Tracked ultrasound calibration studies with a phantom made of LEGO bricks
NASA Astrophysics Data System (ADS)
Soehl, Marie; Walsh, Ryan; Rankin, Adam; Lasso, Andras; Fichtinger, Gabor
2014-03-01
In this study, spatial calibration of tracked ultrasound was compared by using a calibration phantom made of LEGO® bricks and two 3-D printed N-wire phantoms. METHODS: The accuracy and variance of calibrations were compared under a variety of operating conditions. Twenty trials were performed using an electromagnetic tracking device with a linear probe and three trials were performed using varied probes, varied tracking devices and the three aforementioned phantoms. The accuracy and variance of spatial calibrations found through the standard deviation and error of the 3-D image reprojection were used to compare the calibrations produced from the phantoms. RESULTS: This study found no significant difference between the measured variables of the calibrations. The average standard deviation of multiple 3-D image reprojections with the highest performing printed phantom and those from the phantom made of LEGO® bricks differed by 0.05 mm and the error of the reprojections differed by 0.13 mm. CONCLUSION: Given that the phantom made of LEGO® bricks is significantly less expensive, more readily available, and more easily modified than precision-machined N-wire phantoms, it prompts to be a viable calibration tool especially for quick laboratory research and proof of concept implementations of tracked ultrasound navigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petroccia, H; O'Reilly, S; Bolch, W
Purpose: Radiation-induced cancer effects are well-documented following radiotherapy. Further investigation is needed to more accurately determine a dose-response relationship for late radiation effects. Recent dosimetry studies tend to use representative patients (Taylor 2009) or anthropomorphic phantoms (Wirth 2008) for estimating organ mean doses. In this study, we compare hybrid computational phantoms to patient-specific voxel phantoms to test the accuracy of University of Florida Hybrid Phantom Library (UFHP Library) for historical dose reconstructions. Methods: A cohort of 10 patients with CT images was used to reproduce the data that was collected historically for Hodgkin's lymphoma patients (i.e. caliper measurements and photographs).more » Four types of phantoms were generated to show a range of refinement from reference hybrid-computational phantom to patient-specific phantoms. Each patient is matched to a reference phantom from the UFHP Library based on height and weight. The reference phantom is refined in the anterior/posterior direction to create a ‘caliper-scaled phantom’. A photograph is simulated using a surface rendering from segmented CT images. Further refinement in the lateral direction is performed using ratios from a simulated-photograph to create a ‘photograph and caliper-scaled phantom’; breast size and position is visually adjusted. Patient-specific hybrid phantoms, with matched organ volumes, are generated and show the capabilities of the UF Hybrid Phantom Library. Reference, caliper-scaled, photograph and caliper-scaled, and patient-specific hybrid phantoms are compared with patient-specific voxel phantoms to determine the accuracy of the study. Results: Progression from reference phantom to patient specific hybrid shows good agreement with the patient specific voxel phantoms. Each stage of refinement shows an overall trend of improvement in dose accuracy within the study, which suggests that computational phantoms can show improved accuracy in historical dose estimates. Conclusion: Computational hybrid phantoms show promise for improved accuracy within retrospective studies when CTs and other x-ray images are not available.« less
Borrego, David; Lowe, Erin M; Kitahara, Cari M; Lee, Choonsik
2018-03-21
A PC Program for x ray Monte Carlo (PCXMC) has been used to calculate organ doses in patient dosimetry and for the exposure assessment in epidemiological studies of radiogenic health related risks. This study compared the dosimetry from using the built-in stylized phantoms in the PCXMC to that of a newer hybrid phantom library with improved anatomical realism. We simulated chest and abdominal x ray projections for 146 unique body size computational phantoms, 77 males and 69 females, with different combinations of height (125-180 cm) and weight (20-140 kg) using the built-in stylized phantoms in the PCXMC version 2.0.1.4 and the hybrid phantom library using the Monte Carlo N-particle eXtended transport code 2.7 (MCNPX). Unfortunately, it was not possible to incorporate the hybrid phantom library into the PCXMC. We compared 14 organ doses, including dose to the active bone marrow, to evaluate differences between the built-in stylized phantoms in the PCXMC and the hybrid phantoms (Cristy and Eckerman 1987 Technical Report ORNL/TM-8381/V1, Oak Ridge National Laboratory, Eckerman and Ryman 1993 Technical Report 12 Oak Ridge, TN, Geyer et al 2014 Phys. Med. Biol. 59 5225-42). On average, organ doses calculated using the built-in stylized phantoms in the PCXMC were greater when compared to the hybrid phantoms. This is most prominent in AP abdominal exams by an average factor of 2.4-, 2.8-, and 2.8-fold for the 10-year-old, 15-year-old, and adult phantoms, respectively. For chest exams, organ doses are greater by an average factor of 1.1-, 1.4-, and 1.2-fold for the 10-year-old, 15-year-old, and adult phantoms, respectively. The PCXMX, due to its ease of use, is often selected to support dosimetry in epidemiological studies; however, it uses simplified models of the human anatomy that fail to account for variations in body morphometry for increasing weight. For epidemiological studies that use PCXMC dosimetry, associations between radiation-related disease risks and organ doses may be underestimated, and to a greater degree in pediatric, especially obese pediatric, compared to adult patients.
NASA Astrophysics Data System (ADS)
Borrego, David; Lowe, Erin M.; Kitahara, Cari M.; Lee, Choonsik
2018-03-01
A PC Program for x ray Monte Carlo (PCXMC) has been used to calculate organ doses in patient dosimetry and for the exposure assessment in epidemiological studies of radiogenic health related risks. This study compared the dosimetry from using the built-in stylized phantoms in the PCXMC to that of a newer hybrid phantom library with improved anatomical realism. We simulated chest and abdominal x ray projections for 146 unique body size computational phantoms, 77 males and 69 females, with different combinations of height (125–180 cm) and weight (20–140 kg) using the built-in stylized phantoms in the PCXMC version 2.0.1.4 and the hybrid phantom library using the Monte Carlo N-particle eXtended transport code 2.7 (MCNPX). Unfortunately, it was not possible to incorporate the hybrid phantom library into the PCXMC. We compared 14 organ doses, including dose to the active bone marrow, to evaluate differences between the built-in stylized phantoms in the PCXMC and the hybrid phantoms (Cristy and Eckerman 1987 Technical Report ORNL/TM-8381/V1, Oak Ridge National Laboratory, Eckerman and Ryman 1993 Technical Report 12 Oak Ridge, TN, Geyer et al 2014 Phys. Med. Biol. 59 5225–42). On average, organ doses calculated using the built-in stylized phantoms in the PCXMC were greater when compared to the hybrid phantoms. This is most prominent in AP abdominal exams by an average factor of 2.4-, 2.8-, and 2.8-fold for the 10-year-old, 15-year-old, and adult phantoms, respectively. For chest exams, organ doses are greater by an average factor of 1.1-, 1.4-, and 1.2-fold for the 10-year-old, 15-year-old, and adult phantoms, respectively. The PCXMX, due to its ease of use, is often selected to support dosimetry in epidemiological studies; however, it uses simplified models of the human anatomy that fail to account for variations in body morphometry for increasing weight. For epidemiological studies that use PCXMC dosimetry, associations between radiation-related disease risks and organ doses may be underestimated, and to a greater degree in pediatric, especially obese pediatric, compared to adult patients.
Rodríguez Pérez, Sunay; Marshall, Nicholas William; Struelens, Lara; Bosmans, Hilde
2018-01-01
This work concerns the validation of the Kyoto-Kagaku thorax anthropomorphic phantom Lungman for use in chest radiography optimization. The equivalence in terms of polymethyl methacrylate (PMMA) was established for the lung and mediastinum regions of the phantom. Patient chest examination data acquired under automatic exposure control were collated over a 2-year period for a standard x-ray room. Parameters surveyed included exposure index, air kerma area product, and exposure time, which were compared with Lungman values. Finally, a voxel model was developed by segmenting computed tomography images of the phantom and implemented in PENELOPE/penEasy Monte Carlo code to compare phantom tissue-equivalent materials with materials from ICRP Publication 89 in terms of organ dose. PMMA equivalence varied depending on tube voltage, from 9.5 to 10.0 cm and from 13.5 to 13.7 cm, for the lungs and mediastinum regions, respectively. For the survey, close agreement was found between the phantom and the patients' median values (deviations lay between 8% and 14%). Differences in lung doses, an important organ for optimization in chest radiography, were below 13% when comparing the use of phantom tissue-equivalent materials versus ICRP materials. The study confirms the value of the Lungman for chest optimization studies.
Lim, Kyungjae; Kwon, Heejin; Cho, Jinhan; Oh, Jongyoung; Yoon, Seongkuk; Kang, Myungjin; Ha, Dongho; Lee, Jinhwa; Kang, Eunju
2015-01-01
The purpose of this study was to assess the image quality of a novel advanced iterative reconstruction (IR) method called as "adaptive statistical IR V" (ASIR-V) by comparing the image noise, contrast-to-noise ratio (CNR), and spatial resolution from those of filtered back projection (FBP) and adaptive statistical IR (ASIR) on computed tomography (CT) phantom image. We performed CT scans at 5 different tube currents (50, 70, 100, 150, and 200 mA) using 3 types of CT phantoms. Scanned images were subsequently reconstructed in 7 different scan settings, such as FBP, and 3 levels of ASIR and ASIR-V (30%, 50%, and 70%). The image noise was measured in the first study using body phantom. The CNR was measured in the second study using contrast phantom and the spatial resolutions were measured in the third study using a high-resolution phantom. We compared the image noise, CNR, and spatial resolution among the 7 reconstructed image scan settings to determine whether noise reduction, high CNR, and high spatial resolution could be achieved at ASIR-V. At quantitative analysis of the first and second studies, it showed that the images reconstructed using ASIR-V had reduced image noise and improved CNR compared with those of FBP and ASIR (P < 0.001). At qualitative analysis of the third study, it also showed that the images reconstructed using ASIR-V had significantly improved spatial resolution than those of FBP and ASIR (P < 0.001). Our phantom studies showed that ASIR-V provides a significant reduction in image noise and a significant improvement in CNR as well as spatial resolution. Therefore, this technique has the potential to reduce the radiation dose further without compromising image quality.
NASA Astrophysics Data System (ADS)
Yeom, Yeon Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol; Ham, Bo Kyoung; Cho, Kun Woo; Hwang, Sung Bae
2014-07-01
In a previous study, we constructed a male reference Korean phantom; HDRK-Man (High-Definition Reference Korean-Man), to represent Korean adult males for radiation protection purposes. In the present study, a female phantom; HDRK-Woman (High-Definition Reference Korean-Woman), was constructed to represent Korean adult females. High-resolution color photographic images obtained by serial sectioning of a 26 year-old Korean adult female cadaver were utilized. The body height and weight, the skeletal mass, and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The phantom was then compared with the International Commission on Radiological Protection (ICRP) female reference phantom in terms of calculated organ doses and organ-depth distributions. Additionally, the effective doses were calculated using both the HDRK-Man and HDRK-Woman phantoms, and the values were compared with those of the ICRP reference phantoms.
Yeom, Yeon Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol; Ham, Bo Kyoung; Cho, Kun Woo; Hwang, Sung Bae
2014-07-21
In a previous study, we constructed a male reference Korean phantom; HDRK-Man (High-Definition Reference Korean-Man), to represent Korean adult males for radiation protection purposes. In the present study, a female phantom; HDRK-Woman (High-Definition Reference Korean-Woman), was constructed to represent Korean adult females. High-resolution color photographic images obtained by serial sectioning of a 26 year-old Korean adult female cadaver were utilized. The body height and weight, the skeletal mass, and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The phantom was then compared with the International Commission on Radiological Protection (ICRP) female reference phantom in terms of calculated organ doses and organ-depth distributions. Additionally, the effective doses were calculated using both the HDRK-Man and HDRK-Woman phantoms, and the values were compared with those of the ICRP reference phantoms.
NASA Astrophysics Data System (ADS)
Pourfallah T, A.; Alam N, Riahi; M, Allahverdi; M, Ay; M, Zahmatkesh
2009-05-01
Polymer gel dosimetry is still the only dosimetry method for directly measuring three-dimensional dose distributions. MRI Polymer gel dosimeters are tissue equivalent and can act as a phantom material. Because of high dose response sensitivity, the MRI was chosen as readout device. In this study dose profiles calculated with treatment-planning software (LGP) and measurements with the MR polymer gel dosimeter for single-shot irradiations were compared. A custom-built 16 cm diameter spherical plexiglas head phantom was used in this study. Inside the phantom, there is a cubic cutout for insertion of gel phantoms and another cutout for inserting the inhomogeneities. The phantoms were scanned with a 1.5T MRI (Siemens syngo MR 2004A 4VA25A) scanner. The multiple spin-echo sequence with 32 echoes was used for the MRI scans. Calibration relations between the spin-spin relaxation rate and the absorbed dose were obtained by using small cylindrical vials, which were filled with the PAGAT polymer gel from the same batch as for the spherical phantom. 1D and 2D data obtained using gel dosimeter for homogeneous and inhomogeneous phantoms were compared with dose obtained using LGP calculation. The distance between relative isodose curves obtained for homogeneous phantom and heterogeneous phantoms exceed the accepted total positioning error (>±2mm). The findings of this study indicate that dose measurement using PAGAT gel dosimeter can be used for verifying dose delivering accuracy in GK unit in presence of inhomogeneities.
NASA Astrophysics Data System (ADS)
Sands, Michelle M.; Borrego, David; Maynard, Matthew R.; Bahadori, Amir A.; Bolch, Wesley E.
2017-11-01
One of the hazards faced by space crew members in low-Earth orbit or in deep space is exposure to ionizing radiation. It has been shown previously that while differences in organ-specific and whole-body risk estimates due to body size variations are small for highly-penetrating galactic cosmic rays, large differences in these quantities can result from exposure to shorter-range trapped proton or solar particle event radiations. For this reason, it is desirable to use morphometrically accurate computational phantoms representing each astronaut for a risk analysis, especially in the case of a solar particle event. An algorithm was developed to automatically sculpt and scale the UF adult male and adult female hybrid reference phantom to the individual outer body contour of a given astronaut. This process begins with the creation of a laser-measured polygon mesh model of the astronaut's body contour. Using the auto-scaling program and selecting several anatomical landmarks, the UF adult male or female phantom is adjusted to match the laser-measured outer body contour of the astronaut. A dosimetry comparison study was conducted to compare the organ dose accuracy of both the autoscaled phantom and that based upon a height-weight matched phantom from the UF/NCI Computational Phantom Library. Monte Carlo methods were used to simulate the environment of the August 1972 and February 1956 solar particle events. Using a series of individual-specific voxel phantoms as a local benchmark standard, autoscaled phantom organ dose estimates were shown to provide a 1% and 10% improvement in organ dose accuracy for a population of females and males, respectively, as compared to organ doses derived from height-weight matched phantoms from the UF/NCI Computational Phantom Library. In addition, this slight improvement in organ dose accuracy from the autoscaled phantoms is accompanied by reduced computer storage requirements and a more rapid method for individualized phantom generation when compared to the UF/NCI Computational Phantom Library.
NASA Astrophysics Data System (ADS)
Cha, Min Kyoung; Ko, Hyun Soo; Jung, Woo Young; Ryu, Jae Kwang; Choe, Bo-Young
2015-08-01
The Accuracy of registration between positron emission tomography (PET) and computed tomography (CT) images is one of the important factors for reliable diagnosis in PET/CT examinations. Although quality control (QC) for checking alignment of PET and CT images should be performed periodically, the procedures have not been fully established. The aim of this study is to determine optimal quality control (QC) procedures that can be performed at the user level to ensure the accuracy of PET/CT registration. Two phantoms were used to carry out this study: the American college of Radiology (ACR)-approved PET phantom and National Electrical Manufacturers Association (NEMA) International Electrotechnical Commission (IEC) body phantom, containing fillable spheres. All PET/CT images were acquired on a Biograph TruePoint 40 PET/CT scanner using routine protocols. To measure registration error, the spatial coordinates of the estimated centers of the target slice (spheres) was calculated independently for the PET and the CT images in two ways. We compared the images from the ACR-approved PET phantom to that from the NEMA IEC body phantom. Also, we measured the total time required from phantom preparation to image analysis. The first analysis method showed a total difference of 0.636 ± 0.11 mm for the largest hot sphere and 0.198 ± 0.09 mm for the largest cold sphere in the case of the ACR-approved PET phantom. In the NEMA IEC body phantom, the total difference was 3.720 ± 0.97 mm for the largest hot sphere and 4.800 ± 0.85 mm for the largest cold sphere. The second analysis method showed that the differences in the x location at the line profile of the lesion on PET and CT were (1.33, 1.33) mm for a bone lesion, (-1.26, -1.33) mm for an air lesion and (-1.67, -1.60) mm for a hot sphere lesion for the ACR-approved PET phantom. For the NEMA IEC body phantom, the differences in the x location at the line profile of the lesion on PET and CT were (-1.33, 4.00) mm for the air lesion and (1.33, -1.29) mm for a hot sphere lesion. These registration errors from this study were reasonable compared to the errors reported in previous studies. Meanwhile, the total time required from phantom preparation was 67.72 ± 4.50 min for the ACR-approved PET phantom and 96.78 ± 8.50 min for the NEMA IEC body phantom. When the registration errors and the lead times are considered, the method using the ACR-approved PET phantom was more practical and useful than the method using the NEMA IEC body phantom.
Conversion of ICRP male reference phantom to polygon-surface phantom
NASA Astrophysics Data System (ADS)
Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi
2013-10-01
The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (<2 man-months), we were able to construct the polygon-surface phantom with the organ masses perfectly matching the ICRP reference values. The analysis of the calculated dose values also implies that the dose values are indeed not very sensitive to the detailed morphology of the organ models in the phantom for highly penetrating radiations such as photons and neutrons. The results of the electron beams, on the other hand, show that the dose values of the polygon-surface phantom are higher by a factor of 2-5 times than those of the ICRP reference phantom for the skin and wall organs which have large holes due to low voxel resolution. The results demonstrate that the ICRP reference phantom could provide significantly unreasonable dose values to thin or wall organs especially for weakly penetrating radiations. Therefore, when compared to the original ICRP reference phantoms, it is believed that the polygon-surface version of ICRP reference phantoms properly developed will not only provide the same or similar dose values (say, difference <5 or 10%) for highly penetrating radiations, but also provide correct dose values for the weakly penetrating radiations such as electrons and other charged particles.
Viddeleer, Alain R; Sijens, Paul E; van Ooijen, Peter M A; Kuypers, Paul D L; Hovius, Steven E R; Oudkerk, Matthijs
2009-08-01
Nerve regeneration could be monitored by comparing MRI image intensities in time, as denervated muscles display increased signal intensity in STIR sequences. In this study long-term reproducibility of STIR image intensity was assessed under clinical conditions and the required image intensity nonuniformity correction was improved by using phantom scans obtained at multiple positions. Three-dimensional image intensity nonuniformity was investigated in phantom scans. Next, over a three-year period, 190 clinical STIR hand scans were obtained using a standardized acquisition protocol, and corrected for intensity nonuniformity by using the results of phantom scanning. The results of correction with 1, 3, and 11 phantom scans were compared. The image intensities in calibration tubes close to the hands were measured every time to determine the reproducibility of our method. With calibration, the reproducibility of STIR image intensity improved from 7.8 to 6.4%. Image intensity nonuniformity correction with 11 phantom scans gave significantly better results than correction with 1 or 3 scans. The image intensities in clinical STIR images acquired at different times can be compared directly, provided that the acquisition protocol is standardized and that nonuniformity correction is applied. Nonuniformity correction is preferably based on multiple phantom scans.
Soft Tissue Phantoms for Realistic Needle Insertion: A Comparative Study.
Leibinger, Alexander; Forte, Antonio E; Tan, Zhengchu; Oldfield, Matthew J; Beyrau, Frank; Dini, Daniele; Rodriguez Y Baena, Ferdinando
2016-08-01
Phantoms are common substitutes for soft tissues in biomechanical research and are usually tuned to match tissue properties using standard testing protocols at small strains. However, the response due to complex tool-tissue interactions can differ depending on the phantom and no comprehensive comparative study has been published to date, which could aid researchers to select suitable materials. In this work, gelatin, a common phantom in literature, and a composite hydrogel developed at Imperial College, were matched for mechanical stiffness to porcine brain, and the interactions during needle insertions within them were analyzed. Specifically, we examined insertion forces for brain and the phantoms; we also measured displacements and strains within the phantoms via a laser-based image correlation technique in combination with fluorescent beads. It is shown that the insertion forces for gelatin and brain agree closely, but that the composite hydrogel better mimics the viscous nature of soft tissue. Both materials match different characteristics of brain, but neither of them is a perfect substitute. Thus, when selecting a phantom material, both the soft tissue properties and the complex tool-tissue interactions arising during tissue manipulation should be taken into consideration. These conclusions are presented in tabular form to aid future selection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, S; Yao, W
2015-06-15
Purpose: To study different noise-reduction algorithms and to improve the image quality of low dose cone beam CT for patient positioning in radiation therapy. Methods: In low-dose cone-beam CT, the reconstructed image is contaminated with excessive quantum noise. In this study, three well-developed noise reduction algorithms namely, a) penalized weighted least square (PWLS) method, b) split-Bregman total variation (TV) method, and c) compressed sensing (CS) method were studied and applied to the images of a computer–simulated “Shepp-Logan” phantom and a physical CATPHAN phantom. Up to 20% additive Gaussian noise was added to the Shepp-Logan phantom. The CATPHAN phantom was scannedmore » by a Varian OBI system with 100 kVp, 4 ms and 20 mA. For comparing the performance of these algorithms, peak signal-to-noise ratio (PSNR) of the denoised images was computed. Results: The algorithms were shown to have the potential in reducing the noise level for low-dose CBCT images. For Shepp-Logan phantom, an improvement of PSNR of 2 dB, 3.1 dB and 4 dB was observed using PWLS, TV and CS respectively, while for CATPHAN, the improvement was 1.2 dB, 1.8 dB and 2.1 dB, respectively. Conclusion: Penalized weighted least square, total variation and compressed sensing methods were studied and compared for reducing the noise on a simulated phantom and a physical phantom scanned by low-dose CBCT. The techniques have shown promising results for noise reduction in terms of PSNR improvement. However, reducing the noise without compromising the smoothness and resolution of the image needs more extensive research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Justin, E-mail: justin.solomon@duke.edu; Samei, Ehsan
2014-09-15
Purpose: Quantum noise properties of CT images are generally assessed using simple geometric phantoms with uniform backgrounds. Such phantoms may be inadequate when assessing nonlinear reconstruction or postprocessing algorithms. The purpose of this study was to design anatomically informed textured phantoms and use the phantoms to assess quantum noise properties across two clinically available reconstruction algorithms, filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE). Methods: Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom included intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based onmore » a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and, along with a uniform phantom of similar size, were imaged on a Siemens SOMATOM Definition Flash CT scanner and reconstructed with FBP and SAFIRE. Fifty repeated acquisitions were acquired for each background type and noise was assessed by estimating pixel-value statistics, such as standard deviation (i.e., noise magnitude), autocorrelation, and noise power spectrum. Noise stationarity was also assessed by examining the spatial distribution of noise magnitude. The noise properties were compared across background types and between the two reconstruction algorithms. Results: In FBP and SAFIRE images, noise was globally nonstationary for all phantoms. In FBP images of all phantoms, and in SAFIRE images of the uniform phantom, noise appeared to be locally stationary (within a reasonably small region of interest). Noise was locally nonstationary in SAFIRE images of the textured phantoms with edge pixels showing higher noise magnitude compared to pixels in more homogenous regions. For pixels in uniform regions, noise magnitude was reduced by an average of 60% in SAFIRE images compared to FBP. However, for edge pixels, noise magnitude ranged from 20% higher to 40% lower in SAFIRE images compared to FBP. SAFIRE images of the lung phantom exhibited distinct regions with varying noise texture (i.e., noise autocorrelation/power spectra). Conclusions: Quantum noise properties observed in uniform phantoms may not be representative of those in actual patients for nonlinear reconstruction algorithms. Anatomical texture should be considered when evaluating the performance of CT systems that use such nonlinear algorithms.« less
Cockmartin, L; Bosmans, H; Marshall, N W
2013-08-01
This work characterizes three candidate mammography phantoms with structured background in terms of power law analysis in the low frequency region of the power spectrum for 2D (planar) mammography and digital breast tomosynthesis (DBT). The study was performed using three phantoms (spheres in water, Voxmam, and BR3D CIRS phantoms) on two DBT systems from two different vendors (Siemens Inspiration and Hologic Selenia Dimensions). Power spectra (PS) were calculated for planar projection, DBT projection, and reconstructed images and curve fitted in the low frequency region from 0.2 to 0.7 mm(-1) with a power law function characterized by an exponent β and magnitude κ. The influence of acquisition dose and tube voltage on the power law parameters was first explored. Then power law parameters were calculated from images acquired with the same anode∕filter combination and tube voltage for the three test objects, and compared with each other. Finally, PS curves for automatic exposure controlled acquisitions (anode∕filter combination and tube voltages selected by the systems based on the breast equivalent thickness of the test objects) were compared against PS analysis performed on patient data (for Siemens 80 and for Hologic 48 mammograms and DBT series). Dosimetric aspects of the three test objects were also examined. The power law exponent (β) was found to be independent of acquisition dose for planar mammography but varied more for DBT projections of the sphere-phantom. Systematic increase of tube voltage did not affect β but decreased κ, both in planar and DBT projection phantom images. Power spectra of the BR3D phantom were closer to those of the patients than these of the Voxmam phantom; the Voxmam phantom gave high values of κ compared to the other phantoms and the patient series. The magnitude of the PS curves of the BR3D phantom was within the patient range but β was lower than the average patient value. Finally, PS magnitude for the sphere-phantom coincided with the patient curves for Siemens but was lower for the Hologic system. Close agreement of doses for all three phantoms with patient doses was found. Power law parameters of the phantoms were close to those of the patients but no single phantom matched in terms of both magnitude (κ) and texture (β) for the x-ray systems in this work. PS analysis of structured phantoms is feasible and this methodology can be used to suggest improvements in phantom design.
Sarkar, Biplab; Ghosh, Bhaswar; Sriramprasath; Mahendramohan, Sukumaran; Basu, Ayan; Goswami, Jyotirup; Ray, Amitabh
2010-01-01
The study was aimed to compare accuracy of monitor unit verification in intensity modulated radiation therapy (IMRT) using 6 MV photons by three different methodologies with different detector phantom combinations. Sixty patients were randomly chosen. Zero degree couch and gantry angle plans were generated in a plastic universal IMRT verification phantom and 30×30×30 cc water phantom and measured using 0.125 cc and 0.6 cc chambers, respectively. Actual gantry and couch angle plans were also measured in water phantom using 0.6 cc chamber. A suitable point of measurement was chosen from the beam profile for each field. When the zero-degree gantry, couch angle plans and actual gantry, couch angle plans were measured by 0.6 cc chamber in water phantom, the percentage mean difference (MD) was 1.35%, 2.94 % and Standard Deviation (SD) was 2.99%, 5.22%, respectively. The plastic phantom measurements with 0.125 cc chamber Semiflex ionisation chamber (SIC) showed an MD=4.21% and SD=2.73 %, but when corrected for chamber-medium response, they showed an improvement, with MD=3.38 % and SD=2.59 %. It was found that measurements with water phantom and 0.6cc chamber at gantry angle zero degree showed better conformity than other measurements of medium-detector combinations. Correction in plastic phantom measurement improved the result only marginally, and actual gantry angle measurement in a flat- water phantom showed higher deviation. PMID:20927221
A computational model unifies apparently contradictory findings concerning phantom pain
Boström, Kim J.; de Lussanet, Marc H. E.; Weiss, Thomas; Puta, Christian; Wagner, Heiko
2014-01-01
Amputation often leads to painful phantom sensations, whose pathogenesis is still unclear. Supported by experimental findings, an explanatory model has been proposed that identifies maladaptive reorganization of the primary somatosensory cortex (S1) as a cause of phantom pain. However, it was recently found that BOLD activity during voluntary movements of the phantom positively correlates with phantom pain rating, giving rise to a model of persistent representation. In the present study, we develop a physiologically realistic, computational model to resolve the conflicting findings. Simulations yielded that both the amount of reorganization and the level of cortical activity during phantom movements were enhanced in a scenario with strong phantom pain as compared to a scenario with weak phantom pain. These results suggest that phantom pain, maladaptive reorganization, and persistent representation may all be caused by the same underlying mechanism, which is driven by an abnormally enhanced spontaneous activity of deafferented nociceptive channels. PMID:24931344
Computation of Calcium Score with Dual Energy CT: A Phantom Study
Kumar, Vidhya; Min, James K.; He, Xin; Raman, Subha V.
2016-01-01
Dual energy computed tomography (DECT) improves material and tissue characterization compared to single energy CT (SECT); we sought to validate coronary calcium quantification in advancing cardiovascular DECT. In an anthropomorphic phantom, agreement between measurements was excellent, and Bland-Altman analysis demonstrated minimal bias. Compared to the known calcium mass for each phantom, calcium mass by DECT was highly accurate. Noncontrast DECT yields accurate calcium measures, and warrants consideration in cardiac protocols for additional tissue characterizations. PMID:27680414
Budoff, Matthew J; Mao, Songshou; Lu, Bin; Takasu, Junichiro; Child, Janis; Carson, Sivi; Fisher, Hans
2002-01-01
To test the hypothesis that a calibration phantom would improve interpatient and interscan variability in coronary artery calcium (CAC) studies. We scanned 144 patients twice with or without the calibration phantom and then scanned 93 patients with a single calcific lesion twice and, finally, scanned a cork heart with calcific foci. There were no linear correlations in computed tomography Hounsfield unit (CT HU) and CT HU interscan variation between blood pool and phantom plugs at any slice level in patient groups (p > 0.05). The CT HU interscan variation in phantom plugs (2.11 HU) was less than that of the blood pool (3.47 HU; p < 0.05) and CAC lesion (20.39; p < 0.001). Comparing images with and without a calibration phantom, there was a significant decrease in CT HU as well as an increase in noise and peak values in patient studies and the cork phantom study. The CT HU attenuation variations of the interpatient and interscan blood pool, calibration phantom plug, and cork coronary arteries were not parallel. Therefore, the ability to adjust the CT HU variation of calcific lesions by a calibration phantom is problematic and may worsen the problem.
[Effect of vibration caused by time-varying magnetic fields on diffusion-weighted MRI].
Ogura, Akio; Maeda, Fumie; Miyai, Akira; Hayashi, Kohji; Hongoh, Takaharu
2006-04-20
Diffusion-weighted images (DWIs) with high b-factor in the body are often used to detect and diagnose cancer at MRI. The echo planar imaging (EPI) sequence and high motion probing gradient pulse are used at diffusion weighted imaging, causing high table vibration. The purpose of this study was to assess whether the diffusion signal and apparent diffusion coefficient (ADC) values are influenced by this vibration because of time-varying magnetic fields. Two DWIs were compared. In one, phantoms were fixed on the MRI unit's table transmitting the vibration. In the other, phantoms were supported in air, in the absence of vibration. The phantoms called "solution phantoms" were made from agarose of a particular density. The phantoms called "jelly phantoms" were made from agarose that was heated. The diffusion signal and ADC value of each image were compared. The results showed that the signal of DWI units using the solution phantom was not affected by vibration. However, the signal of DWI and ADC were increased in the low-density jelly phantom as a result of vibration, causing the jelly phantom to vibrate. The DWIs of vibrating regions such as the breast maybe be subject to error. A countermeasure seems to be to support the region adequately.
Abdullah, Kamarul A; McEntee, Mark F; Reed, Warren; Kench, Peter L
2018-04-30
An ideal organ-specific insert phantom should be able to simulate the anatomical features with appropriate appearances in the resultant computed tomography (CT) images. This study investigated a 3D printing technology to develop a novel and cost-effective cardiac insert phantom derived from volumetric CT image datasets of anthropomorphic chest phantom. Cardiac insert volumes were segmented from CT image datasets, derived from an anthropomorphic chest phantom of Lungman N-01 (Kyoto Kagaku, Japan). These segmented datasets were converted to a virtual 3D-isosurface of heart-shaped shell, while two other removable inserts were included using computer-aided design (CAD) software program. This newly designed cardiac insert phantom was later printed by using a fused deposition modelling (FDM) process via a Creatbot DM Plus 3D printer. Then, several selected filling materials, such as contrast media, oil, water and jelly, were loaded into designated spaces in the 3D-printed phantom. The 3D-printed cardiac insert phantom was positioned within the anthropomorphic chest phantom and 30 repeated CT acquisitions performed using a multi-detector scanner at 120-kVp tube potential. Attenuation (Hounsfield Unit, HU) values were measured and compared to the image datasets of real-patient and Catphan ® 500 phantom. The output of the 3D-printed cardiac insert phantom was a solid acrylic plastic material, which was strong, light in weight and cost-effective. HU values of the filling materials were comparable to the image datasets of real-patient and Catphan ® 500 phantom. A novel and cost-effective cardiac insert phantom for anthropomorphic chest phantom was developed using volumetric CT image datasets with a 3D printer. Hence, this suggested the printing methodology could be applied to generate other phantoms for CT imaging studies. © 2018 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.
Phantom publications among applicants to a colorectal surgery residency program.
Nasseri, Yosef; Kohanzadeh, Som; Murrell, Zuri; Berel, Dror; Melmed, Gil; Fleshner, Phillip
2011-02-01
Previous studies have reported that as many as one third of applicants misrepresent their publication record on residency or fellowship applications. To determine the incidence of potentially fraudulent (or "phantom") research publications among applicants to a colorectal surgery residency program. Electronic Residency Application Services applications were reviewed. All listed publications were tabulated and checked whether they were published using various search engines. Cedars-Sinai Medical Center. Applicants from 2006 to 2008. We searched for phantom publications, defined as peer review journal citations that could not be verified. Demographics and other academic factors were compared between applicants with phantom publications and applicants with verifiable publications. Of the 133 study group applicants, there were 91 (68%) males and 58 (44%) whites. Median age of the study cohort was 32 years (range, 27-48 y). Eight-seven of 130 applicants (65%) listed a total of 392 publications. Thirty-six (9%) of these 392 citations could not be verified and were considered to be phantom publications. The 36 phantom publications were identified in 21 applicants, representing 16% (21/133) of all applicants and 24% (21/87) of all applicants who cited publications. We found no significant difference in any demographic or other studied variable between applicants with phantom publications and those with verifiable publications. When comparing applicants with 3 or more phantom publications with applicants with verifiable publications, the former group had a significantly higher rate of individuals over age 35 (50% vs 24%; P = .02), foreign medical school graduates (75% vs 20%; P = .03), and individuals with 5 or more publications (100% vs 30%; P = .01). Publications may simply have been missed in our search. We specifically may have failed to find publications in foreign journals. The significance of professionalism and ethical behavior must be emphasized in surgery training programs.
Xie, Peng; Wang, Mengke; Guo, Yanrong; Wen, Huiying; Chen, Xin; Chen, Siping; Lin, Haoming
2018-01-01
During the past two decades, tissue elasticity has been extensively studied and has been used in clinical disease diagnosis. But biological soft tissues are viscoelastic in nature. Therefore, they should be simultaneously characterized in terms of elasticity and viscosity. In addition, the mechanical properties of soft tissues are temperature dependent. However, how the temperature influences the shear wave dispersion and the viscoelasticity of soft tissue are still unclear. The aim of this study is to compare viscoelasticity of fat emulsion phantom with different temperature using acoustic radiation force elasticity imaging method. In our experiment, we produced four proportions of ultrasonic phantom by adding fat emulsion gelatin. Through adjusting the component of the fat emulsion, we change the viscoelasticity of the ultrasonic phantom. We used verasonics system to gather data and voigt model to fit the elasticity and viscosity value of the ultrasonic phantom we made. The influence of temperature to the ultrasonic phantom also measured in our study. The results show that the addition of fat emulsion to the phantom can increase the viscosity of the phantom, and the shear wave phase velocity decreases gradually at each frequency with the temperature increases, which provides a new material for the production of viscoelastic phantom. PMID:29758968
Xie, Peng; Wang, Mengke; Guo, Yanrong; Wen, Huiying; Chen, Xin; Chen, Siping; Lin, Haoming
2018-04-27
During the past two decades, tissue elasticity has been extensively studied and has been used in clinical disease diagnosis. But biological soft tissues are viscoelastic in nature. Therefore, they should be simultaneously characterized in terms of elasticity and viscosity. In addition, the mechanical properties of soft tissues are temperature dependent. However, how the temperature influences the shear wave dispersion and the viscoelasticity of soft tissue are still unclear. The aim of this study is to compare viscoelasticity of fat emulsion phantom with different temperature using acoustic radiation force elasticity imaging method. In our experiment, we produced four proportions of ultrasonic phantom by adding fat emulsion gelatin. Through adjusting the component of the fat emulsion, we change the viscoelasticity of the ultrasonic phantom. We used verasonics system to gather data and voigt model to fit the elasticity and viscosity value of the ultrasonic phantom we made. The influence of temperature to the ultrasonic phantom also measured in our study. The results show that the addition of fat emulsion to the phantom can increase the viscosity of the phantom, and the shear wave phase velocity decreases gradually at each frequency with the temperature increases, which provides a new material for the production of viscoelastic phantom.
A novel breast software phantom for biomechanical modeling of elastography.
Bhatti, Syeda Naema; Sridhar-Keralapura, Mallika
2012-04-01
In developing breast imaging technologies, testing is done with phantoms. Physical phantoms are normally used but their size, shape, composition, and detail cannot be modified readily. These difficulties can be avoided by creating a software breast phantom. Researchers have created software breast phantoms using geometric and/or mathematical methods for applications like image fusion. The authors report a 3D software breast phantom that was built using a mechanical design tool, to investigate the biomechanics of elastography using finite element modeling (FEM). The authors propose this phantom as an intermediate assessment tool for elastography simulation; for use after testing with commonly used phantoms and before clinical testing. The authors design the phantom to be flexible in both, the breast geometry and biomechanical parameters, to make it a useful tool for elastography simulation. The authors develop the 3D software phantom using a mechanical design tool based on illustrations of normal breast anatomy. The software phantom does not use geometric primitives or imaging data. The authors discuss how to create this phantom and how to modify it. The authors demonstrate a typical elastography experiment of applying a static stress to the top surface of the breast just above a simulated tumor and calculate normal strains in 3D and in 2D with plane strain approximations with linear solvers. In particular, they investigate contrast transfer efficiency (CTE) by designing a parametric study based on location, shape, and stiffness of simulated tumors. The authors also compare their findings to a commonly used elastography phantom. The 3D breast software phantom is flexible in shape, size, and location of tumors, glandular to fatty content, and the ductal structure. Residual modulus, maps, and profiles, served as a guide to optimize meshing of this geometrically nonlinear phantom for biomechanical modeling of elastography. At best, low residues (around 1-5 KPa) were found within the phantom while errors were elevated (around 10-30 KPa) at tumor and lobule boundaries. From our FEM analysis, the breast phantom generated a superior CTE in both 2D and in 3D over the block phantom. It also showed differences in CTE values and strain contrast for deep and shallow tumors and showed significant change in CTE when 3D modeling was used. These changes were not significant in the block phantom. Both phantoms, however, showed worsened CTE values for increased input tumor-background modulus contrast. Block phantoms serve as a starting tool but a next level phantom, like the proposed breast phantom, will serve as a valuable intermediate for elastography simulation before clinical testing. Further, given the CTE metrics for the breast phantom are superior to the block phantom, and vary for tumor shape, location, and stiffness, these phantoms would enhance the study of elastography contrast. Further, the use of 2D phantoms with plane strain approximations overestimates the CTE value when compared to the true CTE achieved with 3D models. Thus, the use of 3D phantoms, like the breast phantom, with no approximations, will assist in more accurate estimation of modulus, especially valuable for 3D elastography systems.
Characterization of a novel anthropomorphic plastinated lung phantom
Yoon, Sungwon; Henry, Robert W.; Bouley, Donna M.; Bennett, N. Robert; Fahrig, Rebecca
2008-01-01
Phantoms are widely used during the development of new imaging systems and algorithms. For development and optimization of new imaging systems such as tomosynthesis, where conventional image quality metrics may not be applicable, a realistic phantom that can be used across imaging systems is desirable. A novel anthropomorphic lung phantom was developed by plastination of an actual pig lung. The plastinated phantom is characterized and compared with reference to in vivo images of the same tissue prior to plastination using high resolution 3D CT. The phantom is stable over time and preserves the anatomical features and relative locations of the in vivo sample. The volumes for different tissue types in the phantom are comparable to the in vivo counterparts, and CT numbers for different tissue types fall within a clinically useful range. Based on the measured CT numbers, the phantom cardiac tissue experienced a 92% decrease in bulk density and the phantom pulmonary tissue experienced a 78% decrease in bulk density compared to their in vivo counterparts. By-products in the phantom from the room temperature vulcanizing silicone and plastination process are also identified. A second generation phantom, which eliminates most of the by-products, is presented. Such anthropomorphic phantoms can be used to evaluate a wide range of novel imaging systems. PMID:19175148
NASA Astrophysics Data System (ADS)
Hamid, Puteri Nor Khatijah Abd; Yusof, Mohd Fahmi Mohd; Aziz Tajuddin, Abd; Hashim, Rokiah; Zainon, Rafidah
2018-01-01
The aim of this study was to design and evaluate of corn starch-bonded Rhizophora spp. particleboards as phantom for SPECT/CT imaging. The phantom was designed according to the Jaszczak phantom commonly used in SPECT imaging with dimension of 22 cm diameter and 18 cm length. Six inserts with different diameter were made for insertion of vials filled with 1.6 µCi/ml of 99mTc unsealed source. The particleboard phantom was scanned using SPECT/CT imaging protocol. The contrast of each vial for particleboards phantom were calculated based on the ratio of counts in radionuclide volume and phantom background and compared to Perspex® and water phantom. The results showed that contrast values for each vial in particleboard phantomis near to 1.0 and in good agreement with Perspex® and water phantoms as common phantom materials for SPECT/CT. The paired sample t-test result showed no significant difference of contrast values between images in particleboard phantoms and that in water. The overall results showed the potential of corn starch-bonded Rhizophora spp. as phantom for quality control and dosimetry works in SPECT/CT imaging.
NASA Astrophysics Data System (ADS)
Lamart, Stephanie; Bouville, Andre; Simon, Steven L.; Eckerman, Keith F.; Melo, Dunstana; Lee, Choonsik
2011-11-01
The S values for 11 major target organs for I-131 in the thyroid were compared for three classes of adult computational human phantoms: stylized, voxel and hybrid phantoms. In addition, we compared specific absorbed fractions (SAFs) with the thyroid as a source region over a broader photon energy range than the x- and gamma-rays of I-131. The S and SAF values were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms and the University of Florida (UF) hybrid phantoms by using the Monte Carlo transport method, while the S and SAF values for the Oak Ridge National Laboratory (ORNL) stylized phantoms were obtained from earlier publications. Phantoms in our calculations were for adults of both genders. The 11 target organs and tissues that were selected for the comparison of S values are brain, breast, stomach wall, small intestine wall, colon wall, heart wall, pancreas, salivary glands, thyroid, lungs and active marrow for I-131 and thyroid as a source region. The comparisons showed, in general, an underestimation of S values reported for the stylized phantoms compared to the values based on the ICRP voxel and UF hybrid phantoms and relatively good agreement between the S values obtained for the ICRP and UF phantoms. Substantial differences were observed for some organs between the three types of phantoms. For example, the small intestine wall of ICRP male phantom and heart wall of ICRP female phantom showed up to eightfold and fourfold greater S values, respectively, compared to the reported values for the ORNL phantoms. UF male and female phantoms also showed significant differences compared to the ORNL phantom, 4.0-fold greater for the small intestine wall and 3.3-fold greater for the heart wall. In our method, we directly calculated the S values without using the SAFs as commonly done. Hence, we sought to confirm the differences observed in our S values by comparing the SAFs among the phantoms with the thyroid as a source region for selected target organs—small intestine wall, lungs, pancreas and breast—as well as illustrate differences in energy deposition across the energy range (12 photon energies from 0.01 to 4 MeV). Differences were found in the SAFs between phantoms in a similar manner as the differences observed in S values but with larger differences at lower photon energies. To investigate the differences observed in the S and SAF values, the chord length distributions (CLDs) were computed for the selected source-target pairs and compared across the phantoms. As demonstrated by the CLDs, we found that the differences between phantoms in those factors used in internal dosimetry were governed to a significant degree by inter-organ distances which are a function of organ shape as well as organ location.
Characterisation of an anthropomorphic chest phantom for dose measurements in radiology beams
NASA Astrophysics Data System (ADS)
Henriques, L. M. S.; Cerqueira, R. A. D.; Santos, W. S.; Pereira, A. J. S.; Rodrigues, T. M. A.; Carvalho Júnior, A. B.; Maia, A. F.
2014-02-01
The objective of this study was to characterise an anthropomorphic chest phantom for dosimetric measurements of conventional radiology beams. This phantom was developed by a previous research project at the Federal University of Sergipe for image quality control tests. As the phantom consists of tissue-equivalent material, it is possible to characterise it for dosimetric studies. For comparison, a geometric chest phantom, consisting of PMMA (polymethylmethacrylate) with dimensions of 30×30×15 cm³ was used. Measurements of incident air kerma (Ki) and entrance surface dose (ESD) were performed using ionisation chambers. From the results, backscatter factors (BSFs) of the two phantoms were determined and compared with values estimated by CALDose_X software, based on a Monte Carlo simulation. For the technical parameters evaluated in this study, the ESD and BSF values obtained experimentally showed a good similarity between the two phantoms, with minimum and maximum difference of 0.2% and 7.0%, respectively, and showed good agreement with the results published in the literature. Organ doses and effective doses for the anthropomorphic phantom were also estimated by the determination of conversion coefficients (CCs) using the visual Monte Carlo (VMC) code. Therefore, the results of this study prove that the anthropomorphic thorax phantom proposed is a good tool to use in dosimetry and can be used for risk evaluation of X-ray diagnostic procedures.
NASA Astrophysics Data System (ADS)
Ahn, Woo Sang; Park, Sung Ho; Jung, Sang Hoon; Choi, Wonsik; Do Ahn, Seung; Shin, Seong Soo
2014-06-01
The purpose of this study is to determine the radial dose function of HDR 192Ir source based on Monte Carlo simulation using elliptic cylindrical phantom, similar to realistic shape of pelvis, in brachytherapy dosimetric study. The elliptic phantom size and shape was determined by analysis of dimensions of pelvis on CT images of 20 patients treated with brachytherapy for cervical cancer. The radial dose function obtained using the elliptic cylindrical water phantom was compared with radial dose functions for different spherical phantom sizes, including the Williamsion's data loaded into conventional planning system. The differences in the radial dose function for the different spherical water phantoms increase with radial distance, r, and the largest differences in the radial dose function appear for the smallest phantom size. The radial dose function of the elliptic cylindrical phantom significantly decreased with radial distance in the vertical direction due to different scatter condition in comparison with the Williamson's data. Considering doses to ICRU rectum and bladder points, doses to reference points can be underestimated up to 1-2% at the distance from 3 to 6 cm. The radial dose function in this study could be used as realistic data for calculating the brachytherapy dosimetry for cervical cancer.
Investigating a compact phantom and setup for testing body sound transducers
Mansy, Hansen A; Grahe, Joshua; Royston, Thomas J; Sandler, Richard H
2011-01-01
Contact transducers are a key element in experiments involving body sounds. The characteristics of these devices are often not known with accuracy. There are no standardized calibration setups or procedures for testing these sensors. This study investigated the characteristics of a new computer-controlled sound source phantom for testing sensors. Results suggested that sensors with different sizes require special phantom requirements. The effectiveness of certain approaches on increasing the spatial and spectral uniformity of the phantom surface signal was studied. Non-uniformities >20 dB were removable, which can be particularly helpful in comparing the characteristics of different size sensors more accurately. PMID:21496795
Kim, Ye-seul; Park, Hye-suk; Lee, Haeng-Hwa; Choi, Young-Wook; Choi, Jae-Gu; Kim, Hak Hee; Kim, Hee-Joung
2016-02-01
Digital breast tomosynthesis (DBT) is a recently developed system for three-dimensional imaging that offers the potential to reduce the false positives of mammography by preventing tissue overlap. Many qualitative evaluations of digital breast tomosynthesis were previously performed by using a phantom with an unrealistic model and with heterogeneous background and noise, which is not representative of real breasts. The purpose of the present work was to compare reconstruction algorithms for DBT by using various breast phantoms; validation was also performed by using patient images. DBT was performed by using a prototype unit that was optimized for very low exposures and rapid readout. Three algorithms were compared: a back-projection (BP) algorithm, a filtered BP (FBP) algorithm, and an iterative expectation maximization (EM) algorithm. To compare the algorithms, three types of breast phantoms (homogeneous background phantom, heterogeneous background phantom, and anthropomorphic breast phantom) were evaluated, and clinical images were also reconstructed by using the different reconstruction algorithms. The in-plane image quality was evaluated based on the line profile and the contrast-to-noise ratio (CNR), and out-of-plane artifacts were evaluated by means of the artifact spread function (ASF). Parenchymal texture features of contrast and homogeneity were computed based on reconstructed images of an anthropomorphic breast phantom. The clinical images were studied to validate the effect of reconstruction algorithms. The results showed that the CNRs of masses reconstructed by using the EM algorithm were slightly higher than those obtained by using the BP algorithm, whereas the FBP algorithm yielded much lower CNR due to its high fluctuations of background noise. The FBP algorithm provides the best conspicuity for larger calcifications by enhancing their contrast and sharpness more than the other algorithms; however, in the case of small-size and low-contrast microcalcifications, the FBP reduced detectability due to its increased noise. The EM algorithm yielded high conspicuity for both microcalcifications and masses and yielded better ASFs in terms of the full width at half maximum. The higher contrast and lower homogeneity in terms of texture analysis were shown in FBP algorithm than in other algorithms. The patient images using the EM algorithm resulted in high visibility of low-contrast mass with clear border. In this study, we compared three reconstruction algorithms by using various kinds of breast phantoms and patient cases. Future work using these algorithms and considering the type of the breast and the acquisition techniques used (e.g., angular range, dose distribution) should include the use of actual patients or patient-like phantoms to increase the potential for practical applications.
Comparison of the ANSI, RSD, KKH, and BRMD thyroid-neck phantoms for 125I thyroid monitoring.
Kramer, G H; Olender, G; Vlahovich, S; Hauck, B M; Meyerhof, D P
1996-03-01
The Human Monitoring Laboratory, which acts as the Canadian National Calibration Reference Centre for In Vivo Monitoring, has determined the performance characteristics of four thyroid phantoms for 125I thyroid monitoring. The phantoms were a phantom built to the specifications of the American National Standards Institute Standard N44.3; the phantom available from Radiology Support Devices; the phantom available from Kyoto Kagaku Hyohon; the phantom manufactured by the Human Monitoring Laboratory and known as the BRMD phantom. The counting efficiencies of the phantoms for 125I were measured at different phantom-to-detector distances. The anthropomorphic characteristics of the phantoms have been compared with the average man parameters. It was concluded that the BRMD, American National Standards Institute, and Radiology Support Devices phantoms have the same performance characteristics when the neck-to-detector distances are greater than 12 cm and all phantoms are essentially equivalent at 30 cm or more. The Kyoto Kagaku Hyohon phantom showed lower counting efficiencies at phantom-to-detector distances less than 30 cm. This was attributed to the design of the phantom. This study has also shown that the phantom need not be highly anthropomorphic provided the calibration is not performed at short neck-detector distances. Indeed, it might be possible to use t simple point source of 125I placed behind a 1.5 cm block of lucite at neck detector distances of 12 cm or more.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syh, J; Wu, H; Rosen, L
Purpose: To evaluate mass density effects of CT conversion table and its variation in current treatment planning system of spot scanning proton beam using an IROC proton lung phantom for this study. Methods: A proton lung phantom study was acquired to Imaging and Radiation Oncology Core Houston (IROC) Quality Assurance Center. Inside the lung phantom, GAF Chromic films and couples of thermal luminescent dosimeter (TLD) capsules embedded in specified PTV and adjacent structures to monitor delivered dosage and 3D dose distribution profiles. Various material such as cork (Lung), blue water (heart), Techron HPV (ribs) and organic material of balsa woodmore » and cork as dosimetry inserts within phantom of solid water (soft tissue). Relative stopping power (RLSP) values were provided. Our treatment planning system (TPS) doesn’t require SP instead relative density was converted relative to water. However lung phantom was irradiated by planning with density override and the results were compared with IROC measurements. The second attempt was conducted without density override and compared with IROC’s. Results: The higher passing rate of imaging and measurement results of the lung phantom irradiation met the criteria by IROC without density override. The film at coronal plane was found to be shift due to inclined cylinder insertion. The converted CT density worked as expected to correlate relative stopping power. Conclusion: The proton lung phantom provided by IROC is a useful tool to qualify our commissioned proton pencil beam delivery with TPS within reliable confidence. The relative mass stopping power ratios of materials were converted from the relative physical density relative to water and the results were satisfied.« less
Kawabe, Atsushi; Shibuya, Koichi; Takeda, Yoshihiro
2006-01-01
Interventional radiology procedure guidelines and a measurement manual (IVR guidelines) have been published for the maintenance of interventional equipment with an objective of avoiding serious radiation-induced skin injuries. In the IVR guidelines, the positioning of a dosimeter at the interventional reference point is determined, whereas placement of a phantom is not specified. Therefore, the phantom is placed at any convenient location between the dosimeter and image intensifier. The space around the dosimeter reduces detection of scattered radiation. In this study, dosimeters (consisting of a parallel plate ionization chamber, glass dosimeter and OSL dosimeter) were embedded in the phantom surface to detected scattered radiation accurately. As a result, when dosimeters were embedded in the phantom surface, the air kerma was increased compared with that when dosimeters were placed on the phantom. This suggested that embedded dosimeters were able to detect scattered radiation from the phantom.
NASA Astrophysics Data System (ADS)
Xie, Yijing; Tisca, Cristiana; Peveler, William; Noimark, Sacha; Desjardins, Adrien E.; Parkin, Ivan P.; Ourselin, Sebastien; Vercauteren, Tom
2017-02-01
5-ALA-PpIX fluorescence-guided brain tumour resection can increase the accuracy at which cancerous tissue is removed and thereby improve patient outcomes, as compared with standard white light imaging. Novel optical devices that aim to increase the specificity and sensitivity of PpIX detection are typically assessed by measurements in tissue-mimicking optical phantoms of which all optical properties are defined. Current existing optical phantoms specified for PpIX lack consistency in their optical properties, and stability with respect to photobleaching, thus yielding an unstable correspondence between PpIX concentration and the fluorescence intensity. In this study, we developed a set of aqueous-based phantoms with different compositions, using deionised water or PBS buffer as background medium, intralipid as scattering material, bovine haemoglobin as background absorber, and either PpIX dissolved in DMSO or a novel nanoparticle with similar absorption and emission spectrum to PpIX as the fluorophore. We investigated the phantom stability in terms of aggregation and photobleaching by comparing with different background medium and fluorophores, respectively. We characterised the fluorescence intensity of the fluorescent nanoparticle in different concentration of intralipid and haemoglobin and its time-dependent stability, as compared to the PpIX-induced fluorescence. We corroborated that the background medium was essential to prepare a stable aqueous phantom. The novel fluorescent nanoparticle used as surrogate fluorophore of PpIX presented an improved temporal stability and a reliable correspondence between concentration and emission intensity. We proposed an optimised phantom composition and recipe to produce reliable and repeatable phantom for validation of imaging device.
Hiller, Mauritius; Dewji, Shaheen Azim
2017-02-16
Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiller, Mauritius; Dewji, Shaheen Azim
Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzmin, G; Lee, C; Lee, C
Purpose: Recent advances in cancer treatments have greatly increased the likelihood of post-treatment patient survival. Secondary malignancies, however, have become a growing concern. Epidemiological studies determining secondary effects in radiotherapy patients require assessment of organ-specific dose both inside and outside the treatment field. An essential input for Monte Carlo modeling of particle transport is radiological images showing full patient anatomy. However, in retrospective studies it is typical to only have partial anatomy from CT scans used during treatment planning. In this study, we developed a multi-step method to extend such limited patient anatomy to full body anatomy for estimating dosemore » to normal tissues located outside the CT scan coverage. Methods: The first step identified a phantom from a library of body size-dependent computational human phantoms by matching the height and weight of patients. Second, a Python algorithm matched the patient CT coverage location in relation to the whole body phantom. Third, an algorithm cut the whole body phantom and scaled them to match the size of the patient. Then, merged the two anatomies into one whole body. We entitled this new approach, Anatomically Predictive Extension (APE). Results: The APE method was examined by comparing the original chest-abdomen-pelvis CT images of the five patients with the APE phantoms developed from only the chest part of the CAP images and whole body phantoms. We achieved average percent differences of tissue volumes of 25.7%, 34.2%, 16.5%, 26.8%, and 31.6% with an average of 27% across all patients. Conclusion: Our APE method extends the limited CT patient anatomy to whole body anatomy by using image processing and computational human phantoms. Our ongoing work includes evaluating the accuracy of these APE phantoms by comparing normal tissue doses in the APE phantoms and doses calculated for the original full CAP images under generic radiotherapy simulations. This research was supported by the NIH Intramural Research Program.« less
Bouwman, R W; van Engen, R E; Young, K C; Veldkamp, W J H; Dance, D R
2015-01-07
Slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE) slabs are used to simulate standard model breasts for the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT). These phantoms are optimized for the energy spectra used in DM and DBT, which normally have a lower average energy than used in contrast enhanced digital mammography (CEDM). In this study we have investigated whether these phantoms can be used for the evaluation of AGD with the high energy x-ray spectra used in CEDM. For this purpose the calculated values of the incident air kerma for dosimetry phantoms and standard model breasts were compared in a zero degree projection with the use of an anti scatter grid. It was found that the difference in incident air kerma compared to standard model breasts ranges between -10% to +4% for PMMA slabs and between 6% and 15% for PMMA-PE slabs. The estimated systematic error in the measured AGD for both sets of phantoms were considered to be sufficiently small for the evaluation of AGD in quality control procedures for CEDM. However, the systematic error can be substantial if AGD values from different phantoms are compared.
NASA Astrophysics Data System (ADS)
Masunun, P.; Tangboonduangjit, P.; Dumrongkijudom, N.
2016-03-01
The purpose of this study is to compare the build-up region doses on breast Rando phantom surface with the bolus covered, the doses in breast Rando phantom and also the doses in a lung that is the heterogeneous region by two algorithms. The AAA in Eclipse TPS and the collapsed cone convolution algorithm in Pinnacle treatment planning system were used to plan in tangential field technique with 6 MV photon beam at 200 cGy total doses in Breast Rando phantom with bolus covered (5 mm and 10 mm). TLDs were calibrated with Cobalt-60 and used to measure the doses in irradiation process. The results in treatment planning show that the doses in build-up region and the doses in breast phantom were closely matched in both algorithms which are less than 2% differences. However, overestimate of doses in a lung (L2) were found in AAA with 13.78% and 6.06% differences at 5 mm and 10 mm bolus thickness, respectively when compared with CCC algorithm. The TLD measurements show the underestimate in buildup region and in breast phantom but the doses in a lung (L2) were overestimated when compared with the doses in the two plannings at both thicknesses of the bolus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Paige A., E-mail: pataylor@mdanderson.org; Kry, Stephen F.; Alvarez, Paola
Purpose: The purpose of this study was to summarize the findings of anthropomorphic proton phantom irradiations analyzed by the Imaging and Radiation Oncology Core Houston QA Center (IROC Houston). Methods and Materials: A total of 103 phantoms were irradiated by proton therapy centers participating in clinical trials. The anthropomorphic phantoms simulated heterogeneous anatomy of a head, liver, lung, prostate, and spine. Treatment plans included those for scattered, uniform scanning, and pencil beam scanning beam delivery modalities using 5 different treatment planning systems. For every phantom irradiation, point doses and planar doses were measured using thermoluminescent dosimeters (TLD) and film, respectively. Differencesmore » between measured and planned doses were studied as a function of phantom, beam delivery modality, motion, repeat attempt, treatment planning system, and date of irradiation. Results: The phantom pass rate (overall, 79%) was high for simple phantoms and lower for phantoms that introduced higher levels of difficulty, such as motion, multiple targets, or increased heterogeneity. All treatment planning systems overestimated dose to the target, compared to TLD measurements. Errors in range calculation resulted in several failed phantoms. There was no correlation between treatment planning system and pass rate. The pass rates for each individual phantom are not improving over time, but when individual institutions received feedback about failed phantom irradiations, pass rates did improve. Conclusions: The proton phantom pass rates are not as high as desired and emphasize potential deficiencies in proton therapy planning and/or delivery. There are many areas for improvement with the proton phantom irradiations, such as treatment planning system dose agreement, range calculations, accounting for motion, and irradiation of multiple targets.« less
NASA Astrophysics Data System (ADS)
Yusof, Mohd Fahmi Mohd; Hamid, Puteri Nor Khatijah Abdul; Bauk, Sabar; Hashim, Rokiah; Tajuddin, Abdul Aziz
2015-04-01
Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest value of CT number to water substitute at 80 and 120 kVp CT energies with χ2 value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ2 value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusof, Mohd Fahmi Mohd, E-mail: mfahmi@usm.my; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz
2015-04-29
Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest valuemore » of CT number to water substitute at 80 and 120 kVp CT energies with χ{sup 2} value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ{sup 2} value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.« less
Alves, M C; Galeano, D C; Santos, W S; Lee, Choonsik; Bolch, Wesley E; Hunt, John G; da Silva, A X; Carvalho, A B
2016-12-01
Aircraft crew members are occupationally exposed to considerable levels of cosmic radiation at flight altitudes. Since aircrew (pilots and passengers) are in the sitting posture for most of the time during flight, and up to now there has been no data on the effective dose rate calculated for aircrew dosimetry in flight altitude using a sitting phantom, we therefore calculated the effective dose rate using a phantom in the sitting and standing postures in order to compare the influence of the posture on the radiation protection of aircrew members. We found that although the better description of the posture in which the aircrews are exposed, the results of the effective dose rate calculated with the phantom in the sitting posture were very similar to the results of the phantom in the standing posture. In fact we observed only a 1% difference. These findings indicate the adequacy of the use of dose conversion coefficients for the phantom in the standing posture in aircrew dosimetry. We also validated our results comparing the effective dose rate obtained using the standing phantom with values reported in the literature. It was observed that the results presented in this study are in good agreement with other authors (the differences are below 30%) who have measured and calculated effective dose rates using different phantoms.
Mammography dosimetry using an in-house developed polymethyl methacrylate phantom.
Sharma, Reena; Sharma, Sunil Dutt; Mayya, Y S; Chourasiya, G
2012-08-01
Phantom-based measurements in mammography are well-established for quality assurance (QA) and quality control (QC) procedures involving equipment performance and comparisons of X-ray machines. Polymethyl methacrylate (PMMA) is among the best suitable materials for simulation of the breast. For carrying out QA/QC exercises in India, a mammographic PMMA phantom with engraved slots for keeping thermoluminescence dosemeters (TLD) has been developed. The radiation transmission property of the developed phantom was compared with the commercially available phantoms for verifying its suitability for mammography dosimetry. The breast entrance exposure (BEE), mean glandular dose (MGD), percentage depth dose (PDD), percentage surface dose distribution (PSDD), calibration testing of automatic exposure control (AEC) and density control function of a mammography machine were measured using this phantom. MGD was derived from the measured BEE following two different methodologies and the results were compared. The PDD and PSDD measurements were carried out using LiF: Mg, Cu, P chips. The in-house phantom was found comparable with the commercially available phantoms. The difference in the MGD values derived using two different methods were found in the range of 17.5-32.6 %. Measured depth ranges in the phantom lie between 0.32 and 0.40 cm for 75 % depth dose, 0.73 and 0.92 cm for 50 % depth dose, and 1.54 and 1.78 cm for 25 % depth dose. Higher PSDD value was observed towards chest wall edge side of the phantom, which is due to the orientation of cathode-anode axis along the chest wall to the nipple direction. Results obtained for AEC configuration testing shows that the observed mean optical density (O.D) of the phantom image was 1.59 and O.D difference for every successive increase in thickness of the phantom was within±0.15 O.D. Under density control function testing, at -2 and -1 density settings, the variation in film image O.D was within±0.15 O.D of the normal density setting '0' and at +2 and +1 density setting, it was observed to be within±0.30 O.D. This study indicates that the locally made PMMA TLD slot phantom can be used to measure various mammography QC parameters which are essentially required for better outcomes in mammography.
SU-E-T-416: VMAT Dose Calculations Using Cone Beam CT Images: A Preliminary Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, S; Sehgal, V; Kuo, J
Purpose: Cone beam CT (CBCT) images have been used routinely for patient positioning throughout the treatment course. However, use of CBCT for dose calculation is still investigational. The purpose of this study is to assess the utility of CBCT images for Volumetric Modulated Arc Therapy (VMAT) plan dose calculation. Methods: A CATPHAN 504 phantom (The Phantom Laboratory, Salem, NY) was used to compare the dosimetric and geometric accuracy between conventional CT and CBCT (in both full and half fan modes). Hounsfield units (HU) profiles at different density areas were evaluated. A C shape target that surrounds a central avoidance structuremore » was created and a VMAT plan was generated on the CT images and copied to the CBCT phantom images. Patient studies included three brain patients, and one head and neck (H'N) patient. VMAT plans generated on the patients treatment planning CT was applied to CBCT images obtained during the first treatment. Isodose distributions and dosevolume- histograms (DVHs) were compared. Results: For the phantom study, the HU difference between CT and CBCT is within 100 (maximum 96 HU for Teflon CBCT images in full fan mode). The impact of these differences on the calculated dose distributions was clinically insignificant. In both phantom and patient studies, target DVHs based on CBCT images were in excellent agreement with those based on planning CT images. Mean, Median, near minimum (D98%), and near maximum (D2%) doses agreed within 0-2.5%. A slightly larger discrepancy is observed in the patient studies compared to that seen in the phantom study, (0-1% vs. 0 - 2.5%). Conclusion: CBCT images can be used to accurately predict dosimetric results, without any HU correction. It is feasible to use CBCT to evaluate the actual dose delivered at each fraction. The dosimetric consequences resulting from tumor response and patient geometry changes could be monitored.« less
Design and fabrication of a realistic anthropomorphic heterogeneous head phantom for MR purposes
Wood, Sossena; Krishnamurthy, Narayanan; Santini, Tales; Raval, Shailesh; Farhat, Nadim; Holmes, John Andy; Ibrahim, Tamer S.
2017-01-01
Objective The purpose of this study is to design an anthropomorphic heterogeneous head phantom that can be used for MRI and other electromagnetic applications. Materials and methods An eight compartment, physical anthropomorphic head phantom was developed from a 3T MRI dataset of a healthy male. The designed phantom was successfully built and preliminarily evaluated through an application that involves electromagnetic-tissue interactions: MRI (due to it being an available resource). The developed phantom was filled with media possessing electromagnetic constitutive parameters that correspond to biological tissues at ~297 MHz. A preliminary comparison between an in-vivo human volunteer (based on whom the anthropomorphic head phantom was created) and various phantoms types, one being the anthropomorphic heterogeneous head phantom, were performed using a 7 Tesla human MRI scanner. Results Echo planar imaging was performed and minimal ghosting and fluctuations were observed using the proposed anthropomorphic phantom. The magnetic field distributions (during MRI experiments at 7 Tesla) and the scattering parameter (measured using a network analyzer) were most comparable between the anthropomorphic heterogeneous head phantom and an in-vivo human volunteer. Conclusion The developed anthropomorphic heterogeneous head phantom can be used as a resource to various researchers in applications that involve electromagnetic-biological tissue interactions such as MRI. PMID:28806768
Evaluation of techniques for slice sensitivity profile measurement and analysis
Greene, Travis C.
2014-01-01
The purpose of this study was to compare the resulting full width at half maximum of slice sensitivity profiles (SSP) generated by several commercially available point response phantoms, and determine an appropriate imaging technique and analysis method. Four CT phantoms containing point response objects designed to produce a delta impulse signal used in this study: a Fluke CT‐SSP phantom, a Gammex 464, a CatPhan 600, and a Kagaku Micro Disc phantom. Each phantom was imaged using 120 kVp, 325 mAs, head scan field of view, 32×0.625 mm helical scan with a 20 mm beam width and a pitch of 0.969. The acquired images were then reconstructed into all available slice thicknesses (0.625 mm−5.0 mm). A computer program was developed to analyze the images of each dataset for generating a SSP from which the full width at half maximum (FWHM) was determined. Two methods for generating SSPs were evaluated and compared by choosing the mean vs. maximum value in the ROI, along with two methods for evaluating the FWHM of the SSP, linear interpolation and Gaussian curve fitting. FWHMs were compared with the manufacturer's specifications using percent error and z‐test with a significance value of p<0.05. The FWHMs from each phantom were not significantly different (p≥0.089) with an average error of 3.5%. The FWHMs from SSPs generated from the mean value were statistically different (p≤3.99×1013). The FWHMs from the different FWHM methods were not statistically different (p≤0.499). Evaluation of the SSP is dependent on the ROI value used. The maximum value from the ROI should be used to generate the SSP whenever possible. SSP measurement is independent of the phantoms used in this study. PACS number: 87. PMID:24710429
Design of a tracked ultrasound calibration phantom made of LEGO bricks
NASA Astrophysics Data System (ADS)
Walsh, Ryan; Soehl, Marie; Rankin, Adam; Lasso, Andras; Fichtinger, Gabor
2014-03-01
PURPOSE: Spatial calibration of tracked ultrasound systems is commonly performed using precisely fabricated phantoms. Machining or 3D printing has relatively high cost and not easily available. Moreover, the possibilities for modifying the phantoms are very limited. Our goal was to find a method to construct a calibration phantom from affordable, widely available components, which can be built in short time, can be easily modified, and provides comparable accuracy to the existing solutions. METHODS: We designed an N-wire calibration phantom made of LEGO® bricks. To affirm the phantom's reproducibility and build time, ten builds were done by first-time users. The phantoms were used for a tracked ultrasound calibration by an experienced user. The success of each user's build was determined by the lowest root mean square (RMS) wire reprojection error of three calibrations. The accuracy and variance of calibrations were evaluated for the calibrations produced for various tracked ultrasound probes. The proposed model was compared to two of the currently available phantom models for both electromagnetic and optical tracking. RESULTS: The phantom was successfully built by all ten first-time users in an average time of 18.8 minutes. It cost approximately $10 CAD for the required LEGO® bricks and averaged a 0.69mm of error in the calibration reproducibility for ultrasound calibrations. It is one third the cost of similar 3D printed phantoms and takes much less time to build. The proposed phantom's image reprojections were 0.13mm more erroneous than those of the highest performing current phantom model The average standard deviation of multiple 3D image reprojections differed by 0.05mm between the phantoms CONCLUSION: It was found that the phantom could be built in less time, was one third the cost, compared to similar 3D printed models. The proposed phantom was found to be capable of producing equivalent calibrations to 3D printed phantoms.
SU-C-12A-07: Effect of Vertical Position On Dose Reduction Using X-Care
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silosky, M; Marsh, R
Purpose: Reduction of absorbed dose to radiosensitive tissues is an important goal in diagnostic radiology. Siemens Medical has introduced a technique (X-CARE) to lower CT dose to anterior anatomy by reducing the tube current during 80° of rotation over radiosensitive tissues. Phantom studies have shown 30-40% dose reduction when phantoms are positioned at isocenter. However, for CT face and sinus exams, the center of the head is commonly positioned below isocenter. This work investigated the effects of vertical patient positioning on dose reduction using X-CARE. Methods: A 16cm Computed Tomography Dose Index phantom was scanned on a Siemens Definition Flashmore » CT scanner using a routine head protocol, with the phantom positioned at scanner isocenter. Optically stimulated luminescent dosimeters were placed on the anterior and posterior sides of the phantom. The phantom was lowered in increments of 2cm and rescanned, up to 8cm below isocenter. The experiment was then repeated using the same scan parameters but adding the X-CARE technique. The mean dosimeter counts were determined for each phantom position, and the difference between XCARE and routine scans was plotted as a function of distance from isocenter. Results: With the phantom positioned at isocenter, using XCARE reduced dose to the anterior side of the phantom by 40%, compared to dose when X-CARE was not used. Positioned below isocenter, anterior dose was reduced by only 20-27%. Additionally, using X-CARE at isocenter reduced dose to the anterior portion of the phantom by 45.6% compared to scans performed without X-CARE 8cm below isocenter. Conclusion: While using X-CARE substantially reduced dose to the anterior side of the phantom, this effect was diminished when the phantom was positioned below isocenter, simulating common practice for face and sinus scans. This indicates that centering the head in the gantry will maximize the effect of X-CARE.« less
How does c-view image quality compare with conventional 2D FFDM?
Nelson, Jeffrey S; Wells, Jered R; Baker, Jay A; Samei, Ehsan
2016-05-01
The FDA approved the use of digital breast tomosynthesis (DBT) in 2011 as an adjunct to 2D full field digital mammography (FFDM) with the constraint that all DBT acquisitions must be paired with a 2D image to assure adequate interpretative information is provided. Recently manufacturers have developed methods to provide a synthesized 2D image generated from the DBT data with the hope of sparing patients the radiation exposure from the FFDM acquisition. While this much needed alternative effectively reduces the total radiation burden, differences in image quality must also be considered. The goal of this study was to compare the intrinsic image quality of synthesized 2D c-view and 2D FFDM images in terms of resolution, contrast, and noise. Two phantoms were utilized in this study: the American College of Radiology mammography accreditation phantom (ACR phantom) and a novel 3D printed anthropomorphic breast phantom. Both phantoms were imaged using a Hologic Selenia Dimensions 3D system. Analysis of the ACR phantom includes both visual inspection and objective automated analysis using in-house software. Analysis of the 3D anthropomorphic phantom includes visual assessment of resolution and Fourier analysis of the noise. Using ACR-defined scoring criteria for the ACR phantom, the FFDM images scored statistically higher than c-view according to both the average observer and automated scores. In addition, between 50% and 70% of c-view images failed to meet the nominal minimum ACR accreditation requirements-primarily due to fiber breaks. Software analysis demonstrated that c-view provided enhanced visualization of medium and large microcalcification objects; however, the benefits diminished for smaller high contrast objects and all low contrast objects. Visual analysis of the anthropomorphic phantom showed a measureable loss of resolution in the c-view image (11 lp/mm FFDM, 5 lp/mm c-view) and loss in detection of small microcalcification objects. Spectral analysis of the anthropomorphic phantom showed higher total noise magnitude in the FFDM image compared with c-view. Whereas the FFDM image contained approximately white noise texture, the c-view image exhibited marked noise reduction at midfrequency and high frequency with far less noise suppression at low frequencies resulting in a mottled noise appearance. Their analysis demonstrates many instances where the c-view image quality differs from FFDM. Compared to FFDM, c-view offers a better depiction of objects of certain size and contrast, but provides poorer overall resolution and noise properties. Based on these findings, the utilization of c-view images in the clinical setting requires careful consideration, especially if considering the discontinuation of FFDM imaging. Not explicitly explored in this study is how the combination of DBT + c-view performs relative to DBT + FFDM or FFDM alone.
Actuator-Assisted Calibration of Freehand 3D Ultrasound System.
Koo, Terry K; Silvia, Nathaniel
2018-01-01
Freehand three-dimensional (3D) ultrasound has been used independently of other technologies to analyze complex geometries or registered with other imaging modalities to aid surgical and radiotherapy planning. A fundamental requirement for all freehand 3D ultrasound systems is probe calibration. The purpose of this study was to develop an actuator-assisted approach to facilitate freehand 3D ultrasound calibration using point-based phantoms. We modified the mathematical formulation of the calibration problem to eliminate the need of imaging the point targets at different viewing angles and developed an actuator-assisted approach/setup to facilitate quick and consistent collection of point targets spanning the entire image field of view. The actuator-assisted approach was applied to a commonly used cross wire phantom as well as two custom-made point-based phantoms (original and modified), each containing 7 collinear point targets, and compared the results with the traditional freehand cross wire phantom calibration in terms of calibration reproducibility, point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time. Results demonstrated that the actuator-assisted single cross wire phantom calibration significantly improved the calibration reproducibility and offered similar point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time with respect to the freehand cross wire phantom calibration. On the other hand, the actuator-assisted modified "collinear point target" phantom calibration offered similar precision and accuracy when compared to the freehand cross wire phantom calibration, but it reduced the data acquisition time by 57%. It appears that both actuator-assisted cross wire phantom and modified collinear point target phantom calibration approaches are viable options for freehand 3D ultrasound calibration.
Actuator-Assisted Calibration of Freehand 3D Ultrasound System
2018-01-01
Freehand three-dimensional (3D) ultrasound has been used independently of other technologies to analyze complex geometries or registered with other imaging modalities to aid surgical and radiotherapy planning. A fundamental requirement for all freehand 3D ultrasound systems is probe calibration. The purpose of this study was to develop an actuator-assisted approach to facilitate freehand 3D ultrasound calibration using point-based phantoms. We modified the mathematical formulation of the calibration problem to eliminate the need of imaging the point targets at different viewing angles and developed an actuator-assisted approach/setup to facilitate quick and consistent collection of point targets spanning the entire image field of view. The actuator-assisted approach was applied to a commonly used cross wire phantom as well as two custom-made point-based phantoms (original and modified), each containing 7 collinear point targets, and compared the results with the traditional freehand cross wire phantom calibration in terms of calibration reproducibility, point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time. Results demonstrated that the actuator-assisted single cross wire phantom calibration significantly improved the calibration reproducibility and offered similar point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time with respect to the freehand cross wire phantom calibration. On the other hand, the actuator-assisted modified “collinear point target” phantom calibration offered similar precision and accuracy when compared to the freehand cross wire phantom calibration, but it reduced the data acquisition time by 57%. It appears that both actuator-assisted cross wire phantom and modified collinear point target phantom calibration approaches are viable options for freehand 3D ultrasound calibration. PMID:29854371
Sidhu, Deepinder S; Ruth, Jeffrey D; Lambert, Gregory; Rossmeisl, John H
2017-07-01
To develop and validate a three-dimensional (3D) brain phantom that can be incorporated into existing stereotactic headframes to simulate stereotactic brain biopsy (SBB) and train veterinary surgeons. Experimental study. Canine brain phantoms were fabricated from osteological skull specimens, agarose brain parenchyma, and cheddar and mozzarella cheese molds (simulating meningiomas and gliomas). The neuroradiologic and viscoelastic properties of phantoms were quantified with computed tomography (CT) and oscillatory compression tests, respectively. Phantoms were validated by experienced and novice operators performing SBB on phantoms containing randomly placed, focal targets. Target yield and needle placement error (NPE) were compared between operators. Phantoms were produced in <4 hours, at an average cost of $92. The CT appearances of the phantom skull, agarose, and cheese components approximated the in vivo features of skull, brain parenchyma, and contrast-enhancing tumors of meningeal and glial origin, respectively. The complex moduli of the agarose and cheeses were comparable to the viscoelastic properties of in vivo brain tissues and brain tumors. The overall diagnostic yield of SBB was 88%. Although NPE did not differ between novice (median 3.68 mm; range, 1.46-14.54 mm) and experienced surgeons (median 1.17 mm, range, 0.78-1.58 mm), our results support the relevance of the learning curve associated with the SBB procedure. This 3D phantom replicates anatomical, CT, and tactile features of brain tissues and tumors and can be used to develop the technical skills required to perform SBB. © 2017 The American College of Veterinary Surgeons.
Dewji, Shaheen; Reed, K Lisa; Hiller, Mauritius
2017-08-01
Computational phantoms with articulated arms and legs have been constructed to enable the estimation of radiation dose in different postures. Through a graphical user interface, the Phantom wIth Moving Arms and Legs (PIMAL) version 4.1.0 software can be employed to articulate the posture of a phantom and generate a corresponding input deck for the Monte Carlo N-Particle (MCNP) radiation transport code. In this work, photon fluence-to-dose coefficients were computed using PIMAL to compare organ and effective doses for a stylized phantom in the standard upright position with those for phantoms in realistic work postures. The articulated phantoms represent working positions including fully and half bent torsos with extended arms for both the male and female reference adults. Dose coefficients are compared for both the upright and bent positions across monoenergetic photon energies: 0.05, 0.1, 0.5, 1.0, and 5.0 MeV. Additionally, the organ doses are compared across the International Commission on Radiological Protection's standard external radiation exposure geometries: antero-posterior, postero-anterior, left and right lateral, and isotropic (AP, PA, LLAT, RLAT, and ISO). For the AP and PA irradiation geometries, differences in organ doses compared to the upright phantom become more profound with increasing bending angles and have doses largely overestimated for all organs except the brain in AP and bladder in PA. In LLAT and RLAT irradiation geometries, energy deposition for organs is more likely to be underestimated compared to the upright phantom, with no overall change despite increased bending angle. The ISO source geometry did not cause a significant difference in absorbed organ dose between the different phantoms, regardless of position. Organ and effective fluence-to-dose coefficients are tabulated. In the AP geometry, the effective dose at the 45° bent position is overestimated compared to the upright phantom below 1 MeV by as much as 27% and 82% in the 90° position. The effective dose in the 45° bent position was comparable to that in the 90° bent position for the LLAT and RLAT irradiation geometries. However, the upright phantom underestimates the effective dose to PIMAL in the LLAT and RLAT geometries by as much as 30% at 50 keV.
Chiang, Fu-Tsai; Li, Pei-Jung; Chung, Shih-Ping; Pan, Lung-Fa; Pan, Lung-Kwang
2016-01-01
ABSTRACT This study analyzed multiple biokinetic models using a dynamic water phantom. The phantom was custom-made with acrylic materials to model metabolic mechanisms in the human body. It had 4 spherical chambers of different sizes, connected by 8 ditches to form a complex and adjustable water loop. One infusion and drain pole connected the chambers to an auxiliary silicon-based hose, respectively. The radio-active compound solution (TC-99m-MDP labeled) formed a sealed and static water loop inside the phantom. As clean feed water was infused to replace the original solution, the system mimicked metabolic mechanisms for data acquisition. Five cases with different water loop settings were tested and analyzed, with case settings changed by controlling valve poles located in the ditches. The phantom could also be changed from model A to model B by transferring its vertical configuration. The phantom was surveyed with a clinical gamma camera to determine the time-dependent intensity of every chamber. The recorded counts per pixel in each chamber were analyzed and normalized to compare with theoretical estimations from the MATLAB program. Every preset case was represented by uniquely defined, time-dependent, simultaneous differential equations, and a corresponding MATLAB program optimized the solutions by comparing theoretical calculations and practical measurements. A dimensionless agreement (AT) index was recommended to evaluate the comparison in each case. ATs varied from 5.6 to 48.7 over the 5 cases, indicating that this work presented an acceptable feasibility study. PMID:27286096
Ziegler, Susanne; Jakoby, Bjoern W; Braun, Harald; Paulus, Daniel H; Quick, Harald H
2015-12-01
In integrated PET/MR hybrid imaging the evaluation of PET performance characteristics according to the NEMA standard NU 2-2007 is challenging because of incomplete MR-based attenuation correction (AC) for phantom imaging. In this study, a strategy for CT-based AC of the NEMA image quality (IQ) phantom is assessed. The method is systematically evaluated in NEMA IQ phantom measurements on an integrated PET/MR system. NEMA IQ measurements were performed on the integrated 3.0 Tesla PET/MR hybrid system (Biograph mMR, Siemens Healthcare). AC of the NEMA IQ phantom was realized by an MR-based and by a CT-based method. The suggested CT-based AC uses a template μ-map of the NEMA IQ phantom and a phantom holder for exact repositioning of the phantom on the systems patient table. The PET image quality parameters contrast recovery, background variability, and signal-to-noise ratio (SNR) were determined and compared for both phantom AC methods. Reconstruction parameters of an iterative 3D OP-OSEM reconstruction were optimized for highest lesion SNR in NEMA IQ phantom imaging. Using a CT-based NEMA IQ phantom μ-map on the PET/MR system is straightforward and allowed performing accurate NEMA IQ measurements on the hybrid system. MR-based AC was determined to be insufficient for PET quantification in the tested NEMA IQ phantom because only photon attenuation caused by the MR-visible phantom filling but not the phantom housing is considered. Using the suggested CT-based AC, the highest SNR in this phantom experiment for small lesions (<= 13 mm) was obtained with 3 iterations, 21 subsets and 4 mm Gaussian filtering. This study suggests CT-based AC for the NEMA IQ phantom when performing PET NEMA IQ measurements on an integrated PET/MR hybrid system. The superiority of CT-based AC for this phantom is demonstrated by comparison to measurements using MR-based AC. Furthermore, optimized PET image reconstruction parameters are provided for the highest lesion SNR in NEMA IQ phantom measurements.
Comparative study of anatomical normalization errors in SPM and 3D-SSP using digital brain phantom.
Onishi, Hideo; Matsutake, Yuki; Kawashima, Hiroki; Matsutomo, Norikazu; Amijima, Hizuru
2011-01-01
In single photon emission computed tomography (SPECT) cerebral blood flow studies, two major algorithms are widely used statistical parametric mapping (SPM) and three-dimensional stereotactic surface projections (3D-SSP). The aim of this study is to compare an SPM algorithm-based easy Z score imaging system (eZIS) and a 3D-SSP system in the errors of anatomical standardization using 3D-digital brain phantom images. We developed a 3D-brain digital phantom based on MR images to simulate the effects of head tilt, perfusion defective region size, and count value reduction rate on the SPECT images. This digital phantom was used to compare the errors of anatomical standardization by the eZIS and the 3D-SSP algorithms. While the eZIS allowed accurate standardization of the images of the phantom simulating a head in rotation, lateroflexion, anteflexion, or retroflexion without angle dependency, the standardization by 3D-SSP was not accurate enough at approximately 25° or more head tilt. When the simulated head contained perfusion defective regions, one of the 3D-SSP images showed an error of 6.9% from the true value. Meanwhile, one of the eZIS images showed an error as large as 63.4%, revealing a significant underestimation. When required to evaluate regions with decreased perfusion due to such causes as hemodynamic cerebral ischemia, the 3D-SSP is desirable. In a statistical image analysis, we must reconfirm the image after anatomical standardization by all means.
A physical breast phantom for 2D and 3D x-ray imaging made through inkjet printing
NASA Astrophysics Data System (ADS)
Ikejimba, Lynda C.; Graff, Christian G.; Rosenthal, Shani; Badal, Andreu; Ghammraoui, Bahaa; Lo, Joseph Y.; Glick, Stephen J.
2017-03-01
Physical breast phantoms are used for imaging evaluation studies with 2D and 3D breast x-ray systems, serving as surrogates for human patients. However, there is a presently a limited selection of available phantoms that are realistic, in terms of containing the complex tissue architecture of the human breast. In addition, not all phantoms can be successfully utilized for both 2D and 3D breast imaging. Additionally, many of the phantoms are uniform or unrealistic in appearance, expensive, or difficult to obtain. The purpose of this work was to develop a new method to generate realistic physical breast phantoms using easy to obtain and inexpensive materials. First, analytical modeling was used to design a virtual model, which was then compressed using finite element modeling. Next, the physical phantom was realized through inkjet printing with a standard inkjet printer using parchment paper and specialized inks, formulated using silver nanoparticles and a bismuth salt. The printed phantom sheets were then aligned and held together using a custom designed support plate made of PMMA, and imaged on clinical FFDM and DBT systems. Objects of interest were also placed within the phantom to simulate microcalcifications, pathologies that often occur in the breast. The linear attenuation coefficients of the inks and parchment were compared against tissue equivalent samples and found to be similar to breast tissue. The phantom is promising for use in imaging studies and developing QC protocols.
Construction of mammography phantoms with a 3D printer and tested with a TIMEPIX system
NASA Astrophysics Data System (ADS)
Calderón-García, J. S.; Roque, G. A.; Ávila, C. A.
2017-11-01
We present a new mammography phantom made of hydroxyapatite crystals with different sizes and shapes, to emulate anthropomorphic microcalcifications, which we locate at different depths of a PMMA embedding material. The aim of the phantom presented is to address some issues of the standard commercial ones that are being used for comparing 3D vs 2D mammography systems. We present X-ray images, taken under the same conditions, for both a commercial phantom and the new proposed phantom. We compare signal to noise ratios (SNR) obtained for both cases. This phantom has been constructed to be easily assembled within different configurations to emulate modified features that might be of medical interest.
Ding, Huanjun; Sennung, David; Cho, Hyo-Min; Molloi, Sabee
2016-01-01
Purpose: The positive predictive power for malignancy can potentially be improved, if the chemical compositions of suspicious breast lesions can be reliably measured in screening mammography. The purpose of this study is to investigate the feasibility of quantifying breast lesion composition, in terms of water and lipid contents, with spectral mammography. Methods: Phantom and tissue samples were imaged with a spectral mammography system based on silicon-strip photon-counting detectors. Dual-energy calibration was performed for material decomposition, using plastic water and adipose-equivalent phantoms as the basis materials. The step wedge calibration phantom consisted of 20 calibration configurations, which ranged from 2 to 8 cm in thickness and from 0% to 100% in plastic water density. A nonlinear rational fitting function was used in dual-energy calibration of the imaging system. Breast lesion phantoms, made from various combinations of plastic water and adipose-equivalent disks, were embedded in a breast mammography phantom with a heterogeneous background pattern. Lesion phantoms with water densities ranging from 0% to 100% were placed at different locations of the heterogeneous background phantom. The water density in the lesion phantoms was measured using dual-energy material decomposition. The thickness and density of the background phantom were varied to test the accuracy of the decomposition technique in different configurations. In addition, an in vitro study was also performed using mixtures of lean and fat bovine tissue of 25%, 50%, and 80% lean weight percentages as the background. Lesions were simulated by using breast lesion phantoms, as well as small bovine tissue samples, composed of carefully weighed lean and fat bovine tissues. The water densities in tissue samples were measured using spectral mammography and compared to measurement using chemical decomposition of the tissue. Results: The thickness of measured and known water contents was compared for various lesion configurations. There was a good linear correlation between the measured and the known values. The root-mean-square errors in water thickness measurements were 0.3 and 0.2 mm for the plastic phantom and bovine tissue backgrounds, respectively. Conclusions: The results indicate that spectral mammography can be used to accurately characterize breast lesion composition in terms of their equivalent water and lipid contents. PMID:27782705
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M; Jung, H; Kim, G
2014-06-01
Purpose: To estimate the three dimensional dose distributions in a polymer gel and a radiochromic gel by comparing with the virtual water phantom exposed to proton beams by applying Monte Carlo simulation. Methods: The polymer gel dosimeter is the compositeness material of gelatin, methacrylic acid, hydroquinone, tetrakis, and distilled water. The radiochromic gel is PRESAGE product. The densities of polymer and radiochromic gel were 1.040 and 1.0005 g/cm3, respectively. The shape of water phantom was a hexahedron with the size of 13 × 13 × 15 cm3. The proton beam energies of 72 and 116 MeV were used in themore » simulation. Proton beam was directed to the top of the phantom with Z-axis and the shape of beam was quadrangle with 10 × 10 cm2 dimension. The Percent depth dose and the dose distribution were evaluated for estimating the dose distribution of proton particle in two gel dosimeters, and compared with the virtual water phantom. Results: The Bragg-peak for proton particles in two gel dosimeters was similar to the virtual water phantom. Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in the identical region (4.3 cm) for 72 MeV proton beam. For 116 MeV proton beam, the Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in 9.9, 9.9 and 9.7 cm, respectively. The dose distribution of proton particles in polymer gel, radiochromic gel, and virtual water phantom was approximately identical in the case of 72 and 116 MeV energies. The errors for the simulation were under 10%. Conclusion: This work indicates the evaluation of three dimensional dose distributions by exposing proton particles to polymer and radiochromic gel dosimeter by comparing with the water phantom. The polymer gel and the radiochromic gel dosimeter show similar dose distributions for the proton beams.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, H; Ding, H; Sennung, D
2015-06-15
Purpose: To investigate the feasibility of measuring breast lesion composition with spectral mammography using physical phantoms and bovine tissue. Methods: Phantom images were acquired with a spectral mammography system with a silicon-strip based photon-counting detector. Plastic water and adipose-equivalent phantoms were used to calibrate the system for dual-energy material decomposition. The calibration phantom was constructed in range of 2–8 cm thickness and water densities in the range of 0% to 100%. A non-linear rational fitting function was used to calibrate the imaging system. The phantom studies were performed with uniform background phantom and non-uniform background phantom. The breast lesion phantomsmore » (2 cm in diameter and 0.5 cm in thickness) were made with water densities ranging from 0 to 100%. The lesion phantoms were placed in different positions and depths on the phantoms to investigate the accuracy of the measurement under various conditions. The plastic water content of the lesion was measured by subtracting the total decomposed plastic water signal from a surrounding 2.5 mm thick border outside the lesion. In addition, bovine tissue samples composed of 80 % lean were imaged as background for the simulated lesion phantoms. Results: The thickness of measured and known water contents was compared. The rootmean-square (RMS) errors in water thickness measurements were 0.01 cm for the uniform background phantom, 0.04 cm for non-uniform background phantom, and 0.03 cm for 80% lean bovine tissue background. Conclusion: The results indicate that the proposed technique using spectral mammography can be used to accurately characterize breast lesion compositions.« less
4D Optimization of Scanned Ion Beam Tracking Therapy for Moving Tumors
Eley, John Gordon; Newhauser, Wayne David; Lüchtenborg, Robert; Graeff, Christian; Bert, Christoph
2014-01-01
Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking. PMID:24889215
4D optimization of scanned ion beam tracking therapy for moving tumors
NASA Astrophysics Data System (ADS)
Eley, John Gordon; Newhauser, Wayne David; Lüchtenborg, Robert; Graeff, Christian; Bert, Christoph
2014-07-01
Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking.
Examples of Mesh and NURBS modelling for in vivo lung counting studies.
Farah, Jad; Broggio, David; Franck, Didier
2011-03-01
Realistic calibration coefficients for in vivo counting installations are assessed using voxel phantoms and Monte Carlo calculations. However, voxel phantoms construction is time consuming and their flexibility extremely limited. This paper involves Mesh and non-uniform rational B-splines graphical formats, of greater flexibility, to optimise the calibration of in vivo counting installations. Two studies validating the use of such phantoms and involving geometry deformation and modelling were carried out to study the morphologic effect on lung counting efficiency. The created 3D models fitted with the reference ones, with volumetric differences of <5 %. Moreover, it was found that counting efficiency varies with the inverse of lungs' volume and that the latter primes when compared with chest wall thickness. Finally, a series of different thoracic female phantoms of various cup sizes, chest girths and internal organs' volumes were created starting from the International Commission on Radiological Protection (ICRP) adult female reference computational phantom to give correction factors for the lung monitoring of female workers.
A Novel Simple Phantom for Verifying the Dose of Radiation Therapy
Lee, J. H.; Chang, L. T.; Shiau, A. C.; Chen, C. W.; Liao, Y. J.; Li, W. J.; Lee, M. S.; Hsu, S. M.
2015-01-01
A standard protocol of dosimetric measurements is used by the organizations responsible for verifying that the doses delivered in radiation-therapy institutions are within authorized limits. This study evaluated a self-designed simple auditing phantom for use in verifying the dose of radiation therapy; the phantom design, dose audit system, and clinical tests are described. Thermoluminescent dosimeters (TLDs) were used as postal dosimeters, and mailable phantoms were produced for use in postal audits. Correction factors are important for converting TLD readout values from phantoms into the absorbed dose in water. The phantom scatter correction factor was used to quantify the difference in the scattered dose between a solid water phantom and homemade phantoms; its value ranged from 1.084 to 1.031. The energy-dependence correction factor was used to compare the TLD readout of the unit dose irradiated by audit beam energies with 60Co in the solid water phantom; its value was 0.99 to 1.01. The setup-condition factor was used to correct for differences in dose-output calibration conditions. Clinical tests of the device calibrating the dose output revealed that the dose deviation was within 3%. Therefore, our homemade phantoms and dosimetric system can be applied for accurately verifying the doses applied in radiation-therapy institutions. PMID:25883980
Duan, Xinhui; Arbique, Gary; Guild, Jeffrey; Xi, Yin; Anderson, Jon
2018-05-01
The purpose of this study was to evaluate the quantitative accuracy of spectral images from a detector-based spectral CT scanner using a phantom with iodine-loaded inserts. A 40-cm long-body phantom with seven iodine inserts (2-20 mg/ml of iodine) was used in the study. The inserts could be placed at 5.5 or 10.5 cm from the phantom axis. The phantom was scanned five times for each insert configuration using 120 kVp tube voltage. A set of iodine, virtual noncontrast, effective atomic number, and virtual monoenergetic spectral CT images were generated and measurements were made for all the iodine rods. Measured values were compared with reference values calculated from the chemical composition information provided by the phantom manufacturer. Radiation dose from the spectral CT was compared to a conventional CT using a CTDI (32 cm) phantom. Good agreement between measurements and reference values was achieved for all types of spectral images. The differences ranged from -0.46 to 0.1 mg/ml for iodine concentration, -9.95 to 6.41 HU for virtual noncontrast images, 0.12 to 0.35 for effective Z images, and -17.7 to 55.7 HU for virtual monoenergetic images. For a similar CTDIvol, image noise from the conventional CT was 10% lower than the spectral CT. The detector-based spectral CT can achieve accurate spectral measurements on iodine concentration, virtual non-contrast images, effective atomic numbers, and virtual monoenergetic images. © 2018 American Association of Physicists in Medicine.
SU-E-I-24: Method for CT Automatic Exposure Control Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gracia, M; Olasolo, J; Martin, M
Purpose: Design of a phantom and a simple method for the automatic exposure control (AEC) verification in CT. This verification is included in the computed tomography (CT) Spanish Quality Assurance Protocol. Methods: The phantom design is made from the head and the body phantom used for the CTDI measurement and PMMA plates (35×35 cm2) of 10 cm thickness. Thereby, three different thicknesses along the longitudinal axis are obtained which permit to evaluate the longitudinal AEC performance. Otherwise, the existent asymmetry in the PMMA layers helps to assess angular and 3D AEC operation.Recent acquisition in our hospital (August 2014) of Nomexmore » electrometer (PTW), together with the 10 cm pencil ionization chamber, led to register dose rate as a function of time. Measurements with this chamber fixed at 0° and 90° on the gantry where made on five multidetector-CTs from principal manufacturers. Results: Individual analysis of measurements shows dose rate variation as a function of phantom thickness. The comparative analysis shows that dose rate is kept constant in the head and neck phantom while the PMMA phantom exhibits an abrupt variation between both results, being greater results at 90° as the thickness of the phantom is 3.5 times larger than in the perpendicular direction. Conclusion: Proposed method is simple, quick and reproducible. Results obtained let a qualitative evaluation of the AEC and they are consistent with the expected behavior. A line of future development is to quantitatively study the intensity modulation and parameters of image quality, and a possible comparative study between different manufacturers.« less
Measuring shear-wave speed with point shear-wave elastography and MR elastography: a phantom study
Kishimoto, Riwa; Suga, Mikio; Koyama, Atsuhisa; Omatsu, Tokuhiko; Tachibana, Yasuhiko; Ebner, Daniel K; Obata, Takayuki
2017-01-01
Objectives To compare shear-wave speed (SWS) measured by ultrasound-based point shear-wave elastography (pSWE) and MR elastography (MRE) on phantoms with a known shear modulus, and to assess method validity and variability. Methods 5 homogeneous phantoms of different stiffnesses were made. Shear modulus was measured by a rheometer, and this value was used as the standard. 10 SWS measurements were obtained at 4 different depths with 1.0–4.5 MHz convex (4C1) and 4.0–9.0 MHz linear (9L4) transducers using pSWE. MRE was carried out once per phantom, and SWSs at 5 different depths were obtained. These SWSs were then compared with those from a rheometer using linear regression analyses. Results SWSs obtained with both pSWE as well as MRE had a strong correlation with those obtained by a rheometer (R2>0.97). The relative difference in SWS between the procedures was from −25.2% to 25.6% for all phantoms, and from −8.1% to 6.9% when the softest and hardest phantoms were excluded. Depth dependency was noted in the 9L4 transducer of pSWE and MRE. Conclusions SWSs from pSWE and MRE showed a good correlation with a rheometer-determined SWS. Although based on phantom studies, SWSs obtained with these methods are not always equivalent, the measurement can be thought of as reliable and these SWSs were reasonably close to each other for the middle range of stiffness within the measurable range. PMID:28057657
NASA Astrophysics Data System (ADS)
Lee, Choonik
A series of realistic voxel computational phantoms of pediatric patients were developed and then used for the radiation risk assessment for various exposure scenarios. The high-resolution computed tomographic images of live patients were utilized for the development of the five voxel phantoms of pediatric patients, 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male. The phantoms were first developed as head and torso phantoms and then extended into whole body phantoms by utilizing computed tomographic images of a healthy adult volunteer. The whole body phantom series was modified to have the same anthropometrics with the most recent reference data reported by the international commission on radiological protection. The phantoms, named as the University of Florida series B, are the first complete set of the pediatric voxel phantoms having reference organ masses and total heights. As part of the dosimetry study, the investigation on skeletal tissue dosimetry methods was performed for better understanding of the radiation dose to the active bone marrow and bone endosteum. All of the currently available methodologies were inter-compared and benchmarked with the paired-image radiation transport model. The dosimetric characteristics of the phantoms were investigated by using Monte Carlo simulation of the broad parallel beams of external phantom in anterior-posterior, posterior-anterior, left lateral, right lateral, rotational, and isotropic angles. Organ dose conversion coefficients were calculated for extensive photon energies and compared with the conventional stylized pediatric phantoms of Oak Ridge National Laboratory. The multi-slice helical computed tomography exams were simulated using Monte Carlo simulation code for various exams protocols, head, chest, abdomen, pelvis, and chest-abdomen-pelvis studies. Results have found realistic estimates of the effective doses for frequently used protocols in pediatric radiology. The results were very crucial in understanding the radiation risks of the patients undergoing computed tomography. Finally, nuclear medicine simulations were performed by calculating specific absorbed fractions for multiple target-source organ pairs via Monte Carlo simulations. Specific absorbed fractions were calculated for both photon and electron so that they can be used to calculated radionuclide S-values. All of the results were tabulated for future uses and example dose assessment was performed for selected nuclides administered in nuclear medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahi-Anwar, M; Lo, P; Kim, H
Purpose: The use of Quantitative Imaging (QI) methods in Clinical Trials requires both verification of adherence to a specified protocol and an assessment of scanner performance under that protocol, which are currently accomplished manually. This work introduces automated phantom identification and image QA measure extraction towards a fully-automated CT phantom QA system to perform these functions and facilitate the use of Quantitative Imaging methods in clinical trials. Methods: This study used a retrospective cohort of CT phantom scans from existing clinical trial protocols - totaling 84 phantoms, across 3 phantom types using various scanners and protocols. The QA system identifiesmore » the input phantom scan through an ensemble of threshold-based classifiers. Each classifier - corresponding to a phantom type - contains a template slice, which is compared to the input scan on a slice-by-slice basis, resulting in slice-wise similarity metric values for each slice compared. Pre-trained thresholds (established from a training set of phantom images matching the template type) are used to filter the similarity distribution, and the slice with the most optimal local mean similarity, with local neighboring slices meeting the threshold requirement, is chosen as the classifier’s matched slice (if it existed). The classifier with the matched slice possessing the most optimal local mean similarity is then chosen as the ensemble’s best matching slice. If the best matching slice exists, image QA algorithm and ROIs corresponding to the matching classifier extracted the image QA measures. Results: Automated phantom identification performed with 84.5% accuracy and 88.8% sensitivity on 84 phantoms. Automated image quality measurements (following standard protocol) on identified water phantoms (n=35) matched user QA decisions with 100% accuracy. Conclusion: We provide a fullyautomated CT phantom QA system consistent with manual QA performance. Further work will include parallel component to automatically verify image acquisition parameters and automated adherence to specifications. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics; NIH Grant support from: U01 CA181156.« less
Long, Jean-Alexandre; Daanen, Vincent; Moreau-Gaudry, Alexandre; Troccaz, Jocelyne; Rambeaud, Jean-Jacques; Descotes, Jean-Luc
2007-11-01
The objective of this study was to determine the added value of real-time three-dimensional (4D) ultrasound guidance of prostatic biopsies on a prostate phantom in terms of the precision of guidance and distribution. A prostate phantom was constructed. A real-time 3D ultrasonograph connected to a transrectal 5.9 MHz volumic transducer was used. Fourteen operators performed 336 biopsies with 2D guidance then 4D guidance according to a 12-biopsy protocol. Biopsy tracts were modelled by segmentation in a 3D ultrasound volume. Specific software allowed visualization of biopsy tracts in the reference prostate and evaluated the zone biopsied. A comparative study was performed to determine the added value of 4D guidance compared to 2D guidance by evaluating the precision of entry points and target points. The distribution was evaluated by measuring the volume investigated and by a redundancy ratio of the biopsy points. The precision of the biopsy protocol was significantly improved by 4D guidance (p = 0.037). No increase of the biopsy volume and no improvement of the distribution of biopsies were observed with 4D compared to 2D guidance. The real-time 3D ultrasound-guided prostate biopsy technique on a phantom model appears to improve the precision and reproducibility of a biopsy protocol, but the distribution of biopsies does not appear to be improved.
Reduced exposure using asymmetric cone beam processing for wide area detector cardiac CT
Bedayat, Arash; Kumamaru, Kanako; Powers, Sara L.; Signorelli, Jason; Steigner, Michael L.; Steveson, Chloe; Soga, Shigeyoshi; Adams, Kimberly; Mitsouras, Dimitrios; Clouse, Melvin; Mather, Richard T.
2011-01-01
The purpose of this study was to estimate dose reduction after implementation of asymmetrical cone beam processing using exposure differences measured in a water phantom and a small cohort of clinical coronary CTA patients. Two separate 320 × 0.5 mm detector row scans of a water phantom used identical cardiac acquisition parameters before and after software modifications from symmetric to asymmetric cone beam acquisition and processing. Exposure was measured at the phantom surface with Optically Stimulated Luminescence (OSL) dosimeters at 12 equally spaced angular locations. Mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at the center plus four peripheral locations in the water phantom. To assess image quality, mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at five points within the water phantom. Retrospective evaluation of 64 patients (37 symmetric; 27 asymmetric acquisition) included clinical data, scanning parameters, quantitative plus qualitative image assessment, and estimated radiation dose. In the water phantom, the asymmetric cone beam processing reduces exposure by approximately 20% with no change in image quality. The clinical coronary CTA patient groups had comparable demographics. The estimated dose reduction after implementation of the asymmetric approach was roughly 24% with no significant difference between the symmetric and asymmetric approach with respect to objective measures of image quality or subjective assessment using a four point scale. When compared to a symmetric approach, the decreased exposure, subsequent lower patient radiation dose, and similar image quality from asymmetric cone beam processing supports its routine clinical use. PMID:21336552
Reduced exposure using asymmetric cone beam processing for wide area detector cardiac CT.
Bedayat, Arash; Rybicki, Frank J; Kumamaru, Kanako; Powers, Sara L; Signorelli, Jason; Steigner, Michael L; Steveson, Chloe; Soga, Shigeyoshi; Adams, Kimberly; Mitsouras, Dimitrios; Clouse, Melvin; Mather, Richard T
2012-02-01
The purpose of this study was to estimate dose reduction after implementation of asymmetrical cone beam processing using exposure differences measured in a water phantom and a small cohort of clinical coronary CTA patients. Two separate 320 × 0.5 mm detector row scans of a water phantom used identical cardiac acquisition parameters before and after software modifications from symmetric to asymmetric cone beam acquisition and processing. Exposure was measured at the phantom surface with Optically Stimulated Luminescence (OSL) dosimeters at 12 equally spaced angular locations. Mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at the center plus four peripheral locations in the water phantom. To assess image quality, mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at five points within the water phantom. Retrospective evaluation of 64 patients (37 symmetric; 27 asymmetric acquisition) included clinical data, scanning parameters, quantitative plus qualitative image assessment, and estimated radiation dose. In the water phantom, the asymmetric cone beam processing reduces exposure by approximately 20% with no change in image quality. The clinical coronary CTA patient groups had comparable demographics. The estimated dose reduction after implementation of the asymmetric approach was roughly 24% with no significant difference between the symmetric and asymmetric approach with respect to objective measures of image quality or subjective assessment using a four point scale. When compared to a symmetric approach, the decreased exposure, subsequent lower patient radiation dose, and similar image quality from asymmetric cone beam processing supports its routine clinical use.
Boyce, Sarah J; Choudhury, Kingshuk Roy; Samei, Ehsan
2013-09-01
Stereoscopic chest biplane correlation imaging (stereo∕BCI) has been proposed as an alternative modality to single view chest x-ray (CXR). The metrics effective modulation transfer function (eMTF), effective normalized noise power spectrum (eNNPS), and effective detective quantum efficiency (eDQE) have been proposed as clinically relevant metrics for assessing clinical system performance taking into consideration the magnification and scatter effects. This study compared the metrics eMTF, eNNPS, eDQE, and detectability index for stereo∕BCI and single view CXR under isodose conditions at two magnifications for two anthropomorphic phantoms of differing sizes. Measurements for the eMTF were taken for two phantom sizes with an opaque edge test device using established techniques. The eNNPS was measured at two isodose conditions for two phantoms using established techniques. The scatter was measured for two phantoms using an established beam stop method. All measurements were also taken at two different magnifications with two phantoms. A geometrical phantom was used for comparison with prior results for CXR although the results for an anatomy free phantom are not expected to vary for BCI. Stereo∕BCI resulted in improved metrics compared to single view CXR. Results indicated that magnification can potentially improve the detection performance primarily due to the air gap which reduced scatter by ∼20%. For both phantoms, at isodose, eDQE(0) for stereo∕BCI was ∼100 times higher than that for CXR. Magnification at isodose improved eDQE(0) by ∼10 times for stereo∕BCI. Increasing the dose did not improve eDQE. The detectability index for stereo∕BCI was ∼100 times better than single view CXR for all conditions. The detectability index was also not improved with increased dose. The findings indicate that stereo∕BCI with magnification may improve detectability of subtle lung nodules compared to single view CXR. Results were improved with magnification for the smaller phantom but not for the larger phantom. The effective DQE and the detectability index did not improve with increasing dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyce, Sarah J.; Choudhury, Kingshuk Roy; Samei, Ehsan
2013-09-15
Purpose: Stereoscopic chest biplane correlation imaging (stereo/BCI) has been proposed as an alternative modality to single view chest x-ray (CXR). The metrics effective modulation transfer function (eMTF), effective normalized noise power spectrum (eNNPS), and effective detective quantum efficiency (eDQE) have been proposed as clinically relevant metrics for assessing clinical system performance taking into consideration the magnification and scatter effects. This study compared the metrics eMTF, eNNPS, eDQE, and detectability index for stereo/BCI and single view CXR under isodose conditions at two magnifications for two anthropomorphic phantoms of differing sizes.Methods: Measurements for the eMTF were taken for two phantom sizes withmore » an opaque edge test device using established techniques. The eNNPS was measured at two isodose conditions for two phantoms using established techniques. The scatter was measured for two phantoms using an established beam stop method. All measurements were also taken at two different magnifications with two phantoms. A geometrical phantom was used for comparison with prior results for CXR although the results for an anatomy free phantom are not expected to vary for BCI.Results: Stereo/BCI resulted in improved metrics compared to single view CXR. Results indicated that magnification can potentially improve the detection performance primarily due to the air gap which reduced scatter by ∼20%. For both phantoms, at isodose, eDQE(0) for stereo/BCI was ∼100 times higher than that for CXR. Magnification at isodose improved eDQE(0) by ∼10 times for stereo/BCI. Increasing the dose did not improve eDQE. The detectability index for stereo/BCI was ∼100 times better than single view CXR for all conditions. The detectability index was also not improved with increased dose.Conclusions: The findings indicate that stereo/BCI with magnification may improve detectability of subtle lung nodules compared to single view CXR. Results were improved with magnification for the smaller phantom but not for the larger phantom. The effective DQE and the detectability index did not improve with increasing dose.« less
van de Ven, Stephanie M W Y; Mincu, Niculae; Brunette, Jean; Ma, Guobin; Khayat, Mario; Ikeda, Debra M; Gambhir, Sanjiv S
2011-04-01
The aim of the study was to determine the feasibility of using a clinical optical breast scanner with molecular imaging strategies based on modulating light transmission. Different concentrations of single-walled carbon nanotubes (SWNT; 0.8-20.0 nM) and black hole quencher-3 (BHQ-3; 2.0-32.0 µM) were studied in specifically designed phantoms (200-1,570 mm(3)) with a clinical optical breast scanner using four wavelengths. Each phantom was placed in the scanner tank filled with optical matching medium. Background scans were compared to absorption scans, and reproducibility was assessed. All SWNT phantoms were detected at four wavelengths, with best results at 684 nm. Higher concentrations (≥8.0 µM) were needed for BHQ-3 detection, with the largest contrast at 684 nm. The optical absorption signal was dependent on phantom size and concentration. Reproducibility was excellent (intraclass correlation 0.93-0.98). Nanomolar concentrations of SWNT and micromolar concentrations of BHQ-3 in phantoms were reproducibly detected, showing the potential of light absorbers, with appropriate targeting ligands, as molecular imaging agents for clinical optical breast imaging.
NASA Astrophysics Data System (ADS)
Lee, Choonsik; Lee, Choonik; Lee, Jai-Ki
2006-11-01
Distributions of radiation absorbed dose within human anatomy have been estimated through Monte Carlo radiation transport techniques implemented for two different classes of computational anthropomorphic phantoms: (1) mathematical equation-based stylized phantoms and (2) tomographic image-based voxel phantoms. Voxel phantoms constructed from tomographic images of real human anatomy have been actively developed since the late 1980s to overcome the anatomical approximations necessary with stylized phantoms, which themselves have been utilized since the mid 1960s. However, revisions of stylized phantoms have also been pursued in parallel to the development of voxel phantoms since voxel phantoms (1) are initially restricted to the individual-specific anatomy of the person originally imaged, (2) must be restructured on an organ-by-organ basis to conform to reference individual anatomy and (3) cannot easily represent very fine anatomical structures and tissue layers that are thinner than the voxel dimensions of the overall phantom. Although efforts have been made to improve the anatomic realism of stylized phantoms, most of these efforts have been limited to attempts to alter internal organ structures. Aside from the internal organs, the exterior shapes, and especially the arm structures, of stylized phantoms are also far from realistic descriptions of human anatomy, and may cause dosimetry errors in the calculation of organ-absorbed doses for external irradiation scenarios. The present study was intended to highlight the need to revise the existing arm structure within stylized phantoms by comparing organ doses of stylized adult phantoms with those from three adult voxel phantoms in the lateral photon irradiation geometry. The representative stylized phantom, the adult phantom of the Oak Ridge National Laboratory (ORNL) series and two adult male voxel phantoms, KTMAN-2 and VOXTISS8, were employed for Monte Carlo dose calculation, and data from another voxel phantom, VIP-Man, were obtained from literature sources. The absorbed doses for lungs, oesophagus, liver and kidneys that could be affected by arm structures in the lateral irradiation geometry were obtained for both classes of phantoms in lateral monoenergetic photon irradiation geometries. As expected, those organs in the ORNL phantoms received apparently higher absorbed doses than those in the voxel phantoms. The overestimation is mainly attributed to the relatively poor representation of the arm structure in the ORNL phantom in which the arm bones are embedded within the regions describing the phantom's torso. The results of this study suggest that the overestimation of organ doses, due to unrealistic arm representation, should be taken into account when stylized phantoms are employed for equivalent or effective dose estimates, especially in the case of an irradiation scenario with dominating lateral exposure. For such a reason, the stylized phantom arm structure definition should be revised in order to obtain more realistic evaluations.
SU-G-206-05: A Comparison of Head Phantoms Used for Dose Determination in Imaging Procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Z; Vijayan, S; Kilian-Meneghin, J
Purpose: To determine similarities and differences between various head phantoms that might be used for dose measurements in diagnostic imaging procedures. Methods: We chose four frequently used anthropomorphic head phantoms (SK-150, PBU-50, RS-240T and Alderson Rando), a computational patient phantom (Zubal) and the CTDI head phantom for comparison in our study. We did a CT scan of the head phantoms using the same protocol and compared their dimensions and CT numbers. The scan data was used to calculate dose values for each of the phantoms using EGSnrc Monte Carlo software. An .egsphant file was constructed to describe these phantoms usingmore » a Visual C++ program for DOSXYZnrc/EGSnrc simulation. The lens dose was calculated for a simulated CBCT scan using DOSXYZnrc/EGSnrc and the calculated doses were validated with measurements using Gafchromic film and an ionization chamber. Similar calculations and measurements were made for PA radiography to investigate the attenuation and backscatter differences between these phantoms. We used the Zubal phantom as the standard for comparison since it was developed based on a CT scan of a patient. Results: The lens dose for the Alderson Rando phantom is around 9% different than the Zubal phantom, while the lens dose for the PBU-50 phantom was about 50% higher, possibly because its skull thickness and the density of bone and soft tissue are lower than anthropometric values. The lens dose for the CTDI phantom is about 500% higher because of its totally different structure. The entrance dose profiles are similar for the five anthropomorphic phantoms, while that for the CTDI phantom was distinctly different. Conclusion: The CTDI and PBU-50 head phantoms have substantially larger lens dose estimates in CBCT. The other four head phantoms have similar entrance dose with backscatter hence should be preferred for dose measurement in imaging procedures of the head. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
Hippeläinen, Eero; Mäkelä, Teemu; Kaasalainen, Touko; Kaleva, Erna
2017-12-01
Developments in single photon emission tomography instrumentation and reconstruction methods present a potential for decreasing acquisition times. One of such recent options for myocardial perfusion imaging (MPI) is IQ-SPECT. This study was motivated by the inconsistency in the reported ejection fraction (EF) and left ventricular (LV) volume results between IQ-SPECT and more conventional low-energy high-resolution (LEHR) collimation protocols. IQ-SPECT and LEHR quantitative results were compared while the equivalent number of iterations (EI) was varied. The end-diastolic (EDV) and end-systolic volumes (ESV) and the derived EF values were investigated. A dynamic heart phantom was used to produce repeatable ESVs, EDVs and EFs. Phantom performance was verified by comparing the set EF values to those measured from a gated multi-slice X-ray computed tomography (CT) scan (EF True ). The phantom with an EF setting of 45, 55, 65 and 70% was imaged with both IQ-SPECT and LEHR protocols. The data were reconstructed with different EI, and two commonly used clinical myocardium delineation software were used to evaluate the LV volumes. The CT verification showed that the phantom EF settings were repeatable and accurate with the EF True being within 1% point from the manufacture's nominal value. Depending on EI both MPI protocols can be made to produce correct EF estimates, but IQ-SPECT protocol produced on average 41 and 42% smaller EDV and ESV when compared to the phantom's volumes, while LEHR protocol underestimated volumes by 24 and 21%, respectively. The volume results were largely similar between the delineation methods used. The reconstruction parameters can greatly affect the volume estimates obtained from perfusion studies. IQ-SPECT produces systematically smaller LV volumes than the conventional LEHR MPI protocol. The volume estimates are also software dependent.
Directly detected 55Mn MRI: Application to phantoms for human hyperpolarized 13C MRI development
von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D.; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B.
2014-01-01
In this work we demonstrate for the first time directly detected manganese-55 (55Mn) MRI using a clinical 3T MRI scanner designed for human hyperpolarized 13C clinical studies with no additional hardware modifications. Due to the similar frequency of the 55Mn and 13C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective “13C” MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, 55Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical 13C phantom MRI, at greatly reduced cost as compared with large 13C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d= 8 cm) containing concentrated aqueous sodium permanganate (2.7M) was scanned rapidly by 55Mn MRI in a human head coil tuned for 13C, using a balanced SSFP acquisition. The requisite penetration of RF magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for 55Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image SNR of ~60 at 0.5cm3 spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP 13C coils and methods designed for human studies. PMID:25179135
Fabrication of subcutaneous veins phantom for vessel visualization system
NASA Astrophysics Data System (ADS)
Cheng, Kai; Narita, Kazuyuki; Morita, Yusuke; Nakamachi, Eiji; Honda, Norihiro; Awazu, Kunio
2013-09-01
The technique of subcutaneous veins imaging by using NIR (Near Infrared Radiation) is widely used in medical applications, such as the intravenous injection and the blood sampling. In the previous study, an automatic 3D blood vessel search and automatic blood sampling system was newly developed. In order to validate this NIR imaging system, we adopted the subcutaneous vein in the human arm and its artificial phantom, which imitate the human fat and blood vessel. The human skin and subcutaneous vein is characterized as the uncertainty object, which has the individual specificity, non-accurate depth information, non-steady state and hardly to be fixed in the examination apparatus. On the other hand, the conventional phantom was quite distinct from the human's characteristics, such as the non-multilayer structure, disagreement of optical property. In this study, we develop a multilayer phantom, which is quite similar with human skin, for improvement of NIR detection system evaluation. The phantom consists of three layers, such as the epidermis layer, the dermis layer and the subcutaneous fat layer. In subcutaneous fat layer, we built a blood vessel. We use the intralipid to imitate the optical scattering characteristics of human skin, and the hemoglobin and melanin for the optical absorption characteristics. In this study, we did two subjects. First, we decide the fabrication process of the phantom. Second, we compared newly developed phantoms with human skin by using our NIR detecting system, and confirm the availability of these phantoms.
Development and implementation of an EPID-based method for localizing isocenter.
Hyer, Daniel E; Mart, Christopher J; Nixon, Earl
2012-11-08
The aim of this study was to develop a phantom and analysis software that could be used to quickly and accurately determine the location of radiation isocenter to an accuracy of less than 1 mm using the EPID (Electronic Portal Imaging Device). The proposed solution uses a collimator setting of 10 × 10 cm2 to acquire EPID images of a new phantom constructed from LEGO blocks. Images from a number of gantry and collimator angles are analyzed by automated analysis software to determine the position of the jaws and center of the phantom in each image. The distance between a chosen jaw and the phantom center is then compared to the same distance measured after a 180° collimator rotation to determine if the phantom is centered in the dimension being investigated. Repeated tests show that the system is reproducibly independent of the imaging session, and calculated offsets of the phantom from radiation isocenter are a function of phantom setup only. Accuracy of the algorithm's calculated offsets were verified by imaging the LEGO phantom before and after applying the calculated offset. These measurements show that the offsets are predicted with an accuracy of approximately 0.3 mm, which is on the order of the detector's pitch. Comparison with a star-shot analysis yielded agreement of isocenter location within 0.5 mm. Additionally, the phantom and software are completely independent of linac vendor, and this study presents results from two linac manufacturers. A Varian Optical Guidance Platform (OGP) calibration array was also integrated into the phantom to allow calibration of the OGP while the phantom is positioned at radiation isocenter to reduce setup uncertainty in the calibration. This solution offers a quick, objective method to perform isocenter localization as well as laser alignment and OGP calibration on a monthly basis.
NASA Astrophysics Data System (ADS)
Cockmartin, L.; Marshall, N. W.; Zhang, G.; Lemmens, K.; Shaheen, E.; Van Ongeval, C.; Fredenberg, E.; Dance, D. R.; Salvagnini, E.; Michielsen, K.; Bosmans, H.
2017-02-01
This paper introduces and applies a structured phantom with inserted target objects for the comparison of detection performance of digital breast tomosynthesis (DBT) against 2D full field digital mammography (FFDM). The phantom consists of a 48 mm thick breast-shaped polymethyl methacrylate (PMMA) container filled with water and PMMA spheres of different diameters. Three-dimensionally (3D) printed spiculated masses (diameter range: 3.8-9.7 mm) and non-spiculated masses (1.6-6.2 mm) along with microcalcifications (90-250 µm) were inserted as targets. Reproducibility of the phantom application was studied on a single system using 30 acquisitions. Next, the phantom was evaluated on five different combined FFDM & DBT systems and target detection was compared for FFDM and DBT modes. Ten phantom images in both FFDM and DBT modes were acquired on these 5 systems using automatic exposure control. Five readers evaluated target detectability. Images were read with the four-alternative forced-choice (4-AFC) paradigm, with always one segment including a target and 3 normal background segments. The percentage of correct responses (PC) was assessed based on 10 trials of each reader for each object type, size and imaging modality. Additionally, detection threshold diameters at 62.5 PC were assessed via non-linear regression fitting of the psychometric curve. The reproducibility study showed no significant differences in PC values. Evaluation of target detection in FFDM showed that microcalcification detection thresholds ranged between 110 and 118 µm and were similar compared to the detection in DBT (range of 106-158 µm). In DBT, detection of both mass types increased significantly (p = 0.0001 and p = 0.0002 for non-spiculated and spiculated masses respectively) compared to FFDM, achieving almost 100% detection for all spiculated mass diameters. In conclusion, a structured phantom with inserted targets was able to show evidence for detectability differences between FFDM and DBT modes for five commercial systems. This phantom has potential for application in task-based assessment at acceptance and commissioning testing of DBT systems.
Organ shielding and doses in Low-Earth orbit calculated for spherical and anthropomorphic phantoms
NASA Astrophysics Data System (ADS)
Matthiä, Daniel; Berger, Thomas; Reitz, Günther
2013-08-01
Humans in space are exposed to elevated levels of radiation compared to ground. Different sources contribute to the total exposure with galactic cosmic rays being the most important component. The application of numerical and anthropomorphic phantoms in simulations allows the estimation of dose rates from galactic cosmic rays in individual organs and whole body quantities such as the effective dose. The male and female reference phantoms defined by the International Commission on Radiological Protection and the hermaphrodite numerical RANDO phantom are voxel implementations of anthropomorphic phantoms and contain all organs relevant for radiation risk assessment. These anthropomorphic phantoms together with a spherical water phantom were used in this work to translate the mean shielding of organs in the different anthropomorphic voxel phantoms into positions in the spherical phantom. This relation allows using a water sphere as surrogate for the anthropomorphic phantoms in both simulations and measurements. Moreover, using spherical phantoms in the calculation of radiation exposure offers great advantages over anthropomorphic phantoms in terms of computational time. In this work, the mean shielding of organs in the different voxel phantoms exposed to isotropic irradiation is presented as well as the corresponding depth in a water sphere. Dose rates for Low-Earth orbit from galactic cosmic rays during solar minimum conditions were calculated using the different phantoms and are compared to the results for a spherical water phantom in combination with the mean organ shielding. For the spherical water phantom the impact of different aluminium shielding between 1 g/cm2 and 100 g/cm2 was calculated. The dose equivalent rates were used to estimate the effective dose rate.
Gandhi, Diksha; Crotty, Dominic J; Stevens, Grant M; Schmidt, Taly Gilat
2015-11-01
This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison. Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings. Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated. ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%-20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head) relative to SmartmA. ODM reduced dose in all experimental and simulation studies over a range of phantoms, while increasing noise. The results suggest a net dose/noise benefit for breast and eye lens for all studied phantoms, negligible lung dose effects for two phantoms, increased lung dose and/or noise for eight phantoms, and increased dose and/or noise for brain and spine for all studied phantoms compared to the reference protocol.
Agrawal, Anant; Baxi, Jigesh; Calhoun, William; Chen, Chieh-Li; Ishikawa, Hiroshi; Schuman, Joel S.; Wollstein, Gadi; Hammer, Daniel X.
2016-01-01
Purpose Optical coherence tomography (OCT) can monitor for glaucoma by measuring dimensions of the optic nerve head (ONH) cup and disc. Multiple clinical studies have shown that different OCT devices yield different estimates of retinal dimensions. We developed phantoms mimicking ONH morphology as a new way to compare ONH measurements from different clinical OCT devices. Methods Three phantoms were fabricated to model the ONH: One normal and two with glaucomatous anatomies. Phantoms were scanned with Stratus, RTVue, and Cirrus clinical devices, and with a laboratory OCT system as a reference. We analyzed device-reported ONH measurements of cup-to-disc ratio (CDR) and cup volume and compared them with offline measurements done manually and with a custom software algorithm, respectively. Results The mean absolute difference between clinical devices with device-reported measurements versus offline measurements was 0.082 vs. 0.013 for CDR and 0.044 mm3 vs. 0.019 mm3 for cup volume. Statistically significant differences between devices were present for 16 of 18 comparisons of device-reported measurements from the phantoms. Offline Cirrus measurements tended to be significantly different from those from Stratus and RTVue. Conclusions The interdevice differences in CDR and cup volume are primarily caused by the devices' proprietary ONH analysis algorithms. The three devices yield more similar ONH measurements when a consistent offline analysis technique is applied. Scan pattern on the ONH also may be a factor in the measurement differences. This phantom-based study has provided unique insights into characteristics of OCT measurements of the ONH. PMID:27409500
DING, Peng; FUNG, George Shiu-Kai; LIN, Ming De; HOLMAN, Shaina D.; GERMAN, Rebecca Z.
2015-01-01
Purpose To determine the effect of bilateral superior laryngeal nerve (SLN) lesion on swallowing threshold volume and the occurrence of aspiration, using a novel measurement technique for videofluorscopic swallowing studies (VFSS). Methods and Materials We used a novel radiographic phantom to assess volume of the milk containing barium from fluoroscopy. The custom made phantom was firstly calibrated by comparing image intensity of the phantom with known cylinder depths. Secondly, known volume pouches of milk in a pig cadaver were compared to volumes calculated with the phantom. Using these standards, we calculated the volume of milk in the valleculae, esophagus and larynx, for 205 feeding sequences from four infant pigs feeding before and after had bilateral SLN lesions. Swallow safety was assessed using the IMPAS scale. Results The log-linear correlation between image intensity values from the phantom filled with barium milk and the known phantom cylinder depths was strong (R2>0.95), as was the calculated volumes of the barium milk pouches. The threshold volume of bolus in the valleculae during feeding was significantly larger after bilateral SLN lesion than in control swallows (p<0.001). The IMPAS score increased in the lesioned swallows relative to the controls (p<0.001). Conclusion Bilateral SLN lesion dramatically increased the aspiration incidence and the threshold volume of bolus in valleculae. The use of this phantom permits quantification of the aspirated volume of fluid. The custom made phantom and calibration allow for more accurate 3D volume estimation from 2D x-ray in VFSS. PMID:25270532
Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.
Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison
2016-11-01
MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment.
Calculation of organ doses in x-ray examinations of premature babies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smans, Kristien; Tapiovaara, Markku; Cannie, Mieke
Lung disease represents one of the most life-threatening conditions in prematurely born children. In the evaluation of the neonatal chest, the primary and most important diagnostic study is the chest radiograph. Since prematurely born children are very sensitive to radiation, those radiographs may lead to a significant radiation detriment. Knowledge of the radiation dose is therefore necessary to justify the exposures. To calculate doses in the entire body and in specific organs, computational models of the human anatomy are needed. Using medical imaging techniques, voxel phantoms have been developed to achieve a representation as close as possible to the anatomicalmore » properties. In this study two voxel phantoms, representing prematurely born babies, were created from computed tomography- and magnetic resonance images: Phantom 1 (1910 g) and Phantom 2 (590 g). The two voxel phantoms were used in Monte Carlo calculations (MCNPX) to assess organ doses. The results were compared with the commercially available software package PCXMC in which the available mathematical phantoms can be downsized toward the prematurely born baby. The simple phantom-scaling method used in PCXMC seems to be sufficient to calculate doses for organs within the radiation field. However, one should be careful in specifying the irradiation geometry. Doses in organs that are wholly or partially outside the primary radiation field depend critically on the irradiation conditions and the phantom model.« less
A phantom design and assessment of lesion detectability in PET imaging
NASA Astrophysics Data System (ADS)
Wollenweber, Scott D.; Kinahan, Paul E.; Alessio, Adam M.
2017-03-01
The early detection of abnormal regions with increased tracer uptake in positron emission tomography (PET) is a key driver of imaging system design and optimization as well as choice of imaging protocols. Detectability, however, remains difficult to assess due to the need for realistic objects mimicking the clinical scene, multiple lesion-present and lesion-absent images and multiple observers. Fillable phantoms, with tradeoffs between complexity and utility, provide a means to quantitatively test and compare imaging systems under truth-known conditions. These phantoms, however, often focus on quantification rather than detectability. This work presents extensions to a novel phantom design and analysis techniques to evaluate detectability in the context of realistic, non-piecewise constant backgrounds. The design consists of a phantom filled with small solid plastic balls and a radionuclide solution to mimic heterogeneous background uptake. A set of 3D-printed regular dodecahedral `features' were included at user-defined locations within the phantom to create `holes' within the matrix of chaotically-packed balls. These features fill at approximately 3:1 contrast to the lumpy background. A series of signal-known-present (SP) and signal-known-absent (SA) sub-images were generated and used as input for observer studies. This design was imaged in a head-like 20 cm diameter, 20 cm long cylinder and in a body-like 36 cm wide by 21 cm tall by 40 cm long tank. A series of model observer detectability indices were compared across scan conditions (count levels, number of scan replicates), PET image reconstruction methods (with/without TOF and PSF) and between PET/CT scanner system designs using the same phantom imaged on multiple systems. The detectability index was further compared to the noise-equivalent count (NEC) level to characterize the relationship between NEC and observer SNR.
A Head and Neck Simulator for Radiology and Radiotherapy
NASA Astrophysics Data System (ADS)
Thompson, Larissa; Campos, Tarcísio P. R.
2013-06-01
Phantoms are suitable tools to simulate body tissues and organs in radiology and radiation therapy. This study presents the development of a physical head and neck phantom and its radiological response for simulating brain pathology. The following features on the phantom are addressed and compared to human data: mass density, chemical composition, anatomical shape, computerized tomography images and Hounsfield Units. Mass attenuation and kerma coefficients of the synthetic phantom and normal tissues, as well as their deviations, were also investigated. Radiological experiments were performed, including brain tumors and subarachnoid hemorrhage simulations. Computerized tomography images of such pathologies in phantom and human were obtained. The anthropometric dimensions of the phantom present anatomical conformation similar to a human head and neck. Elemental weight percentages of the equivalent tissues match the human ones. Hounsfield Unit values of the main developed structures are presented, approaching human data. Kerma and mass attenuation coefficients spectra from human and phantom are presented, demonstrating smaller deviations in the radiological X-ray spectral domain. In conclusion, the phantom presented suitable normal and pathological radiological responses relative to those observed in humans. It may improve radiological protocols and education in medical imaging.
Shimizu, Kie; Namimoto, Tomohiro; Nakagawa, Masataka; Morita, Kosuke; Oda, Seitaro; Nakaura, Takeshi; Utsunomiya, Daisuke; Yamashita, Yasuyuki
To compare automated six-point Dixon (6-p-Dixon) MRI comparing with dual-echo chemical-shift-imaging (CSI) and CT for hepatic fat fraction in phantoms and clinical study. Phantoms and fifty-nine patients were examined both MRI and CT for quantitative fat measurements. In phantom study, linear regression between fat concentration and 6-p-Dixon showed good agreement. In clinical study, linear regression between 6-p-Dixon and dual-echo CSI showed good agreement. CT attenuation value was strongly correlated with 6-p-Dixon (R 2 =0.852; P<0.001) and dual-echo CSI (R 2 =0.812; P<0.001). Automated 6-p-Dixon and dual-echo CSI were accurate correlation with CT attenuation value of liver parenchyma. 6-p-Dixon has the potential for automated hepatic fat quantification. Copyright © 2017 Elsevier Inc. All rights reserved.
Incorporation of detailed eye model into polygon-mesh versions of ICRP-110 reference phantoms
NASA Astrophysics Data System (ADS)
Tat Nguyen, Thang; Yeom, Yeon Soo; Kim, Han Sung; Wang, Zhao Jun; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik; Chung, Beom Sun
2015-11-01
The dose coefficients for the eye lens reported in ICRP 2010 Publication 116 were calculated using both a stylized model and the ICRP-110 reference phantoms, according to the type of radiation, energy, and irradiation geometry. To maintain consistency of lens dose assessment, in the present study we incorporated the ICRP-116 detailed eye model into the converted polygon-mesh (PM) version of the ICRP-110 reference phantoms. After the incorporation, the dose coefficients for the eye lens were calculated and compared with those of the ICRP-116 data. The results showed generally a good agreement between the newly calculated lens dose coefficients and the values of ICRP 2010 Publication 116. Significant differences were found for some irradiation cases due mainly to the use of different types of phantoms. Considering that the PM version of the ICRP-110 reference phantoms preserve the original topology of the ICRP-110 reference phantoms, it is believed that the PM version phantoms, along with the detailed eye model, provide more reliable and consistent dose coefficients for the eye lens.
NASA Astrophysics Data System (ADS)
Pi, Yifei; Zhang, Lian; Huo, Wanli; Feng, Mang; Chen, Zhi; Xu, X. George
2017-09-01
A group of mesh-based and age-dependent family phantoms for Chinese populations were developed in this study. We implemented a method for deforming original RPI-AM and RPI-AF models into phantoms of different ages: 5, 10 ,15 and adult. More than 120 organs for each model were processed to match with the values of the Chinese reference parameters within 0.5%. All of these phantoms were then converted to voxel format for Monte Carlo simulations. Dose coefficients for adult models were counted to compare with those of RPI-AM and RPI-AF. The results show that there are significant differences between absorbed doses of RPI phantoms and these of our adult phantoms at low energies. Comparisons for the dose coefficients among different ages and genders were also made. it was found that teenagers receive more radiation doses than adults under the same irradiation condition. This set of phantoms can be utilized to estimate dosimetry for Chinese population for radiation protection, medical imaging, and radiotherapy.
Three new renal simulators for use in nuclear medicine
NASA Astrophysics Data System (ADS)
Dullius, Marcos; Fonseca, Mateus; Botelho, Marcelo; Cunha, Clêdison; Souza, Divanízia
2014-03-01
Renal scintigraphy is useful to provide both functional and anatomic information of renal flow of cortical functions and evaluation of pathological collecting system. The objective of this study was develop and evaluate the performance of three renal phantoms: Two anthropomorphic static and another dynamic. The static images of the anthropomorphic phantoms were used for comparison with static renal scintigraphy with 99mTc-DMSA in different concentrations. These static phantoms were manufactured in two ways: one was made of acrylic using as mold a human kidney preserved in formaldehyde and the second was built with ABS (acrylonitrile butadiene styrene) in a 3D printer. The dynamic renal phantom was constructed of acrylic to simulate renal dynamics in scintigraphy with 99mTc-DTPA. These phantoms were scanned with static and dynamic protocols and compared with clinical data. Using these phantoms it is possible to acquire similar renal images as in the clinical scintigraphy. Therefore, these new renal phantoms can be very effective for use in the quality control of renal scintigraphy, and image processing systems.
Euler, André; Solomon, Justin; Marin, Daniele; Nelson, Rendon C; Samei, Ehsan
2018-06-01
The purpose of this study was to assess image noise, spatial resolution, lesion detectability, and the dose reduction potential of a proprietary third-generation adaptive statistical iterative reconstruction (ASIR-V) technique. A phantom representing five different body sizes (12-37 cm) and a contrast-detail phantom containing lesions of five low-contrast levels (5-20 HU) and three sizes (2-6 mm) were deployed. Both phantoms were scanned on a 256-MDCT scanner at six different radiation doses (1.25-10 mGy). Images were reconstructed with filtered back projection (FBP), ASIR-V with 50% blending with FBP (ASIR-V 50%), and ASIR-V without blending (ASIR-V 100%). In the first phantom, noise properties were assessed by noise power spectrum analysis. Spatial resolution properties were measured by use of task transfer functions for objects of different contrasts. Noise magnitude, noise texture, and resolution were compared between the three groups. In the second phantom, low-contrast detectability was assessed by nine human readers independently for each condition. The dose reduction potential of ASIR-V was estimated on the basis of a generalized linear statistical regression model. On average, image noise was reduced 37.3% with ASIR-V 50% and 71.5% with ASIR-V 100% compared with FBP. ASIR-V shifted the noise power spectrum toward lower frequencies compared with FBP. The spatial resolution of ASIR-V was equivalent or slightly superior to that of FBP, except for the low-contrast object, which had lower resolution. Lesion detection significantly increased with both ASIR-V levels (p = 0.001), with an estimated radiation dose reduction potential of 15% ± 5% (SD) for ASIR-V 50% and 31% ± 9% for ASIR-V 100%. ASIR-V reduced image noise and improved lesion detection compared with FBP and had potential for radiation dose reduction while preserving low-contrast detectability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M; Kim, G; Ji, Y
Purpose: The purpose of this study is to estimate the three-dimensional dose distributions in the polymer and the radiochromic gel dosimeter, and to identify the detectability of both gel dosimeters by comparing with the water phantom in case of irradiating the proton particles. Methods: The normoxic polymer gel and the LCV micelle radiochromic gel were used in this study. The densities of polymer and the radiochromic gel dosimeter were 1.024 and 1.005 g/cm{sup 3}, respectively. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiation transport code (MCNPX, Los Alamos National Laboratory). Themore » shape of phantom irradiated by proton particles was a hexahedron with the dimension of 12.4 × 12.4 × 15.0 cm{sup 3}. The energies of proton beam were 50, 80, and 140 MeV energies were directed to top of the surface of phantom. The cross-sectional view of proton dose distribution in both gel dosimeters was estimated with the water phantom and evaluated by the gamma evaluation method. In addition, the absorbed dose(Gy) was also calculated for evaluating the proton detectability. Results: The evaluation results show that dose distributions in both gel dosimeters at intermediated section and Bragg-peak region are similar with that of the water phantom. At entrance section, however, inconsistencies of dose distribution are represented, compared with water. The relative absorbed doses in radiochromic and polymer gel dosimeter were represented to be 0.47 % and 2.26 % difference, respectively. These results show that the radiochromic gel dosimeter was better matched than the water phantom in the absorbed dose evaluation. Conclusion: The polymer and the radiochromic gel dosimeter show similar characteristics in dose distributions for the proton beams at intermediate section and Bragg-peak region. Moreover the calculated absorbed dose in both gel dosimeters represents similar tendency by comparing with that in water phantom.« less
ERIC Educational Resources Information Center
Macho, Siegfried; Ledermann, Thomas
2011-01-01
The phantom model approach for estimating, testing, and comparing specific effects within structural equation models (SEMs) is presented. The rationale underlying this novel method consists in representing the specific effect to be assessed as a total effect within a separate latent variable model, the phantom model that is added to the main…
Feasibility study of a TIMEPIX detector for mammography applications
NASA Astrophysics Data System (ADS)
Ávila, Carlos A.; Mendoza, Luis M.; Roque, Gerardo A.; Loaiza, Leonardo; Racedo, Jorge; Rueda, Roberto
2017-11-01
We present a comparison study of two X-ray systems for mammography imaging. One is a SELENIA clinical system and the second is a TIMEPIX based system. The aim of the study is to determine the capability of a TIMEPIX detector for mammography applications. We first compare signal to noise ratio (SNR) of X-ray images of Al2O3 spheres with diameters of 0.16mm, 0.24mm and 0.32mm, of a commercial mammography accreditation phantom CIRS015, obtained with each system. Then, we make a similar comparison for a second phantom built with Hydroxyapatite crystals with different morphology and sizes ranging between 0.15mm and 0.83mm, which are embedded within the same block of PMMA of the CIRS015 phantom. Our study allows us to determine the minimum size of Al2O3 spheres on the order of 240μm, with 33% lower SNR for the TIMEPIX system as compared to the SELENIA system. When comparing the images of Hydroxyapatite crystals from both systems, the minimum size observed is about 300μm, with 23% lower SNR for TIMEPIX.
Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H
2016-02-21
This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x-ray photon flux.
NASA Astrophysics Data System (ADS)
Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M.; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F.; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L.; McCollough, Cynthia H.
2016-02-01
This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x-ray photon flux.
Human Eye Phantom for Developing Computer and Robot-Assisted Epiretinal Membrane Peeling*
Gupta, Amrita; Gonenc, Berk; Balicki, Marcin; Olds, Kevin; Handa, James; Gehlbach, Peter; Taylor, Russell H.; Iordachita, Iulian
2014-01-01
A number of technologies are being developed to facilitate key intraoperative actions in vitreoretinal microsurgery. There is a need for cost-effective, reusable benchtop eye phantoms to enable frequent evaluation of these developments. In this study, we describe an artificial eye phantom for developing intraocular imaging and force-sensing tools. We test four candidate materials for simulating epiretinal membranes using a handheld tremor-canceling micromanipulator with force-sensing micro-forceps tip and demonstrate peeling forces comparable to those encountered in clinical practice. PMID:25571573
Development of a high resolution voxelised head phantom for medical physics applications.
Giacometti, V; Guatelli, S; Bazalova-Carter, M; Rosenfeld, A B; Schulte, R W
2017-01-01
Computational anthropomorphic phantoms have become an important investigation tool for medical imaging and dosimetry for radiotherapy and radiation protection. The development of computational phantoms with realistic anatomical features contribute significantly to the development of novel methods in medical physics. For many applications, it is desirable that such computational phantoms have a real-world physical counterpart in order to verify the obtained results. In this work, we report the development of a voxelised phantom, the HIGH_RES_HEAD, modelling a paediatric head based on the commercial phantom 715-HN (CIRS). HIGH_RES_HEAD is unique for its anatomical details and high spatial resolution (0.18×0.18mm 2 pixel size). The development of such a phantom was required to investigate the performance of a new proton computed tomography (pCT) system, in terms of detector technology and image reconstruction algorithms. The HIGH_RES_HEAD was used in an ad-hoc Geant4 simulation modelling the pCT system. The simulation application was previously validated with respect to experimental results. When compared to a standard spatial resolution voxelised phantom of the same paediatric head, it was shown that in pCT reconstruction studies, the use of the HIGH_RES_HEAD translates into a reduction from 2% to 0.7% of the average relative stopping power difference between experimental and simulated results thus improving the overall quality of the head phantom simulation. The HIGH_RES_HEAD can also be used for other medical physics applications such as treatment planning studies. A second version of the voxelised phantom was created that contains a prototypic base of skull tumour and surrounding organs at risk. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
SU-E-T-234: Daily Quality Assurance for a Six Degrees of Freedom Couch Using a Novel Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, K; Woollard, J; Ayan, A
2015-06-15
Purpose: To test the accuracy and reproducibility of both translational and rotational movements for a couch with six degrees of freedom (6DoF) using a novel phantom design Methods: An end-to-end test was carried out using two different phantoms. A 6 cm3 cube with a central fiducial BB (WL-QA Sun Nuclear) and a custom fabricated rectangular prism (31 cm x 8 cm x 8 cm), placed on a baseplate with known angular offsets for pitch, roll and yaw with a central fiducial BB and unique surface structures for registration purposes, were used. The end-to-end test included an initial CT simulation formore » a reference study, setup to an offset mark on each phantom, registration of the reference CT to the acquired cone-beam CT, and final Winston-Lutz delivery at four cardinal gantry angles. Results for both translational and rotational movements were recorded and compared for both phantoms. Results: Translational and rotational measurements were performed with a PerfectPitch (Varian) couch for 10 trials for both phantoms. Distinct translational shifts were [−5.372±0.384mm, −10.183±0.137mm, 14.028±0.155mm] for the cube and [7.520±0.159mm, −9.117±0.101mm, 16.273±0.115mm] for the prototype phantom for lateral, longitudinal, and vertical shifts, respectively. Distinct rotational adjustments were [1.121±0.102o, −1.067±0.235o, −2.662±0.380o] for the cube and [2.534±0.059o, 1.994±0.025o, 2.094±0.076o] for the prototype for pitch, roll, and yaw, respectively. Winston-Lutz test results performed after 6DoF couch correction from each cardinal gantry angle ranged from 0.26–0.72mm for the cube and 0.55–0.86mm for the prototype. Conclusion: The prototype phantom is more precise for both translational and rotational adjustments compared to a commercial phantom. The design of the prototype phantom allows for a more discernible visual confirmation of correct translational and rotational adjustments with the prototype phantom. Winston-Lutz results are more accurate for the commercial phantom but are still within tolerance for the prototype phantom.« less
Omar, Hazim; Ahmad, Alwani Liyan; Hayashi, Noburo; Idris, Zamzuri; Abdullah, Jafri Malin
2015-12-01
Magnetoencephalography (MEG) has been extensively used to measure small-scale neuronal brain activity. Although it is widely acknowledged as a sensitive tool for deciphering brain activity and source localisation, the accuracy of the MEG system must be critically evaluated. Typically, on-site calibration with the provided phantom (Local phantom) is used. However, this method is still questionable due to the uncertainty that may originate from the phantom itself. Ideally, the validation of MEG data measurements would require cross-site comparability. A simple method of phantom testing was used twice in addition to a measurement taken with a calibrated reference phantom (RefPhantom) obtained from Elekta Oy of Helsinki, Finland. The comparisons of two main aspects were made in terms of the dipole moment (Qpp) and the difference in the dipole distance from the origin (d) after the tests of statistically equal means and variance were confirmed. The result of Qpp measurements for the LocalPhantom and RefPhantom were 978 (SD24) nAm and 988 (SD32) nAm, respectively, and were still optimally within the accepted range of 900 to 1100 nAm. Moreover, the shifted d results for the LocalPhantom and RefPhantom were 1.84 mm (SD 0.53) and 2.14 mm (SD 0.78), respectively, and these values were below the maximum acceptance range of within 5.0 mm of the nominal dipole location. The Local phantom seems to outperform the reference phantom as indicated by the small standard error of the former (SE 0.094) compared with the latter (SE 0.138). The result indicated that HUSM MEG system was in excellent working condition in terms of the dipole magnitude and localisation measurements as these values passed the acceptance limits criteria of the phantom test.
Cerebral NIRS performance testing with molded and 3D-printed phantoms (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wang, Jianting; Huang, Stanley; Chen, Yu; Welle, Cristin G.; Pfefer, T. Joshua
2017-03-01
Near-infrared spectroscopy (NIRS) has emerged as a low-cost, portable approach for rapid, point-of-care detection of hematomas caused by traumatic brain injury. As a new technology, there is a need to develop standardized test methods for objective, quantitative performance evaluation of these devices. Towards this goal, we have developed and studied two types of phantom-based testing approaches. The first involves 3D-printed phantoms incorporating hemoglobin-filled inclusions. Phantom layers representing specific cerebral tissues were printed using photopolymers doped with varying levels of titanium oxide and black resin. The accuracy, precision and spectral dependence of printed phantom optical properties were validated using spectrophotometry. The phantom also includes a hematoma inclusion insert which was filled with a hemoglobin solution. Oxygen saturation levels were modified by adding sodium dithionite at calibrated concentrations. The second phantom approach involves molded silicone layers with a superficial region - simulating the scalp and skull - comprised of removable layers to vary hematoma size and depth, and a bottom layer representing brain matter. These phantoms were tested with both a commercial hematoma detector and a custom NIRS system to optimize their designs and validate their utility in performing inter-device comparisons. The effects of hematoma depth, diameter, and height, as well as tissue optical properties and biological variables including hemoglobin saturation level and scalp/skull thickness were studied. Results demonstrate the ability to quantitatively compare NIRS device performance and indicate the promise of using 3D printing to achieve phantoms with realistic variations in tissue optical properties for evaluating biophotonic device performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, C; Zhong, Y; Wang, T
2015-06-15
Purpose: To investigate the accuracy in estimating the mean glandular dose (MGD) for homogeneous breast phantoms by converting from the average breast dose using the F-factor in cone beam breast CT. Methods: EGSnrc-based Monte Carlo codes were used to estimate the MGDs. 13-cm in diameter, 10-cm high hemi-ellipsoids were used to simulate pendant-geometry breasts. Two different types of hemi-ellipsoidal models were employed: voxels in quasi-homogeneous phantoms were designed as either adipose or glandular tissue while voxels in homogeneous phantoms were designed as the mixture of adipose and glandular tissues. Breast compositions of 25% and 50% volume glandular fractions (VGFs), definedmore » as the ratio of glandular tissue voxels to entire breast voxels in the quasi-homogeneous phantoms, were studied. These VGFs were converted into glandular fractions by weight and used to construct the corresponding homogeneous phantoms. 80 kVp x-rays with a mean energy of 47 keV was used in the simulation. A total of 109 photons were used to image the phantoms and the energies deposited in the phantom voxels were tallied. Breast doses in homogeneous phantoms were averaged over all voxels and then used to calculate the MGDs using the F-factors evaluated at the mean energy of the x-rays. The MGDs for quasi-homogeneous phantoms were computed directly by averaging the doses over all glandular tissue voxels. The MGDs estimated for the two types of phantoms were normalized to the free-in-air dose at the iso-center and compared. Results: The normalized MGDs were 0.756 and 0.732 mGy/mGy for the 25% and 50% VGF homogeneous breasts and 0.761 and 0.733 mGy/mGy for the corresponding quasi-homogeneous breasts, respectively. The MGDs estimated for the two types of phantoms were similar within 1% in this study. Conclusion: MGDs for homogeneous breast models may be adequately estimated by converting from the average breast dose using the F-factor.« less
Estimation of the weighted CTDI{sub {infinity}} for multislice CT examinations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Xinhua; Zhang Da; Liu, Bob
2012-02-15
Purpose: The aim of this study was to examine the variations of CT dose index (CTDI) efficiencies, {epsilon}(CTDI{sub 100})=CTDI{sub 100}/CTDI{sub {infinity}}, with bowtie filters and CT scanner types. Methods: This was an extension of our previous study [Li, Zhang, and Liu, Phys. Med. Biol. 56, 5789-5803 (2011)]. A validated Monte Carlo program was used to calculate {epsilon}(CTDI{sub 100}) on a Siemens Somatom Definition scanner. The {epsilon}(CTDI{sub 100}) dependencies on tube voltages and beam widths were tested in previous studies. The influences of different bowtie filters and CT scanner types were examined in this work. The authors tested the variations ofmore » {epsilon}(CTDI{sub 100}) with bowtie filters on the Siemens Definition scanner. The authors also analyzed the published CTDI measurements of four independent studies on five scanners of four models from three manufacturers. Results: On the Siemens Definition scanner, the difference in {epsilon}(CTDI{sub W}) between using the head and body bowtie filters was 2.5% (maximum) in the CT scans of the 32-cm phantom, and 1.7% (maximum) in the CT scans of the 16-cm phantom. Compared with CTDI{sub W}, the weighted CTDI{sub {infinity}} increased by 30.5% (on average) in the 32-cm phantom, and by 20.0% (on average) in the 16-cm phantom. These results were approximately the same for 80-140 kV and 1-40 mm beam widths (4.2% maximum deviation). The differences in {epsilon}(CTDI{sub 100}) between the simulations and the direct measurements of four previous studies were 1.3%-5.0% at the center/periphery of the 16-cm/32-cm phantom (on average). Conclusions: Compared with CTDI{sub vol}, the equilibrium dose for large scan lengths is 30.5% higher in the 32-cm phantom, and is 20.0% higher in the 16-cm phantom. The relative increases are practically independent of tube voltages (80-140 kV), beam widths (up to 4 cm), and the CT scanners covered in this study.« less
Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang
2010-03-01
The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsunobu, Y; Shiotsuki, K; Morishita, J
Purpose: Fingerprints, dental impressions, and DNA are used to identify unidentified bodies in forensic medicine. Cranial Computed tomography (CT) images and/or dental radiographs are also used for identification. Radiological identification is important, particularly in the absence of comparative fingerprints, dental impressions, and DNA samples. The development of an automated radiological identification system for unidentified bodies is desirable. We investigated the potential usefulness of bone structure for matching chest CT images. Methods: CT images of three anthropomorphic chest phantoms were obtained on different days in various settings. One of the phantoms was assumed to be an unidentified body. The bone imagemore » and the bone image with soft tissue (BST image) were extracted from the CT images. To examine the usefulness of the bone image and/or the BST image, the similarities between the two-dimensional (2D) or threedimensional (3D) images of the same and different phantoms were evaluated in terms of the normalized cross-correlation value (NCC). Results: For the 2D and 3D BST images, the NCCs obtained from the same phantom assumed to be an unidentified body (2D, 0.99; 3D, 0.93) were higher than those for the different phantoms (2D, 0.95 and 0.91; 3D, 0.89 and 0.80). The NCCs for the same phantom (2D, 0.95; 3D, 0.88) were greater compared to those of the different phantoms (2D, 0.61 and 0.25; 3D, 0.23 and 0.10) for the bone image. The difference in the NCCs between the same and different phantoms tended to be larger for the bone images than for the BST images. These findings suggest that the image-matching technique is more useful when utilizing the bone image than when utilizing the BST image to identify different people. Conclusion: This preliminary study indicated that evaluating the similarity of bone structure in 2D and 3D images is potentially useful for identifying of an unidentified body.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albanese, K; Morris, R; Lakshmanan, M
Purpose: To accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Methods: A breast phantom has been designed to assess the capability of coded aperture coherent x-ray scatter imaging system to classify different types of breast tissue (adipose, fibroglandular, tumor). The tissue-equivalent phantom was modeled as a hollow plastic cylinder containing multiple cylindrical and spherical inserts that can be positioned, rearranged, or removed to model different breast geometries. Each enclosure can be filled with a tissue-equivalent material and excised human tumors. In this study, beef and lard,more » placed inside 2-mm diameter plastic Nalgene containers, were used as surrogates for fibroglandular and adipose tissue, respectively. The phantom was imaged at 125 kVp, 40 mA for 10 seconds each with a 1-mm pencil beam. The raw data were reconstructed using a model-based reconstruction algorithm and yielded the location and form factor, or momentum transfer (q) spectrum of the materials that were imaged. The measured material form factors were then compared to the ground truth measurements acquired by x-ray diffraction (XRD) imaging. Results: The tissue equivalent phantom was found to accurately model different types of breast tissue by qualitatively comparing our measured form factors to those of adipose and fibroglandular tissue from literature. Our imaging system has been able to define the location and composition of the various materials in the phantom. Conclusion: This work introduces a new tissue equivalent phantom for testing and optimization of our coherent scatter imaging system for material classification. In future studies, the phantom will enable the use of a variety of materials including excised human tissue specimens in evaluating and optimizing our imaging system using pencil- and fan-beam geometries. United States Department of Homeland Security Duke University Medical Center - Department of Radiology Carl E Ravin Advanced Imaging Laboratories Duke University Medical Physics Graduate Program.« less
Chen, Alvin I.; Balter, Max L.; Chen, Melanie I.; Gross, Daniel; Alam, Sheikh K.; Maguire, Timothy J.; Yarmush, Martin L.
2016-01-01
Purpose: This paper describes the design, fabrication, and characterization of multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties. The phantoms comprise epidermis, dermis, and hypodermis skin layers, blood vessels, and blood mimicking fluid. Each tissue component may be individually tailored to a range of physiological and demographic conditions. Methods: The skin layers were constructed from varying concentrations of gelatin and agar. Synthetic melanin, India ink, absorbing dyes, and Intralipid were added to provide optical absorption and scattering in the skin layers. Bovine serum albumin was used to increase acoustic attenuation, and 40 μm diameter silica microspheres were used to induce acoustic backscatter. Phantom vessels consisting of thin-walled polydimethylsiloxane tubing were embedded at depths of 2–6 mm beneath the skin, and blood mimicking fluid was passed through the vessels. The phantoms were characterized through uniaxial compression and tension experiments, rheological frequency sweep studies, diffuse reflectance spectroscopy, and ultrasonic pulse-echo measurements. Results were then compared to in vivo and ex vivo literature data. Results: The elastic and dynamic shear behavior of the phantom skin layers and vessel wall closely approximated the behavior of porcine skin tissues and human vessels. Similarly, the optical properties of the phantom tissue components in the wavelength range of 400–1100 nm, as well as the acoustic properties in the frequency range of 2–9 MHz, were comparable to human tissue data. Normalized root mean square percent errors between the phantom results and the literature reference values ranged from 1.06% to 9.82%, which for many measurements were less than the sample variability. Finally, the mechanical and imaging characteristics of the phantoms were found to remain stable after 30 days of storage at 21 °C. Conclusions: The phantoms described in this work simulate the mechanical, optical, and acoustic properties of human skin tissues, vessel tissue, and blood. In this way, the phantoms are uniquely suited to serve as test models for multimodal imaging techniques and image-guided interventions. PMID:27277058
Dose Distribution in Cone-Beam Breast Computed Tomography: An Experimental Phantom Study
NASA Astrophysics Data System (ADS)
Russo, Paolo; Lauria, Adele; Mettivier, Giovanni; Montesi, Maria Cristina; Villani, Natalia
2010-02-01
We measured the spatial distribution of absorbed dose in a 14 cm diameter PMMA half-ellipsoid phantom simulating the uncompressed breast, using an X-ray cone-beam breast computed tomography apparatus, assembled for laboratory tests. Thermoluminescent dosimeters (TLD-100) were placed inside the phantom in six positions, both axially and at the phantom periphery. To study the dose distribution inside the PMMA phantom two experimental setups were adopted with effective energies in the range 28.7-44.4 keV. Different values of effective energies were obtained by combining different configurations of added Cu filtration (0.05 mm or 0.2 mm) and tube voltages (from 50 kVp to 80 kVp). Dose values obtained by TLDs in different positions inside the PMMA are reported. To evaluate the dose distribution in the breast shaped volume, the values measured were normalized to the one obtained in the inner position inside the phantom. Measurements with a low energy setup show a gradual increment of dose going from the "chest wall" to the "nipple" (63% more at the "nipple" compared to the central position). Likewise, a gradual increment is observed going from the breast axis toward the periphery (82% more at the "skin" compared to the central position). A more uniform distribution of dose inside the PMMA was obtained with a high energy setup (the maximum variation was 33% at 35.5 keV effective energy in the radial direction). The most uniform distribution is obtained at 44.4 keV. The results of this study show how the dose is distributed: it varies as a function of effective energy of the incident X-ray beam and as a function of the position inside the volume (axial or peripheral position).
NASA Astrophysics Data System (ADS)
Szegedi, M.; Rassiah-Szegedi, P.; Fullerton, G.; Wang, B.; Salter, B.
2010-07-01
The purpose of this study is to design a real-tissue phantom for use in the validation of deformation algorithms. A phantom motion controller that runs sinusoidal and non-regular patient-based breathing pattern, via a piston, was applied to porcine liver tissue. It was regulated to simulate movement ranges similar to recorded implanted liver markers from patients. 4D CT was applied to analyze deformation. The suitability of various markers in the liver and the position reproducibility of markers and of reference points were studied. The similarity of marker motion pattern in the liver phantom and in real patients was evaluated. The viability of the phantom over time and its use with electro-magnetic tracking devices were also assessed. High contrast markers, such as carbon markers, implanted in the porcine liver produced less image artifacts on CT and were well visualized compared to metallic ones. The repositionability of markers was within a measurement accuracy of ±2 mm. Similar anatomical patient motions were reproducible up to elongations of 3 cm for a time period of at least 90 min. The phantom is compatible with electro-magnetic tracking devices and 4D CT. The phantom motion is reproducible and simulates realistic patient motion and deformation. The ability to carry out voxel-based tracking allows for the evaluation of deformation algorithms in a controlled environment with recorded patient traces. The phantom is compatible with all therapy devices clinically encountered in our department.
Pullens, Pim; Bladt, Piet; Sijbers, Jan; Maas, Andrew I R; Parizel, Paul M
2017-03-01
Since Diffusion Weighted Imaging (DWI) data acquisition and processing are not standardized, substantial differences in DWI derived measures such as Apparent Diffusion Coefficient (ADC) may arise which are related to the acquisition or MRI processing method, but not to the sample under study. Quality assurance using a standardized test object, or phantom, is a key factor in standardizing DWI across scanners. Current diffusion phantoms are either complex to use, not available in larger quantities, contain substances unwanted in a clinical environment, or are expensive. A diffusion phantom based on a polyvinylpyrrolidone (PVP) solution, together with a phantom holder, is presented and compared to existing diffusion phantoms for use in clinical DWI scans. An ADC vs. temperature calibration curve was obtained. ADC of the phantom (808 to 857 ± 0.2 mm 2 /s) is in the same range as ADC values found in brain tissue. ADC measurements are highly reproducible across time with an intra-class correlation coefficient of > 0.8. ADC as function of temperature (in Kelvin) can be estimated as ADCm(T)=[exp(-7.09)·exp-2903.81T-1293.55] with a total uncertainty (95% confidence limit) of ± 1.7%. We present an isotropic diffusion MRI phantom, together with its temperature calibration curve, that is easy-to-use in a clinical environment, cost-effective, reproducible to produce, and that contains no harmful substances. © 2017 American Association of Physicists in Medicine.
A dimensional approach to the phantom vibration and ringing syndrome during medical internship.
Lin, Yu-Hsuan; Chen, Ching-Yen; Li, Peng; Lin, Sheng-Hsuan
2013-09-01
Phantom vibrations and ringing of mobile phones are prevalent hallucinations in the general population. They might be considered as a "normal" brain mechanism. The aim of this study was to determine if a dimensional approach to identify individuals suffering from these hallucinations was more important than a categorical approach. A prospective longitudinal study of 74 medical interns (male: 46, mean age: 24.8 ± 1.2) was carried out using repeated investigations of the severity of phantom vibrations and ringing, as well as accompanying symptoms of anxiety and depression as measured by Beck Anxiety Inventory (BAI) and the Beck Depression Inventory (BDI) before, at the 3rd, 6th, and 12th month during internship, and 2 weeks after internship. We utilized the cognitive and somatic subscales of the BDI, as well as the subjective, somatic and panic subscales of the BAI. The correlation between phantom vibration and ringing was lowest before the internship but became moderate during the internship and high 2 weeks after it. Compared to interns with subclinical phantom ringing and vibrations, interns with severe phantom vibrations and ringing had higher subjective and somatic anxiety and somatic depressive scores at any time point throughout the internship. Only interns with severe phantom ringing had more cognitive/affective depression. A dimensional approach to the phantom vibration and ringing syndrome is a powerful way to identify their correlation, as well as their association with anxiety and depression. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandhi, Diksha; Schmidt, Taly Gilat, E-mail: taly.gilat-schmidt@marquette.edu; Crotty, Dominic J.
Purpose: This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison. Methods: Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings.more » Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated. Results: ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%–20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head) relative to SmartmA. Conclusions: ODM reduced dose in all experimental and simulation studies over a range of phantoms, while increasing noise. The results suggest a net dose/noise benefit for breast and eye lens for all studied phantoms, negligible lung dose effects for two phantoms, increased lung dose and/or noise for eight phantoms, and increased dose and/or noise for brain and spine for all studied phantoms compared to the reference protocol.« less
Chang, Guoping; Chang, Tingting; Pan, Tinsu; Clark, John W; Mawlawi, Osama R
2010-12-01
Respiratory motion artifacts and partial volume effects (PVEs) are two degrading factors that affect the accuracy of image quantification in PET/CT imaging. In this article, the authors propose a joint motion and PVE correction approach (JMPC) to improve PET quantification by simultaneously correcting for respiratory motion artifacts and PVE in patients with lung/thoracic cancer. The objective of this article is to describe this approach and evaluate its performance using phantom and patient studies. The proposed joint correction approach incorporates a model of motion blurring, PVE, and object size/shape. A motion blurring kernel (MBK) is then estimated from the deconvolution of the joint model, while the activity concentration (AC) of the tumor is estimated from the normalization of the derived MBK. To evaluate the performance of this approach, two phantom studies and eight patient studies were performed. In the phantom studies, two motion waveforms-a linear sinusoidal and a circular motion-were used to control the motion of a sphere, while in the patient studies, all participants were instructed to breathe regularly. For the phantom studies, the resultant MBK was compared to the true MBK by measuring a correlation coefficient between the two kernels. The measured sphere AC derived from the proposed method was compared to the true AC as well as the ACs in images exhibiting PVE only and images exhibiting both PVE and motion blurring. For the patient studies, the resultant MBK was compared to the motion extent derived from a 4D-CT study, while the measured tumor AC was compared to the AC in images exhibiting both PVE and motion blurring. For the phantom studies, the estimated MBK approximated the true MBK with an average correlation coefficient of 0.91. The tumor ACs following the joint correction technique were similar to the true AC with an average difference of 2%. Furthermore, the tumor ACs on the PVE only images and images with both motion blur and PVE effects were, on average, 75% and 47.5% (10%) of the true AC, respectively, for the linear (circular) motion phantom study. For the patient studies, the maximum and mean AC/SUV on the PET images following the joint correction are, on average, increased by 125.9% and 371.6%, respectively, when compared to the PET images with both PVE and motion. The motion extents measured from the derived MBK and 4D-CT exhibited an average difference of 1.9 mm. The proposed joint correction approach can improve the accuracy of PET quantification by simultaneously compensating for the respiratory motion artifacts and PVE in lung/thoracic PET/CT imaging.
Antfolk, Christian; D'Alonzo, Marco; Controzzi, Marco; Lundborg, Göran; Rosén, Birgitta; Sebelius, Fredrik; Cipriani, Christian
2013-01-01
This work assesses the ability of transradial amputees to discriminate multi-site tactile stimuli in sensory discrimination tasks. It compares different sensory feedback modalities using an artificial hand prosthesis in: 1) a modality matched paradigm where pressure recorded on the five fingertips of the hand was fed back as pressure stimulation on five target points on the residual limb; and 2) a modality mismatched paradigm where the pressures were transformed into mechanical vibrations and fed back. Eight transradial amputees took part in the study and were divided in two groups based on the integrity of their phantom map; group A had a complete phantom map on the residual limb whereas group B had an incomplete or nonexisting map. The ability in localizing stimuli was compared with that of 10 healthy subjects using the vibration feedback and 11 healthy subjects using the pressure feedback (in a previous study), on their forearms, in similar experiments. Results demonstrate that pressure stimulation surpassed vibrotactile stimulation in multi-site sensory feedback discrimination. Furthermore, we demonstrate that subjects with a detailed phantom map had the best discrimination performance and even surpassed healthy participants for both feedback paradigms whereas group B had the worst performance overall. Finally, we show that placement of feedback devices on a complete phantom map improves multi-site sensory feedback discrimination, independently of the feedback modality.
NASA Astrophysics Data System (ADS)
Johnson, Perry; Lee, Choonsik; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E.
2009-06-01
In this study, the influence of patient size on organ and effective dose conversion coefficients (DCCs) was investigated for a representative interventional fluoroscopic procedure—cardiac catheterization. The study was performed using hybrid phantoms representing an underweight, average and overweight American adult male. Reference body sizes were determined using the NHANES III database and parameterized based on standing height and total body mass. Organ and effective dose conversion coefficients were calculated for anterior-posterior, posterior-anterior, left anterior oblique and right anterior oblique projections using the Monte Carlo code MCNPX 2.5.0 with the metric dose area product being used as the normalization factor. Results show body size to have a clear influence on DCCs which increased noticeably when body size decreased. It was also shown that if patient size is neglected when choosing a DCC, the organ and effective dose will be underestimated to an underweight patient and will be overestimated to an underweight patient, with errors as large as 113% for certain projections. Results were further compared with those published for a KTMAN-2 Korean patient-specific tomographic phantom. The published DCCs aligned best with the hybrid phantom which most closely matched in overall body size. These results highlighted the need for and the advantages of phantom-patient matching, and it is recommended that hybrid phantoms be used to create a more diverse library of patient-dependent anthropomorphic phantoms for medical dose reconstruction.
Technical Note: Characterization of custom 3D printed multimodality imaging phantoms.
Bieniosek, Matthew F; Lee, Brian J; Levin, Craig S
2015-10-01
Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial "Micro Deluxe" phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. This work shows that 3D printed phantoms can be functionally equivalent to commercially available phantoms. They are a viable option for quickly distributing and fabricating low cost, customized phantoms.
Development of skeletal system for mesh-type ICRP reference adult phantoms
NASA Astrophysics Data System (ADS)
Yeom, Yeon Soo; Wang, Zhao Jun; Tat Nguyen, Thang; Kim, Han Sung; Choi, Chansoo; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Chung, Beom Sun; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik
2016-10-01
The reference adult computational phantoms of the international commission on radiological protection (ICRP) described in Publication 110 are voxel-type computational phantoms based on whole-body computed tomography (CT) images of adult male and female patients. The voxel resolutions of these phantoms are in the order of a few millimeters and smaller tissues such as the eye lens, the skin, and the walls of some organs cannot be properly defined in the phantoms, resulting in limitations in dose coefficient calculations for weakly penetrating radiations. In order to address the limitations of the ICRP-110 phantoms, an ICRP Task Group has been recently formulated and the voxel phantoms are now being converted to a high-quality mesh format. As a part of the conversion project, in the present study, the skeleton models, one of the most important and complex organs of the body, were constructed. The constructed skeleton models were then tested by calculating red bone marrow (RBM) and endosteum dose coefficients (DCs) for broad parallel beams of photons and electrons and comparing the calculated values with those of the original ICRP-110 phantoms. The results show that for the photon exposures, there is a generally good agreement in the DCs between the mesh-type phantoms and the original voxel-type ICRP-110 phantoms; that is, the dose discrepancies were less than 7% in all cases except for the 0.03 MeV cases, for which the maximum difference was 14%. On the other hand, for the electron exposures (⩽4 MeV), the DCs of the mesh-type phantoms deviate from those of the ICRP-110 phantoms by up to ~1600 times at 0.03 MeV, which is indeed due to the improvement of the skeletal anatomy of the developed skeleton mesh models.
Chen, Zhi-Wei; Yao, Sheng-Yu; Zhang, Tie-Ning; Zhu, Zhen-Hua; Hu, Zhe-Kai; Lu, Xun
2012-08-01
A new type of water phantom which would be specialised for the absorbed dose measurement in total body irradiation (TBI) treatment is developed. Ten millimetres of thick Plexiglas plates were arranged to form a square cube with 300 mm of edge length. An appropriate sleeve-type piston was installed on the side wall, and a tabular Plexiglas piston was positioned inside the sleeve. By pushing and pulling the piston, the length of the self-made water phantom could be varied to meet the required patients' physical sizes. To compare the international standard water phantom with the length-adjustable and the Plexiglas phantoms, absorbed dose for 6-MV X ray was measured by an ionisation chamber at different depths in three kinds of phantoms. In 70 cases with TBI, midplane doses were metered using the length-adjustable and the Plexiglas phantoms for simulating human dimensions, and dose validation was synchronously carried out. There were no significant statistical differences, p > 0.05, through statistical processing of data from the international standard water phantom and the self-designed one. There were significant statistical differences, p < 0.05, between the two sets of data from the standard and the Plexiglas one. In addition, the absolute difference had a positive correlation with the varied depth of the detector in the Plexiglas phantom. Comparing the data of clinical treatment, the differences were all <1 % among the prescription doses and the validation data collected from the self-design water phantom. However, the differences collected from the Plexiglas phantom were increasing gradually from +0.77 to +2.30 % along with increasing body width. Obviously, the difference had a positive correlation with the body width. The results proved that the new length-adjustable water phantom is more accurate for simulating human dimensions than Plexiglas phantom.
Magnetic Resonance Imaging of Electrolysis.
Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris
2015-01-01
This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research. PMID:25659942
Development and implementation of an EPID‐based method for localizing isocenter
Hyer, Daniel E.; Nixon, Earl
2012-01-01
The aim of this study was to develop a phantom and analysis software that could be used to quickly and accurately determine the location of radiation isocenter to an accuracy of less than 1 mm using the EPID (Electronic Portal Imaging Device). The proposed solution uses a collimator setting of 10×10cm2 to acquire EPID images of a new phantom constructed from LEGO blocks. Images from a number of gantry and collimator angles are analyzed by automated analysis software to determine the position of the jaws and center of the phantom in each image. The distance between a chosen jaw and the phantom center is then compared to the same distance measured after a 180° collimator rotation to determine if the phantom is centered in the dimension being investigated. Repeated tests show that the system is reproducibly independent of the imaging session, and calculated offsets of the phantom from radiation isocenter are a function of phantom setup only. Accuracy of the algorithm's calculated offsets were verified by imaging the LEGO phantom before and after applying the calculated offset. These measurements show that the offsets are predicted with an accuracy of approximately 0.3 mm, which is on the order of the detector's pitch. Comparison with a star‐shot analysis yielded agreement of isocenter location within 0.5 mm. Additionally, the phantom and software are completely independent of linac vendor, and this study presents results from two linac manufacturers. A Varian Optical Guidance Platform (OGP) calibration array was also integrated into the phantom to allow calibration of the OGP while the phantom is positioned at radiation isocenter to reduce setup uncertainty in the calibration. This solution offers a quick, objective method to perform isocenter localization as well as laser alignment and OGP calibration on a monthly basis. PACS number: 87.55.Qr PMID:23149787
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, Yan Jiang; Smith, Arthur-Allen; Mcilvena, David
Purpose: Patients’ interfractional anatomic changes can compromise the initial treatment plan quality. To overcome this issue, adaptive radiotherapy (ART) has been introduced. Deformable image registration (DIR) is an important tool for ART and several deformable phantoms have been built to evaluate the algorithms’ accuracy. However, there is a lack of deformable phantoms that can also provide dosimetric information to verify the accuracy of the whole ART process. The goal of this work is to design and construct a deformable head and neck (HN) ART quality assurance (QA) phantom with in vivo dosimetry. Methods: An axial slice of a HN patientmore » is taken as a model for the phantom construction. Six anatomic materials are considered, with HU numbers similar to a real patient. A filled balloon inside the phantom tissue is inserted to simulate tumor. Deflation of the balloon simulates tumor shrinkage. Nonradiopaque surface markers, which do not influence DIR algorithms, provide the deformation ground truth. Fixed and movable holders are built in the phantom to hold a diode for dosimetric measurements. Results: The measured deformations at the surface marker positions can be compared with deformations calculated by a DIR algorithm to evaluate its accuracy. In this study, the authors selected a Demons algorithm as a DIR algorithm example for demonstration purposes. The average error magnitude is 2.1 mm. The point dose measurements from the in vivo diode dosimeters show a good agreement with the calculated doses from the treatment planning system with a maximum difference of 3.1% of prescription dose, when the treatment plans are delivered to the phantom with original or deformed geometry. Conclusions: In this study, the authors have presented the functionality of this deformable HN phantom for testing the accuracy of DIR algorithms and verifying the ART dosimetric accuracy. The authors’ experiments demonstrate the feasibility of this phantom serving as an end-to-end ART QA phantom.« less
Development of a high resolution MRI intracranial atherosclerosis imaging phantom.
Chueh, Ju-Yu; van der Marel, Kajo; Gounis, Matthew J; LeMatty, Todd; Brown, Truman R; Ansari, Sameer A; Carroll, Timothy J; Buck, Amanda K; Zhou, Xiaohong Joe; Chatterjee, A Rano; King, Robert M; Mao, Hui; Zheng, Shaokuan; Brooks, Olivia W; Rappleye, Jeff W; Swartz, Richard H; Feldmann, Edward; Turan, Tanya N
2018-02-01
Currently, there is neither a standard protocol for vessel wall MR imaging of intracranial atherosclerotic disease (ICAD) nor a gold standard phantom to compare MR sequences. In this study, a plaque phantom is developed and characterized that provides a platform for establishing a uniform imaging approach for ICAD. A patient specific injection mold was 3D printed to construct a geometrically accurate ICAD phantom. Polyvinyl alcohol hydrogel was infused into the core shell mold to form the stenotic artery. The ICAD phantom incorporated materials mimicking a stenotic vessel and plaque components, including fibrous cap and lipid core. Two phantoms were scanned using high resolution cone beam CT and compared with four different 3 T MRI systems across eight different sites over a period of 18 months. Inter-phantom variability was assessed by lumen dimensions and contrast to noise ratio (CNR). Quantitative evaluation of the minimum lumen radius in the stenosis showed that the radius was on average 0.80 mm (95% CI 0.77 to 0.82 mm) in model 1 and 0.77 mm (95% CI 0.74 to 0.81 mm) in model 2. The highest CNRs were observed for comparisons between lipid and vessel wall. To evaluate manufacturing reproducibility, the CNR variability between the two models had an average absolute difference of 4.31 (95% CI 3.82 to 5.78). Variation in CNR between the images from the same scanner separated by 7 months was 2.5-6.2, showing reproducible phantom durability. A plaque phantom composed of a stenotic vessel wall and plaque components was successfully constructed for multicenter high resolution MRI standardization. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelletier, C; Jung, J; Lee, C
2015-06-15
Purpose: To quantify the dosimetric uncertainty due to organ position errors when using height and weight as phantom selection criteria in the UF/NCI Hybrid Phantom Library for the purpose of out-of-field organ dose reconstruction. Methods: Four diagnostic patient CT images were used to create 7-field IMRT plans. For each patient, dose to the liver, right lung, and left lung were calculated using the XVMC Monte Carlo code. These doses were taken to be the ground truth. For each patient, the phantom with the most closely matching height and weight was selected from the body size dependent phantom library. The patientmore » plans were then transferred to the computational phantoms and organ doses were recalculated. Each plan was also run on 4 additional phantoms with reference heights and or weights. Maximum and mean doses for the three organs were computed, and the DVHs were extracted and compared. One sample t-tests were performed to compare the accuracy of the height and weight matched phantoms against the additional phantoms in regards to both maximum and mean dose. Results: For one of the patients, the height and weight matched phantom yielded the most accurate results across all three organs for both maximum and mean doses. For two additional patients, the matched phantom yielded the best match for one organ only. In 13 of the 24 cases, the matched phantom yielded better results than the average of the other four phantoms, though the results were only statistically significant at the .05 level for three cases. Conclusion: Using height and weight matched phantoms does yield better results in regards to out-of-field dosimetry than using average phantoms. Height and weight appear to be moderately good selection criteria, though this selection criteria failed to yield any better results for one patient.« less
An improved MCNP version of the NORMAN voxel phantom for dosimetry studies.
Ferrari, P; Gualdrini, G
2005-09-21
In recent years voxel phantoms have been developed on the basis of tomographic data of real individuals allowing new sets of conversion coefficients to be calculated for effective dose. Progress in radiation studies brought ICRP to revise its recommendations and a new report, already circulated in draft form, is expected to change the actual effective dose evaluation method. In the present paper the voxel phantom NORMAN developed at HPA, formerly NRPB, was employed with MCNP Monte Carlo code. A modified version of the phantom, NORMAN-05, was developed to take into account the new set of tissues and weighting factors proposed in the cited ICRP draft. Air kerma to organ equivalent dose and effective dose conversion coefficients for antero-posterior and postero-anterior parallel photon beam irradiations, from 20 keV to 10 MeV, have been calculated and compared with data obtained in other laboratories using different numerical phantoms. Obtained results are in good agreement with published data with some differences for the effective dose calculated employing the proposed new tissue weighting factors set in comparison with previous evaluations based on the ICRP 60 report.
Bleaching of tattooed skin phantoms by series of laser shots
NASA Astrophysics Data System (ADS)
Shubnyy, Andrey G.; Zhigarkov, Vyacheslav S.; Yusupov, Vladimir I.; Sviridov, Alexander P.; Bagratashvili, Victor N.
2018-04-01
The bleaching of polyacrylamide tattooed skin-mimicking phantoms by a series of laser pulses in a single session is studied. It is shown that compared to the single-pulse procedures tattoo removal by series of laser pulses allows not only for reducing the necessary laser fluence, but also for improving the degree of bleaching. The dynamics of formation and dissolution of microscopic gas bubbles in tattooed skin phantoms exposed to laser radiation is also studied. A laser-induced tattoo bleaching mechanism is suggested, based on the process of selective photo-thermolysis of pigmented particles in conditions where the thermal conductivity of the medium surrounding the particles is decreased because of the microbubbles formed therein.
Reduced Variance using ADVANTG in Monte Carlo Calculations of Dose Coefficients to Stylized Phantoms
NASA Astrophysics Data System (ADS)
Hiller, Mauritius; Bellamy, Michael; Eckerman, Keith; Hertel, Nolan
2017-09-01
The estimation of dose coefficients of external radiation sources to the organs in phantoms becomes increasingly difficult for lower photon source energies. This study focus on the estimation of photon emitters around the phantom. The computer time needed to calculate a result within a certain precision can be lowered by several orders of magnitude using ADVANTG compared to a standard run. Using ADVANTG which employs the DENOVO adjoint calculation package enables the user to create a fully populated set of weight windows and source biasing instructions for an MCNP calculation.
How does C-VIEW image quality compare with conventional 2D FFDM?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Jeffrey S., E-mail: nelson.jeffrey@duke.edu; Wells, Jered R.; Baker, Jay A.
Purpose: The FDA approved the use of digital breast tomosynthesis (DBT) in 2011 as an adjunct to 2D full field digital mammography (FFDM) with the constraint that all DBT acquisitions must be paired with a 2D image to assure adequate interpretative information is provided. Recently manufacturers have developed methods to provide a synthesized 2D image generated from the DBT data with the hope of sparing patients the radiation exposure from the FFDM acquisition. While this much needed alternative effectively reduces the total radiation burden, differences in image quality must also be considered. The goal of this study was to comparemore » the intrinsic image quality of synthesized 2D C-VIEW and 2D FFDM images in terms of resolution, contrast, and noise. Methods: Two phantoms were utilized in this study: the American College of Radiology mammography accreditation phantom (ACR phantom) and a novel 3D printed anthropomorphic breast phantom. Both phantoms were imaged using a Hologic Selenia Dimensions 3D system. Analysis of the ACR phantom includes both visual inspection and objective automated analysis using in-house software. Analysis of the 3D anthropomorphic phantom includes visual assessment of resolution and Fourier analysis of the noise. Results: Using ACR-defined scoring criteria for the ACR phantom, the FFDM images scored statistically higher than C-VIEW according to both the average observer and automated scores. In addition, between 50% and 70% of C-VIEW images failed to meet the nominal minimum ACR accreditation requirements—primarily due to fiber breaks. Software analysis demonstrated that C-VIEW provided enhanced visualization of medium and large microcalcification objects; however, the benefits diminished for smaller high contrast objects and all low contrast objects. Visual analysis of the anthropomorphic phantom showed a measureable loss of resolution in the C-VIEW image (11 lp/mm FFDM, 5 lp/mm C-VIEW) and loss in detection of small microcalcification objects. Spectral analysis of the anthropomorphic phantom showed higher total noise magnitude in the FFDM image compared with C-VIEW. Whereas the FFDM image contained approximately white noise texture, the C-VIEW image exhibited marked noise reduction at midfrequency and high frequency with far less noise suppression at low frequencies resulting in a mottled noise appearance. Conclusions: Their analysis demonstrates many instances where the C-VIEW image quality differs from FFDM. Compared to FFDM, C-VIEW offers a better depiction of objects of certain size and contrast, but provides poorer overall resolution and noise properties. Based on these findings, the utilization of C-VIEW images in the clinical setting requires careful consideration, especially if considering the discontinuation of FFDM imaging. Not explicitly explored in this study is how the combination of DBT + C-VIEW performs relative to DBT + FFDM or FFDM alone.« less
NASA Astrophysics Data System (ADS)
Thatcher, Jeffrey E.; Plant, Kevin D.; King, Darlene R.; Block, Kenneth L.; Fan, Wensheng; DiMaio, J. Michael
2014-05-01
Non-contact photoplethysmography (PPG) has been studied as a method to provide low-cost and non-invasive medical imaging for a variety of near-surface pathologies and two dimensional blood oxygenation measurements. Dynamic tissue phantoms were developed to evaluate this technology in a laboratory setting. The purpose of these phantoms was to generate a tissue model with tunable parameters including: blood vessel volume change; pulse wave frequency; and optical scattering and absorption parameters. A non-contact PPG imaging system was evaluated on this model and compared against laser Doppler imaging (LDI) and a traditional pulse oximeter. Results indicate non-contact PPG accurately identifies pulse frequency and appears to identify signals from optically dense phantoms with significantly higher detection thresholds than LDI.
Kim, Hanna; Hau, Nguyen Trung; Chae, Yu-Gyeong; Lee, Byeong-Il; Kang, Hyun Wook
2016-04-01
Artificial skin phantoms have been developed as an alternative tissue for human skin experiments due to convenient use and easy storage. However, fabricating both thin (∼100 μm) epidermis and relatively thick dermis is often cumbersome, and most developed phantoms have hardly reflected specific human skin types. The objective of this study was to fabricate skin phantoms with 3D printing technique to emulate various human skin types (I-VI) along with the corresponding optical and mechanical properties for laser tattoo removal. Both gelatin and agar powders were mixed with coffee and TiO2 particles to fabricate skin phantoms with materials properties for various skin types (I-VI). A 3D printer was employed to precisely control the thickness of each phantom for epidermis and dermis layers. A number of concentrations of the coffee and TiO2 particles were used to determine the degree of absorption and scattering effects in various skin types. The optical properties between 500 and 1,000 nm for the fabricated phantoms were measured by double-integrating spheres with an inverse adding-doubling (IAD) algorithm. Optical coherence tomography (OCT) and rheometer were also utilized to evaluate optical (absorption and reduced scattering coefficients) and mechanical properties (compression modulus) of the fabricated phantoms, respectively. Visible color inspections presented that the skin phantoms for types I, III, and VI similarly emulated the color space of the human skin types. The optical property measurements demonstrated that the absorption (μa) and reduced scattering (μ(s')) coefficients decreased with wavelengths. Compared to the human skin type VI, a dermis phantom represented quite equivalent values of μa and μ(s') whereas an epidermis phantom showed up to 30% lower μa but almost identical μ(s') over the wavelengths. The OCT measurements confirmed that the thicknesses of the epidermis and the dermis phantoms were measured to be 138.50 ± 0.01 μm and 0.81 ± 0.04 mm, respectively. The mechanical properties of the phantoms mixed with the agar volume of 40% yielded a compression modulus of 83.7 ± 14.8 kPa, which well corresponded to that of human forearm skin (50-95 kPa). The 3D printing technique was able to reliably fabricate the double-layered phantoms emulating a variety of skin types (I-VI) along with the comparable optical and mechanical properties. Further investigations will incorporate artificial chromophores into the fabricated skin phantoms to reliably evaluate the new therapeutic wavelengths for laser tattoo removal. © 2016 Wiley Periodicals, Inc.
Christ, Andreas; Chavannes, Nicolas; Nikoloski, Neviana; Gerber, Hans-Ulrich; Poković, Katja; Kuster, Niels
2005-02-01
A new human head phantom has been proposed by CENELEC/IEEE, based on a large scale anthropometric survey. This phantom is compared to a homogeneous Generic Head Phantom and three high resolution anatomical head models with respect to specific absorption rate (SAR) assessment. The head phantoms are exposed to the radiation of a generic mobile phone (GMP) with different antenna types and a commercial mobile phone. The phones are placed in the standardized testing positions and operate at 900 and 1800 MHz. The average peak SAR is evaluated using both experimental (DASY3 near field scanner) and numerical (FDTD simulations) techniques. The numerical and experimental results compare well and confirm that the applied SAR assessment methods constitute a conservative approach.
Beard, Brian B; Kainz, Wolfgang
2004-10-13
We reviewed articles using computational RF dosimetry to compare the Specific Anthropomorphic Mannequin (SAM) to anatomically correct models of the human head. Published conclusions based on such comparisons have varied widely. We looked for reasons that might cause apparently similar comparisons to produce dissimilar results. We also looked at the information needed to adequately compare the results of computational RF dosimetry studies. We concluded studies were not comparable because of differences in definitions, models, and methodology. Therefore we propose a protocol, developed by an IEEE standards group, as an initial step in alleviating this problem. The protocol calls for a benchmark validation study comparing the SAM phantom to two anatomically correct models of the human head. It also establishes common definitions and reporting requirements that will increase the comparability of all computational RF dosimetry studies of the human head.
Beard, Brian B; Kainz, Wolfgang
2004-01-01
We reviewed articles using computational RF dosimetry to compare the Specific Anthropomorphic Mannequin (SAM) to anatomically correct models of the human head. Published conclusions based on such comparisons have varied widely. We looked for reasons that might cause apparently similar comparisons to produce dissimilar results. We also looked at the information needed to adequately compare the results of computational RF dosimetry studies. We concluded studies were not comparable because of differences in definitions, models, and methodology. Therefore we propose a protocol, developed by an IEEE standards group, as an initial step in alleviating this problem. The protocol calls for a benchmark validation study comparing the SAM phantom to two anatomically correct models of the human head. It also establishes common definitions and reporting requirements that will increase the comparability of all computational RF dosimetry studies of the human head. PMID:15482601
Breast Radiation Dose With CESM Compared With 2D FFDM and 3D Tomosynthesis Mammography.
James, Judy R; Pavlicek, William; Hanson, James A; Boltz, Thomas F; Patel, Bhavika K
2017-02-01
We aimed to compare radiation dose received during contrast-enhanced spectral mammography (CESM) using high- and low-energy projections with radiation dose received during 2D full field digital mammography (FFDM) and 3D tomosynthesis on phantoms and patients with varying breast thickness and density. A single left craniocaudal projection was chosen to determine the doses for 6214 patients who underwent 2D FFDM, 3662 patients who underwent 3D tomosynthesis, and 173 patients who underwent CESM in this retrospective study. Dose measurements were also collected in phantoms with composition mimicking nondense and dense breast tissue. Average glandular dose (AGD) ± SD was 3.0 ± 1.1 mGy for CESM exposures at a mean breast thickness of 63 mm. At this thickness, the dose was 2.1 mGy from 2D FFDM and 2.5 mGy from 3D tomosynthesis. The nondense phantom had a mean AGD of 1.0 mGy with 2D FFDM, 1.3 mGy with 3D tomosynthesis, and 1.6 mGy with CESM. The dense breast phantom had a mean AGD of 1.3 mGy with 2D FFDM, 1.4 mGy with 3D tomosynthesis, and 2.1 mGy with CESM. At a compressed thickness of 4.5 cm, radiation exposure from CESM was approximately 25% higher in dense breast phantoms than in nondense breast phantoms. The dose in the dense phantom at a compressed thickness of 6 cm was approximately 42% higher than the dose in the nondense phantom at a compressed thickness of 4.5 cm. CESM was found to increase AGD at a mean breast thickness of 63 mm by approximately 0.9 mGy and 0.5 mGy compared with 2D FFDM and 3D tomosynthesis, respectively. Of note, CESM provides a standard image (similar to 2D FFDM) that is obtained using the low-energy projection. Overall, the AGD from CESM falls below the dose limit of 3 mGy set by Mammography Quality Standards Act regulations.
NASA Astrophysics Data System (ADS)
Hegenbart, L.; Na, Y. H.; Zhang, J. Y.; Urban, M.; Xu, X. George
2008-10-01
There are currently no physical phantoms available for calibrating in vivo counting devices that represent women with different breast sizes because such phantoms are difficult, time consuming and expensive to fabricate. In this work, a feasible alternative involving computational phantoms was explored. A series of new female voxel phantoms with different breast sizes were developed and ported into a Monte Carlo radiation transport code for performing virtual lung counting efficiency calibrations. The phantoms are based on the RPI adult female phantom, a boundary representation (BREP) model. They were created with novel deformation techniques and then voxelized for the Monte Carlo simulations. Eight models have been selected with cup sizes ranging from AA to G according to brassiere industry standards. Monte Carlo simulations of a lung counting system were performed with these phantoms to study the effect of breast size on lung counting efficiencies, which are needed to determine the activity of a radionuclide deposited in the lung and hence to estimate the resulting dose to the worker. Contamination scenarios involving three different radionuclides, namely Am-241, Cs-137 and Co-60, were considered. The results show that detector efficiencies considerably decrease with increasing breast size, especially for low energy photon emitting radionuclides. When the counting efficiencies of models with cup size AA were compared to those with cup size G, a difference of up to 50% was observed. The detector efficiencies for each radionuclide can be approximated by curve fitting in the total breast mass (polynomial of second order) or the cup size (power).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y; Fullerton, G; Goins, B
Purpose: In our previous study a preclinical multi-modality quality assurance (QA) phantom that contains five tumor-simulating test objects with 2, 4, 7, 10 and 14 mm diameters was developed for accurate tumor size measurement by researchers during cancer drug development and testing. This study analyzed the errors during tumor volume measurement from preclinical magnetic resonance (MR), micro-computed tomography (micro- CT) and ultrasound (US) images acquired in a rodent tumor model using the preclinical multi-modality QA phantom. Methods: Using preclinical 7-Tesla MR, US and micro-CT scanners, images were acquired of subcutaneous SCC4 tumor xenografts in nude rats (3–4 rats per group;more » 5 groups) along with the QA phantom using the same imaging protocols. After tumors were excised, in-air micro-CT imaging was performed to determine reference tumor volume. Volumes measured for the rat tumors and phantom test objects were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three imaging modalities. Then linear regression analysis was performed to compare image-based tumor volumes with the reference tumor volume and known test object volume for the rats and the phantom respectively. Results: The slopes of regression lines for in-vivo tumor volumes measured by three imaging modalities were 1.021, 1.101 and 0.862 for MRI, micro-CT and US respectively. For phantom, the slopes were 0.9485, 0.9971 and 0.9734 for MRI, micro-CT and US respectively. Conclusion: For both animal and phantom studies, random and systematic errors were observed. Random errors were observer-dependent and systematic errors were mainly due to selected imaging protocols and/or measurement method. In the animal study, there were additional systematic errors attributed to ellipsoidal assumption for tumor shape. The systematic errors measured using the QA phantom need to be taken into account to reduce measurement errors during the animal study.« less
Flour pads: devices to improve CHESS fat suppression.
Moriya, Susumu; Miki, Yukio; Miyati, Tosiaki; Kanagaki, Mitsunori; Yokobayashi, Tsuneo
2014-01-01
We compared the suppression of lingering fat signals in chemical shift selective (CHESS) images by pads filled with flour and pads filled with rice in a phantom and human subjects. First, we prepared a phantom by creating an empty space in a mass of lard and filling the space with air, rice, or flour. Then, we obtained MR images of the phantoms in the center of the magnetic field and at a position 8 cm to the left (off-center) to compare lingering fat signals. MR images of the knee were obtained in 10 healthy volunteers using CHESS after placing a polyurethane sponge pillow, rice pad, or flour pad in the popliteal space under the flexed knee. We visually assessed the number of areas with lingering fat signals and the statistical differences among the groups were assessed using Tukey's test. Similarly to rice, flour clearly decreased lingering fat signals in the phantom study. A similar effect was obtained in the off-center images. In the volunteer study, the mean number of areas with lingering fat signals was 2.5 with a sponge pillow, 0.5 with the rice pad, and 0.3 with the flour pad. Those numbers were significantly different using flour pad and rice pad compared with sponge pillow (P < 0.001). No significant differences were seen between flour pads and rice pads (P = 0.662). Flour pads can suppress lingering fat signals in CHESS images.
Liao, Yuliang; Wang, Linjing; Xu, Xiangdong; Chen, Haibin; Chen, Jiawei; Zhang, Guoqian; Lei, Huaiyu; Wang, Ruihao; Zhang, Shuxu; Gu, Xuejun; Zhen, Xin; Zhou, Linghong
2017-06-01
To design and construct a three-dimensional (3D) anthropomorphic abdominal phantom for geometric accuracy and dose summation accuracy evaluations of deformable image registration (DIR) algorithms for adaptive radiation therapy (ART). Organ molds, including liver, kidney, spleen, stomach, vertebra, and two metastasis tumors, were 3D printed using contours from an ovarian cancer patient. The organ molds were molded with deformable gels made of different mixtures of polyvinyl chloride (PVC) and the softener dioctyl terephthalate. Gels with different densities were obtained by a polynomial fitting curve that described the relation between the Hounsfield unit (HU) and PVC-softener blending ratio. The rigid vertebras were constructed by molding of white cement and cellulose pulp. The final abdominal phantom was assembled by arranging all the fabricated organs inside a hollow dummy according to their anatomies, and sealed by deformable gel with averaged HU of muscle and fat. Fiducial landmarks were embedded inside the phantom for spatial accuracy and dose accumulation accuracy studies. Two channels were excavated to facilitate ionization chamber insertion for dosimetric measurements. Phantom properties such as deformable gel elasticity and HU stability were studied. The dosimetric measurement accuracy in the phantom was performed, and the DIR accuracies of three DIR algorithms available in the open source DIR toolkit-DIRART were also validated. The constructed deformable gel showed elastic behavior and was stable in HU values over times, proving to be a practical material for the deformable phantom. The constructed abdominal phantom consisted of realistic anatomies in terms of both anatomical shapes and densities when compared with its reference patient. The dosimetric measurements showed a good agreement with the calculated doses from the treatment planning system. Fiducial-based accuracy analysis conducted on the constructed phantom demonstrated the feasibility of applying the phantom for organ-wise DIR accuracy assessment. We have designed and constructed an anthropomorphic abdominal deformable phantom with satisfactory elastic property, realistic organ density, and anatomy. This physical phantom can be used for routine validations of DIR geometric accuracy and dose accumulation accuracy in ART. © 2017 American Association of Physicists in Medicine.
Automated model-based quantitative analysis of phantoms with spherical inserts in FDG PET scans.
Ulrich, Ethan J; Sunderland, John J; Smith, Brian J; Mohiuddin, Imran; Parkhurst, Jessica; Plichta, Kristin A; Buatti, John M; Beichel, Reinhard R
2018-01-01
Quality control plays an increasingly important role in quantitative PET imaging and is typically performed using phantoms. The purpose of this work was to develop and validate a fully automated analysis method for two common PET/CT quality assurance phantoms: the NEMA NU-2 IQ and SNMMI/CTN oncology phantom. The algorithm was designed to only utilize the PET scan to enable the analysis of phantoms with thin-walled inserts. We introduce a model-based method for automated analysis of phantoms with spherical inserts. Models are first constructed for each type of phantom to be analyzed. A robust insert detection algorithm uses the model to locate all inserts inside the phantom. First, candidates for inserts are detected using a scale-space detection approach. Second, candidates are given an initial label using a score-based optimization algorithm. Third, a robust model fitting step aligns the phantom model to the initial labeling and fixes incorrect labels. Finally, the detected insert locations are refined and measurements are taken for each insert and several background regions. In addition, an approach for automated selection of NEMA and CTN phantom models is presented. The method was evaluated on a diverse set of 15 NEMA and 20 CTN phantom PET/CT scans. NEMA phantoms were filled with radioactive tracer solution at 9.7:1 activity ratio over background, and CTN phantoms were filled with 4:1 and 2:1 activity ratio over background. For quantitative evaluation, an independent reference standard was generated by two experts using PET/CT scans of the phantoms. In addition, the automated approach was compared against manual analysis, which represents the current clinical standard approach, of the PET phantom scans by four experts. The automated analysis method successfully detected and measured all inserts in all test phantom scans. It is a deterministic algorithm (zero variability), and the insert detection RMS error (i.e., bias) was 0.97, 1.12, and 1.48 mm for phantom activity ratios 9.7:1, 4:1, and 2:1, respectively. For all phantoms and at all contrast ratios, the average RMS error was found to be significantly lower for the proposed automated method compared to the manual analysis of the phantom scans. The uptake measurements produced by the automated method showed high correlation with the independent reference standard (R 2 ≥ 0.9987). In addition, the average computing time for the automated method was 30.6 s and was found to be significantly lower (P ≪ 0.001) compared to manual analysis (mean: 247.8 s). The proposed automated approach was found to have less error when measured against the independent reference than the manual approach. It can be easily adapted to other phantoms with spherical inserts. In addition, it eliminates inter- and intraoperator variability in PET phantom analysis and is significantly more time efficient, and therefore, represents a promising approach to facilitate and simplify PET standardization and harmonization efforts. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Homolka, Peter; Figl, Michael; Wartak, Andreas; Glanzer, Mathias; Dünkelmeyer, Martina; Hojreh, Azadeh; Hummel, Johann
2017-04-01
An anthropomorphic head phantom including eye inserts allowing placement of TLDs 3 mm below the cornea has been produced on a 3D printer using a photo-cured acrylic resin to best allow tissue equivalence. Thus Hp(3) can be determined in radiological and interventional photon radiation fields. Eye doses and doses to the forehead have been compared to an Alderson RANDO head and a 3M Lucite skull phantom in terms of surface dose per incident air kerma for frontal irradiation since the commercial phantoms do not allow placement of TLDs 3 mm below the corneal surface. A comparison of dose reduction factors (DRFs) of a common lead glasses model has also been performed. Eye dose per incident air kerma were comparable between all three phantoms (printed phantom: 1.40, standard error (SE) 0.04; RANDO: 1.36, SE 0.03; 3M: 1.37, SE 0.03). Doses to the forehead were identical to eye surface doses for the printed phantom and the RANDO head (ratio 1.00 SE 0.04, and 0.99 SE 0.03, respectively). In the 3M Lucite skull phantom dose on the forehead was 15% lower than dose to the eyes attributable to phantom properties. DRF of a sport frame style leaded glasses model with 0.75 mm lead equivalence measured were 6.8 SE 0.5, 9.3 SE 0.4 and 10.5 SE 0.5 for the RANDO head, the printed phantom, and the 3M Lucite head phantom, respectively, for frontal irradiation. A comparison of doses measured in 3 mm depth and on the surface of the eyes in the printed phantom revealed no difference larger than standard errors from TLD dosimetry. 3D printing offers an interesting opportunity for phantom design with increasing potential as printers allowing combinations of tissue substitutes will become available. Variations between phantoms may provide a useful indication of uncertainty budgets when using phantom measurements to estimate individual personnel doses.
Homolka, Peter; Figl, Michael; Wartak, Andreas; Glanzer, Mathias; Dünkelmeyer, Martina; Hojreh, Azadeh; Hummel, Johann
2017-04-21
An anthropomorphic head phantom including eye inserts allowing placement of TLDs 3 mm below the cornea has been produced on a 3D printer using a photo-cured acrylic resin to best allow tissue equivalence. Thus H p (3) can be determined in radiological and interventional photon radiation fields. Eye doses and doses to the forehead have been compared to an Alderson RANDO head and a 3M Lucite skull phantom in terms of surface dose per incident air kerma for frontal irradiation since the commercial phantoms do not allow placement of TLDs 3 mm below the corneal surface. A comparison of dose reduction factors (DRFs) of a common lead glasses model has also been performed. Eye dose per incident air kerma were comparable between all three phantoms (printed phantom: 1.40, standard error (SE) 0.04; RANDO: 1.36, SE 0.03; 3M: 1.37, SE 0.03). Doses to the forehead were identical to eye surface doses for the printed phantom and the RANDO head (ratio 1.00 SE 0.04, and 0.99 SE 0.03, respectively). In the 3M Lucite skull phantom dose on the forehead was 15% lower than dose to the eyes attributable to phantom properties. DRF of a sport frame style leaded glasses model with 0.75 mm lead equivalence measured were 6.8 SE 0.5, 9.3 SE 0.4 and 10.5 SE 0.5 for the RANDO head, the printed phantom, and the 3M Lucite head phantom, respectively, for frontal irradiation. A comparison of doses measured in 3 mm depth and on the surface of the eyes in the printed phantom revealed no difference larger than standard errors from TLD dosimetry. 3D printing offers an interesting opportunity for phantom design with increasing potential as printers allowing combinations of tissue substitutes will become available. Variations between phantoms may provide a useful indication of uncertainty budgets when using phantom measurements to estimate individual personnel doses.
An anthropomorphic phantom for quantitative evaluation of breast MRI.
Freed, Melanie; de Zwart, Jacco A; Loud, Jennifer T; El Khouli, Riham H; Myers, Kyle J; Greene, Mark H; Duyn, Jeff H; Badano, Aldo
2011-02-01
In this study, the authors aim to develop a physical, tissue-mimicking phantom for quantitative evaluation of breast MRI protocols. The objective of this phantom is to address the need for improved standardization in breast MRI and provide a platform for evaluating the influence of image protocol parameters on lesion detection and discrimination. Quantitative comparisons between patient and phantom image properties are presented. The phantom is constructed using a mixture of lard and egg whites, resulting in a random structure with separate adipose- and glandular-mimicking components. T1 and T2 relaxation times of the lard and egg components of the phantom were estimated at 1.5 T from inversion recovery and spin-echo scans, respectively, using maximum-likelihood methods. The image structure was examined quantitatively by calculating and comparing spatial covariance matrices of phantom and patient images. A static, enhancing lesion was introduced by creating a hollow mold with stereolithography and filling it with a gadolinium-doped water solution. Measured phantom relaxation values fall within 2 standard errors of human values from the literature and are reasonably stable over 9 months of testing. Comparison of the covariance matrices of phantom and patient data demonstrates that the phantom and patient data have similar image structure. Their covariance matrices are the same to within error bars in the anterior-posterior direction and to within about two error bars in the right-left direction. The signal from the phantom's adipose-mimicking material can be suppressed using active fat-suppression protocols. A static, enhancing lesion can also be included with the ability to change morphology and contrast agent concentration. The authors have constructed a phantom and demonstrated its ability to mimic human breast images in terms of key physical properties that are relevant to breast MRI. This phantom provides a platform for the optimization and standardization of breast MRI imaging protocols for lesion detection and characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Daniel J.; Lee, Choonsik; Tien, Christopher
2013-01-15
Purpose: To validate the accuracy of a Monte Carlo source model of the Siemens SOMATOM Sensation 16 CT scanner using organ doses measured in physical anthropomorphic phantoms. Methods: The x-ray output of the Siemens SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code, MCNPX version 2.6. The resulting source model was able to perform various simulated axial and helical computed tomographic (CT) scans of varying scan parameters, including beam energy, filtration, pitch, and beam collimation. Two custom-built anthropomorphic phantoms were used to take dose measurements on the CT scanner: an adult male and amore » 9-month-old. The adult male is a physical replica of University of Florida reference adult male hybrid computational phantom, while the 9-month-old is a replica of University of Florida Series B 9-month-old voxel computational phantom. Each phantom underwent a series of axial and helical CT scans, during which organ doses were measured using fiber-optic coupled plastic scintillator dosimeters developed at University of Florida. The physical setup was reproduced and simulated in MCNPX using the CT source model and the computational phantoms upon which the anthropomorphic phantoms were constructed. Average organ doses were then calculated based upon these MCNPX results. Results: For all CT scans, good agreement was seen between measured and simulated organ doses. For the adult male, the percent differences were within 16% for axial scans, and within 18% for helical scans. For the 9-month-old, the percent differences were all within 15% for both the axial and helical scans. These results are comparable to previously published validation studies using GE scanners and commercially available anthropomorphic phantoms. Conclusions: Overall results of this study show that the Monte Carlo source model can be used to accurately and reliably calculate organ doses for patients undergoing a variety of axial or helical CT examinations on the Siemens SOMATOM Sensation 16 scanner.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelletier, C; Jung, J; Lee, C
Purpose: Epidemiological study of second cancer risk for cancer survivors often requires the dose to normal tissues located outside the anatomy covered by radiological imaging, which is usually limited to tumor and organs at risk. We have investigated the feasibility of using whole body computational human phantoms for estimating out-of-field organ doses for patients treated by Intensity Modulated Radiation Therapy (IMRT). Methods: Identical 7-field IMRT prostate plans were performed using X-ray Voxel Monte Carlo (XVMC), a radiotherapy-specific Monte Carlo transport code, on the computed tomography (CT) images of the torso of an adult male patient (175 cm height, 66 kgmore » weight) and an adult male hybrid computational phantom with the equivalent body size. Dose to the liver, right lung, and left lung were calculated and compared. Results: Considerable differences are seen between the doses calculated by XVMC for the patient CT and the hybrid phantom. One major contributing factor is the treatment method, deep inspiration breath hold (DIBH), used for this patient. This leads to significant differences in the organ position relative to the treatment isocenter. The transverse distances from the treatment isocenter to the inferior border of the liver, left lung, and right lung are 19.5cm, 29.5cm, and 30.0cm, respectively for the patient CT, compared with 24.3cm, 36.6cm, and 39.1cm, respectively, for the hybrid phantom. When corrected for the distance, the mean doses calculated using the hybrid phantom are within 28% of those calculated using the patient CT. Conclusion: This study showed that mean dose to the organs located in the missing CT coverage can be reconstructed by using whole body computational human phantoms within reasonable dosimetric uncertainty, however appropriate corrections may be necessary if the patient is treated with a technique that will significantly deform the size or location of the organs relative to the hybrid phantom.« less
Phantom smoking among young adult bar patrons
Guillory, Jamie; Lisha, Nadra; Lee, Youn Ok; Ling, Pamela M
2016-01-01
Objective To explore the prevalence and sociodemographic makeup of smokers who do not self-identify as smokers (ie, phantom smokers) compared with self-identifying smokers in a sample of bar-going young adults aged 18–30 years to more accurately assess young adult prevalence of smoking and inform cessation message targeting. Methods Cross-sectional surveys of smokers (n=3089) were conducted in randomly selected bars/nightclubs in seven US cities. Logistic regression models assessed associations between phantom smoking ( past 30-day smoking and denial of being a smoker), tobacco and alcohol use behaviours (eg, social smoking, nicotine dependence, smoking while drinking, past 30-day alcohol use) and demographics. Results Compared with smokers, phantom smokers were more likely to be college graduates (OR=1.43, 95% CI 1.03 to 1.98) and to identify themselves as social smokers (OR=1.60, 95% CI 1.27 to 2.12). Phantom smokers had lower odds of smoking while drinking (OR=0.28, 95% CI 0.25 to 0.32), being nicotine dependent (OR=0.36, 95% CI 0.22 to 0.76) and having quit for at least 1 day in the last year (OR=0.46, 95% CI 0.36 to 0.69) compared with smokers. Conclusions This research extends phantom smoking literature on college students to provide a broader picture of phantom smoking among young adults in high-risk contexts and of varying levels of educational attainment. Phantom smokers may be particularly sensitive to social pressures against smoking, suggesting the importance of identifying smoking as a behaviour (rather than identity) in cessation messaging to ensure that phantom smokers are reached. PMID:27048205
NASA Astrophysics Data System (ADS)
Sim, Jai Kyoung; Hyun, Jaeyub; Doh, Il; Ahn, Bongyoung; Kim, Yong Tae
2018-02-01
A thin-film resistance temperature detector (RTD) array is proposed to measure the temperature distribution inside a phantom. HIFU (high-intensity focused ultrasound) is a non-invasive treatment method using focused ultrasound to heat up a localized region, so it is important to measure the temperature distribution without affecting the ultrasonic field and heat conduction. The present 25 µm thick PI (polyimide) film is transparent not only to an ultrasonic field, because its thickness is much smaller than the wavelength of ultrasound, but also to heat conduction, owing to its negligible thermal mass compared to the phantom. A total of 33 RTDs consisting of Pt resistors and interconnection lines were patterned on a PI substrate using MEMS (microelectromechanical systems) technology, and a polymer phantom was fabricated with the film at the center. The expanded uncertainty of the RTDs was 0.8 K. In the experimental study using a 1 MHz HIFU transducer, the maximum temperature inside the phantom was measured as 70.1 °C just after a HIFU excitation of 6.4 W for 180 s. The time responses of the RTDs at different positions also showed the residual heat transfer inside the phantom after HIFU excitation. HIFU results with the phantom showed that a thin-film RTD array can measure the temperature distribution inside a phantom.
Li, Jun; Shi, Wenyin; Andrews, David; Werner-Wasik, Maria; Lu, Bo; Yu, Yan; Dicker, Adam; Liu, Haisong
2017-06-01
The study was aimed to compare online 6 degree-of-freedom image registrations of TrueBeam cone-beam computed tomography and BrainLab ExacTrac X-ray imaging systems for intracranial radiosurgery. Phantom and patient studies were performed on a Varian TrueBeam STx linear accelerator (version 2.5), which is integrated with a BrainLab ExacTrac imaging system (version 6.1.1). The phantom study was based on a Rando head phantom and was designed to evaluate isocenter location dependence of the image registrations. Ten isocenters at various locations representing clinical treatment sites were selected in the phantom. Cone-beam computed tomography and ExacTrac X-ray images were taken when the phantom was located at each isocenter. The patient study included 34 patients. Cone-beam computed tomography and ExacTrac X-ray images were taken at each patient's treatment position. The 6 degree-of-freedom image registrations were performed on cone-beam computed tomography and ExacTrac, and residual errors calculated from cone-beam computed tomography and ExacTrac were compared. In the phantom study, the average residual error differences (absolute values) between cone-beam computed tomography and ExacTrac image registrations were 0.17 ± 0.11 mm, 0.36 ± 0.20 mm, and 0.25 ± 0.11 mm in the vertical, longitudinal, and lateral directions, respectively. The average residual error differences in the rotation, roll, and pitch were 0.34° ± 0.08°, 0.13° ± 0.09°, and 0.12° ± 0.10°, respectively. In the patient study, the average residual error differences in the vertical, longitudinal, and lateral directions were 0.20 ± 0.16 mm, 0.30 ± 0.18 mm, 0.21 ± 0.18 mm, respectively. The average residual error differences in the rotation, roll, and pitch were 0.40°± 0.16°, 0.17° ± 0.13°, and 0.20° ± 0.14°, respectively. Overall, the average residual error differences were <0.4 mm in the translational directions and <0.5° in the rotational directions. ExacTrac X-ray image registration is comparable to TrueBeam cone-beam computed tomography image registration in intracranial treatments.
Technical Note: Characterization of custom 3D printed multimodality imaging phantoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieniosek, Matthew F.; Lee, Brian J.; Levin, Craig S., E-mail: cslevin@stanford.edu
Purpose: Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial “Micro Deluxe” phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom withmore » sub-mm features. Methods: CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results: Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. Conclusions: This work shows that 3D printed phantoms can be functionally equivalent to commercially available phantoms. They are a viable option for quickly distributing and fabricating low cost, customized phantoms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Kim, M; Lee, M
Purpose: The novel 3 dimensional (3D)-printed spine quality assurance (QA) phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet, were developed and evaluated for spine stereotactic body radiation treatment (SBRT). Methods: The developed 3D-printed spine QA phantom consisted of an acrylic body and a 3D-printed spine phantom. DLP and Polyjet 3D printers using the high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. To verify dosimetric effects, the novel phantom was made it enable to insert films between each slabs of acrylic body phantom. Also, for measuring internal dose of spine, 3D-printedmore » spine phantom was designed as divided laterally exactly in half. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield unit (HU) was measured based on each CT image. Intensity-modulated radiotherapy plans to deliver a fraction of a 16 Gy dose to a planning target volume (PTV) based on the two 3D-printing techniques were compared for target coverage and normal organ-sparing. Results: Image fusion demonstrated good reproducibility of the fabricated spine QA phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than for the Polyjet-generated phantom. The organs at risk received a lower dose when the DLP technique was used than when the Polyjet technique was used. Conclusion: This study confirmed that a novel 3D-printed phantom mimicking a high-density organ can be created based on CT images, and that a developed 3D-printed spine phantom could be utilized in patient-specific QA for SBRT. Despite using the same main material, DLP and Polyjet yielded different HU values. Therefore, the printing technique and materials must be carefully chosen in order to accurately produce a patient-specific QA phantom.« less
Hyer, D; Mart, C
2012-06-01
The aim of this study was to develop a phantom and analysis software that could be used to quickly and accurately determine the location of radiation isocenter using the Electronic Portal Imaging Device (EPID). The phantom could then be used as a static reference point for performing other tests including: radiation vs. light field coincidence, MLC and Jaw strip tests, and Varian Optical Guidance Platform (OGP) calibration. The solution proposed uses a collimator setting of 10×10 cm to acquire EPID images of the new phantom constructed from LEGO® blocks. Images from a number of gantry and collimator angles are analyzed by the software to determine the position of the jaws and center of the phantom in each image. The distance between a chosen jaw and the phantom center is then compared to the same distance measured after a 180 degree collimator rotation to determine if the phantom is centered in the dimension being investigated. The accuracy of the algorithm's measurements were verified by independent measurement to be approximately equal to the detector's pitch. Light versus radiation field as well as MLC and Jaw strip tests are performed using measurements based on the phantom center once located at the radiation isocenter. Reproducibility tests show that the algorithm's results were objectively repeatable. Additionally, the phantom and software are completely independent of linac vendor and this study presents results from two major linac manufacturers. An OGP calibration array was also integrated into the phantom to allow calibration of the OGP while the phantom is positioned at radiation isocenter to reduce setup uncertainty contained in the calibration. This solution offers a quick, objective method to perform isocenter localization as well as laser alignment, OGP calibration, and other tests on a monthly basis. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J; Shi, W; Andrews, D
2016-06-15
Purpose: To compare online image registrations of TrueBeam cone-beam CT (CBCT) and BrainLab ExacTrac x-ray imaging systems for cranial radiotherapy. Method: Phantom and patient studies were performed on a Varian TrueBeam STx linear accelerator (Version 2.5), which is integrated with a BrainLab ExacTrac imaging system (Version 6.1.1). The phantom study was based on a Rando head phantom, which was designed to evaluate isocenter-location dependence of the image registrations. Ten isocenters were selected at various locations in the phantom, which represented clinical treatment sites. CBCT and ExacTrac x-ray images were taken when the phantom was located at each isocenter. The patientmore » study included thirteen patients. CBCT and ExacTrac x-ray images were taken at each patient’s treatment position. Six-dimensional image registrations were performed on CBCT and ExacTrac, and residual errors calculated from CBCT and ExacTrac were compared. Results: In the phantom study, the average residual-error differences between CBCT and ExacTrac image registrations were: 0.16±0.10 mm, 0.35±0.20 mm, and 0.21±0.15 mm, in the vertical, longitudinal, and lateral directions, respectively. The average residual-error differences in the rotation, roll, and pitch were: 0.36±0.11 degree, 0.14±0.10 degree, and 0.12±0.10 degree, respectively. In the patient study, the average residual-error differences in the vertical, longitudinal, and lateral directions were: 0.13±0.13 mm, 0.37±0.21 mm, 0.22±0.17 mm, respectively. The average residual-error differences in the rotation, roll, and pitch were: 0.30±0.10 degree, 0.18±0.11 degree, and 0.22±0.13 degree, respectively. Larger residual-error differences (up to 0.79 mm) were observed in the longitudinal direction in the phantom and patient studies where isocenters were located in or close to frontal lobes, i.e., located superficially. Conclusion: Overall, the average residual-error differences were within 0.4 mm in the translational directions and were within 0.4 degree in the rotational directions.« less
NASA Astrophysics Data System (ADS)
Yamamoto, T.; Matsumura, A.; Yamamoto, K.; Kumada, H.; Shibata, Y.; Nose, T.
2002-07-01
The aim of this study was to determine the in-phantom thermal neutron distribution derived from neutron beams for intraoperative boron neutron capture therapy (IOBNCT). Gold activation wires arranged in a cylindrical water phantom with (void-in-phantom) or without (standard phantom) a cylinder styrene form placed inside were irradiated by using the epithermal beam (ENB) and the mixed thermal-epithermal beam (TNB-1) at the Japan Research Reactor No 4. With ENB, we observed a flattened distribution of thermal neutron flux and a significantly enhanced thermal flux delivery at a depth compared with the results of using TNB-1. The thermal neutron distribution derived from both the ENB and TNB-1 was significantly improved in the void-in-phantom, and a double high dose area was formed lateral to the void. The flattened distribution in the circumference of the void was observed with the combination of ENB and the void-in-phantom. The measurement data suggest that the ENB may provide a clinical advantage in the form of an enhanced and flattened dose delivery to the marginal tissue of a post-operative cavity in which a residual and/or microscopically infiltrating tumour often occurs. The combination of the epithermal neutron beam and IOBNCT will improve the clinical results of BNCT for brain tumours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, K; DiCostanzo, D; Gupta, N
Purpose: To test the efficacy of a retrospective metal artifact reduction (MAR) reconstruction algorithm for a commercial computed tomography (CT) scanner for radiation therapy purposes. Methods: High Z geometric integrity and artifact reduction analysis was performed with three phantoms using General Electric’s (GE) Discovery CT. The three phantoms included: a Computerized Imaging Reference Systems (CIRS) electron density phantom (Model 062) with a 6.5 mm diameter titanium rod insert, a custom spine phantom using Synthes Spine hardware submerged in water, and a dental phantom with various high Z fillings submerged in water. Each phantom was reconstructed using MAR and compared againstmore » the original scan. Furthermore, each scenario was tested using standard and extended Hounsfield Unit (HU) ranges. High Z geometric integrity was performed using the CIRS phantom, while the artifact reduction was performed using all three phantoms. Results: Geometric integrity of the 6.5 mm diameter rod was slightly overestimated for non-MAR scans for both standard and extended HU. With MAR reconstruction, the rod was underestimated for both standard and extended HU. For artifact reduction, the mean and standard deviation was compared in a volume of interest (VOI) in the surrounding material (water and water equivalent material, ∼0HU). Overall, the mean value of the VOI was closer to 0 HU for the MAR reconstruction compared to the non-MAR scan for most phantoms. Additionally, the standard deviations for all phantoms were greatly reduced using MAR reconstruction. Conclusion: GE’s MAR reconstruction algorithm improves image quality with the presence of high Z material with minimal degradation of its geometric integrity. High Z delineation can be carried out with proper contouring techniques. The effects of beam hardening artifacts are greatly reduced with MAR reconstruction. Tissue corrections due to these artifacts can be eliminated for simple high Z geometries and greatly reduced for more complex geometries.« less
Evaluation of the spline reconstruction technique for PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kastis, George A., E-mail: gkastis@academyofathens.gr; Kyriakopoulou, Dimitra; Gaitanis, Anastasios
2014-04-15
Purpose: The spline reconstruction technique (SRT), based on the analytic formula for the inverse Radon transform, has been presented earlier in the literature. In this study, the authors present an improved formulation and numerical implementation of this algorithm and evaluate it in comparison to filtered backprojection (FBP). Methods: The SRT is based on the numerical evaluation of the Hilbert transform of the sinogram via an approximation in terms of “custom made” cubic splines. By restricting reconstruction only within object pixels and by utilizing certain mathematical symmetries, the authors achieve a reconstruction time comparable to that of FBP. The authors havemore » implemented SRT in STIR and have evaluated this technique using simulated data from a clinical positron emission tomography (PET) system, as well as real data obtained from clinical and preclinical PET scanners. For the simulation studies, the authors have simulated sinograms of a point-source and three digital phantoms. Using these sinograms, the authors have created realizations of Poisson noise at five noise levels. In addition to visual comparisons of the reconstructed images, the authors have determined contrast and bias for different regions of the phantoms as a function of noise level. For the real-data studies, sinograms of an{sup 18}F-FDG injected mouse, a NEMA NU 4-2008 image quality phantom, and a Derenzo phantom have been acquired from a commercial PET system. The authors have determined: (a) coefficient of variations (COV) and contrast from the NEMA phantom, (b) contrast for the various sections of the Derenzo phantom, and (c) line profiles for the Derenzo phantom. Furthermore, the authors have acquired sinograms from a whole-body PET scan of an {sup 18}F-FDG injected cancer patient, using the GE Discovery ST PET/CT system. SRT and FBP reconstructions of the thorax have been visually evaluated. Results: The results indicate an improvement in FWHM and FWTM in both simulated and real point-source studies. In all simulated phantoms, the SRT exhibits higher contrast and lower bias than FBP at all noise levels, by increasing the COV in the reconstructed images. Finally, in real studies, whereas the contrast of the cold chambers are similar for both algorithms, the SRT reconstructed images of the NEMA phantom exhibit slightly higher COV values than those of FBP. In the Derenzo phantom, SRT resolves the 2-mm separated holes slightly better than FBP. The small-animal and human reconstructions via SRT exhibit slightly higher resolution and contrast than the FBP reconstructions. Conclusions: The SRT provides images of higher resolution, higher contrast, and lower bias than FBP, by increasing slightly the noise in the reconstructed images. Furthermore, it eliminates streak artifacts outside the object boundary. Unlike other analytic algorithms, the reconstruction time of SRT is comparable with that of FBP. The source code for SRT will become available in a future release of STIR.« less
Najafi, Mohsen; Teimouri, Javad; Shirazi, Alireza; Geraily, Ghazale; Esfahani, Mahbod; Shafaei, Mostafa
2017-10-01
Stereotactic radiosurgery is a high precision modality for conformally delivering high doses of radiation to the brain lesion with a large dose volume. Several studies for the quality control of this technique were performed to measure the dose delivered to the target with a homogenous head phantom and some dosimeters. Some studies were also performed with one or two instances of heterogeneity in the head phantom to measure the dose delivered to the target. But these studies assumed the head as a sphere and simple shape heterogeneity. The construction of an adult human head phantom with the same size, shape, and real inhomogeneity as an adult human head is needed. Only then is measuring the accurate dose delivered to the area of interest and comparison with the calculated dose possible. According to the ICRU Report 44, polytetrafluoroethylene (PTFE) and methyl methacrylate were selected as a bone and soft tissue, respectively. A set of computed tomography (CT) scans from a standard human head were taken, and simplification of the CT images was used to design the layers of the phantom. The parts of each slice were cut and attached together. Tests of density and CT number were done to compare the material of the phantom with tissues of the head. The dose delivered to the target was measured with an EBT3 film. The density of the PTFE and Plexiglas that were inserted in the phantom are in good agreement with bone and soft tissue. Also, the CT numbers of these materials have a low difference. The dose distribution from the EBT3 film and the treatment planning system is similar. The constructed phantom with a size and inhomogeneity like an adult human head is suitable to measure the dose delivered to the area of interest. It also helps make an accurate comparison with the calculated dose by the treatment planning system. By using this phantom, the actual dose delivered to the target was obtained. This anthropomorphic head phantom can be used in other modalities of radiosurgery as well. © 2017 American Association of Physicists in Medicine.
Kaliyaperumal, Venkatesan; Raphael, C. Jomon; Varghese, K. Mathew; Gopu, Paul; Sivakumar, S.; Boban, Minu; Raj, N. Arunai Nambi; Senthilnathan, K.; Babu, P. Ramesh
2017-01-01
Cone-beam computed tomography (CBCT) images are presently used for geometric verification for daily patient positioning. In this work, we have compared the images of CBCT with the images of conventional fan beam CT (FBCT) in terms of image quality and Hounsfield units (HUs). We also compared the dose calculated using CBCT with that of FBCT. Homogenous RW3 plates and Catphan phantom were scanned by FBCT and CBCT. In RW3 and Catphan phantom, percentage depth dose (PDD), profiles, isodose distributions (for intensity modulated radiotherapy plans), and calculated dose volume histograms were compared. The HU difference was within ± 20 HU (central region) and ± 30 HU (peripheral region) for homogeneous RW3 plates. In the Catphan phantom, the difference in HU was ± 20 HU in the central area and peripheral areas. The HU differences were within ± 30 HU for all HU ranges starting from −1000 to 990 in phantom and patient images. In treatment plans done with simple symmetric and asymmetric fields, dose difference (DD) between CBCT plan and FBCT plan was within 1.2% for both phantoms. In intensity modulated radiotherapy (IMRT) treatment plans, for different target volumes, the difference was <2%. This feasibility study investigated HU variation and dose calculation accuracy between FBCT and CBCT based planning and has validated inverse planning algorithms with CBCT. In our study, we observed a larger deviation of HU values in the peripheral region compared to the central region. This is due to the ring artifact and scatter contribution which may prevent the use of CBCT as the primary imaging modality for radiotherapy treatment planning. The reconstruction algorithm needs to be modified further for improving the image quality and accuracy in HU values. However, our study with TG-119 and intensity modulated radiotherapy test targets shows that CBCT can be used for adaptive replanning as the recalculation of dose with the anisotropic analytical algorithm is in full accord with conventional planning CT except in the build-up regions. Patient images with CBCT have to be carefully analyzed for any artifacts before using them for such dose calculations. PMID:28974864
Intravenous volume tomographic pulmonary angiography imaging
NASA Astrophysics Data System (ADS)
Ning, Ruola; Strang, John G.; Chen, Biao; Conover, David L.; Yu, Rongfeng
1999-05-01
This study presents a new intravenous (IV) tomographic angiography imaging technique, called intravenous volume tomographic digital angiography (VTDA) for cross sectional pulmonary angiography. While the advantages of IV-VTDA over spiral CT in terms of volume scanning time and resolution have been validated and reported in our previous papers for head and neck vascular imaging, the superiority of IV-VTDA over spiral CT for cross sectional pulmonary angiography has not been explored yet. The purpose of this study is to demonstrate the advantage of isotropic resolution of IV-VTDA in the x, y and z directions through phantom and animal studies, and to explore its clinical application for detecting clots in pulmonary angiography. A prototype image intensifier-based VTDA imaging system has been designed and constructed by modifying a GE 8800 CT scanner. This system was used for a series of phantom and dog studies. A pulmonary vascular phantom was designed and constructed. The phantom was scanned using the prototype VTDA system for direct 3D reconstruction. Then the same phantom was scanned using a GE CT/i spiral CT scanner using the routine pulmonary CT angiography protocols. IV contrast injection and volume scanning protocols were developed during the dog studies. Both VTDA reconstructed images and spiral CT images of the specially designed phantom were analyzed and compared. The detectability of simulated vessels and clots was assessed as the function of iodine concentration levels, oriented angles, and diameters of the vessels and clots. A set of 3D VTDA reconstruction images of dog pulmonary arteries was obtained with different IV injection rates and isotropic resolution in the x, y and z directions. The results of clot detection studies in dog pulmonary arteries have also been shown. This study presents a new tomographic IV angiography imaging technique for cross sectional pulmonary angiography. The results of phantom and animal studies indicate that IV-VTDA is superior to spiral CT for cross sectional pulmonary angiography.
NASA Astrophysics Data System (ADS)
Kramer, R.; Vieira, J. W.; Khoury, H. J.; Lima, F. R. A.; Fuelle, D.
2003-05-01
The MAX (Male Adult voXel) phantom has been developed from existing segmented images of a male adult body, in order to achieve a representation as close as possible to the anatomical properties of the reference adult male specified by the ICRP. The study describes the adjustments of the soft-tissue organ masses, a new dosimetric model for the skin, a new model for skeletal dosimetry and a computational exposure model based on coupling the MAX phantom with the EGS4 Monte Carlo code. Conversion coefficients between equivalent dose to the red bone marrow as well as effective MAX dose and air-kerma free in air for external photon irradiation from the front and from the back, respectively, are presented and compared with similar data from other human phantoms.
NASA Astrophysics Data System (ADS)
Ghani, Muhammad U.; Wong, Molly D.; Wu, Di; Zheng, Bin; Fajardo, Laurie L.; Yan, Aimin; Fuh, Janis; Wu, Xizeng; Liu, Hong
2017-05-01
The objective of this study was to demonstrate the potential benefits of using high energy x-rays in comparison with the conventional mammography imaging systems for phase sensitive imaging of breast tissues with varying glandular-adipose ratios. This study employed two modular phantoms simulating the glandular (G) and adipose (A) breast tissue composition in 50 G-50 A and 70 G-30 A percentage densities. Each phantom had a thickness of 5 cm with a contrast detail test pattern embedded in the middle. For both phantoms, the phase contrast images were acquired using a micro-focus x-ray source operated at 120 kVp and 4.5 mAs, with a magnification factor (M) of 2.5 and a detector with a 50 µm pixel pitch. The mean glandular dose delivered to the 50 G-50 A and 70 G-30 A phantom sets were 1.33 and 1.3 mGy, respectively. A phase retrieval algorithm based on the phase attenuation duality that required only a single phase contrast image was applied. Conventional low energy mammography images were acquired using GE Senographe DS and Hologic Selenia systems utilizing their automatic exposure control (AEC) settings. In addition, the automatic contrast mode (CNT) was also used for the acquisition with the GE system. The AEC mode applied higher dose settings for the 70 G-30 A phantom set. As compared to the phase contrast images, the dose levels for the AEC mode acquired images were similar while the dose levels for the CNT mode were almost double. The observer study, contrast-to-noise ratio and figure of merit comparisons indicated a large improvement with the phase retrieved images in comparison to the AEC mode images acquired with the clinical systems for both density levels. As the glandular composition increased, the detectability of smaller discs decreased with the clinical systems, particularly with the GE system, even at higher dose settings. As compared to the CNT mode (double dose) images, the observer study also indicated that the phase retrieved images provided similar or improved detection for all disc sizes except for the disk diameters of 2 mm and 1 mm for the 50 G-50 A phantom and 3 mm and 0.5 mm for the 70 G-30 A phantom. This study demonstrated the potential of utilizing a high energy phase sensitive x-ray imaging system to improve lesion detection and reduce radiation dose when imaging breast tissues with varying glandular compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fave, X; Fried, D; UT Health Science Center Graduate School of Biomedical Sciences, Houston, TX
2015-06-15
Purpose: Several studies have demonstrated the prognostic potential for texture features extracted from CT images of non-small cell lung cancer (NSCLC) patients. The purpose of this study was to determine if these features could be extracted with high reproducibility from cone-beam CT (CBCT) images in order for features to be easily tracked throughout a patient’s treatment. Methods: Two materials in a radiomics phantom, designed to approximate NSCLC tumor texture, were used to assess the reproducibility of 26 features. This phantom was imaged on 9 CBCT scanners, including Elekta and Varian machines. Thoracic and head imaging protocols were acquired on eachmore » machine. CBCT images from 27 NSCLC patients imaged using the thoracic protocol on Varian machines were obtained for comparison. The variance for each texture measured from these patients was compared to the variance in phantom values for different manufacturer/protocol subsets. Levene’s test was used to identify features which had a significantly smaller variance in the phantom scans versus the patient data. Results: Approximately half of the features (13/26 for material1 and 15/26 for material2) had a significantly smaller variance (p<0.05) between Varian thoracic scans of the phantom compared to patient scans. Many of these same features remained significant for the head scans on Varian (12/26 and 8/26). However, when thoracic scans from Elekta and Varian were combined, only a few features were still significant (4/26 and 5/26). Three features (skewness, coarsely filtered mean and standard deviation) were significant in almost all manufacturer/protocol subsets. Conclusion: Texture features extracted from CBCT images of a radiomics phantom are reproducible and show significantly less variation than the same features measured from patient images when images from the same manufacturer or with similar parameters are used. Reproducibility between CBCT scanners may be high enough to allow the extraction of meaningful texture values for patients. This project was funded in part by the Cancer Prevention Research Institute of Texas (CPRIT). Xenia Fave is a recipient of the American Association of Physicists in Medicine Graduate Fellowship.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, C; Xing, L
2015-06-15
Purpose The rapid proliferation of affordable 3D printing techniques has enabled the custom fabrication of items ranging from paper weights to medical implants. This study investigates the feasibility of utilizing the technology for developing novel phantoms for use in radiation therapy quality assurance (QA) procedures. Methods A phantom for measuring the geometric parameters of linear accelerator (LINAC) on-board imaging (OBI) systems was designed using SolidWorks. The design was transferred to a 3D printer and fabricated using a fused deposition modeling (FDM) technique. Fiducials were embedded in the phantom by placing 1.6 mm diameter steel balls in predefined holes and securingmore » them with silicone. Several MV and kV images of the phantom were collected and the visibility and geometric accuracy were evaluated. A second phantom, for use in the experimental evaluation of a high dose rate (HDR) brachytherapy dosimeter, was designed to secure several applicator needles in water. The applicator was fabricated in the same 3D printer and used for experiments. Results The general accuracy of printed parts was determined to be 0.1 mm. The cost of materials for the imaging and QA phantoms were $22 and $5 respectively. Both the plastic structure and fiducial markers of the imaging phantom were visible in MV and kV images. Fiducial marker locations were determined to be within 1mm of desired locations, with the discrepancy being attributed to the fiducial attachment process. The HDR phantom secured the applicators within 0.5 mm of the desired locations. Conclusion 3D printing offers an inexpensive method for fabricating custom phantoms for use in radiation therapy quality assurance. While the geometric accuracy of such parts is limited compared to more expensive methods, the phantoms are still highly functional and provide a unique opportunity for rapid fabrication of custom phantoms for use in radiation therapy QA and research.« less
Elschot, Mattijs; Vermolen, Bart J.; Lam, Marnix G. E. H.; de Keizer, Bart; van den Bosch, Maurice A. A. J.; de Jong, Hugo W. A. M.
2013-01-01
Background After yttrium-90 (90Y) microsphere radioembolization (RE), evaluation of extrahepatic activity and liver dosimetry is typically performed on 90Y Bremsstrahlung SPECT images. Since these images demonstrate a low quantitative accuracy, 90Y PET has been suggested as an alternative. The aim of this study is to quantitatively compare SPECT and state-of-the-art PET on the ability to detect small accumulations of 90Y and on the accuracy of liver dosimetry. Methodology/Principal Findings SPECT/CT and PET/CT phantom data were acquired using several acquisition and reconstruction protocols, including resolution recovery and Time-Of-Flight (TOF) PET. Image contrast and noise were compared using a torso-shaped phantom containing six hot spheres of various sizes. The ability to detect extra- and intrahepatic accumulations of activity was tested by quantitative evaluation of the visibility and unique detectability of the phantom hot spheres. Image-based dose estimates of the phantom were compared to the true dose. For clinical illustration, the SPECT and PET-based estimated liver dose distributions of five RE patients were compared. At equal noise level, PET showed higher contrast recovery coefficients than SPECT. The highest contrast recovery coefficients were obtained with TOF PET reconstruction including resolution recovery. All six spheres were consistently visible on SPECT and PET images, but PET was able to uniquely detect smaller spheres than SPECT. TOF PET-based estimates of the dose in the phantom spheres were more accurate than SPECT-based dose estimates, with underestimations ranging from 45% (10-mm sphere) to 11% (37-mm sphere) for PET, and 75% to 58% for SPECT, respectively. The differences between TOF PET and SPECT dose-estimates were supported by the patient data. Conclusions/Significance In this study we quantitatively demonstrated that the image quality of state-of-the-art PET is superior over Bremsstrahlung SPECT for the assessment of the 90Y microsphere distribution after radioembolization. PMID:23405207
Estimation of Radiation Dose for a Sitting Phantom Using PIMAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akkurt, Hatice; Eckerman, Keith F
2007-01-01
To assess the radiation dose in different configurations when needed (e.g., occupational exposure or public exposure in a radiologically significant event), the mathematical phantom has recently been revised to enable freely moving abilities for arms and legs. The revised phantom is called PIMAL: Phantom with Moving Arms and Legs. Additionally, a graphical user interface has been developed to assist the analyst with input preparation and output manipulation. To investigate the impact of the phantom configuration on the estimated organ doses, PIMAL has been used in a different posture than the standard vertical-upright position. In this paper, the estimated organ andmore » effective dose values for a representative posture, the phantom in a sitting position, compared with those for the phantom in standing position, are presented.« less
Evaluation of a breast software model for 2D and 3D X-ray imaging studies of the breast.
Baneva, Yanka; Bliznakova, Kristina; Cockmartin, Lesley; Marinov, Stoyko; Buliev, Ivan; Mettivier, Giovanni; Bosmans, Hilde; Russo, Paolo; Marshall, Nicholas; Bliznakov, Zhivko
2017-09-01
In X-ray imaging, test objects reproducing breast anatomy characteristics are realized to optimize issues such as image processing or reconstruction, lesion detection performance, image quality and radiation induced detriment. Recently, a physical phantom with a structured background has been introduced for both 2D mammography and breast tomosynthesis. A software version of this phantom and a few related versions are now available and a comparison between these 3D software phantoms and the physical phantom will be presented. The software breast phantom simulates a semi-cylindrical container filled with spherical beads of different diameters. Four computational breast phantoms were generated with a dedicated software application and for two of these, physical phantoms are also available and they are used for the side by side comparison. Planar projections in mammography and tomosynthesis were simulated under identical incident air kerma conditions. Tomosynthesis slices were reconstructed with an in-house developed reconstruction software. In addition to a visual comparison, parameters like fractal dimension, power law exponent β and second order statistics (skewness, kurtosis) of planar projections and tomosynthesis reconstructed images were compared. Visually, an excellent agreement between simulated and real planar and tomosynthesis images is observed. The comparison shows also an overall very good agreement between parameters evaluated from simulated and experimental images. The computational breast phantoms showed a close match with their physical versions. The detailed mathematical analysis of the images confirms the agreement between real and simulated 2D mammography and tomosynthesis images. The software phantom is ready for optimization purpose and extrapolation of the phantom to other breast imaging techniques. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Organosilicon phantom for photoacoustic imaging
NASA Astrophysics Data System (ADS)
Avigo, Cinzia; Di Lascio, Nicole; Armanetti, Paolo; Kusmic, Claudia; Cavigli, Lucia; Ratto, Fulvio; Meucci, Sandro; Masciullo, Cecilia; Cecchini, Marco; Pini, Roberto; Faita, Francesco; Menichetti, Luca
2015-04-01
Photoacoustic imaging is an emerging technique. Although commercially available photoacoustic imaging systems currently exist, the technology is still in its infancy. Therefore, the design of stable phantoms is essential to achieve semiquantitative evaluation of the performance of a photoacoustic system and can help optimize the properties of contrast agents. We designed and developed a polydimethylsiloxane (PDMS) phantom with exceptionally fine geometry; the phantom was tested using photoacoustic experiments loaded with the standard indocyanine green dye and compared to an agar phantom pattern through polyethylene glycol-gold nanorods. The linearity of the photoacoustic signal with the nanoparticle number was assessed. The signal-to-noise ratio and contrast were employed as image quality parameters, and enhancements of up to 50 and up to 300%, respectively, were measured with the PDMS phantom with respect to the agar one. A tissue-mimicking (TM)-PDMS was prepared by adding TiO2 and India ink; photoacoustic tests were performed in order to compare the signal generated by the TM-PDMS and the biological tissue. The PDMS phantom can become a particularly promising tool in the field of photoacoustics for the evaluation of the performance of a PA system and as a model of the structure of vascularized soft tissues.
Experimental platform for intra-uterine needle placement procedures
NASA Astrophysics Data System (ADS)
Madjidi, Yashar; Haidegger, Tamás.; Ptacek, Wolfgang; Berger, Daniel; Kirisits, Christian; Kronreif, Gernot; Fichtinger, Gabor
2013-03-01
A framework has been investigated to enable a variety of comparative studies in the context of needle-based gynaecological brachytherapy. Our aim was to create an anthropomorphic phantom-based platform. The three main elements of the platform are the organ model, needle guide, and needle drive. These have been studied and designed to replicate the close environment of brachytherapy treatment for cervical cancer. Key features were created with the help of collaborating interventional radio-oncologists and the observations made in the operating room. A phantom box, representing the uterus model, has been developed considering available surgical analogies and operational limitations, such as organs at risk. A modular phantom-based platform has been designed and prototyped with the capability of providing various boundary conditions for the target organ. By mimicking the female pelvic floor, this framework has been used to compare a variety of needle insertion techniques and configurations for cervical and uterine interventions. The results showed that the proposed methodology is useful for the investigation of quantifiable experiments in the intraabdominal and pelvic regions.
NASA Astrophysics Data System (ADS)
Kramer, R.; Cassola, V. F.; Khoury, H. J.; Vieira, J. W.; de Melo Lima, V. J.; Robson Brown, K.
2010-01-01
Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been developed in the first part of this study using 3D animation software and anatomical atlases to replace the image-based FAX06 and the MAX06 voxel phantoms. 3D modelling methods allow for phantom development independent from medical images of patients, volunteers or cadavers. The second part of this study investigates the dosimetric implications for organ and tissue equivalent doses due to the anatomical differences between the new and the old phantoms. These differences are mainly caused by the supine position of human bodies during scanning in order to acquire digital images for voxel phantom development. Compared to an upright standing person, in image-based voxel phantoms organs are often coronally shifted towards the head and sometimes the sagittal diameter of the trunk is reduced by a gravitational change of the fat distribution. In addition, volumes of adipose and muscle tissue shielding internal organs are sometimes too small, because adaptation of organ volumes to ICRP-based organ masses often occurs at the expense of general soft tissues, such as adipose, muscle or unspecified soft tissue. These effects have dosimetric consequences, especially for partial body exposure, such as in x-ray diagnosis, but also for whole body external exposure and for internal exposure. Using the EGSnrc Monte Carlo code, internal and external exposure to photons and electrons has been simulated with both pairs of phantoms. The results show differences between organ and tissue equivalent doses for the upright standing FASH/MASH and the image-based supine FAX06/MAX06 phantoms of up to 80% for external exposure and up to 100% for internal exposure. Similar differences were found for external exposure between FASH/MASH and REGINA/REX, the reference voxel phantoms of the International Commission on Radiological Protection. Comparison of effective doses for external photon exposure showed good agreement between FASH/MASH and REGINA/REX, but large differences between FASH/MASH and the mesh-based RPI_AM and the RPI_AF phantoms, developed at the Rensselaer Polytechnic Institute (RPI).
SU-F-T-389: Validation in 4D Dosimetry Using Dynamic Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, C; Lin, C; Tu, P
2016-06-15
Purpose: Tumor motion due to respiration causes the uncertainties during the radiotherapy. This study aims to find the differences between planning dose by treatment planning and the received dose using dynamic phantom. Methods: Respiratory motion was simulated by the DYNAMIC THORAX PHANTOM (Model 008A). 4D-CT scans and maximum intensity projection (MIP) images for GTV were acquired for analysis. The amplitude of craniocaudal tumor motion including 2mm, 5mm, 10mm and 20mm with 3cm2 tumor size were performed in this study. The respiratory cycles of 4-seconds and 6-seconds were included as the different breathing modes. IMRT, VAMT, and Tomotherapy were utilized formore » treatment planning. Ion chamber and EBT3 were used to measure the point dose and planar dose. Dose distributions with different amplitudes, respiratory cycles, and planning techniques were all measured and compared to calculations. Results: The variations between the does measurements and calculation dose by treatment planning system were found in both point dose and dose distribution. The 0.83% and 5.46 % differences in dose average were shown on phantom with motions using 2mm amplitude in 4 second respiratory cycle, and 20mm amplitude in 4 second respiratory cycle, respectively. The most point dose overestimation as compared of the calculations was shown the plan generated by Tomotherapy. The underestimations of planar dose as compared of calculations was found in the 100% coverage doses for GTV. Conclusion: The loss of complete (100%) GTV coverage was the predominant effect of respiratory motion observed in this study. Motion amplitude and treatment planning system were the major factors leading the dose measurement variation as compared of planning calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S; Rangaraj, D
2016-06-15
Purpose: Although cone-beam CT (CBCT) imaging became popular in radiation oncology, its imaging dose estimation is still challenging. The goal of this study is to assess the kilovoltage CBCT doses using GMctdospp - an EGSnrc based Monte Carlo (MC) framework. Methods: Two Varian OBI x-ray tube models were implemented in the GMctpdospp framework of EGSnrc MC System. The x-ray spectrum of 125 kVp CBCT beam was acquired from an EGSnrc/BEAMnrc simulation and validated with IPEM report 78. Then, the spectrum was utilized as an input spectrum in GMctdospp dose calculations. Both full and half bowtie pre-filters of the OBI systemmore » were created by using egs-prism module. The x-ray tube MC models were verified by comparing calculated dosimetric profiles (lateral and depth) to ion chamber measurements for a static x-ray beam irradiation to a cuboid water phantom. An abdominal CBCT imaging doses was simulated in GMctdospp framework using a 5-year-old anthropomorphic phantom. The organ doses and effective dose (ED) from the framework were assessed and compared to the MOSFET measurements and convolution/superposition dose calculations. Results: The lateral and depth dose profiles in the water cuboid phantom were well matched within 6% except a few areas - left shoulder of the half bowtie lateral profile and surface of water phantom. The organ doses and ED from the MC framework were found to be closer to MOSFET measurements and CS calculations within 2 cGy and 5 mSv respectively. Conclusion: This study implemented and validated the Varian OBI x-ray tube models in the GMctdospp MC framework using a cuboid water phantom and CBCT imaging doses were also evaluated in a 5-year-old anthropomorphic phantom. In future study, various CBCT imaging protocols will be implemented and validated and consequently patient CT images will be used to estimate the CBCT imaging doses in patients.« less
A catalyzing phantom for reproducible dynamic conversion of hyperpolarized [1-¹³C]-pyruvate.
Walker, Christopher M; Lee, Jaehyuk; Ramirez, Marc S; Schellingerhout, Dawid; Millward, Steven; Bankson, James A
2013-01-01
In vivo real time spectroscopic imaging of hyperpolarized ¹³C labeled metabolites shows substantial promise for the assessment of physiological processes that were previously inaccessible. However, reliable and reproducible methods of measurement are necessary to maximize the effectiveness of imaging biomarkers that may one day guide personalized care for diseases such as cancer. Animal models of human disease serve as poor reference standards due to the complexity, heterogeneity, and transient nature of advancing disease. In this study, we describe the reproducible conversion of hyperpolarized [1-¹³C]-pyruvate to [1-¹³C]-lactate using a novel synthetic enzyme phantom system. The rate of reaction can be controlled and tuned to mimic normal or pathologic conditions of varying degree. Variations observed in the use of this phantom compare favorably against within-group variations observed in recent animal studies. This novel phantom system provides crucial capabilities as a reference standard for the optimization, comparison, and certification of quantitative imaging strategies for hyperpolarized tracers.
MCNPX simulation of proton dose distribution in homogeneous and CT phantoms
NASA Astrophysics Data System (ADS)
Lee, C. C.; Lee, Y. J.; Tung, C. J.; Cheng, H. W.; Chao, T. C.
2014-02-01
A dose simulation system was constructed based on the MCNPX Monte Carlo package to simulate proton dose distribution in homogeneous and CT phantoms. Conversion from Hounsfield unit of a patient CT image set to material information necessary for Monte Carlo simulation is based on Schneider's approach. In order to validate this simulation system, inter-comparison of depth dose distributions among those obtained from the MCNPX, GEANT4 and FLUKA codes for a 160 MeV monoenergetic proton beam incident normally on the surface of a homogeneous water phantom was performed. For dose validation within the CT phantom, direct comparison with measurement is infeasible. Instead, this study took the approach to indirectly compare the 50% ranges (R50%) along the central axis by our system to the NIST CSDA ranges for beams with 160 and 115 MeV energies. Comparison result within the homogeneous phantom shows good agreement. Differences of simulated R50% among the three codes are less than 1 mm. For results within the CT phantom, the MCNPX simulated water equivalent Req,50% are compatible with the CSDA water equivalent ranges from the NIST database with differences of 0.7 and 4.1 mm for 160 and 115 MeV beams, respectively.
NASA Astrophysics Data System (ADS)
Ahn, Sangtae; Ross, Steven G.; Asma, Evren; Miao, Jun; Jin, Xiao; Cheng, Lishui; Wollenweber, Scott D.; Manjeshwar, Ravindra M.
2015-08-01
Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs.
Vestergaard, Rikke Falsig; Søballe, Kjeld; Hasenkam, John Michael; Stilling, Maiken
2018-05-18
A small, but unstable, saw-gap may hinder bone-bridging and induce development of painful sternal dehiscence. We propose the use of Radiostereometric Analysis (RSA) for evaluation of sternal instability and present a method validation. Four bone analogs (phantoms) were sternotomized and tantalum beads were inserted in each half. The models were reunited with wire cerclage and placed in a radiolucent separation device. Stereoradiographs (n = 48) of the phantoms in 3 positions were recorded at 4 imposed separation points. The accuracy and precision was compared statistically and presented as translations along the 3 orthogonal axes. 7 sternotomized patients were evaluated for clinical RSA precision by double-examination stereoradiographs (n = 28). In the phantom study, we found no systematic error (p > 0.3) between the three phantom positions, and precision for evaluation of sternal separation was 0.02 mm. Phantom accuracy was mean 0.13 mm (SD 0.25). In the clinical study, we found a detection limit of 0.42 mm for sternal separation and of 2 mm for anterior-posterior dislocation of the sternal halves for the individual patient. RSA is a precise and low-dose image modality feasible for clinical evaluation of sternal stability in research. ClinicalTrials.gov Identifier: NCT02738437 , retrospectively registered.
NASA Astrophysics Data System (ADS)
Solomon, Justin; Ba, Alexandre; Diao, Andrew; Lo, Joseph; Bier, Elianna; Bochud, François; Gehm, Michael; Samei, Ehsan
2016-03-01
In x-ray computed tomography (CT), task-based image quality studies are typically performed using uniform background phantoms with low-contrast signals. Such studies may have limited clinical relevancy for modern non-linear CT systems due to possible influence of background texture on image quality. The purpose of this study was to design and implement anatomically informed textured phantoms for task-based assessment of low-contrast detection. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find the CLB parameters that were most reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, a cylinder phantom (165 mm in diameter and 30 mm height) was designed, containing 20 low-contrast spherical signals (6 mm in diameter at targeted contrast levels of ~3.2, 5.2, 7.2, 10, and 14 HU, 4 repeats per signal). The phantom was voxelized and input into a commercial multi-material 3D printer (Object Connex 350), with custom software for voxel-based printing. Using principles of digital half-toning and dithering, the 3D printer was programmed to distribute two base materials (VeroWhite and TangoPlus, nominal voxel size of 42x84x30 microns) to achieve the targeted spatial distribution of x-ray attenuation properties. The phantom was used for task-based image quality assessment of a clinically available iterative reconstruction algorithm (Sinogram Affirmed Iterative Reconstruction, SAFIRE) using a channelized Hotelling observer paradigm. Images of the textured phantom and a corresponding uniform phantom were acquired at six dose levels and observer model performance was estimated for each condition (5 contrasts x 6 doses x 2 reconstructions x 2 backgrounds = 120 total conditions). Based on the observer model results, the dose reduction potential of SAFIRE was computed and compared between the uniform and textured phantom. The dose reduction potential of SAFIRE was found to be 23% based on the uniform phantom and 17% based on the textured phantom. This discrepancy demonstrates the need to consider background texture when assessing non-linear reconstruction algorithms.
Contrast-detail phantom scoring methodology.
Thomas, Jerry A; Chakrabarti, Kish; Kaczmarek, Richard; Romanyukha, Alexander
2005-03-01
Published results of medical imaging studies which make use of contrast detail mammography (CDMAM) phantom images for analysis are difficult to compare since data are often not analyzed in the same way. In order to address this situation, the concept of ideal contrast detail curves is suggested. The ideal contrast detail curves are constructed based on the requirement of having the same product of the diameter and contrast (disk thickness) of the minimal correctly determined object for every row of the CDMAM phantom image. A correlation and comparison of five different quality parameters of the CDMAM phantom image determined for obtained ideal contrast detail curves is performed. The image quality parameters compared include: (1) contrast detail curve--a graph correlation between "minimal correct reading" diameter and disk thickness; (2) correct observation ratio--the ratio of the number of correctly identified objects to the actual total number of objects multiplied by 100; (3) image quality figure--the sum of the product of the diameter of the smallest scored object and its relative contrast; (4) figure-of-merit--the zero disk diameter value obtained from extrapolation of the contrast detail curve to the origin (e.g., zero disk diameter); and (5) k-factor--the product of the thickness and the diameter of the smallest correctly identified disks. The analysis carried out showed the existence of a nonlinear relationship between the above parameters, which means that use of different parameters of CDMAM image quality potentially can cause different conclusions about changes in image quality. Construction of the ideal contrast detail curves for CDMAM phantom is an attempt to determine the quantitative limits of the CDMAM phantom as employed for image quality evaluation. These limits are determined by the relationship between certain parameters of a digital mammography system and the set of the gold disks sizes in the CDMAM phantom. Recommendations are made on selections of CDMAM phantom regions which should be used for scoring at different image quality and which scoring methodology may be most appropriate. Special attention is also paid to the use of the CDMAM phantom for image quality assessment of digital mammography systems particularly in the vicinity of the Nyquist frequency.
NASA Astrophysics Data System (ADS)
Nøtthellen, Jacob; Konst, Bente; Abildgaard, Andreas
2014-08-01
Purpose: to present a new and simplified method for pixel-wise determination of the signal-to-noise ratio improvement factor KSNR of an antiscatter grid, when used with a digital imaging system. The method was based on approximations of published formulas. The simplified estimate of K2SNR may be used as a decision tool for whether or not to use an antiscatter grid. Methods: the primary transmission of the grid Tp was determined with and without a phantom present using a pattern of beam stops. The Bucky factor B was measured with and without a phantom present. Hence K2SNR maps were created based on Tp and B. A formula was developed to calculate K2SNR from the measured Bs without using the measured Tp. The formula was applied on two exposures of anthropomorphic phantoms, adult legs and baby chest, and on two homogeneous poly[methyl methacrylate] (PMMA) phantoms, 5 cm and 10 cm thick. The results from anthropomorphic phantoms were compared to those based on the beam stop method. The results for the PMMA-phantoms were compared to a study that used a contrast-detail phantom. Results: 2D maps of K2SNR over the entire adult legs and baby chest phantoms were created. The maps indicate that it is advantageous to use the antiscatter grid for imaging of the adult legs. For baby chest imaging the antiscatter grid is not recommended if only the lung regions are of interest. The K2SNR maps based on the new method correspond to those from the beam stop method, and the K2SNR from the homogenous phantoms arising from two different approaches also agreed well with each other. Conclusion: a method to measure 2D K2SNR associated with grid use in digital radiography system was developed and validated. The proposed method requires four exposures and use of a simple formula. It is fast and provides adequate estimates for K2SNR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, V K; Vijayan, S; Rudin, S R
Purpose: To determine the appropriate calibration factor to use when calculating skin dose with our real-time dose-tracking system (DTS) during neuro-interventional fluoroscopic procedures by evaluating the difference in backscatter from different phantoms and as a function of entrance-skin field area. Methods: We developed a dose-tracking system to calculate and graphically display the cumulative skin-dose distribution in real time. To calibrate the DTS for neuro-interventional procedures, a phantom is needed that closely approximates the scattering properties of the head. We compared the x-ray backscatter from eight phantoms: 20-cm-thick solid water, 16-cm diameter water-filled container, 16-cm CTDI phantom, modified-ANSI head phantom, 20-cm-thickmore » PMMA, Kyoto-Kagaku PBU- 50 head, Phantom-Labs SK-150 head, and RSD RS-240T head. The phantoms were placed on the patient table with the entrance surface at 15 cm tube-side from the isocenter of a Toshiba Infinix C-arm, and the entrance-skin exposure was measured with a calibrated 6-cc PTW ionization chamber. The measurement included primary radiation, backscatter from the phantom and forward scatter from the table and pad. The variation in entrance-skin exposure was also measured as a function of the skin-entrance area for a 30x30 cm by 20-cm-thick PMMA phantom and the SK-150 head phantom using four different added beam filters. Results: The entranceskin exposure values measured for eight different phantoms differed by up to 12%, while the ratio of entrance exposure of all phantoms relative to solid water showed less than 3% variation with kVp. The change in entrance-skin exposure with entrance-skin area was found to differ for the SK-150 head compared to the 20-cm PMMA phantom and the variation with field area was dependent on the added beam filtration. Conclusion: To accurately calculate skin dose for neuro-interventional procedures with the DTS, the phantom for calibration should be carefully chosen since different phantoms can contribute different backscatter for identical exposure parameters. Research supported in part by Toshiba Medical Systems and NIH Grants R43FD0158401, R44FD0158402 and R01EB002873.« less
Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; ...
2016-02-01
As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.
As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less
Kramer, R; Khoury, H J; Vieira, J W; Loureiro, E C M; Lima, V J M; Lima, F R A; Hoff, G
2004-12-07
The International Commission on Radiological Protection (ICRP) has created a task group on dose calculations, which, among other objectives, should replace the currently used mathematical MIRD phantoms by voxel phantoms. Voxel phantoms are based on digital images recorded from scanning of real persons by computed tomography or magnetic resonance imaging (MRI). Compared to the mathematical MIRD phantoms, voxel phantoms are true to the natural representations of a human body. Connected to a radiation transport code, voxel phantoms serve as virtual humans for which equivalent dose to organs and tissues from exposure to ionizing radiation can be calculated. The principal database for the construction of the FAX (Female Adult voXel) phantom consisted of 151 CT images recorded from scanning of trunk and head of a female patient, whose body weight and height were close to the corresponding data recommended by the ICRP in Publication 89. All 22 organs and tissues at risk, except for the red bone marrow and the osteogenic cells on the endosteal surface of bone ('bone surface'), have been segmented manually with a technique recently developed at the Departamento de Energia Nuclear of the UFPE in Recife, Brazil. After segmentation the volumes of the organs and tissues have been adjusted to agree with the organ and tissue masses recommended by ICRP for the Reference Adult Female in Publication 89. Comparisons have been made with the organ and tissue masses of the mathematical EVA phantom, as well as with the corresponding data for other female voxel phantoms. The three-dimensional matrix of the segmented images has eventually been connected to the EGS4 Monte Carlo code. Effective dose conversion coefficients have been calculated for exposures to photons, and compared to data determined for the mathematical MIRD-type phantoms, as well as for other voxel phantoms.
Diedrich, Karl T; Roberts, John A; Schmidt, Richard H; Parker, Dennis L
2012-12-01
Attributes like length, diameter, and tortuosity of tubular anatomical structures such as blood vessels in medical images can be measured from centerlines. This study develops methods for comparing the accuracy and stability of centerline algorithms. Sample data included numeric phantoms simulating arteries and clinical human brain artery images. Centerlines were calculated from segmented phantoms and arteries with shortest paths centerline algorithms developed with different cost functions. The cost functions were the inverse modified distance from edge (MDFE(i) ), the center of mass (COM), the binary-thinned (BT)-MDFE(i) , and the BT-COM. The accuracy of the centerline algorithms were measured by the root mean square error from known centerlines of phantoms. The stability of the centerlines was measured by starting the centerline tree from different points and measuring the differences between trees. The accuracy and stability of the centerlines were visualized by overlaying centerlines on vasculature images. The BT-COM cost function centerline was the most stable in numeric phantoms and human brain arteries. The MDFE(i) -based centerline was most accurate in the numeric phantoms. The COM-based centerline correctly handled the "kissing" artery in 16 of 16 arteries in eight subjects whereas the BT-COM was correct in 10 of 16 and MDFE(i) was correct in 6 of 16. The COM-based centerline algorithm was selected for future use based on the ability to handle arteries where the initial binary vessels segmentation exhibits closed loops. The selected COM centerline was found to measure numerical phantoms to within 2% of the known length. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Londt, John H.; Shreter, Uri; Vass, Melissa; Hsieh, Jiang; Ge, Zhanyu; Adda, Olivier; Dowe, David A.; Sabllayrolles, Jean-Louis
2007-03-01
We present the results of dose and image quality performance evaluation of a novel, prospective ECG-gated Coronary CT Angiography acquisition mode (SnapShot Pulse, LightSpeed VCT-XT scanner, GE Healthcare, Waukesha, WI), and compare it to conventional retrospective ECG gated helical acquisition in clinical and phantom studies. Image quality phantoms were used to measure noise, slice sensitivity profile, in-plane resolution, low contrast detectability and dose, using the two acquisition modes. Clinical image quality and diagnostic confidence were evaluated in a study of 31 patients scanned with the two acquisition modes. Radiation dose reduction in clinical practice was evaluated by tracking 120 consecutive patients scanned with the prospectively gated scan mode. In the phantom measurements, the prospectively gated mode resulted in equivalent or better image quality measures at dose reductions of up to 89% compared to non-ECG modulated conventional helical scans. In the clinical study, image quality was rated excellent by expert radiologist reviewing the cases, with pathology being identical using the two acquisition modes. The average dose to patients in the clinical practice study was 5.6 mSv, representing 50% reduction compared to a similar patient population scanned with the conventional helical mode.
Hadad, K; Zohrevand, M; Faghihi, R; Sedighi Pashaki, A
2015-03-01
HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry.
Hadad, K.; Zohrevand, M.; Faghihi, R.; Sedighi Pashaki, A.
2015-01-01
Background HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. Materials and Methods In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. Results The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Conclusion Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry. PMID:25973408
Shiga, Tohru; Morimoto, Yuichi; Kubo, Naoki; Katoh, Norio; Katoh, Chietsugu; Takeuchi, Wataru; Usui, Reiko; Hirata, Kenji; Kojima, Shinichi; Umegaki, Kikuo; Shirato, Hiroki; Tamaki, Nagara
2009-01-01
An autoradiography method revealed intratumoral inhomogeneity in various solid tumors. It is becoming increasingly important to estimate intratumoral inhomogeneity. However, with low spatial resolution and high scatter noise, it is difficult to detect intratumoral inhomogeneity in clinical settings. We developed a new PET system with CdTe semiconductor detectors to provide images with high spatial resolution and low scatter noise. Both phantom images and patients' images were analyzed to evaluate intratumoral inhomogeneity. This study was performed with a cold spot phantom that had 6-mm-diameter cold sphenoid defects, a dual-cylinder phantom with an adjusted concentration of 1:2, and an "H"-shaped hot phantom. These were surrounded with water. Phantom images and (18)F-FDG PET images of patients with nasopharyngeal cancer were compared with conventional bismuth germanate PET images. Profile curves for the phantoms were measured as peak-to-valley ratios to define contrast. Intratumoral inhomogeneity and tumor edge sharpness were evaluated on the images of the patients. The contrast obtained with the semiconductor PET scanner (1.53) was 28% higher than that obtained with the conventional scanner (1.20) for the 6-mm-diameter cold sphenoid phantom. The contrast obtained with the semiconductor PET scanner (1.43) was 27% higher than that obtained with the conventional scanner (1.13) for the dual-cylinder phantom. Similarly, the 2-mm cold region between 1-mm hot rods was identified only by the new PET scanner and not by the conventional scanner. The new PET scanner identified intratumoral inhomogeneity in more detail than the conventional scanner in 6 of 10 patients. The tumor edge was sharper on the images obtained with the new PET scanner than on those obtained with the conventional scanner. These phantom and clinical studies suggested that this new PET scanner has the potential for better identification of intratumoral inhomogeneity, probably because of its high spatial resolution and low scatter noise.
Schenk, Jens-Peter; Alzen, Gerhard; Klingmüller, Volker; Teufel, Ulrike; El Sakka, Saroa; Engelmann, Guido; Selmi, Buket
2014-01-01
We aimed to determine the comparability of real-time tissue elastography (RTE) and transient elastography (TE) in pediatric patients with liver diseases. RTE was performed on the Elasticity QA Phantom Model 049 (Computerized Imaging Reference Systems Company Inc., Norfolk, Virginia, USA), which has five areas with different levels of stiffness. RTE measurements of relative stiffness (MEAN [mean value of tissue elasticity], AREA [% of blue color-coded stiffer tissue]) in the phantom were compared with the phantom stiffness specified in kPa (measurement unit of TE). RTE and TE were performed on 147 pediatric patients with various liver diseases. A total of 109 measurements were valid. The participants had following diseases: metabolic liver disease (n=25), cystic fibrosis (n=20), hepatopathy of unknown origin (n=11), autoimmune hepatitis (n=12), Wilson's disease (n=11), and various liver parenchyma alterations (n=30). Correlations between RTE and TE measurements in the patients were calculated. In addition, RTE was performed on a control group (n=30), and the RTE values between the patient and control groups were compared. The RTE parameters showed good correlation in the phantom model with phantom stiffness (MEAN/kPa, r=-0.97; AREA/kPa, r=0.98). However, the correlation of RTE and TE was weak in the patient group (MEAN/kPa, r=-0.23; AREA/kPa, r=0.24). A significant difference was observed between the patient and control groups (MEAN, P = 5.32 e-7; AREA, P = 1.62 e-6). In the phantom model, RTE was correlated with kPa, confirming the presumed comparability of the methods. However, there was no direct correlation between RTE and TE in patients with defined liver diseases under real clinical conditions.
Shahzadeh, Sara; Gholami, Somayeh; Aghamiri, Seyed Mahmood Reza; Mahani, Hojjat; Nabavi, Mansoure; Kalantari, Faraz
2018-06-01
The present study was conducted to investigate normal lung tissue complication probability in gated and conventional radiotherapy (RT) as a function of diaphragm motion, lesion size, and its location using 4D-XCAT digital phantom in a simulation study. Different time series of 3D-CT images were generated using the 4D-XCAT digital phantom. The binary data obtained from this phantom were then converted to the digital imaging and communication in medicine (DICOM) format using an in-house MATLAB-based program to be compatible with our treatment planning system (TPS). The 3D-TPS with superposition computational algorithm was used to generate conventional and gated plans. Treatment plans were generated for 36 different XCAT phantom configurations. These included four diaphragm motions of 20, 25, 30 and 35 mm, three lesion sizes of 3, 4, and 5 cm in diameter and each tumor was placed in four different lung locations (right lower lobe, right upper lobe, left lower lobe and left upper lobe). The complication of normal lung tissue was assessed in terms of mean lung dose (MLD), the lung volume receiving ≥20 Gy (V20), and normal tissue complication probability (NTCP). The results showed that the gated RT yields superior outcomes in terms of normal tissue complication compared to the conventional RT. For all cases, the gated radiation therapy technique reduced the mean dose, V20, and NTCP of lung tissue by up to 5.53 Gy, 13.38%, and 23.89%, respectively. The results of this study showed that the gated RT provides significant advantages in terms of the normal lung tissue complication, compared to the conventional RT, especially for the lesions near the diaphragm. Copyright © 2018 Elsevier Ltd. All rights reserved.
The UF family of reference hybrid phantoms for computational radiation dosimetry
NASA Astrophysics Data System (ADS)
Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L.; Bolch, Wesley E.
2010-01-01
Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms—those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR™. NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros™. The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference organ masses from ICRP Publication 89, (3) reference elemental compositions provided in ICRP 89 as well as ICRU Report 46, and (4) reference data on the alimentary tract organs given in ICRP Publications 89 and 100. Various adjustments and refinements to the organ systems of the previously described newborn, 15 year and adult phantoms are also presented. The UF series of hybrid phantoms retain the non-uniform scalability of stylized phantoms while maintaining the anatomical realism of patient-specific voxel phantoms with respect to organ shape, depth and inter-organ distance. While the final versions of these phantoms are in a voxelized format for radiation transport simulation, their primary format is given as NURBS and polygon mesh surfaces, thus permitting one to sculpt non-reference phantoms using the reference phantoms as an anatomic template.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makkia, R; Pelletier, C; Jung, J
Purpose: To reconstruct major organ doses for the Wilms tumor pediatric patients treated with radiation therapy using pediatric computational phantoms, treatment planning system (TPS), and Monte Carlo (MC) dose calculation methods. Methods: A total of ten female and male pediatric patients (15–88 months old) were selected from the National Wilms Tumor Study cohort and ten pediatric computational phantoms corresponding to the patient’s height and weight were selected for the organ dose reconstruction. Treatment plans were reconstructed on the computational phantoms in a Pinnacle TPS (v9.10) referring to treatment records and exported into DICOM-RT files, which were then used to generatemore » the input files for XVMC MC code. The mean doses to major organs and the dose received by 50% of the heart were calculated and compared between TPS and MC calculations. The same calculations were conducted by replacing the computational human phantoms with a series of diagnostic patient CT images selected by matching the height and weight of the patients to validate the anatomical accuracy of the computational phantoms. Results: Dose to organs located within the treatment fields from the computational phantoms and the diagnostic patient CT images agreed within 2% for all cases for both TPS and MC calculations. The maximum difference of organ doses was 55.9 % (thyroid), but the absolute dose difference in this case was 0.33 Gy which was 0.96% of the prescription dose. The doses to ovaries and testes from MC in out-of-field provided more discrepancy (the maximum difference of 13.2% and 50.8%, respectively). The maximum difference of the 50% heart volume dose between the phantoms and the patient CT images was 40.0%. Conclusion: This study showed the pediatric computational phantoms are applicable to organ doses reconstruction for the radiotherapy patients whose three-dimensional radiological images are not available.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T; Du, X; Su, L
2014-06-15
Purpose: To compare the CT doses derived from the experiments and GPU-based Monte Carlo (MC) simulations, using a human cadaver and ATOM phantom. Methods: The cadaver of an 88-year old male and the ATOM phantom were scanned by a GE LightSpeed Pro 16 MDCT. For the cadaver study, the Thimble chambers (Model 10×5−0.6CT and 10×6−0.6CT) were used to measure the absorbed dose in different deep and superficial organs. Whole-body scans were first performed to construct a complete image database for MC simulations. Abdomen/pelvis helical scans were then conducted using 120/100 kVps, 300 mAs and a pitch factor of 1.375:1. Formore » the ATOM phantom study, the OSL dosimeters were used and helical scans were performed using 120 kVp and x, y, z tube current modulation (TCM). For the MC simulations, sufficient particles were run in both cases such that the statistical errors of the results by ARCHER-CT were limited to 1%. Results: For the human cadaver scan, the doses to the stomach, liver, colon, left kidney, pancreas and urinary bladder were compared. The difference between experiments and simulations was within 19% for the 120 kVp and 25% for the 100 kVp. For the ATOM phantom scan, the doses to the lung, thyroid, esophagus, heart, stomach, liver, spleen, kidneys and thymus were compared. The difference was 39.2% for the esophagus, and within 16% for all other organs. Conclusion: In this study the experimental and simulated CT doses were compared. Their difference is primarily attributed to the systematic errors of the MC simulations, including the accuracy of the bowtie filter modeling, and the algorithm to generate voxelized phantom from DICOM images. The experimental error is considered small and may arise from the dosimeters. R01 grant (R01EB015478) from National Institute of Biomedical Imaging and Bioengineering.« less
NASA Astrophysics Data System (ADS)
Ding, Aiping; Mille, Matthew M.; Liu, Tianyu; Caracappa, Peter F.; Xu, X. George
2012-05-01
Although it is known that obesity has a profound effect on x-ray computed tomography (CT) image quality and patient organ dose, quantitative data describing this relationship are not currently available. This study examines the effect of obesity on the calculated radiation dose to organs and tissues from CT using newly developed phantoms representing overweight and obese patients. These phantoms were derived from the previously developed RPI-adult male and female computational phantoms. The result was a set of ten phantoms (five males, five females) with body mass indexes ranging from 23.5 (normal body weight) to 46.4 kg m-2 (morbidly obese). The phantoms were modeled using triangular mesh geometry and include specified amounts of the subcutaneous adipose tissue and visceral adipose tissue. The mesh-based phantoms were then voxelized and defined in the Monte Carlo N-Particle Extended code to calculate organ doses from CT imaging. Chest-abdomen-pelvis scanning protocols for a GE LightSpeed 16 scanner operating at 120 and 140 kVp were considered. It was found that for the same scanner operating parameters, radiation doses to organs deep in the abdomen (e.g., colon) can be up to 59% smaller for obese individuals compared to those of normal body weight. This effect was found to be less significant for shallow organs. On the other hand, increasing the tube potential from 120 to 140 kVp for the same obese individual resulted in increased organ doses by as much as 56% for organs within the scan field (e.g., stomach) and 62% for those out of the scan field (e.g., thyroid), respectively. As higher tube currents are often used for larger patients to maintain image quality, it was of interest to quantify the associated effective dose. It was found from this study that when the mAs was doubled for the obese level-I, obese level-II and morbidly-obese phantoms, the effective dose relative to that of the normal weight phantom increased by 57%, 42% and 23%, respectively. This set of new obese phantoms can be used in the future to study the optimization of image quality and radiation dose for patients of different weight classifications. Our ultimate goal is to compile all the data derived from these phantoms into a comprehensive dosimetry database defined in the VirtualDose software.
Electrical Impedance Tomography of Electrolysis
Meir, Arie; Rubinsky, Boris
2015-01-01
The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations. PMID:26039686
NASA Astrophysics Data System (ADS)
Shurshakov, Vyacheslav; Akatov, Yu; Petrov, V.; Kartsev, I.; Polenov, Boris; Petrov, V.; Lyagushin, V.
In the space experiment MATROSHKA-R, the spherical tissue equivalent phantom (30 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been installed in the star board crew cabin of the ISS Service Module. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a real human body. If compared with the anthropomorphic phantom Rando used inside and outside the ISS, the spherical phantom has lower mass, smaller size, and requires less crew time for the detector retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. In the first phase of the experiment the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). There were two experimental sessions with the spherical phantom in the crew cabin, (1) from Jan. 29, 2004 to Apr. 30, 2004 and (2) from Aug. 11, 2004 to Oct. 10, 2005. The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. The results obtained with the passive detectors returned to the ground after each session show the dose difference on the phantom surface as much as a factor of 2, the highest dose being observed close to the outer wall of the crew cabin, and the lowest dose being in the opposite location along the phantom diameter. Maximum dose rate measured in the phantom (0.31 mGy/day) is obviously due to the galactic cosmic ray (GCR) and Earth' radiation belt contribution on the ISS trajectory. Minimum dose rate (0.15 mGy/day) is caused mainly by the strongly penetrating GCR particles and is observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean-tissue and effective doses of a crew member in the crew cabin are also estimated with the spherical phantom. The estimated effective dose rate (about 0.49 mSv/day at radiation quality factor of 2.6) is from 12 to 15 per cent lower than the averaged dose on the phantom surface as dependent on the body attitude.
SU-C-209-07: Phantoms for Digital Breast Tomosynthesis Imaging System Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobson, D; Liu, Y
2016-06-15
Purpose: Digital Breast Tomosynthesis (DBT) is gaining importance in breast imaging. There is a need for phantoms that can be used for image evaluation and comparison. Existing commercially available phantoms for DBT are expensive and may lack clinically relevant test objects. The purpose of this study is to develop phantoms for DBT evaluation. Methods Four phantoms have been designed and constructed to assess the image quality (IQ) of two DBT systems. The first contains a spiral of 0.3 mm SiC beads in gelatin to measure the tomographic slice thickness profile and uniformity of coverage in a series of tomographic planes.more » The second contains simulated tumors inclined with respect to the phantom base to assess tomographic image quality. The third has a tilted array of discs with varying contrast and diameter. This phantom was imaged alone and in a stack of TE slabs giving 2 to 10 cm thickness. The fourth has a dual wedge of glandular and adipose simulating materials. One wedge contains discs with varying diameter and thickness; the other supports a mass with six simulated spicules of varying size and a cluster of simulated calcifications. The simulated glandular tissue material varies between 35 and 100% of the total thickness (5.5 cm). Results: All phantoms were scanned successfully. The best IQ comparison was achieved with the dual wedge phantom as demonstrated by the spiculated mass and calcifications. Images were evaluated by two radiologists and one physicist. The projection images and corresponding set of tomographic planes were comparable and the synthesized projection images were inferior to the projection images for both systems. Conclusion: Four phantoms were designed, constructed and imaged on two DBT systems. They successfully demonstrated performance differences between two systems, and between true and synthesized projection images. Future work will incorporate these designs into a single phantom.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y; Kumar, P; Mitchell, M
Purpose: Breast cancer patients who undergo a mastectomy often require post-mastectomy radiation therapy (PMRT) due to high risk disease characteristics. PMRT usually accompanies scar boost irradiation (10–16Gy in 5–8 fractions) using en face electrons, which often results in increased dose to the underlying lungs, thereby potentially increasing the risk of radiation pneumonitis. Hence, this study evaluated water-equivalent phantoms as energy degraders and as an alternative to a bolus to reduce radiation dose to the underlying lungs for electron scar boost irradiation. Methods: Percent depth dose (PDD) profiles of 6 MeV (the lowest electron energy available in most clinics) were obtainedmore » without and with commercial solid water phantoms (1 to 5mm by 1mm increments) placed on top of electron cones. Phantom attenuation was measured by taking a ratio of outputs with to without the phantoms in 10×10cm2 cone size for monitor unit (MU) calculation. In addition, scatter dose to contralateral breast was measured on a human-like phantom using two selected scar (short and long) boost patient setups. Results: The PDD plots showed that the solid water phantoms and the bolus had similar dosimetric effects for the same thickness. Lower skin dose (up to 3%) to ipsilateral breast was observed with a 5mm phantom compared with a 5mm bolus (up to 10%) for all electron cones. Phantom attenuation was increased by 50% with about a 4.5mm phantom. Also, the energy degraders caused scatter dose to contralateral breast by a factor of 3 with a 5mm phantom. Conclusion: Our results demonstrate the feasibility of using water-equivalent phantoms to reduce lung dose using en face electrons in patients with a thin chest wall undergoing PMRT. The disadvantages of this treatment approach (i.e., the increase in MUs and treatment time, and clinically insignificant scatter dose to the contralateral breast given usually 10Gy) are outweighed by its above clinical benefits.« less
Pi, Yifei; Liu, Tianyu; Xu, X George
2018-06-01
Phantoms for organ dose calculations are essential in radiation protection dosimetry. This article describes the development of a set of mesh-based and age-dependent phantoms for Chinese populations using reference data recommended by the Chinese government and by the International Atomic Energy Agency (IAEA). Existing mesh-based RPI adult male (RPI-AM) and RPI adult female (RPI-AF) phantoms were deformed to form new phantoms according to anatomical data for the height and weight of Chinese individuals of 5 years old male, 5 years old female, 10 years old male, 10 years old female,15 years old male, 15 years old female, adult male and adult female-named USTC-5 M, USTC-5F, USTC-10M, USTC-10F, USTC-15M, USTC-15F, USTC-AM and USTC-AF, respectively. Following procedures to ensure the accuracy, more than 120 organs/tissues in each model were adjusted to match the Chinese reference parameters and the mass errors were within 0.5%. To demonstrate the usefulness, these new set of phantoms were combined with a fully validated model of the GE LightSpeed Pro 16 multi-detector computed tomography (MDCT) scanner and the GPU-based ARCHER Monte Carlo code to compute organ doses from CT examinations. Organ doses for adult models were then compared with the data of RPI-AM and RPI-AF under the same conditions. The absorbed doses and the effective doses of RPI phantoms are found to be lower than these of the USTC adult phantoms whose body sizes are smaller. Comparisons for the doses among different ages and genders were also made. It was found that teenagers receive more radiation doses than adults do. Such Chinese-specific phantoms are clearly better suited in organ dose studies for the Chinese individuals than phantoms designed for western populations. As already demonstrated, data derived from age-specific Chinese phantoms can help CT operators and designers to optimize image quality and doses.
Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches.
Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki
2016-10-07
In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.
Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches
NASA Astrophysics Data System (ADS)
Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki
2016-10-01
In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.
Takahashi, Fumiaki; Sato, Kaoru; Endo, Akira; Ono, Koji; Ban, Nobuhiko; Hasegawa, Takayuki; Katsunuma, Yasushi; Yoshitake, Takayasu; Kai, Michiaki
2015-08-01
A dosimetry system for computed tomography (CT) examinations, named WAZA-ARI, is being developed to accurately assess radiation doses to patients in Japan. For dose calculations in WAZA-ARI, organ doses were numerically analyzed using average adult Japanese male (JM) and female (JF) phantoms with the Particle and Heavy Ion Transport code System (PHITS). Experimental studies clarified the photon energy distribution of emitted photons and dose profiles on the table for some multi-detector row CT (MDCT) devices. Numerical analyses using a source model in PHITS could specifically take into account emissions of x rays from the tube to the table with attenuation of photons through a beam-shaping filter for each MDCT device based on the experiment results. The source model was validated by measuring the CT dose index (CTDI). Numerical analyses with PHITS revealed a concordance of organ doses with body sizes of the JM and JF phantoms. The organ doses in the JM phantoms were compared with data obtained using previously developed systems. In addition, the dose calculations in WAZA-ARI were verified with previously reported results by realistic NUBAS phantoms and radiation dose measurement using a physical Japanese model (THRA1 phantom). The results imply that numerical analyses using the Japanese phantoms and specified source models can give reasonable estimates of dose for MDCT devices for typical Japanese adults.
Patient position alters attenuation effects in multipinhole cardiac SPECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timmins, Rachel; Ruddy, Terrence D.; Wells, R. Glenn, E-mail: gwells@ottawaheart.ca
2015-03-15
Purpose: Dedicated cardiac cameras offer improved sensitivity over conventional SPECT cameras. Sensitivity gains are obtained by large numbers of detectors and novel collimator arrangements such as an array of multiple pinholes that focus on the heart. Pinholes lead to variable amounts of attenuation as a source is moved within the camera field of view. This study evaluated the effects of this variable attenuation on myocardial SPECT images. Methods: Computer simulations were performed for a set of nine point sources distributed in the left ventricular wall (LV). Sources were placed at the location of the heart in both an anthropomorphic andmore » a water-cylinder computer phantom. Sources were translated in x, y, and z by up to 5 cm from the center. Projections were simulated with and without attenuation and the changes in attenuation were compared. A LV with an inferior wall defect was also simulated in both phantoms over the same range of positions. Real camera data were acquired on a Discovery NM530c camera (GE Healthcare, Haifa, Israel) for five min in list-mode using an anthropomorphic phantom (DataSpectrum, Durham, NC) with 100 MBq of Tc-99m in the LV. Images were taken over the same range of positions as the simulations and were compared based on the summed perfusion score (SPS), defect width, and apparent defect uptake for each position. Results: Point sources in the water phantom showed absolute changes in attenuation of ≤8% over the range of positions and relative changes of ≤5% compared to the apex. In the anthropomorphic computer simulations, absolute change increased to 20%. The changes in relative attenuation caused a change in SPS of <1.5 for the water phantom but up to 4.2 in the anthropomorphic phantom. Changes were larger for axial than for transverse translations. These results were supported by SPS changes of up to six seen in the physical anthropomorphic phantom for axial translations. Defect width was also seen to significantly increase. The position-dependent changes were removed with attenuation correction. Conclusions: Translation of a source relative to a multipinhole camera caused only small changes in homogeneous phantoms with SPS changing <1.5. Inhomogeneous attenuating media cause much larger changes to occur when the source is translated. Changes in SPS of up to six were seen in an anthropomorphic phantom for axial translations. Attenuation correction removes the position-dependent changes in attenuation.« less
NASA Astrophysics Data System (ADS)
Alssabbagh, Moayyad; Tajuddin, Abd Aziz; Abdulmanap, Mahayuddin; Zainon, Rafidah
2017-06-01
Recently, the three-dimensional printer has started to be utilized strongly in medical industries. In the human body, many parts or organs can be printed from 3D images to meet accurate organ geometries. In this study, five common 3D printing materials were evaluated in terms of their elementary composition and the mass attenuation coefficients. The online version of XCOM photon cross-section database was used to obtain the attenuation values of each material. The results were compared with the attenuation values of the thyroid listed in the International Commission on Radiation Units and Measurements - ICRU 44. Two original thyroid models (hollow-inside and solid-inside) were designed from scratch to be used in nuclear medicine, diagnostic radiology and radiotherapy for dosimetry and image quality purposes. Both designs have three holes for installation of radiation dosimeters. The hollow-inside model has more two holes in the top for injection the radioactive materials. The attenuation properties of the Polylactic Acid (PLA) material showed a very good match with the thyroid tissue, which it was selected to 3D print the phantom using open source RepRap, Prusa i3 3D printer. The scintigraphy images show that the phantom simulates a real healthy thyroid gland and thus it can be used for image quality purposes. The measured CT numbers of the PA material after the 3D printing show a close match with the human thyroid CT numbers. Furthermore, the phantom shows a good accommodation of the TLD dosimeters inside the holes. The 3D fabricated thyroid phantom simulates the real shape of the human thyroid gland with a changeable geometrical shape-size feature to fit different age groups. By using 3D printing technology, the time required to fabricate the 3D phantom was considerably shortened compared to the longer conventional methods, where it took only 30 min to print out the model. The 3D printing material used in this study is commercially available and cost-effective compared to current commercial tissue-equivalent materials.
Moradi, Farhad; Mahdavi, Seyed Rabi; Mostaar, Ahmad; Motamedi, Mohsen
2012-01-01
In this study the commissioning of a dose calculation algorithm in a currently used treatment planning system was performed and the calculation accuracy of two available methods in the treatment planning system i.e., collapsed cone convolution (CCC) and equivalent tissue air ratio (ETAR) was verified in tissue heterogeneities. For this purpose an inhomogeneous phantom (IMRT thorax phantom) was used and dose curves obtained by the TPS (treatment planning system) were compared with experimental measurements and Monte Carlo (MCNP code) simulation. Dose measurements were performed by using EDR2 radiographic films within the phantom. Dose difference (DD) between experimental results and two calculation methods was obtained. Results indicate maximum difference of 12% in the lung and 3% in the bone tissue of the phantom between two methods and the CCC algorithm shows more accurate depth dose curves in tissue heterogeneities. Simulation results show the accurate dose estimation by MCNP4C in soft tissue region of the phantom and also better results than ETAR method in bone and lung tissues. PMID:22973081
Jeon, Yunseok; Choi, Seungpyo; Kim, Heechan
2014-09-01
To investigate whether a novel ultrasound device may be used with a simplified augmented reality technique, and to compare this device with conventional techniques during vascular access using a vascular phantom. Prospective, randomized study. Anesthesiology and Pain Medicine departments of a university-affiliated hospital. 20 physicians with no experience with ultrasound-guided techniques. All participants performed the vascular access technique on the vascular phantom model using both a conventional device and the new ultrasound device. Time and the number of redirections of the needle until aspiration of dye into a vessel of the vascular phantom were measured. The median/interquartile range of time was 39.5/41.7 seconds versus 18.6/10.0 seconds (P < 0.001) and number of redirections was 3/3.5 versus 1/0 (P < 0.001) for the conventional and novel ultrasound devices, respectively. During vascular access in a vascular phantom model, the novel device decreased the time and the number of redirections significantly. The device successfully improved the efficiency of the ultrasound-guided vascular access technique. Copyright © 2014 Elsevier Inc. All rights reserved.
Magin, Richard L
2016-01-01
Cylindrical homogenous phantoms for magnetic resonance (MR) elastography in biomedical research provide one way to validate an imaging systems performance, but the simplified geometry and boundary conditions can cloak complexity arising at tissue interfaces. In an effort to develop a more realistic gel tissue phantom for MRE, we have constructed a heterogenous gel phantom (a sphere centrally embedded in a cylinder). The actuation comes from the phantom container, with the mechanical waves propagating toward the center, focusing the energy thus allowing for the visualization of high-frequency waves that would otherwise be damped. The phantom was imaged and its stiffness determined using a 9.4 T horizontal MRI with a custom build piezo-elastic MRE actuator. The phantom was vibrated at three frequencies, 250, 500, and 750 Hz. The resulting shear wave images were first used to reconstruct material stiffness maps for thin (1 mm) axial slices at each frequency, from which the complex shear moduli μ were estimated, and then compared with forward modeling using a recently developed theoretical model who took μ as inputs. The overall accuracy of the measurement process was assessed by comparing theory with experiment for selected values of the shear modulus (real and imaginary parts). Close agreement is shown between the experimentally obtained and theoretically predicted wave fields. PMID:27579850
NASA Astrophysics Data System (ADS)
Schwartz, Benjamin L.; Yin, Ziying; Magin, Richard L.
2016-09-01
Cylindrical homogenous phantoms for magnetic resonance (MR) elastography in biomedical research provide one way to validate an imaging systems performance, but the simplified geometry and boundary conditions can cloak complexity arising at tissue interfaces. In an effort to develop a more realistic gel tissue phantom for MRE, we have constructed a heterogenous gel phantom (a sphere centrally embedded in a cylinder). The actuation comes from the phantom container, with the mechanical waves propagating toward the center, focusing the energy and thus allowing for the visualization of high-frequency waves that would otherwise be damped. The phantom was imaged and its stiffness determined using a 9.4 T horizontal MRI with a custom build piezo-elastic MRE actuator. The phantom was vibrated at three frequencies, 250, 500, and 750 Hz. The resulting shear wave images were first used to reconstruct material stiffness maps for thin (1 mm) axial slices at each frequency, from which the complex shear moduli μ were estimated, and then compared with forward modeling using a recently developed theoretical model which took μ as inputs. The overall accuracy of the measurement process was assessed by comparing theory with experiment for selected values of the shear modulus (real and imaginary parts). Close agreement is shown between the experimentally obtained and theoretically predicted wave fields.
Schwartz, Benjamin L; Yin, Ziying; Magin, Richard L
2016-09-21
Cylindrical homogenous phantoms for magnetic resonance (MR) elastography in biomedical research provide one way to validate an imaging systems performance, but the simplified geometry and boundary conditions can cloak complexity arising at tissue interfaces. In an effort to develop a more realistic gel tissue phantom for MRE, we have constructed a heterogenous gel phantom (a sphere centrally embedded in a cylinder). The actuation comes from the phantom container, with the mechanical waves propagating toward the center, focusing the energy and thus allowing for the visualization of high-frequency waves that would otherwise be damped. The phantom was imaged and its stiffness determined using a 9.4 T horizontal MRI with a custom build piezo-elastic MRE actuator. The phantom was vibrated at three frequencies, 250, 500, and 750 Hz. The resulting shear wave images were first used to reconstruct material stiffness maps for thin (1 mm) axial slices at each frequency, from which the complex shear moduli μ were estimated, and then compared with forward modeling using a recently developed theoretical model which took μ as inputs. The overall accuracy of the measurement process was assessed by comparing theory with experiment for selected values of the shear modulus (real and imaginary parts). Close agreement is shown between the experimentally obtained and theoretically predicted wave fields.
An Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method.
Karbalaee, Mojtaba; Shahbazi-Gahrouei, Daryoush; Tavakoli, Mohammad B
2017-01-01
An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. A program was written for parallel running based on GPU. The code validation was performed by EGSnrc/DOSXYZnrc. Moreover, a semi-automatic, rotary, asymmetric phantom was designed and produced using a bone, the lung, and the soft tissue equivalent materials. All measurements were performed using a Mapcheck dosimeter. The accuracy of the code was validated using the experimental data, which was obtained from the anthropomorphic phantom as the gold standard. The findings showed that, compared with those of DOSXYZnrc in the virtual phantom and for most of the voxels (>95%), <3% dose-difference or 3 mm distance-to-agreement (DTA) was found. Moreover, considering the anthropomorphic phantom, compared to the Mapcheck dose measurements, <5% dose-difference or 5 mm DTA was observed. Fast calculation speed and high accuracy of GPU-based Monte Carlo method in dose calculation may be useful in routine radiation therapy centers as the core and main component of a treatment planning verification system.
NASA Astrophysics Data System (ADS)
Yusof, M. F. Mohd; Abdullah, R.; Tajuddin, A. A.; Hashim, R.; Bauk, S.
2016-01-01
A set of tannin-based Rhizophora spp. particleboard phantoms with dimension of 30 cm x 30 cm was fabricated at target density of 1.0 g/cm3. The mass attenuation coefficient of the phantom was measured using 60Co gamma source. The phantoms were scanned using Computed Tomography (CT) scanner and the percentage depth dose (PDD) of the phantom was calculated using treatment planning system (TPS) at 6 MV and 10 MV x-ray and compared to that in solid water phantoms. The result showed that the mass attenuation coefficient of tannin-based Rhizohora spp. phantoms was near to the value of water with χ2 value of 1.2. The measured PDD also showed good agreement with solid water phantom at both 6 MV and 10 MV x-ray with percentage deviation below 8% at depth beyond the maximum dose, Zmax.
Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics
NASA Astrophysics Data System (ADS)
Kennedy, Gordon T.; Lentsch, Griffin R.; Trieu, Brandon; Ponticorvo, Adrien; Saager, Rolf B.; Durkin, Anthony J.
2017-07-01
Tissue simulating phantoms can provide a valuable platform for quantitative evaluation of the performance of diffuse optical devices. While solid phantoms have been developed for applications related to characterizing exogenous fluorescence and intrinsic chromophores such as hemoglobin and melanin, we report the development of a poly(dimethylsiloxane) (PDMS) tissue phantom that mimics the spectral characteristics of tissue water. We have developed these phantoms to mimic different water fractions in tissue, with the purpose of testing new devices within the context of clinical applications such as burn wound triage. Compared to liquid phantoms, cured PDMS phantoms are easier to transport and use and have a longer usable life than gelatin-based phantoms. As silicone is hydrophobic, 9606 dye was used to mimic the optical absorption feature of water in the vicinity of 970 nm. Scattering properties are determined by adding titanium dioxide, which yields a wavelength-dependent scattering coefficient similar to that observed in tissue in the near-infrared. Phantom properties were characterized and validated using the techniques of inverse adding-doubling and spatial frequency domain imaging. Results presented here demonstrate that we can fabricate solid phantoms that can be used to simulate different water fractions.
NASA Astrophysics Data System (ADS)
Tchvialeva, Lioudmila; Lee, Tim K.; Markhvida, Igor; Zeng, Haishan; Doronin, Alexander; Meglinski, Igor
2014-03-01
The incidence of the skin melanoma, the most commonly fatal form of skin cancer, is increasing faster than any other potentially preventable cancer. Clinical practice is currently hampered by the lack of the ability to rapidly screen the functional and morphological properties of tissues. In our previous study we show that the quantification of scattered laser light polarization provides a useful metrics for diagnostics of the malignant melanoma. In this study we exploit whether the image speckle could improve skin cancer diagnostic in comparison with the previously used free-space speckle. The study includes skin phantom measurements and computer modeling. To characterize the depolarization of light we measure the spatial distribution of speckle patterns and analyse their depolarization ratio taken into account radial symmetry. We examine the dependences of depolarization ratio vs. roughness for phantoms which optical properties are of the order of skin lesions. We demonstrate that the variation in bulk optical properties initiates the assessable changes in the depolarization ratio. We show that image speckle differentiates phantoms significantly better than free-space speckle. The results of experimental measurements are compared with the results of Monte Carlo simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, A; Boone, J
Purpose: To estimate normalized mean glandular dose values for dedicated breast CT (DgN-CT) using breast CT-derived phantoms and compare to estimations using cylindrical phantoms. Methods: Segmented breast CT (bCT) volume data sets (N=219) were used to measure effective diameter profiles and were grouped into quintiles by volume. The profiles were averaged within each quintile to represent the range of breast sizes found clinically. These profiles were then used to generate five voxelized computational phantoms (V1, V2, V3, V4, V5 for the small to large phantom sizes, respectively), and loaded into the MCNP6 lattice geometry to simulate normalized mean glandular dosemore » coefficients (DgN-CT) using the system specifications of the Doheny-prototype bCT scanner in our laboratory. The DgN-CT coefficients derived from the bCT-derived breast-shaped phantoms were compared to those generated using a simpler cylindrical phantom using a constant volume, and the following constraints: (1) Length=1.5*radius; (2) radius determined at chest wall (Rcw), and (3) radius determined at the phantom center-of-mass (Rcm). Results: The change in Dg-NCT coefficients averaged across all phantom sizes, was - 0.5%, 19.8%, and 1.3%, for constraints 1–3, respectively. This suggests that the cylindrical assumption is a good approximation if the radius is taken at the breast center-of-mass, but using the radius at the chest wall results in an underestimation of the glandular dose. Conclusion: The DgN-CT coefficients for bCT-derived phantoms were compared against the assumption of a cylindrical phantom and proved to be essentially equivalent when the cylinder radius was set to r=1.5/L or Rcm. While this suggests that for dosimetry applications a patient’s breast can be approximated as a cylinder (if the correct radius is applied), this assumes a homogenous composition of breast tissue and the results may be different if the realistic heterogeneous distribution of glandular tissue is considered. Research reported in this paper was supported in part by the National Cancer Institute of the National Institutes of Health under award R01CA181081. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institue of Health.« less
Soyama, Takeshi; Sakuhara, Yusuke; Kudo, Kohsuke; Abo, Daisuke; Wang, Jeff; Ito, Yoichi M; Hasegawa, Yu; Shirato, Hiroki
2016-07-01
This preliminary study compared ultrasonography-computed tomography (US-CT) fusion imaging and conventional ultrasonography (US) for accuracy and time required for target identification using a combination of real phantoms and sets of digitally modified computed tomography (CT) images (digital/real hybrid phantoms). In this randomized prospective study, 27 spheres visible on B-mode US were placed at depths of 3.5, 8.5, and 13.5 cm (nine spheres each). All 27 spheres were digitally erased from the CT images, and a radiopaque sphere was digitally placed at each of the 27 locations to create 27 different sets of CT images. Twenty clinicians were instructed to identify the sphere target using US alone and fusion imaging. The accuracy of target identification of the two methods was compared using McNemar's test. The mean time required for target identification and error distances were compared using paired t tests. At all three depths, target identification was more accurate and the mean time required for target identification was significantly less with US-CT fusion imaging than with US alone, and the mean error distances were also shorter with US-CT fusion imaging. US-CT fusion imaging was superior to US alone in terms of accurate and rapid identification of target lesions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Lin; Kien Ng, Sook; Zhang, Ying
Purpose: Ultrasound is ideal for real-time monitoring in radiotherapy with high soft tissue contrast, non-ionization, portability, and cost effectiveness. Few studies investigated clinical application of real-time ultrasound monitoring for abdominal stereotactic body radiation therapy (SBRT). This study aims to demonstrate the feasibility of real-time monitoring of 3D target motion using 4D ultrasound. Methods: An ultrasound probe holding system was designed to allow clinician to freely move and lock ultrasound probe. For phantom study, an abdominal ultrasound phantom was secured on a 2D programmable respiratory motion stage. One side of the stage was elevated than another side to generate 3D motion.more » The motion stage made periodic breath-hold movement. Phantom movement tracked by infrared camera was considered as ground truth. For volunteer study three healthy subjects underwent the same setup for abdominal SBRT with active breath control (ABC). 4D ultrasound B-mode images were acquired for both phantom and volunteers for real-time monitoring. 10 breath-hold cycles were monitored for each experiment. For phantom, the target motion tracked by ultrasound was compared with motion tracked by infrared camera. For healthy volunteers, the reproducibility of ABC breath-hold was evaluated. Results: Volunteer study showed the ultrasound system fitted well to the clinical SBRT setup. The reproducibility for 10 breath-holds is less than 2 mm in three directions for all three volunteers. For phantom study the motion between inspiration and expiration captured by camera (ground truth) is 2.35±0.02 mm, 1.28±0.04 mm, 8.85±0.03 mm in LR, AP, SI directly, respectively. The motion monitored by ultrasound is 2.21±0.07 mm, 1.32±0.12mm, 9.10±0.08mm, respectively. The motion monitoring error in any direction is less than 0.5 mm. Conclusion: The volunteer study proved the clinical feasibility of real-time ultrasound monitoring for abdominal SBRT. The phantom and volunteer ABC studies demonstrated sub-millimeter accuracy of 3D motion movement monitoring.« less
NASA Astrophysics Data System (ADS)
Lee, Choonik; Jung, Jae Won; Pelletier, Christopher; Pyakuryal, Anil; Lamart, Stephanie; Kim, Jong Oh; Lee, Choonsik
2015-03-01
Organ dose estimation for retrospective epidemiological studies of late effects in radiotherapy patients involves two challenges: radiological images to represent patient anatomy are not usually available for patient cohorts who were treated years ago, and efficient dose reconstruction methods for large-scale patient cohorts are not well established. In the current study, we developed methods to reconstruct organ doses for radiotherapy patients by using a series of computational human phantoms coupled with a commercial treatment planning system (TPS) and a radiotherapy-dedicated Monte Carlo transport code, and performed illustrative dose calculations. First, we developed methods to convert the anatomy and organ contours of the pediatric and adult hybrid computational phantom series to Digital Imaging and Communications in Medicine (DICOM)-image and DICOM-structure files, respectively. The resulting DICOM files were imported to a commercial TPS for simulating radiotherapy and dose calculation for in-field organs. The conversion process was validated by comparing electron densities relative to water and organ volumes between the hybrid phantoms and the DICOM files imported in TPS, which showed agreements within 0.1 and 2%, respectively. Second, we developed a procedure to transfer DICOM-RT files generated from the TPS directly to a Monte Carlo transport code, x-ray Voxel Monte Carlo (XVMC) for more accurate dose calculations. Third, to illustrate the performance of the established methods, we simulated a whole brain treatment for the 10 year-old male phantom and a prostate treatment for the adult male phantom. Radiation doses to selected organs were calculated using the TPS and XVMC, and compared to each other. Organ average doses from the two methods matched within 7%, whereas maximum and minimum point doses differed up to 45%. The dosimetry methods and procedures established in this study will be useful for the reconstruction of organ dose to support retrospective epidemiological studies of late effects in radiotherapy patients.
NASA Astrophysics Data System (ADS)
Lizar, J. C.; Santos, L. F.; Brandão, F. C.; Volpato, K. C.; Guimarães, F. S.; Pavoni, J. F.
2017-05-01
This study aims to evaluate the motion influence in the tridimensional dose distribution due to respiratory for IMRT breast planning technique. To simulate the breathing movement an oscillating platform was used. To simulate the breast, MAGIC-f phantoms were used. CT images of a static phantom were obtained and the IMRT treatment was planned based on them. One phantom was irradiated static in the platform and two other phantoms were irradiated while oscillating in the platform with amplitudes of 0.34 cm and 1.22 cm, the fourth phantom was used as reference in the MRI acquisition. The percentage of points approved in the 3D global gamma analyses (3%/3mm) when comparing the dose distribution of the static phantom with the oscillating ones was 91% for the 0.34cm amplitude and 62% for the 1.22 cm amplitude. Considering this result, the differences found in the dosimetric analyses for the oscillating amplitude of 0.34cm could be considered acceptable in a real treatment. The isodose distribution analyses showed a decrease of dose in the anterior breast region and an increase of dose on the posterior breast region, being these differences most pronounced for large amplitude motion.
NASA Astrophysics Data System (ADS)
Kramer, R.; Vieira, J. W.; Khoury, H. J.; Lima, F. de Andrade
2004-03-01
The International Commission on Radiological Protection intends to revise the organ and tissue equivalent dose conversion coefficients published in various reports. For this purpose the mathematical human medical internal radiation dose (MIRD) phantoms, actually in use, have to be replaced by recently developed voxel-based phantoms. This study investigates the dosimetric consequences, especially with respect to the effective male dose, if not only a MIRD phantom is replaced by a voxel phantom, but also if the tissue compositions and the radiation transport codes are changed. This task will be resolved by systematically replacing in the mathematical ADAM/GSF exposure model, first the radiation transport code, then the tissue composition and finally the phantom anatomy, in order to arrive at the voxel-based MAX/EGS4 exposure model. The results show that the combined effect of these replacements can decrease the effective male dose by up to 25% for external exposures to photons for incident energies above 30 keV for different field geometries, mainly because of increased shielding by a heterogeneous skeleton and by the overlying adipose and muscle tissue, and also because of the positions internal organs have in a realistically designed human body compared to their positions in the mathematically constructed phantom.
Lee, Ho; Ryan, Robert T; Kim, Jeehyun; Choi, Bernard; Arakeri, Navanit V; Teichman, Joel M H; Welch, A J
2004-08-01
During pulsed laser lithotripsy, the calculus is subject to a strong recoil momentum which moves the calculus away from laser delivery and prolongs the operation. This study was designed to quantify the recoil momentum during Ho:YAG laser lithotripsy. The correlation among crater shape, debris trajectory, laser-induced bubble and recoil momentum was investigated. Calculus phantoms made from plaster of Paris were ablated with free running Ho:YAG lasers. The dynamics of recoil action of a calculus phantom was monitored by a high-speed video camera and the laser ablation craters were examined with Optical Coherent Tomography (OCT). Higher radiant exposure resulted in larger ablation volume (mass) which increased the recoil momentum. Smaller fibers produced narrow craters with a steep contoured geometry and decreased recoil momentum compared to larger fibers. In the presence of water, recoil motion of the phantom deviated from that of phantom in air. Under certain conditions, we observed the phantom rocking towards the fiber after the laser pulse. The shape of the crater is one of the major contributing factors to the diminished recoil momentum of smaller fibers. The re-entrance flow of water induced by the bubble collapse is considered to be the cause of the rocking of the phantom.
NASA Astrophysics Data System (ADS)
Kim, Han Sung; Yeom, Yeon Soo; Tat Nguyen, Thang; Choi, Chansoo; Han, Min Cheol; Lee, Jai Ki; Kim, Chan Hyeong; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik; Qiu, Rui; Eckerman, Keith; Chung, Beom Sun
2017-03-01
It is not feasible to define very small or complex organs and tissues in the current voxel-type adult reference computational phantoms of the International Commission on Radiological Protection (ICRP), which limit dose coefficients for weakly penetrating radiations. To address the problem, the ICRP is converting the voxel-type reference phantoms into mesh-type phantoms. In the present study, as a part of the conversion project, the micrometer-thick target and source regions in the alimentary and respiratory tract systems as described in ICRP Publications 100 and 66 were included in the mesh-type ICRP reference adult male and female phantoms. In addition, realistic lung airway models were simulated to represent the bronchial (BB) and bronchiolar (bb) regions. The electron specific absorbed fraction (SAF) values for the alimentary and respiratory tract systems were then calculated and compared with the values calculated with the stylized models of ICRP Publications 100 and 66. The comparisons show generally good agreement for the oral cavity, oesophagus, and BB, whereas for the stomach, small intestine, large intestine, extrathoracic region, and bb, there are some differences (e.g. up to ~9 times in the large intestine). The difference is mainly due to anatomical difference in these organs between the realistic mesh-type phantoms and the simplified stylized models. The new alimentary and respiratory tract models in the mesh-type ICRP reference phantoms preserve the topology and dimensions of the voxel-type ICRP phantoms and provide more reliable SAF values than the simplified models adopted in previous ICRP Publications.
Song, Kyu-Ho; Kim, Sang-Young; Lee, Do-Wan; Jung, Jin-Young; Lee, Jung-Hoon; Baek, Hyeon-Man; Choe, Bo-Young
2015-11-30
Magnetic resonance imaging and spectroscopy (MRI-MRS) is a useful tool for the identification and evaluation of chemical changes in anatomical regions. Quality assurance (QA) is performed in either images or spectra using QA phantom. Therefore, consistent and uniform technical MRI-MRS QA is crucial. Here we developed an MRI-MRS fused phantom along with the inserts for metabolite quantification to simultaneously optimize QA parameters for both MRI and MRS. T1- and T2-weighted images were obtained and MRS was performed with point-resolved spectroscopy. Using the fused phantom, the results of measuring MRI factors were: geometric distortion, <2% and ± 2 mm; image intensity uniformity, 83.09 ± 1.33%; percent-signal ghosting, 0.025 ± 0.004; low-contrast object detectability, 27.85 ± 0.80. In addition, the signal-to-noise ratio of N-acetyl-aspartate was consistently high (42.00 ± 5.66). In previous studies, MR phantoms could not obtain information from both images and spectra in the MR scanner simultaneously. Here we designed and developed a phantom for accurate and consistent QA within the acceptance range. It is important to take into account variations in the QA value using the MRI-MRS phantom, when comparing to other clinical or research MR scanners. The MRI-MRS QA factors obtained simultaneously using the phantom can facilitate evaluation of both images and spectra, and provide guidelines for obtaining MRI and MRS QA factors simultaneously. Copyright © 2015 Elsevier B.V. All rights reserved.
Ionita, C N; Dohatcu, A; Jain, A; Keleshis, C; Hoffmann, K R; Bednarek, D R; Rudin, S
2009-01-01
X-ray equipment testing using phantoms that mimic the specific human anatomy, morphology, and structure is a very important step in the research, development, and routine quality assurance for such equipment. Although the NEMA XR21 phantom exists for cardiac applications, there is no such standard phantom for neuro-, peripheral and cardio-vascular angiographic applications. We have extended the application of the NEMA XR21-2000 phantom to evaluate neurovascular x-ray imaging systems by structuring it to be head-equivalent; two aluminum plates shaped to fit into the NEMA phantom geometry were added to a 15 cm thick section. Also, to enable digital subtraction angiography (DSA) testing, two replaceable central plates with a hollow slot were made so that various angiographic sections could be inserted into the phantom. We tested the new modified phantom using a flat panel C-arm unit dedicated for endovascular image-guided interventions. All NEMA XR21-2000 standard test sections were used in evaluations with the new "head-equivalent" phantom. DSA and DA are able to be tested using two standard removable blocks having simulated arteries of various thickness and iodine concentrations (AAPM Report 15). The new phantom modifications have the benefits of enabling use of the standard NEMA phantom for angiography in both neuro- and cardio-vascular applications, with the convenience of needing only one versatile phantom for multiple applications. Additional benefits compared to using multiple phantoms are increased portability and lower cost.
NASA Astrophysics Data System (ADS)
Ionita, C. N.; Dohatcu, A.; Jain, A.; Keleshis, C.; Hoffmann, K. R.; Bednarek, D. R.; Rudin, S.
2009-02-01
X-ray equipment testing using phantoms that mimic the specific human anatomy, morphology, and structure is a very important step in the research, development, and routine quality assurance for such equipment. Although the NEMA XR21 phantom exists for cardiac applications, there is no such standard phantom for neuro-, peripheral and cardiovascular angiographic applications. We have extended the application of the NEMA XR21-2000 phantom to evaluate neurovascular x-ray imaging systems by structuring it to be head-equivalent; two aluminum plates shaped to fit into the NEMA phantom geometry were added to a 15 cm thick section. Also, to enable digital subtraction angiography (DSA) testing, two replaceable central plates with a hollow slot were made so that various angiographic sections could be inserted into the phantom. We tested the new modified phantom using a flat panel C-arm unit dedicated for endovascular image-guided interventions. All NEMA XR21-2000 standard test sections were used in evaluations with the new "headequivalent" phantom. DSA and DA are able to be tested using two standard removable blocks having simulated arteries of various thickness and iodine concentrations (AAPM Report 15). The new phantom modifications have the benefits of enabling use of the standard NEMA phantom for angiography in both neuro- and cardio-vascular applications, with the convenience of needing only one versatile phantom for multiple applications. Additional benefits compared to using multiple phantoms are increased portability and lower cost.
HOME-BASED SELF-DELIVERED MIRROR THERAPY FOR PHANTOM PAIN: A PILOT STUDY*
Darnall, Beth D.; Li, Hong
2014-01-01
Objective To test the feasibility and preliminary efficacy of self-delivered home-based mirror therapy for phantom pain. Design Uncontrolled prospective treatment outcome pilot study. Participants Forty community-dwelling adults with unilateral amputation and phantom pain >3 on a 0–10 numeric rating scale enrolled either during a one-time study visit (n = 30) or remotely (n = 10). Methods Participants received an explanation of mirror therapy and were asked to self-treat for 25 min daily. Participants completed and posted back sets of outcomes questionnaires at months 1 and 2 post-treatment. Main outcome was mean phantom pain intensity at post-treatment. Results A significant reduction in mean phantom pain intensity was found at month 1 (n = 31, p = 0.0002) and at month 2 (n = 26, p = 0.002). The overall median percentage reduction at month 2 was 15.4%. Subjects with high education (>16 years) compared with low education (<16 years) (37.5% vs 4.1%) had greater reduction in pain intensity (p = 0.01). Conclusion These findings support the feasibility and efficacy of home-based self-delivered mirror therapy; this low-cost treatment may defray medical costs, therapy visits, and the patient travel burden for people with motivation and a high level of education. More research is needed to determine methods of cost-effective support for people with lower levels of education. PMID:22378591
Radiation protection of staff in 111In radionuclide therapy--is the lead apron shielding effective?
Lyra, M; Charalambatou, P; Sotiropoulos, M; Diamantopoulos, S
2011-09-01
(111)In (Eγ = 171-245 keV, t1/2 = 2.83 d) is used for targeted therapies of endocrine tumours. An average activity of 6.3 GBq is injected into the liver by catheterisation of the hepatic artery. This procedure is time-consuming (4-5 min) and as a result, both the physicians and the technical staff involved are subjected to radiation exposure. In this research, the efficiency of the use of lead apron has been studied as far as the radiation protection of the working staff is concerned. A solution of (111)In in a cylindrical scattering phantom was used as a source. Close to the scattering phantom, an anthropomorphic male Alderson RANDO phantom was positioned. Thermoluminescent dosemeters were located in triplets on the front surface, in the exit and in various depths in the 26th slice of the RANDO phantom. The experiment was repeated by covering the RANDO phantom by a lead apron 0.25 mm Pb equivalent. The unshielded dose rates and the shielded photon dose rates were measured. Calculations of dose rates by Monte Carlo N-particle transport code were compared with this study's measurements. A significant reduction of 65 % on surface dose was observed when using lead apron. A decrease of 30 % in the mean absorbed dose among the different depths of the 26th slice of the RANDO phantom has also been noticed. An accurate correlation of the experimental results with Monte Carlo simulation has been achieved.
NASA Astrophysics Data System (ADS)
Saenz, Daniel L.; Kim, Hojin; Chen, Josephine; Stathakis, Sotirios; Kirby, Neil
2016-09-01
The primary purpose of the study was to determine how detailed deformable image registration (DIR) phantoms need to adequately simulate human anatomy and accurately assess the quality of DIR algorithms. In particular, how many distinct tissues are required in a phantom to simulate complex human anatomy? Pelvis and head-and-neck patient CT images were used for this study as virtual phantoms. Two data sets from each site were analyzed. The virtual phantoms were warped to create two pairs consisting of undeformed and deformed images. Otsu’s method was employed to create additional segmented image pairs of n distinct soft tissue CT number ranges (fat, muscle, etc). A realistic noise image was added to each image. Deformations were applied in MIM Software (MIM) and Velocity deformable multi-pass (DMP) and compared with the known warping. Images with more simulated tissue levels exhibit more contrast, enabling more accurate results. Deformation error (magnitude of the vector difference between known and predicted deformation) was used as a metric to evaluate how many CT number gray levels are needed for a phantom to serve as a realistic patient proxy. Stabilization of the mean deformation error was reached by three soft tissue levels for Velocity DMP and MIM, though MIM exhibited a persisting difference in accuracy between the discrete images and the unprocessed image pair. A minimum detail of three levels allows a realistic patient proxy for use with Velocity and MIM deformation algorithms.
A methodology for developing anisotropic AAA phantoms via additive manufacturing.
Ruiz de Galarreta, Sergio; Antón, Raúl; Cazón, Aitor; Finol, Ender A
2017-05-24
An Abdominal Aortic Aneurysm (AAA) is a permanent focal dilatation of the abdominal aorta at least 1.5 times its normal diameter. The criterion of maximum diameter is still used in clinical practice, although numerical studies have demonstrated the importance of biomechanical factors for rupture risk assessment. AAA phantoms could be used for experimental validation of the numerical studies and for pre-intervention testing of endovascular grafts. We have applied multi-material 3D printing technology to manufacture idealized AAA phantoms with anisotropic mechanical behavior. Different composites were fabricated and the phantom specimens were characterized by biaxial tensile tests while using a constitutive model to fit the experimental data. One composite was chosen to manufacture the phantom based on having the same mechanical properties as those reported in the literature for human AAA tissue; the strain energy and anisotropic index were compared to make this choice. The materials for the matrix and fibers of the selected composite are, respectively, the digital materials FLX9940 and FLX9960 developed by Stratasys. The fiber proportion for the composite is equal to 0.15. The differences between the composite behavior and the AAA tissue are small, with a small difference in the strain energy (0.4%) and a maximum difference of 12.4% in the peak Green strain ratio. This work represents a step forward in the application of 3D printing technology for the manufacturing of AAA phantoms with anisotropic mechanical behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
Image quality of conventional images of dual-layer SPECTRAL CT: A phantom study.
van Ommen, Fasco; Bennink, Edwin; Vlassenbroek, Alain; Dankbaar, Jan Willem; Schilham, Arnold M R; Viergever, Max A; de Jong, Hugo W A M
2018-05-10
Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips Healthcare) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips Healthcare), by means of phantom experiments. For both CT scanners, conventional CT images were acquired using four adult scanning protocols: (a) body helical, (b) body axial, (c) head helical, and (d) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. The resolution levels at 50%, 10%, and 5% MTF of the iCT and IQon showed small, but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal and larger phantoms with differences up to 0.51. Spatial resolution did not change with phantom size, but noise levels increased significantly. For head scans, IQon had a noise level that was significantly lower than the iCT, on the other hand IQon showed noise levels significantly higher than the iCT for body scans. Still, these differences were well within the specified range of performance of iCT scanners. At equivalent dose levels, this study showed similar quality of conventional images acquired on iCT and IQon for medium-sized phantoms and slightly degraded image quality for (very) large phantoms at lower tube voltages on the IQon. Accordingly, it may be concluded that the introduction of a dual-layer detector neither compromises image quality of conventional images nor increases radiation dose for normal-sized patients, and slightly degrades dose efficiency for large patients at 120 kVp and lower tube voltages. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
SU-F-T-580: New Tumor Modeling Using 3D Gel Dosimeter for Brain Stereoctactic Radiotherpy (SRT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, K; Kim, M; Kwak, J
Purpose: The purpose of this study is to develop new tumor model using 3D printing with 3D dosimeter for brain stereoctactic radiotherpy (SRT). Methods: BANG{sup 3} polymer gel was prepared and the gel-filled glass vials were irradiated with a 6 MV photon beam to acquire the calibration curve that present the change of R2 (1/T{sub 2}) value with dose. Graded doses from 0 to 12 Gy with an interval of 2 Gy were delivered. A kit for calibration of gel dosimeter and an 2 tumor model phantoms with a spherical shape were produced using a 3D printer with a polylacticmore » acid after its 3D images were created using Autodesk software. 3D printed tumor phantoms and EBT3 films were irradiated to compare with treatment plan. After irradiation, vials for calibration and tumor model phantoms were scanned at 9.4T MRI. The spin-spin relaxation times (T{sub 2}) according to the each dose were calculated to evaluate the dose response. Acquired images were analyzed using an ImageJ. Scanned MRI images of tumor models were transferred treatment planning system and these were registered to the CT images. In all treatment plans, two arc plans (CW and CCW) were designed to deliver 50 Gy for 10 fractions. For first PTV, treatment plan was accurately designed that 95% of dose to cover 100% of PTV. But 2nd PTV was not intentionally cover 100% of PTV to evaluate the intensity of delivered tumor phantom with polymer gel. We compared the 3D dose distributions obtained from measurements with the 3D printed phantom and calculated with the TPS. Results: 3D printed phantom with a polymer gel was successfully produced. The dose distributions showed qualitatively good agreement among gel, film, and RTP data. Conclusion: A hybrid phantom represents a useful to validate the 3D dose distributions for patient-specific QA.« less
Sensor-Based Electromagnetic Navigation (Mediguide®): How Accurate Is It? A Phantom Model Study.
Bourier, Felix; Reents, Tilko; Ammar-Busch, Sonia; Buiatti, Alessandra; Grebmer, Christian; Telishevska, Marta; Brkic, Amir; Semmler, Verena; Lennerz, Carsten; Kaess, Bernhard; Kottmaier, Marc; Kolb, Christof; Deisenhofer, Isabel; Hessling, Gabriele
2015-10-01
Data about localization reproducibility as well as spatial and visual accuracy of the new MediGuide® sensor-based electroanatomic navigation technology are scarce. We therefore sought to quantify these parameters based on phantom experiments. A realistic heart phantom was generated in a 3D-Printer. A CT scan was performed on the phantom. The phantom itself served as ground-truth reference to ensure exact and reproducible catheter placement. A MediGuide® catheter was repeatedly tagged at selected positions to assess accuracy of point localization. The catheter was also used to acquire a MediGuide®-scaled geometry in the EnSite Velocity® electroanatomic mapping system. The acquired geometries (MediGuide®-scaled and EnSite Velocity®-scaled) were compared to a CT segmentation of the phantom to quantify concordance. Distances between landmarks were measured in the EnSite Velocity®- and MediGuide®-scaled geometry and the CT dataset for Bland-Altman comparison. The visualization of virtual MediGuide® catheter tips was compared to their corresponding representation on fluoroscopic cine-loops. Point localization accuracy was 0.5 ± 0.3 mm for MediGuide® and 1.4 ± 0.7 mm for EnSite Velocity®. The 3D accuracy of the geometries was 1.1 ± 1.4 mm (MediGuide®-scaled) and 3.2 ± 1.6 mm (not MediGuide®-scaled). The offset between virtual MediGuide® catheter visualization and catheter representation on corresponding fluoroscopic cine-loops was 0.4 ± 0.1 mm. The MediGuide® system shows a very high level of accuracy regarding localization reproducibility as well as spatial and visual accuracy, which can be ascribed to the magnetic field localization technology. The observed offsets between the geometry visualization and the real phantom are below a clinically relevant threshold. © 2015 Wiley Periodicals, Inc.
SU-E-J-159: Analysis of Total Imaging Uncertainty in Respiratory-Gated Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, J; Okuda, T; Sakaino, S
Purpose: In respiratory-gated radiotherapy, the gating phase during treatment delivery needs to coincide with the corresponding phase determined during the treatment plan. However, because radiotherapy is performed based on the image obtained for the treatment plan, the time delay, motion artifact, volume effect, and resolution in the images are uncertain. Thus, imaging uncertainty is the most basic factor that affects the localization accuracy. Therefore, these uncertainties should be analyzed. This study aims to analyze the total imaging uncertainty in respiratory-gated radiotherapy. Methods: Two factors of imaging uncertainties related to respiratory-gated radiotherapy were analyzed. First, CT image was used to determinemore » the target volume and 4D treatment planning for the Varian Realtime Position Management (RPM) system. Second, an X-ray image was acquired for image-guided radiotherapy (IGRT) for the BrainLAB ExacTrac system. These factors were measured using a respiratory gating phantom. The conditions applied during phantom operation were as follows: respiratory wave form, sine curve; respiratory cycle, 4 s; phantom target motion amplitude, 10, 20, and 29 mm (which is maximum phantom longitudinal motion). The target and cylindrical marker implanted in the phantom coverage of the CT images was measured and compared with the theoretically calculated coverage from the phantom motion. The theoretical position of the cylindrical marker implanted in the phantom was compared with that acquired from the X-ray image. The total imaging uncertainty was analyzed from these two factors. Results: In the CT image, the uncertainty between the target and cylindrical marker’s actual coverage and the coverage of CT images was 1.19 mm and 2.50mm, respectively. In the Xray image, the uncertainty was 0.39 mm. The total imaging uncertainty from the two factors was 1.62mm. Conclusion: The total imaging uncertainty in respiratory-gated radiotherapy was clinically acceptable. However, an internal margin should be added to account for the total imaging uncertainty.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, H; Zhou, B; Beidokhti, D
Purpose: To investigate the feasibility of accurate quantification of iodine mass thickness in contrast-enhanced spectral mammography. Methods: Experimental phantom studies were performed on a spectral mammography system based on Si strip photon-counting detectors. Dual-energy images were acquired using 40 kVp and a splitting energy of 34 keV with 3 mm Al pre-filtration. The initial calibration was done with glandular and adipose tissue equivalent phantoms of uniform thicknesses and iodine disk phantoms of various concentrations. A secondary calibration was carried out using the iodine signal obtained from the dual-energy decomposed images and the known background phantom thicknesses and densities. The iodinemore » signal quantification method was validated using phantoms composed of a mixture of glandular and adipose materials, for various breast thicknesses and densities. Finally, the traditional dual-energy weighted subtraction method was also studied as a comparison. The measured iodine signal from both methods was compared to the known iodine concentrations of the disk phantoms to characterize the quantification accuracy. Results: There was good agreement between the iodine mass thicknesses measured using the proposed method and the known values. The root-mean-square (RMS) error was estimated to be 0.2 mg/cm2. The traditional weighted subtraction method also predicted a linear correlation between the measured signal and the known iodine mass thickness. However, the correlation slope and offset values were strongly dependent on the total breast thickness and density. Conclusion: The results of the current study suggest that iodine mass thickness can be accurately quantified with contrast-enhanced spectral mammography. The quantitative information can potentially improve the differentiation between benign and malignant legions. Grant funding from Philips Medical Systems.« less
Ojala, J; Hyödynmaa, S; Barańczyk, R; Góra, E; Waligórski, M P R
2014-03-01
Electron radiotherapy is applied to treat the chest wall close to the mediastinum. The performance of the GGPB and eMC algorithms implemented in the Varian Eclipse treatment planning system (TPS) was studied in this region for 9 and 16 MeV beams, against Monte Carlo (MC) simulations, point dosimetry in a water phantom and dose distributions calculated in virtual phantoms. For the 16 MeV beam, the accuracy of these algorithms was also compared over the lung-mediastinum interface region of an anthropomorphic phantom, against MC calculations and thermoluminescence dosimetry (TLD). In the phantom with a lung-equivalent slab the results were generally congruent, the eMC results for the 9 MeV beam slightly overestimating the lung dose, and the GGPB results for the 16 MeV beam underestimating the lung dose. Over the lung-mediastinum interface, for 9 and 16 MeV beams, the GGPB code underestimated the lung dose and overestimated the dose in water close to the lung, compared to the congruent eMC and MC results. In the anthropomorphic phantom, results of TLD measurements and MC and eMC calculations agreed, while the GGPB code underestimated the lung dose. Good agreement between TLD measurements and MC calculations attests to the accuracy of "full" MC simulations as a reference for benchmarking TPS codes. Application of the GGPB code in chest wall radiotherapy may result in significant underestimation of the lung dose and overestimation of dose to the mediastinum, affecting plan optimization over volumes close to the lung-mediastinum interface, such as the lung or heart. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingold, E; Dave, J
2014-06-01
Purpose: The purpose of this study was to compare a new model-based iterative reconstruction with existing reconstruction methods (filtered backprojection and basic iterative reconstruction) using quantitative analysis of standard image quality phantom images. Methods: An ACR accreditation phantom (Gammex 464) and a CATPHAN600 phantom were scanned using 3 routine clinical acquisition protocols (adult axial brain, adult abdomen, and pediatric abdomen) on a Philips iCT system. Each scan was acquired using default conditions and 75%, 50% and 25% dose levels. Images were reconstructed using standard filtered backprojection (FBP), conventional iterative reconstruction (iDose4) and a prototype model-based iterative reconstruction (IMR). Phantom measurementsmore » included CT number accuracy, contrast to noise ratio (CNR), modulation transfer function (MTF), low contrast detectability (LCD), and noise power spectrum (NPS). Results: The choice of reconstruction method had no effect on CT number accuracy, or MTF (p<0.01). The CNR of a 6 HU contrast target was improved by 1–67% with iDose4 relative to FBP, while IMR improved CNR by 145–367% across all protocols and dose levels. Within each scan protocol, the CNR improvement from IMR vs FBP showed a general trend of greater improvement at lower dose levels. NPS magnitude was greatest for FBP and lowest for IMR. The NPS of the IMR reconstruction showed a pronounced decrease with increasing spatial frequency, consistent with the unusual noise texture seen in IMR images. Conclusion: Iterative Model Reconstruction reduces noise and improves contrast-to-noise ratio without sacrificing spatial resolution in CT phantom images. This offers the possibility of radiation dose reduction and improved low contrast detectability compared with filtered backprojection or conventional iterative reconstruction.« less
A novel phantom model for mouse tumor dose assessment under MV beams
Gossman, Michael S.; Das, Indra J.; Sharma, Subhash C.; Lopez, Jeffrey P.; Howard, Candace M.; Claudio, Pier P.
2011-01-01
Purpose In order to determine a mouse’s dose accurately and prior to engaging in live mouse radiobiological research, a tissue-equivalent tumor-bearing phantom mouse was constructed and bored to accommodate detectors. Methods and Materials Comparisons were made between four different types of radiation detectors, each inserted into the phantom mouse for radiation measurement under a 6 MV linear accelerator beam. Dose detection response from a diode, thermoluminescent dosimeters, metal-oxide semiconductor field-effect transistors were used and compared to that of a reference pin-point ionization chamber. Likewise, a computerized treatment planning system was also directly compared. Results Each detector system demonstrated results similar to the dose computed by the therapeutic treatment planning system, although some differences were noted. The average disagreement from a accelerator calibrated output dose prescription in the range of 200–400 cGy were −0.4% ± 0.5σ for the diode, −2.4% ± 2.6σ for the TLD, −2.9% ± 5.0σ for the MOSFET and +1.3% ± 1.4σ for the treatment planning system. Conclusions This phantom mouse design is unique, simple, reproducible and therefore recommended as a standard approach to dosimetry for radiobiological mouse studies by means of any of the detectors used in this study. We fully advocate for treatment planning modeling when possible prior to linac-based dose delivery. PMID:22048493
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehler, E; Higgins, P; Dusenbery, K
2014-06-15
Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesiummore » oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and −0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom.« less
Qian, Zhen; Wang, Kan; Liu, Shizhen; Zhou, Xiao; Rajagopal, Vivek; Meduri, Christopher; Kauten, James R; Chang, Yung-Hang; Wu, Changsheng; Zhang, Chuck; Wang, Ben; Vannan, Mani A
2017-07-01
This study aimed to develop a procedure simulation platform for in vitro transcatheter aortic valve replacement (TAVR) using patient-specific 3-dimensional (3D) printed tissue-mimicking phantoms. We investigated the feasibility of using these 3D printed phantoms to quantitatively predict the occurrence, severity, and location of any degree of post-TAVR paravalvular leaks (PVL). We have previously shown that metamaterial 3D printing technique can be used to create patient-specific phantoms that mimic the mechanical properties of biological tissue. This may have applications in procedural planning for cardiovascular interventions. This retrospective study looked at 18 patients who underwent TAVR. Patient-specific aortic root phantoms were created using the tissue-mimicking 3D printing technique using pre-TAVR computed tomography. The CoreValve (self-expanding valve) prostheses were deployed in the phantoms to simulate the TAVR procedure, from which post-TAVR aortic root strain was quantified in vitro. A novel index, the annular bulge index, was measured to assess the post-TAVR annular strain unevenness in the phantoms. We tested the comparative predictive value of the bulge index and other known predictors of post-TAVR PVL. The maximum annular bulge index was significantly different among patient subgroups that had no PVL, trace-to-mild PVL, and moderate-to-severe PVL (p = 0.001). Compared with other known PVL predictors, bulge index was the only significant predictor of moderate-severe PVL (area under the curve = 95%; p < 0.0001). Also, in 12 patients with post-TAVR PVL, the annular bulge index predicted the major PVL location in 9 patients (accuracy = 75%). In this proof-of-concept study, we have demonstrated the feasibility of using 3D printed tissue-mimicking phantoms to quantitatively assess the post-TAVR aortic root strain in vitro. A novel indicator of the post-TAVR annular strain unevenness, the annular bulge index, outperformed the other established variables and achieved a high level of accuracy in predicting post-TAVR PVL, in terms of its occurrence, severity, and location. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yu, L; Vrieze, T
Purpose: Added filtration such as tin filter has the potential to improve dose efficiency of x-ray beam in lung-cancer screening CT. However, dose efficiency with added beam filtration is highly dependent on patient attenuation level. In this phantom study, we evaluated the image quality at different tube voltages with and without added tin filter when attenuation level varies. Methods: A 30 x 20 cm anthropomorphic thorax phantom with three added extension rings were used to simulate small (S), medium (M), large (L), and extra-large (XL) adult patients. These phantoms were scanned on a 192-slice CT scanner (Force, Siemens) at 100more » and 120kV without tin filtration, and 100 and 150 kV with tin filtration (100Sn and 150Sn), at multiple dose levels at each kV. Images were reconstructed using iterative reconstruction (ADMIRE, Siemens). Radiation dose was measured with a 0.6 cc ion chamber in the middle and peripheral areas of the phantom. Image quality was assessed using mean image noise at uniform areas in the central region and lung. Radiation dose that is required for each kV to match the noise in a routine lung-cancer CT screening technique (120kV, 25 quality reference mAs) was calculated. Results: At each of the four phantom sizes, 100Sn had the lowest noise in both soft tissue and lung. Compared with 120 kV, 100Sn saved 39%–60% dose for the same noise, depending on phantom size. For the XL phantom (50 by 40 cm), 150Sn provided images with the least beam-hardening artifact in peripheral region. Conclusion: For thoracic CT, added tin filtration can provide considerable dose reduction compared with 120 kV. 100Sn provides better dose efficiencies for all phantom sizes, while 150Sn provides better image quality in peripheral region for extra-large patients. Drs.Joel G. Fletcher and Cynthia H. McCollough receive research support from Siemens Healthcare.« less
NASA Astrophysics Data System (ADS)
Zhang, Guozhi; Liu, Qian; Zeng, Shaoqun; Luo, Qingming
2008-07-01
The voxel-based visible Chinese human (VCH) adult male phantom has offered a high-quality test bed for realistic Monte Carlo modeling in radiological dosimetry simulations. The phantom has been updated in recent effort by adding newly segmented organs, revising walled and smaller structures as well as recalibrating skeletal marrow distributions. The organ absorbed dose against external proton exposure was calculated at a voxel resolution of 2 × 2 × 2 mm3 using the MCNPX code for incident energies from 20 MeV to 10 GeV and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO), respectively. The effective dose on the VCH phantom was derived in compliance with the evaluation scheme for the reference male proposed in the 2007 recommendations of the International Commission on Radiological Protection (ICRP). Algorithm transitions from the revised radiation and tissue weighting factors are accountable for approximately 90% and 10% of effective dose discrepancies in proton dosimetry, respectively. Results are tabulated in terms of fluence-to-dose conversion coefficients for practical use and are compared with data from other models available in the literature. Anatomical variations between various computational phantoms lead to dose discrepancies ranging from a negligible level to 100% or more at proton energies below 200 MeV, corresponding to the spatial geometric locations of individual organs within the body. Doses show better agreement at higher energies and the deviations are mostly within 20%, to which the organ volume and mass differences should be of primary responsibility. The impact of body size on dose distributions was assessed by dosimetry of a scaled-up VCH phantom that was resized in accordance with the height and total mass of the ICRP reference man. The organ dose decreases with the directionally uniform enlargement of voxels. Potential pathways to improve the VCH phantom have also been briefly addressed. This work pertains to VCH-based systematic multi-particle dose investigations and will contribute to comparative dosimetry studies of ICRP standardized voxel phantoms in the near future.
NASA Astrophysics Data System (ADS)
Tyagi, N.; Curran, B. H.; Roberson, P. L.; Moran, J. M.; Acosta, E.; Fraass, B. A.
2008-02-01
IMRT often requires delivering small fields which may suffer from electronic disequilibrium effects. The presence of heterogeneities, particularly low-density tissues in patients, complicates such situations. In this study, we report on verification of the DPM MC code for IMRT treatment planning in heterogeneous media, using a previously developed model of the Varian 120-leaf MLC. The purpose of this study is twofold: (a) design a comprehensive list of experiments in heterogeneous media for verification of any dose calculation algorithm and (b) verify our MLC model in these heterogeneous type geometries that mimic an actual patient geometry for IMRT treatment. The measurements have been done using an IMRT head and neck phantom (CIRS phantom) and slab phantom geometries. Verification of the MLC model has been carried out using point doses measured with an A14 slim line (SL) ion chamber inside a tissue-equivalent and a bone-equivalent material using the CIRS phantom. Planar doses using lung and bone equivalent slabs have been measured and compared using EDR films (Kodak, Rochester, NY).
Bacher, Klaus; Smeets, Peter; Vereecken, Ludo; De Hauwere, An; Duyck, Philippe; De Man, Robert; Verstraete, Koenraad; Thierens, Hubert
2006-09-01
The aim of this study was to compare the image quality and radiation dose in chest imaging using an amorphous silicon flat-panel detector system and an amorphous selenium flat-panel detector system. In addition, the low-contrast performance of both systems with standard and low radiation doses was compared. In two groups of 100 patients each, digital chest radiographs were acquired with either an amorphous silicon or an amorphous selenium flat-panel system. The effective dose of the examination was measured using thermoluminescent dosimeters placed in an anthropomorphic Rando phantom. The image quality of the digital chest radiographs was assessed by five experienced radiologists using the European Guidelines on Quality Criteria for Diagnostic Radiographic Images. In addition, a contrast-detail phantom study was set up to assess the low-contrast performance of both systems at different radiation dose levels. Differences between the two groups were tested for significance using the two-tailed Mann-Whitney test. The amorphous silicon flat-panel system allowed an important and significant reduction in effective dose in comparison with the amorphous selenium flat-panel system (p < 0.0001) for both the posteroanterior and lateral views. In addition, clinical image quality analysis showed that the dose reduction was not detrimental to image quality. Compared with the amorphous selenium flat-panel detector system, the amorphous silicon flat-panel detector system performed significantly better in the low-contrast phantom study, with phantom entrance dose values of up to 135 muGy. Chest radiographs can be acquired with a significantly lower patient radiation dose using an amorphous silicon flat-panel system than using an amorphous selenium flat-panel system, thereby producing images that are equal or even superior in quality to those of the amorphous selenium flat-panel detector system.
Patient-specific cardiac phantom for clinical training and preprocedure surgical planning.
Laing, Justin; Moore, John; Vassallo, Reid; Bainbridge, Daniel; Drangova, Maria; Peters, Terry
2018-04-01
Minimally invasive mitral valve repair procedures including MitraClip ® are becoming increasingly common. For cases of complex or diseased anatomy, clinicians may benefit from using a patient-specific cardiac phantom for training, surgical planning, and the validation of devices or techniques. An imaging compatible cardiac phantom was developed to simulate a MitraClip ® procedure. The phantom contained a patient-specific cardiac model manufactured using tissue mimicking materials. To evaluate accuracy, the patient-specific model was imaged using computed tomography (CT), segmented, and the resulting point cloud dataset was compared using absolute distance to the original patient data. The result, when comparing the molded model point cloud to the original dataset, resulted in a maximum Euclidean distance error of 7.7 mm, an average error of 0.98 mm, and a standard deviation of 0.91 mm. The phantom was validated using a MitraClip ® device to ensure anatomical features and tools are identifiable under image guidance. Patient-specific cardiac phantoms may allow for surgical complications to be accounted for preoperative planning. The information gained by clinicians involved in planning and performing the procedure should lead to shorter procedural times and better outcomes for patients.
NASA Astrophysics Data System (ADS)
Belinato, Walmir; Santos, William S.; Silva, Rogério M. V.; Souza, Divanizia N.
2014-03-01
The determination of dose conversion factors (S values) for the radionuclide fluorodeoxyglucose (18F-FDG) absorbed in the lungs during a positron emission tomography (PET) procedure was calculated using the Monte Carlo method (MCNPX version 2.7.0). For the obtained dose conversion factors of interest, it was considered a uniform absorption of radiopharmaceutical by the lung of a healthy adult human. The spectrum of fluorine was introduced in the input data file for the simulation. The simulation took place in two adult phantoms of both sexes, based on polygon mesh surfaces called FASH and MASH with anatomy and posture according to ICRP 89. The S values for the 22 internal organs/tissues, chosen from ICRP No. 110, for the FASH and MASH phantoms were compared with the results obtained from a MIRD V phantoms called ADAM and EVA used by the Committee on Medical Internal Radiation Dose (MIRD). We observed variation of more than 100% in S values due to structural anatomical differences in the internal organs of the MASH and FASH phantoms compared to the mathematical phantom.
NASA Astrophysics Data System (ADS)
Heidary, Saeed; Setayeshi, Saeed; Ghannadi-Maragheh, Mohammad
2014-09-01
The aim of this study is to compare the adaptive neuro-fuzzy inference system (ANFIS) and the artificial neural network (ANN) to estimate the cross-talk contamination of 99 m Tc / 201 Tl image acquisition in the 201 Tl energy window (77 ± 15% keV). GATE (Geant4 Application in Emission and Tomography) is employed due to its ability to simulate multiple radioactive sources concurrently. Two kinds of phantoms, including two digital and one physical phantom, are used. In the real and the simulation studies, data acquisition is carried out using eight energy windows. The ANN and the ANFIS are prepared in MATLAB, and the GATE results are used as a training data set. Three indications are evaluated and compared. The ANFIS method yields better outcomes for two indications (Spearman's rank correlation coefficient and contrast) and the two phantom results in each category. The maximum image biasing, which is the third indication, is found to be 6% more than that for the ANN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perks, J; Benedict, S; Lucero, S
Purpose: To document the support of radiobiological small animal research by a modern radiation oncology facility. This study confirms that a standard, human use linear accelerator can cover the range of experiments called for by researchers performing animal irradiation. A number of representative, anthropomorphic murine phantoms were made. The phantoms confirmed the small field photon and electron beams dosimetry validated the use of the linear accelerator for rodents. Methods: Laser scanning a model, CAD design and 3D printing produced the phantoms. The phantoms were weighed and CT scanned to judge their compatibility to real animals. Phantoms were produced to specificallymore » mimic lung, gut, brain, and othotopic lesion irradiations. Each phantom was irradiated with the same protocol as prescribed to the live animals. Delivered dose was measured with small field ion chambers, MOS/FETs or TLDs. Results: The density of the phantom material compared to density range across the real mice showed that the printed material would yield sufficiently accurate measurements when irradiated. The whole body, lung and gut irradiations were measured within 2% of prescribed doses with A1SL ion chamber. MOSFET measurements of electron irradiations for the orthotopic lesions allowed refinement of the measured small field output factor to better than 2% and validated the immunology experiment of irradiating one lesion and sparing another. Conclusion: Linacs are still useful tools in small animal bio-radiation research. This work demonstrated a strong role for the clinical accelerator in small animal research, facilitating standard whole body dosing as well as conformal treatments down to 1cm field. The accuracy of measured dose, was always within 5%. The electron irradiations of the phantom brain and flank tumors needed adjustment; the anthropomorphic phantoms allowed refinement of the initial output factor measurements for these fields which were made in a large block of solid water.« less
SU-E-I-48: Comparison of CTDIw and Averaged CTDI Over X-Y Plane.
Liang, Y; Emerson, S; Schultz, C
2012-06-01
The goal of this study is to investigate the accuracy of using CTDIw to estimate the averaged CTDI over x-y plane. We used a Siemens Sensation 16 slice scanner, a nested 3 piece CTDI phantom with diameters of 10, 16, and 32 cm for each piece, a CT pencil ion chamber, and aluminum oxide OSL dosimeters. In axial mode, we measured the exposure with ion chamber at the 3, 6, 9, and 12 o'clock positions at distances of 4, 7, and 15 cm from the center of a 32 cm CTDI phantom, as well as at the center of the phantom. Measurements were performed at 80, 100, 120, and 140 kVp on the adult abdomen, adult head, and pediatric body phantom, using only the distances of 0, 4, and 7 cm from the phantom center for the smaller 16 cm diameter phantom. We did similar measurements using nanoDot dosimeters and the 32 cm phantom at 120 kVp in helical mode using a pitch of 0.8, 1.0, and 1.2. The data obtained at four different outer clock positions was averaged and three models (linear, quadratic, and exponential) were used to fit exposure as a function of distance to the phantom center. We calculated the average CTDI over the x- y plane mathematically using the above models and compared the results with traditional CTDIw. In axial mode, the difference is within 6% for 32 cm phantom, with a slight increase in variance at low kVp, while the difference is within 1% for the 16 cm phantom. In helical mode with OSLs, the difference is within 2.5% for pitch 0.8-1.2. The current CTDIw provides an accurate estimate of the averaged CTDI over the x-y plane for both axial and helical modes. © 2012 American Association of Physicists in Medicine.
Application of full field optical studies for pulsatile flow in a carotid artery phantom
Nemati, M.; Loozen, G. B.; van der Wekken, N.; van de Belt, G.; Urbach, H. P.; Bhattacharya, N.; Kenjeres, S.
2015-01-01
A preliminary comparative measurement between particle imaging velocimetry (PIV) and laser speckle contrast analysis (LASCA) to study pulsatile flow using ventricular assist device in a patient-specific carotid artery phantom is reported. These full-field optical techniques have both been used to study flow and extract complementary parameters. We use the high spatial resolution of PIV to generate a full velocity map of the flow field and the high temporal resolution of LASCA to extract the detailed frequency spectrum of the fluid pulses. Using this combination of techniques a complete study of complex pulsatile flow in an intricate flow network can be studied. PMID:26504652
NASA Astrophysics Data System (ADS)
Linte, Cristian A.; Rettmann, Maryam E.; Dilger, Ben; Gunawan, Mia S.; Arunachalam, Shivaram P.; Holmes, David R., III; Packer, Douglas L.; Robb, Richard A.
2012-02-01
The novel prototype system for advanced visualization for image-guided left atrial ablation therapy developed in our laboratory permits ready integration of multiple imaging modalities, surgical instrument tracking, interventional devices and electro-physiologic data. This technology allows subject-specific procedure planning and guidance using 3D dynamic, patient-specific models of the patient's heart, augmented with real-time intracardiac echocardiography (ICE). In order for the 2D ICE images to provide intuitive visualization for accurate catheter to surgical target navigation, the transducer must be tracked, so that the acquired images can be appropriately presented with respect to the patient-specific anatomy. Here we present the implementation of a previously developed ultrasound calibration technique for a magnetically tracked ICE transducer, along with a series of evaluation methods to ensure accurate imaging and faithful representation of the imaged structures. Using an engineering-designed phantom, target localization accuracy is assessed by comparing known target locations with their transformed locations inferred from the tracked US images. In addition, the 3D volume reconstruction accuracy is also estimated by comparing a truth volume to that reconstructed from sequential 2D US images. Clinically emulating validation studies are conducted using a patient-specific left atrial phantom. Target localization error of clinically-relevant surgical targets represented by nylon fiducials implanted within the endocardial wall of the phantom was assessed. Our studies have demonstrated 2.4 +/- 0.8 mm target localization error in the engineering-designed evaluation phantoms, 94.8 +/- 4.6 % volume reconstruction accuracy, and 3.1 +/- 1.2 mm target localization error in the left atrial-mimicking phantom. These results are consistent with those disseminated in the literature and also with the accuracy constraints imposed by the employed technology and the clinical application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalak, Gregory; Grimes, Joshua; Fletcher, Joel
2016-01-15
Purpose: The purpose of this study was to evaluate, over a wide range of phantom sizes, CT number stability achieved using two techniques for generating dual-energy computed tomography (DECT) virtual monoenergetic images. Methods: Water phantoms ranging in lateral diameter from 15 to 50 cm and containing a CT number test object were scanned on a DSCT scanner using both single-energy (SE) and dual-energy (DE) techniques. The SE tube potentials were 70, 80, 90, 100, 110, 120, 130, 140, and 150 kV; the DE tube potential pairs were 80/140, 70/150Sn, 80/150Sn, 90/150Sn, and 100/150Sn kV (Sn denotes that the 150 kVmore » beam was filtered with a 0.6 mm tin filter). Virtual monoenergetic images at energies ranging from 40 to 140 keV were produced from the DECT data using two algorithms, monoenergetic (mono) and monoenergetic plus (mono+). Particularly in large phantoms, water CT number errors and/or artifacts were observed; thus, datasets with water CT numbers outside ±10 HU or with noticeable artifacts were excluded from the study. CT numbers were measured to determine CT number stability across all phantom sizes. Results: Data exclusions were generally limited to cases when a SE or DE technique with a tube potential of less than 90 kV was used to scan a phantom larger than 30 cm. The 90/150Sn DE technique provided the most accurate water background over the large range of phantom sizes evaluated. Mono and mono+ provided equally improved CT number stability as a function of phantom size compared to SE; the average deviation in CT number was only 1.4% using 40 keV and 1.8% using 70 keV, while SE had an average deviation of 11.8%. Conclusions: The authors’ report demonstrates, across all phantom sizes, the improvement in CT number stability achieved with mono and mono+ relative to SE.« less
Michalak, Gregory; Grimes, Joshua; Fletcher, Joel; Halaweish, Ahmed; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia
2016-01-01
The purpose of this study was to evaluate, over a wide range of phantom sizes, CT number stability achieved using two techniques for generating dual-energy computed tomography (DECT) virtual monoenergetic images. Water phantoms ranging in lateral diameter from 15 to 50 cm and containing a CT number test object were scanned on a DSCT scanner using both single-energy (SE) and dual-energy (DE) techniques. The SE tube potentials were 70, 80, 90, 100, 110, 120, 130, 140, and 150 kV; the DE tube potential pairs were 80/140, 70/150Sn, 80/150Sn, 90/150Sn, and 100/150Sn kV (Sn denotes that the 150 kV beam was filtered with a 0.6 mm tin filter). Virtual monoenergetic images at energies ranging from 40 to 140 keV were produced from the DECT data using two algorithms, monoenergetic (mono) and monoenergetic plus (mono+). Particularly in large phantoms, water CT number errors and/or artifacts were observed; thus, datasets with water CT numbers outside ±10 HU or with noticeable artifacts were excluded from the study. CT numbers were measured to determine CT number stability across all phantom sizes. Data exclusions were generally limited to cases when a SE or DE technique with a tube potential of less than 90 kV was used to scan a phantom larger than 30 cm. The 90/150Sn DE technique provided the most accurate water background over the large range of phantom sizes evaluated. Mono and mono+ provided equally improved CT number stability as a function of phantom size compared to SE; the average deviation in CT number was only 1.4% using 40 keV and 1.8% using 70 keV, while SE had an average deviation of 11.8%. The authors' report demonstrates, across all phantom sizes, the improvement in CT number stability achieved with mono and mono+ relative to SE.
Iterative reconstruction with boundary detection for carbon ion computed tomography
NASA Astrophysics Data System (ADS)
Shrestha, Deepak; Qin, Nan; Zhang, You; Kalantari, Faraz; Niu, Shanzhou; Jia, Xun; Pompos, Arnold; Jiang, Steve; Wang, Jing
2018-03-01
In heavy ion radiation therapy, improving the accuracy in range prediction of the ions inside the patient’s body has become essential. Accurate localization of the Bragg peak provides greater conformity of the tumor while sparing healthy tissues. We investigated the use of carbon ions directly for computed tomography (carbon CT) to create the relative stopping power map of a patient’s body. The Geant4 toolkit was used to perform a Monte Carlo simulation of the carbon ion trajectories, to study their lateral and angular deflections and the most likely paths, using a water phantom. Geant4 was used to create carbonCT projections of a contrast and spatial resolution phantom, with a cone beam of 430 MeV/u carbon ions. The contrast phantom consisted of cranial bone, lung material, and PMMA inserts while the spatial resolution phantom contained bone and lung material inserts with line pair (lp) densities ranging from 1.67 lp cm-1 through 5 lp cm-1. First, the positions of each carbon ion on the rear and front trackers were used for an approximate reconstruction of the phantom. The phantom boundary was extracted from this approximate reconstruction, by using the position as well as angle information from the four tracking detectors, resulting in the entry and exit locations of the individual ions on the phantom surface. Subsequent reconstruction was performed by the iterative algebraic reconstruction technique coupled with total variation minimization (ART-TV) assuming straight line trajectories for the ions inside the phantom. The influence of number of projections was studied with reconstruction from five different sets of projections: 15, 30, 45, 60 and 90. Additionally, the effect of number of ions on the image quality was investigated by reducing the number of ions/projection while keeping the total number of projections at 60. An estimation of carbon ion range using the carbonCT image resulted in improved range prediction compared to the range calculated using a calibration curve.
MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors.
Chiu, Tsuicheng D; Arai, Tatsuya J; Campbell Iii, James; Jiang, Steve B; Mason, Ralph P; Stojadinovic, Strahinja
2018-01-01
Multi-modality image-guided radiotherapy is the standard of care in contemporary cancer management; however, it is not common in preclinical settings due to both hardware and software limitations. Soft tissue lesions, such as orthotopic prostate tumors, are difficult to identify using cone beam computed tomography (CBCT) imaging alone. In this study, we characterized a research magnetic resonance (MR) scanner for preclinical studies and created a protocol for combined MR-CBCT image-guided small animal radiotherapy. Two in-house dual-modality, MR and CBCT compatible, phantoms were designed and manufactured using 3D printing technology. The phantoms were used for quality assurance tests and to facilitate end-to-end testing for combined preclinical MR and CBCT based treatment planning. MR and CBCT images of the phantoms were acquired utilizing a Varian 4.7 T scanner and XRad-225Cx irradiator, respectively. The geometry distortion was assessed by comparing MR images to phantom blueprints and CBCT. The corrected MR scans were co-registered with CBCT and subsequently used for treatment planning. The fidelity of 3D printed phantoms compared to the blueprint design yielded favorable agreement as verified with the CBCT measurements. The geometric distortion, which varied between -5% and 11% throughout the scanning volume, was substantially reduced to within 0.4% after correction. The distortion free MR images were co-registered with the corresponding CBCT images and imported into a commercial treatment planning software SmART Plan. The planning target volume (PTV) was on average 19% smaller when contoured on the corrected MR-CBCT images relative to raw images without distortion correction. An MR-CBCT based preclinical workflow was successfully designed and implemented for small animal radiotherapy. Combined MR-CBCT image-guided radiotherapy for preclinical research potentially delivers enhanced relevance to human radiotherapy for various disease sites. This novel protocol is wide-ranging and not limited to the orthotopic prostate tumor study presented in the study.
Comparison of different phantoms used in digital diagnostic imaging
NASA Astrophysics Data System (ADS)
Bor, Dogan; Unal, Elif; Uslu, Anil
2015-09-01
The organs of extremity, chest, skull and lumbar were physically simulated using uniform PMMA slabs with different thicknesses alone and using these slabs together with aluminum plates and air gaps (ANSI Phantoms). The variation of entrance surface air kerma and scatter fraction with X-ray beam qualities was investigated for these phantoms and the results were compared with those measured from anthropomorphic phantoms. A flat panel digital radiographic system was used for all the experiments. Considerable variations of entrance surface air kermas were found for the same organs of different designs, and highest doses were measured for the PMMA slabs. A low contrast test tool and a contrast detail test object (CDRAD) were used together with each organ simulation of PMMA slabs and ANSI phantoms in order to test the clinical image qualities. Digital images of these phantom combinations and anthropomorphic phantoms were acquired in raw and clinically processed formats. Variation of image quality with kVp and post processing was evaluated using the numerical metrics of these test tools and measured contrast values from the anthropomorphic phantoms. Our results indicated that design of some phantoms may not be efficient enough to reveal the expected performance of the post processing algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusof, M. F. Mohd, E-mail: mfahmi@usm.my; School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan; Abdullah, R.
A set of tannin-based Rhizophora spp. particleboard phantoms with dimension of 30 cm x 30 cm was fabricated at target density of 1.0 g/cm{sup 3}. The mass attenuation coefficient of the phantom was measured using {sup 60}Co gamma source. The phantoms were scanned using Computed Tomography (CT) scanner and the percentage depth dose (PDD) of the phantom was calculated using treatment planning system (TPS) at 6 MV and 10 MV x-ray and compared to that in solid water phantoms. The result showed that the mass attenuation coefficient of tannin-based Rhizohora spp. phantoms was near to the value of water with χ{sup 2} valuemore » of 1.2. The measured PDD also showed good agreement with solid water phantom at both 6 MV and 10 MV x-ray with percentage deviation below 8% at depth beyond the maximum dose, Z{sub max}.« less
Radiation dose reduction for CT lung cancer screening using ASIR and MBIR: a phantom study.
Mathieu, Kelsey B; Ai, Hua; Fox, Patricia S; Godoy, Myrna Cobos Barco; Munden, Reginald F; de Groot, Patricia M; Pan, Tinsu
2014-03-06
The purpose of this study was to reduce the radiation dosage associated with computed tomography (CT) lung cancer screening while maintaining overall diagnostic image quality and definition of ground-glass opacities (GGOs). A lung screening phantom and a multipurpose chest phantom were used to quantitatively assess the performance of two iterative image reconstruction algorithms (adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR)) used in conjunction with reduced tube currents relative to a standard clinical lung cancer screening protocol (51 effective mAs (3.9 mGy) and filtered back-projection (FBP) reconstruction). To further assess the algorithms' performances, qualitative image analysis was conducted (in the form of a reader study) using the multipurpose chest phantom, which was implanted with GGOs of two densities. Our quantitative image analysis indicated that tube current, and thus radiation dose, could be reduced by 40% or 80% from ASIR or MBIR, respectively, compared with conventional FBP, while maintaining similar image noise magnitude and contrast-to-noise ratio. The qualitative portion of our study, which assessed reader preference, yielded similar results, indicating that dose could be reduced by 60% (to 20 effective mAs (1.6 mGy)) with either ASIR or MBIR, while maintaining GGO definition. Additionally, the readers' preferences (as indicated by their ratings) regarding overall image quality were equal or better (for a given dose) when using ASIR or MBIR, compared with FBP. In conclusion, combining ASIR or MBIR with reduced tube current may allow for lower doses while maintaining overall diagnostic image quality, as well as GGO definition, during CT lung cancer screening.
Tissue-mimicking gel phantoms for thermal therapy studies.
Dabbagh, Ali; Abdullah, Basri Johan Jeet; Ramasindarum, Chanthiriga; Abu Kasim, Noor Hayaty
2014-10-01
Tissue-mimicking phantoms that are currently available for routine biomedical applications may not be suitable for high-temperature experiments or calibration of thermal modalities. Therefore, design and fabrication of customized thermal phantoms with tailored properties are necessary for thermal therapy studies. A multitude of thermal phantoms have been developed in liquid, solid, and gel forms to simulate biological tissues in thermal therapy experiments. This article is an attempt to outline the various materials and techniques used to prepare thermal phantoms in the gel state. The relevant thermal, electrical, acoustic, and optical properties of these phantoms are presented in detail and the benefits and shortcomings of each type are discussed. This review could assist the researchers in the selection of appropriate phantom recipes for their in vitro study of thermal modalities and highlight the limitations of current phantom recipes that remain to be addressed in further studies. © The Author(s) 2014.
Development of a phantom to test fully automated breast density software - A work in progress.
Waade, G G; Hofvind, S; Thompson, J D; Highnam, R; Hogg, P
2017-02-01
Mammographic density (MD) is an independent risk factor for breast cancer and may have a future role for stratified screening. Automated software can estimate MD but the relationship between breast thickness reduction and MD is not fully understood. Our aim is to develop a deformable breast phantom to assess automated density software and the impact of breast thickness reduction on MD. Several different configurations of poly vinyl alcohol (PVAL) phantoms were created. Three methods were used to estimate their density. Raw image data of mammographic images were processed using Volpara to estimate volumetric breast density (VBD%); Hounsfield units (HU) were measured on CT images; and physical density (g/cm 3 ) was calculated using a formula involving mass and volume. Phantom volume versus contact area and phantom volume versus phantom thickness was compared to values of real breasts. Volpara recognized all deformable phantoms as female breasts. However, reducing the phantom thickness caused a change in phantom density and the phantoms were not able to tolerate same level of compression and thickness reduction experienced by female breasts during mammography. Our results are promising as all phantoms resulted in valid data for automated breast density measurement. Further work should be conducted on PVAL and other materials to produce deformable phantoms that mimic female breast structure and density with the ability of being compressed to the same level as female breasts. We are the first group to have produced deformable phantoms that are recognized as breasts by Volpara software. Copyright © 2016 The College of Radiographers. All rights reserved.
NASA Astrophysics Data System (ADS)
Baghaei, H.; Wong, Wai-Hoi; Uribe, J.; Li, Hongdi; Wang, Yu; Liu, Yaqiang; Xing, Tao; Ramirez, R.; Xie, Shuping; Kim, Soonseok
2004-10-01
We compared two fully three-dimensional (3-D) image reconstruction algorithms and two 3-D rebinning algorithms followed by reconstruction with a two-dimensional (2-D) filtered-backprojection algorithm for 3-D positron emission tomography (PET) imaging. The two 3-D image reconstruction algorithms were ordered-subsets expectation-maximization (3D-OSEM) and 3-D reprojection (3DRP) algorithms. The two rebinning algorithms were Fourier rebinning (FORE) and single slice rebinning (SSRB). The 3-D projection data used for this work were acquired with a high-resolution PET scanner (MDAPET) with an intrinsic transaxial resolution of 2.8 mm. The scanner has 14 detector rings covering an axial field-of-view of 38.5 mm. We scanned three phantoms: 1) a uniform cylindrical phantom with inner diameter of 21.5 cm; 2) a uniform 11.5-cm cylindrical phantom with four embedded small hot lesions with diameters of 3, 4, 5, and 6 mm; and 3) the 3-D Hoffman brain phantom with three embedded small hot lesion phantoms with diameters of 3, 5, and 8.6 mm in a warm background. Lesions were placed at different radial and axial distances. We evaluated the different reconstruction methods for MDAPET camera by comparing the noise level of images, contrast recovery, and hot lesion detection, and visually compared images. We found that overall the 3D-OSEM algorithm, especially when images post filtered with the Metz filter, produced the best results in terms of contrast-noise tradeoff, and detection of hot spots, and reproduction of brain phantom structures. Even though the MDAPET camera has a relatively small maximum axial acceptance (/spl plusmn/5 deg), images produced with the 3DRP algorithm had slightly better contrast recovery and reproduced the structures of the brain phantom slightly better than the faster 2-D rebinning methods.
De Saint-Hubert, Marijke; Majer, Marija; Hršak, Hrvoje; Heinrich, Zdravko; Kneževic, Željka; Miljanic, Saveta; Porwol, Paulina; Stolarczyk, Liliana; Vanhavere, Filip; Harrison, Roger M
2018-01-17
The purpose of this study was to measure out-of-field organ doses in two anthropomorphic child phantoms for the treatment of large brain arteriovenous malformations (AVMs) using hypofractionated gamma knife (GK) radiosurgery and to compare these with an alternative treatment using intensity-modulated radiation therapy (IMRT). Target volume was identical in size and shape in all cases. Radiophotoluminescent (RPL), thermoluminescent (TL) and optically stimulated luminescent (OSL) dosimeters were used for out-of-field dosimetry during GK treatment and a good agreement within 1-2% between results was shown. In addition, the use of multiple dosimetry systems strengthens the reliability of the findings. The number of GK isocentres was confirmed to be important for the magnitude of out-of-field doses. Measured GK doses for the same distance from the target, when expressed per target dose and isocentre, were comparable in both phantoms. GK out-of-field doses averaged for both phantoms were evaluated to be 120 mGy/Gy for eyes then sharply reduced to 20 mGy/Gy for mandible and slowly reduced up to 0.8 mGy/Gy for testes. Taking into account the fractionation regimen used to treat AVM patients, the total treatment organ doses to the out-of-field organs were calculated and compared with IMRT. The eyes were better spared with GK whilst for more distant organs doses were up to a factor of 2.8 and 4 times larger for GK compared to IMRT in 5-year and 10-year old phantoms, respectively. Presented out-of-field dose values are specific for the investigated AVM case, phantoms and treatment plans used for GK and IMRT, but provide useful information about out-of-field dose levels and emphasise their importance. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NOTE: Total body-calcium measurements: comparison of two delayed-gamma neutron activation facilities
NASA Astrophysics Data System (ADS)
Ma, R.; Ellis, K. J.; Yasumura, S.; Shypailo, R. J.; Pierson, R. N., Jr.
1999-06-01
This study compares two independently calibrated delayed-gamma neutron activation (DGNA) facilities, one at the Brookhaven National Laboratory (BNL), Upton, New York, and the other at the Children's Nutrition Research Center (CNRC), Houston, Texas that measure total body calcium (TBCa). A set of BNL phantoms was sent to CNRC for neutron activation analysis, and a set of CNRC phantoms was measured at BNL. Both facilities showed high precision (<2%), and the results were in good agreement, within 5%.
WE-D-303-00: Computational Phantoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, John; Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, MA
2015-06-15
Modern medical physics deals with complex problems such as 4D radiation therapy and imaging quality optimization. Such problems involve a large number of radiological parameters, and anatomical and physiological breathing patterns. A major challenge is how to develop, test, evaluate and compare various new imaging and treatment techniques, which often involves testing over a large range of radiological parameters as well as varying patient anatomies and motions. It would be extremely challenging, if not impossible, both ethically and practically, to test every combination of parameters and every task on every type of patient under clinical conditions. Computer-based simulation using computationalmore » phantoms offers a practical technique with which to evaluate, optimize, and compare imaging technologies and methods. Within simulation, the computerized phantom provides a virtual model of the patient’s anatomy and physiology. Imaging data can be generated from it as if it was a live patient using accurate models of the physics of the imaging and treatment process. With sophisticated simulation algorithms, it is possible to perform virtual experiments entirely on the computer. By serving as virtual patients, computational phantoms hold great promise in solving some of the most complex problems in modern medical physics. In this proposed symposium, we will present the history and recent developments of computational phantom models, share experiences in their application to advanced imaging and radiation applications, and discuss their promises and limitations. Learning Objectives: Understand the need and requirements of computational phantoms in medical physics research Discuss the developments and applications of computational phantoms Know the promises and limitations of computational phantoms in solving complex problems.« less
Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli
2014-09-21
With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.
NASA Astrophysics Data System (ADS)
Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli
2014-09-01
With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.
Fetal and maternal dose assessment for diagnostic scans during pregnancy
NASA Astrophysics Data System (ADS)
Rafat Motavalli, Laleh; Miri Hakimabad, Hashem; Hoseinian Azghadi, Elie
2016-05-01
Despite the concerns about prenatal exposure to ionizing radiation, the number of nuclear medicine examinations performed for pregnant women increased in the past decade. This study attempts to better quantify radiation doses due to diagnostic nuclear medicine procedures during pregnancy with the help of our recently developed 3, 6, and 9 month pregnant hybrid phantoms. The reference pregnant models represent the adult female international commission on radiological protection (ICRP) reference phantom as a base template with a fetus in her gravid uterus. Six diagnostic scintigraphy scans using different radiopharmaceuticals were selected as typical diagnostic nuclear medicine procedures. Furthermore, the biokinetic data of radioiodine was updated in this study. A compartment representing iodide in fetal thyroid was addressed explicitly in the biokinetic model. Calculations were performed using the Monte Carlo transport method. Tabulated dose coefficients for both maternal and fetal organs are provided. The comparison was made with the previously published fetal doses calculated for stylized pregnant female phantoms. In general, the fetal dose in previous studies suffers from an underestimation of up to 100% compared to fetal dose at organ level in this study. A maximum of difference in dose was observed for the fetal thyroid compared to the previous studies, in which the traditional models did not contain the fetal thyroid. Cumulated activities of major source organs are primarily responsible for the discrepancies in the organ doses. The differences in fetal dose depend on several other factors including chord length distribution between fetal organs and maternal major source organs, and anatomical differences according to gestation periods. Finally, considering the results of this study, which was based on the realistic pregnant female phantoms, a more informed evaluation of the risks and benefits of the different procedures could be made.
Yusof, Fasihah Hanum; Ung, Ngie Min; Wong, Jeannie Hsiu Ding; Jong, Wei Loong; Ath, Vannyat; Phua, Vincent Chee Ee; Heng, Siew Ping; Ng, Kwan Hoong
2015-01-01
This study was carried out to investigate the suitability of using the optically stimulated luminescence dosimeter (OSLD) in measuring surface dose during radiotherapy. The water equivalent depth (WED) of the OSLD was first determined by comparing the surface dose measured using the OSLD with the percentage depth dose at the buildup region measured using a Markus ionization chamber. Surface doses were measured on a solid water phantom using the OSLD and compared against the Markus ionization chamber and Gafchromic EBT3 film measurements. The effect of incident beam angles on surface dose was also studied. The OSLD was subsequently used to measure surface dose during tangential breast radiotherapy treatments in a phantom study and in the clinical measurement of 10 patients. Surface dose to the treated breast or chest wall, and on the contralateral breast were measured. The WED of the OSLD was found to be at 0.4 mm. For surface dose measurement on a solid water phantom, the Markus ionization chamber measured 15.95% for 6 MV photon beam and 12.64% for 10 MV photon beam followed by EBT3 film (23.79% and 17.14%) and OSLD (37.77% and 25.38%). Surface dose increased with the increase of the incident beam angle. For phantom and patient breast surface dose measurement, the response of the OSLD was higher than EBT3 film. The in-vivo measurements were also compared with the treatment planning system predicted dose. The OSLD measured higher dose values compared to dose at the surface (Hp(0.0)) by a factor of 2.37 for 6 MV and 2.01 for 10 MV photon beams, respectively. The measurement of absorbed dose at the skin depth of 0.4 mm by the OSLD can still be a useful tool to assess radiation effects on the skin dermis layer. This knowledge can be used to prevent and manage potential acute skin reaction and late skin toxicity from radiotherapy treatments. PMID:26052690
Doo, K W; Kang, E-Y; Yong, H S; Woo, O H; Lee, K Y; Oh, Y-W
2014-09-01
The purpose of this study was to assess accuracy of lung nodule volumetry in low-dose CT with application of iterative reconstruction (IR) according to nodule size, nodule density and CT tube currents, using artificial lung nodules within an anthropomorphic thoracic phantom. Eight artificial nodules (four diameters: 5, 8, 10 and 12 mm; two CT densities: -630 HU that represents ground-glass nodule and +100 HU that represents solid nodule) were randomly placed inside a thoracic phantom. Scans were performed with tube current-time product to 10, 20, 30 and 50 mAs. Images were reconstructed with IR and filtered back projection (FBP). We compared volume estimates to a reference standard and calculated the absolute percentage error (APE). The APE of all nodules was significantly lower when IR was used than with FBP (7.5 ± 4.7% compared with 9.0 ±6.9%; p < 0.001). The effect of IR was more pronounced for smaller nodules (p < 0.001). IR showed a significantly lower APE than FBP in ground-glass nodules (p < 0.0001), and the difference was more pronounced at the lowest tube current (11.8 ± 5.9% compared with 21.3 ± 6.1%; p < 0.0001). The effect of IR was most pronounced for ground-glass nodules in the lowest CT tube current. Lung nodule volumetry in low-dose CT by application of IR showed reliable accuracy in a phantom study. Lung nodule volumetry can be reliably applicable to all lung nodules including small, ground-glass nodules even in ultra-low-dose CT with application of IR. IR significantly improved the accuracy of lung nodule volumetry compared with FBP particularly for ground-glass (-630 HU) nodules. Volumetry in low-dose CT can be utilized in patient with lung nodule work-up, and IR has benefit for small, ground-glass lung nodules in low-dose CT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juneja, P; Harris, E; Bamber, J
2014-06-01
Purpose: There is substantial observer variability in the delineation of target volumes for post-surgical partial breast radiotherapy because the tumour bed has poor x-ray contrast. This variability may result in substantial variations in planned dose distribution. Ultrasound elastography (USE) has an ability to detect mechanical discontinuities and therefore, the potential to image the scar and distortion in breast tissue architecture. The goal of this study was to compare USE techniques: strain elastography (SE), shear wave elastography (SWE) and acoustic radiation force impulse (ARFI) imaging using phantoms that simulate features of the tumour bed, for the purpose of incorporating USE inmore » breast radiotherapy planning. Methods: Three gelatine-based phantoms (10% w/v) containing: a stiff inclusion (gelatine 16% w/v) with adhered boundaries, a stiff inclusion (gelatine 16% w/v) with mobile boundaries and fluid cavity inclusion (to mimic seroma), were constructed and used to investigate the USE techniques. The accuracy of the elastography techniques was quantified by comparing the imaged inclusion with the modelled ground-truth using the Dice similarity coefficient (DSC). For two regions of interest (ROI), the DSC measures their spatial overlap. Ground-truth ROIs were modelled using geometrical measurements from B-mode images. Results: The phantoms simulating stiff scar tissue with adhered and mobile boundaries and seroma were successfully developed and imaged using SE and SWE. The edges of the stiff inclusions were more clearly visible in SE than in SWE. Subsequently, for all these phantoms the measured DSCs were found to be higher for SE (DSCs: 0.91–0.97) than SWE (DSCs: 0.68–0.79) with an average relative difference of 23%. In the case of seroma phantom, DSC values for SE and SWE were similar. Conclusion: This study presents a first attempt to identify the most suitable elastography technique for use in breast radiotherapy planning. Further analysis will include comparison of ARFI with SE and SWE. This work is supported by the EPSRC Platform Grant, reference number EP/H046526/1.« less
Computerized quantitative evaluation of mammographic accreditation phantom images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yongbum; Tsai, Du-Yih; Shinohara, Norimitsu
2010-12-15
Purpose: The objective was to develop and investigate an automated scoring scheme of the American College of Radiology (ACR) mammographic accreditation phantom (RMI 156, Middleton, WI) images. Methods: The developed method consisted of background subtraction, determination of region of interest, classification of fiber and mass objects by Mahalanobis distance, detection of specks by template matching, and rule-based scoring. Fifty-one phantom images were collected from 51 facilities for this study (one facility provided one image). A medical physicist and two radiologic technologists also scored the images. The human and computerized scores were compared. Results: In terms of meeting the ACR's criteria,more » the accuracies of the developed method for computerized evaluation of fiber, mass, and speck were 90%, 80%, and 98%, respectively. Contingency table analysis revealed significant association between observer and computer scores for microcalcifications (p<5%) but not for masses and fibers. Conclusions: The developed method may achieve a stable assessment of visibility for test objects in mammographic accreditation phantom image in whether the phantom image meets the ACR's criteria in the evaluation test, although there is room left for improvement in the approach for fiber and mass objects.« less
Kartashov, D A; Petrov, V M; Kolomenskiĭ, A V; Akatov, Iu A; Shurshakov, V A
2010-01-01
Russian space experiment "Matryeshka-R" was conducted in 2004-2005 to study dose distribution in the body of anthropomorphous phantom inserted in a spacesuit imitating container mounted on outer surface of the ISS Service module (experiment "Matryeshka"). The objective was to compare doses inside the phantom in the container to human body donned in spacesuit "Orlan-M" during extravehicular activity (EVA). The shielding function was calculated using the geometric model, specification of the phantom shielded by the container, "Orlan-M" description, and results of ground-based estimation of shielding effectiveness by gamma-raying. Doses were calculated from the dose attenuation curves obtained for galactic cosmic rays, and the AE-8/AP-8 models of electron and proton flows in Earth's radiation belt. Calculated ratios of equivalent doses in representative points of the body critical organs to analogous doses in phantom "Matryeshka" H(ORLAN-M)/H(Matryeshka) for identical radiation conditions vary with organs and solar activity in the range from 0.1 to 1.8 with organs and solar activity. These observations should be taken into account when applying Matryeshka data to the EVA conditions.
The IROC Houston Quality Assurance Program: Potential benefits of 3D dosimetry
NASA Astrophysics Data System (ADS)
Followill, D. S.; Molineu, H. A.; Lafratta, R.; Ibbott, G. S.
2017-05-01
The IROC Houston QA Center has provided QA core support for NCI clinical trials by ensuring that radiation doses delivered to trial patients are accurate and comparable between participating institutions. Within its QA program, IROC Houston uses anthropomorphic QA phantoms to credential sites. It is these phantoms that have the highest potential to benefit from the use of 3D dosimeters. Credentialing is performed to verify that institutions that are using advanced technologies to deliver complex treatment plans that conform to targets. This makes it increasingly difficult to assure the intended calculated dose is being delivered correctly using current techniques that are 2D-based. A 3D dosimeter such as PRESAGE® is able to provide a complete 3D measured dosimetry dataset with one treatment plan delivery. In our preliminary studies, the 3D dosimeters in our H&N and spine phantoms were found to be appropriate for remote dosimetry for relative dose measurements. To implement 3D dosimetry in IROC Houston’s phantoms, the benefit of this significant change to its current infrastructure would have to be assessed and further work would be needed before bringing 3D dosimeters into the phantom dosimetry program.
Zradziński, Patryk
2013-06-01
According to international guidelines, the assessment of biophysical effects of exposure to electromagnetic fields (EMF) generated by hand-operated sources needs the evaluation of induced electric field (E(in)) or specific energy absorption rate (SAR) caused by EMF inside a worker's body and is usually done by the numerical simulations with different protocols applied to these two exposure cases. The crucial element of these simulations is the numerical phantom of the human body. Procedures of E(in) and SAR evaluation due to compliance analysis with exposure limits have been defined in Institute of Electrical and Electronics Engineers standards and International Commission on Non-Ionizing Radiation Protection guidelines, but a detailed specification of human body phantoms has not been described. An analysis of the properties of over 30 human body numerical phantoms was performed which has been used in recently published investigations related to the assessment of EMF exposure by various sources. The differences in applicability of these phantoms in the evaluation of E(in) and SAR while operating industrial devices and SAR while using mobile communication handsets are discussed. The whole human body numerical phantom dimensions, posture, spatial resolution and electric contact with the ground constitute the key parameters in modeling the exposure related to industrial devices, while modeling the exposure from mobile communication handsets, which needs only to represent the exposed part of the human body nearest to the handset, mainly depends on spatial resolution of the phantom. The specification and standardization of these parameters of numerical human body phantoms are key requirements to achieve comparable and reliable results from numerical simulations carried out for compliance analysis against exposure limits or within the exposure assessment in EMF-related epidemiological studies.
Barateau, Anaïs; Garlopeau, Christopher; Cugny, Audrey; De Figueiredo, Bénédicte Henriques; Dupin, Charles; Caron, Jérôme; Antoine, Mikaël
2015-03-01
We aimed to identify the most accurate combination of phantom and protocol for image value to density table (IVDT) on volume-modulated arc therapy (VMAT) dose calculation based on kV-Cone-beam CT imaging, for head and neck (H&N) and pelvic localizations. Three phantoms (Catphan(®)600, CIRS(®)062M (inner phantom for head and outer phantom for body), and TomoTherapy(®) "Cheese" phantom) were used to create IVDT curves of CBCT systems with two different CBCT protocols (Standard-dose Head and Standard Pelvis). Hounsfield Unit (HU) time stability and repeatability for a single On-Board-Imager (OBI) and compatibility of two distinct devices were assessed with Catphan(®)600. Images from the anthropomorphic phantom CIRS ATOM(®) for both CT and CBCT modalities were used for VMAT dose calculation from different IVDT curves. Dosimetric indices from CT and CBCT imaging were compared. IVDT curves from CBCT images were highly different depending on phantom used (up to 1000 HU for high densities) and protocol applied (up to 200 HU for high densities). HU time stability was verified over seven weeks. A maximum difference of 3% on the dose calculation indices studied was found between CT and CBCT VMAT dose calculation across the two localizations using appropriate IVDT curves. One IVDT curve per localization can be established with a bi-monthly verification of IVDT-CBCT. The IVDT-CBCTCIRS-Head phantom with the Standard-dose Head protocol was the most accurate combination for dose calculation on H&N CBCT images. For pelvic localizations, the IVDT-CBCTCheese established with the Standard Pelvis protocol provided the best accuracy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wayson, Michael B.; Bolch, Wesley E.
2018-04-01
Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10 year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting height alone as patient-specific morphometric parameter.
Wayson, Michael B; Bolch, Wesley E
2018-04-13
Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10 year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting height alone as patient-specific morphometric parameter.
NASA Astrophysics Data System (ADS)
Leng, Shuai; Zhou, Wei; Yu, Zhicong; Halaweish, Ahmed; Krauss, Bernhard; Schmidt, Bernhard; Yu, Lifeng; Kappler, Steffen; McCollough, Cynthia
2017-09-01
Photon-counting computed tomography (PCCT) uses a photon counting detector to count individual photons and allocate them to specific energy bins by comparing photon energy to preset thresholds. This enables simultaneous multi-energy CT with a single source and detector. Phantom studies were performed to assess the spectral performance of a research PCCT scanner by assessing the accuracy of derived images sets. Specifically, we assessed the accuracy of iodine quantification in iodine map images and of CT number accuracy in virtual monoenergetic images (VMI). Vials containing iodine with five known concentrations were scanned on the PCCT scanner after being placed in phantoms representing the attenuation of different size patients. For comparison, the same vials and phantoms were also scanned on 2nd and 3rd generation dual-source, dual-energy scanners. After material decomposition, iodine maps were generated, from which iodine concentration was measured for each vial and phantom size and compared with the known concentration. Additionally, VMIs were generated and CT number accuracy was compared to the reference standard, which was calculated based on known iodine concentration and attenuation coefficients at each keV obtained from the U.S. National Institute of Standards and Technology (NIST). Results showed accurate iodine quantification (root mean square error of 0.5 mgI/cc) and accurate CT number of VMIs (percentage error of 8.9%) using the PCCT scanner. The overall performance of the PCCT scanner, in terms of iodine quantification and VMI CT number accuracy, was comparable to that of EID-based dual-source, dual-energy scanners.
Doppler ultrasound compatible plastic material for use in rigid flow models.
Wong, Emily Y; Thorne, Meghan L; Nikolov, Hristo N; Poepping, Tamie L; Holdsworth, David W
2008-11-01
A technique for the rapid but accurate fabrication of multiple flow phantoms with variations in vascular geometry would be desirable in the investigation of carotid atherosclerosis. This study demonstrates the feasibility and efficacy of implementing numerically controlled direct-machining of vascular geometries into Doppler ultrasound (DUS)-compatible plastic for the easy fabrication of DUS flow phantoms. Candidate plastics were tested for longitudinal speed of sound (SoS) and acoustic attenuation at the diagnostic frequency of 5 MHz. Teflon was found to have the most appropriate SoS (1376 +/- 40 m s(-1) compared with 1540 m s(-1) in soft tissue) and thus was selected to construct a carotid bifurcation flow model with moderate eccentric stenosis. The vessel geometry was machined directly into Teflon using a numerically controlled milling technique. Geometric accuracy of the phantom lumen was verified using nondestructive micro-computed tomography. Although Teflon displayed a higher attenuation coefficient than other tested materials, Doppler data acquired in the Teflon flow model indicated that sufficient signal power was delivered throughout the depth of the vessel and provided comparable velocity profiles to that obtained in the tissue-mimicking phantom. Our results indicate that Teflon provides the best combination of machinability and DUS compatibility, making it an appropriate choice for the fabrication of rigid DUS flow models using a direct-machining method.
Volumetric velocity measurements in restricted geometries using spiral sampling: a phantom study.
Nilsson, Anders; Revstedt, Johan; Heiberg, Einar; Ståhlberg, Freddy; Bloch, Karin Markenroth
2015-04-01
The aim of this study was to evaluate the accuracy of maximum velocity measurements using volumetric phase-contrast imaging with spiral readouts in a stenotic flow phantom. In a phantom model, maximum velocity, flow, pressure gradient, and streamline visualizations were evaluated using volumetric phase-contrast magnetic resonance imaging (MRI) with velocity encoding in one (extending on current clinical practice) and three directions (for characterization of the flow field) using spiral readouts. Results of maximum velocity and pressure drop were compared to computational fluid dynamics (CFD) simulations, as well as corresponding low-echo-time (TE) Cartesian data. Flow was compared to 2D through-plane phase contrast (PC) upstream from the restriction. Results obtained with 3D through-plane PC as well as 4D PC at shortest TE using a spiral readout showed excellent agreements with the maximum velocity values obtained with CFD (<1 % for both methods), while larger deviations were seen using Cartesian readouts (-2.3 and 13 %, respectively). Peak pressure drop calculations from 3D through-plane PC and 4D PC spiral sequences were respectively 14 and 13 % overestimated compared to CFD. Identification of the maximum velocity location, as well as the accurate velocity quantification can be obtained in stenotic regions using short-TE spiral volumetric PC imaging.
Goenka, Ajit H; Herts, Brian R; Dong, Frank; Obuchowski, Nancy A; Primak, Andrew N; Karim, Wadih; Baker, Mark E
2016-08-01
Purpose To assess image noise, contrast-to-noise ratio (CNR) and detectability of low-contrast, low-attenuation liver lesions in a semianthropomorphic phantom by using either a discrete circuit (DC) detector and filtered back projection (FBP) or an integrated circuit (IC) detector and iterative reconstruction (IR) with changes in radiation exposure and phantom size. Materials and Methods An anthropomorphic phantom without or with a 5-cm-thick fat-mimicking ring (widths, 30 and 40 cm) containing liver inserts with four spherical lesions was scanned with five exposure settings on each of two computed tomography scanners, one equipped with a DC detector and the other with an IC detector. Images from the DC and IC detector scanners were reconstructed with FBP and IR, respectively. Image noise and lesion CNR were measured. Four radiologists evaluated lesion presence on a five-point diagnostic confidence scale. Data analyses included receiver operating characteristic (ROC) curve analysis and noninferiority analysis. Results The combination of IC and IR significantly reduced image noise (P < .001) (with the greatest reduction in the 40-cm phantom and at lower exposures) and improved lesion CNR (P < .001). There was no significant difference in area under the ROC curve between detector-reconstruction combinations at fixed exposure for either phantom. Reader accuracy with IC-IR was noninferior at 50% (100 mAs [effective]) and 25% (300 mAs [effective]) exposure reduction for the 30- and 40-cm phantoms, respectively (adjusted P < .001 and .04 respectively). IC-IR improved readers' confidence in the presence of a lesion (P = .029) independent of phantom size or exposure level. Conclusion IC-IR improved objective image quality and lesion detection confidence but did not result in superior diagnostic accuracy when compared with DC-FBP. Moderate exposure reductions maintained comparable diagnostic accuracy for both detector-reconstruction combinations. Lesion detection in the 40-cm phantom was inferior at smaller exposure reduction than in the 30-cm phantom. (©) RSNA, 2016 Online supplemental material is available for this article.
Pulmonary tumor measurements from x-ray computed tomography in one, two, and three dimensions.
Villemaire, Lauren; Owrangi, Amir M; Etemad-Rezai, Roya; Wilson, Laura; O'Riordan, Elaine; Keller, Harry; Driscoll, Brandon; Bauman, Glenn; Fenster, Aaron; Parraga, Grace
2011-11-01
We evaluated the accuracy and reproducibility of three-dimensional (3D) measurements of lung phantoms and patient tumors from x-ray computed tomography (CT) and compared these to one-dimensional (1D) and two-dimensional (2D) measurements. CT images of three spherical and three irregularly shaped tumor phantoms were evaluated by three observers who performed five repeated measurements. Additionally, three observers manually segmented 29 patient lung tumors five times each. Follow-up imaging was performed for 23 tumors and response criteria were compared. For a single subject, imaging was performed on nine occasions over 2 years to evaluate multidimensional tumor response. To evaluate measurement accuracy, we compared imaging measurements to ground truth using analysis of variance. For estimates of precision, intraobserver and interobserver coefficients of variation and intraclass correlations (ICC) were used. Linear regression and Pearson correlations were used to evaluate agreement and tumor response was descriptively compared. For spherical shaped phantoms, all measurements were highly accurate, but for irregularly shaped phantoms, only 3D measurements were in high agreement with ground truth measurements. All phantom and patient measurements showed high intra- and interobserver reproducibility (ICC >0.900). Over a 2-year period for a single patient, there was disagreement between tumor response classifications based on 3D measurements and those generated using 1D and 2D measurements. Tumor volume measurements were highly reproducible and accurate for irregular, spherical phantoms and patient tumors with nonuniform dimensions. Response classifications obtained from multidimensional measurements suggest that 3D measurements provide higher sensitivity to tumor response. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.
Kim, Min-Joo; Lee, Seu-Ran; Lee, Min-Young; Sohn, Jason W; Yun, Hyong Geon; Choi, Joon Yong; Jeon, Sang Won; Suh, Tae Suk
2017-01-01
Development and comparison of spine-shaped phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet has been purposed to utilize in patient-specific quality assurance (QA) of stereotactic body radiation treatment. The developed 3D-printed spine QA phantom consisted of an acrylic body phantom and a 3D-printed spine shaped object. DLP and Polyjet 3D printers using a high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield units (HUs) were measured based on each CT image. Two different intensity-modulated radiotherapy plans based on both CT phantom image sets from the two printed spine-shaped phantoms with acrylic body phantoms were designed to deliver 16 Gy dose to the planning target volume (PTV) and were compared for target coverage and normal organ-sparing. Image fusion demonstrated good reproducibility of the developed phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than that for the Polyjet-generated phantom. The organs at risk received a lower dose for the 3D printed spine-shaped phantom image using the DLP technique than for the phantom image using the Polyjet technique. Despite using the same material for printing the spine-shaped phantom, these phantoms generated by different 3D printing techniques, DLP and Polyjet, showed different HU values and these differently appearing HU values according to the printing technique could be an extra consideration for developing the 3D printed spine-shaped phantom depending on the patient's age and the density of the spinal bone. Therefore, the 3D printing technique and materials should be carefully chosen by taking into account the condition of the patient in order to accurately produce 3D printed patient-specific QA phantom.
Lee, Min-Young; Sohn, Jason W.; Yun, Hyong Geon; Choi, Joon Yong; Jeon, Sang Won
2017-01-01
Development and comparison of spine-shaped phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet has been purposed to utilize in patient-specific quality assurance (QA) of stereotactic body radiation treatment. The developed 3D-printed spine QA phantom consisted of an acrylic body phantom and a 3D-printed spine shaped object. DLP and Polyjet 3D printers using a high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield units (HUs) were measured based on each CT image. Two different intensity-modulated radiotherapy plans based on both CT phantom image sets from the two printed spine-shaped phantoms with acrylic body phantoms were designed to deliver 16 Gy dose to the planning target volume (PTV) and were compared for target coverage and normal organ-sparing. Image fusion demonstrated good reproducibility of the developed phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than that for the Polyjet-generated phantom. The organs at risk received a lower dose for the 3D printed spine-shaped phantom image using the DLP technique than for the phantom image using the Polyjet technique. Despite using the same material for printing the spine-shaped phantom, these phantoms generated by different 3D printing techniques, DLP and Polyjet, showed different HU values and these differently appearing HU values according to the printing technique could be an extra consideration for developing the 3D printed spine-shaped phantom depending on the patient’s age and the density of the spinal bone. Therefore, the 3D printing technique and materials should be carefully chosen by taking into account the condition of the patient in order to accurately produce 3D printed patient-specific QA phantom. PMID:28472175
Study of homogeneity and inhomogeneity phantom in CUDA EGS for small field dosimetry
NASA Astrophysics Data System (ADS)
Yani, Sitti; Rhani, Mohamad Fahdillah; Haryanto, Freddy; Arif, Idam
2017-02-01
CUDA EGS was CUDA implementation to simulate transport photon in a material based on Monte Carlo algorithm for X-ray imaging. The objective of this study was to investigate the effect of inhomogeneities in inhomogeneity phantom for small field dosimetry (1×1, 2×2, 3×3, 4×4 and 5×5 cm2). Two phantoms, homogeneity and inhomogeneity phantom were used. The interaction in homogeneity and inhomogeneity phantom was dominated by Compton interaction and multiple scattering. The CUDA EGS can represent the inhomogeneity effect in small field dosimetry by combining the grayscale curve between homogeneity and inhomogeneity phantom. The grayscale curve in inhomogeneity phantom is not asymmetric because of the existence of different material in phantom.
Image Quality Performance Measurement of the microPET Focus 120
NASA Astrophysics Data System (ADS)
Ballado, Fernando Trejo; López, Nayelli Ortega; Flores, Rafael Ojeda; Ávila-Rodríguez, Miguel A.
2010-12-01
The aim of this work is to evaluate the characteristics involved in the image reconstruction of the microPET Focus 120. For this evaluation were used two different phantoms; a miniature hot-rod Derenzo phantom and a National Electrical Manufacturers Association (NEMA) NU4-2008 image quality (IQ) phantom. The best image quality was obtained when using OSEM3D as the reconstruction method reaching a spatial resolution of 1.5 mm with the Derenzo phantom filled with 18F. Image quality test results indicate a superior image quality for the Focus 120 when compared to previous microPET models.
Batista, W O; Navarro, M V T; Maia, A F
2013-12-01
Basically, all modalities of diagnostic radiology require phantoms suitable for dosimetric evaluations. New technologies frequently arise unaccompanied of tools for dosimetric evaluations and quality control. In this study, a low-cost phantom and a consequent proposed methodology for dosimetric evaluations in cone beam computed tomography (CBCT) were presented. The developed phantom has typical dimensions of the human face, was built in polymethyl methacrylate and filled with water. Three devices with different technological concepts were evaluated and a proposed index, kerma index-height product (PKIH), was defined as an option to the use of air kerma-area product. The results of this study show relatively uniform kerma profiles for scanners with field of views (FOVs) of large diameters and non-uniform for FOVs of small diameters. With regard to the values obtained for the kerma indexes, much higher values were found for the equipment FOVs with small diameter compared with the values of the two other equipment that have larger diameters. The results indicate that (1) there is a need for special phantoms for use in CBCT, (2) the use of P(KA) in the evaluation of protocols on different equipment can lead to false interpretations and (3) the new index is a suitable alternative for the use of P(KA) in CBCT.
NASA Astrophysics Data System (ADS)
Berger, Thomas; Matthiä, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis A.; Reitz, Guenther
The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are com-pounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself. Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrap-olation of skin dose to organ dose, which can lead to over-or under-estimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be pre-dicted to within about a +10In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The first focus of the pre-sented experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on the results of the passive dosimetry using the anthropomorphic phantoms represent the best tool to generate reliable to benchmark computational radiation transport models in a radiation field of interest. The presentation will give first results of the physical dose distribution, the comparison with GEANT4 computer simulations, based on a Voxel model of the phantom, and a comparison with the data from the chromosome aberration study. The help and support of Adam Russek and Michael Sivertz of the NASA Space Radiation Laboratory (NSRL), Brookhaven, USA during the setup and the irradiation of the phantom are highly appreciated. The Voxel model describing the human phantom used for the GEANT4 simulations was kindly provided by Monika Puchalska (CHALMERS, Gothenburg, Sweden).
Agency over Phantom Limb Enhanced by Short-Term Mirror Therapy
Imaizumi, Shu; Asai, Tomohisa; Koyama, Shinichi
2017-01-01
Most amputees experience phantom limb, whereby they feel that the amputated limb is still present. In some cases, these experiences include pain that can be alleviated by “mirror therapy.” Mirror therapy consists of superimposing a mirrored image of the moving intact limb onto the phantom limb. This therapy provides a closed loop between the motor command to the amputated limb and its predicted visual feedback. This loop is also involved in the sense of agency, a feeling of controlling one’s own body. However, it is unclear how mirror therapy is related to the sense of agency over a phantom limb. Using mirror therapy, we investigated phantom limb pain and the senses of agency and ownership (i.e., a feeling of having one’s own body) of the phantom limb. Nine upper-limb amputees, five of whom reported recent phantom limb pain, underwent a single 15-min trial of mirror therapy. Before and after the trial, the participants completed a questionnaire regarding agency, ownership, and pain related to their phantom limb. They reported that the sense of agency over the phantom limb increased following the mirror therapy trial, while the ownership slightly increased but not as much as did the agency. The reported pain did not change; that is, it was comparably mild before and after the trial. These results suggest that short-term mirror therapy can, at least transiently, selectively enhance the sense of agency over a phantom limb, but may not alleviate phantom limb pain. PMID:29046630
Agency over Phantom Limb Enhanced by Short-Term Mirror Therapy.
Imaizumi, Shu; Asai, Tomohisa; Koyama, Shinichi
2017-01-01
Most amputees experience phantom limb, whereby they feel that the amputated limb is still present. In some cases, these experiences include pain that can be alleviated by "mirror therapy." Mirror therapy consists of superimposing a mirrored image of the moving intact limb onto the phantom limb. This therapy provides a closed loop between the motor command to the amputated limb and its predicted visual feedback. This loop is also involved in the sense of agency, a feeling of controlling one's own body. However, it is unclear how mirror therapy is related to the sense of agency over a phantom limb. Using mirror therapy, we investigated phantom limb pain and the senses of agency and ownership (i.e., a feeling of having one's own body) of the phantom limb. Nine upper-limb amputees, five of whom reported recent phantom limb pain, underwent a single 15-min trial of mirror therapy. Before and after the trial, the participants completed a questionnaire regarding agency, ownership, and pain related to their phantom limb. They reported that the sense of agency over the phantom limb increased following the mirror therapy trial, while the ownership slightly increased but not as much as did the agency. The reported pain did not change; that is, it was comparably mild before and after the trial. These results suggest that short-term mirror therapy can, at least transiently, selectively enhance the sense of agency over a phantom limb, but may not alleviate phantom limb pain.
Papadakis, Antonios E; Perisinakis, Kostas; Raissaki, Maria; Damilakis, John
2013-04-01
The aim of the present phantom study was to investigate the effect of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral computed tomographic (CT) angiographic examinations of pediatric and adult individuals. Four physical anthropomorphic phantoms that represent the average individual as neonate, 1-year-old, 5-year-old, and 10-year-old children and the RANDO phantom that simulates the average adult individual were used. Cylindrical vessels were bored along the brain-equivalent plugs of each physical phantom. To simulate the brain vasculature, vessels of 0.6, 1, 2, and 3 mm in diameter were created. These vessels were filled with contrast medium (CM) solutions at different iodine concentrations, that is, 5.6, 4.2, 2.7, and 1.4 mg I/mL. The phantom heads were scanned at 120, 100, and 80 kV. The applied quality reference tube current-time product values ranged from a minimum of 45 to a maximum of 680. The CT acquisitions were performed on a 16-slice CT scanner using the automatic exposure control system. Image quality was evaluated on the basis of image noise and contrast-to-noise ratio (CNR) between the contrast-enhanced iodinated vessels and the unenhanced regions of interest. Dose reduction was calculated as the percentage difference of the CT dose index value at the quality reference tube current-time product and the CT dose index at the mean modulated tube current-time product. Image noise that was measured using the preset tube current-time product settings varied significantly among the different phantoms (P < 0.0001). Hounsfield unit number of iodinated vessels was linearly related to CM concentration (r² = 0.907) and vessel diameter (r² = 0.918). The Hounsfield unit number of iodinated vessels followed a decreasing trend from the neonate phantom to the adult phantom at all kilovoltage settings. For the same image noise level, a CNR improvement of up to 69% and a dose reduction of up to 61% may be achieved when CT acquisition is performed at 80 kV compared with 120 kV. For the same CNR, a reduction by 25% of the administered CM concentration may be achieved when CT acquisition is performed at 80 kV compared with 120 kV. In cerebral CT angiographic studies, appropriate adjustment of the preset tube current-time product settings is required to achieve the same image noise level among participants of different age. Cerebral CT angiography at 80 kV significantly improves CNR and significantly reduces radiation dose. Moreover, at 80 kV, a considerable reduction of the administered amount of the CM may be reached, thus reducing potential risks for contrast-induced nephropathy.
Pediatric radiation dose and risk from bone density measurements using a GE Lunar Prodigy scanner.
Damilakis, J; Solomou, G; Manios, G E; Karantanas, A
2013-07-01
Effective radiation doses associated with bone mineral density examinations performed on children using a GE Lunar Prodigy fan-beam dual-energy X-ray absorptiometry (DXA) scanner were found to be comparable to doses from pencil-beam DXA devices, i.e., lower than 1 μSv. Cancer risks associated with acquisitions obtained in this study are negligible. No data were found in the literature on radiation doses and potential risks following pediatric DXA performed on GE Lunar DXA scanners. This study aimed to estimate effective doses and associated cancer risks involved in pediatric examinations performed on a GE Lunar Prodigy scanner. Four physical anthropomorphic phantoms representing newborn, 1-, 5-, and 10-year-old patients were employed to simulate DXA exposures. All acquisitions were carried out using the Prodigy scanner. Dose measurements were performed for spine and dual femur using the phantoms simulating the 5- and 10-year-old child. Moreover, doses associated with whole-body examinations were measured for the four phantoms used in the current study. The gender-average effective dose for spine and hip examinations were 0.65 and 0.36 μSv, respectively, for the phantom representing the 5-year-old child and 0.93 and 0.205 μSv, respectively, for the phantom representing the 10-year-old child. Effective doses for whole-body examinations were 0.25, 0.22, 0.19, and 0.15 μSv for the neonate, 1-, 5-, and 10-year old child, respectively. The estimated lifetime cancer risks were negligible, i.e., 0.02-0.25 per million, depending on the sex, age, and type of DXA examination. A formula is presented for the estimation of effective dose from examinations performed on GE Lunar Prodigy scanners installed in other institutions. The effective doses and potential cancer risks associated with pediatric DXA examinations performed on a GE Lunar Prodigy fan-beam scanner were found to be comparable to doses and risks reported from pencil-beam DXA devices.
Stopping-power ratios for clinical electron beams from a scatter-foil linear accelerator.
Kapur, A; Ma, C M
1999-09-01
Restricted mass collision stopping-power ratios for electron beams from a scatter-foil medical linear accelerator (Varian Clinac 2100C) were calculated for various combinations of beams, phantoms and detector materials using the Monte Carlo method. The beams were of nominal energy 6, 12 or 20 MeV, with square dimensions 1 x 1 cm2 to 10 x 10 cm2. They were incident at nominal SSDs of 100 or 120 cm and inclined at 90 degrees or 30 degrees to the surface of homogeneous water phantoms or water phantoms interspersed with layered lung or bone-like materials. The broad beam water-to-air stopping-power ratios were within 1.3% of the AAPM TG21 protocol values and consistent with the results of Ding et al to within 0.2%. On the central axis the stopping-power ratio variations for narrow beams compared with normally incident broad beams were 0.1% or less for water-to-LiF-100, graphite, ferrous sulfate dosimeter solution, polystyrene and PMMA, 0.5% for water-to-silicon and 1% for water-to-air and water-to-photographic-film materials. The transverse variations of the stopping-power ratios were up to 4% for water-to-silicon, 7% for water-to-photographic-film materials and 10% for water-to-air in the penumbral regions (where the dose was 10% of the global dose maximum) at shallow depths compared with the values at the same depths on the central axis. In the inhomogeneous phantoms studied, the stopping-power ratio correction factors varied more significantly for air, followed by photographic materials and silicon, at various depths on the central axis in the heterogeneous regions. For the simple layered phantoms studied, the estimation of the stopping-power ratio correction factors based on the relative electron-density derived effective depth approach yielded results that were within 0.5% of the Monte Carlo derived values for all the detector materials studied.
Comparative imaging study in ultrasound, MRI, CT, and DSA using a multimodality renal artery phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Deirdre M.; Fagan, Andrew J.; Moran, Carmel M.
2011-02-15
Purpose: A range of anatomically realistic multimodality renal artery phantoms consisting of vessels with varying degrees of stenosis was developed and evaluated using four imaging techniques currently used to detect renal artery stenosis (RAS). The spatial resolution required to visualize vascular geometry and the velocity detection performance required to adequately characterize blood flow in patients suffering from RAS are currently ill-defined, with the result that no one imaging modality has emerged as a gold standard technique for screening for this disease. Methods: The phantoms, which contained a range of stenosis values (0%, 30%, 50%, 70%, and 85%), were designed formore » use with ultrasound, magnetic resonance imaging, x-ray computed tomography, and x-ray digital subtraction angiography. The construction materials used were optimized with respect to their ultrasonic speed of sound and attenuation coefficient, MR relaxometry (T{sub 1},T{sub 2}) properties, and Hounsfield number/x-ray attenuation coefficient, with a design capable of tolerating high-pressure pulsatile flow. Fiducial targets, incorporated into the phantoms to allow for registration of images among modalities, were chosen to minimize geometric distortions. Results: High quality distortion-free images of the phantoms with good contrast between vessel lumen, fiducial markers, and background tissue to visualize all stenoses were obtained with each modality. Quantitative assessments of the grade of stenosis revealed significant discrepancies between modalities, with each underestimating the stenosis severity for the higher-stenosed phantoms (70% and 85%) by up to 14%, with the greatest discrepancy attributable to DSA. Conclusions: The design and construction of a range of anatomically realistic renal artery phantoms containing varying degrees of stenosis is described. Images obtained using the main four diagnostic techniques used to detect RAS were free from artifacts and exhibited adequate contrast to allow for quantitative measurements of the degree of stenosis in each phantom. Such multimodality phantoms may prove useful in evaluating current and emerging US, MRI, CT, and DSA technology.« less
Measuring coronary calcium on CT images adjusted for attenuation differences.
Nelson, Jennifer Clark; Kronmal, Richard A; Carr, J Jeffrey; McNitt-Gray, Michael F; Wong, Nathan D; Loria, Catherine M; Goldin, Jonathan G; Williams, O Dale; Detrano, Robert
2005-05-01
To quantify scanner and participant variability in attenuation values for computed tomographic (CT) images assessed for coronary calcium and define a method for standardizing attenuation values and calibrating calcium measurements. Institutional review board approval and participant informed consent were obtained at all study sites. An image attenuation adjustment method involving the use of available calibration phantom data to define standard attenuation values was developed. The method was applied to images from two population-based multicenter studies: the Coronary Artery Risk Development in Young Adults study (3041 participants) and the Multi-Ethnic Study of Atherosclerosis (6814 participants). To quantify the variability in attenuation, analysis of variance techniques were used to compare the CT numbers of standardized torso phantom regions across study sites, and multivariate linear regression models of participant-specific calibration phantom attenuation values that included participant age, race, sex, body mass index (BMI), smoking status, and site as covariates were developed. To assess the effect of the calibration method on calcium measurements, Pearson correlation coefficients between unadjusted and attenuation-adjusted calcium measurements were computed. Multivariate models were used to examine the effect of sex, race, BMI, smoking status, unadjusted score, and site on Agatston score adjustments. Mean attenuation values (CT numbers) of a standard calibration phantom scanned beneath participants varied significantly according to scanner and participant BMI (P < .001 for both). Values were lowest for Siemens multi-detector row CT scanners (110.0 HU), followed by GE-Imatron electron-beam (116.0 HU) and GE LightSpeed multi-detector row scanners (121.5 HU). Values were also lower for morbidly obese (BMI, > or =40.0 kg/m(2)) participants (108.9 HU), followed by obese (BMI, 30.0-39.9 kg/m(2)) (114.8 HU), overweight (BMI, 25.0-29.9 kg/m(2)) (118.5 HU), and normal-weight or underweight (BMI, <25.0 kg/m(2)) (120.1 HU) participants. Agatston score calibration adjustments ranged from -650 to 1071 (mean, -8 +/- 50 [standard deviation]) and increased with Agatston score (P < .001). The direction and magnitude of adjustment varied significantly according to scanner and BMI (P < .001 for both) and were consistent with phantom attenuation results in that calibration resulted in score decreases for images with higher phantom attenuation values. Image attenuation values vary by scanner and participant body size, producing calcium score differences that are not due to true calcium burden disparities. Use of calibration phantoms to adjust attenuation values and calibrate calcium measurements in research studies and clinical practice may improve the comparability of such measurements between persons scanned with different scanners and within persons over time.
Physical analysis of breast cancer using dual-source computed tomography
NASA Astrophysics Data System (ADS)
Kim, H. J.; Lee, H. K.; Cho, J. H.
2014-12-01
This study was aimed to analyze various physical characteristics of breast cancer using dual-source computed tomography (CT). A phantom study and a clinical trial were performed in order and a 64-multidetector CT device was used for the examinations. In the phantom study, single-source (SS) CT was set up with a conventional scanning condition that is usually applied for breast CT examination and implementation was done at tube voltage of 120 kVp. Dual-source CT acquired images by irradiating X-ray sources with fast switching between two kilovoltage settings (80 and 140 kVp). After scanning, Hounsfield Unit (HU) values and radiation doses in a region of interest were measured and analyzed. In the clinical trial, the HU values were measured and analyzed after single-source computed tomography (SSCT) and dual-source CT in patients diagnosed with breast cancer. Also, the tumor size measured by dual-source CT was compared with the actual tumor size. The phantom study determined that the tumor region was especially measured by dual-source CT, while nylon fiber and specks region were especially measured by SSCT. The radiation dose was high with dual-source CT. The clinical trial showed a higher HU value of cancerous regions when scanned by dual-source CT compared with SSCT.
Patient specific computerized phantoms to estimate dose in pediatric CT
NASA Astrophysics Data System (ADS)
Segars, W. P.; Sturgeon, G.; Li, X.; Cheng, L.; Ceritoglu, C.; Ratnanather, J. T.; Miller, M. I.; Tsui, B. M. W.; Frush, D.; Samei, E.
2009-02-01
We create a series of detailed computerized phantoms to estimate patient organ and effective dose in pediatric CT and investigate techniques for efficiently creating patient-specific phantoms based on imaging data. The initial anatomy of each phantom was previously developed based on manual segmentation of pediatric CT data. Each phantom was extended to include a more detailed anatomy based on morphing an existing adult phantom in our laboratory to match the framework (based on segmentation) defined for the target pediatric model. By morphing a template anatomy to match the patient data in the LDDMM framework, it was possible to create a patient specific phantom with many anatomical structures, some not visible in the CT data. The adult models contain thousands of defined structures that were transformed to define them in each pediatric anatomy. The accuracy of this method, under different conditions, was tested using a known voxelized phantom as the target. Errors were measured in terms of a distance map between the predicted organ surfaces and the known ones. We also compared calculated dose measurements to see the effect of different magnitudes of errors in morphing. Despite some variations in organ geometry, dose measurements from morphing predictions were found to agree with those calculated from the voxelized phantom thus demonstrating the feasibility of our methods.
Ozaki, Y.; Kaida, A.; Miura, M.; Nakagawa, K.; Toda, K.; Yoshimura, R.; Sumi, Y.; Kurabayashi, T.
2017-01-01
Abstract Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. PMID:28339846
Kan, Hirohito; Arai, Nobuyuki; Takizawa, Masahiro; Omori, Kazuyoshi; Kasai, Harumasa; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta
2018-06-11
We developed a non-regularized, variable kernel, sophisticated harmonic artifact reduction for phase data (NR-VSHARP) method to accurately estimate local tissue fields without regularization for quantitative susceptibility mapping (QSM). We then used a digital brain phantom to evaluate the accuracy of the NR-VSHARP method, and compared it with the VSHARP and iterative spherical mean value (iSMV) methods through in vivo human brain experiments. Our proposed NR-VSHARP method, which uses variable spherical mean value (SMV) kernels, minimizes L2 norms only within the volume of interest to reduce phase errors and save cortical information without regularization. In a numerical phantom study, relative local field and susceptibility map errors were determined using NR-VSHARP, VSHARP, and iSMV. Additionally, various background field elimination methods were used to image the human brain. In a numerical phantom study, the use of NR-VSHARP considerably reduced the relative local field and susceptibility map errors throughout a digital whole brain phantom, compared with VSHARP and iSMV. In the in vivo experiment, the NR-VSHARP-estimated local field could sufficiently achieve minimal boundary losses and phase error suppression throughout the brain. Moreover, the susceptibility map generated using NR-VSHARP minimized the occurrence of streaking artifacts caused by insufficient background field removal. Our proposed NR-VSHARP method yields minimal boundary losses and highly precise phase data. Our results suggest that this technique may facilitate high-quality QSM. Copyright © 2017. Published by Elsevier Inc.
Poster - Thurs Eve-43: Verification of dose calculation with tissue inhomogeneity using MapCHECK.
Korol, R; Chen, J; Mosalaei, H; Karnas, S
2008-07-01
MapCHECK (Sun Nuclear, Melbourne, FL) with 445 diode detectors has been used widely for routine IMRT quality assurance (QA) 1 . However, routine IMRT QA has not included the verification of inhomogeneity effects. The objective of this study is to use MapCHECK and a phantom to verify dose calculation and IMRT delivery with tissue inhomogeneity. A phantom with tissue inhomogeneities was placed on top of MapCHECK to measure the planar dose for an anterior beam with photon energy 6 MV or 18 MV. The phantom was composed of a 3.5 cm thick block of lung equivalent material and solid water arranged side by side with a 0.5 cm slab of solid water on the top of the phantom. The phantom setup including MapCHECK was CT scanned and imported into Pinnacle 8.0d for dose calculation. Absolute dose distributions were compared with gamma criteria 3% for dose difference and 3 mm for distance-to-agreement. The results are in good agreement between the measured and calculated planar dose with 88% pass rate based on the gamma analysis. The major dose difference was at the lung-water interface. Further investigation will be performed on a custom designed inhomogeneity phantom with inserts of varying densities and effective depth to create various dose gradients at the interface for dose calculation and delivery verification. In conclusion, a phantom with tissue inhomogeneities can be used with MapCHECK for verification of dose calculation and delivery with tissue inhomogeneity. © 2008 American Association of Physicists in Medicine.
Chipiga, L; Sydoff, M; Zvonova, I; Bernhardsson, C
2016-06-01
Positron emission tomography combined with computed tomography (PET/CT) is a quantitative technique used for diagnosing various diseases and for monitoring treatment response for different types of tumours. However, the accuracy of the data is limited by the spatial resolution of the system. In addition, the so-called partial volume effect (PVE) causes a blurring of image structures, which in turn may cause an underestimation of activity of a structure with high-activity content. In this study, a new phantom, MADEIRA (Minimising Activity and Dose with Enhanced Image quality by Radiopharmaceutical Administrations) for activity quantification in PET and single photon emission computed tomography (SPECT) was used to investigate the influence on the PVE by lesion size and tumour-to-background activity concentration ratio (TBR) in four different PET/CT systems. These measurements were compared with data from measurements with the NEMA NU-2 2001 phantom. The results with the MADEIRA phantom showed that the activity concentration (AC) values were closest to the true values at low ratios of TBR (<10) and reduced to 50 % of the actual AC values at high TBR (30-35). For all scanners, recovery of true values became closer to 1 with an increasing diameter of the lesion. The MADEIRA phantom showed good agreement with the results obtained from measurements with the NEMA NU-2 2001 phantom but allows for a wider range of possibilities in measuring image quality parameters. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
[Development of a Striatal and Skull Phantom for Quantitative 123I-FP-CIT SPECT].
Ishiguro, Masanobu; Uno, Masaki; Miyazaki, Takuma; Kataoka, Yumi; Toyama, Hiroshi; Ichihara, Takashi
123 Iodine-labelled N-(3-fluoropropyl) -2β-carbomethoxy-3β-(4-iodophenyl) nortropane ( 123 I-FP-CIT) single photon emission computerized tomography (SPECT) images are used for differential diagnosis such as Parkinson's disease (PD). Specific binding ratio (SBR) is affected by scattering and attenuation in SPECT imaging, because gender and age lead to changes in skull density. It is necessary to clarify and correct the influence of the phantom simulating the the skull. The purpose of this study was to develop phantoms that can evaluate scattering and attenuation correction. Skull phantoms were prepared based on the measuring the results of the average computed tomography (CT) value, average skull thickness of 12 males and 16 females. 123 I-FP-CIT SPECT imaging of striatal phantom was performed with these skull phantoms, which reproduced normal and PD. SPECT images, were reconstructed with scattering and attenuation correction. SBR with partial volume effect corrected (SBR act ) and conventional SBR (SBR Bolt ) were measured and compared. The striatum and the skull phantoms along with 123 I-FP-CIT were able to reproduce the normal accumulation and disease state of PD and further those reproduced the influence of skull density on SPECT imaging. The error rate with the true SBR, SBR act was much smaller than SBR Bolt . The effect on SBR could be corrected by scattering and attenuation correction even if the skull density changes with 123 I-FP-CIT on SPECT imaging. The combination of triple energy window method and CT-attenuation correction method would be the best correction method for SBR act .
NASA Astrophysics Data System (ADS)
Yeh, Chi-Yuan; Tung, Chuan-Jung; Chao, Tsi-Chain; Lin, Mu-Han; Lee, Chung-Chi
2014-11-01
The purpose of this study was to examine dose distribution of a skull base tumor and surrounding critical structures in response to high dose intensity-modulated radiosurgery (IMRS) with Monte Carlo (MC) simulation using a dual resolution sandwich phantom. The measurement-based Monte Carlo (MBMC) method (Lin et al., 2009) was adopted for the study. The major components of the MBMC technique involve (1) the BEAMnrc code for beam transport through the treatment head of a Varian 21EX linear accelerator, (2) the DOSXYZnrc code for patient dose simulation and (3) an EPID-measured efficiency map which describes non-uniform fluence distribution of the IMRS treatment beam. For the simulated case, five isocentric 6 MV photon beams were designed to deliver a total dose of 1200 cGy in two fractions to the skull base tumor. A sandwich phantom for the MBMC simulation was created based on the patient's CT scan of a skull base tumor [gross tumor volume (GTV)=8.4 cm3] near the right 8th cranial nerve. The phantom, consisted of a 1.2-cm thick skull base region, had a voxel resolution of 0.05×0.05×0.1 cm3 and was sandwiched in between 0.05×0.05×0.3 cm3 slices of a head phantom. A coarser 0.2×0.2×0.3 cm3 single resolution (SR) phantom was also created for comparison with the sandwich phantom. A particle history of 3×108 for each beam was used for simulations of both the SR and the sandwich phantoms to achieve a statistical uncertainty of <2%. Our study showed that the planning target volume (PTV) receiving at least 95% of the prescribed dose (VPTV95) was 96.9%, 96.7% and 99.9% for the TPS, SR, and sandwich phantom, respectively. The maximum and mean doses to large organs such as the PTV, brain stem, and parotid gland for the TPS, SR and sandwich MC simulations did not show any significant difference; however, significant dose differences were observed for very small structures like the right 8th cranial nerve, right cochlea, right malleus and right semicircular canal. Dose volume histogram (DVH) analyses revealed much smoother DVH curves for the dual resolution sandwich phantom when compared to the SR phantom. In conclusion, MBMC simulations using a dual resolution sandwich phantom improved simulation spatial resolution for skull base IMRS therapy. More detailed dose analyses for small critical structures can be made available to help in clinical judgment.
Toxicology Analysis of Tissue-Mimicking Phantom Made From Gelatin
NASA Astrophysics Data System (ADS)
Dolbashid, A. S.; Hamzah, N.; Zaman, W. S. W. K.; Mokhtar, M. S.
2017-06-01
Skin phantom mimics the biological skin tissues as it have the ability to respond to changes in its environment. The development of tissue-mimicking phantom could contributes towards the reduce usage of animal in cosmetics and pharmacokinetics. In this study, the skin phantoms made from gelatin were tested with four different commonly available cosmetic products to determine the toxicity of each substance. The four substances used were; mercury-based whitening face cream, carcinogenic liquid make-up foundation, paraben-based acne cleanser, and organic lip balm. Toxicity test were performed on all of the phantoms. For toxicity testing, topographical and electrophysiological changes of the phantoms were evaluated. The ability of each respective phantom to react with mild toxic substances and its electrical resistance were analysed in to determine the toxicity of all the phantom models. Four-electrode method along with custom made electrical impedance analyser was used to differentiate electrical resistance between intoxicated phantom and non-intoxicated phantom in this study. Electrical resistance values obtained from the phantom models were significantly higher than the control group. The result obtained suggests the phantom as a promising candidate to be used as alternative for toxicology testing in the future.
NASA Astrophysics Data System (ADS)
Hum Na, Yong; Zhang, Binquan; Zhang, Juying; Caracappa, Peter F.; Xu, X. George
2010-07-01
Computational phantoms representing workers and patients are essential in estimating organ doses from various occupational radiation exposures and medical procedures. Nearly all existing phantoms, however, were purposely designed to match internal and external anatomical features of the Reference Man as defined by the International Commission on Radiological Protection (ICRP). To reduce uncertainty in dose calculations caused by anatomical variations, a new generation of phantoms of varying organ and body sizes is needed. This paper presents detailed anatomical data in tables and graphs that are used to design such size-adjustable phantoms representing a range of adult individuals in terms of the body height, body weight and internal organ volume/mass. Two different sets of information are used to derive the phantom sets: (1) individual internal organ size and volume/mass distribution data derived from the recommendations of the ICRP in Publications 23 and 89 and (2) whole-body height and weight percentile data from the National Health and Nutrition Examination Survey (NHANES 1999-2002). The NHANES height and weight data for 19 year old males and females are used to estimate the distributions of individuals' size, which is unknown, that corresponds to the ICRP organ and tissue distributions. This paper then demonstrates the usage of these anthropometric data in the development of deformable anatomical phantoms. A pair of phantoms—modeled entirely in mesh surfaces—of the adult male and female, RPI-adult male (AM) and RPI-adult female (AF) are used as the base for size-adjustable phantoms. To create percentile-specific phantoms from these two base phantoms, organ surface boundaries are carefully altered according to the tabulated anthropometric data. Software algorithms are developed to automatically match the organ volumes and masses with desired values. Finally, these mesh-based, percentile-specific phantoms are converted into voxel-based phantoms for Monte Carlo radiation transport simulations. This paper also compares absorbed organ doses for the RPI-AM-5th-height and -weight percentile phantom (165 cm in height and 56 kg in weight) and the RPI-AM-95th-height and -weight percentile phantom (188 cm in height and 110 kg in weight) with those for the RPI-AM-50th-height and -weight percentile phantom (176 cm in height and 73 kg in weight) from exposures to 0.5 MeV external photon beams. The results suggest a general finding that the phantoms representing a slimmer and shorter individual male received higher absorbed organ doses because of lesser degree of photon attenuation due to smaller amount of body fat. In particular, doses to the prostate and adrenal in the RPI-AM-5th-height and -weight percentile phantom is about 10% greater than those in the RPI-AM-50th-height and -weight percentile phantom approximating the ICRP Reference Man. On the other hand, the doses to the prostate and adrenal in the RPI-AM-95th-height and -weight percentile phantom are approximately 20% greater than those in the RPI-AM-50th-height and -weight percentile phantom. Although this study only considered the photon radiation of limited energies and irradiation geometries, the potential to improve the organ dose accuracy using the deformable phantom technology is clearly demonstrated.
Na, Yong Hum; Zhang, Binquan; Zhang, Juying; Caracappa, Peter F; Xu, X George
2012-01-01
Computational phantoms representing workers and patients are essential in estimating organ doses from various occupational radiation exposures and medical procedures. Nearly all existing phantoms, however, were purposely designed to match internal and external anatomical features of the Reference Man as defined by the International Commission on Radiological Protection (ICRP). To reduce uncertainty in dose calculations caused by anatomical variations, a new generation of phantoms of varying organ and body sizes is needed. This paper presents detailed anatomical data in tables and graphs that are used to design such size-adjustable phantoms representing a range of adult individuals in terms of the body height, body weight and internal organ volume/mass. Two different sets of information are used to derive the phantom sets: (1) individual internal organ size and volume/mass distribution data derived from the recommendations of the ICRP in Publications 23 and 89 and (2) whole-body height and weight percentile data from the National Health and Nutrition Examination Survey (NHANES 1999–2002). The NHANES height and weight data for 19 year old males and females are used to estimate the distributions of individuals’ size, which is unknown, that corresponds to the ICRP organ and tissue distributions. This paper then demonstrates the usage of these anthropometric data in the development of deformable anatomical phantoms. A pair of phantoms—modeled entirely in mesh surfaces—of the adult male and female, RPI-adult male (AM) and RPI-adult female (AF) are used as the base for size-adjustable phantoms. To create percentile-specific phantoms from these two base phantoms, organ surface boundaries are carefully altered according to the tabulated anthropometric data. Software algorithms are developed to automatically match the organ volumes and masses with desired values. Finally, these mesh-based, percentile-specific phantoms are converted into voxel-based phantoms for Monte Carlo radiation transport simulations. This paper also compares absorbed organ doses for the RPI-AM-5th-height and -weight percentile phantom (165 cm in height and 56 kg in weight) and the RPI-AM-95th-height and -weight percentile phantom (188 cm in height and 110 kg in weight)with those for theRPI-AM-50th-height and -weight percentile phantom (176 cm in height and 73 kg in weight) from exposures to 0.5 MeV external photon beams. The results suggest a general finding that the phantoms representing a slimmer and shorter individual male received higher absorbed organ doses because of lesser degree of photon attenuation due to smaller amount of body fat. In particular, doses to the prostate and adrenal in the RPI-AM-5th-height and -weight percentile phantom is about 10% greater than those in the RPI-AM-50th-height and -weight percentile phantom approximating the ICRP Reference Man. On the other hand, the doses to the prostate and adrenal in the RPI-AM-95th-height and -weight percentile phantom are approximately 20% greater than those in the RPI-AM-50th-height and -weight percentile phantom. Although this study only considered the photon radiation of limited energies and irradiation geometries, the potential to improve the organ dose accuracy using the deformable phantom technology is clearly demonstrated. PMID:20551505
SU-E-T-507: Internal Dosimetry in Nuclear Medicine Using GATE and XCAT Phantom: A Simulation Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallahpoor, M; Abbasi, M; Sen, A
Purpose Monte Carlo simulations are routinely used for internal dosimetry studies. These studies are conducted with humanoid phantoms such as the XCAT phantom. In this abstract we present the absorbed doses for various pairs of source and target organs using three common radiotracers in nuclear medicine. Methods The GATE software package is used for the Monte Carlo simulations. A typical female XCAT phantom is used as the input. Three radiotracers 153Sm, 131I and 99mTc are studied. The Specific Absorbed Fraction (SAF) for gamma rays (99mTc, 153Sm and 131I) and Specific Fraction (SF) for beta particles (153Sm and 131I) are calculatedmore » for all 100 pairs of source target organs including brain, liver, lung, pancreas, kidney, adrenal, spleen, rib bone, bladder and ovaries. Results The source organs themselves gain the highest absorbed dose as compared to other organs. The dose is found to be inversely proportional to distance from the source organ. In SAF results of 153Sm, when the source organ is lung, the rib bone, gain 0.0730 (Kg-1) that is more than lung itself. Conclusion The absorbed dose for various organs was studied in terms of SAF and SF. Such studies hold importance for future therapeutic procedures and optimization of induced radiotracer.« less
Phantom-based standardization of CT angiography images for spot sign detection.
Morotti, Andrea; Romero, Javier M; Jessel, Michael J; Hernandez, Andrew M; Vashkevich, Anastasia; Schwab, Kristin; Burns, Joseph D; Shah, Qaisar A; Bergman, Thomas A; Suri, M Fareed K; Ezzeddine, Mustapha; Kirmani, Jawad F; Agarwal, Sachin; Shapshak, Angela Hays; Messe, Steven R; Venkatasubramanian, Chitra; Palmieri, Katherine; Lewandowski, Christopher; Chang, Tiffany R; Chang, Ira; Rose, David Z; Smith, Wade; Hsu, Chung Y; Liu, Chun-Lin; Lien, Li-Ming; Hsiao, Chen-Yu; Iwama, Toru; Afzal, Mohammad Rauf; Cassarly, Christy; Greenberg, Steven M; Martin, Renee' Hebert; Qureshi, Adnan I; Rosand, Jonathan; Boone, John M; Goldstein, Joshua N
2017-09-01
The CT angiography (CTA) spot sign is a strong predictor of hematoma expansion in intracerebral hemorrhage (ICH). However, CTA parameters vary widely across centers and may negatively impact spot sign accuracy in predicting ICH expansion. We developed a CT iodine calibration phantom that was scanned at different institutions in a large multicenter ICH clinical trial to determine the effect of image standardization on spot sign detection and performance. A custom phantom containing known concentrations of iodine was designed and scanned using the stroke CT protocol at each institution. Custom software was developed to read the CT volume datasets and calculate the Hounsfield unit as a function of iodine concentration for each phantom scan. CTA images obtained within 8 h from symptom onset were analyzed by two trained readers comparing the calibrated vs. uncalibrated density cutoffs for spot sign identification. ICH expansion was defined as hematoma volume growth >33%. A total of 90 subjects qualified for the study, of whom 17/83 (20.5%) experienced ICH expansion. The number of spot sign positive scans was higher in the calibrated analysis (67.8 vs 38.9% p < 0.001). All spot signs identified in the non-calibrated analysis remained positive after calibration. Calibrated CTA images had higher sensitivity for ICH expansion (76 vs 52%) but inferior specificity (35 vs 63%) compared with uncalibrated images. Normalization of CTA images using phantom data is a feasible strategy to obtain consistent image quantification for spot sign analysis across different sites and may improve sensitivity for identification of ICH expansion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Garduno, O. A.; Larraga-Gutierrez, J. M.; Celis, M. A.
2006-09-08
An acrylic phantom was designed and constructed to assess the geometrical accuracy of CT, MRI and PET images for stereotactic radiotherapy (SRT) and radiosurgery (SRS) applications. The phantom was suited for each image modality with a specific tracer and compared with CT images to measure the radial deviation between the reference marks in the phantom. It was found that for MRI the maximum mean deviation is 1.9 {+-} 0.2 mm compared to 2.4 {+-} 0.3 mm reported for PET. These results will be used for margin outlining in SRS and SRT treatment planning.
Hybrid pregnant reference phantom series based on adult female ICRP reference phantom
NASA Astrophysics Data System (ADS)
Rafat-Motavalli, Laleh; Miri-Hakimabad, Hashem; Hoseinian-Azghadi, Elie
2018-03-01
This paper presents boundary representation (BREP) models of pregnant female and her fetus at the end of each trimester. The International Commission on Radiological Protection (ICRP) female reference voxel phantom was used as a base template in development process of the pregnant hybrid phantom series. The differences in shape and location of the displaced maternal organs caused by enlarging uterus were also taken into account. The CT and MR images of fetus specimens and pregnant patients of various ages were used to replace the maternal abdominal pelvic organs of template phantom and insert the fetus inside the gravid uterus. Each fetal model contains 21 different organs and tissues. The skeletal model of the fetus also includes age-dependent cartilaginous and ossified skeletal components. The replaced maternal organ models were converted to NURBS surfaces and then modified to conform to reference values of ICRP Publication 89. The particular feature of current series compared to the previously developed pregnant phantoms is being constructed upon the basis of ICRP reference phantom. The maternal replaced organ models are NURBS surfaces. With this great potential, they might have the feasibility of being converted to high quality polygon mesh phantoms.
NASA Astrophysics Data System (ADS)
Sun, Jidi; Dowling, Jason; Pichler, Peter; Menk, Fred; Rivest-Henault, David; Lambert, Jonathan; Parker, Joel; Arm, Jameen; Best, Leah; Martin, Jarad; Denham, James W.; Greer, Peter B.
2015-04-01
To clinically implement MRI simulation or MRI-alone treatment planning requires comprehensive end-to-end testing to ensure an accurate process. The purpose of this study was to design and build a geometric phantom simulating a human male pelvis that is suitable for both CT and MRI scanning and use it to test geometric and dosimetric aspects of MRI simulation including treatment planning and digitally reconstructed radiograph (DRR) generation. A liquid filled pelvic shaped phantom with simulated pelvic organs was scanned in a 3T MRI simulator with dedicated radiotherapy couch-top, laser bridge and pelvic coil mounts. A second phantom with the same external shape but with an internal distortion grid was used to quantify the distortion of the MR image. Both phantoms were also CT scanned as the gold-standard for both geometry and dosimetry. Deformable image registration was used to quantify the MR distortion. Dose comparison was made using a seven-field IMRT plan developed on the CT scan with the fluences copied to the MR image and recalculated using bulk electron densities. Without correction the maximum distortion of the MR compared with the CT scan was 7.5 mm across the pelvis, while this was reduced to 2.6 and 1.7 mm by the vendor’s 2D and 3D correction algorithms, respectively. Within the locations of the internal organs of interest, the distortion was <1.5 and <1 mm with 2D and 3D correction algorithms, respectively. The dose at the prostate isocentre calculated on CT and MRI images differed by 0.01% (1.1 cGy). Positioning shifts were within 1 mm when setup was performed using MRI generated DRRs compared to setup using CT DRRs. The MRI pelvic phantom allows end-to-end testing of the MRI simulation workflow with comparison to the gold-standard CT based process. MRI simulation was found to be geometrically accurate with organ dimensions, dose distributions and DRR based setup within acceptable limits compared to CT.
NASA Astrophysics Data System (ADS)
Ionita, Ciprian N.; Loughran, Brendan; Jain, Amit; Swetadri Vasan, S. N.; Bednarek, Daniel R.; Levy, Elad; Siddiqui, Adnan H.; Snyder, Kenneth V.; Hopkins, L. N.; Rudin, Stephen
2012-03-01
Phantom equivalents of different human anatomical parts are routinely used for imaging system evaluation or dose calculations. The various recommendations on the generic phantom structure given by organizations such as the AAPM, are not always accurate when evaluating a very specific task. When we compared the AAPM head phantom containing 3 mm of aluminum to actual neuro-endovascular image guided interventions (neuro-EIGI) occurring in the Circle of Willis, we found that the system automatic exposure rate control (AERC) significantly underestimated the x-ray parameter selection. To build a more accurate phantom for neuro-EIGI, we reevaluated the amount of aluminum which must be included in the phantom. Human skulls were imaged at different angles, using various angiographic exposures, at kV's relevant to neuro-angiography. An aluminum step wedge was also imaged under identical conditions, and a correlation between the gray values of the imaged skulls and those of the aluminum step thicknesses was established. The average equivalent aluminum thickness for the skull samples for frontal projections in the Circle of Willis region was found to be about 13 mm. The results showed no significant changes in the average equivalent aluminum thickness with kV or mAs variation. When a uniform phantom using 13 mm aluminum and 15 cm acrylic was compared with an anthropomorphic head phantom the x-ray parameters selected by the AERC system were practically identical. These new findings indicate that for this specific task, the amount of aluminum included in the head equivalent must be increased substantially from 3 mm to a value of 13 mm.
WE-D-303-01: Development and Application of Digital Human Phantoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segars, P.
2015-06-15
Modern medical physics deals with complex problems such as 4D radiation therapy and imaging quality optimization. Such problems involve a large number of radiological parameters, and anatomical and physiological breathing patterns. A major challenge is how to develop, test, evaluate and compare various new imaging and treatment techniques, which often involves testing over a large range of radiological parameters as well as varying patient anatomies and motions. It would be extremely challenging, if not impossible, both ethically and practically, to test every combination of parameters and every task on every type of patient under clinical conditions. Computer-based simulation using computationalmore » phantoms offers a practical technique with which to evaluate, optimize, and compare imaging technologies and methods. Within simulation, the computerized phantom provides a virtual model of the patient’s anatomy and physiology. Imaging data can be generated from it as if it was a live patient using accurate models of the physics of the imaging and treatment process. With sophisticated simulation algorithms, it is possible to perform virtual experiments entirely on the computer. By serving as virtual patients, computational phantoms hold great promise in solving some of the most complex problems in modern medical physics. In this proposed symposium, we will present the history and recent developments of computational phantom models, share experiences in their application to advanced imaging and radiation applications, and discuss their promises and limitations. Learning Objectives: Understand the need and requirements of computational phantoms in medical physics research Discuss the developments and applications of computational phantoms Know the promises and limitations of computational phantoms in solving complex problems.« less
Xiang, Hong F; Song, Jun S; Chin, David W H; Cormack, Robert A; Tishler, Roy B; Makrigiorgos, G Mike; Court, Laurence E; Chin, Lee M
2007-04-01
This work is intended to investigate the application and accuracy of micro-MOSFET for superficial dose measurement under clinically used MV x-ray beams. Dose response of micro-MOSFET in the build-up region and on surface under MV x-ray beams were measured and compared to Monte Carlo calculations. First, percentage-depth-doses were measured with micro-MOSFET under 6 and 10 MV beams of normal incidence onto a flat solid water phantom. Micro-MOSFET data were compared with the measurements from a parallel plate ionization chamber and Monte Carlo dose calculation in the build-up region. Then, percentage-depth-doses were measured for oblique beams at 0 degrees-80 degrees onto the flat solid water phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm below the surface. Measurements were compared to Monte Carlo calculations under these settings. Finally, measurements were performed with micro-MOSFET embedded in the first 1 mm layer of bolus placed on a flat phantom and a curved phantom of semi-cylindrical shape. Results were compared to superficial dose calculated from Monte Carlo for a 2 mm thin layer that extends from the surface to a depth of 2 mm. Results were (1) Comparison of measurements with MC calculation in the build-up region showed that micro-MOSFET has a water-equivalence thickness (WET) of 0.87 mm for 6 MV beam and 0.99 mm for 10 MV beam from the flat side, and a WET of 0.72 mm for 6 MV beam and 0.76 mm for 10 MV beam from the epoxy side. (2) For normal beam incidences, percentage depth dose agree within 3%-5% among micro-MOSFET measurements, parallel-plate ionization chamber measurements, and MC calculations. (3) For oblique incidence on the flat phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm, measurements were consistent with MC calculations within a typical uncertainty of 3%-5%. (4) For oblique incidence on the flat phantom and a curved-surface phantom, measurements with micro-MOSFET placed at 1.0 mm agrees with the MC calculation within 6%, including uncertainties of micro-MOSFET measurements of 2%-3% (1 standard deviation), MOSFET angular dependence of 3.0%-3.5%, and 1%-2% systematical error due to phantom setup geometry asymmetry. Micro-MOSFET can be used for skin dose measurements in 6 and 10 MV beams with an estimated accuracy of +/- 6%.
NASA Astrophysics Data System (ADS)
Ihsani, Alvin; Farncombe, Troy
2016-02-01
The modelling of the projection operator in tomographic imaging is of critical importance especially when working with algebraic methods of image reconstruction. This paper proposes a distance-driven projection method which is targeted to single-pinhole single-photon emission computed tomograghy (SPECT) imaging since it accounts for the finite size of the pinhole, and the possible tilting of the detector surface in addition to other collimator-specific factors such as geometric sensitivity. The accuracy and execution time of the proposed method is evaluated by comparing to a ray-driven approach where the pinhole is sub-sampled with various sampling schemes. A point-source phantom whose projections were generated using OpenGATE was first used to compare the resolution of reconstructed images with each method using the full width at half maximum (FWHM). Furthermore, a high-activity Mini Deluxe Phantom (Data Spectrum Corp., Durham, NC, USA) SPECT resolution phantom was scanned using a Gamma Medica X-SPECT system and the signal-to-noise ratio (SNR) and structural similarity of reconstructed images was compared at various projection counts. Based on the reconstructed point-source phantom, the proposed distance-driven approach results in a lower FWHM than the ray-driven approach even when using a smaller detector resolution. Furthermore, based on the Mini Deluxe Phantom, it is shown that the distance-driven approach has consistently higher SNR and structural similarity compared to the ray-driven approach as the counts in measured projections deteriorates.
Ben-Shlomo, A; Cohen, D; Bruckheimer, E; Bachar, G N; Konstantinovsky, R; Birk, E; Atar, E
2016-05-01
To compare the effective doses of needle biopsies based on dose measurements and simulations using adult and pediatric phantoms, between cone beam c-arm CT (CBCT) and CT. Effective doses were calculated and compared based on measurements and Monte Carlo simulations of CT- and CBCT-guided biopsy procedures of the lungs, liver, and kidney using pediatric and adult phantoms. The effective doses for pediatric and adult phantoms, using our standard protocols for upper, middle and lower lungs, liver, and kidney biopsies, were significantly lower under CBCT guidance than CT. The average effective dose for a 5-year old for these five biopsies was 0.36 ± 0.05 mSv with the standard CBCT exposure protocols and 2.13 ± 0.26 mSv with CT. The adult average effective dose for the five biopsies was 1.63 ± 0.22 mSv with the standard CBCT protocols and 8.22 ± 1.02 mSv using CT. The CT effective dose was higher than CBCT protocols for child and adult phantoms by 803 and 590% for upper lung, 639 and 525% for mid-lung, and 461 and 251% for lower lung, respectively. Similarly, the effective dose was higher by 691 and 762% for liver and 513 and 608% for kidney biopsies. Based on measurements and simulations with pediatric and adult phantoms, radiation effective doses during image-guided needle biopsies of the lung, liver, and kidney are significantly lower with CBCT than with CT.
The design and fabrication of two portal vein flow phantoms by different methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunker, Bryan E., E-mail: bryan.yunker@ucdenver.edu; Lanning, Craig J.; Shandas, Robin
2014-02-15
Purpose: This study outlines the design and fabrication techniques for two portal vein flow phantoms. Methods: A materials study was performed as a precursor to this phantom fabrication effort and the desired material properties are restated for continuity. A three-dimensional portal vein pattern was created from the Visual Human database. The portal vein pattern was used to fabricate two flow phantoms by different methods with identical interior surface geometry using computer aided design software tools and rapid prototyping techniques. One portal flow phantom was fabricated within a solid block of clear silicone for use on a table with Ultrasound ormore » within medical imaging systems such as MRI, CT, PET, or SPECT. The other portal flow phantom was fabricated as a thin walled tubular latex structure for use in water tanks with Ultrasound imaging. Both phantoms were evaluated for usability and durability. Results: Both phantoms were fabricated successfully and passed durability criteria for flow testing in the next project phase. Conclusions: The fabrication methods and materials employed for the study yielded durable portal vein phantoms.« less
Eldib, Mootaz; Bini, Jason; Calcagno, Claudia; Robson, Philip M; Mani, Venkatesh; Fayad, Zahi A
2014-02-01
Attenuation correction for magnetic resonance (MR) coils is a new challenge that came about with the development of combined MR and positron emission tomography (PET) imaging. This task is difficult because such coils are not directly visible on either PET or MR acquisitions with current combined scanners and are therefore not easily localized in the field of view. This issue becomes more evident when trying to localize flexible MR coils (eg, cardiac or body matrix coil) that change position and shape from patient to patient and from one imaging session to another. In this study, we proposed a novel method to localize and correct for the attenuation and scatter of a flexible MR cardiac coil, using MR fiducial markers placed on the surface of the coil to allow for accurate registration of a template computed tomography (CT)-based attenuation map. To quantify the attenuation properties of the cardiac coil, a uniform cylindrical water phantom injected with 18F-fluorodeoxyglucose (18F-FDG) was imaged on a sequential MR/PET system with and without the flexible cardiac coil. After establishing the need to correct for the attenuation of the coil, we tested the feasibility of several methods to register a precomputed attenuation map to correct for the attenuation. To accomplish this, MR and CT visible markers were placed on the surface of the cardiac flexible coil. Using only the markers as a driver for registration, the CT image was registered to the reference image through a combination of rigid and deformable registration. The accuracy of several methods was compared for the deformable registration, including B-spline, thin-plate spline, elastic body spline, and volume spline. Finally, we validated our novel approach both in phantom and patient studies. The findings from the phantom experiments indicated that the presence of the coil resulted in a 10% reduction in measured 18F-FDG activity when compared with the phantom-only scan. Local underestimation reached 22% in regions of interest close to the coil. Various registration methods were tested, and the volume spline was deemed to be the most accurate, as measured by the Dice similarity metric. The results of our phantom experiments showed that the bias in the 18F-FDG quantification introduced by the presence of the coil could be reduced by using our registration method. An overestimation of only 1.9% of the overall activity for the phantom scan with the coil attenuation map was measured when compared with the baseline phantom scan without coil. A local overestimation of less than 3% was observed in the ROI analysis when using the proposed method to correct for the attenuation of the flexible cardiac coil. Quantitative results from the patient study agreed well with the phantom findings. We presented and validated an accurate method to localize and register a CT-based attenuation map to correct for the attenuation and scatter of flexible MR coils. This method may be translated to clinical use to produce quantitatively accurate measurements with the use of flexible MR coils during MR/PET imaging.
TU-H-CAMPUS-IeP2-05: Breast and Soft Tissue-Equivalent 3D Printed Phantoms for Imaging and Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hintenlang, D; Terracino, B
Purpose: The study has the goal to demonstrate that breast and soft tissue-equivalent phantoms for dosimetry applications in the diagnostic energy range can be fabricated using common 3D printing methods. Methods: 3D printing provides the opportunity to rapidly prototype uniquely designed objects from a variety of materials. Common 3D printers are usually limited to printing objects based on thermoplastic materials such as PLA, or ABS. The most commonly available plastic is PLA, which has a density significantly greater than soft tissue. We utilized a popular 3D printer to demonstrate that tissue specific phantom materials can be generated through the carefulmore » selection of 3D printing parameters. A series of stepwedges were designed and printed using a Makerbot Replicator2 3D printing system. The print file provides custom adjustment of the infill density, orientation and position of the object on the printer stage, selection of infill patterns, and other control parameters. The x-ray attenuation and uniformity of fabricated phantoms were evaluated and compared to common tissue-equivalent phantom materials, acrylic and BR12. X-ray exposure measurements were made using narrow beam geometry on a clinical mammography unit at 28 kVp on the series of phantoms. The 3D printed phantoms were imaged at 28 kVp to visualize the internal structure and uniformity in different planes of the phantoms. Results: By utilizing specific in-fill density and patterns we are able to produce a phantom closely matching the attenuation characteristics of BR12 at 28 kVp. The in-fill patterns used are heterogeneous, so a judicious selection of fill pattern and the orientation of the fill pattern must be made in order to obtain homogenous attenuation along the intended direction of beam propagation. Conclusions: By careful manipulation of the printing parameters, breast and soft tissue-equivalent phantoms appropriate for use at imaging energies can be fabricated using 3D printing techniques.« less
Kalpathy-Cramer, Jayashree; Zhao, Binsheng; Goldgof, Dmitry; Gu, Yuhua; Wang, Xingwei; Yang, Hao; Tan, Yongqiang; Gillies, Robert; Napel, Sandy
2016-08-01
Tumor volume estimation, as well as accurate and reproducible borders segmentation in medical images, are important in the diagnosis, staging, and assessment of response to cancer therapy. The goal of this study was to demonstrate the feasibility of a multi-institutional effort to assess the repeatability and reproducibility of nodule borders and volume estimate bias of computerized segmentation algorithms in CT images of lung cancer, and to provide results from such a study. The dataset used for this evaluation consisted of 52 tumors in 41 CT volumes (40 patient datasets and 1 dataset containing scans of 12 phantom nodules of known volume) from five collections available in The Cancer Imaging Archive. Three academic institutions developing lung nodule segmentation algorithms submitted results for three repeat runs for each of the nodules. We compared the performance of lung nodule segmentation algorithms by assessing several measurements of spatial overlap and volume measurement. Nodule sizes varied from 29 μl to 66 ml and demonstrated a diversity of shapes. Agreement in spatial overlap of segmentations was significantly higher for multiple runs of the same algorithm than between segmentations generated by different algorithms (p < 0.05) and was significantly higher on the phantom dataset compared to the other datasets (p < 0.05). Algorithms differed significantly in the bias of the measured volumes of the phantom nodules (p < 0.05) underscoring the need for assessing performance on clinical data in addition to phantoms. Algorithms that most accurately estimated nodule volumes were not the most repeatable, emphasizing the need to evaluate both their accuracy and precision. There were considerable differences between algorithms, especially in a subset of heterogeneous nodules, underscoring the recommendation that the same software be used at all time points in longitudinal studies.
Radiation dose reduction for CT lung cancer screening using ASIR and MBIR: a phantom study
Mathieu, Kelsey B.; Ai, Hua; Fox, Patricia S.; Godoy, Myrna Cobos Barco; Munden, Reginald F.; de Groot, Patricia M.
2014-01-01
The purpose of this study was to reduce the radiation dosage associated with computed tomography (CT) lung cancer screening while maintaining overall diagnostic image quality and definition of ground‐glass opacities (GGOs). A lung screening phantom and a multipurpose chest phantom were used to quantitatively assess the performance of two iterative image reconstruction algorithms (adaptive statistical iterative reconstruction (ASIR) and model‐based iterative reconstruction (MBIR)) used in conjunction with reduced tube currents relative to a standard clinical lung cancer screening protocol (51 effective mAs (3.9 mGy) and filtered back‐projection (FBP) reconstruction). To further assess the algorithms' performances, qualitative image analysis was conducted (in the form of a reader study) using the multipurpose chest phantom, which was implanted with GGOs of two densities. Our quantitative image analysis indicated that tube current, and thus radiation dose, could be reduced by 40% or 80% from ASIR or MBIR, respectively, compared with conventional FBP, while maintaining similar image noise magnitude and contrast‐to‐noise ratio. The qualitative portion of our study, which assessed reader preference, yielded similar results, indicating that dose could be reduced by 60% (to 20 effective mAs (1.6 mGy)) with either ASIR or MBIR, while maintaining GGO definition. Additionally, the readers' preferences (as indicated by their ratings) regarding overall image quality were equal or better (for a given dose) when using ASIR or MBIR, compared with FBP. In conclusion, combining ASIR or MBIR with reduced tube current may allow for lower doses while maintaining overall diagnostic image quality, as well as GGO definition, during CT lung cancer screening. PACS numbers: 87.57.Q‐, 87.57.nf PMID:24710436
Solomon, Justin; Ba, Alexandre; Bochud, François; Samei, Ehsan
2016-12-01
To use novel voxel-based 3D printed textured phantoms in order to compare low-contrast detectability between two reconstruction algorithms, FBP (filtered-backprojection) and SAFIRE (sinogram affirmed iterative reconstruction) and determine what impact background texture (i.e., anatomical noise) has on estimating the dose reduction potential of SAFIRE. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find CLB textures that were reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, four cylindrical phantoms (Textures A-C and uniform, 165 mm in diameter, and 30 mm height) were designed, each containing 20 low-contrast spherical signals (6 mm diameter at nominal contrast levels of ∼3.2, 5.2, 7.2, 10, and 14 HU with four repeats per signal). The phantoms were voxelized and input into a commercial multimaterial 3D printer (Object Connex 350), with custom software for voxel-based printing (using principles of digital dithering). Images of the textured phantoms and a corresponding uniform phantom were acquired at six radiation dose levels (SOMATOM Flash, Siemens Healthcare) and observer model detection performance (detectability index of a multislice channelized Hotelling observer) was estimated for each condition (5 contrasts × 6 doses × 2 reconstructions × 4 backgrounds = 240 total conditions). A multivariate generalized regression analysis was performed (linear terms, no interactions, random error term, log link function) to assess whether dose, reconstruction algorithm, signal contrast, and background type have statistically significant effects on detectability. Also, fitted curves of detectability (averaged across contrast levels) as a function of dose were constructed for each reconstruction algorithm and background texture. FBP and SAFIRE were compared for each background type to determine the improvement in detectability at a given dose, and the reduced dose at which SAFIRE had equivalent performance compared to FBP at 100% dose. Detectability increased with increasing radiation dose (P = 2.7 × 10 -59 ) and contrast level (P = 2.2 × 10 -86 ) and was higher in the uniform phantom compared to the textured phantoms (P = 6.9 × 10 -51 ). Overall, SAFIRE had higher d' compared to FBP (P = 0.02). The estimated dose reduction potential of SAFIRE was found to be 8%, 10%, 27%, and 8% for Texture-A, Texture-B, Texture-C and uniform phantoms. In all background types, detectability was higher with SAFIRE compared to FBP. However, the relative improvement observed from SAFIRE was highly dependent on the complexity of the background texture. Iterative algorithms such as SAFIRE should be assessed in the most realistic context possible.
NASA Astrophysics Data System (ADS)
Torbica, Pavle; Buchberger, Wolfgang; Bernathova, M.; Mallouhi, Ammar; Peer, Siegfried; Bosmans, Hilde; Faulkner, Keith
2003-05-01
The purpose of this study was to compare the radiologist`s performance in detecting small low-contrast objects with hardcopy and softcopy reading of digital mammograms. 12 images of a contrast-detail (CD) phantom without and with 25.4 mm, 50.8 mm, and 76.2 mm additional polymethylmetacrylate (PMMA) attenuation were acquired with a caesium iodid/amorphous silicon flat panel detector under standard exposure conditions. The phantom images were read by three independent observers, by conducting a four-alternative forced-choice experiment. Reading of the hardcopy was done on a mammography viewbox under standardized reading conditions. For soft copy reading, a dedicated workstation with two 2K monitors was used. CD-curves and image quality figure (IQF) values were calculated from the correct detection rates of randomly located gold disks in the phantom. The figures were compared for both reading conditions and for different PMMA layers. For all types of exposures, soft copy reading resulted in significantly better contrast-detail characteristics and IQF values, as compared to hard copy reading of laser printouts. (p< 0.01). The authors conclude that the threshold contrast characteristics of digital mammograms displayed on high-resolution monitors are sufficient to make soft copy reading of digital mammograms feasible.
NASA Astrophysics Data System (ADS)
Gade, John; Palmqvist, Dorte; Plomgård, Peter; Greisen, Gorm
2006-01-01
The purpose of the study was to compare algorithms of four methods (plus two modifications) for spectrophotometric haemoglobin saturation measurements. Comparison was made in tissue phantoms basically consisting of a phosphate buffer, Intralipid and blood, allowing samples to be taken for reference measurements. Three experimental series were made. In experiment A (eight phantoms) we used the Knoefel method and measured specific extinction coefficients with a reflection spectrophotometer. In experiment B (six phantoms) the fully oxygenated phantoms were gradually deoxygenated with baker's yeast, and simultaneous measurements were made with our spectrophotometer and with a reference oxymeter (ABL-605) in 3 min intervals. For each spectrophotometric measurement haemoglobin saturation was calculated with all algorithms and modifications, and compared with reference. In experiment C (11 phantoms) we evaluated the ability of a modification of the Knoefel method to measure haemoglobin concentration in absolute quantities using extinction coefficients from experiment A. Results. Experiment A: with the Knoefel method extinction coefficients (±SD) for oxyhaemoglobin at 553.04 and 573.75 nm were 1.117 (±0.0396) ODmM-1 and 1.680 (± 0.0815) ODmM-1, respectively, and for deoxyhaemoglobin 1.205 (± 0.0514) ODmM-1 and 0.953 (±0.0487) ODmM-1, respectively. Experiment B: high correlation with the reference was found in all methods (r = 0.94-0.97). However, agreement varied from evidently wrong in method 3 and the original method 4 (e.g. saturation above 160%) to high agreement in method 2 as well as the modifications of methods 1 and 4, where oxygen dissociation curves were close to the reference method. Experiment C: with the modified Knoefel method the mean haemoglobin concentration difference from reference was 8.3% and the correlation was high (r = 0.91). We conclude that method 2 and the modifications of 1 and 4 were superior to the others, but depended on known values in the same or similar phantoms. The original method 1 was independent of results from the tissue phantoms, but agreement was slightly poorer. Method 3 and the original method 4 could not be recommended. The ability of the modified method 1 to measure haemoglobin concentration is promising, but needs further development.
Statistical image-domain multimaterial decomposition for dual-energy CT.
Xue, Yi; Ruan, Ruoshui; Hu, Xiuhua; Kuang, Yu; Wang, Jing; Long, Yong; Niu, Tianye
2017-03-01
Dual-energy CT (DECT) enhances tissue characterization because of its basis material decomposition capability. In addition to conventional two-material decomposition from DECT measurements, multimaterial decomposition (MMD) is required in many clinical applications. To solve the ill-posed problem of reconstructing multi-material images from dual-energy measurements, additional constraints are incorporated into the formulation, including volume and mass conservation and the assumptions that there are at most three materials in each pixel and various material types among pixels. The recently proposed flexible image-domain MMD method decomposes pixels sequentially into multiple basis materials using a direct inversion scheme which leads to magnified noise in the material images. In this paper, we propose a statistical image-domain MMD method for DECT to suppress the noise. The proposed method applies penalized weighted least-square (PWLS) reconstruction with a negative log-likelihood term and edge-preserving regularization for each material. The statistical weight is determined by a data-based method accounting for the noise variance of high- and low-energy CT images. We apply the optimization transfer principles to design a serial of pixel-wise separable quadratic surrogates (PWSQS) functions which monotonically decrease the cost function. The separability in each pixel enables the simultaneous update of all pixels. The proposed method is evaluated on a digital phantom, Catphan©600 phantom and three patients (pelvis, head, and thigh). We also implement the direct inversion and low-pass filtration methods for a comparison purpose. Compared with the direct inversion method, the proposed method reduces noise standard deviation (STD) in soft tissue by 95.35% in the digital phantom study, by 88.01% in the Catphan©600 phantom study, by 92.45% in the pelvis patient study, by 60.21% in the head patient study, and by 81.22% in the thigh patient study, respectively. The overall volume fraction accuracy is improved by around 6.85%. Compared with the low-pass filtration method, the root-mean-square percentage error (RMSE(%)) of electron densities in the Catphan©600 phantom is decreased by 20.89%. As modulation transfer function (MTF) magnitude decreased to 50%, the proposed method increases the spatial resolution by an overall factor of 1.64 on the digital phantom, and 2.16 on the Catphan©600 phantom. The overall volume fraction accuracy is increased by 6.15%. We proposed a statistical image-domain MMD method using DECT measurements. The method successfully suppresses the magnified noise while faithfully retaining the quantification accuracy and anatomical structure in the decomposed material images. The proposed method is practical and promising for advanced clinical applications using DECT imaging. © 2017 American Association of Physicists in Medicine.
Mansor, Syahir; Pfaehler, Elisabeth; Heijtel, Dennis; Lodge, Martin A; Boellaard, Ronald; Yaqub, Maqsood
2017-12-01
In longitudinal oncological and brain PET/CT studies, it is important to understand the repeatability of quantitative PET metrics in order to assess change in tracer uptake. The present studies were performed in order to assess precision as function of PET/CT system, reconstruction protocol, analysis method, scan duration (or image noise), and repositioning in the field of view. Multiple (repeated) scans have been performed using a NEMA image quality (IQ) phantom and a 3D Hoffman brain phantom filled with 18 F solutions on two systems. Studies were performed with and without randomly (< 2 cm) repositioning the phantom and all scans (12 replicates for IQ phantom and 10 replicates for Hoffman brain phantom) were performed at equal count statistics. For the NEMA IQ phantom, we studied the recovery coefficients (RC) of the maximum (SUV max ), peak (SUV peak ), and mean (SUV mean ) uptake in each sphere as a function of experimental conditions (noise level, reconstruction settings, and phantom repositioning). For the 3D Hoffman phantom, the mean activity concentration was determined within several volumes of interest and activity recovery and its precision was studied as function of experimental conditions. The impact of phantom repositioning on RC precision was mainly seen on the Philips Ingenuity PET/CT, especially in the case of smaller spheres (< 17 mm diameter, P < 0.05). This effect was much smaller for the Siemens Biograph system. When exploring SUV max , SUV peak , or SUV mean of the spheres in the NEMA IQ phantom, it was observed that precision depended on phantom repositioning, reconstruction algorithm, and scan duration, with SUV max being most and SUV peak least sensitive to phantom repositioning. For the brain phantom, regional averaged SUVs were only minimally affected by phantom repositioning (< 2 cm). The precision of quantitative PET metrics depends on the combination of reconstruction protocol, data analysis methods and scan duration (scan statistics). Moreover, precision was also affected by phantom repositioning but its impact depended on the data analysis method in combination with the reconstructed voxel size (tissue fraction effect). This study suggests that for oncological PET studies the use of SUV peak may be preferred over SUV max because SUV peak is less sensitive to patient repositioning/tumor sampling. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Allred, Jonathan D; Niedbala, Jeremy; Mikell, Justin K; Owen, Dawn; Frey, Kirk A; Dewaraja, Yuni K
2018-06-15
A major toxicity concern in radioembolization therapy of hepatic malignancies is radiation-induced pneumonitis and sclerosis due to hepatopulmonary shunting of 90 Y microspheres. Currently, 99m Tc macroaggregated albumin ( 99m Tc-MAA) imaging is used to estimate the lung shunt fraction (LSF) prior to treatment. The aim of this study was to evaluate the accuracy/precision of LSF estimated from 99m Tc planar and SPECT/CT phantom imaging, and within this context, to compare the corresponding LSF and lung-absorbed dose values from 99m Tc-MAA patient studies. Additionally, LSFs from pre- and post-therapy imaging were compared. A liver/lung torso phantom filled with 99m Tc to achieve three lung shunt values was scanned by planar and SPECT/CT imaging with repeat acquisitions to assess accuracy and precision. To facilitate processing of patient data, a workflow that relies on SPECT and CT-based auto-contouring to define liver and lung volumes for the LSF calculation was implemented. Planar imaging-based LSF estimates for 40 patients, obtained from their medical records, were retrospectively compared with SPECT/CT imaging-based calculations with attenuation and scatter correction. Additionally, in a subset of 20 patients, the pre-therapy estimates were compared with 90 Y PET/CT-based measurements. In the phantom study, improved accuracy in LSF estimation was achieved using SPECT/CT with attenuation and scatter correction (within 13% of the true value) compared with planar imaging (up to 44% overestimation). The results in patients showed a similar trend with planar imaging significantly overestimating LSF compared to SPECT/CT. There was no correlation between lung shunt estimates and the delay between 99m Tc-MAA administration and scanning, but off-target extra hepatic uptake tended to be more likely in patients with a longer delay. The mean lung absorbed dose predictions for the 28 patients who underwent therapy was 9.3 Gy (range 1.3-29.4) for planar imaging and 3.2 Gy (range 0.4-13.4) for SPECT/CT. For the patients with post-therapy imaging, the mean LSF from 90 Y PET/CT was 1.0%, (range 0.3-2.8). This value was not significantly different from the mean LSF estimate from 99m Tc-MAA SPECT/CT (mean 1.0%, range 0.4-1.6; p = 0.968), but was significantly lower than the mean LSF estimate based on planar imaging (mean 4.1%, range 1.2-15.0; p = 0.0002). The improved accuracy demonstrated by the phantom study, agreement with 90 Y PET/CT in patient studies, and the practicality of using auto-contouring for liver/lung definition suggests that 99m Tc-MAA SPECT/CT with scatter and attenuation corrections should be used for lung shunt estimation prior to radioembolization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiarashi, Nooshin; Nolte, Adam C.; Sturgeon, Gregory M.
Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated bymore » high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power-law descriptions of the phantom images were in general agreement with real human images. The Singlet approach offered more realistic contrast as compared to the Doublet approach, but at the expense of air bubbles and air pockets that formed during the filling process. Conclusions: The presented physical breast phantoms and their matching virtual breast phantoms offer realistic breast anatomy, patient variability, and ease of use, making them a potential candidate for performing both system quality control testing and virtual clinical trials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Justin, E-mail: justin.solomon@duke.edu; Wilson, Joshua; Samei, Ehsan
2015-08-15
Purpose: The purpose of this work was to assess the inherent image quality characteristics of a new multidetector computed tomography system in terms of noise, resolution, and detectability index as a function of image acquisition and reconstruction for a range of clinically relevant settings. Methods: A multisized image quality phantom (37, 30, 23, 18.5, and 12 cm physical diameter) was imaged on a SOMATOM Force scanner (Siemens Medical Solutions) under variable dose, kVp, and tube current modulation settings. Images were reconstructed with filtered back projection (FBP) and with advanced modeled iterative reconstruction (ADMIRE) with iterative strengths of 3, 4, andmore » 5. Image quality was assessed in terms of the noise power spectrum (NPS), task transfer function (TTF), and detectability index for a range of detection tasks (contrasts of approximately 45, 90, 300, −900, and 1000 HU, and 2–20 mm diameter) based on a non-prewhitening matched filter model observer with eye filter. Results: Image noise magnitude decreased with decreasing phantom size, increasing dose, and increasing ADMIRE strength, offering up to 64% noise reduction relative to FBP. Noise texture in terms of the NPS was similar between FBP and ADMIRE (<5% shift in peak frequency). The resolution, based on the TTF, improved with increased ADMIRE strength by an average of 15% in the TTF 50% frequency for ADMIRE-5. The detectability index increased with increasing dose and ADMIRE strength by an average of 55%, 90%, and 163% for ADMIRE 3, 4, and 5, respectively. Assessing the impact of mA modulation for a fixed average dose over the length of the phantom, detectability was up to 49% lower in smaller phantom sections and up to 26% higher in larger phantom sections for the modulated scan compared to a fixed tube current scan. Overall, the detectability exhibited less variability with phantom size for modulated scans compared to fixed tube current scans. Conclusions: Image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose. The use of tube current modulation resulted in more consistent image quality with changing phantom size.« less
NASA Astrophysics Data System (ADS)
Jang, Jun-keun; Kondo, Kengo; Namita, Takeshi; Yamakawa, Makoto; Shiina, Tsuyoshi
2016-07-01
Shear-wave elastography (SWE) enables the noninvasive and quantitative evaluation of the mechanical properties of human soft tissue. Generally, shear-wave velocity (C S) can be estimated using the time-of-flight (TOF) method. Young’s modulus is then calculated directly from the estimated C S. However, because shear waves in thin-layered media propagate as guided waves, C S cannot be accurately estimated using the conventional TOF method. Leaky Lamb dispersion analysis (LLDA) has recently been proposed to overcome this problem. In this study, we performed both experimental and finite-element (FE) analyses to evaluate the advantages of LLDA over TOF. In FE analysis, we investigated why the conventional TOF is ineffective for thin-layered media. In phantom experiments, C S results estimated using the two methods were compared for 1.5 and 2% agar plates and tube phantoms. Furthermore, it was shown that Lamb waves can be applied to tubular structures by extracting lateral waves traveling in the long axis direction of the tube using a two-dimensional window. Also, the effects of the inner radius and stiffness (or shear wavelength) of the tube on the estimation performance of LLDA were experimentally discussed. In phantom experiments, the results indicated good agreement between LLDA (plate phantoms of 2 mm thickness: 5.0 m/s for 1.5% agar and 7.2 m/s for 2% agar; tube phantoms with 2 mm thickness and 2 mm inner radius: 5.1 m/s for 1.5% agar and 7.0 m/s for 2% agar; tube phantoms with 2 mm thickness and 4 mm inner radius: 5.3 m/s for 1.5% agar and 7.3 m/s for 2% agar) and SWE measurements (bulk phantoms: 5.3 m/s ± 0.27 for 1.5% agar and 7.3 m/s ± 0.54 for 2% agar).
Kakeda, S; Korogi, Y; Ohnari, N; Hatakeyama, Y; Moriya, J; Oda, N; Nishino, K; Miyamoto, W
2007-05-01
Compared with the image intensifier (I.I.)-TV system, the flat panel detector (FPD) system of direct conversion type has several theoretic advantages, such as higher spatial resolution, wide dynamic range, and no image distortion. The purpose of this study was to compare the image quality of 3D digital subtraction angiography (DSA) in the FPD and conventional I.I.-TV systems using a vascular phantom. An anthropomorphic vascular phantom was designed to simulate the various intracranial aneurysms with aneurysmal bleb. The tubes of this vascular phantom were filled with 2 concentrations of contrast material (300 and 150 mg I/mL), and we obtained 3D DSA using the FPD and I.I.-TV systems. First, 2 blinded radiologists compared the volume-rendering images for 3D DSA on the FPD and I.I.-TV systems, looking for pseudostenosis artifacts. Then, 2 other radiologists independently evaluated both systems for the depiction of the simulated aneurysm and aneurysmal bleb using a 5-point scale. For the degree of the pseudostenosis artifacts at the M1 segment of the middle cerebral artery at 300 mg I/mL, 3D DSA with FPD system showed mild stenoses, whereas severe stenoses were observed at 3D DSA with I.I.-TV system. At both concentrations, the FPD system was significantly superior to I.I.-TV system regarding the depiction of aneurysm and aneurysmal bleb. Compared with the I.I.-TV system, the FPD system could create high-resolution 3D DSA combined with a reduction of the pseudostenosis artifacts.
Menacé, Cécilia; Choquet, Olivier; Abbal, Bertrand; Bringuier, Sophie; Capdevila, Xavier
2017-04-01
The real-time ultrasound-guided paramedian sagittal oblique approach for neuraxial blockade is technically demanding. Innovative technologies have been developed to improve nerve identification and the accuracy of needle placement. The aim of this study was to evaluate three types of ultrasound scans during ultrasound-guided epidural lumbar punctures in a spine phantom. Eleven sets of 20 ultrasound-guided epidural punctures were performed with 2D, GPS, and multiplanar ultrasound machines (660 punctures) on a spine phantom using an in-plane approach. For all punctures, execution time, number of attempts, bone contacts, and needle redirections were noted by an independent physician. Operator comfort and visibility of the needle (tip and shaft) were measured using a numerical scale. The use of GPS significantly decreased the number of punctures, needle repositionings, and bone contacts. Comfort of the physician was also significantly improved with the GPS system compared with the 2D and multiplanar systems. With the multiplanar system, the procedure was not facilitated and execution time was longer compared with 2D imaging after Bonferroni correction but interaction between the type of ultrasound system and mean execution time was not significant in a linear mixed model. There were no significant differences regarding needle tip and shaft visibility between the systems. Multiplanar and GPS needle-tracking systems do not reduce execution time compared with 2D imaging using a real-time ultrasound-guided paramedian sagittal oblique approach in spine phantoms. The GPS needle-tracking system can improve performance in terms of operator comfort, the number of attempts, needle redirections and bone contacts. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.
Ono, Kaoru; Endo, Satoru; Tanaka, Kenichi; Hoshi, Masaharu; Hirokawa, Yutaka
2010-01-01
Purpose: In this study, the authors evaluated the accuracy of dose calculations performed by the convolution∕superposition based anisotropic analytical algorithm (AAA) in lung equivalent heterogeneities with and without bone equivalent heterogeneities. Methods: Calculations of PDDs using the AAA and Monte Carlo simulations (MCNP4C) were compared to ionization chamber measurements with a heterogeneous phantom consisting of lung equivalent and bone equivalent materials. Both 6 and 10 MV photon beams of 4×4 and 10×10 cm2 field sizes were used for the simulations. Furthermore, changes of energy spectrum with depth for the heterogeneous phantom using MCNP were calculated. Results: The ionization chamber measurements and MCNP calculations in a lung equivalent phantom were in good agreement, having an average deviation of only 0.64±0.45%. For both 6 and 10 MV beams, the average deviation was less than 2% for the 4×4 and 10×10 cm2 fields in the water-lung equivalent phantom and the 4×4 cm2 field in the water-lung-bone equivalent phantom. Maximum deviations for the 10×10 cm2 field in the lung equivalent phantom before and after the bone slab were 5.0% and 4.1%, respectively. The Monte Carlo simulation demonstrated an increase of the low-energy photon component in these regions, more for the 10×10 cm2 field compared to the 4×4 cm2 field. Conclusions: The low-energy photon by Monte Carlo simulation component increases sharply in larger fields when there is a significant presence of bone equivalent heterogeneities. This leads to great changes in the build-up and build-down at the interfaces of different density materials. The AAA calculation modeling of the effect is not deemed to be sufficiently accurate. PMID:20879604
2014-01-01
Quantitative imaging biomarkers (QIBs) are being used increasingly in medicine to diagnose and monitor patients’ disease. The computer algorithms that measure QIBs have different technical performance characteristics. In this paper we illustrate the appropriate statistical methods for assessing and comparing the bias, precision, and agreement of computer algorithms. We use data from three studies of pulmonary nodules. The first study is a small phantom study used to illustrate metrics for assessing repeatability. The second study is a large phantom study allowing assessment of four algorithms’ bias and reproducibility for measuring tumor volume and the change in tumor volume. The third study is a small clinical study of patients whose tumors were measured on two occasions. This study allows a direct assessment of six algorithms’ performance for measuring tumor change. With these three examples we compare and contrast study designs and performance metrics, and we illustrate the advantages and limitations of various common statistical methods for QIB studies. PMID:24919828
Rothgangel, Andreas Stefan; Braun, Susy; Schulz, Ralf Joachim; Kraemer, Matthias; de Witte, Luc; Beurskens, Anna; Smeets, Rob Johannes
2015-01-01
Non-pharmacological interventions such as mirror therapy are gaining increased recognition in the treatment of phantom limb pain; however, the evidence in people with phantom limb pain is still weak. In addition, compliance to self-delivered exercises is generally low. The aim of this randomised controlled study is to investigate the effectiveness of mirror therapy supported by telerehabilitation on the intensity, duration and frequency of phantom limb pain and limitations in daily activities compared to traditional mirror therapy and care as usual in people following lower limb amputation. A three-arm multi-centre randomised controlled trial will be performed. Participants will be randomly assigned to care as usual, traditional mirror therapy or mirror therapy supported by telerehabilitation. During the first 4 weeks, at least 10 individual sessions will take place in every group. After the first 4 weeks, participants will be encouraged to perform self-delivered exercises over a period of 6 weeks. Outcomes will be assessed at 4 and 10 weeks after baseline and at 6 months follow-up. The primary outcome measure is the average intensity of phantom limb pain during the last week. Secondary outcome measures include the different dimensions of phantom limb pain, pain-related limitations in daily activities, global perceived effect, pain-specific self-efficacy, and quality of life. Several questions concerning the study design that emerged during the preparation of this trial will be discussed. This will include how these questions were addressed and arguments for the choices that were made. Copyright © 2014 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Assessment of phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography.
Ludlow, John B; Walker, Cameron
2013-12-01
The increasing use of cone-beam computed tomography in orthodontics has been coupled with heightened concern about the long-term risks of x-ray exposure in orthodontic populations. An industry response to this has been to offer low-exposure alternative scanning options in newer cone-beam computed tomography models. Effective doses resulting from various combinations of field of view size and field location comparing child and adult anthropomorphic phantoms with the recently introduced i-CAT FLX cone-beam computed tomography unit (Imaging Sciences, Hatfield, Pa) were measured with optical stimulated dosimetry using previously validated protocols. Scan protocols included high resolution (360° rotation, 600 image frames, 120 kV[p], 5 mA, 7.4 seconds), standard (360°, 300 frames, 120 kV[p], 5 mA, 3.7 seconds), QuickScan (180°, 160 frames, 120 kV[p], 5 mA, 2 seconds), and QuickScan+ (180°, 160 frames, 90 kV[p], 3 mA, 2 seconds). Contrast-to-noise ratio was calculated as a quantitative measure of image quality for the various exposure options using the QUART DVT phantom. Child phantom doses were on average 36% greater than adult phantom doses. QuickScan+ protocols resulted in significantly lower doses than standard protocols for the child (P = 0.0167) and adult (P = 0.0055) phantoms. The 13 × 16-cm cephalometric fields of view ranged from 11 to 85 μSv in the adult phantom and 18 to 120 μSv in the child phantom for the QuickScan+ and standard protocols, respectively. The contrast-to-noise ratio was reduced by approximately two thirds when comparing QuickScan+ with standard exposure parameters. QuickScan+ effective doses are comparable with conventional panoramic examinations. Significant dose reductions are accompanied by significant reductions in image quality. However, this trade-off might be acceptable for certain diagnostic tasks such as interim assessment of treatment results. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C; Badal, A
Purpose: Computational voxel phantom provides realistic anatomy but the voxel structure may result in dosimetric error compared to real anatomy composed of perfect surface. We analyzed the dosimetric error caused from the voxel structure in hybrid computational phantoms by comparing the voxel-based doses at different resolutions with triangle mesh-based doses. Methods: We incorporated the existing adult male UF/NCI hybrid phantom in mesh format into a Monte Carlo transport code, penMesh that supports triangle meshes. We calculated energy deposition to selected organs of interest for parallel photon beams with three mono energies (0.1, 1, and 10 MeV) in antero-posterior geometry. Wemore » also calculated organ energy deposition using three voxel phantoms with different voxel resolutions (1, 5, and 10 mm) using MCNPX2.7. Results: Comparison of organ energy deposition between the two methods showed that agreement overall improved for higher voxel resolution, but for many organs the differences were small. Difference in the energy deposition for 1 MeV, for example, decreased from 11.5% to 1.7% in muscle but only from 0.6% to 0.3% in liver as voxel resolution increased from 10 mm to 1 mm. The differences were smaller at higher energies. The number of photon histories processed per second in voxels were 6.4×10{sup 4}, 3.3×10{sup 4}, and 1.3×10{sup 4}, for 10, 5, and 1 mm resolutions at 10 MeV, respectively, while meshes ran at 4.0×10{sup 4} histories/sec. Conclusion: The combination of hybrid mesh phantom and penMesh was proved to be accurate and of similar speed compared to the voxel phantom and MCNPX. The lowest voxel resolution caused a maximum dosimetric error of 12.6% at 0.1 MeV and 6.8% at 10 MeV but the error was insignificant in some organs. We will apply the tool to calculate dose to very thin layer tissues (e.g., radiosensitive layer in gastro intestines) which cannot be modeled by voxel phantoms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, T; Ding, H; Torabzadeh, M
2015-06-15
Purpose: To investigate the feasibility of quantifying the cross-sectional area (CSA) of coronary arteries using integrated density in a physics-based model with a phantom study. Methods: In this technique the total integrated density of the object as compared with its local background is measured so it is possible to account for the partial volume effect. The proposed method was compared to manual segmentation using CT scans of a 10 cm diameter Lucite cylinder placed inside a chest phantom. Holes with cross-sectional areas from 1.4 to 12.3 mm{sup 2} were drilled into the Lucite and filled with iodine solution, producing amore » contrast-to-noise ratio of approximately 26. Lucite rods 1.6 mm in diameter were used to simulate plaques. The phantom was imaged with and without the Lucite rods placed in the holes to simulate diseased and normal arteries, respectively. Linear regression analysis was used, and the root-mean-square deviations (RMSD) and errors (RMSE) were computed to assess the precision and accuracy of the measurements. In the case of manual segmentation, two readers independently delineated the lumen in order to quantify the inter-reader variability. Results: The precision and accuracy for the normal vessels using the integrated density technique were 0.32 mm{sup 2} and 0.32 mm{sup 2}, respectively. The corresponding results for the manual segmentation were 0.51 mm{sup 2} and 0.56 mm{sup 2}. In the case of diseased vessels, the precision and accuracy of the integrated density technique were 0.46 mm{sup 2} and 0.55 mm{sup 2}, respectively. The corresponding results for the manual segmentation were 0.75 mm{sup 2} and 0.98 mm{sup 2}. The mean percent difference for the two readers was found to be 8.4%. Conclusion: The CSA based on integrated density had improved precision and accuracy as compared with manual segmentation in a Lucite phantom. The results indicate the potential for using integrated density to improve CSA measurements in CT angiography.« less
Agrawal, Anant; Chen, Chao-Wei; Baxi, Jigesh; Chen, Yu; Pfefer, T Joshua
2013-07-01
In optical coherence tomography (OCT), axial resolution is one of the most critical parameters impacting image quality. It is commonly measured by determining the point spread function (PSF) based on a specular surface reflection. The contrast transfer function (CTF) provides more insights into an imaging system's resolving characteristics and can be readily generated in a system-independent manner, without consideration for image pixel size. In this study, we developed a test method for determination of CTF based on multi-layer, thin-film phantoms, evaluated using spectral- and time-domain OCT platforms with different axial resolution values. Phantoms representing six spatial frequencies were fabricated and imaged. The fabrication process involved spin coating silicone films with precise thicknesses in the 8-40 μm range. Alternating layers were doped with a specified concentration of scattering particles. Validation of layer optical properties and thicknesses were achieved with spectrophotometry and stylus profilometry, respectively. OCT B-scans were used to calculate CTFs and results were compared with convetional PSF measurements based on specular reflections. Testing of these phantoms indicated that our approach can provide direct access to axial resolution characteristics highly relevant to image quality. Furthermore, tissue phantoms based on our thin-film fabrication approach may have a wide range of additional applications in optical imaging and spectroscopy.
Werner-Wasik, Maria; Nelson, Arden D; Choi, Walter; Arai, Yoshio; Faulhaber, Peter F; Kang, Patrick; Almeida, Fabio D; Xiao, Ying; Ohri, Nitin; Brockway, Kristin D; Piper, Jonathan W; Nelson, Aaron S
2012-03-01
To evaluate the accuracy and consistency of a gradient-based positron emission tomography (PET) segmentation method, GRADIENT, compared with manual (MANUAL) and constant threshold (THRESHOLD) methods. Contouring accuracy was evaluated with sphere phantoms and clinically realistic Monte Carlo PET phantoms of the thorax. The sphere phantoms were 10-37 mm in diameter and were acquired at five institutions emulating clinical conditions. One institution also acquired a sphere phantom with multiple source-to-background ratios of 2:1, 5:1, 10:1, 20:1, and 70:1. One observer segmented (contoured) each sphere with GRADIENT and THRESHOLD from 25% to 50% at 5% increments. Subsequently, seven physicians segmented 31 lesions (7-264 mL) from 25 digital thorax phantoms using GRADIENT, THRESHOLD, and MANUAL. For spheres <20 mm in diameter, GRADIENT was the most accurate with a mean absolute % error in diameter of 8.15% (10.2% SD) compared with 49.2% (51.1% SD) for 45% THRESHOLD (p < 0.005). For larger spheres, the methods were statistically equivalent. For varying source-to-background ratios, GRADIENT was the most accurate for spheres >20 mm (p < 0.065) and <20 mm (p < 0.015). For digital thorax phantoms, GRADIENT was the most accurate (p < 0.01), with a mean absolute % error in volume of 10.99% (11.9% SD), followed by 25% THRESHOLD at 17.5% (29.4% SD), and MANUAL at 19.5% (17.2% SD). GRADIENT had the least systematic bias, with a mean % error in volume of -0.05% (16.2% SD) compared with 25% THRESHOLD at -2.1% (34.2% SD) and MANUAL at -16.3% (20.2% SD; p value <0.01). Interobserver variability was reduced using GRADIENT compared with both 25% THRESHOLD and MANUAL (p value <0.01, Levene's test). GRADIENT was the most accurate and consistent technique for target volume contouring. GRADIENT was also the most robust for varying imaging conditions. GRADIENT has the potential to play an important role for tumor delineation in radiation therapy planning and response assessment. Copyright © 2012. Published by Elsevier Inc.
Cullings, Harry M; Kawamura, Hisao; Chen, Jing
2012-03-01
The computational phantoms used in dosimetry system DS86 and re-used in DS02 were derived from models and methods developed at Oak Ridge National Laboratories (ORNL) in the US, but referred to Japanese anthropometric data for the Japanese population of 1945, from studies conducted at the Japanese National Institute of Radiological Sciences and other sources. The phantoms developed for DS86 were limited to three hermaphroditic models: infant, child and adult. After comparing data from Japanese and Western populations, phantoms were adapted from the pre-existing ORNL series, adjusting some organs in the adult phantom to reflect differences between Japanese and Western data, but not in the infant and child phantoms. To develop a new and larger series of more age- and sex-specific models, it appears necessary to rely on the original Japanese data and values derived from them, which can directly provide population-average body dimensions for various ages. Those data were re-analysed in conjunction with other Asian data for an Asian Reference Man model, providing a rather complete table of organ weights that could be used to scale organs for growth during childhood and adolescence. Although the resulting organ volumes might have some inaccuracies in relation to true population-average values, this is a minor concern because in the DS02 context organ size per se is less important than the correct body size and correct placement of the organ in the body.
Wang, Zhiyue J; Seo, Youngseob; Babcock, Evelyn; Huang, Hao; Bluml, Stefan; Wisnowski, Jessica; Holshouser, Barbara; Panigrahy, Ashok; Shaw, Dennis W W; Altman, Nolan; McColl, Roderick W; Rollins, Nancy K
2016-05-08
The purpose of this study was to explore the feasibility of assessing quality of diffusion tensor imaging (DTI) from multiple sites and vendors using American College of Radiology (ACR) phantom. Participating sites (Siemens (n = 2), GE (n= 2), and Philips (n = 4)) reached consensus on parameters for DTI and used the widely available ACR phantom. Tensor data were processed at one site. B0 and eddy current distortions were assessed using grid line displacement on phantom Slice 5; signal-to-noise ratio (SNR) was measured at the center and periphery of the b = 0 image; fractional anisotropy (FA) and mean diffusivity (MD) were assessed using phantom Slice 7. Variations of acquisition parameters and deviations from specified sequence parameters were recorded. Nonlinear grid line distortion was higher with linear shimming and could be corrected using the 2nd order shimming. Following image registration, eddy current distortion was consistently smaller than acquisi-tion voxel size. SNR was consistently higher in the image periphery than center by a factor of 1.3-2.0. ROI-based FA ranged from 0.007 to 0.024. ROI-based MD ranged from 1.90 × 10-3 to 2.33 × 10-3 mm2/s (median = 2.04 × 10-3 mm2/s). Two sites had image void artifacts. The ACR phantom can be used to compare key qual-ity measures of diffusion images acquired from multiple vendors at multiple sites.
Challenges of Zinc-Specific Transrectal Fluorescence Tomography to Detect Prostate Cancer
2013-12-01
swept-source and a 20mm-diameter transverse-imaging intra-lumenal applicator with 7 source and 8 detector channels placed in a liquid phantom. Higher...3. RESULTS ON PHANTOM IMAGING The performance of this system configuration is evaluated by using liquid and solid phantoms. 3.1 Experiments setup... direc - tions. For each possible future location of the detector, the photon fluence rate at that position is compared with the case in the semi
High resolution, MRI-based, segmented, computerized head phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zubal, I.G.; Harrell, C.R.; Smith, E.O.
1999-01-01
The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 bytemore » array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.« less
Wang, L; Lovelock, M; Chui, C S
1999-12-01
To further validate the Monte Carlo dose-calculation method [Med. Phys. 25, 867-878 (1998)] developed at the Memorial Sloan-Kettering Cancer Center, we have performed experimental verification in various inhomogeneous phantoms. The phantom geometries included simple layered slabs, a simulated bone column, a simulated missing-tissue hemisphere, and an anthropomorphic head geometry (Alderson Rando Phantom). The densities of the inhomogeneity range from 0.14 to 1.86 g/cm3, simulating both clinically relevant lunglike and bonelike materials. The data are reported as central axis depth doses, dose profiles, dose values at points of interest, such as points at the interface of two different media and in the "nasopharynx" region of the Rando head. The dosimeters used in the measurement included dosimetry film, TLD chips, and rods. The measured data were compared to that of Monte Carlo calculations for the same geometrical configurations. In the case of the Rando head phantom, a CT scan of the phantom was used to define the calculation geometry and to locate the points of interest. The agreement between the calculation and measurement is generally within 2.5%. This work validates the accuracy of the Monte Carlo method. While Monte Carlo, at present, is still too slow for routine treatment planning, it can be used as a benchmark against which other dose calculation methods can be compared.
Yoshimura, Yuuki; Kuroda, Masahiro; Sugiantoc, Irfan; Bamgbosec, Babatunde O; Miyahara, Kanae; Ohmura, Yuichi; Kurozumi, Akira; Matsushita, Toshi; Ohno, Seiichiro; Kanazawa, Susumu; Asaumi, Junichi
2018-02-01
Readout-segmented echo-planar imaging (RESOLVE) is a multi-shot echo-planar imaging (EPI) modality with k-space segmented in the readout direction. We investigated whether RESOLVE decreases the distortion and artifact in the phase direction and increases the signal-to-noise ratio (SNR) in phantoms image taken with 3-tesla (3T) MRI versus conventional EPI. We used a physiological saline phantom and subtraction mapping and observed that RESOLVE's SNR was higher than EPI's. Using RESOLVE, the combination of a special-purpose coil and a large-loop coil had a higher SNR compared to using only a head/neck coil. RESOLVE's image distortioas less than EPI's. We used a 120 mM polyethylene glycol phantom to examine the phase direction artifact.vThe range where the artifact appeared in the apparent diffusion coefficient (ADC) image was shorter with RESOLVE compared to EPI. We used RESOLVE to take images of a Jurkat cell bio-phantom: the cell-region ADC was 856×10-6mm2/sec and the surrounding physiological saline-region ADC was 2,951×10-6mm2/sec. The combination of RESOLVE and the 3T clinical MRI device reduced image distortion and improved SNR and the identification of accurate ADC values due to the phase direction artifact reduction. This combination is useful for obtaining accurate ADC values of bio-phantoms.
Development of a web-based CT dose calculator: WAZA-ARI.
Ban, N; Takahashi, F; Sato, K; Endo, A; Ono, K; Hasegawa, T; Yoshitake, T; Katsunuma, Y; Kai, M
2011-09-01
A web-based computed tomography (CT) dose calculation system (WAZA-ARI) is being developed based on the modern techniques for the radiation transport simulation and for software implementation. Dose coefficients were calculated in a voxel-type Japanese adult male phantom (JM phantom), using the Particle and Heavy Ion Transport code System. In the Monte Carlo simulation, the phantom was irradiated with a 5-mm-thick, fan-shaped photon beam rotating in a plane normal to the body axis. The dose coefficients were integrated into the system, which runs as Java servlets within Apache Tomcat. Output of WAZA-ARI for GE LightSpeed 16 was compared with the dose values calculated similarly using MIRD and ICRP Adult Male phantoms. There are some differences due to the phantom configuration, demonstrating the significance of the dose calculation with appropriate phantoms. While the dose coefficients are currently available only for limited CT scanner models and scanning options, WAZA-ARI will be a useful tool in clinical practice when development is finalised.
NASA Astrophysics Data System (ADS)
Sousa, Maria A. Z.; Bakic, Predrag R.; Schiabel, Homero; Maidment, Andrew D. A.
2017-03-01
Digital breast tomosynthesis (DBT) has been shown to be an effective imaging tool for breast cancer diagnosis as it provides three-dimensional images of the breast with minimal tissue overlap. The quality of the reconstructed image depends on many factors that can be assessed using uniform or realistic phantoms. In this paper, we created four models of phantoms using an anthropomorphic software breast phantom and compared four methods to evaluate the gray scale response in terms of the contrast, noise and detectability of adipose and glandular tissues binarized according to phantom ground truth. For each method, circular regions of interest (ROIs) were selected with various sizes, quantity and positions inside a square area in the phantom. We also estimated the percent density of the simulated breast and the capability of distinguishing both tissues by receiver operating characteristic (ROC) analysis. Results shows a sensitivity of the methods to the ROI size, placement and to the slices considered.
Simões, Elington L; Bramati, Ivanei; Rodrigues, Erika; Franzoi, Ana; Moll, Jorge; Lent, Roberto; Tovar-Moll, Fernanda
2012-02-29
Previous studies have indicated that amputation or deafferentation of a limb induces functional changes in sensory (S1) and motor (M1) cortices, related to phantom limb pain. However, the extent of cortical reorganization after lower limb amputation in patients with nonpainful phantom phenomena remains uncertain. In this study, we combined functional magnetic resonance (fMRI) and diffusion tensor imaging (DTI) to investigate the existence and extent of cortical and callosal plasticity in these subjects. Nine "painless" patients with lower limb amputation and nine control subjects (sex- and age-matched) underwent a 3-T MRI protocol, including fMRI with somatosensory stimulation. In amputees, we observed an expansion of activation maps of the stump in S1 and M1 of the deafferented hemisphere, spreading to neighboring regions that represent the trunk and upper limbs. We also observed that tactile stimulation of the intact foot in amputees induced a greater activation of ipsilateral S1, when compared with controls. These results demonstrate a functional remapping of S1 in lower limb amputees. However, in contrast to previous studies, these neuroplastic changes do not appear to be dependent on phantom pain but do also occur in those who reported only the presence of phantom sensation without pain. In addition, our findings indicate that amputation of a limb also induces changes in the cortical representation of the intact limb. Finally, DTI analysis showed structural changes in the corpus callosum of amputees, compatible with the hypothesis that phantom sensations may depend on inhibitory release in the sensorimotor cortex.
Phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography
Ludlow, John B.; Walker, Cameron
2013-01-01
Introduction Increasing use of cone-beam computed tomography in orthodontics has been coupled with heightened concern with the long-term risks of x-ray exposure in orthodontic populations. An industry response to this has been to offer low-exposure alternative scanning options in newer cone-beam computed tomography models. Methods Effective doses resulting from various combinations of field size, and field location comparing child and adult anthropomorphic phantoms using the recently introduced i-CAT FLX cone-beam computed tomography unit were measured with Optical Stimulated Dosimetry using previously validated protocols. Scan protocols included High Resolution (360° rotation, 600 image frames, 120 kVp, 5 mA, 7.4 sec), Standard (360°, 300 frames, 120 kVp, 5 mA, 3.7 sec), QuickScan (180°, 160 frames, 120 kVp, 5 mA, 2 sec) and QuickScan+ (180°, 160 frames, 90 kVp, 3 mA, 2 sec). Contrast-to-noise ratio (CNR) was calculated as a quantitative measure of image quality for the various exposure options using the QUART DVT phantom. Results Child phantom doses were on average 36% greater than Adult phantom doses. QuickScan+ protocols resulted in significantly lower doses than Standard protocols for child (p=0.0167) and adult (p=0.0055) phantoms. 13×16 cm cephalometric fields of view ranged from 11–85 μSv in the adult phantom and 18–120 μSv in the child for QuickScan+ and Standard protocols respectively. CNR was reduced by approximately 2/3rds comparing QuickScan+ to Standard exposure parameters. Conclusions QuickScan+ effective doses are comparable to conventional panoramic examinations. Significant dose reductions are accompanied by significant reductions in image quality. However, this trade-off may be acceptable for certain diagnostic tasks such as interim assessment of treatment results. PMID:24286904
Koivisto, Juha H; Wolff, Jan E; Kiljunen, Timo; Schulze, Dirk; Kortesniemi, Mika
2015-07-08
The aims of this study were to characterize reinforced metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low-dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the thermoluminescent dosimeters (TLD). The second aim was to characterize MOSFET dosimeter sensitivities for two dental photon energy ranges, dose dependency, dose rate dependency, and accumulated dose dependency. A further aim was to compare the performance of MOSFETs with those of TLDs in an anthropomorphic phantom head using a dentomaxillofacial CBCT device. The uncertainty was assessed by exposing 20 MOSFETs and a Barracuda MPD reference dosimeter. The MOSFET dosimeter sensitivities were evaluated for two photon energy ranges (50-90 kVp) using a constant dose and polymethylmethacrylate backscatter material. MOSFET and TLD comparative point-dose measurements were performed on an anthropomorphic phantom that was exposed with a clinical CBCT protocol. The MOSFET single exposure low dose limit (25% uncertainty, k = 2) was 1.69 mGy. An averaging of eight MOSFET exposures was required to attain the corresponding TLD (0.3 mGy) low-dose limit. The sensitivity was 3.09 ± 0.13 mV/mGy independently of the photon energy used. The MOSFET dosimeters did not present dose or dose rate sensitivity but, however, presented a 1% decrease of sensitivity per 1000 mV for accumulated threshold voltages between 8300 mV and 17500 mV. The point doses in an anthropomorphic phantom ranged for MOSFETs between 0.24 mGy and 2.29 mGy and for TLDs between 0.25 and 2.09 mGy, respectively. The mean difference was -8%. The MOSFET dosimeters presented statistically insignificant energy dependency. By averaging multiple exposures, the MOSFET dosimeters can achieve a TLD-comparable low-dose limit and constitute a feasible method for diagnostic dosimetry using anthropomorphic phantoms. However, for single in vivo measurements (<1.7 mGy) the sensitivity is too low.
Lee, Clara; Bolck, Jan; Naguib, Nagy N.N.; Schulz, Boris; Eichler, Katrin; Aschenbach, Rene; Wichmann, Julian L.; Vogl, Thomas. J.; Zangos, Stephan
2015-01-01
Objective To investigate the accuracy, efficiency and radiation dose of a novel laser navigation system (LNS) compared to those of free-handed punctures on computed tomography (CT). Materials and Methods Sixty punctures were performed using a phantom body to compare accuracy, timely effort, and radiation dose of the conventional free-handed procedure to those of the LNS-guided method. An additional 20 LNS-guided interventions were performed on another phantom to confirm accuracy. Ten patients subsequently underwent LNS-guided punctures. Results The phantom 1-LNS group showed a target point accuracy of 4.0 ± 2.7 mm (freehand, 6.3 ± 3.6 mm; p = 0.008), entrance point accuracy of 0.8 ± 0.6 mm (freehand, 6.1 ± 4.7 mm), needle angulation accuracy of 1.3 ± 0.9° (freehand, 3.4 ± 3.1°; p < 0.001), intervention time of 7.03 ± 5.18 minutes (freehand, 8.38 ± 4.09 minutes; p = 0.006), and 4.2 ± 3.6 CT images (freehand, 7.9 ± 5.1; p < 0.001). These results show significant improvement in 60 punctures compared to freehand. The phantom 2-LNS group showed a target point accuracy of 3.6 ± 2.5 mm, entrance point accuracy of 1.4 ± 2.0 mm, needle angulation accuracy of 1.0 ± 1.2°, intervention time of 1.44 ± 0.22 minutes, and 3.4 ± 1.7 CT images. The LNS group achieved target point accuracy of 5.0 ± 1.2 mm, entrance point accuracy of 2.0 ± 1.5 mm, needle angulation accuracy of 1.5 ± 0.3°, intervention time of 12.08 ± 3.07 minutes, and used 5.7 ± 1.6 CT-images for the first experience with patients. Conclusion Laser navigation system improved accuracy, duration of intervention, and radiation dose of CT-guided interventions. PMID:26175571
The Impact of Monte Carlo Dose Calculations on Intensity-Modulated Radiation Therapy
NASA Astrophysics Data System (ADS)
Siebers, J. V.; Keall, P. J.; Mohan, R.
The effect of dose calculation accuracy for IMRT was studied by comparing different dose calculation algorithms. A head and neck IMRT plan was optimized using a superposition dose calculation algorithm. Dose was re-computed for the optimized plan using both Monte Carlo and pencil beam dose calculation algorithms to generate patient and phantom dose distributions. Tumor control probabilities (TCP) and normal tissue complication probabilities (NTCP) were computed to estimate the plan outcome. For the treatment plan studied, Monte Carlo best reproduces phantom dose measurements, the TCP was slightly lower than the superposition and pencil beam results, and the NTCP values differed little.
Faulkner, Austin R; Bourgeois, Austin C; Bradley, Yong C; Hudson, Kathleen B; Heidel, R Eric; Pasciak, Alexander S
2015-05-01
Fluoroscopically guided lumbar puncture (FGLP) is a commonly performed procedure with increased success rates relative to bedside technique. However, FGLP also exposes both patient and staff to ionizing radiation. The purpose of this study was to determine if the use of a simulation-based FGLP training program using an original, inexpensive lumbar spine phantom could improve operator confidence and efficiency, while also reducing patient dose. A didactic and simulation-based FGLP curriculum was designed, including a 1-hour lecture and hands-on training with a lumbar spine phantom prototype developed at our institution. Six incoming post-graduate year 2 (PGY-2) radiology residents completed a short survey before taking the course, and each resident practiced 20 simulated FGLPs using the phantom before their first clinical procedure. Data from the 114 lumbar punctures (LPs) performed by the six trained residents (prospective cohort) were compared to data from 514 LPs performed by 17 residents who did not receive simulation-based training (retrospective cohort). Fluoroscopy time (FT), FGLP success rate, and indication were compared. There was a statistically significant reduction in average FT for the 114 procedures performed by the prospective study cohort compared to the 514 procedures performed by the retrospective cohort. This held true for all procedures in aggregate, LPs for myelography, and all procedures performed for a diagnostic indication. Aggregate FT for the prospective group (0.87 ± 0.68 minutes) was significantly lower compared to the retrospective group (1.09 ± 0.65 minutes) and resulted in a 25% reduction in average FT (P = .002). There was no statistically significant difference in the number of failed FGLPs between the two groups. Our simulation-based FGLP curriculum resulted in improved operator confidence and reduced FT. These changes suggest that resident procedure efficiency was improved, whereas patient dose was reduced. The FGLP training program was implemented by radiology residents and required a minimal investment of time and resources. The LP spine phantom used during training was inexpensive, durable, and effective. In addition, the phantom is compatible with multiple modalities including fluoroscopy, computed tomography, and ultrasound and could be easily adapted to other applications such as facet injections or joint arthrograms. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sahbaee, Pooyan; Abadi, Ehsan; Sanders, Jeremiah; Becchetti, Marc; Zhang, Yakun; Agasthya, Greeshma; Segars, Paul; Samei, Ehsan
2016-03-01
The purpose of this study was to substantiate the interdependency of image quality, radiation dose, and contrast material dose in CT towards the patient-specific optimization of the imaging protocols. The study deployed two phantom platforms. First, a variable sized phantom containing an iodinated insert was imaged on a representative CT scanner at multiple CTDI values. The contrast and noise were measured from the reconstructed images for each phantom diameter. Linearly related to iodine-concentration, contrast to noise ratio (CNR), was calculated for different iodine-concentration levels. Second, the analysis was extended to a recently developed suit of 58 virtual human models (5D-XCAT) with added contrast dynamics. Emulating a contrast-enhanced abdominal image procedure and targeting a peak-enhancement in aorta, each XCAT phantom was "imaged" using a CT simulation platform. 3D surfaces for each patient/size established the relationship between iodine-concentration, dose, and CNR. The Sensitivity of Ratio (SR), defined as ratio of change in iodine-concentration versus dose to yield a constant change in CNR was calculated and compared at high and low radiation dose for both phantom platforms. The results show that sensitivity of CNR to iodine concentration is larger at high radiation dose (up to 73%). The SR results were highly affected by radiation dose metric; CTDI or organ dose. Furthermore, results showed that the presence of contrast material could have a profound impact on optimization results (up to 45%).
γTools: A modular multifunction phantom for quality assurance in GammaKnife treatments.
Calusi, Silvia; Noferini, Linhsia; Marrazzo, Livia; Casati, Marta; Arilli, Chiara; Compagnucci, Antonella; Talamonti, Cinzia; Scoccianti, Silvia; Greto, Daniela; Bordi, Lorenzo; Livi, Lorenzo; Pallotta, Stefania
2017-11-01
We present the γTools, a new phantom designed to assess geometric and dosimetric accuracy in Gamma Knife treatments, together with first tests and results of applications. The phantom is composed of two modules: the imaging module, a regular grid of 1660 control points to evaluate image distortions and image registration result and the dosimetry module for delivered dose distribution measurements. The phantom is accompanied by a MatLab routine for image distortions quantification. Dose measurement are performed with Gafchromic films fixed between two inserts and placed in various positions and orientations inside the dosimetry module thus covering a volume comparable to the full volume of a head. Tests performed to assess the accuracy and precision of the imaging module demonstrated sub-millimetric values. As an example of possible applications, the phantom was employed to measure image distortions of two MRI scanners and to perform dosimetric studies of single shots delivered to homogeneous and heterogeneous materials. Due to the phantom material, the measured absolute dose do not correspond to the planned dose; doses comparisons are thus carried out between normalized dose distributions. Finally, an end-to-end test was carried out in the treatment of a neuroma-like target which resulted in a 100% gamma passing rate (2% local, 2 mm) and a distance between the real target perimeter and the prescription isodose centroids of about 1 mm. The tests demonstrate that the proposed phantom is suitable to assess both the geometrical and relative dosimetric accuracy of Gamma Knife radiosurgery treatments. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Establishing High-Quality Prostate Brachytherapy Using a Phantom Simulator Training Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thaker, Nikhil G.; Kudchadker, Rajat J.; Swanson, David A.
2014-11-01
Purpose: To design and implement a unique training program that uses a phantom-based simulator to teach the process of prostate brachytherapy (PB) quality assurance and improve the quality of education. Methods and Materials: Trainees in our simulator program were practicing radiation oncologists, radiation oncology residents, and fellows of the American Brachytherapy Society. The program emphasized 6 core areas of quality assurance: patient selection, simulation, treatment planning, implant technique, treatment evaluation, and outcome assessment. Using the Iodine 125 ({sup 125}I) preoperative treatment planning technique, trainees implanted their ultrasound phantoms with dummy seeds (ie, seeds with no activity). Pre- and postimplant dosimetric parametersmore » were compared and correlated using regression analysis. Results: Thirty-one trainees successfully completed the simulator program during the period under study. The mean phantom prostate size, number of seeds used, and total activity were generally consistent between trainees. All trainees met the V100 >95% objective both before and after implantation. Regardless of the initial volume of the prostate phantom, trainees' ability to cover the target volume with at least 100% of the dose (V100) was not compromised (R=0.99 pre- and postimplant). However, the V150 had lower concordance (R=0.37) and may better reflect heterogeneity control of the implant process. Conclusions: Analysis of implants from this phantom-based simulator shows a high degree of consistency between trainees and uniformly high-quality implants with respect to parameters used in clinical practice. This training program provides a valuable educational opportunity that improves the quality of PB training and likely accelerates the learning curve inherent in PB. Prostate phantom implantation can be a valuable first step in the acquisition of the required skills to safely perform PB.« less
Kole, J S; Beekman, F J
2006-02-21
Statistical reconstruction methods offer possibilities to improve image quality as compared with analytical methods, but current reconstruction times prohibit routine application in clinical and micro-CT. In particular, for cone-beam x-ray CT, the use of graphics hardware has been proposed to accelerate the forward and back-projection operations, in order to reduce reconstruction times. In the past, wide application of this texture hardware mapping approach was hampered owing to limited intrinsic accuracy. Recently, however, floating point precision has become available in the latest generation commodity graphics cards. In this paper, we utilize this feature to construct a graphics hardware accelerated version of the ordered subset convex reconstruction algorithm. The aims of this paper are (i) to study the impact of using graphics hardware acceleration for statistical reconstruction on the reconstructed image accuracy and (ii) to measure the speed increase one can obtain by using graphics hardware acceleration. We compare the unaccelerated algorithm with the graphics hardware accelerated version, and for the latter we consider two different interpolation techniques. A simulation study of a micro-CT scanner with a mathematical phantom shows that at almost preserved reconstructed image accuracy, speed-ups of a factor 40 to 222 can be achieved, compared with the unaccelerated algorithm, and depending on the phantom and detector sizes. Reconstruction from physical phantom data reconfirms the usability of the accelerated algorithm for practical cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, D; Sood, S; Badkul, R
Purpose: To evaluate the dosimetric performance of X-ray Voxel Monte Carlo(XVMC) algorithm in effort to clinically validate Monte Carlo-approach in heterogeneous liver phantom and liver SBRT plans. Methods: An anthropomorphic RPC liver phantom incorporating a liver structure with two cylindrical targets and organs-at-risk (OARs) was used in phantom validation. Subsequently, five patients with metastatic liver cancer were treated using heterogeneity-corrected pencil-beam(PB-hete)algorithm were analyzed following RTOG-1112 criteria .ITV was delineated on MinIP and OARs were contoured on MeanIP images of 4D-CT. PTV was generated from ITV with 5-10mm uniform margin. Mean PTV was 81.3±46.4cc. Prescription was 30–45Gy in 5 fractions, withmore » at least PTV(D95%)=100%. Hybrid SBRT plans were generated with noncoplanar/3D-conformal arcs plus static-beams at Novalis-TX consisting of HD-MLC and 6MV-SRS. SBRT plans were re-computed using XVMC algorithm utilizing identical beam-geometry, MLC-positions, and monitor units and subsequently compared to clinical PB-hete plans. Results: Our results using RPC liver motion phantom validation were all compliance with MD Anderson standards. However, compared to PB-hete, average target volume encompassed by the prescribed percent isodose (Vp) was 9.1% and 8.5% less for PTV1 and PTV2 with XVMC. For the clinical liver SBRT plans, PB-hete systematically overestimated PTV dose (D95, Dmean and D10) within ±2.0% (p<0.05) compared to XVMC. Mean value of Vp was about 3.8% less with XVMC compared to PB-hete (ranged 2.9–5.7% (p<0.003)). However, mean liver dose (MLD) was 3.2% higher (p<0.003), on average, with XVMC compared to clinical PB-hete (ranged −1.0to−3.9%). OARs doses were statistically insignificant. Conclusion: Results from our XVMC dose calculations and validation study for liver SBRT indicate small-to-moderate under-dosing of the tumor volume when compared to PB-hete. Results were consistent with phantom validation and patients plans. However, Vp was less by up to 5.7% for some liver SBRT patients with XVMC–suggesting under-dosing of the target volume and overdosing of MLD by up to 3.9% occurred with PB-hete plan. These differences between PB-hete and XVMC dose calculations may be of clinical interest.« less
Chiavassa, S; Lemosquet, A; Aubineau-Lanièce, I; de Carlan, L; Clairand, I; Ferrer, L; Bardiès, M; Franck, D; Zankl, M
2005-01-01
This paper aims at comparing dosimetric assessments performed with three Monte Carlo codes: EGS4, MCNP4c2 and MCNPX2.5e, using a realistic voxel phantom, namely the Zubal phantom, in two configurations of exposure. The first one deals with an external irradiation corresponding to the example of a radiological accident. The results are obtained using the EGS4 and the MCNP4c2 codes and expressed in terms of the mean absorbed dose (in Gy per source particle) for brain, lungs, liver and spleen. The second one deals with an internal exposure corresponding to the treatment of a medullary thyroid cancer by 131I-labelled radiopharmaceutical. The results are obtained by EGS4 and MCNPX2.5e and compared in terms of S-values (expressed in mGy per kBq and per hour) for liver, kidney, whole body and thyroid. The results of these two studies are presented and differences between the codes are analysed and discussed.
NASA Astrophysics Data System (ADS)
Acaba, K. J. C.; Cinco, L. D.; Melchor, J. N.
2016-03-01
Daily QC tests performed on screen film mammography (SFM) equipment are essential to ensure that both SFM unit and film processor are working in a consistent manner. The Breast Imaging Unit of USTH-Benavides Cancer Institute has been conducting QC following the test protocols in the IAEA Human Health Series No.2 manual. However, the availability of Leeds breast phantom (CRP E13039) in the facility made the task easier. Instead of carrying out separate tests on AEC constancy and light sensitometry, only one exposure of the phantom is done to accomplish the two tests. It was observed that measurements made on mAs output and optical densities (ODs) using the Leeds TOR (MAX) phantom are comparable with that obtained from the usual conduct of tests, taking into account the attenuation characteristic of the phantom. Image quality parameters such as low contrast and high contrast details were also evaluated from the phantom image. The authors recognize the usefulness of the phantom in determining technical factors that will help improve detection of smallest pathological details on breast images. The phantom is also convenient for daily QC monitoring and economical since less number of films is expended.
Characterization of a CT unit for the detection of low contrast structures
NASA Astrophysics Data System (ADS)
Viry, Anais; Racine, Damien; Ba, Alexandre; Becce, Fabio; Bochud, François O.; Verdun, Francis R.
2017-03-01
Major technological advances in CT enable the acquisition of high quality images while minimizing patient exposure. The goal of this study was to objectively compare two generations of iterative reconstruction (IR) algorithms for the detection of low contrast structures. An abdominal phantom (QRM, Germany), containing 8, 6 and 5mm-diameter spheres (with a nominal contrast of 20HU) was scanned using our standard clinical noise index settings on a GE CT: "Discovery 750 HD". Two additional rings (2.5 and 5 cm) were also added to the phantom. Images were reconstructed using FBP, ASIR-50%, and VEO (full statistical Model Based Iterative Reconstruction, MBIR). The reconstructed slice thickness was 2.5 mm except 0.625 mm for VEO reconstructions. NPS was calculated to highlight the potential noise reduction of each IR algorithm. To assess LCD (low Contrast Detectability), a Channelized Hotelling Observer (CHO) with 10 DDoG channels was used with the area under the curve (AUC) as a figure of merit. Spheres contrast was also measured. ASIR-50% allowed a noise reduction by a factor two when compared to FBP without an improvement of the LCD. VEO allowed an additional noise reduction with a thinner slice thickness compared to ASIR-50% but with a major improvement of the LCD especially for the large-sized phantom and small lesions. Contrast decreased up to 10% with the phantom size increase for FBP and ASIR-50% and remained constant with VEO. VEO is particularly interesting for LCD when dealing with large patients and small lesion sizes and when the detection task is difficult.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel
2011-03-15
Purpose: To develop a computed tomography (CT) organ dose estimation method designed to readily provide organ doses in a reference adult male and female for different scan ranges to investigate the degree to which existing commercial programs can reasonably match organ doses defined in these more anatomically realistic adult hybrid phantomsMethods: The x-ray fan beam in the SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code MCNPX2.6. The simulated CT scanner model was validated through comparison with experimentally measured lateral free-in-air dose profiles and computed tomography dose index (CTDI) values. The reference adult malemore » and female hybrid phantoms were coupled with the established CT scanner model following arm removal to simulate clinical head and other body region scans. A set of organ dose matrices were calculated for a series of consecutive axial scans ranging from the top of the head to the bottom of the phantoms with a beam thickness of 10 mm and the tube potentials of 80, 100, and 120 kVp. The organ doses for head, chest, and abdomen/pelvis examinations were calculated based on the organ dose matrices and compared to those obtained from two commercial programs, CT-EXPO and CTDOSIMETRY. Organ dose calculations were repeated for an adult stylized phantom by using the same simulation method used for the adult hybrid phantom. Results: Comparisons of both lateral free-in-air dose profiles and CTDI values through experimental measurement with the Monte Carlo simulations showed good agreement to within 9%. Organ doses for head, chest, and abdomen/pelvis scans reported in the commercial programs exceeded those from the Monte Carlo calculations in both the hybrid and stylized phantoms in this study, sometimes by orders of magnitude. Conclusions: The organ dose estimation method and dose matrices established in this study readily provides organ doses for a reference adult male and female for different CT scan ranges and technical parameters. Organ doses from existing commercial programs do not reasonably match organ doses calculated for the hybrid phantoms due to differences in phantom anatomy, as well as differences in organ dose scaling parameters. The organ dose matrices developed in this study will be extended to cover different technical parameters, CT scanner models, and various age groups.« less
NASA Astrophysics Data System (ADS)
Kim, Myung-Sam; Cho, Jae-Hwan; Lee, Hae-Kag; Lee, Sang-Jeong; Park, Cheol-Soo; Dong, Kyung-Rae; Park, Yong-Soon; Chung, Woon-Kwan; Lee, Jong-Woong; Kim, Ho-Sung; Kim, Eun-Hye; Kweon, Dae Cheol; Yeo, Hwa-Yeon
2013-02-01
In this study we used lumbar phantoms to determine if the BMD (bone mineral density) changes when only the thickness of soft tissue is increased. Second, we targeted osteoporosis patients to analyze the dependences of the changes in the SNR (signal-to-noise ratio) and the ADC (apparent diffusion coefficient) on changes in T-score. We used a bone mineral densitometer, phantoms such as an aluminum spine phantom (ASP), a Hologic spine phantom (HSP), and a European spine phantom (ESP), five sheets of acrylic panel, and a water bath to study the effects of changes in the thickness of soft tissue. First, we measured the ASP, the HSP and the ESP. For the measurement of the ASP, we filled it with water to increase the height by 0.5 cm starting from the baseline height. We then did three measurements for each height. For the measurements of the HSP and the ESP, we placed an acrylic panel on the phantom and then did three measurements at each height. We used the ASP to calculate the degree of precision of the standard mode and the thick mode at the maximum height of the water bath. To assess the degree of precision in the measurements of the three types of phantoms, we calculated precision errors and analyzed the correlation between the change in the thickness of soft tissue and the variables of the BMD. Using DWIs (diffusion weighted images), we targeted 30 healthy persons without osteoporosis and 30 patients with a finding of osteoporosis and measured the T-scores for the L1 — L4 (lumbar spine) segments of by the spine using the dual-energy X-ray absorptiometry (DXA) before classifying the measurement at each part of the spine as osteopenia or osteoporosis. We measured the signal intensity on all four parts of L1-L4 in the DWIs obtained using a 1.5T MR scanner and measured the ADC in the ADC map image. We compared changes in the SNR and the ADC for each group. The study results confirmed that an increase in the thickness of the soft tissue had a significant correlation with the BMD and that the SNR and the ADC decreased as the T-score in the DWI went down.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel J.
Purpose: To establish an organ dose database for pediatric and adolescent reference individuals undergoing computed tomography (CT) examinations by using Monte Carlo simulation. The data will permit rapid estimates of organ and effective doses for patients of different age, gender, examination type, and CT scanner model. Methods: The Monte Carlo simulation model of a Siemens Sensation 16 CT scanner previously published was employed as a base CT scanner model. A set of absorbed doses for 33 organs/tissues normalized to the product of 100 mAs and CTDI{sub vol} (mGy/100 mAs mGy) was established by coupling the CT scanner model with age-dependentmore » reference pediatric hybrid phantoms. A series of single axial scans from the top of head to the feet of the phantoms was performed at a slice thickness of 10 mm, and at tube potentials of 80, 100, and 120 kVp. Using the established CTDI{sub vol}- and 100 mAs-normalized dose matrix, organ doses for different pediatric phantoms undergoing head, chest, abdomen-pelvis, and chest-abdomen-pelvis (CAP) scans with the Siemens Sensation 16 scanner were estimated and analyzed. The results were then compared with the values obtained from three independent published methods: CT-Expo software, organ dose for abdominal CT scan derived empirically from patient abdominal circumference, and effective dose per dose-length product (DLP). Results: Organ and effective doses were calculated and normalized to 100 mAs and CTDI{sub vol} for different CT examinations. At the same technical setting, dose to the organs, which were entirely included in the CT beam coverage, were higher by from 40 to 80% for newborn phantoms compared to those of 15-year phantoms. An increase of tube potential from 80 to 120 kVp resulted in 2.5-2.9-fold greater brain dose for head scans. The results from this study were compared with three different published studies and/or techniques. First, organ doses were compared to those given by CT-Expo which revealed dose differences up to several-fold when organs were partially included in the scan coverage. Second, selected organ doses from our calculations agreed to within 20% of values derived from empirical formulae based upon measured patient abdominal circumference. Third, the existing DLP-to-effective dose conversion coefficients tended to be smaller than values given in the present study for all examinations except head scans. Conclusions: A comprehensive organ/effective dose database was established to readily calculate doses for given patients undergoing different CT examinations. The comparisons of our results with the existing studies highlight that use of hybrid phantoms with realistic anatomy is important to improve the accuracy of CT organ dosimetry. The comprehensive pediatric dose data developed here are the first organ-specific pediatric CT scan database based on the realistic pediatric hybrid phantoms which are compliant with the reference data from the International Commission on Radiological Protection (ICRP). The organ dose database is being coupled with an adult organ dose database recently published as part of the development of a user-friendly computer program enabling rapid estimates of organ and effective dose doses for patients of any age, gender, examination types, and CT scanner model.« less
SU-G-206-03: CTDI Per KV at Phantom Center and Periphery: Comparison Between Major CT Manufacturers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Senan, R; Demirkaya, O
Purpose: The purpose of this study was to: 1) compare scanners output by measuring normalized CTDIw (mGy/100mAs) in different CT makes and models and at different kV’s, and 2) quantify the relationship between kV and CTDI and compare this relationship between the different manufacturers. Methods: Study included forty scanners of major CT manufacturers and of various models. Exposure was measured at center and 12 o’clock holes of head and body CTDI phantoms, at all available kV’s, and with the largest or second largest available collimation in each scanner. Average measured CTDI’s from each CT manufacturer were also plotted against kVmore » and the fitting equation: CTDIw (normalized) = a.kVb was calculated. The power (b) value may be considered as an indicator of spectral filtration, which affects the degree of beam hardening. Also, HVLs were measured at several scanners. Results: Results showed GE scanners, on average, had higher normalized CTDIw than those of Siemens and Philips, in both phantom sizes and at all kV’s. ANOVA statistic indicated the difference was statistically significant (p < 0.05). Comparison between Philips and Siemens, however, was not statistically significant. Curve fitting showed b values ranged from 2.4 to 2.9 (for Head periphery and center, respectively); and was about 2.8 for Body phantom periphery, and 3.2 at the center of Body phantom. Fitting equations (kV vs. CTDI) will be presented and discussed. GE’s CTDIw vs. HVL showed very strong correlation (r > 0.99). Conclusion: Partial characterization of scanners output was performed which may be helpful in dose estimation to internal organs. The relatively higher output from GE scanners may be attributed to lower filtration. Work is still in progress to obtain CTDI values from other scanners as well as to measure their HVLs.« less
TU-H-CAMPUS-IeP2-01: Quantitative Evaluation of PROPELLER DWI Using QIBA Diffusion Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yung, J; Ai, H; Liu, H
Purpose: The purpose of this study is to determine the quantitative variability of apparent diffusion coefficient (ADC) values when varying imaging parameters in a diffusion-weighted (DW) fast spin echo (FSE) sequence with Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) k-space trajectory. Methods: Using a 3T MRI scanner, a NIST traceable, quantitative magnetic resonance imaging (MRI) diffusion phantom (High Precision Devices, Inc, Boulder, Colorado) consisting of 13 vials filled with various concentrations of polymer polyvinylpyrrolidone (PVP) in aqueous solution was imaged with a standard Quantitative Imaging Biomarkers Alliance (QIBA) DWI spin echo, echo planar imaging (SE EPI) acquisition. Themore » same phantom was then imaged with a DWI PROPELLER sequence at varying echo train lengths (ETL) of 8, 20, and 32, as well as b-values of 400, 900, and 2000. QIBA DWI phantom analysis software was used to generate ADC maps and create region of interests (ROIs) for quantitative measurements of each vial. Mean and standard deviations of the ROIs were compared. Results: The SE EPI sequence generated ADC values that showed very good agreement with the known ADC values of the phantom (r2 = 0.9995, slope = 1.0061). The ADC values measured from the PROPELLER sequences were inflated, but were highly correlated with an r2 range from 0.8754 to 0.9880. The PROPELLER sequence with an ETL=20 and b-value of 0 and 2000 showed the closest agreement (r2 = 0.9034, slope = 0.9880). Conclusion: The DW PROPELLER sequence is promising for quantitative evaluation of ADC values. A drawback of the PROPELLER sequence is the longer acquisition time. The 180° refocusing pulses may also cause the observed increase in ADC values compared to the standard SE EPI DW sequence. However, the FSE sequence offers an advantage with in-plane motion and geometric distortion which will be investigated in future studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M; Kang, S; Lee, S
Purpose: Implant-supported dentures seem particularly appropriate for the predicament of becoming edentulous and cancer patients are no exceptions. As the number of people having dental implants increased in different ages, critical dosimetric verification of metal artifact effects are required for the more accurate head and neck radiation therapy. The purpose of this study is to verify the theoretical analysis of the metal(streak and dark) artifact, and to evaluate dosimetric effect which cause by dental implants in CT images of patients with the patient teeth and implants inserted humanoid phantom. Methods: The phantom comprises cylinder which is shaped to simulate themore » anatomical structures of a human head and neck. Through applying various clinical cases, made phantom which is closely allied to human. Developed phantom can verify two classes: (i)closed mouth (ii)opened mouth. RapidArc plans of 4 cases were created in the Eclipse planning system. Total dose of 2000 cGy in 10 fractions is prescribed to the whole planning target volume (PTV) using 6MV photon beams. Acuros XB (AXB) advanced dose calculation algorithm, Analytical Anisotropic Algorithm (AAA) and progressive resolution optimizer were used in dose optimization and calculation. Results: In closed and opened mouth phantom, because dark artifacts formed extensively around the metal implants, dose variation was relatively higher than that of streak artifacts. As the PTV was delineated on the dark regions or large streak artifact regions, maximum 7.8% dose error and average 3.2% difference was observed. The averaged minimum dose to the PTV predicted by AAA was about 5.6% higher and OARs doses are also 5.2% higher compared to AXB. Conclusion: The results of this study showed that AXB dose calculation involving high-density materials is more accurate than AAA calculation, and AXB was superior to AAA in dose predictions beyond dark artifact/air cavity portion when compared against the measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, J; Jung, J; Yeo, I
2015-06-15
Purpose: To develop and to test a method to generate a new 4D CT images of the treatment day from the old 4D CT and the portal images of the day when the motion extent exceeded from that represented by plan CTs. Methods: A motion vector of a moving tumor in a patient may be extended to reconstruct the tumor position when the motion extent exceeded from that represented by plan CTs. To test this, 1. a phantom that consists of a polystyrene cylinder (tumor) embedded in cork (lung) was placed on a moving platform with 4 sec/cycle and amplitudesmore » of 1 cm and 2 cm, and was 4D-scanned. 2. A 6MV photon beam was irradiated on the moving phantoms and cineEPID images were obtained. 3. A motion vector of the tumor was acquired from 4D CT images of the phantom with 1 cm amplitude. 4. From cine EPID images of the phantom with the 2 cm amplitude, various motion extents (0.3 cm, 0.5 cm, etc) were acquired and programmed into the motion vector, producing CT images at each position. 5. The reconstructed CT images were then compared with pre-acquired “reference” 4D CT images at each position (i.e. phase). Results: The CT image was reconstructed and compared with the reference image, showing a slight mismatch in the transition direction limited by voxel size (slice thickness) in CT image. Due to the rigid nature of the phantom studied, the modeling the displacement of the center of object was sufficient. When deformable tumors are to be modeled, more complex scheme is necessary, which utilize cine EPID and 4D CT images. Conclusion: The new idea of CT image reconstruction was demonstrated. Deformable tumor movements need to be considered in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saenz, D; Stathakis, S; Kirby, N
Purpose: Deformable image registration (DIR) has widespread uses in radiotherapy for applications such as dose accumulation studies, multi-modality image fusion, and organ segmentation. The quality assurance (QA) of such algorithms, however, remains largely unimplemented. This work aims to determine how detailed a physical phantom needs to be to accurately perform QA of a DIR algorithm. Methods: Virtual prostate and head-and-neck phantoms, made from patient images, were used for this study. Both sets consist of an undeformed and deformed image pair. The images were processed to create additional image pairs with one through five homogeneous tissue levels using Otsu’s method. Realisticmore » noise was then added to each image. The DIR algorithms from MIM and Velocity (Deformable Multipass) were applied to the original phantom images and the processed ones. The resulting deformations were then compared to the known warping. A higher number of tissue levels creates more contrast in an image and enables DIR algorithms to produce more accurate results. For this reason, error (distance between predicted and known deformation) is utilized as a metric to evaluate how many levels are required for a phantom to be a realistic patient proxy. Results: For the prostate image pairs, the mean error decreased from 1–2 tissue levels and remained constant for 3+ levels. The mean error reduction was 39% and 26% for Velocity and MIM respectively. For head and neck, mean error fell similarly through 2 levels and flattened with total reduction of 16% and 49% for Velocity and MIM. For Velocity, 3+ levels produced comparable accuracy as the actual patient images, whereas MIM showed further accuracy improvement. Conclusion: The number of tissue levels needed to produce an accurate patient proxy depends on the algorithm. For Velocity, three levels were enough, whereas five was still insufficient for MIM.« less
MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI
Chun, Se Young; Reese, Timothy G.; Ouyang, Jinsong; Guerin, Bastien; Catana, Ciprian; Zhu, Xuping; Alpert, Nathaniel M.; El Fakhri, Georges
2014-01-01
Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection compared with respiratory gating and no motion correction while reducing radiation dose. In vivo primate and rabbit studies confirmed the improvement in PET image quality and provide the rationale for evaluation in simultaneous whole-body PET/MRI clinical studies. PMID:22743250
Effect of elemental compositions on Monte Carlo dose calculations in proton therapy of eye tumors
NASA Astrophysics Data System (ADS)
Rasouli, Fatemeh S.; Farhad Masoudi, S.; Keshazare, Shiva; Jette, David
2015-12-01
Recent studies in eye plaque brachytherapy have found considerable differences between the dosimetric results by using a water phantom, and a complete human eye model. Since the eye continues to be simulated as water-equivalent tissue in the proton therapy literature, a similar study for investigating such a difference in treating eye tumors by protons is indispensable. The present study inquires into this effect in proton therapy utilizing Monte Carlo simulations. A three-dimensional eye model with elemental compositions is simulated and used to examine the dose deposition to the phantom. The beam is planned to pass through a designed beam line to moderate the protons to the desired energies for ocular treatments. The results are compared with similar irradiation to a water phantom, as well as to a material with uniform density throughout the whole volume. Spread-out Bragg peaks (SOBPs) are created by adding pristine peaks to cover a typical tumor volume. Moreover, the corresponding beam parameters recommended by the ICRU are calculated, and the isodose curves are computed. The results show that the maximum dose deposited in ocular media is approximately 5-7% more than in the water phantom, and about 1-1.5% less than in the homogenized material of density 1.05 g cm-3. Furthermore, there is about a 0.2 mm shift in the Bragg peak due to the tissue composition difference between the models. It is found that using the weighted dose profiles optimized in a water phantom for the realistic eye model leads to a small disturbance of the SOBP plateau dose. In spite of the plaque brachytherapy results for treatment of eye tumors, it is found that the differences between the simplified models presented in this work, especially the phantom containing the homogenized material, are not clinically significant in proton therapy. Taking into account the intrinsic uncertainty of the patient dose calculation for protons, and practical problems corresponding to applying patient-specific eye modeling, we found that the results of using a generic phantom containing homogenized material for proton therapy of eye tumors can be satisfactory for designing the beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soh, R; Lee, J; Harianto, F
Purpose: To determine and compare the correction factors obtained for TLDs in 2 × 2cm{sup 2} small field in lung heterogenous phantom using Acuros XB (AXB) and EGSnrc. Methods: This study will simulate the correction factors due to the perturbation of TLD-100 chips (Harshaw/Thermoscientific, 3 × 3 × 0.9mm{sup 3}, 2.64g/cm{sup 3}) in small field lung medium for Stereotactic Body Radiation Therapy (SBRT). A physical lung phantom was simulated by a 14cm thick composite cork phantom (0.27g/cm{sup 3}, HU:-743 ± 11) sandwiched between 4cm thick Plastic Water (CIRS,Norfolk). Composite cork has been shown to be a good lung substitute materialmore » for dosimetric studies. 6MV photon beam from Varian Clinac iX (Varian Medical Systems, Palo Alto, CA) with field size 2 × 2cm{sup 2} was simulated. Depth dose profiles were obtained from the Eclipse treatment planning system Acuros XB (AXB) and independently from DOSxyznrc, EGSnrc. Correction factors was calculated by the ratio of unperturbed to perturbed dose. Since AXB has limitations in simulating actual material compositions, EGSnrc will also simulate the AXB-based material composition for comparison to the actual lung phantom. Results: TLD-100, with its finite size and relatively high density, causes significant perturbation in 2 × 2cm{sup 2} small field in a low lung density phantom. Correction factors calculated by both EGSnrc and AXB was found to be as low as 0.9. It is expected that the correction factor obtained by EGSnrc wlll be more accurate as it is able to simulate the actual phantom material compositions. AXB have a limited material library, therefore it only approximates the composition of TLD, Composite cork and Plastic water, contributing to uncertainties in TLD correction factors. Conclusion: It is expected that the correction factors obtained by EGSnrc will be more accurate. Studies will be done to investigate the correction factors for higher energies where perturbation may be more pronounced.« less
Velu, Juliëtte F; Groot Jebbink, Erik; de Vries, Jean-Paul Pm; van der Palen, Job Am; Slump, Cornelis H; Geelkerken, Robert H
2018-04-01
Objectives Correct sizing of endoprostheses used for the treatment of abdominal aortic aneurysms is important to prevent endoleaks and migration. Sizing requires several steps and each step introduces a possible sizing error. The goal of this study was to investigate the magnitude of these errors compared to the golden standard: a vessel phantom. This study focuses on the errors in sizing with three different brands of computed tomography angiography scanners in combination with three reconstruction software packages. Methods Three phantoms with a different diameter, altitude and azimuth were scanned with three computed tomography scanners: Toshiba Aquilion 64-slice, Philips Brilliance iCT 256-slice and Siemens Somatom Sensation 64-slice. The phantom diameters were determined in the stretched view after central lumen line reconstruction by three observers using Simbionix PROcedure Rehearsal Studio, 3mensio and TeraRecon planning software. The observers, all novices in sizing endoprostheses using planning software, measured 108 slices each. Two senior vascular surgeons set the tolerated error margin of sizing on ±1.0 mm. Results In total, 11.3% of the measurements (73/648) were outside the set margins of ±1.0 mm from the phantom diameter, with significant differences between the scanner types (14.8%, 12.1%, 6.9% for the Siemens scanner, Philips scanner and Toshiba scanner, respectively, p-value = 0.032), but not between the software packages (8.3%, 11.1%, 14.4%, p-value = 0.141) or the observers (10.6%, 9.7%, 13.4%, p-value = 0.448). Conclusions It can be concluded that the errors in sizing were independent of the used software packages, but the phantoms scanned with Siemens scanner were significantly more measured incorrectly than the phantoms scanned with the Toshiba scanner. Consequently, awareness on the type of computed tomography scanner and computed tomography scanner setting is necessary, especially in complex abdominal aortic aneurysms sizing for fenestrated or branched endovascular aneurysm repair if appropriate the sizing is of upmost importance.
Sommer, Wieland H; Albrecht, Edda; Bamberg, Fabian; Schenzle, Jan C; Johnson, Thorsten R; Neumaier, Klement; Reiser, Maximilian F; Nikolaou, Konstatin
2010-12-01
The objective of this study was to compare image quality and radiation dose between high-pitch and established retrospectively and prospectively gated cardiac CT protocols using an Alderson-Rando phantom and a set of patients. An anthropomorphic Alderson-Rando phantom equipped with thermoluminiscent detectors and a set of clinical patients underwent the following cardiac CT protocols: high-pitch acquisition (pitch 3.4), prospectively triggered acquisition, and retrospectively gated acquisition (pitch 0.2). For patients with sinus rhythm below 65 beats per minute (bpm), high-pitch protocol was used, whereas for patients in sinus rhythm between 65 and 100 bpm, prospective triggering was used. Patients with irregular heart rates or heart rates of ≥ 100 bpm, were examined using retrospectively gated acquisition. Evaluability of coronary artery segments was determined, and effective radiation dose was derived from the phantom study. In the phantom study, the effective radiation dose as determined with thermoluminescent detector (TLD) measurements was lowest in the high-pitch acquisition (1.21, 3.12, and 11.81 mSv, for the high-pitch, the prospectively triggered, and the retrospectively gated acquisition, respectively). There was a significant difference with respect to the percentage of motion-free coronary artery segments (99%, 87%, and 92% for high-pitch, prospectively triggered, and retrospectively gated, respectively (p < 0.001), whereas image noise was lowest for the high-pitch protocol (p < 0.05). High-pitch scans have the potential to reduce radiation dose up to 61.2% and 89.8% compared with prospectively triggered and retrospectively gated scans. High-pitch protocols lead to excellent image quality when used in patients with stable heart rates below 65 bpm.
Martinez, N E; Johnson, T E; Capello, K; Pinder, J E
2014-12-01
This study develops and compares different, increasingly detailed anatomical phantoms for rainbow trout (Oncorhynchus mykiss) for the purpose of estimating organ absorbed radiation dose and dose rates from (131)I uptake in multiple organs. The models considered are: a simplistic geometry considering a single organ, a more specific geometry employing additional organs with anatomically relevant size and location, and voxel reconstruction of internal anatomy obtained from CT imaging (referred to as CSUTROUT). Dose Conversion Factors (DCFs) for whole body as well as selected organs of O. mykiss were computed using Monte Carlo modeling, and combined with estimated activity concentrations, to approximate dose rates and ultimately determine cumulative radiation dose (μGy) to selected organs after several half-lives of (131)I. The different computational models provided similar results, especially for source organs (less than 30% difference between estimated doses), and whole body DCFs for each model (∼3 × 10(-3) μGy d(-1) per Bq kg(-1)) were comparable to DCFs listed in ICRP 108 for (131)I. The main benefit provided by the computational models developed here is the ability to accurately determine organ dose. A conservative mass-ratio approach may provide reasonable results for sufficiently large organs, but is only applicable to individual source organs. Although CSUTROUT is the more anatomically realistic phantom, it required much more resource dedication to develop and is less flexible than the stylized phantom for similar results. There may be instances where a detailed phantom such as CSUTROUT is appropriate, but generally the stylized phantom appears to be the best choice for an ideal balance between accuracy and resource requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multi-view 3D echocardiography compounding based on feature consistency
NASA Astrophysics Data System (ADS)
Yao, Cheng; Simpson, John M.; Schaeffter, Tobias; Penney, Graeme P.
2011-09-01
Echocardiography (echo) is a widely available method to obtain images of the heart; however, echo can suffer due to the presence of artefacts, high noise and a restricted field of view. One method to overcome these limitations is to use multiple images, using the 'best' parts from each image to produce a higher quality 'compounded' image. This paper describes our compounding algorithm which specifically aims to reduce the effect of echo artefacts as well as improving the signal-to-noise ratio, contrast and extending the field of view. Our method weights image information based on a local feature coherence/consistency between all the overlapping images. Validation has been carried out using phantom, volunteer and patient datasets consisting of up to ten multi-view 3D images. Multiple sets of phantom images were acquired, some directly from the phantom surface, and others by imaging through hard and soft tissue mimicking material to degrade the image quality. Our compounding method is compared to the original, uncompounded echocardiography images, and to two basic statistical compounding methods (mean and maximum). Results show that our method is able to take a set of ten images, degraded by soft and hard tissue artefacts, and produce a compounded image of equivalent quality to images acquired directly from the phantom. Our method on phantom, volunteer and patient data achieves almost the same signal-to-noise improvement as the mean method, while simultaneously almost achieving the same contrast improvement as the maximum method. We show a statistically significant improvement in image quality by using an increased number of images (ten compared to five), and visual inspection studies by three clinicians showed very strong preference for our compounded volumes in terms of overall high image quality, large field of view, high endocardial border definition and low cavity noise.
Zhang, Man; Fabiilli, Mario L.; Haworth, Kevin J.; Padilla, Frederic; Swanson, Scott D.; Kripfgans, Oliver D.; Carson, Paul L.; Fowlkes, J. Brian
2011-01-01
Rationale and Objectives Acoustic droplet vaporization (ADV) shows promise for spatial control and acceleration of thermal lesion production. Our hypothesis was that microbubbles generated by ADV could enhance high intensity focused ultrasound (HIFU) thermal ablation by controlling and increasing local energy absorption. Materials and Methods Thermal lesions were produced in tissue-mimicking phantoms using focused ultrasound (1.44 MHz) with a focal intensity of 4000 W·cm-2 in degassed water at 37°C. The average lesion volume was measured by visible change in optical opacity and by T2-weighted MRI. In addition, in vivo HIFU lesions were generated in a canine liver before and after an intravenous injection of droplets with a similar acoustic setup. Results Thermal lesions were seven-fold larger in phantoms containing droplets (3×105 droplets/mL) compared to phantoms without droplets. The mean lesion volume with a 2 s HIFU exposure in droplet-containing phantoms was comparable to that made by a 5 s exposure in phantoms without droplets. In the in vivo study, the average lesion volumes without and with droplets were 0.017 ± 0.006 cm3 (n = 4, 5 s exposure) and 0.265 ± 0.005 cm3 (n = 3, 5 s exposure), respectively – a factor of 15 difference. The shape of ADV bubbles imaged with B-mode ultrasound was very similar to the actual lesion shape as measured optically and by MRI. Conclusion ADV bubbles may facilitate clinical HIFU ablation by reducing treatment time or requisite in situ total acoustic power, and provide ultrasonic imaging feedback of the thermal therapy. PMID:21703883
Calcium scoring with dual-energy CT in men and women: an anthropomorphic phantom study
NASA Astrophysics Data System (ADS)
Li, Qin; Liu, Songtao; Myers, Kyle; Gavrielides, Marios A.; Zeng, Rongping; Sahiner, Berkman; Petrick, Nicholas
2016-03-01
This work aimed to quantify and compare the potential impact of gender differences on coronary artery calcium scoring with dual-energy CT. An anthropomorphic thorax phantom with four synthetic heart vessels (diameter 3-4.5 mm: female/male left main and left circumflex artery) were scanned with and without female breast plates. Ten repeat scans were acquired in both single- and dual-energy modes and reconstructed at six reconstruction settings: two slice thicknesses (3 mm, 0.6 mm) and three reconstruction algorithms (FBP, IR3, IR5). Agatston and calcium volume scores were estimated from the reconstructed data using a segmentation-based approach. Total calcium score (summation of four vessels), and male/female calcium scores (summation of male/female vessels scanned in phantom without/with breast plates) were calculated accordingly. Both Agatston and calcium volume scores were found comparable between single- and dual-energy scans (Pearson r= 0.99, p<0.05). The total calcium scores were larger for the thinner slice thickness. Among the scores obtained from the three reconstruction algorithms, FBP yielded the highest and IR5 yielded the lowest scores. The total calcium scores from the phantom without breast plates were significantly larger than those from the phantom with breast plates, and the difference increased with the stronger denoising in iterative algorithm and with thicker slices. Both gender-based anatomical differences and vessel size impacted the calcium scores. The calcium volume scores tended to be underestimated when the vessels were smaller. These findings are valuable for understanding inconsistencies between women and men in calcium scoring, and for standardizing imaging protocols for improved gender-specific calcium scoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Shlomo, A.; Cohen, D.; Bruckheimer, E.
PurposeTo compare the effective doses of needle biopsies based on dose measurements and simulations using adult and pediatric phantoms, between cone beam c-arm CT (CBCT) and CT.MethodEffective doses were calculated and compared based on measurements and Monte Carlo simulations of CT- and CBCT-guided biopsy procedures of the lungs, liver, and kidney using pediatric and adult phantoms.ResultsThe effective doses for pediatric and adult phantoms, using our standard protocols for upper, middle and lower lungs, liver, and kidney biopsies, were significantly lower under CBCT guidance than CT. The average effective dose for a 5-year old for these five biopsies was 0.36 ± 0.05 mSv withmore » the standard CBCT exposure protocols and 2.13 ± 0.26 mSv with CT. The adult average effective dose for the five biopsies was 1.63 ± 0.22 mSv with the standard CBCT protocols and 8.22 ± 1.02 mSv using CT. The CT effective dose was higher than CBCT protocols for child and adult phantoms by 803 and 590 % for upper lung, 639 and 525 % for mid-lung, and 461 and 251 % for lower lung, respectively. Similarly, the effective dose was higher by 691 and 762 % for liver and 513 and 608 % for kidney biopsies.ConclusionsBased on measurements and simulations with pediatric and adult phantoms, radiation effective doses during image-guided needle biopsies of the lung, liver, and kidney are significantly lower with CBCT than with CT.« less
Ozaki, Y; Watanabe, H; Kaida, A; Miura, M; Nakagawa, K; Toda, K; Yoshimura, R; Sumi, Y; Kurabayashi, T
2017-07-01
Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Lixin; Jiang, Runqing; Osei, Ernest K.
2014-08-15
Flattening filter free (FFF) beams have been adopted by many clinics and used for patient treatment. However, compared to the traditional flattened beams, we have limited knowledge of FFF beams. In this study, we successfully modeled the 6 MV FFF beam for Varian TrueBeam accelerator with the Monte Carlo (MC) method. Both the percentage depth dose and profiles match well to the Golden Beam Data (GBD) from Varian. MC simulations were then performed to predict the relative output factors. The in-water output ratio, Scp, was simulated in water phantom and data obtained agrees well with GBD. The in-air output ratio,more » Sc, was obtained by analyzing the phase space placed at isocenter, in air, and computing the ratio of water Kerma rates for different field sizes. The phantom scattering factor, Sp, can then be obtained from the traditional way of taking the ratio of Scp and Sc. We also simulated Sp using a recently proposed method based on only the primary beam dose delivery in water phantom. Because there is no concern of lateral electronic disequilibrium, this method is more suitable for small fields. The results from both methods agree well with each other. The flattened 6 MV beam was simulated and compared to 6 MV FFF. The comparison confirms that 6 MV FFF has less scattering from the Linac head and less phantom scattering contribution to the central axis dose, which will be helpful for improving accuracy in beam modeling and dose calculation in treatment planning systems.« less
Population of 224 realistic human subject-based computational breast phantoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, David W.; Wells, Jered R., E-mail: jered.wells@duke.edu; Sturgeon, Gregory M.
Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was thenmore » applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a wide range of breast types, volumes, densities, and parenchymal patterns.« less
Population of 224 realistic human subject-based computational breast phantoms
Erickson, David W.; Wells, Jered R.; Sturgeon, Gregory M.; Dobbins, James T.; Segars, W. Paul; Lo, Joseph Y.
2016-01-01
Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was then applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a wide range of breast types, volumes, densities, and parenchymal patterns. PMID:26745896
Zanotti-Fregonara, Paolo; Chastan, Mathieu; Edet-Sanson, Agathe; Ekmekcioglu, Ozgul; Erdogan, Ezgi Basak; Hapdey, Sebastien; Hindie, Elif; Stabin, Michael G
2016-11-01
Data from the literature show that the fetal absorbed dose from 18 F-FDG administration to the pregnant mother ranges from 0.5E-2 to 4E-2 mGy/MBq. These figures were, however, obtained using different quantification techniques and with basic geometric anthropomorphic phantoms. The aim of this study was to refine the fetal dose estimates of published as well as new cases using realistic voxel-based phantoms. The 18 F-FDG doses to the fetus (n = 19; 5-34 wk of pregnancy) were calculated with new voxel-based anthropomorphic phantoms of the pregnant woman. The image-derived fetal time-integrated activity values were combined with those of the mothers' organs from the International Commission on Radiological Protection publication 106 and the dynamic bladder model with a 1-h bladder-voiding interval. The dose to the uterus was used as a proxy for early pregnancy (up to 10 wk). The time-integrated activities were entered into OLINDA/EXM 1.1 to derive the dose with the classic anthropomorphic phantoms of pregnant women, then into OLINDA/EXM 2.0 to assess the dose using new voxel-based phantoms. The average fetal doses (mGy/MBq) with OLINDA/EXM 2.0 were 2.5E-02 in early pregnancy, 1.3E-02 in the late part of the first trimester, 8.5E-03 in the second trimester, and 5.1E-03 in the third trimester. The differences compared with the doses calculated with OLINDA/EXM 1.1 were +7%, +70%, +35%, and -8%, respectively. Except in late pregnancy, the doses estimated with realistic voxelwise anthropomorphic phantoms are higher than the doses derived from old geometric phantoms. The doses remain, however, well below the threshold for any deterministic effects. Thus, pregnancy is not an absolute contraindication of a clinically justified 18 F-FDG PET scan. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NASA Astrophysics Data System (ADS)
Mille, Matthew M.
Positron emission tomography (PET) with 2-[18F]fluoro-2-deoxy-D-glucose (FDG) is being increasingly recognized as an important tool for quantitative assessment of tumor response because of its ability to capture functional information about the tumor's metabolism. However, despite many advances in PET technology, measurements of tumor radiopharmaceutical uptake in PET are still challenged by issues of accuracy and consistency, thereby compromising the use of PET as a surrogate endpoint in clinical trials. One limiting component of the overall uncertainty in PET is the relatively poor spatial resolution of the images which directly affects the accuracy of the tumor radioactivity measurements. These spatial resolution effects, colloquially known as the partial volume effect (PVE), are a function of the characteristics of the scanner as well as the tumor being imaged. Previous efforts have shown that the PVE depends strongly on the tumor volume and the background-to-tumor activity concentration ratio. The PVE is also suspected to be a function of tumor shape, although to date no systematic study of this effect has been performed. This dissertation seeks to help fill the gap in the current knowledge about the shape-dependence of the PVE by attempting to quantify, through both theoretical calculation and experimental measurement, the magnitude of the shape effect for ellipsoidal tumors. An experimental investigation of the tumor shape effect necessarily requires tumor phantoms of multiple shapes. Hence, a prerequisite for this research was the design and fabrication of hollow tumor phantoms which could be filled uniformly with radioactivity and imaged on a PET scanner. The phantom fabrication was achieved with the aid of stereolithography and included prolate ellipsoids of various axis ratios. The primary experimental method involved filling the tumor phantoms with solutions of 18F whose activity concentrations were known and traceable to primary radioactivity standards held by the National Institute of Standards and Technology (NIST). The tumor phantoms were then placed inside a Jaszczak cylinder (representing the human body) and imaged on a PET scanner located at NIST. This experimental approach allowed for the testing of: (1) The relative difference between tumors phantoms of different shapes, but same volume; (2) The overall accuracy of the PET measurements in terms of a ground truth reference value. Theoretical calculations of the tumor shape effect were also performed by mathematically convolving the phantom shapes with a 3D Gaussian point-spread function, and the results of the calculations were compared with the experimental data. The data show that the shape effect in PET tumor imaging can be as large as 15% for ellipsoid phantoms with axis ratios of 2:1, volume of 1.15 cm 3, and tumor-to-background activity concentration ratio of 9:1. This is explained by a greater loss of counts along the minor axis direction in the ellipsoid tumors compared to that of spheres of the same volume. The results of this PhD research confirm the existence of a tumor shape effect PET imaging. However, except in the case of ellipsoids with major-to-minor axis ratio greater than 2:1, a correction for the effect using recovery coefficients is expected to be challenging because its magnitude is comparable to the repeatability of the PET measurements.
Pukala, Jason; Meeks, Sanford L; Staton, Robert J; Bova, Frank J; Mañon, Rafael R; Langen, Katja M
2013-11-01
Deformable image registration (DIR) is being used increasingly in various clinical applications. However, the underlying uncertainties of DIR are not well-understood and a comprehensive methodology has not been developed for assessing a range of interfraction anatomic changes during head and neck cancer radiotherapy. This study describes the development of a library of clinically relevant virtual phantoms for the purpose of aiding clinicians in the QA of DIR software. These phantoms will also be available to the community for the independent study and comparison of other DIR algorithms and processes. Each phantom was derived from a pair of kVCT volumetric image sets. The first images were acquired of head and neck cancer patients prior to the start-of-treatment and the second were acquired near the end-of-treatment. A research algorithm was used to autosegment and deform the start-of-treatment (SOT) images according to a biomechanical model. This algorithm allowed the user to adjust the head position, mandible position, and weight loss in the neck region of the SOT images to resemble the end-of-treatment (EOT) images. A human-guided thin-plate splines algorithm was then used to iteratively apply further deformations to the images with the objective of matching the EOT anatomy as closely as possible. The deformations from each algorithm were combined into a single deformation vector field (DVF) and a simulated end-of-treatment (SEOT) image dataset was generated from that DVF. Artificial noise was added to the SEOT images and these images, along with the original SOT images, created a virtual phantom where the underlying "ground-truth" DVF is known. Images from ten patients were deformed in this fashion to create ten clinically relevant virtual phantoms. The virtual phantoms were evaluated to identify unrealistic DVFs using the normalized cross correlation (NCC) and the determinant of the Jacobian matrix. A commercial deformation algorithm was applied to the virtual phantoms to show how they may be used to generate estimates of DIR uncertainty. The NCC showed that the simulated phantom images had greater similarity to the actual EOT images than the images from which they were derived, supporting the clinical relevance of the synthetic deformation maps. Calculation of the Jacobian of the "ground-truth" DVFs resulted in only positive values. As an example, mean error statistics are presented for all phantoms for the brainstem, cord, mandible, left parotid, and right parotid. It is essential that DIR algorithms be evaluated using a range of possible clinical scenarios for each treatment site. This work introduces a library of virtual phantoms intended to resemble real cases for interfraction head and neck DIR that may be used to estimate and compare the uncertainty of any DIR algorithm.
Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models
NASA Astrophysics Data System (ADS)
Lee, Choonsik; Lodwick, Daniel; Hasenauer, Deanna; Williams, Jonathan L.; Lee, Choonik; Bolch, Wesley E.
2007-07-01
Anthropomorphic computational phantoms are computer models of the human body for use in the evaluation of dose distributions resulting from either internal or external radiation sources. Currently, two classes of computational phantoms have been developed and widely utilized for organ dose assessment: (1) stylized phantoms and (2) voxel phantoms which describe the human anatomy via mathematical surface equations or 3D voxel matrices, respectively. Although stylized phantoms based on mathematical equations can be very flexible in regard to making changes in organ position and geometrical shape, they are limited in their ability to fully capture the anatomic complexities of human internal anatomy. In turn, voxel phantoms have been developed through image-based segmentation and correspondingly provide much better anatomical realism in comparison to simpler stylized phantoms. However, they themselves are limited in defining organs presented in low contrast within either magnetic resonance or computed tomography images—the two major sources in voxel phantom construction. By definition, voxel phantoms are typically constructed via segmentation of transaxial images, and thus while fine anatomic features are seen in this viewing plane, slice-to-slice discontinuities become apparent in viewing the anatomy of voxel phantoms in the sagittal or coronal planes. This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism. Non-uniform rational B-spline (NURBS) surfaces, a mathematical modeling tool traditionally applied to graphical animation studies, was adopted to replace the limited mathematical surface equations of stylized phantoms. A previously developed whole-body voxel phantom of the newborn female was utilized as a realistic anatomical framework for hybrid phantom construction. The construction of a hybrid phantom is performed in three steps: polygonization of the voxel phantom, organ modeling via NURBS surfaces and phantom voxelization. Two 3D graphic tools, 3D-DOCTOR™ and Rhinoceros™, were utilized to polygonize the newborn voxel phantom and generate NURBS surfaces, while an in-house MATLAB™ code was used to voxelize the resulting NURBS model into a final computational phantom ready for use in Monte Carlo radiation transport calculations. A total of 126 anatomical organ and tissue models, including 38 skeletal sites and 31 cartilage sites, were described within the hybrid phantom using either NURBS or polygon surfaces. A male hybrid newborn phantom was constructed following the development of the female phantom through the replacement of female-specific organs with male-specific organs. The outer body contour and internal anatomy of the NURBS-based phantoms were adjusted to match anthropometric and reference newborn data reported by the International Commission on Radiological Protection in their Publication 89. The voxelization process was designed to accurately convert NURBS models to a voxel phantom with minimum volumetric change. A sensitivity study was additionally performed to better understand how the meshing tolerance and voxel resolution would affect volumetric changes between the hybrid-NURBS and hybrid-voxel phantoms. The male and female hybrid-NURBS phantoms were constructed in a manner so that all internal organs approached their ICRP reference masses to within 1%, with the exception of the skin (-6.5% relative error) and brain (-15.4% relative error). Both hybrid-voxel phantoms were constructed with an isotropic voxel resolution of 0.663 mm—equivalent to the ICRP 89 reference thickness of the newborn skin (dermis and epidermis). Hybrid-NURBS phantoms used to create their voxel counterpart retain the non-uniform scalability of stylized phantoms, while maintaining the anatomic realism of segmented voxel phantoms with respect to organ shape, depth and inter-organ positioning. This work was supported by the National Cancer Institute.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardiansyah, D.; Haryanto, F.; Male, S.
2014-09-30
Prism is a non-commercial Radiotherapy Treatment Planning System (RTPS) develop by Ira J. Kalet from Washington University. Inhomogeneity factor is included in Prism TPS dose calculation. The aim of this study is to investigate the sensitivity of dose calculation on Prism using Monte Carlo simulation. Phase space source from head linear accelerator (LINAC) for Monte Carlo simulation is implemented. To achieve this aim, Prism dose calculation is compared with EGSnrc Monte Carlo simulation. Percentage depth dose (PDD) and R50 from both calculations are observed. BEAMnrc is simulated electron transport in LINAC head and produced phase space file. This file ismore » used as DOSXYZnrc input to simulated electron transport in phantom. This study is started with commissioning process in water phantom. Commissioning process is adjusted Monte Carlo simulation with Prism RTPS. Commissioning result is used for study of inhomogeneity phantom. Physical parameters of inhomogeneity phantom that varied in this study are: density, location and thickness of tissue. Commissioning result is shown that optimum energy of Monte Carlo simulation for 6 MeV electron beam is 6.8 MeV. This commissioning is used R50 and PDD with Practical length (R{sub p}) as references. From inhomogeneity study, the average deviation for all case on interest region is below 5 %. Based on ICRU recommendations, Prism has good ability to calculate the radiation dose in inhomogeneity tissue.« less
Phantom eye syndrome: a review of the literature.
Andreotti, Agda M; Goiato, Marcelo C; Pellizzer, Eduardo P; Pesqueira, Aldiéris A; Guiotti, Aimée M; Gennari-Filho, Humberto; dos Santos, Daniela M
2014-01-01
The purpose of this literature review was to describe the main features of phantom eye syndrome in relation to their possible causes, symptoms, treatments, and influence of eye amputation on quality of life of anophthalmic patients. For this, a bibliographical research was performed in Pubmed database using the following terms: "eye amputation," "eye trauma," "phantom eye syndrome," "phantom pain," and "quality of life," associated or not. Thirteen studies were selected, besides some relevant references contained in the selected manuscripts and other studies hallowed in the literature. Thus, 56 articles were included in this review. The phantom eye syndrome is defined as any sensation reported by the patient with anophthalmia, originated anophthalmic cavity. In phantom eye syndrome, at least one of these three symptoms has to be present: phantom vision, phantom pain, and phantom sensations. This syndrome has a direct influence on the quality of life of the patients, and psychological support is recommended before and after the amputation of the eyeball as well as aid in the treatment of the syndrome. Therefore, it is suggested that, for more effective treatment of phantom eye syndrome, drug therapy should be associated with psychological approach.
Realistic Analytical Polyhedral MRI Phantoms
Ngo, Tri M.; Fung, George S. K.; Han, Shuo; Chen, Min; Prince, Jerry L.; Tsui, Benjamin M. W.; McVeigh, Elliot R.; Herzka, Daniel A.
2015-01-01
Purpose Analytical phantoms have closed form Fourier transform expressions and are used to simulate MRI acquisitions. Existing 3D analytical phantoms are unable to accurately model shapes of biomedical interest. It is demonstrated that polyhedral analytical phantoms have closed form Fourier transform expressions and can accurately represent 3D biomedical shapes. Theory The derivations of the Fourier transform of a polygon and polyhedron are presented. Methods The Fourier transform of a polyhedron was implemented and its accuracy in representing faceted and smooth surfaces was characterized. Realistic anthropomorphic polyhedral brain and torso phantoms were constructed and their use in simulated 3D/2D MRI acquisitions was described. Results Using polyhedra, the Fourier transform of faceted shapes can be computed to within machine precision. Smooth surfaces can be approximated with increasing accuracy by increasing the number of facets in the polyhedron; the additional accumulated numerical imprecision of the Fourier transform of polyhedra with many faces remained small. Simulations of 3D/2D brain and 2D torso cine acquisitions produced realistic reconstructions free of high frequency edge aliasing as compared to equivalent voxelized/rasterized phantoms. Conclusion Analytical polyhedral phantoms are easy to construct and can accurately simulate shapes of biomedical interest. PMID:26479724
McCormick, Matthew M.; Madsen, Ernest L.; Deaner, Meagan E.; Varghese, Tomy
2011-01-01
Absolute backscatter coefficients in tissue-mimicking phantoms were experimentally determined in the 5–50 MHz frequency range using a broadband technique. A focused broadband transducer from a commercial research system, the VisualSonics Vevo 770, was used with two tissue-mimicking phantoms. The phantoms differed regarding the thin layers covering their surfaces to prevent desiccation and regarding glass bead concentrations and diameter distributions. Ultrasound scanning of these phantoms was performed through the thin layer. To avoid signal saturation, the power spectra obtained from the backscattered radio frequency signals were calibrated by using the signal from a liquid planar reflector, a water-brominated hydrocarbon interface with acoustic impedance close to that of water. Experimental values of absolute backscatter coefficients were compared with those predicted by the Faran scattering model over the frequency range 5–50 MHz. The mean percent difference and standard deviation was 54% ± 45% for the phantom with a mean glass bead diameter of 5.40 μm and was 47% ± 28% for the phantom with 5.16 μm mean diameter beads. PMID:21877789
Effect of Gold Marker Seeds on Magnetic Resonance Spectroscopy of the Prostate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Murshed, E-mail: Murshed.Hossain@fccc.edu; Schirmer, Timo; Richardson, Theresa
2012-05-01
Purpose: Magnetic resonance stereoscopic imaging (MRSI) of the prostate is an emerging technique that may enhance targeting and assessment in radiotherapy. Current practices in radiotherapy invariably involve image guidance. Gold seed fiducial markers are often used to perform daily prostate localization. If MRSI is to be used in targeting prostate cancer and therapy assessment, the impact of gold seeds on MRSI must be investigated. The purpose of this study was to quantify the effects of gold seeds on the quality of MRSI data acquired in phantom experiments. Methods and Materials: A cylindrical plastic phantom with a spherical cavity 10 centimetersmore » in diameter wss filled with water solution containing choline, creatine, and citrate. A gold seed fiducial marker was put near the center of the phantom mounted on a plastic stem. Spectra were acquired at 1.5 Tesla by use of a clinical MRSI sequence. The ratios of choline + creatine to citrate (CC/Ci) were compared in the presence and absence of gold seeds. Spectra in the vicinity of the gold seed were analyzed. Results: The maximum coefficient of variation of CC/Ci induced by the gold seed was found to be 10% in phantom experiments at 1.5 T. Conclusion: MRSI can be used in prostate radiotherapy in the presence of gold seed markers. Gold seeds cause small effects (in the order of the standard deviation) on the ratio of the metabolite's CC/Ci in the phantom study done on a 1.5-T scanner. It is expected that gold seed markers will have similar negligible effect on spectra from prostate patients. The maximum of 10% of variation in CC/Ci found in the phantom study also sets a limit on the threshold accuracy of CC/Ci values for deciding whether the tissue characterized by a local spectrum is considered malignant and whether it is a candidate for local boost in radiotherapy dose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, H; Cho, S; Cheong, K
Purpose: To reconstruct patient images at the time of radiation delivery using measured transit images of treatment beams through patient and calculated transit images through planning CT images. Methods: We hypothesize that the ratio of the measured transit images to the calculated images may provide changed amounts of the patient image between times of planning CT and treatment. To test, we have devised lung phantoms with a tumor object (3-cm diameter) placed at iso-center (simulating planning CT) and off-center by 1 cm (simulating treatment). CT images of the two phantoms were acquired; the image of the off-centered phantom, unavailable clinically,more » represents the reference on-treatment image in the image quality of planning CT. Cine-transit images through the two phantoms were also acquired in EPID from a non-modulated 6 MV beam when the gantry was rotated 360 degrees; the image through the centered phantom simulates calculated image. While the current study is a feasibility study, in reality our computational EPID model can be applicable in providing accurate transit image from MC simulation. Changed MV HU values were reconstructed from the ratio between two EPID projection data, converted to KV HU values, and added to the planning CT, thereby reconstructing the on-treatment image of the patient limited to the irradiated region of the phantom. Results: The reconstructed image was compared with the reference image. Except for local HU differences>200 as a maximum, excellent agreement was found. The average difference across the entire image was 16.2 HU. Conclusion: We have demonstrated the feasibility of a method of reconstructing on-treatment images of a patient using EPID image and planning CT images. Further studies will include resolving the local HU differences and investigation on the dosimetry impact of the reconstructed image.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damilakis, John; Tzedakis, Antonis; Perisinakis, Kostas
Purpose: Current methods for the estimation of conceptus dose from multidetector CT (MDCT) examinations performed on the mother provide dose data for typical protocols with a fixed scan length. However, modified low-dose imaging protocols are frequently used during pregnancy. The purpose of the current study was to develop a method for the estimation of conceptus dose from any MDCT examination of the trunk performed during all stages of gestation. Methods: The Monte Carlo N-Particle (MCNP) radiation transport code was employed in this study to model the Siemens Sensation 16 and Sensation 64 MDCT scanners. Four mathematical phantoms were used, simulatingmore » women at 0, 3, 6, and 9 months of gestation. The contribution to the conceptus dose from single simulated scans was obtained at various positions across the phantoms. To investigate the effect of maternal body size and conceptus depth on conceptus dose, phantoms of different sizes were produced by adding layers of adipose tissue around the trunk of the mathematical phantoms. To verify MCNP results, conceptus dose measurements were carried out by means of three physical anthropomorphic phantoms, simulating pregnancy at 0, 3, and 6 months of gestation and thermoluminescence dosimetry (TLD) crystals. Results: The results consist of Monte Carlo-generated normalized conceptus dose coefficients for single scans across the four mathematical phantoms. These coefficients were defined as the conceptus dose contribution from a single scan divided by the CTDI free-in-air measured with identical scanning parameters. Data have been produced to take into account the effect of maternal body size and conceptus position variations on conceptus dose. Conceptus doses measured with TLD crystals showed a difference of up to 19% compared to those estimated by mathematical simulations. Conclusions: Estimation of conceptus doses from MDCT examinations of the trunk performed on pregnant patients during all stages of gestation can be made using the method developed in the current study.« less
Phadnis, Akshay; Kumar, Sumit; Srivastava, Atul
2016-10-01
The work presented in this paper focuses on numerically investigating the thermal response of gold nanoshells-embedded biological tissue phantoms with potential applications into photo-thermal therapy wherein the interest is in destroying the cancerous cells with minimum damage to the surrounding healthy cells. The tissue phantom has been irradiated with a pico-second laser. Radiative transfer equation (RTE) has been employed to model the light-tissue interaction using discrete ordinate method (DOM). For determining the temperature distribution inside the tissue phantom, the RTE has been solved in combination with a generalized non-Fourier heat conduction model namely the dual phase lag bio-heat transfer model. The numerical code comprising the coupled RTE-bio-heat transfer equation, developed as a part of the current work, has been benchmarked against the experimental as well as the numerical results available in the literature. It has been demonstrated that the temperature of the optical inhomogeneity inside the biological tissue phantom embedded with gold nanoshells is relatively higher than that of the baseline case (no nanoshells) for the same laser power and operation time. The study clearly underlines the impact of nanoshell concentration and its size on the thermal response of the biological tissue sample. The comparative study concerned with the size and concentration of nanoshells showed that 60nm nanoshells with concentration of 5×10 15 mm -3 result into the temperature levels that are optimum for the irreversible destruction of cancer infected cells in the context of photo-thermal therapy. To the best of the knowledge of the authors, the present study is one of the first attempts to quantify the influence of gold nanoshells on the temperature distributions inside the biological tissue phantoms upon laser irradiation using the dual phase lag heat conduction model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Doo, K W; Yong, H S; Woo, O H; Lee, K Y; Oh, Y-W
2014-01-01
Objective: The purpose of this study was to assess accuracy of lung nodule volumetry in low-dose CT with application of iterative reconstruction (IR) according to nodule size, nodule density and CT tube currents, using artificial lung nodules within an anthropomorphic thoracic phantom. Methods: Eight artificial nodules (four diameters: 5, 8, 10 and 12 mm; two CT densities: −630 HU that represents ground-glass nodule and +100 HU that represents solid nodule) were randomly placed inside a thoracic phantom. Scans were performed with tube current–time product to 10, 20, 30 and 50 mAs. Images were reconstructed with IR and filtered back projection (FBP). We compared volume estimates to a reference standard and calculated the absolute percentage error (APE). Results: The APE of all nodules was significantly lower when IR was used than with FBP (7.5 ± 4.7% compared with 9.0 ±6.9%; p < 0.001). The effect of IR was more pronounced for smaller nodules (p < 0.001). IR showed a significantly lower APE than FBP in ground-glass nodules (p < 0.0001), and the difference was more pronounced at the lowest tube current (11.8 ± 5.9% compared with 21.3 ± 6.1%; p < 0.0001). The effect of IR was most pronounced for ground-glass nodules in the lowest CT tube current. Conclusion: Lung nodule volumetry in low-dose CT by application of IR showed reliable accuracy in a phantom study. Lung nodule volumetry can be reliably applicable to all lung nodules including small, ground-glass nodules even in ultra-low-dose CT with application of IR. Advances in knowledge: IR significantly improved the accuracy of lung nodule volumetry compared with FBP particularly for ground-glass (−630 HU) nodules. Volumetry in low-dose CT can be utilized in patient with lung nodule work-up, and IR has benefit for small, ground-glass lung nodules in low-dose CT. PMID:25026866
WE-D-BRA-05: Pseudo In Vivo Patient Dosimetry Using a 3D-Printed Patient-Specific Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ger, R; Craft, DF; Burgett, EA
Purpose: To test the feasibility of using 3D-printed patient-specific phantoms for intensity-modulated radiation therapy (IMRT) quality assurance (QA). Methods: We created a patient-specific whole-head phantom using a 3D printer. The printer data file was created from high-resolution DICOM computed tomography (CT) images of 3-year old child treated at our institution for medulloblastoma. A custom-modified extruder system was used to create tissue-equivalent materials. For the printing process, the Hounsfield Units from the CT images were converted to proportional volumetric densities. A 5-field IMRT plan was created from the patient CT and delivered to the 3D- phantom. Dose was measured by anmore » ion chamber placed through the eye. The ion chamber was placed at the posterior edge of the planning target volume in a high dose gradient region. CT scans of the patient and 3D-phantom were fused by using commercial treatment planning software (TPS). The patient’s plan was calculated on the phantom CT images. The ion chamber’s active volume was delineated in the TPS; dose per field and total dose were obtained. Measured and calculated doses were compared. Results: The 3D-phantom dimensions and tissue densities were in good agreement with the patient. However, because of a printing error, there was a large discrepancy in the density in the frontal cortex. The calculated and measured treatment plan doses were 1.74 Gy and 1.72 Gy, respectively. For individual fields, the absolute dose difference between measured and calculated values was on average 3.50%. Conclusion: This study demonstrated the feasibility of using 3D-printed patient-specific phantoms for IMRT QA. Such phantoms would be particularly advantageous for complex IMRT treatment plans featuring high dose gradients and/or for anatomical sites with high variation in tissue densities. Our preliminary findings are promising. We anticipate that, once the printing process is further refined, the agreement between measured and calculated doses will improve.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Perry B.; Geyer, Amy; Borrego, David
Purpose: To investigate the benefits and limitations of patient-phantom matching for determining organ dose during fluoroscopy guided interventions. Methods: In this study, 27 CT datasets representing patients of different sizes and genders were contoured and converted into patient-specific computational models. Each model was matched, based on height and weight, to computational phantoms selected from the UF hybrid patient-dependent series. In order to investigate the influence of phantom type on patient organ dose, Monte Carlo methods were used to simulate two cardiac projections (PA/left lateral) and two abdominal projections (RAO/LPO). Organ dose conversion coefficients were then calculated for each patient-specific andmore » patient-dependent phantom and also for a reference stylized and reference hybrid phantom. The coefficients were subsequently analyzed for any correlation between patient-specificity and the accuracy of the dose estimate. Accuracy was quantified by calculating an absolute percent difference using the patient-specific dose conversion coefficients as the reference. Results: Patient-phantom matching was shown most beneficial for estimating the dose to heavy patients. In these cases, the improvement over using a reference stylized phantom ranged from approximately 50% to 120% for abdominal projections and for a reference hybrid phantom from 20% to 60% for all projections. For lighter individuals, patient-phantom matching was clearly superior to using a reference stylized phantom, but not significantly better than using a reference hybrid phantom for certain fields and projections. Conclusions: The results indicate two sources of error when patients are matched with phantoms: Anatomical error, which is inherent due to differences in organ size and location, and error attributed to differences in the total soft tissue attenuation. For small patients, differences in soft tissue attenuation are minimal and are exceeded by inherent anatomical differences. For large patients, difference in soft tissue attenuation can be large. In these cases, patient-phantom matching proves most effective as differences in soft tissue attenuation are mitigated. With increasing obesity rates, overweight patients will continue to make up a growing fraction of all patients undergoing medical imaging. Thus, having phantoms that better represent this population represents a considerable improvement over previous methods. In response to this study, additional phantoms representing heavier weight percentiles will be added to the UFHADM and UFHADF patient-dependent series.« less
Sung, Wonmo; Park, Jong In; Kim, Jung-in; Carlson, Joel; Ye, Sung-Joon
2017-01-01
This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans. PMID:28493940
Sung, Wonmo; Park, Jong In; Kim, Jung-In; Carlson, Joel; Ye, Sung-Joon; Park, Jong Min
2017-01-01
This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans.
Mattei, Lorenza; Longo, Antonia; Di Puccio, Francesca; Ciulli, Enrico; Marchetti, Stefano
2017-04-01
A bone healing assessment is crucial for the successful treatment of fractures, particularly in terms of the timing of support devices. However, in clinical practice, this assessment is only made qualitatively through bone manipulation and X-rays, and hence cannot be repeated as often as might be required. The present study reconsiders the quantitative method of frequency response analysis for healing assessments, and specifically for fractures treated with an external fixator. The novelty consists in the fact that bone excitation and response are achieved through fixator pins, thus overcoming the problem of transmission through soft-tissues and their damping effect. The main objective was to develop and validate a test procedure in order to characterize the treated bone. More than 80 tests were performed on a tibia phantom alone, a phantom with pins, and a phantom with a complete fixator. Different excitation techniques and input-output combinations were compared. The results demonstrated the effectiveness of a procedure based on impact tests using a micro-hammer. Pins and fixator were demonstrated to influence the frequency response of the phantom by increasing the number of resonant frequencies. This procedure will be applied in future studies to monitor healing both in in vitro and in vivo conditions.
In Vivo, High-Frequency Three-Dimensional Cardiac MR Elastography: Feasibility in Normal Volunteers
Arani, Arvin; Glaser, Kevin L.; Arunachalam, Shivaram P.; Rossman, Phillip J.; Lake, David S.; Trzasko, Joshua D.; Manduca, Armando; McGee, Kiaran P.; Ehman, Richard L.; Araoz, Philip A.
2016-01-01
Purpose Noninvasive stiffness imaging techniques (elastography) can image myocardial tissue biomechanics in vivo. For cardiac MR elastography (MRE) techniques, the optimal vibration frequency for in vivo experiments is unknown. Furthermore, the accuracy of cardiac MRE has never been evaluated in a geometrically accurate phantom. Therefore, the purpose of this study was to determine the necessary driving frequency to obtain accurate three-dimensional (3D) cardiac MRE stiffness estimates in a geometrically accurate diastolic cardiac phantom and to determine the optimal vibration frequency that can be introduced in healthy volunteers. Methods The 3D cardiac MRE was performed on eight healthy volunteers using 80 Hz, 100 Hz, 140 Hz, 180 Hz, and 220 Hz vibration frequencies. These frequencies were tested in a geometrically accurate diastolic heart phantom and compared with dynamic mechanical analysis (DMA). Results The 3D Cardiac MRE was shown to be feasible in volunteers at frequencies as high as 180 Hz. MRE and DMA agreed within 5% at frequencies greater than 180 Hz in the cardiac phantom. However, octahedral shear strain signal to noise ratios and myocardial coverage was shown to be highest at a frequency of 140 Hz across all subjects. Conclusion This study motivates future evaluation of high-frequency 3D MRE in patient populations. PMID:26778442
A statistically defined anthropomorphic software breast phantom.
Lau, Beverly A; Reiser, Ingrid; Nishikawa, Robert M; Bakic, Predrag R
2012-06-01
Digital anthropomorphic breast phantoms have emerged in the past decade because of recent advances in 3D breast x-ray imaging techniques. Computer phantoms in the literature have incorporated power-law noise to represent glandular tissue and branching structures to represent linear components such as ducts. When power-law noise is added to those phantoms in one piece, the simulated fibroglandular tissue is distributed randomly throughout the breast, resulting in dense tissue placement that may not be observed in a real breast. The authors describe a method for enhancing an existing digital anthropomorphic breast phantom by adding binarized power-law noise to a limited area of the breast. Phantoms with (0.5 mm)(3) voxel size were generated using software developed by Bakic et al. Between 0% and 40% of adipose compartments in each phantom were replaced with binarized power-law noise (β = 3.0) ranging from 0.1 to 0.6 volumetric glandular fraction. The phantoms were compressed to 7.5 cm thickness, then blurred using a 3 × 3 boxcar kernel and up-sampled to (0.1 mm)(3) voxel size using trilinear interpolation. Following interpolation, the phantoms were adjusted for volumetric glandular fraction using global thresholding. Monoenergetic phantom projections were created, including quantum noise and simulated detector blur. Texture was quantified in the simulated projections using power-spectrum analysis to estimate the power-law exponent β from 25.6 × 25.6 mm(2) regions of interest. Phantoms were generated with total volumetric glandular fraction ranging from 3% to 24%. Values for β (averaged per projection view) were found to be between 2.67 and 3.73. Thus, the range of textures of the simulated breasts covers the textures observed in clinical images. Using these new techniques, digital anthropomorphic breast phantoms can be generated with a variety of glandular fractions and patterns. β values for this new phantom are comparable with published values for breast tissue in x-ray projection modalities. The combination of conspicuous linear structures and binarized power-law noise added to a limited area of the phantom qualitatively improves its realism. © 2012 American Association of Physicists in Medicine.
Iyama, Yuji; Nakaura, Takeshi; Kidoh, Masafumi; Oda, Seitaro; Utsunomiya, Daisuke; Sakaino, Naritsugu; Tokuyasu, Shinichi; Osakabe, Hirokazu; Harada, Kazunori; Yamashita, Yasuyuki
2016-11-01
The purpose of this study was to evaluate the noise and image quality of images reconstructed with a knowledge-based iterative model reconstruction (knowledge-based IMR) in ultra-low dose cardiac computed tomography (CT). We performed submillisievert radiation dose coronary CT angiography on 43 patients. We also performed a phantom study to evaluate the influence of object size with the automatic exposure control phantom. We reconstructed clinical and phantom studies with filtered back projection (FBP), hybrid iterative reconstruction (hybrid IR), and knowledge-based IMR. We measured effective dose of patients and compared CT number, image noise, and contrast noise ratio in ascending aorta of each reconstruction technique. We compared the relationship between image noise and body mass index for the clinical study, and object size for phantom study. The mean effective dose was 0.98 ± 0.25 mSv. The image noise of knowledge-based IMR images was significantly lower than those of FBP and hybrid IR images (knowledge-based IMR: 19.4 ± 2.8; FBP: 126.7 ± 35.0; hybrid IR: 48.8 ± 12.8, respectively) (P < .01). The contrast noise ratio of knowledge-based IMR images was significantly higher than those of FBP and hybrid IR images (knowledge-based IMR: 29.1 ± 5.4; FBP: 4.6 ± 1.3; hybrid IR: 13.1 ± 3.5, respectively) (P < .01). There were moderate correlations between image noise and body mass index in FBP (r = 0.57, P < .01) and hybrid IR techniques (r = 0.42, P < .01); however, these correlations were weak in knowledge-based IMR (r = 0.27, P < .01). Compared to FBP and hybrid IR, the knowledge-based IMR offers significant noise reduction and improvement in image quality in submillisievert radiation dose cardiac CT. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Gurjar, Om Prakash; Paliwal, Radha Kishan; Mishra, Surendra Prasad
2017-01-01
The aim is to study the density, isodose depths, and doses at different points in slab-pinewood-slab (SPS) phantom, solid phantom SP34 (made up of polystyrene), and chest level of actual patient for developing heterogeneous chest phantom mimicking thoracic region of human body. A 6 MV photon beam of field size of 10 cm × 10 cm was directed perpendicular to the surface of computed tomography (CT) images of chest level of patient, SPS phantom, and SP34 phantom. Dose was calculated using anisotropic analytical algorithm. Hounsfield units were used to calculate the density of each medium. Isodose depths in all the three sets of CT images were measured. Variations between planned doses on treatment planning system (TPS) and measured on linear accelerator (LA) were calculated for three points, namely, near slab–pinewood interfaces (6 and 18 cm depths) and 10 cm depth in SPS phantom and at the same depths in SP34 phantom. Density of pinewood, SP34 slabs, chest wall, lung, and soft tissue behind lung was measured as 0.329 ± 0.08, 0.999 ± 0.02, 0.898 ± 0.02, 0.291 ± 0.12, and 1.002 ± 0.03 g/cc, respectively. Depths of 100% and 90% isodose curves in all the three sets of CT images were found to be similar. Depths of 80%, 70%, 60%, 50%, and 40% isodose lines in SPS phantom images were found to be equivalent to that in chest images, while it was least in SP34 phantom images. Variations in doses calculated at 6, 10, and 18 cm depths on TPS and measured on LA were found to be 0.36%, 1.65%, and 2.23%, respectively, in case of SPS phantom, while 0.24%, 0.90%, and 0.93%, respectively, in case of SP34 slab phantom. SPS phantom seemed equivalent to the chest level of human body. Dosimetric results of this study indicate that patient-specific quality assurance can be done using chest phantom mimicking thoracic region of human body, which has been fabricated using polystyrene and pinewood. PMID:28706353
Scattered Dose Calculations and Measurements in a Life-Like Mouse Phantom
Welch, David; Turner, Leah; Speiser, Michael; Randers-Pehrson, Gerhard; Brenner, David J.
2017-01-01
Anatomically accurate phantoms are useful tools for radiation dosimetry studies. In this work, we demonstrate the construction of a new generation of life-like mouse phantoms in which the methods have been generalized to be applicable to the fabrication of any small animal. The mouse phantoms, with built-in density inhomogeneity, exhibit different scattering behavior dependent on where the radiation is delivered. Computer models of the mouse phantoms and a small animal irradiation platform were devised in Monte Carlo N-Particle code (MCNP). A baseline test replicating the irradiation system in a computational model shows minimal differences from experimental results from 50 Gy down to 0.1 Gy. We observe excellent agreement between scattered dose measurements and simulation results from X-ray irradiations focused at either the lung or the abdomen within our phantoms. This study demonstrates the utility of our mouse phantoms as measurement tools with the goal of using our phantoms to verify complex computational models. PMID:28140787
NASA Astrophysics Data System (ADS)
Chatelin, Simon; Bernal, Miguel; Deffieux, Thomas; Papadacci, Clément; Flaud, Patrice; Nahas, Amir; Boccara, Claude; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu
2014-11-01
Shear wave elastography imaging techniques provide quantitative measurement of soft tissues elastic properties. Tendons, muscles and cerebral tissues are composed of fibers, which induce a strong anisotropic effect on the mechanical behavior. Currently, these tissues cannot be accurately represented by existing elastography phantoms. Recently, a novel approach for orthotropic hydrogel mimicking soft tissues has been developed (Millon et al 2006 J. Biomed. Mater. Res. B 305-11). The mechanical anisotropy is induced in a polyvinyl alcohol (PVA) cryogel by stretching the physical crosslinks of the polymeric chains while undergoing freeze/thaw cycles. In the present study we propose an original multimodality imaging characterization of this new transverse isotropic (TI) PVA hydrogel. Multiple properties were investigated using a large variety of techniques at different scales compared with an isotropic PVA hydrogel undergoing similar imaging and rheology protocols. The anisotropic mechanical (dynamic and static) properties were studied using supersonic shear wave imaging technique, full-field optical coherence tomography (FFOCT) strain imaging and classical linear rheometry using dynamic mechanical analysis. The anisotropic optical and ultrasonic spatial coherence properties were measured by FFOCT volumetric imaging and backscatter tensor imaging, respectively. Correlation of mechanical and optical properties demonstrates the complementarity of these techniques for the study of anisotropy on a multi-scale range as well as the potential of this TI phantom as fibrous tissue-mimicking phantom for shear wave elastographic applications.
Design and validation of a mathematical breast phantom for contrast-enhanced digital mammography
NASA Astrophysics Data System (ADS)
Hill, Melissa L.; Mainprize, James G.; Jong, Roberta A.; Yaffe, Martin J.
2011-03-01
In contrast-enhanced digital mammography (CEDM) an iodinated contrast agent is employed to increase lesion contrast and to provide tissue functional information. Here, we present the details of a software phantom that can be used as a tool for the simulation of CEDM images, and compare the degree of anatomic noise present in images simulated using the phantom to that associated with breast parenchyma in clinical CEDM images. Such a phantom could be useful for multiparametric investigations including characterization of CEDM imaging performance and system optimization. The phantom has a realistic mammographic appearance based on a clustered lumpy background and models contrast agent uptake according to breast tissue physiology. Fifty unique phantoms were generated and used to simulate regions of interest (ROI) of pre-contrast images and logarithmically subtracted CEDM images using monoenergetic ray tracing. Power law exponents, β, were used as a measure of anatomic noise and were determined using a linear least-squares fit to log-log plots of the square of the modulus of radially averaged image power spectra versus spatial frequency. The power spectra for ROI selected from regions of normal parenchyma in 10 pairs of clinical CEDM pre-contrast and subtracted images were also measured for comparison with the simulated images. There was good agreement between the measured β in the simulated CEDM images and the clinical images. The values of β were consistently lower for the logarithmically subtracted CEDM images compared to the pre-contrast images, indicating that the subtraction process reduced anatomical noise.
A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.
Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A
2010-12-01
Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
A study of surface dosimetry for breast cancer radiotherapy treatments using Gafchromic EBT2 film
Hill, Robin F.; Whitaker, May; Kim, Jung‐Ha; Kuncic, Zdenka
2012-01-01
The present study quantified surface doses on several rectangular phantom setups and on curved surface phantoms for a 6 MV photon field using the Attix parallel‐plate chamber and Gafchromic EBT2 film. For the rectangular phantom setups, the surface doses on a homogenous water equivalent phantom and a water equivalent phantom with 60 mm thick lung equivalent material were measured. The measurement on the homogenous phantom setup showed consistency in surface and near‐surface doses between an open field and enhanced dynamic wedge (EDW) fields, whereas physical wedged fields showed small differences. Surface dose measurements made using the EBT2 film showed good agreement with results of the Attix chamber and results obtained in previous studies which used other dosimeters within the measurement uncertainty of 3.3%. The surface dose measurements on the phantom setup with lung equivalent material showed a small increase without bolus and up to 6.9% increase with bolus simulating the increase of chest wall thickness. Surface doses on the cylindrical CT phantom and customized Perspex chest phantom were measured using the EBT2 film with and without bolus. The results indicate the important role of the presence of bolus if the clinical target volume (CTV) is quite close to the surface. Measurements on the cylindrical phantom suggest that surface doses at the oblique positions of 60° and 90° are mainly caused by the lateral scatter from the material inside the phantom. In the case of a single tangential irradiation onto Perspex chest phantom, the distribution of the surface dose with and without bolus materials showed opposing inclination patterns, whereas the dose distribution for two opposed tangential fields gave symmetric dose distribution. This study also demonstrates the suitability of Gafchromic EBT2 film for surface dose measurements in megavoltage photon beams. PACS number: 87.53.Bn PMID:22584169
Analysis of intensity variability in multislice and cone beam computed tomography.
Nackaerts, Olivia; Maes, Frederik; Yan, Hua; Couto Souza, Paulo; Pauwels, Ruben; Jacobs, Reinhilde
2011-08-01
The aim of this study was to evaluate the variability of intensity values in cone beam computed tomography (CBCT) imaging compared with multislice computed tomography Hounsfield units (MSCT HU) in order to assess the reliability of density assessments using CBCT images. A quality control phantom was scanned with an MSCT scanner and five CBCT scanners. In one CBCT scanner, the phantom was scanned repeatedly in the same and in different positions. Images were analyzed using registration to a mathematical model. MSCT images were used as a reference. Density profiles of MSCT showed stable HU values, whereas in CBCT imaging the intensity values were variable over the profile. Repositioning of the phantom resulted in large fluctuations in intensity values. The use of intensity values in CBCT images is not reliable, because the values are influenced by device, imaging parameters and positioning. © 2011 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Marshall, Emily L.; Borrego, David; Tran, Trung; Fudge, James C.; Bolch, Wesley E.
2018-03-01
Epidemiologic data demonstrate that pediatric patients face a higher relative risk of radiation induced cancers than their adult counterparts at equivalent exposures. Infants and children with congenital heart defects are a critical patient population exposed to ionizing radiation during life-saving procedures. These patients will likely incur numerous procedures throughout their lifespan, each time increasing their cumulative radiation absorbed dose. As continued improvements in long-term prognosis of congenital heart defect patients is achieved, a better understanding of organ radiation dose following treatment becomes increasingly vital. Dosimetry of these patients can be accomplished using Monte Carlo radiation transport simulations, coupled with modern anatomical patient models. The aim of this study was to evaluate the performance of the University of Florida/National Cancer Institute (UF/NCI) pediatric hybrid computational phantom library for organ dose assessment of patients that have undergone fluoroscopically guided cardiac catheterizations. In this study, two types of simulations were modeled. A dose assessment was performed on 29 patient-specific voxel phantoms (taken as representing the patient’s true anatomy), height/weight-matched hybrid library phantoms, and age-matched reference phantoms. Two exposure studies were conducted for each phantom type. First, a parametric study was constructed by the attending pediatric interventional cardiologist at the University of Florida to model the range of parameters seen clinically. Second, four clinical cardiac procedures were simulated based upon internal logfiles captured by a Toshiba Infinix-i Cardiac Bi-Plane fluoroscopic unit. Performance of the phantom library was quantified by computing both the percent difference in individual organ doses, as well as the organ dose root mean square values for overall phantom assessment between the matched phantoms (UF/NCI library or reference) and the patient-specific phantoms. The UF/NCI hybrid phantoms performed at percent differences of between 15% and 30% for the parametric set of irradiation events. Among internal logfile reconstructed procedures, the UF/NCI hybrid phantoms performed with RMS organ dose values between 7% and 29%. Percent improvement in organ dosimetry via the use of hybrid library phantoms over the reference phantoms ranged from 6.6% to 93%. The use of a hybrid phantom library, Monte Carlo radiation transport methods, and clinical information on irradiation events provide a means for tracking organ dose in these radiosensitive patients undergoing fluoroscopically guided cardiac procedures. This work was supported by Advanced Laboratory for Radiation Dosimetry Studies, University of Florida, American Association of University Women, National Cancer Institute Grant 1F31 CA159464.
NASA Astrophysics Data System (ADS)
Nagamatsu, Aiko; Tolochek, Raisa; Shurshakov, Vyacheslav; Nikolaev, Igor; Tawara, Hiroko; Kitajo, Keiichi; Shimada, Ken
The measurement of radiation environmental parameters in space is essential to support radiation risk assessments for astronauts and establish a benchmark for space radiation models for present and future human space activities. Since Japanese Experiment Module ‘KIBO’ was attached to the International Space Station (ISS) in 2008, we have been performing continuous space radiation dosimetery using a PADLES (Passive Dosimeter for Life-Science Experiments in Space) consisting of CR-39 PNTDs (Plastic Nuclear track detectors) and TLD-MSOs (Mg2SiO4:Tb) for various space experiments onboard the ‘KIBO’ part of the ISS. The MATROSHKA-R experiments aims to verify of dose distributions in a human body during space flight. The phantom consists of tissue equivalent material covered by a poncho jacket with 32 pockets on the surface. 20 container rods with dosimeters can be struck into the spherical phantom. Its diameter is 370 mm and it is 32 kg in weight. The first experiment onboard the KIBO at Forward No.2 area (JPM1F2 Rack2) was conducted over 114 days from 21 May to 12 September 2012 (the installation schedule inside the phantom) on the way to solar cycle 24th upward curve. 16 PADLES packages were deployed into 16 poncho pockets on the surface of the spherical phantom. Another 12 PADLES packages were deployed inside 4 rods (3 packages per rod in the outer, middle and inner side). Area monitoring in the KIBO was conducted in the same period (Area PADLES series #8 from 15 May to 16 September, 2012). Absorbed doses were measured at 17 area monitoring points in the KIBO and 28 locations (16 packages in poncho pockets and 12 inside 4 rods) in the phantom. The maximum value measured with the PADLES in the poncho pockets on the surface of the spherical phantom facing the outer wall was 0.43 mGy/day and the minimum value measured with the PADLES in the poncho pockets on the surface of the spherical phantom facing the KIBO interior was 0.30 mGy/day. The maximum absorbed doses measured inside rods was 0.28 mGy/day and the minimum value was 0.19 mGy/day. This indicates doses measured from the dosimeters placed in the outer side of each rod are relatively high compared to the doses placed in the center of rod. At this time, we also would like to show the preliminary results of comparative study between measured and Simulated Radiation Doses using the Particle and Heavy Ion Transport code System (PHITS) calculations with well developed shielding model of the KIBO and numerical spherical phantom inside.
NASA Astrophysics Data System (ADS)
Perrot, Y.; Degoul, F.; Auzeloux, P.; Bonnet, M.; Cachin, F.; Chezal, J. M.; Donnarieix, D.; Labarre, P.; Moins, N.; Papon, J.; Rbah-Vidal, L.; Vidal, A.; Miot-Noirault, E.; Maigne, L.
2014-05-01
The GATE Monte Carlo simulation platform based on the Geant4 toolkit is under constant improvement for dosimetric calculations. In this study, we explore its use for the dosimetry of the preclinical targeted radiotherapy of melanoma using a new specific melanin-targeting radiotracer labeled with iodine 131. Calculated absorbed fractions and S values for spheres and murine models (digital and CT-scan-based mouse phantoms) are compared between GATE and EGSnrc Monte Carlo codes considering monoenergetic electrons and the detailed energy spectrum of iodine 131. The behavior of Geant4 standard and low energy models is also tested. Following the different authors’ guidelines concerning the parameterization of electron physics models, this study demonstrates an agreement of 1.2% and 1.5% with EGSnrc, respectively, for the calculation of S values for small spheres and mouse phantoms. S values calculated with GATE are then used to compute the dose distribution in organs of interest using the activity distribution in mouse phantoms. This study gives the dosimetric data required for the translation of the new treatment to the clinic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruschin, Mark, E-mail: Mark.Ruschin@sunnybrook.ca; Chin, Lee; Ravi, Ananth
Purpose: To develop a multipurpose gel-based breast phantom consisting of a simulated tumor with realistic imaging properties in CT, ultrasound and MRI, or a postsurgical cavity on CT. Applications for the phantom include: deformable image registration (DIR) quality assurance (QA), autosegmentation validation, and localization testing and training for minimally invasive image-guided procedures such as those involving catheter or needle insertion. Methods: A thermoplastic mask of a typical breast patient lying supine was generated and then filled to make an array of phantoms. The background simulated breast tissue consisted of 32.4 g each of ballistic gelatin (BG) powder and Metamusil™ (MM)more » dissolved in 800 ml of water. Simulated tumors were added using the following recipe: 12 g of barium sulfate (1.4% v/v) plus 0.000 14 g copper sulfate plus 0.7 g of MM plus 7.2 g of BG all dissolved in 75 ml of water. The phantom was evaluated quantitatively in CT by comparing Hounsfield units (HUs) with actual breast tissue. For ultrasound and MRI, the phantoms were assessed based on subjective image quality and signal-difference to noise (SDNR) ratio, respectively. The stiffness of the phantom was evaluated based on ultrasound elastography measurements to yield an average Young’s modulus. In addition, subjective tactile assessment of phantom was performed under needle insertion. Results: The simulated breast tissue had a mean background value of 24 HU on CT imaging, which more closely resembles fibroglandular tissue (40 HU) as opposed to adipose (−100 HU). The tumor had a mean CT number of 45 HU, which yielded a qualitatively realistic image contrast relative to the background either as an intact tumor or postsurgical cavity. The tumor appeared qualitatively realistic on ultrasound images, exhibiting hypoechoic characteristics compared to background. On MRI, the tumor exhibited a SDNR of 3.7. The average Young’s modulus was computed to be 15.8 ± 0.7 kPa (1 SD). Conclusions: We have developed a process to efficiently and inexpensively produce multipurpose breast phantoms containing simulated tumors visible on CT, ultrasound, and MRI. The phantoms have been evaluated for image quality and elasticity and can serve as a medium for DIR QA, autosegmentation QA, and training for minimally invasive procedures.« less
Using an external gating signal to estimate noise in PET with an emphasis on tracer avid tumors
NASA Astrophysics Data System (ADS)
Schmidtlein, C. R.; Beattie, B. J.; Bailey, D. L.; Akhurst, T. J.; Wang, W.; Gönen, M.; Kirov, A. S.; Humm, J. L.
2010-10-01
The purpose of this study is to establish and validate a methodology for estimating the standard deviation of voxels with large activity concentrations within a PET image using replicate imaging that is immediately available for use in the clinic. To do this, ensembles of voxels in the averaged replicate images were compared to the corresponding ensembles in images derived from summed sinograms. In addition, the replicate imaging noise estimate was compared to a noise estimate based on an ensemble of voxels within a region. To make this comparison two phantoms were used. The first phantom was a seven-chamber phantom constructed of 1 liter plastic bottles. Each chamber of this phantom was filled with a different activity concentration relative to the lowest activity concentration with ratios of 1:1, 1:1, 2:1, 2:1, 4:1, 8:1 and 16:1. The second phantom was a GE Well-Counter phantom. These phantoms were imaged and reconstructed on a GE DSTE PET/CT scanner with 2D and 3D reprojection filtered backprojection (FBP), and with 2D- and 3D-ordered subset expectation maximization (OSEM). A series of tests were applied to the resulting images that showed that the region and replicate imaging methods for estimating standard deviation were equivalent for backprojection reconstructions. Furthermore, the noise properties of the FBP algorithms allowed scaling the replicate estimates of the standard deviation by a factor of 1/\\sqrt{N}, where N is the number of replicate images, to obtain the standard deviation of the full data image. This was not the case for OSEM image reconstruction. Due to nonlinearity of the OSEM algorithm, the noise is shown to be both position and activity concentration dependent in such a way that no simple scaling factor can be used to extrapolate noise as a function of counts. The use of the Well-Counter phantom contributed to the development of a heuristic extrapolation of the noise as a function of radius in FBP. In addition, the signal-to-noise ratio for high uptake objects was confirmed to be higher with backprojection image reconstruction methods. These techniques were applied to several patient data sets acquired in either 2D or 3D mode, with 18F (FLT and FDG). Images of the standard deviation and signal-to-noise ratios were constructed and the standard deviations of the tumors' uptake were determined. Finally, a radial noise extrapolation relationship deduced in this paper was applied to patient data.
Comparison of Two Electromagnetic Navigation Systems For CT-Guided Punctures: A Phantom Study.
Putzer, D; Arco, D; Schamberger, B; Schanda, F; Mahlknecht, J; Widmann, G; Schullian, P; Jaschke, W; Bale, R
2016-05-01
We compared the targeting accuracy and reliability of two different electromagnetic navigation systems for manually guided punctures in a phantom. CT data sets of a gelatin filled plexiglass phantom were acquired with 1, 3, and 5 mm slice thickness. After paired-point registration of the phantom, a total of 480 navigated stereotactic needle insertions were performed manually using electromagnetic guidance with two different navigation systems (Medtronic Stealth Station: AxiEM; Philips: PercuNav). A control CT was obtained to measure the target positioning error between the planned and actual needle trajectory. Using the Philips PercuNav, the accomplished Euclidean distances were 4.42 ± 1.33 mm, 4.26 ± 1.32 mm, and 4.46 ± 1.56 mm at a slice thickness of 1, 3, and 5 mm, respectively. The mean lateral positional errors were 3.84 ± 1.59 mm, 3.84 ± 1.43 mm, and 3.81 ± 1.71 mm, respectively. Using the Medtronic Stealth Station AxiEM, the Euclidean distances were 3.86 ± 2.28 mm, 3.74 ± 2.1 mm, and 4.81 ± 2.07 mm at a slice thickness of 1, 3, and 5 mm, respectively. The mean lateral positional errors were 3.29 ± 1.52 mm, 3.16 ± 1.52 mm, and 3.93 ± 1.68 mm, respectively. Both electromagnetic navigation devices showed excellent results regarding puncture accuracy in a phantom model. The Medtronic Stealth Station AxiEM provided more accurate results in comparison to the Philips PercuNav for CT with 3 mm slice thickness. One potential benefit of electromagnetic navigation devices is the absence of visual contact between the instrument and the sensor system. Due to possible interference with metal objects, incorrect position sensing may occur. In contrast to the phantom study, patient movement including respiration has to be compensated for in the clinical setting. • Commercially available electromagnetic navigation systems have the potential to improve the therapeutic range for CT guided percutaneous procedures by comparing the needle placement accuracy on the basis of planning CT data sets with different slice thickness. Citation Format: • Putzer D, Arco D, Schamberger B et al. Comparison of Two Electromagnetic Navigation Systems For CT-Guided Punctures: A Phantom Study. Fortschr Röntgenstr 2016; 188: 470 - 478. © Georg Thieme Verlag KG Stuttgart · New York.
3D printed phantoms of retinal photoreceptor cells for evaluating adaptive optics imaging modalities
NASA Astrophysics Data System (ADS)
Kedia, Nikita; Liu, Zhuolin; Sochol, Ryan; Hammer, Daniel X.; Agrawal, Anant
2018-02-01
Adaptive optics-enabled optical coherence tomography (AO-OCT) and scanning laser ophthalmoscopy (AO-SLO) devices can resolve retinal cones and rods in three dimensions. To evaluate the improved resolution of AO-OCT and AO-SLO, a phantom that mimics retinal anatomy at the cellular level is required. We used a two-photon polymerization approach to fabricate three-dimensional (3D) photoreceptor phantoms modeled on the central foveal cones. By using a femtosecond laser to selectively photocure precise locations within a liquid-based photoresist via two-photon absorption, we produced high-resolution phantoms with μm-level dimensions similar to true anatomy. In this work, we present two phantoms to evaluate the resolution limits of an AO imaging system: one that models only the outer segments of the photoreceptor cells at varying retinal eccentricities and another that contains anatomically relevant features of the full-length photoreceptor. With these phantoms we are able to quantitatively estimate transverse resolution of an AO system and produce images that are comparable to those found in the human retina.
Tseng, Hsien-Chun; Pan, Lung-Kang; Chen, Hsin-Yu; Liu, Wen-Shan; Hsu, Chang-Chieh; Chen, Chien-Yi
2015-01-01
This study is the first to use 10- to 90-kg tissue-equivalent phantoms as patient surrogates to measure peripheral skin doses (Dskin) in lung cancer treatment through Volumetric Modulated Arc Therapy of the Axesse linac. Five tissue-equivalent and Rando phantoms were used to simulate lung cancer patients using the thermoluminescent dosimetry (TLD-100H) approach. TLD-100H was calibrated using 6 MV photons coming from the Axesse linac. Then it was inserted into phantom positions that closely corresponded with the position of the represented organs and tissues. TLDs were measured using the Harshaw 3500 TLD reader. The ICRP 60 evaluated the mean Dskin to the lung cancer for 1 fraction (7 Gy) undergoing VMAT. The Dskin of these phantoms ranged from 0.51±0.08 (10-kg) to 0.22±0.03 (90-kg) mSv/Gy. Each experiment examined the relationship between the Dskin and the distance from the treatment field. These revealed strong variations in positions close to the tumor center. The correlation between Dskin and body weight was Dskin (mSv) = -0.0034x + 0.5296, where x was phantom's weight in kg. R2 is equal to 0.9788. This equation can be used to derive an equation for lung cancer in males. Finally, the results are compared to other published research. These findings are pertinent to patients, physicians, radiologists, and the public.
ENERGY AND ANGULAR DEPENDENCE OF RADIOPHOTOLUMINESCENT GLASS DOSEMETERS FOR EYE LENS DOSIMETRY.
Silva, E H; Knežević, Ž; Struelens, L; Covens, P; Ueno, S; Vanhavere, F; Buls, N
2016-09-01
Recent studies demonstrated that lens opacities can occur at lower radiation doses than previously accepted. In view of these studies, the International Commission of Radiological Protection recommended in 2011 to reduce the eye lens dose limit from 150 mSv/y to 20 mSv/y. This implies in the need of monitoring doses received by the eye lenses. In this study, small rod radiophotoluminescent glass dosemeters (GD-300 series; AGC, Japan) were characterized in terms of their energy (ISO 4037 X-rays narrow spectrum series, S-Cs and S-Co) and angular dependence (0 up to 90 degrees, with 2 ISO energies: N-60 and S-Cs). All acquisitions were performed at SCK•CEN-Belgium, using the ORAMED proposed cylindrical phantom. For selected energies (N-60, N-80, N-100, N-120 and N-250), the response of dosemeters irradiated on the ISO water slab phantom, at the Ruđer Bošković Institute-Croatia, was compared to those irradiated on the cylindrical phantom. GD-300 series showed good energy dependence, relative to S-Cs, on the cylindrical phantom. From 0 up to 45 degrees, the dosemeters showed no significant angular dependence, regardless whether they were tested when placed vertically or horizontally on the cylindrical phantom. However, at higher angles, some angular dependence was observed, mainly when the dosemeters were irradiated with low-energy photons (N-60). Results showed that GD-300 series have good properties related to Hp(3), although some improvements may be necessary. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Janssen, Karmon M; Brand, Timothy C; Cunitz, Bryan W; Wang, Yak-Nam; Simon, Julianna C; Starr, Frank; Liggitt, H Denny; Thiel, Jeff; Sorensen, Mathew D; Harper, Jonathan D; Bailey, Michael R; Dunmire, Barbrina
2017-08-01
In the first-in-human trial of ultrasonic propulsion, subjects passed collections of residual stone fragments repositioned with a C5-2 probe. Here, effectiveness and safety in moving multiple fragments are compared between the C5-2 and a custom (SC-50) probe that produces a longer focal beam and burst duration. Effectiveness was quantified by the number of stones expelled from a calyx phantom consisting of a 30-mm deep, water-filled well in a block of tissue mimicking material. Each probe was positioned below the phantom to move stones against gravity. Single propulsion bursts of 50 ms or 3 s duration were applied to three separate targets: 10 fragments of 2 different sizes (1-2 and 2-3 mm) and a single 4 × 7 mm human stone. Safety studies consisted of porcine kidneys exposed to an extreme dose of 10-minute burst duration, including a 7-day survival study and acute studies with surgically implanted stones. Although successful in the clinical trial, the shorter focal beam and maximum 50 ms burst duration of the C5-2 probe moved stones, but did not expel any stones from the phantom's 30-mm deep calyx. The results were similar with the SC-50 probe under the same 50 ms burst duration. Longer (3 s) bursts available with the SC-50 probe expelled all stones at both 4.5 and 9.5 cm "skin-to-stone" depths with lower probe heating compared to the C5-2. No abnormal behavior, urine chemistry, serum chemistry, or histological findings were observed within the kidney or surrounding tissues for the 10 min burst duration used in the animal studies. A longer focal beam and burst duration improved expulsion of a stone and multiple stone fragments from a phantom over a broad range of clinically relevant penetration depths and did not cause kidney injury in animal studies.
Jafar, Maysam M; Parsai, Arman; Miquel, Marc E
2016-01-01
There is considerable disparity in the published apparent diffusion coefficient (ADC) values across different anatomies. Institutions are increasingly assessing repeatability and reproducibility of the derived ADC to determine its variation, which could potentially be used as an indicator in determining tumour aggressiveness or assessing tumour response. In this manuscript, a review of selected articles published to date in healthy extra-cranial body diffusion-weighted magnetic resonance imaging is presented, detailing reported ADC values and discussing their variation across different studies. In total 115 studies were selected including 28 for liver parenchyma, 15 for kidney (renal parenchyma), 14 for spleen, 13 for pancreatic body, 6 for gallbladder, 13 for prostate, 13 for uterus (endometrium, myometrium, cervix) and 13 for fibroglandular breast tissue. Median ADC values in selected studies were found to be 1.28 × 10-3 mm2/s in liver, 1.94 × 10-3 mm2/s in kidney, 1.60 × 10-3 mm2/s in pancreatic body, 0.85 × 10-3 mm2/s in spleen, 2.73 × 10-3 mm2/s in gallbladder, 1.64 × 10-3 mm2/s and 1.31 × 10-3 mm2/s in prostate peripheral zone and central gland respectively (combined median value of 1.54×10-3 mm2/s), 1.44 × 10-3 mm2/s in endometrium, 1.53 × 10-3 mm2/s in myometrium, 1.71 × 10-3 mm2/s in cervix and 1.92 × 10-3 mm2/s in breast. In addition, six phantom studies and thirteen in vivo studies were summarized to compare repeatability and reproducibility of the measured ADC. All selected phantom studies demonstrated lower intra-scanner and inter-scanner variation compared to in vivo studies. Based on the findings of this manuscript, it is recommended that protocols need to be optimised for the body part studied and that system-induced variability must be established using a standardized phantom in any clinical study. Reproducibility of the measured ADC must also be assessed in a volunteer population, as variations are far more significant in vivo compared with phantom studies. PMID:26834942
Dominant factor analysis of B-flow twinkling sign with phantom and simulation data.
Lu, Weijia; Haider, Bruno
2017-01-01
The twinkling sign in B-flow imaging (BFI-TS) has been reported in the literature to increase both specificity and sensitivity compared to the traditional gray-scale imaging. Unfortunately, there has been no conclusive study on the mechanism of this effect. In the study presented here, a comparative test on phantoms is introduced, where the variance of a phase estimator is used to quantify the motion amplitude. The statistical inference is employed later to find the dominate factor for the twinkling sign, which is proven by computer simulation. Through the analysis, it is confirmed that the tissue viscoelasticity is closely coupled with the twinkling sign. Moreover, the acoustic radiation force caused by tissue attenuation is found to be the trigger of the twinkling sign. Based on these findings, the BFI-TS is interpreted as a tissue movement triggering vibration of microcalcifications particle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lujano, C; Hernandez, N; Keith, T
Purpose: To describe the proton phantoms that IROC Houston uses to approve and credential proton institutions to participate in NCI-sponsored clinical trials. Methods: Photon phantoms cannot necessarily be used for proton measurements because protons react differently than photons in some plastics. As such plastics that are tissue equivalent for protons were identified. Another required alteration is to ensure that the film dosimeters are housed in the phantom with no air gap to avoid proton streaming. Proton-equivalent plastics/materials used include RMI Solid Water, Techron HPV, blue water, RANDO soft tissue material, balsa wood, compressed cork and polyethylene. Institutions wishing to bemore » approved or credentialed request a phantom and are prioritized for delivery. At the institution, the phantom is imaged, a treatment plan is developed, positioned on the treatment couch and the treatment is delivered. The phantom is returned and the measured dose distributions are compared to the institution’s electronically submitted treatment plan dosimetry data. Results: IROC Houston has developed an extensive proton phantom approval/credentialing program consisting of five different phantoms designs: head, prostate, lung, liver and spine. The phantoms are made with proton equivalent plastics that have HU and relative stopping powers similar (within 5%) of human tissues. They also have imageable targets, avoidance structures, and heterogeneities. TLD and radiochromic film are contained in the target structures. There have been 13 head, 33 prostate, 18 lung, 2 liver and 16 spine irradiations with either passive scatter, or scanned proton beams. The pass rates have been: 100%, 69.7%, 72.2%, 50%, and 81.3%, respectively. Conclusion: IROC Houston has responded to the recent surge in proton facilities by developing a family of anthropomorphic phantoms that are able to be used for remote audits of proton beams. Work supported by PHS grant CA10953 and CA081647.« less
Wu, C; de Jong, J R; Gratama van Andel, H A; van der Have, F; Vastenhouw, B; Laverman, P; Boerman, O C; Dierckx, R A J O; Beekman, F J
2011-09-21
Attenuation of photon flux on trajectories between the source and pinhole apertures affects the quantitative accuracy of reconstructed single-photon emission computed tomography (SPECT) images. We propose a Chang-based non-uniform attenuation correction (NUA-CT) for small-animal SPECT/CT with focusing pinhole collimation, and compare the quantitative accuracy with uniform Chang correction based on (i) body outlines extracted from x-ray CT (UA-CT) and (ii) on hand drawn body contours on the images obtained with three integrated optical cameras (UA-BC). Measurements in phantoms and rats containing known activities of isotopes were conducted for evaluation. In (125)I, (201)Tl, (99m)Tc and (111)In phantom experiments, average relative errors comparing to the gold standards measured in a dose calibrator were reduced to 5.5%, 6.8%, 4.9% and 2.8%, respectively, with NUA-CT. In animal studies, these errors were 2.1%, 3.3%, 2.0% and 2.0%, respectively. Differences in accuracy on average between results of NUA-CT, UA-CT and UA-BC were less than 2.3% in phantom studies and 3.1% in animal studies except for (125)I (3.6% and 5.1%, respectively). All methods tested provide reasonable attenuation correction and result in high quantitative accuracy. NUA-CT shows superior accuracy except for (125)I, where other factors may have more impact on the quantitative accuracy than the selected attenuation correction.
Virtual phantom magnetic resonance imaging (ViP MRI) on a clinical MRI platform.
Saint-Jalmes, Hervé; Bordelois, Alejandro; Gambarota, Giulio
2018-01-01
The purpose of this study was to implement Virtual Phantom Magnetic Resonance Imaging (ViP MRI), a technique that allows for generating reference signals in MR images using radiofrequency (RF) signals, on a clinical MR system and to test newly designed virtual phantoms. MRI experiments were conducted on a 1.5 T MRI scanner. Electromagnetic modelling of the ViP system was done using the principle of reciprocity. The ViP RF signals were generated using a compact waveform generator (dimensions of 26 cm × 18 cm × 16 cm), connected to a homebuilt 25 mm-diameter RF coil. The ViP RF signals were transmitted to the MRI scanner bore, simultaneously with the acquisition of the signal from the object of interest. Different types of MRI data acquisition (2D and 3D gradient-echo) as well as different phantoms, including the Shepp-Logan phantom, were tested. Furthermore, a uniquely designed virtual phantom - in the shape of a grid - was generated; this newly proposed phantom allows for the investigations of the vendor distortion correction field. High quality MR images of virtual phantoms were obtained. An excellent agreement was found between the experimental data and the inverse cube law, which was the expected functional dependence obtained from the electromagnetic modelling of the ViP system. Short-term time stability measurements yielded a coefficient of variation in the signal intensity over time equal to 0.23% and 0.13% for virtual and physical phantom, respectively. MR images of the virtual grid-shaped phantom were reconstructed with the vendor distortion correction; this allowed for a direct visualization of the vendor distortion correction field. Furthermore, as expected from the electromagnetic modelling of the ViP system, a very compact coil (diameter ~ cm) and very small currents (intensity ~ mA) were sufficient to generate a signal comparable to that of physical phantoms in MRI experiments. The ViP MRI technique was successfully implemented on a clinical MR system. One of the major advantages of ViP MRI over previous approaches is that the generation and transmission of RF signals can be achieved with a self-contained apparatus. As such, the ViP MRI technique is transposable to different platforms (preclinical and clinical) of different vendors. It is also shown here that ViP MRI could be used to generate signals whose characteristics cannot be reproduced by physical objects. This could be exploited to assess MRI system properties, such as the vendor distortion correction field. © 2017 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudobivnik, Nace; Dedes, George; Parodi, Katia
2016-01-15
Purpose: Dual energy CT (DECT) has recently been proposed as an improvement over single energy CT (SECT) for stopping power ratio (SPR) estimation for proton therapy treatment planning (TP), thereby potentially reducing range uncertainties. Published literature investigated phantoms. This study aims at performing proton therapy TP on SECT and DECT head images of the same patients and at evaluating whether the reported improved DECT SPR accuracy translates into clinically relevant range shifts in clinical head treatment scenarios. Methods: Two phantoms were scanned at a last generation dual source DECT scanner at 90 and 150 kVp with Sn filtration. The firstmore » phantom (Gammex phantom) was used to calibrate the scanner in terms of SPR while the second served as evaluation (CIRS phantom). DECT images of five head trauma patients were used as surrogate cancer patient images for TP of proton therapy. Pencil beam algorithm based TP was performed on SECT and DECT images and the dose distributions corresponding to the optimized proton plans were calculated using a Monte Carlo (MC) simulation platform using the same patient geometry for both plans obtained from conversion of the 150 kVp images. Range shifts between the MC dose distributions from SECT and DECT plans were assessed using 2D range maps. Results: SPR root mean square errors (RMSEs) for the inserts of the Gammex phantom were 1.9%, 1.8%, and 1.2% for SECT phantom calibration (SECT{sub phantom}), SECT stoichiometric calibration (SECT{sub stoichiometric}), and DECT calibration, respectively. For the CIRS phantom, these were 3.6%, 1.6%, and 1.0%. When investigating patient anatomy, group median range differences of up to −1.4% were observed for head cases when comparing SECT{sub stoichiometric} with DECT. For this calibration the 25th and 75th percentiles varied from −2% to 0% across the five patients. The group median was found to be limited to 0.5% when using SECT{sub phantom} and the 25th and 75th percentiles varied from −1% to 2%. Conclusions: Proton therapy TP using a pencil beam algorithm and DECT images was performed for the first time. Given that the DECT accuracy as evaluated by two phantoms was 1.2% and 1.0% RMSE, it is questionable whether the range differences reported here are significant.« less
NASA Astrophysics Data System (ADS)
Campo, Adriaan; Dudzik, Grzegorz; Apostolakis, Jason; Waz, Adam; Nauleau, Pierre; Abramski, Krzysztof; Dirckx, Joris; Konofagou, Elisa
2017-10-01
The aim of this work, was to compare pulse wave velocity (PWV) measurements using Laser Doppler vibrometry (LDV) and the more established ultrasound-based pulse wave imaging (PWI) in smooth vessels. Additionally, it was tested whether changes in phantom structure can be detected using LDV in vessels containing a local hardening of the vessel wall. Results from both methods showed good agreement illustrated by the non-parametric Spearman correlation analysis (Spearman-ρ = 1 and p< 0.05) and the Bland-Altman analysis (mean bias of -0.63 m/s and limits of agreement between -0.35 and -0.90 m/s). The PWV in soft phantoms as measured with LDV was 1.30±0.40 m/s and the PWV in stiff phantoms was 3.6±1.4 m/s. The PWV values in phantoms with inclusions were in between those of soft and stiff phantoms. However, using LDV, given the low number of measurement beams, the exact locations of inclusions could not be determined, and the PWV in the inclusions could not be measured. In conclusion, this study indicates that the PWV as measured with PWI is in good agreement with the PWV measured with LDV although the latter technique has lower spatial resolution, fewer markers and larger distances between beams. In further studies, more LDV beams will be used to allow detection of local changes in arterial wall dynamics due to e.g. small inclusions or local hardenings of the vessel wall.
Wright, Gavin; Harrold, Natalie; Bownes, Peter
2018-01-01
Aims To compare the accuracies of the convolution and TMR10 Gamma Knife treatment planning algorithms, and assess the impact upon clinical practice of implementing convolution-based treatment planning. Methods Doses calculated by both algorithms were compared against ionisation chamber measurements in homogeneous and heterogeneous phantoms. Relative dose distributions calculated by both algorithms were compared against film-derived 2D isodose plots in a heterogeneous phantom, with distance-to-agreement (DTA) measured at the 80%, 50% and 20% isodose levels. A retrospective planning study compared 19 clinically acceptable metastasis convolution plans against TMR10 plans with matched shot times, allowing novel comparison of true dosimetric parameters rather than total beam-on-time. Gamma analysis and dose-difference analysis were performed on each pair of dose distributions. Results Both algorithms matched point dose measurement within ±1.1% in homogeneous conditions. Convolution provided superior point-dose accuracy in the heterogeneous phantom (-1.1% v 4.0%), with no discernible differences in relative dose distribution accuracy. In our study convolution-calculated plans yielded D99% 6.4% (95% CI:5.5%-7.3%,p<0.001) less than shot matched TMR10 plans. For gamma passing criteria 1%/1mm, 16% of targets had passing rates >95%. The range of dose differences in the targets was 0.2-4.6Gy. Conclusions Convolution provides superior accuracy versus TMR10 in heterogeneous conditions. Implementing convolution would result in increased target doses therefore its implementation may require a revaluation of prescription doses. PMID:29657896
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alkhatib, H; Oves, S
Purpose: To demonstrate a quick and comprehensive method verifying the accuracy of the updated dose model by recalculating dose distribution in an anthropomorphic phantom with a new version of the TPS and comparing the results to measured values. Methods: CT images and IMRT plan of an RPC anthropomorphic head phantom, previously calculated by Pinnacle 9.0, was re-computed using Pinnacle 9.2 and 9.6. The dosimeters within the phantom include four TLD capsules representing a primary PTV, two TLD capsules representing a secondary PTV, and two TLD capsules representing an organ at risk. Also included were three sheets of Gafchromic film. Performancemore » of the updated TPS version was assessed by recalculating point doses and dose profiles corresponding to TLD and film position respectively and then comparing the results to reported values by the RPC. Results: Comparing calculated doses to reported measured doses from the RPC yielded an average disagreement of 1.48%, 2.04% and 2.10% for versions 9.0, 9.2, 9.6 respectively. Computed doses points all meet the RPC's passing criteria with the exception of the point representing the superior organ at risk in version 9.6. However, qualitative analysis of the recalculated dose profiles showed improved agreement with those of the RPC, especially in the penumbra region. Conclusion: This work has demonstrated the calculation results of Pinnacle 9.2 and 9.6 vs 9.0 version. Additionally, this study illustrates a method for the user to gain confidence upgrade to a newer version of the treatment planning system.« less
Lee, Chang Kyung; Seo, Nieun; Kim, Bohyun; Huh, Jimi; Kim, Jeong Kon; Lee, Seung Soo; Kim, In Seong; Nickel, Dominik
2017-01-01
Objective To compare the breathing effects on dynamic contrast-enhanced (DCE)-MRI between controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE), radial VIBE with k-space-weighted image contrast view-sharing (radial-VIBE), and conventional VIBE (c-VIBE) sequences using a dedicated phantom experiment. Materials and Methods We developed a moving platform to simulate breathing motion. We conducted dynamic scanning on a 3T machine (MAGNETOM Skyra, Siemens Healthcare) using CAIPIRINHA-VIBE, radial-VIBE, and c-VIBE for six minutes per sequence. We acquired MRI images of the phantom in both static and moving modes, and we also obtained motion-corrected images for the motion mode. We compared the signal stability and signal-to-noise ratio (SNR) of each sequence according to motion state and used the coefficients of variation (CoV) to determine the degree of signal stability. Results With motion, CAIPIRINHA-VIBE showed the best image quality, and the motion correction aligned the images very well. The CoV (%) of CAIPIRINHA-VIBE in the moving mode (18.65) decreased significantly after the motion correction (2.56) (p < 0.001). In contrast, c-VIBE showed severe breathing motion artifacts that did not improve after motion correction. For radial-VIBE, the position of the phantom in the images did not change during motion, but streak artifacts significantly degraded image quality, also after motion correction. In addition, SNR increased in both CAIPIRINHA-VIBE (from 3.37 to 9.41, p < 0.001) and radial-VIBE (from 4.3 to 4.96, p < 0.001) after motion correction. Conclusion CAIPIRINHA-VIBE performed best for free-breathing DCE-MRI after motion correction, with excellent image quality. PMID:28246509
Subhas, Naveen; Polster, Joshua M; Obuchowski, Nancy A; Primak, Andrew N; Dong, Frank F; Herts, Brian R; Iannotti, Joseph P
2016-08-01
The purpose of this study was to compare iterative metal artifact reduction (iMAR), a new single-energy metal artifact reduction technique, with filtered back projection (FBP) in terms of attenuation values, qualitative image quality, and streak artifacts near shoulder and hip arthroplasties and observer ability with these techniques to detect pathologic lesions near an arthroplasty in a phantom model. Preoperative and postoperative CT scans of 40 shoulder and 21 hip arthroplasties were reviewed. All postoperative scans were obtained using the same technique (140 kVp, 300 quality reference mAs, 128 × 0.6 mm detector collimation) on one of three CT scanners and reconstructed with FBP and iMAR. The attenuation differences in bones and soft tissues between preoperative and postoperative scans at the same location were compared; image quality and streak artifact for both reconstructions were qualitatively graded by two blinded readers. Observer ability and confidence to detect lesions near an arthroplasty in a phantom model were graded. For both readers, iMAR had more accurate attenuation values (p < 0.001), qualitatively better image quality (p < 0.001), and less streak artifact (p < 0.001) in all locations near arthroplasties compared with FBP. Both readers detected more lesions (p ≤ 0.04) with higher confidence (p ≤ 0.01) with iMAR than with FBP in the phantom model. The iMAR technique provided more accurate attenuation values, better image quality, and less streak artifact near hip and shoulder arthroplasties than FBP; iMAR also increased observer ability and confidence to detect pathologic lesions near arthroplasties in a phantom model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, M; Finlay, J; Zhu, T
Purpose: Photosensitizer concentration during photodynamic therapy (PDT) is an important parameter for accurate dosimetry. Fluorescence signal can be used as a measure of photosensitizer concentration. Two methods of data acquisition were compared to an ex vivo study both for in vivo and phantom models. Methods: Fluorescence signal of commonly used photosensitizer benzoporphyrin derivative monoacid ring A (BPD) was obtained in phantoms and mouse tumors using an excitation light of 405 nm. Interstitial fluorescence signal was obtained using a side-cut fiber inserted into the tumor tissue of interest. Using a previously developed multi-fiber probe, tumor surface fluorescence measurements were also collected.more » Signals were calibrated according to optical phantoms with known sensitizer fluorescence. Optical properties for each sample were determined and the influence of different absorption and scattering properties on the fluorescence signals was investigated. Using single value decomposition of the spectra, the sensitizer concentration was determined using the two different measurement geometries. An ex vivo analysis was also performed for tumor samples to determine the sensitizer concentration. Results: The two fluorescence signals obtained from the surface multi-fiber probe and the interstitial measurements were compared and were corresponding for both phantoms and mouse models. The values obtained were comparable to the ex vivo measurements as well. Despite the difference in geometry, the surface probe measurements can still be used as a metric for determining the presence of sensitizer in small volume tumors. Conclusion: The multi-fiber contact probe can be used as a tool to measure fluorescence at the surface of the treatment area for PDT and predict sensitizer concentration throughout the tumor. This is advantageous in that the measurement does not damage any tissue. Future work will include investigating the dependence of these results on intratumor sensitizer distribution.« less
A dual cone-beam CT system for image guided radiotherapy: initial performance characterization.
Li, Hao; Giles, William; Bowsher, James; Yin, Fang-Fang
2013-02-01
The purpose of this study is to evaluate the performance of a recently developed benchtop dual cone-beam computed tomography (CBCT) system with two orthogonally placed tube∕detector sets. The benchtop dual CBCT system consists of two orthogonally placed 40 × 30 cm flat-panel detectors and two conventional x-ray tubes with two individual high-voltage generators sharing the same rotational axis. The x-ray source to detector distance is 150 cm and x-ray source to rotational axis distance is 100 cm for both subsystems. The objects are scanned through 200° of rotation. The dual CBCT system utilized 110° of projection data from one detector and 90° from the other while the two individual single CBCTs utilized 200° data from each detector. The system performance was characterized in terms of uniformity, contrast, spatial resolution, noise power spectrum, and CT number linearity. The uniformities, within the axial slice and along the longitudinal direction, and noise power spectrum were assessed by scanning a water bucket; the contrast and CT number linearity were measured using the Catphan phantom; and the spatial resolution was evaluated using a tungsten wire phantom. A skull phantom and a ham were also scanned to provide qualitative evaluation of high- and low-contrast resolution. Each measurement was compared between dual and single CBCT systems. Compared to single CBCT, the dual CBCT presented: (1) a decrease in uniformity by 1.9% in axial view and 1.1% in the longitudinal view, as averaged for four energies (80, 100, 125, and 150 kVp); (2) comparable or slightly better contrast (0∼25 HU) for low-contrast objects and comparable contrast for high-contrast objects; (3) comparable spatial resolution; (4) comparable CT number linearity with R(2) ≥ 0.99 for all four tested energies; (5) lower noise power spectrum in magnitude. Dual CBCT images of the skull phantom and the ham demonstrated both high-contrast resolution and good soft-tissue contrast. The performance of a benchtop dual CBCT imaging system has been characterized and is comparable to that of a single CBCT.
Resolution study of imaging in nanoparticle optical phantoms
NASA Astrophysics Data System (ADS)
Ortiz-Rascón, E.; Bruce, N. C.; Flores-Flores, J. O.; Sato-Berru, R.
2011-08-01
We present results of resolution and optical characterization studies of silicon dioxide nanoparticle solutions. These phantoms consist of spherical particles with a mean controlled diameter of 168 and 429 nm. The importance of this work lies in using these solutions to develop phantoms with optical properties that closely match those of human breast tissue at near-IR wavelengths, and also to compare different resolution criteria for imaging studies at these wavelengths. Characterization involves illuminating the solution with a laser beam transmitted through a recipient of known width containing the solution. Resulting intensity profiles from the light spot are measured as function of the detector position. Measured intensity profiles were fitted to the calculated profiles obtained from diffusion theory, using the method of images. Fitting results give us the absorption and transport scattering coefficients. These coefficients can be modified by changing the particle concentration of the solution. We found that these coefficients are the same order of magnitude as those of human tissue reported in published studies. The resolution study involves measuring the edge response function (ERF) for a mask embedded on the nanoparticle solutions and fitting it to the calculated ERF, obtaining the resolution for the Hebden, Sparrow and Bentzen criteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drzymala, R; Alvarez, P; Bednarz, G
2015-06-15
Purpose: The purpose of this multi-institutional study was to compare two new gamma stereotactic radiosurgery (GSRS) dosimetry protocols to existing calibration methods. The ultimate goal was to guide AAPM Task Group 178 in recommending a standard GSRS dosimetry protocol. Methods: Nine centers (ten GSRS units) participated in the study. Each institution made eight sets of dose rate measurements: six with two different ionization chambers in three different 160mm-diameter spherical phantoms (ABS plastic, Solid Water and liquid water), and two using the same ionization chambers with a custom in-air positioning jig. Absolute dose rates were calculated using a newly proposed formalismmore » by the IAEA working group for small and non-standard radiation fields and with a new air-kerma based protocol. The new IAEA protocol requires an in-water ionization chamber calibration and uses previously reported Monte-Carlo generated factors to account for the material composition of the phantom, the type of ionization chamber, and the unique GSRS beam configuration. Results obtained with the new dose calibration protocols were compared to dose rates determined by the AAPM TG-21 and TG-51 protocols, with TG-21 considered as the standard. Results: Averaged over all institutions, ionization chambers and phantoms, the mean dose rate determined with the new IAEA protocol relative to that determined with TG-21 in the ABS phantom was 1.000 with a standard deviation of 0.008. For TG-51, the average ratio was 0.991 with a standard deviation of 0.013, and for the new in-air formalism it was 1.008 with a standard deviation of 0.012. Conclusion: Average results with both of the new protocols agreed with TG-21 to within one standard deviation. TG-51, which does not take into account the unique GSRS beam configuration or phantom material, was not expected to perform as well as the new protocols. The new IAEA protocol showed remarkably good agreement with TG-21. Conflict of Interests: Paula Petti, Josef Novotny, Gennady Neyman and Steve Goetsch are consultants for Elekta Instrument A/B; Elekta Instrument AB, PTW Freiburg GmbH, Standard Imaging, Inc., and The Phantom Laboratory, Inc. loaned equipment for use in these experiments; The University of Wisconsin Accredited Dosimetry Calibration Laboratory provided calibration services.« less
Han, Min Cheol; Yeom, Yeon Soo; Lee, Hyun Su; Shin, Bangho; Kim, Chan Hyeong; Furuta, Takuya
2018-05-04
In this study, the multi-threading performance of the Geant4, MCNP6, and PHITS codes was evaluated as a function of the number of threads (N) and the complexity of the tetrahedral-mesh phantom. For this, three tetrahedral-mesh phantoms of varying complexity (simple, moderately complex, and highly complex) were prepared and implemented in the three different Monte Carlo codes, in photon and neutron transport simulations. Subsequently, for each case, the initialization time, calculation time, and memory usage were measured as a function of the number of threads used in the simulation. It was found that for all codes, the initialization time significantly increased with the complexity of the phantom, but not with the number of threads. Geant4 exhibited much longer initialization time than the other codes, especially for the complex phantom (MRCP). The improvement of computation speed due to the use of a multi-threaded code was calculated as the speed-up factor, the ratio of the computation speed on a multi-threaded code to the computation speed on a single-threaded code. Geant4 showed the best multi-threading performance among the codes considered in this study, with the speed-up factor almost linearly increasing with the number of threads, reaching ~30 when N = 40. PHITS and MCNP6 showed a much smaller increase of the speed-up factor with the number of threads. For PHITS, the speed-up factors were low when N = 40. For MCNP6, the increase of the speed-up factors was better, but they were still less than ~10 when N = 40. As for memory usage, Geant4 was found to use more memory than the other codes. In addition, compared to that of the other codes, the memory usage of Geant4 more rapidly increased with the number of threads, reaching as high as ~74 GB when N = 40 for the complex phantom (MRCP). It is notable that compared to that of the other codes, the memory usage of PHITS was much lower, regardless of both the complexity of the phantom and the number of threads, hardly increasing with the number of threads for the MRCP.
Vañó, Eliseo; Alejo, Luis; Ubeda, Carlos; Gutiérrez‐Larraya, Federico; Garayoa, Julia
2016-01-01
The aim of this study was to assess image quality and radiation dose of a biplane angiographic system with cone‐beam CT (CBCT) capability tuned for pediatric cardiac procedures. The results of this study can be used to explore dose reduction techniques. For pulsed fluoroscopy and cine modes, polymethyl methacrylate phantoms of various thicknesses and a Leeds TOR 18‐FG test object were employed. Various fields of view (FOV) were selected. For CBCT, the study employed head and body dose phantoms, Catphan 504, and an anthropomorphic cardiology phantom. The study also compared two 3D rotational angiography protocols. The entrance surface air kerma per frame increases by a factor of 3–12 when comparing cine and fluoroscopy frames. The biggest difference in the signal‐to‐noise ratio between fluoroscopy and cine modes occurs at FOV 32 cm because fluoroscopy is acquired at a 1440×1440 pixel matrix size and in unbinned mode, whereas cine is acquired at 720×720 pixels and in binned mode. The high‐contrast spatial resolution of cine is better than that of fluoroscopy, except for FOV 32 cm, because fluoroscopy mode with 32 cm FOV is unbinned. Acquiring CBCT series with a 16 cm head phantom using the standard dose protocol results in a threefold dose increase compared with the low‐dose protocol. Although the amount of noise present in the images acquired with the low‐dose protocol is much higher than that obtained with the standard mode, the images present better spatial resolution. A 1 mm diameter rod with 250 Hounsfield units can be distinguished in reconstructed images with an 8 mm slice width. Pediatric‐specific protocols provide lower doses while maintaining sufficient image quality. The system offers a novel 3D imaging mode. The acquisition of CBCT images results in increased doses administered to the patients, but also provides further diagnostic information contained in the volumetric images. The assessed CBCT protocols provide images that are noisy, but with very good spatial resolution. PACS number(s): 87.59.‐e, 87.59.‐C, 87.59.‐cf, 87.59.Dj, 87.57. uq PMID:27455474
Corredoira, Eva; Vañó, Eliseo; Alejo, Luis; Ubeda, Carlos; Gutiérrez-Larraya, Federico; Garayoa, Julia
2016-07-08
The aim of this study was to assess image quality and radiation dose of a biplane angiographic system with cone-beam CT (CBCT) capability tuned for pediatric cardiac procedures. The results of this study can be used to explore dose reduction techniques. For pulsed fluoroscopy and cine modes, polymethyl methacrylate phantoms of various thicknesses and a Leeds TOR 18-FG test object were employed. Various fields of view (FOV) were selected. For CBCT, the study employed head and body dose phantoms, Catphan 504, and an anthropomorphic cardiology phantom. The study also compared two 3D rotational angiography protocols. The entrance surface air kerma per frame increases by a factor of 3-12 when comparing cine and fluoroscopy frames. The biggest difference in the signal-to- noise ratio between fluoroscopy and cine modes occurs at FOV 32 cm because fluoroscopy is acquired at a 1440 × 1440 pixel matrix size and in unbinned mode, whereas cine is acquired at 720 × 720 pixels and in binned mode. The high-contrast spatial resolution of cine is better than that of fluoroscopy, except for FOV 32 cm, because fluoroscopy mode with 32 cm FOV is unbinned. Acquiring CBCT series with a 16 cm head phantom using the standard dose protocol results in a threefold dose increase compared with the low-dose protocol. Although the amount of noise present in the images acquired with the low-dose protocol is much higher than that obtained with the standard mode, the images present better spatial resolution. A 1 mm diameter rod with 250 Hounsfield units can be distinguished in reconstructed images with an 8 mm slice width. Pediatric-specific protocols provide lower doses while maintaining sufficient image quality. The system offers a novel 3D imaging mode. The acquisition of CBCT images results in increased doses administered to the patients, but also provides further diagnostic information contained in the volumetric images. The assessed CBCT protocols provide images that are noisy, but with very good spatial resolution. © 2016 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uehara, R; Tachibana, H
Purpose: There have been several publications focusing on dose calculation in lung for a new dose calculation algorithm of Acuros XB (AXB). AXB could contribute to dose calculation for high-density media for bone and dental prosthesis rather than in lung. We compared the dosimetric performance of AXB, Adaptive Convolve (AC) in head and neck IMRT plans. Methods: In a phantom study, the difference in depth profile between AXB and AC was evaluated using Kodak EDR2 film sandwiched with tough water phantoms. 6 MV x-ray using the TrueBeam was irradiated. In a patient study, 20 head and neck IMRT plans hadmore » been clinically approved in Pinnacle3 and were transferred to Eclipse. Dose distribution was recalculated using AXB in Eclipse while maintaining AC-calculated monitor units and MLC sequence planned in Pinnacle. Subsequently, both the dose-volumetric data obtained using the two different calculation algorithms were compared. Results: The results in the phantom evaluation for the shallow area ahead of the build-up region shows over-dose for AXB and under-dose for AC, respectively. In the patient plans, AXB shows more hot spots especially around the high-density media than AC in terms of PTV (Max difference: 4.0%) and OAR (Max. difference: 1.9%). Compared to AC, there were larger dose deviations in steep dose gradient region and higher skin-dose. Conclusion: In head and neck IMRT plans, AXB and AC show different dosimetric performance for the regions inside the target volume around high-density media, steep dose gradient regions and skin-surface. There are limitations in skin-dose and complex anatomic condition using even inhomogeneous anthropomorphic phantom Thus, there is the potential for an increase of hot-spot in AXB, and an underestimation of dose in substance boundaries and skin regions in AC.« less
Naganawa, Shinji; Satake, Hiroko; Iwano, Shingo; Kawai, Hisashi; Kubota, Seiji; Komada, Tomohiro; Kawamura, Minako; Sakurai, Yasuo; Fukatsu, Hiroshi
2008-02-01
The BLADE and PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) techniques have been proposed to reduce the effect of head motion. Preliminary results have shown that BLADE also reduces pulsation artifacts from venous sinuses. The purpose of this study was to compare T1-weighted FLAIR acquired with BLADE (T1W-FLAIR BLADE) and T1-weighted spin-echo (T1W-SE) for the detection of contrast enhancement in a phantom and in patients with suspected brain lesions and to compare the degree of flow-related artifacts in the patients. A phantom filled with diluted Gd-DTPA was scanned in addition to 27 patients. In the phantom study, the peak contrast-to-noise ratio of T1W-FLAIR BLADE was larger than that of T1W-SE, and the position of the peak was shifted to a lower concentration. In patients, the degree of flow-related artifacts was significantly higher in T1W-SE. Among the 27 patients, 9 had metastatic tumor, and 18 did not. On a patient-by-patient basis, the sensitivity and specificity for the detection of metastatic lesions on axial T1W-SE were 100% and 55.6% respectively, while on axial T1W-FLAIR BLADE they were 100% and 100%. T1W-FLAIR BLADE seems to be capable of replacing T1W-SE, at least for axial post-contrast imaging to detect brain metastases.
NASA Astrophysics Data System (ADS)
Lai, Chia-Lin; Lee, Jhih-Shian; Chen, Jyh-Cheng
2015-02-01
Energy-mapping, the conversion of linear attenuation coefficients (μ) calculated at the effective computed tomography (CT) energy to those corresponding to 511 keV, is an important step in CT-based attenuation correction (CTAC) for positron emission tomography (PET) quantification. The aim of this study was to implement energy-mapping step by using curve fitting ability of artificial neural network (ANN). Eleven digital phantoms simulated by Geant4 application for tomographic emission (GATE) and 12 physical phantoms composed of various volume concentrations of iodine contrast were used in this study to generate energy-mapping curves by acquiring average CT values and linear attenuation coefficients at 511 keV of these phantoms. The curves were built with ANN toolbox in MATLAB. To evaluate the effectiveness of the proposed method, another two digital phantoms (liver and spine-bone) and three physical phantoms (volume concentrations of 3%, 10% and 20%) were used to compare the energy-mapping curves built by ANN and bilinear transformation, and a semi-quantitative analysis was proceeded by injecting 0.5 mCi FDG into a SD rat for micro-PET scanning. The results showed that the percentage relative difference (PRD) values of digital liver and spine-bone phantom are 5.46% and 1.28% based on ANN, and 19.21% and 1.87% based on bilinear transformation. For 3%, 10% and 20% physical phantoms, the PRD values of ANN curve are 0.91%, 0.70% and 3.70%, and the PRD values of bilinear transformation are 3.80%, 1.44% and 4.30%, respectively. Both digital and physical phantoms indicated that the ANN curve can achieve better performance than bilinear transformation. The semi-quantitative analysis of rat PET images showed that the ANN curve can reduce the inaccuracy caused by attenuation effect from 13.75% to 4.43% in brain tissue, and 23.26% to 9.41% in heart tissue. On the other hand, the inaccuracy remained 6.47% and 11.51% in brain and heart tissue when the bilinear transformation was used. Overall, it can be concluded that the bilinear transformation method resulted in considerable bias and the newly proposed calibration curve built by ANN could achieve better results with acceptable accuracy.
NASA Astrophysics Data System (ADS)
Zhang, Juying; Hum Na, Yong; Caracappa, Peter F.; Xu, X. George
2009-10-01
This paper describes the development of a pair of adult male and adult female computational phantoms that are compatible with anatomical parameters for the 50th percentile population as specified by the International Commission on Radiological Protection (ICRP). The phantoms were designed entirely using polygonal mesh surfaces—a Boundary REPresentation (BREP) geometry that affords the ability to efficiently deform the shape and size of individual organs, as well as the body posture. A set of surface mesh models, from Anatomium™ 3D P1 V2.0, including 140 organs (out of 500 available) was adopted to supply the basic anatomical representation at the organ level. The organ masses were carefully adjusted to agree within 0.5% relative error with the reference values provided in the ICRP Publication 89. The finalized phantoms have been designated the RPI adult male (RPI-AM) and adult female (RPI-AF) phantoms. For the purposes of organ dose calculations using the MCNPX Monte Carlo code, these phantoms were subsequently converted to voxel formats. Monoenergetic photons between 10 keV and 10 MeV in six standard external photon source geometries were considered in this study: four parallel beams (anterior-posterior, posterior-anterior, left lateral and right lateral), one rotational and one isotropic. The results are tabulated as fluence-to-organ-absorbed-dose conversion coefficients and fluence-to-effective-dose conversion coefficients and compared against those derived from the ICRP computational phantoms, REX and REGINA. A general agreement was found for the effective dose from these two sets of phantoms for photon energies greater than about 300 keV. However, for low-energy photons and certain individual organs, the absorbed doses exhibit profound differences due to specific anatomical features. For example, the position of the arms affects the dose to the lung by more than 20% below 300 keV in the lateral source directions, and the vertical position of the testes affects the dose by more than 80% below 150 keV in the PA source direction. The deformability and adjustability of organs and posture in the RPI adult phantoms may prove useful not only for average workers or patients for radiation protection purposes, but also in studies involving anatomical and posture variability that is important in future radiation protection dosimetry.
Obuchowski, Nancy A; Barnhart, Huiman X; Buckler, Andrew J; Pennello, Gene; Wang, Xiao-Feng; Kalpathy-Cramer, Jayashree; Kim, Hyun J Grace; Reeves, Anthony P
2015-02-01
Quantitative imaging biomarkers are being used increasingly in medicine to diagnose and monitor patients' disease. The computer algorithms that measure quantitative imaging biomarkers have different technical performance characteristics. In this paper we illustrate the appropriate statistical methods for assessing and comparing the bias, precision, and agreement of computer algorithms. We use data from three studies of pulmonary nodules. The first study is a small phantom study used to illustrate metrics for assessing repeatability. The second study is a large phantom study allowing assessment of four algorithms' bias and reproducibility for measuring tumor volume and the change in tumor volume. The third study is a small clinical study of patients whose tumors were measured on two occasions. This study allows a direct assessment of six algorithms' performance for measuring tumor change. With these three examples we compare and contrast study designs and performance metrics, and we illustrate the advantages and limitations of various common statistical methods for quantitative imaging biomarker studies. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
NASA Astrophysics Data System (ADS)
Tabaczynski, Janelle R.; Stoll, Thomas; Shepard, Lauren; Siddiqui, Mohamed I. G.; Karkhanis, Nitant V.; Sommer, Kelsey; Siddiqui, Adnan H.; Ionita, Ciprian N.
2018-03-01
Patient-specific 3D printed phantoms (3DP) can reproduce accurate patient geometry and provide precise tools for Endovascular Image Guided Interventions (EIGI) simulations. We propose to build and test 3DP phantoms which mimic the arterial wall elasticity and surface properties and demonstrate their utility in comprehensive EIGI simulations. 3DP idealized and patient specific vascular phantoms were manufactured using Stratasys Objet 500 Connex 3. The idealized phantoms were created using a sine wave shape, patient specific phantoms were based on CT- angiography volumes. The phantoms were coated with a hydrophilic material to mimic vascular surface properties. We tested various endovascular procedures using an Interventional Device Testing Equipment (IDTE) 2000 and measured push/pull force used to actuate endovascular devices during EIGIs. The force needed to advance devices in neurovascular phantoms varied based on tortuosity, material and coating, ranging from -3 to 21 grams-force. Hydrophilic coating reduced maximum force from 21 to 4.8 grams-force in the same model. IDTE 2000 results of neurovascular models were compared to hand manipulation of guidewire access using a six-axis force sensor with forces ranging from -50 to 440 grams. The clot retriever tested in carotid models experienced most friction around tortuous bends ranging from -65 to -90 grams-force, with increasing rigidity of materials creating increased friction. Sine wave model forces varied from -2 to 105 grams. 3DP allows manufacturing of vascular phantoms with precise mechanical and surface properties which can be used for EIGI simulations for imaging protocol optimization and device behavior assessment.
Taylor, Jonathan C; Vennart, Nicholas; Negus, Ian; Holmes, Robin; Bandmann, Oliver; Lo, Christine; Fenner, John
2018-03-01
The Alderson striatal phantom is frequently used to assess I-FP-CIT (Ioflupane) image quality and to test semi-quantification software. However, its design is associated with a number of limitations, in particular: unrealistic image appearances and inflexibility. A new physical phantom approach is proposed on the basis of subresolution phantom technology. The design incorporates thin slabs of attenuating material generated through additive manufacturing, and paper sheets with radioactive ink patterns printed on their surface, created with a conventional inkjet printer. The paper sheets and attenuating slabs are interleaved before scanning. Use of thin layers ensures that they cannot be individually resolved on reconstructed images. An investigation was carried out to demonstrate the performance of such a phantom in producing simplified I-FP-CIT uptake patterns. Single photon emission computed tomography imaging was carried out on an assembled phantom designed to mimic a healthy patient. Striatal binding ratio results and linear striatal dimensions were calculated from the reconstructed data and compared with that of 22 clinical patients without evidence of Parkinsonian syndrome, determined from clinical follow-up. Striatal binding ratio results for the fully assembled phantom were: 3.1, 3.3, 2.9 and 2.6 for the right caudate, left caudate, right putamen and right caudate, respectively. All were within two SDs of results derived from a cohort of clinical patients. Medial-lateral and anterior-posterior dimensions of the simulated striata were also within the range of values seen in clinical data. This work provides the foundation for the generation of a range of more clinically realistic, physical phantoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gearhart, A; Peterson, T; Johnson, L
2015-06-15
Purpose: To evaluate the impact of the exceptional energy resolution of germanium detectors for preclinical SPECT in comparison to conventional detectors. Methods: A cylindrical water phantom was created in GATE with a spherical Tc-99m source in the center. Sixty-four projections over 360 degrees using a pinhole collimator were simulated. The same phantom was simulated using air instead of water to establish the true reconstructed voxel intensity without attenuation. Attenuation correction based on the Chang method was performed on MLEM reconstructed images from the water phantom to determine a quantitative measure of the effectiveness of the attenuation correction. Similarly, a NEMAmore » phantom was simulated, and the effectiveness of the attenuation correction was evaluated. Both simulations were carried out using both NaI detectors with an energy resolution of 10% FWHM and Ge detectors with an energy resolution of 1%. Results: Analysis shows that attenuation correction without scatter correction using germanium detectors can reconstruct a small spherical source to within 3.5%. Scatter analysis showed that for standard sized objects in a preclinical scanner, a NaI detector has a scatter-to-primary ratio between 7% and 12.5% compared to between 0.8% and 1.5% for a Ge detector. Preliminary results from line profiles through the NEMA phantom suggest that applying attenuation correction without scatter correction provides acceptable results for the Ge detectors but overestimates the phantom activity using NaI detectors. Due to the decreased scatter, we believe that the spillover ratio for the air and water cylinders in the NEMA phantom will be lower using germanium detectors compared to NaI detectors. Conclusion: This work indicates that the superior energy resolution of germanium detectors allows for less scattered photons to be included within the energy window compared to traditional SPECT detectors. This may allow for quantitative SPECT without implementing scatter correction, reducing uncertainties introduced by scatter correction algorithms. Funding provided by NIH/NIBIB grant R01EB013677; Todd Peterson, Ph.D., has had a research contract with PHDs Co., Knoxville, TN.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, J; Matthews, K; Jia, G
Purpose: To test feasibility of the use of a digital endorectal x-ray sensor for improved image resolution of permanent brachytherapy seed implants compared to conventional CT. Methods: Two phantoms simulating the male pelvic region were used to test the capabilities of a digital endorectal x-ray sensor for imaging permanent brachytherapy seed implants. Phantom 1 was constructed from acrylic plastic with cavities milled in the locations of the prostate and the rectum. The prostate cavity was filled a Styrofoam plug implanted with 10 training seeds. Phantom 2 was constructed from tissue-equivalent gelatins and contained a prostate phantom implanted with 18 strandsmore » of training seeds. For both phantoms, an intraoral digital dental x-ray sensor was placed in the rectum within 2 cm of the seed implants. Scout scans were taken of the phantoms over a limited arc angle using a CT scanner (80 kV, 120–200 mA). The dental sensor was removed from the phantoms and normal helical CT and scout (0 degree) scans using typical parameters for pelvic CT (120 kV, auto-mA) were collected. A shift-and add tomosynthesis algorithm was developed to localize seed plane location normal to detector face. Results: The endorectal sensor produced images with improved resolution compared to CT scans. Seed clusters and individual seed geometry were more discernable using the endorectal sensor. Seed 3D locations, including seeds that were not located in every projection image, were discernable using the shift and add algorithm. Conclusion: This work shows that digital endorectal x-ray sensors are a feasible method for improving imaging of permanent brachytherapy seed implants. Future work will consist of optimizing the tomosynthesis technique to produce higher resolution, lower dose images of 1) permanent brachytherapy seed implants for post-implant dosimetry and 2) fine anatomic details for imaging and managing prostatic disease compared to CT images. Funding: LSU Faculty Start-up Funding. Disclosure: XDR Radiography has loaned our research group the digital x-ray detector used in this work. CoI: None.« less
iPads in Breast Imaging – A Phantom Study
Hammon, M.; Schlechtweg, P. M.; Schulz-Wendtland, R.; Uder, M.; Schwab, S. A.
2014-01-01
Introduction: Modern tablet PCs as the iPad are becoming more and more integrated into medicine. The aim of this study was to evaluate the display quality of iPads regarding digital mammography. Materials and Methods: Three experienced readers compared the display quality of the iPad 2 and 3 with a dedicated 10 megapixel (MP) mammography liquid crystal display (LCD) screen in consensus using the standardized Contrast Detail Mammography (CDMAM) phantom. Phantom fields without agreement between the readers were classified as “uncertain”, correct 2 : 1 decisions were classified as “uncertain/readable”. In a second step display quality of the three reading devices was judged subjectively in a side by side comparison. Results: The 10 MP screen was superior to both iPads in 4 (phantom-)fields and inferior in 2 fields. Comparing the iPads, version 3 was superior in 4 fields and version 2 was superior in 1 field. However these differences were not significant. Total number of “uncertain” fields did not show significant differences. The number of “uncertain” fields was 15 with the 10 MP screen, 16 with the iPad 2 and 17 with the iPad 3 (p > 0.05), the number of “uncertain/readable” fields was 4, 7 and 8, respectively. Subjective image quality of the iPad 3 and the 10 MP screen was rated superior to the iPad 2. Conclusion: The evaluated iPads, especially in version 3, seem to be adequate to display mammograms in a diagnostic quality and thus could be useful e.g. for patient consultation, clinical demonstration or educational and teaching purposes. However primary mammogram reading should still be performed on dedicated large sized reading screens. PMID:24741126
Grosser, Oliver S.; Kupitz, Dennis; Ruf, Juri; Czuczwara, Damian; Steffen, Ingo G.; Furth, Christian; Thormann, Markus; Loewenthal, David; Ricke, Jens; Amthauer, Holger
2015-01-01
Background Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images. Methodology/Principal Findings Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001). Conclusion/Significance In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality. PMID:26390216
Ryde, S J; al-Agel, F A; Evans, C J; Hancock, D A
2000-05-01
The use of a hydrogen internal standard to enable the estimation of absolute mass during measurement of total body nitrogen by in vivo neutron activation is an established technique. Central to the technique is a determination of the H prompt gamma ray counts arising from the subject. In practice, interference counts from other sources--e.g., neutron shielding--are included. This study reports use of the Monte Carlo computer code, MCNP-4A, to investigate the interference counts arising from shielding both with and without a phantom containing a urea solution. Over a range of phantom size (depth 5 to 30 cm, width 20 to 40 cm), the counts arising from shielding increased by between 4% and 32% compared with the counts without a phantom. For any given depth, the counts increased approximately linearly with width. For any given width, there was little increase for depths exceeding 15 centimeters. The shielding counts comprised between 15% and 26% of those arising from the urea phantom. These results, although specific to the Swansea apparatus, suggest that extraneous hydrogen counts can be considerable and depend strongly on the subject's size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan
2015-11-15
Purpose: Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. Methods: A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy ofmore » the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. Results: The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. Conclusions: An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries.« less
Yu, Victoria Y; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A; Sheng, Ke
2015-11-01
Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy of the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries.
Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke
2015-01-01
Purpose: Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. Methods: A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy of the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. Results: The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. Conclusions: An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries. PMID:26520735
NASA Astrophysics Data System (ADS)
Kanagaki, Brian; Read, Paul W.; Molloy, Janelle A.; Larner, James M.; Sheng, Ke
2007-01-01
Helical tomotherapy (HT) can potentially be used for lung cancer treatment including stereotactic radiosurgery because of its advanced image guidance and its ability to deliver highly conformal dose distributions. However, previous theoretical and simulation studies reported that the effect of respiratory motion on statically planned tomotherapy treatments may cause substantial differences between the calculated and actual delivered radiation isodose distribution, particularly when the treatment is hypofractionated. In order to determine the dosimetric effects of motion upon actual HT treatment delivery, phantom film dosimetry measurements were performed under static and moving conditions using a clinical HT treatment unit. The motion phantom system was constructed using a programmable motor, a base, a moving platform and a life size lung heterogeneity phantom with wood inserts representing lung tissue with a 3.0 cm diameter spherical tumour density equivalent insert. In order to determine the effects of different motion and tomotherapy delivery parameters, treatment plans were created using jaw sizes of 1.04 cm and 2.47 cm, with incremental gantry rotation periods between the minimum allowed (10 s) and the maximum allowed (60 s). The couch speed varied from 0.009 cm s-1 to 0.049 cm s-1, and delivered to a phantom under static and dynamic conditions with peak-to-peak motion amplitudes of 1.2 cm and 2 cm and periods of 3 and 5 s to simulate human respiratory motion of lung tumours. A cylindrical clinical target volume (CTV) was contoured to tightly enclose the tumour insert. 2.0 Gy was prescribed to 95% of the CTV. Two-dimensional dose was measured by a Kodak EDR2 film. Dynamic phantom doses were then quantitatively compared to static phantom doses in terms of axial dose profiles, cumulative dose volume histograms (DVH), percentage of CTV receiving the prescription dose and the minimum dose received by 95% of the CTV. The larger motion amplitude resulted in more under-dosing at the ends of the CTV in the axis of motion, and this effect was greater for the smaller jaw size plans. Due to the size of the penumbra, the 2.47 cm jaw plans provide adequate coverage for smaller amplitudes of motion, ±0.6 cm in our experiment, without adding any additional margin in the axis of motion to the treatment volume. The periodic heterogeneous patterns described by previous studies were not observed from the single fraction of the phantom measurement. Besides the jaw sizes, CTV dose coverage is not significantly dependent on machine and phantom motion periods. The lack of adverse synchronization patterns from both results validate that HT is a safe technique for treating moving target and hypofractionation.
Density scaling of phantom materials for a 3D dose verification system.
Tani, Kensuke; Fujita, Yukio; Wakita, Akihisa; Miyasaka, Ryohei; Uehara, Ryuzo; Kodama, Takumi; Suzuki, Yuya; Aikawa, Ako; Mizuno, Norifumi; Kawamori, Jiro; Saitoh, Hidetoshi
2018-05-21
In this study, the optimum density scaling factors of phantom materials for a commercially available three-dimensional (3D) dose verification system (Delta4) were investigated in order to improve the accuracy of the calculated dose distributions in the phantom materials. At field sizes of 10 × 10 and 5 × 5 cm 2 with the same geometry, tissue-phantom ratios (TPRs) in water, polymethyl methacrylate (PMMA), and Plastic Water Diagnostic Therapy (PWDT) were measured, and TPRs in various density scaling factors of water were calculated by Monte Carlo simulation, Adaptive Convolve (AdC, Pinnacle 3 ), Collapsed Cone Convolution (CCC, RayStation), and AcurosXB (AXB, Eclipse). Effective linear attenuation coefficients (μ eff ) were obtained from the TPRs. The ratios of μ eff in phantom and water ((μ eff ) pl,water ) were compared between the measurements and calculations. For each phantom material, the density scaling factor proposed in this study (DSF) was set to be the value providing a match between the calculated and measured (μ eff ) pl,water . The optimum density scaling factor was verified through the comparison of the dose distributions measured by Delta4 and calculated with three different density scaling factors: the nominal physical density (PD), nominal relative electron density (ED), and DSF. Three plans were used for the verifications: a static field of 10 × 10 cm 2 and two intensity modulated radiation therapy (IMRT) treatment plans. DSF were determined to be 1.13 for PMMA and 0.98 for PWDT. DSF for PMMA showed good agreement for AdC and CCC with 6 MV x ray, and AdC for 10 MV x ray. DSF for PWDT showed good agreement regardless of the dose calculation algorithms and x-ray energy. DSF can be considered one of the references for the density scaling factor of Delta4 phantom materials and may help improve the accuracy of the IMRT dose verification using Delta4. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
SU-E-J-07: IGRT Gently: Evaluating Imaging Dose in Phantoms of Different Sizes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, B; Duggar, W; Stanford, J
Purpose: IGRT imaging procedures have emerged as a common method of patient position verification in radiotherapy, though imaging dose is generally neglected in the treatment plan. Consequently, evaluating and optimizing the dose from these procedures is worthwhile. This process is especially important for children, who are more radiosensitive than adults. The aim of this work was to gain some understanding of the relative doses involved with various XVI-preset parameters for an “adult” and “child” phantom set, with the hopes that imaging dose for a child can be reduced. Methods: 32 and 16cm CTDI-phantoms were used as surrogates for adult andmore » child torsos, respectively. Dose was measured in the central and peripheral chamber positions of the phantoms. CBCT scans were made for both phantoms using Elekta’s Chest-preset to establish a dose baseline. The child-phantom was then scanned using the Elekta Head and Neck (HN) preset. A modified HN-preset (named Peds Abd-pelvis) was also created with a doubled mAs to maintain a reduction in dose to the child-phantom (relative to the baseline), while providing clinically-usable image quality. Results: The baseline dose to the child-phantom from the Chest-preset was 310% that of the adult-phantom for the center chamber position and 150% at the periphery. An average dose reduction of 97% was obtained in the childphantom by switching from the Chest-preset to the HN-preset, while the Peds Abd-pelvis-preset similarly reduced the dose by an average of 92%. Conclusion: XVI-preset parameters significantly affect dose, and should be optimized to reduce dose, while ensuring clinically-usable image quality. Using a modified imaging preset (Peds Abd-pelvis-preset) greatly reduced the dose to the child-phantom compared to the dose for the Chest-preset for both the child and adult-phantoms. This outcome provides support for the development of child-specific protocols for IGRT imaging in pediatric patients.« less
Sturgeon, Gregory M; Kiarashi, Nooshin; Lo, Joseph Y; Samei, E; Segars, W P
2016-05-01
The authors are developing a series of computational breast phantoms based on breast CT data for imaging research. In this work, the authors develop a program that will allow a user to alter the phantoms to simulate the effect of gravity and compression of the breast (craniocaudal or mediolateral oblique) making the phantoms applicable to multimodality imaging. This application utilizes a template finite-element (FE) breast model that can be applied to their presegmented voxelized breast phantoms. The FE model is automatically fit to the geometry of a given breast phantom, and the material properties of each element are set based on the segmented voxels contained within the element. The loading and boundary conditions, which include gravity, are then assigned based on a user-defined position and compression. The effect of applying these loads to the breast is computed using a multistage contact analysis in FEBio, a freely available and well-validated FE software package specifically designed for biomedical applications. The resulting deformation of the breast is then applied to a boundary mesh representation of the phantom that can be used for simulating medical images. An efficient script performs the above actions seamlessly. The user only needs to specify which voxelized breast phantom to use, the compressed thickness, and orientation of the breast. The authors utilized their FE application to simulate compressed states of the breast indicative of mammography and tomosynthesis. Gravity and compression were simulated on example phantoms and used to generate mammograms in the craniocaudal or mediolateral oblique views. The simulated mammograms show a high degree of realism illustrating the utility of the FE method in simulating imaging data of repositioned and compressed breasts. The breast phantoms and the compression software can become a useful resource to the breast imaging research community. These phantoms can then be used to evaluate and compare imaging modalities that involve different positioning and compression of the breast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, L; Yang, F
2015-06-15
Purpose: The application of optically stimulated luminescence dosimeters (OSLDs) may be extended to clinical investigations verifying irradiated doses in small animal models. In proton beams, the accurate positioning of the Bragg peak is essential for tumor targeting. The purpose of this study was to estimate the displacement of a pristine Bragg peak when an Al2O3:C nanodot (Landauer, Inc.) is placed on the surface of a water phantom and to evaluate corresponding changes in dose. Methods: Clinical proton pencil beam simulations were carried out with using TOPAS, a Monte Carlo platform layered on top of GEANT4. Point-shaped beams with no energymore » spread were modeled for energies 100MV, 150MV, 200MV, and 250MV. Dose scoring for 100,000 particle histories was conducted within a water phantom (20cm × 20cm irradiated area, 40cm depth) with its surface placed 214.5cm away from the source. The modeled nanodot had a 4mm radius and 0.2mm thickness. Results: A comparative analysis of Monte Carlo depth dose profiles modeled for these proton pencil beams did not demonstrate an energy dependent in the Bragg peak shift. The shifts in Bragg Peak depth for water phantoms modeled with a nanodot on the phantom surface ranged between 2.7 to 3.2 mm. In all cases, the Bragg Peaks were shifted closer to the irradiation source. The peak dose in phantoms with an OSLD remained unchanged with percent dose differences less than 0.55% when compared to phantom doses without the nanodot. Conclusion: Monte Carlo calculations show that the presence of OSLD nanodots in proton beam therapy will not change the position of a pristine Bragg Peak by more than 3 mm. Although the 3.0 mm shift will not have a detrimental effect in patients receiving proton therapy, this effect may not be negligible in dose verification measurements for mouse models at lower proton beam energies.« less
A methodology to develop computational phantoms with adjustable posture for WBC calibration
NASA Astrophysics Data System (ADS)
Ferreira Fonseca, T. C.; Bogaerts, R.; Hunt, John; Vanhavere, F.
2014-11-01
A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium.
A methodology to develop computational phantoms with adjustable posture for WBC calibration.
Fonseca, T C Ferreira; Bogaerts, R; Hunt, John; Vanhavere, F
2014-11-21
A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium.
SU-G-TeP3-02: Determination of Geometry-Specific Backscatter Factors for Radiobiology Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viscariello, N; Culberson, W; Lawless, M
2016-06-15
Purpose: Radiation biology research relies on an accurate radiation dose delivered to the biological target. Large field irradiations in a cabinet irradiator may use the AAPM TG-61 protocol. This relies on an air-kerma measurement and conversion to absorbed dose to water (Dw) on the surface of a water phantom using provided backscatter factors. Cell or small animal studies differ significantly from this reference geometry. This study aims to determine the impact of the lack of full scatter conditions in four representative geometries that may be used in radiobiology studies. Methods: MCNP6 was used to model the Dw on the surfacemore » of a full scatter phantom in a validated orthovoltage x-ray reference beam. Dw in a cylindrical mouse, 100 mm Petri dish, 6-well and 96-well cell culture dishes was simulated and compared to this full scatter geometry. A reference dose rate was measured using the TG-61 protocol in a cabinet irradiator. This nominal dose rate was used to irradiate TLDs in each phantom to a given dose. Doses were obtained based on TLDs calibrated in a NIST-traceable beam. Results: Compared to the full scattering conditions, the simulated dose to water in the representative geometries were found to be underestimated by 12-26%. The discrepancy was smallest with the cylindrical mouse geometry, which most closely approximates adequate lateral- and backscatter. TLDs irradiated in the mouse and petri dish phantoms using the TG-61 determined dose rate showed similarly lower values of Dw. When corrected for this discrepancy, they agreed with the predicted Dw within 5%. Conclusion: Using the TG-61 in-air protocol and given backscatter factors to determine a reference dose rate in a biological irradiator may not be appropriate given the difference in scattering conditions between irradiation and calibration. Without accounting for this, the dose rate is overestimated and is dependent on irradiation geometry.« less
Accuracy Study of a Robotic System for MRI-guided Prostate Needle Placement
Seifabadi, Reza; Cho, Nathan BJ.; Song, Sang-Eun; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Fichtinger, Gabor; Iordachita, Iulian
2013-01-01
Background Accurate needle placement is the first concern in percutaneous MRI-guided prostate interventions. In this phantom study, different sources contributing to the overall needle placement error of a MRI-guided robot for prostate biopsy have been identified, quantified, and minimized to the possible extent. Methods and Materials The overall needle placement error of the system was evaluated in a prostate phantom. This error was broken into two parts: the error associated with the robotic system (called before-insertion error) and the error associated with needle-tissue interaction (called due-to-insertion error). The before-insertion error was measured directly in a soft phantom and different sources contributing into this part were identified and quantified. A calibration methodology was developed to minimize the 4-DOF manipulator’s error. The due-to-insertion error was indirectly approximated by comparing the overall error and the before-insertion error. The effect of sterilization on the manipulator’s accuracy and repeatability was also studied. Results The average overall system error in phantom study was 2.5 mm (STD=1.1mm). The average robotic system error in super soft phantom was 1.3 mm (STD=0.7 mm). Assuming orthogonal error components, the needle-tissue interaction error was approximated to be 2.13 mm thus having larger contribution to the overall error. The average susceptibility artifact shift was 0.2 mm. The manipulator’s targeting accuracy was 0.71 mm (STD=0.21mm) after robot calibration. The robot’s repeatability was 0.13 mm. Sterilization had no noticeable influence on the robot’s accuracy and repeatability. Conclusions The experimental methodology presented in this paper may help researchers to identify, quantify, and minimize different sources contributing into the overall needle placement error of an MRI-guided robotic system for prostate needle placement. In the robotic system analyzed here, the overall error of the studied system remained within the acceptable range. PMID:22678990
Accuracy study of a robotic system for MRI-guided prostate needle placement.
Seifabadi, Reza; Cho, Nathan B J; Song, Sang-Eun; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M; Fichtinger, Gabor; Iordachita, Iulian
2013-09-01
Accurate needle placement is the first concern in percutaneous MRI-guided prostate interventions. In this phantom study, different sources contributing to the overall needle placement error of a MRI-guided robot for prostate biopsy have been identified, quantified and minimized to the possible extent. The overall needle placement error of the system was evaluated in a prostate phantom. This error was broken into two parts: the error associated with the robotic system (called 'before-insertion error') and the error associated with needle-tissue interaction (called 'due-to-insertion error'). Before-insertion error was measured directly in a soft phantom and different sources contributing into this part were identified and quantified. A calibration methodology was developed to minimize the 4-DOF manipulator's error. The due-to-insertion error was indirectly approximated by comparing the overall error and the before-insertion error. The effect of sterilization on the manipulator's accuracy and repeatability was also studied. The average overall system error in the phantom study was 2.5 mm (STD = 1.1 mm). The average robotic system error in the Super Soft plastic phantom was 1.3 mm (STD = 0.7 mm). Assuming orthogonal error components, the needle-tissue interaction error was found to be approximately 2.13 mm, thus making a larger contribution to the overall error. The average susceptibility artifact shift was 0.2 mm. The manipulator's targeting accuracy was 0.71 mm (STD = 0.21 mm) after robot calibration. The robot's repeatability was 0.13 mm. Sterilization had no noticeable influence on the robot's accuracy and repeatability. The experimental methodology presented in this paper may help researchers to identify, quantify and minimize different sources contributing into the overall needle placement error of an MRI-guided robotic system for prostate needle placement. In the robotic system analysed here, the overall error of the studied system remained within the acceptable range. Copyright © 2012 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Choonsik; Lodwick, Daniel; Williams, Jonathan L.
Currently, two classes of the computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and three-dimensional labeled voxel matrices, respectively. Mathematical surface equations in stylized phantoms provide flexibility in phantom design and alteration, but the resulting anatomical description is, in many cases, not very realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms - called hybrid phantoms -more » takes advantage of the best features of stylized and voxel phantoms - flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing reference 15-year male and female body anatomy and anthropometry are presented. For the male phantom, organ contours were extracted from the University of Florida (UF) 14-year series B male voxel phantom, while for the female phantom, original computed tomography (CT) data from two 14-year female patients were used. Polygon mesh models for the major organs and tissues were reconstructed for nonuniform rational B-spline (NURBS) surface modeling. The resulting NURBS/polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by the Centers for Disease Control and Prevention (CDC) and the International Commission on Radiation Protection (ICRP), respectively. Finally, two hybrid 15-year male and female phantoms were completed where a total of eight anthropometric data categories were matched to standard values within 4% and organ masses matched to ICRP data within 1% with the exception of total skin. To highlight the flexibility of the hybrid phantoms, 10th and 90th weight percentile 15-year male and female phantoms were further developed from the 50th percentile phantoms through adjustments in the body contour to match the total body masses given in CDC pediatric growth curves. The resulting six NURBS phantoms, male and female phantoms representing their 10th, 50th, and 90th weight percentiles, were used to investigate the influence of body fat distributions on internal organ doses following CT imaging. The phantoms were exposed to multislice chest and abdomen helical CT scans, and in-field organ absorbed doses were calculated. The results demonstrated that the use of traditional stylized phantoms yielded organ dose estimates that deviate from those given by the UF reference hybrid phantoms by up to a factor of 2. The study also showed that use of reference, or 50th percentile, phantoms to assess organ doses in underweight 15-year-old children would not lead to significant organ dose errors (typically less than 10%). However, more significant errors were noted (up to {approx}30%) when reference phantoms are used to represent overweight children in CT imaging dosimetry. These errors are expected to only further increase as one considers CT organ doses in overweight and obese individuals of the adult patient population, thus emphasizing the advantages of patient-sculptable phantom technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, J; Owrangi, A; Grigorov, G
Purpose: This study investigates the spectra of surface photon energy and energy fluence in the bone heterogeneity and beam obliquity using flattened and unflattened photon beams. The spectra were calculated in a bone and water phantom using Monte Carlo simulation (the EGSnrc code). Methods: Spectra of energy, energy fluence and mean energy of the 6 MV flattened and unflattened photon beams (field size = 10 × 10 cm{sup 2}) produced by a Varian TrueBEAM linear accelerator were calculated at the surfaces of a bone and water phantom using Monte Carlo simulations. The spectral calculations were repeated with the beam anglesmore » turned from 0° to 15°, 30° and 45° in the phantoms. Results: It is found that the unflattened photon beams contained more photons in the low-energy range of 0 – 2 MeV than the flattened beams with a flattening filter. Compared to the water phantom, both the flattened and unflattened beams had slightly less photons in the energy range < 0.4 MeV when a bone layer of 1 cm is present under the phantom surface. This shows that the presence of the bone decreased the low-energy photons backscattered to the phantom surface. When the photon beams were rotated from 0° to 45°, the number of photon and mean photon energy increased with the beam angle. This is because both the flattened and unflattened beams became more hardened when the beam angle increased. With the bone heterogeneity, the mean energies of both photon beams increased correspondingly. This is due to the absorption of low-energy photons by the bone, resulting in more significant beam hardening. Conclusion: The photon spectral information is important in studies on the patient’s surface dose enhancement when using unflattened photon beams in radiotherapy.« less
A constrained reconstruction technique of hyperelasticity parameters for breast cancer assessment
NASA Astrophysics Data System (ADS)
Mehrabian, Hatef; Campbell, Gordon; Samani, Abbas
2010-12-01
In breast elastography, breast tissue usually undergoes large compression resulting in significant geometric and structural changes. This implies that breast elastography is associated with tissue nonlinear behavior. In this study, an elastography technique is presented and an inverse problem formulation is proposed to reconstruct parameters characterizing tissue hyperelasticity. Such parameters can potentially be used for tumor classification. This technique can also have other important clinical applications such as measuring normal tissue hyperelastic parameters in vivo. Such parameters are essential in planning and conducting computer-aided interventional procedures. The proposed parameter reconstruction technique uses a constrained iterative inversion; it can be viewed as an inverse problem. To solve this problem, we used a nonlinear finite element model corresponding to its forward problem. In this research, we applied Veronda-Westmann, Yeoh and polynomial models to model tissue hyperelasticity. To validate the proposed technique, we conducted studies involving numerical and tissue-mimicking phantoms. The numerical phantom consisted of a hemisphere connected to a cylinder, while we constructed the tissue-mimicking phantom from polyvinyl alcohol with freeze-thaw cycles that exhibits nonlinear mechanical behavior. Both phantoms consisted of three types of soft tissues which mimic adipose, fibroglandular tissue and a tumor. The results of the simulations and experiments show feasibility of accurate reconstruction of tumor tissue hyperelastic parameters using the proposed method. In the numerical phantom, all hyperelastic parameters corresponding to the three models were reconstructed with less than 2% error. With the tissue-mimicking phantom, we were able to reconstruct the ratio of the hyperelastic parameters reasonably accurately. Compared to the uniaxial test results, the average error of the ratios of the parameters reconstructed for inclusion to the middle and external layers were 13% and 9.6%, respectively. Given that the parameter ratios of the abnormal tissues to the normal ones range from three times to more than ten times, this accuracy is sufficient for tumor classification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravindran, P; Wui Ann, W; Lim, Y
Purpose: In general, the linear accelerator is gated using respiratory signal obtained by way of external sensors to account for the breathing motion during radiotherapy. One of the commonly used gating devices is the Varian RPM device. Calypso system that uses electromagnetic tracking of implanted or surface transponders could also be used for gating. The aim of this study is to compare the gating efficiency of RPM device and the calypso system by phantom studies. Methods: An ArcCheck insert was used as the phantom with a Gafchromic film placed in its holder. The ArcCheck insert was placed on a Motionmore » Sim platform and moved in the longitudinal direction simulating a respiratory motion with a period of 5 seconds and amplitude of ±6mm. The Gafchromic film was exposed to a 2 × 2cm{sup 2} field, i) with the phantom static, ii) phantom moving but ungated iii) gated with gating window of 2mm and 3mm. This was repeated with Calypso system using surface transponders with the same gating window. The Gafchromic films were read with an EPSON 11000 flatbed scanner and analysed with ‘Medphysto’ software. Results: The full width at half maximum (FWHM) as measured with film at the level of the film holder was 1.65cm when the phantom was static. FWHM measured with phantom moving and without gating was 1.16 cm and penumbra was 7 mm (80–20%) on both sides. When the beam was gated with 2 mm gating window the FWHM was 1.8 cm with RPM device and 1.9 cm with Calypso. Similarly, when the beam was gated with 3 mm window, the FWHM was 1.9cm with RPM device and 2cm with Calypso. Conclusion: This work suggests that the gating efficiency of RPM device is better than that of the Calypso with surface transponder, with reference to the latency in gating.« less
Keshvari, J; Kivento, M; Christ, A; Bit-Babik, G
2016-04-21
This paper presents the results of two computational large scale studies using highly realistic exposure scenarios, MRI based human head and hand models, and two mobile phone models. The objectives are (i) to study the relevance of age when people are exposed to RF by comparing adult and child heads and (ii) to analyze and discuss the conservativeness of the SAM phantom for all age groups. Representative use conditions were simulated using detailed CAD models of two mobile phones operating between 900 MHz and 1950 MHz including configurations with the hand holding the phone, which were not considered in most previous studies. The peak spatial-average specific absorption rate (psSAR) in the head and the pinna tissues is assessed using anatomically accurate head and hand models. The first of the two mentioned studies involved nine head-, four hand- and two phone-models, the second study included six head-, four hand- and three simplified phone-models (over 400 configurations in total). In addition, both studies also evaluated the exposure using the SAM phantom. Results show no systematic differences between psSAR induced in the adult and child heads. The exposure level and its variation for different age groups may be different for particular phones, but no correlation between psSAR and model age was found. The psSAR from all exposure conditions was compared to the corresponding configurations using SAM, which was found to be conservative in the large majority of cases.
NASA Astrophysics Data System (ADS)
Keshvari, J.; Kivento, M.; Christ, A.; Bit-Babik, G.
2016-04-01
This paper presents the results of two computational large scale studies using highly realistic exposure scenarios, MRI based human head and hand models, and two mobile phone models. The objectives are (i) to study the relevance of age when people are exposed to RF by comparing adult and child heads and (ii) to analyze and discuss the conservativeness of the SAM phantom for all age groups. Representative use conditions were simulated using detailed CAD models of two mobile phones operating between 900 MHz and 1950 MHz including configurations with the hand holding the phone, which were not considered in most previous studies. The peak spatial-average specific absorption rate (psSAR) in the head and the pinna tissues is assessed using anatomically accurate head and hand models. The first of the two mentioned studies involved nine head-, four hand- and two phone-models, the second study included six head-, four hand- and three simplified phone-models (over 400 configurations in total). In addition, both studies also evaluated the exposure using the SAM phantom. Results show no systematic differences between psSAR induced in the adult and child heads. The exposure level and its variation for different age groups may be different for particular phones, but no correlation between psSAR and model age was found. The psSAR from all exposure conditions was compared to the corresponding configurations using SAM, which was found to be conservative in the large majority of cases.
Thermal human phantom for testing of millimeter wave cameras
NASA Astrophysics Data System (ADS)
Palka, Norbert; Ryniec, Radoslaw; Piszczek, Marek; Szustakowski, Mieczyslaw; Zyczkowski, Marek; Kowalski, Marcin
2012-06-01
Screening cameras working in millimetre band gain more and more interest among security society mainly due to their capability of finding items hidden under clothes. Performance of commercially available passive cameras is still limited due to not sufficient resolution and contrast in comparison to other wavelengths (visible or infrared range). Testing of such cameras usually requires some persons carrying guns, bombs or knives. Such persons can have different clothes or body temperature, what makes the measurements even more ambiguous. To avoid such situations we built a moving phantom of human body. The phantom consists of a polystyrene manikin which is covered with a number of small pipes with water. Pipes were next coated with a silicone "skin". The veins (pipes) are filled with water heated up to 37 C degrees to obtain the same temperature as human body. The phantom is made of non-metallic materials and is placed on a moving wirelessly-controlled platform with four wheels. The phantom can be dressed with a set of ordinary clothes and can be equipped with some dangerous (guns, bombs) and non-dangerous items. For tests we used a passive commercially available camera TS4 from ThruVision Systems Ltd. operating at 250 GHz. We compared the images taken from phantom and a man and we obtained good similarity both for naked as well as dressed man/phantom case. We also tested the phantom with different sets of clothes and hidden items and we got good conformity with persons.
Luminescence imaging of water during carbon-ion irradiation for range estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Komori, Masataka; Koyama, Shuji
Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions withmore » those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.« less
Development and application of anthropomorphic voxel phantom of the head for in vivo measurement.
Vrba, T
2007-01-01
The in vivo measurement of the activity deposited in the skeleton is a very useful source of information on human internal contaminations with transuranic elements, e.g. americium 241, especially for long time periods after intake. Measurements are performed on the skull or the larger joints such as the knee or elbow. The paper deals with the construction of an anthropomorphic numerical phantom based on CT scans, its potential for calibration and the estimation of the uncertainties of the detection system. The density of bones, activity distribution and position of the detectors were changed in individual simulations in order to estimate their effects on the result of the measurement. The results from simulations with the numerical phantom were compared with the results of physical phantoms.
Clinical Study of Orthogonal-View Phase-Matched Digital Tomosynthesis for Lung Tumor Localization.
Zhang, You; Ren, Lei; Vergalasova, Irina; Yin, Fang-Fang
2017-01-01
Compared to cone-beam computed tomography, digital tomosynthesis imaging has the benefits of shorter scanning time, less imaging dose, and better mechanical clearance for tumor localization in radiation therapy. However, for lung tumors, the localization accuracy of the conventional digital tomosynthesis technique is affected by the lack of depth information and the existence of lung tumor motion. This study investigates the clinical feasibility of using an orthogonal-view phase-matched digital tomosynthesis technique to improve the accuracy of lung tumor localization. The proposed orthogonal-view phase-matched digital tomosynthesis technique benefits from 2 major features: (1) it acquires orthogonal-view projections to improve the depth information in reconstructed digital tomosynthesis images and (2) it applies respiratory phase-matching to incorporate patient motion information into the synthesized reference digital tomosynthesis sets, which helps to improve the localization accuracy of moving lung tumors. A retrospective study enrolling 14 patients was performed to evaluate the accuracy of the orthogonal-view phase-matched digital tomosynthesis technique. Phantom studies were also performed using an anthropomorphic phantom to investigate the feasibility of using intratreatment aggregated kV and beams' eye view cine MV projections for orthogonal-view phase-matched digital tomosynthesis imaging. The localization accuracy of the orthogonal-view phase-matched digital tomosynthesis technique was compared to that of the single-view digital tomosynthesis techniques and the digital tomosynthesis techniques without phase-matching. The orthogonal-view phase-matched digital tomosynthesis technique outperforms the other digital tomosynthesis techniques in tumor localization accuracy for both the patient study and the phantom study. For the patient study, the orthogonal-view phase-matched digital tomosynthesis technique localizes the tumor to an average (± standard deviation) error of 1.8 (0.7) mm for a 30° total scan angle. For the phantom study using aggregated kV-MV projections, the orthogonal-view phase-matched digital tomosynthesis localizes the tumor to an average error within 1 mm for varying magnitudes of scan angles. The pilot clinical study shows that the orthogonal-view phase-matched digital tomosynthesis technique enables fast and accurate localization of moving lung tumors.
NASA Astrophysics Data System (ADS)
Staton, Robert J.
Of the various types of imaging modalities used in pediatric radiology, fluoroscopy and computed tomography (CT) have the highest associated radiation dose. While these examinations are commonly used for pediatric patients, little data exists on the magnitude of the organ and effective dose values for these procedures. Calculation of these dose values is necessary because of children's increased sensitivity to radiation and their long life expectancy for which to express radiation's latent effects. In this study, a newborn tomographic phantom has been implemented in a radiation transport code to evaluate organ and effective doses for newborn patients in commonly performed fluoroscopy and CT examinations. Organ doses were evaluated for voiding cystourethrogram (VCUG) fluoroscopy studies of infant patients. Time-sequence analysis was performed for videotaped VCUG studies of five different patients. Organ dose values were then estimated for each patient through Monte Carlo (MC) simulations. The effective dose values of the VCUG examination for five patients ranged from 0.6 mSv to 3.2 mSv, with a mean of 1.8 +/- 0.9 mSv. Organ doses were also assessed for infant upper gastrointestinal (UGI) fluoroscopy exams. The effective dose values of the UGI examinations for five patients ranged from 1.05 mSv to 5.92 mSv, with a mean of 2.90 +/- 1.97 mSv. MC simulations of helical multislice CT (MSCT) exams were also completed using, the newborn tomographic phantom and a stylized newborn phantom. The helical path of the source, beam shaping filter, beam profile, patient table, were all included in the MC simulations of the helical MSCT scanner. Organ doses and effective doses and their dependence on scan parameters were evaluated for newborn patients. For all CT scans, the effective dose was found to range approximately 1-13 mSv, with the largest values occurring for CAP scans. Tube current modulation strategies to reduce patient dose were also evaluated for newborn patients. Overall, utilization of the newborn tomographic phantom in MC simulations has shown the need for and usefulness of pediatric tomographic phantoms. The newborn tomographic model has shown more versatility and realistic anatomical modeling when compared to the existing stylized newborn phantom. This work has provided important organ dose data for infant patients in common examinations in pediatric radiology.
An Eye Model for Computational Dosimetry Using A Multi-Scale Voxel Phantom
NASA Astrophysics Data System (ADS)
Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek
2014-06-01
The lens of the eye is a radiosensitive tissue with cataract formation being the major concern. Recently reduced recommended dose limits to the lens of the eye have made understanding the dose to this tissue of increased importance. Due to memory limitations, the voxel resolution of computational phantoms used for radiation dose calculations is too large to accurately represent the dimensions of the eye. A revised eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and is then transformed into a high-resolution voxel model. This eye model is combined with an existing set of whole body models to form a multi-scale voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemkiewicz, J; Palmiotti, A; Miner, M
2014-06-01
Purpose: Metal in patients creates streak artifacts in CT images. When used for radiation treatment planning, these artifacts make it difficult to identify internal structures and affects radiation dose calculations, which depend on HU numbers for inhomogeneity correction. This work quantitatively evaluates a new metal artifact reduction (MAR) CT image reconstruction algorithm (GE Healthcare CT-0521-04.13-EN-US DOC1381483) when metal is present. Methods: A Gammex Model 467 Tissue Characterization phantom was used. CT images were taken of this phantom on a GE Optima580RT CT scanner with and without steel and titanium plugs using both the standard and MAR reconstruction algorithms. HU valuesmore » were compared pixel by pixel to determine if the MAR algorithm altered the HUs of normal tissues when no metal is present, and to evaluate the effect of using the MAR algorithm when metal is present. Also, CT images of patients with internal metal objects using standard and MAR reconstruction algorithms were compared. Results: Comparing the standard and MAR reconstructed images of the phantom without metal, 95.0% of pixels were within ±35 HU and 98.0% of pixels were within ±85 HU. Also, the MAR reconstruction algorithm showed significant improvement in maintaining HUs of non-metallic regions in the images taken of the phantom with metal. HU Gamma analysis (2%, 2mm) of metal vs. non-metal phantom imaging using standard reconstruction resulted in an 84.8% pass rate compared to 96.6% for the MAR reconstructed images. CT images of patients with metal show significant artifact reduction when reconstructed with the MAR algorithm. Conclusion: CT imaging using the MAR reconstruction algorithm provides improved visualization of internal anatomy and more accurate HUs when metal is present compared to the standard reconstruction algorithm. MAR reconstructed CT images provide qualitative and quantitative improvements over current reconstruction algorithms, thus improving radiation treatment planning accuracy.« less
NASA Technical Reports Server (NTRS)
VanBaalen, Mary; Bahadon, Amir; Shavers, Mark; Semones, Edward
2011-01-01
The purpose of this study is to use NASA radiation transport codes to compare astronaut organ dose equivalents resulting from solar particle events (SPE), geomagnetically trapped protons, and free-space galactic cosmic rays (GCR) using phantom models representing Earth-based and microgravity-based anthropometry and positioning. Methods: The Univer sity of Florida hybrid adult phantoms were scaled to represent male and female astronauts with 5th, 50th, and 95th percentile heights and weights as measured on Earth. Another set of scaled phantoms, incorporating microgravity-induced changes, such as spinal lengthening, leg volume loss, and the assumption of the neutral body position, was also created. A ray-tracer was created and used to generate body self-shielding distributions for dose points within a voxelized phantom under isotropic irradiation conditions, which closely approximates the free-space radiation environment. Simplified external shielding consisting of an aluminum spherical shell was used to consider the influence of a spacesuit or shielding of a hull. These distributions were combined with depth dose distributions generated from the NASA radiation transport codes BRYNTRN (SPE and trapped protons) and HZETRN (GCR) to yield dose equivalent. Many points were sampled per organ. Results: The organ dos e equivalent rates were on the order of 1.5-2.5 mSv per day for GCR (1977 solar minimum) and 0.4-0.8 mSv per day for trapped proton irradiation with shielding of 2 g cm-2 aluminum equivalent. The organ dose equivalents for SPE irradiation varied considerably, with the skin and eye lens having the highest organ dose equivalents and deep-seated organs, such as the bladder, liver, and stomach having the lowest. Conclus ions: The greatest differences between the Earth-based and microgravity-based phantoms are observed for smaller ray thicknesses, since the most drastic changes involved limb repositioning and not overall phantom size. Improved self-shielding models reduce the overall uncertainty in organ dosimetry for mission-risk projections and assessments for astronauts
SU-F-P-47: Estimation of Skin Dose by Performing the Measurements On Cylindrical Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosma, S; Sanders, M; Aryal, P
Purpose: To evaluate the skin dose by performing the measurements on cylindrical phantom with 6X beam. Methods: A cylindrical phantom was used to best model a patient surface. The source to surface distance (SSD) was 100 cm at phantom surface along central axis (CAX). The EBT2 films were cut into 2×2 cm2 pieces. Each piece of film was placed at CAX on phantom surface for each measurement at 0°, 15°, 30°, 45°, 60°, 75°, and 90° gantry angles for field sizes of 5×5, 10×10, 15×15, and 20×20 cm{sup 2} respectively. One hundred monitor units (MU) with 6X beam were deliveredmore » for each set up. Similarly, the measurements were repeated using lithium fluoride (LiF) thermoluminescent dosimeter (TLD) chips (1X1X1 mm{sup 3}). Two TLD chips were placed for each gantry angle and field size. The calibration curves were produced for both film and TLD. The computed tomography (CT) was also performed on the same cylindrical phantom and dose was evaluated at the phantom surface using Eclipse treatment planning system ( AAA algorithm) for skin dose comparison. Results: Data showed small differences at smaller angles among EBT2, TLD and Eclipse treatment planning system. But Eclipse treatment planning system under estimated the skin dose between 20% and 50% at larger gantry angles (between 40° and 80°) at all field sizes before dose differences began to converge. Conclusion: Given this data, we can conclude that Eclipse treatment planning system under estimated the dose especially between 40 and 80 degrees of obliquity compared to the measurements results. Ideally, this study can be applied largely to head and neck patients where contours differ drastically and where skin dose is paramount.« less
NASA Astrophysics Data System (ADS)
Nauleau, Pierre; Minonzio, Jean-Gabriel; Chekroun, Mathieu; Cassereau, Didier; Laugier, Pascal; Prada, Claire; Grimal, Quentin
2016-07-01
Our long-term goal is to develop an ultrasonic method to characterize the thickness, stiffness and porosity of the cortical shell of the femoral neck, which could enhance hip fracture risk prediction. To this purpose, we proposed to adapt a technique based on the measurement of guided waves. We previously evidenced the feasibility of measuring circumferential guided waves in a bone-mimicking phantom of a circular cross-section of even thickness. The goal of this study is to investigate the impact of the complex geometry of the femoral neck on the measurement of guided waves. Two phantoms of an elliptical cross-section and one phantom of a realistic cross-section were investigated. A 128-element array was used to record the inter-element response matrix of these waveguides. This experiment was simulated using a custom-made hybrid code. The response matrices were analyzed using a technique based on the physics of wave propagation. This method yields portions of dispersion curves of the waveguides which were compared to reference dispersion curves. For the elliptical phantoms, three portions of dispersion curves were determined with a good agreement between experiment, simulation and theory. The method was thus validated. The characteristic dimensions of the shell were found to influence the identification of the circumferential wave signals. The method was then applied to the signals backscattered by the superior half of constant thickness of the realistic phantom. A cut-off frequency and some portions of modes were measured, with a good agreement with the theoretical curves of a plate waveguide. We also observed that the method cannot be applied directly to the signals backscattered by the lower half of varying thicknesses of the phantom. The proposed approach could then be considered to evaluate the properties of the superior part of the femoral neck, which is known to be a clinically relevant site.
NASA Astrophysics Data System (ADS)
Li, Celina L.; Thakur, Yogesh; Ford, Nancy L.
2017-03-01
The standard computed tomography dose index (CTDI) metric tends to underestimate scatter radiation in cone beam computed tomography (CBCT) acquisition; therefore, the American Association of Physicists in Medicine (AAPM) Task Group 111 proposed a new dosimetry methodology to measure equilibrium dose at the center of a phantom (z = 0) using a 2-cm thimble ionization chamber. In this study, we implement the CTDI and the AAPM method with a thimble chamber on adult, adolescent, and child head phantoms using the Toshiba Aquilion One CBCT and compare the results to the CTDI measured with a 10-cm pencil chamber. Following the AAPM protocol, the normalized (100 mAs) equilibrium doses (Deq) computed using dose measurements taken in the central hole of the phantom (Deq,c), the peripheral hole of the phantom, (Deq,p), and by the CTDIw equation (Deq,w) are 20.13 +/- 0.19, 21.53 +/- 0.48, and 20.93 +/- 0.40 mGy for adult; 21.55 +/- 0.40, 21.14 +/- 0.43, and 21.08 +/- 0.45 mGy for adolescent; and 24.58 +/- 0.40, 24.92 +/- 0.85, and 24.77 +/- 0.72 mGy for child, respectively. The CTDIw, which measured 17.70, 19.86, and 22.43 mGy for adult, adolescent and child respectively, is about 10% lower than their corresponding Deq's. The extended AAPM method proposed by Deman et al., which estimates the dose profile along the rotational axis (z axis), has demonstrated consistency between theoretical and experimental results for all phantoms. With the introduction of the child and the adolescent head phantoms, we not only have emphasized the practical aspects including relative convenience of the CTDI method and accuracy of the AAPM method, but also proposed a method to approximate Deq for different sized patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, S; Hristov, D; Phillips, T
Purpose: Transperineal ultrasound imaging is attractive option for imageguided radiation therapy as there is no need to implant fiducials, no extra imaging dose, and real time continuous imaging is possible during treatment. The aim of this study is to verify the tracking accuracy of a commercial ultrasound system under treatment conditions with a male pelvic phantom. Methods: A CT and ultrasound scan were acquired for the male pelvic phantom. The phantom was then placed in a treatment mimicking position on a motion platform. The axial and lateral tracking accuracy of the ultrasound system were verified using an independent optical trackingmore » system. The tracking accuracy was evaluated by tracking the phantom position detected by the ultrasound system, and comparing it to the optical tracking system under the conditions of beam on (15 MV), beam off, poor image quality with an acoustic shadow introduced, and different phantom motion cycles (10 and 20 second periods). Additionally, the time lag between the ultrasound-detected and actual phantom motion was investigated. Results: Displacement amplitudes reported by the ultrasound system and optical system were within 0.5 mm of each other for both directions and all conditions. The ultrasound tracking performance in axial direction was better than in lateral direction. Radiation did not interfere with ultrasound tracking while image quality affected tracking accuracy. The tracking accuracy was better for periodic motion with 20 second period. The time delay between the ultrasound tracking system and the phantom motion was clinically acceptable. Conclusion: Intrafractional prostate motion is a potential source of treatment error especially in the context of emerging SBRT regimens. It is feasible to use transperineal ultrasound daily to monitor prostate motion during treatment. Our results verify the tracking accuracy of a commercial ultrasound system to be better than 1 mm under typical external beam treatment conditions.« less
He, Lian; Lin, Yu; Shang, Yu; Shelton, Brent J.
2013-01-01
Abstract. The dual-wavelength diffuse correlation spectroscopy (DCS) flow-oximeter is an emerging technique enabling simultaneous measurements of blood flow and blood oxygenation changes in deep tissues. High signal-to-noise ratio (SNR) is crucial when applying DCS technologies in the study of human tissues where the detected signals are usually very weak. In this study, single-mode, few-mode, and multimode fibers are compared to explore the possibility of improving the SNR of DCS flow-oximeter measurements. Experiments on liquid phantom solutions and in vivo muscle tissues show only slight improvements in flow measurements when using the few-mode fiber compared with using the single-mode fiber. However, light intensities detected by the few-mode and multimode fibers are increased, leading to significant SNR improvements in detections of phantom optical property and tissue blood oxygenation. The outcomes from this study provide useful guidance for the selection of optical fibers to improve DCS flow-oximeter measurements. PMID:23455963
Dictionary Learning for Data Recovery in Positron Emission Tomography
Valiollahzadeh, SeyyedMajid; Clark, John W.; Mawlawi, Osama
2015-01-01
Compressed sensing (CS) aims to recover images from fewer measurements than that governed by the Nyquist sampling theorem. Most CS methods use analytical predefined sparsifying domains such as Total variation (TV), wavelets, curvelets, and finite transforms to perform this task. In this study, we evaluated the use of dictionary learning (DL) as a sparsifying domain to reconstruct PET images from partially sampled data, and compared the results to the partially and fully sampled image (baseline). A CS model based on learning an adaptive dictionary over image patches was developed to recover missing observations in PET data acquisition. The recovery was done iteratively in two steps: a dictionary learning step and an image reconstruction step. Two experiments were performed to evaluate the proposed CS recovery algorithm: an IEC phantom study and five patient studies. In each case, 11% of the detectors of a GE PET/CT system were removed and the acquired sinogram data were recovered using the proposed DL algorithm. The recovered images (DL) as well as the partially sampled images (with detector gaps) for both experiments were then compared to the baseline. Comparisons were done by calculating RMSE, contrast recovery and SNR in ROIs drawn in the background, and spheres of the phantom as well as patient lesions. For the phantom experiment, the RMSE for the DL recovered images were 5.8% when compared with the baseline images while it was 17.5% for the partially sampled images. In the patients’ studies, RMSE for the DL recovered images were 3.8%, while it was 11.3% for the partially sampled images. Our proposed CS with DL is a good approach to recover partially sampled PET data. This approach has implications towards reducing scanner cost while maintaining accurate PET image quantification. PMID:26161630
Dictionary learning for data recovery in positron emission tomography
NASA Astrophysics Data System (ADS)
Valiollahzadeh, SeyyedMajid; Clark, John W., Jr.; Mawlawi, Osama
2015-08-01
Compressed sensing (CS) aims to recover images from fewer measurements than that governed by the Nyquist sampling theorem. Most CS methods use analytical predefined sparsifying domains such as total variation, wavelets, curvelets, and finite transforms to perform this task. In this study, we evaluated the use of dictionary learning (DL) as a sparsifying domain to reconstruct PET images from partially sampled data, and compared the results to the partially and fully sampled image (baseline). A CS model based on learning an adaptive dictionary over image patches was developed to recover missing observations in PET data acquisition. The recovery was done iteratively in two steps: a dictionary learning step and an image reconstruction step. Two experiments were performed to evaluate the proposed CS recovery algorithm: an IEC phantom study and five patient studies. In each case, 11% of the detectors of a GE PET/CT system were removed and the acquired sinogram data were recovered using the proposed DL algorithm. The recovered images (DL) as well as the partially sampled images (with detector gaps) for both experiments were then compared to the baseline. Comparisons were done by calculating RMSE, contrast recovery and SNR in ROIs drawn in the background, and spheres of the phantom as well as patient lesions. For the phantom experiment, the RMSE for the DL recovered images were 5.8% when compared with the baseline images while it was 17.5% for the partially sampled images. In the patients’ studies, RMSE for the DL recovered images were 3.8%, while it was 11.3% for the partially sampled images. Our proposed CS with DL is a good approach to recover partially sampled PET data. This approach has implications toward reducing scanner cost while maintaining accurate PET image quantification.
Quantifying the tibiofemoral joint space using x-ray tomosynthesis.
Kalinosky, Benjamin; Sabol, John M; Piacsek, Kelly; Heckel, Beth; Gilat Schmidt, Taly
2011-12-01
Digital x-ray tomosynthesis (DTS) has the potential to provide 3D information about the knee joint in a load-bearing posture, which may improve diagnosis and monitoring of knee osteoarthritis compared with projection radiography, the current standard of care. Manually quantifying and visualizing the joint space width (JSW) from 3D tomosynthesis datasets may be challenging. This work developed a semiautomated algorithm for quantifying the 3D tibiofemoral JSW from reconstructed DTS images. The algorithm was validated through anthropomorphic phantom experiments and applied to three clinical datasets. A user-selected volume of interest within the reconstructed DTS volume was enhanced with 1D multiscale gradient kernels. The edge-enhanced volumes were divided by polarity into tibial and femoral edge maps and combined across kernel scales. A 2D connected components algorithm was performed to determine candidate tibial and femoral edges. A 2D joint space width map (JSW) was constructed to represent the 3D tibiofemoral joint space. To quantify the algorithm accuracy, an adjustable knee phantom was constructed, and eleven posterior-anterior (PA) and lateral DTS scans were acquired with the medial minimum JSW of the phantom set to 0-5 mm in 0.5 mm increments (VolumeRad™, GE Healthcare, Chalfont St. Giles, United Kingdom). The accuracy of the algorithm was quantified by comparing the minimum JSW in a region of interest in the medial compartment of the JSW map to the measured phantom setting for each trial. In addition, the algorithm was applied to DTS scans of a static knee phantom and the JSW map compared to values estimated from a manually segmented computed tomography (CT) dataset. The algorithm was also applied to three clinical DTS datasets of osteoarthritic patients. The algorithm segmented the JSW and generated a JSW map for all phantom and clinical datasets. For the adjustable phantom, the estimated minimum JSW values were plotted against the measured values for all trials. A linear fit estimated a slope of 0.887 (R² = 0.962) and a mean error across all trials of 0.34 mm for the PA phantom data. The estimated minimum JSW values for the lateral adjustable phantom acquisitions were found to have low correlation to the measured values (R² = 0.377), with a mean error of 2.13 mm. The error in the lateral adjustable-phantom datasets appeared to be caused by artifacts due to unrealistic features in the phantom bones. JSW maps generated by DTS and CT varied by a mean of 0.6 mm and 0.8 mm across the knee joint, for PA and lateral scans. The tibial and femoral edges were successfully segmented and JSW maps determined for PA and lateral clinical DTS datasets. A semiautomated method is presented for quantifying the 3D joint space in a 2D JSW map using tomosynthesis images. The proposed algorithm quantified the JSW across the knee joint to sub-millimeter accuracy for PA tomosynthesis acquisitions. Overall, the results suggest that x-ray tomosynthesis may be beneficial for diagnosing and monitoring disease progression or treatment of osteoarthritis by providing quantitative images of JSW in the load-bearing knee.
Development of thyroid anthropomorphic phantoms for use in nuclear medicine
NASA Astrophysics Data System (ADS)
Cerqueira, R. A. D.; Maia, A. F.
2014-02-01
The objective of this study was to develop thyroid anthropomorphic phantoms to be used in control tests of medical images in scintillation cameras. The main difference among the phantoms was the neck shape: in the first, called OSCT, it was geometrically shaped, while in the second, called OSAP, it was anthropomorphically shaped. In both phantoms, thyroid gland prototypes, which were made of acrylic and anthropomorphically shaped, were constructed to allow the simulation of a healthy thyroid and of thyroids with hyperthyroidism and hypothyroidism. Images of these thyroid anthropomorphic phantoms were obtained using iodine 131 with an activity of 8.695 MBq. The iodine 131 was chosen because it is widely used in studies of thyroid scintigraphy. The images obtained proved the effectiveness of the phantoms to simulate normal or abnormal thyroids function. These phantoms can be used in medical imaging quality control programs and, also in the training of professionals involved in the analysis of images in nuclear medicine centers.
Wolff, Jan E.; Kiljunen, Timo; Schulze, Dirk; Kortesniemi, Mika
2015-01-01
The aims of this study were to characterize reinforced metal‐oxide‐semiconductor field‐effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low‐dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the thermoluminescent dosimeters (TLD). The second aim was to characterize MOSFET dosimeter sensitivities for two dental photon energy ranges, dose dependency, dose rate dependency, and accumulated dose dependency. A further aim was to compare the performance of MOSFETs with those of TLDs in an anthropomorphic phantom head using a dentomaxillofacial CBCT device. The uncertainty was assessed by exposing 20 MOSFETs and a Barracuda MPD reference dosimeter. The MOSFET dosimeter sensitivities were evaluated for two photon energy ranges (50–90 kVp) using a constant dose and polymethylmethacrylate backscatter material. MOSFET and TLD comparative point‐dose measurements were performed on an anthropomorphic phantom that was exposed with a clinical CBCT protocol. The MOSFET single exposure low dose limit (25% uncertainty, k=2) was 1.69 mGy. An averaging of eight MOSFET exposures was required to attain the corresponding TLD (0.3 mGy) low‐dose limit. The sensitivity was 3.09±0.13 mV/mGy independently of the photon energy used. The MOSFET dosimeters did not present dose or dose rate sensitivity but, however, presented a 1% decrease of sensitivity per 1000 mV for accumulated threshold voltages between 8300 mV and 17500 mV. The point doses in an anthropomorphic phantom ranged for MOSFETs between 0.24 mGy and 2.29 mGy and for TLDs between 0.25 and 2.09 mGy, respectively. The mean difference was −8%. The MOSFET dosimeters presented statistically insignificant energy dependency. By averaging multiple exposures, the MOSFET dosimeters can achieve a TLD‐comparable low‐dose limit and constitute a feasible method for diagnostic dosimetry using anthropomorphic phantoms. However, for single in vivo measurements (<1.7 mGy) the sensitivity is too low. PACS number: 87.50.wj PMID:26219008
Impact of Time-of-Flight on PET Tumor Detection
Kadrmas, Dan J.; Casey, Michael E.; Conti, Maurizio; Jakoby, Bjoern W.; Lois, Cristina; Townsend, David W.
2009-01-01
Time-of-flight (TOF) PET uses very fast detectors to improve localization of events along coincidence lines-of-response. This information is then utilized to improve the tomographic reconstruction. This work evaluates the effect of TOF upon an observer's performance for detecting and localizing focal warm lesions in noisy PET images. Methods An advanced anthropomorphic lesion-detection phantom was scanned 12 times over 3 days on a prototype TOF PET/CT scanner (Siemens Medical Solutions). The phantom was devised to mimic whole-body oncologic 18F-FDG PET imaging, and a number of spheric lesions (diameters 6–16 mm) were distributed throughout the phantom. The data were reconstructed with the baseline line-of-response ordered-subsets expectation-maximization algorithm, with the baseline algorithm plus point spread function model (PSF), baseline plus TOF, and with both PSF+TOF. The lesion-detection performance of each reconstruction was compared and ranked using localization receiver operating characteristics (LROC) analysis with both human and numeric observers. The phantom results were then subjectively compared to 2 illustrative patient scans reconstructed with PSF and with PSF+TOF. Results Inclusion of TOF information provides a significant improvement in the area under the LROC curve compared to the baseline algorithm without TOF data (P = 0.002), providing a degree of improvement similar to that obtained with the PSF model. Use of both PSF+TOF together provided a cumulative benefit in lesion-detection performance, significantly outperforming either PSF or TOF alone (P < 0.002). Example patient images reflected the same image characteristics that gave rise to improved performance in the phantom data. Conclusion Time-of-flight PET provides a significant improvement in observer performance for detecting focal warm lesions in a noisy background. These improvements in image quality can be expected to improve performance for the clinical tasks of detecting lesions and staging disease. Further study in a large clinical population is warranted to assess the benefit of TOF for various patient sizes and count levels, and to demonstrate effective performance in the clinical environment. PMID:19617317
Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janssens, Guillaume; Orban de Xivry, Jonathan; Fekkes, Stein
2009-09-15
Purpose: Interfraction dose accumulation is necessary to evaluate the dose distribution of an entire course of treatment by adding up multiple dose distributions of different treatment fractions. This accumulation of dose distributions is not straightforward as changes in the patient anatomy may occur during treatment. For this purpose, the accuracy of nonrigid registration methods is assessed for dose accumulation based on the calculated deformations fields. Methods: A phantom study using a deformable cubic silicon phantom with implanted markers and a cylindrical silicon phantom with MOSFET detectors has been performed. The phantoms were deformed and images were acquired using a cone-beammore » CT imager. Dose calculations were performed on these CT scans using the treatment planning system. Nonrigid CT-based registration was performed using two different methods, the Morphons and Demons. The resulting deformation field was applied on the dose distribution. For both phantoms, accuracy of the registered dose distribution was assessed. For the cylindrical phantom, also measured dose values in the deformed conditions were compared with the dose values of the registered dose distributions. Finally, interfraction dose accumulation for two treatment fractions of a patient with primary rectal cancer has been performed and evaluated using isodose lines and the dose volume histograms of the target volume and normal tissue. Results: A significant decrease in the difference in marker or MOSFET position was observed after nonrigid registration methods (p<0.001) for both phantoms and with both methods, as well as a significant decrease in the dose estimation error (p<0.01 for the cubic phantom and p<0.001 for the cylindrical) with both methods. Considering the whole data set at once, the difference between estimated and measured doses was also significantly decreased using registration (p<0.001 for both methods). The patient case showed a slightly underdosed planning target volume and an overdosed bladder volume due to anatomical deformations. Conclusions: Dose accumulation using nonrigid registration methods is possible using repeated CT imaging. This opens possibilities for interfraction dose accumulation and adaptive radiotherapy to incorporate possible differences in dose delivered to the target volume and organs at risk due to anatomical deformations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, I; Jaskowiak, J; Ahmad, S
Purpose: To investigate quantitatively the displacement-vector-fields (DVF) obtained from different deformable image registration algorithms (DIR) in helical (HCT), axial (ACT) and cone-beam CT (CBCT) to register CT images of a mobile phantom and its correlation with motion amplitudes and frequencies. Methods: HCT, ACT and CBCT are used to image a mobile phantom which includes three targets with different sizes that are manufactured from water-equivalent material and embedded in low density foam. The phantom is moved with controlled motion patterns where a range of motion amplitudes (0–40mm) and frequencies (0.125–0.5Hz) are used. The CT images obtained from scanning of the mobilemore » phantom are registered with the stationary CT-images using four deformable image registration algorithms including demons, fast-demons, Horn-Schunk and Locas-Kanade from DIRART software. Results: The DVF calculated by the different algorithms correlate well with the motion amplitudes that are applied on the mobile phantom where maximal DVF increase linearly with the motion amplitudes of the mobile phantom in CBCT. Similarly in HCT, DVF increase linearly with motion amplitude, however, its correlation is weaker than CBCT. In ACT, the DVF’s do not correlate well with the motion amplitudes where motion induces strong image artifacts and DIR algorithms are not able to deform the ACT image of the mobile targets to the stationary targets. Three DIR-algorithms produce comparable values and patterns of the DVF for certain CT imaging modality. However, DVF from fast-demons deviated strongly from other algorithms at large motion amplitudes. Conclusion: In CBCT and HCT, the DVF correlate well with the motion amplitude of the mobile phantom. However, in ACT, DVF do not correlate with motion amplitudes. Correlations of DVF with motion amplitude as in CBCT and HCT imaging techniques can provide information about unknown motion parameters of the mobile organs in real patients as demonstrated in this phantom visibility study.« less
Kim, Dohyun; Park, Sung-Ho
2016-11-01
Recently, Doppler ultrasound has been used for the measurement of pulpal blood flow in human teeth. However, the reliability of this method has not been verified. In this study, we developed a model to simulate arteriole blood flow within the dental pulp by using microfluidics. This arteriole simulator, or flow phantom, was used to determine the reliability of measurements obtained by using a Doppler ultrasound device. A microfluidic chip was fabricated by using the soft lithography technique, and blood-mimicking fluid was pumped through the channel by a microfluidic system. A Doppler ultrasound device was used for the measurement of flow velocity. The peak, mean, and minimal flow velocities obtained from the phantom and the Doppler ultrasound device were compared by using linear regression analysis and Pearson correlation coefficient. Bland-Altman analyses were performed to evaluate the velocity differences between the flow generated by the phantom and the flow measurements made with the Doppler ultrasound device. The microfluidic system was able to generate the flow profiles as intended, and the fluid flow could be monitored and controlled by the software program. There were excellent linear correlations between the peak, mean, and minimal flow velocities of the phantom and those of the Doppler ultrasound device (r = 0.94-0.996, P < .001). However, the velocities were overestimated by the Doppler ultrasound device. This phantom provides opportunities for research and education involving the Doppler ultrasound technique in dentistry. Although Doppler ultrasound can be an effective tool for the measurement of pulpal blood flow velocity, it is essential to validate and calibrate the device before clinical use. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syh, J; Ding, X; Rosen, L
2015-06-15
Purpose: The purpose of this study is to evaluate any effects of converted CT density variation in treatment planning system (TPS) of spot scanning proton therapy with an IROC proton prostate phantom at our new ProteusOne Proton Therapy Center. Methods: A proton prostate phantom was requested from the Imaging and Radiation Oncology Core Houston (IROC), The University of Texas MD Anderson Cancer Center, Houston, TX, where GAF Chromic films and couples of thermo luminescent dosemeter (TLD) capsules in target and adjacent structures were embedded for imaging and dose monitoring. Various material such as PVC, PBT HI polystyrene as dosimetry insertsmore » and acrylic were within phantom. Relative stopping power (SP) were provided. However our treatment planning system (TPS) doesn’t require SP instead relative density was converted relative to water in TPS. Phantom was irradiated and the results were compared with IROC measurements. The range of relative density was converted from SP into relative density of water as a new assigned material and tested. Results: The summary of TLD measurements of the prostate and femoral heads were well within 2% of the TPS and met the criteria established by IROC. The film at coronal plane was found to be shift in superior-inferior direction due to locking position of cylinder insert was off and was corrected. The converted CT density worked precisely to correlated relative stopping power. Conclusion: The proton prostate phantom provided by IROC is a useful methodology to evaluate our new commissioned proton pencil beam and TPS within certain confidence in proton therapy. The relative stopping power was converted into relative physical density relatively to water and the results were satisfied.« less
NASA Astrophysics Data System (ADS)
Lv, Xiang; Xue, Yue; Wang, Haili; Shen, Shu Wei; Zhou, Ximing; Liu, Guangli; Dong, Erbao; Xu, Ronald X.
2017-03-01
Tissue-simulating phantoms with interior vascular network may facilitate traceable calibration and quantitative validation of many medical optical devices. However, a solid phantom that reliably simulates tissue oxygenation and blood perfusion is still not available. This paper presents a new method to fabricate hollow microtubes for blood vessel simulation in solid phantoms. The fabrication process combines ultraviolet (UV) rapid prototyping technique with fluid mechanics of a coaxial jet flow. Polydimethylsiloxane (PDMS) and a UV-curable polymer are mixed at the designated ratio and extruded through a coaxial needle device to produce a coaxial jet flow. The extruded jet flow is quickly photo-polymerized by ultraviolet (UV) light to form vessel-simulating solid structures at different sizes ranging from 700 μm to 1000 μm. Microtube structures with adequate mechanical properties can be fabricated by adjusting material compositions and illumination intensity. Curved, straight and stretched microtubes can be formed by adjusting the extrusion speed of the materials and the speed of the 3D printing platform. To simulate vascular structures in biologic tissue, we embed vessel-simulating microtubes in a gel wax phantom of 10 cm x10 cm x 5 cm at the depth from 1 to 2 mm. Bloods at different oxygenation and hemoglobin concentration levels are circulated through the microtubes at different flow rates in order to simulate different oxygenation and perfusion conditions. The simulated physiologic parameters are detected by a tissue oximeter and a laser speckle blood flow meter respectively and compared with the actual values. Our experiments demonstrate that the proposed 3D printing process is able to produce solid phantoms with simulated vascular networks for potential applications in medical device calibration and drug delivery studies.
NASA Astrophysics Data System (ADS)
Kramer, R.; Khoury, H. J.; Vieira, J. W.; Kawrakow, I.
2006-12-01
3D-microCT images of vertebral bodies from three different individuals have been segmented into trabecular bone, bone marrow and bone surface cells (BSC), and then introduced into the spongiosa voxels of the MAX06 and the FAX06 phantoms, in order to calculate the equivalent dose to the red bone marrow (RBM) and the BSC in the marrow cavities of trabecular bone with the EGSnrc Monte Carlo code from whole-body exposure to external photon radiation. The MAX06 and the FAX06 phantoms consist of about 150 million 1.2 mm cubic voxels each, a part of which are spongiosa voxels surrounded by cortical bone. In order to use the segmented 3D-microCT images for skeletal dosimetry, spongiosa voxels in the MAX06 and the FAX06 phantom were replaced at runtime by so-called micro matrices representing segmented trabecular bone, marrow and BSC in 17.65, 30 and 60 µm cubic voxels. The 3D-microCT image-based RBM and BSC equivalent doses for external exposure to photons presented here for the first time for complete human skeletons are in agreement with the results calculated with the three correction factor method and the fluence-to-dose response functions for the same phantoms taking into account the conceptual differences between the different methods. Additionally the microCT image-based results have been compared with corresponding data from earlier studies for other human phantoms. This article is dedicated to Prof. Dr Guenter Drexler from the Laboratório de Ciências Radiológicas, State University of Rio de Janeiro, on the occasion of his 70th birthday.