight into phage-host cell interactions by highlighting the importance of understanding underlying factors which may affect the abundance of phage host receptors on the cell surface. Only a small number of bacteriophages infecting Y. enterocolitica, the predominant causative agent of yersiniosis, have been previously described. Here, two newly isolated Y. enterocolitica phages were studied in detail, with the aim of

  14. Yersinia enterocolitica-Specific Infection by Bacteriophages TG1 and ϕR1-RT Is Dependent on Temperature-Regulated Expression of the Phage Host Receptor OmpF

    PubMed Central

    Happonen, Lotta; Pajunen, Maria; Leskinen, Katarzyna; Kropinski, Andrew M.; Mattinen, Laura; Rajtor, Monika; Zur, Joanna; Smith, Darren; Chen, Shu; Nawaz, Ayesha; Johnson, Roger P.; Odumeru, Joseph A.; Griffiths, Mansel W.

    2016-01-01

    ABSTRACT Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This potential is also valid for bacteriophages specific for Yersinia enterocolitica. To increase our knowledge of Y. enterocolitica-specific phages, we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp, respectively. Their genomes comprise 262 putative coding sequences and 4 tRNA genes and share 91% overall nucleotide identity. Based on phylogenetic analyses of their whole-genome sequences and large terminase subunit protein sequences, a genus named Tg1virus within the family Myoviridae is proposed, with TG1 and ϕR1-RT (R1RT in the ICTV database) as member species. These bacteriophages exhibit a host range restricted to Y. enterocolitica and display lytic activity against the epidemiologically significant serotypes O:3, O:5,27, and O:9 at and below 25°C. Adsorption analyses of lipopolysaccharide (LPS) and OmpF mutants demonstrate that these phages use both the LPS inner core heptosyl residues and the outer membrane protein OmpF as phage receptors. Based on RNA sequencing and quantitative proteomics, we also demonstrate that temperature-dependent infection is due to strong repression of OmpF at 37°C. In addition, ϕR1-RT was shown to be able to enter into a pseudolysogenic state. Together, this work provides further insight into phage-host cell interactions by highlighting the importance of understanding underlying factors which may affect the abundance of phage host receptors on the cell surface. IMPORTANCE Only a small number of bacteriophages infecting Y. enterocolitica, the predominant causative agent of yersiniosis, have been previously described. Here, two newly isolated Y. enterocolitica phages were studied in

  15. Engineered phages for electronics.

    PubMed

    Cui, Yue

    2016-11-15

    Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications.

  16. Crystallization and preliminary crystallographic analysis of the catalytic module of endolysin from Cp-7, a phage infecting Streptococcus pneumoniae

    PubMed Central

    Silva-Martin, Noella; Molina, Rafael; Angulo, Ivan; Mancheño, José M.; García, Pedro; Hermoso, Juan A.

    2010-01-01

    As part of the life cycle of the pneumococcal phage Cp-7, the endolysin Cpl-­7 cleaves the glycosidic β1,4 bonds between N-acetylmuramic acid and N-­acetylglucosamine in the pneumococcal cell wall, resulting in bacterial lysis. Recombinant Cpl-7 was overexpressed in Escherichia coli, purified and crystallized using the vapour-diffusion method at 291 K. Diffraction-quality tetragonal crystals of the catalytic module of Cpl-7 were obtained from a mixture of PEG 3350 and sodium formate. The crystals belonged to space group I422, with unit-cell parameters a = 127.93, b = 127.93, c = 82.07 Å. Diffraction data sets were collected to 2.4 Å resolution using a rotating-anode generator. PMID:20516596

  17. An outbreak of Salmonella enteritidis phage type 34a infection associated with a Chinese restaurant in Suffolk, United Kingdom.

    PubMed

    Badrinath, Padmanabhan; Sundkvist, Torbjorn; Mahgoub, Hamid; Kent, Richard

    2004-09-01

    On 30th July 2002, the Suffolk Communicable Disease Control Team received notifications of gastrointestinal illness due to Salmonella Enteritidis in subjects who had eaten food from a Chinese restaurant on 27th July. An Outbreak Control Team was formed resulting in extensive epidemiological, microbiological and environmental investigations. Attempts were made to contact everybody who ate food from the restaurant on 27th July and a standard case definition was adopted. Using a pre-designed proforma information was gathered from both sick and well subjects. Food specific attack rates were calculated and two-tailed Fisher's exact test was used to test the difference between type of food consumed and the health status. Using a retrospective cohort design univariate Relative Risks and 95% Confidence Intervals were calculated for specific food items. Data was gathered on 52 people of whom 38 developed gastrointestinal symptoms; 16 male and 22 female. The mean age was 27 years. The mean incubation period was 30 hours with a range of 6 to 90 hours. Food attack rates were significantly higher for egg, special and chicken fried rice. Relative risk and the Confidence interval for these food items were 1.97 (1.11-3.48), 1.56 (1.23-1.97) and 1.48 (1.20-1.83) respectively. Interviews with the chef revealed that many eggs were used in the preparation of egg-fried rice, which was left at room temperature for seven hours and was used in the preparation of the other two rice dishes. Of the 31 submitted stool specimens 28 tested positive for S Enteritidis phage type 34a and one for S Enteritidis phage type 4. In the absence of left over food available for microbiological examination, epidemiological investigation strongly suggested the eggs used in the preparation of the egg-fried rice as the vehicle for this outbreak. This investigation highlights the importance of safe practices in cooking and handling of eggs in restaurants.

  18. Introduction of Pseudomonas aeruginosa mutator phage D3112 into Alcaligenes eutrophus strain CH34.

    PubMed

    Krylov, V; Merlin, C; Toussaint, A

    1995-01-01

    We have investigated the possibility of growing mutator phages from Pseudomonas aeruginosa on various isolates of Alcaligenes eutrophus. Although none out of 10 A. eutrophus strains were susceptible to infection with any of the phages tested, phage D3112 could be readily transferred in our model strain CH34 by means of an RP4::D3112 plasmid. CH34/RP4::D3112 lysogens were stable and produced phages. However, neither mitomycin C nor UV treatment increased the phage yield.

  19. Phage lytic enzymes: a history.

    PubMed

    Trudil, David

    2015-02-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of 'bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well (Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specific disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay (Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes-from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  20. Spatial-temporal epidemiology of human Salmonella Enteritidis infections with major phage types (PTs 1, 4, 5b, 8, 13, and 13a) in Ontario, Canada, 2008-2009.

    PubMed

    Varga, Csaba; Pearl, David L; McEwen, Scott A; Sargeant, Jan M; Pollari, Frank; Guerin, Michele T

    2015-12-17

    In Ontario and Canada, the incidence of human Salmonella enterica serotype Enteritidis (S. Enteritidis) infections have increased steadily during the last decade. Our study evaluated the spatial and temporal epidemiology of the major phage types (PTs) of S. Enteritidis infections to aid public health practitioners design effective prevention and control programs. Data on S. Enteritidis infections between January 1, 2008 and December 31, 2009 were obtained from Ontario's disease surveillance system. Salmonella Enteritidis infections with major phage types were classified by their annual health region-level incidence rates (IRs), monthly IRs, clinical symptoms, and exposure settings. A scan statistic was employed to detect retrospective phage type-specific spatial, temporal, and space-time clusters of S. Enteritidis infections. Space-time cluster cases' exposure settings were evaluated to identify common exposures. 1,336 cases were available for analysis. The six most frequently reported S. Enteritidis PTs were 8 (n = 398), 13a (n = 218), 13 (n = 198), 1 (n = 132), 5b (n = 83), and 4 (n = 76). Reported rates of S. Enteritidis infections with major phage types varied by health region and month. International travel and unknown exposure settings were the most frequently reported settings for PT 5b, 4, and 1 cases, whereas unknown exposure setting, private home, food premise, and international travel were the most frequently reported settings for PT 8, 13, and 13a cases. Diarrhea, abdominal pain, and fever were the most commonly reported clinical symptoms. A number of phage type-specific spatial, temporal, and space-time clusters were identified. Space-time clusters of PTs 1, 4, and 5b occurred mainly during the winter and spring months in the North West, North East, Eastern, Central East, and Central West regions. Space-time clusters of PTs 13 and 13a occurred at different times of the year in the Toronto region. Space-time clusters of PT 8

  1. Primary Isolation Strain Determines Both Phage Type and Receptors Recognised by Campylobacter jejuni Bacteriophages

    PubMed Central

    Sørensen, Martine C. Holst; Gencay, Yilmaz Emre; Birk, Tina; Baldvinsson, Signe Berg; Jäckel, Claudia; Hammerl, Jens A.; Vegge, Christina S.; Neve, Horst; Brøndsted, Lone

    2015-01-01

    In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated using NCTC12662 as the indicator strain, which may have biased the selection of phages. A large group of C. jejuni phages rely on the highly diverse capsular polysaccharide (CPS) for infection and recent work identified the O-methyl phosphoramidate modification (MeOPN) of CPS as a phage receptor. We therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb), host range and morphological appearance correlated with the isolation strain. Thus, according to C. jejuni phage grouping, NCTC12662 and NCTC12658 selected for CP81-type phages, while RM1221 selected for CP220-type phages. Furthermore, using acapsular ∆kpsM mutants we demonstrated that phages isolated on NCTC12658 and NCTC12662 were dependent on the capsule for infection. In contrast, CP220-type phages isolated on RM1221 were unable to infect non-motile ∆motA mutants, hence requiring motility for successful infection. Hence, the primary phage isolation strain determines both phage type (CP81 or CP220) as well as receptors (CPS or flagella) recognised by the isolated phages. PMID:25585385

  2. Primary isolation strain determines both phage type and receptors recognised by Campylobacter jejuni bacteriophages.

    PubMed

    Sørensen, Martine C Holst; Gencay, Yilmaz Emre; Birk, Tina; Baldvinsson, Signe Berg; Jäckel, Claudia; Hammerl, Jens A; Vegge, Christina S; Neve, Horst; Brøndsted, Lone

    2015-01-01

    In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated using NCTC12662 as the indicator strain, which may have biased the selection of phages. A large group of C. jejuni phages rely on the highly diverse capsular polysaccharide (CPS) for infection and recent work identified the O-methyl phosphoramidate modification (MeOPN) of CPS as a phage receptor. We therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb), host range and morphological appearance correlated with the isolation strain. Thus, according to C. jejuni phage grouping, NCTC12662 and NCTC12658 selected for CP81-type phages, while RM1221 selected for CP220-type phages. Furthermore, using acapsular ∆kpsM mutants we demonstrated that phages isolated on NCTC12658 and NCTC12662 were dependent on the capsule for infection. In contrast, CP220-type phages isolated on RM1221 were unable to infect non-motile ∆motA mutants, hence requiring motility for successful infection. Hence, the primary phage isolation strain determines both phage type (CP81 or CP220) as well as receptors (CPS or flagella) recognised by the isolated phages.

  3. Phage as a modulator of immune responses: practical implications for phage therapy.

    PubMed

    Górski, Andrzej; Międzybrodzki, Ryszard; Borysowski, Jan; Dąbrowska, Krystyna; Wierzbicki, Piotr; Ohams, Monika; Korczak-Kowalska, Grażyna; Olszowska-Zaremba, Natasza; Łusiak-Szelachowska, Marzena; Kłak, Marlena; Jończyk, Ewa; Kaniuga, Ewelina; Gołaś, Aneta; Purchla, Sylwia; Weber-Dąbrowska, Beata; Letkiewicz, Sławomir; Fortuna, Wojciech; Szufnarowski, Krzysztof; Pawełczyk, Zdzisław; Rogóż, Paweł; Kłosowska, Danuta

    2012-01-01

    Although the natural hosts for bacteriophages are bacteria, a growing body of data shows that phages can also interact with some populations of mammalian cells, especially with cells of the immune system. In general, these interactions include two main aspects. The first is the phage immunogenicity, that is, the capacity of phages to induce specific immune responses, in particular the generation of specific antibodies against phage antigens. The other aspect includes the immunomodulatory activity of phages, that is, the nonspecific effects of phages on different functions of major populations of immune cells involved in both innate and adaptive immune responses. These functions include, among others, phagocytosis and the respiratory burst of phagocytic cells, the production of cytokines, and the generation of antibodies against nonphage antigens. The aim of this chapter is to discuss the interactions between phages and cells of the immune system, along with their implications for phage therapy. These topics are presented based on the results of experimental studies and unique data on immunomodulatory effects found in patients with bacterial infections treated with phage preparations.

  4. Distribution, Isolation, Host Specificity, and Diversity of Cyanophages Infecting Marine Synechococcus spp. in River Estuaries†

    PubMed Central

    Lu, Jingrang; Chen, Feng; Hodson, Robert E.

    2001-01-01

    The abundance of cyanophages infecting marine Synechococcus spp. increased with increasing salinity in three Georgia coastal rivers. About 80% of the cyanophage isolates were cyanomyoviruses. High cross-infectivity was found among the cyanophages infecting phycoerythrin-containing Synechococcus strains. Cyanophages in the river estuaries were diverse in terms of their morphotypes and genotypes. PMID:11425754

  5. The Resistance of Vibrio cholerae O1 El Tor Strains to the Typing Phage 919TP, a Member of K139 Phage Family

    PubMed Central

    Shen, Xiaona; Zhang, Jingyun; Xu, Jialiang; Du, Pengcheng; Pang, Bo; Li, Jie; Kan, Biao

    2016-01-01

    Bacteriophage 919TP is a temperate phage of Vibrio cholerae serogroup O1 El Tor and is used as a subtyping phage in the phage-biotyping scheme in cholera surveillance in China. In this study, sequencing of the 919TP genome showed that it belonged to the Vibrio phage K139 family. The mechanisms conferring resistance to 919TP infection of El Tor strains were explored to help understand the subtyping basis of phage 919TP and mutations related to 919TP resistance. Among the test strains resistant to phage 919TP, most contained the temperate 919TP phage genome, which facilitated superinfection exclusion to 919TP. Our data suggested that this immunity to Vibrio phage 919TP occurred after absorption of the phage onto the bacteria. Other strains contained LPS receptor synthesis gene mutations that disable adsorption of phage 919TP. Several strains resistant to 919TP infection possessed unknown resistance mechanisms, since they did not contain LPS receptor mutations or temperate K139 phage genome. Further research is required to elucidate the phage infection steps involved in the resistance of these strains to phage infection. PMID:27242744

  6. Anatomy of a Lactococcal Phage Tail†

    PubMed Central

    Mc Grath, Stephen; Neve, Horst; Seegers, Jos F. M. L.; Eijlander, Robyn; Vegge, Christina S.; Brøndsted, Lone; Heller, Knut J.; Fitzgerald, Gerald F.; Vogensen, Finn K.; van Sinderen, Douwe

    2006-01-01

    Bacteriophages of the Siphoviridae family utilize a long noncontractile tail to recognize, adsorb to, and inject DNA into their bacterial host. The tail anatomy of the archetypal Siphoviridae λ has been well studied, in contrast to phages infecting gram-positive bacteria. This report outlines a detailed anatomical description of a typical member of the Siphoviridae infecting a gram-positive bacterium. The tail superstructure of the lactococcal phage Tuc2009 was investigated using N-terminal protein sequencing, Western blotting, and immunogold transmission electron microscopy, allowing a tangible path to be followed from gene sequence through encoded protein to specific architectural structures on the Tuc2009 virion. This phage displays a striking parity with λ with respect to tail structure, which reenforced a model proposed for Tuc2009 tail architecture. Furthermore, comparisons with λ and other lactococcal phages allowed the specification of a number of genetic submodules likely to encode specific tail structures. PMID:16707689

  7. Anatomy of a lactococcal phage tail.

    PubMed

    Mc Grath, Stephen; Neve, Horst; Seegers, Jos F M L; Eijlander, Robyn; Vegge, Christina S; Brøndsted, Lone; Heller, Knut J; Fitzgerald, Gerald F; Vogensen, Finn K; van Sinderen, Douwe

    2006-06-01

    Bacteriophages of the Siphoviridae family utilize a long noncontractile tail to recognize, adsorb to, and inject DNA into their bacterial host. The tail anatomy of the archetypal Siphoviridae lambda has been well studied, in contrast to phages infecting gram-positive bacteria. This report outlines a detailed anatomical description of a typical member of the Siphoviridae infecting a gram-positive bacterium. The tail superstructure of the lactococcal phage Tuc2009 was investigated using N-terminal protein sequencing, Western blotting, and immunogold transmission electron microscopy, allowing a tangible path to be followed from gene sequence through encoded protein to specific architectural structures on the Tuc2009 virion. This phage displays a striking parity with lambda with respect to tail structure, which reenforced a model proposed for Tuc2009 tail architecture. Furthermore, comparisons with lambda and other lactococcal phages allowed the specification of a number of genetic submodules likely to encode specific tail structures.

  8. Epidemiology of contemporary seroincident HIV infection in the Navy and Marine corps.

    PubMed

    Brett-Major, David M; Hakre, Shilpa; Naito, Neal A; Armstrong, Adam; Bower, Eric A; Michael, Nelson L; Scott, Paul T

    2012-11-01

    Human Immunodeficiency Virus (HIV) infection continues at a steady rate among U.S. Sailors and Marines. This study provides the first service-specific description of HIV infection demographics. All Sailors and Marines identified as HIV infected between January 2005 and August 2010 were included. The project compared personnel and epidemiologic data, and tested reposed sera in the Department of Defense Serum Repository. This group comprised 410 Sailors and 86 Marines, predominantly men. HIV infected Marines were more likely to be foreign born than their Navy counterparts, 42% versus 10%, p < 0.001. Approximately half of the patients had deployed including to the wars in Iraq or Afghanistan. Nearly half of each group was infected by the age of 25. Similar to the U.S. epidemic, Black race was over-represented. Unlike national rates, Hispanic Sailors and Marines were not over-represented. Demographics were distinct for those of specific occupational specialties. Certain ship classes carried lower incidences. Clustering of HIV infection risk occurred around deployment. The Navy and Marine Corps have different patterns of HIV infection, which may merit distinct approaches to prevention. The Navy may have unique targets for prevention efforts to include pipeline training and first assignment as well as particular occupational environments.

  9. Preparation and assay of phage lambda.

    PubMed

    Dale, J W; Greenaway, P J

    1985-01-01

    Lambda, a temperate bacteriophage of E. coli, has two alternative modes of replication in sensitive cells, known as the lytic and lysogenic cycles. In the lytic cycle, after the lambda DNA enters the cells, various phage functions are expressed that result in the production of a large number of mature phage particles and cell lysis. In the lysogenic mode, which normally occurs in only a small proportion of the infected cells, the phage forms a more or less stable relationship with the host bacterium; this stable state is known as lysogeny. In a lysogenic cell, phage DNA is normally incorporated into the chromosomal DNA via specific attachment sites on both the phage DNA and the host chromosome. Replication of lambda DNA then occurs only during replication of the host chromosome, and the phage genome is inherited by each daughter cell at cell division. The phage is maintained in this prophage state through the action of a repressor protein, coded for by the phage gene cl. This repressor protein turns off the expression of virtually the whole of the lambda genome. If the repressor is inactivated, the expression of phage genes is initiated. This leads to the excision of lambda DNA from the host chromosome and entry into the lytic cycle. The balance between the lytic and lysogenic modes of replication is a delicate and complex one in which a key factor is the concentration of the cl gene product. Some of the many sources of further information about the basic biology of lambda phage are listed in the references to this chapter.

  10. Peptide mimics selected from immune sera using phage display technology can replace native antigens in the diagnosis of Epstein-Barr virus infection.

    PubMed

    Casey, J L; Coley, A M; Parisi, K; Foley, M

    2009-02-01

    There is an expanding area of small molecule discovery, especially in the area of peptide mimetics. Peptide sequences can be used to substitute for the entire native antigen for use in diagnostic assays. Our approach is to select peptides that mimic epitopes of the natural immune response to Epstein-Barr virus (EBV) that may be recognised by antibodies typically produced after infection with EBV. We screened a random peptide library on sera from rabbits immunised with a crude preparation of EBV and serum antibodies from a patient with a high titer of EBV antibodies. We selected four peptides (Eb1-4) with the highest relative binding affinity with immune rabbit sera and a single peptide with high affinity to human serum antibodies. The peptides were coupled to the carrier molecule BSA and the recognition of the peptides by IgM antibodies in clinical samples after infection with EBV was measured. The sensitivities were Eb1 94%, Eb2, 3, 4 88%, H1 81% and all had 100% specificity. This study illustrates that the phage display approach to select epitope mimics can be applied to polyclonal antibodies and peptides that represent several diagnostically important epitopes can be selected simultaneously. This panel of EBV peptides representing a wide coverage of immunodominant epitopes could replace crude antigen preparations currently used for capture in commercial diagnostic tests for EBV.

  11. Peptide mimics selected from immune sera using phage display technology can replace native antigens in the diagnosis of Epstein–Barr virus infection

    PubMed Central

    Casey, J.L.; Coley, A.M.; Parisi, K.; Foley, M.

    2009-01-01

    There is an expanding area of small molecule discovery, especially in the area of peptide mimetics. Peptide sequences can be used to substitute for the entire native antigen for use in diagnostic assays. Our approach is to select peptides that mimic epitopes of the natural immune response to Epstein–Barr virus (EBV) that may be recognised by antibodies typically produced after infection with EBV. We screened a random peptide library on sera from rabbits immunised with a crude preparation of EBV and serum antibodies from a patient with a high titer of EBV antibodies. We selected four peptides (Eb1–4) with the highest relative binding affinity with immune rabbit sera and a single peptide with high affinity to human serum antibodies. The peptides were coupled to the carrier molecule BSA and the recognition of the peptides by IgM antibodies in clinical samples after infection with EBV was measured. The sensitivities were Eb1 94%, Eb2, 3, 4 88%, H1 81% and all had 100% specificity. This study illustrates that the phage display approach to select epitope mimics can be applied to polyclonal antibodies and peptides that represent several diagnostically important epitopes can be selected simultaneously. This panel of EBV peptides representing a wide coverage of immunodominant epitopes could replace crude antigen preparations currently used for capture in commercial diagnostic tests for EBV. PMID:19073711

  12. Burkholderia cepacia Complex Phage-Antibiotic Synergy (PAS): Antibiotics Stimulate Lytic Phage Activity

    PubMed Central

    Kamal, Fatima

    2014-01-01

    The Burkholderia cepacia complex (Bcc) is a group of at least 18 species of Gram-negative opportunistic pathogens that can cause chronic lung infection in cystic fibrosis (CF) patients. Bcc organisms possess high levels of innate antimicrobial resistance, and alternative therapeutic strategies are urgently needed. One proposed alternative treatment is phage therapy, the therapeutic application of bacterial viruses (or bacteriophages). Recently, some phages have been observed to form larger plaques in the presence of sublethal concentrations of certain antibiotics; this effect has been termed phage-antibiotic synergy (PAS). Those reports suggest that some antibiotics stimulate increased production of phages under certain conditions. The aim of this study is to examine PAS in phages that infect Burkholderia cenocepacia strains C6433 and K56-2. Bcc phages KS12 and KS14 were tested for PAS, using 6 antibiotics representing 4 different drug classes. Of the antibiotics tested, the most pronounced effects were observed for meropenem, ciprofloxacin, and tetracycline. When grown with subinhibitory concentrations of these three antibiotics, cells developed a chain-like arrangement, an elongated morphology, and a clustered arrangement, respectively. When treated with progressively higher antibiotic concentrations, both the sizes of plaques and phage titers increased, up to a maximum. B. cenocepacia K56-2-infected Galleria mellonella larvae treated with phage KS12 and low-dose meropenem demonstrated increased survival over controls treated with KS12 or antibiotic alone. These results suggest that antibiotics can be combined with phages to stimulate increased phage production and/or activity and thus improve the efficacy of bacterial killing. PMID:25452284

  13. Burkholderia cepacia complex Phage-Antibiotic Synergy (PAS): antibiotics stimulate lytic phage activity.

    PubMed

    Kamal, Fatima; Dennis, Jonathan J

    2015-02-01

    The Burkholderia cepacia complex (Bcc) is a group of at least 18 species of Gram-negative opportunistic pathogens that can cause chronic lung infection in cystic fibrosis (CF) patients. Bcc organisms possess high levels of innate antimicrobial resistance, and alternative therapeutic strategies are urgently needed. One proposed alternative treatment is phage therapy, the therapeutic application of bacterial viruses (or bacteriophages). Recently, some phages have been observed to form larger plaques in the presence of sublethal concentrations of certain antibiotics; this effect has been termed phage-antibiotic synergy (PAS). Those reports suggest that some antibiotics stimulate increased production of phages under certain conditions. The aim of this study is to examine PAS in phages that infect Burkholderia cenocepacia strains C6433 and K56-2. Bcc phages KS12 and KS14 were tested for PAS, using 6 antibiotics representing 4 different drug classes. Of the antibiotics tested, the most pronounced effects were observed for meropenem, ciprofloxacin, and tetracycline. When grown with subinhibitory concentrations of these three antibiotics, cells developed a chain-like arrangement, an elongated morphology, and a clustered arrangement, respectively. When treated with progressively higher antibiotic concentrations, both the sizes of plaques and phage titers increased, up to a maximum. B. cenocepacia K56-2-infected Galleria mellonella larvae treated with phage KS12 and low-dose meropenem demonstrated increased survival over controls treated with KS12 or antibiotic alone. These results suggest that antibiotics can be combined with phages to stimulate increased phage production and/or activity and thus improve the efficacy of bacterial killing.

  14. Targeting Enterococcus faecalis biofilms with phage therapy.

    PubMed

    Khalifa, Leron; Brosh, Yair; Gelman, Daniel; Coppenhagen-Glazer, Shunit; Beyth, Shaul; Poradosu-Cohen, Ronit; Que, Yok-Ai; Beyth, Nurit; Hazan, Ronen

    2015-04-01

    Phage therapy has been proven to be more effective, in some cases, than conventional antibiotics, especially regarding multidrug-resistant biofilm infections. The objective here was to isolate an anti-Enterococcus faecalis bacteriophage and to evaluate its efficacy against planktonic and biofilm cultures. E. faecalis is an important pathogen found in many infections, including endocarditis and persistent infections associated with root canal treatment failure. The difficulty in E. faecalis treatment has been attributed to the lack of anti-infective strategies to eradicate its biofilm and to the frequent emergence of multidrug-resistant strains. To this end, an anti-E. faecalis and E. faecium phage, termed EFDG1, was isolated from sewage effluents. The phage was visualized by electron microscopy. EFDG1 coding sequences and phylogeny were determined by whole genome sequencing (GenBank accession number KP339049), revealing it belongs to the Spounavirinae subfamily of the Myoviridae phages, which includes promising candidates for therapy against Gram-positive pathogens. This analysis also showed that the EFDG1 genome does not contain apparent harmful genes. EFDG1 antibacterial efficacy was evaluated in vitro against planktonic and biofilm cultures, showing effective lytic activity against various E. faecalis and E. faecium isolates, regardless of their antibiotic resistance profile. In addition, EFDG1 efficiently prevented ex vivo E. faecalis root canal infection. These findings suggest that phage therapy using EFDG1 might be efficacious to prevent E. faecalis infection after root canal treatment.

  15. Targeting Enterococcus faecalis Biofilms with Phage Therapy

    PubMed Central

    Khalifa, Leron; Brosh, Yair; Gelman, Daniel; Coppenhagen-Glazer, Shunit; Beyth, Shaul; Poradosu-Cohen, Ronit; Que, Yok-Ai; Beyth, Nurit

    2015-01-01

    Phage therapy has been proven to be more effective, in some cases, than conventional antibiotics, especially regarding multidrug-resistant biofilm infections. The objective here was to isolate an anti-Enterococcus faecalis bacteriophage and to evaluate its efficacy against planktonic and biofilm cultures. E. faecalis is an important pathogen found in many infections, including endocarditis and persistent infections associated with root canal treatment failure. The difficulty in E. faecalis treatment has been attributed to the lack of anti-infective strategies to eradicate its biofilm and to the frequent emergence of multidrug-resistant strains. To this end, an anti-E. faecalis and E. faecium phage, termed EFDG1, was isolated from sewage effluents. The phage was visualized by electron microscopy. EFDG1 coding sequences and phylogeny were determined by whole genome sequencing (GenBank accession number KP339049), revealing it belongs to the Spounavirinae subfamily of the Myoviridae phages, which includes promising candidates for therapy against Gram-positive pathogens. This analysis also showed that the EFDG1 genome does not contain apparent harmful genes. EFDG1 antibacterial efficacy was evaluated in vitro against planktonic and biofilm cultures, showing effective lytic activity against various E. faecalis and E. faecium isolates, regardless of their antibiotic resistance profile. In addition, EFDG1 efficiently prevented ex vivo E. faecalis root canal infection. These findings suggest that phage therapy using EFDG1 might be efficacious to prevent E. faecalis infection after root canal treatment. PMID:25662974

  16. Bacteriophages of Pseudomonas aeruginosa: long-term prospects for use in phage therapy.

    PubMed

    Krylov, Victor N

    2014-01-01

    Bacteria Pseudomonas aeruginosa, being opportunistic pathogens, are the major cause of nosocomial infections and, in some cases, the primary cause of death. They are virtually untreatable with currently known antibiotics. Phage therapy is considered as one of the possible approaches to the treatment of P. aeruginosa infections. Difficulties in the implementation of phage therapy in medical practice are related, for example, to the insufficient number and diversity of virulent phages that are active against P. aeruginosa. Results of interaction of therapeutic phages with bacteria in different conditions and environments are studied insufficiently. A little is known about possible interactions of therapeutic phages with resident prophages and plasmids in clinical strains in the foci of infections. This chapter highlights the different approaches to solving these problems and possible ways to expand the diversity of therapeutic P. aeruginosa phages and organizational arrangements (as banks of phages) to ensure long-term use of phages in the treatment of P. aeruginosa infections.

  17. Expanding the Marine Virosphere Using Metagenomics

    PubMed Central

    Mizuno, Carolina Megumi; Rodriguez-Valera, Francisco; Kimes, Nikole E.; Ghai, Rohit

    2013-01-01

    Viruses infecting prokaryotic cells (phages) are the most abundant entities of the biosphere and contain a largely uncharted wealth of genomic diversity. They play a critical role in the biology of their hosts and in ecosystem functioning at large. The classical approaches studying phages require isolation from a pure culture of the host. Direct sequencing approaches have been hampered by the small amounts of phage DNA present in most natural habitats and the difficulty in applying meta-omic approaches, such as annotation of small reads and assembly. Serendipitously, it has been discovered that cellular metagenomes of highly productive ocean waters (the deep chlorophyll maximum) contain significant amounts of viral DNA derived from cells undergoing the lytic cycle. We have taken advantage of this phenomenon to retrieve metagenomic fosmids containing viral DNA from a Mediterranean deep chlorophyll maximum sample. This method allowed description of complete genomes of 208 new marine phages. The diversity of these genomes was remarkable, contributing 21 genomic groups of tailed bacteriophages of which 10 are completely new. Sequence based methods have allowed host assignment to many of them. These predicted hosts represent a wide variety of important marine prokaryotic microbes like members of SAR11 and SAR116 clades, Cyanobacteria and also the newly described low GC Actinobacteria. A metavirome constructed from the same habitat showed that many of the new phage genomes were abundantly represented. Furthermore, other available metaviromes also indicated that some of the new phages are globally distributed in low to medium latitude ocean waters. The availability of many genomes from the same sample allows a direct approach to viral population genomics confirming the remarkable mosaicism of phage genomes. PMID:24348267

  18. Expanding the marine virosphere using metagenomics.

    PubMed

    Mizuno, Carolina Megumi; Rodriguez-Valera, Francisco; Kimes, Nikole E; Ghai, Rohit

    2013-01-01

    Viruses infecting prokaryotic cells (phages) are the most abundant entities of the biosphere and contain a largely uncharted wealth of genomic diversity. They play a critical role in the biology of their hosts and in ecosystem functioning at large. The classical approaches studying phages require isolation from a pure culture of the host. Direct sequencing approaches have been hampered by the small amounts of phage DNA present in most natural habitats and the difficulty in applying meta-omic approaches, such as annotation of small reads and assembly. Serendipitously, it has been discovered that cellular metagenomes of highly productive ocean waters (the deep chlorophyll maximum) contain significant amounts of viral DNA derived from cells undergoing the lytic cycle. We have taken advantage of this phenomenon to retrieve metagenomic fosmids containing viral DNA from a Mediterranean deep chlorophyll maximum sample. This method allowed description of complete genomes of 208 new marine phages. The diversity of these genomes was remarkable, contributing 21 genomic groups of tailed bacteriophages of which 10 are completely new. Sequence based methods have allowed host assignment to many of them. These predicted hosts represent a wide variety of important marine prokaryotic microbes like members of SAR11 and SAR116 clades, Cyanobacteria and also the newly described low GC Actinobacteria. A metavirome constructed from the same habitat showed that many of the new phage genomes were abundantly represented. Furthermore, other available metaviromes also indicated that some of the new phages are globally distributed in low to medium latitude ocean waters. The availability of many genomes from the same sample allows a direct approach to viral population genomics confirming the remarkable mosaicism of phage genomes.

  19. Evolutionary consequences of intra-patient phage predation on microbial populations.

    PubMed

    Seed, Kimberley D; Yen, Minmin; Shapiro, B Jesse; Hilaire, Isabelle J; Charles, Richelle C; Teng, Jessica E; Ivers, Louise C; Boncy, Jacques; Harris, Jason B; Camilli, Andrew

    2014-08-26

    The impact of phage predation on bacterial pathogens in the context of human disease is not currently appreciated. Here, we show that predatory interactions of a phage with an important environmentally transmitted pathogen, Vibrio cholerae, can modulate the evolutionary trajectory of this pathogen during the natural course of infection within individual patients. We analyzed geographically and temporally disparate cholera patient stool samples from Haiti and Bangladesh and found that phage predation can drive the genomic diversity of intra-patient V. cholerae populations. Intra-patient phage-sensitive and phage-resistant isolates were isogenic except for mutations conferring phage resistance, and moreover, phage-resistant V. cholerae populations were composed of a heterogeneous mix of many unique mutants. We also observed that phage predation can significantly alter the virulence potential of V. cholerae shed from cholera patients. We provide the first molecular evidence for predatory phage shaping microbial community structure during the natural course of infection in humans.

  20. Primary Adsorption Site of Phage PBS1: the Flagellum of Bacillus subtilis

    PubMed Central

    Raimondo, Linda M.; Lundh, Nancy P.; Martinez, Rafael J.

    1968-01-01

    The adsorption of Bacillus subtilis phage PBS1 was studied, and it was demonstrated that the primary adsorption site for this phage is the flagellum of B. subtilis. The capacity of flagella to function for motility may be lost without the loss of their capacity to adsorb the phage and permit infection. Deoxyribonucleic acid injection by the phage is inhibited by cyanide, suggesting the requirement for cellular energy in the infection process. Images PMID:4986906

  1. Using Phage Lytic Enzymes to Destroy Pathogenic and BW Bacteria

    DTIC Science & Technology

    2005-07-14

    B. anthracis than the gamma-phage since it will not recognize the occasional B. cereus strain yielding a false positive reaction. This phage is a...bacteriolytic agent that can rapidly and specifically detect and kill Bacillus anthracis. Nature. 418: 884– 889. Nelson, D., Schuch, R., S. Zhu, D...Djurkovic and V.A. Fischetti. 2003. The phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia and sepsis. Infect. Immun.71:6199

  2. Evolutionary Rationale for Phages as Complements of Antibiotics.

    PubMed

    Torres-Barceló, Clara; Hochberg, Michael E

    2016-04-01

    Antibiotic-resistant bacterial infections are a major concern to public health. Phage therapy has been proposed as a promising alternative to antibiotics, but an increasing number of studies suggest that both of these antimicrobial agents in combination are more effective in controlling pathogenic bacteria than either alone. We advocate the use of phages in combination with antibiotics and present the evolutionary basis for our claim. In addition, we identify compelling challenges for the realistic application of phage-antibiotic combined therapy.

  3. Revival of an old problem: an increase in Salmonella enterica serovar Typhimurium definitive phage type 8 infections in 2010 in England and Northern Ireland linked to duck eggs.

    PubMed

    Noble, D J; Lane, C; Little, C L; Davies, R; De Pinna, E; Larkin, L; Morgan, D

    2012-01-01

    Salmonella enterica serovar Typhimurium definitive phage type (DT) 8 is uncommon in humans in the UK. In July 2010, the Health Protection Agency reported an excess isolation rate of pan-susceptible S. Typhimurium DT8 in England and Northern Ireland. By the end of October, this amounted to 81 laboratory-confirmed human cases for all regions of England and Northern Ireland in 2010, an increase of 26% and 41% on 2009 and 2008, respectively. Descriptive epidemiological investigation found a strong association with infection and consumption of duck eggs. Duck eggs contaminated with S. Typhimurium DT8 were collected from a patient's home and also at farms in the duck-egg supply chain. Although duck eggs form a small part of total UK eggs sales, there has been significant growth in sales in recent years. This is the first known outbreak of salmonellosis linked to duck eggs in the UK since 1949 and highlighted the impact of a changing food source and market on the re-emergence of salmonellosis linked to duck eggs. Control measures by the duck-egg industry should be improved along with a continued need to remind the public and commercial caterers of the potential high risks of contracting salmonellosis from duck eggs.

  4. Bacteriophages and phage-derived proteins--application approaches.

    PubMed

    Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grazyna; Maciejewska, Barbara

    2015-01-01

    Currently, the bacterial resistance, especially to most commonly used antibiotics has proved to be a severe therapeutic problem. Nosocomial and community-acquired infections are usually caused by multidrug resistant strains. Therefore, we are forced to develop an alternative or supportive treatment for successful cure of life-threatening infections. The idea of using natural bacterial pathogens such as bacteriophages is already well known. Many papers have been published proving the high antibacterial efficacy of lytic phages tested in animal models as well as in the clinic. Researchers have also investigated the application of non-lytic phages and temperate phages, with promising results. Moreover, the development of molecular biology and novel generation methods of sequencing has opened up new possibilities in the design of engineered phages and recombinant phage-derived proteins. Encouraging performances were noted especially for phage enzymes involved in the first step of viral infection responsible for bacterial envelope degradation, named depolymerases. There are at least five major groups of such enzymes - peptidoglycan hydrolases, endosialidases, endorhamnosidases, alginate lyases and hyaluronate lyases - that have application potential. There is also much interest in proteins encoded by lysis cassette genes (holins, endolysins, spanins) responsible for progeny release during the phage lytic cycle. In this review, we discuss several issues of phage and phage-derived protein application approaches in therapy, diagnostics and biotechnology in general.

  5. Bacteriophages and Phage-Derived Proteins – Application Approaches

    PubMed Central

    Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grazyna; Maciejewska, Barbara

    2015-01-01

    Currently, the bacterial resistance, especially to most commonly used antibiotics has proved to be a severe therapeutic problem. Nosocomial and community-acquired infections are usually caused by multidrug resistant strains. Therefore, we are forced to develop an alternative or supportive treatment for successful cure of life-threatening infections. The idea of using natural bacterial pathogens such as bacteriophages is already well known. Many papers have been published proving the high antibacterial efficacy of lytic phages tested in animal models as well as in the clinic. Researchers have also investigated the application of non-lytic phages and temperate phages, with promising results. Moreover, the development of molecular biology and novel generation methods of sequencing has opened up new possibilities in the design of engineered phages and recombinant phage-derived proteins. Encouraging performances were noted especially for phage enzymes involved in the first step of viral infection responsible for bacterial envelope degradation, named depolymerases. There are at least five major groups of such enzymes – peptidoglycan hydrolases, endosialidases, endorhamnosidases, alginate lyases and hyaluronate lyases – that have application potential. There is also much interest in proteins encoded by lysis cassette genes (holins, endolysins, spanins) responsible for progeny release during the phage lytic cycle. In this review, we discuss several issues of phage and phage-derived protein application approaches in therapy, diagnostics and biotechnology in general. PMID:25666799

  6. Emerging causes of superficial and invasive infections following marine injuries and exposures.

    PubMed

    Diaz, James H

    2014-01-01

    Soft tissue bacterial infections following aquatic animal bites, stings, and minor injuries occur commonly and usually on the extremities in fishermen and beachgoers worldwide after freshwater and saltwater exposures. Louisiana has more tidal, saltwater, and brackish water shorelines (more than 7,000 miles) than any other state, including Alaska and Hawaii. As a result, Louisiana residents are often exposed to marine pathogens when fishing or working offshore or when enjoying Louisiana's miles of shorelines. Although many species of bacteria have been isolated from marine wounds, superficial soft tissue and invasive infections following marine injuries and exposures are most commonly caused by a small number of bacterial species, including Aeromonas hydrophila, Edwardsiella tarda, Erysipelothrix rhusiopathiae, Mycobacterium marinum, and Vibrio vulnificus. In addition to these species, several other aquatic bacteria have recently been identified as emerging causes of superficial and invasive infections following marine injuries and exposures, including marine mammal (dolphins and seals) Brucella species, Chromobacterium violaceum, Comamonas species, Shewanella algae, and Streptococcus iniae. The objectives of this review are to describe the epidemiology, presenting clinical manifestations, diagnostic and treatment strategies, and outcomes of both the superficial and the deeper invasive infections caused by the newly emerging marine bacterial pathogens.

  7. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance

    PubMed Central

    Lin, Derek M; Koskella, Britt; Lin, Henry C

    2017-01-01

    The practice of phage therapy, which uses bacterial viruses (phages) to treat bacterial infections, has been around for almost a century. The universal decline in the effectiveness of antibiotics has generated renewed interest in revisiting this practice. Conventionally, phage therapy relies on the use of naturally-occurring phages to infect and lyse bacteria at the site of infection. Biotechnological advances have further expanded the repertoire of potential phage therapeutics to include novel strategies using bioengineered phages and purified phage lytic proteins. Current research on the use of phages and their lytic proteins, specifically against multidrug-resistant bacterial infections, suggests phage therapy has the potential to be used as either an alternative or a supplement to antibiotic treatments. Antibacterial therapies, whether phage- or antibiotic-based, each have relative advantages and disadvantages; accordingly, many considerations must be taken into account when designing novel therapeutic approaches for preventing and treating bacterial infections. Although much is still unknown about the interactions between phage, bacteria, and human host, the time to take phage therapy seriously seems to be rapidly approaching. PMID:28828194

  8. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance.

    PubMed

    Lin, Derek M; Koskella, Britt; Lin, Henry C

    2017-08-06

    The practice of phage therapy, which uses bacterial viruses (phages) to treat bacterial infections, has been around for almost a century. The universal decline in the effectiveness of antibiotics has generated renewed interest in revisiting this practice. Conventionally, phage therapy relies on the use of naturally-occurring phages to infect and lyse bacteria at the site of infection. Biotechnological advances have further expanded the repertoire of potential phage therapeutics to include novel strategies using bioengineered phages and purified phage lytic proteins. Current research on the use of phages and their lytic proteins, specifically against multidrug-resistant bacterial infections, suggests phage therapy has the potential to be used as either an alternative or a supplement to antibiotic treatments. Antibacterial therapies, whether phage- or antibiotic-based, each have relative advantages and disadvantages; accordingly, many considerations must be taken into account when designing novel therapeutic approaches for preventing and treating bacterial infections. Although much is still unknown about the interactions between phage, bacteria, and human host, the time to take phage therapy seriously seems to be rapidly approaching.

  9. Bacteriophage exploitation of bacterial biofilms: phage preference for less mature targets?

    PubMed

    Abedon, Stephen T

    2016-02-01

    Robust evidence is somewhat lacking for biofilm susceptibility to bacteriophages in nature, contrasting often substantial laboratory biofilm vulnerability to phages. To help bridge this divide, I review a two-part scenario for 'heterogeneous' phage interaction even with phage-permissive single-species biofilms. First, through various mechanisms, those bacteria which are both more newly formed and located at biofilm surfaces may be particularly vulnerable to phage adsorption, rather than biofilm matrix being homogeneously resistant to phage penetration. Second, though phage infection of older, less metabolically active bacteria may still be virion productive, nevertheless the majority of phage population growth in association with biofilm bacteria could involve infection particularly of those bacteria which are more metabolically active and thereby better able to support larger phage bursts, versus clonally related biofilm bacteria equivalently supporting phage production. To the extent that biofilms are physiologically or structurally heterogeneous, with phages exploiting particularly relatively newly divided biofilm-surface bacteria, then even effective phage predation of natural biofilms could result in less than complete overall biofilm clearance. Phage tendencies toward only partial exploitation of even single-species biofilms could be consistent with observations that chronic bacterial infections in the clinic can require more aggressive or extensive phage therapy to eradicate.

  10. Engineering resistance to phage GVE3 in Geobacillus thermoglucosidasius.

    PubMed

    van Zyl, Leonardo Joaquim; Taylor, Mark Paul; Trindade, Marla

    2016-02-01

    Geobacillus thermoglucosidasius is a promising platform organism for the production of biofuels and other metabolites of interest. G. thermoglucosidasius fermentations could be subject to bacteriophage-related failure and financial loss. We develop two strains resistant to a recently described G. thermoglucosidasius-infecting phage GVE3. The phage-encoded immunity gene, imm, was overexpressed in the host leading to phage resistance. A phage-resistant mutant was isolated following expression of a putative anti-repressor-like protein and phage challenge. A point mutation was identified in the polysaccharide pyruvyl transferase, csaB. A double crossover knockout mutation of csaB confirmed its role in the phage resistance phenotype. These resistance mechanisms appear to prevent phage DNA injection and/or lysogenic conversion rather than just reducing efficiency of plating, as no phage DNA could be detected in resistant bacteria challenged with GVE3 and no plaques observed even at high phage titers. Not only do the strains developed here shed light on the biological relationship between the GVE3 phage and its host, they could be employed by those looking to make use of this organism for metabolite production, with reduced occurrence of GVE3-related failure.

  11. Diversity of Streptococcus thermophilus phages in a large-production cheese factory in Argentina.

    PubMed

    Quiberoni, A; Tremblay, D; Ackermann, H-W; Moineau, S; Reinheimer, J A

    2006-10-01

    Phage infections still represent a serious risk to the dairy industry, in which Streptococcus thermophilus is used in starter cultures for the manufacture of yogurt and cheese. The goal of the present study was to analyze the biodiversity of the virulent S. thermophilus phage population in one Argentinean cheese plant. Ten distinct S. thermophilus phages were isolated from cheese whey samples collected in a 2-mo survey. They were then characterized by their morphology, host range, and restriction patterns. These phages were also classified within the 2 main groups of S. thermophilus phages (cos- and pac-type) using a newly adapted multiplex PCR method. Six phages were classified as cos-type phages, whereas the 4 others belonged to the pac-type group. This study illustrates the phage diversity that can be found in one factory that rotates several cultures of S. thermophilus. Limiting the number of starter cultures is likely to reduce phage biodiversity within a fermentation facility.

  12. Three novel Pseudomonas phages isolated from composting provide insights into the evolution and diversity of tailed phages.

    PubMed

    Amgarten, Deyvid; Martins, Layla Farage; Lombardi, Karen Cristina; Antunes, Luciana Principal; de Souza, Ana Paula Silva; Nicastro, Gianlucca Gonçalves; Kitajima, Elliott Watanabe; Quaggio, Ronaldo Bento; Upton, Chris; Setubal, João Carlos; da Silva, Aline Maria

    2017-05-04

    Among viruses, bacteriophages are a group of special interest due to their capacity of infecting bacteria that are important for biotechnology and human health. Composting is a microbial-driven process in which complex organic matter is converted into humus-like substances. In thermophilic composting, the degradation activity is carried out primarily by bacteria and little is known about the presence and role of bacteriophages in this process. Using Pseudomonas aeruginosa as host, we isolated three new phages from a composting operation at the Sao Paulo Zoo Park (Brazil). One of the isolated phages is similar to Pseudomonas phage Ab18 and belongs to the Siphoviridae YuA-like viral genus. The other two isolated phages are similar to each other and present genomes sharing low similarity with phage genomes in public databases; we therefore hypothesize that they belong to a new genus in the Podoviridae family. Detailed genomic descriptions and comparisons of the three phages are presented, as well as two new clusters of phage genomes in the Viral Orthologous Clusters database of large DNA viruses. We found sequences encoding homing endonucleases that disrupt a putative ribonucleotide reductase gene and an RNA polymerase subunit 2 gene in two of the phages. These findings provide insights about the evolution of two-subunits RNA polymerases and the possible role of homing endonucleases in this process. Infection tests on 30 different strains of bacteria reveal a narrow host range for the three phages, restricted to P. aeruginosa PA14 and three other P. aeruginosa clinical isolates. Biofilm dissolution assays suggest that these phages could be promising antimicrobial agents against P. aeruginosa PA14 infections. Analyses on composting metagenomic and metatranscriptomic data indicate association between abundance variations in both phage and host populations in the environment. The results about the newly discovered and described phages contribute to the understanding of

  13. A century of the phage: past, present and future.

    PubMed

    Salmond, George P C; Fineran, Peter C

    2015-12-01

    Viruses that infect bacteria (bacteriophages; also known as phages) were discovered 100 years ago. Since then, phage research has transformed fundamental and translational biosciences. For example, phages were crucial in establishing the central dogma of molecular biology - information is sequentially passed from DNA to RNA to proteins - and they have been shown to have major roles in ecosystems, and help drive bacterial evolution and virulence. Furthermore, phage research has provided many techniques and reagents that underpin modern biology - from sequencing and genome engineering to the recent discovery and exploitation of CRISPR-Cas phage resistance systems. In this Timeline, we discuss a century of phage research and its impact on basic and applied biology.

  14. Ecological Basis for Rational Phage Therapy

    PubMed Central

    Golomidova, A.K.; Tarasyan, K.K.

    2010-01-01

    Understanding the mutual interactions of bacterial and phage populations in the environment of a human or animal body is essential in any attempt to influence these complex processes, particularly for rational phage therapy. Current knowledge on the impact of naturally occurring bacteriophages on the populations of their host bacteria, and their role in the homeostasis maintenance of a macro host, is still sketchy. The existing data suggest that different mechanisms stabilize phage–bacteria coexistence in different animal species or different body sites. The defining set of parameters governing phage infection includes specific physical, chemical, and biological conditions, such as pH, nutrient densities, host prevalence, relation to mucosa and other surfaces, the presence of phage inhibiting substances, etc. Phage therapy is also an ecological process that always implies three components that form a complex pattern of interactions: populations of the pathogen, the bacteriophages used as antibacterial agents, and the macroorganism. We present a review of contemporary data on natural bacteriophages occuring in human– and animal–body associated microbial communities, and analyze ecological and physiological considerations that determine the success of phage therapy in mammals. PMID:22649629

  15. Precisely modulated pathogenicity island interference with late phage gene transcription.

    PubMed

    Ram, Geeta; Chen, John; Ross, Hope F; Novick, Richard P

    2014-10-07

    Having gone to great evolutionary lengths to develop resistance to bacteriophages, bacteria have come up with resistance mechanisms directed at every aspect of the bacteriophage life cycle. Most genes involved in phage resistance are carried by plasmids and other mobile genetic elements, including bacteriophages and their relatives. A very special case of phage resistance is exhibited by the highly mobile phage satellites, staphylococcal pathogenicity islands (SaPIs), which carry and disseminate superantigen and other virulence genes. Unlike the usual phage-resistance mechanisms, the SaPI-encoded interference mechanisms are carefully crafted to ensure that a phage-infected, SaPI-containing cell will lyse, releasing the requisite crop of SaPI particles as well as a greatly diminished crop of phage particles. Previously described SaPI interference genes target phage functions that are not required for SaPI particle production and release. Here we describe a SaPI-mediated interference system that affects expression of late phage gene transcription and consequently is required for SaPI and phage. Although when cloned separately, a single SaPI gene totally blocks phage production, its activity in situ is modulated accurately by a second gene, achieving the required level of interference. The advantage for the host bacteria is that the SaPIs curb excessive phage growth while enhancing their gene transfer activity. This activity is in contrast to that of the clustered regularly interspaced short palindromic repeats (CRISPRs), which totally block phage growth at the cost of phage-mediated gene transfer. In staphylococci the SaPI strategy seems to have prevailed during evolution: The great majority of Staphylococcus aureus strains carry one or more SaPIs, whereas CRISPRs are extremely rare.

  16. Isolation and characterization of phage-host systems from the Baltic Sea ice.

    PubMed

    Luhtanen, Anne-Mari; Eronen-Rasimus, Eeva; Kaartokallio, Hermanni; Rintala, Janne-Markus; Autio, Riitta; Roine, Elina

    2014-01-01

    In search for sea ice bacteria and their phages from the Baltic Sea ice, two ice samples were collected from land-fast ice in a south-west Finland coastal site in February and March 2011. Bacteria were isolated from the melted sea ice samples and phages were screened from the same samples for 43 purified isolates. Plaque-producing phages were found for 15 bacterial isolates at 3 °C. Ten phage isolates were successfully plaque purified and eight of them were chosen for particle purification to analyze their morphology and structural proteins. Phage 1/32 infecting an isolate affiliated to phylum Bacteroidetes (Flavobacterium sp.) is a siphovirus and six phages infecting isolates affiliated to γ-Proteobacteria (Shewanella sp.) hosts were myoviruses. Cross titrations between the hosts showed that all studied phages are host specific. Phage solutions, host growth and phage infection were tested in different temperatures revealing phage temperature tolerance up to 45 °C, whereas phage infection was in most of the cases retarded above 15 °C. This study is the first to report isolation and cultivation of ice bacteria and cold-active phages from the Baltic Sea ice.

  17. Serological evidence of Toxoplasma gondii infection in captive marine mammals in Mexico.

    PubMed

    Alvarado-Esquivel, C; Sánchez-Okrucky, R; Dubey, J P

    2012-03-23

    Toxoplasma gondii infection in marine mammals is important because they are considered as a sentinel for contamination of seas with T. gondii oocysts, and toxoplasmosis causes mortality in these animals, particularly sea otters. Serological evidence of T. gondii infection was determined in 75 captive marine mammals from four facilities in southern and central geographical regions in Mexico using the modified agglutination test (MAT). Antibodies (MAT, 1:25 or higher) to T. gondii were found in 55 (87.3%) of 63 Atlantic bottlenose dolphins (Tursiops truncatus truncatus), 3 of 3 Pacific bottlenose dolphins (Tursiops truncatus gillii), 2 of 4 California sea lions (Zalophus californianus), but not in 3 West Indian manatees (Trichechus manatus), and 2 Patagonian sea lions (Otaria flavescens). Seropositive marine mammals were found in all 4 (100%) facilities sampled. All marine mammals were healthy and there has not been any case of clinical toxoplasmosis in the facilities sampled for at least the last 15 years. The seroprevalence of T. gondii infection in marine mammals of the same species did not vary significantly with respect to sex and age. This is the first report on the detection of antibodies to T. gondii in marine mammals in Mexico.

  18. Orally Administered P22 Phage Tailspike Protein Reduces Salmonella Colonization in Chickens: Prospects of a Novel Therapy against Bacterial Infections

    PubMed Central

    Waseh, Shakeeba; Hanifi-Moghaddam, Pejman; Coleman, Russell; Masotti, Michael; Ryan, Shannon; Foss, Mary; MacKenzie, Roger; Henry, Matthew; Szymanski, Christine M.; Tanha, Jamshid

    2010-01-01

    One of the major causes of morbidity and mortality in man and economically important animals is bacterial infections of the gastrointestinal (GI) tract. The emergence of difficult-to-treat infections, primarily caused by antibiotic resistant bacteria, demands for alternatives to antibiotic therapy. Currently, one of the emerging therapeutic alternatives is the use of lytic bacteriophages. In an effort to exploit the target specificity and therapeutic potential of bacteriophages, we examined the utility of bacteriophage tailspike proteins (Tsps). Among the best-characterized Tsps is that from the Podoviridae P22 bacteriophage, which recognizes the lipopolysaccharides of Salmonella enterica serovar Typhimurium. In this study, we utilized a truncated, functionally equivalent version of the P22 tailspike protein, P22sTsp, as a prototype to demonstrate the therapeutic potential of Tsps in the GI tract of chickens. Bacterial agglutination assays showed that P22sTsp was capable of agglutinating S. Typhimurium at levels similar to antibodies and incubating the Tsp with chicken GI fluids showed no proteolytic activity against the Tsp. Testing P22sTsp against the three major GI proteases showed that P22sTsp was resistant to trypsin and partially to chymotrypsin, but sensitive to pepsin. However, in formulated form for oral administration, P22sTsp was resistant to all three proteases. When administered orally to chickens, P22sTsp significantly reduced Salmonella colonization in the gut and its further penetration into internal organs. In in vitro assays, P22sTsp effectively retarded Salmonella motility, a factor implicated in bacterial colonization and invasion, suggesting that the in vivo decolonization ability of P22sTsp may, at least in part, be due to its ability to interfere with motility… Our findings show promise in terms of opening novel Tsp-based oral therapeutic approaches against bacterial infections in production animals and potentially in humans. PMID:21124920

  19. Temperate phages both mediate and drive adaptive evolution in pathogen biofilms

    PubMed Central

    Davies, Emily V.; James, Chloe E.; Williams, David; O’Brien, Siobhan; Fothergill, Joanne L.; Haldenby, Sam; Paterson, Steve; Winstanley, Craig

    2016-01-01

    Temperate phages drive genomic diversification in bacterial pathogens. Phage-derived sequences are more common in pathogenic than nonpathogenic taxa and are associated with changes in pathogen virulence. High abundance and mobilization of temperate phages within hosts suggests that temperate phages could promote within-host evolution of bacterial pathogens. However, their role in pathogen evolution has not been experimentally tested. We experimentally evolved replicate populations of Pseudomonas aeruginosa with or without a community of three temperate phages active in cystic fibrosis (CF) lung infections, including the transposable phage, ɸ4, which is closely related to phage D3112. Populations grew as free-floating biofilms in artificial sputum medium, mimicking sputum of CF lungs where P. aeruginosa is an important pathogen and undergoes evolutionary adaptation and diversification during chronic infection. Although bacterial populations adapted to the biofilm environment in both treatments, population genomic analysis revealed that phages altered both the trajectory and mode of evolution. Populations evolving with phages exhibited a greater degree of parallel evolution and faster selective sweeps than populations without phages. Phage ɸ4 integrated randomly into the bacterial chromosome, but integrations into motility-associated genes and regulators of quorum sensing systems essential for virulence were selected in parallel, strongly suggesting that these insertional inactivation mutations were adaptive. Temperate phages, and in particular transposable phages, are therefore likely to facilitate adaptive evolution of bacterial pathogens within hosts. PMID:27382184

  20. Complete genome sequence of Roseophage vB_DshP-R1, which infects Dinoroseobacter shibae DFL12

    PubMed Central

    2014-01-01

    The Roseophages, a group of marine viruses that uniquely infect the Roseobacter clade of bacteria, play a significant role in marine ecosystems. Here we present a complete genomic sequence of an N4 phage ‘vB_DshP-R1’, which infects Dinoroseobacter shibae DFL12, together with its structural and genomic features. vB_DshP-R1 has an ~ 75 nm diameter icosahedral structure and a complete genome of 75,028 bp. This is the first genome sequence of a lytic phage of the genus Dinoroseobacter. PMID:25685262

  1. A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome

    PubMed Central

    O’Hara, Brendan J.

    2017-01-01

    Vibrio cholerae-specific bacteriophages are common features of the microbial community during cholera infection in humans. Phages impose strong selective pressure that favors the expansion of phage-resistant strains over their vulnerable counterparts. The mechanisms allowing virulent V. cholerae strains to defend against the ubiquitous threat of predatory phages have not been established. Here, we show that V. cholerae PLEs (phage-inducible chromosomal island-like elements) are widespread genomic islands dedicated to phage defense. Analysis of V. cholerae isolates spanning a 60-year collection period identified five unique PLEs. Remarkably, we found that all PLEs (regardless of geographic or temporal origin) respond to infection by a myovirus called ICP1, the most prominent V. cholerae phage found in cholera patient stool samples from Bangladesh. We found that PLE activity reduces phage genome replication and accelerates cell lysis following ICP1 infection, killing infected host cells and preventing the production of progeny phage. PLEs are mobilized by ICP1 infection and can spread to neighboring cells such that protection from phage predation can be horizontally acquired. Our results reveal that PLEs are a persistent feature of the V. cholerae mobilome that are adapted to providing protection from a single predatory phage and advance our understanding of how phages influence pathogen evolution. PMID:28594826

  2. A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome.

    PubMed

    O'Hara, Brendan J; Barth, Zachary K; McKitterick, Amelia C; Seed, Kimberley D

    2017-06-01

    Vibrio cholerae-specific bacteriophages are common features of the microbial community during cholera infection in humans. Phages impose strong selective pressure that favors the expansion of phage-resistant strains over their vulnerable counterparts. The mechanisms allowing virulent V. cholerae strains to defend against the ubiquitous threat of predatory phages have not been established. Here, we show that V. cholerae PLEs (phage-inducible chromosomal island-like elements) are widespread genomic islands dedicated to phage defense. Analysis of V. cholerae isolates spanning a 60-year collection period identified five unique PLEs. Remarkably, we found that all PLEs (regardless of geographic or temporal origin) respond to infection by a myovirus called ICP1, the most prominent V. cholerae phage found in cholera patient stool samples from Bangladesh. We found that PLE activity reduces phage genome replication and accelerates cell lysis following ICP1 infection, killing infected host cells and preventing the production of progeny phage. PLEs are mobilized by ICP1 infection and can spread to neighboring cells such that protection from phage predation can be horizontally acquired. Our results reveal that PLEs are a persistent feature of the V. cholerae mobilome that are adapted to providing protection from a single predatory phage and advance our understanding of how phages influence pathogen evolution.

  3. Parasitic infection alters the physiological response of a marine gastropod to ocean acidification.

    PubMed

    Macleod, C D; Poulin, R

    2016-09-01

    Increased hydrogen ion concentration and decreased carbonate ion concentration in seawater are the most physiologically relevant consequences of ocean acidification (OA). Changes to either chemical species may increase the metabolic cost of physiological processes in marine organisms, and reduce the energy available for growth, reproduction and survival. Parasitic infection also increases the energetic demands experienced by marine organisms, and may reduce host tolerance to stressors associated with OA. This study assessed the combined metabolic effects of parasitic infection and OA on an intertidal gastropod, Zeacumantus subcarinatus. Oxygen consumption rates and tissue glucose content were recorded in snails infected with one of three trematode parasites, and an uninfected control group, maintained in acidified (7·6 and 7·4 pH) or unmodified (8·1 pH) seawater. Exposure to acidified seawater significantly altered the oxygen consumption rates and tissue glucose content of infected and uninfected snails, and there were clear differences in the magnitude of these changes between snails infected with different species of trematode. These results indicate that the combined effects of OA and parasitic infection significantly alter the energy requirements of Z. subcarinatus, and that the species of the infecting parasite may play an important role in determining the tolerance of marine gastropods to OA.

  4. Occurrence of Vibrio parahaemolyticus and its specific phages from shrimp ponds in east coast of India.

    PubMed

    Alagappan, K M; Deivasigamani, B; Somasundaram, S T; Kumaran, S

    2010-10-01

    Vibrio parahaemolyticus is a natural microflora of marine and coastal water bodies and associated with mortality of larval shrimp in penaeid shrimp in ponds. Bacteriophages occur virtually in all places where their hosts exist. In this study, total distribution of V. parahaemolyticus and its phages were examined in shrimp ponds, seawater, estuary, animal surface, and tissues. Total vibrio count in sediments of two ponds was found to be 2.6 × 10(3) and 5.6 × 10(3) cfu/g. Incidence of V. parahaemolyticus in the ponds was close, while it was markedly higher in the animal surface and tissue samples. Biochemically identified eight strains of V. parahaemolyticus (V1, V3-V6, V9, V11, and V12) were taken for further infection studies with bacteriophage. Totally five bacteriophages capable of infecting V. parahaemolyticus MTCC-451 strain were isolated from all the samples. One of the isolated bacteriophage Vp1 from estuary was able to lyse all the isolated V. parahaemolyticus strains we used. Therefore, the morphology of Vp1 was estimated in TEM. Vp1 phage head measuring approximately about 50-60 nm diameter with icosahedral outline and a contractile tails of diameter 7 nm and length 100 nm and it was identified as Myoviridae. Therefore, the phages have the potential application in destroying bacterial pathogens.

  5. Estimating richness from phage metagenomes

    USDA-ARS?s Scientific Manuscript database

    Bacteriophages are important drivers of ecosystem functions, yet little is known about the vast majority of phages. Phage metagenomics, or the study of the collective genome of an assemblage of phages, enables the investigation of broad ecological questions in phage communities. One ecological cha...

  6. Phage therapy: present and future

    NASA Astrophysics Data System (ADS)

    Kolesnikova, S. G.; Tulyakova, E. N.; Moiseeva, I. Y.

    2017-01-01

    In recent years, bacteriophages are known to have become an effective alternative to antibiotic drugs. The article describes the current and potential applications of bacteriophages and phage endolysins. Also of interest is the devastating effect of phages on biofilms. The development of phage resistance is touched upon as well. Furthermore, the authors discuss the issue of laying down the rules of rational phage therapy.

  7. Phage choice, isolation, and preparation for phage therapy.

    PubMed

    Gill, Jason J; Hyman, Paul

    2010-01-01

    Phage therapy is the use of bacteriophages--viruses that use bacteria as their host cells--as biocontrol agents of bacteria. Currently, phage therapy is garnering renewed interest as bacterial resistance to antibiotics becomes widespread. Historically, phage therapy was largely abandoned in the West in the 1940s due to the advent of chemical antibiotics, and the unreliability of phage-based treatments when compared to antibiotics. The choice of phage strain and the methods of phage preparation are now thought to have been critical to the success or failure of phage therapy trials. Insufficiently virulent phages, especially against actual target bacteria, allow bacteria to survive treatment while poorly prepared phage stocks, even if of sufficiently virulent phages, lack the numbers of viable phages required for adequate treatment. In this review we discuss the factors that determine the methods of isolation, analysis, and identification of phage species for phage therapy. We go on to discuss the various methods available for purifying phages as well as considerations of the degree of purification which is sufficient for various applications. Lastly, we review the current practices used to prepare commercial phage therapy products.

  8. Landscape Phage as a Molecular Recognition Interface for Detection Devices.

    PubMed

    Petrenko, Valery A

    2008-02-01

    Filamentous phages are thread-shaped bacterial viruses. Their outer coat is a tube formed by thousands equal copies of the major coat protein pVIII. Libraries of random peptides fused to pVIII domains were used for selection of phages probes specific for a panel of test antigens and biological threat agents. Because the viral carrier in the phage borne bio-selective probes is infective, they can be cloned individually and propagated indefinitely without needs of their chemical synthesis or reconstructing. As a new bioselective material, landscape phages combine unique characteristics of affinity reagents and self assembling proteins. Biorecognition layers formed by the phage-derived probes bind biological agents with high affinity and specificity and generate detectable signals in analytical platforms. The performance of phage-derived materials as biorecognition interface was illustrated by detection of Bacillus anthracis spores and Salmonella typhimurium cells. With further refinement, the phage-derived analytical platforms for detecting and monitoring of numerous threat agents may be developed, since phage interface against any bacteria, virus or toxin may be readily selected from the landscape phage libraries. As an interface in the field-use detectors, they may be superior to antibodies, since they are inexpensive, highly specific and strong binders, resistant to high temperatures and environmental stresses.

  9. Landscape Phage as a Molecular Recognition Interface for Detection Devices

    PubMed Central

    Petrenko, Valery A.

    2008-01-01

    Filamentous phages are thread-shaped bacterial viruses. Their outer coat is a tube formed by thousands equal copies of the major coat protein pVIII. Libraries of random peptides fused to pVIII domains were used for selection of phages probes specific for a panel of test antigens and biological threat agents. Because the viral carrier in the phage borne bio-selective probes is infective, they can be cloned individually and propagated indefinitely without needs of their chemical synthesis or reconstructing. As a new bioselective material, landscape phages combine unique characteristics of affinity reagents and self assembling proteins. Biorecognition layers formed by the phage-derived probes bind biological agents with high affinity and specificity and generate detectable signals in analytical platforms. The performance of phage-derived materials as biorecognition interface was illustrated by detection of Bacillus anthracis spores and Salmonella typhimurium cells. With further refinement, the phage-derived analytical platforms for detecting and monitoring of numerous threat agents may be developed, since phage interface against any bacteria, virus or toxin may be readily selected from the landscape phage libraries. As an interface in the field-use detectors, they may be superior to antibodies, since they are inexpensive, highly specific and strong binders, resistant to high temperatures and environmental stresses. PMID:19190724

  10. Phage display as a promising approach for vaccine development.

    PubMed

    Aghebati-Maleki, Leili; Bakhshinejad, Babak; Baradaran, Behzad; Motallebnezhad, Morteza; Aghebati-Maleki, Ali; Nickho, Hamid; Yousefi, Mehdi; Majidi, Jafar

    2016-09-29

    Bacteriophages are specific antagonists to bacterial hosts. These viral entities have attracted growing interest as optimal vaccine delivery vehicles. Phages are well-matched for vaccine design due to being highly stable under harsh environmental conditions, simple and inexpensive large scale production, and potent adjuvant capacities. Phage vaccines have efficient immunostimulatory effects and present a high safety profile because these viruses have made a constant relationship with the mammalian body during a long-standing evolutionary period. The birth of phage display technology has been a turning point in the development of phage-based vaccines. Phage display vaccines are made by expressing multiple copies of an antigen on the surface of immunogenic phage particles, thereby eliciting a powerful and effective immune response. Also, the ability to produce combinatorial peptide libraries with a highly diverse pool of randomized ligands has transformed phage display into a straightforward, versatile and high throughput screening methodology for the identification of potential vaccine candidates against different diseases in particular microbial infections. These libraries can be conveniently screened through an affinity selection-based strategy called biopanning against a wide variety of targets for the selection of mimotopes with high antigenicity and immunogenicity. Also, they can be panned against the antiserum of convalescent individuals to recognize novel peptidomimetics of pathogen-related epitopes. Phage display has represented enormous promise for finding new strategies of vaccine discovery and production and current breakthroughs promise a brilliant future for the development of different phage-based vaccine platforms.

  11. Marine viruses exploit their host's two-component regulatory system in response to resource limitation.

    PubMed

    Zeng, Qinglu; Chisholm, Sallie W

    2012-01-24

    Phosphorus (P) availability, which often limits productivity in marine ecosystems, shapes the P-acquisition gene content of the marine cyanobacteria Prochlorococcus [1-4] and its viruses (cyanophages). As in other bacteria, in Prochlorococcus these genes are regulated by the PhoR/PhoB two-component regulatory system that is used to sense and respond to P availability and is typical of signal transduction systems found in diverse organisms. Replication of cyanophage genomes requires a significant amount of P, and therefore these phages could gain a fitness advantage by influencing host P acquisition in P-limited environments. Here we show that the transcription of a phage-encoded high-affinity phosphate-binding protein gene (pstS) and alkaline phosphatase gene (phoA)-both of which have host orthologs-is elevated when the phages are infecting host cells that are P starved, relative to P-replete control cells. We further show that the phage versions of these genes are regulated by the host's PhoR/PhoB system. This not only extends this fundamental signaling mechanism to viruses but is also the first example of regulation of lytic phage genes by nutrient limitation in the host. As such, it reveals an important new dimension of the intimate coevolution of phage, host, and environment in the world's oceans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Polyparasitism Is Associated with Increased Disease Severity in Toxoplasma gondii-Infected Marine Sentinel Species

    PubMed Central

    Gibson, Amanda K.; Raverty, Stephen; Lambourn, Dyanna M.; Huggins, Jessica; Magargal, Spencer L.; Grigg, Michael E.

    2011-01-01

    In 1995, one of the largest outbreaks of human toxoplasmosis occurred in the Pacific Northwest region of North America. Genetic typing identified a novel Toxoplasma gondii strain linked to the outbreak, in which a wide spectrum of human disease was observed. For this globally-distributed, water-borne zoonosis, strain type is one variable influencing disease, but the inability of strain type to consistently explain variations in disease severity suggests that parasite genotype alone does not determine the outcome of infection. We investigated polyparasitism (infection with multiple parasite species) as a modulator of disease severity by examining the association of concomitant infection of T. gondii and the related parasite Sarcocystis neurona with protozoal disease in wild marine mammals from the Pacific Northwest. These hosts ostensibly serve as sentinels for the detection of terrestrial parasites implicated in water-borne epidemics of humans and wildlife in this endemic region. Marine mammals (151 stranded and 10 healthy individuals) sampled over 6 years were assessed for protozoal infection using multi-locus PCR-DNA sequencing directly from host tissues. Genetic analyses uncovered a high prevalence and diversity of protozoa, with 147/161 (91%) of our sampled population infected. From 2004 to 2009, the relative frequency of S. neurona infections increased dramatically, surpassing that of T. gondii. The majority of T. gondii infections were by genotypes bearing Type I lineage alleles, though strain genotype was not associated with disease severity. Significantly, polyparasitism with S. neurona and T. gondii was common (42%) and was associated with higher mortality and more severe protozoal encephalitis. Our finding of widespread polyparasitism among marine mammals indicates pervasive contamination of waterways by zoonotic agents. Furthermore, the significant association of concomitant infection with mortality and protozoal encephalitis identifies polyparasitism as

  13. Safety and efficacy of phage therapy via the intravenous route.

    PubMed

    Speck, Peter; Smithyman, Anthony

    2016-02-01

    Increasing development of antimicrobial resistance is driving a resurgence in interest in phage therapy: the use of bacteriophages to treat bacterial infections. As the lytic action of bacteriophages is unaffected by the antibiotic resistance status of their bacterial target, it is thought that phage therapy may have considerable potential in the treatment of a wide range of topical and localized infections. As yet this interest has not extended to intravenous (IV) use, which is surprising given that the historical record shows that phages are likely to be safe and effective when delivered by this route. Starting almost 100 years ago, phages were administered intravenously in treatment of systemic infections including typhoid, and Staphylococcal bacteremia. There was extensive IV use of phages in the 1940s to treat typhoid, reportedly with outstanding efficacy and safety. The safety of IV phage administration is also underpinned by the detailed work of Ochs and colleagues in Seattle who have over four decades' experience with IV injection into human subjects of large doses of highly purified coliphage PhiX174. Though these subjects included a large number of immune-deficient children, no serious side effects were observed over this extended time period. The large and continuing global health problems of typhoid and Staphylococcus aureus are exacerbated by the increasing antibiotic resistance of these pathogens. We contend that these infections are excellent candidates for use of IV phage therapy.

  14. Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa.

    PubMed

    Le, Shuai; Yao, Xinyue; Lu, Shuguang; Tan, Yinling; Rao, Xiancai; Li, Ming; Jin, Xiaolin; Wang, Jing; Zhao, Yan; Wu, Nicholas C; Lux, Renate; He, Xuesong; Shi, Wenyuan; Hu, Fuquan

    2014-04-28

    Bacteria develop a broad range of phage resistance mechanisms, such as prevention of phage adsorption and CRISPR/Cas system, to survive phage predation. In this study, Pseudomonas aeruginosa PA1 strain was infected with lytic phage PaP1, and phage-resistant mutants were selected. A high percentage (~30%) of these mutants displayed red pigmentation phenotype (Red mutant). Through comparative genomic analysis, one Red mutant PA1r was found to have a 219.6 kb genomic fragment deletion, which contains two key genes hmgA and galU related to the observed phenotypes. Deletion of hmgA resulted in the accumulation of a red compound homogentisic acid; while A galU mutant is devoid of O-antigen, which is required for phage adsorption. Intriguingly, while the loss of galU conferred phage resistance, it significantly attenuated PA1r in a mouse infection experiment. Our study revealed a novel phage resistance mechanism via chromosomal DNA deletion in P. aeruginosa.

  15. Isolation of Phages for Phage Therapy: A Comparison of Spot Tests and Efficiency of Plating Analyses for Determination of Host Range and Efficacy

    PubMed Central

    Khan Mirzaei, Mohammadali; Nilsson, Anders S.

    2015-01-01

    Phage therapy, treating bacterial infections with bacteriophages, could be a future alternative to antibiotic treatment of bacterial infections. There are, however, several problems to be solved, mainly associated to the biology of phages, the interaction between phages and their bacterial hosts, but also to the vast variation of pathogenic bacteria which implies that large numbers of different phages are going to be needed. All of these phages must under present regulation of medical products undergo extensive clinical testing before they can be applied. It will consequently be of great economic importance that effective and versatile phages are selected and collected into phage libraries, i.e., the selection must be carried out in a way that it results in highly virulent phages with broad host ranges. We have isolated phages using the Escherichia coli reference (ECOR) collection and compared two methods, spot testing and efficiency of plating (EOP), which are frequently used to identify phages suitable for phage therapy. The analyses of the differences between the two methods show that spot tests often overestimate both the overall virulence and the host range and that the results are not correlated to the results of EOP assays. The conclusion is that single dilution spot tests cannot be used for identification and selection of phages to a phage library and should be replaced by EOP assays. The difference between the two methods can be caused by many factors. We have analysed if the differences and lack of correlation could be caused by lysis from without, bacteriocins in the phage lysate, or by the presence of prophages harbouring genes coding for phage resistance systems in the genomes of the bacteria in the ECOR collection. PMID:25761060

  16. Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy.

    PubMed

    Khan Mirzaei, Mohammadali; Nilsson, Anders S

    2015-01-01

    Phage therapy, treating bacterial infections with bacteriophages, could be a future alternative to antibiotic treatment of bacterial infections. There are, however, several problems to be solved, mainly associated to the biology of phages, the interaction between phages and their bacterial hosts, but also to the vast variation of pathogenic bacteria which implies that large numbers of different phages are going to be needed. All of these phages must under present regulation of medical products undergo extensive clinical testing before they can be applied. It will consequently be of great economic importance that effective and versatile phages are selected and collected into phage libraries, i.e., the selection must be carried out in a way that it results in highly virulent phages with broad host ranges. We have isolated phages using the Escherichia coli reference (ECOR) collection and compared two methods, spot testing and efficiency of plating (EOP), which are frequently used to identify phages suitable for phage therapy. The analyses of the differences between the two methods show that spot tests often overestimate both the overall virulence and the host range and that the results are not correlated to the results of EOP assays. The conclusion is that single dilution spot tests cannot be used for identification and selection of phages to a phage library and should be replaced by EOP assays. The difference between the two methods can be caused by many factors. We have analysed if the differences and lack of correlation could be caused by lysis from without, bacteriocins in the phage lysate, or by the presence of prophages harbouring genes coding for phage resistance systems in the genomes of the bacteria in the ECOR collection.

  17. Proteomic Analysis of a Novel Bacillus Jumbo Phage Revealing Glycoside Hydrolase As Structural Component

    PubMed Central

    Yuan, Yihui; Gao, Meiying

    2016-01-01

    Tailed phages with genomes of larger than 200 kbp are classified as Jumbo phages and exhibited extremely high uncharted diversity. The genomic annotation of Jumbo phage is often disappointing because most of the predicted proteins, including structural proteins, failed to make good hits to the sequences in the databases. In this study, 23 proteins of a novel Bacillus Jumbo phage, vB_BpuM_BpSp, were identified as phage structural proteins by the structural proteome analysis, including 14 proteins of unknown function, 5 proteins with predicted function as structural proteins, a glycoside hydrolase, a Holliday junction resolvase, a RNA-polymerase β-subunit, and a host-coding portal protein, which might be hijacked from the host strain during phage virion assembly. The glycoside hydrolase (Gp255) was identified as phage virion component and was found to interact with the phage baseplate protein. Gp255 shows specific lytic activity against the phage host strain GR8 and has high temperature tolerance. In situ peptidoglycan-hydrolyzing activities analysis revealed that the expressed Gp255 and phage structural proteome exhibited glycoside hydrolysis activity against the tested GR8 cell extracts. This study identified the first functional individual structural glycoside hydrolase in phage virion. The presence of activated glycoside hydrolase in phage virions might facilitate the injection of the phage genome during infection by forming pores on the bacterial cell wall. PMID:27242758

  18. Proteomic Analysis of a Novel Bacillus Jumbo Phage Revealing Glycoside Hydrolase As Structural Component.

    PubMed

    Yuan, Yihui; Gao, Meiying

    2016-01-01

    Tailed phages with genomes of larger than 200 kbp are classified as Jumbo phages and exhibited extremely high uncharted diversity. The genomic annotation of Jumbo phage is often disappointing because most of the predicted proteins, including structural proteins, failed to make good hits to the sequences in the databases. In this study, 23 proteins of a novel Bacillus Jumbo phage, vB_BpuM_BpSp, were identified as phage structural proteins by the structural proteome analysis, including 14 proteins of unknown function, 5 proteins with predicted function as structural proteins, a glycoside hydrolase, a Holliday junction resolvase, a RNA-polymerase β-subunit, and a host-coding portal protein, which might be hijacked from the host strain during phage virion assembly. The glycoside hydrolase (Gp255) was identified as phage virion component and was found to interact with the phage baseplate protein. Gp255 shows specific lytic activity against the phage host strain GR8 and has high temperature tolerance. In situ peptidoglycan-hydrolyzing activities analysis revealed that the expressed Gp255 and phage structural proteome exhibited glycoside hydrolysis activity against the tested GR8 cell extracts. This study identified the first functional individual structural glycoside hydrolase in phage virion. The presence of activated glycoside hydrolase in phage virions might facilitate the injection of the phage genome during infection by forming pores on the bacterial cell wall.

  19. Genomic and proteomic characterization of two novel siphovirus infecting the sedentary facultative epibiont cyanobacterium Acaryochloris marina.

    PubMed

    Chan, Yi-Wah; Millard, Andrew D; Wheatley, Peter J; Holmes, Antony B; Mohr, Remus; Whitworth, Anna L; Mann, Nicholas H; Larkum, Anthony W D; Hess, Wolfgang R; Scanlan, David J; Clokie, Martha R J

    2015-11-01

    Acaryochloris marina is a symbiotic species of cyanobacteria that is capable of utilizing far-red light. We report the characterization of the phages A-HIS1 and A-HIS2, capable of infecting Acaryochloris. Morphological characterization of these phages places them in the family Siphoviridae. However, molecular characterization reveals that they do not show genetic similarity with any known siphoviruses. While the phages do show synteny between each other, the nucleotide identity between the phages is low at 45-67%, suggesting they diverged from each other some time ago. The greatest number of genes shared with another phage (a myovirus infecting marine Synechococcus) was four. Unlike most other cyanophages and in common with the Siphoviridae infecting Synechococcus, no photosynthesis-related genes were found in the genome. CRISPR (clustered regularly interspaced short palindromic repeats) spacers from the host Acaryochloris had partial matches to sequences found within the phages, which is the first time CRISPRs have been reported in a cyanobacterial/cyanophage system. The phages also encode a homologue of the proteobacterial RNase T. The potential function of RNase T in the mark-up or digestion of crRNA hints at a novel mechanism for evading the host CRISPR system. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Sinorhizobium meliloti Phage ΦM9 Defines a New Group of T4 Superfamily Phages with Unusual Genomic Features but a Common T=16 Capsid

    PubMed Central

    Johnson, Matthew C.; Tatum, Kelsey B.; Lynn, Jason S.; Brewer, Tess E.; Lu, Stephen; Washburn, Brian K.

    2015-01-01

    ABSTRACT Relatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of the Sinorhizobium meliloti-infecting T4 superfamily phage ΦM9. This phage and its close relative Rhizobium phage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-like S. meliloti phages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 and S. meliloti phage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide. IMPORTANCE Despite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long

  1. The use of phage FCL-2 as an alternative to chemotherapy against columnaris disease in aquaculture.

    PubMed

    Laanto, Elina; Bamford, Jaana K H; Ravantti, Janne J; Sundberg, Lotta-Riina

    2015-01-01

    Flavobacterium columnare, the causative agent of columnaris disease in fish, causes millions of dollars of losses in the US channel catfish industry alone, not to mention aquaculture industry worldwide. Novel methods are needed for the control and treatment of bacterial diseases in aquaculture to replace traditionally used chemotherapies. A potential solution could be the use of phages, i.e., bacterial viruses, host-specific and self-enriching particles that can be can easily distributed via water flow. We examined the efficacy of phages to combat columnaris disease. A previously isolated phage, FCL-2, infecting F. columnare, was characterized by sequencing. The 47 142 bp genome of the phage had G + C content of 30.2%, and the closest similarities regarding the structural proteins were found in Cellulophaga phage phiSM. Under controlled experimental conditions, two host fish species, rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio), were used to study the success of phage therapy to prevent F. columnare infections. The survival of both fish species was significantly higher in the presence of the phage. Hundred percent of the zebrafish and 50% of the rainbow trout survived in the phage treatment (survival without phage 0 and 8.3%, respectively). Most importantly, the rainbow trout population was rescued from infection by a single addition of the phage into the water in a flow-through fish tank system. Thus, F. columnare could be used as a model system to test the benefits and risks of phage therapy on a larger scale.

  2. Biofilm control with natural and genetically-modified phages.

    PubMed

    Motlagh, Amir Mohaghegh; Bhattacharjee, Ananda Shankar; Goel, Ramesh

    2016-04-01

    Bacteriophages, as the most dominant and diverse entities in the universe, have the potential to be one of the most promising therapeutic agents. The emergence of multidrug-resistant bacteria and the antibiotic crisis in the last few decades have resulted in a renewed interest in phage therapy. Furthermore, bacteriophages, with the capacity to rapidly infect and overcome bacterial resistance, have demonstrated a sustainable approach against bacterial pathogens-particularly in biofilm. Biofilm, as complex microbial communities located at interphases embedded in a matrix of bacterial extracellular polysaccharide substances (EPS), is involved in health issues such as infections associated with the use of biomaterials and chronic infections by multidrug resistant bacteria, as well as industrial issues such as biofilm formation on stainless steel surfaces in food industry and membrane biofouling in water and wastewater treatment processes. In this paper, the most recent studies on the potential of phage therapy using natural and genetically-modified lytic phages and their associated enzymes in fighting biofilm development in various fields including engineering, industry, and medical applications are reviewed. Phage-mediated prevention approaches as an indirect phage therapy strategy are also explored in this review. In addition, the limitations of these approaches and suggestions to overcome these constraints are discussed to enhance the efficiency of phage therapy process. Finally, future perspectives and directions for further research towards a better understanding of phage therapy to control biofilm are recommended.

  3. Life-Style and Genome Structure of Marine Pseudoalteromonas Siphovirus B8b Isolated from the Northwestern Mediterranean Sea

    SciTech Connect

    Lara, Elena; Holmfeldt, Karin; Solonenko, Natalie; Sà, Elisabet Laia; Ignacio-Espinoza, J. Cesar; Cornejo-Castillo, Francisco M.; Verberkmoes, Nathan C.; Vaqué, Dolors; Sullivan, Matthew B.; Acinas, Silvia G.; Kellogg, Christina A.

    2015-01-14

    Marine viruses (phages) alter bacterial diversity and evolution with impacts on marine biogeochemical cycles, and yet few well-developed model systems limit opportunities for hypothesis testing. We isolate phage B8b from the Mediterranean Sea using Pseudoalteromonas sp. QC-44 as a host and characterize it using myriad techniques. Morphologically, phage B8b was classified as a member of the Siphoviridae family. One-step growth analyses showed that this siphovirus had a latent period of 70 min and released 172 new viral particles per cell. In the host range analysis against 89 bacterial host strains revealed that phage B8b infected 3 Pseudoalteromonas strains (52 tested, >99.9% 16S rRNA gene nucleotide identity) and 1 non-Pseudoaltermonas strain belonging to Alteromonas sp. (37 strains from 6 genera tested), which helps bound the phylogenetic distance possible in a phage-mediated horizontal gene transfer event. The Pseudoalteromonas phage B8b genome size was 42.7 kb, with clear structural and replication modules where the former were delineated leveraging identification of 16 structural genes by virion structural proteomics, only 4 of which had any similarity to known structural proteins. In nature, this phage was common in coastal marine environments in both photic and aphotic layers (found in 26.5% of available viral metagenomes), but not abundant in any sample (average per sample abundance was 0.65% of the reads). Together these data improve our understanding of siphoviruses in nature, and provide foundational information for a new 'rare virosphere' phage-host model system.

  4. Life-Style and Genome Structure of Marine Pseudoalteromonas Siphovirus B8b Isolated from the Northwestern Mediterranean Sea

    DOE PAGES

    Lara, Elena; Holmfeldt, Karin; Solonenko, Natalie; ...

    2015-01-14

    Marine viruses (phages) alter bacterial diversity and evolution with impacts on marine biogeochemical cycles, and yet few well-developed model systems limit opportunities for hypothesis testing. We isolate phage B8b from the Mediterranean Sea using Pseudoalteromonas sp. QC-44 as a host and characterize it using myriad techniques. Morphologically, phage B8b was classified as a member of the Siphoviridae family. One-step growth analyses showed that this siphovirus had a latent period of 70 min and released 172 new viral particles per cell. In the host range analysis against 89 bacterial host strains revealed that phage B8b infected 3 Pseudoalteromonas strains (52 tested,more » >99.9% 16S rRNA gene nucleotide identity) and 1 non-Pseudoaltermonas strain belonging to Alteromonas sp. (37 strains from 6 genera tested), which helps bound the phylogenetic distance possible in a phage-mediated horizontal gene transfer event. The Pseudoalteromonas phage B8b genome size was 42.7 kb, with clear structural and replication modules where the former were delineated leveraging identification of 16 structural genes by virion structural proteomics, only 4 of which had any similarity to known structural proteins. In nature, this phage was common in coastal marine environments in both photic and aphotic layers (found in 26.5% of available viral metagenomes), but not abundant in any sample (average per sample abundance was 0.65% of the reads). Together these data improve our understanding of siphoviruses in nature, and provide foundational information for a new 'rare virosphere' phage-host model system.« less

  5. Life-style and genome structure of marine Pseudoalteromonas siphovirus B8b isolated from the northwestern Mediterranean Sea.

    PubMed

    Lara, Elena; Holmfeldt, Karin; Solonenko, Natalie; Sà, Elisabet Laia; Ignacio-Espinoza, J Cesar; Cornejo-Castillo, Francisco M; Verberkmoes, Nathan C; Vaqué, Dolors; Sullivan, Matthew B; Acinas, Silvia G

    2015-01-01

    Marine viruses (phages) alter bacterial diversity and evolution with impacts on marine biogeochemical cycles, and yet few well-developed model systems limit opportunities for hypothesis testing. Here we isolate phage B8b from the Mediterranean Sea using Pseudoalteromonas sp. QC-44 as a host and characterize it using myriad techniques. Morphologically, phage B8b was classified as a member of the Siphoviridae family. One-step growth analyses showed that this siphovirus had a latent period of 70 min and released 172 new viral particles per cell. Host range analysis against 89 bacterial host strains revealed that phage B8b infected 3 Pseudoalteromonas strains (52 tested, >99.9% 16S rRNA gene nucleotide identity) and 1 non-Pseudoaltermonas strain belonging to Alteromonas sp. (37 strains from 6 genera tested), which helps bound the phylogenetic distance possible in a phage-mediated horizontal gene transfer event. The Pseudoalteromonas phage B8b genome size was 42.7 kb, with clear structural and replication modules where the former were delineated leveraging identification of 16 structural genes by virion structural proteomics, only 4 of which had any similarity to known structural proteins. In nature, this phage was common in coastal marine environments in both photic and aphotic layers (found in 26.5% of available viral metagenomes), but not abundant in any sample (average per sample abundance was 0.65% of the reads). Together these data improve our understanding of siphoviruses in nature, and provide foundational information for a new 'rare virosphere' phage-host model system.

  6. Filamentous bacteriophage: biology, phage display and nanotechnology applications.

    PubMed

    Rakonjac, Jasna; Bennett, Nicholas J; Spagnuolo, Julian; Gagic, Dragana; Russel, Marjorie

    2011-01-01

    Filamentous bacteriophage, long and thin filaments that are secreted from the host cells without killing them, have been an antithesis to the standard view of head-and-tail bacterial killing machines. Episomally replicating filamentous phage Ff of Escherichia coli provide the majority of information about the principles and mechanisms of filamentous phage infection, episomal replication and assembly. Chromosomally- integrated "temperate" filamentous phage have complex replication and integration, which are currently under active investigation. The latter are directly or indirectly implicated in diseases caused by bacterial pathogens Vibrio cholerae, Pseudomonas aeruginosa and Neisseria meningitidis. In the first half of the review, both the Ff and temperate phage are described and compared. A large section of the review is devoted to an overview of phage display technology and its applications in nanotechnology.

  7. Filamentous brown algae infected by the marine, holocarpic oomycete Eurychasma dicksonii

    PubMed Central

    Tsirigoti, Amerssa; Kuepper, Frithjof C; Gachon, Claire MM; Katsaros, Christos

    2013-01-01

    The important role of the cytoskeletal scaffold is increasingly recognized in host-pathogen interactions. The cytoskeleton potentially functions as a weapon for both the plants defending themselves against fungal or oomycete parasites, and for the pathogens trying to overcome the resisting barrier of the plants. This concept, however, had not been investigated in marine algae so far. We are opening this scientific chapter with our study on the functional implications of the cytoskeleton in 3 filamentous brown algal species infected by the marine oomycete Eurychasma dicksonii. Our observations suggest that the cytoskeleton is involved in host defense responses and in fundamental developmental stages of E. dicksonii in its algal host. PMID:24025487

  8. Isolation and characterization of five lytic bacteriophages infecting a Vibrio strain closely related to Vibrio owensii.

    PubMed

    Yu, Yan-Ping; Gong, Ting; Jost, Günter; Liu, Wen-Hua; Ye, De-Zan; Luo, Zhu-Hua

    2013-11-01

    Vibrio owensii is a potential bacterial pathogen in marine aquaculture system. In this study, five lytic phages specific against Vibrio strain B8D, closely related to V. owensii, were isolated from seawater of an abalone farm. The phages were characterized with respect to morphology, genome size, growth phenotype, as well as thermal, and pH stability. All phages were found to belong to the family Siphoviridae with long noncontractile tails and terminal fibers. Restriction analysis indicated that the five phages were dsDNA viruses with molecular weights ranging from c. 30 to 48 kb. One-step growth experiments revealed that the phages were heterogeneous in latent periods (10-70 min), rise periods (40-70 min), and burst sizes [23-331 plaque-forming units (PFU) per infected cell] at the same host strain. All phages were thermal stable and were tolerant to a wide range of pH. The results indicated that these phages could be potential candidates of a phage cocktail for biological control of V. owensii in aquaculture systems. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Convergent evolution toward an improved growth rate and a reduced resistance range in Prochlorococcus strains resistant to phage.

    PubMed

    Avrani, Sarit; Lindell, Debbie

    2015-04-28

    Prochlorococcus is an abundant marine cyanobacterium that grows rapidly in the environment and contributes significantly to global primary production. This cyanobacterium coexists with many cyanophages in the oceans, likely aided by resistance to numerous co-occurring phages. Spontaneous resistance occurs frequently in Prochlorococcus and is often accompanied by a pleiotropic fitness cost manifested as either a reduced growth rate or enhanced infection by other phages. Here, we assessed the fate of a number of phage-resistant Prochlorococcus strains, focusing on those with a high fitness cost. We found that phage-resistant strains continued evolving toward an improved growth rate and a narrower resistance range, resulting in lineages with phenotypes intermediate between those of ancestral susceptible wild-type and initial resistant substrains. Changes in growth rate and resistance range often occurred in independent events, leading to a decoupling of the selection pressures acting on these phenotypes. These changes were largely the result of additional, compensatory mutations in noncore genes located in genomic islands, although genetic reversions were also observed. Additionally, a mutator strain was identified. The similarity of the evolutionary pathway followed by multiple independent resistant cultures and clones suggests they undergo a predictable evolutionary pathway. This process serves to increase both genetic diversity and infection permutations in Prochlorococcus populations, further augmenting the complexity of the interaction network between Prochlorococcus and its phages in nature. Last, our findings provide an explanation for the apparent paradox of a multitude of resistant Prochlorococcus cells in nature that are growing close to their maximal intrinsic growth rates.

  10. Electron microscope evidence of virus infection in cultured marine fish

    NASA Astrophysics Data System (ADS)

    Sun, Xiu-Qin; Zhang, Jin-Xing; Qu, Ling-Yun

    2000-09-01

    Electron microscope investigation on the red sea bream ( Pagrosomus major), bastard halibut ( Paralichthys olivaceus) and stone flounder ( Kareius bicoloratus) in North China revealed virus infection in the bodies of the dead and diseased fish. These viruses included the lymphocystis disease virus (LDV), parvovirus, globular virus, and a kind of baculavirus which was not discovered and reported before and is now tentatively named baculavirus of stone flounder ( Kareius bicoloratus).

  11. Antiphage activity of sera during phage therapy in relation to its outcome.

    PubMed

    Łusiak-Szelachowska, Marzanna; Żaczek, Maciej; Weber-Dąbrowska, Beata; Międzybrodzki, Ryszard; Letkiewicz, Sławomir; Fortuna, Wojciech; Rogóż, Paweł; Szufnarowski, Krzysztof; Jończyk-Matysiak, Ewa; Olchawa, Ewa; Walaszek, Kinga M; Górski, Andrzej

    2017-02-01

    The aim was to study the association between the phage neutralization of patients' sera and the clinical outcome of phage therapy (PT). About 62 patients with various bacterial infections receiving PT as well as 30 healthy volunteers were studied. Antiphage activity of sera (AAS) was examined using the phage neutralization test of different types of phages before and during PT in relation to the route of phage administration and correlated with the results of PT. The analysis of the association between AAS level and clinical results indicated that the level of AAS is not correlated with the outcome of PT.

  12. Core Lipopolysaccharide-Specific Phage SSU5 as an Auxiliary Component of a Phage Cocktail for Salmonella Biocontrol

    PubMed Central

    Kim, Minsik; Kim, Sujin; Park, Bookyung

    2014-01-01

    Salmonella spp. are among the major food-borne pathogens that cause mild diarrhea to severe bacteremia. The use of bacteriophages to control various food-borne pathogens, including Salmonella, has emerged as a promising alternative to traditional chemotherapy. We isolated the Siphoviridae family phage SSU5, which can infect only rough strains of Salmonella. The blocking of SSU5 adsorption by periodate treatment of host Salmonella cells and spotting and adsorption assays with mutants that contain various truncations in their lipopolysaccharide (LPS) cores revealed that the outer core region of the LPS is a receptor of SSU5. SSU5 could infect O-antigen (O-Ag)-deficient Salmonella mutants that developed by challenging of O-Ag-specific phages, and consequently, it delayed the emergence of the phage-resistant Salmonella population in broth culture when treated together with phages using O-Ag as a receptor. Therefore, these results suggested that phage SSU5 would be a promising auxiliary component of a phage cocktail to control rough strains of Salmonella enterica serovar Typhimurium, which might emerge as resistant mutants upon infection by phages using O-Ag as a receptor. PMID:24271179

  13. Visualizing Adsorption of Cyanophage P-SSP7 onto Marine Prochlorococcus

    PubMed Central

    Murata, Kazuyoshi; Zhang, Qinfen; Gerardo Galaz-Montoya, Jesús; Fu, Caroline; Coleman, Maureen L.; Osburne, Marcia S.; Schmid, Michael F.; Sullivan, Matthew B.; Chisholm, Sallie W.; Chiu, Wah

    2017-01-01

    Marine cyanobacteria perform roughly a quarter of global carbon fixation, and cyanophages that infect them liberate some of this carbon during infection and cell lysis. Studies of the cyanobacterium Prochlorococcus MED4 and its associated cyanophage P-SSP7 have revealed complex gene expression dynamics once infection has begun, but the initial cyanophage-host interactions remain poorly understood. Here, we used single particle cryo-electron tomography (cryo-ET) to investigate cyanophage-host interactions in this model system, based on 170 cyanophage-to-host adsorption events. Subtomogram classification and averaging revealed three main conformations characterized by different angles between the phage tail and the cell surface. Namely, phage tails were (i) parallel to, (ii) ~45 degrees to, or (iii) perpendicular to the cell surface. Furthermore, different conformations of phage tail fibers correlated with the aforementioned orientations of the tails. We also observed density beyond the tail tip in vertically-oriented phages that had penetrated the cell wall, capturing the final stage of adsorption. Together, our data provide a quantitative characterization of the orientation of phages as they adsorb onto cells, and suggest that cyanophages that abut their cellular targets are only transiently in the “perpendicular” orientation required for successful infection. PMID:28281671

  14. [Anisakis simplex larvae: infection status in marine fishes for sale in Shantou].

    PubMed

    Chen, Jun-Hua; Xu, Zhi-Xia; Xu, Guang-Xing; Huang, Jian-Yun; Chen, Hong-Hui; Shi, Shi-Zun; Wu, Xiu-Yang; Liang, Jing-Jing

    2014-06-01

    To investigate the infection status of Anisakis simplex larvae in marine fishes for sale in Shantou. Marine fishes were randomly collected from markets in Shantou City from February to December 2013, and then classified. The viscera and muscle of each fish were carefully dissected and thoroughly examined for anisakids. The larvae were examined under a light microscope. The infection rate and intensity of Anisakis simplex larvae were calculated. A total of 382 fish specimens belonging to 52 species were examined. 42 out of 52 species (80.8%) were found infected by A. simplex larvae. The overall infection rate reached 47.4% (181/382), and average 5.5 larvae parasitized per infected fish (995/181). The survival rate of larvae was 100%. The highest infection rate observed was 100% in Scomber australasicus (4/4), Trachurus japonicus (9/9), Decapterus maruadsi (8/8), Lutjanus lutjanus (9/9), Argyrosomus argentatus (4/4), Nibea albiflora (4/4), Nemipterus bathybius (12/12), Trachinocephalus myops (7/7) and Mene maculata (9/9), followed by 16/18 in Pneumatophorus japonicus, 6/7 in Lutjanus ophuysenii and 5/6 in Lutjanus fulvus. A. simplex larvae were not detected in 10 fish species, namely, Megalaspis cordyla, Lutjanus argentimaculatus, Lutjanus fulviflamma, Acanthopagrus australis, Acanthopagrus latus, Plectorhinchus nigrus, Dentex tumifrons, Psenopsis anomala, Scatophagus argus, and Seriola lalandi. The infection intensity was the highest in Lutjanus fulvus (21.0 per fish), followed by Trachinocephalus myops (16.7 per fish), Saurida filamentosa (14.0 per fish) and Mene maculate (10.1 per fish). The lowest infection intensity was found in Rastrelliger kanagurta, Kaiwarinus equula, Atule mate, Lutjanus russellii, Plectorhinchus cinctus, Priacanthus tayenus, Branchiostegus argentatus, Branchiostegus albus, Sphyraena pinguis, Formio niger, Trachinotus blochii, Siganus fuscescens and Choerodon azurio (less than 2 per fish). The highest infection rate (34.3%, 131/382) was

  15. Coxiella burnetii infection of marine mammals in the Pacific Northwest, 1997-2010.

    PubMed

    Kersh, Gilbert J; Lambourn, Dyanna M; Raverty, Stephen A; Fitzpatrick, Kelly A; Self, Joshua S; Akmajian, Adrianne M; Jeffries, Steven J; Huggins, Jessica; Drew, Clifton P; Zaki, Sherif R; Massung, Robert F

    2012-01-01

    Q fever is a zoonotic disease caused by the bacterium Coxiella burnetii. Humans are commonly exposed via inhalation of aerosolized bacteria derived from the waste products of domesticated sheep and goats, and particularly from products generated during parturition. However, many other species can be infected with C. burnetii, and the host range and full zoonotic potential of C. burnetii is unknown. Two cases of C. burnetii infection in marine mammal placenta have been reported, but it is not known if this infection is common in marine mammals. To address this issue, placenta samples were collected from Pacific harbor seals (Phoca vitulina richardsi), harbor porpoises (Phocoena phocoena), and Steller sea lions (Eumetopias jubatus). Coxiella burnetii was detected by polymerase chain reaction (PCR) in the placentas of Pacific harbor seals (17/27), harbor porpoises (2/6), and Steller sea lions (1/2) collected in the Pacific Northwest. A serosurvey of 215 Pacific harbor seals sampled in inland and outer coastal areas of the Pacific Northwest showed that 34.0% (73/215) had antibodies against either Phase 1 or Phase 2 C. burnetii. These results suggest that C. burnetii infection is common among marine mammals in this region.

  16. Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy.

    PubMed

    Ryan, Elizabeth M; Gorman, Sean P; Donnelly, Ryan F; Gilmore, Brendan F

    2011-10-01

    Bacteriophages are bacteria-specific viruses that infect and, in the case of obligately lytic phages, destroy their host bacteria. Phage therapy has been used therapeutically to combat bacterial infections since their discovery. This paper reviewed recent in-vivo phage therapy studies, with a distinct focus on the effect of delivery routes, phage concentration and timing of administration on the success of the therapy. It was found that the most successful route of administration for the treatment of systemic infections was via the parenteral route. Oral delivery is mainly used to treat gastrointestinal infections. However, in some cases phages can also reach the systemic circulation. Local delivery (skin, ears, teeth) has proved extremely successful in the treatment of topical infections, as has the inhalation of phages for the treatment of lung infections. The ability of phages to prevent biofilm formation on medical devices has received much attention, mainly in the area of catheter coatings. This review also highlights areas in which phage therapy needs substantial development. Many papers were lacking in formulation details, with crude phage stocks being used in most cases. No phage stability data were included in any of the papers. The review concluded that although phage therapy is an excellent alternative for the treatment of bacterial infections, optimisation of formulations and long-term stability data is required before it can be widely used within a clinical setting. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  17. Computational models of populations of bacteria and lytic phage.

    PubMed

    Krysiak-Baltyn, Konrad; Martin, Gregory J O; Stickland, Anthony D; Scales, Peter J; Gras, Sally L

    2016-11-01

    The use of phages to control and reduce numbers of unwanted bacteria can be traced back to the early 1900s, when phages were explored as a tool to treat infections before the wide scale use of antibiotics. Recently, phage therapy has received renewed interest as a method to treat multiresistant bacteria. Phages are also widely used in the food industry to prevent the growth of certain bacteria in foods, and are currently being explored as a tool for use in bioremediation and wastewater treatment. Despite the large body of biological research on phages, relatively little attention has been given to computational modeling of the population dynamics of phage and bacterial interactions. The earliest model was described by Campbell in the 1960s. Subsequent modifications to this model include partial or complete resistance, multiple phage binding sites, and spatial heterogeneity. This review provides a general introduction to modeling of the population dynamics of bacteria and phage. The review introduces the basic model and relevant concepts and evaluates more complex variations of the basic model published to date, including a model of disease epidemics caused by infectious bacteria. Finally, the shortcomings and potential ways to improve the models are discussed.

  18. Safety analysis of a Russian phage cocktail: from metagenomic analysis to oral application in healthy human subjects.

    PubMed

    McCallin, Shawna; Alam Sarker, Shafiqul; Barretto, Caroline; Sultana, Shamima; Berger, Bernard; Huq, Sayeda; Krause, Lutz; Bibiloni, Rodrigo; Schmitt, Bertrand; Reuteler, Gloria; Brüssow, Harald

    2013-09-01

    Phage therapy has a long tradition in Eastern Europe, where preparations are comprised of complex phage cocktails whose compositions have not been described. We investigated the composition of a phage cocktail from the Russian pharmaceutical company Microgen targeting Escherichia coli/Proteus infections. Electron microscopy identified six phage types, with numerically T7-like phages dominating over T4-like phages. A metagenomic approach using taxonomical classification, reference mapping and de novo assembly identified 18 distinct phage types, including 7 genera of Podoviridae, 2 established and 2 proposed genera of Myoviridae, and 2 genera of Siphoviridae. De novo assembly yielded 7 contigs greater than 30 kb, including a 147-kb Myovirus genome and a 42-kb genome of a potentially new phage. Bioinformatic analysis did not reveal undesired genes and a small human volunteer trial did not associate adverse effects with oral phage exposure.

  19. Vibrio vulnificus phage PV94 is closely related to temperate phages of V. cholerae and other Vibrio species.

    PubMed

    Pryshliak, Mark; Hammerl, Jens A; Reetz, Jochen; Strauch, Eckhard; Hertwig, Stefan

    2014-01-01

    Vibrio vulnificus is an important pathogen which can cause serious infections in humans. Yet, there is limited knowledge on its virulence factors and the question whether temperate phages might be involved in pathogenicity, as is the case with V. cholerae. Thus far, only two phages (SSP002 and VvAW1) infecting V. vulnificus have been genetically characterized. These phages were isolated from the environment and are not related to Vibrio cholerae phages. The lack of information on temperate V. vulnificus phages prompted us to isolate those phages from lysogenic strains and to compare them with phages of other Vibrio species. In this study the temperate phage PV94 was isolated from a V. vulnificus biotype 1 strain by mitomycin C induction. PV94 is a myovirus whose genome is a linear double-stranded DNA of 33,828 bp with 5'-protruding ends. Sequence analysis of PV94 revealed a modular organization of the genome. The left half of the genome comprising the immunity region and genes for the integrase, terminase and replication proteins shows similarites to V. cholerae kappa phages whereas the right half containing genes for structural proteins is closely related to a prophage residing in V. furnissii NCTC 11218. We present the first genomic sequence of a temperate phage isolated from a human V. vulnificus isolate. The sequence analysis of the PV94 genome demonstrates the wide distribution of closely related prophages in various Vibrio species. Moreover, the mosaicism of the PV94 genome indicates a high degree of horizontal genetic exchange within the genus Vibrio, by which V. vulnificus might acquire virulence-associated genes from other species.

  20. Vibrio vulnificus Phage PV94 Is Closely Related to Temperate Phages of V. cholerae and Other Vibrio Species

    PubMed Central

    Reetz, Jochen; Strauch, Eckhard; Hertwig, Stefan

    2014-01-01

    Background Vibrio vulnificus is an important pathogen which can cause serious infections in humans. Yet, there is limited knowledge on its virulence factors and the question whether temperate phages might be involved in pathogenicity, as is the case with V. cholerae. Thus far, only two phages (SSP002 and VvAW1) infecting V. vulnificus have been genetically characterized. These phages were isolated from the environment and are not related to Vibrio cholerae phages. The lack of information on temperate V. vulnificus phages prompted us to isolate those phages from lysogenic strains and to compare them with phages of other Vibrio species. Results In this study the temperate phage PV94 was isolated from a V. vulnificus biotype 1 strain by mitomycin C induction. PV94 is a myovirus whose genome is a linear double-stranded DNA of 33,828 bp with 5′-protruding ends. Sequence analysis of PV94 revealed a modular organization of the genome. The left half of the genome comprising the immunity region and genes for the integrase, terminase and replication proteins shows similarites to V. cholerae kappa phages whereas the right half containing genes for structural proteins is closely related to a prophage residing in V. furnissii NCTC 11218. Conclusion We present the first genomic sequence of a temperate phage isolated from a human V. vulnificus isolate. The sequence analysis of the PV94 genome demonstrates the wide distribution of closely related prophages in various Vibrio species. Moreover, the mosaicism of the PV94 genome indicates a high degree of horizontal genetic exchange within the genus Vibrio, by which V. vulnificus might acquire virulence-associated genes from other species. PMID:24732980

  1. An outbreak of Salmonella enteritidis phage type 34a infection in primary school children: the use of visual aids and food preferences to overcome recall bias in a case control study.

    PubMed Central

    Linnane, E.; Roberts, R. J.; Mannion, P. T.

    2002-01-01

    Outbreaks of infectious intestinal disease are common in schools. Case control studies are useful in the investigation of infectious disease outbreaks but the time interval between illness and investigation can lead to recall bias, particularly in young children. We describe an outbreak of Salmonella enteritidis phage type 34a infection involving 54 clinical cases in two adjacent schools, and a novel approach to overcome recall bias. The likely dates of infection were identified from the epidemic curve. We created a visual display of the menu from those days and asked 9 cases and 18 matched controls to identify their food preferences from this display. Preference for chocolate mouse was significantly associated with illness (P = 0.006). The results of the case control study agreed with the findings of the environmental investigation. We believe our approach could be used in other circumstances, where subjects are young children or recall bias is a concern. PMID:12211594

  2. Phage mutations in response to CRISPR diversification in a bacterial population.

    PubMed

    Sun, Christine L; Barrangou, Rodolphe; Thomas, Brian C; Horvath, Philippe; Fremaux, Christophe; Banfield, Jillian F

    2013-02-01

    Interactions between bacteria and their coexisting phage populations impact evolution and can strongly influence biogeochemical processes in natural ecosystems. Periodically, mutation or migration results in exposure of a host to a phage to which it has no immunity; alternatively, a phage may be exposed to a host it cannot infect. To explore the processes by which coexisting, co-evolving hosts and phage populations establish, we cultured Streptococcus thermophilus DGCC7710 with phage 2972 and tracked CRISPR (clustered regularly interspaced short palindromic repeats) diversification and host-phage co-evolution in a population derived from a colony that acquired initial CRISPR-encoded immunity. After 1 week of co-culturing, the coexisting host-phage populations were metagenomically characterized using 454 FLX Titanium sequencing. The evolved genomes were compared with reference genomes to identify newly incorporated spacers in S. thermophilus DGCC7710 and recently acquired single-nucleotide polymorphisms (SNPs) in phage 2972. Following phage exposure, acquisition of immune elements (spacers) led to a genetically diverse population with multiple subdominant strain lineages. Phage mutations that circumvented three early immunization events were localized in the proto-spacer adjacent motif (PAM) or near the PAM end of the proto-spacer, suggesting a strong selective advantage for the phage that mutated in this region. The sequential fixation or near fixation of these single mutations indicates selection events so severe that single phage genotypes ultimately gave rise to all surviving lineages and potentially carried traits unrelated to immunity to fixation.

  3. Phage ΦPan70, a Putative Temperate Phage, Controls Pseudomonas aeruginosa in Planktonic, Biofilm and Burn Mouse Model Assays

    PubMed Central

    Holguín, Angela V.; Rangel, Guillermo; Clavijo, Viviana; Prada, Catalina; Mantilla, Marcela; Gomez, María Catalina; Kutter, Elizabeth; Taylor, Corinda; Fineran, Peter C.; Barrios, Andrés Fernando González; Vives, Martha J.

    2015-01-01

    Pseudomonas aeruginosa is one of the Multi-Drug-Resistant organisms most frequently isolated worldwide and, because of a shortage of new antibiotics, bacteriophages are considered an alternative for its treatment. Previously, P. aeruginosa phages were isolated and best candidates were chosen based on their ability to form clear plaques and their host range. This work aimed to characterize one of those phages, ΦPan70, preliminarily identified as a good candidate for phage-therapy. We performed infection curves, biofilm removal assays, transmission-electron-microscopy, pulsed-field-gel-electrophoresis, and studied the in vivo ΦPan70 biological activity in the burned mouse model. ΦPan70 was classified as a member of the Myoviridae family and, in both planktonic cells and biofilms, was responsible for a significant reduction in the bacterial population. The burned mouse model showed an animal survival between 80% and 100%, significantly different from the control animals (0%). However, analysis of the ΦPan70 genome revealed that it was 64% identical to F10, a temperate P. aeruginosa phage. Gene annotation indicated ΦPan70 as a new, but possible temperate phage, therefore not ideal for phage-therapy. Based on this, we recommend genome sequence analysis as an early step to select candidate phages for potential application in phage-therapy, before entering into a more intensive characterization. PMID:26274971

  4. Antibiofilm and Anti-Infection of a Marine Bacterial Exopolysaccharide Against Pseudomonas aeruginosa.

    PubMed

    Wu, Shimei; Liu, Ge; Jin, Weihua; Xiu, Pengyuan; Sun, Chaomin

    2016-01-01

    Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors, thus leading to major problems in many fields, such as clinical infection, food contamination, and marine biofouling. In this study, we report the purification and characterization of an exopolysaccharide EPS273 from the culture supernatant of marine bacterium P. stutzeri 273. The exopolysaccharide EPS273 not only effectively inhibits biofilm formation but also disperses preformed biofilm of P. aeruginosa PAO1. High performance liquid chromatography traces of the hydrolyzed polysaccharides shows that EPS273 primarily consists of glucosamine, rhamnose, glucose and mannose. Further investigation demonstrates that EPS273 reduces the production of the virulence factors pyocyanin, exoprotease, and rhamnolipid, and the virulence of P. aeruginosa PAO1 to human lung cells A549 and zebrafish embryos is also obviously attenuated by EPS273. In addition, EPS273 also greatly reduces the production of hydrogen peroxide (H2O2) and extracellular DNA (eDNA), which are important factors for biofilm formation. Furthermore, EPS273 exhibits strong antioxidant potential by quenching hydroxyl and superoxide anion radicals. Notably, the antibiofouling activity of EPS273 is observed in the marine environment up to 2 weeks according to the amounts of bacteria and diatoms in the glass slides submerged in the ocean. Taken together, the properties of EPS273 indicate that it has a promising prospect in combating bacterial biofilm-associated infection, food-processing contamination and marine biofouling.

  5. Emerging morbillivirus infections of marine mammals: development of two diagnostic approaches.

    PubMed

    Saliki, Jeremiah T; Cooper, Emily J; Gustavson, Jonathan P

    2002-10-01

    In the last 13 years, four viruses belonging in the Morbillivirus genus of the Paramyxoviridae family have emerged as significant causes of disease and mortality in marine mammals. The viruses involved are canine distemper virus (CDV) in seals and polar bears, dolphin morbillivirus (DMV) and porpoise morbillivirus (PMV) in cetaceans, and phocine distemper virus (PDV) in pinnipeds. The two cetacean morbilliviruses (DMV and PMV) are now considered to be the same viral species, named cetacean morbillivirus (CMV). All three morbillivirus species (CDV, CMV, and PDV) are genetically and antigenically related and cross-react in various serological tests. The diagnosis of morbilliviral infections in marine mammal specimens poses two challenges. First, various marine mammal species can be infected by more than one closely related but distinct morbilliviruses, making definitive virus identification unattainable by classical virology methods. Second, standard immunological reagents such as anti-species conjugates are unavailable for most marine mammal species, rendering definitive serological diagnosis difficult by classical serological techniques. The objectives of this study were to develop two diagnostic approaches that alleviate these difficulties, providing simple, rapid, and cost-effective diagnostic methods. For nucleic acid detection, reverse transcription-polymerase chain reaction (RT-PCR) and restriction endonuclease digestions were used to differentiate the three viruses. For antibody detection, a monoclonal antibody-based competitive enzyme-linked immunosorbent assay (c-ELISA) was used on sera from several species, thus avoiding the need for multiple anti-species enzyme conjugates.

  6. Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dinomycetaceae fam. nov.), a chytrid infecting marine dinoflagellates.

    PubMed

    Lepelletier, Frédéric; Karpov, Sergey A; Alacid, Elisabet; Le Panse, Sophie; Bigeard, Estelle; Garcés, Esther; Jeanthon, Christian; Guillou, Laure

    2014-03-01

    Environmental 18S rRNA gene surveys of microbial eukaryotes have recently revealed the diversity of major parasitic agents in pelagic freshwater systems, consisting primarily of chytrid fungi. To date, only a few studies have reported the presence of chydrids in the marine environment and a limited number of marine chytrids have been properly identified and characterized. Here, we report the isolation and cultivation of a marine chytrid from samples taken during a bloom of the toxic dinoflagellate Alexandrium minutum in the Arenys de Mar harbour (Mediterranean Sea, Spain). Cross-infections using cultures and natural phytoplankton communities revealed that this chytrid is only able to infect certain species of dinoflagellates, with a rather wide host range but with a relative preference for Alexandrium species. Phylogenetic analyses showed that it belongs to the order Rhizophydiales, but cannot be included in any of the existing families within this order. Several ultrastructural characters confirmed the placement of this taxon within the Rhizophydiales as well its novelty notably in terms of zoospore structure. This marine chytridial parasitoid is described as a new genus and species, Dinomyces arenysensis, within the Dinomycetaceae fam. nov. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Antibiofilm and Anti-Infection of a Marine Bacterial Exopolysaccharide Against Pseudomonas aeruginosa

    PubMed Central

    Wu, Shimei; Liu, Ge; Jin, Weihua; Xiu, Pengyuan; Sun, Chaomin

    2016-01-01

    Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors, thus leading to major problems in many fields, such as clinical infection, food contamination, and marine biofouling. In this study, we report the purification and characterization of an exopolysaccharide EPS273 from the culture supernatant of marine bacterium P. stutzeri 273. The exopolysaccharide EPS273 not only effectively inhibits biofilm formation but also disperses preformed biofilm of P. aeruginosa PAO1. High performance liquid chromatography traces of the hydrolyzed polysaccharides shows that EPS273 primarily consists of glucosamine, rhamnose, glucose and mannose. Further investigation demonstrates that EPS273 reduces the production of the virulence factors pyocyanin, exoprotease, and rhamnolipid, and the virulence of P. aeruginosa PAO1 to human lung cells A549 and zebrafish embryos is also obviously attenuated by EPS273. In addition, EPS273 also greatly reduces the production of hydrogen peroxide (H2O2) and extracellular DNA (eDNA), which are important factors for biofilm formation. Furthermore, EPS273 exhibits strong antioxidant potential by quenching hydroxyl and superoxide anion radicals. Notably, the antibiofouling activity of EPS273 is observed in the marine environment up to 2 weeks according to the amounts of bacteria and diatoms in the glass slides submerged in the ocean. Taken together, the properties of EPS273 indicate that it has a promising prospect in combating bacterial biofilm-associated infection, food-processing contamination and marine biofouling. PMID:26903981

  8. Marine natural product drug discovery: Leads for treatment of inflammation, cancer, infections, and neurological disorders.

    PubMed

    Villa, Francisco A; Gerwick, Lena

    2010-06-01

    Natural products, secondary metabolites, isolated from plants, animals and microbes are important sources for bioactive molecules that in many cases have been developed into treatments for diseases. This review will focus on describing the potential for finding new treatments from marine natural products for inflammation, cancer, infections, and neurological disorders. Historically terrestrial natural products have been studied to a greater extent and such classic drugs as aspirin, vincristine and many of the antibiotics are derived from terrestrial natural products. The need for new therapeutics in the four areas mentioned is dire. Within the last 30 years marine natural products, with their unique structures and high level of halogenation, have shown many promising activities against the inflammatory response, cancer, infections and neurological disorders. The review will outline examples of such compounds and activities.

  9. PHAGE FORMATION IN STAPHYLOCOCCUS MUSCAE CULTURES

    PubMed Central

    Price, Winston H.

    1952-01-01

    1. Under a variety of conditions in which cells are infected with one or a few virus particles and the host cells are killed, but no infective particles or virus material is formed as indicated by plaque count, one-step growth curve, or protein or desoxyribonucleic determinations, the cells neither lyse nor release ribonucleic acid into the medium. 2. The "killing" effect of S. muscae phage is separate from its lytic property. 3. The release of ribonucleic acid into the medium is not simply due to the killing of the cell by the virus, and ribonucleic acid is never found in the medium unless virus material is synthesized. 4. Infected cells of S. muscae synthesizing virus release ribonucleic acid into the medium before cellular lysis begins and before any virus is liberated. 5. The higher the phage yield the more ribonucleic acid is released into the medium before any virus is released. 6. Phage may be released from one strain of Staphylococcus muscae without cellular lysis, although bacterial lysis begins shortly after the virus is released. In another strain, infected under similar conditions, virus liberation occurs simultaneously with cellular lysis. 7. The viruses liberated from both bacterial strains appear to be the same in so far as they cannot be distinguished by serological tests, have the same plaque type and plaque size, and need the same amino acids added to the medium in order to grow. Furthermore, the virus liberated from one strain can infect and multiply in the other strain and vice versa. 8. It is suggested that virus synthesis, in S. muscae cells infected with one or a few phage particles, leads to a disturbance of the normal cellular metabolism, resulting in lysis of the host cell. PMID:14898025

  10. [A study of the infection and physicochemical characteristics of the marine fish infected by Anisakis L₃ caught in Zhoushan Fishery].

    PubMed

    Zhang, Jun-he; Lin, Qi; Zhang, Qian-tong; He, Wei-xian; Li, Ke-feng; Xu, Xu

    2010-11-01

    The aim of this research was to investigate the third phase Anisakis simplex larvae (Anisakis L₃) infection in marine fish caught in Zhoushan Fishery and to find out its physicochemical and biological characteristics. A total of 444 fish belonging to 29 species were dissected to isolate anisakis larvae which were then morphologically identified. The survival tolerance of Anisakis L₃ were observed in various conditions, such as in different temperature and medium. A total of 218 fish from 21 species were infected by Anisakis simplex larvae, yielding an overall infection rate of 49.10% (218/444). Trichiurus haumela, pneumatophorus japonicus, miichthys miiuy, argyrosomus argentatus and anguilliformes had high infection rate and had an average infection intensity of 15.28 per fish. 3332 Anisakis larvae were detected in 218 fish, among which Anisakis L₃ and Pseudoterranova larvae accounted for 99.46% (3314/3332) and 0.54% (18/3332) respectively. Anisakis L₃ was highly resistant to common condiment. We found the liquor with high concentration of alcohol showed better insecticidal effect than that with low concentration of alcohol (t = 4.105, P < 0.05) and low concentration mebendazole composite was not only more effective than high concentration mebendazole composite (F = 45.198, P < 0.01) but also more effective than other drugs, such as albendazole and mebendazole. Anisakis L₃ could live up to 9 h and 12 h at -20°C, -10°C respectively, however they were very sensitive to high temperature. It has been shown that they could only survive for less than 11 s and 1 s at 50°C and 60°C respectively. The observed Anisakis L₃ infection rate in the marine fish found in Zhoushan Fishery was very high. Anisakis L₃ showed high resistance to low temperature but not to high temperature.

  11. Gene Expression Patterns during Light and Dark Infection of Prochlorococcus by Cyanophage

    PubMed Central

    Chisholm, Sallie W.

    2016-01-01

    Cyanophage infecting the marine cyanobacteria Prochlorococcus and Synechococcus require light and host photosystem activity for optimal reproduction. Many cyanophages encode multiple photosynthetic electron transport (PET) proteins, which are presumed to maintain electron flow and produce ATP and NADPH for nucleotide biosynthesis and phage genome replication. However, evidence suggests phage augment NADPH production via the pentose phosphate pathway (PPP), thus calling into question the need for NADPH production by PET. Genes implicated in cyclic PET have since been identified in cyanophage genomes. It remains an open question which mode of PET, cyclic or linear, predominates in infected cyanobacteria, and thus whether the balance is towards producing ATP or NADPH. We sequenced transcriptomes of a cyanophage (P-HM2) and its host (Prochlorococcus MED4) throughout infection in the light or in the dark, and analyzed these data in the context of phage replication and metabolite measurements. Infection was robust in the light, but phage were not produced in the dark. Host gene transcripts encoding high-light inducible proteins and two terminal oxidases (plastoquinol terminal oxidase and cytochrome c oxidase)—implicated in protecting the photosynthetic membrane from light stress—were the most enriched in light but not dark infection. Among the most diminished transcripts in both light and dark infection was ferredoxin–NADP+ reductase (FNR), which uses the electron acceptor NADP+ to generate NADPH in linear photosynthesis. The phage gene for CP12, which putatively inhibits the Calvin cycle enzyme that receives NADPH from FNR, was highly expressed in light infection. Therefore, both PET production of NADPH and its consumption by carbon fixation are putatively repressed during phage infection in light. Transcriptomic evidence is thus consistent with cyclic photophosphorylation using oxygen as the terminal electron acceptor as the dominant mode of PET under infection

  12. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections.

    PubMed

    Abdelmohsen, Usama Ramadan; Balasubramanian, Srikkanth; Oelschlaeger, Tobias A; Grkovic, Tanja; Pham, Ngoc B; Quinn, Ronald J; Hentschel, Ute

    2017-02-01

    Antibiotics have revolutionised medicine in many aspects, and their discovery is considered a turning point in human history. However, the most serious consequence of the use of antibiotics is the concomitant development of resistance against them. The marine environment has proven to be a very rich source of diverse natural products with significant antibacterial, antifungal, antiviral, antiparasitic, antitumour, anti-inflammatory, antioxidant, and immunomodulatory activities. Many marine natural products (MNPs)-for example, neoechinulin B-have been found to be promising drug candidates to alleviate the mortality and morbidity rates caused by drug-resistant infections, and several MNP-based anti-infectives have already entered phase 1, 2, and 3 clinical trials, with six approved for usage by the US Food and Drug Administration and one by the EU. In this Review, we discuss the diversity of marine natural products that have shown in-vivo efficacy or in-vitro potential against drug-resistant infections of fungal, viral, and parasitic origin, and describe their mechanism of action. We highlight the drug-like physicochemical properties of the reported natural products that have bioactivity against drug-resistant pathogens in order to assess their drug potential. Difficulty in isolation and purification procedures, toxicity associated with the active compound, ecological impacts on natural environment, and insufficient investments by pharmaceutical companies are some of the clear reasons behind market failures and a poor pipeline of MNPs available to date. However, the diverse abundance of natural products in the marine environment could serve as a ray of light for the therapy of drug-resistant infections. Development of resistance-resistant antibiotics could be achieved via the coordinated networking of clinicians, microbiologists, natural product chemists, and pharmacologists together with pharmaceutical venture capitalist companies.

  13. Marine-Derived Metabolites of S-Adenosylmethionine as Templates for New Anti-Infectives

    PubMed Central

    Sufrin, Janice R.; Finckbeiner, Steven; Oliver, Colin M.

    2009-01-01

    S-Adenosylmethionine (AdoMet) is a key biochemical co-factor whose proximate metabolites include methylated macromolecules (e.g., nucleic acids, proteins, phospholipids), methylated small molecules (e.g., sterols, biogenic amines), polyamines (e.g., spermidine, spermine), ethylene, and N-acyl-homoserine lactones. Marine organisms produce numerous AdoMet metabolites whose novel structures can be regarded as lead compounds for anti-infective drug design. PMID:19841722

  14. Listeria phage A511, a model for the contractile tail machineries of SPO1-related bacteriophages.

    PubMed

    Habann, Matthias; Leiman, Petr G; Vandersteegen, Katrien; Van den Bossche, An; Lavigne, Rob; Shneider, Mikhail M; Bielmann, Regula; Eugster, Marcel R; Loessner, Martin J; Klumpp, Jochen

    2014-04-01

    Recognition of the bacterial host and attachment to its surface are two critical steps in phage infection. Here we report the identification of Gp108 as the host receptor-binding protein of the broad host-range, virulent Listeria phage A511. The ligands for Gp108 were found to be N-acetylglucosamine and rhamnose substituents of the wall teichoic acids of the bacterial cell wall. Transmission electron microscopy and immunogold-labelling allowed us to create a model of the A511 baseplate in which Gp108 forms emanating short tail fibres. Data obtained for related phages, such as Staphylococcus phages ISP and Twort, demonstrate the evolutionary conservation of baseplate components and receptor-binding proteins within the Spounavirinae subfamily, and contractile tail machineries in general. Our data reveal key elements in the infection process of large phages infecting Gram-positive bacteria and generate insights into the complex adsorption process of phage A511 to its bacterial host.

  15. Phage approved in food, why not as a therapeutic?

    PubMed

    Sarhan, Wessam A; Azzazy, Hassan M E

    2015-01-01

    Bacterial resistance is not only restricted to human infections but is also a major problem in food. With the marked decrease in produced antimicrobials, the world is now reassessing bacteriophages. In 2006, ListShield™ received the US FDA approval for using phage in food. Nevertheless, regulatory approval of phage-based therapeutics is still facing many challenges. This review highlights the use of bacteriophages as biocontrol agents in the food industry. It also focuses on the challenges still facing the regulatory approval of phage-based therapeutics and the proposed approaches to overcome such challenges.

  16. Dispersal and survival of Flavobacterium psychrophilum phages in vivo in rainbow trout and in vitro under laboratory conditions: implications for their use in phage therapy.

    PubMed

    Madsen, Lone; Bertelsen, Sif K; Dalsgaard, Inger; Middelboe, Mathias

    2013-08-01

    Attention has been drawn to phage therapy as an alternative approach for controlling pathogenic bacteria such as Flavobacterium psychrophilum in salmonid aquaculture, which can give rise to high mortalities, especially in rainbow trout fry. Recently, phages have been isolated with a broad host range and a strong lytic potential against pathogenic F. psychrophilum under experimental conditions. However, little is known about the fate of phages at environmental conditions. Here, we quantified the dispersal and fate of F. psychrophilum phages and hosts in rainbow trout fry after intraperitoneal injection. Both phages and bacteria were isolated from the fish organs for up to 10 days after injection, and coinjection with both bacteria and phages resulted in a longer persistence of the phage in the fish organs, than when the fish had been injected with the phages only. The occurrence of both phage and bacterium was most prevalent in the kidney and spleen, with only minor occurrence in the brain. The experiment showed that injected phages were rapidly spread in the internal organs of the fish, also in the absence of bacteria. Parallel examination of the regulation of bacteriophage infectivity in controlled laboratory experiments at various environmental conditions showed that pH had only minor effects on long-term (3 months) phage infectivity within a pH range of 4.5 to 7.5, whereas phage infectivity was immediately lost at pH 3. In the absence of host cells, phage infectivity decreased by a factor of 10,000 over 55 days in untreated pond water, while the sterilization and removal of particles caused a 100-fold increase in phage survival relative to the control. In addition, F. psychrophilum-specific phages maintained their infectivity for ∼2 months in glycerol at -80°C, whereas infectivity decreased by a factor 10 when kept in a buffer at 20°C. Only a very small degradation in infectivity was seen when bacteriophages were added and dried on fish feed pellets

  17. Phage display creates innovative applications to combat hepatitis B virus

    PubMed Central

    Tan, Wen Siang; Ho, Kok Lian

    2014-01-01

    Hepatitis B virus (HBV) has killed countless lives in human history. The invention of HBV vaccines in the 20th century has reduced significantly the rate of the viral infection. However, currently there is no effective treatment for chronic HBV carriers. Newly emerging vaccine escape mutants and drug resistant strains have complicated the viral eradication program. The entire world is now facing a new threat of HBV and human immunodeficiency virus co-infection. Could phage display provide solutions to these life-threatening problems? This article reviews critically and comprehensively the innovative and potential applications of phage display in the development of vaccines, therapeutic agents, diagnostic reagents, as well as gene and drug delivery systems to combat HBV. The application of phage display in epitope mapping of HBV antigens is also discussed in detail. Although this review mainly focuses on HBV, the innovative applications of phage display could also be extended to other infectious diseases. PMID:25206271

  18. Impact of a Single Phage and a Phage Cocktail Application in Broilers on Reduction of Campylobacter jejuni and Development of Resistance

    PubMed Central

    Fischer, Samuel; Kittler, Sophie; Klein, Günter; Glünder, Gerhard

    2013-01-01

    Campylobacteriosis is currently the most frequent foodborne zoonosis in many countries. One main source is poultry. The aim of this study was to enhance the knowledge about the potential of bacteriophages in reducing colonization of broilers with Campylobacter , as there are only a few in vivo studies published. Commercial broilers were inoculated with 104 CFU/bird of a Campylobacter jejuni field strain. Groups of 88 birds each were subsequently treated with a single phage or a four-phage cocktail (107 PFU/bird in CaCO3 buffered SM-Buffer). Control birds received the solvent only. Afterwards, subgroups of eleven birds each were examined for their loads with phages and Campylobacter on day 1, 3, 7, 14, 21, 28, 35 and 42 after phage application. The susceptibility of the Campylobacter population to phage infection was determined using ten isolates per bird. In total 4180 re-isolates were examined. The study demonstrated that the deployed phages persisted over the whole investigation period. The Campylobacter load was permanently reduced by the phage-cocktail as well as by the single phage. The reduction was significant between one and four weeks after treatment and reached a maximum of log10 2.8 CFU/g cecal contents. Phage resistance rates of initially up to 43% in the single phage treated group and 24% in the cocktail treated group later stabilized at low levels. The occurrence of phage resistance influenced but did not override the Campylobacter reducing effect. Regarding the reduction potential, the cocktail treatment had only a small advantage over the singe phage treatment directly after phage administration. However, the cocktail moderated and delayed the emergence of phage resistance. PMID:24205254

  19. Impact of a single phage and a phage cocktail application in broilers on reduction of Campylobacter jejuni and development of resistance.

    PubMed

    Fischer, Samuel; Kittler, Sophie; Klein, Günter; Glünder, Gerhard

    2013-01-01

    Campylobacteriosis is currently the most frequent foodborne zoonosis in many countries. One main source is poultry. The aim of this study was to enhance the knowledge about the potential of bacteriophages in reducing colonization of broilers with Campylobacter , as there are only a few in vivo studies published. Commercial broilers were inoculated with 10⁴ CFU/bird of a Campylobacter jejuni field strain. Groups of 88 birds each were subsequently treated with a single phage or a four-phage cocktail (10⁷ PFU/bird in CaCO₃ buffered SM-Buffer). Control birds received the solvent only. Afterwards, subgroups of eleven birds each were examined for their loads with phages and Campylobacter on day 1, 3, 7, 14, 21, 28, 35 and 42 after phage application. The susceptibility of the Campylobacter population to phage infection was determined using ten isolates per bird. In total 4180 re-isolates were examined. The study demonstrated that the deployed phages persisted over the whole investigation period. The Campylobacter load was permanently reduced by the phage-cocktail as well as by the single phage. The reduction was significant between one and four weeks after treatment and reached a maximum of log₁₀ 2.8 CFU/g cecal contents. Phage resistance rates of initially up to 43% in the single phage treated group and 24% in the cocktail treated group later stabilized at low levels. The occurrence of phage resistance influenced but did not override the Campylobacter reducing effect. Regarding the reduction potential, the cocktail treatment had only a small advantage over the singe phage treatment directly after phage administration. However, the cocktail moderated and delayed the emergence of phage resistance.

  20. Salmonella Enteritidis bacteriophage candidates for phage therapy of poultry.

    PubMed

    Sillankorva, S; Pleteneva, E; Shaburova, O; Santos, S; Carvalho, C; Azeredo, J; Krylov, V

    2010-04-01

    Salmonella is a worldwide foodborne pathogen causing acute enteric infections in humans. In the recent years, the use of bacteriophages has been suggested as a possible tool to combat this zoonotic pathogen in poultry farms. This work aims to isolate and perform comparative studies of a group of phages active against a collection of specific Salmonella Enteritidis strains from Portugal and England. Also, suitable phage candidates for therapy of poultry will be selected. The Salm. Enteritidis strains studied were shown to have a significantly high occurrence of defective (cryptic) prophages; however, no live phages were found in the strains. Bacteriophages isolated from different environments lysed all except one of the tested Salm. Enteritidis strains. The bacteriophages studied were divided into different groups according to their genetic homology, RFLP profiles and phenotypic features, and most of them showed no DNA homology with the bacterial hosts. The bacteriophage lytic efficacy proved to be highly dependent on the propagation host strain. Despite the evidences shown in this work that the Salm. Enteritidis strains used did not produce viable phages, we have confirmed that some phages, when grown on particular hosts, behaved as complexes of phages. This is most likely because of the presence of inactive phage-related genomes (or their parts) in the bacterial strains which are capable of being reactivated or which can recombine with lytic phages. Furthermore, changes of the bacterial hosts used for maintenance of phages must be avoided as these can drastically modify the parameters of the phage preparations, including host range and lytic activity. This work shows that the optimal host and growth conditions must be carefully studied and selected for the production of each bacteriophage candidate for animal therapy.

  1. High Stability of Stx2 Phage in Food and under Food-Processing Conditions ▿

    PubMed Central

    Rode, Tone Mari; Axelsson, Lars; Granum, Per Einar; Heir, Even; Holck, Askild; L'Abée-Lund, Trine M.

    2011-01-01

    Bacteriophages (phages) carrying Shiga toxin genes constitute a major virulence attribute in enterohemorrhagic Escherichia coli (EHEC). Several EHEC outbreaks have been linked to food. The survival of such strains in different foods has received much attention, while the fate of the mobile Shiga toxin-converting phages (Stx phages) has been less studied. We have investigated the stability of an Stx phage in several food products and examined how storage, food processing, and disinfection influence the infectivity of phage particles. The study involved a recombinant Stx phage (Δstx::cat) of an E. coli O103:H25 strain from a Norwegian outbreak in 2006. Temperature, matrix, and time were factors of major importance for the stability of phage particles. Phages stored at cooling temperatures (4°C) showed a dramatic reduction in stability compared to those stored at room temperature. The importance of the matrix was evident at higher temperatures (60°C). Phages in ground beef were below the detection level when heated to 60°C for more than 10 min, while phages in broth exposed to the same heating conditions showed a 5-log-higher stability. The phages tolerated desiccation poorly but were infective for a substantial period of time in solutions. Under moist conditions, they also had a high ability to tolerate exposure to several disinfectants. In a dry-fermented sausage model, phages were shown to infect E. coli in situ. The results show that Stx phage particles can maintain their infectivity in foods and under food-processing conditions. PMID:21685156

  2. Learning from Bacteriophages - Advantages and Limitations of Phage and Phage-Encoded Protein Applications

    PubMed Central

    Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grażyna; Maciejewska, Barbara; Delattre, Anne-Sophie; Lavigne, Rob

    2012-01-01

    The emergence of bacteria resistance to most of the currently available antibiotics has become a critical therapeutic problem. The bacteria causing both hospital and community-acquired infections are most often multidrug resistant. In view of the alarming level of antibiotic resistance between bacterial species and difficulties with treatment, alternative or supportive antibacterial cure has to be developed. The presented review focuses on the major characteristics of bacteriophages and phage-encoded proteins affecting their usefulness as antimicrobial agents. We discuss several issues such as mode of action, pharmacodynamics, pharmacokinetics, resistance and manufacturing aspects of bacteriophages and phage-encoded proteins application. PMID:23305359

  3. Learning from bacteriophages - advantages and limitations of phage and phage-encoded protein applications.

    PubMed

    Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grazyna; Maciejewska, Barbara; Delattre, Anne-Sophie; Lavigne, Rob

    2012-12-01

    The emergence of bacteria resistance to most of the currently available antibiotics has become a critical therapeutic problem. The bacteria causing both hospital and community-acquired infections are most often multidrug resistant. In view of the alarming level of antibiotic resistance between bacterial species and difficulties with treatment, alternative or supportive antibacterial cure has to be developed. The presented review focuses on the major characteristics of bacteriophages and phage-encoded proteins affecting their usefulness as antimicrobial agents. We discuss several issues such as mode of action, pharmacodynamics, pharmacokinetics, resistance and manufacturing aspects of bacteriophages and phage-encoded proteins application.

  4. A phagemid vector using the E. coli phage shock promoter facilitates phage display of toxic proteins.

    PubMed

    Beekwilder, J; Rakonjac, J; Jongsma, M; Bosch, D

    1999-03-04

    Phage display is a powerful tool with which to adapt the specificity of protease inhibitors. To this end, a library of variants of the potato protease inhibitor PI2 was introduced in a canonical phagemid vector. Although PI2 is a natural trypsin inhibitor, we were unable to select trypsin-binding variants from the library. Instead, only mutants carrying deletions or amber stop codons were found. Bacteria carrying these mutations had a much faster growth rate than those carrying the wt PI2-encoding gene, even when the promoter was repressed. To overcome these problems, two new phagemid vectors for g3-mediated phage display were constructed. The first vector has a lower plasmid copy number, as compared to the canonical vector. Bacteria harboring this new vector are much less affected by the presence of the PI2-g3 fusion gene, which appears from a markedly reduced growth retardation. A second vector was equipped with the promoter of the Escherichia coli psp operon, instead of the lac promoter, to control the PI2-g3 gene fusion expression. The psp promoter is induced upon helper phage infection. A phagemid vector with this promoter controlling a PI2-g3 gene fusion did not affect the viability of the host. Furthermore, both new vectors were shown to produce phage particles that display the inhibitor protein and were therefore considered suitable for phage display. The inhibitor library was introduced in both new vectors. Trypsin-binding phages with inhibitory sequences were selected, instead of sequences with stop codons or deletions. This demonstrates the usefulness of these new vectors for phage display of proteins that affect the viability of E. coli.

  5. [Infection and physico-chemical characteristics of Anisakis among marine fish caught in Zhoushan Fishery].

    PubMed

    Wang, Jian-yue; Zhang, Jun-he; Lin, Qi; Zhang, Qian-tong; He, Wei-xian; Li, Ke-feng; Xu, Xu

    2010-09-01

    To study the rates of infection and physicochemical characteristics of the third stage Anisakis simplex larvae among marine fish caught in Zhoushan Fishery. Fish were dissected to detect Anisakis larvae and identified morphologically. The survival tolerance of the third stage Anisakis simplex larvae in various medium, anthelmintic drug, temperature were studied in laboratory. The total infection rate of Anisakis simplex larvae in fish was 49.10%. High rates of Anisakis infection were observed in hairtails, Pneumatophorus japonicus, Miichthys milky, Argyrosomus argentatus and Muraenesox cinereus (infection rates > 90 percent). The infection intensity of Anisakis per fish varied from 1 to 114. The mean intensity of Anisakis larvae was 15.20 per fish. 3314 Anisakis were detected in 218 marine fish. The survival tolerance of the third stage Anisakis simplex larvae in various Medium, anthelmintic drug, temperature were observed in laboratory condition. The third stage Anisakis simplex larvae showed a strong endurance to stock condiment. The anisakicidal effects of the high purity wine were more effective than that of the low purity wine. The anisakicidal effects of 6.25 g/L mebendazole composite were more effective than that of 18.75 g/L and also more effective than those of other drugs. The third stage Anisakis simplex larvae could survive with length up to 9 h and 12 h in condition of -20°C, -10°C and very sensitive to high temperature treatment. However, they could barely survive in more than 11 s and 1 s under the temperature of 50°C and 60°C. The percentage of infection was fairly high for Anisakis larvae of marine fish caught in Zhoushan Fishery. The third stage Anisakis simplex larvae was shown to have a fairly good tolerance to the external environments. The marine fish were frozen under -20°C beyond 24 h before they were sold on market and cooked with high temperature seemed to be helpful for preventing and controlling effectively the infection of Anisakis.

  6. Genome Sequence of Mycobacterium Phage CrystalP.

    PubMed

    Fleischacker, Christine L; Segura-Totten, Miriam; Garlena, Rebecca A; Jacobs-Sera, Deborah; Pope, Welkin H; Russell, Daniel A; Hatfull, Graham F

    2017-07-13

    Mycobacteriophage CrystalP is a newly isolated phage infecting Mycobacterium smegmatis strain mc(2)155. CrystalP has a 76,483-bp genome and is predicted to contain 143 protein-coding and 2 tRNA genes, including repressor and integrase genes consistent with a temperate lifestyle. CrystalP is related to the mycobacteriophages Toto and Kostya and to other Cluster E phages. Copyright © 2017 Fleischacker et al.

  7. Diversity and distribution of single-stranded DNA phages in the North Atlantic Ocean

    PubMed Central

    Tucker, Kimberly P; Parsons, Rachel; Symonds, Erin M; Breitbart, Mya

    2011-01-01

    Knowledge of marine phages is highly biased toward double-stranded DNA (dsDNA) phages; however, recent metagenomic surveys have also identified single-stranded DNA (ssDNA) phages in the oceans. Here, we describe two complete ssDNA phage genomes that were reconstructed from a viral metagenome from 80 m depth at the Bermuda Atlantic Time-series Study (BATS) site in the northwestern Sargasso Sea and examine their spatial and temporal distributions. Both genomes (SARssφ1 and SARssφ2) exhibited similarity to known phages of the Microviridae family in terms of size, GC content, genome organization and protein sequence. PCR amplification of the replication initiation protein (Rep) gene revealed narrow and distinct depth distributions for the newly described ssDNA phages within the upper 200 m of the water column at the BATS site. Comparison of Rep gene sequences obtained from the BATS site over time revealed changes in the diversity of ssDNA phages over monthly time scales, although some nearly identical sequences were recovered from samples collected 4 years apart. Examination of ssDNA phage diversity along transects through the North Atlantic Ocean revealed a positive correlation between genetic distance and geographic distance between sampling sites. Together, the data suggest fundamental differences between the distribution of these ssDNA phages and the distribution of known marine dsDNA phages, possibly because of differences in host range, host distribution, virion stability, or viral evolution mechanisms and rates. Future work needs to elucidate the host ranges for oceanic ssDNA phages and determine their ecological roles in the marine ecosystem. PMID:21124487

  8. Phage therapy against Enterococcus faecalis in dental root canals

    PubMed Central

    Khalifa, Leron; Shlezinger, Mor; Beyth, Shaul; Houri-Haddad, Yael; Coppenhagen-Glazer, Shunit; Beyth, Nurit; Hazan, Ronen

    2016-01-01

    Antibiotic resistance is an ever-growing problem faced by all major sectors of health care, including dentistry. Recurrent infections related to multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus, carbapenem-resistant Enterobacteriaceae, and vancomycin-resistant enterococci (VRE) in hospitals are untreatable and question the effectiveness of notable drugs. Two major reasons for these recurrent infections are acquired antibiotic resistance genes and biofilm formation. None of the traditionally known effective techniques have been able to efficiently resolve these issues. Hence, development of a highly effective antibacterial practice has become inevitable. One example of a hard-to-eradicate pathogen in dentistry is Enterococcus faecalis, which is one of the most common threats observed in recurrent root canal treatment failures, of which the most problematic to treat are its biofilm-forming VRE strains. An effective response against such infections could be the use of bacteriophages (phages). Phage therapy was found to be highly effective against biofilm and multidrug-resistant bacteria and has other advantages like ease of isolation and possibilities for genetic manipulations. The potential of phage therapy in dentistry, in particular against E. faecalis biofilms in root canals, is almost unexplored. Here we review the efforts to develop phage therapy against biofilms. We also focus on the phages isolated against E. faecalis and discuss the possibility of using phages against E. faecalis biofilm in root canals. PMID:27640530

  9. Phage therapy against Enterococcus faecalis in dental root canals.

    PubMed

    Khalifa, Leron; Shlezinger, Mor; Beyth, Shaul; Houri-Haddad, Yael; Coppenhagen-Glazer, Shunit; Beyth, Nurit; Hazan, Ronen

    2016-01-01

    Antibiotic resistance is an ever-growing problem faced by all major sectors of health care, including dentistry. Recurrent infections related to multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus, carbapenem-resistant Enterobacteriaceae, and vancomycin-resistant enterococci (VRE) in hospitals are untreatable and question the effectiveness of notable drugs. Two major reasons for these recurrent infections are acquired antibiotic resistance genes and biofilm formation. None of the traditionally known effective techniques have been able to efficiently resolve these issues. Hence, development of a highly effective antibacterial practice has become inevitable. One example of a hard-to-eradicate pathogen in dentistry is Enterococcus faecalis, which is one of the most common threats observed in recurrent root canal treatment failures, of which the most problematic to treat are its biofilm-forming VRE strains. An effective response against such infections could be the use of bacteriophages (phages). Phage therapy was found to be highly effective against biofilm and multidrug-resistant bacteria and has other advantages like ease of isolation and possibilities for genetic manipulations. The potential of phage therapy in dentistry, in particular against E. faecalis biofilms in root canals, is almost unexplored. Here we review the efforts to develop phage therapy against biofilms. We also focus on the phages isolated against E. faecalis and discuss the possibility of using phages against E. faecalis biofilm in root canals.

  10. Conserved termini and adjacent variable region of Twortlikevirus Staphylococcus phages.

    PubMed

    Zhang, Xianglilan; Kang, Huaixing; Li, Yuyuan; Liu, Xiaodong; Yang, Yu; Li, Shasha; Pei, Guangqian; Sun, Qiang; Shu, Peng; Mi, Zhiqiang; Huang, Yong; Zhang, Zhiyi; Liu, Yannan; An, Xiaoping; Xu, Xiaolu; Tong, Yigang

    2015-12-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an increasing cause of serious infection, both in the community and hospital settings. Despite sophisticated strategies and efforts, the antibiotic options for treating MRSA infection are narrowing because of the limited number of newly developed antimicrobials. Here, four newly-isolated MRSA-virulent phages, IME-SA1, IMESA2, IME-SA118 and IME-SA119, were sequenced and analyzed. Their genome termini were identified using our previously proposed "termini analysis theory". We provide evidence that remarkable conserved terminus sequences are found in IME-SA1/2/118/119, and, moreover, are widespread throughout Twortlikevirus Staphylococcus phage G1 and K species. Results also suggested that each phage of the two species has conserved 5' terminus while the 3' terminus is variable. More importantly, a variable region with a specific pattern was found to be present near the conserved terminus of Twortlikevirus S. phage G1 species. The clone with the longest variable region had variable terminus lengths in successive generations, while the clones with the shortest variable region and with the average length variable region maintained the same terminal length as themselves during successive generations. IME-SA1 bacterial infection experiments showed that the variation is not derived from adaptation of the phage to different host strains. This is the first study of the conserved terminus and variable region of Twortlikevirus S. phages.

  11. Phage genomics: small is beautiful.

    PubMed

    Brüssow, Harald; Hendrix, Roger W

    2002-01-11

    The Age of Genomics dawned only gradually for bacteriophages. It was 1977 when the genome of phage phi X174 was published and 1983 when the "large" genome of phage lambda hit the streets. More recently, the pace has quickened, so that we now have over 100 complete phage genomes and can expect thousands in a very few years. These sequences have been marvelously informative for the biology of the individual phages, but with the advent of high volume sequencing technology, the real excitement for phage biology is that it is now possible to analyze the sequences together and thereby address--for the first time at whole genome resolution--a set of fundamental biological questions related to populations: What is the structure of the global phage population? What are its dynamics? How do phages evolve? This is Comparative Genomics with a capital "C".

  12. Novel Variants of Streptococcus thermophilus Bacteriophages Are Indicative of Genetic Recombination among Phages from Different Bacterial Species.

    PubMed

    Szymczak, Paula; Janzen, Thomas; Neves, Ana Rute; Kot, Witold; Hansen, Lars H; Lametsch, René; Neve, Horst; Franz, Charles M A P; Vogensen, Finn K

    2017-03-01

    Bacteriophages are the main cause of fermentation failures in dairy plants. The majority of Streptococcus thermophilus phages can be divided into either cos- or pac-type phages and are additionally characterized by examining the V2 region of their antireceptors. We screened a large number of S. thermophilus phages from the Chr. Hansen A/S collection, using PCR specific for the cos- or pac-type phages, as well as for the V2 antireceptor region. Three phages did not produce positive results with the assays. Analysis of phage morphologies indicated that two of these phages, CHPC577 and CHPC926, had shorter tails than the traditional S. thermophilus phages. The third phage, CHPC1151, had a tail size similar to those of the cos- or pac-type phages, but it displayed a different baseplate structure. Sequencing analysis revealed the genetic similarity of CHPC577 and CHPC926 with a subgroup of Lactococcus lactis P335 phages. Phage CHPC1151 was closely related to the atypical S. thermophilus phage 5093, homologous with a nondairy streptococcal prophage. By testing adsorption of the related streptococcal and lactococcal phages to the surface of S. thermophilus and L. lactis strains, we revealed the possibility of cross-interactions. Our data indicated that the use of S. thermophilus together with L. lactis, extensively applied for dairy fermentations, triggered the recombination between phages infecting different bacterial species. A notable diversity among S. thermophilus phage populations requires that a new classification of the group be proposed.IMPORTANCEStreptococcus thermophilus is a component of thermophilic starter cultures commonly used for cheese and yogurt production. Characterizing streptococcal phages, understanding their genetic relationships, and studying their interactions with various hosts are the necessary steps for preventing and controlling phage attacks that occur during dairy fermentations. Copyright © 2017 Szymczak et al.

  13. Novel Variants of Streptococcus thermophilus Bacteriophages Are Indicative of Genetic Recombination among Phages from Different Bacterial Species

    PubMed Central

    Szymczak, Paula; Neves, Ana Rute; Kot, Witold; Hansen, Lars H.; Lametsch, René; Neve, Horst; Franz, Charles M. A. P.

    2016-01-01

    ABSTRACT Bacteriophages are the main cause of fermentation failures in dairy plants. The majority of Streptococcus thermophilus phages can be divided into either cos- or pac-type phages and are additionally characterized by examining the V2 region of their antireceptors. We screened a large number of S. thermophilus phages from the Chr. Hansen A/S collection, using PCR specific for the cos- or pac-type phages, as well as for the V2 antireceptor region. Three phages did not produce positive results with the assays. Analysis of phage morphologies indicated that two of these phages, CHPC577 and CHPC926, had shorter tails than the traditional S. thermophilus phages. The third phage, CHPC1151, had a tail size similar to those of the cos- or pac-type phages, but it displayed a different baseplate structure. Sequencing analysis revealed the genetic similarity of CHPC577 and CHPC926 with a subgroup of Lactococcus lactis P335 phages. Phage CHPC1151 was closely related to the atypical S. thermophilus phage 5093, homologous with a nondairy streptococcal prophage. By testing adsorption of the related streptococcal and lactococcal phages to the surface of S. thermophilus and L. lactis strains, we revealed the possibility of cross-interactions. Our data indicated that the use of S. thermophilus together with L. lactis, extensively applied for dairy fermentations, triggered the recombination between phages infecting different bacterial species. A notable diversity among S. thermophilus phage populations requires that a new classification of the group be proposed. IMPORTANCE Streptococcus thermophilus is a component of thermophilic starter cultures commonly used for cheese and yogurt production. Characterizing streptococcal phages, understanding their genetic relationships, and studying their interactions with various hosts are the necessary steps for preventing and controlling phage attacks that occur during dairy fermentations. PMID:28039135

  14. Zoosporic parasites infecting marine diatoms - A black box that needs to be opened.

    PubMed

    Scholz, Bettina; Guillou, Laure; Marano, Agostina V; Neuhauser, Sigrid; Sullivan, Brooke K; Karsten, Ulf; Küpper, Frithjof C; Gleason, Frank H

    2016-02-01

    Living organisms in aquatic ecosystems are almost constantly confronted by pathogens. Nevertheless, very little is known about diseases of marine diatoms, the main primary producers of the oceans. Only a few examples of marine diatoms infected by zoosporic parasites are published, yet these studies suggest that diseases may have significant impacts on the ecology of individual diatom hosts and the composition of communities at both the producer and consumer trophic levels of food webs. Here we summarize available ecological and morphological data on chytrids, aphelids, stramenopiles (including oomycetes, labyrinthuloids, and hyphochytrids), parasitic dinoflagellates, cercozoans and phytomyxids, all of which are known zoosporic parasites of marine diatoms. Difficulties in identification of host and pathogen species and possible effects of environmental parameters on the prevalence of zoosporic parasites are discussed. Based on published data, we conclude that zoosporic parasites are much more abundant in marine ecosystems than the available literature reports, and that, at present, both the diversity and the prevalence of such pathogens are underestimated.

  15. Zoosporic parasites infecting marine diatoms — A black box that needs to be opened

    PubMed Central

    Scholz, Bettina; Guillou, Laure; Marano, Agostina V.; Neuhauser, Sigrid; Sullivan, Brooke K.; Karsten, Ulf; Küpper, Frithjof C.; Gleason, Frank H.

    2016-01-01

    Living organisms in aquatic ecosystems are almost constantly confronted by pathogens. Nevertheless, very little is known about diseases of marine diatoms, the main primary producers of the oceans. Only a few examples of marine diatoms infected by zoosporic parasites are published, yet these studies suggest that diseases may have significant impacts on the ecology of individual diatom hosts and the composition of communities at both the producer and consumer trophic levels of food webs. Here we summarize available ecological and morphological data on chytrids, aphelids, stramenopiles (including oomycetes, labyrinthuloids, and hyphochytrids), parasitic dinoflagellates, cercozoans and phytomyxids, all of which are known zoosporic parasites of marine diatoms. Difficulties in identification of host and pathogen species and possible effects of environmental parameters on the prevalence of zoosporic parasites are discussed. Based on published data, we conclude that zoosporic parasites are much more abundant in marine ecosystems than the available literature reports, and that, at present, both the diversity and the prevalence of such pathogens are underestimated. PMID:28083074

  16. Isolation, phylogenetic analysis and anti-infective activity screening of marine sponge-associated actinomycetes.

    PubMed

    Abdelmohsen, Usama Ramadan; Pimentel-Elardo, Sheila M; Hanora, Amro; Radwan, Mona; Abou-El-Ela, Soad H; Ahmed, Safwat; Hentschel, Ute

    2010-02-26

    Terrestrial actinomycetes are noteworthy producers of a multitude of antibiotics, however the marine representatives are much less studied in this regard. In this study, 90 actinomycetes were isolated from 11 different species of marine sponges that had been collected from offshore Ras Mohamed (Egypt) and from Rovinj (Croatia). Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 18 different actinomycete genera representing seven different suborders. Fourteen putatively novel species were identified based on sequence similarity values below 98.2% to other strains in the NCBI database. A putative new genus related to Rubrobacter was isolated on M1 agar that had been amended with sponge extract, thus highlighting the need for innovative cultivation protocols. Testing for anti-infective activities was performed against clinically relevant, Gram-positive (Enterococcus faecalis, Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, fungi (Candida albicans) and human parasites (Leishmania major, Trypanosoma brucei). Bioactivities against these pathogens were documented for 10 actinomycete isolates. These results show a high diversity of actinomycetes associated with marine sponges as well as highlight their potential to produce anti-infective agents.

  17. Isolation, Phylogenetic Analysis and Anti-infective Activity Screening of Marine Sponge-Associated Actinomycetes

    PubMed Central

    Abdelmohsen, Usama Ramadan; Pimentel-Elardo, Sheila M.; Hanora, Amro; Radwan, Mona; Abou-El-Ela, Soad H.; Ahmed, Safwat; Hentschel, Ute

    2010-01-01

    Terrestrial actinomycetes are noteworthy producers of a multitude of antibiotics, however the marine representatives are much less studied in this regard. In this study, 90 actinomycetes were isolated from 11 different species of marine sponges that had been collected from offshore Ras Mohamed (Egypt) and from Rovinj (Croatia). Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 18 different actinomycete genera representing seven different suborders. Fourteen putatively novel species were identified based on sequence similarity values below 98.2% to other strains in the NCBI database. A putative new genus related to Rubrobacter was isolated on M1 agar that had been amended with sponge extract, thus highlighting the need for innovative cultivation protocols. Testing for anti-infective activities was performed against clinically relevant, Gram-positive (Enterococcus faecalis, Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, fungi (Candida albicans) and human parasites (Leishmania major, Trypanosoma brucei). Bioactivities against these pathogens were documented for 10 actinomycete isolates. These results show a high diversity of actinomycetes associated with marine sponges as well as highlight their potential to produce anti-infective agents. PMID:20411105

  18. Effect of Bacteriophages on the Growth of Flavobacterium psychrophilum and Development of Phage-Resistant Strains.

    PubMed

    Christiansen, Rói Hammershaimb; Madsen, Lone; Dalsgaard, Inger; Castillo, Daniel; Kalatzis, Panos G; Middelboe, Mathias

    2016-05-01

    The controlling effect of single and multiple phages on the density of Flavobacterium psychrophilum at different initial multiplicity of infection (MOI) was assessed in batch cultures to explore the potential for phage-based treatment of this important fish pathogen. A high initial phage concentration (MOI = 0.3-4) was crucial for efficient viral lysis, resulting in a 10(4)-10(5)-fold reduction of phage-sensitive cells (both single phages and phage cocktails), which was maintained throughout the incubation (>10 days). Following cell lysis, regrowth of phage-resistant strains was examined and resistant strains were isolated for further characterization. The application of a mathematical model allowed simulation of phage-host interactions and resistance development, confirming indications from strain isolations that phage-sensitive strains dominated the regrowing population (>99.8%) at low MOI and phage-resistant strains (>87.8%) dominated at high MOI. A cross-infectivity test covering 68 isolated strains and 22 phages resulted in 23 different host susceptibility patterns, with 20 of the isolates being resistant to all the applied phages. Eleven isolated strains with different susceptibility patterns had lower growth rates (0.093 to 0.31 h(-1)) than the host strain (0.33 h(-1)), while 10 of 14 examined strains had lost the ability to take up specific substrates as shown by BIOLOG profiles. Despite increased selection for phage resistance at high MOI, the results emphasize that high initial MOI is essential for fast and effective control of F. psychrophilum infection and suggest that the small populations of resistant clones had reduced competitive abilities relative to the sensitive ancestral strain.

  19. Genomics of staphylococcal Twort-like phages--potential therapeutics of the post-antibiotic era.

    PubMed

    Łobocka, Małgorzata; Hejnowicz, Monika S; Dąbrowski, Kamil; Gozdek, Agnieszka; Kosakowski, Jarosław; Witkowska, Magdalena; Ulatowska, Magdalena I; Weber-Dąbrowska, Beata; Kwiatek, Magdalena; Parasion, Sylwia; Gawor, Jan; Kosowska, Helena; Głowacka, Aleksandra

    2012-01-01

    Polyvalent bacteriophages of the genus Twort-like that infect clinically relevant Staphylococcus strains may be among the most promising phages with potential therapeutic applications. They are obligatorily lytic, infect the majority of Staphylococcus strains in clinical strain collections, propagate efficiently and do not transfer foreign DNA by transduction. Comparative genomic analysis of 11 S. aureus/S. epidermidis Twort-like phages, as presented in this chapter, emphasizes their strikingly high similarity and clear divergence from phage Twort of the same genus, which might have evolved in hosts of a different species group. Genetically, these phages form a relatively isolated group, which minimizes the risk of acquiring potentially harmful genes. The order of genes in core parts of their 127 to 140-kb genomes is conserved and resembles that found in related representatives of the Spounavirinae subfamily of myoviruses. Functions of certain conserved genes can be predicted based on their homology to prototypical genes of model spounavirus SPO1. Deletions in the genomes of certain phages mark genes that are dispensable for phage development. Nearly half of the genes of these phages have no known homologues. Unique genes are mostly located near termini of the virion DNA molecule and are expressed early in phage development as implied by analysis of their potential transcriptional signals. Thus, many of them are likely to play a role in host takeover. Single genes encode homologues of bacterial virulence-associated proteins. They were apparently acquired by a common ancestor of these phages by horizontal gene transfer but presumably evolved towards gaining functions that increase phage infectivity for bacteria or facilitate mature phage release. Major differences between the genomes of S. aureus/S. epidermidis Twort-like phages consist of single nucleotide polymorphisms and insertions/deletions of short stretches of nucleotides, single genes, or introns of group I

  20. Identification and characterisation of new Campylobacter group III phages of animal origin.

    PubMed

    Janež, Nika; Kokošin, Andreja; Zaletel, Eva; Vranac, Tanja; Kovač, Jasna; Vučković, Darinka; Smole Možina, Sonja; Curin Šerbec, Vladka; Zhang, Qijing; Accetto, Tomaž; Podgornik, Aleš; Peterka, Matjaž

    2014-10-01

    Campylobacter-specific bacteriophages (phages) are considered as an alternative intervention strategy to decrease the level of poultry contamination with Campylobacter, a leading cause of gastroenteritis worldwide. Eradication efficiency depends primarily on phage-host interaction mediated by phage tail-spike proteins and bacterial receptors. Here, this interaction was characterised using tail-spike gene sequence analysis, phage neutralisation by antiserum and host range analysis of newly isolated group III Campylobacter phages with 68 Campylobacter jejuni and Campylobacter coli strains. Three different groups of phages were obtained using antibody neutralisation assay, and they were further divided according to polymorphisms observed within tail fibre sequences and host range. Only moderate congruence was observed between these criteria with notable exception of two phages. The infection relied on capsule in all phages isolated, and flagella were found to influence phage propagation on agar plates, but not in broth. Their specificity was more C. jejuni oriented with tendency to lyse human isolates more efficiently. Additionally, natural resistance of C. jejuni to phages did not correlate with their antibiotic resistance patterns. These findings provide new insights into Campylobacter-phage interaction.

  1. Phage Biodiversity in Artisanal Cheese Wheys Reflects the Complexity of the Fermentation Process

    PubMed Central

    Mahony, Jennifer; Moscarelli, Angelo; Kelleher, Philip; Lugli, Gabriele A.; Ventura, Marco; Settanni, Luca; van Sinderen, Douwe

    2017-01-01

    Dairy fermentations constitute a perfect “breeding ground” for bacteriophages infecting starter cultures, particularly strains of Lactococcus lactis. In modern fermentations, these phages typically belong to one of three groups, i.e., the 936, P335, and c2 phage groups. Traditional production methods present fewer chemical and physical barriers to phage proliferation compared to modern production systems, while the starter cultures used are typically complex, variable, and undefined. In the current study, a variety of cheese whey, animal-derived rennet, and vat swab samples from artisanal cheeses produced in Sicily were analysed for the presence of lactococcal phages to assess phage diversity in such environments. The complete genomes of 18 representative phage isolates were sequenced, allowing the identification of 10 lactococcal 949 group phages, six P087 group phages, and two members of the 936 group phages. The genetic diversity of these isolates was examined using phylogenetic analysis as well as a focused analysis of the receptor binding proteins, which dictate specific interactions with the host-encoded receptor. Thermal treatments at 63 °C and 83 °C indicate that the 949 phages are particularly sensitive to thermal treatments, followed by the P087 and 936 isolates, which were shown to be much less sensitive to such treatments. This difference may explain the relatively low frequency of isolation of the so-called “rare” 949 and P087 group phages in modern fermentations. PMID:28300778

  2. Genome analysis of two virulent Streptococcus thermophilus phages isolated in Argentina.

    PubMed

    Guglielmotti, Daniela M; Deveau, Hélène; Binetti, Ana G; Reinheimer, Jorge A; Moineau, Sylvain; Quiberoni, Andrea

    2009-11-30

    Two Streptococcus thermophilus phages (ALQ13.2 and phiAbc2) were previously isolated from breakdowns of cheese manufacture in Argentina. Complete nucleotide sequence analysis indicated that both phages contained linear double-stranded DNA: 35,525 bp in length for the pac-type phage ALQ13.2 and 34,882 bp for the cos-type phage phiAbc2. Forty-four and 48 open reading frames (ORF) were identified for ALQ13.2 and phiAbc2, respectively. Comparative genomic analysis showed that these isolates shared many similarities with the eight previously studied cos- and pac-phages infecting different S. thermophilus strains. In particular, part of the phiAbc2 genome was highly similar to a region of phage 7201, which was thought to be unique to this latter phage. Protein analysis of the pac-phage ALQ13.2 using SDS polyacrylamide gel electrophoresis (SDS-PAGE) identified three major proteins and seven minor proteins. Parallel structural proteome analysis of phiAbc2 revealed seven protein bands, two of which were related to major structural proteins, as expected for a cos-type phage. Similarities to other S. thermophilus phages suggest that the streptococcal phage diversity is not extensive in worldwide dairy factories possibly because related high-performing bacterial strains are used in starter cultures.

  3. Plasmid carriage can limit bacteria-phage coevolution.

    PubMed

    Harrison, Ellie; Truman, Julie; Wright, Rosanna; Spiers, Andrew J; Paterson, Steve; Brockhurst, Michael A

    2015-08-01

    Coevolution with bacteriophages is a major selective force shaping bacterial populations and communities. A variety of both environmental and genetic factors has been shown to influence the mode and tempo of bacteria-phage coevolution. Here, we test the effects that carriage of a large conjugative plasmid, pQBR103, had on antagonistic coevolution between the bacterium Pseudomonas fluorescens and its phage, SBW25ϕ2. Plasmid carriage limited bacteria-phage coevolution; bacteria evolved lower phage-resistance and phages evolved lower infectivity in plasmid-carrying compared with plasmid-free populations. These differences were not explained by effects of plasmid carriage on the costs of phage resistance mutations. Surprisingly, in the presence of phages, plasmid carriage resulted in the evolution of high frequencies of mucoid bacterial colonies. Mucoidy can provide weak partial resistance against SBW25ϕ2, which may have limited selection for qualitative resistance mutations in our experiments. Taken together, our results suggest that plasmids can have evolutionary consequences for bacteria that go beyond the direct phenotypic effects of their accessory gene cargo.

  4. Evolution of Lactococcus lactis phages within a cheese factory.

    PubMed

    Rousseau, Geneviève M; Moineau, Sylvain

    2009-08-01

    We have sequenced the double-stranded DNA genomes of six lactococcal phages (SL4, CB13, CB14, CB19, CB20, and GR7) from the 936 group that were isolated over a 9-year period from whey samples obtained from a Canadian cheese factory. These six phages infected the same two industrial Lactococcus lactis strains out of 30 tested. The CB14 and GR7 genomes were found to be 100% identical even though they were isolated 14 months apart, indicating that a phage can survive in a cheese plant for more than a year. The other four genomes were related but notably different. The length of the genomes varied from 28,144 to 32,182 bp, and they coded for 51 to 55 open reading frames. All five genomes possessed a 3' overhang cos site that was 11 nucleotides long. Several structural proteins were also identified by nano-high-performance liquid chromatography-tandem mass spectrometry, confirming bioinformatic analyses. Comparative analyses suggested that the most recently isolated phages (CB19 and CB20) were derived, in part, from older phage isolates (CB13 and CB14/GR7). The organization of the five distinct genomes was similar to the previously sequenced lactococcal phage genomes of the 936 group, and from these sequences, a core genome was determined for lactococcal phages of the 936 group.

  5. Coevolution of CRISPR bacteria and phage in 2 dimensions

    NASA Astrophysics Data System (ADS)

    Han, Pu; Deem, Michael

    2014-03-01

    CRISPR (cluster regularly interspaced short palindromic repeats) is a newly discovered adaptive, heritable immune system of prokaryotes. It can prevent infection of prokaryotes by phage. Most bacteria and almost all archae have CRISPR. The CRISPR system incorporates short nucleotide sequences from viruses. These incorporated sequences provide a historical record of the host and predator coevolution. We simulate the coevolution of bacteria and phage in 2 dimensions. Each phage has multiple proto-spacers that the bacteria can incorporate. Each bacterium can store multiple spacers in its CRISPR. Phages can escape recognition by the CRISPR system via point mutation or recombination. We will discuss the different evolutionary consequences of point mutation or recombination on the coevolution of bacteria and phage. We will also discuss an intriguing ``dynamic phase transition'' in the number of phage as a function of time and mutation rate. We will show that due to the arm race between phages and bacteria, the frequency of spacers and proto-spacers in a population can oscillate quite rapidly.

  6. Properties of Klebsiella phage P13 and associated exopolysaccharide depolymerase

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Guiyang; Mo, Zhaolan; Chai, Zihan; Shang, Anqi; Mou, Haijin

    2013-11-01

    The bacteriophage P13 that infects Klebsiella serotype K13 contains a heat-stable depolymerase capable of effective degradation of exopolysaccharide (EPS) produced by this microorganism. In this study, the titer of phage P13, initially 2.0 × 107 pfu mL-1, was found increasing 20 min after infection and reached 5.0 × 109 pfu mL-1 in 60 min. Accordingly, the enzyme activity of depolymerase approached the maximum 60 min after infection. Treatment at 70°C for 30 min inactivated all the phage, but retained over 90% of the depolymerase activity. Addition of acetone into the crude phage lysate led to precipitation of the protein, with a marked increase in bacterial EPS degradation activity and a rapid drop in the titer of phage. After partial purification by acetone precipitation and ultrafiltration centrifugation, the enzyme was separated from the phage particles, showing two components with enzyme activity on Q-Sepharose Fast Flow. The soluble enzyme had an optimum degradation activity at 60°C and pH 6.5. Transmission electron microscopy demonstrated that the phage P13 particles were spherical with a diameter of 50 nm and a short stumpy tail. It was a doublestrand DNA virus consisting of a nucleic acid molecule of 45976 bp. This work provides an efficient purification operation including thermal treatment and ultrafiltration centrifugation, to dissociate depolymerase from phage particles. The characterization of phage P13 and associated EPS depolymerase is beneficial for further application of this enzyme.

  7. The phage-host arms race: Shaping the evolution of microbes

    SciTech Connect

    Stern, Adi; Sorek, Rotem

    2010-10-26

    Bacteria, the most abundant organisms on the planet, are outnumbered by a factor of 10 to 1 by phages that infect them. Faced with the rapid evolution and turnover of phage particles, bacteria have evolved various mechanisms to evade phage infection and killing, leading to an evolutionary arms race. The extensive co-evolution of both phage and host has resulted in considerable diversity on the part of both bacterial and phage defensive and offensive strategies. In this paper, we discuss the unique and common features of phage resistance mechanisms and their role in global biodiversity. Finally, the commonalities between defense mechanisms suggest avenues for the discovery of novel forms of these mechanisms based on their evolutionary traits.

  8. Life-Style and Genome Structure of Marine Pseudoalteromonas Siphovirus B8b Isolated from the Northwestern Mediterranean Sea

    PubMed Central

    Lara, Elena; Holmfeldt, Karin; Solonenko, Natalie; Sà, Elisabet Laia; Ignacio-Espinoza, J. Cesar; Cornejo-Castillo, Francisco M.; Verberkmoes, Nathan C.; Vaqué, Dolors; Sullivan, Matthew B.; Acinas, Silvia G.

    2015-01-01

    Marine viruses (phages) alter bacterial diversity and evolution with impacts on marine biogeochemical cycles, and yet few well-developed model systems limit opportunities for hypothesis testing. Here we isolate phage B8b from the Mediterranean Sea using Pseudoalteromonas sp. QC-44 as a host and characterize it using myriad techniques. Morphologically, phage B8b was classified as a member of the Siphoviridae family. One-step growth analyses showed that this siphovirus had a latent period of 70 min and released 172 new viral particles per cell. Host range analysis against 89 bacterial host strains revealed that phage B8b infected 3 Pseudoalteromonas strains (52 tested, >99.9% 16S rRNA gene nucleotide identity) and 1 non-Pseudoaltermonas strain belonging to Alteromonas sp. (37 strains from 6 genera tested), which helps bound the phylogenetic distance possible in a phage-mediated horizontal gene transfer event. The Pseudoalteromonas phage B8b genome size was 42.7 kb, with clear structural and replication modules where the former were delineated leveraging identification of 16 structural genes by virion structural proteomics, only 4 of which had any similarity to known structural proteins. In nature, this phage was common in coastal marine environments in both photic and aphotic layers (found in 26.5% of available viral metagenomes), but not abundant in any sample (average per sample abundance was 0.65% of the reads). Together these data improve our understanding of siphoviruses in nature, and provide foundational information for a new ‘rare virosphere’ phage–host model system. PMID:25587991

  9. Ciprofloxacin and Trimethoprim Cause Phage Induction and Virulence Modulation in Staphylococcus aureus

    PubMed Central

    Goerke, Christiane; Köller, Johanna; Wolz, Christiane

    2006-01-01

    In Staphylococcus aureus strains of human origin, phages which integrate into the chromosomal gene coding for β-hemolysin (hlb) are widely distributed. Most of them encode accessory virulence determinants such as staphylokinase (sak) or enterotoxins. Here, we analyzed the effects of ciprofloxacin and trimethoprim on phage induction and expression of phage-encoded virulence factors by using isolates from patients with cystic fibrosis for which the induction of hlb-converting phages was demonstrated in vivo (C. Goerke, S. Matias y Papenberg, S. Dasbach, K. Dietz, R. Ziebach, B. C. Kahl, and C. Wolz, J. Infect. Dis. 189:724-734, 2004) as well as a φ13 lysogen of phage-cured strain 8325-4. Treatment of lysogens with subinhibitory concentrations of either antibiotic resulted in (i) delysogenization of strains resembling the isolates picked up after chronic lung infection and (ii) replication of phages in the bacterial host in a dose-dependent manner. Ciprofloxacin treatment resulted in enhanced recA transcription, indicating involvement of the SOS response in phage mobilization. Induction of φ13 was linked to elevated expression of the phage-encoded virulence gene sak, chiefly due to the activation of latent phage promoters. In summary, we could show the induction of hlb-converting phages and a subsequent virulence modulation of the host bacterium by ciprofloxacin and trimethoprim. PMID:16377683

  10. Phage display in the study of infectious diseases.

    PubMed

    Mullen, Lisa M; Nair, Sean P; Ward, John M; Rycroft, Andrew N; Henderson, Brian

    2006-03-01

    Microbial infections are dependent on the panoply of interactions between pathogen and host and identifying the molecular basis of such interactions is necessary to understand and control infection. Phage display is a simple functional genomic methodology for screening and identifying protein-ligand interactions and is widely used in epitope mapping, antibody engineering and screening for receptor agonists or antagonists. Phage display is also used widely in various forms, including the use of fragment libraries of whole microbial genomes, to identify peptide-ligand and protein-ligand interactions that are of importance in infection. In particular, this technique has proved successful in identifying microbial adhesins that are vital for colonization.

  11. Bacteriophage module reshuffling results in adaptive host range as exemplified by the baseplate model of listerial phage A118.

    PubMed

    Cambillau, Christian

    2015-10-01

    Each phage infects its specific bacterial host strain through highly specific interactions between the baseplate-associated receptor binding protein (RBP) at the tip of the phage tail and the receptor at the host surface. Baseplates incorporate structural core modules, Dit and Tal, largely conserved among phages, and peripheral modules anchoring the RBPs. Exploiting structural information from the HHpred program and EM data from the Bielmann et al. (2015) paper, a molecular model of the A118 phage baseplate was generated from different building blocks. This model implies the occurrence of baseplate module reshuffling and suggests that listerial phage A118 may have been derived from lactococcal phage TP901-1 through host species exchange. With the increase of available viral module structures, modelling phage baseplates will become easier and more reliant, and will provide insightful information on the nature of the phage host receptor and its mode of recognition.

  12. Amplification and Purification of T4-Like Escherichia coli Phages for Phage Therapy: from Laboratory to Pilot Scale

    PubMed Central

    Bourdin, Gilles; Schmitt, Bertrand; Marvin Guy, Laure; Germond, Jacques-Edouard; Zuber, Sophie; Michot, Lise; Reuteler, Gloria

    2014-01-01

    We investigated the amplification and purification of phage preparations with respect to titer, contamination level, stability, and technical affordability. Using various production systems (wave bags, stirred-tank reactors, and Erlenmeyer flasks), we obtained peak titers of 109 to 1010 PFU/ml for T4-like coliphages. Phage lysates could be sterilized through 0.22-μm membrane filters without titer loss. Phages concentrated by differential centrifugation were not contaminated with cellular debris or bacterial proteins, as assessed by electron microscopy and mass spectrometry, respectively. Titer losses occurred by high-speed pelleting of phages but could be decreased by sedimentation through a sucrose cushion. Alternative phage concentration methods are prolonged medium-speed centrifugation, strong anion-exchange chromatography, and ultrafiltration, but the latter still allowed elevated lipopolysaccharide contamination. T4-like phages could not be pasteurized but maintained their infectivity titer in the cold chain. In the presence of 10 mM magnesium ions, phages showed no loss of titer over 1 month at 30°C. PMID:24362424

  13. Reduction of Campylobacter jejuni in Broiler Chicken by Successive Application of Group II and Group III Phages

    PubMed Central

    Hammerl, Jens A.; Jäckel, Claudia; Alter, Thomas; Janzcyk, Pawel; Stingl, Kerstin; Knüver, Marie Theres; Hertwig, Stefan

    2014-01-01

    Background Bacteriophage treatment is a promising tool to reduce Campylobacter in chickens. Several studies have been published where group II or group III phages were successfully applied. However, these two groups of phages are different regarding their host ranges and host cell receptors. Therefore, a concerted activity of group II and group III phages might enhance the efficacy of a treatment and decrease the number of resistant bacteria. Results In this study we have compared the lytic properties of some group II and group III phages and analysed the suitability of various phages for a reduction of C. jejuni in broiler chickens. We show that group II and group III phages exhibit different kinetics of infection. Two group III and one group II phage were selected for animal experiments and administered in different combinations to three groups of chickens, each containing ten birds. While group III phage CP14 alone reduced Campylobacter counts by more than 1 log10 unit, the concomitant administration of a second group III phage (CP81) did not yield any reduction, probably due to the development of resistance induced by this phage. One group of chickens received phage CP14 and, 24 hours later, group II phage CP68. In this group of animals, Campylobacter counts were reduced by more than 3 log10 units. Conclusion The experiments illustrated that Campylobacter phage cocktails have to be carefully composed to achieve the best results. PMID:25490713

  14. Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis and Other Bacteria

    DTIC Science & Technology

    2016-09-01

    Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis And Other Bacteria Thomas Brown, Salwa Shan, Teresa...infection can be detected as early as one hour after exposing as few as 105 CFU bacteria to the stressor. We predicted that similar responses could be used... bacteria to form confluent growth and for phage-induced plaques to appear. Techniques that permit faster detection of species-specific bacteria /phage

  15. Identification of Essential Genes in the Salmonella Phage SPN3US Reveals Novel Insights into Giant Phage Head Structure and Assembly.

    PubMed

    Thomas, Julie A; Benítez Quintana, Andrea Denisse; Bosch, Martine A; Coll De Peña, Adriana; Aguilera, Elizabeth; Coulibaly, Assitan; Wu, Weimin; Osier, Michael V; Hudson, André O; Weintraub, Susan T; Black, Lindsay W

    2016-11-15

    Giant tailed bacterial viruses, or phages, such as Pseudomonas aeruginosa phage ϕKZ, have long genomes packaged into large, atypical virions. Many aspects of ϕKZ and related phage biology are poorly understood, mostly due to the fact that the functions of the majority of their proteins are unknown. We hypothesized that the Salmonella enterica phage SPN3US could be a useful model phage to address this gap in knowledge. The 240-kb SPN3US genome shares a core set of 91 genes with ϕKZ and related phages, ∼61 of which are virion genes, consistent with the expectation that virion complexity is an ancient, conserved feature. Nucleotide sequencing of 18 mutants enabled assignment of 13 genes as essential, information which could not have been determined by sequence-based searches for 11 genes. Proteome analyses of two SPN3US virion protein mutants with knockouts in 64 and 241 provided new insight into the composition and assembly of giant phage heads. The 64 mutant analyses revealed all the genetic determinants required for assembly of the SPN3US head and a likely head-tail joining role for gp64, and its homologs in related phages, due to the tailless-particle phenotype produced. Analyses of the mutation in 241, which encodes an RNA polymerase β subunit, revealed that without this subunit, no other subunits are assembled into the head, and enabled identification of a "missing" β' subunit domain. These findings support SPN3US as an excellent model for giant phage research, laying the groundwork for future analyses of their highly unusual virions, host interactions, and evolution. In recent years, there has been a paradigm shift in virology with the realization that extremely large viruses infecting prokaryotes (giant phages) can be found in many environments. A group of phages related to the prototype giant phage ϕKZ are of great interest due to their virions being among the most complex of prokaryotic viruses and their potential for biocontrol and phage therapy

  16. Identification of Essential Genes in the Salmonella Phage SPN3US Reveals Novel Insights into Giant Phage Head Structure and Assembly

    PubMed Central

    Benítez Quintana, Andrea Denisse; Bosch, Martine A.; Coll De Peña, Adriana; Aguilera, Elizabeth; Coulibaly, Assitan; Wu, Weimin; Osier, Michael V.; Hudson, André O.; Weintraub, Susan T.; Black, Lindsay W.

    2016-01-01

    ABSTRACT Giant tailed bacterial viruses, or phages, such as Pseudomonas aeruginosa phage ϕKZ, have long genomes packaged into large, atypical virions. Many aspects of ϕKZ and related phage biology are poorly understood, mostly due to the fact that the functions of the majority of their proteins are unknown. We hypothesized that the Salmonella enterica phage SPN3US could be a useful model phage to address this gap in knowledge. The 240-kb SPN3US genome shares a core set of 91 genes with ϕKZ and related phages, ∼61 of which are virion genes, consistent with the expectation that virion complexity is an ancient, conserved feature. Nucleotide sequencing of 18 mutants enabled assignment of 13 genes as essential, information which could not have been determined by sequence-based searches for 11 genes. Proteome analyses of two SPN3US virion protein mutants with knockouts in 64 and 241 provided new insight into the composition and assembly of giant phage heads. The 64 mutant analyses revealed all the genetic determinants required for assembly of the SPN3US head and a likely head-tail joining role for gp64, and its homologs in related phages, due to the tailless-particle phenotype produced. Analyses of the mutation in 241, which encodes an RNA polymerase β subunit, revealed that without this subunit, no other subunits are assembled into the head, and enabled identification of a “missing” β′ subunit domain. These findings support SPN3US as an excellent model for giant phage research, laying the groundwork for future analyses of their highly unusual virions, host interactions, and evolution. IMPORTANCE In recent years, there has been a paradigm shift in virology with the realization that extremely large viruses infecting prokaryotes (giant phages) can be found in many environments. A group of phages related to the prototype giant phage ϕKZ are of great interest due to their virions being among the most complex of prokaryotic viruses and their potential for

  17. Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, and Sarcocystis canis-like infections in marine mammals

    USGS Publications Warehouse

    Dubey, J.P.; Zarnke, R.; Thomas, N.J.; Wong, S.K.; Vanbonn, W.; Briggs, M.; Davis, J.W.; Ewing, R.; Mense, M.; Kwok, O.C.H.; Romand, S.; Thulliez, P.

    2003-01-01

    Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, and S. canis are related protozoans that can cause mortality in many species of domestic and wild animals. Recently, T. gondii and S. neurona were recognized to cause encephalitis in marine mammals. As yet, there is no report of natural exposure of N. caninum in marine mammals. In the present study, antibodies to T. gondii and N. caninum were assayed in sera of several species of marine mammals. For T. gondii, sera were diluted 1:25, 1:50, and 1:500 and assayed in the T. gondii modified agglutination test (MAT). Antibodies (MAT a?Y1:25) to T. gondii were found in 89 of 115 (77%) dead, and 18 of 30 (60%) apparently healthy sea otters (Enhydra lutris), 51 of 311 (16%) Pacific harbor seals (Phoca vitulina), 19 of 45 (42%) sea lions (Zalophus californianus), 5 of 32 (16%) ringed seals (Phoca hispida), 4 of 8 (50%) bearded seals (Erignathus barbatus), 1 of 9 (11.1%) spotted seals (Phoca largha), 138 of 141 (98%) Atlantic bottlenose dolphins (Tursiops truncatus), and 3 of 53 (6%) walruses (Odobenus rosmarus). For N. caninum, sera were diluted 1:40, 1:80, 1:160, and 1:320 and examined with the Neospora agglutination test (NAT) using mouse-derived tachyzoites. NAT antibodies were found in 3 of 53 (6%) walruses, 28 of 145 (19%) sea otters, 11 of 311 (3.5%) harbor seals, 1 of 27 (3.7%) sea lions, 4 of 32 (12.5%) ringed seals, 1 of 8 (12.5%) bearded seals, and 43 of 47 (91%) bottlenose dolphins. To our knowledge, this is the first report of N. caninum antibodies in any marine mammal, and the first report of T. gondii antibodies in walruses and in ringed, bearded, spotted, and ribbon seals. Current information on T. gondii-like and Sarcocystis-like infections in marine mammals is reviewed. New cases of clinical S. canis and T. gondii infections are also reported in sea lions, and T. gondii infection in an Antillean manatee (Trichechus manatus manatus).

  18. Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, and Sarcocystis canis-like infections in marine mammals.

    PubMed

    Dubey, J P; Zarnke, R; Thomas, N J; Wong, S K; Van Bonn, W; Briggs, M; Davis, J W; Ewing, R; Mense, M; Kwok, O C H; Romand, S; Thulliez, P

    2003-10-30

    Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, and S. canis are related protozoans that can cause mortality in many species of domestic and wild animals. Recently, T. gondii and S. neurona were recognized to cause encephalitis in marine mammals. As yet, there is no report of natural exposure of N. caninum in marine mammals. In the present study, antibodies to T. gondii and N. caninum were assayed in sera of several species of marine mammals. For T. gondii, sera were diluted 1:25, 1:50, and 1:500 and assayed in the T. gondii modified agglutination test (MAT). Antibodies (MAT > or =1:25) to T. gondii were found in 89 of 115 (77%) dead, and 18 of 30 (60%) apparently healthy sea otters (Enhydra lutris), 51 of 311 (16%) Pacific harbor seals (Phoca vitulina), 19 of 45 (42%) sea lions (Eumetopias jubatus) [corrected] 5 of 32 (16%) ringed seals (Phoca hispida), 4 of 8 (50%) bearded seals (Erignathus barbatus), 1 of 9 (11.1%) spotted seals (Phoca largha), 138 of 141 (98%) Atlantic bottlenose dolphins (Tursiops truncatus), and 3 of 53 (6%) walruses (Odobenus rosmarus). For N. caninum, sera were diluted 1:40, 1:80, 1:160, and 1:320 and examined with the Neospora agglutination test (NAT) using mouse-derived tachyzoites. NAT antibodies were found in 3 of 53 (6%) walruses, 28 of 145 (19%) sea otters, 11 of 311 (3.5%) harbor seals, 1 of 27 (3.7%) sea lions, 4 of 32 (12.5%) ringed seals, 1 of 8 (12.5%) bearded seals, and 43 of 47 (91%) bottlenose dolphins. To our knowledge, this is the first report of N. caninum antibodies in any marine mammal, and the first report of T. gondii antibodies in walruses and in ringed, bearded, spotted, and ribbon seals. Current information on T. gondii-like and Sarcocystis-like infections in marine mammals is reviewed. New cases of clinical S. canis and T. gondii infections are also reported in sea lions, and T. gondii infection in an Antillean manatee (Trichechus manatus manatus).

  19. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa.

    PubMed

    Chan, Benjamin K; Sistrom, Mark; Wertz, John E; Kortright, Kaitlyn E; Narayan, Deepak; Turner, Paul E

    2016-05-26

    Increasing prevalence and severity of multi-drug-resistant (MDR) bacterial infections has necessitated novel antibacterial strategies. Ideally, new approaches would target bacterial pathogens while exerting selection for reduced pathogenesis when these bacteria inevitably evolve resistance to therapeutic intervention. As an example of such a management strategy, we isolated a lytic bacteriophage, OMKO1, (family Myoviridae) of Pseudomonas aeruginosa that utilizes the outer membrane porin M (OprM) of the multidrug efflux systems MexAB and MexXY as a receptor-binding site. Results show that phage selection produces an evolutionary trade-off in MDR P. aeruginosa, whereby the evolution of bacterial resistance to phage attack changes the efflux pump mechanism, causing increased sensitivity to drugs from several antibiotic classes. Although modern phage therapy is still in its infancy, we conclude that phages, such as OMKO1, represent a new approach to phage therapy where bacteriophages exert selection for MDR bacteria to become increasingly sensitive to traditional antibiotics. This approach, using phages as targeted antibacterials, could extend the lifetime of our current antibiotics and potentially reduce the incidence of antibiotic resistant infections.

  20. [Phage typing and lysogen typing of Staphylococcus aureus].

    PubMed

    Witte, W; Khatenever, M L; Akatov, A K

    1979-11-01

    A comparison was made between the results of phage and lysogenic typing of S. aureus strains isolated during several outbreaks of staphylococcal infection and S. aureus cultures isolated from the same carriers at different periods. The study of the groups of strains having the same origin showed that the differences in the number of reactions were more pronounced in lysogenic typing than in phage typing. For this reason lysogenic typing can be recommended only for the identification of those strains which cannot be identified with the use of the phages of the International Basic Set. The results of the experiments with induced phages proliferating in a restriction-defective strain indicated that restriction and modification were mainly responsible for the specificity of lytic reactions.

  1. The complete genome of a new marine Thaumarchaea strain contains evidence of previous virus infection and a possible defense mechanism from infection

    NASA Astrophysics Data System (ADS)

    Ahlgren, N.; Parada, A. E.; Fuhrman, J. A.

    2016-02-01

    While marine viruses have been isolated from several marine bacterial phyla, no reported viruses have been isolated from mesophilic marine archaea. There is growing evidence for viruses that infect marine Thaumarchaea, an abundant phylum of mesophilic archaea that are important in C and N cycles in the ocean. We have recently sequenced the complete genome of new Thaumarchaeota strain, SPOT01, that contains evidence of viral infection. Two independent virus finding programs, VirSorter and phiSpy, indicate the genome contains a 20 kb region that is likely viral in origin. Manual inspection of this region, including comparison to known viral proteins, also supports that this region contains viral genes. It is unclear if this region is a viable prophage or the remnants of a previous lytic infection. Next to this region are genes for a newly recognized form of DNA modification, phosphorothioation (PT), and an adjacent operon that likely encodes a restriction endonuclease (RE). PT genes are found in a variety of bacteria and archaea, but this is the first example of PT genes in a marine achaeon. PT and adjacent RE genes in Salmonella enterica have been shown to function as a restriction modification system—non PT-modified DNA is degraded by the PT system RE such that the host is protected from invasion of foreign DNA. The discovery of both PT and adjacent RE genes in SPOT01 is novel among marine microbes, and we hypothesize that they act to restrict infection by degrading non PT-modified viral DNA. Recruitment of metagenomes from a near-shore site off California indicates that the putative virus and PT regions are found in roughly 25% and 2% respectively of Thaumarchaea in the field. Results from PacBio sequencing will be presented on which genomic sites are PT modified. This new genome provides compelling evidence that marine Thaumarchaea are susceptible to viral infection and possess a potential new mechanism for defense from infection.

  2. Serologic evidence of influenza A infection in marine mammals of arctic Canada.

    PubMed

    Nielsen, O; Clavijo, A; Boughen, J A

    2001-10-01

    A serologic survey of influenza A antibodies was undertaken on 1,611 blood samples from five species of marine mammals collected from Arctic Canada from 1984-98. Sampling was done in 24 locations throughout the Canadian Arctic encompassing Sachs Harbor (72 degrees N, 125 degrees W), Northwest Territories in the west to Loks Land (63 degrees N, 64 degrees W), Nunavut in the east, to Eureka (80 degrees N, 86 degrees W), Nunavut in the north to Sanikiluaq (56 degrees N, 79 degrees W), Nunavut in the south. A competitive ELISA using a monoclonal antibody (Mab) against influenza A nucleoprotein (NP) was used. Five of 418 (1.2%) belugas (Delphinapterus leucas) and 23 of 903 (2.5%) ringed seals (Phoca hispida) were serologically positive. None of the 210 walruses (Odobenus rosmarus rosmarus), 76 narwhals (Monodon monoceros) and four bowhead whales (Balaena mysticetus) had detectable antibodies to influenza A. Positive belugas were identified from communities on southeast Baffin Island while positive ringed seals came from communities in the eastern, western and high Arctic. Virus isolation attempts on lung tissue from a seropositive beluga were unsuccessful. We believe that influenza A infection in marine mammals is sporadic, the infection is probably self-limiting, and it may not be able to be maintained in these animals. Although the predominant hemagglutinin (H) type was not determined and therefore the pathogenicity of the strains to humans is unknown, the hunting and consumption of marine mammals by the Inuit, may put them at risk for influenza A infection.

  3. Giant virus with a remarkable complement of genes infects marine zooplankton

    PubMed Central

    Fischer, Matthias G.; Allen, Michael J.; Wilson, William H.; Suttle, Curtis A.

    2010-01-01

    As major consumers of heterotrophic bacteria and phytoplankton, microzooplankton are a critical link in aquatic foodwebs. Here, we show that a major marine microflagellate grazer is infected by a giant virus, Cafeteria roenbergensis virus (CroV), which has the largest genome of any described marine virus (≈730 kb of double-stranded DNA). The central 618-kb coding part of this AT-rich genome contains 544 predicted protein-coding genes; putative early and late promoter motifs have been detected and assigned to 191 and 72 of them, respectively, and at least 274 genes were expressed during infection. The diverse coding potential of CroV includes predicted translation factors, DNA repair enzymes such as DNA mismatch repair protein MutS and two photolyases, multiple ubiquitin pathway components, four intein elements, and 22 tRNAs. Many genes including isoleucyl-tRNA synthetase, eIF-2γ, and an Elp3-like histone acetyltransferase are usually not found in viruses. We also discovered a 38-kb genomic region of putative bacterial origin, which encodes several predicted carbohydrate metabolizing enzymes, including an entire pathway for the biosynthesis of 3-deoxy-d-manno-octulosonate, a key component of the outer membrane in Gram-negative bacteria. Phylogenetic analysis indicates that CroV is a nucleocytoplasmic large DNA virus, with Acanthamoeba polyphaga mimivirus as its closest relative, although less than one-third of the genes of CroV have homologs in Mimivirus. CroV is a highly complex marine virus and the only virus studied in genetic detail that infects one of the major groups of predators in the oceans. PMID:20974979

  4. Inflammation and innate immune response against viral infections in marine fish.

    PubMed

    Novoa, B; Mackenzie, S; Figueras, A

    2010-01-01

    Viral infections in fish are common in both natural and cultured fish populations and the spread of infectious disease is a serious threat to both natural ecosystems and commercial exploitations. A significant body of studies have addressed the host response to viral infection including the efficacy of DNA vaccines however we still have a fragmented vision of both pathologies associated with viral infection and the immune response to those across fish species. Many studies have concentrated upon freshwater fish including the zebrafish (Danio rerio) and the Rainbow trout (Oncorhynchus mykiss) whereas the majority of marine fish studies address the Atlantic salmon (Salmo salar). Here we provide a comprehensive review concentrating upon the salient pathological features of the most common viral infections including examples of the Betanodaviruses, Birnaviruses, Rhabdoviruses and the Isavirus in cultured fish with emphasis where possible upon non-salmonid cold water adapted marine species. In parallel we review the current state of the art mainly in reference to gene expression studies describing the host innate immune response concentrating upon the inflammatory response and its relationship toward anti-viral immunity in fish. Due to the complexity of the observed responses and the limitations of candidate gene expression studies to describe global biological processes, recent efforts in the use of microarray analysis for the study of the anti-viral response have been highlighted including members of the Pleuronectiform and the Perciform families. Finally we review the potential of the zebrafish to become a significant biological model in the elucidation of the molecular mechanisms underlying the piscine immune response to viral infection.

  5. Role of the phi 11 phage genome in competence of Staphylococcus aureus.

    PubMed

    Sjöström, J E; Philipson, L

    1974-07-01

    Both phage ø11 and 83A, when present as prophage or when used as helper phage, induce competence for transfection and transformation to the same level in Staphylococcus aureus, strain 8325-4. Cells lysogenized with certain temperature-sensitive (ts) mutants of phage ø11 show competence at the nonpermissive temperature (41 C) without production of infectious phages. Phage ø11ts allele 31 can neither as a prophage nor as a helper phage develop competence under nonpermissive conditions. This mutant appears, therefore, to be mutated in the region of the phage genome controlling competence. The competence level for both transfection and transformation is increased by superinfecting strain 8325-4 (ø11) or 8325-4 (83A) at high multiplicities with phage ø11 with some of its mutants or with phage 83A. This superinfection enhancement appears to require protein synthesis but not deoxyribonucleic acid synthesis as judged from studies with inhibitors of macromolecular synthesis. Besides the phage particle, no extracellular or cell-bound factors so far detected can induce competence. The phage-induced product conferring competence is rapidly synthesized by strain 8325-4 (tsø11(31)) after shift to permissive conditions, but requires deoxyribonucleic acid and protein synthesis to be expressed. Recombination between the sus mutants of phage ø11 of Kretschmer and Egan and tsø11(31) indicate that competence is controlled by an early gene in the lytic cycle which may be expressed also in lysogenic cells. The phage product inducing competence appears to have a half-life of 10 to 15 min in the conditional lethal mutant at shift to nonpermissive temperature. Ultraviolet inactivation of phage ø11 infectivity occurs more rapidly than inactivation of competence induction. In fact, the number of transformants is increased at low doses of irradiation. Competence induction is, however, decreased at high does of ultraviolet irradiation.

  6. Analyses of the Distribution Patterns of Burkholderia pseudomallei and Associated Phages in Soil Samples in Thailand Suggest That Phage Presence Reduces the Frequency of Bacterial Isolation

    PubMed Central

    Withatanung, Patoo; Chantratita, Narisara; Muangsombut, Veerachat; Saiprom, Natnaree; Lertmemongkolchai, Ganjana; Klumpp, Jochen; Clokie, Martha R. J.; Galyov, Edouard E.

    2016-01-01

    Background Burkholderia pseudomallei is a soil saprophytic bacterium that causes melioidosis. The infection occurs through cutaneous inoculation, inhalation or ingestion. Bacteriophages (phages) in the same ecosystem may significantly impact the biology of this bacterium in the environment, and in their culturability in the laboratory. Methods/Principal Findings The soil samples were analysed for the presence of bacteria using culture methods, and for phages using plaque assays on B. pseudomallei strain 1106a lawns. Of the 86 soil samples collected from northeastern Thailand, B. pseudomallei was cultured from 23 (26.7%) samples; no phage capable of infecting B. pseudomallei was detected in these samples. In contrast, phages capable of infecting B. pseudomallei, but no bacteria, were present in 10 (11.6%) samples. B. pseudomallei and their phages were co-isolated from only 3 (3.5%) of soil samples. Since phage capable of infecting B. pseudomallei could not have appeared in the samples without the prior presence of bacteria, or exposure to bacteria nearby, our data suggest that all phage-positive/bacteria-negative samples have had B. pseudomallei in or in a close proximity to them. Taken together, these findings indicate that the presence of phages may influence the success of B. pseudomallei isolation. Transmission electron microscopy revealed that the isolated phages are podoviruses. The temperate phages residing in soil-isolated strains of B. pseudomallei that were resistant to the dominant soil borne phages could be induced by mitomycin C. These induced-temperate phages were closely related, but not identical, to the more dominant soil-isolated phage type. Conclusion/Significance The presence of podoviruses capable of infecting B. pseudomallei may affect the success of the pathogen isolation from the soil. The currently used culture-based methods of B. pseudomallei isolation appear to under-estimate the bacterial abundance. The detection of phage capable of

  7. The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity.

    PubMed

    Levin, Bruce R; Moineau, Sylvain; Bushman, Mary; Barrangou, Rodolphe

    2013-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), together with associated genes (cas), form the CRISPR-cas adaptive immune system, which can provide resistance to viruses and plasmids in bacteria and archaea. Here, we use mathematical models, population dynamic experiments, and DNA sequence analyses to investigate the host-phage interactions in a model CRISPR-cas system, Streptococcus thermophilus DGCC7710 and its virulent phage 2972. At the molecular level, the bacteriophage-immune mutant bacteria (BIMs) and CRISPR-escape mutant phage (CEMs) obtained in this study are consistent with those anticipated from an iterative model of this adaptive immune system: resistance by the addition of novel spacers and phage evasion of resistance by mutation in matching sequences or flanking motifs. While CRISPR BIMs were readily isolated and CEMs generated at high rates (frequencies in excess of 10(-6)), our population studies indicate that there is more to the dynamics of phage-host interactions and the establishment of a BIM-CEM arms race than predicted from existing assumptions about phage infection and CRISPR-cas immunity. Among the unanticipated observations are: (i) the invasion of phage into populations of BIMs resistant by the acquisition of one (but not two) spacers, (ii) the survival of sensitive bacteria despite the presence of high densities of phage, and (iii) the maintenance of phage-limited communities due to the failure of even two-spacer BIMs to become established in populations with wild-type bacteria and phage. We attribute (i) to incomplete resistance of single-spacer BIMs. Based on the results of additional modeling and experiments, we postulate that (ii) and (iii) can be attributed to the phage infection-associated production of enzymes or other compounds that induce phenotypic phage resistance in sensitive bacteria and kill resistant BIMs. We present evidence in support of these hypotheses and discuss the implications of these results

  8. Drugs derived from phage display

    PubMed Central

    Nixon, Andrew E; Sexton, Daniel J; Ladner, Robert C

    2014-01-01

    Phage display, one of today’s fundamental drug discovery technologies, allows identification of a broad range of biological drugs, including peptides, antibodies and other proteins, with the ability to tailor critical characteristics such as potency, specificity and cross-species binding. Further, unlike in vivo technologies, generating phage display-derived antibodies is not restricted by immunological tolerance. Although more than 20 phage display-derived antibody and peptides are currently in late-stage clinical trials or approved, there is little literature addressing the specific challenges and successes in the clinical development of phage-derived drugs. This review uses case studies, from candidate identification through clinical development, to illustrate the utility of phage display as a drug discovery tool, and offers a perspective for future developments of phage display technology. PMID:24262785

  9. Co-evolutionary dynamics of the bacteria Vibrio sp. CV1 and phages V1G, V1P1, and V1P2: implications for phage therapy.

    PubMed

    Barbosa, Camilo; Venail, Patrick; Holguin, Angela V; Vives, Martha J

    2013-11-01

    Bacterial infections are the second largest cause of mortality in shrimp hatcheries. Among them, bacteria from the genus Vibrio constitute a major threat. As the use of antibiotics may be ineffective and banned from the food sector, alternatives are required. Historically, phage therapy, which is the use of bacteriophages, is thought to be a promising option to fight against bacterial infections. However, as for antibiotics, resistance can be rapidly developed. Since the emergence of resistance is highly undesirable, a formal characterization of the dynamics of its acquisition is mandatory. Here, we explored the co-evolutionary dynamics of resistance between the bacteria Vibrio sp. CV1 and the phages V1G, V1P1, and V1P2. Single-phage treatments as well as a cocktail composed of the three phages were considered. We found that in the presence of a single phage, bacteria rapidly evolved resistance, and the phages decreased their infectivity, suggesting that monotherapy may be an inefficient treatment to fight against Vibrio infections in shrimp hatcheries. On the contrary, the use of a phage cocktail considerably delayed the evolution of resistance and sustained phage infectivity for periods in which shrimp larvae are most susceptible to bacterial infections, suggesting the simultaneous use of multiple phages as a serious strategy for the control of vibriosis. These findings are very promising in terms of their consequences to different industrial and medical scenarios where bacterial infections are present.

  10. Experimental infection of twenty species of Indian marine crabs with white spot syndrome virus (WSSV).

    PubMed

    Hameed, A S Sahul; Balasubramanian, G; Musthaq, S Syed; Yoganandhan, K

    2003-12-03

    Twenty species of Indian marine crabs were experimentally infected with white spot syndrome virus (WSSV), via the oral route and intramuscular injection, to determine their viral susceptibility. We determined that 16 species (Calappa philargius, Charybdis annulata, C. lucifera, Doclea hybrida, Grapsus albolineatus, Halimede ochtodes, Liagore rubronaculata, Lithodes maja, Matuta miersi, Paradorippe granulata, Parthenope prensor, Philyra syndactyla, Podophthalmus vigil, Portunus sanquinolentus, Scylla serrata and Thalamita danae) were susceptible and 4 (Atergatis integerrimus, Charybdis natator, Demania splendida or Menippe rumphii) were refractive at 50 d post-infection (p.i.). The presence of WSSV in these crabs was confirmed by PCR tests, histology and bioassay. WSSV was found in the gill, heart, eyestalks, striated muscle and cephalothoraxic tissue. The 4 WSSV-refractive species represent potential reservoirs or carriers of WSSV.

  11. Characterization of novel Staphylococcus aureus lytic phage and defining their combinatorial virulence using the OmniLog® system

    PubMed Central

    Estrella, Luis A.; Quinones, Javier; Henry, Matthew; Hannah, Ryan M.; Pope, Robert K.; Hamilton, Theron; Teneza-mora, Nimfa; Hall, Eric; Biswajit, Biswas

    2016-01-01

    ABSTRACT Skin and soft tissue infections (SSTI) caused by methicillin resistant Staphylococcus aureus (MRSA) are difficult to treat. Bacteriophage (phage) represent a potential alternate treatment for antibiotic resistant bacterial infections. In this study, 7 novel phage with broad lytic activity for S. aureus were isolated and identified. Screening of a diverse collection of 170 clinical isolates by efficiency of plating (EOP) assays shows that the novel phage are virulent and effectively prevent growth of 70–91% of MRSA and methicillin sensitive S. aureus (MSSA) isolates. Phage K, which was previously identified as having lytic activity on S. aureus was tested on the S. aureus collection and shown to prevent growth of 82% of the isolates. These novel phage group were examined by electron microscopy, the results of which indicate that the phage belong to the Myoviridae family of viruses. The novel phage group requires β-N-acetyl glucosamine (GlcNac) moieties on cell wall teichoic acids for infection. The phage were distinct from, but closely related to, phage K as characterized by restriction endonuclease analysis. Furthermore, growth rate analysis via OmniLog® microplate assay indicates that a combination of phage K, with phage SA0420ᶲ1, SA0456ᶲ1 or SA0482ᶲ1 have a synergistic phage-mediated lytic effect on MRSA and suppress formation of phage resistance. These results indicate that a broad spectrum lytic phage mixture can suppress the emergence of resistant bacterial populations and hence have great potential for combating S. aureus wound infections. PMID:27738555

  12. Phage Therapy is Effective in Protecting Honeybee Larvae from American Foulbrood Disease.

    PubMed

    Ghorbani-Nezami, Sara; LeBlanc, Lucy; Yost, Diane G; Amy, Penny S

    2015-01-01

    American foulbrood disease has a major impact on honeybees (Apis melifera) worldwide. It is caused by a Gram-positive, spore-forming bacterium, Paenibacillus larvae. The disease can only affect larval honeybees, and the bacterial endospores are the infective unit of the disease. Antibiotics are not sufficient to combat the disease due to increasing resistance among P. larvae strains. Because of the durability and virulence of P. larvae endospores, infections spread rapidly, and beekeepers are often forced to burn beehives and equipment. To date, very little information is available on the use of bacteriophage therapy in rescuing and preventing American foulbrood disease, therefore the goal of this study was to test the efficacy of phage therapy against P. larvae infection. Out of 32 previously isolated P. larvae phages, three designated F, WA, and XIII were tested on artificially reared honeybee larvae infected with P. larvae strain NRRL B-3650 spores. The presence of P. larvae DNA in dead larvae was confirmed by 16S rRNA gene-specific polymerase chain reaction amplification. Survival rates for phage-treated larvae were approximately the same as for larvae never infected with spores (84%), i.e., the phages had no deleterious effect on the larvae. Additionally, prophylactic treatment of larvae with phages before spore infection was more effective than administering phages after infection, although survival in both cases was higher than spores alone (45%). Further testing to determine the optimal combination and concentration of phages, and testing in actual hive conditions are needed.

  13. Phage Therapy is Effective in Protecting Honeybee Larvae from American Foulbrood Disease

    PubMed Central

    Ghorbani-Nezami, Sara; LeBlanc, Lucy; Yost, Diane G.; Amy, Penny S.

    2015-01-01

    American foulbrood disease has a major impact on honeybees (Apis melifera) worldwide. It is caused by a Gram-positive, spore-forming bacterium, Paenibacillus larvae. The disease can only affect larval honeybees, and the bacterial endospores are the infective unit of the disease. Antibiotics are not sufficient to combat the disease due to increasing resistance among P. larvae strains. Because of the durability and virulence of P. larvae endospores, infections spread rapidly, and beekeepers are often forced to burn beehives and equipment. To date, very little information is available on the use of bacteriophage therapy in rescuing and preventing American foulbrood disease, therefore the goal of this study was to test the efficacy of phage therapy against P. larvae infection. Out of 32 previously isolated P. larvae phages, three designated F, WA, and XIII were tested on artificially reared honeybee larvae infected with P. larvae strain NRRL B-3650 spores. The presence of P. larvae DNA in dead larvae was confirmed by 16S rRNA gene-specific polymerase chain reaction amplification. Survival rates for phage-treated larvae were approximately the same as for larvae never infected with spores (84%), i.e., the phages had no deleterious effect on the larvae. Additionally, prophylactic treatment of larvae with phages before spore infection was more effective than administering phages after infection, although survival in both cases was higher than spores alone (45%). Further testing to determine the optimal combination and concentration of phages, and testing in actual hive conditions are needed. PMID:26136497

  14. Single-stranded DNA phages: from early molecular biology tools to recent revolutions in environmental microbiology.

    PubMed

    Székely, Anna J; Breitbart, Mya

    2016-03-01

    Single-stranded DNA (ssDNA) phages are profoundly different from tailed phages in many aspects including the nature and size of their genome, virion size and morphology, mutation rate, involvement in horizontal gene transfer, infection dynamics and cell lysis mechanisms. Despite the importance of ssDNA phages as molecular biology tools and model systems, the environmental distribution and ecological roles of these phages have been largely unexplored. Viral metagenomics and other culture-independent viral diversity studies have recently challenged the perspective of tailed, double-stranded DNA (dsDNA) phages, dominance by demonstrating the prevalence of ssDNA phages in diverse habitats. However, the differences between ssDNA and dsDNA phages also substantially limit the efficacy of simultaneously assessing the abundance and diversity of these two phage groups. Here we provide an overview of the major differences between ssDNA and tailed dsDNA phages that may influence their effects on bacterial communities. Furthermore, through the analysis of 181 published metaviromes we demonstrate the environmental distribution of ssDNA phages and present an analysis of the methodological biases that distort their study through metagenomics.

  15. Phage Encoded H-NS: A Potential Achilles Heel in the Bacterial Defence System

    PubMed Central

    Skennerton, Connor T.; Angly, Florent E.; Breitbart, Mya; Bragg, Lauren; He, Shaomei; McMahon, Katherine D.; Hugenholtz, Philip; Tyson, Gene W.

    2011-01-01

    The relationship between phage and their microbial hosts is difficult to elucidate in complex natural ecosystems. Engineered systems performing enhanced biological phosphorus removal (EBPR), offer stable, lower complexity communities for studying phage-host interactions. Here, metagenomic data from an EBPR reactor dominated by Candidatus Accumulibacter phosphatis (CAP), led to the recovery of three complete and six partial phage genomes. Heat-stable nucleoid structuring (H-NS) protein, a global transcriptional repressor in bacteria, was identified in one of the complete phage genomes (EPV1), and was most similar to a homolog in CAP. We infer that EPV1 is a CAP-specific phage and has the potential to repress up to 6% of host genes based on the presence of putative H-NS binding sites in the CAP genome. These genes include CRISPR associated proteins and a Type III restriction-modification system, which are key host defense mechanisms against phage infection. Further, EPV1 was the only member of the phage community found in an EBPR microbial metagenome collected seven months prior. We propose that EPV1 laterally acquired H-NS from CAP providing it with a means to reduce bacterial defenses, a selective advantage over other phage in the EBPR system. Phage encoded H-NS could constitute a previously unrecognized weapon in the phage-host arms race. PMID:21625595

  16. Quick selection of a chimeric T2 phage that displays active enzyme on the viral capsid.

    PubMed

    Tanji, Yasunori; Murofushi, Keita; Miyanaga, Kazuhiko

    2005-01-01

    We designed a bacteriophage T2 system to display proteins fused at the N-terminus of the head protein small outer capsid (SOC) of a T2 phage. To facilitate selection of chimeric phage, a T2 phage encoding the beta-galactosidase gene (betagal) upstream of the soc gene was constructed. The phage, named T2betaGal, produces blue plaques on agar plates containing XGal. Subsequently, a plasmid encoding the target protein upstream of soc was constructed and used to transform E. coli B(E) cells. Transformed cells were infected with T2betaGal and homologous recombination between phage DNA and the plasmid resulted in a chimeric phage that produced transparent plaques due to the excision of the betagal gene. Chitosanase of Bacillus sp. strain K17 (ChoK), consisting of 453 amino acids, was used as a model target protein. Recombinant T2 phage that produced ChoK was named T2ChoK. T2ChoK was produced from T2betaGal at a recombination frequency of about 0.1%. On the other hand, the value for T2betaGal produced from wild-type T2 was 0.001 %. This new system enables us to select recombinant phage very quickly and accurately. The number of molecules of ChoK was calculated at 14.7 per single phage. Latent period and burst size were estimated for the chimeric phages.

  17. Evolution of Pseudomonas aeruginosa virulence as a result of phage predation.

    PubMed

    Hosseinidoust, Zeinab; van de Ven, Theo G M; Tufenkji, Nathalie

    2013-10-01

    The rapid increase in the emergence of antibiotic-resistant bacteria has attracted attention to bacteriophages for treating and preventing bacterial infections. Bacteriophages can drive the diversification of Pseudomonas aeruginosa, giving rise to phage-resistant variants with different phenotypes from their ancestral hosts. In this study, we sought to investigate the effect of phage resistance on cytotoxicity of host populations toward cultured mammalian cells. The library of phage-resistant P. aeruginosa PAO1 variants used was developed previously via experimental evolution of an isogenic host population using phages PP7 and E79. Our results presented herein indicate that the phage-resistant variants developed in a heterogeneous phage environment exhibit a greater ability to impede metabolic action of cultured human keratinocytes and have a greater tendency to cause membrane damage even though they cannot invade the cells in large numbers. They also show a heightened resistance to phagocytosis by model murine macrophages. Furthermore, all isolates produced higher levels of at least one of the secreted virulence factors, namely, total proteases, elastase, phospholipase C, and hemolysins. Reverse transcription-quantitative PCR (RT-qPCR) revealed upregulation in the transcription of a number of genes associated with virulence of P. aeruginosa for the phage-resistant variants. The results of this study indicate a significant change in the in vitro virulence of P. aeruginosa following phage predation and highlight the need for caution in the selection and design of phages and phage cocktails for therapeutic use.

  18. Chromato-panning: an efficient new mode of identifying suitable ligands from phage display libraries

    PubMed Central

    Noppe, Wim; Plieva, Fatima; Galaev, Igor Yu; Pottel, Hans; Deckmyn, Hans; Mattiasson, Bo

    2009-01-01

    Background Phage Display technology is a well established technique for high throughput screening of affinity ligands. Here we describe a new compact chromato-panning procedure for selection of suitable binders from a phage peptide display library. Results Both phages and E. coli cells pass non-hindered through the interconnected pores of macroporous gel, so called cryogel. After coupling a ligand to a monolithic cryogel column, the phage library was applied on the column and non-bound phages were washed out. The selection of strong phage-binders was achieved already after the first panning cycle due to the efficient separation of phage-binders from phage-non-binders in chromatographic mode rather than in batch mode as in traditional biopanning procedures. E. coli cells were applied on the column for infection with the specifically bound phages. Conclusion Chromato-panning allows combining several steps of the panning procedure resulting in 4–8 fold decrease of total time needed for phage selection. PMID:19292898

  19. Phage sensitivity and prophage carriage in Staphylococcus aureus isolated from foods in Spain and New Zealand.

    PubMed

    Gutiérrez, Diana; Rodríguez-Rubio, Lorena; García, Pilar; Billington, Craig; Premarante, Aruni; Rodríguez, Ana; Martínez, Beatriz

    2016-08-02

    Bacteriophages (phages) are a promising tool for the biocontrol of pathogenic bacteria, including those contaminating food products and causing infectious diseases. However, the success of phage preparations is limited by the host ranges of their constituent phages. The phage resistance/sensitivity profile of eighty seven Staphylococcus aureus strains isolated in Spain and New Zealand from dairy, meat and seafood sources was determined for six phages (Φ11, K, ΦH5, ΦA72, CAPSa1 and CAPSa3). Most of the S. aureus strains were sensitive to phage K (Myoviridae) and CAPSa1 (Siphoviridae) regardless of their origin. There was a higher sensitivity of New Zealand S. aureus strains to phages isolated from both Spain (ΦH5 and ΦA72) and New Zealand (CAPSa1 and CAPSa3). Spanish phages had a higher infectivity on S. aureus strains of Spanish dairy origin, while Spanish strains isolated from other environments were more sensitive to New Zealand phages. Lysogeny was more prevalent in Spanish S. aureus compared to New Zealand strains. A multiplex PCR reaction, which detected ΦH5 and ΦA72 sequences, indicated a high prevalence of these prophages in Spanish S. aureus strains, but were infrequently detected in New Zealand strains. Overall, the correlation between phage resistance and lysogeny in S. aureus strains was found to be weak.

  20. The Human Gut Phage Community and Its Implications for Health and Disease.

    PubMed

    Manrique, Pilar; Dills, Michael; Young, Mark J

    2017-06-08

    In this review, we assess our current understanding of the role of bacteriophages infecting the human gut bacterial community in health and disease. In general, bacteriophages contribute to the structure of their microbial communities by driving host and viral diversification, bacterial evolution, and by expanding the functional diversity of ecosystems. Gut bacteriophages are an ensemble of unique and shared phages in individuals, which encompass temperate phages found predominately as prophage in gut bacteria (prophage reservoir) and lytic phages. In healthy individuals, only a small fraction of the prophage reservoir is activated and found as extracellular phages. Phage community dysbiosis is characterized by a shift in the activated prophage community or an increase of lytic phages, and has been correlated with disease, suggesting that a proper balance between lysis and lysogeny is needed to maintain health. Consequently, the concept of microbial dysbiosis might be extended to the phage component of the microbiome as well. Understanding the dynamics and mechanisms to restore balance after dysbiosis is an active area of research. The use of phage transplants to re-establish health suggests that phages can be used as disease treatment. Such advances represent milestones in our understanding of gut phages in human health and should fuel research on their role in health and disease.

  1. The Human Gut Phage Community and Its Implications for Health and Disease

    PubMed Central

    Manrique, Pilar; Dills, Michael; Young, Mark J.

    2017-01-01

    In this review, we assess our current understanding of the role of bacteriophages infecting the human gut bacterial community in health and disease. In general, bacteriophages contribute to the structure of their microbial communities by driving host and viral diversification, bacterial evolution, and by expanding the functional diversity of ecosystems. Gut bacteriophages are an ensemble of unique and shared phages in individuals, which encompass temperate phages found predominately as prophage in gut bacteria (prophage reservoir) and lytic phages. In healthy individuals, only a small fraction of the prophage reservoir is activated and found as extracellular phages. Phage community dysbiosis is characterized by a shift in the activated prophage community or an increase of lytic phages, and has been correlated with disease, suggesting that a proper balance between lysis and lysogeny is needed to maintain health. Consequently, the concept of microbial dysbiosis might be extended to the phage component of the microbiome as well. Understanding the dynamics and mechanisms to restore balance after dysbiosis is an active area of research. The use of phage transplants to re-establish health suggests that phages can be used as disease treatment. Such advances represent milestones in our understanding of gut phages in human health and should fuel research on their role in health and disease. PMID:28594392

  2. Functional characterization of a novel lytic phage EcSw isolated from Sus scrofa domesticus and its potential for phage therapy.

    PubMed

    Easwaran, Maheswaran; Paudel, Sarita; De Zoysa, Mahanama; Shin, Hyun-Jin

    2015-06-01

    In this study, multi-drug resistant Escherichia coli Sw1 (E. coli Sw1) and active lytic phage EcSw was isolated from feces samples of Sus scrofa domesticus (piglet) suffering from diarrhea. Transmission electron microscopy (TEM) indicated that isolated EcSw belongs to the Myoviridae family with an icosahedral head (80 ± 4) and a long tail (180 ± 5 nm). The EcSw phage genome size was estimated to be approximately 75 Kb of double-stranded DNA (dsDNA). Phage dynamic studies show that the latent period and burst size of EcSw were approximately 20 min and 28 PFU per cell, respectively. Interestingly, the EcSw phage can tolerate a wide range of environmental conditions, such as temperature, pH and ions (Ca(2+) and Mg(2+)). Furthermore, genome sequence analysis revealed that the lytic genes of the EcSw phage are notably similar to those of enterobacteria phages. In addition, phage-antibiotic synergy has notable effects compared with the effects of phages or antibiotics alone. Inhibition of E. coli Sw1 and 0157:H7 strains showed that the limitations of host specificity and infectivity of EcSw. Even though, it has considerable potential for phage therapy for handling the problem of the emergence of multidrug resistant pathogens.

  3. Going viral: next generation sequencing applied to human gut phage populations

    PubMed Central

    Reyes, Alejandro; Semenkovich, Nicholas P.; Whiteson, Katrine; Rohwer, Forest; Gordon, Jeffrey I.

    2013-01-01

    Over the past decade researchers have begun to characterize viral diversity using metagenomic methods. These studies have shown that viruses, the majority of which infect bacteria (bacteriophages), are likely the most genetically diverse components of the biosphere. Here we briefly review the incipient rise of a phage biology renaissance catalyzed by recent advances in next generation sequencing. We explore how work characterizing phage diversity and their lifestyles in the gut is changing our view of ourselves as supra-organisms. Finally, we discuss how a new appreciation of phage dynamics may yield new applications for phage therapies designed to manipulate the structure and functions of our gut microbiomes. PMID:22864264

  4. Anti-CRISPR Proteins: Counterattack of Phages on Bacterial Defense (CRISPR/Cas) System.

    PubMed

    Chaudhary, Kulbhushan; Chattopadhyay, Anirudha; Pratap, Dharmendra

    2017-03-01

    Since the dawn of life there is a never ending strife between bacteria and phages. Both are perpetually changing their strategies to take over each other. CRISPR/Cas is the most widespread defense system used by bacteria against mobile genetic elements (MGEs) such as phages, cojugative palsmids, transoposons and pathogenicity islands. This system utilizes small guide RNA molecules to protect against phages infection and invasion by MGEs. Phages circumvent to these antiviral barriers by point mutation in PAM (protospacer-adjacent motif) sequence, genome rearrangements and by using anti-CRISPR proteins. This article is protected by copyright. All rights reserved.

  5. Going viral: next-generation sequencing applied to phage populations in the human gut.

    PubMed

    Reyes, Alejandro; Semenkovich, Nicholas P; Whiteson, Katrine; Rohwer, Forest; Gordon, Jeffrey I

    2012-09-01

    Over the past decade, researchers have begun to characterize viral diversity using metagenomic methods. These studies have shown that viruses, the majority of which infect bacteria, are probably the most genetically diverse components of the biosphere. Here, we briefly review the incipient rise of a phage biology renaissance, which has been catalysed by advances in next-generation sequencing. We explore how work characterizing phage diversity and lifestyles in the human gut is changing our view of ourselves as supra-organisms. Finally, we discuss how a renewed appreciation of phage dynamics may yield new applications for phage therapies designed to manipulate the structure and functions of our gut microbiomes.

  6. Phage Therapy Is Effective in a Mouse Model of Bacterial Equine Keratitis

    PubMed Central

    Furusawa, Takaaki; Hiyashimizu, Yutaro; Matsubara, Kazuki; Higuchi, Hidetoshi; Nagahata, Hajime; Niwa, Hidekazu; Katayama, Yoshinari; Kinoshita, Yuta; Hagiwara, Katsuro; Iwasaki, Tomohito; Tanji, Yasunori; Yokota, Hiroshi; Tamura, Yutaka

    2016-01-01

    ABSTRACT Bacterial keratitis of the horse is mainly caused by staphylococci, streptococci, and pseudomonads. Of these bacteria, Pseudomonas aeruginosa sometimes causes rapid corneal corruption and, in some cases, blindness. Antimicrobial resistance can make treatment very difficult. Therefore, new strategies to control bacterial infection are required. A bacteriophage (phage) is a virus that specifically infects and kills bacteria. Since phage often can lyse antibiotic-resistant bacteria because the killing mechanism is different, we examined the use of phage to treat horse bacterial keratitis. We isolated Myoviridae or Podoviridae phages, which together have a broad host range. They adsorb efficiently to host bacteria; more than 80% of the ΦR18 phage were adsorbed to host cells after 30 s. In our keratitis mouse model, the administration of phage within 3 h also could kill bacteria and suppress keratitis. A phage multiplicity of infection of 100 times the host bacterial number could kill host bacteria effectively. A cocktail of two phages suppressed bacteria in the keratitis model mouse. These data demonstrated that the phages in this study could completely prevent the keratitis caused by P. aeruginosa in a keratitis mouse model. Furthermore, these results suggest that phage may be a more effective prophylaxis for horse keratitis than the current preventive use of antibiotics. Such treatment may reduce the use of antibiotics and therefore antibiotic resistance. Further studies are required to assess phage therapy as a candidate for treatment of horse keratitis. IMPORTANCE Antibiotic-resistant bacteria are emerging all over the world. Bacteriophages have great potential for resolution of this problem. A bacteriophage, or phage, is a virus that infects bacteria specifically. As a novel therapeutic strategy against racehorse keratitis caused by Pseudomonas aeruginosa, we propose the application of phages for treatment. Phages isolated in this work had in vitro

  7. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans.

    PubMed

    Sabehi, Gazalah; Shaulov, Lihi; Silver, David H; Yanai, Itai; Harel, Amnon; Lindell, Debbie

    2012-02-07

    Viruses infecting bacteria (phages) are thought to greatly impact microbial population dynamics as well as the genome diversity and evolution of their hosts. Here we report on the discovery of a novel lineage of tailed dsDNA phages belonging to the family Myoviridae and describe its first representative, S-TIM5, that infects the ubiquitous marine cyanobacterium, Synechococcus. The genome of this phage encodes an entirely unique set of structural proteins not found in any currently known phage, indicating that it uses lineage-specific genes for virion morphogenesis and represents a previously unknown lineage of myoviruses. Furthermore, among its distinctive collection of replication and DNA metabolism genes, it carries a mitochondrial-like DNA polymerase gene, providing strong evidence for the bacteriophage origin of the mitochondrial DNA polymerase. S-TIM5 also encodes an array of bacterial-like metabolism genes commonly found in phages infecting cyanobacteria including photosynthesis, carbon metabolism and phosphorus acquisition genes. This suggests a common gene pool and gene swapping of cyanophage-specific genes among different phage lineages despite distinct sets of structural and replication genes. All cytosines following purine nucleotides are methylated in the S-TIM5 genome, constituting a unique methylation pattern that likely protects the genome from nuclease degradation. This phage is abundant in the Red Sea and S-TIM5 gene homologs are widespread in the oceans. This unusual phage type is thus likely to be an important player in the oceans, impacting the population dynamics and evolution of their primary producing cyanobacterial hosts.

  8. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans

    PubMed Central

    Sabehi, Gazalah; Shaulov, Lihi; Silver, David H.; Yanai, Itai; Harel, Amnon; Lindell, Debbie

    2012-01-01

    Viruses infecting bacteria (phages) are thought to greatly impact microbial population dynamics as well as the genome diversity and evolution of their hosts. Here we report on the discovery of a novel lineage of tailed dsDNA phages belonging to the family Myoviridae and describe its first representative, S-TIM5, that infects the ubiquitous marine cyanobacterium, Synechococcus. The genome of this phage encodes an entirely unique set of structural proteins not found in any currently known phage, indicating that it uses lineage-specific genes for virion morphogenesis and represents a previously unknown lineage of myoviruses. Furthermore, among its distinctive collection of replication and DNA metabolism genes, it carries a mitochondrial-like DNA polymerase gene, providing strong evidence for the bacteriophage origin of the mitochondrial DNA polymerase. S-TIM5 also encodes an array of bacterial-like metabolism genes commonly found in phages infecting cyanobacteria including photosynthesis, carbon metabolism and phosphorus acquisition genes. This suggests a common gene pool and gene swapping of cyanophage-specific genes among different phage lineages despite distinct sets of structural and replication genes. All cytosines following purine nucleotides are methylated in the S-TIM5 genome, constituting a unique methylation pattern that likely protects the genome from nuclease degradation. This phage is abundant in the Red Sea and S-TIM5 gene homologs are widespread in the oceans. This unusual phage type is thus likely to be an important player in the oceans, impacting the population dynamics and evolution of their primary producing cyanobacterial hosts. PMID:22308387

  9. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity.

    PubMed

    Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F

    2015-04-28

    The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery.

  10. Lactococcal 949 Group Phages Recognize a Carbohydrate Receptor on the Host Cell Surface

    PubMed Central

    Mahony, Jennifer; Randazzo, Walter; Neve, Horst; Settanni, Luca

    2015-01-01

    Lactococcal bacteriophages represent one of the leading causes of dairy fermentation failure and product inconsistencies. A new member of the lactococcal 949 phage group, named WRP3, was isolated from cheese whey from a Sicilian factory in 2011. The genome sequence of this phage was determined, and it constitutes the largest lactococcal phage genome currently known, at 130,008 bp. Detailed bioinformatic analysis of the genomic region encoding the presumed initiator complex and baseplate of WRP3 has aided in the functional assignment of several open reading frames (ORFs), particularly that for the receptor binding protein required for host recognition. Furthermore, we demonstrate that the 949 phages target cell wall phospho-polysaccharides as their receptors, accounting for the specificity of the interactions of these phages with their lactococcal hosts. Such information may ultimately aid in the identification of strains/strain blends that do not present the necessary saccharidic target for infection by these problematic phages. PMID:25746988

  11. Coexistence of phage and bacteria on the boundary of self-organized refuges

    PubMed Central

    Heilmann, Silja; Sneppen, Kim; Krishna, Sandeep

    2012-01-01

    Bacteriophage are voracious predators of bacteria and a major determinant in shaping bacterial life strategies. Many phage species are virulent, meaning that infection leads to certain death of the host and immediate release of a large batch of phage progeny. Despite this apparent voraciousness, bacteria have stably coexisted with virulent phages for eons. Here, using individual-based stochastic spatial models, we study the conditions for achieving coexistence on the edge between two habitats, one of which is a bacterial refuge with conditions hostile to phage whereas the other is phage friendly. We show how bacterial density-dependent, or quorum-sensing, mechanisms such as the formation of biofilm can produce such refuges and edges in a self-organized manner. Coexistence on these edges exhibits the following properties, all of which are observed in real phage–bacteria ecosystems but difficult to achieve together in nonspatial ecosystem models: (i) highly efficient virulent phage with relatively long lifetimes, high infection rates and large burst sizes; (ii) large, stable, and high-density populations of phage and bacteria; (iii) a fast turnover of both phage and bacteria; and (iv) stability over evolutionary timescales despite imbalances in the rates of phage vs. bacterial evolution. PMID:22807479

  12. Tales of diversity: Genomic and morphological characteristics of forty-six Arthrobacter phages.

    PubMed

    Klyczek, Karen K; Bonilla, J Alfred; Jacobs-Sera, Deborah; Adair, Tamarah L; Afram, Patricia; Allen, Katherine G; Archambault, Megan L; Aziz, Rahat M; Bagnasco, Filippa G; Ball, Sarah L; Barrett, Natalie A; Benjamin, Robert C; Blasi, Christopher J; Borst, Katherine; Braun, Mary A; Broomell, Haley; Brown, Conner B; Brynell, Zachary S; Bue, Ashley B; Burke, Sydney O; Casazza, William; Cautela, Julia A; Chen, Kevin; Chimalakonda, Nitish S; Chudoff, Dylan; Connor, Jade A; Cross, Trevor S; Curtis, Kyra N; Dahlke, Jessica A; Deaton, Bethany M; Degroote, Sarah J; DeNigris, Danielle M; DeRuff, Katherine C; Dolan, Milan; Dunbar, David; Egan, Marisa S; Evans, Daniel R; Fahnestock, Abby K; Farooq, Amal; Finn, Garrett; Fratus, Christopher R; Gaffney, Bobby L; Garlena, Rebecca A; Garrigan, Kelly E; Gibbon, Bryan C; Goedde, Michael A; Guerrero Bustamante, Carlos A; Harrison, Melinda; Hartwell, Megan C; Heckman, Emily L; Huang, Jennifer; Hughes, Lee E; Hyduchak, Kathryn M; Jacob, Aswathi E; Kaku, Machika; Karstens, Allen W; Kenna, Margaret A; Khetarpal, Susheel; King, Rodney A; Kobokovich, Amanda L; Kolev, Hannah; Konde, Sai A; Kriese, Elizabeth; Lamey, Morgan E; Lantz, Carter N; Lapin, Jonathan S; Lawson, Temiloluwa O; Lee, In Young; Lee, Scott M; Lee-Soety, Julia Y; Lehmann, Emily M; London, Shawn C; Lopez, A Javier; Lynch, Kelly C; Mageeney, Catherine M; Martynyuk, Tetyana; Mathew, Kevin J; Mavrich, Travis N; McDaniel, Christopher M; McDonald, Hannah; McManus, C Joel; Medrano, Jessica E; Mele, Francis E; Menninger, Jennifer E; Miller, Sierra N; Minick, Josephine E; Nabua, Courtney T; Napoli, Caroline K; Nkangabwa, Martha; Oates, Elizabeth A; Ott, Cassandra T; Pellerino, Sarah K; Pinamont, William J; Pirnie, Ross T; Pizzorno, Marie C; Plautz, Emilee J; Pope, Welkin H; Pruett, Katelyn M; Rickstrew, Gabbi; Rimple, Patrick A; Rinehart, Claire A; Robinson, Kayla M; Rose, Victoria A; Russell, Daniel A; Schick, Amelia M; Schlossman, Julia; Schneider, Victoria M; Sells, Chloe A; Sieker, Jeremy W; Silva, Morgan P; Silvi, Marissa M; Simon, Stephanie E; Staples, Amanda K; Steed, Isabelle L; Stowe, Emily L; Stueven, Noah A; Swartz, Porter T; Sweet, Emma A; Sweetman, Abigail T; Tender, Corrina; Terry, Katrina; Thomas, Chrystal; Thomas, Daniel S; Thompson, Allison R; Vanderveen, Lorianna; Varma, Rohan; Vaught, Hannah L; Vo, Quynh D; Vonberg, Zachary T; Ware, Vassie C; Warrad, Yasmene M; Wathen, Kaitlyn E; Weinstein, Jonathan L; Wyper, Jacqueline F; Yankauskas, Jakob R; Zhang, Christine; Hatfull, Graham F

    2017-01-01

    The vast bacteriophage population harbors an immense reservoir of genetic information. Almost 2000 phage genomes have been sequenced from phages infecting hosts in the phylum Actinobacteria, and analysis of these genomes reveals substantial diversity, pervasive mosaicism, and novel mechanisms for phage replication and lysogeny. Here, we describe the isolation and genomic characterization of 46 phages from environmental samples at various geographic locations in the U.S. infecting a single Arthrobacter sp. strain. These phages include representatives of all three virion morphologies, and Jasmine is the first sequenced podovirus of an actinobacterial host. The phages also span considerable sequence diversity, and can be grouped into 10 clusters according to their nucleotide diversity, and two singletons each with no close relatives. However, the clusters/singletons appear to be genomically well separated from each other, and relatively few genes are shared between clusters. Genome size varies from among the smallest of siphoviral phages (15,319 bp) to over 70 kbp, and G+C contents range from 45-68%, compared to 63.4% for the host genome. Although temperate phages are common among other actinobacterial hosts, these Arthrobacter phages are primarily lytic, and only the singleton Galaxy is likely temperate.

  13. Tales of diversity: Genomic and morphological characteristics of forty-six Arthrobacter phages

    PubMed Central

    Adair, Tamarah L.; Afram, Patricia; Allen, Katherine G.; Archambault, Megan L.; Aziz, Rahat M.; Bagnasco, Filippa G.; Ball, Sarah L.; Barrett, Natalie A.; Benjamin, Robert C.; Blasi, Christopher J.; Borst, Katherine; Braun, Mary A.; Broomell, Haley; Brown, Conner B.; Brynell, Zachary S.; Bue, Ashley B.; Burke, Sydney O.; Casazza, William; Cautela, Julia A.; Chen, Kevin; Chimalakonda, Nitish S.; Chudoff, Dylan; Connor, Jade A.; Cross, Trevor S.; Curtis, Kyra N.; Dahlke, Jessica A.; Deaton, Bethany M.; Degroote, Sarah J.; DeNigris, Danielle M.; DeRuff, Katherine C.; Dolan, Milan; Dunbar, David; Egan, Marisa S.; Evans, Daniel R.; Fahnestock, Abby K.; Farooq, Amal; Finn, Garrett; Fratus, Christopher R.; Gaffney, Bobby L.; Garlena, Rebecca A.; Garrigan, Kelly E.; Gibbon, Bryan C.; Goedde, Michael A.; Guerrero Bustamante, Carlos A.; Harrison, Melinda; Hartwell, Megan C.; Heckman, Emily L.; Huang, Jennifer; Hughes, Lee E.; Hyduchak, Kathryn M.; Jacob, Aswathi E.; Kaku, Machika; Karstens, Allen W.; Kenna, Margaret A.; Khetarpal, Susheel; King, Rodney A.; Kobokovich, Amanda L.; Kolev, Hannah; Konde, Sai A.; Kriese, Elizabeth; Lamey, Morgan E.; Lantz, Carter N.; Lapin, Jonathan S.; Lawson, Temiloluwa O.; Lee, In Young; Lee, Scott M.; Lee-Soety, Julia Y.; Lehmann, Emily M.; London, Shawn C.; Lopez, A. Javier; Lynch, Kelly C.; Mageeney, Catherine M.; Martynyuk, Tetyana; Mathew, Kevin J.; Mavrich, Travis N.; McDaniel, Christopher M.; McDonald, Hannah; McManus, C. Joel; Medrano, Jessica E.; Mele, Francis E.; Menninger, Jennifer E.; Miller, Sierra N.; Minick, Josephine E.; Nabua, Courtney T.; Napoli, Caroline K.; Nkangabwa, Martha; Oates, Elizabeth A.; Ott, Cassandra T.; Pellerino, Sarah K.; Pinamont, William J.; Pirnie, Ross T.; Pizzorno, Marie C.; Plautz, Emilee J.; Pope, Welkin H.; Pruett, Katelyn M.; Rickstrew, Gabbi; Rimple, Patrick A.; Rinehart, Claire A.; Robinson, Kayla M.; Rose, Victoria A.; Russell, Daniel A.; Schick, Amelia M.; Schlossman, Julia; Schneider, Victoria M.; Sells, Chloe A.; Sieker, Jeremy W.; Silva, Morgan P.; Silvi, Marissa M.; Simon, Stephanie E.; Staples, Amanda K.; Steed, Isabelle L.; Stowe, Emily L.; Stueven, Noah A.; Swartz, Porter T.; Sweet, Emma A.; Sweetman, Abigail T.; Tender, Corrina; Terry, Katrina; Thomas, Chrystal; Thomas, Daniel S.; Thompson, Allison R.; Vanderveen, Lorianna; Varma, Rohan; Vaught, Hannah L.; Vo, Quynh D.; Vonberg, Zachary T.; Ware, Vassie C.; Warrad, Yasmene M.; Wathen, Kaitlyn E.; Weinstein, Jonathan L.; Wyper, Jacqueline F.; Yankauskas, Jakob R.; Zhang, Christine

    2017-01-01

    The vast bacteriophage population harbors an immense reservoir of genetic information. Almost 2000 phage genomes have been sequenced from phages infecting hosts in the phylum Actinobacteria, and analysis of these genomes reveals substantial diversity, pervasive mosaicism, and novel mechanisms for phage replication and lysogeny. Here, we describe the isolation and genomic characterization of 46 phages from environmental samples at various geographic locations in the U.S. infecting a single Arthrobacter sp. strain. These phages include representatives of all three virion morphologies, and Jasmine is the first sequenced podovirus of an actinobacterial host. The phages also span considerable sequence diversity, and can be grouped into 10 clusters according to their nucleotide diversity, and two singletons each with no close relatives. However, the clusters/singletons appear to be genomically well separated from each other, and relatively few genes are shared between clusters. Genome size varies from among the smallest of siphoviral phages (15,319 bp) to over 70 kbp, and G+C contents range from 45–68%, compared to 63.4% for the host genome. Although temperate phages are common among other actinobacterial hosts, these Arthrobacter phages are primarily lytic, and only the singleton Galaxy is likely temperate. PMID:28715480

  14. The Legacy of 20th Century Phage Research.

    PubMed

    Campbell, Allan M

    2010-09-01

    The Golden Age of Phage Research, where phage was the favored material for attacking many basic questions in molecular biology, lasted from about 1940 to 1970. The era was initiated by Ellis and Delbrück, whose analysis defined the relevant parameters to measure in studying phage growth, and depended on the fact that the contents of a plaque can comprise descendants of a single infecting particle. It ended around 1970 because definitive methods had then become available for answering the same questions in other systems. Some of the accomplishments of phage research were the demonstration by Hershey and Chase that the genetic material of phage T2 is largely composed of DNA, the construction of linkage maps of T2 and T4 by Hershey and Rotman and their extension to very short molecular distances by Benzer, and the isolation of conditionally lethal mutants in T4 by Epstein et al. and in λ by Campbell. The dissection of the phage life cycle into causal chains was explored by Edgar and Wood for T4 assembly and later in the regulation of lysogeny by Kaiser, extended to the molecular level by Ptashne and others. Restriction/modification was discovered in λ by Bertani and Weigle, and the biochemical mechanism was elucidated by Arber and by Smith.

  15. The genome of the Lactobacillus sanfranciscensis temperate phage EV3

    PubMed Central

    2013-01-01

    Background Bacteriophages infection modulates microbial consortia and transduction is one of the most important mechanism involved in the bacterial evolution. However, phage contamination brings food fermentations to a halt causing economic setbacks. The number of phage genome sequences of lactic acid bacteria especially of lactobacilli is still limited. We analysed the genome of a temperate phage active on Lactobacillus sanfranciscensis, the predominant strain in type I sourdough fermentations. Results Sequencing of the DNA of EV3 phage revealed a genome of 34,834 bp and a G + C content of 36.45%. Of the 43 open reading frames (ORFs) identified, all but eight shared homology with other phages of lactobacilli. A similar genomic organization and mosaic pattern of identities align EV3 with the closely related Lactobacillus vaginalis ATCC 49540 prophage. Four unknown ORFs that had no homologies in the databases or predicted functions were identified. Notably, EV3 encodes a putative dextranase. Conclusions EV3 is the first L. sanfranciscensis phage that has been completely sequenced so far. PMID:24308641

  16. RECOMBINATIONS OF MUTANT PHAGES OF BACILLUS MEGATHERIUM 899A

    PubMed Central

    Murphy, James S.

    1953-01-01

    A group of mutant phages stemming from the virus of B. megatherium 899a (lysogenic), growing on a sensitive B. megatherium strain (KM), have been studied with respect to their recombination reactions. All these mutants and many of their recombinations can be recognized by a characteristic plaque morphology. A similar group of phages have been isolated directly from a culture of B. megatherium 899a in this laboratory. Previous work has shown that when two different plaque mutant phages both infect essentially all the bacteria in a culture, a characteristic per cent of recombinants is produced. This percentage depends on the two recombinants used, each pair having its own value. Hershey and coworkers (2–5) have demonstrated with coli-phage T2, that the percentages of recombination found can be handled mathematically and that they demonstrate the existence of a relationship between the mutations entirely comparable to crossover percentages as used in gene locus maps in genetics. This has been found to hold true for the phages studied in the present work. Only one "linkage group" has been detected and all the mutants studied showed low percentages of recombination (0.8 to 7.6). B. megatherium 899a phage and some of its mutants have been examined with an electron microscope and no differences have been detected between the different mutant strains. PMID:13109115

  17. Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery

    PubMed Central

    Yata, Teerapong; Lee, Koon-Yang; Dharakul, Tararaj; Songsivilai, Sirirurg; Bismarck, Alexander; Mintz, Paul J; Hajitou, Amin

    2014-01-01

    Developing nanomaterials that are effective, safe, and selective for gene transfer applications is challenging. Bacteriophages (phage), viruses that infect bacteria only, have shown promise for targeted gene transfer applications. Unfortunately, limited progress has been achieved in improving their potential to overcome mammalian cellular barriers. We hypothesized that chemical modification of the bacteriophage capsid could be applied to improve targeted gene delivery by phage vectors into mammalian cells. Here, we introduce a novel hybrid system consisting of two classes of nanomaterial systems, cationic polymers and M13 bacteriophage virus particles genetically engineered to display a tumor-targeting ligand and carry a transgene cassette. We demonstrate that the phage complex with cationic polymers generates positively charged phage and large aggregates that show enhanced cell surface attachment, buffering capacity, and improved transgene expression while retaining cell type specificity. Moreover, phage/polymer complexes carrying a therapeutic gene achieve greater cancer cell killing than phage alone. This new class of hybrid nanomaterial platform can advance targeted gene delivery applications by bacteriophage. PMID:25118171

  18. Viruses versus bacteria-novel approaches to phage therapy as a tool against multidrug-resistant pathogens.

    PubMed

    Viertel, Tania Mareike; Ritter, Klaus; Horz, Hans-Peter

    2014-09-01

    Bacteriophage therapy (the application of phages to treat bacterial infections) has a tradition dating back almost a century, but interest in phage therapy slowed down in the West when antibiotics were discovered. With the emerging threat of infections caused by multidrug-resistant bacteria and scarce prospects of newly introduced antibiotics in the future, phages are currently being reconsidered as alternative therapeutics. Conventional phage therapy uses lytic bacteriophages for treatment and recent human clinical trials have revealed encouraging results. In addition, several other modern approaches to phages as therapeutics have been made in vitro and in animal models. Dual therapy with phages and antibiotics has resulted in significant reductions in the number of bacterial pathogens. Bioengineered phages have overcome many of the problems of conventional phage therapy, enabled targeted drug delivery or reversed the resistance of drug-resistant bacteria. The use of enzymes derived from phages, such as endolysin, as therapeutic agents has been efficient in the elimination of Gram-positive pathogens. This review presents novel strategies for phage-related therapies and describes our current knowledge of natural bacteriophages within the human microbiome. Our aim is to provide an overview of the high number of different methodological concepts, thereby encouraging further research on this topic, with the ultimate goal of using phages as therapeutic or preventative medicines in daily clinical practice.

  19. The lytic activity of recombinant phage lysin LysKΔamidase against staphylococcal strains associated with bovine and human infections in the Jiangsu province of China.

    PubMed

    Zhou, Yan; Zhang, Hui; Bao, Hongduo; Wang, Xiaomeng; Wang, Ran

    2017-04-01

    We investigated the lytic activity of the bacteriophage endolysin (lysin) LysKΔamidase against live methicillin-resistant and-susceptible staphylococcal strains clinically isolated from bovine milk and humans from different origins of China. Antibiotic resistance patterns, multilocus sequence typing and SCCmec type of 137 staphylococcal strains isolated from bovine milk associated with bovine mastitis and human diseases were studied. A lytic enzyme, LysKΔamidase, was constructed by fusing the N-terminal 220 amino acids with the C-terminal 105 amino acids of staphylococcal phage lysin LysK. Herein, the antimicrobial activity of LysKΔamidase against 66 methicillin-resistant staphylococcal strains and 71 methicillin-susceptible staphylococcal strains isolated from bovine milk and from humans in China were studied. Our results show that the lysin displayed a broad lytic spectrum; in vitro treatment killed all 137 of the milk and clinical isolates of staphylococci strains tested, including MRSA, methicillin-susceptible S. aureus (MSSA), MR-Staphylococcus hominis ssp. homins, MR-Staphylococcus epidermidis and MR-Staphylococcus haemolyticus as evidenced by scanning electron microscopy, transmission electron microscopy, turbidity reduction assay and disruption of biofilms. The present results suggest that LysKΔamidase has the potential to be an alternative therapeutic agent against pathogenic methicillin-resistant and-susceptible staphylococcal strains isolated from China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Ascaridoid parasites infecting in the frequently consumed marine fishes in the coastal area of China: A preliminary investigation.

    PubMed

    Zhao, Wen-Ting; Lü, Liang; Chen, Hui-Xia; Yang, Yue; Zhang, Lu-Ping; Li, Liang

    2016-04-01

    Marine fishes represent the important components of the diet in the coastal areas of China and they are also natural hosts of various parasites. However, to date, little is known about the occurrence of ascaridoid parasites in the frequently consumed marine fishes in China. In order to determine the presence of ascaridoid parasites in the frequently consumed marine fishes in the coastal town Huizhou, Guangdong Province, China, 211 fish representing 45 species caught from the South China Sea (off Daya Gulf) were examined. Five species of ascaridoid nematodes at different developmental stages were detected in the marine fishes examined herein, including third-stage larva of Anisakis typica (Diesing, 1860), third and fourth-stage larvae of Hysterothylacium sp. IV-A of Shamsi, Gasser & Beveridge, 2013, adult and third-stage larvae of Hysterothylacium zhoushanense Li, Liu & Zhang, 2014, adults and third-stage larvae of Raphidascaris lophii (Wu, 1949) and adults of Raphidascaris longispicula Li, Liu & Zhang, 2012. The overall prevalence of infection is 18.0%. Of them, Hysterothylacium sp. IV-A with the highest prevalence (17.5%) and intensity (mean=14.6) of infection was the predominant species. The prevalence and intensity of A. typica were very low (1/211 of marine fish infected with an intensity of one parasite per fish). The morphological and molecular characterization of all nematode species was provided. A cladistic analysis based on ITS sequence was constructed in order to determine the phylogenetic relationships of these ascaridoid parasites obtained herein. The present study provided important information on the occurrence and diagnosis of ascaridoid nematodes in the commercially important marine fishes from the South China Sea. The low level of infection and the species composition of ascaridoid nematodes seem to indicate the presence of low risk of human anisakidosis when local population consumed these marine fishes examined herein.

  1. Phage therapy: delivering on the promise.

    PubMed

    Harper, D R; Anderson, J; Enright, M C

    2011-07-01

    Bacteriophages are viruses that infect and, in many cases, destroy their bacterial targets. Within a few years of their initial discovery they were being investigated as therapeutic agents for infectious disease, an approach known as phage therapy. However, the nature of these exquisitely specific agents was not understood and much early use was both uninformed and unsuccessful. As a result they were replaced by chemical antibiotics once these became available. Although work on phage therapy continued (and continues) in Eastern Europe, this was not conducted to a standard allowing it to support clinical uses in areas regulated by the European Medicines Agency or the US FDA. To develop phage therapy for these areas requires work carried out in accordance with the requirements of these agencies, and, driven by the current crisis of antibiotic resistance, such clinical trials are now under way. The first Phase I clinical trial of safety was reported in 2005, and the results of the first Phase II clinical trial of efficacy of a bacteriophage therapeutic was published in 2009. While the delivery of these relatively large and complex agents to the site of disease can be more challenging than for conventional, small-molecule antibiotics, bacteriophages are then able to multiply locally even from an extremely low (picogram range) initial dose. This multiplication where and only where they are needed underlies the potential for bacteriophage therapeutics to become a much needed and powerful weapon against bacterial disease.

  2. Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10.

    PubMed

    Bari, S M Nayeemul; Walker, Forrest C; Cater, Katie; Aslan, Barbaros; Hatoum-Aslan, Asma

    2017-09-21

    Staphylococci are prevalent skin-dwelling bacteria that are also leading causes of antibiotic-resistant infections. Viruses that infect and lyse these organisms (virulent staphylococcal phages) can be used as alternatives to conventional antibiotics and represent promising tools to eliminate or manipulate specific species in the microbiome. However, since over half their genes have unknown functions, virulent staphylococcal phages carry inherent risk to cause unknown downstream side effects. Further, their swift and destructive reproductive cycle make them intractable by current genetic engineering techniques. CRISPR-Cas10 is an elaborate prokaryotic immune system that employs small RNAs and a multisubunit protein complex to detect and destroy phages and other foreign nucleic acids. Some staphylococci naturally possess CRISPR-Cas10 systems, thus providing an attractive tool already installed in the host chromosome to harness for phage genome engineering. However, the efficiency of CRISPR-Cas10 immunity against virulent staphylococcal phages and corresponding utility as a tool to facilitate their genome editing has not been explored. Here, we show that the CRISPR-Cas10 system native to Staphylococcus epidermidis exhibits robust immunity against diverse virulent staphylococcal phages. On the basis of this activity, a general two-step approach was developed to edit these phages that relies upon homologous recombination machinery encoded in the host. Variations of this approach to edit toxic phage genes and access phages that infect CRISPR-less staphylococci are also presented. This versatile set of genetic tools enables the systematic study of phage genes of unknown functions and the design of genetically defined phage-based antimicrobials that can eliminate or manipulate specific Staphylococcus species.

  3. The use of phage FCL-2 as an alternative to chemotherapy against columnaris disease in aquaculture

    PubMed Central

    Laanto, Elina; Bamford, Jaana K. H.; Ravantti, Janne J.; Sundberg, Lotta-Riina

    2015-01-01

    Flavobacterium columnare, the causative agent of columnaris disease in fish, causes millions of dollars of losses in the US channel catfish industry alone, not to mention aquaculture industry worldwide. Novel methods are needed for the control and treatment of bacterial diseases in aquaculture to replace traditionally used chemotherapies. A potential solution could be the use of phages, i.e., bacterial viruses, host-specific and self-enriching particles that can be can easily distributed via water flow. We examined the efficacy of phages to combat columnaris disease. A previously isolated phage, FCL-2, infecting F. columnare, was characterized by sequencing. The 47 142 bp genome of the phage had G + C content of 30.2%, and the closest similarities regarding the structural proteins were found in Cellulophaga phage phiSM. Under controlled experimental conditions, two host fish species, rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio), were used to study the success of phage therapy to prevent F. columnare infections. The survival of both fish species was significantly higher in the presence of the phage. Hundred percent of the zebrafish and 50% of the rainbow trout survived in the phage treatment (survival without phage 0 and 8.3%, respectively). Most importantly, the rainbow trout population was rescued from infection by a single addition of the phage into the water in a flow-through fish tank system. Thus, F. columnare could be used as a model system to test the benefits and risks of phage therapy on a larger scale. PMID:26347722

  4. Two Novel Myoviruses from the North of Iraq Reveal Insights into Clostridium difficile Phage Diversity and Biology

    PubMed Central

    Rashid, Srwa J.; Barylski, Jakub; Hargreaves, Katherine R.; Millard, Andrew A.; Vinner, Gurinder K.; Clokie, Martha R. J.

    2016-01-01

    Bacteriophages (phages) are increasingly being explored as therapeutic agents to combat bacterial diseases, including Clostridium difficile infections. Therapeutic phages need to be able to efficiently target and kill a wide range of clinically relevant strains. While many phage groups have yet to be investigated in detail, those with new and useful properties can potentially be identified when phages from newly studied geographies are characterised. Here, we report the isolation of C. difficile phages from soil samples from the north of Iraq. Two myoviruses, CDKM15 and CDKM9, were selected for detailed sequence analysis on the basis of their broad and potentially useful host range. CDKM9 infects 25/80 strains from 12/20 C. difficile ribotypes, and CDKM15 infects 20/80 strains from 9/20 ribotypes. Both phages can infect the clinically relevant ribotypes R027 and R001. Phylogenetic analysis based on whole genome sequencing revealed that the phages are genetically distinct from each other but closely related to other long-tailed myoviruses. A comparative genomic analysis revealed key differences in the genes predicted to encode for proteins involved in bacterial infection. Notably, CDKM15 carries a clustered regularly interspaced short palindromic repeat (CRISPR) array with spacers that are homologous to sequences in the CDKM9 genome and of phages from diverse localities. The findings presented suggest a possible shared evolutionary past for these phages and provides evidence of their widespread dispersal. PMID:27854339