Dobo, Krista L; Greene, Nigel; Cyr, Michelle O; Caron, Stéphane; Ku, Warren W
2006-04-01
Starting materials and intermediates used to synthesize pharmaceuticals are reactive in nature and may be present as impurities in the active pharmaceutical ingredient (API) used for preclinical safety studies and clinical trials. Furthermore, starting materials and intermediates may be known or suspected mutagens and/or carcinogens. Therefore, during drug development due diligence need be applied from two perspectives (1) to understand potential mutagenic and carcinogenic risks associated with compounds used for synthesis and (2) to understand the capability of synthetic processes to control genotoxic impurities in the API. Recently, a task force comprised of experts from pharmaceutical industry proposed guidance, with recommendations for classification, testing, qualification and assessing risk of genotoxic impurities. In our experience the proposed structure-based classification, has differentiated 75% of starting materials and intermediates as mutagenic and non-mutagenic with high concordance (92%) when compared with Ames results. Structure-based assessment has been used to identify genotoxic hazards, and prompted evaluation of fate of genotoxic impurities in API. These two assessments (safety and chemistry) culminate in identification of genotoxic impurities known or suspected to exceed acceptable levels in API, thereby triggering actions needed to assure appropriate control and measurement methods are in place. Hypothetical case studies are presented demonstrating this multi-disciplinary approach.
Contrera, Joseph F
2011-02-01
The Threshold of Toxicological Concern (TTC) is a level of exposure to a genotoxic impurity that is considered to represent a negligible risk to humans. The TTC was derived from the results of rodent carcinogenicity TD50 values that are a measure of carcinogenic potency. The TTC currently sets a default limit of 1.5 μg/day in food contact substances and pharmaceuticals for all genotoxic impurities without carcinogenicity data. Bercu et al. (2010) used the QSAR predicted TD50 to calculate a risk specific dose (RSD) which is a carcinogenic potency adjusted TTC for genotoxic impurities. This promising approach is currently limited by the software used, a combination of MC4PC (www.multicase.com) and a Lilly Inc. in-house software (VISDOM) that is not available to the public. In this report the TD50 and RSD were predicted using a commercially available software, SciQSAR (formally MDL-QSAR, www.scimatics.com) employing the same TD50 training data set and external validation test set that was used by Bercu et al. (2010). The results demonstrate the general applicability of QSAR predicted TD50 values to determine the RSDs for genotoxic impurities and the improved performance of SciQSAR for predicting TD50 values. Copyright © 2010 Elsevier Inc. All rights reserved.
Kumar, Thangarathinam; Ramya, Mohandass; Srinivasan, Viswanathan; Xavier, N
2017-08-01
Hydroxylamine is a known genotoxic impurity compound that needs to be controlled down to ppm level in pharmaceutical processes. It is difficult to detect using conventional analytical techniques due to its physio-chemical properties like lack of chromophore, low molecular weight, absence of carbon atom and high polarity. In addition to that, analysis of the pharmaceutical samples encounters considerable obstruction from matrix components that greatly overshadow the response of hydroxylamine. This study describes a simple, sensitive and direct Liquid Chromatographic-Mass Spectrometric method (LC-MS) for detection of hydroxylamine in pharmaceutical compounds. The LC-MS method was detected up to 0.008 ppm of hydroxylamine with S/N > 3.0 and quantified up to 0.025 ppm of hydroxylamine with S/N ratio >10.0. This validated method can be applied as a generic method to detect the hydroxylamine for pharmaceutical process control and drug substance release. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Douša, Michal; Doubský, Jan; Srbek, Jan
2016-07-01
An analytical reversed-phase high-performance liquid chromatography (HPLC) method for the detection and quantitative determination of two genotoxic impurities at ppm level present in the vortioxetine manufacturing process is described. Applying the concept of threshold of toxicological concern, a limit of 75 ppm each for both genotoxic impurities was calculated based on the maximum daily dose of active pharmaceutical ingredients. The novel reversed-phase HPLC method with photochemically induced fluorescence detection was developed on XSELECT Charged Surface Hybrid Phenyl-Hexyl column using the mobile phase consisted a mixture of 10 mM ammonium formate pH 3.0 and acetonitrile. The elution was performed using an isocratic composition of 48:52 (v/v) at a flow rate of 1.0 mL/min. The photochemically induced fluorescence detection is based on the use of UV irradiation at 254 nm through measuring the fluorescence intensity at 300 nm and an excitation wavelength of 272 nm to produce fluorescent derivatives of both genotoxic impurities. The online photochemical conversion and detection is easily accomplished for two expected genotoxic impurities and provides a sufficiently low limit detection and quantification for the target analysis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Corrigan, Damion K; Whitcombe, Michael J; McCrossen, Sean; Piletsky, Sergey
2009-04-01
Alkylating agents are potentially genotoxic impurities that may be present in drug products. These impurities occur in pharmaceuticals as by-products from the synthetic steps involved in drug production, as impurities in starting materials or from in-situ reactions that take place in the final drug product. Currently, analysis for genotoxic impurities is typically carried out using either HPLC/MS or GC/MS. These techniques require specialist expertise, have long analysis times and often use sample clean-up procedures. Reichardt's dye is well known for its solvatochromic properties. In this paper the dye's ability to undergo alkylation is reported. The reaction between Reichardt's dye and alkylating agents such as 4-chloro-1-butanol and ethyl methanesulfonate was monitored spectrophotometrically at 618 nm in acetonitrile and 624 nm in N,N-dimethylformamide. Changes in absorption were observed using low levels of alkylating agent (5-10 parts per million). Alkylation of the dye with 4-chloro-1-butanol and ethyl methanesulfonate was confirmed. Reichardt's dye, and its changing UV absorption, was examined in the presence of paracetamol (10 and 100 mg/ml). Whilst the alkylation-induced changes in UV absorption were not as pronounced as with standard solutions, detection of alkylation was still possible. Using standard solutions and in the presence of a drug matrix, Reichardt's dye shows promise as a reagent for detection of low levels of industrially important alkylating agents.
Grigori, Katerina; Loukas, Yannis L; Malenović, Anđelija; Samara, Vicky; Kalaskani, Anastasia; Dimovasili, Efi; Kalovidouri, Magda; Dotsikas, Yannis
2017-10-25
A sensitive Liquid Chromatography tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitative analysis of three potential genotoxic impurities (318BP, M9, S5) in meropenem Active Pharmaceutical Ingredient (API). Due to the requirement for LOD values in ppb range, a high concentration of meropenem API (30mg/mL) had to be injected. Therefore, efficient determination of meropenem from its impurities became a critical aim of this study, in order to divert meropenem to waste, via a switching valve. After the selection of the important factors affecting analytes' elution, a Box-Behnken design was utilized to set the plan of experiments conducted with UV detector. As responses, the separation factor s between the last eluting impurity and meropenem, as well as meropenem retention factor k were used. Grid point search methodology was implemented aiming to obtain the optimal conditions that simultaneously comply to the conflicted criteria. Optimal mobile phase consisted of ACN, methanol and 0.09% HCOOH at a ratio 71/3.5/15.5v/v. All impurities and internal standard omeprazole were eluted before 7.5min and at 8.0min the eluents were directed to waste. The protocol was transferred to LC-MS/MS and validated according to ICH guidelines. Copyright © 2017 Elsevier B.V. All rights reserved.
Delaney, Edward J
2007-11-01
The recent application of the threshold of toxicological concern (TTC) concept to the regulation of pharmaceuticals in the European Union is analyzed. The derivation of TTC and the threshold of regulation that followed it were originally intended to provide makers of food contact materials greater flexibility with their products, while allowing the CFSAN branch of FDA to conserve its resources for more important issues. A reanalysis of the scientific data employed by EMEA regulators to rationalize its 1.5 mcg default genotoxic impurity limit is presented to demonstrate (a) that direct translation of conclusions relevant to food consumption are unduly influenced by many classes of potent carcinogens of historic concern which would be impossible to generate unknowingly as pharmaceutical impurities, and (b) that the majority of reactive chemicals that would be useful to synthetic chemists are among the least potent carcinogens in the underpinning supportive analyses. Evidence is further presented to show that implementation and acceptance of a 1.5 mcg TTC-based total limit on such impurities can be expected to impede pharmaceutical research and development efficiency while providing an insignificant cancer risk-avoidance benefit to patients who require pharmaceutical treatments. The conclusion drawn is that a significantly higher default limit can readily be defended that would be both in keeping with TTC principles and the best interest of patients.
Aiba née Kaneko, Maki; Hirota, Morihiko; Kouzuki, Hirokazu; Mori, Masaaki
2015-02-01
Genotoxicity is the most commonly used endpoint to predict the carcinogenicity of chemicals. The International Conference on Harmonization (ICH) M7 Guideline on Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk offers guidance on (quantitative) structure-activity relationship ((Q)SAR) methodologies that predict the outcome of bacterial mutagenicity assay for actual and potential impurities. We examined the effectiveness of the (Q)SAR approach with the combination of DEREK NEXUS as an expert rule-based system and ADMEWorks as a statistics-based system for the prediction of not only mutagenic potential in the Ames test, but also genotoxic potential in mutagenicity and clastogenicity tests, using a data set of 342 chemicals extracted from the literature. The prediction of mutagenic potential or genotoxic potential by DEREK NEXUS or ADMEWorks showed high values of sensitivity and concordance, while prediction by the combination of DEREK NEXUS and ADMEWorks (battery system) showed the highest values of sensitivity and concordance among the three methods, but the lowest value of specificity. The number of false negatives was reduced with the battery system. We also separately predicted the mutagenic potential and genotoxic potential of 41 cosmetic ingredients listed in the International Nomenclature of Cosmetic Ingredients (INCI) among the 342 chemicals. Although specificity was low with the battery system, sensitivity and concordance were high. These results suggest that the battery system consisting of DEREK NEXUS and ADMEWorks is useful for prediction of genotoxic potential of chemicals, including cosmetic ingredients.
Nemitz, Marina C; Picada, Jaqueline N; da Silva, Juliana; Garcia, Ana Letícia H; Papke, Débora K M; Grivicich, Ivana; Steppe, Martin; von Poser, Gilsane L; Teixeira, Helder F
2016-09-10
Soybean acid hydrolyzed extracts are raw-materials widely used for manufacturing of pharmaceuticals and cosmetics products due to their high content of isoflavone aglycones. In the present study, the main sugar degradation products 5-hydroxymethyl-2-furfural (HMF) and 5-ethoxymethyl-2-furfural (EMF) were quantitatively determined after acid hydrolysis of extracts from different soybean cultivars by a validated liquid chromatography method. The furanic compounds determined in samples cover the range of 0.16-0.21mg/mL and 0.22-0.33mg/mL for HMF and EMF, respectively. Complementarily, due to the scarce literature regarding the EMF toxicology, this study also assessed the EMF mutagenicity by the Salmonella/microsome test and genotoxicity by the comet assay. The results revealed that EMF did not show mutagenicity at the range of 50-5000μg/plate in S. typhimurium strains TA98, TA97a, TA100, TA102 and TA1535, but induced DNA damage in HepG2 cells at non-cytotoxic doses of 0.1-1.3mg/mL, mainly by oxidative stress mechanisms. Based on literature of HMF genotoxicity, and considering the EMF genotoxicity results herein shown, purification procedures to remove these impurities from extracts are recommended during healthcare products development to ensure the security of the products. Copyright © 2016 Elsevier B.V. All rights reserved.
Iliou, Katerina; Malenović, Anđelija; Loukas, Yannis L; Dotsikas, Yannis
2018-02-05
A novel Liquid Chromatography-tandem mass spectrometry (LC-MS/MS) method is presented for the quantitative determination of two potential genotoxic impurities (PGIs) in rabeprazole active pharmaceutical ingredient (API). In order to overcome the analytical challenges in the trace analysis of PGIs, a development procedure supported by Quality-by-Design (QbD) principles was evaluated. The efficient separation between rabeprazole and the two PGIs in the shortest analysis time was set as the defined analytical target profile (ATP) and to this purpose utilization of a switching valve allowed the flow to be sent to waste when rabeprazole was eluted. The selected critical quality attributes (CQAs) were the separation criterion s between the critical peak pair and the capacity factor k of the last eluted compound. The effect of the following critical process parameters (CPPs) on the CQAs was studied: %ACN content, the pH and the concentration of the buffer salt in the mobile phase, as well as the stationary phase of the analytical column. D-Optimal design was implemented to set the plan of experiments with UV detector. In order to define the design space, Monte Carlo simulations with 5000 iterations were performed. Acceptance criteria were met for C 8 column (50×4mm, 5μm) , and the region having probability π≥95% to achieve satisfactory values of all defined CQAs was computed. The working point was selected with the mobile phase consisting of ACN, ammonium formate 11mM at a ratio 31/69v/v with pH=6,8 for the water phase. The LC protocol was transferred to LC-MS/MS and validated according to ICH guidelines. Copyright © 2017 Elsevier B.V. All rights reserved.
Genotoxicity of 2-bromo-3′-chloropropiophenone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Fanxue; Yan, Jian; Li, Yan
2013-07-15
Impurities are present in any drug substance or drug product. They can be process-related impurities that are not completely removed during purification or are formed due to the degradation of the drug substance over the product shelf-life. Unlike the drug substance, impurities generally do not have beneficial effects and may present a risk without associated benefit. Therefore, their amount should be minimized. 2-Bromo-3′-chloropropiophenone (BCP) is an impurity of bupropion, a second-generation antidepressant and a smoking cessation aid. The United States Pharmacopeia recommends an acceptable level for BCP that is not more than 0.1% of the bupropion. Because exposure to genotoxicmore » impurities even at low levels is of significant concern, it is important to determine whether or not BCP is genotoxic. Therefore, in this study the Ames test and the in vitro micronucleus assay were conducted to evaluate the genotoxicity of BCP. BCP was mutagenic with S9 metabolic activation, increasing the mutant frequencies in a concentration-dependent manner, up to 22- and 145-fold induction over the controls in Salmonella strains TA100 and TA1535, respectively. BCP was also positive in the in vitro micronucleus assay, resulting in up to 3.3- and 5.1-fold increase of micronucleus frequency for treatments in the absence and presence of S9, respectively; and 9.9- and 7.4-fold increase of aneuploidies without and with S9, respectively. The addition of N-acetyl-L-cysteine, an antioxidant, reduced the genotoxicity of BCP in both assays. Further studies showed that BCP treatment resulted in induction of reactive oxygen species (ROS) in the TK6 cells. The results suggest that BCP is mutagenic, clastogenic, and aneugenic, and that these activities are mediated via generation of reactive metabolites. - Highlights: • 2-Bromo-3′-chloropropiophenone is an impurity of bupropion. • BCP was positive in both the Ames test and the in vitro micronucleus assay. • It induced high frequencies of mutations, micronuclei and hypodiploids. • It induced ROS and addition of NAC blocked the genotoxicity of BCP. • Its genotoxic action is possibly mediated via generation of reactive metabolites.« less
Permitted Daily Exposure for Diisopropyl Ether as a Residual Solvent in Pharmaceuticals
Evandri, Maria Grazia
2018-01-01
Solvents can be used in the manufacture of medicinal products provided their residual levels in the final product comply with the acceptable limits based on safety data. At worldwide level, these limits are set by the “Guideline Q3C (R6) on impurities: guideline for residual solvents” issued by the ICH. Diisopropyl ether (DIPE) is a widely used solvent but the possibility of using it in the pharmaceutical manufacture is uncertain because the ICH Q3C guideline includes it in the group of solvents for which “no adequate toxicological data on which to base a Permitted Daily Exposure (PDE) was found”. We performed a risk assessment of DIPE based on available toxicological data, after carefully assessing their reliability using the Klimisch score approach. We found sufficiently reliable studies investigating subchronic, developmental, neurological toxicity and carcinogenicity in rats and genotoxicity in vitro. Recent studies also investigated a wide array of toxic effects of gasoline/DIPE mixtures as compared to gasoline alone, thus allowing identifying the effects of DIPE itself. These data allowed a comprehensive toxicological evaluation of DIPE. The main target organs of DIPE toxicity were liver and kidney. DIPE was not teratogen and had no genotoxic effects, either in vitro or in vivo. However, it appeared to increase the number of malignant tumors in rats. Therefore, DIPE could be considered as a non-genotoxic animal carcinogen and a PDE of 0.98 mg/day was calculated based on the lowest No Observed Effect Level (NOEL) value of 356 mg/m3 (corresponding to 49 mg/kg/day) for maternal toxicity in developmental rat toxicity study. In a worst-case scenario, using an exceedingly high daily dose of 10 g/day, allowed DIPE concentration in pharmaceutical substances would be 98 ppm, which is in the range of concentration limits for ICH Q3C guideline class 2 solvents. This result might be considered for regulatory decisions. PMID:29686773
García, Antonia; Rupérez, Francisco J; Ceppa, Florencia; Pellati, Federica; Barbas, Coral
2012-03-05
The classification of an impurity of a drug substance as genotoxic means that the "threshold of toxicological concern" (TTC) value of 1.5 μg/day intake, considered to be associated with an acceptable risk, should be the admissible limit in the raw material and that leads to new analytical challenges. In this study, reliable chromatographic methods were developed and applied as limit tests for the control of three genotoxic impurities (GTIs) in cloperastine fendizoate, drug widely used as an antitussive active pharmaceutical ingredient (API). In particular, GC-MS was applied to the determination of one alkyl halide (2-chloroethanol, 2-CE), while HPLC-DAD was selected for the analysis of two sulfonate esters (methyl p-toluenesulfonate, MPTS, and 2-chloroethyl p-toluenesulfonate, CEPTS). Regarding GC-MS, strong anion-exchange (SAX)-SPE was applied to remove fendizoate from the sample solutions, due its low volatility and its high amount in the raw material. The GC-MS analysis was performed on a Factor Four VF-23 ms capillary column (30 m × 0.25 mm I.D., film thickness 0.25 μm, Varian). Single ion-monitoring (SIM) detection mode was set at m/z 80. In the case of HPLC-DAD, a suitable optimization of the chromatographic conditions was carried out in order to obtain a good separation of the impurity peaks from the drug substance peaks. The optimized method utilizes a SymmetryShield RP(8) column (250 mm × 4.6 mm, 5 μm, Waters) kept at 50°C, with phosphate buffer (pH 3.0; 10 mM)-methanol (containing 10% ACN) (45:55, v/v) as the mobile phase, at the flow-rate of 1.7 mL/min and UV detection at 227 nm. The required sensitivity level was achieved by injecting 80 μL of sample solution, purified from fendizoate by SAX-SPE, followed by a 1:1 (v/v) dilution of the SPE eluate with water. For both GC-MS and HPLC-DAD, the method validation was performed in relation to specificity and limit of detection (LOD), as required by ICH guidelines in relation to limit assays. The developed methods were successfully applied for the determination of GTIs in five different batches of cloperastine fendizoate. In all the analyzed batches, the three target GTIs were below the concentration limit. Copyright © 2012 Elsevier B.V. All rights reserved.
Elemental Impurities in Pharmaceutical Excipients.
Li, Gang; Schoneker, Dave; Ulman, Katherine L; Sturm, Jason J; Thackery, Lisa M; Kauffman, John F
2015-12-01
Control of elemental impurities in pharmaceutical materials is currently undergoing a transition from control based on concentrations in components of drug products to control based on permitted daily exposures in drug products. Within the pharmaceutical community, there is uncertainty regarding the impact of these changes on manufactures of drug products. This uncertainty is fueled in part by a lack of publically available information on elemental impurity levels in common pharmaceutical excipients. This paper summarizes a recent survey of elemental impurity levels in common pharmaceutical excipients as well as some drug substances. A widely applicable analytical procedure was developed and was shown to be suitable for analysis of elements that are subject to United States Pharmacopoeia Chapter <232> and International Conference on Harmonization's Q3D Guideline on Elemental Impurities. The procedure utilizes microwave-assisted digestion of pharmaceutical materials and inductively coupled plasma mass spectrometry for quantitative analysis of these elements. The procedure was applied to 190 samples from 31 different excipients and 15 samples from eight drug substances provided through the International Pharmaceutical Excipient Council of the Americas. The results of the survey indicate that, for the materials included in the study, relatively low levels of elemental impurities are present. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.
Booth, Ewan D; Rawlinson, Paul J; Maria Fagundes, Priscila; Leiner, Kevin A
2017-06-01
Active ingredients in plant protection products are subject to rigorous safety assessment during their development, including assessment of genotoxicity. Plant protection products are used for agriculture in multiple regions and for the registration of active ingredients it is necessary to satisfy the data requirements of these different regions. There are no overarching global agreements on which genotoxicity studies need to be conducted to satisfy the majority of regulatory authorities. The implementation of new OECD guidelines for the in vitro micronucleus, transgenic rodent somatic and germ cell gene mutation and in vivo comet assays, as well as the revision of a number of other OECD test guidelines has resulted in some changes to data requirements. This review describes the genotoxicity data requirements for chemical active ingredients as well as biologicals, microbials, ground water metabolites, metabolites, and impurities in a number of regions. Similarities and differences are highlighted. Environ. Mol. Mutagen. 58:325-344, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Recent trends in the impurity profile of pharmaceuticals
Pilaniya, Kavita; Chandrawanshi, Harish K.; Pilaniya, Urmila; Manchandani, Pooja; Jain, Pratishtha; Singh, Nitin
2010-01-01
Various regulatory authorities such as the International Conference on Harmonization (ICH), the United States Food and Drug administration (FDA), and the Canadian Drug and Health Agency (CDHA) are emphasizing on the purity requirements and the identification of impurities in Active Pharmaceutical Ingredients (APIs). The various sources of impurity in pharmaceutical products are — reagents, heavy metals, ligands, catalysts, other materials like filter aids, charcoal, and the like, degraded end products obtained during \\ after manufacturing of bulk drugs from hydrolysis, photolytic cleavage, oxidative degradation, decarboxylation, enantiomeric impurity, and so on. The different pharmacopoeias such as the British Pharmacopoeia, United State Pharmacopoeia, and Indian Pharmacopoeia are slowly incorporating limits to allowable levels of impurities present in APIs or formulations. Various methods are used to isolate and characterize impurities in pharmaceuticals, such as, capillary electrophoresis, electron paramagnetic resonance, gas–liquid chromatography, gravimetric analysis, high performance liquid chromatography, solid-phase extraction methods, liquid–liquid extraction method, Ultraviolet Spectrometry, infrared spectroscopy, supercritical fluid extraction column chromatography, mass spectrometry, Nuclear magnetic resonance (NMR) spectroscopy, and RAMAN spectroscopy. Among all hyphenated techniques, the most exploited techniques for impurity profiling of drugs are Liquid Chromatography (LC)-Mass Spectroscopy (MS), LC-NMR, LC-NMR-MS, GC-MS, and LC-MS. This reveals the need and scope of impurity profiling of drugs in pharmaceutical research. PMID:22247862
Ho, Tien D; Yehl, Peter M; Chetwyn, Nik P; Wang, Jin; Anderson, Jared L; Zhong, Qiqing
2014-09-26
Ionic liquids (ILs) were used as a new class of diluents for the analysis of two classes of genotoxic impurities (GTIs), namely, alkyl/aryl halides and nitro-aromatics, in small molecule drug substances by headspace gas chromatography (HS-GC) coupled with electron capture detection (ECD). This novel approach using ILs as contemporary diluents greatly broadens the applicability of HS-GC for the determination of high boiling (≥ 130°C) analytes including GTIs with limits of detection (LOD) ranging from 5 to 500 parts-per-billion (ppb) of analytes in a drug substance. This represents up to tens of thousands-fold improvement compared to traditional HS-GC diluents such as dimethyl sulfoxide (DMSO) and dimethylacetamide (DMAC). Various ILs were screened to determine their suitability as diluents for the HS-GC/ECD analysis. Increasing the HS oven temperatures resulted in varying responses for alkyl/aryl halides and a significant increase in response for all nitroaromatic GTIs. Linear ranges of up to five orders of magnitude were found for a number of analytes. The technique was validated on two active pharmaceutical ingredients with excellent recovery. This simple and robust methodology offers a key advantage in the ease of method transfer from development laboratories to quality control environments since conventional validated chromatographic data systems and GC instruments can be used. For many analytes, it is a cost effective alternative to more complex trace analytical methodologies like LC/MS and GC/MS, and significantly reduces the training needed for operation. Copyright © 2014 Elsevier B.V. All rights reserved.
Tahrani, Leyla; Mehri, Ines; Reyns, Tim; Anthonissen, Roel; Verschaeve, Luc; Khalifa, Anis Bel Haj; Loco, Joris Van; Abdenaceur, Hassen; Mansour, Hedi Ben
2018-05-01
The UPLC MS/MS analysis showed the presence of the two antibiotics in the pharmaceutical industry discharges during 3 months; norfloxacin and spiramycin which were quantified with the mean concentrations of 226.7 and 84.2 ng mL -1 , respectively. Sixteen resistant isolates were obtained from the pharmaceutical effluent and identified by sequencing. These isolates belong to different genera, namely Citrobacter, Acinetobacter, Pseudomonas, Delftia, Shewanella, and Rheinheimera. The antibiotic resistance phenotypes of these isolates were determined (27 tested antibiotics-discs). All the studied isolates were found resistant to amoxicillin and gentamicin, and 83.33% of isolates were resistant to ciprofloxacin. Multiple antibiotic resistances were revealed against β-lactams, quinolones, and aminoglycosides families. Our overall results suggest that the obtained bacterial isolates may constitute potential candidates for bioremediation and can be useful for biotechnological applications. Genotoxic effects were assessed by a battery of biotests; the pharmaceutical wastewater was genotoxic according to the bacterial Vitotox test and micronuclei test. Genotoxicity was also evaluated by the comet test; the tail DNA damages reached 38 and 22% for concentrated sample (10×) and non-concentrated sample (1×), respectively. However, the histological sections of kidney and liver's mice treated by pharmaceutical effluent showed normal histology and no visible structural effects or alterations as cytolysis, edema, or ulcerative necrosis were observed. Residual antibiotics can reach water environment through wastewater and provoke dissemination of the antibiotics resistance and induce genotoxic effects.
Setting Occupational Exposure Limits for Genotoxic Substances in the Pharmaceutical Industry.
Lovsin Barle, Ester; Winkler, Gian Christian; Glowienke, Susanne; Elhajouji, Azeddine; Nunic, Jana; Martus, Hans-Joerg
2016-05-01
In the pharmaceutical industry, genotoxic drug substances are developed for life-threatening indications such as cancer. Healthy employees handle these substances during research, development, and manufacturing; therefore, safe handling of genotoxic substances is essential. When an adequate preclinical dataset is available, a risk-based decision related to exposure controls for manufacturing is made following a determination of safe health-based limits, such as an occupational exposure limit (OEL). OELs are calculated for substances based on a threshold dose-response once a threshold is identified. In this review, we present examples of genotoxic mechanisms where thresholds can be demonstrated and OELs can be calculated, including a holistic toxicity assessment. We also propose a novel approach for inhalation Threshold of Toxicological Concern (TTC) limit for genotoxic substances in cases where the database is not adequate to determine a threshold. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Forced degradation and impurity profiling: recent trends in analytical perspectives.
Jain, Deepti; Basniwal, Pawan Kumar
2013-12-01
This review describes an epigrammatic impression of the recent trends in analytical perspectives of degradation and impurities profiling of pharmaceuticals including active pharmaceutical ingredient (API) as well as drug products during 2008-2012. These recent trends in forced degradation and impurity profiling were discussed on the head of year of publication; columns, matrix (API and dosage forms) and type of elution in chromatography (isocratic and gradient); therapeutic categories of the drug which were used for analysis. It focuses distinctly on comprehensive update of various analytical methods including hyphenated techniques for the identification and quantification of thresholds of impurities and degradants in different pharmaceutical matrices. © 2013 Elsevier B.V. All rights reserved.
Detection of dehalogenation impurities in organohalogenated pharmaceuticals by UHPLC-DAD-HRESIMS.
Regalado, Erik L; Dermenjian, Renee K; Joyce, Leo A; Welch, Christopher J
2014-04-01
The presence of dehalogenated impurities is often observed in halogen-containing pharmaceuticals, and can present a difficult analytical challenge, as the chromatographic behavior of the halogenated drug and the hydrogen-containing analog can be quite similar. In this study we describe the chromatographic separation and unambiguous identification of dehalogenation impurities or associated isomers in organohalogenated pharmaceuticals using UHPLC with a pentafluorophenyl column coupled with diode-array and high resolution electrospray ionization mass spectrometry detection (UHPLC-DAD-HRESIMS). Copyright © 2014 Elsevier B.V. All rights reserved.
Genotoxicity of gemfibrozil in the gilthead seabream (Sparus aurata).
Barreto, A; Luis, L G; Soares, A M V M; Paíga, P; Santos, L H M L M; Delerue-Matos, C; Hylland, K; Loureiro, S; Oliveira, M
2017-09-01
Widespread use of pharmaceuticals and suboptimal wastewater treatment have led to increased levels of these substances in aquatic ecosystems. Lipid-lowering drugs such as gemfibrozil, which are among the most abundant human pharmaceuticals in the environment, may have deleterious effects on aquatic organisms. We examined the genotoxicity of gemfibrozil in a fish species, the gilthead seabream (Sparus aurata), which is commercially important in southern Europe. Following 96-h waterborne exposure, molecular (erythrocyte DNA strand breaks) and cytogenetic (micronuclei and other nuclear abnormalities in cells) endpoints were measured. Gemfibrozil was positive in both endpoints, at environmentally relevant concentrations, a result that raises concerns about the potential genotoxic effects of the drug in recipient waters. Copyright © 2017 Elsevier B.V. All rights reserved.
Correale, Jorge; Chiquete, Erwin; Milojevic, Snezana; Frider, Nadina; Bajusz, Imre
2014-01-01
Fingolimod is a once-daily oral treatment for relapsing multiple sclerosis, the proprietary production processes of which are tightly controlled, owing to its susceptibility to contamination by impurities, including genotoxic impurities. Many markets produce nonproprietary medicines; assessing their efficacy and safety is difficult as regulators may approve nonproprietary drugs without bioequivalence data, genotoxic evaluation, or risk management plans (RMPs). This assessment is especially important for fingolimod given its solubility/bioavailability profile, genotoxicity risk, and low-dose final product (0.5 mg). This paper presents an evaluation of the quality of proprietary and nonproprietary fingolimod variants. Proprietary fingolimod was used as a reference substance against which eleven nonproprietary fingolimod copies were assessed. The microparticle size distribution of each compound was assessed by laser light diffraction, and inorganic impurity content by sulfated ash testing. Heavy metals content was quantified using inductively coupled plasma optical emission spectrometry, and levels of unspecified impurities by high-performance liquid chromatography. Solubility was assessed in a range of solvents at different pH values. Key information from the fingolimod RMP is also presented. Nonproprietary fingolimod variants exhibited properties out of proprietary or internationally accepted specifications, including differences in particle size distribution and levels of impurities such as heavy metals. For microparticle size and heavy metals, all tested fingolimod copies were out-of-specification by several-fold magnitudes. Proprietary fingolimod has a well-defined RMP, highlighting known and potential mid- to long-term safety risks, and risk-minimization and pharmacovigilance procedures. Nonproprietary fingolimod copies produced by processes less well controlled than or altered from proprietary production processes may reduce product reproducibility and quality, potentially presenting risks to patients. Safety data and risk-minimization strategies for proprietary fingolimod may not apply to the nonproprietary fingolimod copies evaluated here. Market authorization of nonproprietary fingolimod copies should require an appropriate RMP to minimize risks to patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valerio, Luis G., E-mail: luis.valerio@fda.hhs.gov; Cross, Kevin P.
Control and minimization of human exposure to potential genotoxic impurities found in drug substances and products is an important part of preclinical safety assessments of new drug products. The FDA's 2008 draft guidance on genotoxic and carcinogenic impurities in drug substances and products allows use of computational quantitative structure–activity relationships (QSAR) to identify structural alerts for known and expected impurities present at levels below qualified thresholds. This study provides the information necessary to establish the practical use of a new in silico toxicology model for predicting Salmonella t. mutagenicity (Ames assay outcome) of drug impurities and other chemicals. We describemore » the model's chemical content and toxicity fingerprint in terms of compound space, molecular and structural toxicophores, and have rigorously tested its predictive power using both cross-validation and external validation experiments, as well as case studies. Consistent with desired regulatory use, the model performs with high sensitivity (81%) and high negative predictivity (81%) based on external validation with 2368 compounds foreign to the model and having known mutagenicity. A database of drug impurities was created from proprietary FDA submissions and the public literature which found significant overlap between the structural features of drug impurities and training set chemicals in the QSAR model. Overall, the model's predictive performance was found to be acceptable for screening drug impurities for Salmonella mutagenicity. -- Highlights: ► We characterize a new in silico model to predict mutagenicity of drug impurities. ► The model predicts Salmonella mutagenicity and will be useful for safety assessment. ► We examine toxicity fingerprints and toxicophores of this Ames assay model. ► We compare these attributes to those found in drug impurities known to FDA/CDER. ► We validate the model and find it has a desired predictive performance.« less
Method for protection against genotoxic mutagenesis
Grdina, David J.
1996-01-01
A method and pharmaceutical for protecting against genotoxic damage in irradiated cells. Reduction of mutations at the hypoxanthine-guanine phosphoribosyl transferase locus is accomplished by administering an effective dose of a compound having protected sulfhydryl groups which metabolize in vivo to produce both free sulfhydryl groups and disulfides.
Ates, Gamze; Favyts, Dorien; Hendriks, Giel; Derr, Remco; Mertens, Birgit; Verschaeve, Luc; Rogiers, Vera; Y Doktorova, Tatyana
2016-11-01
To ensure safety for humans, it is essential to characterize the genotoxic potential of new chemical entities, such as pharmaceutical and cosmetic substances. In a first tier, a battery of in vitro tests is recommended by international regulatory agencies. However, these tests suffer from inadequate specificity: compounds may be wrongly categorized as genotoxic, resulting in unnecessary, time-consuming, and expensive in vivo follow-up testing. In the last decade, novel assays (notably, reporter-based assays) have been developed in an attempt to overcome these drawbacks. Here, we have investigated the performance of two in vitro reporter-based assays, Vitotox and ToxTracker. A set of reference compounds was selected to span a variety of mechanisms of genotoxic action and applicability domains (e.g., pharmaceutical and cosmetic ingredients). Combining the performance of the two assays, we achieved 93% sensitivity and 79% specificity for prediction of gentoxicity for this set of compounds. Both assays permit quick high-throughput analysis of drug candidates, while requiring only small quantities of the test substances. Our study shows that these two assays, when combined, can be a reliable method for assessment of genotoxicity hazard. Copyright © 2016 Elsevier B.V. All rights reserved.
Method for protection against genotoxic mutagenesis
Grdina, D.J.
1996-01-30
A method and pharmaceutical for protecting against genotoxic damage in irradiated cells are disclosed. Reduction of mutations at the hypoxanthine-guanine phosphoribosyl transferase locus is accomplished by administering an effective dose of a compound having protected sulfhydryl groups which metabolize in vivo to produce both free sulfhydryl groups and disulfides. 10 figs.
Al-Khayat, Mohammad Ammar; Karabet, Francois; Al-Mardini, Mohammad Amer
2018-01-01
Formaldehyde is a highly reactive impurity that can be found in many pharmaceutical excipients. Trace levels of this impurity may affect drug product stability, safety, efficacy, and performance. A static headspace gas chromatographic method was developed and validated to determine formaldehyde in pharmaceutical excipients after an effective derivatization procedure using acidified ethanol. Diethoxymethane, the derivative of formaldehyde, was then directly analyzed by GC-FID. Despite the simplicity of the developed method, however, it is characterized by its specificity, accuracy, and precision. The limits of detection and quantification of formaldehyde in the samples were of 2.44 and 8.12 µg/g, respectively. This method is characterized by using simple and economic GC-FID technique instead of MS detection, and it is successfully used to analyze formaldehyde in commonly used pharmaceutical excipients. PMID:29686930
Analytical advances in pharmaceutical impurity profiling.
Holm, René; Elder, David P
2016-05-25
Impurities will be present in all drug substances and drug products, i.e. nothing is 100% pure if one looks in enough depth. The current regulatory guidance on impurities accepts this, and for drug products with a dose of less than 2g/day identification of impurities is set at 0.1% levels and above (ICH Q3B(R2), 2006). For some impurities, this is a simple undertaking as generally available analytical techniques can address the prevailing analytical challenges; whereas, for others this may be much more challenging requiring more sophisticated analytical approaches. The present review provides an insight into current development of analytical techniques to investigate and quantify impurities in drug substances and drug products providing discussion of progress particular within the field of chromatography to ensure separation of and quantification of those related impurities. Further, a section is devoted to the identification of classical impurities, but in addition, inorganic (metal residues) and solid state impurities are also discussed. Risk control strategies for pharmaceutical impurities aligned with several of the ICH guidelines, are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Chahrour, Osama; Malone, John; Collins, Mark; Salmon, Vrushali; Greenan, Catherine; Bombardier, Amy; Ma, Zhongze; Dunwoody, Nick
2017-10-25
The new guidelines of the United States pharmacopeia (USP), European pharmacopeia (EP) and international conference on harmonization (ICH) regulating elemental impurities limits in pharmaceuticals signify the end of unspecific analysis of metals as outlined in USP 〈231〉. The new guidelines specify both daily doses and concentration/limits of elemental impurities in pharmaceutical final products, active pharmaceutical ingredients (API) and excipients. In chapter USP 〈233〉 method implementation, validation and quality control during the analytical process are described. We herein report the use of a stabilising matrix that overcomes low spike recovery problem encountered with Os and allows the determination of all USP required elemental impurities (As, Cd, Hg, Pb, V, Cr, Ni, Mo, Cu, Pt, Pd, Ru, Rh, Os and Ir) in a single analysis. The matrix was used in the validation of a method to determine elemental impurities in TP-6076 active pharmaceutical ingredient (API) by ICP-MS according to the procedures defined in USP〈233〉 and to GMP requirements. This validation will support the regulatory submission of TP-6076 which is a novel tetracycline analogue effective against the most urgent multidrug-resistant gram-negative bacteria. Evaluation of TP-6076 in IND-enabling toxicology studies has led to the initiation of a phase 1 clinical trial. Copyright © 2017 Elsevier B.V. All rights reserved.
Carbamates and ICH M7 classification: Making use of expert knowledge.
Hemingway, Rachel; Fowkes, Adrian; Williams, Richard V
2017-06-01
Carbamates are widely used in the chemical industry so understanding their toxicity is important to safety assessment. Carbamates have been associated with certain toxicities resulting in publication of structural alerts, including alerts for mutagenicity. Structural alerts for bacterial mutagenicity can be used in combination with statistical systems to enable ICH M7 classification, which allows assessment of the genotoxic risk posed by pharmaceutical impurities. This study tested a hypothetical bacterial mutagenicity alert for carbamates and examined the impact it would have on ICH M7 classifications using (Q)SAR predictions from the expert rule-based system Derek Nexus and the statistical-based system Sarah Nexus. Public datasets have a low prevalence of mutagenic carbamates, which highlighted that systems containing an alert for carbamates perform poorly for achieving correct ICH M7 classifications. Carbamates are commonly used as protecting groups and proprietary datasets containing such compounds were also found to have a low prevalence of mutagenic compounds. Expert review of the mutagenic compounds established that mutagenicity was often only observed under certain (non-standard) conditions and more generally that the Ames test may be a poor predictor for the risk of carcinogenicity posed by chemicals in this class. Overall a structural alert for the in vitro bacterial mutagenesis of carbamates does not benefit workflows for assigning ICH M7 classification to impurities. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Acute toxicity and genotoxic activity of avocado seed extract (Persea americana Mill., c.v. Hass).
Padilla-Camberos, Eduardo; Martínez-Velázquez, Moisés; Flores-Fernández, José Miguel; Villanueva-Rodríguez, Socorro
2013-01-01
The use of vegetal extracts requires toxicological and genotoxic evaluations to establish and verify safety before being added to human cosmetic, pharmaceutical medicine, or alimentary products. Persea americana seeds have been used in traditional medicine as treatment for several diseases. In this work, the ethanolic seed extract of Persea americana was evaluated with respect to its genotoxic potential through micronucleus assay in rodents. The frequency of micronuclei in groups of animals treated with avocado seed extract showed no differences compared to the negative control (vehicle); therefore, it is considered that the avocado seed extract showed no genotoxic activity in the micronucleus test.
Acute Toxicity and Genotoxic Activity of Avocado Seed Extract (Persea americana Mill., c.v. Hass)
Padilla-Camberos, Eduardo; Martínez-Velázquez, Moisés; Flores-Fernández, José Miguel; Villanueva-Rodríguez, Socorro
2013-01-01
The use of vegetal extracts requires toxicological and genotoxic evaluations to establish and verify safety before being added to human cosmetic, pharmaceutical medicine, or alimentary products. Persea americana seeds have been used in traditional medicine as treatment for several diseases. In this work, the ethanolic seed extract of Persea americana was evaluated with respect to its genotoxic potential through micronucleus assay in rodents. The frequency of micronuclei in groups of animals treated with avocado seed extract showed no differences compared to the negative control (vehicle); therefore, it is considered that the avocado seed extract showed no genotoxic activity in the micronucleus test. PMID:24298206
Veronin, Michael A; Nutan, Mohammad T; Dodla, Uday Krishna Reddy
2014-10-01
The accessibility of prescription drugs produced outside of the United States, most notably sildenafil citrate (innovator product, Viagra®), has been made much easier by the Internet. Of greatest concern to clinicians and policymakers is product quality and patient safety. The US Food and Drug Administration (FDA) has issued warnings to potential buyers that the safety of drugs purchased from the Internet cannot be guaranteed, and may present a health risk to consumers from substandard products. The objective of this study was to determine whether generic sildenafil citrate tablets from international markets obtained via the Internet are equivalent to the US innovator product regarding major aspects of pharmaceutical quality: potency, accuracy of labeling, and presence and level of impurities. This will help identify aspects of drug quality that may impact public health risks. A total of 15 sildenafil citrate tablets were obtained for pharmaceutical analysis: 14 generic samples from international Internet pharmacy websites and the US innovator product. According to US Pharmacopeial guidelines, tablet samples were tested using high-performance liquid chromatography for potency of active pharmaceutical ingredient (API) and levels of impurities (impurities A, B, C, and D). Impurity levels were compared with International Conference on Harmonisation (ICH) limits. Among the 15 samples, 4 samples possessed higher impurity B levels than the ICH qualification threshold, 8 samples possessed higher impurity C levels than the ICH qualification threshold, and 4 samples possessed more than 1% impurity quantity of maximum daily dose (MDD). For API, 6 of the samples failed to fall within the 5% assay limit. Quality assurance tests are often used to detect formulation defects of drug products during the manufacturing and/or storage process. Results suggest that manufacturing standards for sildenafil citrate generic drug products compared with the US innovator product are not equivalent with regards to potency and levels of impurities. These findings have implications for safety and effectiveness that should be addressed by clinicians to safeguard consumers who choose to purchase sildenafil citrate and foreign-manufactured drugs, in general, via the Internet.
Nutan, Mohammad T.; Dodla, Uday Krishna Reddy
2014-01-01
Background: The accessibility of prescription drugs produced outside of the United States, most notably sildenafil citrate (innovator product, Viagra®), has been made much easier by the Internet. Of greatest concern to clinicians and policymakers is product quality and patient safety. The US Food and Drug Administration (FDA) has issued warnings to potential buyers that the safety of drugs purchased from the Internet cannot be guaranteed, and may present a health risk to consumers from substandard products. Objective: The objective of this study was to determine whether generic sildenafil citrate tablets from international markets obtained via the Internet are equivalent to the US innovator product regarding major aspects of pharmaceutical quality: potency, accuracy of labeling, and presence and level of impurities. This will help identify aspects of drug quality that may impact public health risks. Methods: A total of 15 sildenafil citrate tablets were obtained for pharmaceutical analysis: 14 generic samples from international Internet pharmacy websites and the US innovator product. According to US Pharmacopeial guidelines, tablet samples were tested using high-performance liquid chromatography for potency of active pharmaceutical ingredient (API) and levels of impurities (impurities A, B, C, and D). Impurity levels were compared with International Conference on Harmonisation (ICH) limits. Results: Among the 15 samples, 4 samples possessed higher impurity B levels than the ICH qualification threshold, 8 samples possessed higher impurity C levels than the ICH qualification threshold, and 4 samples possessed more than 1% impurity quantity of maximum daily dose (MDD). For API, 6 of the samples failed to fall within the 5% assay limit. Conclusions: Quality assurance tests are often used to detect formulation defects of drug products during the manufacturing and/or storage process. Results suggest that manufacturing standards for sildenafil citrate generic drug products compared with the US innovator product are not equivalent with regards to potency and levels of impurities. These findings have implications for safety and effectiveness that should be addressed by clinicians to safeguard consumers who choose to purchase sildenafil citrate and foreign-manufactured drugs, in general, via the Internet. PMID:25360239
The micronucleus test-most widely used in vivo genotoxicity test.
Hayashi, Makoto
2016-01-01
Genotoxicity is commonly evaluated during the chemical safety assessment together with other toxicological endpoints. The micronucleus test is always included in many genotoxic test guidelines for long time in many classes of chemicals, e.g., pharmaceutical chemicals, agricultural chemicals, food additives. Although the trend of the safety assessment of chemicals faces to animal welfare and in vitro systems are more welcome than the in vivo systems, the in vivo test systems are paid more attention in the field of genotoxicity because of its weight of evidence. In this review, I will summarize the following points: 1) historical consideration of the test development, 2) characteristics of the test including advantages and limitations, 3) new approaches considering to the animal welfare.
Luo, Lan; Gu, Congcong; Li, Mingxian; Zheng, Xiangyuan; Zheng, Feng
2018-04-21
4-Nitrobenzaldehyde is the synthetic raw material and an important photodegradation product of chloramphenicol. With a structural "alert" of human genotoxic potential and reported mutagenicity, this compound should be controlled in drug substances as a potential genotoxic impurity. However, current analysis methods require complex pre-treatment processes and/or lack sufficient specificity and sensitivity. Nitrophenylhydrazine is a common carbonyl derivatization reagent used to determine the residual aromatic aldehydes in drug samples. In the present study, we report an unexpected advantage of 3-nitrophenylhydrazine hydrochloride as a derivatization reagent in the derivatization high-performance liquid chromatography-ultraviolet detection method to determine 4-nitrobenzaldehyde in chloramphenicol samples. Compared with other nitro-substituted phenylhydrazines, 3-nitrophenylhydrazine hydrochloride can minimize drug matrix and derivatization reagent interferences, since the maximum absorption wavelength of its derivative is significantly red-shifted to 397 nm. The derivatization conditions have been optimized in terms of reaction efficiency, including reaction temperature, time, and diluting solvent, through a design of experiments. As a result, after reaction with 500 μg mL -1 of 3-nitrophenylhydrazine hydrochloride in acetonitrile-water (70:30, v/v) at 60 °C for 30 min, the developed HPLC method could be used to determine 4-nitrobenzaldehyde with a limit of detection of 0.009 μg mL -1 . The method was then validated and applied for the determination of residual 4-nitrobenzaldehyde in chloramphenicol and its eye-drop samples. Copyright © 2018. Published by Elsevier B.V.
Sharif, Ali; Ashraf, Muhammad; Anjum, Aftab Ahmed; Javeed, Aqeel; Altaf, Imran; Akhtar, Muhammad Furqan; Abbas, Mateen; Akhtar, Bushra; Saleem, Ammara
2016-02-01
Pharmaceutical industries are amongst the foremost contributor to industrial waste. Ecological well-being is endangered owing to its facile discharge. In the present study, heavy metals and organic contaminants in waste water were characterized using atomic absorption spectrophotometer and GC-MS, respectively. Mutagenicity and genotoxic potential of pharmaceutical waste water were investigated through bacterial reverse mutation assay and in vitro comet assay, respectively. Ames test and comet assay of first sample were carried out at concentrations of 100, 50, 25, 12.5, 6.25 % v/v effluent with distilled water. Chromium (Cr), lead (Pb), arsenic (As), and cadmium (Cd) were found in high concentrations as compared to WHO- and EPA-recommended maximum limits. Arsenic was found to be the most abundant metal and its maximum concentration was 0.8 mg.L(-1). GC-MS revealed the presence of lignocaine, digitoxin, trimethoprim, caffeine, and vitamin E in waste water. Dose-dependent decrease in mutagenic index was observed in both strains. Substantial increase in mutagenicity was observed for TA-100, when assay was done by incorporating an enzyme activation system, whereas a slight increase was detected for TA-102. In vitro comet assay of waste water exhibited decrease in damage index and percentage fragmentation with the increase in dilution of waste water. Tail length also decreased with an increase in the dilution factor of waste water. These findings suggest that pharmaceutical waste water being a mix of different heavy metals and organic contaminants may have a potent mutagenic and genotoxic effect on exposed living organisms.
Stability-indicating HPLC-DAD/UV-ESI/MS impurity profiling of the anti-malarial drug lumefantrine.
Verbeken, Mathieu; Suleman, Sultan; Baert, Bram; Vangheluwe, Elien; Van Dorpe, Sylvia; Burvenich, Christian; Duchateau, Luc; Jansen, Frans H; De Spiegeleer, Bart
2011-02-28
Lumefantrine (benflumetol) is a fluorene derivative belonging to the aryl amino alcohol class of anti-malarial drugs and is commercially available in fixed combination products with β-artemether. Impurity characterization of such drugs, which are widely consumed in tropical countries for malaria control programmes, is of paramount importance. However, until now, no exhaustive impurity profile of lumefantrine has been established, encompassing process-related and degradation impurities in active pharmaceutical ingredients (APIs) and finished pharmaceutical products (FPPs). Using HPLC-DAD/UV-ESI/ion trap/MS, a comprehensive impurity profile was established based upon analysis of market samples as well as stress, accelerated and long-term stability results. In-silico toxicological predictions for these lumefantrine related impurities were made using Toxtree® and Derek®. Several new impurities are identified, of which the desbenzylketo derivative (DBK) is proposed as a new specified degradant. DBK and the remaining unspecified lumefantrine related impurities are predicted, using Toxtree® and Derek®, to have a toxicity risk comparable to the toxicity risk of the API lumefantrine itself. From unstressed, stressed and accelerated stability samples of lumefantrine API and FPPs, nine compounds were detected and characterized to be lumefantrine related impurities. One new lumefantrine related compound, DBK, was identified and characterized as a specified degradation impurity of lumefantrine in real market samples (FPPs). The in-silico toxicological investigation (Toxtree® and Derek®) indicated overall a toxicity risk for lumefantrine related impurities comparable to that of the API lumefantrine itself.
Riad, Safaa M; Abd El-Rahman, Mohamed K; Fawaz, Esraa M; Shehata, Mostafa A
2018-05-01
Although the ultimate goal of administering active pharmaceutical ingredients (APIs) is to save countless lives, the presence of impurities and/or degradation products in APIs or formulations may cause harmful physiological effects. Today, impurity profiling (i.e., the identity as well as the quantity of impurity in a pharmaceutical) is receiving critical attention from regulatory authorities. Despite the predominant use of spectroscopic and chromatographic methods over electrochemical methods for impurity profiling of APIs, this work investigates the opportunities offered by electroanalytical methods, particularly, ion-selective electrodes (ISEs), for profiling degradation-related impurities (DRIs) compared with conventional spectroscopic and chromatographic methods. For a meaningful comparison, diatrizoate sodium (DTA) was chosen as the anionic X-ray contrast agent based on its susceptibility to deacetylation into its cytotoxic and mutagenic degradation product, 3,5-diamino-2,4,6 triiodobenzoic acid (DTB). This cationic diamino compound can be also detected as an impurity in the final product because it is used as a synthetic precursor for the synthesis of DTA. In this study, four novel sensitive and selective sensors for the determination of both DTA and its cytotoxic degradation products are presented. Sensors I and II were developed for the determination of the anionic drug, DTA, and sensors III and IV were developed for the determination of the cationic cytotoxic impurity. The use of these novel sensors not only provides a stability-indicating method for the selective determination of DTA in the presence of its degradation product, but also permits DRI profiling. Moreover, a great advantage of these proposed ISE systems is their higher sensitivity for the quantification of DTB relative to other spectroscopic and chromatographic methods, so it can measure trace amounts of DTB impurities in DTA bulk powder and pharmaceutical formulation without a need for preliminary separation.
Moteriya, Pooja; Chanda, Sumitra
2017-12-01
Caesalpinia pulcherrima flower extract mediated synthesis of silver nanoparticles was attempted in the present work including optimization of some procedure parameters. Characterization of synthesized silver nanoparticles was done by various spectral analyses. The size of synthesized silver nanoparticles was 12 nm and they were spherical in shape. The green synthesized silver nanoparticles were further evaluated for antimicrobial, antioxidant, cytotoxic, and genotoxic activities; they showed good antimicrobial, antioxidant, and cytotoxic effects. Genotoxic study revealed non-toxic nature at lower concentration. Overall results suggest that the synthesized silver nanoparticles have pronounced applicability in pharmaceutical and biomedical field.
Zielińska, Joanna; Stadnik, Jacek; Bierczyńska-Krzysik, Anna; Stadnik, Dorota
2018-05-16
Isolation and identification of unknown impurities of recombinant insulin lispro (produced at IBA) formed during accelerated stability testing of pharmaceutical solutions. For comparative purposes also commercially available formulations of recombinant human insulin (Humulin S®; Lilly), recombinant insulin lispro (Humalog®; Lilly), recombinant insulin aspart (NovoRapid® Penfill®; Novo Nordisk), recombinant insulin detemir (Levemir®; Novo Nordisk) and recombinant insulin glargine (Lantus®; Sanofi-Aventis) were analyzed. The impurities of insulin analogs were isolated by RP-HPLC and identified with peptide mass fingerprinting using MALDI-TOF/TOF mass spectrometry. The identified derivatives were N-terminally truncated insulin analog impurities of decreased molecular mass of 119, 147 and 377 Da related to the original protein. The modifications resulting in a mass decrease were detected at the N-terminus of B chains of insulin lispro, insulin aspart, human insulin, insulin glargine, insulin detemir in all tested formulations. To our knowledge it is the first time that these impurities are reported. The following derivatives formed by truncation of the B chain in insulin analogs were identified in pharmaceutical formulations: desPhe B1 -N-formyl-Val B2 derivative, desPhe B1 derivative, pyroGlu B4 derivative.
Ruggenthaler, M; Grass, J; Schuh, W; Huber, C G; Reischl, R J
2017-02-20
The structural elucidation of unknown pharmaceutical impurities plays an important role in the quality control of newly developed and well-established active pharmaceutical ingredients (APIs). The United States Pharmacopeia (USP) monograph for the API Levothyroxine Sodium, a synthetic thyroid hormone, features two high pressure liquid chromatography (HPLC) methods using UV-VIS absorption detection to determine organic impurities in the drug substance. The impurity profile of the first USP method ("Procedure 1") has already been extensively studied, however for the second method ("Procedure 2"), which exhibits a significantly different impurity profile, no wholistic structural elucidation of impurities has been performed yet. Applying minor modifications to the chromatographic parameters of USP "Procedure 2" and using various comprehensive structural elucidation methods such as high resolution tandem mass spectrometry with on-line hydrogen-deuterium (H/D) exchange or two-dimensional nuclear magnetic resonance spectroscopy (NMR) we gained new insights about the complex impurity profile of the synthetic thyroid hormone. This resulted in the characterization of 24 compounds previously unknown to literature and the introduction of two new classes of Levothyroxine Sodium impurities. Five novel compounds were unambiguously identified via isolation or synthesis of reference substances and subsequent NMR spectroscopic investigation. Additionally, Collision-Induced Dissociation (CID)-type fragmentation of identified major impurities as well as neutral loss fragmentation patterns of many characterized impurities were discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
ICP-MS: Analytical Method for Identification and Detection of Elemental Impurities.
Mittal, Mohini; Kumar, Kapil; Anghore, Durgadas; Rawal, Ravindra K
2017-01-01
Aim of this article is to review and discuss the currently used quantitative analytical method ICP-MS, which is used for quality control of pharmaceutical products. ICP-MS technique has several applications such as determination of single elements, multi element analysis in synthetic drugs, heavy metals in environmental water, trace element content of selected fertilizers and dairy manures. ICP-MS is also used for determination of toxic and essential elements in different varieties of food samples and metal pollutant present in the environment. The pharmaceuticals may generate impurities at various stages of development, transportation and storage which make them risky to be administered. Thus, it is essential that these impurities must be detected and quantified. ICP-MS plays an important function in the recognition and revealing of elemental impurities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Eldridge, Stacie L; Almeida, Valentino K; Korir, Albert K; Larive, Cynthia K
2007-11-15
NMR spectroscopy is widely used in the pharmaceutical industry for the structure elucidation of pharmaceutical impurities, especially when coupled to a separation method, such as HPLC. However, NMR has relatively poor sensitivity compared with other techniques such as mass spectrometry, limiting its applicability in impurity analyses. This limitation is addressed here through the on-line coupling of microcoil NMR with capillary isotachophoresis (cITP), a separation method that can concentrate dilute components by 2-3 orders of magnitude. With this approach, 1H NMR spectra can be acquired for microgram (nanomole) quantities of trace impurities in a complex sample matrix. cITP-NMR was used in this work to isolate and detect 4-aminophenol (PAP) in an acetaminophen sample spiked at the 0.1% level, with no interference from the parent compound. Analysis of an acetaminophen thermal degradation sample revealed resonances of several degradation products in addition to PAP, confirming the effectiveness of on-line cITP-NMR for trace analyses of pharmaceutical formulations. Subsequent LC-MS/MS analysis provided complementary information for the structure elucidation of the unknown degradation products, which were dimers formed during the degradation process.
Liu, Qianying; Lei, Zhixin; Zhu, Feng; Ihsan, Awais; Wang, Xu; Yuan, Zonghui
2017-01-01
Genotoxicity and carcinogenicity testing of pharmaceuticals prior to commercialization is requested by regulatory agencies. The bacterial mutagenicity test was considered having the highest accuracy of carcinogenic prediction. However, some evidences suggest that it always results in false-positive responses when the bacterial mutagenicity test is used to predict carcinogenicity. Along with major changes made to the International Committee on Harmonization guidance on genotoxicity testing [S2 (R1)], the old data (especially the cytotgenetic data) may not meet current guidelines. This review provides a compendium of retrievable results of genotoxicity and animal carcinogenicity of 136 antiparasitics. Neither genotoxicity nor carcinogenicity data is available for 84 (61.8%), while 52 (38.2%) have been evaluated in at least one genotoxicity or carcinogenicity study, and only 20 (14.7%) in both genotoxicity and carcinogenicity studies. Among 33 antiparasitics with at least one old result in in vitro genotoxicity, 15 (45.5%) are in agreement with the current ICH S2 (R1) guidance for data acceptance. Compared with other genotoxicity assays, the DNA lesions can significantly increase the accuracy of prediction of carcinogenicity. Together, a combination of DNA lesion and bacterial tests is a more accurate way to predict carcinogenicity. PMID:29170735
Eisele, Johanna; Haynes, Geoff; Kreuzer, Knut; Hall, Caroline
2016-12-01
Anionic Methacrylate Copolymer (AMC) is a fully polymerized copolymer used in the pharmaceutical industry as an enteric/delayed-release coating to permit the pH-dependent release of active ingredients in the gastrointestinal tract from oral dosage forms. This function is of potential use for food supplements. Oral administration of radiolabeled copolymer to rats resulted in the detection of chemically unchanged copolymer in the feces, with negligible absorption (<0.1%). AMC is therefore determined not to be bioavailable. Within a genotoxicity test battery AMC did not show any evidence of genotoxicity in bacteria and mammalian cells. Furthermore, no genotoxic effects occurred in vivo within a micronucleus test. There would therefore appear to be no safety concerns under intended conditions of oral use for the discussed toxicological endpoints. Copyright © 2016 Elsevier Inc. All rights reserved.
Lee, Won Jun; Kim, Sang Cheol; Lee, Seul Ji; Lee, Jeongmi; Park, Jeong Hill; Yu, Kyung-Sang; Lim, Johan; Kwon, Sung Won
2014-01-01
Based on the process of carcinogenesis, carcinogens are classified as either genotoxic or non-genotoxic. In contrast to non-genotoxic carcinogens, many genotoxic carcinogens have been reported to cause tumor in carcinogenic bioassays in animals. Thus evaluating the genotoxicity potential of chemicals is important to discriminate genotoxic from non-genotoxic carcinogens for health care and pharmaceutical industry safety. Additionally, investigating the difference between the mechanisms of genotoxic and non-genotoxic carcinogens could provide the foundation for a mechanism-based classification for unknown compounds. In this study, we investigated the gene expression of HepG2 cells treated with genotoxic or non-genotoxic carcinogens and compared their mechanisms of action. To enhance our understanding of the differences in the mechanisms of genotoxic and non-genotoxic carcinogens, we implemented a gene set analysis using 12 compounds for the training set (12, 24, 48 h) and validated significant gene sets using 22 compounds for the test set (24, 48 h). For a direct biological translation, we conducted a gene set analysis using Globaltest and selected significant gene sets. To validate the results, training and test compounds were predicted by the significant gene sets using a prediction analysis for microarrays (PAM). Finally, we obtained 6 gene sets, including sets enriched for genes involved in the adherens junction, bladder cancer, p53 signaling pathway, pathways in cancer, peroxisome and RNA degradation. Among the 6 gene sets, the bladder cancer and p53 signaling pathway sets were significant at 12, 24 and 48 h. We also found that the DDB2, RRM2B and GADD45A, genes related to the repair and damage prevention of DNA, were consistently up-regulated for genotoxic carcinogens. Our results suggest that a gene set analysis could provide a robust tool in the investigation of the different mechanisms of genotoxic and non-genotoxic carcinogens and construct a more detailed understanding of the perturbation of significant pathways.
Lee, Won Jun; Kim, Sang Cheol; Lee, Seul Ji; Lee, Jeongmi; Park, Jeong Hill; Yu, Kyung-Sang; Lim, Johan; Kwon, Sung Won
2014-01-01
Based on the process of carcinogenesis, carcinogens are classified as either genotoxic or non-genotoxic. In contrast to non-genotoxic carcinogens, many genotoxic carcinogens have been reported to cause tumor in carcinogenic bioassays in animals. Thus evaluating the genotoxicity potential of chemicals is important to discriminate genotoxic from non-genotoxic carcinogens for health care and pharmaceutical industry safety. Additionally, investigating the difference between the mechanisms of genotoxic and non-genotoxic carcinogens could provide the foundation for a mechanism-based classification for unknown compounds. In this study, we investigated the gene expression of HepG2 cells treated with genotoxic or non-genotoxic carcinogens and compared their mechanisms of action. To enhance our understanding of the differences in the mechanisms of genotoxic and non-genotoxic carcinogens, we implemented a gene set analysis using 12 compounds for the training set (12, 24, 48 h) and validated significant gene sets using 22 compounds for the test set (24, 48 h). For a direct biological translation, we conducted a gene set analysis using Globaltest and selected significant gene sets. To validate the results, training and test compounds were predicted by the significant gene sets using a prediction analysis for microarrays (PAM). Finally, we obtained 6 gene sets, including sets enriched for genes involved in the adherens junction, bladder cancer, p53 signaling pathway, pathways in cancer, peroxisome and RNA degradation. Among the 6 gene sets, the bladder cancer and p53 signaling pathway sets were significant at 12, 24 and 48 h. We also found that the DDB2, RRM2B and GADD45A, genes related to the repair and damage prevention of DNA, were consistently up-regulated for genotoxic carcinogens. Our results suggest that a gene set analysis could provide a robust tool in the investigation of the different mechanisms of genotoxic and non-genotoxic carcinogens and construct a more detailed understanding of the perturbation of significant pathways. PMID:24497971
Grinberg, Nelu; Albu, Florin; Fandrick, Keith; Iorgulescu, Elena; Medvedovici, Andrei
2013-03-05
Dimethyl sulfate (DMS) is frequently used in pharmaceutical manufacturing processes as an alkylating agent. Trace levels of DMS in drug substances should be carefully monitored since the compound can become an impurity which is genotoxic in nature. Derivatization of DMS with dibenzazepine leads to formation of the N-methyl derivative, which can be retained on a reversed phase column and subsequently separated from other potential impurities. Such derivatization occurs relatively slowly. However, it can be substantially speed up if ionic liquids are used as reaction media. In this paper we report the use of 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (IL1) and 1-butyl-4-methylpyridinium tetrafluoroborate (IL2) as reaction media for the derivatization of DMS with dibenzazepine. It was determined that the stoichiometry between the substrate and DMS may be 1:1 or 2:1, in relation with the nature of the reaction media. An (+)ESI-MS/MS approach was used for quantitation of the derivatized product. Alternatively, DMS derivatization may be carried out with pyridine in acetonitrile (ACN). The N-methylpyridinium derivative was separated by hydrophilic interaction liquid chromatography (HILIC) and detected through (+)ESI-MS (in the SIM mode). In both cases, a limit of quantitation (LOQ) of 0.05 μg/ml DMS was achievable, with a linearity range up to 10 μg/ml. Both analytical alternatives were applied to assay DMS in 4-(2-methoxyethyl)phenol, which is used as a starting material in the synthesis of metoprolol. Copyright © 2012 Elsevier B.V. All rights reserved.
Method for protection against genotoxic mutagenesis
Grdina, D.J.
1999-02-09
This research discloses a method and pharmaceutical for protecting against mutational damage in mammalian cells, irrespective of the nature of the mutagenic event or source of radiational or chemical insult or the like. 54 figs.
Islas-Flores, Hariz; Manuel Gómez-Oliván, Leobardo; Galar-Martínez, Marcela; Michelle Sánchez-Ocampo, Esmeralda; SanJuan-Reyes, Nely; Ortíz-Reynoso, Mariana; Dublán-García, Octavio
2017-05-01
Thirty million people worldwide consume each day nonsteroidal anti-inflammatory drugs (NSAIDs), a heterogeneous group of pharmaceuticals used for its analgesic, antipyretic, and anti-inflammatory properties. Recent studies report high NSAID concentrations in wastewater treatment plant effluents, in surface, ground, and drinking water, and in sediments. NSAIDs are also known to induce toxicity on aquatic organisms. However, toxicity in natural ecosystems is not usually the result of exposure to a single substance but to a mixture of toxic agents, yet only a few studies have evaluated the toxicity of mixtures. The aim of this study was to evaluate the toxicity induced by diclofenac (DCF), ibuprofen (IBP), and their mixture on a species of commercial interest, the common carp Cyprinus carpio. The median lethal concentration of IBP and DCF was determined, and oxidative stress was evaluated using the following biomarkers: lipid peroxidation and activity of the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase. Cyto-genotoxicity was evaluated by micronucleus test, comet assay, and the specific activity of caspase-3. Results show that DCF, IBP, and a mixture of these pharmaceuticals induced free radical production, oxidative stress and cyto-genotoxicity in tissues of C. carpio. However, a greater effect was elicited by the mixture than by either pharmaceutical alone in some biomarkers evaluated, particularly in gill. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1637-1650, 2017. © 2017 Wiley Periodicals, Inc.
Health care industries: potential generators of genotoxic waste.
Sharma, Pratibha; Kumar, Manish; Mathur, N; Singh, A; Bhatnagar, P; Sogani, M
2013-08-01
Health care waste includes all the waste generated by health care establishments, research facilities, and laboratories. This constitutes a variety of chemical substances, such as pharmaceuticals, radionuclides, solvents, and disinfectants. Recently, scientists and environmentalists have discovered that wastewater produced by hospitals possesses toxic properties due to various toxic chemicals and pharmaceuticals capable of causing environmental impacts and even lethal effects to organisms in aquatic ecosystems. Many of these compounds resist normal wastewater treatment and end up in surface waters. Besides aquatic organisms, humans can be exposed through drinking water produced from contaminated surface water. Indeed, some of the substances found in wastewaters are genotoxic and are suspected to be potential contributors to certain cancers. The aim of this study was to evaluate the genotoxic and cytotoxic potential of wastewaters from two hospitals and three clinical diagnostic centers located in Jaipur (Rajasthan State), India using the prokaryotic Salmonella mutagenicity assay (Ames assay) and the eukaryotic Saccharomyces cerevisiae respiration inhibition assay. In the Ames assay, untreated wastewaters from both of the health care sectors resulted in significantly increased numbers of revertant colonies up to 1,000-4,050 as measured by the Salmonella typhimurium TA98 and TA100 strains (with and without metabolic activation) after exposure to undiluted samples, which indicated the highly genotoxic nature of these wastewaters. Furthermore, both hospital and diagnostic samples were found to be highly cytotoxic. Effective concentrations at which 20 % (EC20) and 50 % (EC50) inhibition of the respiration rate of the cells occurred ranged between ~0.00 and 0.52 % and between 0.005 and 41.30 % (calculated with the help of the MS excel software XLSTAT 2012.1.01; Addinsoft), respectively, as determined by the S. cerevisiae assay. The results indicated that hospital wastewaters contain genotoxic and cytotoxic components. In addition, diagnostic centers also represent small but significant sources of genotoxic and cytotoxic wastes.
Azougagh, M; Elkarbane, M; Bakhous, K; Issmaili, S; Skalli, A; Iben Moussad, S; Benaji, B
2016-09-01
An innovative simple, fast, precise and accurate ultra-high performance liquid chromatography (UPLC) method was developed for the determination of diclofenac (Dic) along with its impurities including the new dimer impurity in various pharmaceutical dosage forms. An Acquity HSS T3 (C18, 100×2.1mm, 1.8μm) column in gradient mode was used with mobile phase comprising of phosphoric acid, which has a pH value of 2.3 and methanol. The flow rate and the injection volume were set at 0.35ml·min(-1) and 1μl, respectively, and the UV detection was carried out at 254nm by using photodiode array detector. Dic was subjected to stress conditions from acid, base, hydrolytic, thermal, oxidative and photolytic degradation. The new developed method was successfully validated in accordance to the International Conference on Harmonization (ICH) guidelines with respect to specificity, limit of detection, limit of quantitation, precision, linearity, accuracy and robustness. The degradation products were well resolved from main peak and its seven impurities, proving the specificity power of the method. The method showed good linearity with consistent recoveries for Dic content and its impurities. The relative percentage of standard deviation obtained for the repeatability and intermediate precision experiments was less than 3% and LOQ was less than 0.5μg·ml(-1) for all compounds. The new proposed method was found to be accurate, precise, specific, linear and robust. In addition, the method was successfully applied for the assay determination of Dic and its impurities in the several pharmaceutical dosage forms. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.
Krishnaiah, Ch; Reddy, A Raghupathi; Kumar, Ramesh; Mukkanti, K
2010-11-02
A simple, precise, accurate stability-indicating gradient reverse phase ultra-performance liquid chromatographic (RP-UPLC) method was developed for the quantitative determination of purity of Valsartan drug substance and drug products in bulk samples and pharmaceutical dosage forms in the presence of its impurities and degradation products. The method was developed using Waters Aquity BEH C18 (100 mm x 2.1 mm, 1.7 microm) column with mobile phase containing a gradient mixture of solvents A and B. The eluted compounds were monitored at 225 nm, the run time was within 9.5 min, which Valsartan and its seven impurities were well separated. Valsartan was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Valsartan was found to degrade significantly in acid and oxidative stress conditions and stable in base, hydrolytic and photolytic degradation conditions. The degradation products were well resolved from main peak and its impurities, proving the stability-indicating power of the method. The developed method was validated as per international conference on harmonization (ICH) guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. This method was also suitable for the assay determination of Valsartan in pharmaceutical dosage forms.
Jenke, Dennis R; Stults, Cheryl L M; Paskiet, Diane M; Ball, Douglas J; Nagao, Lee M
Elemental impurities in drug products can arise from a number of different sources and via a number of different means, including the active pharmaceutical ingredient, excipients, the vehicle, and leaching of elemental entities that are present in the drug product's manufacturing or packaging systems. Thus, knowledge about the presence, level, and likelihood of leaching of elemental entities in manufacturing and packaging systems is relevant to understanding how these systems contribute to a drug product's total elemental impurity burden. To that end, a joint team from the Extractables and Leachables Safety Information Exchange (ELSIE) Consortium and the International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS) has conducted a review of the available literature on elemental entities in pharmaceutically relevant polymers and the presence of these elemental entities in material extracts and/or drug products. This review article contains the information compiled from the available body of literature and considers two questions: (1) What elemental entities are present in the relevant polymers and materials and at what levels are they present? (2) To what extent are these elemental entities leached from these materials under conditions relevant to the manufacturing and storage/distribution of solution drug products? Conclusions drawn from the compiled data are as follows: (1) Elemental entities are present in the materials used to construct packaging and manufacturing systems as these materials either contain these elemental entities as additives or are exposed to elemental entities during their production. (2) Unless the elemental entities are parts of the materials themselves (for example, SiO 2 in glass) or intentionally added to the materials (for example, metal stearates in polymers), their incidental amounts in the materials are generally low. (3) When elemental entities are present in materials and systems, generally only a very small fraction of the total available amount of the entity can be leached under conditions that are relevant to packaged drug products. Thus, while sources of certain elemental impurities may be ubiquitous in the natural environment, they are not ubiquitous in materials used in pharmaceutical packaging and manufacturing systems and when they are present, they are not extensively leached under relevant conditions. The information summarized here can be utilized to aid the elemental impurity risk assessment process by providing the identities of commonly reported elements and data to support probability estimates of those becoming elemental impurities in the drug product. Furthermore, recommendations are made related to establishing elements of potential product impact for individual materials. Extraneous impurities in drug products provide no therapeutic benefit and thus should be known and controlled. Elemental impurities can arise from a number of sources and by a number of means, including the leaching of elemental entities from drug product packaging and manufacturing systems. To understand the extent to which materials used in packaging systems contain elemental entities and the extent to which those entities leach into drug products to become elemental impurities, the Extractables and Leachables Safety Information Exchange (ELSIE) and International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS) Consortia have jointly performed a literature review on this subject. Using the compiled information, it was concluded that while packaging materials may contain elemental entities, unless those entities are intentional parts of the materials, the amounts of those elemental entities are generally low. Furthermore, generally only a very small fraction of the total available amount of the entity can be leached under conditions that are relevant to packaged drug products. Thus, risk assessment of sources of elemental impurities in drug products that may be related to materials used in pharmaceutical packaging and manufacturing systems can utilize the information and recommendations presented here. © PDA, Inc. 2015.
Accelerated aging: prediction of chemical stability of pharmaceuticals.
Waterman, Kenneth C; Adami, Roger C
2005-04-11
Methods of rapidly and accurately assessing the chemical stability of pharmaceutical dosage forms are reviewed with respect to the major degradation mechanisms generally observed in pharmaceutical development. Methods are discussed, with the appropriate caveats, for accelerated aging of liquid and solid dosage forms, including small and large molecule active pharmaceutical ingredients. In particular, this review covers general thermal methods, as well as accelerated aging methods appropriate to oxidation, hydrolysis, reaction with reactive excipient impurities, photolysis and protein denaturation.
DISTRIBUTED STRUCTURE-SEARCHABLE TOXICITY (DSSTOX) PUBLIC DATABASE NETWORK: A PROPOSAL
The ability to assess the potential genotoxicity, carcinogenicity, or other toxicity of pharmaceutical or industrial chemicals based on chemical structure information is a highly coveted and shared goal of varied academic, commercial, and government regulatory groups. These dive...
Effects of radiation and vitamin C treatment on metronidazole genotoxicity in mice.
Das Roy, Lopamudra; Giri, Sarbani; Singh, Supriya; Giri, Anirudha
2013-05-15
The impact of exposure to low dose radiation (LDR) on human health is not clear. Besides, cross adaptation or sensitization with pharmaceutical agents may modify the risk of LDR. In the present study, we analyzed the interaction of radiation and metronidazole (MTZ) in inducing chromosome aberration (CA) and micronucleus (MN) in the bone marrow cells of Balb/C mice in vivo. Further, we evaluated the efficacy of vitamin C to reduce MTZ induced genotoxicity. We found that 10, 20 and 40mg/kg of MTZ induced dose dependent increase in the frequency of CA (r=0.9923, P<0.01) as well as MN (r=0.9823, P<0.05) in polychromatic erythrocytes. However, MTZ did not affect the ratio of polychromatic erythrocytes to normochromatic erythrocytes indicating lack of cytotoxicity. Supplementation with vitamin C prior to MTZ treatment significantly reduced the frequency of CA (P<0.001) as well as MN (P<0.001). Radiation (0.5Gy) exposure prior to MTZ treatment produced a less than additive (for CA) to additive (for MN) effects. However, radiation exposure following MTZ treatment produced additive (for CA) and synergistic (for MN) effects. Further, vitamin C pre-treatment also reduced the genotoxicity indices following the combined treatment of MTZ and radiation. Our findings suggest that MTZ may sensitize bone marrow cells to radiation exposure and enhances genotoxicity. We recommend more studies on the interaction of LDR and marketed pharmaceuticals to minimize possible harmful outcomes through appropriate precautionary measures. Copyright © 2013 Elsevier B.V. All rights reserved.
Rao, Dantu Durga; Satyanarayana, N V; Malleswara Reddy, A; Sait, Shakil S; Chakole, Dinesh; Mukkanti, K
2010-02-05
A novel stability-indicating gradient reverse phase ultra-performance liquid chromatographic (RP-UPLC) method was developed for the determination of purity of desloratadine in presence of its impurities and forced degradation products. The method was developed using Waters Aquity BEH C18 column with mobile phase containing a gradient mixture of solvents A and B. The eluted compounds were monitored at 280nm. The run time was 8min within which desloratadine and its five impurities were well separated. Desloratadine was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Desloratadine was found to degrade significantly in oxidative and thermal stress conditions and stable in acid, base, hydrolytic and photolytic degradation conditions. The degradation products were well resolved from main peak and its impurities, thus proved the stability-indicating power of the method. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. This method was also suitable for the assay determination of desloratadine in pharmaceutical dosage forms.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-15
...The Food and Drug Administration (FDA) is announcing the availability of a draft guidance entitled ``M7 Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk.'' The draft guidance was prepared under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The draft guidance emphasizes considerations of both safety and quality risk management in establishing levels of mutagenic impurities that are expected to pose negligible carcinogenic risk. It outlines recommendations for assessment and control of mutagenic impurities that reside or are reasonably expected to reside in a final drug substance or product, taking into consideration the intended conditions of human use. The draft guidance is intended to provide guidance for new drug substances and new drug products during their clinical development and subsequent applications for marketing.
Regalado, Erik L; Zhuang, Ping; Chen, Yadan; Makarov, Alexey A; Schafer, Wes A; McGachy, Neil; Welch, Christopher J
2014-01-07
In recent years, the use of halogen-containing molecules has proliferated in the pharmaceutical industry, where the incorporation of halogens, especially fluorine, has become vitally important for blocking metabolism and enhancing the biological activity of pharmaceuticals. The chromatographic separation of halogen-containing pharmaceuticals from associated isomers or dehalogenation impurities can sometimes be quite difficult. In an attempt to identify the best current tools available for addressing this important problem, a survey of the suitability of four chromatographic method development platforms (ultra high-performance liquid chromatography (UHPLC), core shell HPLC, achiral supercritical fluid chromatography (SFC) and chiral SFC) for separating closely related mixtures of halogen-containing pharmaceuticals and their dehalogenated isosteres is described. Of the 132 column and mobile phase combinations examined for each mixture, a small subset of conditions were found to afford the best overall performance, with a single UHPLC method (2.1 × 50 mm, 1.9 μm Hypersil Gold PFP, acetonitrile/methanol based aqueous eluents containing either phosphoric or perchloric acid with 150 mM sodium perchlorate) affording excellent separation for all samples. Similarly, a survey of several families of closely related halogen-containing small molecules representing the diversity of impurities that can sometimes be found in purchased starting materials for synthesis revealed chiral SFC (Chiralcel OJ-3 and Chiralpak IB, isopropanol or ethanol with 25 mM isobutylamine/carbon dioxide) as well as the UHPLC (2.1 × 50 mm, 1.8 μm ZORBAX RRHD Eclipse Plus C18 and the Gold PFP, acetonitrile/methanol based aqueous eluents containing phosphoric acid) as preferred methods.
Kahsay, Getu; Broeckhoven, Ken; Adams, Erwin; Desmet, Gert; Cabooter, Deirdre
2014-05-01
After the great commercial success of sub-3 µm superficially porous particles, vendors are now also starting to commercialize 5 µm superficially porous particles, as an alternative to their fully porous counterparts which are routinely used in pharmaceutical analysis. In this study, the performance of 5 µm superficially porous particles was compared to that of fully porous 5 µm particles in terms of efficiency, separation performance and loadability on a conventional HPLC instrument. Van Deemter and kinetic plots were first used to evaluate the efficiency and performance of both particle types using alkylphenones as a test mixture. The van Deemter and kinetic plots showed that the superficially porous particles provide a superior kinetic performance compared to the fully porous particles over the entire relevant range of separation conditions, when both support types were evaluated at the same operating pressure. The same observations were made both for isocratic and gradient analysis. The superior performance was further demonstrated for the separation of a pharmaceutical compound (griseofulvin) and its impurities, where a gain in analysis time of around 2 could be obtained using the superficially porous particles. Finally, both particle types were evaluated in terms of loadability by plotting the resolution of the active pharmaceutical ingredient and its closest impurity as a function of the signal-to-noise ratio obtained for the smallest impurity. It was demonstrated that the superficially porous particles show better separation performance for griseofulvin and its impurities without significantly compromising sensitivity due to loadability issues in comparison with their fully porous counterparts. Moreover these columns can be used on conventional equipment without modifications to obtain a significant improvement in analysis time. Copyright © 2014 Elsevier B.V. All rights reserved.
Application of ion chromatography in pharmaceutical and drug analysis.
Jenke, Dennis
2011-08-01
Ion chromatography (IC) has developed and matured into an important analytical methodology in a number of diverse applications and industries, including pharmaceuticals. This manuscript provides a review of IC applications for the determinations of active and inactive ingredients, excipients, degradation products, and impurities relevant to pharmaceutical analyses and thus serves as a resource for investigators looking for insights into the use of the IC methodology in this field of application.
Li, Ming; Josephs, Ralf D; Daireaux, Adeline; Choteau, Tiphaine; Westwood, Steven; Wielgosz, Robert I; Li, Hongmei
2018-06-04
Peptides are an increasingly important group of biomarkers and pharmaceuticals. The accurate purity characterization of peptide calibrators is critical for the development of reference measurement systems for laboratory medicine and quality control of pharmaceuticals. The peptides used for these purposes are increasingly produced through peptide synthesis. Various approaches (for example mass balance, amino acid analysis, qNMR, and nitrogen determination) can be applied to accurately value assign the purity of peptide calibrators. However, all purity assessment approaches require a correction for structurally related peptide impurities in order to avoid biases. Liquid chromatography coupled to high resolution mass spectrometry (LC-hrMS) has become the key technique for the identification and accurate quantification of structurally related peptide impurities in intact peptide calibrator materials. In this study, LC-hrMS-based methods were developed and validated in-house for the identification and quantification of structurally related peptide impurities in a synthetic human C-peptide (hCP) material, which served as a study material for an international comparison looking at the competencies of laboratories to perform peptide purity mass fraction assignments. More than 65 impurities were identified, confirmed, and accurately quantified by using LC-hrMS. The total mass fraction of all structurally related peptide impurities in the hCP study material was estimated to be 83.3 mg/g with an associated expanded uncertainty of 3.0 mg/g (k = 2). The calibration hierarchy concept used for the quantification of individual impurities is described in detail. Graphical abstract ᅟ.
An, Jianguo; Sun, Mingjiang; Bai, Lin; Chen, Ted; Liu, David Q; Kord, Alireza
2008-11-04
Derivatization LC/MS methodology has been developed for the determination of a group of commonly encountered alkyl esters of sulfonates or sulfates in drug substances at low ppm levels. This general method uses trimethylamine as the derivatizing reagent for ethyl/propyl/isopropyl esters and triethylamine for methyl esters. The resulting quaternary ammonium derivatization products are highly polar (ionic) and can be retained by a hydrophilic interaction liquid chromatography (HILIC) column and readily separated from the main interfering active pharmaceutical ingredient (API) peak that is usually present at very high concentration. The method gives excellent sensitivity for all the alkyl esters at typical target analyte level of 1-2 ppm when the API samples were prepared at 5mg/mL. The recoveries at 1-2 ppm were generally above 85% for all the alkyl esters in the various APIs tested. The injection precisions of the lowest concentration standards were excellent with R.S.D.=0.4-4%. A linear range for concentrations from 0.2 to 20 ppm has been established with R(2)>or=0.99. This general method has been tested in a number of API matrices and used successfully for determination of alkyl sulfonates or dialkyl sulfates in support of API batch releases at GlaxoSmithKline.
Norwood, Daniel L; Mullis, James O; Davis, Mark; Pennino, Scott; Egert, Thomas; Gonnella, Nina C
2013-01-01
The structural analysis (i.e., identification) of organic chemical entities leached into drug product formulations has traditionally been accomplished with techniques involving the combination of chromatography with mass spectrometry. These include gas chromatography/mass spectrometry (GC/MS) for volatile and semi-volatile compounds, and various forms of liquid chromatography/mass spectrometry (LC/MS or HPLC/MS) for semi-volatile and relatively non-volatile compounds. GC/MS and LC/MS techniques are complementary for structural analysis of leachables and potentially leachable organic compounds produced via laboratory extraction of pharmaceutical container closure/delivery system components and corresponding materials of construction. Both hyphenated analytical techniques possess the separating capability, compound specific detection attributes, and sensitivity required to effectively analyze complex mixtures of trace level organic compounds. However, hyphenated techniques based on mass spectrometry are limited by the inability to determine complete bond connectivity, the inability to distinguish between many types of structural isomers, and the inability to unambiguously determine aromatic substitution patterns. Nuclear magnetic resonance spectroscopy (NMR) does not have these limitations; hence it can serve as a complement to mass spectrometry. However, NMR technology is inherently insensitive and its ability to interface with chromatography has been historically challenging. This article describes the application of NMR coupled with liquid chromatography and automated solid phase extraction (SPE-LC/NMR) to the structural analysis of extractable organic compounds from a pharmaceutical packaging material of construction. The SPE-LC/NMR technology combined with micro-cryoprobe technology afforded the sensitivity and sample mass required for full structure elucidation. Optimization of the SPE-LC/NMR analytical method was achieved using a series of model compounds representing the chemical diversity of extractables. This study demonstrates the complementary nature of SPE-LC/NMR with LC/MS for this particular pharmaceutical application. The identification of impurities leached into drugs from the components and materials associated with pharmaceutical containers, packaging components, and materials has historically been done using laboratory techniques based on the combination of chromatography with mass spectrometry. Such analytical techniques are widely recognized as having the selectivity and sensitivity required to separate the complex mixtures of impurities often encountered in such identification studies, including both the identification of leachable impurities as well as potential leachable impurities produced by laboratory extraction of packaging components and materials. However, while mass spectrometry-based analytical techniques have limitations for this application, newer analytical techniques based on the combination of chromatography with nuclear magnetic resonance spectroscopy provide an added dimension of structural definition. This article describes the development, optimization, and application of an analytical technique based on the combination of chromatography and nuclear magnetic resonance spectroscopy to the identification of potential leachable impurities from a pharmaceutical packaging material. The complementary nature of the analytical techniques for this particular pharmaceutical application is demonstrated.
Zhang, Kelly; Li, Yi; Tsang, Midco; Chetwyn, Nik P
2013-09-01
To overcome challenges in HPLC impurity analysis of pharmaceuticals, we developed an automated online multi-heartcutting 2D HPLC system with hyphenated UV-charged aerosol MS detection. The first dimension has a primary column and the second dimension has six orthogonal columns to enhance flexibility and selectivity. The two dimensions were interfaced by a pair of switching valves equipped with six trapping loops that allow multi-heartcutting of peaks of interest in the first dimension and also allow "peak parking." The hyphenated UV-charged aerosol MS detection provides comprehensive detection for compounds with and without UV chromophores, organics, and inorganics. It also provides structural information for impurity identification. A hidden degradation product that co-eluted with the drug main peak was revealed by RP × RP separation and thus enabled the stability-indicating method development. A poorly retained polar component with no UV chromophores was analyzed by RP × hydrophilic interaction liquid chromatography separation with charged aerosol detection. Furthermore, using this system, the structures of low-level impurities separated by a method using nonvolatile phosphate buffer were identified and tracked by MS in the second dimension. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sheldon, E M; Downar, J B
2000-08-15
Novel approaches to the development of analytical procedures for monitoring incoming starting material in support of chemical/pharmaceutical processes are described. High technology solutions were utilized for timely process development and preparation of high quality clinical supplies. A single robust HPLC method was developed and characterized for the analysis of the key starting material from three suppliers. Each supplier used a different process for the preparation of this material and, therefore, each suppliers' material exhibited a unique impurity profile. The HPLC method utilized standard techniques acceptable for release testing in a QC/manufacturing environment. An automated experimental design protocol was used to characterize the robustness of the HPLC method. The method was evaluated for linearity, limit of quantitation, solution stability, and precision of replicate injections. An LC-MS method that emulated the release HPLC method was developed and the identities of impurities were mapped between the two methods.
Oxidative stress and genotoxicity induced by ketorolac on the common carp Cyprinus carpio.
Galar-Martínez, M; García-Medina, S; Gómez-Olivan, L M; Pérez-Coyotl, I; Mendoza-Monroy, D J; Arrazola-Morgain, R E
2016-09-01
The nonsteroidal anti-inflammatory drug ketorolac is extensively used in the treatment of acute postoperative pain. This pharmaceutical has been found at concentrations of 0.2-60 µg/L in diverse water bodies around the world; however, its effects on aquatic organisms remain unknown. The present study, evaluated the oxidative stress and genotoxicity induced by sublethal concentrations of ketorolac (1 and 60 µg/L) on liver, brain, and blood of the common carp Cyprinus carpio. This toxicant induced oxidative damage (increased lipid peroxidation, hydroperoxide content, and protein carbonyl content) as well as changes in antioxidant status (superoxide dismutase, catalase, and glutathione peroxidase activity) in liver and brain of carp. In blood, ketorolac increased the frequency of micronuclei and is therefore genotoxic for the test species. The effects observed were time and concentration dependent. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1035-1043, 2016. © 2015 Wiley Periodicals, Inc.
Detection of genotoxic and non-genotoxic carcinogens in Xpc(-/-)p53(+/-) mice.
Melis, Joost P M; Speksnijder, Ewoud N; Kuiper, Raoul V; Salvatori, Daniela C F; Schaap, Mirjam M; Maas, Saskia; Robinson, Joke; Verhoef, Aart; van Benthem, Jan; Luijten, Mirjam; van Steeg, Harry
2013-01-15
An accurate assessment of the carcinogenic potential of chemicals and pharmaceutical drugs is essential to protect humans and the environment. Therefore, substances are extensively tested before they are marketed to the public. Currently, the rodent two-year bioassay is still routinely used to assess the carcinogenic potential of substances. However, over time it has become clear that this assay yields false positive results and also has several economic and ethical drawbacks including the use of large numbers of animals, the long duration, and the high cost. The need for a suitable alternative assay is therefore high. Previously, we have proposed the Xpa*p53 mouse model as a very suitable alternative to the two-year bioassay. We now show that the Xpc*p53 mouse model preserves all the beneficial traits of the Xpa*p53 model for sub-chronic carcinogen identification and can identify both genotoxic and non-genotoxic carcinogens. Moreover, Xpc*p53 mice appear to be more responsive than Xpa*p53 mice towards several genotoxic and non-genotoxic carcinogens. Furthermore, Xpc*p53 mice are far less sensitive than Xpa*p53 mice for the toxic activity of DNA damaging agents and as such clearly respond in a similar way as wild type mice do. These advantageous traits of the Xpc*p53 model make it a better alternative for in vivo carcinogen testing than Xpa*p53. This pilot study suggests that Xpc*p53 mice are suited for routine sub-chronic testing of both genotoxic and non-genotoxic carcinogens and as such represent a suitable alternative to possibly replace the murine life time cancer bioassay. Copyright © 2012 Elsevier Inc. All rights reserved.
Dispas, Amandine; Desfontaine, Vincent; Andri, Bertyl; Lebrun, Pierre; Kotoni, Dorina; Clarke, Adrian; Guillarme, Davy; Hubert, Philippe
2017-02-05
In the last years, supercritical fluid chromatography has largely been acknowledged as a singular and performing technique in the field of separation sciences. Recent studies highlighted the interest of SFC for the quality control of pharmaceuticals, especially in the case of the determination of the active pharmaceutical ingredient (API). Nevertheless, quality control requires also the determination of impurities. The objectives of the present work were to (i) demonstrate the interest of SFC as a reference technique for the determination of impurities in salbutamol sulfate API and (ii) to propose an alternative to a reference HPLC method from the European Pharmacopeia (EP) involving ion-pairing reagent. Firstly, a screening was carried out to select the most adequate and selective stationary phase. Secondly, in the context of robust optimization strategy, the method was developed using design space methodology. The separation of salbutamol sulfate and related impurities was achieved in 7min, which is seven times faster than the LC-UV method proposed by European Pharmacopeia (total run time of 50min). Finally, full validation using accuracy profile approach was successfully achieved for the determination of impurities B, D, F and G in salbutamol sulfate raw material. The validated dosing range covered 50 to 150% of the targeted concentration (corresponding to 0.3% concentration level), LODs close to 0.5μg/mL were estimated. The SFC method proposed in this study could be presented as a suitable fast alternative to EP LC method for the quantitative determination of salbutamol impurities. Copyright © 2016 Elsevier B.V. All rights reserved.
Menoutis, James; Parisi, Angela; Verma, Natasha
2018-04-15
In efforts to control the potential presence of heavy metals in pharmaceuticals, the United States Pharmacopeia (USP) and International Conference on Harmonization (ICH) have put forth new requirements and guidelines for their control. The new requirements and guidelines establish specific daily exposures (PDE) for 24 heavy metals/elemental impurities (EI) based upon their toxicological properties. USP General Chapter 〈233〉 provides a general reference procedure for preparing pharmaceutical samples for analysis employing microwave assisted digestion (MWAD). It also provides two Compendial Procedures, Procedure 1 employing ICP-AES, and Procedure 2 employing ICP-MS. Given the extremely low detection limits afforded by ICP-MS, much work has been done in developing and evaluating analytical methods to support the analysis of elemental impurities in finished pharmaceutical products, active pharmaceutical ingredients, and excipients by this analytical technique. In this study, we have evaluated the use of axial ICP-AES. This employs ultrasonic nebulization (UN) for the determination of Class 1 and 2 EI, instead of traditional pneumatic nebulization. The study also employed closed vessel MWAD to prepare samples for analysis. Limits of quantitation were element specific and significantly lower than the PDEs for oral drugs. Spike recoveries for the elements studied ranged between 89.3% and 109.25%, except for Os, which was subject to OsO4 formation during MWAD. The use of axial ICP-AES UN provides an alternative to ICP-MS in the analysis of EI requiring low detection limits. Copyright © 2018 Elsevier B.V. All rights reserved.
Increased cell proliferation is a defining feature of carcinogenesis and a central key event in the mode of action for many non-genotoxic carcinogens. Quantitative cell proliferation data thus play an important role in the safety assessment of many pharmaceutical and environment...
Zouiten, Amina; Beltifa, Asma; Van Loco, Joris; Mansour, Hedi Ben; Reyns, Tim
2016-08-01
Environmental pollution by pharmaceutical residues has become a major problem in many countries worldwide. However, little is known about the concentrations of pharmaceuticals in water sources in Tunisia. Residues in the natural environment have been of increasing concern due to their impact on bacteria resistance development and toxicity to natural communities and ultimately to public health. In this work, we collected the wastewater sample from a pharmaceutical industry, which specializes in the antibiotics manufacture, during the years 2014-2015. Generally, this effluent is discharged into the marine environment and causes environmental problems. The Mediterranean mussel Mytilus galloprovincialis was commonly used as a model organism for its peculiar morphofunctional properties which also make it an excellent marine environmental biomonitoring species. The histological sections of mussel, which are exposed at different dilutions of pharmaceutical wastewater (PW), indicate a large pathological power revealed on the gills. On the other hand, genotoxicity of the studied effluent was evaluated using comet assay for quantification of DNA fragmentation in gill cells. Results show that PW exhibited a statistically significant (p < 0.001) genotoxic effect in a dose-dependent manner. However, the toxic effects of PW decreased significantly after its treatment with Bacillus atrophaeus. Toxicities can be imputed to the presence of antibiotics. In fact, chemical analysis of the gills of mussel M. galloprovincialis using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) showed the presence of some antibiotic residues. These concentrations decrease to half in mussels treated with PW biodegraded by B. atrophaeus.
Acute toxicity and genotoxicity of fermented traditional medicine oyaksungi-san.
Park, Hwayong; Hwang, Youn-Hwan; Ma, Jin Yeul
2017-06-01
The traditional medicine oyaksungi-san (OY) has been prescribed in East Asia for hundreds of years for the treatment of stroke, paralysis, and ataxia. OY also has therapeutic effects on arthralgia, myalgia, and rheumatoid arthritis, and recent studies have shown its protective effects against apoptosis of hippocampal cells and its anti-inflammatory effects on the peripheral blood cells of patient with cerebral infarction. Many studies have explored the use of traditional medicine and herb materials in the development of safe, novel, and effective pharmaceuticals with fewer side effects. These efforts commonly adopt a bioconversion tool for fermentation with beneficial microbes. However, only pharmaceuticals with high levels of safety and low levels of toxicity can be used in healthcare system. OY water extract was fermented with Lactobacillus and assayed for acute toxicity and genotoxicity. Single dose acute toxicity, bacterial reverse mutation, chromosome aberrations, and micronucleus were observed and assayed in rats, histidine/tryptophan auxotrophic bacteria, Chinese hamster ovary fibroblast cells, and mice bone marrow cells, respectively. All the experimental animals showed no abnormal behavior, clinical signs, body weight increases, or mortality. In the bacterial cultures, no revertant colonies were observed. Morphological and numerical chromosomal aberrations were not found in all metaphases examined. Frequency of induced micronuclei was not significantly increased in all doses applied. As a whole, no acute toxicity or genotoxicity were observed in all the assays examined. Therefore, fermented OY is considered to be a safe material that can be used for development of complementary and alternative medicine using bioconversion.
Kumar, Navneet; Sangeetha, Dhanaraj; Reddy, Sunil P
2012-10-01
The objective of the current investigation was to study the degradation behavior of irinotecan hydrochloride under different International Conference on Harmonization (ICH) recommended stress conditions using ultra-performance liquid chromatography and liquid chromatography-mass spectrometry and to establish a validated stability-indicating reverse-phase ultra-performance liquid chromatographic method for the quantitative determination of irinotecan hydrochloride and its seven impurities and degradation products in pharmaceutical dosage forms. Irinotecan hydrochloride was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Irinotecan hydrochloride was found to degrade significantly in oxidative and base hydrolysis and photolytic degradation conditions. The degradation products were well resolved from the main peak and its impurities, thus proving the stability-indicating power of the method. Chromatographic separation was achieved on a Waters Acquity BEH C8 (100 × 2.1 mm) 1.7-µm column with a mobile phase containing a gradient mixture of solvent A (0.02M KH(2)PO(4) buffer, pH 3.4) and solvent B (a mixture of acetonitrile and methanol in the ratio of 62:38 v/v). The mobile phase was delivered at a flow rate of 0.3 mL/min with ultraviolet detection at 220 nm. The run time was 8 min, within which irinotecan and its seven impurities and degradation products were satisfactorily separated. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. This method was also suitable for the assay determination of irinotecan hydrochloride in pharmaceutical dosage forms.
Raju, Thummala Veera Raghava; Seshadri, Raja Kumar; Arutla, Srinivas; Mohan, Tharlapu Satya Sankarsana Jagan; Rao, Ivaturi Mrutyunjaya; Nittala, Someswara Rao
2013-01-01
A novel, sensitive, stability-indicating HPLC method has been developed for the quantitative estimation of Tolperisone-related impurities in both bulk drugs and pharmaceutical dosage forms. Effective chromatographic separation was achieved on a C18 stationary phase with a simple mobile phase combination delivered in a simple gradient programme, and quantitation was by ultraviolet detection at 254 nm. The mobile phase consisted of a buffer and acetonitrile delivered at a flow rate 1.0 ml/min. The buffer consisted of 0.01 M potassium dihydrogen phosphate with the pH adjusted to 8.0 by using diethylamine. In the developed HPLC method, the resolution between Tolperisone and its four potential impurities was found to be greater than 2.0. Regression analysis showed an R value (correlation coefficient) of greater than 0.999 for the Tolperisone impurities. This method was capable of detecting all four impurities of Tolperisone at a level of 0.19 μg/mL with respect to the test concentration of 1000 μg/mL for a 10 µl injection volume. The tablets were subjected to the stress conditions of hydrolysis, oxidation, photolysis, and thermal degradation. Considerable degradation was found to occur in base hydrolysis, water hydrolysis, and oxidation. The stress samples were assayed against a qualified reference standard and the mass balance was found to be close to 100%. The established method was validated and found to be linear, accurate, precise, specific, robust, and rugged.
Synthesis of compounds related to the anti-migraine drug eletriptan hydrobromide.
Madasu, Suri Babu; Vekariya, Nagaji Ambabhai; Kiran, M N V D Hari; Gupta, Badarinadh; Islam, Aminul; Douglas, Paul S; Babu, Korupolu Raghu
2012-01-01
Eletriptan hydrobromide (1) is a selective serotonin (5-HT(1)) agonist, used for the acute treatment of the headache phase of migraine attacks. During the manufacture of eletriptan hydrobromide the formation of various impurities were observed and identified by LC-MS. To control the formation of these impurities during the preparation of active pharmaceutical ingredients, the structure of the impurities must be known. Major impurities of the eletriptan hydrobromide synthesis were prepared and characterized by using various spectroscopic techniques, i.e., mass spectroscopy, FTIR , (1)H NMR, (13)C NMR/DEPT, and further confirmed by co-injection in HPLC. The present study will be of great help in the synthesis of highly pure eletriptan hydrobromide related compounds.
Synthesis of compounds related to the anti-migraine drug eletriptan hydrobromide
Madasu, Suri Babu; Kiran, M N V D Hari; Gupta, Badarinadh; Islam, Aminul; Douglas, Paul S; Babu, Korupolu Raghu
2012-01-01
Summary Eletriptan hydrobromide (1) is a selective serotonin (5-HT1) agonist, used for the acute treatment of the headache phase of migraine attacks. During the manufacture of eletriptan hydrobromide the formation of various impurities were observed and identified by LC–MS. To control the formation of these impurities during the preparation of active pharmaceutical ingredients, the structure of the impurities must be known. Major impurities of the eletriptan hydrobromide synthesis were prepared and characterized by using various spectroscopic techniques, i.e., mass spectroscopy, FTIR , 1H NMR, 13C NMR/DEPT, and further confirmed by co-injection in HPLC. The present study will be of great help in the synthesis of highly pure eletriptan hydrobromide related compounds. PMID:23019477
Ates, Gamze; Mertens, Birgit; Heymans, Anja; Verschaeve, Luc; Milushev, Dimiter; Vanparys, Philippe; Roosens, Nancy H C; De Keersmaecker, Sigrid C J; Rogiers, Vera; Doktorova, Tatyana Y
2018-04-01
Although the value of the regulatory accepted batteries for in vitro genotoxicity testing is recognized, they result in a high number of false positives. This has a major impact on society and industries developing novel compounds for pharmaceutical, chemical, and consumer products, as afflicted compounds have to be (prematurely) abandoned or further tested on animals. Using the metabolically competent human HepaRG ™ cell line and toxicogenomics approaches, we have developed an upgraded, innovative, and proprietary gene classifier. This gene classifier is based on transcriptomic changes induced by 12 genotoxic and 12 non-genotoxic reference compounds tested at sub-cytotoxic concentrations, i.e., IC10 concentrations as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The resulting gene classifier was translated into an easy-to-handle qPCR array that, as shown by pathway analysis, covers several different cellular processes related to genotoxicity. To further assess the predictivity of the tool, a set of 5 known positive and 5 known negative test compounds for genotoxicity was evaluated. In addition, 2 compounds with debatable genotoxicity data were tested to explore how the qPCR array would classify these. With an accuracy of 100%, when equivocal results were considered positive, the results showed that combining HepaRG ™ cells with a genotoxin-specific qPCR array can improve (geno)toxicological hazard assessment. In addition, the developed qPCR array was able to provide additional information on compounds for which so far debatable genotoxicity data are available. The results indicate that the new in vitro tool can improve human safety assessment of chemicals in general by basing predictions on mechanistic toxicogenomics information.
Genotoxicity assessment of some cosmetic and food additives.
Di Sotto, Antonella; Maffei, Francesca; Hrelia, Patrizia; Di Giacomo, Silvia; Pagano, Ester; Borrelli, Francesca; Mazzanti, Gabriela
2014-02-01
α-Hexylcinnamaldehyde (HCA) and p-tert-butyl-alpha-methylhydrocinnamic aldehyde (BMHCA) are synthetic aldehydes, characterized by a typical floral scent, which makes them suitable to be used as fragrances in personal care (perfumes, creams, shampoos, etc.) and household products, and as flavouring additives in food and pharmaceutical industry. The aldehydic structure suggests the need for a safety assessment for these compounds. Here, HCA and BMHCA were evaluated for their potential genotoxic risk, both at gene level (frameshift or base-substitution mutations) by the bacterial reverse mutation assay (Ames test), and at chromosomal level (clastogenicity and aneuploidy) by the micronucleus test. In order to evaluate a primary and repairable DNA damage, the comet assay has been also included. In spite of their potential hazardous chemical structure, a lack of mutagenicity was observed for both compounds in all bacterial strains tested, also in presence of the exogenous metabolic activator, showing that no genotoxic derivatives were produced by CYP450-mediated biotransformations. Neither genotoxicity at chromosomal level (i.e. clastogenicity or aneuploidy) nor single-strand breaks were observed. These findings will be useful in further assessing the safety of HCA and BMHCA as either flavour or fragrance chemicals. Copyright © 2013 Elsevier Inc. All rights reserved.
Görög, Sándor
2011-06-25
A critical review of the literature of the analysis of steroid hormone drugs is presented based on 213 publications published between 2004 and 2010. The state of the art of the assay and purity check of bulk drug materials is characterized on the basis of the principal pharmacopoeias supplemented by the literature dealing with their impurity profiling and solid state characterization. The determination of the active ingredients and impurities/degradants in pharmaceutical formulation by HPLC, other chromatographic, electrodriven, spectrophotometric and other methods is also summarized. A short section deals with the application of analytical methods in drug research. The literature of the determination of steroid hormones in environmental samples is summarized in tabulated form. Copyright © 2010 Elsevier B.V. All rights reserved.
Detection of genotoxic and non-genotoxic carcinogens in Xpc{sup −/−}p53{sup +/−} mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melis, Joost P.M.; Leiden University Medical Center, Department of Toxicogenetics, Leiden; Speksnijder, Ewoud N.
2013-01-15
An accurate assessment of the carcinogenic potential of chemicals and pharmaceutical drugs is essential to protect humans and the environment. Therefore, substances are extensively tested before they are marketed to the public. Currently, the rodent two-year bioassay is still routinely used to assess the carcinogenic potential of substances. However, over time it has become clear that this assay yields false positive results and also has several economic and ethical drawbacks including the use of large numbers of animals, the long duration, and the high cost. The need for a suitable alternative assay is therefore high. Previously, we have proposed themore » Xpa*p53 mouse model as a very suitable alternative to the two-year bioassay. We now show that the Xpc*p53 mouse model preserves all the beneficial traits of the Xpa*p53 model for sub-chronic carcinogen identification and can identify both genotoxic and non-genotoxic carcinogens. Moreover, Xpc*p53 mice appear to be more responsive than Xpa*p53 mice towards several genotoxic and non-genotoxic carcinogens. Furthermore, Xpc*p53 mice are far less sensitive than Xpa*p53 mice for the toxic activity of DNA damaging agents and as such clearly respond in a similar way as wild type mice do. These advantageous traits of the Xpc*p53 model make it a better alternative for in vivo carcinogen testing than Xpa*p53. This pilot study suggests that Xpc*p53 mice are suited for routine sub-chronic testing of both genotoxic and non-genotoxic carcinogens and as such represent a suitable alternative to possibly replace the murine life time cancer bioassay. Highlights: ► The Xpc*p53 mouse model is able to identify genotoxic and non-genotoxic carcinogens. ► Time, animals and cost can be significantly reduced compared to the 2-year bioassay. ► Xpc*p53 mice are more advantageous for carcinogen identification than Xpa*p53 mice. ► Xpc*p53 mice exhibit a wild type response upon exposure to genotoxicants.« less
Gherras, Nesrine; Serris, Eric; Fevotte, Gilles
2012-12-15
Acoustic emission (AE) which has been successfully applied for monitoring a rather wide variety of solids elaboration processes was almost never evaluated in the field of industrial pharmaceutical crystallization. Few papers reported that solution crystallization processes give rise to acoustic emission signals that could be related to the development of the basic crystallization phenomena. This study is intended to demonstrate new perspectives opened up by the possible use of acoustic emission (AE) as a non-intrusive and non destructive sensor for monitoring solution crystallization with a particular focus being put on the presence of impurities in real industrial processes. The wealth of acquired AE information is highlighted and it is suggested that such information could allow the design of innovative multipurpose sensing strategies. It is shown notably that AE provides a very early detection of nucleation events, much before the onset of the so-called "nucleation burst". It is also shown that AE brings new insight into the effect of impurities on both the development of the crystallization process and the quality of the crystallized product. Copyright © 2012 Elsevier B.V. All rights reserved.
Mustapha, Nadia; Zouiten, Amina; Dridi, Dorra; Tahrani, Leyla; Zouiten, Dorra; Mosrati, Ridha; Cherif, Ameur; Chekir-Ghedira, Leila; Mansour, Hedi Ben
2016-04-01
This article investigates the ability of Pseudomonas peli to treat industrial pharmaceuticals wastewater (PW). Liquid chromatography-mass spectrometry (MS)/MS analysis revealed the presence, in this PW, of a variety of antibiotics such as sulfathiazole, sulfamoxole, norfloxacine, cloxacilline, doxycycline, and cefquinome.P. peli was very effective to be grown in PW and inducts a remarkable increase in chemical oxygen demand and biochemical oxygen demand (140.31 and 148.51%, respectively). On the other hand, genotoxicity of the studied effluent, before and after 24 h of shaking incubation with P. peli, was evaluated in vivo in the Mediterranean wild mussels Mytilus galloprovincialis using comet assay for quantification of DNA fragmentation. Results show that PW exhibited a statistically significant (p< 0.001) genotoxic effect in a dose-dependent manner; indeed, the percentage of genotoxicity was 122.6 and 49.5% after exposure to 0.66 ml/kg body weight (b.w.); 0.33 ml/kg b.w. of PW, respectively. However, genotoxicity decreased strongly when tested with the PW obtained after incubation with P. peli We can conclude that using comet assay genotoxicity end points are useful tools to biomonitor the physicochemical and biological quality of water. Also, it could be concluded that P. peli can treat and detoxify the studied PW. © The Author(s) 2013.
Ruggenthaler, M; Grass, J; Schuh, W; Huber, C G; Reischl, R J
2017-09-05
For the first time, a comprehensive investigation of the impurity profile of the synthetic thyroid API (active pharmaceutical ingredient) liothyronine sodium (LT 3 Na) was performed by using reversed phase HPLC and advanced structural elucidation techniques including high resolution tandem mass spectrometry (HRMS/MS) and on-line hydrogen-deuterium (H/D) exchange. Overall, 39 compounds were characterized and 25 of these related substances were previously unknown to literature. The impurity classification system recently developed for the closely related API levothyroxine sodium (LT 4 Na) could be applied to the newly characterized liothyronine sodium impurities resulting in a wholistic thyroid API impurity classification system. Furthermore, the mass-spectrometric CID-fragmentation of specific related substances was discussed and rationalized by detailed fragmentation pathways. Moreover, the UV/Vis absorption characteristics of the API and selected impurities were investigated to corroborate chemical structure assignments derived from MS data. Copyright © 2017 Elsevier B.V. All rights reserved.
New perspectives and lessons learned in the identification of impurities in drug development.
Sasaki, Ryan R; McGibbon, Graham; Lee, Mike S; Murray, Clare L; Pharr, Bruce
2014-11-01
Within the pharmaceutical industry, the rapid identification, elucidation and characterization of synthetic or process impurities or degradants form an intense and a comprehensive undertaking. Advances in laboratory hardware and software are changing the way in which scientists work together to help resolve impurities in a quick and efficient manner. Although the industry trend toward externalization and outsourcing of development tasks provides a cost-effective method, the demand for improved productivity in laboratory workflows in drug development continues to be a high priority. This brings a need for new approaches for communication, collaboration and data management. Copyright © 2014 Elsevier Ltd. All rights reserved.
Genotoxic potential evaluation of a cosmetic insoluble substance by the micronuclei assay.
Dayan, N; Shah, V; Minko, T
2011-01-01
An optical brightener (OB) powder (INCI: sodium silicoaluminate (and) glycidoxypropyl trimethyloxysilane/PEI-250 cross fluorescent brightener 230 salt (and) polyvinylalcohol crosspolymer) that is used in cosmetic facial products was tested for its genotoxic potential using the micronuclei test (MNT). It is a solid dry powder with an average size of 5 microns that is insoluble but dispersible in water. This study describes the exposure of cell culture to positive controls with and without enzymatic activation and to the test compound in different concentrations. We evaluated three end points: microscopic observation and quantification of micronuclei formation, and cell viability and proliferation. Both positive controls induced significant changes that were observed under the microscope and quantified. Based on its chemical nature, it was not anticipated that the test substance will degrade under the conditions of the experiments. However, the test is required to make sure that when solublized, impurities that may be present, even at trace levels, will not induce a genotoxic effect. The test compound did not promote micronuclei formation or change the viability or proliferation rate of cells. During this study we faced challenges such as solubilization and correlating viability data to genotoxicity data. These are described in the body of the paper. We believe that with the emergence of the 7(th) European amendment that bans animal testing, sharing these data and the study protocol serves as a key in building the understanding of the utilization of in vitro studies in the safety assessment of cosmetic ingredients.
Letica, Jelena; Marković, Slavko; Zirojević, Jelena; Nikolić, Katarina; Agbaba, Danica
2010-01-01
An RP-HPLC method for simultaneous separation and quantification of pantoprazole and its five main impurities in pharmaceutical formulations was developed and validated. The separation was accomplished on a Zorbax Eclipse XDB C18 column (5 microm particle size, 150 x 4.6 mm id) using a gradient with mobile phase A [buffer-acetonitrile (70 + 30, v/v)], and mobile phase B [buffer-acetonitrile (30 + 70, v/v)]. The buffer was 0.01 M ammonium acetate solution with addition of 1 mL triethylamine/L of the solution, adjusted to pH 4.5 with orthophosphoric acid. The eluent flow rate was 1 mL/min, the temperature of the column was 30 degrees C, and the eluate was monitored at 290 nm. Linearity (r = 0.999), recovery (97.6-105.8%), RSD (0.55-1.90%), and LOQ (0.099-1.48 microg/mL) were evaluated and found to be satisfactory. The proposed method can be used for simultaneous identification and quantification of the analyzed compounds in pharmaceutical formulations.
den Brok, Monique W J; Nuijen, Bastiaan; Hillebrand, Michel J X; Grieshaber, Charles K; Harvey, Michael D; Beijnen, Jos H
2005-09-01
C1311 (5-[[2-(diethylamino)ethyl]amino]-8-hydroxyimidazo [4,5,1-de]-acridin-6-one-dihydrochloride trihydrate) is the lead compound from the group of imidazoacridinones, a novel group of rationally designed anticancer agents. The pharmaceutical development of C1311 necessitated the availability of an assay for the quantification and purity determination of C1311 active pharmaceutical ingredient (API) and its pharmaceutical dosage form. A reversed-phase liquid chromatographic method (RP-LC) with ultraviolet (UV) detection was developed, consisting of separation on a C18 column with phosphate buffer (60 mM; pH 3 with 1 M citric acid)-acetonitrile-triethylamine (83:17:0.05, v/v/v) as the mobile phase and UV-detection at 280 nm. The method was found to be linear over a concentration range of 2.50-100 microg/mL, precise and accurate. Accelerated stress testing showed degradation products, which were well separated from the parent compound, confirming its stability-indicating capacity. Moreover, the use of LC-MS and on-line photo diode array detection enabled us to propose structures for four degradation products. Two of these products were also found as impurities in the API and more abundantly in an impure lot of API.
Pharmaceutical quality of generic isotretinoin products, compared with Roaccutane.
Taylor, Peter W; Keenan, Michael H J
2006-03-01
Isotretinoin is the drug of choice for the management of severe recalcitrant nodular acne. Several generic products are available. However, their pharmaceutical quality, in particular particle size distribution, which may affect safety and efficacy is unknown. Hence, prescribing of some generic products may be problematic. To assess the pharmaceutical quality of 14 generic isotretinoin products compared with Roaccutane (F. Hoffmann-La Roche Ltd). Tests were performed according to Roche standard procedures, European and US pharmacopoeia specifications. Tests included isotretinoin content, identity and amount of impurities and degradation products, effect of accelerated shelf-life studies on stability, particle size distribution and composition of non-active ingredients. The 14 isotretinoin products differed by 30-fold in median particle size and showed variation in their non-active ingredients. The average isotretinoin content of Acnotin and Acne-Tretin fell outside the 95-105% Roche specifications. Following accelerated shelf-life tests, only four products retained isotretinoin content within Roche specifications, whilst Acne-Tretin (the only powder formulation) lost 72.5% isotretinoin content. Two generic products exceeded the +/- 2% specification (Ph. Eur.) and a further three exceeded the +/- 1% (USP) for tretinoin content, eight exceeded the 2.54% specification for total impurities and six contained >or= 5 unknown impurities. Isotretinoin-5.6-epoxide content exceeded the 1.04% specification in five generic products. Thirteen generic products failed to match Roaccutane in one or more tests and 11 failed in three or more tests. It cannot be assumed that all generic isotretinoin products are as therapeutically effective or safe as Roaccutane.
Single, repeated dose toxicity and genotoxicity assessment of herb formula KIOM2012H.
Park, Hwayong; Hwang, Youn-Hwan; Ma, Jin Yeul
2017-12-01
Traditional medicine and herbal prescriptions are becoming more popular, and they account for a large share of the world's healthcare research studies, developments, and market demands. Increasing scientific evidence of the substantive efficacies such as preventive health keeping pharmaceutical materials and dietary supplements can be found elsewhere. Above all, safety should be the critical premise for considering developmental materials such as pharmaceuticals without side effects and toxicity. The authors formulated KIOM2012H (K2H) using four herbs that were reported to have medicinal effects-including anticancer, antiaging, antimicrobial, inflammation, and neuroprotective properties. In order to examine the toxicity, single and repeated dose toxicity, and genotoxicities of bacterial mutation, micronucleus, and chromosomal aberration assays were conducted. All experimental observations and results showed normal findings. Toxicities or abnormal signs were not observed in all experimental assays, including oral administration, animal behavior, clinical findings, and changes in body weight in vivo . In vitro bacterial cultures produced no revertant colonies, and no increased numbers of structural or numerical aberrant metaphases were found in the metaphase chromosomes examined. Moreover, no significant increased frequency of micronucleus was observed in any of the doses used. Overall, no acute toxicity or genotoxicity was found in all analysis parameters in all the assays conducted. Reviewing the results as a whole, K2H extract was regarded as a safe material with no toxicity, and can be applied for the research and development of complementary and alternative medicines with improved efficacy in current therapeutic healthcare, based on traditional medicine and herb resources.
Vanparys, Philippe; Corvi, Raffaella; Aardema, Marilyn J; Gribaldo, Laura; Hayashi, Makoto; Hoffmann, Sebastian; Schechtman, Leonard
2012-04-11
Two year rodent bioassays play a key role in the assessment of carcinogenic potential of chemicals to humans. The seventh amendment to the European Cosmetics Directive will ban in 2013 the marketing of cosmetic and personal care products that contain ingredients that have been tested in animal models. Thus 2-year rodent bioassays will not be available for cosmetics/personal care products. Furthermore, for large testing programs like REACH, in vivo carcinogenicity testing is impractical. Alternative ways to carcinogenicity assessment are urgently required. In terms of standardization and validation, the most advanced in vitro tests for carcinogenicity are the cell transformation assays (CTAs). Although CTAs do not mimic the whole carcinogenesis process in vivo, they represent a valuable support in identifying transforming potential of chemicals. CTAs have been shown to detect genotoxic as well as non-genotoxic carcinogens and are helpful in the determination of thresholds for genotoxic and non-genotoxic carcinogens. The extensive review on CTAs by the OECD (OECD (2007) Environmental Health and Safety Publications, Series on Testing and Assessment, No. 31) and the proven within- and between-laboratories reproducibility of the SHE CTAs justifies broader use of these methods to assess carcinogenic potential of chemicals. Copyright © 2012 Elsevier B.V. All rights reserved.
Genetic toxicology in the 21st century: Reflections and future ...
A symposium at the 40th anniversary of the Environmental Mutagen Society, held from October 24–28, 2009 in St. Louis, MO, surveyed the current status and future directions of genetic toxicology. This article summarizes the presentations and provides a perspective on the future. An abbreviated history is presented, highlighting the current standard battery of genotoxicity assays and persistent challenges. Application of computational toxicology to safety testing within a regulatory setting is discussed as a means for reducing the need for animal testing and human clinical trials, and current approaches and applications of in silico genotoxicity screening approaches across the pharmaceutical industry were surveyed and are reported here. The expanded use of toxicogenomics to illuminate mechanisms and bridge genotoxicity and carcinogenicity, and new public efforts to use high-throughput screening technologies to address lack of toxicity evaluation for the backlog of thousands of industrial chemicals in the environment are detailed. The Tox21 project involves coordinated efforts of four U.S. Government regulatory/research entities to use new and innovative assays to characterize key steps in toxicity pathways, including genotoxic and nongenotoxic mechanisms for carcinogenesis. Progress to date, highlighting preliminary test results from the National Toxicology Program is summarized. Finally, an overview is presented of ToxCast™, a related research program of the
Nicolette, John; Neft, Robin E; Vanosdol, Jessica; Murray, Joel
2016-04-01
The peptide bond-forming reagents 1-hydroxy-7-azabenzotriazole (HOAt, CAS 39968-33-7) and O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU, CAS 148893-10-1) either have structural alerts, unclassified features or are considered out of domain when evaluated for potential mutagenicity with in silico programs DEREK and CaseUltra. Since they are commonly used reagents in pharmaceutical drug syntheses, they may become drug substance or drug product impurities and would need to be either controlled to appropriately safe levels or tested for mutagenicity. Both reagents were tested in the bacterial reverse mutation (Ames) test at Covance, under GLP conditions, following the OECD test guideline and ICH S2(R1) recommendations and found to be negative. Our data show that HOAt and HATU-common pharmaceutical synthesis reagents-are not mutagenic, and can be treated as ordinary drug impurities. © 2016 Wiley Periodicals, Inc.
Jadhav, Sushant Bhimrao; Kumar, C Kiran; Bandichhor, Rakeshwar; Bhosale, P N
2016-01-25
A new UPLC-TOF/MS compatible, reverse phase-stability indicating method was developed for determination of Omeprazole (OMP) and its related substances in pharmaceutical dosage forms by implementing Design of Experiment (DoE) i.e. two level full factorial Design (2(3)+3 center points=11 experiments) to understand the Critical Method Parameters (CMP) and its relation with Critical Method Attribute (CMA); to ensure robustness of the method. The separation of eleven specified impurities including conversion product of OMP related compound F (13) and G (14) i.e. Impurity-I (1), OMP related compound-I (11) and OMP 4-chloro analog (12) was achieved in a single method on Acquity BEH shield RP18 100 × 2.1 mm, 1.7 μm column, with inlet filter (0.2 μm) using gradient elution and detector wavelength at 305 nm and validated in accordance with ICH guidelines and found to be accurate, precise, reproducible, robust and specific. The drug was found to degrade extensively in heat, humidity and acidic conditions and forms unknown degradation products during stability studies. The same method was used for LC-MS analysis to identify m/z and fragmentation of maximum unknown impurities (Non-Pharmacopoeial) i.e. Impurity-I (1), Impurity-III (3), Impurity-V (5) and Impurity-VIII (9) formed during stability studies. Based on the results, degradation pathway for the drug has been proposed and synthesis of identified impurities i.e. impurities (Impurity-I (1), Impurity-III (3), Impurity-V (5) and Impurity-VIII (9)) are discussed in detail to ensure in-depth understanding of OMP and its related impurities and optimum performance during lifetime of the product. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Harris, Brent; Fields, Shelby S.; Neill, Justin L.; Pulliam, Robin; Muckle, Matt; Pate, Brooks
2016-06-01
Recent advances in Fourier transform millimeter-wave spectroscopy techniques have renewed the application reach of molecular rotational spectroscopy for analytical chemistry. We present a sampling method for sub ppm analysis of low volatility impurities by thermal evolution from solid powders using a millimeter-wave Fourier transform molecular rotational resonance (FT-MRR) spectrometer for detection. This application of FT-MRR is relevant to the manufacturing of safe oral pharmaceuticals. Low volatility impurities can be challenging to detect at 1 ppm levels with chromatographic techniques. One such example of a potentially mutagenic impurity is acetamide (v.p. 1 Torr at 40 C, m.p. 80 C). We measured the pure reference spectrum of acetamide by flowing the sublimated vapor pressure of acetamide crystals through the FT-MRR spectrometer. The spectrometer lower detection level (LDL) for a broadband (> 20 GHz, 10 min.) spectrum is 300 nTorr, 30 pmol, or 2 ng. For a 50 mg powder, perfect sample transfer efficiency can yield a w/w % detection limit of 35 ppb. We extended the sampling method for the acetamide reference measurement to an acetaminophen sample spiked with 5000 ppm acetamide in order to test the sample transfer efficiency when liberated from an pharmaceutical powder. A spectral reference matching algorithm detected the presence of several impurities including acetaldehyde, acetic acid, and acetonitrile that evolved at the melting point of acetaminophen, demonstrating the capability of FT-MRR for identification without a routine chemical standard. The method detection limit (MDL) without further development is less than 10 ppm w/w %. Resolved FT-MRR mixture spectra will be presented with a description of sampling methods.
Ecotoxicity of naproxen and its phototransformation products.
Isidori, Marina; Lavorgna, Margherita; Nardelli, Angela; Parrella, Alfredo; Previtera, Lucio; Rubino, Maria
2005-09-15
The occurrence of pharmaceuticals in the environment is of great concern and only few data are available about the adverse effects of such molecules and their derivatives on non-target aquatic organisms. This study was designed to assess the toxic potential of Naproxen, a nonsteroidal anti-inflammatory, Naproxen Na, its freely water soluble sodium salt and their photoproducts in the aquatic environment. Bioassays were performed on algae, rotifers and microcrustaceans to assess acute and chronic toxicity. Furthermore, possible genotoxic effects of photoderivatives were investigated using SOS chromotest and Ames fluctuation test. The results showed that photoproducts were more toxic than the parent compounds both for acute and chronic values, while genotoxic and mutagenic effects were not found. These findings suggested the opportunity to consider derivatives in ecotoxicology assessment of drugs.
Cytotoxicity and Genotoxicity Reporter Systems Based on the Use of Mammalian Cells
NASA Astrophysics Data System (ADS)
Baumstark-Khan, Christa; Hellweg, Christine E.; Reitz, Günther
With the dramatic increase in the number of new agents arising from the chemical, pharmaceutical, and agricultural industries, there is an urgent need to develop assays for rapid evaluation of potential risks to man and environment. The panel of conventional tests used for cytotoxicity and genotoxicity and the strategies to progress from small scale assays to high content screening in toxicology are discussed. The properties of components necessary as sensors and reporters for new reporter assays, and the application of genetic strategies to design assays are reviewed. The concept of cellular reporters is based on the use of promoters of chemical stress-regulated genes ligated to a suitable luminescent or fluorescent reporter gene. Current reporter assays designed from constructs transferred into suitable cell lines are presented.
Prieto-Blanco, M C; López-Mahía, P; Prada-Rodríguez, D
2009-02-01
In industrial and pharmaceutical processes, the study of residual products becomes essential to guarantee the quality of compounds and to eliminate or minimize toxic residual products. Knowledge about the origin of impurities (raw materials, processes, the contamination of industrial plants, etc.) is necessary in preventive treatment and in the control of a product's lifecycle. Benzyl chloride is used as raw material to synthesize several quaternary ammonium compounds, such as benzalkonium chloride, which may have pharmaceutical applications. Benzaldehyde, benzyl alcohol, toluene, chloro derivatives of toluene, and dibenzyl ether are compounds that may be found as impurities in technical benzyl chloride. We proposed a high-performance liquid chromatography method for the separation of these compounds, testing two stationary phases with different dimensions and particle sizes, with the application of photodiode array-detection. The linearity for four possible impurities (benzaldehyde, toluene, alpha,alpha-dichlorotoluene, and 2-chlorotoluene) ranged from 0.1 to 10 microg/mL, limits of detection from 11 to 34 ng/mL, and repeatability from 1% to 2.9% for a 0.3-1.2 microg/mL concentration range. The method was applied to samples of technical benzyl chloride, and alpha,alpha-dichlorotoluene and benzaldehyde were identified by spectral analysis and quantitated. The selection of benzyl chloride with lower levels of impurities is important to guarantee the reduction of residual products in further syntheses.
Impact of Pharmaceutical Impurities in Ecstasy Tablets: Gas Chromatography-Mass Spectrometry Study
Jalali, Amir; Hatamie, Amir; Saferpour, Tahere; Khajeamiri, Alireza; Safa, Tahere; Buazar, Foad
2016-01-01
In this study, a simple and reliable method by gas chromatograph–mass spectrometry (GC–MS) was developed for the fast and regular identification of 3, 4-MDMA impurities in ecstasy tablets. In so doing, 8 samples of impurities were extracted by diethyl ether under alkaline condition and then analyzed by GC–MS. The results revealed high MDMA levels ranging from 37.6% to 57.7%. The GC-MS method showed that unambiguous identification can be achieved for MDMA from 3, 4-methylenedioxyamphetamine (MDA), Amphetamine (AM), methamphetamine (MA) and ketamine (Keta) compounds, respectively. The experimental results indicated the acceptable time window without interfering peaks. It is found that GC-MS was provided a suitable and rapid identification approach for MDMA (Ecstacy) tablets, particularly in the Forensic labs. Consequently, the intense MDMA levels would support the police to develop a simple quantification of impurity in Ecstasy tablets. PMID:27610162
NASA Astrophysics Data System (ADS)
Sasaki, Tetsuo; Sakamoto, Tomoaki; Otsuka, Makoto
2018-05-01
Middle molecular weight (MMW) pharmaceuticals (MW 400 4000) are attracting attention for their possible use in new medications. Sharp absorption peaks were observed in MMW pharmaceuticals at low temperatures by measuring with a high-resolution terahertz (THz) spectrometer. As examples, high-resolution THz spectra for amoxicillin trihydrate, atorvastatin calcium trihydrate, probucol, and α,β,γ,δ-tetrakis(1-methylpyridinium-4-yl)porphyrin p-toluenesulfonate (TMPyP) were obtained at 10 K. Typically observed as peaks with full width at half-height (FWHM) values as low as 5.639 GHz at 0.96492 THz in amoxicillin trihydrate and 8.857 GHz at 1.07974 THz for probucol, many sharp peaks of MMW pharmaceuticals could be observed. Such narrow absorption peaks enable evaluation of the crystal quality of MMW pharmaceuticals and afford sensitive detection of impurities.
Sadiq, Rakhshinda; Khan, Qaiser Mahmood; Mobeen, Ameena; Hashmat, Amer Jamal
2015-04-01
Metallic nanoparticles (NPs) have a variety of applications in different industries including pharmaceutical industry where these NPs are used mainly for image analysis and drug delivery. The increasing interest in nanotechnology is largely associated with undefined risks to the human health and to the environment. Therefore, in the present study cytotoxic and genotoxic effects of iron oxide, aluminium oxide and copper nanoparticles were evaluated using most commonly used assays i.e. Ames assay, in vitro cytotoxicity assay, micronucleus assay and comet assay. Cytotoxicity to bacterial cells was assessed in terms of colony forming units by using Escherichia coli (gram negative) and Bacillus subtilis (gram positive). Ames assay was carried out using two bacterial strains of Salmonella typhimurium TA98 and TA100. Genotoxicity of these NPs was evaluated following exposure to monkey kidney cell line, CHS-20. No cytotoxic and genotoxic effects were observed for iron oxide, and aluminium oxide NPs. Copper NPs were found mutagenic in TA98 and in TA100 and also found cytotoxic in dose dependent manner. Copper NPs induced significant (p < 0.01) increase in number of binucleated cells with micronuclei (96.6 ± 5.40) at the highest concentration (25 µg/mL). Copper NPs also induced DNA strand breaks at 10 µg/mL and oxidative DNA damage at 5 and 10 µg/mL. We consider these findings very useful in evaluating the genotoxic potential of NPs especially because of their increasing applications in human health and environment with limited knowledge of their toxicity and genotoxicity.
Using chromatogram averaging to improve quantitation of minor impurities.
Zawatzky, Kerstin; Lin, Mingxiang; Schafer, Wes; Mao, Bing; Trapp, Oliver; Welch, Christopher J
2016-09-23
Averaging of chromatograms can lead to enhancement of signal to noise ratio (S/N) in proportion to the square root of the number of measurements. Although the general principle has been known for decades, chromatogram averaging is almost never used in current pharmaceutical research. In this study we explore the utility of this approach, showing it to be a simple and easily accessible method for boosting sensitivity for quantification of minor components and trace impurities, where current techniques deliver insufficient S/N. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radi, Zaher, E-mail: zaher.radi@pfizer.com; Bartholomew, Phillip, E-mail: phillip.m.bartholomew@pfizer.com; Elwell, Michael, E-mail: michael.elwell@covance.com
In humans, hibernoma is a very rare, benign neoplasm of brown adipose tissue (BAT) that typically occurs at subcutaneous locations and is successfully treated by surgical excision. No single cause has been accepted to explain these very rare human tumors. In contrast, spontaneous hibernoma in rats is rare, often malignant, usually occurs in the thoracic or abdominal cavity, and metastases are common. In recent years, there has been an increased incidence of spontaneous hibernomas in rat carcinogenicity studies, but overall the occurrence remains relatively low and highly variable across studies. There have only been four reported examples of pharmaceutical-induced hibernomamore » in rat carcinogenicity studies. These include phentolamine, an alpha-adrenergic antagonist; varenicline, a nicotine partial agonist; tofacitinib, a Janus kinase (JAK) inhibitor; and hydromorphone, an opiod analgesic. Potential non-genotoxic mechanisms that may contribute to the pathogenesis of BAT activation/proliferation and/or subsequent hibernoma development in rats include: (1) physiological stimuli, (2) sympathetic stimulation, (3) peroxisome proliferator-activated receptor (PPAR) agonism, and/or (4) interference or inhibition of JAK/Signal Transducer and Activator of Transcription (JAK/STAT) signaling. The evaluation of an apparent increase of hibernoma in rats from 2-year carcinogenicity studies of novel pharmaceutical therapeutics and its relevance to human safety risk assessment is complex. One should consider: the genotoxicity of the test article, dose/exposure and safety margins, and pathophysiologic and morphologic differences and similarities of hibernoma between rats and humans. Hibernomas observed to date in carcinogenicity studies of pharmaceutical agents do not appear to be relevant for human risk at therapeutic dosages. - Highlights: • Highly variable incidence of spontaneous hibernoma in carcinogenicity studies • Recent increase in the spontaneous incidence of hibernomas in Sprague–Dawley rats • Pharmaceutical-related hibernoma has been observed in rats, but not in humans. • Pathophysiologic and morphologic differences of hibernoma between rats and 7 humans. • Hibernomas are unlikely to be relevant to human risk assessment.« less
Han, Stanislaw; Karlowicz-Bodalska, Katarzyna; Ozimek, Lukasz
2013-01-01
In the course of research and development of a new pharmaceutical formulation of azelaic acid in the liposomal form, we developed a rapid and accurate method for the detection of impurities using high-performance liquid chromatography. A chromatographic column from Merck (Purospher Star RP C18, 250–4 mm (5 μm) was used in the assay, and the mobile phase gradient consisted of three phases: A—methanol : water (5 : 95) + 1.5% (v/v) acetic acid; B—water : methanol (5 : 95) + 1.5% (v/v) acetic acid; and C—chloroform. Detection of the impurities and the active substance was performed by an evaporative light-scattering detector. The method was validated for selectivity, system precision, method precision, limit of detection, and response rates. The proposed method can be used to detect impurities in the liposomal formulation of azelaic acid. The method enables separation of azelaic acid from the identified and unidentified impurities and from the excipients used in the drug form. PMID:24228008
Han, Stanislaw; Karlowicz-Bodalska, Katarzyna; Szura, Dorota; Ozimek, Lukasz; Musial, Witold
2013-01-01
In the course of research and development of a new pharmaceutical formulation of azelaic acid in the liposomal form, we developed a rapid and accurate method for the detection of impurities using high-performance liquid chromatography. A chromatographic column from Merck (Purospher Star RP C18, 250-4 mm (5 μm) was used in the assay, and the mobile phase gradient consisted of three phases: A--methanol : water (5 : 95) + 1.5% (v/v) acetic acid; B--water : methanol (5 : 95) + 1.5% (v/v) acetic acid; and C--chloroform. Detection of the impurities and the active substance was performed by an evaporative light-scattering detector. The method was validated for selectivity, system precision, method precision, limit of detection, and response rates. The proposed method can be used to detect impurities in the liposomal formulation of azelaic acid. The method enables separation of azelaic acid from the identified and unidentified impurities and from the excipients used in the drug form.
Bolognesi, Claudia; Castoldi, Anna F; Crebelli, Riccardo; Barthélémy, Eric; Maurici, Daniela; Wölfle, Detlef; Volk, Katharina; Castle, Laurence
2017-06-01
Food contact materials are all materials and articles intended to come directly or indirectly into contact with food. Before being included in the positive European "Union list" of authorized substances (monomers, other starting substances and additives) for plastic food contact materials, the European Food Safety Authority (EFSA) must assess their safety "in use". If relevant for risk, the safety of the main impurities, reaction and degradation products originating from the manufacturing process is also evaluated. Information on genotoxicity is always required irrespective of the extent of migration and the resulting human exposure, in view of the theoretical lack of threshold for genotoxic events. The 2008 EFSA approach, requiring the testing of food contact materials in three in vitro mutagenicity tests, though still acceptable, is now superseded by the 2011 EFSA Scientific Committee's recommendation for only two complementary tests including a bacterial gene mutation test and an in vitro micronucleus test, to detect two main genetic endpoints (i.e., gene mutations and chromosome aberrations). Follow-up of in vitro positive results depends on the type of genetic effect and on the substance's systemic availability. In this study, we provide an analysis of the data on genotoxicity testing gathered by EFSA on food contact materials for the period 1992-2015. We also illustrate practical examples of the approaches that EFSA took when evaluating "non standard" food contact chemicals (e.g., polymeric additives, oligomer or other reaction mixtures, and nanosubstances). Additionally, EFSA's experience gained from using non testing methods and/or future possibilities in this area are discussed. Environ. Mol. Mutagen. 58:361-374, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Bengtson, Stefan; Kling, Kirsten; Madsen, Anne Mette; Noergaard, Asger W.; Jacobsen, Nicklas Raun; Clausen, Per Axel; Alonso, Beatriz; Pesquera, Amaia; Zurutuza, Amaia; Ramos, Raphael; Okuno, Hanako; Dijon, Jean; Wallin, Håkan
2016-01-01
Graphene and graphene oxide receive much attention these years, because they add attractive properties to a wide range of applications and products. Several studies have shown toxicological effects of other carbon‐based nanomaterials such as carbon black nanoparticles and carbon nanotubes in vitro and in vivo. Here, we report in‐depth physicochemical characterization of three commercial graphene materials, one graphene oxide (GO) and two reduced graphene oxides (rGO) and assess cytotoxicity and genotoxicity in the murine lung epithelial cell line FE1. The studied GO and rGO mainly consisted of 2–3 graphene layers with lateral sizes of 1–2 µm. GO had almost equimolar content of C, O, and H while the two rGO materials had lower contents of oxygen with C/O and C/H ratios of 8 and 12.8, respectively. All materials had low levels of endotoxin and low levels of inorganic impurities, which were mainly sulphur, manganese, and silicon. GO generated more ROS than the two rGO materials, but none of the graphene materials influenced cytotoxicity in terms of cell viability and cell proliferation after 24 hr. Furthermore, no genotoxicity was observed using the alkaline comet assay following 3 or 24 hr of exposure. We demonstrate that chemically pure, few‐layered GO and rGO with comparable lateral size (> 1 µm) do not induce significant cytotoxicity or genotoxicity in FE1 cells at relatively high doses (5–200 µg/ml). Environ. Mol. Mutagen. 57:469–482, 2016. © 2016 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc. PMID:27189646
Agut, Christophe; Segalini, Audrey; Bauer, Michel; Boccardi, Giovanni
2006-05-03
The rounding of an analytical result is a process that should take into account the uncertainty of the result, which is in turn assessed during the validation exercise. Rounding rules are known in physical and analytical chemistry since a long time, but are often not used or misused in pharmaceutical analysis. The paper describes the theoretical background of the most common rules and their application to fix the rounding of results and specifications. The paper makes use of uncertainty values of impurity determination acquired during studies of reproducibility and intermediate precision with regards to 22 impurities of drug substances or drug products. As a general rule, authors propose the use of sound and well-established rounding rules to derive rounding from the results of the validation package.
Kotnik, Kristina; Kosjek, Tina; Žegura, Bojana; Filipič, Metka; Heath, Ester
2016-03-01
This study investigates the environmental fate of eight benzophenone derivatives (the pharmaceutical ketoprofen, its phototransformation products 3-ethylbenzophenone and 3-acetylbenzophenone, and five benzophenone-type UV filters) by evaluating their photolytic behaviour. In addition, the genotoxicity of these compounds and the produced photodegradation mixtures was studied. Laboratory-scale irradiation experiments using a medium pressure UV lamp revealed that photodegradation of benzophenones follows pseudo-first-order kinetics. Ketoprofen was the most photolabile (t1/2 = 0.8 min), while UV filters were more resistant to UV light with t1/2 between 17 and 99 h. The compounds were also exposed to irradiation by natural sunlight and showed similar photostability as predicted under laboratory conditions. Solar photodegradation experiments were performed in distilled water, lake and seawater, and revealed that photosensitizers present in natural waters significantly affect the photolytic behaviour of the investigated compounds. In this case, the presence of lake water resulted in accelerated photodecomposition, while seawater showed different effects on photodegradation, depending on a compound. Further, it was shown that the transformation products of ketoprofen 3-ethylbenzophenone and 3-acetylbenzophenone were formed under environmental conditions when ketoprofen was exposed to natural sunlight. Genotoxicity testing of parent benzophenone compounds using the SOS/umuC assay revealed that UV filters exhibited weak genotoxic activity in the presence of a metabolic activation system, however the concentrations tested were much higher than found in the environment (≥125 μg mL(-1)). After irradiation of benzophenones, the produced photodegradation mixtures showed that, with the exception of benzophenone that exhibited weak genotoxic activity, all the other compounds tested did not elicit any activity when exposed to UV light. Copyright © 2015 Elsevier Ltd. All rights reserved.
In vitro and in vivo genotoxicity assessment of HI-6 dimethanesulfonate/oxime.
Nakab, Lauren; Bardot, Isabelle; Bardot, Sébastien; Simar, Sophie; Marzin, Daniel; Nesslany, Fabrice
2014-03-01
Organophosphate compounds, which induce organophosphate poisoning, were originally used as pesticides. But this type of product has also been used as warfare nerve agent like sarin, soman, Russian VX, or tabun. HI-6-dimethanesulfonate is a salt of the oxime HI-6 used in the treatment of nerve-agent poisoning. It is known to be the best re-activator component of inactivated acetyl cholinesterase. HI-6-dimethanesulfonate has shown a higher level of solubility with similar potency to reactivate acetyl cholinesterase and a similar pharmacokinetics profile compared with HI-6 dichloride. HI-6 dimethanesulfonate was tested for its mutagenic and genotoxic potential by use of the standard ICH S2R (1) battery for the evaluation of pharmaceuticals. HI-6-dimethanesulfonate was mutagenic in the Ames test only in the presence of metabolic activation. In the mutation assay at the Tk locus in L5178Y mouse-lymphoma cells, HI-6-dimethanesulfonate showed mutagenic activity both with and without metabolic activation, with a significant increase in small colonies. The effects were in favour of a clastogenic activity. It was concluded that the compound was mutagenic and possibly clastogenic in vitro. In contrast, the in vivo micronucleus test in rat bone-marrow did not demonstrate any genotoxic activity and the Comet assay performed in rat liver did not show any statistically or biologically significant increases in DNA strand-breaks. The results of both in vivo studies performed on two different organs with two endpoints are sufficient to conclude the absence of a genotoxic hazard in vivo and to consider that there is no genotoxic concern in humans for HI-6-dimethanesulfonate. Copyright © 2014 Elsevier B.V. All rights reserved.
An Experimental Design Approach for Impurity Profiling of Valacyclovir-Related Products by RP-HPLC
Katakam, Prakash; Dey, Baishakhi; Hwisa, Nagiat T; Assaleh, Fathi H; Chandu, Babu R; Singla, Rajeev K; Mitra, Analava
2014-01-01
Abstract Impurity profiling has become an important phase of pharmaceutical research where both spectroscopic and chromatographic methods find applications. The analytical methodology needs to be very sensitive, specific, and precise which will separate and determine the impurity of interest at the 0.1% level. Current research reports a validated RP-HPLC method to detect and separate valacyclovir-related impurities (Imp-E and Imp-G) using the Box-Behnken design approach of response surface methodology. A gradient mobile phase (buffer: acetonitrile as mobile phase A and acetonitrile: methanol as mobile phase B) was used. Linearity was found in the concentration range of 50–150 μg/mL. The mean recovery of impurities was 99.9% and 103.2%, respectively. The %RSD for the peak areas of Imp-E and Imp-G were 0.9 and 0.1, respectively. No blank interferences at the retention times of the impurities suggest the specificity of the method. The LOD values were 0.0024 μg/mL for Imp-E and 0.04 μg/mL for Imp-G and the LOQ values were obtained as 0.0082 μg/mL and 0.136 μg/mL, respectively, for the impurities. The S/N ratios in both cases were within the specification limits. Proper peak shapes and satisfactory resolution with good retention times suggested the suitability of the method for impurity profiling of valacyclovir-related drug substances. PMID:25853072
Garay, Hilda; Espinosa, Luis Ariel; Perera, Yasser; Sánchez, Aniel; Diago, David; Perea, Silvio E; Besada, Vladimir; Reyes, Osvaldo; González, Luis Javier
2018-04-20
CIGB-300 is a first-in-class synthetic peptide-based drug of 25 amino acids currently undergoing clinical trials in cancer patients. It contains an amidated disulfide cyclic undecapeptide fused to the TAT cell-penetrating peptide through a beta-alanine spacer. CIGB-300 inhibits the CK2-mediated phosphorylation leading to apoptosis of tumor cells in vitro, and in vivo in cancer patients. Despite the clinical development of CIGB-300, the characterization of peptide-related impurities present in the active pharmaceutical ingredient has not been reported earlier. In the decision tree of ICHQ3A(R2) guidelines, the daily doses intake, the abundance, and the identity of the peptide-related species are pivotal nodes that define actions to be taken (reporting, identification, and qualification). For this, purity was first assessed by reverse-phase chromatography (>97%) and low-abundance impurities (≤0.27%) were collected and identified by mass spectrometry. Most of the impurities were generated during peptide synthesis, the spontaneous air oxidation of the reduced peptide, and the lyophilization step. The most abundant impurity, with no biological activity, was the full-length peptide containing Met 17 transformed into a sulfoxide residue. Interestingly, parallel and antiparallel dimers of CIGB-300 linked by 2 intermolecular disulfide bonds exhibited a higher antiproliferative activity than the CIGB-300 monomer. Likewise, very low abundance trimers and tetramers of CIGB-300 linked by disulfide bonds (≤0.01%) were also detected. Here we describe for the first time the presence of active dimeric species whose feasibility as novel CIGB-300 derived entities merits further investigation. Copyright © 2018 European Peptide Society and John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kumar, Mukesh; Chatterjee, Amarnath; Khedkar, Anand P.; Kusumanchi, Mutyalasetty; Adhikary, Laxmi
2013-02-01
Formation of cyclic intermediates involving water or ammonia loss is a common occurrence in any reaction involving terminal amines or hydroxyl group containing species. Proteins that have both these functional groups in abundance are no exception, and presence of amino acids such as asparagine, glutamines, aspartic acids, and glutamic acids aid in formation of such intermediates. In the biopharma scenario, such intermediates lead to product- or process-related impurities that might be immunogenic. Mass spectroscopy is a powerful technique that is used to decipher the presence and physicochemical characteristics of such impurities. However, such intermediates can also form in situ during mass spectrometric analysis. We present here the detection of in-source and in-solution formation of succinimide and pyroglutamate in the protein granulocyte colony stimulating factor. We also propose an approach for quick differentiation of such in-situ species from the tangible impurities. We believe that this will not only reduce the time spent in unambiguous identification of succinimide- and/or pyroglutamate-related impurity in bio-pharmaceutics but also provide a platform for similar studies on other impurities that may form due to stabilized intermediates.
Drug residues and endocrine disruptors in drinking water: risk for humans?
Touraud, Evelyne; Roig, Benoit; Sumpter, John P; Coetsier, Clémence
2011-11-01
The presence of pharmaceuticals and endocrine disruptors in the environment raises many questions about risk to the environment and human health. Environmental exposure has been largely studied, providing to date a realistic picture of the degree of contamination of the environment by pharmaceuticals and hormones. Conversely, little information is available regarding human exposure. NSAIDS, carbamazepine, iodinated contrast media, β-blockers, antibiotics have been detected in drinking water, mostly in the range of ng/L. it is questioned if such concentrations may affect human health. Currently, no consensus among the scientific community exists on what risk, if any, pharmaceuticals and endocrine disruptors pose to human health. Future European research will focus, on one hand, on genotoxic and cytotoxic anti-cancer drugs and, on the other hand, on the induction of genetic resistance by antibiotics. This review does not aim to give a comprehensive overview of human health risk of drug residues and endocrine disruptors in drinking water but rather highlight important topics of discussion. Copyright © 2011. Published by Elsevier GmbH.
Pluhácek, T; Hanzal, J; Hendrych, J; Milde, D
2016-04-01
The monitoring of inorganic impurities in active pharmaceutical ingredients plays a crucial role in the quality control of the pharmaceutical production. The heavy metals and residue on ignition/sulfated ash methods employing microwave-assisted digestion with concentrated nitric acid have been demonstrated as alternatives to inappropriate compendial methods recommended in United States Pharmacopoeia (USP) and European Pharmacopoeia (Ph. Eur.). The recoveries using the heavy metals method ranged between 89% and 122% for nearly all USP and Ph. Eur. restricted elements as well as the recoveries of sodium sulfate spikes were around 100% in all tested matrices. The proposed microwave-assisted digestion method allowed simultaneous decomposition of 15 different active pharmaceutical ingredients with sample weigh up to 1 g. The heavy metals and sulfated ash procedures were successfully applied to the determination of heavy metals and residue on ignition/sulfated ash content in mycophenolate mofetil, nicergoline and silymarin.
Mustonen, Enni-Kaisa; Palomäki, Tiina; Pasanen, Markku
2017-11-01
Antisense oligonucleotides, short interfering RNAs (siRNAs) and aptamers are oligonucleotide-based pharmaceuticals with a promising role in targeted therapies. Currently, five oligonucleotide-based pharmaceuticals have achieved marketing authorization in Europe or USA and many more are undergoing clinical testing. However, several safety concerns have been raised in non-clinical and clinical studies. Oligonucleotides share properties with both chemical and biological pharmaceuticals and therefore they pose challenges also from the regulatory point of view. We have analyzed the safety data of oligonucleotides and evaluated the applicability of current non-clinical toxicological guidelines for assessing the safety of oligonucleotide-based pharmaceuticals. Oligonucleotide-based pharmaceuticals display a similar toxicological profile, exerting adverse effects on liver and kidney, evoking hematological alterations, as well as causing immunostimulation and prolonging the coagulation time. It is possible to extrapolate some of these effects from non-clinical studies to humans. However, evaluation strategies for genotoxicity testing of "non-natural" oligonucleotides should be revised. Additionally, the selective use of surrogates and prediction of clinical endpoints for non-clinically observed immunostimulation is complicated by its multiple potential manifestations, demanding improvements in the testing strategies. Utilizing more relevant and mechanistic-based approaches and taking better account of species differences, could possibly improve the prediction of relevant immunological/proinflammatory effects in humans. Copyright © 2017 Elsevier Inc. All rights reserved.
Kumar, Namala Durga Atchuta; Babu, K. Sudhakar; Gosada, Ullas; Sharma, Nitish
2012-01-01
Introduction: A selective, specific, and sensitive “Ultra High-Pressure Liquid Chromatography” (UPLC) method was developed for determination of candesartan cilexetil impurities as well asits degradent in tablet formulation. Materials and Methods: The chromatographic separation was performed on Waters Acquity UPLC system and BEH Shield RP18 column using gradient elution of mobile phase A and B. 0.01 M phosphate buffer adjusted pH 3.0 with Orthophosphoric acid was used as mobile phase A and 95% acetonitrile with 5% Milli Q Water was used as mobile phase B. Ultraviolet (UV) detection was performed at 254 nm and 210 nm, where (CDS-6), (CDS-5), (CDS-7), (Ethyl Candesartan), (Desethyl CCX), (N-Ethyl), (CCX-1), (1 N Ethyl Oxo CCX), (2 N Ethyl Oxo CCX), (2 N Ethyl) and any unknown impurity were monitored at 254 nm wavelength, and two process-related impurities, trityl alcohol and MTE impurity, were estimated at 210 nm. Candesartan cilexetil andimpurities were chromatographed with a total run time of 20 min. Results: Calibration showed that the response of impurity was a linear function of concentration over the range limit of quantification to 2 μg/mL (r2≥0.999) and the method was validated over this range for precision, intermediate precision, accuracy, linearity, and specificity. For the precision study, percentage relative standard deviation of each impurity was <15% (n=6). Conclusion: The method was found to be precise, accurate, linear, and specific. The proposed method was successfully employed for estimation of candesartan cilexetil impurities in pharmaceutical preparations. PMID:23781475
Effect of ethylenediamine on chemical degradation of insulin aspart in pharmaceutical solutions.
Poulsen, Christian; Jacobsen, Dorte; Palm, Lisbeth
2008-11-01
To examine the effect of different amine compounds on the chemical degradation of insulin aspart at pharmaceutical formulation conditions. Insulin aspart preparations containing amine compounds or phosphate (reference) were prepared and the chemical degradation was assessed following storage at 37 degrees C using chromatographic techniques. Ethylenediamine was examined at multiple concentrations and the resulting insulin-ethylenediamine derivates were structurally characterized using matrix assisted laser desorption ionization time-of-flight mass spectroscopy. The effects on ethylenediamine when omitting glycerol or phenolic compounds from the formulations were investigated. Ethylenediamine was superior in terms of reducing formation of high molecular weight protein and insulin aspart related impurities compared to the other amine compounds and phosphate. Monotransamidation of insulin aspart in the presence of ethylenediamine was observed at all of the six possible Asn/Gln residues with Asn(A21) having the highest propensity to react with ethylenediamine. Data from formulations studies suggests a dual mechanism of ethylenediamine and a mandatory presence of phenolic compounds to obtain the effect. The formation of high molecular weight protein and insulin aspart related impurities was reduced by ethylenediamine in a concentration dependant manner.
Chemical fate and genotoxic risk associated with hypochlorite treatment of nicotine.
Zarrelli, Armando; DellaGreca, Marina; Parolisi, Alice; Iesce, Maria Rosaria; Cermola, Flavio; Temussi, Fabio; Isidori, Marina; Lavorgna, Margherita; Passananti, Monica; Previtera, Lucio
2012-06-01
Nicotine, the main alkaloid of tobacco, is a non- prescription drug to which all members of a tobacco-smoking society are exposed either through direct smoke inhalation or through second-hand passive 'smoking'. Nicotine is also commercially available in some pharmaceutical products and is used worldwide as a botanical insecticide in agriculture. Nicotine dynamics in indoor and outdoor environments as well as the human excretions and the manufacturing process are responsible for its entry in the environment through municipal and industrial wastewater discharges. The presence of nicotine in surface and ground waters points out that it survives a conventional treatment process and persists in potable-water supplies. Complete removal of nicotine is instead reported when additional chlorination steps are used. In this paper a simulation of STP chlorination of nicotine and a genotoxic evaluation of its main degradation products are reported. Under laboratory conditions removal of nicotine seems not to be due to mineralization but to transformation in oxidized and chlorinated products. The by-products have been isolated after fractionation by diverse chromatographic procedures and their structures determined using mass spectrometry and (1)H and (13)C NMR spectroscopy. Preliminary genotoxic SOS Chromotests with Escherichia coli PQ37 evidence no toxicity of the products. Copyright © 2012 Elsevier B.V. All rights reserved.
Genetic Toxicology in the 21st Century: Reflections and Future Directions
Mahadevan, Brinda; Snyder, Ronald D.; Waters, Michael D.; Benz, R. Daniel; Kemper, Raymond A.; Tice, Raymond R.; Richard, Ann M.
2011-01-01
A symposium at the 40th anniversary of the Environmental Mutagen Society, held from October 24–28, 2009 in St. Louis, MO, surveyed the current status and future directions of genetic toxicology. This article summarizes the presentations and provides a perspective on the future. An abbreviated history is presented, highlighting the current standard battery of genotoxicity assays and persistent challenges. Application of computational toxicology to safety testing within a regulatory setting is discussed as a means for reducing the need for animal testing and human clinical trials, and current approaches and applications of in silico genotoxicity screening approaches across the pharmaceutical industry were surveyed and are reported here. The expanded use of toxicogenomics to illuminate mechanisms and bridge genotoxicity and carcinogenicity, and new public efforts to use high-throughput screening technologies to address lack of toxicity evaluation for the backlog of thousands of industrial chemicals in the environment are detailed. The Tox21 project involves coordinated efforts of four U.S. Government regulatory/research entities to use new and innovative assays to characterize key steps in toxicity pathways, including genotoxic and nongenotoxic mechanisms for carcinogenesis. Progress to date, highlighting preliminary test results from the National Toxicology Program is summarized. Finally, an overview is presented of ToxCast™, a related research program of the U.S. Environmental Protection Agency, using a broad array of high throughput and high content technologies for toxicity profiling of environmental chemicals, and computational toxicology modeling. Progress and challenges, including the pressing need to incorporate metabolic activation capability, are summarized. PMID:21538556
Vojta, Jiří; Jedlička, Aleš; Coufal, Pavel; Janečková, Lucie
2015-05-10
A new rapid stability-indicating UPLC method for separation and determination of impurities in amlodipine besylate, valsartan and hydrochlorothiazide in their combined tablet dosage form was developed. The separation of Ph. Eur. related substances of amlodipine besylate (A, B, D, E, F, G), hydrochlorothiazide (A, B, C), valsartan (B, C), two other valsartan impurities (S)-2-(N-{[2'-cyanobiphenyl-4-yl]methyl}pentanamido)-3-methylbutanoic acid and (S)-3-methyl-2-{[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]methylamino}butanoic acid and several unknown impurities was achieved by reversed phase liquid chromatography with UV detection. The detection wavelengths were set as follows: 225nm for valsartan, its impurities and for the impurity D of amlodipine, 271nm for hydrochlorothiazide and its impurities and 360nm for amlodipine and its impurities except for impurity D. Zorbax Eclipse C8 RRHD (100mm×3.0mm, 1.8μm) was used as a separation column and the analytes were eluted within 11min by a programmed gradient mixture of 0.01M phosphate buffer pH 2.5 and acetonitrile. The method was successfully validated in accordance to the International Conference of Harmonization (ICH) guidelines for amlodipine besylate and its impurity D, valsartan and its impurity C and hydrochlorothiazide and its impurities A, B and C. The triple-combined tablets were exposed to thermal, higher humidity, acid, alkaline, oxidative and photolytic stress conditions. Stressed samples were analyzed by the proposed method. All the significant degradation products and impurities were satisfactory separated from each other and from the principal peaks of drug substances. The peak purity test complied for peaks of amlodipine, valsartan and hydrochlorothiazide in all the stressed samples and indicated no co-elution of degradation products. The method was found to be precise, linear, accurate, sensitive, specific, robust and stability-indicating and could be used as a routine purity test method for amlodipine besylate, valsartan, hydrochlorothiazide and their pharmaceutical combinations. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valencia, Antoni; Prous, Josep; Mora, Oscar
As indicated in ICH M7 draft guidance, in silico predictive tools including statistically-based QSARs and expert analysis may be used as a computational assessment for bacterial mutagenicity for the qualification of impurities in pharmaceuticals. To address this need, we developed and validated a QSAR model to predict Salmonella t. mutagenicity (Ames assay outcome) of pharmaceutical impurities using Prous Institute's Symmetry℠, a new in silico solution for drug discovery and toxicity screening, and the Mold2 molecular descriptor package (FDA/NCTR). Data was sourced from public benchmark databases with known Ames assay mutagenicity outcomes for 7300 chemicals (57% mutagens). Of these data, 90%more » was used to train the model and the remaining 10% was set aside as a holdout set for validation. The model's applicability to drug impurities was tested using a FDA/CDER database of 951 structures, of which 94% were found within the model's applicability domain. The predictive performance of the model is acceptable for supporting regulatory decision-making with 84 ± 1% sensitivity, 81 ± 1% specificity, 83 ± 1% concordance and 79 ± 1% negative predictivity based on internal cross-validation, while the holdout dataset yielded 83% sensitivity, 77% specificity, 80% concordance and 78% negative predictivity. Given the importance of having confidence in negative predictions, an additional external validation of the model was also carried out, using marketed drugs known to be Ames-negative, and obtained 98% coverage and 81% specificity. Additionally, Ames mutagenicity data from FDA/CFSAN was used to create another data set of 1535 chemicals for external validation of the model, yielding 98% coverage, 73% sensitivity, 86% specificity, 81% concordance and 84% negative predictivity. - Highlights: • A new in silico QSAR model to predict Ames mutagenicity is described. • The model is extensively validated with chemicals from the FDA and the public domain. • Validation tests show desirable high sensitivity and high negative predictivity. • The model predicted 14 reportedly difficult to predict drug impurities with accuracy. • The model is suitable to support risk evaluation of potentially mutagenic compounds.« less
Genotoxic alkenylbenzene flavourings, a contribution to risk assessment.
Martins, Célia; Rueff, José; Rodrigues, António S
2018-06-15
Alkenylbenzenes, such as estragole, myristicin and eugenol, are present is several flavourings, functional foods, plant food supplements (PFS) and in complementary and alternative medicines (CAM) including herbal medicines. The increase in consumption in functional foods observed worldwide requires a strict analysis of the scientific validity of their benefits and risk-benefit ratio associated with their intake. Some instances of acute toxicity have been reported associated with the use of herbal medicines and PFS, in particular because quality control is poor, and this poses a risk especially in internet marketed products. In particular, chronic exposure to low levels of these constituents may pose a hazard. However, given the variability in dietary habits, plant properties, plant misidentification or interaction with pharmaceutical drugs or nutrients, the assessment of risk due to the intake of alkenylbenzenes is difficult. We herein review the regulatory status of the most common alkenylbenzenes and their genotoxic activity and potential carcinogenic activity. Copyright © 2018. Published by Elsevier Ltd.
Olvera-Néstor, Corina G; Morales-Avila, Enrique; Gómez-Olivan, Leobardo M; Galár-Martínez, Marcela; García-Medina, Sandra; Neri-Cruz, Nadia
2016-03-01
Hospital wastewater is an important source of emerging contaminants. Recent studies emphasize the importance of assessing the effects of mixtures of contaminants rather than environmental risk of their individual components, as well as the determination of intrinsic toxicity of wastewater. Mixtures of pollutants has possible interactions that have notable environmental side effects. The aim of this study is an attempt to characterize biomarkers in Cyprinus carpio related to the exposure to a complex mixture of contaminants found in hospital wastewater. Results of a particular hospital effluent show the presence of traces of heavy metals, high chlorine concentration and emerging contaminants such as non-steroidal anti-inflammatory drugs. The LC50 was of 5.49 % at 96 h. The cytotoxic, genotoxic and apoptotic biomarkers increase when fishes were exposed to wastewater (1/10 CL50) from hospital wastewater. This study emphasizes the importance of identifying and quantifying the effects of contaminants as pharmaceuticals, disinfectants and surfactants in order to design and implement an ecotoxicological plan.
Nejadnik, M Reza; Randolph, Theodore W; Volkin, David B; Schöneich, Christian; Carpenter, John F; Crommelin, Daan J A; Jiskoot, Wim
2018-04-14
The safety and efficacy of protein pharmaceuticals depend not only on biological activity but also on purity levels. Impurities may be process related because of limitations in manufacturing or product related because of protein degradation occurring throughout the life history of a product. Although the pharmaceutical biotechnology industry has made great progress in improving bulk and drug product manufacturing as well as company-controlled storage and transportation conditions to minimize the level of degradation, there is less control over the many factors that may subsequently affect product quality after the protein pharmaceuticals are released and shipped by the manufacturer. Routine handling or unintentional mishandling of therapeutic protein products may cause protein degradation that remains unnoticed but can potentially compromise the clinical safety and efficacy of the product. In this commentary, we address some potential risks associated with (mis)handling of protein pharmaceuticals after release by the manufacturer. We summarize the environmental stress factors that have been shown to cause protein degradation and that may be encountered during typical handling procedures of protein pharmaceuticals in a hospital setting or during self-administration by patients. Moreover, we provide recommendations for improvements in product handling to help ensure the quality of protein pharmaceuticals during use. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Lemasson, Elise; Bertin, Sophie; West, Caroline
2016-01-01
The interest of pharmaceutical companies for complementary high-performance chromatographic tools to assess a product's purity or enhance this purity is on the rise. The high-throughput capability and economic benefits of supercritical fluid chromatography, but also the "green" aspect of CO2 as the principal solvent, render supercritical fluid chromatography very attractive for a wide range of pharmaceutical applications. The recent reintroduction of new robust instruments dedicated to supercritical fluid chromatography and the progress in stationary phase technology have also greatly benefited supercritical fluid chromatography. Additionally, it was shown several times that supercritical fluid chromatography could be orthogonal to reversed-phase high-performance liquid chromatography and could efficiently compete with it. Supercritical fluid chromatography is an adequate tool for small molecules of pharmaceutical interest: synthetic intermediates, active pharmaceutical ingredients, impurities, or degradation products. In this review, we first discuss about general chromatographic conditions for supercritical fluid chromatography analysis to better suit compounds of pharmaceutical interest. We also discuss about the use of achiral and chiral supercritical fluid chromatography for analytical purposes and the recent applications in these areas. The use of preparative supercritical fluid chromatography by pharmaceutical companies is also covered. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dotterer, Sally K; Forbes, Robert A; Hammill, Cynthia L
2011-04-05
Case studies are presented demonstrating how exposure to traces of transition metals such as copper and/or iron during sample preparation or analysis can impact the accuracy of purity analysis of pharmaceuticals. Some compounds, such as phenols and indoles, react with metals in the presence of oxygen to produce metal-induced oxidative decomposition products. Compounds susceptible to metal-induced decomposition can degrade following preparation for purity analysis leading to falsely high impurity results. Our work has shown even metals at levels below 0.1 ppm can negatively impact susceptible compounds. Falsely low results are also possible when the impurities themselves react with metals and degrade prior to analysis. Traces of metals in the HPLC mobile phase can lead to chromatographic artifacts, affecting the reproducibility of purity results. To understand and mitigate the impact of metal induced decomposition, a proactive strategy is presented. The pharmaceutical would first be tested for reactivity with specific transition metals in the sample solvent/diluents and in the HPLC mobile phase. If found to be reactive, alternative sample diluents and/or mobile phases with less reactive solvents or addition of a metal chelator would be explored. If unsuccessful, glassware cleaning or sample solution refrigeration could be investigated. By employing this strategy during method development, robust purity methods would be delivered to the quality control laboratories, preventing future problems from potential sporadic contamination of glassware with metals. Copyright © 2010 Elsevier B.V. All rights reserved.
Xie, Yiqiao; Zhuang, Zhiquan; Zhang, Shu; Xia, Zihua; Chen, De; Fan, Kaiyan; Ren, Jialin; Lin, CuiCui; Chen, Yanzhong; Yang, Fan
2017-01-01
Purpose The present study examined the factors affecting the content of impurities of nimodipine (NMP) emulsion and the associated methods of compound protection. Methods Destructive testing of NMP emulsion and its active pharmaceutical ingredient (API) were conducted, and ultracentrifugation was used to study the content of impurities in two phases. The impurity of NMP was measured under different potential of hydrogen (pH) conditions, antioxidants and pH-adjusting agents. Results Following destruction, the degradation of NMP notably occurred in the basic environment. The consumption of the pH-adjusting agent NaOH was proportional to the production of impurities since the inorganic base and/or acid promoted the degradation of NMP. The organic antioxidants, notably amino acids with an appropriate length of intermediate chain and electron-donating side group, exhibited improved antioxidant effects compared with inorganic antioxidants. The minimal amount of impurities was produced following addition of 0.04% lysine and 0.06% leucine in the aqueous phase and adjustment of the pH to a range of 7.5–8.0 in the presence of acetic acid solution. Conclusion NMP was more prone to degradation in an oxidative environment, in an aqueous phase and/or in the presence of inorganic pH-adjusting agents and antioxidants. The appropriate antioxidant and pH-adjusting agent should be selected according to the chemical structure, while destructive testing of the drug is considered to play the optimal protective effect. PMID:28490879
Tweats, David; Bourdin Trunz, Bernadette; Torreele, Els
2012-09-01
The parasitic disease human African trypanomiasis (HAT), also known as sleeping sickness, is a highly neglected fatal condition endemic in sub-Saharan Africa, which is poorly treated with medicines that are toxic, no longer effective or very difficult to administer. New, safe, effective and easy-to-use treatments are urgently needed. Many nitroimidazoles possess antibacterial and antiprotozoal activity and examples such as tinidazole are used to treat trichomoniasis and guardiasis, but concerns about toxicity including genotoxicity limit their usefulness. Fexinidazole, a 2-substituted 5-nitroimidazole rediscovered by the Drugs for Neglected Diseases initiative (DNDi) after extensive compound mining of public and pharmaceutical company databases, has the potential to become a short-course, safe and effective oral treatment, curing both acute and chronic HAT. This paper describes the genotoxicity profile of fexinidazole and its two active metabolites, the sulfoxide and sulfone derivatives. All the three compounds are mutagenic in the Salmonella/Ames test; however, mutagenicity is either attenuated or lost in Ames Salmonella strains that lack one or more nitroreductase(s). It is known that these enzymes can nitroreduce compounds with low redox potentials, whereas their mammalian cell counterparts cannot, under normal conditions. Fexinidazole and its metabolites have low redox potentials and all mammalian cell assays to detect genetic toxicity, conducted for this study either in vitro (micronucleus test in human lymphocytes) or in vivo (ex vivo unscheduled DNA synthesis in rats; bone marrow micronucleus test in mice), were negative. Thus, fexinidazole does not pose a genotoxic hazard to patients and represents a promising drug candidate for HAT. Fexinidazole is expected to enter Phase II clinical trials in 2012.
Carvalho-Silva, Ronaldo; Pereira, Alanna Cibelle Fernandes; Dos Santos Alves, Rúbens Prince; Guecheva, Temenouga N; Henriques, João A P; Brendel, Martin; Pungartnik, Cristina; Rios-Santos, Fabrício
2016-01-01
Garcinia mangostana, popularly known as "mangosteen fruit," originates from Southeast Asia and came to Brazil about 80 years ago where it mainly grows in the states of Pará and Bahia. Although mangosteen or its extracts have been used for ages in Asian folk medicine, data on its potential genotoxicity is missing. We, therefore, evaluated genotoxicity/mutagenicity of hydroethanolic mangosteen extract [HEGM, 10 to 640 μg/mL] in established test assays (Comet assay, micronucleus test, and Salmonella/microsome test). In the Comet assay, HEGM-exposed human leukocytes showed no DNA damage. No significant HEGM-induced mutation in TA98 and TA100 strains of Salmonella typhimurium (with or without metabolic activation) was observed and HEGM-exposed human lymphocytes had no increase of micronuclei. However, HEGM suggested exposure concentration-dependent antigenotoxic potential in leukocytes and antioxidant potential in the yeast Saccharomyces cerevisiae. HEGM preloading effectively protected against H2O2-induced DNA damage in leukocytes (Comet assay). Preloading of yeast with HEGM for up to 4 h significantly protected the cells from lethality of chronic H2O2-exposure, as expressed in better survival. Absence of genotoxicity and demonstration of an antigenotoxic and antioxidant potential suggest that HEGM or some substances contained in it may hold promise for pharmaceutical or nutraceutical application.
Carvalho-Silva, Ronaldo; Pereira, Alanna Cibelle Fernandes; dos Santos Alves, Rúbens Prince; Guecheva, Temenouga N.; Henriques, João A. P.; Brendel, Martin; Rios-Santos, Fabrício
2016-01-01
Garcinia mangostana, popularly known as “mangosteen fruit,” originates from Southeast Asia and came to Brazil about 80 years ago where it mainly grows in the states of Pará and Bahia. Although mangosteen or its extracts have been used for ages in Asian folk medicine, data on its potential genotoxicity is missing. We, therefore, evaluated genotoxicity/mutagenicity of hydroethanolic mangosteen extract [HEGM, 10 to 640 μg/mL] in established test assays (Comet assay, micronucleus test, and Salmonella/microsome test). In the Comet assay, HEGM-exposed human leukocytes showed no DNA damage. No significant HEGM-induced mutation in TA98 and TA100 strains of Salmonella typhimurium (with or without metabolic activation) was observed and HEGM-exposed human lymphocytes had no increase of micronuclei. However, HEGM suggested exposure concentration-dependent antigenotoxic potential in leukocytes and antioxidant potential in the yeast Saccharomyces cerevisiae. HEGM preloading effectively protected against H2O2-induced DNA damage in leukocytes (Comet assay). Preloading of yeast with HEGM for up to 4 h significantly protected the cells from lethality of chronic H2O2-exposure, as expressed in better survival. Absence of genotoxicity and demonstration of an antigenotoxic and antioxidant potential suggest that HEGM or some substances contained in it may hold promise for pharmaceutical or nutraceutical application. PMID:27042187
Li, Juan; Jiang, Yue; Fan, Qi; Chen, Yang; Wu, Ruanqi
2014-05-05
This paper establishes a high-throughput and high selective method to determine the impurity named oxidized glutathione (GSSG) and radial tensile strength (RTS) of reduced glutathione (GSH) tablets based on near infrared (NIR) spectroscopy and partial least squares (PLS). In order to build and evaluate the calibration models, the NIR diffuse reflectance spectra (DRS) and transmittance spectra (TS) for 330 GSH tablets were accurately measured by using the optimized parameter values. For analyzing GSSG or RTS of GSH tablets, the NIR-DRS or NIR-TS were selected, subdivided reasonably into calibration and prediction sets, and processed appropriately with chemometric techniques. After selecting spectral sub-ranges and neglecting spectrum outliers, the PLS calibration models were built and the factor numbers were optimized. Then, the PLS models were evaluated by the root mean square errors of calibration (RMSEC), cross-validation (RMSECV) and prediction (RMSEP), and by the correlation coefficients of calibration (R(c)) and prediction (R(p)). The results indicate that the proposed models have good performances. It is thus clear that the NIR-PLS can simultaneously, selectively, nondestructively and rapidly analyze the GSSG and RTS of GSH tablets, although the contents of GSSG impurity were quite low while those of GSH active pharmaceutical ingredient (API) quite high. This strategy can be an important complement to the common NIR methods used in the on-line analysis of API in pharmaceutical preparations. And this work expands the NIR applications in the high-throughput and extraordinarily selective analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Yang, Xiaojing; Xiong, Xuewu; Cao, Ji; Luan, Baolei; Liu, Yongjun; Liu, Guozhu; Zhang, Lei
2015-01-30
Matrix interference, which can lead to false positive/negative results, contamination of injector or separation column, incompatibility between sample solution and the selected analytical instrument, and response inhibition or even quenching, is commonly suffered for the analysis of trace level toxic impurities in drug substance. In this study, a simple matrix precipitation strategy is proposed to eliminate or minimize the above stated matrix interference problems. Generally, a sample of active pharmaceutical ingredients (APIs) is dissolved in an appropriate solvent to achieve the desired high concentration and then an anti-solvent is added to precipitate the matrix substance. As a result, the target analyte is extracted into the mixed solution with very less residual of APIs. This strategy has the characteristics of simple manipulation, high recovery and excellent anti-interference capability. It was found that the precipitation ratio (R, representing the ability to remove matrix substance) and the proportion of solvent (the one used to dissolve APIs) in final solution (P, affecting R and also affecting the method sensitivity) are two important factors of the precipitation process. The correlation between R and P was investigated by performing precipitation with various APIs in different solvent/anti-solvent systems. After a detailed mathematical reasoning process, P=20% was proved to be an effective and robust condition to perform the precipitation strategy. The precipitation method with P=20% can be used as a general strategy for toxic impurity analysis in APIs. Finally, several typical examples are described in this article, where the challenging matrix interference issues have been resolved successfully. Copyright © 2014 Elsevier B.V. All rights reserved.
Clewell, A; Qureshi, I; Endres, J; Horváth, J; Financsek, I; Neal-Kababick, J; Jade, K; Schauss, A G
2010-06-01
The dietary supplement, 112 Degrees, was formulated with the goal of supporting sexual functioning in men. Due to rampant problems with drug adulteration for this category of products, a comprehensive screening for active pharmaceutical agents, with an emphasis on drugs prescribed for erectile dysfunction such as type 5 phosphodiesterase (PDE-5) inhibitors, and known unapproved PDE-5 drug analogues, was performed along with preclinical toxicology studies prior to the introduction of this product into the marketplace. 112 Degrees was found to be free of all pharmaceutical adulterants tested, and was not mutagenic, clastogenic, or genotoxic as demonstrated by the Ames test, chromosomal aberration assay, and mouse micronucleus assay, respectively. The LD(50) in the 14-day acute oral toxicity study was greater than 5000 mg/kg, the highest dose tested. (c) 2009 Elsevier Inc. All rights reserved.
γ-H2AX as a biomarker for DNA double-strand breaks in ecotoxicology.
Gerić, Marko; Gajski, Goran; Garaj-Vrhovac, Vera
2014-07-01
The visualisation of DNA damage response proteins enables the indirect measurement of DNA damage. Soon after the occurrence of a DNA double-strand break (DSB), the formation of γ-H2AX histone variants is to be expected. This review is focused on the potential use of the γ-H2AX foci assay in assessing the genotoxicity of environmental contaminants including cytostatic pharmaceuticals, since standard methods may not be sensitive enough to detect the damaging effect of low environmental concentrations of such drugs. These compounds are constantly released into the environment, potentially representing a threat to water quality, aquatic organisms, and, ultimately, human health. Our review of the literature revealed that this method could be used in the biomonitoring and risk assessment of aquatic systems affected by wastewater from the production, usage, and disposal of cytostatic pharmaceuticals. Copyright © 2014 Elsevier Inc. All rights reserved.
Concerns about the safety of obesity agents from a manufacturing perspective.
Kanfer, Isadore
2008-07-01
Salt derivatives of active pharmaceutical ingredients (API), such as hydrochloride and mesylate salts, are frequently used during drug product development. Compared with the underivatized API, salt derivatives are often associated with beneficial properties, including improved solubility and better absorption. Although the obesity agent sibutramine was initially approved as the hydrochloride salt, it has also been formulated as a mesylate salt (sibutramine mesylate). In order to qualify as interchangeable, generic products generally must be both pharmaceutically equivalent and bioequivalent to an approved reference product. Because generic versions of hydrochloride salt formulations that have been reformulated as mesylate salts are not pharmaceutically equivalent to the approved reference products, they would not be interchangeable, even if bioequivalent. The safety of APIs and drug products manufactured outside the United States in non-Food and Drug Administration-regulated facilities are of concern, particularly agents that may contain harmful impurities, such as obesity products formulated as mesylate salts.
NASA Astrophysics Data System (ADS)
Castiglione, Steven Louis
As scientific research trends towards trace levels and smaller architectures, the analytical chemist is often faced with the challenge of quantitating said species in a variety of matricies. The challenge is heightened when the analytes prove to be potentially toxic or possess physical or chemical properties that make traditional analytical methods problematic. In such cases, the successful development of an acceptable quantitative method plays a critical role in the ability to further develop the species under study. This is particularly true for pharmaceutical impurities and nanoparticles (NP). The first portion of the research focuses on the development of a part-per-billion level HPLC method for a substituted phenazine-class pharmaceutical impurity. The development of this method was required due to the need for a rapid methodology to quantitatively determine levels of a potentially toxic phenazine moiety in order to ensure patient safety. As the synthetic pathway for the active ingredient was continuously refined to produce progressively lower amounts of the phenazine impurity, the approach for increasingly sensitive quantitative methods was required. The approaches evolved across four discrete methods, each employing a unique scheme for analyte detection. All developed methods were evaluated with regards to accuracy, precision and linear adherence as well as ancillary benefits and detriments -- e.g., one method in this evolution demonstrated the ability to resolve and detect other species from the phenazine class. The second portion of the research focuses on the development of an HPLC method for the quantitative determination of NP size distributions. The current methodology for the determination of NP sizes employs tunneling electron microscopy (TEM), which requires sample drying without particle size alteration and which, in many cases, may prove infeasible due to cost or availability. The feasibility of an HPLC method for NP size characterizations evolved across three methods, each employing a different approach for size resolution. These methods were evaluated primarily for sensitivity, which proved to be a substantial hurdle to further development, but does not appear to deter future research efforts.
Satyanarayana Raju, T; Vishweshwari Kutty, O; Ganesh, V; Yadagiri Swamy, P
2012-08-01
Although a number of methods are available for evaluating Linezolid and its possible impurities, a common method for separation if its potential impurities, degradants and enantiomer in a single method with good efficiency remain unavailable. With the objective of developing an advanced method with shorter runtimes, a simple, precise, accurate stability-indicating LC method was developed for the determination of purity of Linezolid drug substance and drug products in bulk samples and pharmaceutical dosage forms in the presence of its impurities and degradation products. This method is capable of separating all the related substances of Linezolid along with the chiral impurity. This method can also be used for the estimation of assay of Linezolid in drug substance as well as in drug product. The method was developed using Chiralpak IA (250 mm×4.6 mm, 5 μm) column. A mixture of acetonitrile, ethanol, n-butyl amine and trifluoro acetic acid in 96:4:0.10:0.16 (v/v/v/v) ratio was used as a mobile phase. The eluted compounds were monitored at 254 nm. Linezolid was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. The degradation products were well resolved from main peak and its impurities, proving the stability-indicating power of the method. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to specificity, limit of detection, limit of quantification, precision, linearity, accuracy, robustness and system suitability.
Bioanalytical evidence that chemicals in tattoo ink can induce adaptive stress responses.
Neale, Peta A; Stalter, Daniel; Tang, Janet Y M; Escher, Beate I
2015-10-15
Tattooing is becoming increasingly popular, particularly amongst young people. However, tattoo inks contain a complex mixture of chemical impurities that may pose a long-term risk for human health. As a first step towards the risk assessment of these complex mixtures we propose to assess the toxicological hazard potential of tattoo ink chemicals with cell-based bioassays. Targeted modes of toxic action and cellular endpoints included cytotoxicity, genotoxicity and adaptive stress response pathways. The studied tattoo inks, which were extracted with hexane as a proxy for the bioavailable fraction, caused effects in all bioassays, with the red and yellow tattoo inks having the greatest response, particularly inducing genotoxicity and oxidative stress response endpoints. Chemical analysis revealed the presence of polycyclic aromatic hydrocarbons in the tested black tattoo ink at concentrations twice the recommended level. The detected polycyclic aromatic hydrocarbons only explained 0.06% of the oxidative stress response of the black tattoo ink, thus the majority of the effect was caused by unidentified components. The study indicates that currently available tattoo inks contain components that induce adaptive stress response pathways, but to evaluate the risk to human health further work is required to understand the toxicokinetics of tattoo ink chemicals in the body. Copyright © 2015 Elsevier B.V. All rights reserved.
Madureira, Ana Raquel; Nunes, Sara; Campos, Débora A; Fernandes, João C; Marques, Cláudia; Zuzarte, Monica; Gullón, Beatriz; Rodríguez-Alcalá, Luís M; Calhau, Conceição; Sarmento, Bruno; Gomes, Ana Maria; Pintado, Maria Manuela; Reis, Flávio
2016-01-01
Rosmarinic acid (RA) possesses several protective bioactivities that have attracted increasing interest by nutraceutical/pharmaceutical industries. Considering the reduced bioavailability after oral use, effective (and safe) delivery systems are crucial to protect RA from gastrointestinal degradation. This study aims to characterize the safety profile of solid lipid nanoparticles produced with Witepsol and Carnauba waxes and loaded with RA, using in vitro and in vivo approaches, focused on genotoxicity and cytotoxicity assays, redox status markers, hematological and biochemical profile, liver and kidney function, gut bacterial microbiota, and fecal fatty acids composition. Free RA and sage extract, empty nanoparticles, or nanoparticles loaded with RA or sage extract (0.15 and 1.5 mg/mL) were evaluated for cell (lymphocytes) viability, necrosis and apoptosis, and antioxidant/prooxidant effects upon DNA. Wistar rats were orally treated for 14 days with vehicle (control) and with Witepsol or Carnauba nanoparticles loaded with RA at 1 and 10 mg/kg body weight/d. Blood, urine, feces, and several tissues were collected for analysis. Free and loaded RA, at 0.15 mg/mL, presented a safe profile, while genotoxic potential was found for the higher dose (1.5 mg/mL), mainly by necrosis. Our data suggest that both types of nanoparticles are safe when loaded with moderate concentrations of RA, without in vitro genotoxicity and cytotoxicity and with an in vivo safety profile in rats orally treated, thus opening new avenues for use in nutraceutical applications.
Madureira, Ana Raquel; Nunes, Sara; Campos, Débora A; Fernandes, João C; Marques, Cláudia; Zuzarte, Monica; Gullón, Beatriz; Rodríguez-Alcalá, Luís M; Calhau, Conceição; Sarmento, Bruno; Gomes, Ana Maria; Pintado, Maria Manuela; Reis, Flávio
2016-01-01
Rosmarinic acid (RA) possesses several protective bioactivities that have attracted increasing interest by nutraceutical/pharmaceutical industries. Considering the reduced bioavailability after oral use, effective (and safe) delivery systems are crucial to protect RA from gastrointestinal degradation. This study aims to characterize the safety profile of solid lipid nanoparticles produced with Witepsol and Carnauba waxes and loaded with RA, using in vitro and in vivo approaches, focused on genotoxicity and cytotoxicity assays, redox status markers, hematological and biochemical profile, liver and kidney function, gut bacterial microbiota, and fecal fatty acids composition. Free RA and sage extract, empty nanoparticles, or nanoparticles loaded with RA or sage extract (0.15 and 1.5 mg/mL) were evaluated for cell (lymphocytes) viability, necrosis and apoptosis, and antioxidant/prooxidant effects upon DNA. Wistar rats were orally treated for 14 days with vehicle (control) and with Witepsol or Carnauba nanoparticles loaded with RA at 1 and 10 mg/kg body weight/d. Blood, urine, feces, and several tissues were collected for analysis. Free and loaded RA, at 0.15 mg/mL, presented a safe profile, while genotoxic potential was found for the higher dose (1.5 mg/mL), mainly by necrosis. Our data suggest that both types of nanoparticles are safe when loaded with moderate concentrations of RA, without in vitro genotoxicity and cytotoxicity and with an in vivo safety profile in rats orally treated, thus opening new avenues for use in nutraceutical applications. PMID:27536103
Maisanaba, Sara; Hercog, Klara; Filipic, Metka; Jos, Ángeles; Zegura, Bojana
2016-03-05
Montmorillonite, also known as Cloisite(®)Na(+) (CNa(+)), is a natural clay with a wide range of well-documented and novel applications, such as pharmaceutical products or food packaging. Although considered a low toxic product, the expected increased exposure to CNa(+) arises concern on the potential consequences on human and environmental health especially as its genotoxicity has scarcely been investigated so far. Thus, we investigated, for the first time, the influence of non-cytotoxic concentrations of CNa(+) (15.65, 31.25 and 62.5 μg/mL) on genomic instability of human hepatoma cell line (HepG2) by determining the formation of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) with the Cytokinesis block micronucleus cytome assay. Further on we studied the influence of CNa(+) on the expression of several genes involved in toxicity mechanisms using the real-time quantitative PCR. The results showed that CNa(+) increased the number of MNi, while the numbers of NBUDs and NPBs were not affected. In addition it deregulated genes in all the groups studied, mainly after longer time of exposure. These findings provide the evidence that CNa(+) is potentially genotoxic. Therefore further studies that will elucidate the molecular mechanisms involved in toxic activity of CNa(+) are needed for hazard identification and human safety assessment. Copyright © 2015 Elsevier B.V. All rights reserved.
Singh, Gagandeep; Gollapalli, Ramarao; Blinder, Alejandro; Patel, Milan
2018-04-15
Pharmaceutical packaging employs a wide variety of polymers owing to their desirable features, but the compounds that could leach from the polymers into the drug products can pose serious health risks. Therefore, it is extremely important to identify such compounds so that they can be adequately quantified and evaluated for toxicological impact/safety assessments. Not only the polymer components and the additives should be considered as sources for leachable impurities, their reaction/degradation products should also be evaluated. Irganox 1010 is a common commercial antioxidant (polymer additive) used in the manufacturing of polyolefin materials for container closure systems. In our study, we identified two Irganox1010 related leachable impurities in an ophthalmic drug product using rapid and straightforward orthogonal mass spectroscopy (LC-MS and GC-MS) methods The identified impurities were 7,9-Di-tert-butyl-1 oxaspiro[4.5]deca-6,9-diene-2,8-dione and 3-[3,5-bis(tert-butyl)-1-hydroxy-4-oxocyclohexa-2,5-dienyl]propanoic acid which leached into the ophthalmic drug solution during storage. The analytical methods employed could potentially be used to identify the similar class of compounds as is or in drug products. Copyright © 2018 Elsevier B.V. All rights reserved.
Bourichi, Houda; Brik, Youness; Hubert, Philipe; Cherrah, Yahia; Bouklouze, Abdelaziz
2012-01-01
In this paper, we report the results of quality control based in physicochemical characterization and impurities determination of three samples of fluconazole drug substances marketed in Morocco. These samples were supplied by different pharmaceuticals companies. The sample A, as the discovered product, was supplied by Pfizer, while samples B and C (generics), were manufactured by two different Indian industries. Solid-state characterization of the three samples was realized with different physicochemical methods as: X-ray powder diffraction, Fourier-transformation infrared spectroscopy, differential scanning calorimetry. High performance liquid chromatography was used to quantify the impurities in the different samples. The results from the physicochemical methods cited above, showed difference in polymorph structure of the three drug substances. Sample A consisted in pure polymorph III, sample B consisted in pure polymorph II, sample C consisted in a mixture of fluconazole Form III, form II and the monohydrate. This result was confirmed by differential scanning calorimetry. Also it was demonstrated that solvents used during the re-crystallization step were among the origins of these differences in the structure form. On the other hand, the result of the stability study under humidity and temperature showed that fluconazole polymorphic transformation could be owed to the no compliance with the conditions of storage. The HPLC analysis of these compounds showed the presence of specific impurities for each polymorphic form, and a possible relationship could be exist between impurities and crystalline form of fluconazole. PMID:29403776
Ahlberg, Ernst; Amberg, Alexander; Beilke, Lisa D; Bower, David; Cross, Kevin P; Custer, Laura; Ford, Kevin A; Van Gompel, Jacky; Harvey, James; Honma, Masamitsu; Jolly, Robert; Joossens, Elisabeth; Kemper, Raymond A; Kenyon, Michelle; Kruhlak, Naomi; Kuhnke, Lara; Leavitt, Penny; Naven, Russell; Neilan, Claire; Quigley, Donald P; Shuey, Dana; Spirkl, Hans-Peter; Stavitskaya, Lidiya; Teasdale, Andrew; White, Angela; Wichard, Joerg; Zwickl, Craig; Myatt, Glenn J
2016-06-01
Statistical-based and expert rule-based models built using public domain mutagenicity knowledge and data are routinely used for computational (Q)SAR assessments of pharmaceutical impurities in line with the approach recommended in the ICH M7 guideline. Knowledge from proprietary corporate mutagenicity databases could be used to increase the predictive performance for selected chemical classes as well as expand the applicability domain of these (Q)SAR models. This paper outlines a mechanism for sharing knowledge without the release of proprietary data. Primary aromatic amine mutagenicity was selected as a case study because this chemical class is often encountered in pharmaceutical impurity analysis and mutagenicity of aromatic amines is currently difficult to predict. As part of this analysis, a series of aromatic amine substructures were defined and the number of mutagenic and non-mutagenic examples for each chemical substructure calculated across a series of public and proprietary mutagenicity databases. This information was pooled across all sources to identify structural classes that activate or deactivate aromatic amine mutagenicity. This structure activity knowledge, in combination with newly released primary aromatic amine data, was incorporated into Leadscope's expert rule-based and statistical-based (Q)SAR models where increased predictive performance was demonstrated. Copyright © 2016 Elsevier Inc. All rights reserved.
Reddy, Palavai Sripal; Hotha, Kishore Kumar; Sait, Shakil
2013-01-01
A complex, sensitive, and precise high-performance liquid chromatographic method for the profiling of impurities of esomeprazole in low-dose aspirin and esomeprazole capsules has been developed, validated, and used for the determination of impurities in pharmaceutical products. Esomeprazole and its related impurities' development in the presence of aspirin was traditionally difficult due to aspirin's sensitivity to basic conditions and esomeprazole's sensitivity to acidic conditions. When aspirin is under basic, humid, and extreme temperature conditions, it produces salicylic acid and acetic acid moieties. These two byproducts create an acidic environment for the esomeprazole. Due to the volatility and migration phenomenon of the produced acetic acid and salicylic acid from aspirin in the capsule dosage form, esomeprazole's purity, stability, and quantification are affected. The objective of the present research work was to develop a gradient reversed-phase liquid chromatographic method to separate all the degradation products and process-related impurities from the main peak. The impurities were well-separated on a RP8 column (150 mm × 4.6mm, X-terra, RP8, 3.5μm) by the gradient program using a glycine buffer (0.08 M, pH adjusted to 9.0 with 50% NaOH), acetonitrile, and methanol at a flow rate of 1.0 mL min(-1) with detection wavelength at 305 nm and column temperature at 30°C. The developed method was found to be specific, precise, linear, accurate, rugged, and robust. LOQ values for all of the known impurities were below reporting thresholds. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis, and thermal degradation in the presence of aspirin. The developed RP-HPLC method was validated according to the present ICH guidelines for specificity, linearity, accuracy, precision, limit of detection, limit of quantification, ruggedness, and robustness.
vom Eyser, C; Börgers, A; Richard, J; Dopp, E; Janzen, N; Bester, K; Tuerk, J
2013-01-01
The entry of pharmaceuticals into the water cycle from sewage treatment plants is of growing concern because environmental effects are evident at trace levels. Ozonation, UV- and UV/H(2)O(2)-treatment were tested as an additional step in waste water treatment because they have been proven to be effective in eliminating aqueous organic contaminants. The pharmaceuticals carbamazepine, ciprofloxacin, diclofenac, metoprolol and sulfamethoxazole as well as the personal care products galaxolide and tonalide were investigated in terms of degradation efficiency and by-product formation in consideration of toxic effects. The substances were largely removed from treatment plant effluent by ozonation, UV- and UV/H(2)O(2)-treatment. Transformation products were detected in all tested treatment processes. Accompanying analysis showed no genotoxic, cytotoxic or estrogenic potential for the investigated compounds after oxidative treatment of real waste waters. The results indicate that by-product formation from ozonation and advanced oxidation processes does not have any negative environmental impact.
2013-01-01
Background Artemisinin-based fixed dose combination (FDC) products are recommended by World Health Organization (WHO) as a first-line treatment. However, the current artemisinin FDC products, such as β-artemether and lumefantrine, are inherently unstable and require controlled distribution and storage conditions, which are not always available in resource-limited settings. Moreover, quality control is hampered by lack of suitable analytical methods. Thus, there is a need for a rapid and simple, but stability-indicating method for the simultaneous assay of β-artemether and lumefantrine FDC products. Methods Three reversed-phase fused-core HPLC columns (Halo RP-Amide, Halo C18 and Halo Phenyl-hexyl), all thermostated at 30°C, were evaluated. β-artemether and lumefantrine (unstressed and stressed), and reference-related impurities were injected and chromatographic parameters were assessed. Optimal chromatographic parameters were obtained using Halo RP-Amide column and an isocratic mobile phase composed of acetonitrile and 1mM phosphate buffer pH 3.0 (52:48; V/V) at a flow of 1.0 ml/min and 3 μl injection volume. Quantification was performed at 210 nm and 335 nm for β-artemether and for lumefantrine, respectively. In-silico toxicological evaluation of the related impurities was made using Derek Nexus v2.0®. Results Both β-artemether and lumefantrine were separated from each other as well as from the specified and unspecified related impurities including degradants. A complete chromatographic run only took four minutes. Evaluation of the method, including a Plackett-Burman robustness verification within analytical QbD-principles, and real-life samples showed the method is suitable for quantitative assay purposes of both active pharmaceutical ingredients, with a mean recovery relative standard deviation (± RSD) of 99.7 % (± 0.7%) for β-artemether and 99.7 % (± 0.6%) for lumefantrine. All identified β-artemether-related impurities were predicted in Derek Nexus v2.0® to have toxicity risks similar to β-artemether active pharmaceutical ingredient (API) itself. Conclusions A rapid, robust, precise and accurate stability-indicating, quantitative fused-core isocratic HPLC method was developed for simultaneous assay of β-artemether and lumefantrine. This method can be applied in the routine regulatory quality control of FDC products. The in-silico toxicological investigation using Derek Nexus® indicated that the overall toxicity risk for β-artemether-related impurities is comparable to that of β-artemether API. PMID:23631682
NASA Astrophysics Data System (ADS)
Yehia, Ali M.; Mohamed, Heba M.
2016-01-01
Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference.
Faroongsarng, Damrongsak
2016-06-01
Although differential scanning calorimetry (DSC) is a non-equilibrium technique, it has been used to gain energetic information that involves phase equilibria. DSC has been widely used to characterize the equilibrium melting parameters of small organic pharmaceutical compounds. An understanding of how DSC measures an equilibrium event could make for a better interpretation of the results. The aim of this mini-review was to provide a theoretical insight into the DSC measurement to obtain the equilibrium thermodynamics of a phase transition especially the melting process. It was demonstrated that the heat quantity obtained from the DSC thermogram (ΔH) was related to the thermodynamic enthalpy of the phase transition (ΔH (P) ) via: ΔH = ΔH (P) /(1 + K (- 1)) where K was the equilibrium constant. In melting, the solid and liquefied phases presumably coexist resulting in a null Gibbs free energy that produces an infinitely larger K. Thus, ΔH could be interpreted as ΔH (P). Issues of DSC investigations on melting behavior of crystalline solids including polymorphism, degradation impurity due to heating in situ, and eutectic melting were discussed. In addition, DSC has been a tool for determination of the impurity based on an ideal solution of the melt that is one of the official methods used to establish the reference standard.
Quality investigation of hydroxyprogesterone caproate active pharmaceutical ingredient and injection
Chollet, John L.; Jozwiakowski, Michael J.
2012-01-01
The purpose of this study was to investigate the quality of hydroxyprogesterone caproate (HPC) active pharmaceutical ingredient (API) sources that may be used by compounding pharmacies, compared to the FDA-approved source of the API; and to investigate the quality of HPC injection samples obtained from compounding pharmacies in the US, compared to the FDA-approved product (Makena®). Samples of API were obtained from every source confirmed to be an original manufacturer of the drug for human use, which were all companies in China that were not registered with FDA. Eight of the ten API samples (80%) did not meet the impurity specifications required by FDA for the API used in the approved product. One API sample was found to not be HPC at all; additional laboratory testing showed that it was glucose. Thirty samples of HPC injection obtained from com pounding pharmacies throughout the US were also tested, and eight of these samples (27%) failed to meet the potency requirement listed in the USP monograph for HPC injection and/or the HPLC assay. Sixteen of the thirty injection samples (53%) exceeded the impurity limit setforthe FDA-approved drug product. These results confirm the inconsistency of compounded HPC Injections and suggest that the risk-benefit ratio of using an unapproved compounded preparation, when an FDA-approved drug product is available, is not favorable. PMID:22329865
Pinto, Eduardo Costa; Dolzan, Maressa Danielli; Cabral, Lucio Mendes; Armstrong, Daniel W; de Sousa, Valéria Pereira
2016-02-01
An important step during the development of high-performance liquid chromatography (HPLC) methods for quantitative analysis of drugs is choosing the appropriate detector. High sensitivity, reproducibility, stability, wide linear range, compatibility with gradient elution, non-destructive detection of the analyte and response unaffected by changes in the temperature/flow are some of the ideal characteristics of a universal HPLC detector. Topiramate is an anticonvulsant drug mainly used for the treatment of different types of seizures and prophylactic treatment of migraine. Different analytical approaches to quantify topiramate by HPLC have been described because of the lack of chromophoric moieties on its structure, such as derivatization with fluorescent moieties and UV-absorbing moieties, conductivity detection, evaporative light scattering detection, refractive index detection, chemiluminescent nitrogen detection and MS detection. Some methods for the determination of topiramate by capillary electrophoresis and gas chromatography have also been published. This systematic review provides a description of the main analytical methods presented in the literature to analyze topiramate in the drug substance and in pharmaceutical formulations. Each of these methods is briefly discussed, especially considering the detector used with HPLC. In addition, this article presents a review of the data available regarding topiramate stability, degradation products and impurities. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Colgan, Stephen T; Zelesky, Todd C; Chen, Raymond; Likar, Michael D; MacDonald, Bruce C; Hawkins, Joel M; Carroll, Sophia C; Johnson, Gail M; Space, J Sean; Jensen, James F; DeMatteo, Vincent A
2016-07-01
Formaldehyde and formic acid are reactive impurities found in commonly used excipients and can be responsible for limiting drug product shelf-life. Described here is the use of activated carbon in drug product packaging to attenuate formaldehyde-induced and formic acid-induced drug degradation in tablets and cross-linking in hard gelatin capsules. Several pharmaceutical products with known or potential vulnerabilities to formaldehyde-induced or formic acid-induced degradation or gelatin cross-linking were subjected to accelerated stability challenges in the presence and absence of activated carbon. The effects of time and storage conditions were determined. For all of the products studied, activated carbon attenuated drug degradation or gelatin cross-linking. This novel use of activated carbon in pharmaceutical packaging may be useful for enhancing the chemical stability of drug products or the dissolution stability of gelatin-containing dosage forms and may allow for the 1) extension of a drug product's shelf-life when the limiting attribute is a degradation product induced by a reactive impurity, 2) marketing of a drug product in hotter and more humid climatic zones than currently supported without the use of activated carbon, and 3) enhanced dissolution stability of products that are vulnerable to gelatin cross-linking. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Supercritical fluid technology: concepts and pharmaceutical applications.
Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama
2011-01-01
In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is focused on different techniques that use supercritical fluids and their opportunities for the pharmaceutical sector.
Kurniawan, Koo Hendrik; Pardede, Marincan; Hedwig, Rinda; Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah; Jobiliong, Eric; Suyanto, Hery; Suliyanti, Maria Margaretha; Tjia, May On; Lie, Tjung Jie; Lie, Zener Sukra; Kurniawan, Davy Putra; Kagawa, Kiichiro
2015-09-01
We have conducted an experimental study exploring the possible application of laser-induced breakdown spectroscopy (LIBS) for practical and highly sensitive detection of metal impurities in water. The spectrochemical measurements were carried out by means of a 355 nm Nd-YAG laser within N2 and He gas at atmospheric pressures as high as 2 kPa. The aqueous samples were prepared as thin films deposited on indium-tin oxide (ITO) glass by an electrolysis process. The resulting emission spectra suggest that concentrations at parts per billion levels may be achieved for a variety of metal impurities, and it is hence potentially feasible for rapid inspection of water quality in the semiconductor and pharmaceutical industries, as well as for cooling water inspection for possible leakage of radioactivity in nuclear power plants. In view of its relative simplicity, this LIBS equipment offers a practical and less costly alternative to the standard use of inductively coupled plasma-mass spectrometry (ICP-MS) for water samples, and its further potential for in situ and mobile applications.
Støving, Celina; Jensen, Henrik; Gammelgaard, Bente; Stürup, Stefan
2013-10-01
May 1, 2014 the United States Pharmacopeia (USP) will implement two new chapters stating limit concentrations of elemental impurities in pharmaceuticals applying inductively coupled plasma methods. In the present work an inductively coupled plasma optical emission spectrometry (ICP-OES) method for quantitation of As, Cd, Cu, Cr, Fe, Hg, Ir, Mn, Mo, Ni, Os, Pb, Pd, Pt, Rh, Ru, V and Zn in tablets according to the new USP chapters was developed. Sample preparation was performed by microwave-assisted acid digestion using a mixture of 65% HNO3 and 37% HCl (3:1, v/v). Limits of detection and quantitation were at least a factor of ten below the USP limit concentrations showing that the ICP-OES technique is well suited for quantitation of elemental impurities. Excluding Os, spike recoveries in the range of 85.3-103.8% were obtained with relative standard deviations (%RSD) ranging from 1.3 to 3.2%. Due to memory effects the spike recovery and %RSD of Os were 161.5% and 13.7%, respectively, thus the method will need further development with respect to elimination of the memory effect of Os. The method was proven to be specific but with potential spectral interference for Ir, Os, Pb, Pt and Rh necessitating visual examination of the spectra. Hg memory effect was handled by using lower spike levels combined with rinsing with 0.1M HCl. The tablets had a content of Fe and Pt of 182.8 ± 18.1 and 2.8 ± 0.2 μg/g, respectively and did therefore not exceed the limit concentration defined by USP. It is suggested that the developed method is applicable to pharmaceutical products with a composition and maximal amount of daily intake (g drug product/day) similar to the tablets used in this work. Copyright © 2013 Elsevier B.V. All rights reserved.
Yehia, Ali M; Mohamed, Heba M
2016-01-05
Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference. Copyright © 2015 Elsevier B.V. All rights reserved.
Hydrolysis of the quinone methide of butylated hydroxytoluene in aqueous solutions.
Willcockson, Maren Gulsrud; Toteva, Maria M; Stella, Valentino J
2013-10-01
Butylated hydroxytoluene or BHT is an antioxidant commonly used in pharmaceutical formulations. BHT upon oxidation forms a quinone methide (QM). QM is a highly reactive electrophilic species that can undergo nucleophilic addition. Here, the kinetic reactivity of QM with water at various apparent pH values in a 50% (v/v) water-acetonitrile solution at constant ionic strength of I = 0.5 (NaCl)4 , was studied. The hydrolysis of QM in the presence of added acid, base, sodium chloride, and phosphate buffer resulted in the formation of only one product--the corresponding 3,5-di-tert-butyl-4-hydroxybenzyl alcohol (BA). The rate of BA formation was catalyzed by the addition of acid and base, but not chloride and phosphate species. Nucleophilic excipients, used in the pharmaceutical formulation, or nucleophilic groups on active pharmaceutical ingredient molecule may form adducts with QM, the immediate oxidative product of BHT degradation, thus having implications for drug product impurity profiles. Because of these considerations, BHT should be used with caution in formulations containing drugs or excipients capable of acting as nucleophiles. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Chandel, Madhu; Kumar, Manish; Sharma, Upendra; Singh, Bikram; Kaur, Satwinderjeet
2017-01-01
Anthocephalus cadamba is used in traditional and folklore medicinal system. In order to validate its traditional medicinal claim, the present study was designed to assess antioxidant, antigenotoxic and cytotoxic activity of fractions from Anthocephalus cadamba bark and to identify their active phytoconstituents. The four fractions viz. hexane (HACB), chloroform (CACB), ethylacetate (EACB) and nbutanol (NACB) were fractionated from the crude methanol extract from bark of A. cadamba. All fractions were evaluated for antiradical efficacy using various in vitro antioxidant assays and for antigenotoxicity by SOS chromotest using E. coli PQ37 tester strain. Cytotoxic potential was checked using MTT assay. Among the four fractions, EACB and NACB exhibited promising radical quenching potential in DPPH, ABTS, superoxide anion radical scavenging and pBR322 plasmid DNA nicking assays. All the fractions were evaluated for genotoxic and antigenotoxic activity in SOS chromotest using E. coli PQ37 tester strain. Results revealed that fractions were non-genotoxic and have potential to suppress the genotoxicity induced by 4NQO (4-nitroquinoline-1-oxide) and AFB1 (aflatoxin B1). NACB was found to inhibit the growth of colon (COLO 205) cancer cells with GI50 of 54.36 µg/ml. To identify bioactive principles in the active fractions, NACB and EACB were subjected to UPLC-electrospray-ionization-quadrupole time-of-flight mass spectrometry which revealed the presence of 3β-isodihyrocadambine-oxide, cadambine, phelasin A/B, 3β- dihydrocadambine and 3'-O-caffeoylsweroside like compounds. Overall results revealed that A. cadamba is a rich source of antioxidant, antigenotoxic and cytotoxic constituents which may find their significance in various food and pharmaceutical products. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Srbek, Jan; Klejdus, Bořivoj; Douša, Michal; Břicháč, Jiří; Stasiak, Pawel; Reitmajer, Josef; Nováková, Lucie
2014-12-01
In this study, direct analysis in real time-mass spectrometry (DART-MS) was assessed for the analysis of various pharmaceutical formulations with intention to summarize possible applications for the routine pharmaceutical development. As DART is an ambient ionization technique, it allows direct analysis of pharmaceutical samples in solid or liquid form without complex sample preparation, which is often the most time-consuming part of the analytical method. This makes the technique suitable for many application fields, including pharmaceutical drug development. DART mass spectra of more than twenty selected tablets and other common pharmaceutical formulations, i.e. injection solutions, ointments and suppositories developed in the pharmaceutical industry during several recent years are presented. Moreover, as thin-layer chromatography (TLC) is still very popular for the monitoring of the reactions in the synthetic chemistry, several substances were analyzed directly from the TLC plates to demonstrate the simplicity of the technique. Pure substance solutions were spotted onto a TLC plate and then analyzed with DART without separation. This was the first DART-MS study of pharmaceutical dosage forms using DART-Orbitrap combination. The duration of sample analysis by the DART-MS technique lasted several seconds, allowing enough time to collect sufficient number of data points for compound identification. The experimental setup provided excellent mass accuracy and high resolution of the mass spectra which allowed unambiguous identification of the compounds of interest. Finally, DART mass spectrometry was also used for the monitoring of the selected impurity distribution in the atorvastatin tablets. These measurements demonstrated DART to be robust ionization technique, which provided easy-to-interpret mass spectra for the broad range of compounds. DART has high-throughput potential for various types of pharmaceutical analyses and therefore eliminates the time for sample cleanup and chromatographic separation. Copyright © 2014 Elsevier B.V. All rights reserved.
Federsel, Hans-Jürgen
2009-05-19
In process research and development (PR&D), the generation and manipulation of small-molecule drugs ranges from bench-scale (laboratory) chemistry to pilot plant manufacture to commercial production. A broad range of disciplines, including process chemistry (organic synthesis), analytical chemistry, process engineering (mass and heat transfer, unit operations), process safety (chemical risk assessment), regulatory compliance, and plant operation, must be effectively applied. In the critical handover between medicinal chemistry and PR&D, compound production is typically scaled up from a few hundred grams to several kilograms. Can the methodologies applied to the former also satisfy the technical, safety, and scalability aspects that come into play in the latter? Occasionally, the transition might occur smoothly, but more often the situation is the opposite: much work and resources must be invested to design a process that is feasible for manufacturing on pilot scale and, eventually, for commercial production. Authentic examples provide enlightening illustrations of dos and don'ts for developing syntheses designed for round-flask operation into production-scale processes. Factors that are easily underestimated or even neglected in the laboratory, such as method robustness, chemical hazards, safety concerns, environmental impact, availability of starting materials and building blocks in bulk quantities, intellectual property (IP) issues, and the final cost of the product, will come into play and need to be addressed appropriately. The decision on which route will be the best for further development is a crucial event and should come into focus early on the R&D timeline. In addition to scientific and technical concerns, the parameter of speed has come to the forefront in the pharmaceutical arena. Although historically the drug industry has tolerated a total time investment of far more than 10 years from idea to market, the current worldwide paradigm requires a reduction to under 10 years for the specific segment covering preclinical development through launch. This change puts enormous pressure on the entire organization, and the implication for PR&D is that the time allowed for conducting route design and scale-up has shrunk accordingly. Furthermore, molecular complexity has become extremely challenging in many instances, and demand steadily grows for process understanding and knowledge generation about low-level byproduct, which often must be controlled even at trace concentrations to meet regulatory specifications (especially in the case of potentially genotoxic impurities). In this Account, we paint a broad picture of the technical challenges the PR&D community is grappling with today, focusing on what measures have been taken over the years to create more efficiency and effectiveness.
Progress in computational toxicology.
Ekins, Sean
2014-01-01
Computational methods have been widely applied to toxicology across pharmaceutical, consumer product and environmental fields over the past decade. Progress in computational toxicology is now reviewed. A literature review was performed on computational models for hepatotoxicity (e.g. for drug-induced liver injury (DILI)), cardiotoxicity, renal toxicity and genotoxicity. In addition various publications have been highlighted that use machine learning methods. Several computational toxicology model datasets from past publications were used to compare Bayesian and Support Vector Machine (SVM) learning methods. The increasing amounts of data for defined toxicology endpoints have enabled machine learning models that have been increasingly used for predictions. It is shown that across many different models Bayesian and SVM perform similarly based on cross validation data. Considerable progress has been made in computational toxicology in a decade in both model development and availability of larger scale or 'big data' models. The future efforts in toxicology data generation will likely provide us with hundreds of thousands of compounds that are readily accessible for machine learning models. These models will cover relevant chemistry space for pharmaceutical, consumer product and environmental applications. Copyright © 2013 Elsevier Inc. All rights reserved.
Derivative spectrophotometric analysis of benzophenone (as an impurity) in phenytoin
2011-01-01
Three simple and rapid spectrophotometric methods were developed for detection and trace determination of benzophenone (the main impurity) in phenytoin bulk powder and pharmaceutical formulations. The first method, zero-crossing first derivative spectrophotometry, depends on measuring the first derivative trough values at 257.6 nm for benzophenone. The second method, zero-crossing third derivative spectrophotometry, depends on measuring the third derivative peak values at 263.2 nm. The third method, ratio first derivative spectrophotometry, depends on measuring the peak amplitudes of the first derivative of the ratio spectra (the spectra of benzophenone divided by the spectrum of 5.0 μg/mL phenytoin solution) at 272 nm. The calibration graphs were linear over the range of 1-10 μg/mL. The detection limits of the first and the third derivative methods were found to be 0.04 μg/mL and 0.11 μg/mL and the quantitation limits were 0.13 μg/mL and 0.34 μg/mL, respectively, while for the ratio derivative method, the detection limit was 0.06 μg/mL and the quantitation limit was 0.18 μg/mL. The proposed methods were applied successfully to the assay of the studied drug in phenytoin bulk powder and certain pharmaceutical preparations. The results were statistically compared to those obtained using a polarographic method and were found to be in good agreement. PMID:22152156
Martín-Díaz, M Laura; Gagné, François; Blaise, Christian
2009-09-01
A biomarker approach was undertaken using the mussel Elliptio complanata to assess the ecotoxicological effects after injection of a range concentration (0-10mM) of three different PPCPs: carbamazepine, caffeine, methotrexate; and an effluent extract (C8) from St. Lawrence wastewaters treatment plant (Montreal, Canada). A battery of biomarkers, involving oxidative stress and genotoxicity responses: glutation-S-transferase (GST), ethoxyresorufin O-deethylase (EROD), dibenzylflourescein dealkylase (DBF), xanthine oxidoreductase (XOR) activities, lipid peroxidation (LPO) and DNA damage were determined in gonad and digestive gland tissues after 48 h of injection. Results showed an induction of the oxidative metabolism with increasing pharmaceutical concentration in those mussels injected with the PPCPs and the effluent extract. Phase I detoxification enzymes were significantly induced (p<0.05), concretely DBF activity was significantly induced after caffeine, carbamazipine and C8 injection; and EROD activity after C8 and methotrexate injection. Oxidative stress induction only lead to lipid peroxidation (p<0.05) in organisms injected with carbamazepine and caffeine and DNA damage in organisms injected with methotrexate (p<0.05). EROD and DBF enzymatic activities have been found to be suitable biomarkers to determine bioavailability of pharmaceuticals. LPO and DNA damage to determine possible associated adverse effects. Nevertheless, their validation in realistic exposure scenarios and under exposure conditions should be performed in future research.
Romero-Cerecero, Ofelia; Zamilpa, Alejandro; Díaz-García, Edgar Rolando; Tortoriello, Jaime
2014-10-28
Among the main causes affecting the wound healing process, we find diabetes mellitus, which is due to the occurrence of a prolonged inflammation phase, defects in angiogenesis, and a diminution in fibroblast proliferation. The species Ageratina pichinchensis has been utilized in Mexican traditional medicine for the treatment of skin wounds. Pharmacological models have demonstrated that an extract obtained from this species improves wound healing and, through a clinical study, it was evidenced that the extract (in a pharmaceutical form) is effective in the treatment of patients with chronic venous ulcers. The 7-O-(β-D-glucopyranosyl)-galactin compound was recently identified as responsible for the pharmacological activity. The objective of the present study was to evaluate the wound healing activity of an aqueous extract and another hexane-ethyl acetate extract from Ageratina pichinchensis (both standardized in the active compound) in a diabetic foot ulcer rat model, as well as evaluating the possible genotoxic effects produced by the same species. Rats with streptozotocin-induced diabetes were submitted (under anesthesia with pentobarbital) to a circular lesion on the skin (excisional) on the rear of the paw. All animals were topically treated daily until healing. 5-methyl-1 phenyl-2-(1H) Pyridone was used as a positive control treatment. Once the wound was healed, a skin sample was obtained and utilized for histopathological analysis. The possible genotoxic effects produced by the extract, in a model of spermatozoid viability and morphology, were evaluated. The results showed that 100% of animals treated with Ageratina pichinchensis extracts presented wound healing between days 4 and 11 of treatment, while in the positive control group (treated with 5-methyl-1 phenyl-2-(1H) pyridone) and in the negative control group (vehicle), only 70% and 40%, respectively, exhibited wound healing at day 11. Histological analysis demonstrated evidences of an active regenerative process in animals that received the extracts, in addition to that in the study, the effects of the plant extracts that could be compatible with genotoxicity were not observed. Aqueous and hexane-ethyl acetate extracts of the aerial parts of Ageratina pichinchensis (standardized in its content of 7-O-(β-D-glucopyranosyl)-galactin), consistently improve wound healing induced on the skin of rats with streptozotocin-induced diabetes. The capacity was evidenced of the extracts to promote histological tissue regeneration, without exhibiting genotoxicity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Muscat Galea, Charlene; Didion, David; Clicq, David; Mangelings, Debby; Vander Heyden, Yvan
2017-12-01
A supercritical chromatographic method for the separation of a drug and its impurities has been developed and optimized applying an experimental design approach and chromatogram simulations. Stationary phase screening was followed by optimization of the modifier and injection solvent composition. A design-of-experiment (DoE) approach was then used to optimize column temperature, back-pressure and the gradient slope simultaneously. Regression models for the retention times and peak widths of all mixture components were built. The factor levels for different grid points were then used to predict the retention times and peak widths of the mixture components using the regression models and the best separation for the worst separated peak pair in the experimental domain was identified. A plot of the minimal resolutions was used to help identifying the factor levels leading to the highest resolution between consecutive peaks. The effects of the DoE factors were visualized in a way that is familiar to the analytical chemist, i.e. by simulating the resulting chromatogram. The mixture of an active ingredient and seven impurities was separated in less than eight minutes. The approach discussed in this paper demonstrates how SFC methods can be developed and optimized efficiently using simple concepts and tools. Copyright © 2017 Elsevier B.V. All rights reserved.
Investigation into stability of poly(vinyl alcohol)-based Opadry® II films.
Koo, Otilia M Y; Fiske, John D; Yang, Haitao; Nikfar, Faranak; Thakur, Ajit; Scheer, Barry; Adams, Monica L
2011-06-01
Poly(vinyl alcohol) (PVA)-based formulations are used for pharmaceutical tablet coating with numerous advantages. Our objective is to study the stability of PVA-based coating films in the presence of acidic additives, alkaline additives, and various common impurities typically found in tablet formulations. Opadry® II 85F was used as the model PVA-based coating formulation. The additives and impurities were incorporated into the polymer suspension prior to film casting. Control and test films were analyzed before and after exposure to 40°C/75% relative humidity. Tests included film disintegration, size-exclusion chromatography, thermal analysis, and microscopy. Under stressed conditions, acidic additives (hydrochloric acid (HCl) and ammonium bisulfate (NH(4)HSO(4))) negatively impacted Opadry® II 85F film disintegration while NaOH, formaldehyde, and peroxide did not. Absence of PVA species from the disintegration media corresponded to an increase in crystallinity of PVA for reacted films containing HCl. Films with NH(4)HSO(4) exhibited slower rate of reactivity and less elevation in melting temperature with no clear change in melting enthalpy. Acidic additives posed greater risk of compromise in disintegration of PVA-based coatings than alkaline or common impurities. The mechanism of acid-induced reactivity due to the presence of acidic salts (HCl vs. NH(4)HSO(4)) may be different.
Sokoliess, Torsten; Köller, Gerhard
2005-06-01
A chiral capillary electrophoresis system allowing the determination of the enantiomeric purity of an investigational new drug was developed using a generic method development approach for basic analytes. The method was optimized in terms of type and concentration of both cyclodextrin (CD) and electrolyte, buffer pH, temperature, voltage, and rinsing procedure. Optimal chiral separation of the analyte was obtained using an electrolyte with 2.5% carboxymethyl-beta-CD in 25 mM NaH2PO4 (pH 4.0). Interchanging the inlet and outlet vials after each run improved the method's precision. To assure the method's suitability for the control of enantiomeric impurities in pharmaceutical quality control, its specificity, linearity, precision, accuracy, and robustness were validated according to the requirements of the International Conference on Harmonization. The usefulness of our generic method development approach for the validation of robustness was demonstrated.
Bilek, Maciej; Namieśnik, Jacek
2016-01-01
For a long time, chromatographic techniques and techniques related to them have stimulated the development of new procedures in the field of pharmaceutical analysis. The newly developed methods, characterized by improved metrological parameters, allow for more accurate testing of, among others, the composition of raw materials, intermediates and final products. The chromatographic techniques also enable studies on waste generated in research laboratories and factories producing pharmaceuticals and parapharmaceuticals. Based on the review of reports published in Polish pharmaceutical journals, we assessed the impact of chromatographic techniques on the development of pharmaceutical analysis. The first chromatographic technique used in pharmaceutical analysis was a so-called capillary analysis. It was applied in the 1930s to control the identity of pharmaceutical formulations. In the 1940s and 1950s, the chromatographic techniques were mostly a subject of review publications, while their use in experimental work was rare. Paper chromatography and thin layer chromatography were introduced in the 1960s and 1970s, respectively. These new analytical tools have contributed to the intensive development of research in the field of phytochemistry and the analysis of herbal medicines. The development of colunm chromatography-based techniques, i.e., gas chromatography and high performance liquid chromatography took place in the end of 20th century. Both aforementioned techniques were widely applied in pharmaceutical analysis, for example, to assess the stability of drugs, test for impurities and degradation products as well as in pharmacokinetics studies. The first decade of 21" century was the time of new detection methods in gas and liquid chromatography. The information sources used to write this article were Polish pharmaceutical journals, both professional and scientific, originating from the interwar and post-war period, i.e., "Kronika Farmaceutyczna", "Farmacja Współczesna", "Wiadomości Farmaceutyczne", "Acta Poloniae Pharmaceutica", "Farmacja Polska", "Dissertationes Pharmaceuticae", "Annales UMCS sectio DDD Phamacia". The number of published works using various chromatography techniques was assessed based on the content description of individual issues of the journal "Acta Poloniae Pharmaceutica".
Basic principles of drug--excipients interactions.
Vranić, Edina
2004-05-01
Excipients are generally considered inert additives included in drug formulation to help in the manufacturing, administration or absorption. Other reasons for inclusion concern product differentiation, appearance enhancement or retention of quality. Excipients can initiate, propagate or participate in chemical or physical interactions with an active substance, possibly leading to compromised quality or performance of the medication. Understanding the chemical and physical nature of excipients, the impurities or residues associated with them and how they may interact with other materials, or with each other, forewarns the pharmaceutical technologist of possibilities for undesirable developments.
Mbinze, J K; Lebrun, P; Debrus, B; Dispas, A; Kalenda, N; Mavar Tayey Mbay, J; Schofield, T; Boulanger, B; Rozet, E; Hubert, Ph; Marini, R D
2012-11-09
In the context of the battle against counterfeit medicines, an innovative methodology has been used to develop rapid and specific high performance liquid chromatographic methods to detect and determine 18 non-steroidal anti-inflammatory drugs, 5 pharmaceutical conservatives, paracetamol, chlorzoxazone, caffeine and salicylic acid. These molecules are commonly encountered alone or in combination on the market. Regrettably, a significant proportion of these consumed medicines are counterfeit or substandard, with a strong negative impact in countries of Central Africa. In this context, an innovative design space optimization strategy was successfully applied to the development of LC screening methods allowing the detection of substandard or counterfeit medicines. Using the results of a unique experimental design, the design spaces of 5 potentially relevant HPLC methods have been developed, and transferred to an ultra high performance liquid chromatographic system to evaluate the robustness of the predicted DS while providing rapid methods of analysis. Moreover, one of the methods has been fully validated using the accuracy profile as decision tool, and was then used for the quantitative determination of three active ingredients and one impurity in a common and widely used pharmaceutical formulation. The method was applied to 5 pharmaceuticals sold in the Democratic Republic of Congo. None of these pharmaceuticals was found compliant to the European Medicines Agency specifications. Copyright © 2012 Elsevier B.V. All rights reserved.
Alexander, Anthony J; Ma, Lianjia
2009-02-27
This paper focuses on the application of RPLC x RPLC to pharmaceutical analysis and addresses the specific problem of separating co-eluting impurities/degradation products that maybe "hidden" within the peak envelope of the active pharmaceutical ingredient (API) and thus may escape detection by conventional methods. A comprehensive two-dimensional liquid chromatograph (LC x LC) was constructed from commercially available HPLC equipment. This system utilizes two independently configurable 2nd dimension binary pumping systems to deliver independent flow rates, gradient profiles and mobile phase compositions to dual Fused-Core secondary columns. Very fast gradient separations (30s total cycle time) were achieved at ambient temperature without excessive backpressure and without compromising optimal 1st dimension sampling rates. The operation of the interface is demonstrated for the analysis of a 1mg/ml standard mixture containing 0.05% of a minor component. The practicality of using RPLC x RPLC for the analysis of actual co-eluting pharmaceutical degradation products, by exploiting pH-induced changes in selectivity, is also demonstrated using a three component mixture. This mixture (an API, an oxidation product of the API at 1.0%, w/w, and a photo degradant of the API at 0.5%, w/w) was used to assess the stability indicating nature of an established LC method for analysis of the API.
Lalitha Devi, M; Chandrasekhar, K B
2009-12-05
The objective of current study was to develop a validated specific stability indicating reversed-phase liquid chromatographic method for the quantitative determination of levofloxacin as well as its related substances determination in bulk samples, pharmaceutical dosage forms in the presence of degradation products and its process related impurities. Forced degradation studies were performed on bulk sample of levofloxacin as per ICH prescribed stress conditions using acid, base, oxidative, water hydrolysis, thermal stress and photolytic degradation to show the stability indicating power of the method. Significant degradation was observed during oxidative stress and the degradation product formed was identified by LCMS/MS, slight degradation in acidic stress and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from forced degradation studies and the impurity spiked solution. Good resolution between the peaks corresponds to process related impurities and degradation products from the analyte were achieved on ACE C18 column using the mobile phase consists a mixture of 0.5% (v/v) triethyl amine in sodium dihydrogen orthophosphate dihydrate (25 mM; pH 6.0) and methanol using a simple linear gradient. The detection was carried out at 294 nm. The limit of detection and the limit of quantitation for the levofloxacin and its process related impurities were established. The stressed test solutions were assayed against the qualified working standard of levofloxacin and the mass balance in each case was in between 99.4 and 99.8% indicating that the developed LC method was stability indicating. Validation of the developed LC method was carried out as per ICH requirements. The developed LC method was found to be suitable to check the quality of bulk samples of levofloxacin at the time of batch release and also during its stability studies (long term and accelerated stability).
Lin, Shan-Yang; Wang, Shun-Li
2012-04-01
The solid-state chemistry of drugs has seen growing importance in the pharmaceutical industry for the development of useful API (active pharmaceutical ingredients) of drugs and stable dosage forms. The stability of drugs in various solid dosage forms is an important issue because solid dosage forms are the most common pharmaceutical formulation in clinical use. In solid-state stability studies of drugs, an ideal accelerated method must not only be selected by different complicated methods, but must also detect the formation of degraded product. In this review article, an analytical technique combining differential scanning calorimetry and Fourier-transform infrared (DSC-FTIR) microspectroscopy simulates the accelerated stability test, and simultaneously detects the decomposed products in real time. The pharmaceutical dipeptides aspartame hemihydrate, lisinopril dihydrate, and enalapril maleate either with or without Eudragit E were used as testing examples. This one-step simultaneous DSC-FTIR technique for real-time detection of diketopiperazine (DKP) directly evidenced the dehydration process and DKP formation as an impurity common in pharmaceutical dipeptides. DKP formation in various dipeptides determined by different analytical methods had been collected and compiled. Although many analytical methods have been applied, the combined DSC-FTIR technique is an easy and fast analytical method which not only can simulate the accelerated drug stability testing but also at the same time enable to explore phase transformation as well as degradation due to thermal-related reactions. This technique offers quick and proper interpretations. Copyright © 2012 Elsevier B.V. All rights reserved.
Mondon, P; Shahin, M M
1992-05-01
Genetic effects of UV-A, UV-B, UV-C, and the combination of 8-methoxypsoralen (8-MOP) with UV-A or visible light were studied in the haploid strain XV185-14C and diploid strain D5 of Saccharomyces cerevisiae. The induction of his+, lys+, and hom+ reverse mutations was measured in strain XV185-14C. In strain D5 we measured the induction of genetically altered colonies, particularly twin spot colonies arising from a mitotic crossing-over. UV-C and UV-B induced point mutations at the three loci in the haploid strain and mitotic crossing-over and other genetic alterations in the diploid strain. UV-C was more mutagenic and recombinogenic than UV-B. UV-A or visible light alone did not induce genotoxic effects at the doses tested. However, UV-A plus 8-MOP produced lethal and mutagenic effects in the haploid strain XV185-14C, although mutagenic activity was less than that of UV-B. Visible light plus 8-MOP also induced genotoxic effects in strain XV185-14C. In the diploid strain D5, UV-A plus 8-MOP induced a higher frequency of genetic alterations than UV-B at comparative doses. Visible light plus 8-MOP was also genetically active in strain D5. The haploid strain was more sensitive to the lethal effects of UV-C, UV-B, UV-A, and impure visible light plus 8-MOP than the diploid strain.
Lee, Yi-Hsuan; Lin, Ying-Chi; Feng, Chia-Hsien; Tseng, Wei-Lung; Lu, Chi-Yu
2017-01-01
4-Hydroxybenzoate is a phenolic derivative of alkyl benzoates and is a widely used preservative in cosmetic and pharmaceutical products. The presence of 4-hydroxybenzoates in the human body may result from the use of pharmaceutical and personal care products. These compounds are also known to exhibit estrogenic and genotoxic activities. The potential adverse effects of these compounds include endocrine disruption, oxidative and DNA damage, contact dermatitis, and allergic reactions. This study used two mass spectrometry methods that are applicable when using a derivatization-enhanced detection strategy (DEDS) to screen 4-hydroxybenzoates and their metabolites. Chemical derivatization was used to enhance the detection of these compounds. To evaluate the metabolic process triggered by UV radiation, human keratinocyte HaCaT cells treated with these 4-hydroxybenzoates were further exposed to UVA, UVB and UVC radiation. Metabolites transformed by human keratinocytes in the chemical derivatization procedure were identified by a nano ultra-performance liquid chromatographic system (nanoUPLC) coupled with LTQ Orbitrap. The experiments confirmed the feasibility of this method for identifying 4-hydroxybenzoate metabolites and for high-throughput screening of 4-hydroxybenzoate in commercial products (50 samples) by the DEDS. PMID:28057923
Lenzen, Claudia; Winterfeld, Gottfried A; Schmitz, Oliver J
2016-06-01
The direct inlet probe-electrospray ionization (DIP-ESI) presented here was based on the direct inlet probe-atmospheric pressure chemical ionization (DIP-APCI) developed by our group. It was coupled to an ion trap mass spectrometer (MS) for the detection of more polar compounds such as degradation products from pharmaceuticals. First, the position of the ESI tip, the gas and solvent flow rates, as well as the gas temperature were optimized with the help of the statistic program Minitab® 17 and a caffeine standard. The ability to perform quantitative analyses was also tested by using different concentrations of caffeine and camphor. Calibration curves with a quadratic calibration regression of R (2) = 0.9997 and 0.9998 for caffeine and camphor, respectively, were obtained. The limit of detection of 2.5 and 1.7 ng per injection for caffeine and camphor were determined, respectively. Furthermore, a solution of piracetam was used to compare established analytical methods for this drug and its impurities such as HPLC-diode array detector (DAD) and HPLC-ESI-MS with the DIP-APCI and the developed DIP-ESI. With HPLC-DAD and 10 μg piracetam on column, no impurity could be detected. With HPLC-ESI-MS, two impurities (A and B) were identified with only 4.6 μg piracetam on column, while with DIP-ESI, an amount of 1.6 μg piracetam was sufficient. In the case of the DIP-ESI measurements, all detected impurities could be identified by MS/MS studies. Graphical Abstract Scheme of the DIP-ESI principle.
Stereoselective synthesis from a process research perspective.
Hillier, Michael C; Reider, Paul J
2002-03-01
The process chemists' primary responsibility is to develop efficient and reproducible syntheses of pharmaceutically active compounds. This task is complicated when dealing with chiral molecules that often must be made as single isomers according to regulatory guidelines. The presence of any isomeric impurity in the final product, even in small amounts, is usually not acceptable. This requirement necessitates an exquisite understanding of the methods employed in the construction of chiral drugs. However, the chemistry available for this purpose is sometimes limited and often requires a significant amount of effort and creativity to be made both functional and consistent.
Hydrolysis of Letrozole catalyzed by macrocyclic Rhodium (I) Schiff-base complexes.
Reddy, P Muralidhar; Shanker, K; Srinivas, V; Krishna, E Ravi; Rohini, R; Srikanth, G; Hu, Anren; Ravinder, V
2015-03-15
Ten mononuclear Rhodium (I) complexes were synthesized by macrocyclic ligands having N4 and N2O2 donor sites. Square planar geometry is assigned based on the analytical and spectral properties for all complexes. Rh(I) complexes were investigated as catalysts in hydrolysis of Nitrile group containing pharmaceutical drug Letrozole. A comparative study showed that all the complexes are efficient in the catalysis. The percent yields of all the catalytic reaction products viz. drug impurities were determined by spectrophotometric procedures and characterized by spectral studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Ardiana, Febry; Suciati; Indrayanto, Gunawan
2015-01-01
Valsartan is an antihypertensive drug which selectively inhibits angiotensin receptor type II. Generally, valsartan is available as film-coated tablets. This review summarizes thermal analysis, spectroscopy characteristics (UV, IR, MS, and NMR), polymorphism forms, impurities, and related compounds of valsartan. The methods of analysis of valsartan in pharmaceutical dosage forms and in biological fluids using spectrophotometer, CE, TLC, and HPLC methods are discussed in details. Both official and nonofficial methods are described. It is recommended to use LC-MS method for analyzing valsartan in complex matrices such as biological fluids and herbal preparations; in this case, MRM is preferred than SIM method. © 2015 Elsevier Inc. All rights reserved.
Lan, Jiaqi; Rahman, Sheikh Mokhlesur; Gou, Na; Jiang, Tao; Plewa, Micheal J; Alshawabkeh, Akram; Gu, April Z
2018-06-05
Genotoxicity is considered a major concern for drinking water disinfection byproducts (DBPs). Of over 700 DBPs identified to date, only a small number has been assessed with limited information for DBP genotoxicity mechanism(s). In this study, we evaluated genotoxicity of 20 regulated and unregulated DBPs applying a quantitative toxicogenomics approach. We used GFP-fused yeast strains that examine protein expression profiling of 38 proteins indicative of all known DNA damage and repair pathways. The toxicogenomics assay detected genotoxicity potential of these DBPs that is consistent with conventional genotoxicity assays end points. Furthermore, the high-resolution, real-time pathway activation and protein expression profiling, in combination with clustering analysis, revealed molecular level details in the genotoxicity mechanisms among different DBPs and enabled classification of DBPs based on their distinct DNA damage effects and repair mechanisms. Oxidative DNA damage and base alkylation were confirmed to be the main molecular mechanisms of DBP genotoxicity. Initial exploration of QSAR modeling using moleular genotoxicity end points (PELI) suggested that genotoxicity of DBPs in this study was correlated with topological and quantum chemical descriptors. This study presents a toxicogenomics-based assay for fast and efficient mechanistic genotoxicity screening and assessment of a large number of DBPs. The results help to fill in the knowledge gap in the understanding of the molecular mechanisms of DBP genotoxicity.
Orlandini, S; Pasquini, B; Del Bubba, M; Pinzauti, S; Furlanetto, S
2015-02-06
Quality by design (QbD) concepts, in accordance with International Conference on Harmonisation Pharmaceutical Development guideline Q8(R2), represent an innovative strategy for the development of analytical methods. In this paper QbD principles have been comprehensively applied in the set-up of a capillary electrophoresis method aimed to quantify enantiomeric impurities. The test compound was the chiral drug substance levosulpiride (S-SUL) and the developed method was intended to be used for routine analysis of the pharmaceutical product. The target of analytical QbD approach is to establish a design space (DS) of critical process parameters (CPPs) where the critical quality attributes (CQAs) of the method have been assured to fulfil the desired requirements with a selected probability. QbD can improve the understanding of the enantioseparation process, including both the electrophoretic behavior of enantiomers and their separation, therefore enabling its control. The CQAs were represented by enantioresolution and analysis time. The scouting phase made it possible to select a separation system made by sulfated-β-cyclodextrin and a neutral cyclodextrin, operating in reverse polarity mode. The type of neutral cyclodextrin was included among other CPPs, both instrumental and related to background electrolyte composition, which were evaluated in a screening phase by an asymmetric screening matrix. Response surface methodology was carried out by a Doehlert design and allowed the contour plots to be drawn, highlighting significant interactions between some of the CPPs. DS was defined by applying Monte-Carlo simulations, and corresponded to the following intervals: sulfated-β-cyclodextrin concentration, 9-12 mM; methyl-β-cyclodextrin concentration, 29-38 mM; Britton-Robinson buffer pH, 3.24-3.50; voltage, 12-14 kV. Robustness of the method was examined by a Plackett-Burman matrix and the obtained results, together with system repeatability data, led to define a method control strategy. The method was validated and was finally applied to determine the enantiomeric purity of S-SUL in pharmaceutical dosage forms. Copyright © 2015 Elsevier B.V. All rights reserved.
The quality of sildenafil active substance of illegal source.
Keizers, Peter H J; Wiegard, Andrea; Venhuis, Bastiaan J
2016-11-30
There must be a large market for active pharmaceutical ingredients of illegal source to support the huge and lucrative business of trade in illegal medicines. The active substances found in illegal pharmaceuticals may differ from their legal counterparts concerning purity and associated risks for the health of the user. In this study we show two examples in which the active substance sildenafil, used in erectile dysfunction products, was not of European Pharmacopeia quality. In one case milligram-scale amounts of a 2-mercaptobenzothiazole contamination were found, in another case the mesylate salt rather than the monograph based citrate was used. For the user of products containing these active substances, the risks of side effects increase through the inherent properties of the impurity and the chance of overdosing. The fact that the users are most likely not aware of the poor quality of the products adds up to the health risk of using prescription medication without consulting medical professionals. Copyright © 2016 Elsevier B.V. All rights reserved.
The JaCVAM international validation study on the in vivo comet assay: Selection of test chemicals.
Morita, Takeshi; Uno, Yoshifumi; Honma, Masamitsu; Kojima, Hajime; Hayashi, Makoto; Tice, Raymond R; Corvi, Raffaella; Schechtman, Leonard
2015-07-01
The Japanese Center for the Validation of Alternative Methods (JaCVAM) sponsored an international prevalidation and validation study of the in vivo rat alkaline pH comet assay. The main objective of the study was to assess the sensitivity and specificity of the assay for correctly identifying genotoxic carcinogens, as compared with the traditional rat liver unscheduled DNA synthesis assay. Based on existing carcinogenicity and genotoxicity data and chemical class information, 90 chemicals were identified as primary candidates for use in the validation study. From these 90 chemicals, 46 secondary candidates and then 40 final chemicals were selected based on a sufficiency of carcinogenic and genotoxic data, differences in chemical class or genotoxic or carcinogenic mode of action (MOA), availability, price, and ease of handling. These 40 chemicals included 19 genotoxic carcinogens, 6 genotoxic non-carcinogens, 7 non-genotoxic carcinogens and 8 non-genotoxic non-carcinogens. "Genotoxicity" was defined as positive in the Ames mutagenicity test or in one of the standard in vivo genotoxicity tests (primarily the erythrocyte micronucleus assay). These chemicals covered various chemicals classes, MOAs, and genotoxicity profiles and were considered to be suitable for the purpose of the validation study. General principles of chemical selection for validation studies are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Mufusama, Jean-Pierre; Hoellein, Ludwig; Feineis, Doris; Holzgrabe, Ulrike; Bringmann, Gerhard
2018-05-29
A simple and robust CZE method was developed for the separation and quantification of the antimalarial compound amodiaquine as well as three of its synthetic impurities at a concentration equal to or lower than 0.5%. For capillary electrophoresis, a fused-silica capillary, a background electrolyte of 100 mM sodium phosphate buffer at a pH value of 6.2, a voltage of +20 kV, and a detection wavelength of 220 nm were used, allowing the determination of the analytes within 20 minutes. The method was validated according to the guideline Q2(R1) of the International Council for Harmonization with respect to linearity, precision, accuracy, limit of detection and limit of quantification, and was successfully applied to evaluate the quality of drug samples collected in the Democratic Republic of the Congo. Quantitative analysis results obtained by the CZE method were compared to those obtained with the contemporary HPLC method described in The International Pharmacopoeia. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Impact of excipient interactions on solid dosage form stability.
Narang, Ajit S; Desai, Divyakant; Badawy, Sherif
2012-10-01
Drug-excipient interactions in solid dosage forms can affect drug product stability in physical aspects such as organoleptic changes and dissolution slowdown, or chemically by causing drug degradation. Recent research has allowed the distinction in chemical instability resulting from direct drug-excipient interactions and from drug interactions with excipient impurities. A review of chemical instability in solid dosage forms highlights common mechanistic themes applicable to multiple degradation pathways. These common themes include the role of water and microenvironmental pH. In addition, special aspects of solid-state reactions with excipients and/or excipient impurities add to the complexity in understanding and modeling reaction pathways. This paper discusses mechanistic basis of known drug-excipient interactions with case studies and provides an overview of common underlying themes. Recent developments in the understanding of degradation pathways further impact methodologies used in the pharmaceutical industry for prospective stability assessment. This paper discusses these emerging aspects in terms of limitations of drug-excipient compatibility studies, emerging paradigms in accelerated stability testing, and application of mathematical modeling for prediction of drug product stability.
El-Zaher, Asmaa A; Elkady, Ehab F; Elwy, Hanan M; Saleh, Mahmoud A
2016-07-01
A rapid, simple, and precise RPLC method was developed for the simultaneous determination of the widely used oral antidiabetic, metformin hydrochloride (MTF), with some commonly coadministered oral antidiabetics from different pharmacological classes-glipizide (GPZ), pioglitazone hydrochloride (PGZ), glimepiride (GLM), and repaglinide (RPG)-in bulk, laboratory-prepared mixtures and pharmaceutical formulations in the presence of metformin-reported impurity [1-cyanoguanidine (CNG)]. Chromatographic separation was achieved using isocratic elution mode with a mobile phase of acetonitrile: 0.02 M potassium dihydrogen phosphate (pH 3.17; 50-50, v/v) flowing through a CN Phenomenex column (Phenosphere Next, 250 × 4.6 mm, 5 μm) at a rate of 1.5 mL/min at ambient temperature. UV detection was carried out at 220 nm. The method was validated according to International Conference on Harmonization guidelines. Linearity, accuracy, and precision were satisfactory for concentration ranges: 0.175-350 μg/mL for MTF, 0.0525-105 μg/mL for GPZ, 0.125-250 μg/mL for PGZ, and 0.05-100 μg/mL for GLM and RPG. Correlation coefficients were >0.99 for all analytes. LOQs were 0.009 μg/mL for MTF, 0.009 μg/mL for GPZ, 0.04 μg/mL for GLM, 0.124 μg/mL for PGZ, and 0.044 μg/mL for RPG. The developed method is specific, accurate, and suitable for the QC and routine analysis of the cited drugs in their pharmaceutical products.
Quantitative genotoxicity assays for analysis of medicinal plants: A systematic review.
Sponchiado, Graziela; Adam, Mônica Lucia; Silva, Caroline Dadalt; Soley, Bruna Silva; de Mello-Sampayo, Cristina; Cabrini, Daniela Almeida; Correr, Cassyano Januário; Otuki, Michel Fleith
2016-02-03
Medicinal plants are known to contain numerous biologically active compounds, and although they have proven pharmacological properties, they can cause harm, including DNA damage. Review the literature to evaluate the genotoxicity risk of medicinal plants, explore the genotoxicity assays most used and compare these to the current legal requirements. A quantitative systematic review of the literature, using the keywords "medicinal plants", "genotoxicity" and "mutagenicity", was undertakenQ to identify the types of assays most used to assess genotoxicity, and to evaluate the genotoxicity potential of medicinal plant extracts. The database searches retrieved 2289 records, 458 of which met the inclusion criteria. Evaluation of the selected articles showed a total of 24 different assays used for an assessment of medicinal plant extract genotoxicity. More than a quarter of those studies (28.4%) reported positive results for genotoxicity. This review demonstrates that a range of genotoxicity assay methods are used to evaluate the genotoxicity potential of medicinal plant extracts. The most used methods are those recommended by regulatory agencies. However, based on the current findings, in order to conduct a thorough study concerning the possible genotoxic effects of a medicinal plant, we indicate that it is important always to include bacterial and mammalian tests, with at least one in vivo assay. Also, these tests should be capable of detecting outcomes that include mutation induction, clastogenic and aneugenic effects, and structural chromosome abnormalities. In addition, the considerable rate of positive results detected in this analysis further supports the relevance of assessing the genotoxicity potential of medicinal plants. Copyright © 2016. Published by Elsevier Ireland Ltd.
Nie, Xuebiao; Liu, Wenjun; Zhang, Liping; Liu, Qing
2017-06-01
The genotoxicity of drinking water treated with 6 disinfection methods and the effects of disinfection conditions were investigated using the umu-test. The pretreatment procedure of samples for the umu-test was optimized for drinking water analysis. The results of the umu-test were in good correlation with those of the Ames-test. The genotoxicity and production of haloacetic acids (HAAs) were the highest for chlorinated samples. UV+chloramination is the safest disinfection method from the aspects of genotoxicity, HAA production and inactivation effects. For chloramination, the effects of the mass ratio of Cl 2 to N of chloramine on genotoxicity were also studied. The changes of genotoxicity were different from those of HAA production, which implied that HAA production cannot represent the genotoxic potential of water. The genotoxicity per chlorine decay of chlorination and chloramination had similar trends, indicating that the reaction of organic matters and chlorine made a great contribution to the genotoxicity. The results of this study are of engineering significance for optimizing the operation of waterworks. Copyright © 2016. Published by Elsevier B.V.
Pant, Kamala; Roden, Nicholas; Zhang, Charles; Bruce, Shannon; Wood, Craig; Pendino, Kimberly
2015-12-01
14-Hydroxycodeinone (14-HC) is an α,β-unsaturated ketone impurity found in oxycodone drug substance and has a structural alert for genotoxicity. 14-HC was tested in a combined Modified and Standard Comet Assay to determine if the slight decrease in % Tail DNA noted in a previously conducted Standard Comet Assay with 14-HC could be magnified to clarify if the response was due to cross-linking activity. One limitation of the Standard Comet Assay is that DNA cross-links cannot be reliably detected. However, under certain modified testing conditions, DNA cross-links and chemical moieties that elicit such cross-links can be elucidated. One such modification involves the induction of additional breakages of DNA strands by gamma or X-ray irradiation. To determine if 14-HC is a DNA crosslinker in vivo, a Modified Comet Assay was conducted using X-ray irradiation as the modification to visualize crosslinking activity. In this assay, 14-HC was administered orally to mice up to 320 mg/kg/day. Results showed a statistically significant reduction in percent tail DNA in duodenal cells at 320 mg/kg/day, with a nonstatistically significant but dose-related reduction in percent tail DNA also observed at the mid dose of 160 mg/kg/day. Similar decreases were not observed in cells from the liver or stomach, and no increases in percent tail DNA were noted for any tissue in the concomitantly conducted Standard Comet Assay. Taken together, 14-HC was identified as a cross-linking agent in the duodenum in the Modified Comet Assay. © 2015 Wiley Periodicals, Inc.
Gustavsson, Lillemor; Hollert, Henner; Jonsson, Sofie; van Bavel, Bert; Engwall, Magnus
2007-05-01
Sweden has prohibited the deposition of organic waste since January, 2005. Since 1 million tons of sludge is produced every year in Sweden and the capacity for incineration does not fill the demands, other methods of sludge management have to be introduced to a larger degree. One common method in the USA and parts of Europe is the use of wetlands to treat wastewater and sewage sludge. The capacity of reed beds to affect the toxicity of a complex mixture of nitroaromatics in sludge, however, is not fully elucidated. In this study, an industrial sludge containing explosives and pharmaceutical residues was therefore treated in artificial reed beds and the change in toxicity was studied. Nitroaromatic compounds, which are the main ingredients of many pharmaceuticals and explosives, are well known to cause cytotoxicity and genotoxicity. Recently performed studies have also showed that embryos of zebrafish (Danio rerio) are sensitive to nitroaromatic compounds. Therefore, we tested the sludge passing through constructed wetlands in order to detect any changes in levels of embryotoxicity, genotoxicity and dioxin-like activity (AhR-agonists). We also compared unplanted and planted systems in order to examine the impact of the root system on the fate of the toxicants. An industrial sludge containing a complex mixture of nitroaromatics was added daily to small-scale constructed wetlands (vertical flow), both unplanted and planted with Phragmites australis. Sludge with an average dry weight of 1.25%, was added with an average hydraulic loading rate of 1.2 L/day. Outgoing water was collected daily and stored at -20 degrees C. The artificial wetland sediment was Soxhlet extracted, followed by clean-up with multi-layer silica, or extracted by ultrasonic treatment, yielding one organic extract and one water extract of the same sample. Genotoxicity of the extracts was measured according to the ISO protocol for the umu-C genotoxicity assay (ISO/TC 147/SC 5/ WG9 N8), using Salmonella typhimurium TA1535/pSK1002 as test organism. Embryotoxicity and teratogenicity were studied using the fish egg assay with zebrafish (Danio rerio) and the dioxin-like activity was measured using the DR-CALUX assay. Chemical analyses of nitroaromatic compounds were performed using Solid Phase Micro Extraction (SPME) and GC-MS. Organic extracts of the bed material showed toxic potential in all three toxicity tests after two years of sludge loading. There was a difference between the planted and the unplanted beds, where the toxicity of organic extracts overall was higher in the bed material from the planted beds. The higher toxicity of the planted beds could have been caused by the higher levels of total carbon in the planted beds, which binds organic toxicants, and by enrichment caused by lower volumes of outgoing water from the planted beds. Developmental disorders were observed in zebrafish exposed directly in contact to bed material from unplanted beds, but not in fish exposed to bed material from planted beds. Hatching rates were slightly lower in zebrafish exposed to outgoing water from unplanted beds than in embryos exposed to outgoing water from planted beds. Genotoxicity in the outgoing water was below detection limit for both planted and unplanted beds. Most of the added toxicants via the sludge were unaccounted for in the outgoing water, suggesting that the beds had toxicant removal potential, although the mechanisms behind this remain unknown. During the experimental period, the beds received a sludge volume (dry weight) of around three times their own volume. In spite of this, the toxicity in the bed material was lower than in the sludge. Thus, the beds were probably able to actually decrease the toxicity of the added, sludge-associated toxicants. When testing the acetone extracts of the bed material, the planted bed showed a higher toxicity than the unplanted beds in all three toxicity tests. The toxicity of water extracts from the unplanted beds, detected by the fish egg assay, were higher than the water extracts from the planted beds. No genotoxicity was detected in outgoing water from either planted or unplanted beds. All this together indicates that the planted reed beds retained semi-lipophilic acetone-soluble toxic compounds from the sludge better than the unplanted beds, which tended to leak out more of the water soluble toxic compounds in the outgoing water. The compounds identified by SPME/GC in the outgoing water were not in sufficient concentrations to have caused induction in the genotoxicity test. This study has pointed out the benefits of using constructed wetlands receiving an industrial sludge containing a complex mixture of nitroaromatics to reduce toxicity in the outgoing water. The water from planted, constructed wetlands could therefore be directed to a recipient without further cleaning. The bed material should be investigated over a longer period of time in order to evaluate potential accumulation and leakage prior to proper usage or storage. The plants should be investigated in order to examine uptake and possible release when the plant biomass is degraded.
Benković, Goran; Skrlin, Ana; Madić, Tomislav; Debeljak, Zeljko; Medić-Šarić, Marica
2014-09-01
Current methods for determination of impurities with different charge-to-volume ratio are limited especially in terms of sensitivity and precision. The main goal of this research was to establish a quantitative method for determination of impurities with charges differing from that of recombinant human granulocyte colony-stimulating factor (rhG-CSF, filgrastim) with superior precision and sensitivity compared to existing methods. A CZE method has been developed, optimized, and validated for a purity assessment of filgrastim in liquid pharmaceutical formulations. Optimal separation of filgrastim from the related impurities with different charges was achieved on a 50 μm id fused-silica capillary of a total length of 80.5 cm. A BGE that contains 100 mM phosphoric acid adjusted to pH 7.0 with triethanolamine was used. The applied voltage was 20 kV while the temperature was maintained at 25°C. UV detection was set to 200 nm. Method was validated in terms of selectivity/specificity, linearity, precision, LOD, LOQ, stability, and robustness. Linearity was observed in the concentration range of 6-600 μg/mL and the LOQ was determined to be 0.3% relative to the concentration of filgrastim of 0.6 mg/mL. Other validation parameters were also found to be acceptable; thus the method was successfully applied for a quantitative purity assessment of filgrastim in a finished drug product. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of ionizing radiation on the stability of clarithromycin antibiotics
NASA Astrophysics Data System (ADS)
Salem, Issam Ben; Mezni, Mohamed; Khamassi, Mohamed Amine; Lagha, Afef; Hosni, Fawzi; Saidi, Mouldi
2018-04-01
The growing interest centered on treatment of pharmaceuticals by ionizing radiation arises from the clear advantages this process offers compared to other methods of sterilization. In this study, the effect of ionizing radiation on clarithromycin (CLA) powder commercially named Zeclar® was investigated. The analysis by HPLC confirms the stability of Zeclar® potency at 2, 5 and 25 kGy and no degradation products were observed. The anti-microbial assays revealed that the activity of irradiated clarithromycin at 2 and 5 kGy did not reduce against Staphylococus aureus ATCC 6538, Streptocoque B (Streptococcus agalactiae) Enterococcus feacium ATCC 19434 and Helicobacter pylori ATCC 43504 and stable during 30 days storage period. However, at 25 kGy, the antimicrobial activity of CLA was significantly reduced. The analysis of impurities by HPLC after irradiation at 5 kGy showed an acceptable impurity level as the content limit described by the European and United States Pharmacopeia. On the contrary, an unacceptable increase of single impurity was evidenced after irradiation at 25 kGy. Therefore, CLA is radiosensitive. After gamma irradiation, complex EPR lines were recorded confirming the presence of a large number of free radicals formed during the irradiation. Approximately 61 days after the irradiation of Zeclar®, the radical concentration decreased by 85% % and 95% respectively for 5 and 2 kGy. Numerical analysis of the time dependence of the integral amplitude of the measured EPR lines demonstrated good agreements between the experimental points and the properly fitted exponential first order function.
Xiao, Rui-Yang; Wang, Zijian; Wang, Chun-Xia; Yu, Guo; Zhu, Yong-Guan
2006-10-01
The present study evaluated the genotoxicity of field soils in the Tianjin area, one of the most industrialized contaminated areas in northeast China. The genotoxicity of organic extracts of 41 soils was assayed by an in vitro SOS/ umu bioassay with Salmonella typhimurium TA 1535/pSK 1002. From the 41 soil samples, 11 samples were selected to confirm the genotoxic effect by in vivo single-cell gel electrophoresis (comet assay) using earthworms (Eisenia fetida). The results obtained demonstrated that, in the in vitro assay, genotoxicity expressed as induction ratios (IR) ranged from 1.00 to 4.60, and in the in vivo assay, the genotoxicity expressed as tail moment (TM) varied from 14.6 to 57.8 microm. All samples with high genotoxicity assessed by the SOS/umu bioassay possessed significantly high genotoxic effects in the comet assay, and there was a correlation (R2 = 0.736, p < 0.05) between IR and TM in both bioassays. It is concluded that soils in the Tianjin area were seriously contaminated by organic genotoxicants and higher levels of genotoxic effects existed in soils in the urban area of Tianjin as well as in areas near the coastal towns in the northeast part of the city. It can be concluded that a combination of in vivo and in vitro bioassays as a powerful and efficient genotoxicity-assessing tool could facilitate the assessment of genotoxic risk at a regional scale.
Kagawa, Masataka; Hakoi, Kazuo; Yamamoto, Atsushi; Futakuchi, Mitsuru
1993-01-01
Reversibility of forestomach lesions induced by genotoxic and non‐genotoxic carcinogens was compared histopathologically. Groups of 30 to 33 male F344 rats were given dietary 0.1% 8‐nitroquinoline, dietary 0.4–0.2% 2‐(2‐furyl)‐3‐(5‐nitro‐2‐furyl)acrylamide, an intragastric dose of 20 mg/kg body weight N‐methyl‐N′‐nitro‐N‐nitrosoguanidine once a week, or 20 ppm N‐methylnitrosourethane in the drinking water as a genotoxic carcinogen, or 2% butylated hydroxyanisole, 2% caffeic acid, 2% sesamol or 2% 4‐methoxyphenol in the diet as a non‐genotoxic carcinogen for 24 weeks. Ten or 11 rats in each group were killed at week 24. Half of the remainder were maintained on basal diet alone for an additional 24 weeks and the other half were given the same chemical for 48 weeks, and then killed. Forestomach lesions induced by genotoxic carcinogens did not regress after removal of carcinogens. In contrast, simple or papillary hyperplasia (SPH), but not basal cell hyperplasia (BCH), induced by non‐genotoxic carcinogens clearly regressed after cessation of insult. SFH labeling indices in the non‐genotoxic carcinogen‐treated cases decreased after removal of the carcinogenic stimulus whereas BCH values were low irrespective of treatment. Atypical hyperplasia (AH), observed at high incidences in rats treated with genotoxic carcinogens, was also evident in animals receiving non‐genotoxic agents, even after their withdrawal, albeit at low incidences. AH labeling indices remained high even without continued insult. These results indicate that even with non‐genotoxic carcinogens, heritable alterations at the DNA level could occur during strong cell proliferation and result in AH development. This putative preneoplastic lesion might then progress to produce carcinomas. PMID:8276717
Medvedovici, Andrei; Albu, Florin; Farca, Alexandru; David, Victor
2004-01-27
A new method for the determination of 2-[(dimethylamino)methyl]cyclohexanone (DAMC) in Tramadol (as active substance or active ingredient in pharmaceutical formulations) is described. The method is based on the derivatisation of 2-[(dimethylamino)methyl]cyclohexanone with 2,4-dinitrophenylhydrazine (2,4-DNPH) in acidic conditions followed by a reversed-phase liquid chromatographic separation with UV detection. The method is simple, selective, quantitative and allows the determination of 2-[(dimethylamino)methyl]cyclohexanone at the low ppm level. The proposed method was validated with respect to selectivity, precision, linearity, accuracy and robustness.
Janssens, Raphael; Mandal, Mrinal Kanti; Dubey, Kashyap Kumar; Luis, Patricia
2017-12-01
The potential of photocatalytic membrane reactors (PMR) to degrade cytostatic drugs is presented in this work as an emerging technology for wastewater treatment. Cytostatic drugs are pharmaceutical compounds (PhCs) commonly used in cancer treatment. Such compounds and their metabolites, as well as their degraded by-products have genotoxic and mutagenic effects. A major challenge of cytostatic removal stands in the fact that most drugs are delivered to ambulant patients leading to diluted concentration in the municipal waste. Therefore safe strategies should be developed in order to collect and degrade the micro-pollutants using appropriate treatment technologies. Degradation of cytostatic compounds can be achieved with different conventional processes such as chemical oxidation, photolysis or photocatalysis but the treatment performances obtained are lower than the ones observed with slurry PMRs. Therefore the reasons why slurry PMRs may be considered as the next generation technology will be discussed in this work together with the limitations related to the mechanical abrasion of polymeric and ceramic membranes, catalyst suspension and interferences with the water matrix. Furthermore key recommendations are presented in order to develop a renewable energy powered water treatment based on long lifetime materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Hahn, H; Eder, E; Deininger, C
1991-01-01
1,3-Dichloro-2-propanol (1,3-DCP-OH, glycerol dichlorohydrin) is of great importance in many industrial processes and has been detected in foodstuffs, in particular in soup spices and instant soups. It has been shown to be carcinogenic, genotoxic and mutagenic. Its genotoxic mechanisms are, however, not yet entirely understood. We have investigated whether alcohol dehydrogenase (ADH) catalysed activation to the highly mutagenic and carcinogenic 1,3-dichloroacetone or formation of epichlorohydrin or other genotoxic compounds play a role for mutagenicity and genotoxicity. In our studies, no indications of ADH catalysed formation of 1,3-dichloropropane could be found, although we could demonstrate a clear activation by ADH in the case of 2-chloropropenol. Formation of allyl chloride could also be excluded. We found, however, clear evidence that epichlorohydrin formed chemically in the buffer and medium used in the test is responsible for genotoxicity. No indication was found that enzymatic formation of epichlorohydrin plays a role. Additional mutagenicity and genotoxicity studies with epichlorohydrin also confirmed the hypothesis that genotoxic effects of 1,3-DCP-OH depend on the chemical formation of epichlorohydrin.
GENOTOXICITY OF TOBACCO SMOKE AND TOBACCO SMOKE CONDENSATE: A REVIEW
Genotoxicity of Tobacco Smoke and Tobacco Smoke Condensate: A Review
Abstract
This report reviews the literature on the genotoxicity of main-stream tobacco smoke and cigarette smoke condensate (CSC) published since 1985. CSC is genotoxic in nearly all systems in which it h...
Aydın, Elanur; Türkez, Hasan; Hacımüftüoğlu, Fazıl; Tatar, Abdulgani; Geyikoğlu, Fatime
2017-07-01
Titanium nanoparticles (NPs) have very wide application areas such as paint, cosmetics, pharmaceuticals, and biomedical applications. And, to translate these nanomaterials to the clinic and industrial domains, their safety needs to be verified, particularly in terms of genotoxicity and cytotoxicity. Therefore, in this study, we aimed to investigate of cytotoxicity and changes in gene expression profiles influenced by commonly titanium (as titanium carbide, titanium carbo-nitride, titanium (II) oxide, titanium (III) oxide, titanium (IV) oxide, titanium nitride, titanium silicon oxide) NPs in human alveolar epithelial (HPAEpiC) and pharynx (HPPC) cell lines in vitro since inhalation is an important pathway for exposure to these NPs. HPAEpiC and HPPC cells were treated with titanium (0-100 µg/mL), NPs for 24 and 48 h, and then cytotoxicity was detected by, [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] (MTT), uptake of neutral red (NR) and lactate dehydrogenase (LDH) release assays, while genotoxicity was also analyzed by cDNA array - RT-PCR assay. According to the results of MTT, NR and LDH assays, all tested NPs induced cytotoxicity on both HPAEpiC and HPPC cells in a time- and dose-dependent manner. Determining and analyzing the gene expression profiles of HPAEpiC and HPPC cells, titanium NPs showed more changes in genes related to DNA damage or repair, oxidative stress, and apoptosis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2056-2064, 2017. © 2017 Wiley Periodicals, Inc.
Genotoxicity risk assessment of diversely substituted quinolines using the SOS chromotest.
Duran, Leidy Tatiana Díaz; Rincón, Nathalia Olivar; Galvis, Carlos Eduardo Puerto; Kouznetsov, Vladimir V; Lorenzo, Jorge Luis Fuentes
2015-03-01
Quinolines are aromatic nitrogen compounds with wide therapeutic potential to treat parasitic and microbial diseases. In this study, the genotoxicity of quinoline, 4-methylquinoline, 4-nitroquinoline-1-oxide (4-NQO), and diversely functionalized quinoline derivatives and the influence of the substituents (functional groups and/or atoms) on their genotoxicity were tested using the SOS chromotest. Quinoline derivatives that induce genotoxicity by the formation of an enamine epoxide structure did not induce the SOS response in Escherichia coli PQ37 cells, with the exception of 4-methylquinoline that was weakly genotoxic. The chemical nature of the substitution (C-5 to C-8: hydroxyl, nitro, methyl, isopropyl, chlorine, fluorine, and iodine atoms; C-2: phenyl and 3,4-methylenedioxyphenyl rings) of quinoline skeleton did not significantly modify compound genotoxicities; however, C-2 substitution with α-, β-, or γ-pyridinyl groups removed 4-methylquinoline genotoxicity. On the other hand, 4-NQO derivatives whose genotoxic mechanism involves reduction of the C-4 nitro group were strong inducers of the SOS response. Methyl and nitrophenyl substituents at C-2 of 4-NQO core affected the genotoxic potency of this molecule. The relevance of these results is discussed in relation to the potential use of the substituted quinolines. The work showed the sensitivity of SOS chromotest for studying structure-genotoxicity relationships and bioassay-guided quinoline synthesis. © 2013 Wiley Periodicals, Inc.
van der Leede, Bas-Jan; Doherty, Ann; Guérard, Melanie; Howe, Jonathan; O'Donovan, Mike; Plappert-Helbig, Ulla; Thybaud, Véronique
2014-12-01
In genotoxicity testing of pharmaceuticals the rodent alkaline comet assay is being increasingly used as a second in vivo assay in addition to the in vivo micronucleus assay to mitigate in vitro positive results as recommended by the ICH S2(R1) guideline. This paper summarizes a survey suggested by the Safety Working Party of European Medicines Agency (EMA), and conducted by the European Federation of Pharmaceutical Industries and Associations (EFPIA) to investigate the experience among European pharmaceutical companies by conducting the in vivo comet assay for regulatory purpose. A special focus was given on the typology of the obtained results and to identify potential difficulties encountered with the interpretation of study data. The participating companies reported a total of 147 studies (conducted in-house or outsourced) and shared the conclusion on the comet assay response for 136 studies. Most of the studies were negative (118/136). Only about 10% (14/136 studies) of the comet assays showed a positive response. None of the positive comet assay results were clearly associated with organ toxicity indicating that the positive responses are not due to cytotoxic effects of the compound in the tissue examined. The number of comet assays with an equivocal or inconclusive response was rare, respectively <1% (1/147 studies) and 2% (3/147 studies). In case additional information (e.g. repeat assay, organ toxicity, metabolism, tissue exposure) would have been available for evaluation, a final conclusion could most probably have been drawn for most or all of these studies. All (46) negative in vivo comet assays submitted alongside with a negative in vivo micronucleus assay were accepted by the regulatory authorities to mitigate a positive in vitro mammalian cell assay following the current ICH S2 guidance. The survey results demonstrate the robustness of the comet assay and the regulatory acceptance of the current ICH S2 guidance. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Genotoxicity of municipal landfill leachate on root tips of Vicia faba.
Sang, Nan; Li, Guangke
2004-06-13
The genotoxicity of municipal landfill leachate was studied using the Vicia faba root-tip cytogenetic bioassay. Results show that landfill leachates collected in different seasons decreased the mitotic index (MI) and caused significant increases of micronucleus (MN) frequencies and anaphase aberration (AA) frequencies in a concentration-dependent manner (concentration expressed as 'chemical oxygen demand' measured by the method of potassium dichromate oxidation (COD(Cr))). In addition, a seasonal difference in genotoxicity induced by leachate was observed. The results confirm that leachate is a genotoxic agent in plant cells and imply that exposure to leachate in the aquatic environment may pose a potential genotoxic risk to organisms. The results also show that the V. faba cytogenetic bioassay is efficient, simple and reproducible in genotoxicity studies of leachate, and that there is a correlation between the genotoxicity and the chemical measurement (COD(Cr)) of leachate.
Kwon, Jee Young; Koedrith, Preeyaporn; Seo, Young Rok
2014-01-01
Engineered nanoparticles (NPs) are widely used in many sectors, such as food, medicine, military, and sport, but their unique characteristics may cause deleterious health effects. Close attention is being paid to metal NP genotoxicity; however, NP genotoxic/carcinogenic effects and the underlying mechanisms remain to be elucidated. In this review, we address some metal and metal oxide NPs of interest and current genotoxicity tests in vitro and in vivo. Metal NPs can cause DNA damage such as chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations. We also discuss several parameters that may affect genotoxic response, including physicochemical properties, widely used assays/end point tests, and experimental conditions. Although potential biomarkers of nanogenotoxicity or carcinogenicity are suggested, inconsistent findings in the literature render results inconclusive due to a variety of factors. Advantages and limitations related to different methods for investigating genotoxicity are described, and future directions and recommendations for better understanding genotoxic potential are addressed. PMID:25565845
Lack of genotoxicity in vivo for food color additive Allura Red AC.
Bastaki, Maria; Farrell, Thomas; Bhusari, Sachin; Pant, Kamala; Kulkarni, Rohan
2017-07-01
Allura Red AC is an approved food color additive internationally with INS number 129, in the United States as food color subject to batch certification "Food, Drug, and Cosmetic" (FD&C) Red No. 40, and in Europe as food color additive with E number 129. In their evaluation of the color (2013), the European Food Safety Authority (EFSA) expressed concerns of potential genotoxicity, based primarily on one genotoxicity study that was not conducted according to Guidelines. The present in vivo genotoxicity study was conducted according to OECD Guidelines in response to EFSA's request for additional data. The animal species and strain, and the tissues examined were selected specifically to address the previously reported findings. The results show clear absence of genotoxic activity for Allura Red AC, in the bone marrow micronucleus assay and the Comet assay in the liver, stomach, and colon. These data addressed EFSA's concerns for genotoxicity. The Joint WHO/FAO Committee on Food Additives (JECFA) (2016) also reviewed the study and concluded that there is no genotoxicity concern for Allura Red AC. Negative findings in parallel genotoxicity studies on Tartrazine and Ponceau 4R (published separately) are consistent with lack of genotoxicity for azo dyes used as food colors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lack of genotoxicity in vivo for food color additive Tartrazine.
Bastaki, Maria; Farrell, Thomas; Bhusari, Sachin; Pant, Kamala; Kulkarni, Rohan
2017-07-01
Tartrazine is approved as a food color additive internationally with INS number 102, in the United States as food color subject to batch certification "Food, Drug, and Cosmetic" (FD&C) Yellow No. 5, and in Europe as food color additive with E number 102. In their evaluation of the color (2013), the European Food Safety Authority (EFSA) expressed concerns of potential genotoxicity, based primarily on one genotoxicity study that was not conducted according to Guidelines. The present in vivo genotoxicity study was conducted according to OECD Guidelines in response to EFSA's request for additional data. The animal species and strain, and the tissues examined were selected specifically to address the previously reported findings. The results of this study show clear absence of genotoxic activity for Tartrazine, in the bone marrow micronucleus assay and the Comet assay in the liver, stomach, and colon. These data addressed EFSA's concerns for genotoxicity. The Joint WHO/FAO Committee on Food Additives (JECFA) (2016) also reviewed these data and concluded that there is no genotoxicity concern for Tartrazine. Negative findings in parallel genotoxicity studies on Allura Red AC and Ponceau 4R (published separately) are consistent with lack of genotoxicity for azo dyes used as food colors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fernandes, L M; Garcez, W S; Mantovani, M S; Figueiredo, P O; Fernandes, C A; Garcez, F R; Guterres, Z R
2013-09-01
Roots of Galianthe thalictroides K. Schum. (Rubiaceae) are used in folk medicine in the State of Mato Grosso do Sul, Brazil, for treating and preventing cancer. To gain information about the genotoxicity of extracts (aqueous and EtOH), the CHCl₃ phase resulting from partition of the EtOH extract and the indole monoterpene alkaloid 1 obtained from this plant. The genotoxicity of 1 and extracts was evaluated in vivo through the Drosophila melanogaster wing Somatic Mutation and Recombination Test - SMART, while in vitro cytotoxic (MTT) and Comet assays were performed only with alkaloid 1. The results obtained with the SMART test indicated that the aqueous extract had no genotoxic activity. The EtOH extract was not genotoxic to ST descendants but genotoxic to HB ones. The CHCl₃ phase was genotoxic and cytotoxic. Alkaloid 1 showed significant mutational events with SMART, in the cytotoxicity assay (MTT), it showed a high cytotoxicity for human hepatoma cells (HepG2), whereas for the Comet assay, not showing genotoxic activity. The ethanol extract was shown to be genotoxic to HB descendants in the SMART assay, while the results obtained in this test for the monoterpene indole alkaloid 1 isolated from this extract. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fecal water genotoxicity in healthy free-living young Italian people.
Daniela, Erba; Sara, Soldi; Marcella, Malavolti; Giovanni, Aragone; Meynier, Alexandra; Sophie, Vinoy; Cristina, Casiraghi M
2014-02-01
Dietary habit affects the composition of human feces thus determining intestinal environment and exposure of colon mucosa to risk factors. Fecal water (FW) citotoxicity and genotoxicity were investigated in 33 healthy young Italian people, as well as the relationship between genotoxicity and nutrient intake or microflora composition. Two fecal samples were collected at 2 weeks apart and 3-d dietary diary was recorded for each volunteer. Cytotoxicity was measured using the Trypan Blue Dye Exclusion assay and genotoxicity using the Comet Assay (alkaline single-cell electrophoresis). Fecal bifidobacteria, total microbial count and nutrient intakes were also assessed. High intra- and inter-variability in genotoxicity data and in bacteria counts were found. None of the FW samples were citotoxic, but 90% of FW samples were genotoxic. Seventy five percent indicated intermediate and 15% were highly genotoxic. There was a different sex-related distribution. Genotoxicity was positively correlated to the total lipid intake in females and to the bifidobacteria/total bacteria count ratio in male volunteers. These results demonstrate that the majority of FW samples isolated from free-living Italian people show intermediate level of genotoxicity and sustain a relation between this possible non-invasive marker of colorectal cancer risk with both dietary habits and colonic ecosystem. Copyright © 2013 Elsevier Ltd. All rights reserved.
Narayana, M B V; Chandrasekhar, K B; Rao, B M
2014-09-01
A validated specific stability-indicating reverse-phase liquid chromatographic method was developed for the quantitative determination of Ambrisentan as well as its related substances in bulk samples, pharmaceutical dosage forms in the presence of degradation products and its related impurities. Forced degradation studies were performed on bulk samples of Ambrisentan as per the ICH-prescribed stress conditions using acid, base, oxidative, thermal stress and photolytic degradation to show the stability-indicating power of the LC method. Significant degradation in acidic, basic stress conditions was observed and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from the forced degradation studies and the impurity-spiked solution. Good resolution between the peaks corresponds to Ambrisentan-related impurities and degradation products from the analyte were achieved on a SunFire C18 column using a mobile phase consisting of a mixture of potassium dihydrogen orthophosphate at a pH adjusted to 2.5 with ortho-phosphoric acid in water and a mixture of acetonitrile:methanol using a simple linear gradient. The detection was carried out at 225 nm. The limit of detection and the limit of quantification for the Ambrisentan and its related impurities were established. The stressed test solutions were assayed against the qualified working standard of Ambrisentan and the mass balance in each case was between 98.9 and 100.3%, indicating that the developed LC method was stability indicating. Validation of the developed LC method was carried out as per the ICH requirements. The developed method was found to be suitable to check the quality of bulk samples of Ambrisentan at the time of batch release and also during its storage (long-term and accelerated stability). © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Broeckhoven, K.; Cabooter, D.; Desmet, G.
2012-01-01
The reintroduction of superficially porous particles has resulted in a leap forward for the separation performance in liquid chromatography. The underlying reasons for the higher efficiency of columns packed with these particles are discussed. The performance of the newly introduced 5 μm superficially porous particles is evaluated and compared to 2.7 μm superficially porous and 3.5 and 5 μm fully porous columns using typical test compounds (alkylphenones) and a relevant pharmaceutical compound (impurity of amoxicillin). The 5 μm superficially porous particles provide a superior kinetic performance compared to both the 3.5 and 5 μm fully porous particles over the entire relevant range of separation conditions. The performance of the superficially porous particles, however, appears to depend strongly on retention and analyte properties, emphasizing the importance of comparing different columns under realistic conditions (high enough k) and using the compound of interest. PMID:29403833
Arzhantsev, Sergey; Li, Xiang; Kauffman, John F
2011-02-01
We introduce a new method for analysis of X-ray fluorescence (XRF) spectra based on continuous wavelet transform filters, and the method is applied to the determination of toxic metals in pharmaceutical materials using hand-held XRF spectrometers. The method uses the continuous wavelet transform to filter the signal and noise components of the spectrum. We present a limit test that compares the wavelet domain signal-to-noise ratios at the energies of the elements of interest to an empirically determined signal-to-noise decision threshold. The limit test is advantageous because it does not require the user to measure calibration samples prior to measurement, though system suitability tests are still recommended. The limit test was evaluated in a collaborative study that involved five different hand-held XRF spectrometers used by multiple analysts in six separate laboratories across the United States. In total, more than 1200 measurements were performed. The detection limits estimated for arsenic, lead, mercury, and chromium were 8, 14, 20, and 150 μg/g, respectively.
High throughput screening of active pharmaceutical ingredients by UPLC.
Al-Sayah, Mohammad A; Rizos, Panagiota; Antonucci, Vincent; Wu, Naijun
2008-07-01
Ultra performance LC (UPLC) was evaluated as an efficient screening approach to facilitate method development for drug candidates. Three stationary phases were screened: C-18, phenyl, and Shield RP 18 with column dimensions of 150 mm x 2.1 mm, 1.7 microm, which should theoretically generate 35,000 plates or 175% of the typical column plate count of a conventional 250 mm x 4.6 mm, 5 microm particle column. Thirteen different active pharmaceutical ingredients (APIs) were screened using this column set with a standardized mobile-phase gradient. The UPLC method selectivity results were compared to those obtained for these compounds via methods developed through laborious trial and error screening experiments using numerous conventional HPLC mobile and stationary phases. Peak capacity was compared for columns packed with 5 microm particles and columns packed with 1.7 microm particles. The impurities screened by UPLC were confirmed by LC/MS. The results demonstrate that simple, high efficiency UPLC gradients are a feasible and productive alternative to more conventional multiparametric chromatographic screening approaches for many compounds in the early stages of drug development.
Kljajic, Alen; Bester-Rogac, Marija; Klobcar, Andrej; Zupet, Rok; Pejovnik, Stane
2013-02-01
The active pharmaceutical ingredient orlistat is usually manufactured using a semi-synthetic procedure, producing crude product and complex mixtures of highly related impurities with minimal side-chain structure variability. It is therefore crucial for the overall success of industrial/pharmaceutical application to develop an effective purification process. In this communication, we present the newly developed water-in-oil reversed micelles and microemulsion system-based crystallization process. Physiochemical properties of the presented crystallization media were varied through surfactants and water composition, and the impact on efficiency was measured through final variation of these two parameters. Using precisely defined properties of the dispersed water phase in crystallization media, a highly efficient separation process in terms of selectivity and yield was developed. Small-angle X-ray scattering, high-performance liquid chromatography, mass spectrometry, and scanning electron microscopy were used to monitor and analyze the separation processes and orlistat products obtained. Typical process characteristics, especially selectivity and yield in regard to reference examples, were compared and discussed. Copyright © 2012 Wiley Periodicals, Inc.
Brusick, David; Aardema, Marilyn; Kier, Larry; Kirkland, David; Williams, Gary
2016-09-01
In 2015, the International Agency for Research on Cancer (IARC) published a monograph concluding there was strong evidence for genotoxicity of glyphosate and glyphosate formulations and moderate evidence for genotoxicity of the metabolite aminomethylphosphonic acid (AMPA). These conclusions contradicted earlier extensive reviews supporting the lack of genotoxicity of glyphosate and glyphosate formulations. The IARC Monograph concluded there was strong evidence of induction of oxidative stress by glyphosate, glyphosate formulations, and AMPA. The Expert Panel reviewed the genotoxicity and oxidative stress data considered in the IARC Monograph, together with other available data not considered by IARC. The Expert Panel defined and used a weight of evidence (WoE) approach that included ranking of studies and endpoints by the strength of their linkage to events associated with carcinogenic mechanisms. Importantly, the Expert Panel concluded that there was sufficient information available from a very large number of regulatory genotoxicity studies that should have been considered by IARC. The WoE approach, the inclusion of all relevant regulatory studies, and some differences in interpretation of individual studies led to significantly different conclusions by the Expert Panel compared with the IARC Monograph. The Expert Panel concluded that glyphosate, glyphosate formulations, and AMPA do not pose a genotoxic hazard and the data do not support the IARC Monograph genotoxicity evaluation. With respect to carcinogenicity classification and mechanism, the Expert Panel concluded that evidence relating to an oxidative stress mechanism of carcinogenicity was largely unconvincing and that the data profiles were not consistent with the characteristics of genotoxic carcinogens.
Henry, Teresa R; Penn, Lara D; Conerty, Jason R; Wright, Francesca E; Gorman, Gregory; Pack, Brian W
2016-11-01
Non-clinical dose formulations (also known as pre-clinical or GLP formulations) play a key role in early drug development. These formulations are used to introduce active pharmaceutical ingredients (APIs) into test organisms for both pharmacokinetic and toxicological studies. Since these studies are ultimately used to support dose and safety ranges in human studies, it is important to understand not only the concentration and PK/PD of the active ingredient but also to generate safety data for likely process impurities and degradation products of the active ingredient. As such, many in the industry have chosen to develop and validate methods which can accurately detect and quantify the active ingredient along with impurities and degradation products. Such methods often provide trendable results which are predictive of stability, thus leading to the name; stability indicating methods. This document provides an overview of best practices for those choosing to include development and validation of such methods as part of their non-clinical drug development program. This document is intended to support teams who are either new to stability indicating method development and validation or who are less familiar with the requirements of validation due to their position within the product development life cycle.
A novel toxicogenomics-based approach to categorize (non-)genotoxic carcinogens.
Schaap, Mirjam M; Wackers, Paul F K; Zwart, Edwin P; Huijskens, Ilse; Jonker, Martijs J; Hendriks, Giel; Breit, Timo M; van Steeg, Harry; van de Water, Bob; Luijten, Mirjam
2015-12-01
Alternative methods to detect non-genotoxic carcinogens are urgently needed, as this class of carcinogens goes undetected in the current testing strategy for carcinogenicity under REACH. A complicating factor is that non-genotoxic carcinogens act through several distinctive modes of action, which makes prediction of their carcinogenic property difficult. We have recently demonstrated that gene expression profiling in primary mouse hepatocytes is a useful approach to categorize non-genotoxic carcinogens according to their modes of action. In the current study, we improved the methods used for analysis and added mouse embryonic stem cells as a second in vitro test system, because of their features complementary to hepatocytes. Our approach involved an unsupervised analysis based on the 30 most significantly up- and down-regulated genes per chemical. Mouse embryonic stem cells and primary mouse hepatocytes were exposed to a selected set of chemicals and subsequently subjected to gene expression profiling. We focused on non-genotoxic carcinogens, but also included genotoxic carcinogens and non-carcinogens to test the robustness of this approach. Application of the optimized comparison approach resulted in improved categorization of non-genotoxic carcinogens. Mouse embryonic stem cells were a useful addition, especially for genotoxic substances, but also for detection of non-genotoxic carcinogens that went undetected by primary hepatocytes. The approach presented here is an important step forward to categorize chemicals, especially those that are carcinogenic.
Dissecting modes of action of non-genotoxic carcinogens in primary mouse hepatocytes.
Schaap, Mirjam M; Zwart, Edwin P; Wackers, Paul F K; Huijskens, Ilse; van de Water, Bob; Breit, Timo M; van Steeg, Harry; Jonker, Martijs J; Luijten, Mirjam
2012-11-01
Under REACH, the European Community Regulation on chemicals, the testing strategy for carcinogenicity is based on in vitro and in vivo genotoxicity assays. Given that non-genotoxic carcinogens are negative for genotoxicity and chronic bioassays are no longer regularly performed, this class of carcinogens will go undetected. Therefore, test systems detecting non-genotoxic carcinogens, or even better their modes of action, are required. Here, we investigated whether gene expression profiling in primary hepatocytes can be used to distinguish different modes of action of non-genotoxic carcinogens. For this, primary mouse hepatocytes were exposed to 16 non-genotoxic carcinogens with diverse modes of action. Upon profiling, pathway analysis was performed to obtain insight into the biological relevance of the observed changes in gene expression. Subsequently, both a supervised and an unsupervised comparison approach were applied to recognize the modes of action at the transcriptomic level. These analyses resulted in the detection of three of eight compound classes, that is, peroxisome proliferators, metalloids and skin tumor promotors. In conclusion, gene expression profiles in primary hepatocytes, at least in rodent hepatocytes, appear to be useful to detect some, certainly not all, modes of action of non-genotoxic carcinogens.
A comparison of genotoxicity change in reclaimed wastewater from different disinfection processes.
Chai, Qiwan; Hu, Allen; Qian, Yukun; Ao, Xiuwei; Liu, Wenjun; Yang, Hongwei; Xie, Yuefeng F
2018-01-01
Effluents before disinfection from four wastewater reclamation plants were treated with chlorine (Cl 2 ), ozone (O 3 ), chlorine dioxide (ClO 2 ), medium-pressure ultraviolet (MPUV) and four different combinations of the above, to evaluate the effect of disinfection processes on the genotoxicity removal by the SOS/umu test. Results showed that the genotoxicity increased after MPUV irradiation (10-100 mJ/cm 2 ), but declined when adopting other disinfection processes. The effectiveness of genotoxicity reduction by five chemical disinfectants was identified as: O 3 > pre-ozonation with Cl 2 ≈ ClO 2 > combination of ClO 2 and Cl 2 > Cl 2 . The sequential combination of MPUV, Cl 2 and O 3 reduced the genotoxicity to a level similar to the source water. The influence of differential disinfection process varied on iodinated wastewater, which is closely related to the competitive reactions between disinfectants, iodine and dissolved organic matters. The removal of genotoxic pollutants and the formation of genotoxic disinfection by-products are the two major factors that lead to the change in genotoxicity during disinfection. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin
2014-01-01
DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag+-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science.
Establishing best practise in the application of expert review of mutagenicity under ICH M7.
Barber, Chris; Amberg, Alexander; Custer, Laura; Dobo, Krista L; Glowienke, Susanne; Van Gompel, Jacky; Gutsell, Steve; Harvey, Jim; Honma, Masamitsu; Kenyon, Michelle O; Kruhlak, Naomi; Muster, Wolfgang; Stavitskaya, Lidiya; Teasdale, Andrew; Vessey, Jonathan; Wichard, Joerg
2015-10-01
The ICH M7 guidelines for the assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals allows for the consideration of in silico predictions in place of in vitro studies. This represents a significant advance in the acceptance of (Q)SAR models and has resulted from positive interactions between modellers, regulatory agencies and industry with a shared purpose of developing effective processes to minimise risk. This paper discusses key scientific principles that should be applied when evaluating in silico predictions with a focus on accuracy and scientific rigour that will support a consistent and practical route to regulatory submission. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Qing; Zhang, Li-Ping; Liu, Wen-Jun; Nie, Xue-Biao; Zhang, Su-Xia; Zhang, Shun
2010-01-01
In this study, the effects of disinfectant dosage, reaction time and the ratio of Cl2 to N of disinfectant on genotoxicity of effluent of ozone-biological activated carbon (O3-BAC) during chlorine or chloramine disinfection were investigated using umu-test. It was found that, the genotoxicity of effluent of O3-BAC before disinfection ranged from 20-70 ng/L, and it increased after disinfection by chlorine or chloramines. With the same reaction time(24 h), genotoxicity after chlorination (40-95 ng/L) was higher than that after chloramination (20-40 ng/L) under same initial dosage. For chlorination, with initial dosage increasing from 0 mg/L to 10 mg/L, genotoxicity increased firstly, and got the maximum value at about 0.5-1 mg/L dosage, then decreased and got the minimum value at about 3-5 mg/L dosage, and finally increased again. For chloramination, genotoxicity didn't change that much. With the dosage of 3 mg/L and reaction time increasing from 0 h to 72 h, no matter for chlorine or chloramines disinfection, genotoxicity of effluent of O3-BAC both increased firstly, and got the maximum value at about 2 h, then decreased and got the minimum value at about 18 h, and finally increased again, and genotoxicity after chlorine disinfection (83-120 ng/L) was higher than that after chloramines disinfection (20-62 ng/L) under same reaction time. Further more, effects of the different ratios of Cl2 to N of disinfectant on genotoxicity of effluent of O3-BAC were also studied. Results of this study demonstrate that under test conditions, chloramine disinfection is safer than chlorine disinfection in the aspect of genotoxicity for drinking water, and the changes of genotoxicity are different from those of total HAAs.
Kang, Seung Hun; Kwon, Jee Young; Lee, Jong Kwon; Seo, Young Rok
2013-01-01
Genotoxic events have been known as crucial step in the initiation of cancer. To assess the risk of cancer, genotoxicity assays, including comet, micronucleus (MN), chromosomal aberration, bacterial reverse, and sister chromatid exchange assay, can be performed. Compared with in vitro genotoxicity assay, in vivo genotoxicity assay has been used to verify in vitro assay result and definitely provide biological significance for certain organs or cell types. The comet assay can detect DNA strand breaks as markers of genotoxicity. Methods of the in vivo comet assay have been established by Japanese Center for the Validation of Alternative Methods (JaCVAM) validation studies depending on tissue and sample types. The MN can be initiated by segregation error and lagging acentric chromosome fragment. Methods of the in vivo MN assay have been established by Organization for Economic Co-operation and Development (OECD) test guidelines and many studies. Combining the in vivo comet and MN assay has been regarded as useful methodology for evaluating genetic damage, and it has been used in the assessment of potential carcinogenicity by complementarily presenting two distinct endpoints of the in vivo genotoxicity individual test. Few studies have investigated the quantitative relation between in vivo genotoxicity results and carcinogenicity. Extensive studies emphasizes that positive correlation is detectable. This review summarizes the results of the in vivo comet and MN assays that have investigated the genotoxicity of carcinogens as classified by the International Agency for Research on Cancer (IARC) carcinogenicity database. As a result, these genotoxicity data may provide meaningful information for the assessment of potential carcinogenicity and for implementation in the prevention of cancer. PMID:25337557
Ireno, Ivanildce C; Baumann, Cindy; Stöber, Regina; Hengstler, Jan G; Wiesmüller, Lisa
2014-05-01
In vitro genotoxicity tests are known to suffer from several shortcomings, mammalian cell-based assays, in particular, from low specificities. Following a novel concept of genotoxicity detection, we developed a fluorescence-based method in living human cells. The assay quantifies DNA recombination events triggered by DNA double-strand breaks and damage-induced replication fork stalling predicted to detect a broad spectrum of genotoxic modes of action. To maximize sensitivities, we engineered a DNA substrate encompassing a chemoresponsive element from the human genome. Using this substrate, we screened various human tumor and non-transformed cell types differing in the DNA damage response, which revealed that detection of genotoxic carcinogens was independent of the p53 status but abrogated by apoptosis. Cell types enabling robust and sensitive genotoxicity detection were selected for the generation of reporter clones with chromosomally integrated DNA recombination substrate. Reporter cell lines were scrutinized with 21 compounds, stratified into five sets according to the established categories for identification of carcinogenic compounds: genotoxic carcinogens ("true positives"), non-genotoxic carcinogens, compounds without genotoxic or carcinogenic effect ("true negatives") and non-carcinogenic compounds, which have been reported to induce chromosomal aberrations or mutations in mammalian cell-based assays ("false positives"). Our results document detection of genotoxic carcinogens in independent cell clones and at levels of cellular toxicities <60 % with a sensitivity of >85 %, specificity of ≥90 % and detection of false-positive compounds <17 %. Importantly, through testing cyclophosphamide in combination with primary hepatocyte cultures, we additionally provide proof-of-concept for the identification of carcinogens requiring metabolic activation using this novel assay system.
Silva, M R; Alvarez, C M; García, P M; Ruiz, M A
2014-12-12
The genus Lupinus is widely distributed. Its seeds are used for animal and human food, and Lupinus possesses pharmacological potential because of its high content of quinolizidine alkaloids and flavonoids; however, there is little available information about its genotoxicity. We used the comet assay and staminal nuclei of Tradescantia (clone 4430) to evaluate the in vitro genotoxicity of 4 concentrations (0.01, 0.1, 0.5, and 1.0 mM) of alkaloid extracts of Lupinus mexicanus and Lupinus montanus, flavonoids of L. mexicanus, and commercial sparteine; nitrosodiethylamine was used as a positive control and untreated nuclei were used as a negative control. All concentrations of L. mexicanus and L. montanus showed significant genotoxic activity (P ≤ 0.05). A similar behavior was observed for flavonoid extracts of L. montanus except the 1.0 mM concentration. Sparteine showed genotoxic activity only at 0.5 mM. The order of genotoxicity of the compounds studied was as follows: L. mexicanus > L. montanus > flavonoids of L. montanus > sparteine. There is evident genotoxic activity in the compounds that were studied, particularly at lower concentrations (0.01 and 0.1 mM). Given the limited information about the genotoxicity of the compounds of L. mexicanus and L. montanus, further studies are necessary.
Soil genotoxicity assessment: a new stategy based on biomolecular tools and plant bioindicators.
Citterio, Sandra; Aina, Roberta; Labra, Massimo; Ghiani, Alessandra; Fumagalli, Pietro; Sgorbati, Sergio; Santagostino, Angela
2002-06-15
The setting up of efficient early warning systems is a challenge to research for preventing environmental alteration and human disease. In this paper, we report the development and the field application of a new biomonitoring methodology for assessing soil genotoxicity. In the first part, the use of amplified fragment length polymorphism and flow cytometry techniques to detect DNA damage induced by soils artificially contaminated with heavy metals as potentially genotoxic compounds is explained. Results show that the combination of the two techniques leads to efficient detection of the sublethal genotoxic effect induced in the plant bioindicator by contaminated soil. By contrast, the classic mortality, root, and shoot growth vegetative endpoints prove inappropriate for assessing soil genotoxicity because, although they cause genotoxic damage, some heavy metals do not affect sentinel plant development negatively. The statistical elaboration of the data obtained led to the development of a statistical predictive model which differentiates four different levels of soil genotoxic pollution and can be used everywhere. The second part deals with the application of the biomonitoring protocol in the genotoxic assessment of two areas surrounding a steelworks in northern Italy and the effectiveness of this methodology. In this particular case, in these areas, the predictive model reveals a pollution level strictly correlated to the heavy metal concentrations revealed by traditional chemical analysis.
Quintero, Nathalia; Stashenko, Elena E; Fuentes, Jorge Luis
2012-04-01
In this work, the toxicity and genotoxicity of organic solvents (acetone, carbon tetrachloride, dichloromethane, dimethylsulfoxide, ethanol, ether and methanol) were studied using the SOS chromotest. The influence of these solvents on the direct genotoxicity induced by the mutagens mitomycin C (MMC) and 4-nitroquinoline-1-oxide (4-NQO) were also investigated. None of the solvents were genotoxic in Escherichia coli PQ37. However, based on the inhibition of protein synthesis assessed by constitutive alkaline phosphatase activity, some solvents (carbon tetrachloride, dimethylsulfoxide, ethanol and ether) were toxic and incompatible with the SOS chromotest. Solvents that were neither toxic nor genotoxic to E. coli (acetone, dichloromethane and methanol) significantly reduced the genotoxicity of MMC and 4-NQO. When these solvents were used to dissolve vitamin E they increased the antigenotoxic activity of this compound, possibly through additive or synergistic effects. The relevance of these results is discussed in relation to antigenotoxic studies. These data indicate the need for careful selection of an appropriate diluent for the SOS chromotest since some solvents can modulate genotoxicity and antigenotoxicity.
Wagner, Elizabeth D; Hsu, Kang-Mei; Lagunas, Angelica; Mitch, William A; Plewa, Michael J
2012-01-24
Nitrosamine water disinfection byproducts (DBPs) are an emerging class of non-halogenated, nitrogen-containing water contaminants. Five nitrosamine DBPs were analyzed for genotoxicity (N-nitrosodimethylamine (NDMA), N-nitrosopiperidine (NPIP), N-nitrosopyrrolidine (NPYR), N-nitrosomorpholine (NMOR) and N-nitrosodiphenylamine (NDPhA). Using Salmonella typhimurium strain YG7108 the descending rank order of mutagenicity was NDMA>NPIP>NMOR>NPYR; NDPhA was not mutagenic. We developed and calibrated an exogenous S9 mix that was highly effective in activating NDMA in Chinese hamster ovary (CHO) cells using the SCGE (Comet) assay. The descending rank order for genotoxicity was NDMA>NPIP>NMOR. NDPhA was genotoxic only at one concentration and NPYR was not genotoxic. The genotoxic potencies in S. typhimurium and CHO cells were highly correlated. Based on their comparative genotoxicity attention should be focused on the generation and occurrence of NDMA, NPIP and NMOR. Current drinking water disinfection processes may need to be modified such that the generation of nitrosamine DBPs is effectively limited in order to protect the environment and the public health. © 2011 Elsevier B.V. All rights reserved.
Testing chemical carcinogenicity by using a transcriptomics HepaRG-based model?
Doktorova, T. Y.; Yildirimman, Reha; Ceelen, Liesbeth; Vilardell, Mireia; Vanhaecke, Tamara; Vinken, Mathieu; Ates, Gamze; Heymans, Anja; Gmuender, Hans; Bort, Roque; Corvi, Raffaella; Phrakonkham, Pascal; Li, Ruoya; Mouchet, Nicolas; Chesne, Christophe; van Delft, Joost; Kleinjans, Jos; Castell, Jose; Herwig, Ralf; Rogiers, Vera
2014-01-01
The EU FP6 project carcinoGENOMICS explored the combination of toxicogenomics and in vitro cell culture models for identifying organotypical genotoxic- and non-genotoxic carcinogen-specific gene signatures. Here the performance of its gene classifier, derived from exposure of metabolically competent human HepaRG cells to prototypical non-carcinogens (10 compounds) and hepatocarcinogens (20 compounds), is reported. Analysis of the data at the gene and the pathway level by using independent biostatistical approaches showed a distinct separation of genotoxic from non-genotoxic hepatocarcinogens and non-carcinogens (up to 88 % correct prediction). The most characteristic pathway responding to genotoxic exposure was DNA damage. Interlaboratory reproducibility was assessed by blindly testing of three compounds, from the set of 30 compounds, by three independent laboratories. Subsequent classification of these compounds resulted in correct prediction of the genotoxicants. As expected, results on the non-genotoxic carcinogens and the non-carcinogens were less predictive. In conclusion, the combination of transcriptomics with the HepaRG in vitro cell model provides a potential weight of evidence approach for the evaluation of the genotoxic potential of chemical substances. PMID:26417288
Safety and Toxicology of Magnolol and Honokiol.
Sarrica, Andrea; Kirika, Natalja; Romeo, Margherita; Salmona, Mario; Diomede, Luisa
2018-06-20
Magnolia officinalis and Magnolia obovata bark extracts have been used for thousands of years in Chinese and Japanese traditional medicines and are still widely employed as herbal preparations for their sedative, antioxidant, anti-inflammatory, antibiotic, and antispastic effects. Neolignans, particularly magnolol and honokiol, are the main substances responsible for the beneficial properties of the magnolia bark extract (MBE). The content of magnolol and honokiol in MBE depends on different factors, including the Magnolia plant species, the area of origin, the part of the plant employed, and the method used to prepare the extract. The biological and pharmacological activities of magnolol and honokiol have been extensively investigated. Here we review the safety and toxicological properties of magnolol and honokiol as pure substances or as components of concentrated MBE, including the potential side-effects in humans after oral intake. In vitro and in vivo genotoxicity studies indicated that concentrated MBE has no mutagenic and genotoxic potential, while a subchronic study performed according to OECD (Organisation for Economic Co-operation and Development) guidelines established a no adverse effect level for concentrated MBE > 240 mg/kg b.w/d. Similar to other dietary polyphenols, magnolol and honokiol are subject to glucuronidation, and despite a relatively quick clearance, an interaction with pharmaceutical active principles or other herbal constituents cannot be excluded. However, intervention trials employing concentrated MBE for up to 1 y did not report adverse effects. In conclusion, over the recent years different food safety authorities evaluated magnolol and honokiol and considered them safe. Georg Thieme Verlag KG Stuttgart · New York.
Experiences with the in vivo and in vitro comet assay in regulatory testing.
Frötschl, Roland
2015-01-01
The in vivo comet assay has recently been implemented into regulatory genotoxicity testing of pharmaceuticals with inclusion into the ICH S2R1 guidance. Regulatory genotoxicity testing aims to detect DNA alterations in form of gene mutations, larger scale chromosomal damage and recombination and aneuploidy. The ICH S2R1 guideline offers two options of standard batteries of tests for the detection of these endpoints. Both options start with an AMES assay and option 1 includes an in vitro mammalian cell assay and an in vivo micronucleus assay in rodent, whereas option 2 includes an in vivo micronucleus assay in bone marrow in rodent and a second in vivo assay in a second tissue with a second endpoint. The test recommended as second in vivo test is the comet assay in rat liver. The in vivo comet assay is considered as mature enough to ensure reliable detection of relevant in vivo genotoxicants in combination with the micronucleus test in bone marrow and the AMES assay. Although lots of research papers have been published using the in vitro comet assay, the in vitro version has not been implemented into official regulatory testing guidelines. A survey of the years 1999-2014 revealed 27 in vivo comet assays submitted to BfArM with market authorisation procedures, European and national advice procedures and clinical trial applications. In three procedures, in vitro comet assays had been submitted within the genetic toxicology packages. © The Author 2014. Published by Oxford University Press on behalf of the Mutagenesis Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Mokdad Bzeouich, Imen; Mustapha, Nadia; Maatouk, Mouna; Ghedira, Kamel; Ghoul, Mohamed; Chekir-Ghedira, Leila
2016-12-01
Mitomycin C is one of the most effective chemotherapeutic drugs against various solid tumors. However, despite its wide spectrum of clinical benefits, this agent is capable of inducing various types of genotoxicity. In this study, we investigated the effect of esculin and its oligomer fractions (E1, E2 and E3) against mitomycin C induced genotoxicity in liver and kidney cells isolated from Balb/C mice using the comet assay. Esculin and its oligomer fractions were not genotoxic at the tested doses (20 mg/kg and 40 mg/kg b.w). A significant decrease in DNA damages was observed, suggesting a protective role of esculin and its oligomer fractions against the genotoxicity induced by mitomycin C on liver and kidney cells. Moreover, esculin and its oligomer fractions did not induce an increase of malondialdehyde levels. Copyright © 2016 Elsevier Inc. All rights reserved.
Evaluation of the in vivo genotoxicity of Allura Red AC (Food Red No. 40).
Honma, Masamitsu
2015-10-01
Allura Red AC (Food Red No. 40) is a red azo dye that is used for food coloring in beverage and confectionary products. However, its genotoxic properties remain controversial. To clarify the in vivo genotoxicity, we treated mice with Allura Red AC and investigated the induction of DNA damage (liver, glandular stomach), clastogenicity/anuegenicity (bone marrow), and mutagenicity (liver, glandular stomach) using Comet assays, micronucleus tests, and transgenic gene mutation assays, respectively. All studies were conducted in accordance with the Organization for Economic Co-operation and Development (OECD) guideline. Although Allura Red AC was administered up to the maximum doses recommended by the OECD guideline, no genotoxic effect was observed in any of the genotoxic endpoints. These data clearly show no evidence of in vivo genotoxic potential of Allura Red AC administered up to the maximum doses in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.
The comet assay for the evaluation of genotoxic potential of landfill leachate.
Widziewicz, Kamila; Kalka, Joanna; Skonieczna, Magdalena; Madej, Paweł
2012-01-01
Genotoxic assessment of landfill leachate before and after biological treatment was conducted with two human cell lines (Me45 and NHDF) and Daphnia magna somatic cells. The alkali version of comet assay was used to examine genotoxicity of leachate by DNA strand breaks analysis and its repair dynamics. The leachate samples were collected from Zabrze landfill, situated in the Upper Silesian Industrial District, Poland. Statistically significant differences (Kruskal-Wallice ANOVA rank model) were observed between DNA strand breaks in cells incubated with leachate before and after treatment (P < 0.001). Nonparametric Friedman ANOVA confirmed time-reliable and concentration-reliable cells response to leachate concentration. Examinations of chemical properties showed a marked decrease in leachate parameters after treatment which correlate to reduced genotoxicity towards tested cells. Obtained results demonstrate that biological cotreatment of leachate together with municipal wastewater is an efficient method for its genotoxic potential reduction; however, treated leachate still possessed genotoxic character.
The Comet Assay for the Evaluation of Genotoxic Potential of Landfill Leachate
Widziewicz, Kamila; Kalka, Joanna; Skonieczna, Magdalena; Madej, Paweł
2012-01-01
Genotoxic assessment of landfill leachate before and after biological treatment was conducted with two human cell lines (Me45 and NHDF) and Daphnia magna somatic cells. The alkali version of comet assay was used to examine genotoxicity of leachate by DNA strand breaks analysis and its repair dynamics. The leachate samples were collected from Zabrze landfill, situated in the Upper Silesian Industrial District, Poland. Statistically significant differences (Kruskal-Wallice ANOVA rank model) were observed between DNA strand breaks in cells incubated with leachate before and after treatment (P < 0.001). Nonparametric Friedman ANOVA confirmed time-reliable and concentration-reliable cells response to leachate concentration. Examinations of chemical properties showed a marked decrease in leachate parameters after treatment which correlate to reduced genotoxicity towards tested cells. Obtained results demonstrate that biological cotreatment of leachate together with municipal wastewater is an efficient method for its genotoxic potential reduction; however, treated leachate still possessed genotoxic character. PMID:22666120
Gusso-Choueri, Paloma Kachel; Choueri, Rodrigo Brasil; Santos, Gustavo Souza; de Araújo, Giuliana Seraphim; Cruz, Ana Carolina Feitosa; Stremel, Tatiana; de Campos, Sandro Xavier; Cestari, Marta Margarete; Ribeiro, Ciro Alberto Oliveira; Abessa, Denis Moledo de Sousa
2016-03-15
The goal of the current study was to evaluate different genotoxicity tools in order to assess a marine protected area (MPA) affected by former mining activities and urban settlements. A catfish (Cathorops spixii) was analyzed for genotoxic effects at the (i) molecular and at the (ii) chromosomal levels. Through factor analysis, genotoxicity was found to be linked to levels of metals bioaccumulated and PAH metabolites in the bile. Micronucleus and nuclear alteration were less vulnerable to the effects of confounding factors in mildly contaminated areas since they were more frequently associated with bioaccumulated metals than the DNA analysis. The different genotoxicity responses allowed for the identification of sources of pollution in the MPA. This approach was important for detecting environmental risks related to genotoxic contaminants in a mildly contaminated MPA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Golbamaki, Azadi; Golbamaki, Nazanin; Sizochenko, Natalia; Rasulev, Bakhtiyor; Leszczynski, Jerzy; Benfenati, Emilio
2018-06-09
The genetic toxicology of nanomaterials is a crucial toxicology issue and one of the least investigated topics. Substantially, the genotoxicity of metal oxide nanomaterials' data is resulting from in vitro comet assay. Current contributions to the genotoxicity data assessed by the comet assay provide a case-by-case evaluation of different types of metal oxides. The existing inconsistency in the literature regarding the genotoxicity testing data requires intelligent assessment strategies, such as weight of evidence evaluation. Two main tasks were performed in the present study. First, the genotoxicity data from comet assay for 16 noncoated metal oxide nanomaterials with different core composition were collected. An evaluation criterion was applied to establish which of these individual lines of evidence were of sufficient quality and what weight could have been given to them in inferring genotoxic results. The collected data were surveyed on (1) minimum necessary characterization points for nanomaterials and (2) principals of correct comet assay testing for nanomaterials. Second, in this study the genotoxicity effect of metal oxide nanomaterials was investigated by quantitative nanostructure-activity relationship approach. A set of quantum-chemical descriptors was developed for all investigated metal oxide nanomaterials. A classification model based on decision tree was developed for the investigated dataset. Thus, three descriptors were identified as the most responsible factors for genotoxicity effect: heat of formation, molecular weight, and surface area of the oxide cluster based on the conductor-like screening model. Conclusively, the proposed genotoxicity assessment strategy is useful to prioritize the study of the nanomaterials for further risk assessment evaluations.
Geng, Deyu; Zhang, Zhixia; Guo, Huarong
2012-01-01
p21CIP1/WAF1 is a p53-target gene in response to cellular DNA damage. Here we report the development of a fish cell biosensor system for high throughput genotoxicity detection of new drugs, by stably integrating two reporter plasmids of pGL3-p21-luc (human p21 promoter linked to firefly luciferase) and pRL-CMV-luc (CMV promoter linked to Renilla luciferase) into marine flatfish flounder gill (FG) cells, referred to as p21FGLuc. Initial validation of this genotoxicity biosensor system showed that p21FGLuc cells had a wild-type p53 signaling pathway and responded positively to the challenge of both directly acting genotoxic agents (bleomycin and mitomycin C) and indirectly acting genotoxic agents (cyclophosphamide with metabolic activation), but negatively to cyclophosphamide without metabolic activation and the non-genotoxic agents ethanol and D-mannitol, thus confirming a high specificity and sensitivity, fast and stable response to genotoxic agents for this easily maintained fish cell biosensor system. This system was especially useful in the genotoxicity detection of Di(2-ethylhexyl) phthalate (DEHP), a rodent carcinogen, but negatively reported in most non-mammalian in vitro mutation assays, by providing a strong indication of genotoxicity for DEHP. A limitation for this biosensor system was that it might give false positive results in response to sodium butyrate and any other agents, which can trans-activate the p21 gene in a p53-independent manner. PMID:25585933
Buick, Julie K.; Williams, Andrew; Swartz, Carol D.; Recio, Leslie; Li, Heng‐Hong; Fornace, Albert J.; Thomson, Errol M.; Aubrecht, Jiri
2016-01-01
In vitro transcriptional signatures that predict toxicities can facilitate chemical screening. We previously developed a transcriptomic biomarker (known as TGx‐28.65) for classifying agents as genotoxic (DNA damaging) and non‐genotoxic in human lymphoblastoid TK6 cells. Because TK6 cells do not express cytochrome P450s, we confirmed accurate classification by the biomarker in cells co‐exposed to 1% 5,6 benzoflavone/phenobarbital‐induced rat liver S9 for metabolic activation. However, chemicals may require different types of S9 for activation. Here we investigated the response of TK6 cells to higher percentages of Aroclor‐, benzoflavone/phenobarbital‐, or ethanol‐induced rat liver S9 to expand TGx‐28.65 biomarker applicability. Transcriptional profiles were derived 3 to 4 hr following a 4 hr co‐exposure of TK6 cells to test chemicals and S9. Preliminary studies established that 10% Aroclor‐ and 5% ethanol‐induced S9 alone did not induce the TGx‐28.65 biomarker genes. Seven genotoxic and two non‐genotoxic chemicals (and concurrent solvent and positive controls) were then tested with one of the S9s (selected based on cell survival and micronucleus induction). Relative survival and micronucleus frequency was assessed by flow cytometry in cells 20 hr post‐exposure. Genotoxic/non‐genotoxic chemicals were accurately classified using the different S9s. One technical replicate of cells co‐treated with dexamethasone and 10% Aroclor‐induced S9 was falsely classified as genotoxic, suggesting caution in using high S9 concentrations. Even low concentrations of genotoxic chemicals (those not causing cytotoxicity) were correctly classified, demonstrating that TGx‐28.65 is a sensitive biomarker of genotoxicity. A meta‐analysis of datasets from 13 chemicals supports that different S9s can be used in TK6 cells, without impairing classification using the TGx‐28.65 biomarker. Environ. Mol. Mutagen. 57:243–260, 2016. © 2016 Her Majesty the Queen in Right of Canada. Environmental and Molecular Mutagenesis © 2016 Environmental Mutagen Society PMID:26946220
Tol, Trupti; Kadam, Nilesh; Raotole, Nilesh; Desai, Anita; Samanta, Gautam
2016-02-05
The combination of Abacavir, Lamivudine and Dolutegravir is an anti-retroviral formulation that displays high efficacy and superiority in comparison to other anti-retroviral combinations. Analysis of related substances in this combination drug product was very challenging due to the presence of nearly thirty peaks including the three active pharmaceutical ingredients (APIs), eleven known impurities and other pharmaceutical excipients. Objective of this study was to develop a single, selective, and robust high performance liquid chromatography method for the efficient separation of all peaks. Initially, one-factor-at-a-time (OFAT) approach was adopted to develop the method. But, it could not resolve all the critical peaks in such complex matrix. This led to the advent of two different HPLC methods for the determination of related substances, one for Abacavir and Lamivudine and the other for Dolutegravir. But, since analysis of a single sample using two methods instead of one is time and resource consuming and thus expensive, an attempt was made to develop a single and robust method by adopting quality by design (QbD) principles. Design of Experiments (DoE) was applied as a tool to achieve the optimum conditions through Response surface methodology with three method variables, pH, temperature, and mobile phase composition. As the study progressed, it was discovered that establishment of the design space was not viable due to the completely distant pH requirements of the two responses, i.e. (i) retention time for Lamivudine carboxylic acid and (ii) resolution between Abacavir impurity B and unknown impurity. Eventually, neglecting one of these two responses each time, two distinguished design spaces have been established and verified. Edge of failures at both design spaces indicate high probability of failure. It therefore, becomes very important to identify the most robust zone or normal operating range (NOR) within the design space with low risk of failure and high quality assurance. For NOR establishment, Monte Carlo simulation was performed on the basis of which process capability index (Cpk) was derived. Finally, the selectivity issue problem faced due to the pH dependency and the dissimilar pH needs of the two critical responses was resolved by introducing pH gradient into the program. This new ternary gradient program has provided a single robust method. Thus, two HPLC methods for the analysis of the combination drug product have been replaced with a selective, robust, and cost effective single method. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Naguib, Ibrahim A.; Darwish, Hany W.
2012-02-01
A comparison between support vector regression (SVR) and Artificial Neural Networks (ANNs) multivariate regression methods is established showing the underlying algorithm for each and making a comparison between them to indicate the inherent advantages and limitations. In this paper we compare SVR to ANN with and without variable selection procedure (genetic algorithm (GA)). To project the comparison in a sensible way, the methods are used for the stability indicating quantitative analysis of mixtures of mebeverine hydrochloride and sulpiride in binary mixtures as a case study in presence of their reported impurities and degradation products (summing up to 6 components) in raw materials and pharmaceutical dosage form via handling the UV spectral data. For proper analysis, a 6 factor 5 level experimental design was established resulting in a training set of 25 mixtures containing different ratios of the interfering species. An independent test set consisting of 5 mixtures was used to validate the prediction ability of the suggested models. The proposed methods (linear SVR (without GA) and linear GA-ANN) were successfully applied to the analysis of pharmaceutical tablets containing mebeverine hydrochloride and sulpiride mixtures. The results manifest the problem of nonlinearity and how models like the SVR and ANN can handle it. The methods indicate the ability of the mentioned multivariate calibration models to deconvolute the highly overlapped UV spectra of the 6 components' mixtures, yet using cheap and easy to handle instruments like the UV spectrophotometer.
A stability-study of expired ampoules manufactured more than 40 years ago.
Zilker, Markus; Sörgel, Fritz; Holzgrabe, Ulrike
2018-02-20
Pharmaceutical manufacturers have to study the stability of drug products before marketing according to ICH guideline Q1A(R2); data of those investigations aim to set expiry dates. The expiry date on the container of a remedy assures the physician and the patient a stability of the drug in its formulation i.e. within a specification of 95-105%. Only few studies show that shelf-lives of pharmaceutical products are often longer than expiration dates. The objective of the study presented here was determining the content of nine expired ampoules manufactured in the last century and identifying the impurity profile by means of HPLC-UV and HPLC-MS, respectively. The ampoules are part of the "PEAK-collection" of long expired finished pharmaceutical products at IBMP, Nürnberg-Heroldsberg, and consists among others of epinephrine (Suprarenin and Adrenalin in Oil), etilefrine (Effortil ® ), synephrine (Sympatol ® ), caffeine and procaine (Impletol), caffeine and sodium salicylate (Caffeinum Salicylicum), dipyridamole (Persantin ® ), furosemide (Lasix ® ), and metamizole (Novalgin ® ). For chromatographic investigations methods of the European Pharmacopoeia for related substances were used; for determining the content, they were validated for linearity, precision, and accuracy. The results were compared to current reference ampoules. Five out of nine ampoules were still within the specified content limits. In Suprarenin and Adrenalin in Oil, both containing epinephrine, Impletol (procaine), and Persantin ® (dipyridamole) contents were decreased to 70%, 74%, 79%, and 86%, respectively, and therefore out of specification. Copyright © 2017 Elsevier B.V. All rights reserved.
Genotoxicity testing: progress and prospects for the next decade.
Turkez, Hasan; Arslan, Mehmet E; Ozdemir, Ozlem
2017-10-01
Genotoxicity and mutagenicity analyses have a significant role in the identification of hazard effects of therapeutic drugs, cosmetics, agrochemicals, industrial compounds, food additives, natural toxins and nanomaterials for regulatory purposes. To evaluate mutagenicity or genotoxicity, different in vitro and in vivo methodologies exert various genotoxicological endpoints such as point mutations, changes in number and structure of chromosomes. Areas covered: This review covered the basics of genotoxicity and in vitro/in vivo methods for determining of genetic damages. The limitations that have arisen as a result of the common use of these methods were also discussed. Finally, the perspectives of further prospects on the use of genotoxicity testing and genotoxic mode of action were emphasized. Expert opinion: The solution of actual and practical problems of genetic toxicology is inarguably based on the understanding of DNA damage mechanisms at molecular, subcellular, cellular, organ, system and organism levels. Current strategies to investigate human health risks should be modified to increase their performance for more reliable results and also new techniques such as toxicogenomics, epigenomics and single cell approaches must be integrated into genetic safety evolutions. The explored new biomarkers by the omic techniques will provide forceful genotoxicity assessment to reduce the cancer risk.
Krasner, Stuart W; Lee, Tiffany Chih Fen; Westerhoff, Paul; Fischer, Natalia; Hanigan, David; Karanfil, Tanju; Beita-Sandí, Wilson; Taylor-Edmonds, Liz; Andrews, Robert C
2016-09-06
Certain unregulated disinfection byproducts (DBPs) are more of a health concern than regulated DBPs. Brominated species are typically more cytotoxic and genotoxic than their chlorinated analogs. The impact of granular activated carbon (GAC) on controlling the formation of regulated and selected unregulated DBPs following chlorine disinfection was evaluated. The predicted cyto- and genotoxicity of DBPs was calculated using published potencies based on the comet assay for Chinese hamster ovary cells (assesses the level of DNA strand breaks). Additionally, genotoxicity was measured using the SOS-Chromotest (detects DNA-damaging agents). The class sum concentrations of trihalomethanes, haloacetic acids, and unregulated DBPs, and the SOS genotoxicity followed the breakthrough of dissolved organic carbon (DOC), however the formation of brominated species did not. The bromide/DOC ratio was higher than the influent through much of the breakthrough curve (GAC does not remove bromide), which resulted in elevated brominated DBP concentrations in the effluent. Based on the potency of the haloacetonitriles and halonitromethanes, these nitrogen-containing DBPs were the driving agents of the predicted genotoxicity. GAC treatment of drinking or reclaimed waters with appreciable levels of bromide and dissolved organic nitrogen may not control the formation of unregulated DBPs with higher genotoxicity potencies.
METHYLATED Asm COMPOUNDS AS POTENTIAL PROXIMATE/ULTIMATE GENOTOXIC METABOLITES OF INORGANIC ARSENIC.
The methylation of inorganic arsenic has typically been viewed as a detoxification process. Genotoxicity tests have generally shown that arsenite has greater mutagenic p...
Uno, Yoshifumi; Kojima, Hajime; Omori, Takashi; Corvi, Raffaella; Honma, Masamistu; Schechtman, Leonard M; Tice, Raymond R; Beevers, Carol; De Boeck, Marlies; Burlinson, Brian; Hobbs, Cheryl A; Kitamoto, Sachiko; Kraynak, Andrew R; McNamee, James; Nakagawa, Yuzuki; Pant, Kamala; Plappert-Helbig, Ulla; Priestley, Catherine; Takasawa, Hironao; Wada, Kunio; Wirnitzer, Uta; Asano, Norihide; Escobar, Patricia A; Lovell, David; Morita, Takeshi; Nakajima, Madoka; Ohno, Yasuo; Hayashi, Makoto
2015-07-01
The in vivo rodent alkaline comet assay (comet assay) is used internationally to investigate the in vivo genotoxic potential of test chemicals. This assay, however, has not previously been formally validated. The Japanese Center for the Validation of Alternative Methods (JaCVAM), with the cooperation of the U.S. NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)/the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), the European Centre for the Validation of Alternative Methods (ECVAM), and the Japanese Environmental Mutagen Society/Mammalian Mutagenesis Study Group (JEMS/MMS), organized an international validation study to evaluate the reliability and relevance of the assay for identifying genotoxic carcinogens, using liver and stomach as target organs. The ultimate goal of this exercise was to establish an Organisation for Economic Co-operation and Development (OECD) test guideline. The study protocol was optimized in the pre-validation studies, and then the definitive (4th phase) validation study was conducted in two steps. In the 1st step, assay reproducibility was confirmed among laboratories using four coded reference chemicals and the positive control ethyl methanesulfonate. In the 2nd step, the predictive capability was investigated using 40 coded chemicals with known genotoxic and carcinogenic activity (i.e., genotoxic carcinogens, genotoxic non-carcinogens, non-genotoxic carcinogens, and non-genotoxic non-carcinogens). Based on the results obtained, the in vivo comet assay is concluded to be highly capable of identifying genotoxic chemicals and therefore can serve as a reliable predictor of rodent carcinogenicity. Copyright © 2015 Elsevier B.V. All rights reserved.
Luo, Zhiqiang; Chen, Xinjing; Wang, Guopeng; Du, Zhibo; Ma, Xiaoyun; Wang, Hao; Yu, Guohua; Liu, Aoxue; Li, Mengwei; Peng, Wei; Liu, Yang
2018-01-01
Trelagliptin succinate is a dipeptidyl peptidase IV (DPP-4) inhibitor which is used as a new long-acting drug for once-weekly treatment of type 2 diabetes mellitus (DM). In the present study, a rapid, sensitive and accurate high-performance liquid chromatography (HPLC) method was developed and validated for separation and determination of trelagliptin succinate and its eight potential process-related impurities. The chromatographic separation was achieved on a Waters Xselect CSH™ C 18 (250mm×4.6mm, 5.0μm) column. The mobile phases comprised of 0.05% trifluoroacetic acid in water as well as acetonitrile containing 0.05% trifluoroacetic acid. The compounds of interest were monitored at 224nm and 275nm. The stability-indicating capability of this method was evaluated by performing stress test studies. Trelagliptin succinate was found to degrade significantly in acid, base, oxidative and thermal stress conditions and only stable in photolytic degradation condition. The degradation products were well resolved from the main peak and its impurities. In addition, the major degradation impurities formed under acid, base, oxidative and thermal stress conditions were characterized by ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap). The method was validated to fulfill International Conference on Harmonisation (ICH) requirements and this validation included specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision and robustness. The developed method in this study could be applied for routine quality control analysis of trelagliptin succinate tablets, since there is no official monograph. Copyright © 2017 Elsevier B.V. All rights reserved.
Revision of OECD Guidelines for Genotoxicity Testing: Current Status and Next Steps
Over the past 30 years, assays have been developed to evaluate chemical genotoxicity. OECD Genotoxicity Test Guidelines (TG) describe assay procedures for regulatory safety testing. Since the last OECD TG revision (1997), there has been tremendous scientific and technological pro...
Baršienė, Janina; Butrimavičienė, Laura; Grygiel, Wlodzimierz; Lang, Thomas; Michailovas, Aleksandras; Jackūnas, Tomas
2014-05-01
The data on environmental genotoxicity and cytotoxicity levels as well as on genotoxicity risk in flounder (Platichthys flesus), herring (Clupea harengus) and cod (Gadus morhua) collected in 2010-2012 at 42 stations located in chemical munitions dumping areas of the southern Baltic Sea are presented. The frequency of micronuclei, nuclear buds and nucleoplasmic bridges in erythrocytes was used as genotoxicity endpoint and the induction of fragmented-apoptotic, bi-nucleated and 8-shaped erythrocytes as cytotoxicity endpoint. The most significantly increased geno-cytotoxicity levels were determined in fish collected near known chemical munitions dumpsites. Extremely high genotoxicity risk for flounder were identified at 21 out of 24 stations, for herring at 29 out of 31 and for cod at 5 out of 10 stations studied. The reference level of genotoxicity was not recorded at any of the stations revealing that in the sampling area fish were affected generally. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kocak, Emel
2015-01-01
The potential genotoxic activity associated with high strength real paracetamol (PCT) wastewater (COD = 40,000 mg/L, TOC = 12,000 mg/L, BOD5 = 19,320 mg/L) from a large-scale drug-producing plant in the Marmara Region, was investigated in pre- and post- treated wastewater by the Fenton process (COD = 2,920 mg/L, TOC = 880 mg/L; BOD5 = 870 mg/L). The SOS Chromotest, which is based on Escherichia coli PQ37 activities, was used for the assessment of genotoxicity. The corrected induction factors (CIF) values used as quantitative measurements of the genotoxic activity were obtained from a total of four different dilutions (100, 50, 6.25, and 0.078 % v/v.) for two samples, in triplicate, to detect potentially genotoxic activities with the SOS Chromotest. The results of the SOS Chromotest demonstrated CIFmax value of 1.24, indicating that the PCT effluent (non-treated) is genotoxic. The results of the SOS Chromotest showed an CIFmax value of 1.72, indicating that the wastewater treated by Fenton process is genotoxic. The findings of this study clearly reveal that the PCT wastewater (non-treated) samples have a potentially hazardous impact on the aquatic environment before treatment, and in the wastewater that was treated by the Fenton process, genotoxicity generally increased.
Fan, Wenzhe; Zhang, Yu; Carr, Peter W; Rutan, Sarah C; Dumarey, Melanie; Schellinger, Adam P; Pritts, Wayne
2009-09-18
Fourteen judiciously selected reversed phase columns were tested with 18 cationic drug solutes under the isocratic elution conditions advised in the Snyder-Dolan (S-D) hydrophobic subtraction method of column classification. The standard errors (S.E.) of the least squares regressions of logk' vs. logk'(REF) were obtained for a given column against a reference column and used to compare and classify columns based on their selectivity. The results are consistent with those obtained with a study of the 16 test solutes recommended by Snyder and Dolan. To the extent these drugs are representative, these results show that the S-D classification scheme is also generally applicable to pharmaceuticals under isocratic conditions. That is, those columns judged to be similar based on the 16 S-D solutes were similar based on the 18 drugs; furthermore those columns judged to have significantly different selectivities based on the 16 S-D probes appeared to be quite different for the drugs as well. Given that the S-D method has been used to classify more than 400 different types of reversed phases the extension to cationic drugs is a significant finding.
Reddy, Sunil Pingili; Babu, K Sudhakar; Kumar, Navneet; Sekhar, Y V V Sasi
2011-10-01
A stability-indicating gradient reverse phase liquid chromatographic (RP-LC) method was developed for the quantitative determination of related substances of guaifenesin in pharmaceutical formulations. The baseline separation for guaifenesin and all impurities was achieved by utilizing a Water Symmetry C18 (150 mm × 4.6 mm) 5 μm column particle size and a gradient elution method. The mobile phase A contains a mixture of 0.02 M KH2PO4 (pH 3.2) and methanol in the ratio of 90:10 v/v, while the mobile phase B contains 0.02 M KH2PO4 (pH 3.2) and methanol in the ratio of 10:90 v/v, respectively. The flow rate of the mobile phase was 0.8 ml/min with a column temperature of 25°C and detection wavelength at 273 nm. Guaifenesin was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal, and photolytic degradation. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection and quantification, accuracy, precision, and robustness.
Reddy, Sunil Pingili; Babu, K. Sudhakar; Kumar, Navneet; Sekhar, Y. V. V. Sasi
2011-01-01
Aim and background: A stability-indicating gradient reverse phase liquid chromatographic (RP-LC) method was developed for the quantitative determination of related substances of guaifenesin in pharmaceutical formulations. Materials and methods: The baseline separation for guaifenesin and all impurities was achieved by utilizing a Water Symmetry C18 (150 mm × 4.6 mm) 5 μm column particle size and a gradient elution method. The mobile phase A contains a mixture of 0.02 M KH2PO4 (pH 3.2) and methanol in the ratio of 90:10 v/v, while the mobile phase B contains 0.02 M KH2PO4 (pH 3.2) and methanol in the ratio of 10:90 v/v, respectively. The flow rate of the mobile phase was 0.8 ml/min with a column temperature of 25°C and detection wavelength at 273 nm. Results: Guaifenesin was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal, and photolytic degradation. Conclusion: The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection and quantification, accuracy, precision, and robustness. PMID:23781462
NASA Astrophysics Data System (ADS)
Sarecka-Hujar, Beata; Balwierz, Radoslaw; Ostrozka-Cieslik, Aneta; Dyja, Renata; Lukowiec, Dariusz; Jankowski, Andrzej
2017-11-01
The quality of the drug, its purity and identification of degradation products provide the highest quality of pharmaceutical products. The energy dispersive spectroscopy (EDS) method analyses the percentage of each element form as well as their distribution, and morphological characteristics of the drug form. We analysed the usefulness of EDS method in testing orally disintegrating tablets (ODT) with trimetazidine hydrochloride with high resolution scanning electron microscopy (SEM, SUPRA25 Carl Zeiss company) with spectrophotometer equipped with an X-ray energy dispersion (EDAX Company). The samples of the analysed tablets were imaged after applying conductive layers of gold on their surface. In the EDS analysis the compositions of each sample of the obtained tablets were observed to be virtually identical. The differences in the content of carbon and oxygen came from differences in the composition of particular tablets. The presence of gold in the composition resulted from the sputtering the surface of tablets with gold during the analysis. Knowing the composition of the tablet, SEM-EDS method helps to locate and identify the impurities and degradation products of the compounds, leading to a better understanding of the mechanisms of their formation.
Recent Regulatory Trends in Pharmaceutical Manufacturing and their Impact on the Industry.
Tabersky, Daniel; Woelfle, Michael; Ruess, Juan-Antonio; Brem, Simon; Brombacher, Stephan
2018-03-30
The pharmaceutical industry is one of the most regulated industries in Switzerland. Though the concept of good manufacturing practises (GMP) was implemented for chemical production in the early 1990s, the rules and regulations for our industry are in constant evolution. In this article we will highlight the impact of these changes to the industry using three recent guideline up-dates as examples: the implementation of ICH Q3D 'Guideline for elemental impurities', the EU-GMP Guideline Part III Chapter 'Guideline on setting health based exposure limits for use in risk identification in the manufacture of different medicinal products in shared facilities' from 01. June 2015, and the new guidelines to data integrity such as 'PIC/S 041-1 Good Practices for Data Management and Integrity in regulated GMP/GDP environments'. These examples show how scientific approaches help to modernize the control strategies for our products and increase product quality for a better patient safety. The requirements of data integrity regulations are also of interest to industries and universities not working under GxP requirements as they also support the business to improve data quality (traceability) for patent applications, and reduce risk of data falsification.
Characterization of currently marketed heparin products: key tests for quality assurance.
Keire, David A; Ye, Hongping; Trehy, Michael L; Ye, Wei; Kolinski, Richard E; Westenberger, Benjamin J; Buhse, Lucinda F; Nasr, Moheb; Al-Hakim, Ali
2011-01-01
During the 2007-2008 heparin crisis, it was found that the United States Pharmacopeia (USP) testing monograph for unfractionated heparin sodium (UFH) did not detect the presence of the contaminant, oversulfated chondroitin sulfate (OSCS) in heparin. In response to this concern, new tests and specifications were developed by the Food and Drug Administration (FDA) and USP and put in place to not only detect the contaminant OSCS but also to improve assurance of quality and purity of the drug product. Additional tests were also developed to monitor the heparin supply chain for other possible economically motivated additives or impurities. In 2009, a new USP monograph was put in place that includes 500 MHz (1)H NMR, SAX-HPLC, %galactosamine in total hexosamine, and anticoagulation time assays with purified factor IIa or factor Xa. These tests represent orthogonal approaches for UFH identification, measurement of bioactivity, and for detection of process impurities or contaminants in UFH. The FDA has applied these analytical approaches to the study of UFH active pharmaceutical ingredients in the marketplace. Here, we describe results from a comprehensive survey of UFH collected from seven different sources after the 2009 monograph revision and compare these data with results obtained on other heparin samples collected during the 2007-2008 crisis.
The genotoxic contribution of wood smoke to indoor respirable suspended particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, P.M.; Rossman, T.G.; Daisey, J.M.
1989-01-01
The effect of wood burning stoves on the genotoxicity of indoor respirable organic matter was investigated for four homes during the winter and spring of 1986. Paired samples, one collected when the stove was not used and one when wood was burned, were extracted with dichloromethane and acetone. Aliquots of the dichloromethane extracts were analyzed with and without metabolic activation using the Microscreen bioassay. The Microscreen is a rapid, sensitive bioassay which measures a broad genotoxic endpoint, {lambda}-prophage induction. Per nanogram of organic material, wood smoke proved to be a major source of indirect (observed with metabolic activation) but notmore » direct genotoxins in homes. The increase in indirect genotoxicity for extracts from aerosol containing wood smoke is probably due to higher concentrations of polycyclic aromatic hydrocarbons in the wood smoke aerosol as well as other unidentified classes. The direct genotoxicity observed for extracts of aerosol not containing wood smoke decreased with metabolic activation. This direct genotoxicity may be related to cooking activities in the homes. The trends in genotoxicity observed per nanogram of organic material are more pronounced when expressed per m{sup 3} of air due to the higher percentage of extractable material in aerosol containing wood smoke.« less
Hu, Jing; Nakamura, Jun; Richardson, Stephen D.; Aitken, Michael D.
2012-01-01
Bioremediation is one of the commonly applied remediation strategies at sites contaminated with polycyclic aromatic hydrocarbons (PAHs). However, remediation goals are typically based on removal of the target contaminants rather than on broader measures related to health risks. We investigated changes in the toxicity and genotoxicity of PAH-contaminated soil from a former manufactured-gas plant site before and after two simulated bioremediation processes: a sequencing batch bioreactor system and a continuous-flow column system. Toxicity and genotoxicity of the residues from solvent extracts of the soil were determined by the chicken DT40 B-lymphocyte isogenic cell line and its DNA-repair-deficient mutants. Although both bioremediation processes significantly removed PAHs from the contaminated soil (bioreactor 69% removal; column 84% removal), bioreactor treatment resulted in an increase in toxicity and genotoxicity over the course of a treatment cycle, whereas long-term column treatment resulted in a decrease in toxicity and genotoxicity. However, when screening with a battery of DT40 mutants for genotoxicity profiling, we found that column treatment induced DNA damage types that were not observed in untreated soil. Toxicity and genotoxicity bioassays can supplement chemical analysis-based risk assessment for contaminated soil when evaluating the efficacy of bioremediation. PMID:22443351
Formation and removal of genotoxic activity during UV/H(2)O(2)-GAC treatment of drinking water.
Heringa, M B; Harmsen, D J H; Beerendonk, E F; Reus, A A; Krul, C A M; Metz, D H; Ijpelaar, G F
2011-01-01
The objective of this study was to determine the genotoxic activity of water after UV/H(2)O(2) oxidation and GAC filtration. Pre-treated surface water from three locations was treated with UV/H(2)O(2) with medium pressure (MP) lamps and passed through granulated activated carbon (GAC). Samples taken before and after each treatment step were extracted and concentrated by solid phase extraction (SPE) and analyzed for genotoxicity using the Comet assay with HepG2 cells and the Ames II assay. The Comet assay showed no genotoxic response in any of the samples. In the Ames II, no genotoxic response was obtained with the TAMix (a mix of six strains), but the TA98 strain showed an increase in genotoxic activity after MP-UV/H(2)O(2) for all three locations. GAC post treatment effectively reduced the activities to control levels at two of the three locations and to below the level of the pre-treated water at one site. The results indicate that UV/H(2)O(2) treatment may lead to the formation of genotoxic by-products, which can be removed by subsequent GAC filtration. Copyright © 2010 Elsevier Ltd. All rights reserved.
Quantification of umu genotoxicity level of urban river water.
Kameya, T; Nagato, T; Nakagawa, K; Yamashita, D; Kobayashi, T; Fujie, K
2011-01-01
In recent years, the request of environmental safety management for carcinogenic substances, mutagenic substances and/or reproductive toxicity substances (CMR) has increased. This study focused on clarifying the genotoxicity level of environmental water and its release source by using the umu test provided in ISO13829. Although a genotoxicity index "induction ratio (IR)" is used in ISO13829, we normalised it to make it possible to compare various environmental water quantitatively to each other as a new index "genotoxic activity (GA=(IR-1)/Dose)". Sample water was collected and concentrated to 100 times or 1,000 times by a solid phase extraction method. As the test results, it was found that GA level in actual river water varied widely from less than the determination limit of 23 [1/L] to 1,100 [1/L] by quantitative comparison, and the value was also equivalent to more than 50 times the level of tap water. The GA level of household wastewater was not so high, but the levels of treated water from wastewater treatment plant (WTP) were from 220 [1/L] to 3,200 [1/L]. Raw sewage of some WTP shows high level genotoxicity. A part of genotoxicity substances, for example 50%, could be removed by conventional wastewater treatment, but it was not enough to reduce the water environmental load of genotoxicity.
Alumina at 50 and 13 nm nanoparticle sizes have potential genotoxicity.
Zhang, Qinli; Wang, Haiyang; Ge, Cuicui; Duncan, Jeremy; He, Kaihong; Adeosun, Samuel O; Xi, Huaxin; Peng, Huiting; Niu, Qiao
2017-09-01
Although nanomaterials have the potential to improve human life, their sideline effects on human health seem to be inevitable and still are unknown. Some studies have investigated the genotoxicity of alumina nanoparticles (AlNPs); however, this effect is still unclear due to insufficient evaluation and conflicting results. Using a battery of standard genotoxic assays, the present study offers evidence of the genotoxicity associated with aluminum oxide (alumina) at NP sizes of 50 and 13 nm, when compared with bulk alumina (10 μm). The genotoxicity induced by alumina at bulk and NP sizes was evaluated with Ames test, comet test, micronucleus assay and sperm deformity test. The mechanism related to the induction of reactive oxygen species was explored as well. Our results showed that AlNPs (13 and 50 nm) were able to enter cells and induced DNA damage, micronucleus in bone marrow, sperm deformation and reactive oxygen species induction in a time-, dose- and size-dependent manner. Therefore, we conclude that AlNPs (13 and 50 nm), rather than bulk alumina, induce markers of genotoxicity in mice, with oxidative stress as a potential mechanism driving these genotoxic effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
6-gingerol prevents patulin-induced genotoxicity in HepG2 cells.
Yang, Guang; Zhong, Laifu; Jiang, Liping; Geng, Chengyan; Cao, Jun; Sun, Xiance; Liu, Xiaofang; Chen, Min; Ma, Yufang
2011-10-01
Patulin (PAT) is a mycotoxin produced by several Penicillium, Aspergillus and Byssochlamys species. Since PAT is a potent genotoxic compound, and PAT contamination is common in fruits and fruit products, the search for newer, better agents for protection against genotoxicity of PAT is required. In this study, the chemoprotective effect of 6-gingerol against PAT-induced genotoxicity in HepG2 cells was investigated. The comet assay and micronucleus test (MNT) were used to monitor genotoxic effects. To further elucidate the underlying mechanisms, the intracellular generation of reactive oxygen species (ROS) and level of reduced glutathione (GSH) were tested. In addition, the level of oxidative DNA damage was evaluated by immunocytochemical analysis of 8-hydroxydeoxyguanosine (8-OHdG). The results showed that 6-gingerol significantly reduced the DNA strand breaks and micronuclei formation caused by PAT. Moreover, 6-gingerol effectively suppressed PAT-induced intracellular ROS formation and 8-OHdG level. The GSH depletion induced by PAT in HepG2 cells was also attenuated by 6-gingerol pretreatment. These findings suggest that 6-gingerol has a strong protective ability against the genotoxicity caused by PAT, and the antioxidant activity of 6-gingerol may play an important part in attenuating the genotoxicity of PAT. Copyright © 2011 John Wiley & Sons, Ltd.
How to assess the mutagenic potential of cosmetic products without animal tests?
Speit, Günter
2009-08-01
Animal experiments (in vivo tests) currently play a key role in genotoxicity testing. Results from in vivo tests are, in many cases, decisive for the assessment of a mutagenic potential of a test compound. The Seventh Amendment to the European Cosmetics Directive will, however, ban the European marketing of cosmetic/personal care products that contain ingredients that have been tested in animal experiments. If genotoxicity testing is solely based on the currently established in vitro tests, the attrition rate for chemicals used in cosmetic products will greatly increase due to irrelevant positive in vitro test results. There is urgent need for new and/or improved in vitro genotoxicity tests and for modified test strategies. Test strategies should consider all available information on chemistry of the test substance/the chemical class (e.g. SAR, metabolic activation and dermal adsorption). Test protocols for in vitro genotoxicity tests should be sensitive and robust enough to ensure that negative results can be accepted with confidence. It should be excluded that positive in vitro test results are due to high cytotoxicity or secondary genotoxic effects which may be thresholded and/or only occur under in vitro test conditions. Consequently, further research is needed to establish the nature of thresholds in in vitro assays and to determine the potential for incorporation of mode of action data into future risk assessments. New/improved tests have to be established and validated, considering the use of (metabolically competent) primary (skin) cells, 3D skin models and cells with defined capacity for metabolic activation (e.g. genetically engineered cell lines). The sensitivity and specificity of new and improved genotoxicity tests has to be determined by testing a battery of genotoxic and non-genotoxic chemicals. New or adapted international guidelines will be needed for these tests. The establishment of such a new genotoxicity testing strategy will take time and the new in vitro genotoxicity testing will become much more complex and will require greater mechanistic understanding to build a weight of evidence decision, which will be demanding and time-consuming. At present, no validated alternative methods for the follow-up of positive results from the standard genotoxicity battery are available and an appropriate evaluation of the mutagenic potential of cosmetic ingredients without animal experiments is therefore not possible in many cases.
Borm, Paul J A; Tran, Lang; Donaldson, Ken
2011-10-01
In 1987 the International Agency for Research on Cancer (IARC) classified crystalline silica (CS) as a probable carcinogen and in 1997 reclassified it as a Group 1 carcinogen, i.e., that there was sufficient evidence for carcinogenicity in experimental animals and sufficient evidence for carcinogenicity in humans. The Working Group noted that "carcinogenicity in humans was not detected in all industrial circumstances studied, carcinogenicity may be dependent on inherent characteristics of the crystalline silica or on external factors affecting its biological activity or distribution of its polymorphs." This unusual statement that the physicochemical form of the CS influences its carcinogenicity is well understood at the toxicological level and arises as a consequence of the fact that CS activity depends on the reactivity of the CS surface, which can be blocked by a number of agents. We reviewed the literature on CS genotoxicity that has been published since the 1997 monograph, with special reference to the mechanism of CS genotoxicity. The mechanism of CS genotoxicity can be primary, a result of direct interaction of CS with target cells, or indirect, as a consequence of inflammation elicited by quartz, where the inflammatory cell-derived oxidants cause the genotoxicity. The review revealed a number of papers supporting the hypothesis that the CS genotoxic and inflammatory hazard is a variable one. In an attempt to attain a quantitative basis for the potential mechanism, we carried out analysis of published data and noted a 5-fold greater dose required to reach a threshold for genotoxic effects than for proinflammatory effects in the same cell line in vitro. When we related the calculated threshold dose at the proximal alveolar region for inflammation in a published study with the threshold dose for genotoxicity in vitro, we noted that a 60-120-fold greater dose was required for direct genotoxic effects in vitro. These data strongly suggests that inflammation is the driving force for genotoxicity and that primary genotoxicity of deposited CS would play a role only at very high, possibly implausible, exposures and deposited doses. Although based on rat studies and in vitro studies, and therefore with caveats, the analysis supports the hypothesis that the mechanism of CS genotoxicity is via inflammation-driven secondary genotoxicity. This may have implications for setting of the CS standard in workplaces. During the writing of this review (in May 2009), IARC undertook a review of carcinogenic substances, including CS. The Working Group met to reassess 10 separate agents including CS. This was not a normal monograph working group published as a large single monograph, but was published as a two-page report. This review group reaffirmed the carcinogenicity of "silica dust, crystalline in the form of quartz or cristobalite" as a Group 1 agent, with the lung as the sole tumor site. Of special relevance to the present review is that the cited "established mechanism events" for CS are restricted to the words "impaired particle clearance leading to macrophage activation and persistent inflammation." The lack of mention of direct genotoxicity is in line with the conclusions reached in the present review.
Genotoxicity of antiobesity drug orlistat and effect of caffeine intervention: an in vitro study.
Chakrabarti, Manoswini; Ghosh, Ilika; Jana, Aditi; Ghosh, Manosij; Mukherjee, Anita
2017-07-01
Obesity is a major global health problem associated with various adverse effects. Pharmacological interventions are often necessary for the management of obesity. Orlistat is an FDA-approved antiobesity drug which is a potent inhibitor of intestinal lipases. In the current study, orlistat was evaluated for its genotoxic potential in human lymphocyte cells in vitro and was compared with that of another antiobesity drug sibutramine, presently withdrawn from market due its undesirable health effects. Caffeine intake may be an additional burden in people using anorectic drugs, therefore, further work is needed to be carried out to evaluate the possible effects of caffeine on orlistat-induced DNA damage. Human lymphocytes were exposed to orlistat (250, 500 and 1000 μg/ml), sibutramine (250, 500 and 1000 μg/ml) and caffeine (25, 50, 75, 100, 125 and 150 μg/ml) to assess their genotoxicity by comet assay in vitro. In addition, lymphocytes were co-incubated with caffeine (50, 75 and 100 μg/ml) and a single concentration of orlistat (250 μg/ml). Orlistat and sibutramine were genotoxic at all concentrations tested, sibutramine being more genotoxic. Caffeine was found to be genotoxic at concentrations 125 μg/ml and above. Co-treatment of orlistat with non-genotoxic concentrations (50, 75 and 100 μg/ml) of caffeine lead to a decrease in DNA damage. Orlistat can induce DNA damage in human lymphocytes in vitro and caffeine was found to reduce orlistat-induced genotoxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, P.A.; Rasmussen, J.B.; Blaise, C.
1998-02-01
Previous investigations of organic genotoxins in industrial effluents discharged into the St. Lawrence River system (Quebec, Canada) indicated that a substantial fraction of the genotoxicity is adsorbed to suspended particulate matter. This study used the SOS Chromotest to investigate the presence, potency, and behavior of particle-bound genotoxins in the downstream ecosystem. The results indicate that although extracts of both suspended and sedimented particulate matter are genotoxic, suspended particulate matter samples are more potent in the absence of S9 activation, with the reverse being true for bottom sediments. The results confirmed a positive relationship between the genotoxicity of bottom sediment extractsmore » and sediment organic matter content. A similar relationship between organic matter content and total polycyclic aromatic hydrocarbon (PAH) concentration indicates that putative genotoxins have physicochemical properties similar to the PAH class of contaminants. Conversion of PAH values to benzo[a]pyrene equivalents indicates that measured PAHs only account for a small fraction ({approximately}10%) of the observed SOS Chromotest response. Sites that receive discharges from foundries, aluminum refineries, and petroleum refineries yielded several of the most genotoxic samples. Further analyses revealed that the genotoxicity of suspended and sedimented particulate matter extracts is empirically related to the genotoxicity of industrial discharges. Comparisons of total genotoxicity levels in suspended particulates and bottom sediments suggest that direct-acting substances adsorbed to suspended matter are rapidly degraded and/or converted to more stable progenotoxins upon deposition. Further research is required to test this hypothesis and investigate effects on indigenous biota.« less
Speit, Günter; Gminski, Richard; Tauber, Rudolf
2013-08-15
Conflicting results have been published regarding the induction of genotoxic effects by exposure to radiofrequency electromagnetic fields (RF-EMF). Various results indicating a genotoxic potential of RF-EMF were reported by the collaborative EU-funded REFLEX (Risk Evaluation of Potential Environmental Hazards From Low Energy Electromagnetic Field Exposure Using Sensitive in vitro Methods) project. There has been a long-lasting scientific debate about the reliability of the reported results and an attempt to reproduce parts of the results obtained with human fibroblasts failed. Another part of the REFLEX study was performed in Berlin with the human lymphoblastoid cell line HL-60; genotoxic effects of RF-EMF were measured by means of the comet assay and the micronucleus test. The plausibility and reliability of these results were also questioned. In order to contribute to a clarification of the biological significance of the reported findings, a repeat study was performed, involving scientists of the original study. Comet-assay experiments and micronucleus tests were performed under the same experimental conditions that had led to genotoxic effects in the REFLEX study. Here we report that the attempts to reproduce the induction of genotoxic effects by RF-EMF in HL-60 cells failed. No genotoxic effects of RF-EMF were measured in the repeat experiments. We could not find an explanation for the conflicting results. However, the negative repeat experiments suggest that the biological significance of genotoxic effects of RF-EMF reported by the REFLEX study should be re-assessed. Copyright © 2013 Elsevier B.V. All rights reserved.
Genotoxicity investigations on nanomaterials.
Oesch, Franz; Landsiedel, Robert
2012-07-01
This review is based on the lecture presented at the April 2010 nanomaterials safety assessment Postsatellite to the 2009 EUROTOX Meeting and summarizes genotoxicity investigations on nanomaterials published in the open scientific literature (up to 2008). Special attention is paid to the relationship between particle size and positive versus negative outcome, as well as the dependence of the outcome on the test used. Salient conclusions and outstanding recommendations emerging from the information summarized in this review are as follows: recognize that nanomaterials are not all the same; therefore know and document what nanomaterial has been tested and in what form; take nanomaterials specific properties into account; in order to make your results comparable with those of others and on other nanomaterials: use or at least include in your studies standardized methods; use in vivo studies to put in vitro results into perspective; take uptake and distribution of the nanomaterial into account; and in order to become able to make extrapolations to risk for human: learn about the mechanism of nanomaterials genotoxic effects. Past experience with standard non-nanosubstances already had shown that mechanisms of genotoxic effects can be complex and their elucidation can be demanding, while there often is an immediate need to assess the genotoxic hazard. Thus, a practical and pragmatic approach to genotoxicity investigations of novel nanomaterials is the use of a battery of standard genotoxicity testing methods covering a wide range of mechanisms. Application of these standard methods to nanomaterials demands, however, adaptations, and the interpretation of results from the genotoxicity testing of nanomaterials needs additional considerations exceeding those used for standard size materials.
The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leah J.; Holmes, Amie L.; Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300
Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobaltmore » ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.« less
A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples.
Jiang, Bo; Li, Guanghe; Xing, Yi; Zhang, Dayi; Jia, Jianli; Cui, Zhisong; Luan, Xiao; Tang, Hui
2017-10-01
Whole-cell bioreporters have emerged as promising tools for genotoxicity evaluation, due to their rapidity, cost-effectiveness, sensitivity and selectivity. In this study, a method for detecting genotoxicity in environmental samples was developed using the bioluminescent whole-cell bioreporter Escherichia coli recA::luxCDABE. To further test its performance in a real world scenario, the E. coli bioreporter was applied in two cases: i) soil samples collected from chromium(VI) contaminated sites; ii) crude oil contaminated seawater collected after the Jiaozhou Bay oil spill which occurred in 2013. The chromium(VI) contaminated soils were pretreated by water extraction, and directly exposed to the bioreporter in two phases: aqueous soil extraction (water phase) and soil supernatant (solid phase). The results indicated that both extractable and soil particle fixed chromium(VI) were bioavailable to the bioreporter, and the solid-phase contact bioreporter assay provided a more precise evaluation of soil genotoxicity. For crude oil contaminated seawater, the response of the bioreporter clearly illustrated the spatial and time change in genotoxicity surrounding the spill site, suggesting that the crude oil degradation process decreased the genotoxic risk to ecosystem. In addition, the performance of the bioreporter was simulated by a modified cross-regulation gene expression model, which quantitatively described the DNA damage response of the E. coli bioreporter. Accordingly, the bioluminescent response of the bioreporter was calculated as the mitomycin C equivalent, enabling quantitative comparison of genotoxicities between different environmental samples. This bioreporter assay provides a rapid and sensitive screening tool for direct genotoxicity assessment of environmental samples. Copyright © 2017. Published by Elsevier Ltd.
The particulate fraction of cigarette smoke, cigarette smoke condensate (CSC), is genotoxic in many short-term in vitro tests and carcinogenic in rodents. However, no study has evaluatedd a set of CSCs prepared from a diverse set of cigarettes in a variety of short-term genotoxic...
PROXIMATE OR ULTIMATE GENOTOXIC FORMS OF ARSENIC: METHYLATED ARSENIC(III) SPECIES THAT REACT DIRECTL Y WITH DNA.
Abstract:
Although inorganic arsenic (iAs), arsenite or arsenate, is genotoxic, there has been no demonstration that iAs or a methylated metabolite...
Occurrence, Genotoxicity, and Carcinogenicity of Emerging Disinfection By-products in Drinking Water: A Review and Roadmap for Research
Summary of Paper
What is study?
This is the first review of the 30 year's research effort on the occurrence, genotoxicity,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honeycutt, M.E.; Jarvis, A.S.; McFarland, V.A.
1995-07-01
This technical note is the third in a series of three that outline and describe the principal methods that have been developed to test the potential of environmental contaminants to cause mutagenic, carcinogenic, and teratogenic effects. The first in this series (EEDP-04-24) describes methods used to discern genotoxic effects at the sub cellular level, while the second (EEDP-04-25) describes methods used to discern genotoxic effects at the cellular and organ/organism level. Recent literature citations for each topic referenced in this series of technical notes are provided in this technical note, in addition to a glossary of terms. The information inmore » these technical notes is intended to provide Corps of Engineers personnel with a working knowledge of the terminology and conceptual basis of genotoxicity testing. To develop an improved understanding of the concepts of genotoxicity, readers are encouraged to review A Primer in Genotoxicity (Jarvis, Reilly, and Lutz 1993), presented in Volume D-93-3 of the Environmental Effects of Dredging information exchange bulletin.« less
Genotoxicity of retroviral hematopoietic stem cell gene therapy
Trobridge, Grant D
2012-01-01
Introduction Retroviral vectors have been developed for hematopoietic stem cell (HSC) gene therapy and have successfully cured X-linked severe combined immunodeficiency (SCID-X1), adenosine deaminase deficiency (ADA-SCID), adrenoleukodystrophy, and Wiskott-Aldrich syndrome. However, in HSC gene therapy clinical trials, genotoxicity mediated by integrated vector proviruses has led to clonal expansion, and in some cases frank leukemia. Numerous studies have been performed to understand the molecular basis of vector-mediated genotoxicity with the aim of developing safer vectors and safer gene therapy protocols. These genotoxicity studies are critical to advancing HSC gene therapy. Areas covered This review provides an introduction to the mechanisms of retroviral vector genotoxicity. It also covers advances over the last 20 years in designing safer gene therapy vectors, and in integration site analysis in clinical trials and large animal models. Mechanisms of retroviral-mediated genotoxicity, and the risk factors that contribute to clonal expansion and leukemia in HSC gene therapy are introduced. Expert opinion Continued research on virus–host interactions and next-generation vectors should further improve the safety of future HSC gene therapy vectors and protocols. PMID:21375467
Genotoxic effects of boric acid and borax in zebrafish, Danio rerio using alkaline comet assay
Gülsoy, Nagihan; Yavas, Cüneyd; Mutlu, Özal
2015-01-01
The present study is conducted to determine the potential mechanisms of Boron compounds, boric acid (BA) and borax (BX), on genotoxicity of zebrafish Danio rerio for 24, 48, 72 and 96-hours acute exposure (level:1, 4, 16, 64 mg/l BA and BX) in semi-static bioassay experiment. For that purpose, peripheral erythrocytes were drawn from caudal vein and Comet assay was applied to assess genotoxicity. Acute (96 hours) exposure and high concentrations of boric acid and borax increases % tail DNA and Olive tail moment. Genotoxicity was found for BA as concentration-dependent and BX as concentration and time dependent manner. In general, significant effects (P < 0,05) on both concentrations and exposure times were observed in experimental groups. DNA damage was highest at 96 h and 24 h for all BX and BA concentrations, respectively in peripheral blood of D. rerio. For the first time, our study demonstrates the effect of waterborne BA and BX exposure on genotoxicity at the molecular level, which may contribute to understanding the mechanism of boric acid and borax-induced genotoxicity in fish. PMID:26862320
Genotoxic effects of boric acid and borax in zebrafish, Danio rerio using alkaline comet assay.
Gülsoy, Nagihan; Yavas, Cüneyd; Mutlu, Özal
2015-01-01
The present study is conducted to determine the potential mechanisms of Boron compounds, boric acid (BA) and borax (BX), on genotoxicity of zebrafish Danio rerio for 24, 48, 72 and 96-hours acute exposure (level:1, 4, 16, 64 mg/l BA and BX) in semi-static bioassay experiment. For that purpose, peripheral erythrocytes were drawn from caudal vein and Comet assay was applied to assess genotoxicity. Acute (96 hours) exposure and high concentrations of boric acid and borax increases % tail DNA and Olive tail moment. Genotoxicity was found for BA as concentration-dependent and BX as concentration and time dependent manner. In general, significant effects (P < 0,05) on both concentrations and exposure times were observed in experimental groups. DNA damage was highest at 96 h and 24 h for all BX and BA concentrations, respectively in peripheral blood of D. rerio. For the first time, our study demonstrates the effect of waterborne BA and BX exposure on genotoxicity at the molecular level, which may contribute to understanding the mechanism of boric acid and borax-induced genotoxicity in fish.
Yamamoto, Mitsuko L.; Maier, Irene; Dang, Angeline Tilly; Berry, David; Liu, Jared; Ruegger, Paul M.; Yang, Jiue-in; Soto, Phillip A.; Presley, Laura L.; Reliene, Ramune; Westbrook, Aya M.; Wei, Bo; Loy, Alexander; Chang, Christopher; Braun, Jonathan; Borneman, James; Schiestl, Robert H.
2013-01-01
Ataxia-telangiectasia (A-T) is a genetic disorder associated with high incidence of B cell lymphoma. Using an A-T mouse model, we compared lymphoma incidence in several isogenic mouse colonies harboring different bacterial communities, finding that intestinal microbiota are a major contributor to disease penetrance and latency, lifespan, molecular oxidative stress and systemic leucocyte genotoxicity. High throughput sequence analysis of rRNA genes identified mucosa-associated bacterial phylotypes that were colony-specific. Lactobacillus johnsonii, which was deficient in the more cancer-prone mouse colony, was causally tested for its capacity to confer reduced genotoxicity when restored by short-term oral transfer. This intervention decreased systemic genotoxicity, a response associated with reduced basal leucocytes and the cytokine-mediated inflammatory state, and mechanistically linked to the host cell biology of systemic genotoxicity. Our results suggest that intestinal microbiota are a potentially modifiable trait for translational intervention in individuals at risk for B cell lymphoma, or for other diseases that are driven by genotoxicity or the molecular response to oxidative stress. PMID:23860718
Brezina, Elena; Prasse, Carsten; Meyer, Johannes; Mückter, Harald; Ternes, Thomas A
2017-06-01
Trace organic contaminants such as pharmaceuticals, personal care products and industrial chemicals are frequently detected in the urban water cycle, including wastewater, surface water and groundwater, as well as drinking water. These also include human metabolites (HMs), which are formed in the human body and then excreted via urine or feces, as well as transformation products (TPs) formed in engineered treatment systems and the aquatic environment. In the current study, the occurrence of HMs as well as their TPs of the anticonvulsants carbamazepine (CBZ) and oxcarbazepine (OXC) were investigated using LC tandem MS in effluents of wastewater treatment plants (WWTPs), surface water and groundwater. Highest concentrations were observed in raw wastewater for 10,11-dihydro-10,11-dihydroxycarbamazepine (DiOHCBZ), 10,11-dihydro-10-hydroxy-cabamazepine (10OHCBZ) and CBZ with concentrations ranging up to 2.7 ± 0.4, 1.7 ± 0.2 and 1.07 ± 0.06 μg L -1 , respectively. Predictions of different toxicity endpoints using a Distributed Structure-Searchable Toxicity (DSSTox) expert system query indicated that several HMs and TPs, in particular 9-carboxy-acridine (9-CA-ADIN) and acridone (ADON), may exhibit an increased genotoxicity compared to the parent compound CBZ. As 9-CA-ADIN was also detected in groundwater, a detailed investigation of the genotoxicity of 9-CA-ADIN is warranted. Investigations of an advanced wastewater treatment plant further revealed that the discharge of the investigated compounds into the aquatic environment could be substantially reduced by ozonation followed by granular activated carbon (GAC) filtration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rodrigues, Fernando Postalli; Angeli, José Pedro Friedmann; Mantovani, Mário Sérgio; Guedes, Carmen Luisa Barbosa; Jordão, Berenice Quinzani
2010-01-01
Polycyclic aromatic hydrocarbons (PAHs) are genotoxic chemicals commonly found in effluents from oil refineries. Bioassays using plants and cells cultures can be employed for assessing environmental safety and potential genotoxicity. In this study, the genotoxic potential of an oil refinery effluent was analyzed by means of micronucleus (MN) testing of Alium cepa, which revealed no effect after 24 h of treatment. On the other hand, primary lesions in the DNA of rat (Rattus norvegicus) hepatoma cells (HTC) were observed through comet assaying after only 2 h of exposure. On considering the capacity to detect DNA damage of a different nature and of these cells to metabolize xenobiotics, we suggest the association of the two bioassays with these cell types, plant (Allium cepa) and mammal (HTC) cells, for more accurately assessing genotoxicity in environmental samples.
Gutiérrez, Juan Manuel; da Conceição, Moisés Basilio; Molisani, Mauricio Mussi; Weber, Laura Isabel
2018-03-01
Offshore oil exploration creates threats to coastal ecosystems, including increasing urbanization and associated effluent releases. Genotoxicity biomarkers in mussels were determined across a gradient of coastal zone influences of offshore petroleum exploration in southeastern Brazil. Coastal ecosystems such as estuaries, beaches and islands were seasonally monitored for genotoxicity evaluation using the brown mussel Perna perna. The greatest DNA damage (5.2% ± 1.9% tail DNA and 1.5‰ ± 0.8‰ MN) were observed in urban estuaries, while Santana Archipelago showed levels of genotoxicity near zero and is considered a reference site. Mussels from urban and pristine beaches showed intermediate damage levels, but were also influenced by urbanization. Thus, mussel genotoxicity biomarkers greatly indicated the proposed oil exploration and urbanization scenarios that consequently are genetically affecting coastal organisms.
The use of ex vivo human skin tissue for genotoxicity testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reus, Astrid A.; Usta, Mustafa; Krul, Cyrille A.M., E-mail: cyrille.krul@tno.nl
2012-06-01
As a result of the chemical legislation concerning the registration, evaluation, authorization and restriction of chemicals (REACH), and the Seventh Amendment to the Cosmetics Directive, which prohibits animal testing in Europe for cosmetics, alternative methods for safety evaluation of chemicals are urgently needed. Current in vitro genotoxicity assays are not sufficiently predictive for the in vivo situation, resulting in an unacceptably high number of misleading positives. For many chemicals and ingredients of personal care products the skin is the first site of contact, but there are no in vitro genotoxicity assays available in the skin for additional evaluation of positivemore » or equivocal responses observed in regulatory in vitro genotoxicity assays. In the present study ex vivo human skin tissue obtained from surgery was used for genotoxicity evaluation of chemicals by using the comet assay. Fresh ex vivo human skin tissue was cultured in an air–liquid interface and topically exposed to 20 chemicals, including true positive, misleading positive and true negative genotoxins. Based on the results obtained in the present study, the sensitivity, specificity and accuracy of the ex vivo skin comet assay to predict in vivo genotoxicity were 89%, 90% and 89%, respectively. Donor and experimental variability were mainly reflected in the magnitude of the response and not the difference between the presence and absence of a genotoxic response. The present study indicates that human skin obtained from surgery is a promising and robust model for safety evaluation of chemicals that are in direct contact with the skin. -- Highlights: ► We use human skin obtained from surgery for genotoxicity evaluation of chemicals. ► We use the comet assay as parameter for genotoxicity in ex vivo human skin. ► Sensitivity, specificity and accuracy to predict in vivo genotoxins are determined. ► Sensitivity, specificity and accuracy are 89%, 90% and 90%, respectively. ► The method is suitable for evaluation of chemicals that are in contact with skin.« less
Thompson, Chad M; Bichteler, Anne; Rager, Julia E; Suh, Mina; Proctor, Deborah M; Haws, Laurie C; Harris, Mark A
2016-04-01
Recent analyses-highlighted by the International Workshops on Genotoxicity Testing Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment-have identified a correlation between (log) estimates of a carcinogen's in vivo genotoxic potency and in vivo carcinogenic potency in typical laboratory animal models, even when the underlying data have not been matched for tissue, species, or strain. Such a correlation could have important implications for risk assessment, including informing the mode of action (MOA) of specific carcinogens. When in vivo genotoxic potency is weak relative to carcinogenic potency, MOAs other than genotoxicity (e.g., endocrine disruption or regenerative hyperplasia) may be operational. Herein, we review recent in vivo genotoxicity and carcinogenicity data for hexavalent chromium (Cr(VI)), following oral ingestion, in relevant tissues and species in the context of the aforementioned correlation. Potency estimates were generated using benchmark doses, or no-observable-adverse-effect-levels when data were not amenable to dose-response modeling. While the ratio between log values for carcinogenic and genotoxic potency was ≥1 for many compounds, the ratios for several Cr(VI) datasets (including in target tissue) were less than unity. In fact, the ratios for Cr(VI) clustered closely with ratios for chloroform and diethanolamine, two chemicals posited to have non-genotoxic MOAs. These findings suggest that genotoxicity may not play a major role in the cancers observed in rodents following exposure to high concentrations of Cr(VI) in drinking water-a finding consistent with recent MOA and adverse outcome pathway (AOP) analyses concerning Cr(VI). This semi-quantitative analysis, therefore, may be useful to augment traditional MOA and AOP analyses. More case examples will be needed to further explore the general applicability and validity of this approach for human health risk assessment. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Which chemicals drive biological effects in wastewater and recycled water?
Tang, Janet Y M; Busetti, Francesco; Charrois, Jeffrey W A; Escher, Beate I
2014-09-01
Removal of organic micropollutants from wastewater during secondary treatment followed by reverse osmosis and UV disinfection was evaluated by a combination of four in-vitro cell-based bioassays and chemical analysis of 299 organic compounds. Concentrations detected in recycled water were below the Australian Guidelines for Water Recycling. Thus the detected chemicals were considered not to pose any health risk. The detected pesticides in the wastewater treatment plant effluent and partially advanced treated water explained all observed effects on photosynthesis inhibition. In contrast, mixture toxicity experiments with designed mixtures containing all detected chemicals at their measured concentrations demonstrated that the known chemicals explained less than 3% of the observed cytotoxicity and less than 1% of the oxidative stress response. Pesticides followed by pharmaceuticals and personal care products dominated the observed mixture effects. The detected chemicals were not related to the observed genotoxicity. The large proportion of unknown toxicity calls for effect monitoring complementary to chemical monitoring. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kempf, Michael; Reinhard, Annika; Beuerle, Till
2010-01-01
Pyrrolizidine alkaloids (PAs) are secondary plant constituents that comprise about 400 different structures and occur in two major forms, a tertiary form and the corresponding N-oxide. PAs containing a 1,2-double bond are pre-toxins and metabolically activated by the action of hepatic P-450 enzymes to toxic pyrroles. Besides the acute toxic effects, the genotoxic and tumorigenicity potential of PAs was demonstrated in some eukaryotic model systems. Recently, the potential PA contamination of food and feeding stuff attracted recurrent great deals of attention. Humans are exposed to these toxins by consumption of herbal medicine, herbal teas, dietary supplements or food containing PA plant material. In numerous studies the potential threat to human health by PAs is stated. In pharmaceuticals, the use of these plants is regulated. Considering the PA concentrations observed especially in authentic honey from PA producing plants and pollen products, the results provoke an international regulation of PAs in food.
Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin
2014-01-24
DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag(+)-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science. Copyright © 2013 Elsevier B.V. All rights reserved.
Igbinosa, Etinosa O.; Odjadjare, Emmanuel E.; Chigor, Vincent N.; Igbinosa, Isoken H.; Emoghene, Alexander O.; Ekhaise, Fredrick O.; Igiehon, Nicholas O.; Idemudia, Omoruyi G.
2013-01-01
Chlorophenol compounds and their derivatives are ubiquitous contaminants in the environment. These compounds are used as intermediates in manufacturing agricultural chemicals, pharmaceuticals, biocides, and dyes. Chlorophenols gets into the environment from a variety of sources such as industrial waste, pesticides, and insecticides, or by degradation of complex chlorinated hydrocarbons. Thermal and chemical degradation of chlorophenols leads to the formation of harmful substances which constitute public health problems. These compounds may cause histopathological alterations, genotoxicity, mutagenicity, and carcinogenicity amongst other abnormalities in humans and animals. Furthermore, the recalcitrant nature of chlorophenolic compounds to degradation constitutes an environmental nuisance, and a good understanding of the fate and transport of these compounds and their derivatives is needed for a clearer view of the associated risks and mechanisms of pathogenicity to humans and animals. This review looks at chlorophenols and their derivatives, explores current research on their effects on public health, and proffers measures for mitigation. PMID:23690744
OpenSource lab-on-a-chip physiometer for accelerated zebrafish embryo biotests.
Akagi, Jin; Hall, Chris J; Crosier, Kathryn E; Cooper, Jonathan M; Crosier, Philip S; Wlodkowic, Donald
2014-01-02
Zebrafish (Danio rerio) embryo assays have recently come into the spotlight as convenient experimental models in both biomedicine and ecotoxicology. As a small aquatic model organism, zebrafish embryo assays allow for rapid physiological, embryo-, and genotoxic tests of drugs and environmental toxins that can be simply dissolved in water. This protocol describes prototyping and application of an innovative, miniaturized, and polymeric chip-based device capable of immobilizing a large number of living fish embryos for real-time and/or time-lapse microscopic examination. The device provides a physical address designation to each embryo during analysis, continuous perfusion of medium, and post-analysis specimen recovery. Miniaturized embryo array is a new concept of immobilization and real-time drug perfusion of multiple individual and developing zebrafish embryos inside the mesofluidic device. The OpenSource device presented in this protocol is particularly suitable to perform accelerated fish embryo biotests in ecotoxicology and phenotype-based pharmaceutical screening. Copyright © 2014 John Wiley & Sons, Inc.
In silico toxicology for the pharmaceutical sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valerio, Luis G., E-mail: Luis.Valerio@fda.hhs.go
2009-12-15
The applied use of in silico technologies (a.k.a. computational toxicology, in silico toxicology, computer-assisted tox, e-tox, i-drug discovery, predictive ADME, etc.) for predicting preclinical toxicological endpoints, clinical adverse effects, and metabolism of pharmaceutical substances has become of high interest to the scientific community and the public. The increased accessibility of these technologies for scientists and recent regulations permitting their use for chemical risk assessment supports this notion. The scientific community is interested in the appropriate use of such technologies as a tool to enhance product development and safety of pharmaceuticals and other xenobiotics, while ensuring the reliability and accuracy ofmore » in silico approaches for the toxicological and pharmacological sciences. For pharmaceutical substances, this means active and impurity chemicals in the drug product may be screened using specialized software and databases designed to cover these substances through a chemical structure-based screening process and algorithm specific to a given software program. A major goal for use of these software programs is to enable industry scientists not only to enhance the discovery process but also to ensure the judicious use of in silico tools to support risk assessments of drug-induced toxicities and in safety evaluations. However, a great amount of applied research is still needed, and there are many limitations with these approaches which are described in this review. Currently, there is a wide range of endpoints available from predictive quantitative structure-activity relationship models driven by many different computational software programs and data sources, and this is only expected to grow. For example, there are models based on non-proprietary and/or proprietary information specific to assessing potential rodent carcinogenicity, in silico screens for ICH genetic toxicity assays, reproductive and developmental toxicity, theoretical prediction of human drug metabolism, mechanisms of action for pharmaceuticals, and newer models for predicting human adverse effects. How accurate are these approaches is both a statistical issue and challenge in toxicology. In this review, fundamental concepts and the current capabilities and limitations of this technology will be critically addressed.« less
Effect of exposure protocol and heat shock protein expression on arsenite induced genotoxicity in MCF-7 breast cancer cells
The genotoxic effects of arsenic (As) are well accepted, yet its mechanism of action is not clearly defined. Heat-shock proteins (HSPs) protect...
An Evaluation of the Relative Genotoxicity of Arsenite, Arsenate, and Four Methylated
Metabolites In Vitro Using the Alkaline Single Cell Gel Assay (ASCG).
Arsenic ( As) is a genotoxic and carcinogenic metal found in many drinking water systems throughout the world. ...
Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity
Butler, Kimberly S.; Peeler, David J.; Casey, Brendan J.; Dair, Benita J.; Elespuru, Rosalie K.
2015-01-01
The focus of this research was to develop a better understanding of the pertinent physico-chemical properties of silver nanoparticles (AgNPs) that affect genotoxicity, specifically how cellular uptake influences a genotoxic cell response. The genotoxicity of AgNPs was assessed for three potential mechanisms: mutagenicity, clastogenicity and DNA strand-break-based DNA damage. Mutagenicity (reverse mutation assay) was assessed in five bacterial strains of Salmonella typhimurium and Echerichia coli, including TA102 that is sensitive to oxidative DNA damage. AgNPs of all sizes tested (10, 20, 50 and 100nm), along with silver nitrate (AgNO3), were negative for mutagenicity in bacteria. No AgNPs could be identified within the bacteria cells using transmission electron microscopy (TEM), indicating these bacteria lack the ability to actively uptake AgNPs 10nm or larger. Clastogenicity (flow cytometry-based micronucleus assay) and intermediate DNA damage (DNA strand breaks as measured in the Comet assay) were assessed in two mammalian white blood cell lines: Jurkat Clone E6-1 and THP-1. It was observed that micronucleus and Comet assay end points were inversely correlated with AgNP size, with smaller NPs inducing a more genotoxic response. TEM results indicated that AgNPs were confined within intracellular vesicles of mammalian cells and did not penetrate the nucleus. The genotoxicity test results and the effect of AgNO3 controls suggest that silver ions may be the primary, and perhaps only, cause of genotoxicity. Furthermore, since AgNO3 was not mutagenic in the gram-negative bacterial Ames strains tested, the lack of bacterial uptake of the AgNPs may not be the major reason for the lack of genotoxicity observed. PMID:25964273
Guo, Xiaoqing; Li, Yan; Yan, Jian; Ingle, Taylor; Jones, Margie Yvonne; Mei, Nan; Boudreau, Mary D; Cunningham, Candice K; Abbas, Mazhar; Paredes, Angel M; Zhou, Tong; Moore, Martha M; Howard, Paul C; Chen, Tao
2016-11-01
The physicochemical characteristics of silver nanoparticles (AgNPs) may greatly alter their toxicological potential. To explore the effects of size and coating on the cytotoxicity and genotoxicity of AgNPs, six different types of AgNPs, having three different sizes and two different coatings, were investigated using the Ames test, mouse lymphoma assay (MLA) and in vitro micronucleus assay. The genotoxicities of silver acetate and silver nitrate were evaluated to compare the genotoxicity of nanosilver to that of ionic silver. The Ames test produced inconclusive results for all types of the silver materials due to the high toxicity of silver to the test bacteria and the lack of entry of the nanoparticles into the cells. Treatment of L5718Y cells with AgNPs and ionic silver resulted in concentration-dependent cytotoxicity, mutagenicity in the Tk gene and the induction of micronuclei from exposure to nearly every type of the silver materials. Treatment of TK6 cells with these silver materials also resulted in concentration-dependent cytotoxicity and significantly increased micronucleus frequency. With both the MLA and micronucleus assays, the smaller the AgNPs, the greater the cytotoxicity and genotoxicity. The coatings had less effect on the relative genotoxicity of AgNPs than the particle size. Loss of heterozygosity analysis of the induced Tk mutants indicated that the types of mutations induced by AgNPs were different from those of ionic silver. These results suggest that AgNPs induce cytotoxicity and genotoxicity in a size- and coating-dependent manner. Furthermore, while the MLA and in vitro micronucleus assay (in both types of cells) are useful to quantitatively measure the genotoxic potencies of AgNPs, the Ames test cannot.
Mechanisms related to the genotoxicity of particles in the subway and from other sources.
Karlsson, Hanna L; Holgersson, Asa; Möller, Lennart
2008-03-01
Negative health effects of airborne particles have clearly been shown in epidemiological studies. People get exposed to particles from various sources such as the combustion of, for example, diesel and wood and also from particles arising from tire-road wear. Another source of importance for certain populations is exposure to particles in subway systems. We recently reported that these particles were more genotoxic when compared to that of several other particle types. The aim of this study was to further investigate and compare the toxicity of subway particles and particles from other sources as well as investigate some mechanisms behind the genotoxicity of subway particles. This was done by comparing the ability of subway particles and particles from a street, pure tire-road wear particles, and particles from wood and diesel combustion to cause mitochondrial depolarization and to form intracellular reactive oxygen species (ROS). Furthermore, the genotoxicity and ability to cause oxidative stress was compared to magnetite particles since this is a main component in subway particles. It was concluded that the subway particles and also street particles and particles from wood and diesel combustion caused mitochondrial depolarization. The ability to damage the mitochondria is thus not the only explanation for the high genotoxicity of subway particles. Subway particles also formed intracellular ROS. This effect may be part of the explanation as to why subway particles show such high genotoxicity when compared to that of other particles. Genotoxicity can, however, not be explained by the main component, magnetite, by water-soluble metals, or by intracellular mobilized iron. The genotoxicity is most likely caused by highly reactive surfaces giving rise to oxidative stress.
Hradski, Jasna; Chorváthová, Mária Drusková; Bodor, Róbert; Sabo, Martin; Matejčík, Štefan; Masár, Marián
2016-12-01
Although microchip electrophoresis (MCE) is intended to provide reliable quantitative data, so far there is only limited attention paid to these important aspects. This study gives a general overview of key aspects to be followed to reach high-precise determination using isotachophoresis (ITP) on the microchip with conductivity detection. From the application point of view, the procedure for the determination of acetate, a main component in the pharmaceutical preparation buserelin acetate, was developed. Our results document that run-to-run fluctuations in the sample injection volume limit the reproducibility of quantitation based on the external calibration. The use of a suitable internal standard (succinate in this study) improved the repeatability of the precision of acetate determination from six to eight times. The robustness of the procedure was studied in terms of impact of fluctuations in various experimental parameters (driving current, concentration of the leading ions, pH of the leading electrolyte and buffer impurities) on the precision of the ITP determination. The use of computer simulation programs provided means to assess the ITP experiments using well-defined theoretical models. A long-term validity of the calibration curves on two microchips and two MCE equipments was verified. This favors ITP over other microchip electrophoresis techniques, when chip-to-chip or equipment-to-equipment transfer of the analytical method is required. The recovery values in the range of 98-101 % indicate very accurate determination of acetate in buserelin acetate, which is used in the treatment of hormone-dependent tumors. This study showed that microchip ITP is suitable for reliable determination of main components in pharmaceutical preparations.
Genotoxic effects of occupational exposure to benzene in gasoline station workers
SALEM, Eman; EL-GARAWANI, Islam; ALLAM, Heba; EL-AAL, Bahiga Abd; HEGAZY, Mofrih
2017-01-01
Benzene, a hazardous component of gasoline, is a genotoxic class I human carcinogen. This study evaluated the genotoxic effects of occupational exposure to benzene in gasoline stations. Genotoxicity of exposure to benzene was assessed in peripheral blood leucocytes of 62 gasoline station workers and compared with an equal numbers of matched controls using total genomic DNA fragmentation, micronucleus test and cell viability test. An ambient air samples were collected and analyzed for Monitoring of benzene, toluene, ethyl benzene and xylene (BTEX) in work environment and control areas. DNA fragmentation, micronucleus and dead cells percent were significantly higher in exposed workers than controls. Level of benzene, Toluene, Ethyl benzene and xylene in the work environment were higher than the control areas and the permissible limits. Gasoline station workers occupationally exposed to benzene are susceptible to genotoxic effects indicated by increased DNA fragmentation, higher frequency of micronucleus and decreased leukocytes viability. PMID:29070767
Toxicological and analytical investigations of noni (Morinda citrifolia) fruit juice.
Westendorf, Johannes; Effenberger, Katharina; Iznaguen, Hassan; Basar, Simla
2007-01-24
Morinda citrifolia (noni) is known to contain genotoxic anthraquinones in the roots. Because of the widespread use of noni juice, the possible genotoxic risk was examined through a battery of short-term tests. Noni juice was also chemically analyzed for the possible presence of anthraquinones. Noni juice extract in the Salmonella microsome assay showed a slight mutagenic effect in strain TA1537, due to the presence of flavonoids. No mutagenicity was observed in the mammalian mutagenicity test with V79 Chinese hamster fibroblasts. Rats treated with a noni juice concentrate did not show DNA repair synthesis (UDS) in primary rat hepatocytes, nor could DNA adducts or DNA strand breaks be observed. HPLC analysis of noni juice for anthraquinones was negative, with a sensitivity of <1 ppm. In summary, chemical analysis and genotoxicity tests reveal that noni juice does not have a genotoxic potential and that genotoxic anthraquinones do not exist in noni juice.
Genotoxic effects of occupational exposure to benzene in gasoline station workers.
Salem, Eman; El-Garawani, Islam; Allam, Heba; El-Aal, Bahiga Abd; Hegazy, Mofrih
2018-04-07
Benzene, a hazardous component of gasoline, is a genotoxic class I human carcinogen. This study evaluated the genotoxic effects of occupational exposure to benzene in gasoline stations. Genotoxicity of exposure to benzene was assessed in peripheral blood leucocytes of 62 gasoline station workers and compared with an equal numbers of matched controls using total genomic DNA fragmentation, micronucleus test and cell viability test. An ambient air samples were collected and analyzed for Monitoring of benzene, toluene, ethyl benzene and xylene (BTEX) in work environment and control areas. DNA fragmentation, micronucleus and dead cells percent were significantly higher in exposed workers than controls. Level of benzene, Toluene, Ethyl benzene and xylene in the work environment were higher than the control areas and the permissible limits. Gasoline station workers occupationally exposed to benzene are susceptible to genotoxic effects indicated by increased DNA fragmentation, higher frequency of micronucleus and decreased leukocytes viability.
Physico-chemical and genotoxicity analysis of Guaribas river water in the Northeast Brazil.
de Castro E Sousa, João Marcelo; Peron, Ana Paula; da Silva, Felipe Cavalcanti Carneiro; de Siqueira Dantas, Ellifran Bezerra; de Macedo Vieira Lima, Ataíde; de Oliveira, Victor Alves; Matos, Leomá Albuquerque; Paz, Márcia Fernanda Correia Jardim; de Alencar, Marcus Vinicius Oliveira Barros; Islam, Muhammad Torequl; de Carvalho Melo-Cavalcante, Ana Amélia; Bonecker, Cláudia Costa; Júlio, Horácio Ferreira
2017-06-01
River pollution in Brazil is significant. This study aimed to evaluate the physico-chemical and genotoxic profiles of the Guaribas river water, located in Northeast Brazil (State of Piauí, Brazil). The study conducted during the dry and wet seasons to understand the frequency of pollution throughout the year. Genotoxicity analysis was done with the blood of Oreochromis niloticus by using the comet assay. Water samples were collected from upstream, within and downstream the city Picos. The results suggest a significant (p < 0.05) genotoxic effect of the Guaribas river water when compared to the control group. In comparison to the control group, in the river water we found a significant increase in metals such as - Fe, Zn, Cr, Cu and Al. In conclusion, Guaribas river carries polluted water, especially a large quantity of toxic metals, which may impart the genotoxic effect. Copyright © 2017 Elsevier Ltd. All rights reserved.
Butrimavičienė, Laura; Baršienė, Janina; Greiciūnaitė, Janina; Stankevičiūtė, Milda; Valskienė, Roberta
2018-06-21
Environmental genotoxicity in the Gulf of Riga was assessed using different bioindicators (fish, clams, and isopods) collected from 14 study stations. Comparison of genotoxicity responses (micronuclei (MN) and nuclear buds (NB)) in blood erythrocytes of herring (Clupea harengus), eelpout (Zoarces viviparous), and flounder (Platichthys flesus) revealed the species- and site-specific differences. For the first time, the analysis of genotoxicity was carried out in gill cells of isopods Saduria entomon. The highest inductions of MN and NB in gill cells of investigated S. entomon and clams (Macoma balthica) were evaluated in specimens from station 111A (offshore zone). In fish, the highest incidences of MN were measured in eelpout and in herring collected in the southern part of Gulf of Riga (station GOR3/41S). Moreover, in the southern coastal area, the assessment of genotoxicity risk (according to micronuclei levels) indicated exceptionally high risk for flounder, eelpout, and clams.
Cellular Responses in Human Dental Pulp Stem Cells Treated with Three Endodontic Materials
Ibañez-Cabellos, José Santiago; de Cutanda, Sergio Bañuls-Sánchez; Berenguer-Pascual, Ester; Beltrán-García, Jesús; García-López, Eva; Pallardó, Federico V.; García-Giménez, José Luis; Pallarés-Sabater, Antonio; Zarzosa-López, Ignacio; Monterde, Manuel
2017-01-01
Human dental pulp stem cells (HDPSCs) are of special relevance in future regenerative dental therapies. Characterizing cytotoxicity and genotoxicity produced by endodontic materials is required to evaluate the potential for regeneration of injured tissues in future strategies combining regenerative and root canal therapies. This study explores the cytotoxicity and genotoxicity mediated by oxidative stress of three endodontic materials that are widely used on HDPSCs: a mineral trioxide aggregate (MTA-Angelus white), an epoxy resin sealant (AH-Plus cement), and an MTA-based cement sealer (MTA-Fillapex). Cell viability and cell death rate were assessed by flow cytometry. Oxidative stress was measured by OxyBlot. Levels of antioxidant enzymes were evaluated by Western blot. Genotoxicity was studied by quantifying the expression levels of DNA damage sensors such as ATM and RAD53 genes and DNA damage repair sensors such as RAD51 and PARP-1. Results indicate that AH-Plus increased apoptosis, oxidative stress, and genotoxicity markers in HDPSCs. MTA-Fillapex was the most cytotoxic oxidative stress inductor and genotoxic material for HDPSCs at longer times in preincubated cell culture medium, and MTA-Angelus was less cytotoxic and genotoxic than AH-Plus and MTA-Fillapex at all times assayed. PMID:28751918
Scherzad, Agmal; Meyer, Till; Kleinsasser, Norbert
2017-01-01
Background: Zinc oxide nanoparticles (ZnO NPs) are among the most frequently applied nanomaterials in consumer products. Evidence exists regarding the cytotoxic effects of ZnO NPs in mammalian cells; however, knowledge about the potential genotoxicity of ZnO NPs is rare, and results presented in the current literature are inconsistent. Objectives: The aim of this review is to summarize the existing data regarding the DNA damage that ZnO NPs induce, and focus on the possible molecular mechanisms underlying genotoxic events. Methods: Electronic literature databases were systematically searched for studies that report on the genotoxicity of ZnO NPs. Results: Several methods and different endpoints demonstrate the genotoxic potential of ZnO NPs. Most publications describe in vitro assessments of the oxidative DNA damage triggered by dissoluted Zn2+ ions. Most genotoxicological investigations of ZnO NPs address acute exposure situations. Conclusion: Existing evidence indicates that ZnO NPs possibly have the potential to damage DNA. However, there is a lack of long-term exposure experiments that clarify the intracellular bioaccumulation of ZnO NPs and the possible mechanisms of DNA repair and cell survival. PMID:29240707
Alvarez-Moya, Carlos; Silva, Mónica Reynoso; Ramírez, Carlos Valdez; Gallardo, David Gómez; Sánchez, Rafael León; Aguirre, Alejandro Canales; Velasco, Alfredo Feria
2014-01-01
There is considerable controversy with regard to the genotoxicity of glyphosate, with some reports stating that this compound is non-toxic for fish, birds and mammals. In this work, we used the comet assay to examine the genotoxicity of glyphosate isopropylamine (0.7, 7, 70 and 700 μM) in human lymphocytes, erythrocytes of Oreochromis niloticus and staminal nuclei of Tradescantia (4430) in vitro and in vivo. Cells, nuclei and fish that had and had not been exposed to 5 mM N-nitrosodiethylamine (NDEA) were used as positive and negative controls, respectively. Significant (p < 0.01) genetic damage was observed in vivo and in vitro in all cell types and organisms tested. Human lymphocytes and Tradescantia hairs showed lower genetic damage in vivo compared to in vitro, possibly because of efficient metabolization of the herbicide. In O. niloticus erythrocytes, significant (p < 0.001) genotoxicity was observed at ≥ 7 μM, whereas in vitro, glyphosphate was genotoxic in human lymphocytes and Tradescantia hairs at ≥ 0.7 μM. These results indicate that glyphosate is genotoxic in the cells and organisms studied at concentrations of 0.7–7 μM. PMID:24688297
Alvarez-Moya, Carlos; Silva, Mónica Reynoso; Ramírez, Carlos Valdez; Gallardo, David Gómez; Sánchez, Rafael León; Aguirre, Alejandro Canales; Velasco, Alfredo Feria
2014-03-01
There is considerable controversy with regard to the genotoxicity of glyphosate, with some reports stating that this compound is non-toxic for fish, birds and mammals. In this work, we used the comet assay to examine the genotoxicity of glyphosate isopropylamine (0.7, 7, 70 and 700 μM) in human lymphocytes, erythrocytes of Oreochromis niloticus and staminal nuclei of Tradescantia (4430) in vitro and in vivo. Cells, nuclei and fish that had and had not been exposed to 5 mM N-nitrosodiethylamine (NDEA) were used as positive and negative controls, respectively. Significant (p < 0.01) genetic damage was observed in vivo and in vitro in all cell types and organisms tested. Human lymphocytes and Tradescantia hairs showed lower genetic damage in vivo compared to in vitro, possibly because of efficient metabolization of the herbicide. In O. niloticus erythrocytes, significant (p < 0.001) genotoxicity was observed at ≥ 7 μM, whereas in vitro, glyphosphate was genotoxic in human lymphocytes and Tradescantia hairs at ≥ 0.7 μM. These results indicate that glyphosate is genotoxic in the cells and organisms studied at concentrations of 0.7-7 μM.
Ecotoxicological and Genotoxic Evaluation of Buenos Aires City (Argentina) Hospital Wastewater
Juárez, Ángela Beatriz; Dragani, Valeria; Saenz, Magalí Elizabeth; Moretton, Juan
2014-01-01
Hospital wastewater (HWW) constitutes a potential risk to the ecosystems and human health due to the presence of toxic and genotoxic chemical compounds. In the present work we investigated toxicity and genotoxicity of wastewaters from the public hospital of Buenos Aires (Argentina). The effluent from the sewage treatment plant (STP) serving around 10 million inhabitants was also evaluated. The study was carried out between April and September 2012. Toxicity and genotoxicity assessment was performed using the green algae Pseudokirchneriella subcapitata and the Allium cepa test, respectively. Toxicity assay showed that 55% of the samples were toxic to the algae (%I of growth between 23.9 and 54.8). The A. cepa test showed that 40% of the samples were genotoxic. The analysis of chromosome aberrations (CA) and micronucleus (MN) showed no significant differences between days and significant differences between months. The sample from the STP was not genotoxic to A. cepa but toxic to the algae (%I = 41%), showing that sewage treatment was not totally effective. This study highlights the need for environmental control programs and the establishment of advanced and effective effluent treatment plants in the hospitals, which are merely dumping the wastewaters in the municipal sewerage system. PMID:25214834
Genotoxicity potential of a new natural formicide.
Cotelle, Sylvie; Testolin, Renan C; Foltête, Anne-Sophie; Bossardi-Rissardi, Georgiana; Silveira, Rosilene A; Radetski, Claudemir M
2012-03-01
Assessment of environmental impacts from pesticide utilization should include genotoxicity studies, where the possible effects of mutagenic/genotoxic substances on individuals are assessed. In this study, the genotoxicity profile of the new formicide Macex® was evaluated with two genotoxicity tests, namely, the micronucleus test with mouse bone marrow and Vicia faba, and a mutagenicity test using the Ames Salmonella assay. The bacterial reverse mutation test (Salmonella typhimurium strains TA97, TA98, TA100, TA102, and TA1535), the Vicia root tip and mouse micronucleus tests were conducted according to published protocols. In the range of the formicide Macex® concentrations tested from 0.06 to 1.0 g L⁻¹ (or mgkg⁻¹ in the mouse test), no genotoxicity was observed in the prokaryotic or eukaryotic test organisms. However, at Macex® concentrations of 0.5 g L⁻¹ and above a significant decrease in the mitotic index (P ≤ 0.05) in the V. faba was observed. Micronucleus formation was likewise increased in the test organism at concentrations starting at 2.0 g L⁻¹. These data allow us to classify this natural formicide preparation as a product with no geno-environmental-impact when applied at recommended concentrations.
Ma'mun, Ahmed; Abd El-Rahman, Mohamed K; Abd El-Kawy, Mohamed
2018-05-30
In recent years, the whole field of ion-selective electrodes(ISEs) in pharmaceutical sciences has expanded far beyond its original roots. The diverse range of opportunities offered by ISEs was broadly used in a number of pharmaceutical applications, with topics presented ranging from bioanalysis of drugs and metabolites, to protein binding studies, green analytical chemistry, impurity profiling, and drug dissolution in biorelevant media. Inspired from these advances and with the aim of extending the functional capabilities of ISEs, the primary focus of the present paper is the utilization of ISE as a tool in personalized medicine. Given the opportunity to explore biological events in real-time (such as drug metabolism) could be central to personalized medicine. (ATR) is a chemo-degradable and bio-degradable pharmaceutically active drug. Laudanosine (LDS) is the major degradation product and metabolite of ATR and is potentially toxic and reported to possess epileptogenic activity which increases the risk of convulsive effects. In this work, ATR have been subjected to both chemical and biological hydrolysis, and the course of the reactions is monitored by means of a ISE. In this study, we have designed an efficient real-time tracking strategy which substantially resolve the challenges of the ATR chemical and biological degradation kinetics. By utilizing a potentiometric sensor, tracking of ATR chemical and biological degradation kinetics can be performed in a very short time with excellent accuracy. The LOD was calculated to be 0.23 μmol L -1 , the potential drift was investigated over a period of 60 min and the value was 0.25 mV h -1 . Real serum samples for measurement the rate of in vitro metabolism of ATR was performed. Furthermore, a full description of the fabricated screen-printed sensor was presented. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Hua-Rong; Zhang, Shi-Cui
2002-12-01
A continuous marine fish cell line RSBF (i. c. Red Sea Bream Fin) was utilized to screen the cytotoxicity and genotoxicity of polyethylenimine (PEI) and nickel chloride (NiCl2) in this study on the deleterious effects of aquatic genotoxins on fish. At the 0.01 to 1 μg/ml concentration tested, PEI had acute toxicity to the treated RSBF cells (IC50=1.12, 0.92, 0.88 and 0.64 μg/ml PEI for time 0 h, 24 h, 48 h and 72 h after treatment, respectively) and markedly inhibited their proliferation in a dose-dependent manner. At the 0.001 to 5 μmol/L concentration tested, NiCl2 posed no acute toxicity but significantly stimulated their growth (107% 214% of control). Random amplified polymorphic DNA (RAPD) technique was used to detect the genotoxic effects of PEI and NiCl2 by comparing the RAPD banding patterns of the control and treated cells. RAPD analysis indicated that at the concentrations tested, PEI was more genotoxic than NiCl2 to RSBF cells; that there was a slight dose-dependent response in the genotoxic effect of PEI but not NiCl2; and that RAPD technique might provide a sensitive, non-specific genotoxic endpoint. And the potent cytotoxicity and genotoxicity of PEI on fish cells showed that we should be cautious in utilizing it as gene, vector in fish gene transfer and human gene therapy.
Evaluation of protective effect of amifostine on dacarbazine induced genotoxicity.
Etebari, M; Jafarian-Dehkordi, A; Lame, V
2015-01-01
Anticancer therapy with alkylating agents has been used for many years. Dacarbazine (DTIC) as an alkylating agent is used alone or in combination with other chemotherapy drugs. In order to inhibit the formation of secondary cancers resulting from chemotherapy with DTIC, preventional strategies is necessary. The present study was undertaken to evaluate the genoprotective effect of amifostine on the genotoxic effects of DTIC in cell culture condition. To determine the optimum genotoxic concentration of DTIC, HepG2 cells were incubated with various DTIC concentrations including 5, 10 and 20 μg/ml for 2 h and the genotoxic effects were evaluated by the comet assay. The result of this part of the study showed that incubation of HepG2 cells with DTIC at 5 μg/ml was sufficient to produce genotoxic effect. In order to determine the protective effects of amifostine on genotoxicity induced by DTIC, HepG2 cells were incubated with different concentrations of amifostine (2, 3 and 5 mg/ml) for 1 h which was followed by incubation with DTIC at 5 μg/ml for 2 h. One hour incubation of cells with different concentrations of amifostine before incubation with DITC indicated that at least 5 mg/ml concentration of amifostine can prevent genotoxic effects induced by DTIC on HepG2 cells under described condition. In conclusion amifostine could prevent DNA damage induced by DTIC on HepG2 cells.
Genotoxic capacity of Cd/Se semiconductor quantum dots with differing surface chemistries
Manshian, Bella B.; Soenen, Stefaan J.; Brown, Andy; Hondow, Nicole; Wills, John; Jenkins, Gareth J. S.; Doak, Shareen H.
2016-01-01
Quantum dots (QD) have unique electronic and optical properties promoting biotechnological advances. However, our understanding of the toxicological structure–activity relationships remains limited. This study aimed to determine the biological impact of varying nanomaterial surface chemistry by assessing the interaction of QD with either a negative (carboxyl), neutral (hexadecylamine; HDA) or positive (amine) polymer coating with human lymphoblastoid TK6 cells. Following QD physico-chemical characterisation, cellular uptake was quantified by optical and electron microscopy. Cytotoxicity was evaluated and genotoxicity was characterised using the micronucleus assay (gross chromosomal damage) and the HPRT forward mutation assay (point mutagenicity). Cellular damage mechanisms were also explored, focusing on oxidative stress and mitochondrial damage. Cell uptake, cytotoxicity and genotoxicity were found to be dependent on QD surface chemistry. Carboxyl-QD demonstrated the smallest agglomerate size and greatest cellular uptake, which correlated with a dose dependent increase in cytotoxicity and genotoxicity. Amine-QD induced minimal cellular damage, while HDA-QD promoted substantial induction of cell death and genotoxicity. However, HDA-QD were not internalised by the cells and the damage they caused was most likely due to free cadmium release caused by QD dissolution. Oxidative stress and induced mitochondrial reactive oxygen species were only partially associated with cytotoxicity and genotoxicity induced by the QD, hence were not the only mechanisms of importance. Colloidal stability, nanoparticle (NP) surface chemistry, cellular uptake levels and the intrinsic characteristics of the NPs are therefore critical parameters impacting genotoxicity induced by QD. PMID:26275419
Vinoth, Kumar Jayaseelan; Manikandan, Jayapal; Sethu, Swaminathan; Balakrishnan, Lakshmidevi; Heng, Alexis; Lu, Kai; Hande, Manoor Prakash; Cao, Tong
2014-08-20
This study evaluated human embryonic stem cells (hESC) and their differentiated fibroblastic progenies as cellular models for genotoxicity screening. The DNA damage response of hESCs and their differentiated fibroblastic progenies were compared to a fibroblastic cell line (HEPM, CRL1486) and primary cultures of peripheral blood lymphocytes (PBL), upon exposure to Mitomycin C, gamma irradiation and H2O2. It was demonstrated that hESC-derived fibroblastic progenies (H1F) displayed significantly higher chromosomal aberrations, micronuclei formation and double strand break (DSB) formation, as compared to undifferentiated hESC upon exposure to genotoxic stress. Nevertheless, H1F cell types displayed comparable sensitivities to genotoxic challenge as HEPM and PBL, both of which are representative of somatic cell types commonly used for genotoxicity screening. Subsequently, transcriptomic and pathways analysis identified differential expression of critical genes involved in cell death and DNA damage response upon exposure to gamma irradiation. The results thus demonstrate that hESC-derived fibroblastic progenies are as sensitive as commonly-used somatic cell types for genotoxicity screening. Moreover, hESCs have additional advantages, such as their genetic normality compared to immortalized cell lines, as well as their amenability to scale-up for producing large, standardized quantities of cells for genotoxicity screening on an industrial scale, something which can never be achieved with primary cell cultures. Copyright © 2014. Published by Elsevier B.V.
Impacts of fullerene C60 and virgin olive oil on cadmium-induced genotoxicity in rats.
Aly, Fayza M; Kotb, Ahmed M; Haridy, Mohie A M; Hammad, Seddik
2018-07-15
Currently, cadmium is considered to be one of the major environmental pollutants. Environmentally, cadmium is released in various forms e.g. oxide, chloride and sulphide. The aim of the present study was to examine the genotoxic impact of fullerene nanoparticles C 60 (C 60 ) and virgin olive oil (VOO) on cadmium chloride (CdCl 2 )-induced genotoxicity in rats. To evaluate these effects on DNA damage and chromosomal frequency, 25 albino rats were randomly assigned to 5 groups (n=5 per group): Group 1 served as a control; Group 2 received a single intraperitoneal dose of CdCl 2 (3.5mg/kg); Group 3 animals were treated with C 60 (4mg/kg, orally) every other day for 20days; Group 4 received a single intraperitoneal dose of CdCl 2 (3.5mg/kg) and an oral dose of C 60 (4mg/kg); and Group 5 received a single intraperitoneal dose of CdCl 2 (3.5mg/kg) and oral doses of VOO every other day for 20 consecutive days. Genotoxic and anti-genotoxic effects of C 60 and VOO were evaluated in the liver, kidney and bone marrow using molecular and cytogenetic assays. As expected, CdCl 2 and C 60 administration was associated with band number alterations in both liver and kidney; however, C 60 pretreatment recovered to approximately basal number. Surprisingly, C 60 and VOO significantly attenuated the genotoxic effects caused by CdCl 2 in livers and kidneys. In bone marrow, in addition to a reduction in the chromosomal number, several chromosomal aberrations were caused by CdCl 2 . These chromosomal alterations were also reversed by C 60 and VOO. In conclusion, molecular and cytogenetic studies showed that C 60 and VOO exhibit anti-genotoxic agents against CdCl 2 -induced genotoxicity in rats. Further studies are needed to investigate the optimal conditions for potential biomedical applications of these anti-genotoxic agents. Copyright © 2018 Elsevier B.V. All rights reserved.
Kirkland, David; Fowler, Paul
2010-11-01
In the analysis by Parry et al. [Parry, J. M., Parry, E., Phrakonkham, P. and Corvi, R. (2010) Analysis of published data for top concentration considerations in mammalian cell genotoxicity testing. Mutagenesis, 25, 531-538], 24 rodent carcinogens that were negative in the Ames test were identified that were only positive in mammalian cell tests at concentrations between 1 and 10 mM. These carcinogens can be subdivided into four groups as follows: (1) probable non-genotoxic (non-mutagenic) carcinogens, tumour promoters or negative for genotoxicity in vivo (n=10); (2) questionable carcinogens (n=4); (3) carcinogens with a probable genotoxic mode of action (n=5); (4) compounds where carcinogenicity or in vivo genotoxicity is unknown or unclear (n=5). It is not expected that in vitro mammalian cell tests should give positive results with Group 1 chemicals. Within Groups 2-4, five chemicals were considered a low priority because they could be detected using modified conditions because genotoxicity was associated with precipitate or pH shifts or because non-standard metabolism was required. The remaining nine chemicals were therefore considered most critical in terms of detection of genotoxic activity in mammalian cells. Daminozide was also included because it may have given positive responses between 1 and 10 mM. Many of the reported studies could have given positive results only at >1 mM because 'old' protocols were followed. These 10 chemicals have therefore been retested using modern protocols. Some were negative even up to 10 mM. Others were positive at concentrations <1 mM. Only methylolacrylamide was positive at a concentration >1 mM (2 mM = 202 μg/ml). Low-molecular weight substances may therefore require concentrations >1 mM, but further work is needed. Based on this analysis, it is concluded that the 10 mM upper limit in mammalian cell tests can be lowered without any loss of sensitivity in detecting genotoxic rodent carcinogens. A new limit of 1 mM or 500 μg/ml, whichever is the higher, is proposed.
Kelber, Olaf; Wegener, Tankred; Steinhoff, Barbara; Staiger, Christiane; Wiesner, Jacqueline; Knöss, Werner; Kraft, Karin
2014-01-01
An assessment of genotoxicity is a precondition for marketing authorization respectively registration of herbal medicinal products (HMPs), as well as for inclusion into the 'Community list of herbal substances, preparations and combinations thereof for use in traditional herbal medicinal products' established by the European Commission in accordance with Directive 2001/83/EC as amended, and based on proposals from the Committee on Herbal Medicinal Products (HMPC). In the 'Guideline on the assessment of genotoxicity of herbal substances/preparations' (EMEA/HMPC/107079/2007) HMPC has described a stepwise approach for genotoxicity testing, according to which the Ames test is a sufficient base for the assessment of genotoxicity in case of an unequivocally negative result. For reducing efforts for testing of individual herbal substances/preparations, HMPC has also developed the 'guideline on selection of test materials for genotoxicity testing for traditional herbal medicinal products/herbal medicinal products' (EMEA/HMPC/67644/2009) with the aim to allow testing of a standard range of test materials which could be considered representative of the commonly used preparations from a specific herbal drug according to a 'bracketing/matrixing' approach. The purpose of this paper is to provide data on the practical application of this bracketing and matrixing concept using the example of Valerianae radix, with the intention of facilitating its inclusion in the "Community list". Five extraction solvents, representing the extremes of the polarity range and including also mid-range extraction solvents, were used, covering the entire spectrum of phytochemical constituents of Valerianae radix, thereby including polar and non-polar constituents. Extracts were tested in the Ames test according to all relevant guidelines. Results were unequivocally negative for all extracts. A review of the literature showed that this result is in accordance with the available data, thus demonstrating the lack of a genotoxic potential. In conclusion the two guidelines on genotoxicity provide a practically applicable concept. Valerianae radix has no genotoxic potential, supporting its use in HMPs and its inclusion in the Community list. Copyright © 2014 The Authors. Published by Elsevier GmbH.. All rights reserved.
Zhang, Dayi; Ding, Aizhong; Cui, Shuangchao; Hu, Cheng; Thornton, Steven F; Dou, Junfeng; Sun, Yujiao; Huang, Wei E
2013-03-01
Accidents involving the release of crude oil to seawater pose serious threat to human and animal health, fisheries and marine ecosystems. A whole cell bioreporter detection method, which has unique advantages for the rapid evaluation on toxicity and bioavailability, is a useful tool to provide environmental risk assessments at crude oil-contaminated sites. Acinetobacter baylyi ADPWH_alk and ADPWH_recA are chromosomally-based alkane and genotoxicity bioreporters which can be activated to express bioluminescence in the presence of alkanes and genotoxic compounds. In this study, we applied Acinetobacter ADPWH_alk and ADPWH_recA bioreporters to examine six seawater and six sediment samples around the Dalian Bay four weeks after an oil tank explosion in Dalian, China in 2010, and compared the results with samples from the same sites one year after. The results of bioreporter detection suggest that seawater and sediments from five sites (DB, NT, JSB, XHP and FJZ) four weeks after the oil-spill were contaminated by the crude oil with various extents of genotoxicity. Among these six sites, DB and NT had high oil contents and genotoxicity, and JSB had high oil content but low genotoxicity in comparison with an uncontaminated site LSF, which is located at other side of the peninsula. These three sites (DB, NT and JSB) with detectable genotoxicity are within 30 km away from the oil spill point. The far-away two sites XHP (38.1 km) and FJZ (31.1 km) were lightly contaminated with oil but no genotoxicity suggesting that they are around the contamination boundary. Bioreporter detection also indicates that all six sites were clean one year after the oil-spill as the alkane and genotoxicity were below detection limit. This study demonstrates that bioreporter detection can be used as a rapid method to estimate the scale of a crude oil spill accident and to evaluate bioavailability and genotoxicity of contaminated seawater and sediments, which are crucial to risk assessment and strategic decision-making for environmental management and clean-up. Copyright © 2012 Elsevier Ltd. All rights reserved.
Norberto, Alarcón-Herrera; Saúl, Flores-Maya; Belén, Bellido; García-Bores Ana, M; Ernesto, Mendoza; Guillermo, Ávila-Acevedo; Elizabeth, Hernández-Echeagaray
2017-10-01
The raw data showed in this article comes from the published research article entitled "Protective effects of Chlorogenic acid in 3-Nitropropionic acid induced toxicity and genotoxicity" Food Chem Toxicol. 2017 May 3. pii: S0278-6915(17)30226-0. DOI:10.1016/j.fct.2017.04.048. [1]. Data illustrates antitoxic and antigenotoxic effects of Chlorogenic acid (CGA) on toxicity and genotoxicity produced by the in vivo treatment with mitochondria toxin 3-Nitropropionic acid (3-NP) in mice. Toxicity and genotoxicity was evaluated in erythrocytes of peripheral blood through the micronuclei assay. Data was share at the Elsevier repository under the reference number FCT9033.
Antigenotoxic and free radical scavenging activities of extracts from Moricandia arvensis.
Skandrani, I; Sghaier, M Ben; Neffati, A; Boubaker, J; Bouhlel, I; Kilani, S; Mahmoud, A; Ghedira, K; Chekir-Ghedira, L
2007-01-01
This study evaluates genotoxic and antigenotoxic effects of extracts from leaves of Moricandia arvensis, which are used in traditional cooking and medicines. Extracts showed no genotoxicity when tested with the SOS Chromotest using E. coli PQ37 and PQ35 strains, except for the total oligomers flavonoids enriched extract. Petroleum ether and methanol extracts are the most active in reducing nitrofurantoin genotoxicity, whereas methanol and total oligomers flavonoids enriched extracts showed the most important inhibitory effect of H2O2 genotoxicity. In addition, these two extracts showed important free radical scavenging activity toward the DPPH. radical, whereas the chloroform extract exhibited the highest value of TEAC against ABTS+. radical.
Qiang, Dongmei; Gunn, Jocelyn A; Schultz, Leon; Li, Z Jane
2010-12-01
The objective of this study was to investigate the effects of sodium lauryl sulfate (SLS) from different sources on solubilization/wetting, granulation process, and tablet dissolution of BILR 355 and the potential causes. The particle size distribution, morphology, and thermal behaviors of two pharmaceutical grades of SLS from Spectrum and Cognis were characterized. The surface tension and drug solubility in SLS solutions were measured. The BILR 355 tablets were prepared by a wet granulation process and the dissolution was evaluated. The critical micelle concentration was lower for Spectrum SLS, which resulted in a higher BILR 355 solubility. During wet granulation, less water was required to reach the same end point using Spectrum than Cognis SLS. In general, BILR 355 tablets prepared with Spectrum SLS showed a higher dissolution than the tablets containing Cognis SLS. Micronization of SLS achieved the same improved tablet dissolution as micronized active pharmaceutical ingredient. The observed differences in wetting and solubilization were likely due to the different impurity levels in SLS from two sources. This study demonstrated that SLS from different sources could have significant impact on wet granulation process and dissolution. Therefore, it is critical to evaluate SLS properties from different suppliers, and then identify optimal formulation and process parameters to ensure robustness of drug product manufacture process and performance.
Fan, Wenzhe; Zhang, Yu; Carr, Peter W.; Rutan, Sarah C.; Dumarey, Melanie; Schellinger, Adam P.; Pritts, Wayne
2011-01-01
Fourteen judiciously selected reversed-phase columns were tested with 18 cationic drug solutes under the isocratic elution conditions advised in the Snyder-Dolan (S-D) hydrophobic subtraction method of column classification. The standard errors (S.E.) of the least squares regressions of log k′ vs. log k′REF were obtained for a given column against a reference column and used to compare and classify columns based on their selectivity. The results are consistent with those obtained with a study of the 16 test solutes recommended by Snyder and Dolan. To the extent that these drugs are representative these results show that the S-D classification scheme is also generally applicable to pharmaceuticals under isocratic conditions. That is, those columns judged to be similar based on the S-D 16 solutes were similar based on the 18 drugs; furthermore those columns judged to have significantly different selectivities based on the 16 S-D probes appeared to be quite different for the drugs as well. Given that the S-D method has been used to classify more than 400 different types of reversed phases the extension to cationic drugs is a significant finding. PMID:19698948
Stability of benzocaine formulated in commercial oral disintegrating tablet platforms.
Köllmer, Melanie; Popescu, Carmen; Manda, Prashanth; Zhou, Leon; Gemeinhart, Richard A
2013-12-01
Pharmaceutical excipients contain reactive groups and impurities due to manufacturing processes that can cause decomposition of active drug compounds. The aim of this investigation was to determine if commercially available oral disintegrating tablet (ODT) platforms induce active pharmaceutical ingredient (API) degradation. Benzocaine was selected as the model API due to known degradation through ester and primary amino groups. Benzocaine was either compressed at a constant pressure, 20 kN, or at pressure necessary to produce a set hardness, i.e., where a series of tablets were produced at different compression forces until an average hardness of approximately 100 N was achieved. Tablets were then stored for 6 months under International Conference on Harmonization recommended conditions, 25°C and 60% relative humidity (RH), or under accelerated conditions, 40°C and 75% RH. Benzocaine degradation was monitored by liquid chromatography-mass spectrometry. Regardless of the ODT platform, no degradation of benzocaine was observed in tablets that were kept for 6 months at 25°C and 60% RH. After storage for 30 days under accelerated conditions, benzocaine degradation was observed in a single platform. Qualitative differences in ODT platform behavior were observed in physical appearance of the tablets after storage under different temperature and humidity conditions.
Standardization of fluorine-18 manufacturing processes: new scientific challenges for PET.
Hjelstuen, Ole K; Svadberg, Anders; Olberg, Dag E; Rosser, Mark
2011-08-01
In [(18)F]fluoride chemistry, the minute amounts of radioactivity taking part in a radiolabeling reaction are easily outnumbered by other reactants. Surface areas become comparably larger and more influential than in standard fluorine chemistry, while leachables, extractables, and other components that normally are considered small impurities can have a considerable influence on the efficiency of the reaction. A number of techniques exist to give sufficient (18)F-tracer for a study in a pre-clinical or clinical system, but the chemical and pharmaceutical understanding has significant gaps when it comes to scaling up or making the reaction more efficient. Automation and standardization of [(18)F]fluoride PET tracers is a prerequisite for reproducible manufacturing across multiple PET centers. So far, large-scale, multi-site manufacture has been established only for [(18)F]FDG, but several new tracers are emerging. In general terms, this transition from small- to large-scale production has disclosed several scientific challenges that need to be addressed. There are still areas of limited knowledge in the fundamental [(18)F]fluoride chemistry. The role of pharmaceutical factors that could influence the (18)F-radiosynthesis and the gaps in precise chemistry knowledge are discussed in this review based on a normal synthesis pattern. Copyright © 2011 Elsevier B.V. All rights reserved.
Salama, Nahla N; Wang, Shudong
2008-05-28
The present study employs time of flight mass and bupivacaine in authentic, pharmaceutical and spiked human plasma as well as in the presence of their impurities 2,6-dimethylaniline and alkaline degradation product. The method is based on time of flight electron spray ionization mass spectrometry technique without preliminary chromatographic separation and makes use of bupivacaine as internal standard for ropivacaine, which is used as internal standard for bupivacaine. A linear relationship between drug concentrations and the peak intensity ratio of ions of the analyzed substances is established. The method is linear from 23.8 to 2380.0 ng mL(-1) for both drugs. The correlation coefficient was >or=0.996 in authentic and spiked human plasma. The average percentage recoveries in the ranges of 95.39%-102.75% was obtained. The method is accurate (% RE < 5%) and reproducible with intra- and inter-assay precision (RSD% < 8.0%). The quantification limit is 23.8 ng mL(-1) for both drugs. The method is not only highly sensitive and selective, but also simple and effective for determination or identification of both drugs in authentic and biological fluids. The method can be applied in purity testing, quality control and stability monitoring for the studied drugs.
Salama, Nahla N.; Wang, Shudong
2009-01-01
The present study employs time of flight mass and bupivacaine in authentic, pharmaceutical and spiked human plasma as well as in the presence of their impurities 2,6-dimethylaniline and alkaline degradation product. The method is based on time of flight electron spray ionization mass spectrometry technique without preliminary chromatographic separation and makes use of bupivacaine as internal standard for ropivacaine, which is used as internal standard for bupivacaine. A linear relationship between drug concentrations and the peak intensity ratio of ions of the analyzed substances is established. The method is linear from 23.8 to 2380.0 ng mL−1 for both drugs. The correlation coefficient was ≥0.996 in authentic and spiked human plasma. The average percentage recoveries in the ranges of 95.39%–102.75% was obtained. The method is accurate (% RE < 5%) and reproducible with intra- and inter-assay precision (RSD% < 8.0%). The quantification limit is 23.8 ng mL−1 for both drugs. The method is not only highly sensitive and selective, but also simple and effective for determination or identification of both drugs in authentic and biological fluids. The method can be applied in purity testing, quality control and stability monitoring for the studied drugs. PMID:19652756
Mohamed-Ahmed, Abeer H A; Wilson, Matthew P; Albuera, Maedelyn; Chen, Ting; Mills, Philippa B; Footitt, Emma J; Clayton, Peter T; Tuleu, Catherine
2017-04-01
To assess the pyridoxal 5'-phosphate (PLP) content and stability of extemporaneous PLP liquids prepared from dietary supplements used for the treatment of vitamin B 6 -dependent epilepsy. Pyridoxal 5'-phosphate liquids were prepared in accordance with the guidelines given to patients from marketed 50 mg PLP dietary capsules and tablets. The PLP content and its stability were evaluated under conditions resembling the clinical setting using reverse phase HPLC and mass spectrometry. Pyridoxal 5'-phosphate content in most of the extemporaneously prepared liquids from dietary supplements was found to be different from the expected amount (~16-60 mg). Most of these PLP extemporaneous liquids were stable at room temperature (protected from light) after 24 h but unstable after 4 h when exposed to light. A key photodegradation product of PLP in water was confirmed as 4-pyridoxic acid 5'-phosphate (PAP). Pyridoxal 5'-phosphate tablets from Solgar ® were found to be the most reliable product for the preparation of extemporaneous PLP liquids. This work highlighted the difference between the marketed PLP dietary supplements quality and the importance of proper storage of aqueous PLP. There is a need to develop pharmaceutical forms of PLP that ensure dose accuracy and avoid potentially unsafe impurities with the aim of enhancing safety and compliance. © 2017 Royal Pharmaceutical Society.
Zacharis, Constantinos K; Vastardi, Elli
2018-02-20
In the research presented we report the development of a simple and robust liquid chromatographic method for the quantification of two genotoxic alkyl sulphonate impurities (namely methyl p-toluenesulfonate and isopropyl p-toluenesulfonate) in Aprepitant API substances using the Analytical Quality by Design (AQbD) approach. Following the steps of AQbD protocol, the selected critical method attributes (CMAs) were the separation criterions between the critical peak pairs, the analysis time and the peak efficiencies of the analytes. The critical method parameters (CMPs) included the flow rate, the gradient slope and the acetonitrile content at the first step of the gradient elution program. Multivariate experimental designs namely Plackett-Burman and Box-Behnken designs were conducted sequentially for factor screening and optimization of the method parameters. The optimal separation conditions were estimated using the desirability function. The method was fully validated in the range of 10-200% of the target concentration limit of the analytes using the "total error" approach. Accuracy profiles - a graphical decision making tool - were constructed using the results of the validation procedures. The β-expectation tolerance intervals did not exceed the acceptance criteria of±10%, meaning that 95% of future results will be included in the defined bias limits. The relative bias ranged between - 1.3-3.8% for both analytes, while the RSD values for repeatability and intermediate precision were less than 1.9% in all cases. The achieved limit of detection (LOD) and the limit of quantification (LOQ) were adequate for the specific purpose and found to be 0.02% (corresponding to 48μgg -1 in sample) for both methyl and isopropyl p-toluenesulfonate. As proof-of-concept, the validated method was successfully applied in the analysis of several Aprepitant batches indicating that this methodology could be used for routine quality control analyses. Copyright © 2017 Elsevier B.V. All rights reserved.
Stability-indicating UPLC method for determining related substances and degradants in dronedarone.
Pydimarry, Surya Prakash Rao; Cholleti, Vijay Kumar; Vangala, Ranga Reddy
2014-08-01
A simple, sensitive and reproducible method was developed on ultra-performance liquid chromatography coupled with photodiode array detection for the quantitative determination of dronedarone hydrochloride (DRO) in drug substance and pharmaceutical dosage forms. The method is applicable for the quantification of related substances and assays of drug substances. Chromatographic separation was achieved on Acquity UPLC BEH C8 100 mm, 2.1 mm and 1.7 µm columns, using gradient elution within a short run time of 10.0 min. The eluted compounds were monitored at 288 nm, the flow rate was 0.5 mL/min and the column oven temperature was maintained at 40°C. The resolution of DRO and 11 impurities (potentials and by-products) was greater than 2.0 for all pairs of components. The high correlation coefficient value (>0.9995) indicates the clear correlations between the concentrations of investigated compound and their peak areas within the test ranges. The repeatability and intermediate precision, expressed by the relative standard deviation, were less than 2.5%. The accuracy and validity of the method were further ascertained by performing recovery studies via a spike method. The accuracy of the method, expressed as relative error, was satisfactory. No interference was observed from concomitant substances normally added to the tablets. DRO was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. DRO was found to degrade significantly in acid and base stress conditions and to remain stable in thermal, photolytic degradation, oxidative and hydrolytic conditions. The degradation products were well resolved from primary peak and its impurities, proving that the method is stability indicating. The developed method was validated as per International Conference on Harmonization guidelines with respect to specificity, limit of detection, limit of quantification, linearity, accuracy, precision, solution stability and robustness. This method is also suitable for the determination of DRO drug substance and pharmaceutical dosage forms. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houk, V.S.; DeMarini, D.M.
1988-01-01
The Microscreen phage-induction assay, which quantitatively measures the induction of prophage lambda in Escherichia coli WP2s(lambda), was used to test 14 crude (unfractionated) hazardous industrial waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 pg per ml. Comparisons between the ability of these waste samples to induce prophage and their mutagenicity in the Salmonella reverse mutation assay indicate that the phage-induction assay detected genotoxic activity in all but one of the wastes that were mutagenic in Salmonella. Moreover, themore » Microscreen assay detected as genotoxic five additional wastes that were not detected in the Salmonella assay. The applicability of the Microscreen phage-induction assay for screening hazardous wastes for genotoxic activity is discussed, as are some of the problems associated with screening highly toxic wastes containing toxic volatile compounds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houk, V.S.; DeMarini, D.M.
1988-01-01
The Microscreen phage-induction assay, which quantitatively measures the induction of prophage lambda in Escherichia coli WP2s lambda, was used to test 14 crude (unfractionated) hazardous industrial-waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 picograms per ml. Comparisons between the mutagenicity of these waste samples in Salmonella and their ability to induce prophage lambda indicate that the Microscreen phage-induction assay detected genotoxic activity in all but one of the wastes that were mutagenic in Salmonella. Moreover, the Microscreen assaymore » detected as genotoxic 5 additional wastes that were not detected in the Salmonella assay. The applicability of the Microscreen phage-induction assay for screening hazardous wastes for genotoxic activity is discussed along with some of the problems associated with screening highly toxic wastes containing toxic volatile compounds.« less
Linking genotoxic responses and reproductive success in ecotoxicology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, S.L.; Wild, G.C.
1994-12-01
The potential of genotoxicity biomarkers as predictors of detrimental environmental effects, such as altered reproductive success of wild organisms, must be rigorously determined. Recent research to evaluate relationships between genotoxic responses and indicators of reproductive success in model animals is described from an ecotoxicological perspective. Genotoxicity can be correlated with reproductive effects such as gamete loss due to cell death; embryonic mortality; and heritable mutations in a range of model animals including polychaete worms, nematodes, sea urchins, amphibians, and fish. In preliminary studies, the polychaete worm, Neanthes arenaceodentata, and the nematode, Caenorhabditis elegans, have also shown the potential for cumulativemore » DNA damage in gametes. If DNA repair capacity is limited in gametes, then selected life history traits such as long and synchronous periods of gametogenesis may confer vulnerability to genotoxic substances in chronic exposures. Recommendations for future research include strategic development of animal models that can be used to elucidate multiple mechanisms of effect (multiend point) at varying levels of biological organization (multilevel). 27 refs., 2 tabs.« less
Cytotoxic and genotoxic potential of food-borne nitriles in a liver in vitro model
Kupke, Franziska; Herz, Corinna; Hanschen, Franziska S.; Platz, Stefanie; Odongo, Grace A.; Helmig, Simone; Bartolomé Rodríguez, María M.; Schreiner, Monika; Rohn, Sascha; Lamy, Evelyn
2016-01-01
Isothiocyanates are the most intensively studied breakdown products of glucosinolates from Brassica plants and well recognized for their pleiotropic effects against cancer but also for their genotoxic potential. However, knowledge about the bioactivity of glucosinolate-borne nitriles in foods is very poor. As determined by GC-MS, broccoli glucosinolates mainly degrade to nitriles as breakdown products. The cytotoxicity of nitriles in human HepG2 cells and primary murine hepatocytes was marginal as compared to isothiocyanates. Toxicity of nitriles was not enhanced in CYP2E1-overexpressing HepG2 cells. In contrast, the genotoxic potential of nitriles was found to be comparable to isothiocyanates. DNA damage was persistent over a certain time period and CYP2E1-overexpression further increased the genotoxic potential of the nitriles. Based on actual in vitro data, no indications are given that food-borne nitriles could be relevant for cancer prevention, but could pose a certain genotoxic risk under conditions relevant for food consumption. PMID:27883018
Genotoxicity of lapachol evaluated by wing spot test of Drosophila melanogaster
2010-01-01
This study investigated the genotoxicity of Lapachol (LAP) evaluated by wing spot test of Drosophila melanogaster in the descendants from standard (ST) and high bioactivation (HB) crosses. This assay detects the loss of heterozygosity of marker genes expressed phenotypically on the fly's wings. Drosophila has extensive genetic homology to mammals, which makes it a suitable model organism for genotoxic investigations. Three-day-old larvae from ST crosses (females flr3/TM3, Bds x males mwh/mwh), with basal levels of the cytochrome P450 and larvae of high metabolic bioactivity capacity (HB cross) (females ORR; flr3/TM3, Bds x males mwh/mwh), were used. The results showed that LAP is a promutagen, exhibiting genotoxic activity in larvae from the HB cross. In other words, an increase in the frequency of spots is exclusive of individuals with a high level of the cytochrome P450. The results also indicate that recombinogenicity is the main genotoxic event induced by LAP. PMID:21637432
Simonyan, Anna; Gabrielyan, Barduch; Minasyan, Seyran; Hovhannisyan, Galina; Aroutiounian, Rouben
2016-03-01
Combination of bioassays and chemical analysis was applied to determine the genotoxic/mutagenic contamination in four different sites of the basin of Lake Sevan in Armenia. Water genotoxicity was evaluated using the single cell gel electrophoresis technique (comet assay) in erythrocytes of gibel carp (Carassius auratus gibelio), Tradescantia micronucleus (Trad-MCN) and Tradescantia stamen hair mutation (Trad-SHM) assays. Significant inter-site differences in the levels of water genotoxicity according to fish and Trad-MCN bioassays have been revealed. Two groups of locations with lower (south-southwest of the village Shorzha and Peninsula of Lake Sevan) and higher (estuaries of Gavaraget and Dzknaget rivers) levels of water genotoxicity were distinguished. Correlation analysis support the hypothesis that the observed genetic alterations in fish and plant may be a manifestation of the effects of water contamination by nitrate ions, Si, Al, Fe, Mn and Cu. Increase of DNA damage in fish also correlated with content of total phosphorus.
Hemachandra, C K; Pathiratne, A
2017-10-01
Complex effluents originating from diverse industrial processes in industrial zones could pose cytotoxic/genotoxic hazards to biota in the receiving ecosystems which cannot be revealed by conventional monitoring methods. This study assessed potential cytotoxicity/genotoxicity of treated effluents of two industrial zones which are discharged into Kelani river, Sri Lanka combining erythrocytic abnormality tests and comet assay of the tropical model fish, Nile tilapia. Exposure of fish to the effluents induced erythrocytic DNA damage and deformed erythrocytes with serrated membranes, vacuolations, nuclear buds and micronuclei showing cytotoxic/genotoxic hazards in all cases. Occasional exceedance of industrial effluent discharge regulatory limits was noted for color and lead which may have contributed to the observed cytotoxicity/genotoxicity of effluents. The results demonstrate that fish erythrocytic responses could be used as effective bioanalytical tools for cytotoxic/genotoxic hazard assessments of complex effluents of industrial zones for optimization of the waste treatment process in order to reduce biological impacts.
Modulation of mitomycin C-induced genotoxicity by acetyl- and thio- analogues of salicylic acid.
Pawar, Amol Ashok; Vikram, Ajit; Tripathi, Durga Nand; Padmanabhan, Shweta; Ramarao, Poduri; Jena, Gopabandhu
2009-01-01
Recent reports regarding acetylsalicylic acid (ASA) and its metabolites suggest suppressive effects against mitomycin C (MMC)-induced genotoxicity in a mice chromosomal aberration assay. Keeping this in mind, the potential anti-genotoxic effect of the thio-analogue of salicylic acid namely thio-salicylic acid (TSA) was speculated upon. The present study investigated and compared the anti-genotoxic potential of ASA and TSA. The study was performed in male swiss mice (20+/-2 g) using single-cell gel electrophoresis and a peripheral blood micronucleus assay. ASA and TSA (5, 10 or 20 mg/kg) were administered 15 minutes after MMC (1 mg/kg) once daily for 3 or 7 days. Both ASA and TSA significantly decreased the DNA damage induced by MMC as indicated by a decrease in the comet parameters in bone marrow cells and decreased frequencies of micronucleated reticulocytes in peripheral blood. The results clearly demonstrate the anti-genotoxic potential of ASA and TSA.
Rapid Assessment of Genotoxicity by Flow Cytometric Detection of Cell Cycle Alterations.
Bihari, Nevenka
2017-01-01
Flow cytometry is a convenient method for the determination of genotoxic effects of environmental pollution and can reveal genotoxic compounds in unknown environmental mixtures. It is especially suitable for the analyses of large numbers of samples during monitoring programs. The speed of detection is one of the advantages of this technique which permits the acquisition of 10 4 -10 5 cells per sample in 5 min. This method can rapidly detect cell cycle alterations resulting from DNA damage. The outcome of such an analysis is a diagram of DNA content across the cell cycle which indicates cell proliferation, G 2 arrests, G 1 delays, apoptosis, and ploidy.Here, we present the flow cytometric procedure for rapid assessment of genotoxicity via detection of cell cycle alterations. The described protocol simplifies the analysis of genotoxic effects in marine environments and is suitable for monitoring purposes. It uses marine mussel cells in the analysis and can be adapted to investigations on a broad range of marine invertebrates.
Mañas, F; Peralta, L; Raviolo, J; García Ovando, H; Weyers, A; Ugnia, L; Gonzalez Cid, M; Larripa, I; Gorla, N
2009-03-01
Formulations containing glyphosate are the most widely used herbicides in the world. AMPA is the major environmental breakdown product of glyphosate. The purpose of this study is to evaluate the in vitro genotoxicity of AMPA using the Comet assay in Hep-2 cells after 4h of incubation and the chromosome aberration (CA) test in human lymphocytes after 48h of exposition. Potential in vivo genotoxicity was evaluated through the micronucleus test in mice. In the Comet assay, the level of DNA damage in exposed cells at 2.5-7.5mM showed a significant increase compared with the control group. In human lymphocytes we found statistically significant clastogenic effect AMPA at 1.8mM compared with the control group. In vivo, the micronucleus test rendered significant statistical increases at 200-400mg/kg. AMPA was genotoxic in the three performed tests. Very scarce data are available about AMPA potential genotoxicity.
Chemical composition and antigenotoxic properties of Lippia alba essential oils
López, Molkary Andrea; Stashenko, Elena E.; Fuentes, Jorge Luis
2011-01-01
The present work evaluated the chemical composition and the DNA protective effect of the essential oils (EOs) from Lippia alba against bleomycin-induced genotoxicity. EO constituents were determined by Gas Chromatography/Mass Spectrometric (GC-MS) analysis. The major compounds encountered being citral (33% geranial and 25% neral), geraniol (7%) and trans-β-caryophyllene (7%) for L. alba specimen COL512077, and carvone (38%), limonene (33%) and bicyclosesquiphellandrene (8%) for the other, COL512078. The genotoxicity and antigenotoxicity of EO and the compounds citral, carvone and limonene, were assayed using the SOS Chromotest in Escherichia coli. The EOs were not genotoxic in the SOS chromotest, but one of the major compound (limonene) showed genotoxicity at doses between 97 and 1549 mM. Both EOs protected bacterial cells against bleomycin-induced genotoxicity. Antigenotoxicity in the two L. alba chemotypes was related to the major compounds, citral and carvone, respectively. The results were discussed in relation to the chemopreventive potential of L. alba EOs and its major compounds. PMID:21931523
Chemical composition and antigenotoxic properties of Lippia alba essential oils.
López, Molkary Andrea; Stashenko, Elena E; Fuentes, Jorge Luis
2011-07-01
The present work evaluated the chemical composition and the DNA protective effect of the essential oils (EOs) from Lippia alba against bleomycin-induced genotoxicity. EO constituents were determined by Gas Chromatography/Mass Spectrometric (GC-MS) analysis. The major compounds encountered being citral (33% geranial and 25% neral), geraniol (7%) and trans-β-caryophyllene (7%) for L. alba specimen COL512077, and carvone (38%), limonene (33%) and bicyclosesquiphellandrene (8%) for the other, COL512078. The genotoxicity and antigenotoxicity of EO and the compounds citral, carvone and limonene, were assayed using the SOS Chromotest in Escherichia coli. The EOs were not genotoxic in the SOS chromotest, but one of the major compound (limonene) showed genotoxicity at doses between 97 and 1549 mM. Both EOs protected bacterial cells against bleomycin-induced genotoxicity. Antigenotoxicity in the two L. alba chemotypes was related to the major compounds, citral and carvone, respectively. The results were discussed in relation to the chemopreventive potential of L. alba EOs and its major compounds.
Testing the genotoxicity of coking wastewater using Vicia faba and Hordeum vulgare bioassays.
Dong, Yiru; Zhang, Jintun
2010-07-01
The coking wastewater induces severe environmental problems in China, however, its toxicity has not been well known. In the present study, the genotoxicity of coking wastewater was studied using Vicia faba and Hordeum vulgare root tip cytogenetic bioassays. Results show that the tested coking wastewater decreased the mitotic index, and significantly enhanced the frequencies of micronucleus, sister chromatid exchange and pycnotic cell in concentration-dependent manners. Exposure to the same concentration wastewater, the increasing ratios of above genetic injuries were higher in V. faba than that in H. vulgare. The results imply that coking wastewater is a genotoxic agent in plant cells and exposure to the wastewater in environment may pose a potential genotoxic risk to organisms. It also suggests that both bioassays can be used for testing the genotoxicity of coking wastewater, but the V. faba assay is more sensitive than H. vulgare assay during the process. Copyright (c) 2010. Published by Elsevier Inc.
Pfuhler, Stefan; Kirst, Annette; Aardema, Marilyn; Banduhn, Norbert; Goebel, Carsten; Araki, Daisuke; Costabel-Farkas, Margit; Dufour, Eric; Fautz, Rolf; Harvey, James; Hewitt, Nicola J; Hibatallah, Jalila; Carmichael, Paul; Macfarlane, Martin; Reisinger, Kerstin; Rowland, Joanna; Schellauf, Florian; Schepky, Andreas; Scheel, Julia
2010-01-01
For the assessment of genotoxic effects of cosmetic ingredients, a number of well-established and regulatory accepted in vitro assays are in place. A caveat to the use of these assays is their relatively low specificity and high rate of false or misleading positive results. Due to the 7th amendment to the EU Cosmetics Directive ban on in vivo genotoxicity testing for cosmetics that was enacted March 2009, it is no longer possible to conduct follow-up in vivo genotoxicity tests for cosmetic ingredients positive in in vitro genotoxicity tests to further assess the relevance of the in vitro findings. COLIPA, the European Cosmetics Association, has initiated a research programme to improve existing and develop new in vitro methods. A COLIPA workshop was held in Brussels in April 2008 to analyse the best possible use of available methods and approaches to enable a sound assessment of the genotoxic hazard of cosmetic ingredients. Common approaches of cosmetic companies are described, with recommendations for evaluating in vitro genotoxins using non-animal approaches. A weight of evidence approach was employed to set up a decision-tree for the integration of alternative methods into tiered testing strategies. Copyright 2010 Elsevier Inc. All rights reserved.
Genotoxicity testing of Persicariae Rhizoma (Persicaria tinctoria H. Gross) aqueous extracts
LEE, WON HO; CHOI, SEONG HUN; KANG, SU JIN; SONG, CHANG HYUN; PARK, SOO JIN; LEE, YOUNG JOON; KU, SAE KWANG
2016-01-01
Persicariae Rhizoma (PR) has been used as an anti-inflammatory and detoxification agent in Korea, and contains the biologically active dyes purple indirubin and blue indigo. Despite synthetic indigo showing genotoxic potential, thorough studies have not been carried out on the genotoxicity of PR. The potential genotoxicity of an aqueous extract of PR containing indigo (0.043%) and indirubin (0.009%) was evaluated using a standard battery of tests for safety assessment. The PR extract did not induce any genotoxic effects under the conditions of this study. The results of a reverse mutation assay in four Salmonella typhimurium strains and one Escherichia coli strain indicated that PR extract did not increase the frequency of revertant colonies in any strain, regardless of whether S9 mix was present or not. The PR extract also did not increase chromosomal aberrations in the presence or absence of S9 mix. Although slight signs of diarrhea were restrictedly detected in the mice treated with 2,000 mg/kg PR extract, no noteworthy changes in the frequency of micronucleated polychromatic erythrocytes were observed at doses ≤2,000 mg/kg in a bone marrow micronucleus test. These results indicate the potential safety of the PR extract, particularly if it is consumed in small amounts compared with the quantities used in the genotoxicity tests. PMID:27347027
Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity.
Alarcón-Herrera, Norberto; Flores-Maya, Saúl; Bellido, Belén; García-Bores, Ana M; Mendoza, Ernesto; Ávila-Acevedo, Guillermo; Hernández-Echeagaray, Elizabeth
2017-11-01
Mitochondrial inhibition with the toxin 3-Nitropropionic acid (3-NP) has been used to study the underlying mechanisms in striatal neurodegeneration, but few experiments have evaluated its toxicity and genotoxicity of in vivo administration. Furthermore, different antioxidant molecules may prevent degeneration induced by the toxic effects of 3-NP. Therefore, the purpose of this study was to evaluate the toxicity and genotoxicity induced by 3-NP (15 mg/kg) in the micronuclei assay method; also, we assessed chlorogenic acid (CGA, 100 mg/kg) for its anti-toxic and anti-genotoxic effect in damage produced by in vivo treatment with 3-NP. 3-NP induced toxicity and genotoxicity. CGA administered as a co-treatment with 3-NP (3-NP + CA) reduced toxicity by 32.76%, as a pre-treatment for 5 days only, followed by 3-NP treatment (P/CA, 3-NP) inhibiting toxicity by 24.04%, or as a pre-treatment, plus a co-treatment with 3-NP (P/CA, 3-NP + CA) avoided any toxic effect. CGA alone did not exhibit any toxic effect. Only P/CGA, 3-NP + CGA group, avoided toxicity and genotoxicity, suggesting that CGA could be suitable to prevent, reduce or delay toxicity and cell death. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gómez-Meda, Belinda C; Bañales-Martínez, Luis R; Zamora-Perez, Ana L; Lemus-Varela, María de Lourdes; Trujillo, Xóchitl; Sánchez-Parada, María G; Torres-Mendoza, Blanca M; Armendáriz-Borunda, Juan; Zúñiga-González, Guillermo M
2016-01-01
Genotoxic exposure to chemical substances is common, and nursing mothers could transmit harmful substances or their metabolites to their offspring through breast milk. We explored the possibility of determining genotoxic effects in the erythrocytes of breastfeeding rat pups whose mothers received a genotoxic compound while nursing. Ten groups of female rats and five pups per dam were studied. The control group received sterile water, and the experimental groups received one of three different doses of cyclophosphamide, colchicine, or cytosine-arabinoside. Blood smears were prepared from samples taken from each dam and pup every 24 h for six days. There were increased numbers of micronucleated erythrocytes (MNEs) and micronucleated polychromatic erythrocytes (MNPCEs) in the samples from pups in the experimental groups ( P < 0.02) and increased MNPCE frequencies in the samples from the dams ( P < 0.05). These results demonstrate the vertical transmission of the genotoxic effect of the compounds tested. In conclusion, assessing MNEs in breastfeeding neonate rats to assess DNA damage may be a useful approach for identifying genotoxic compounds and/or cytotoxic effects. This strategy could help in screening for therapeutic approaches that are genotoxic during the lactation stage and these assessments might also be helpful for developing preventive strategies to counteract harmful effects.
Bañales-Martínez, Luis R.; Lemus-Varela, María de Lourdes; Trujillo, Xóchitl; Sánchez-Parada, María G.; Armendáriz-Borunda, Juan; Zúñiga-González, Guillermo M.
2016-01-01
Genotoxic exposure to chemical substances is common, and nursing mothers could transmit harmful substances or their metabolites to their offspring through breast milk. We explored the possibility of determining genotoxic effects in the erythrocytes of breastfeeding rat pups whose mothers received a genotoxic compound while nursing. Ten groups of female rats and five pups per dam were studied. The control group received sterile water, and the experimental groups received one of three different doses of cyclophosphamide, colchicine, or cytosine-arabinoside. Blood smears were prepared from samples taken from each dam and pup every 24 h for six days. There were increased numbers of micronucleated erythrocytes (MNEs) and micronucleated polychromatic erythrocytes (MNPCEs) in the samples from pups in the experimental groups (P < 0.02) and increased MNPCE frequencies in the samples from the dams (P < 0.05). These results demonstrate the vertical transmission of the genotoxic effect of the compounds tested. In conclusion, assessing MNEs in breastfeeding neonate rats to assess DNA damage may be a useful approach for identifying genotoxic compounds and/or cytotoxic effects. This strategy could help in screening for therapeutic approaches that are genotoxic during the lactation stage and these assessments might also be helpful for developing preventive strategies to counteract harmful effects. PMID:28018917
Plewa, Michael J; Wagner, Elizabeth D; Metz, Deborah H; Kashinkunti, Ramesh; Jamriska, Katherine J; Meyer, Maria
2012-07-17
Alternative technologies to disinfect drinking water such as ultraviolet (UV) disinfection are becoming more widespread. The benefits of UV disinfection include reduced risk of microbial pathogens such as Cryptosporidium and reduced production of regulated drinking water disinfection byproducts (DBPs). The objective of this research was to determine if mammalian cell cytotoxicity and genotoxicity varied in response to different chlorination protocols with and without polychromatic medium pressure UV (MPUV) and monochromatic low pressure UV (LPUV) disinfection technologies. The specific aims were to analyze the mammalian cell cytotoxicity and genotoxicity of concentrated organic fractions from source water before and after chlorination and to determine the cytotoxicity and genotoxicity of the concentrated organic fractions from water samples treated with UV alone or UV before or after chlorination. Exposure of granular activated carbon-filtered Ohio River water to UV alone resulted in the lowest levels of mammalian cell cytotoxicity and genotoxicity. With combinations of UV and chlorine, the lowest levels of cytotoxicity and genotoxicity were observed with MPUV radiation. The best combined UV plus chlorine methodology that generated the lowest cytotoxicity and genotoxicity employed chlorination first followed by MPUV radiation. These data may prove important in the development of multibarrier methods of pathogen inactivation of drinking water, while limiting unintended toxic consequences.
Jagtap, Chandrashekhar Y.; Chaudhari, Swapnil Y.; Thakkar, Jalaram H.; Galib, R.; Prajapati, P. K.
2014-01-01
Objectives: Herbo-mineral formulations are being successfully used in therapeutics since centuries. But recently, they came under the scanner for their metallic contents especially the presence of heavy metals. Hence it is the need of the hour to assess and establish the safety of these formulations through toxicity studies. In line with the various toxicity studies that are being carried out, Government of India expressed the need for conducting genotoxicity studies of different metal- or mineral-based drugs. Till date very few Ayurvedic herbo-mineral formulations have been studied for their genotoxic potential. The present study is aimed to evaluate the genotoxic potential of Hridayarnava Rasa. Materials and Methods: It was prepared as per classical guidelines and administered to Swiss albino mice for 14 consecutive days. Chromosomal aberration and sperm abnormality assay were done to evaluate the genotoxic potential of the test drugs. Cyclophosphamide (CP) was taken as positive group and results were compared. Results: All treated groups exhibited significant body weight gain in comparison to CP group. Results revealed no structural deformity in the above parameters in comparison to the CP-treated group. Conclusion: Reported data showed that both tested samples of Hridayarnava Rasa does not possess genotoxic potential under the experimental conditions and can be safely used. PMID:25948961
Evaluation of genotoxicity testing of FDA approved large molecule therapeutics.
Sawant, Satin G; Fielden, Mark R; Black, Kurt A
2014-10-01
Large molecule therapeutics (MW>1000daltons) are not expected to enter the cell and thus have reduced potential to interact directly with DNA or related physiological processes. Genotoxicity studies are therefore not relevant and typically not required for large molecule therapeutic candidates. Regulatory guidance supports this approach; however there are examples of marketed large molecule therapeutics where sponsors have conducted genotoxicity studies. A retrospective analysis was performed on genotoxicity studies of United States FDA approved large molecule therapeutics since 1998 identified through the Drugs@FDA website. This information was used to provide a data-driven rationale for genotoxicity evaluations of large molecule therapeutics. Fifty-three of the 99 therapeutics identified were tested for genotoxic potential. None of the therapeutics tested showed a positive outcome in any study except the peptide glucagon (GlucaGen®) showing equivocal in vitro results, as stated in the product labeling. Scientific rationale and data from this review indicate that testing of a majority of large molecule modalities do not add value to risk assessment and support current regulatory guidance. Similarly, the data do not support testing of peptides containing only natural amino acids. Peptides containing non-natural amino acids and small molecules in conjugated products may need to be tested. Copyright © 2014 Elsevier Inc. All rights reserved.
Genotoxicity reduction in bagasse waste of sugar industry by earthworm technology.
Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal
2016-01-01
The aim of the present study was to assess the genotoxicity reduction in post vermicompost feed mixtures of bagasse (B) waste using earthworm Eisenia fetida. The genotoxicity of bagasse waste was determined by using Allium cepa root chromosomal aberration assay. Bagasse was amended with cattle dung in different proportions [0:100 (B0) 25:75 (B25), 50:50 (B50), 75:25 (B75) and 100:0 (B100)] on dry weight basis. Genotoxic effects of initial and post vermicompost bagasse extracts were analysed on the root tips cells of Allium cepa. Root length and mitotic index (MI) was found to be increased in post vermicompost extracts when compared to initial bagasse waste. The maximum percent increase of root length was observed in the B50 bagasse extract (96.60 %) and the maximum MI was observed in B100 mixture (14.20 ± 0.60) 6 h treatment which was similar to the control. Genotoxicity analysis of post vermicompost extracts of bagasse revealed a 21-44 % decline in the aberration frequencies and the maximum reduction was found in B75 extract (44.50 %). The increase in root length and mitotic index, as well as decrease in chromosomal aberrations indicates that E. fetida has the ability to reduce the genotoxicity of the bagasse waste.
Fewtrell, Lorna; Majuru, Batsirai; Hunter, Paul R
2017-06-20
Despite poor evidence of their effectiveness, colloidal silver and silver nanoparticles are increasingly being promoted for treating potentially contaminated drinking water in low income countries. Recently, however, concerns have been raised about the possible genotoxicity of particulate silver. The goal of this paper was to review the published mammalian in vivo genotoxicity studies using silver micro and nanoparticles. SCOPUS and Medline were searched using the following search string: ("DNA damage" OR genotox* OR Cytotox* OR Embryotox*) AND (silver OR AgNP). Included papers were any mammalian in vivo experimental studies investigating genotoxicity of silver particles. Studies were quality assessed using the ToxRTool. 16 relevant papers were identified. There were substantial variations in study design including the size of silver particles, animal species, target organs, silver dose, route of administration and the method used to detect genotoxicity. Thus, it was not possible to produce a definitive pooled result. Nevertheless, most studies showed evidence of genotoxicity unless using very low doses. We also identified one human study reporting evidence of "severe DNA damage" in silver jewellery workers occupationally exposed to silver particles. With the available evidence it is not possible to be definitive about risks to human health from oral exposure to silver particulates. However, the balance of evidence suggests that there should be concerns especially when considering the evidence from jewellery workers. There is an urgent need to determine whether people exposed to particulate silver as part of drinking water treatment have evidence of DNA damage.
Prego-Faraldo, María Verónica; Valdiglesias, Vanessa; Laffon, Blanca; Eirín-López, José M; Méndez, Josefina
2015-01-01
Okadaic acid (OA) is the predominant biotoxin responsible for diarrhetic shellfish poisoning (DSP) syndrome in humans. While its harmful effects have been extensively studied in mammalian cell lines, the impact on marine organisms routinely exposed to OA is still not fully known. Few investigations available on bivalve molluscs suggest less genotoxic and cytotoxic effects of OA at high concentrations during long exposure times. In contrast, no apparent information is available on how sublethal concentrations of OA affect these organisms over short exposure times. In order to fill this gap, this study addressed for the first time in vitro analysis of early genotoxic and cytotoxic effects attributed to OA in two cell types of the mussel Mytilus galloprovincialis. Accordingly, hemocytes and gill cells were exposed to low OA concentrations (10, 50, 100, 200, or 500 nM) for short periods of time (1 or 2 h). The resulting DNA damage, as apoptosis and necrosis, was subsequently quantified using the comet assay and flow cytometry, respectively. Data demonstrated that (1) mussel hemocytes seem to display a resistance mechanism against early genotoxic and cytotoxic OA-induced effects, (2) mussel gill cells display higher sensitivity to early OA-mediated genotoxicity than hemocytes, and (3) mussel gill cells constitute more suitable systems to evaluate the genotoxic effect of low OA concentrations in short exposure studies. Taken together, this investigation provides evidence supporting the more reliable suitability of mussel gill cells compared to hemocytes to evaluate the genotoxic effect of low short-duration exposure to OA.
Moche, Hélène; Chevalier, Dany; Barois, Nicolas; Lorge, Elisabeth; Claude, Nancy; Nesslany, Fabrice
2014-01-01
With the increasing human exposure to nanoparticles (NP), the evaluation of their genotoxic potential is of significant importance. However, relevance for NP of the routinely used in vitro genotoxicity assays is often questioned, and a nanoparticulate reference positive control would therefore constitute an important step to a better testing of NP, ensuring that test systems are really appropriate. In this study, we investigated the possibility of using tungsten carbide-cobalt (WC-Co) NP as reference positive control in in vitro genotoxicity assays, including 2 regulatory assays, the mouse lymphoma assay and the micronucleus assay, and in the Comet assay, recommended for the toxicological evaluation of nanomedicines by the French Agency of Human Health Products (Afssaps). Through these assays, we were able to study different genetic endpoints in 2 cell types commonly used in regulatory genotoxicity assays: the L5178Y mouse lymphoma cell line and primary cultures of human lymphocytes. Our results showed that the use of WC-Co NP as positive control in in vitro genotoxicity assays was conceivable, but that different parameters have to be considered, such as cell type and treatment schedule. L5178Y mouse lymphoma cells did not provide satisfactory results in the 3 performed tests. However, human lymphocytes were more sensitive to genotoxic effects induced by WC-Co NP, particularly after a 24-h treatment in the in vitro micronucleus assay and after a 4-h treatment in the in vitro Comet assay. Under such conditions, WC-Co could be used as a nanoparticulate reference positive control in these assays.
Application of bacterial reverse mutation assay for detection of non-genotoxic carcinogens.
Kanode, Rewan; Chandra, Saurabh; Sharma, Sharad
2017-06-01
Non-genotoxic carcinogens may play a significant role in development of cancer. Currently short-term assays for mutagenicity classify genotoxic carcinogens and lack the abilities to detect epigenetic carcinogens. The need to develop an endpoint always remains to recognize potentially carcinogenic agents employing rapid and practical bioassays. For this, the present study utilized TA98 and TA1537 tester strains of Salmonella typhimurium to evaluate four non-genotoxic carcinogenic agents (Coumarin, β-Myrcene, Bis(2-ethylhexyl) phthalate and trans-anethole). These chemicals were tested individually and in combination with promutagens 2-aminoanthracene (2AA) and benzo(a)pyrene (BP) in presence of metabolic activation system (S9) by plate incorporation method. Exposure to all four test chemicals revealed marked increase of revertant colonies in promutagen combined groups as compared to promutagens alone. However significantly greater fold responses were observed with 2AA combination groups (Coumarin +2AA, β-Myrcene +2AA, Bis(2-ethylhexyl) phthalate +2AA and trans-anethole +2AA) with TA98 strain as compared with TA1537, which seems to have enhanced the mutagenic response of 2AA in metabolically activated conditions. It is concluded that out of both tester strains TA98 strain of Salmonella typhimurium has the potential to detect non-genotoxic carcinogens when combined with potent promutgens either by inhibiting or modulating activities of liver microsomal enzymes biochemically which may indirectly contribute to neoplastic alterations. Further this simple, short-term alternative assay may provide rapid information during extrapolative toxicology for differentiating genotoxic and non-genotoxic carcinogens.
Intestinal inflammation induces genotoxicity to extraintestinal tissues and cell types in mice
Westbrook, Aya M.; Wei, Bo; Braun, Jonathan; Schiestl, Robert H.
2011-01-01
Chronic intestinal inflammation leads to increased risk of colorectal and small intestinal cancers, and is also associated with extraintestinal manifestations such as lymphomas, other solid cancers, and autoimmune disorders. We have previously found that acute and chronic intestinal inflammation causes DNA damage to circulating peripheral leukocytes, manifesting a systemic effect in genetic and chemically-induced models of intestinal inflammation. This study addresses the scope of tissue targets and genotoxic damage induced by inflammation-associated genotoxicity. Using several experimental models of intestinal inflammation, we analyzed various types of DNA damage in leukocyte subpopulations of the blood, spleen, mesenteric and peripheral lymph nodes; and, in intestinal epithelial cells, hepatocytes, and the brain. Genotoxicity in the form of DNA single and double stranded breaks accompanied by oxidative base damage was found in leukocyte subpopulations of the blood, diverse lymphoid organs, intestinal epithelial cells, and hepatocytes. The brain did not demonstrate significant levels of DNA double strand breaks as measured by γ-H2AX immunostaining. CD4+ and CD8+ T-cells were most sensitive to DNA damage versus other cell types in the peripheral blood. In vivo measurements and in vitro modeling suggested that genotoxicity was induced by increased levels of systemically circulating proinflammatory cytokines. Moreover, genotoxicity involved increased damage rather than reduced repair, since it not associated with decreased expression of the DNA double-strand break recognition and repair protein, ataxia telangiectasia mutated (ATM). These findings suggest that levels of intestinal inflammation contribute to the remote tissue burden of genotoxicity, with potential effects on non-intestinal diseases and cancer. PMID:21520038
Carvalho, Nayane Chagas; Guedes, Simone Alves Garcez; Albuquerque-Júnior, Ricardo Luiz Cavalcanti; de Albuquerque, Diana Santana; de Souza Araújo, Adriano Antunes; Paranhos, Luiz Renato; Camargo, Samira Esteves Afonso; Ribeiro, Maria Amália Gonzaga
2018-01-01
This study aims to evaluate, in vitro, the effect of Aloe vera associated with endodontic medication, with or without laser photobiomodulation (FTL) irradiation in FP6 human pulp fibroblasts. The materials were divided into eight groups: CTR - control; CL - FTL alone; AA - Aloe vera with distilled water; AL - Aloe vera with distilled water and FTL; HA - calcium hydroxide P.A. with distilled water; HL - calcium hydroxide P.A. with distilled water and FTL; HAA - calcium hydroxide P.A. with Aloe vera and distilled water; HAL - calcium hydroxide P.A. with Aloe vera, distilled water, and FTL. The cytotoxicity was evaluated by MTT assay at 24, 48, and 72h and the genotoxicity by micronucleus test assay. This study was performed in triplicate. Data obtained in both tests were statistically analyzed by ANOVA and Tukey's tests (p≤0.05). Group AA presented high genotoxicity and low cytotoxicity. After 24, 48, and 72h, the group HAA significantly reduced the cell viability. Interaction with FTL showed slightly increase cell viability after 24 and 48h in groups CL and HL (p<0.001), despite the high genotoxicity in group CL and low genotoxicity in group HL. Group AL showed higher cell survival rate at 72h (p<0.05) and high genotoxicity (p<0.001). It was concluded that Aloe vera allowed higher cell viability in human pulp fibroblasts in the presence of calcium hydroxide or with FTL separately, but genotoxicity increased in these associations. Copyright © 2017 Elsevier B.V. All rights reserved.
McNamee, J P; Bellier, P V
2015-07-01
As part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative international validation study of the in vivo rat alkaline comet assay (comet assay), our laboratory examined ampicillin trihydrate (AMP), 1,2-dimethylhydrazine dihydrochloride (DMH), and N-nitrosodimethylamine (NDA) using a standard comet assay validation protocol (v14.2) developed by the JaCVAM validation management team (VMT). Coded samples were received by our laboratory along with basic MSDS information. Solubility analysis and range-finding experiments of the coded test compounds were conducted for dose selection. Animal dosing schedules, the comet assay processing and analysis, and statistical analysis were conducted in accordance with the standard protocol. Based upon our blinded evaluation, AMP was not found to exhibit evidence of genotoxicity in either the rat liver or stomach. However, both NDA and DMH were observed to cause a significant increase in % tail DNA in the rat liver at all dose levels tested. While acute hepatoxicity was observed for these compounds in the high dose group, in the investigators opinion there were a sufficient number of consistently damaged/measurable cells at the medium and low dose groups to judge these compounds as genotoxic. There was no evidence of genotoxicity from either NDA or DMH in the rat stomach. In conclusion, our laboratory observed increased DNA damage from two blinded test compounds in rat liver (later identified as genotoxic carcinogens), while no evidence of genotoxicity was observed for the third blinded test compound (later identified as a non-genotoxic, non-carcinogen). This data supports the use of a standardized protocol of the in vivo comet assay as a cost-effective alternative genotoxicity assay for regulatory testing purposes. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Oyeyemi, Ifeoluwa Temitayo; Yekeen, Olaide Maruf; Odusina, Paul Olayinka; Ologun, Taiwo Mary; Ogbaide, Orezimena Michelle; Olaleye, Olayinka Israel
2015-01-01
Spondias mombin (Linn), Nymphaea lotus (Linn) and Luffa cylindrica (Linn) (syn Luffa aegyptiaca Mill) are plants traditionally used as food ingredients and in the management of diseases, including cancer, in Nigeria. Despite the therapeutic potentials attributed to these plants, reports on their genotoxicity are scanty. In this study, the genotoxicity of the aqueous and hydro-methanol extract of these plants was evaluated using mouse bone marrow micronucleus and sperm morphology assays. Antigenotoxicity was assessed by the bone marrow micronucleus test. The highest attainable dose of 5 000 mg/kg according to OECD guidelines was first used to assess acute toxicity of the aqueous and hydro-methanol extracts in Swiss albino mice. For each extract, there were five groups of mice (n=4/group) treated with different concentrations of the extract as against the negative and positive control group for the genotoxicity study. In the antigenotoxicity study, five groups of mice were exposed to five different concentrations of the extracts along with 60 mg/kg of methyl methane sulfonate (MMS), which was used to induce genotoxicity. The mice were administered 0.2 mL of extract per day for 10 days in the genotoxicity and antigenotoxicity groups. Administration of each of the extracts at the concentration of 5 000 mg/kg did not induce acute toxicity in mice. At the concentrations tested, all the extracts, except aqueous S. mombin, increased micronucleated polychromatic erythrocytes. The aqueous and hydro-methanol extracts of N. lotus increased the frequency of aberrant sperm cells. All the extracts were also able to ameliorate MMS induced genotoxicity in bone marrow cells of the exposed mice. The results showed the potential of the extracts to induce somatic and germ cell mutation in male mice. The extracts also ameliorated the genotoxic effect of MMS. PMID:27486380
Eastmond, David A; Macgregor, James T; Slesinski, Ronald S
2008-01-01
Trivalent chromium [Cr(III)] is recognized as an essential nutrient, and is widely used as a nutritional supplement for humans and animals. Recent reports of the induction of genetic damage in cultured cells exposed to Cr(III) compounds in vitro have heightened the concern that Cr(III) compounds may exert genotoxic effects under certain conditions, raising the question of the relative benefit versus risk of dietary and feed supplementation practices. We have reviewed the literature since 1990 on genotoxic effects of Cr(III) compounds to determine whether recent findings provide a sufficient weight of evidence to modify the conclusions about the safety of this dietary supplement reached in the several comprehensive reviews conducted during the period 1990-2004. The extensive literature on genotoxic effects of Cr(III) compounds includes many instances of conflicting information, with both negative and positive findings often reported in similar test systems. Outcomes of in vitro tests conducted with Cr(III) in cultured cells are quite variable regardless of the chemical form of the chromium compound tested. The in vitro data show that Cr(III) has the potential to react with DNA and to cause DNA damage in cell culture systems, but under normal circumstances, restricted access of Cr(III) to cells in vivo limits or prevents genotoxicity in biological systems. The available in vivo evidence suggests that genotoxic effects are very unlikely to occur in humans or animals exposed to nutritional or to moderate recommended supplemental levels of Cr(III). However, excessive intake of Cr(III) supplements does not appear to be warranted at this time. Thus, like other nutrients that have exhibited genotoxic effects in vitro under high exposure conditions, nutritional benefits appear to outweigh the theoretical risk of genotoxic effects in vivo at normal or modestly elevated physiological intake levels.
Oyeyemi, Ifeoluwa Temitayo; Yekeen, Olaide Maruf; Odusina, Paul Olayinka; Ologun, Taiwo Mary; Ogbaide, Orezimena Michelle; Olaleye, Olayinka Israel; Bakare, Adekunle A
2015-12-01
Spondias mombin (Linn), Nymphaea lotus (Linn) and Luffa cylindrica (Linn) (syn Luffa aegyptiaca Mill) are plants traditionally used as food ingredients and in the management of diseases, including cancer, in Nigeria. Despite the therapeutic potentials attributed to these plants, reports on their genotoxicity are scanty. In this study, the genotoxicity of the aqueous and hydro-methanol extract of these plants was evaluated using mouse bone marrow micronucleus and sperm morphology assays. Antigenotoxicity was assessed by the bone marrow micronucleus test. The highest attainable dose of 5 000 mg/kg according to OECD guidelines was first used to assess acute toxicity of the aqueous and hydro-methanol extracts in Swiss albino mice. For each extract, there were five groups of mice (n=4/group) treated with different concentrations of the extract as against the negative and positive control group for the genotoxicity study. In the antigenotoxicity study, five groups of mice were exposed to five different concentrations of the extracts along with 60 mg/kg of methyl methane sulfonate (MMS), which was used to induce genotoxicity. The mice were administered 0.2 mL of extract per day for 10 days in the genotoxicity and antigenotoxicity groups. Administration of each of the extracts at the concentration of 5 000 mg/kg did not induce acute toxicity in mice. At the concentrations tested, all the extracts, except aqueous S. mombin, increased micronucleated polychromatic erythrocytes. The aqueous and hydro-methanol extracts of N. lotus increased the frequency of aberrant sperm cells. All the extracts were also able to ameliorate MMS induced genotoxicity in bone marrow cells of the exposed mice. The results showed the potential of the extracts to induce somatic and germ cell mutation in male mice. The extracts also ameliorated the genotoxic effect of MMS.
Zhang, Shao-Hui; Miao, Dong-Yue; Tan, Li; Liu, Ai-Lin; Lu, Wen-Qing
2016-01-01
The implications of disinfection by-products (DBPs) present in drinking water are of public health concern because of their potential mutagenic, carcinogenic and other toxic effects on humans. In this study, we selected 13 main DBPs found in drinking water to quantitatively analyse their cytotoxicity and genotoxicity using a microplate-based cytotoxicity assay and a developed SOS/umu assay in Salmonella typhimurium TA1535/pSK1002. With the developed SOS/umu test, eight DBPs: 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-fura3-chloro-4-(dichloromethyl)-5-hydroxy-2-[5H]-furanone (MX), dibromoacetonitrile (DBN), iodoacetic acid (IA), bromochloroacetonitrile (BCN), bromoacetic acid (BA), trichloroacetonitrile (TCN), dibromoacetic acid (DBA) and dichloroacetic acid (DCA) were significantly genotoxic to S. typhimurium. Three DBPs: chloroacetic acid (CA), trichloroacetic acid (TCA) and dichloroacetonitrile (DCN) were weakly genotoxic, whereas the remaining DBPs: chloroacetonitrile (CN) and chloral hydrate (CH) were negative. The rank order in decreasing genotoxicity was as follows: MX > DBN > IA > BCN > BA > TCN > DBA > DCA > CA, TCA, DCN > CN, CH. MX was approximately 370 000 times more genotoxic than DCA. In the microplate-based cytotoxicity assay, cytotoxic potencies of the 13 DBPs were compared and ranked in decreasing order as follows: MX > IA > DBN > BCN > BA > TCN > DCN > CA > DCA > DBA > CN > TCA > CH. MX was approximately 19 200 times more cytotoxic than CH. A statistically significant correlation was found between cytotoxicity and genotoxicity of the 13 DBPs in S. typhimurium. Results suggest that microplate-based cytotoxicity assay and the developed SOS/umu assay are feasible tools for analysing the cytotoxicity and genotoxicity of DBPs, particularly for comparing their toxic intensities quantitatively. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Illicit drugs: contaminants in the environment and utility in forensic epidemiology.
Daughton, Christian G
2011-01-01
The published literature that addresses the many facets of pharmaceutical ingredients as environmental contaminants has grown exponentially since the 1990s. Although there are several thousand active ingredients used in medical pharmaceuticals worldwide, illicit drug ingredients (IDIs) have generally been excluded from consideration. Medicinal and illicit drugs have been treated separately in environmental research even though they pose many of the same concerns regarding the potential for both human and ecological exposure. The overview presented here covers the state of knowledge up until mid-2010 regarding the origin, occurrence, fate, and potential for biological effects of IDIs in the environment. Similarities exist with medical pharmaceuticals, particularly with regard to the basic processes by which these ingredients enter the environment--excretion of unmetabolized residues (including via sweat), bathing, disposal, and manufacturing. The features of illicit drugs that distinguish them from medical pharmaceuticals are discussed. Demarcations between the two are not always clear, and a certain degree of overlap adds additional confusion as to what exactly defines an illicit drug; indeed, medical pharmaceuticals diverted from the legal market or used for non-medicinal purposes ar also captured in discussions of illicit drugs. Also needing consideration as par tof the universe of IDIs are the numerous adulterants and synthesis impurities often encountered in these very impure preparations. many of these extraneous chemicals have high biological activity themselves. In contract to medical pharmaceuticals, comparatively little is know about the fate and effects of IDIs in the environment. Environmental surveys for IDIs have revealed their presence in sewage wastewaters, raw sewage sludge and processed sludge (biosolids), and drinking water. Nearly nothing is known, however, regarding wildlife exposure to IDIs, especially aquatic exposure such as indicated by bioconcentration i tissues. In contrast to pharmaceuticals, chemical monitoring surveys have revealed the presence of certain IDIs in air and monetary currencies--the latter being of interest for the forensic tracking of money used in drug trafficking. Another unknown with regard to IDIs is the accuracy of current knowledge regarding the complete scope of chemical identities of the numerous types of IDIs in actual use (particularly some of the continually evolving designer drugs new to forensic chemistry) as well as the total quantities being trafficked, consumed, or disposed. The major aspect unique to the study of IDI's in the environment is making use of their presence in the environment as a tool to obtain better estimates of the collective usage of illicit drugs across entire communities. First proposed in 2001, but under investigation with field applications only since 2005, this new modeling approach for estimating drug usage by monitoring the concentrations of IDIs (or certain unique metabolites) in untreated sewage has potential as an additional source of data to augment or corroborate the information-collection ability of conventional written and oral surveys of drug-user populations. This still evolving monitoring tool has been called "sewer epidemiology" but is referred to in this chapter by a more descriptive proposed term "FEUDS" (Forensic Epidemiology Using Drugs in Sewage). The major limitation of FEUDS surrounds the variables involved at various steps performed in FEUDS calculations. These variables are summarized and span sampling and chemical analysis to the final numeric calculations, which particularly require a better understanding of IDI pharmacokinetics than currently exists. Although little examined in the literature, the potential for abuse of FEUDS as a tool in law enforcement is briefly discussed. Finally, the growing interest in FEUDS as a methodological approach for estimating collective public usage of illicit drugs points to the feasibility of mining other types of chemical information from sewage. On the horizon is the potential for "sewage information mining" (SIM) as a general approach for measuring a nearly limitless array of biochemical markers that could serve as collective indicators of the specific or general status of public health or disease at the community-wide level. SIM may create the opportunity to view communities from a new perspective--"communities as the patient." This could potentially lead to the paradigm of combining human and ecological communities as a single patient--as an interconnected whole.
Wells, Kevin A; Losin, William G
2008-07-01
Difficulty swallowing is a common problem in the clinical setting, particularly in elderly patients, and can significantly affect an individual's ability to maintain a proper level of nutrition. The purpose of this in vitro study was to determine if mixing duloxetine enteric-coated pellets in food substances is an acceptable alternative method for administering this oral formulation to patients with swallowing difficulties. To determine whether administration in food substances with varying pH values (applesauce and apple juice, pH = approximately 3.5; chocolate pudding, pH = approximately 5.5-6.0) affects the enteric coating of the formulation, duloxetine pellets (ie, the contents of a 20-mg duloxetine capsule) were exposed to applesauce, apple juice, and chocolate pudding at room temperature and tested in triplicate for potency and impurities; for dissolution, 6 replicates were tested. To assess product stability and integrity of the enteric coating, potency, impurities, and dissolution tests of the pellets were conducted and compared with pellets not exposed to food. The duloxetine pellets were extracted from the food material using a solution of 0.1 normal (N) hydrochloric acid (HCl) prepared from concentrated HCl (commercially available) and deionized water. For the potency and impurities tests, a 40:60 solution of acetonitrile and pH 8.0 phosphate buffer was used as the sample solvent to extract the active pharmaceutical ingredient from the formulation to prepare the samples for testing. The amount of active pharmaceutical ingredient released (in vitro dissolution) from the pellets after exposure to the food substances was determined using 2 media solutions, 0.1 N HCl followed by pH 6.8 phosphate buffer. Applesauce and chocolate pudding were selected as vehicles for oral administration, while apple juice was intended to be used as a wash for a nasogastric tube. Mean (SD) potency results for the 20-mg capsule strength were 20.256 (0.066), 20.222 (0.163), and 19.961 (0.668) mg/capsule for the comparator not exposed to food, the sample exposed to applesauce, and the sample exposed to apple juice, respectively. However, exposure to chocolate pudding altered the integrity of the pellet's enteric coating (mean [SD] potency results, 17.780 [1.605] mg/capsule). Results of impurities testing suggested that none of the test foods caused significant degradation of the drug product. Mean dissolution results found that after 2 hours in 0.1 N HCl, < or = 1% of duloxetine was released from the comparator and pellets exposed to applesauce and apple juice. However, the mean dissolution profile of the sample exposed to pudding reported near-total release (90%) after 2 hours in 0.1 N HCl during the gastric challenge portion of the dissolution test. Results from this study found that the enteric coating of duloxetine pellets mixed with applesauce or apple juice was not negatively affected. The pellets were stable at room temperature for < or = 2 hours and should quantitatively allow delivery of the full capsule dose, provided that the pellet integrity is maintained (ie, not crushed, chewed, or otherwise broken). Therefore, mixing duloxetine pellets with applesauce or apple juice appears to be an acceptable vehicle for administration. However, exposing the pellets to chocolate pudding damaged the pellets' enteric coating, suggesting that pudding may be an unacceptable vehicle for administration.
Structural characterization of cevimeline and its trans-impurity by single crystal XRD.
Stepanovs, Dmitrijs; Tetere, Zenta; Rāviņa, Irisa; Kumpiņš, Viktors; Zicāne, Daina; Bizdēna, Ērika; Bogans, Jānis; Novosjolova, Irina; Grigaloviča, Agnese; Meri, Remo Merijs; Fotins, Juris; Čerkasovs, Maksims; Mishnev, Anatoly; Turks, Māris
2016-01-25
Cevimeline is muscarinic receptor agonist which increases secretion of exocrine glands. Cevimeline base is a liquid (m.p. 20-25 °C) at ambient conditions, therefore its pharmaceutical formulation as a solid hydrochloride hemihydrate has been developed. The synthesis of cevimeline yields its cis- and trans-isomers and only the cis-isomer is recognized as the API and used in the finished formulation. In this study structural and physicochemical investigations of hydrochloride hemihydrates of cis- and trans-cevimelines have been performed. Single crystal X-ray analyses of both cis- and trans-isomers of cevimeline are reported here for the first time. It was found that the cis-isomer, the API, has less dense crystal packing, lower melting point and higher solubility in comparison to the trans-isomer. Copyright © 2015 Elsevier B.V. All rights reserved.
Quirk, Emma; Doggett, Adrian; Bretnall, Alison
2014-08-05
Spray Dried Dispersions (SDD) are uniform mixtures of a specific ratio of amorphous active pharmaceutical ingredient (API) and polymer prepared via a spray drying process. Volatile solvents are employed during spray drying to facilitate the formation of the SDD material. Following manufacture, analytical methodology is required to determine residual levels of the spray drying solvent and its associated impurities. Due to the high level of polymer in the SDD samples, direct liquid injection with Gas Chromatography (GC) is not a viable option for analysis. This work describes the development and validation of an analytical approach to determine residual levels of acetone and acetone related impurities, mesityl oxide (MO) and diacetone alcohol (DAA), in drug product intermediates prepared as SDDs using GC with headspace (HS) autosampling. The method development for these analytes presented a number of analytical challenges which had to be overcome before the levels of the volatiles of interest could be accurately quantified. GCHS could be used after two critical factors were implemented; (1) calculation and application of conversion factors to 'correct' for the reactions occurring between acetone, MO and DAA during generation of the headspace volume for analysis, and the addition of an equivalent amount of polymer into all reference solutions used for quantitation to ensure comparability between the headspace volumes generated for both samples and external standards. This work describes the method development and optimisation of the standard preparation, the headspace autosampler operating parameters and the chromatographic conditions, together with a summary of the validation of the methodology. The approach has been demonstrated to be robust and suitable to accurately determine levels of acetone, MO and DAA in SDD materials over the linear concentration range 0.008-0.4μL/mL, with minimum quantitation limits of 20ppm for acetone and MO, and 80ppm for DAA. Copyright © 2014 Elsevier B.V. All rights reserved.
Krishnaiah, Ch; Vishnu Murthy, M; Kumar, Ramesh; Mukkanti, K
2011-03-25
A simple, sensitive and reproducible ultra performance liquid chromatography (UPLC) coupled with a photodiode array detector method was developed for the quantitative determination of olanzapine (OLN) in API and pharmaceutical dosage forms. The method is applicable to the quantification of related substances and assays of drug substances. Chromatographic separation was achieved on Acquity UPLC BEH 100-mm, 2.1-mm, and 1.7-μm C-18 columns, and the gradient eluted within a short runtime, i.e., within 10.0 min. The eluted compounds were monitored at 250 nm, the flow rate was 0.3 mL/min, and the column oven temperature was maintained at 27°C. The resolution of OLN and eight (potential, bi-products and degradation) impurities was greater than 2.0 for all pairs of components. The high correlation coefficient (r(2)>0.9991) values indicated clear correlations between the investigated compound concentrations and their peak areas within the test ranges. The repeatability and intermediate precision, expressed by the RSD, were less than 2.4%. The accuracy and validity of the method were further ascertained by performing recovery studies via a spike method. The accuracy of the method expressed as relative error was satisfactory. No interference was observed from concomitant substances normally added to the tablets. The drug was subjected to the International Conference on Harmonization (ICH)-prescribed hydrolytic, oxidative, photolytic and thermal stress conditions. The performance of the method was validated according to the present ICH guidelines for specificity, limit of detection, limit of quantification, linearity, accuracy, precision, ruggedness and robustness. Copyright © 2010 Elsevier B.V. All rights reserved.
Arase, Shuntaro; Horie, Kanta; Kato, Takashi; Noda, Akira; Mito, Yasuhiro; Takahashi, Masatoshi; Yanagisawa, Toshinobu
2016-10-21
Multivariate curve resolution-alternating least squares (MCR-ALS) method was investigated for its potential to accelerate pharmaceutical research and development. The fast and efficient separation of complex mixtures consisting of multiple components, including impurities as well as major drug substances, remains a challenging application for liquid chromatography in the field of pharmaceutical analysis. In this paper we suggest an integrated analysis algorithm functioning on a matrix of data generated from HPLC coupled with photo-diode array detector (HPLC-PDA) and consisting of the mathematical program for the developed multivariate curve resolution method using an expectation maximization (EM) algorithm with a bidirectional exponentially modified Gaussian (BEMG) model function as a constraint for chromatograms and numerous PDA spectra aligned with time axis. The algorithm provided less than ±1.0% error between true and separated peak area values at resolution (R s ) of 0.6 using simulation data for a three-component mixture with an elution order of a/b/c with similarity (a/b)=0.8410, (b/c)=0.9123 and (a/c)=0.9809 of spectra at peak apex. This software concept provides fast and robust separation analysis even when method development efforts fail to achieve complete separation of the target peaks. Additionally, this approach is potentially applicable to peak deconvolution, allowing quantitative analysis of co-eluted compounds having exactly the same molecular weight. This is complementary to the use of LC-MS to perform quantitative analysis on co-eluted compounds using selected ions to differentiate the proportion of response attributable to each compound. Copyright © 2016 Elsevier B.V. All rights reserved.
Biopharmaceutic Risk Assessment of Brand and Generic Lamotrigine Tablets.
Vaithianathan, Soundarya; Raman, Siddarth; Jiang, Wenlei; Ting, Tricia Y; Kane, Maureen A; Polli, James E
2015-07-06
The therapeutic equivalence of generic and brand name antiepileptic drugs has been questioned by neurologists and the epilepsy community. A potential contributor to such concerns is pharmaceutical quality. The objective was to assess the biopharmaceutic risk of brand name Lamictal 100 mg tablets and generic lamotrigine 100 mg tablets from several manufacturers. Lamotrigine was characterized in terms of the Biopharmaceutics Classification System (BCS), including aqueous solubility and Caco-2 permeability. A panel of pharmaceutical quality tests was also performed on three batches of Lamictal, three batches of Teva generic, and one batch of each of four other generics: appearance, identity, assay, impurity, uniformity of dosage units, disintegration, dissolution, friability, and loss on drying. These market surveillance results indicate that all brand name and generic lamotrigine 100 mg tablets passed all tests and showed acceptable pharmaceutical quality and low biopharmaceutic risk. Lamotrigine was classified as a BCS class IIb drug, exhibiting pH-dependent aqueous solubility and dissolution. At pH 1.2 and 4.5, lamotrigine exhibited high solubility, whereas lamotrigine exhibited low solubility at pH 6.8, including non-sink dissolution. Lamotrigine showed high Caco-2 permeability. The apparent permeability (Papp) of lamotrigine was (73.7 ± 8.7) × 10(-6) cm/s in the apical-to-basolateral (AP-BL) direction and (41.4 ± 1.6) × 10(-6) cm/s in the BL-AP direction, which were higher than metoprolol's AP-BL Papp of (21.2 ± 0.9) × 10(-6) cm/s and BL-AP Papp of (34.6 ± 4.6) × 10(-6) cm/s. Overall, lamotrigine's favorable biopharmaceutics from a drug substance perspective and favorable quality characteristics from a tablet formulation perspective suggest that multisource lamotrigine tablets exhibit a low biopharmaceutic risk.
Jung, Mi Hyun; Kim, Ha Ryong; Park, Yong Joo; Park, Duck Shin; Chung, Kyu Hyuck; Oh, Seung Min
2012-12-12
Particulate matter (PM) has become an important health risk factor in our society. PM can easily deposit in the bronchi and lungs, causing diverse diseases such as respiratory infections, lung cancers and cardiovascular diseases. In recent days, more and more toxicological studies have been dealing with air particles in distinctive areas including industrial areas, transportation sites, or indoors. Studies on subway PM in particular, have been recognizing PM as an important health risk factor because many people use subways as a major mode of public transportation (4 million people a day in Korea). The main aim of the present study was to evaluate the genotoxic effects of organic extract (OE) of subway PM10 and potential attribution of PAHs to these effects. Particles were collected in the subway tunnel at Kil-eum station(Line 4) for one month and then extracted with Dichloromethane (DCM). Chinese Hamster Ovary cells(CHO-K1) and human normal bronchial cells (BEAS-2B) were exposed to OE, and MN and Comet assays were conducted to analyze the genotoxicity. The results showed that OE increased DNA or chromosome damages in both cell lines. In the modified Comet assay and MN assay with free radical scavengers, we confirmed that the genotoxic effect of OE was partially due to the oxidative damage on DNA. DCFHD Aassay also indicated that OE induced ROS generation in BEAS-2B cells. PAHs [benzo(a)anthracene,benzo(k)fluoranthrene, etc.], the most well-known carcinogens in polluted air, were detected in Kil-eum PM10. In conclusion, our findings confirmed that OE of subway PM10 has genotoxic effects on normal human lung cells, and oxidative stress could be one of the major mechanisms of these genotoxic effects.In addition, some genotoxic and carcinogenic PAHs were detected in OE by GC/MS/MS, even though PAHs level was not enough to increase CYP1A1 gene. Therefore, we suggest that additive or synergistic effects by unidentified chemicals as well as PAHs contained in OE of subway PM10 may induce genotoxic effects and further researches are needed to identify the genotoxic compounds in subway PM.
Wang, Wei; Huang, Xuan; Xin, Hong-Bo; Fu, Mingui; Xue, Aimin; Wu, Zhao-Hui
2015-01-01
DNA damage-induced NF-κB activation plays a critical role in regulating cellular response to genotoxic stress. However, the molecular mechanisms controlling the magnitude and duration of this genotoxic NF-κB signaling cascade are poorly understood. We recently demonstrated that genotoxic NF-κB activation is regulated by reversible ubiquitination of several essential mediators involved in this signaling pathway. Here we show that TRAF family member-associated NF-κB activator (TANK) negatively regulates NF-κB activation by DNA damage via inhibiting ubiquitination of TRAF6. Despite the lack of a deubiquitination enzyme domain, TANK has been shown to negatively regulate the ubiquitination of TRAF proteins. We found TANK formed a complex with MCPIP1 (also known as ZC3H12A) and a deubiquitinase, USP10, which was essential for the USP10-dependent deubiquitination of TRAF6 and the resolution of genotoxic NF-κB activation upon DNA damage. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of TANK in human cells significantly enhanced NF-κB activation by genotoxic treatment, resulting in enhanced cell survival and increased inflammatory cytokine production. Furthermore, we found that the TANK-MCPIP1-USP10 complex also decreased TRAF6 ubiquitination in cells treated with IL-1β or LPS. In accordance, depletion of USP10 enhanced NF-κB activation induced by IL-1β or LPS. Collectively, our data demonstrate that TANK serves as an important negative regulator of NF-κB signaling cascades induced by genotoxic stress and IL-1R/Toll-like receptor stimulation in a manner dependent on MCPIP1/USP10-mediated TRAF6 deubiquitination. PMID:25861989
Benford, Diane J
2016-05-01
Genotoxic substances are generally not permitted for deliberate use in food production. However, an appreciable number of known or suspected genotoxic substances occur unavoidably in food, e.g. from natural occurrence, environmental contamination and generation during cooking and processing. Over the past decade a margin of exposure (MOE) approach has increasingly been used in assessing the exposure to substances in food that are genotoxic and carcinogenic. The MOE is defined as a reference point on the dose-response curve (e.g. a benchmark dose lower confidences limit derived from a rodent carcinogenicity study) divided by the estimated human intake. A small MOE indicates a higher concern than a very large MOE. Whilst the MOE cannot be directly equated to risk, it supports prioritisation of substances for further research or for possible regulatory action, and provides a basis for communicating to the public. So far, the MOE approach has been confined to substances for which carcinogenicity data are available. In the absence of carcinogenicity data, evidence of genotoxicity is used only in hazard identification. The challenge to the genetic toxicology community is to develop approaches for characterising risk to human health based on data from genotoxicity studies. In order to achieve wide acceptance, it would be important to further address the issues that have been discussed in the context of dose-response modelling of carcinogenicity data in order to assign levels of concern to particular MOE values, and also whether it is possible to make generic conclusions on how potency in genotoxicity assays relates to carcinogenic potency. © Crown copyright 2015.
Monitoring hospital wastewaters for their probable genotoxicity and mutagenicity.
Sharma, Pratibha; Mathur, N; Singh, A; Sogani, M; Bhatnagar, P; Atri, R; Pareek, S
2015-01-01
Cancer is a leading cause of death worldwide. Excluding the genetic factors, environmental factors, mainly the pollutants, have been implicated in the causation of the majority of cancers. Wastewater originated from health-care sectors such as hospitals may carry vast amounts of carcinogenic and genotoxic chemicals to surface waters or any other source of drinking water, if discharged untreated. Humans get exposed to such contaminants through a variety of ways including drinking water. The aim of the present study was, thus, to monitor the genotoxic and mutagenic potential of wastewaters from three big hospitals located in Jaipur (Rajasthan), India. One of them was operating an effluent treatment plant (ETP) for treatment of its wastewater and therefore both the untreated and treated effluents from this hospital were studied for their genotoxicity. Two short-term bacterial bioassays namely the Salmonella fluctuation assay and the SOS chromotest were used for the purpose. Results of fluctuation assay revealed the highly genotoxic nature of all untreated effluent samples with mutagenicity ratios (MR) up to 23.13 ± 0.18 and 42.25 ± 0.35 as measured with Salmonella typhimurium strains TA98 and TA100, respectively. As determined with the chromotest, all untreated effluents produced significant induction factors (IF) ranging from 3.29 ± 1.11 to 13.35 ± 3.58 at higher concentrations. In contrast, treated effluent samples were found to be slightly genotoxic in fluctuation test only with an MR = 3.75 ± 0.35 for TA100 at 10 % concentration. Overall, the results indicated that proper treatment of hospital wastewaters may render the effluents safe for disposal contrary to the untreated ones, possessing high genotoxic potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uehara, Takeki, E-mail: takeki.uehara@shionogi.co.jp; Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, 7-6-8 Asagi, Ibaraki, Osaka 567-0085; Minowa, Yohsuke
2011-09-15
The present study was performed to develop a robust gene-based prediction model for early assessment of potential hepatocarcinogenicity of chemicals in rats by using our toxicogenomics database, TG-GATEs (Genomics-Assisted Toxicity Evaluation System developed by the Toxicogenomics Project in Japan). The positive training set consisted of high- or middle-dose groups that received 6 different non-genotoxic hepatocarcinogens during a 28-day period. The negative training set consisted of high- or middle-dose groups of 54 non-carcinogens. Support vector machine combined with wrapper-type gene selection algorithms was used for modeling. Consequently, our best classifier yielded prediction accuracies for hepatocarcinogenicity of 99% sensitivity and 97% specificitymore » in the training data set, and false positive prediction was almost completely eliminated. Pathway analysis of feature genes revealed that the mitogen-activated protein kinase p38- and phosphatidylinositol-3-kinase-centered interactome and the v-myc myelocytomatosis viral oncogene homolog-centered interactome were the 2 most significant networks. The usefulness and robustness of our predictor were further confirmed in an independent validation data set obtained from the public database. Interestingly, similar positive predictions were obtained in several genotoxic hepatocarcinogens as well as non-genotoxic hepatocarcinogens. These results indicate that the expression profiles of our newly selected candidate biomarker genes might be common characteristics in the early stage of carcinogenesis for both genotoxic and non-genotoxic carcinogens in the rat liver. Our toxicogenomic model might be useful for the prospective screening of hepatocarcinogenicity of compounds and prioritization of compounds for carcinogenicity testing. - Highlights: >We developed a toxicogenomic model to predict hepatocarcinogenicity of chemicals. >The optimized model consisting of 9 probes had 99% sensitivity and 97% specificity. >This model enables us to detect genotoxic as well as non-genotoxic hepatocarcinogens.« less
Environmental stress in the Gulf of Mexico and its potential impact on public health
Turner, J.; Walter, L.; Lathan, N.; Thorpe, D.; Ogbevoen, P.; Daye, J.; Alcorn, D.; Wilson, S.; Semien, J.; Richard, T.; Johnson, T.; McCabe, K.; Estrada, J.J.; Galvez, F.; Velasco, C.; Reiss, K.
2017-01-01
The Deepwater Horizon (DWH) oil spill in the Gulf of Mexico was the largest maritime oil spill in history resulting in the accumulation of genotoxic substances in the air, soil, and water. This has potential far-reaching health impacts on cleanup field workers and on the populations living in the contaminated coastal areas. We have employed portable airborne particulate matter samplers (SKC Biosampler Impinger) and a genetically engineered bacterial reporter system (umu-ChromoTest from EBPI) to determine levels of genotoxicity of air samples collected from highly contaminated areas of coastal Louisiana including Grand Isle, Port Fourchon, and Elmer's Island in the spring, summer and fall of 2011, 2012, 2013 and 2014. Air samples collected from a non-contaminated area, Sea Rim State Park, Texas, served as a control for background airborne genotoxic particles. In comparison to controls, air samples from the contaminated areas demonstrated highly significant increases in genotoxicity with the highest values registered during the month of July in 2011, 2013, and 2014, in all three locations. This seasonal trend was disrupted in 2012, when the highest genotoxicity values were detected in October, which correlated with hurricane Isaac landfall in late August of 2012, about five weeks before a routine collection of fall air samples. Our data demonstrate: (i) high levels of air genotoxicity in the monitored areas over last four years post DWH oil spill; (ii) airborne particulate genotoxicity peaks in summers and correlates with high temperatures and high humidity; and (iii) this seasonal trend was disrupted by the hurricane Isaac landfall, which further supports the concept of a continuous negative impact of the oil spill in this region. PMID:26745734
Environmental stress in the Gulf of Mexico and its potential impact on public health.
Singleton, B; Turner, J; Walter, L; Lathan, N; Thorpe, D; Ogbevoen, P; Daye, J; Alcorn, D; Wilson, S; Semien, J; Richard, T; Johnson, T; McCabe, K; Estrada, J J; Galvez, F; Velasco, C; Reiss, K
2016-04-01
The Deepwater Horizon (DWH) oil spill in the Gulf of Mexico was the largest maritime oil spill in history resulting in the accumulation of genotoxic substances in the air, soil, and water. This has potential far-reaching health impacts on cleanup field workers and on the populations living in the contaminated coastal areas. We have employed portable airborne particulate matter samplers (SKC Biosampler Impinger) and a genetically engineered bacterial reporter system (umu-ChromoTest from EBPI) to determine levels of genotoxicity of air samples collected from highly contaminated areas of coastal Louisiana including Grand Isle, Port Fourchon, and Elmer's Island in the spring, summer and fall of 2011, 2012, 2013 and 2014. Air samples collected from a non-contaminated area, Sea Rim State Park, Texas, served as a control for background airborne genotoxic particles. In comparison to controls, air samples from the contaminated areas demonstrated highly significant increases in genotoxicity with the highest values registered during the month of July in 2011, 2013, and 2014, in all three locations. This seasonal trend was disrupted in 2012, when the highest genotoxicity values were detected in October, which correlated with hurricane Isaac landfall in late August of 2012, about five weeks before a routine collection of fall air samples. Our data demonstrate: (i) high levels of air genotoxicity in the monitored areas over last four years post DWH oil spill; (ii) airborne particulate genotoxicity peaks in summers and correlates with high temperatures and high humidity; and (iii) this seasonal trend was disrupted by the hurricane Isaac landfall, which further supports the concept of a continuous negative impact of the oil spill in this region. Copyright © 2015 Elsevier Inc. All rights reserved.
Singh, Nisha; Bhagat, Jacky; Ingole, Baban S
2017-07-01
The present study explores the in vivo and in vitro genotoxic effects of lead nitrate, [Pb(NO 3 ) 2 ] a recognized environmental pollutant and cobalt chloride (CoCl 2 ), an emerging environmental pollutant in polychaete Perinereis cultrifera using comet assay. Despite widespread occurrence and extensive industrial applications, no previous published reports on genotoxicity of these compounds are available in polychaete as detected by comet assay. Polychaetes were exposed in vivo to Pb(NO 3 ) 2 (0, 100, 500, and 1000 μg/l) and CoCl 2 (0, 100, 300, and 500 μg/l) for 5 days. At 100 μg/l Pb(NO 3 ) 2 concentration, tail DNA (TDNA) values in coelomocytes were increase by 1.16, 1.43, and 1.55-fold after day 1, day 3, and day 5, whereas, OTM showed 1.12, 2.33, and 2.10-fold increase in in vivo. Pb(NO 3 ) 2 showed a concentration and time-dependent genotoxicity whereas CoCl 2 showed a concentration-dependent genotoxicity in in vivo. A concentration-dependent increase in DNA damage was observed in in vitro studies for Pb(NO 3 ) 2 and CoCl 2 . DNA damage at 500 μg/L showed almost threefold increase in TDNA and approximately fourfold increase in OTM as compared to control in in vitro. Our studies suggest that Pb(NO 3 ) 2 and CoCl 2 have potential to cause genotoxic damage, with Pb(NO 3 ) 2 being more genotoxic in polychaete and should be used more carefully in industrial and other activities. Graphical abstract.
Genotoxic damage in polychaetes: a study of species and cell-type sensitivities.
Lewis, Ceri; Galloway, Tamara
2008-06-30
The marine environment is becoming increasingly contaminated by environmental pollutants with the potential to damage DNA, with marine sediments acting as a sink for many of these contaminants. Understanding genotoxic responses in sediment-dwelling marine organisms, such as polychaetes, is therefore of increasing importance. This study is an exploration of species-specific and cell-specific differences in cell sensitivities to DNA-damaging agents in polychaete worms, aimed at increasing fundamental knowledge of their responses to genotoxic damage. The sensitivities of coelomocytes from three polychaetes species of high ecological relevance, i.e. the lugworm Arenicola marina, the harbour ragworm Nereis diversicolor and the king ragworm Nereis virens to genotoxic damage are compared, and differences in sensitivities of their different coelomic cell types determined by use of the comet assay. A. marina was found to be the most sensitive to genotoxic damage induced by the direct-acting mutagen methyl methanesulfonate (MMS), and showed dose-dependent responses to MMS and the polycyclic aromatic hydrocarbon benzo(a)pyrene. Significant differences in sensitivity were also measured for the different types of coelomocyte. Eleocytes were more sensitive to induction of DNA damage than amoebocytes in both N. virens and N. diversicolor. Spermatozoa from A. marina showed significant DNA damage following in vitro exposure to MMS, but were less sensitive to DNA damage than coelomocytes. This investigation has clearly demonstrated that different cell types within the same species and different species within the polychaetes show significantly different responses to genotoxic insult. These findings are discussed in terms of the relationship between cell function and sensitivity and their implications for the use of polychaetes in environmental genotoxicity studies.
Graf, U; Moraga, A A; Castro, R; Díaz Carrillo, E
1994-05-01
Five wines and one brandy of Spanish origin as well as three herbal teas and ordinary black tea were tested for genotoxicity in the wing Somatic Mutation And Recombination Test (SMART) which makes use of the two recessive wing cell markers multiple wing hairs (mwh) and flare (flr3) on the left arm of chromosome 3 of Drosophila melanogaster. 3-day-old larvae trans-heterozygous for these two markers were fed the beverages at different concentrations and for different feeding periods using Drosophila instant medium. Somatic mutations or mitotic recombinations induced in the cells of the wing imaginal discs give rise to mutant single or twin spots on the wing blade of the emerging adult flies showing either the mwh phenotype or/and the flr phenotype. One of the red wines showed a clear genotoxic activity that was not due to its ethanol content. Two herbal teas (Urtica dioica, Achillea millefolium) and black tea (Camellia sinensis) proved to be weakly genotoxic as well. Furthermore, it was shown that quercetin and rutin, two flavonols present in beverages of plant origin, also exhibited weak genotoxic activity in the somatic cells of Drosophila. These results demonstrate that Drosophila in vivo somatic assays can detect the genotoxicity of complex mixtures such as beverages. In particular, it is possible to administer these test materials in the same form as that in which they are normally consumed.
Genotoxicity evaluation of carvacrol in rats using a combined micronucleus and comet assay.
Llana-Ruiz-Cabello, María; Maisanaba, Sara; Puerto, María; Prieto, Ana I; Pichardo, Silvia; Moyano, Rosario; González-Pérez, José A; Cameán, Ana M
2016-12-01
Genotoxic data of substances which could be incorporated into food packaging are required by the European Food Safety Authority. Due to its antioxidant and antibacterial properties carvacrol is one of these compounds. This work aims to study for the first time the in vivo genotoxic effects produced in rats orally exposed to 81, 256 or 810 mg cavacrol/kg body weight (bw) at 0, 24 and 45 h. A combination of the micronucleus assay (OECD 474) in bone marrow and the standard (OECD 489) and enzyme-modified comet assay was used to determine the genotoxicity on cells isolated from stomach and liver of exposed animals. In addition, a histopathological study was performed on the assayed tissues, and also in the lungs due to the volatility of carvacrol. Direct analytical pyrolysis was used to search for carvacrol in viscera and to ensure that the compound reaches stomach and liver cells. Results from MN-comet assay revealed that carvacrol (81-810 mg/kg bw) did not induce in vivo genotoxicity or oxidative DNA damage in any of the tissues investigated. Moreover, no histopathological changes were observed. Altogether, these results suggest lack of genotoxicity of carvacrol and therefore its good profile for its potential application as food preservative. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bhagavathy, S; Sumathi, P
2012-01-01
Objective To identify the available phytochemicals and carotenoids in the selected green algae and evaluate the potential genotoxic/antigenotoxic effect using lymphocytes. Methods Organic solvent extracts of Chlorococcum humicola (C. humicola) were used for the phytochemical analysis. The available carotenoids were assessed by HPLC, and LC-MS analysis. The genotoxicity was induced by the benzo(a)pyrene in the lymphocyte culture, the genotoxic and antigenotoxic effects of algal carotenoids with and without genotoxic inducer were evaluated by chromosomal aberration (CA), sister chromatid exchange (SCE) and micronucleus assay (MN). Results The results of the analysis showed that the algae were rich in carotenoids and fatty acids. In the total carotenoids lutein, β-carotene and α-carotene were found to be present in higher concentration. The frequency of CA and SCE increased by benzo(a)pyrene were significantly decreased by the carotenoids (P<0.05 for CA, P<0.001 for SCE). The MN frequencies of the cells were significantly decreased by the treatment with carotenoids when compared with the positive controls (P<0.05). Conclusions The findings of the present study demonstrate that, the green algae C. humicola is a rich source of bioactive compounds especially carotenoids which effectively fight against environmental genotoxic agents, the carotenoids itself is not a genotoxic substance and should be further considered for its beneficial effects. PMID:23569879
Evaluation of genotoxic potential of neurotoxin anatoxin-a with the use of umuC test.
Sieroslawska, Anna; Rymuszka, Anna
2010-01-01
The aim of this study was to evaluate genotoxicity of anatoxin-a, cyanotoxin of neurotoxic activity. Additionally, other frequently detected cyanotoxin of previously described genotoxic potential, microcystin-LR, was used at the same concentrations, as well as the mixture of both toxins, anatoxin-a and microcystin-LR. Genotoxicity of the toxins was determined with the use of the umuC assay, in which the induction and expression of the umuC - lacZ reporter gene was assessed. The test was conducted on Salmonella typhimurium TA 1535/pSK1002 strain, with and without metabolic transformation. The toxin concentrations were 0.25, 0.5, 1 and 2 µg/ml. The exposure time was 2 h. The highest inefficient concentration of anatoxin-a without metabolic transformation was 0.25 µg/ml, of microcystin-LR was 0.5 µg/ml and in case of the toxin mixture all used concentrations induced the umuC gene. When S9 fraction was added to the samples, no effects were detected. To our knowledge, this is the first report on genotoxic effects of anatoxin-a. Although the study is preliminary and needs further research, however, indicates the new potential activity of the toxin, as well as the possible increase of genotoxicity of other cyanotoxins, more stable in the environment, e.g. microcystin-LR.
Menezes, Ana Paula Simões; Da Silva, Juliana; Roloff, Joice; Reyes, Juliana; Debastiani, Rafaela; Dias, Johnny F; Rohr, Paula; de Barros Falcão Ferraz, Alexandre
2013-10-01
During coal combustion, hazardous elements are discharged that impair environmental quality. Plant cover is the first available surface for the atmospheric pollutants in terrestrial ecosystems. The aim of this study was to evaluate genotoxicity in the aqueous extract of the native plant, Baccharis trimera, exposed to coal and emissions from a thermal power plant (coal-fired power plant in Candiota, Brazil), correlating seasonality, wind tunnel predominance, and presence of inorganic elements. The presence of inorganic elements in the aerial parts of B. trimera was analyzed by particle-induced X-ray emission (PIXE) spectrometry, and genotoxicity was evaluated by ex vivo comet assay. The genotoxic effects of aqueous extracts of B. trimera from four sites located in the area around power plant were analyzed by comet assay in peripheral human lymphocytes. Winter samples showed greater levels of metals than summer samples. Genotoxicity was detected in B. trimera extracts collected from the region exposed to extraction and burning coal. Extracts from the site impacted by the dominant wind induced more damage to DNA than those from other sites. Based on our data, we can suggest that in winter the inorganic elements from extraction and burning of coal and carried through the wind tunnel were responsible for the genotoxicity observed in aqueous extract of B. trimera.
Luzy, Anne-Pascale; Orsini, Nicolas; Linget, Jean-Michel; Bouvier, Guy
2013-11-01
Twenty-two of Galderma's proprietary compounds were tested in the GADD45α-GFP 'GreenScreen HC' assay (GS), the SOS-ChromoTest and the Mini-Ames to evaluate GSs performance for early genotoxicity screening purposes. Forty more characterized compounds were also tested, including antibiotics: metronidazole, clindamycin, tetracycline, lymecycline and neomycin; and catecholamines: resorcinol mequinol, hydroquinone, one aneugen carbendazim, one corticoid dexamethasone, one peroxisome proliferator-activated receptor rosiglitazone, one pesticide carbaryl and two further proprietary molecules with in vitro genotoxicity data. With proprietary molecules, this study concluded that the GS renders the SOS-ChromoTest obsolete for in vitro screening. The GS confirmed all results of the Mini-Ames test (100% concordance). Compared with the micronucleus test, the GS showed a concordance of 82%. With known compounds, the GS ranked the potency of positive results for catecholamines in accordance with other genotoxicity tests and showed very reproducible results. It confirmed positive results for carbendazim, for tetracycline antibiotics and for carbaryl. The GS produced negative results for metronidazole, a nitroreduction-specific bacterial mutagen, for dexamethasone (a non-genotoxic apoptosis inducer), for rosiglitazone (a GADD45γ promoter inducer) and for clindamycin and neomycin (inhibitors of macromolecular synthesis in bacteria). As such, the GS appears to be a reproducible, robust, specific and sensitive test for genotoxicity screening. Copyright © 2012 John Wiley & Sons, Ltd.
da Silva, Regiane Pereira; Jacociunas, Laura Vicedo; de Carli, Raíne Fogliati; de Abreu, Bianca Regina Ribas; Lehmann, Mauricio; da Silva, Juliana; Ferraz, Alexandre de Barros Falcão; Dihl, Rafael Rodrigues
2017-10-01
Cynara scolymus L., popularly known as artichoke, is consumed as food and used as tea infusions for pharmacological purposes to treat liver dysfunctions and other conditions. Scientific data on the safety and protective effect of artichoke in human-derived liver cells is missing. This study investigated the genotoxic and modulatory effect of a liophilized extract suspended in water of C. scolymus L. leaves. Four extract concentrations (0.62, 1.25, 2.5 and 5.0 mg/mL) were evaluated using the comet assay on human hepatocyte cultures, HepG2 cells. Genotoxicity was assessed after two treatment periods, 1 and 24 h. Antigenotoxicity was evaluated against oxidative lesions induced by hydrogen peroxide in pre-, simultaneous and post-treatment protocols. Artichoke leaves aqueous extract induced genotoxic effects in HepG2 cells after 1- and 24-h treatments. In turn, extract concentrations of 0.62, 1.25 and 2.5 mg/mL, exhibited a protective effect in pretreatment, compared to hydrogen peroxide alone. However, in simultaneous and post-treatment protocols, only the lowest concentration reduced the frequency of DNA damage induced by hydrogen peroxide. In addition, in the simultaneous treatment protocol, the highest artichoke extract concentration increased hydrogen peroxide genotoxicity. It can be concluded that artichoke is genotoxic, in vitro, to HepG2 cells, but can also modulate hydrogen peroxide DNA damage.
Malini, M; Camargo, M S; Hernandes, L C; Vargas-Rechia, C G; Varanda, E A; Barbosa, A M; Dekker, R F H; Matsumoto, S T; Antunes, L M G; Cólus, I M S
2016-10-01
Carbohydrate biopolymers of fungal-origin are an important natural resource in the search for new bioagents with therapeutic and nutraceutical potential. In this study the mutagenic, genotoxic, antigenotoxic and antioxidant properties of the fungal exopolysaccharide botryosphaeran, a (1→3)(1→6)-β-D-glucan, from Botryosphaeria rhodina MAMB-05, was evaluated. The mutagenicity was assessed at five concentrations in Salmonella typhimurium by the Ames test. Normal and tumor (Jurkat cells) human T lymphocyte cultures were used to evaluate the genotoxicity and antigenotoxicity (Comet assay) of botryosphaeran alone and in combination with the mutagen methyl methanesulfonate (MMS). The ability of botryosphaeran to reduce the production of reactive oxygen and nitrogen species (RONS) generated by hydrogen peroxide was assessed using the CM-H2DCFDA probe in lymphocyte cultures under different treatment times. None of the evaluated botryosphaeran concentrations were mutagenic in bacteria, nor induced genotoxicity in normal and tumor lymphocytes. Botryosphaeran protected lymphocyte DNA against damage caused by MMS under simultaneous treatment and post-treatment conditions. However, botryosphaeran was not able to reduce the RONS generated by H2O2. Besides the absence of genotoxicity, botryosphaeran exerted a protective effect on human lymphocytes against genotoxic damage caused by MMS. These results are important in the validation of botryosphaeran as a therapeutic agent targeting health promotion. Copyright © 2016 Elsevier Ltd. All rights reserved.
de Quadros, Ana Paula Oliveira; Mazzeo, Dania Elisa Christofoletti; Marin-Morales, Maria Aparecida; Perazzo, Fábio Ferreira; Rosa, Paulo Cesar Pires; Maistro, Edson Luis
2017-01-01
Crataegus oxyacantha, a plant of the Rosaceae family also known "English hawthorn, haw, maybush, or whitethorn," has long been used for medicinal purposes such as digestive disorders, hyperlipidemia, dyspnea, inducing diuresis, and preventing kidney stones. However, the predominant use of this plant has been to treat cardiovascular disorders. Due to a lack of studies on the genotoxicity of C. oxyacantha, this investigation was undertaken to determine whether its fruit extract exerts cytotoxic, genotoxic, or clastogenic/aneugenic effects in leukocytes and HepG2 (liver hepatocellular carcinoma) cultured human cells, or mutagenic effects in TA100 and TA98 strains of Salmonella typhimurium bacterium. Genotoxicity analysis showed that the extract produced no marked genotoxic effects at concentrations of 2.5 or 5 µg/ml in either cell type; however, at concentrations of 10 µg/ml or higher significant DNA damage was detected. The micronucleus test also demonstrated that concentrations of 10 µg/ml or higher produced clastogenic/aneugenic responses. In the Ames test, the extract induced mutagenic effects in TA98 strain of S. typhimurium with metabolic activation at all tested concentrations (2.5 to 500 µg/ml). Data indicate that, under certain experimental conditions, the fruit extract of C. oxyacantha exerts genotoxic and clastogenic/aneugenic effects in cultured human cells, and with metabolism mutagenicity occurs in bacteria cells.
Scavone, Paola; Villar, Silvia; Umpiérrez, Ana; Zunino, Pablo
2015-06-01
Proteus mirabilis is frequently associated with complicated urinary tract infections (UTI). It is proposed that several virulence factors are associated with P. mirabilis uropathogenicity. The aim of this work was to elucidate genotoxic and cytotoxic effects mediated by MR/P fimbriae and flagella in eukaryotic cells in vitro. Two cell lines (kidney- and bladder-derived) were infected with a clinical wild-type P. mirabilis strain and an MR/P and a flagellar mutant. We evaluated adhesion, genotoxicity and cytotoxicity by microscopy, comet assay and triple staining technique, respectively. Mutant strains displayed lower adhesion rates than the P. mirabilis wild-type strain and were significantly less effective to induce genotoxic and cytotoxic effects compared to the wild type. We report for the first time that P. mirabilis MR/P fimbriae and flagella mediate genotoxic and cytotoxic effects on eukaryotic cells, at least in in vitro conditions. These results could contribute to design new strategies for the control of UTI. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
"Aspartame: A review of genotoxicity data".
Kirkland, David; Gatehouse, David
2015-10-01
Aspartame is a methyl ester of a dipeptide of aspartic acid and phenylalanine. It is 200× sweeter than sucrose and is approved for use in food products in more than 90 countries around the world. Aspartame has been evaluated for genotoxic effects in microbial, cell culture and animal models, and has been subjected to a number of carcinogenicity studies. The in vitro and in vivo genotoxicity data available on aspartame are considered sufficient for a thorough evaluation. There is no evidence of induction of gene mutations in a series of bacterial mutation tests. There is some evidence of induction of chromosomal damage in vitro, but this may be an indirect consequence of cytotoxicity. The weight of evidence from in vivo bone marrow micronucleus, chromosomal aberration and Comet assays is that aspartame is not genotoxic in somatic cells in vivo. The results of germ cell assays are difficult to evaluate considering limited data available and deviations from standard protocols. The available data therefore support the conclusions of the European Food Safety Authority (EFSA) that aspartame is non-genotoxic. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Genotoxic effects of nickel, trivalent and hexavalent chromium on the Eisenia fetida earthworm.
Bigorgne, Emilie; Cossu-Leguille, Carole; Bonnard, Marc; Nahmani, Johanne
2010-08-01
The aim of this study was to examine genotoxic effects of nickel (Ni=105 mg kg(-1)), trivalent and hexavalent chromium (Cr=491 mg kg(-1)) on the Eisenia fetida earthworm after 2 and 4d of exposure to two different spiked soils (an artificial (OECD) and a natural one). DNA damages were evaluated on the earthworm's coelomocytes using the comet assay. After an exposure into OECD spiked soils, Ni did not induce genotoxic effect whereas Cr(III) and Cr(VI) revealed to be genotoxic after 2d of exposure. After 4d of exposure, only Cr(VI) still induced significant damages. In natural spiked soils, nickel and Cr(III) revealed to be genotoxic after 2 and 4d of exposure. Concerning Cr(VI) toxicity, all the earthworms died after 1d of exposure. These results underline the importance to take into account the nature and the speciation of metallic pollutants, although the experiment has been performed on spiked soil with higher bioavailibity than in contaminated natural soil. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Li Chen, Tânia; LaCerte, Carolyne; Wise, Sandra S; Holmes, Amie; Martino, Julieta; Wise, John Pierce; Thompson, W Douglas; Wise, John Pierce
2012-01-01
Chromium (Cr) is a global marine pollutant, present in marine mammal tissues. Hexavalent chromium [Cr(VI)] is a known human carcinogen. In this study, we compare the cytotoxic and clastogenic effects of Cr(VI) in human (Homo sapiens) and sperm whale (Physeter macrocephalus) skin fibroblasts. Our data show that increasing concentrations of both particulate and soluble Cr(VI) induce increasing amounts of cytotoxicity and clastogenicity in human and sperm whale skin cells. Furthermore, the data show that sperm whale cells are resistant to these effects exhibiting less cytotoxicity and genotoxicity than the human cells. Differences in Cr uptake accounted for some but not all of the differences in particulate and soluble Cr(VI) genotoxicity, although it did explain the differences in particulate Cr(VI) cytotoxicity. Altogether, the data indicate that Cr(VI) is a genotoxic threat to whales, but also suggest that whales have evolved cellular mechanisms to protect them against the genotoxicity of environmental agents such as Cr(VI). Copyright © 2011 Elsevier Inc. All rights reserved.
Lehocká, Hana; Závacká, Ivona; Vavrošová, Jana; Janout, Vladimír
2017-03-01
The aim of this study is to analyze the genotoxic risks in the Moravian-Silesian Region in the Czech Republic and assess the significance of genotoxic factors in the etiology of cancer by bringing together the Registry of Occupational Exposure to Genotoxic Factors and the Cancer Registry and compare the rate of detected cancer in persons exposed to genotoxic factors via their work in the Moravian-Silesian Region with the occurrence of cancer in the population of the Czech Republic. The results show: (a) For the monitored group (748 person) for the period 1996-2008, according to gender, was no statistically significant difference in the incidence of oncological diseases compared to the population of the Czech Republic. (b) But statistically significant difference was found in the cases of oncological diseases in groups according to % AB.C. using the Cytogenetic analysis of human peripheral lymphocytes (CAPL). The highest incidence was in the group with a higher incidence of % AB.C. High values of % AB.C. may predict the development of oncological diseases.
Evolutionarily Distant Streptophyta Respond Differently to Genotoxic Stress
Vágnerová, Radka; Lukešová, Alena; Lukeš, Martin; Rožnovská, Petra; Holá, Marcela; Fulnečková, Jana; Angelis, Karel J.
2017-01-01
Research in algae usually focuses on the description and characterization of morpho—and phenotype as a result of adaptation to a particular habitat and its conditions. To better understand the evolution of lineages we characterized responses of filamentous streptophyte green algae of the genera Klebsormidium and Zygnema, and of a land plant—the moss Physcomitrella patens—to genotoxic stress that might be relevant to their environment. We studied the induction and repair of DNA double strand breaks (DSBs) elicited by the radiomimetic drug bleomycin, DNA single strand breaks (SSB) as consequence of base modification by the alkylation agent methyl methanesulfonate (MMS) and of ultra violet (UV)-induced photo-dimers, because the mode of action of these three genotoxic agents is well understood. We show that the Klebsormidium and Physcomitrella are similarly sensitive to introduced DNA lesions and have similar rates of DSBs repair. In contrast, less DNA damage and higher repair rate of DSBs was detected in Zygnema, suggesting different mechanisms of maintaining genome integrity in response to genotoxic stress. Nevertheless, contrary to fewer detected lesions is Zygnema more sensitive to genotoxic treatment than Klebsormidium and Physcomitrella PMID:29149093
Evolutionarily Distant Streptophyta Respond Differently to Genotoxic Stress.
Vágnerová, Radka; Lukešová, Alena; Lukeš, Martin; Rožnovská, Petra; Holá, Marcela; Fulnečková, Jana; Fajkus, Jiří; Angelis, Karel J
2017-11-17
Research in algae usually focuses on the description and characterization of morpho-and phenotype as a result of adaptation to a particular habitat and its conditions. To better understand the evolution of lineages we characterized responses of filamentous streptophyte green algae of the genera Klebsormidium and Zygnema , and of a land plant-the moss Physcomitrella patens -to genotoxic stress that might be relevant to their environment. We studied the induction and repair of DNA double strand breaks (DSBs) elicited by the radiomimetic drug bleomycin, DNA single strand breaks (SSB) as consequence of base modification by the alkylation agent methyl methanesulfonate (MMS) and of ultra violet (UV)-induced photo-dimers, because the mode of action of these three genotoxic agents is well understood. We show that the Klebsormidium and Physcomitrella are similarly sensitive to introduced DNA lesions and have similar rates of DSBs repair. In contrast, less DNA damage and higher repair rate of DSBs was detected in Zygnema , suggesting different mechanisms of maintaining genome integrity in response to genotoxic stress. Nevertheless, contrary to fewer detected lesions is Zygnema more sensitive to genotoxic treatment than Klebsormidium and Physcomitrella .
Syberg, Kristian; Binderup, Mona-Lise; Cedergreen, Nina; Rank, Jette
2015-01-01
Assessment of genotoxic properties of chemicals is mainly conducted only for single chemicals, without taking mixture genotoxic effects into consideration. The current study assessed mixture effects of the three known genotoxic chemicals, 2,4-dichlorophenoxyacetic acid (2,4-D), acrylamide (AA), and maleic hydrazide (MH), in an experiment with a fixed ratio design setup. The genotoxic effects were assessed with the single-cell gel electrophoresis assay (comet assay) for both single chemicals and the ternary mixture. The concentration ranges used were 0-1.4, 0-20, and 0-37.7 mM for 2,4-D, AA, and MH, respectively. Mixture toxicity was tested with a fixed ratio design at a 10:23:77% ratio for 2.4-D:AA:MH. Results indicated that the three chemicals yielded a synergistic mixture effect. It is not clear which mechanisms are responsible for this interaction. A few possible interactions are discussed, but further investigations including in vivo studies are needed to clarify how important these more-than-additive effects are for risk assessment.
Doak, S.H.; Manshian, B.; Jenkins, G.J.S.; Singh, N.
2012-01-01
There is a pressing requirement to define a hazard identification and risk management strategy for nanomaterials due to the rapid growth in the nanotechnology industry and their promise of life-style revolutions through the development of wide-ranging nano-containing consumer products. Consequently, a battery of well defined and appropriate in vitro assays to assess a number of genotoxicity endpoints is required to minimise extensive and costly in vivo testing. However, the validity of the established protocols in current OECD recognised genotoxicity assays for nanomaterials is currently being questioned. In this report, we therefore consider the in vitro OECD genotoxicity test battery including the Ames, micronucleus and HPRT forward mutation assays, and their potential role in the safety assessment of nanomaterial induced DNA damage in vitro. PMID:21971291
Genotoxic properties of haloacetonitriles: drinking water by-products of chlorine disinfection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, F.B.; Schenck, K.M.; Mattox, J.K.
Chlorinated and brominated haloacetonitriles (HAN), known drinking water contaminants which form during chlorine disinfection, were investigated for genotoxic activity. The HAN produced DNA strand breaks in cultured human lymphoblastic (CCRF-CEM) cells, bound to the nucleophilic trapping agent 4-(p-nitrobenzyl)pyridine and formed a covalent bond to polyadenylic acid in a cell-free reaction system. Thus, we have demonstrated that these chemicals are genotoxic, which would indicate a potential for carcinogenic activity and for human health hazard.
Kuramitz, Hideki; Sazawa, Kazuto; Nanayama, Yasuaki; Hata, Noriko; Taguchi, Shigeru; Sugawara, Kazuharu; Fukushima, Masami
2012-01-01
The SOS/umu genotoxicity assay evaluates the primary DNA damage caused by chemicals from the β-galactosidase activity of S. typhimurium. One of the weaknesses of the common umu test system based on spectrophotometric detection is that it is unable to measure samples containing a high concentration of colored dissolved organic matters, sediment, and suspended solids. However, umu tests with electrochemical detection techniques prove to be a better strategy because it causes less interference, enables the analysis of turbid samples and allows detection even in small volumes without loss of sensitivity. Based on this understanding, we aim to develop a new umu test system with hydrodynamic chronoamperometry using a rotating disk electrode (RDE) in a microliter droplet. PAPG when used as a substrate is not electroactive at the potential at which PAP is oxidized to p-quinone imine (PQI), so the current response of chronoamperometry resulting from the oxidation of PAP to PQI is directly proportional to the enzymatic activity of S. typhimurium. This was achieved by performing genotoxicity tests for 2-(2-furyl)-3-(5-nitro-2-furyl)-acrylamide (AF-2) and 2-aminoanthracene (2-AA) as model genotoxic compounds. The results obtained in this study indicated that the signal detection in the genotoxicity assay based on hydrodynamic voltammetry was less influenced by the presence of colored components and sediment particles in the samples when compared to the usual colorimetric signal detection. The influence caused by the presence of humic acids (HAs) and artificial sediment on the genotoxic property of selected model compounds such as 4-nitroquinoline-N-oxide (4-NQO), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), 1,8-dinitropyrene (1,8-DNP) and 1-nitropyrene (1-NP) were also investigated. The results showed that the genotoxicity of 1-NP and MX changed in the presence of 10 mg·L−1 HAs. The genotoxicity of tested chemicals with a high hydrophobicity such as 1,8-DNP and 1-NP were decreased substantially with the presence of 1 g·L−1 sediment. This was not observed in the case of genotoxins with a low log Kow value. PMID:23242275
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josse, Rozenn; Dumont, Julie; Fautrel, Alain
Gene expression profiling has recently emerged as a promising approach to identify early target genes and discriminate genotoxic carcinogens from non-genotoxic carcinogens and non-carcinogens. However, early gene changes induced by genotoxic compounds in human liver remain largely unknown. Primary human hepatocytes and differentiated HepaRG cells were exposed to aflatoxin B1 (AFB1) that induces DNA damage following enzyme-mediated bioactivation. Gene expression profile changes induced by a 24 h exposure of these hepatocyte models to 0.05 and 0.25 μM AFB1 were analyzed by using oligonucleotide pangenomic microarrays. The main altered signaling pathway was the p53 pathway and related functions such as cellmore » cycle, apoptosis and DNA repair. Direct involvement of the p53 protein in response to AFB1 was verified by using siRNA directed against p53. Among the 83 well-annotated genes commonly modulated in two pools of three human hepatocyte populations and HepaRG cells, several genes were identified as altered by AFB1 for the first time. In addition, a subset of 10 AFB1-altered genes, selected upon basis of their function or tumor suppressor role, was tested in four human hepatocyte populations and in response to other chemicals. Although they exhibited large variable inter-donor fold-changes, several of these genes, particularly FHIT, BCAS3 and SMYD3, were found to be altered by various direct and other indirect genotoxic compounds and unaffected by non-genotoxic compounds. Overall, this comprehensive analysis of early gene expression changes induced by AFB1 in human hepatocytes identified a gene subset that included several genes representing potential biomarkers of genotoxic compounds. -- Highlights: ► Gene expression profile changes induced by aflatoxin B1 in human hepatocytes. ► AFB1 modulates various genes including tumor suppressor genes and proto-oncogenes. ► Important inter-individual variations in the response to AFB1. ► Some genes also altered by other genotoxic compounds requiring or not bioactivation.« less
Gualtieri, Alessandro F.; Gandolfi, Nicola Bursi; Pollastri, Simone; Pollok, Kilian; Langenhorst, Falko
2016-01-01
Fibrous erionite is a mineral fibre of great concern but to date mechanisms by which it induces cyto- and geno-toxic damage, and especially the role of iron associated to this zeolite species, remain poorly understood. One of the reasons is that we still don’t know exactly where iron is in natural erionite. This work is focused on fibrous erionite-Na from Jersey (Nevada, USA) and attempts to draw a general model of occurrence of iron in erionite and relationship with toxicity mechanisms. It was found that iron is present as 6-fold coordinated Fe3+ not part of the zeolite structure. The heterogeneous nature of the sample was revealed as receptacle of different iron-bearing impurities (amorphous iron-rich nanoparticles, micro-particles of iron oxides/hydroxides, and flakes of nontronite). If iron is not part of the structure, its role should be considered irrelevant for erionite toxicity, and other factors like biopersistence should be invoked. An alternative perspective to the proposed model is that iron rich nano-particles and nontronite dissolve in the intracellular acidic environment, leaving a residue of iron atoms at specific surface sites anchored to the windows of the zeolite channels. These sites may be active later as low nuclearity groups. PMID:27892512
Pan-Zhou, Xin-Ru; Mayes, Benjamin A; Rashidzadeh, Hassan; Gasparac, Rahela; Smith, Steven; Bhadresa, Sanjeev; Gupta, Kusum; Cohen, Marita Larsson; Bu, Charlie; Good, Steven S; Moussa, Adel; Rush, Roger
2016-10-01
IDX184 is a phosphoramidate prodrug of 2'-methylguanosine-5'-monophosphate, developed to treat patients infected with hepatitis C virus. A mass balance study of radiolabeled IDX184 and pharmacokinetic studies of IDX184 in portal vein-cannulated monkeys revealed relatively low IDX184 absorption but higher exposure of IDX184 in the portal vein than in the systemic circulation, indicating >90 % of the absorbed dose was subject to hepatic extraction. Systemic exposures to the main metabolite, 2'-methylguanosine (2'-MeG), were used as a surrogate for liver levels of the pharmacologically active entity 2'-MeG triphosphate, and accordingly, systemic levels of 2'-MeG in the monkey were used to optimize formulations for further clinical development of IDX184. Capsule formulations of IDX184 delivered acceptable levels of 2'-MeG in humans; however, the encapsulation process introduced low levels of the genotoxic impurity ethylene sulfide (ES), which necessitated formulation optimization. Animal pharmacokinetic data guided the development of a tablet with trace levels of ES and pharmacokinetic performance equal to that of the clinical capsule in the monkey. Under fed conditions in humans, the new tablet formulation showed similar exposure to the capsule used in prior clinical trials.
Nanodrugs: pharmacokinetics and safety
Onoue, Satomi; Yamada, Shizuo; Chan, Hak-Kim
2014-01-01
To date, various nanodrug systems have been developed for different routes of administration, which include dendrimers, nanocrystals, emulsions, liposomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles. Nanodrug systems have been employed to improve the efficacy, safety, physicochemical properties, and pharmacokinetic/pharmacodynamic profile of pharmaceutical substances. In particular, functionalized nanodrug systems can offer enhanced bioavailability of orally taken drugs, prolonged half-life of injected drugs (by reducing immunogenicity), and targeted delivery to specific tissues. Thus, nanodrug systems might lower the frequency of administration while providing maximized pharmacological effects and minimized systemic side effects, possibly leading to better therapeutic compliance and clinical outcomes. In spite of these attractive pharmacokinetic advantages, recent attention has been drawn to the toxic potential of nanodrugs since they often exhibit in vitro and in vivo cytotoxicity, oxidative stress, inflammation, and genotoxicity. A better understanding of the pharmacokinetic and safety characteristics of nanodrugs and the limitations of each delivery option is necessary for the further development of efficacious nanodrugs with high therapeutic potential and a wide safety margin. This review highlights the recent progress in nanodrug system development, with a focus on the pharmacokinetic advantages and safety challenges. PMID:24591825
Nanomedicine and epigenome. Possible health risks.
Smolkova, Bozena; Dusinska, Maria; Gabelova, Alena
2017-11-01
Nanomedicine is an emerging field that combines knowledge of nanotechnology and material science with pharmaceutical and biomedical sciences, aiming to develop nanodrugs with increased efficacy and safety. Compared to conventional therapeutics, nanodrugs manifest higher stability and circulation time, reduced toxicity and improved targeted delivery. Despite the obvious benefit, the accumulation of imaging agents and nanocarriers in the body following their therapeutic or diagnostic application generates concerns about their safety for human health. Numerous toxicology studies have demonstrated that exposure to nanomaterials (NMs) might pose serious risks to humans. Epigenetic modifications, representing a non-genotoxic mechanism of toxicant-induced health effects, are becoming recognized as playing a potential causative role in the aetiology of many diseases including cancer. This review i) provides an overview of recent advances in medical applications of NMs and ii) summarizes current evidence on their possible epigenetic toxicity. To discern potential health risks of NMs, since current data are mostly based upon in vitro and animal models, a better understanding of functional relationships between NM exposure, epigenetic deregulation and phenotype is required. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anti-genotoxicity of trans-anethole and eugenol in mice.
Abraham, S K
2001-05-01
The naturally occurring flavouring agents trans-anethole and eugenol were evaluated for antigenotoxic effects in mice. The test doses of trans-anethole (40-400 mg/kg body weight) and eugenol (50-500 mg/kg weight) were administered by gavage 2 and 20 h before the genotoxins were injected intraperitoneally. Anti-genotoxic effects were assessed in the mouse bone marrow micronucleus test. Pretreatment with trans-anethole and eugenol led to significant antigenotoxic effects against cyclophosphamide (CPH), procarbazine (PCB), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and urethane (URE). In addition, trans-anethole inhibited the genotoxicity of ethyl methane sulfonate (EMS). Both trans-anethole and eugenol exerted dose-related antigenotoxic effects against PCB and URE. There was no significant increase in genotoxicity when trans-anethole (40-400 mg/kg body weight) and eugenol (50-500 mg/kg body weight) were administered alone.
Assessment of genotoxic effects of flumorph by the comet assay in mice organs.
Zhang, T; Zhao, Q; Zhang, Y; Ning, J
2014-03-01
The present study investigated the genotoxic effects of flumorph in various organs (brain, liver, spleen, kidney and sperm) of mice. The DNA damage, measured as comet tail length (µm), was determined using the alkaline comet assay. The comet assay is a sensitive assay for the detection of genotoxicity caused by flumorph using mice as a model. Statistically significant increases in comet assay for both dose-dependent and duration-dependent DNA damage were observed in all the organs assessed. The organs exhibited the maximum DNA damage in 96 h at 54 mg/kg body weight. Brain showed maximum DNA damage followed by spleen > kidney > liver > sperm. Our data demonstrated that flumorph had induced systemic genotoxicity in mammals as it caused DNA damage in all tested vital organs, especially in brain and spleen.
Plant genotoxicity: a molecular cytogenetic approach in plant bioassays.
Maluszynska, Jolanta; Juchimiuk, Jolanta
2005-06-01
It is important for the prevention of DNA changes caused by environment to understand the biological consequences of DNA damages and their molecular modes of action that lead to repair or alterations of the genetic material. Numerous genotoxicity assay systems have been developed to identify DNA reactive compounds. The available data show that plant bioassays are important tests in the detection of genotoxic contamination in the environment and the establishment of controlling systems. Plant system can detect a wide range of genetic damage, including gene mutations and chromosome aberrations. Recently introduced molecular cytogenetic methods allow analysis of genotoxicity, both at the chromosomal and DNA level. FISH gives a new possibility of the detection and analysis of chromosomal rearrangements in a great detail. DNA fragmentation can be estimated using the TUNEL test and the single cell gel electrophoresis (Comet assay).
Effect of Boron Toxicity on Oxidative Stress and Genotoxicity in Wheat (Triticum aestivum L.).
Çatav, Şükrü Serter; Genç, Tuncer Okan; Kesik Oktay, Müjgan; Küçükakyüz, Köksal
2018-04-01
Boron (B) toxicity, which occurs in semi-arid and arid environments, can adversely affect the growth and yield of many plants. The aim of this study was to determine the effects of different concentrations of boric acid (3, 6, 9 and 12 mM) on growth, oxidative stress and genotoxicity parameters in root and shoot tissues of wheat seedlings. Our results indicate that B stress inhibits root and shoot growth of wheat in a concentration-dependent manner, and leads to increases in TBARS and H 2 O 2 contents in shoot tissue. Moreover, our findings suggest that high concentrations of B may exert a genotoxic effect on wheat. To the best of our knowledge, this is the first report to evaluate the effect of B stress on genotoxicity in both root and shoot tissues of wheat.
Evaluation of Cytotoxicity and Genotoxicity of Acacia aroma Leaf Extracts
Mattana, C. M.; Cangiano, M. A.; Alcaráz, L. E.; Sosa, A.; Escobar, F.; Sabini, C.; Sabini, L.; Laciar, A. L.
2014-01-01
Acacia aroma, native plant from San Luis, Argentina, is commonly used as antiseptic and for healing of wounds. The present study was conducted to investigate the in vitro cytotoxicity and genotoxicity of hot aqueous extract (HAE) and ethanolic extract (EE) of A. aroma. The cytotoxic activity was assayed by neutral red uptake assay on Vero cell. Cell treatment with a range from 100 to 5000 μg/mL of HAE and EE showed that 500 μg/mL and 100 μg/mL were the maximum noncytotoxic concentrations, respectively. The CC50 was 658 μg/mL for EE and 1020 μg/mL for HAE. The genotoxicity was tested by the single-cell gel electrophoresis comet assay. The results obtained in the evaluation of DNA cellular damage exposed to varied concentrations of the HAE showed no significant genotoxic effect at range of 1–20 mg/mL. The EE at 20 mg/mL showed moderate genotoxic effect related to the increase of the DNA percentage contained in tail of the comet; DNA was classified in category 2. At concentrations below 5 mg/mL, the results of cytotoxicity and genotoxicity of aqueous and ethanolic extracts of Acacia aroma guarantee the safety at cell and genomic level. However further studies are needed for longer periods including animal models to confirm the findings. PMID:25530999
Nariya, Ankit; Pathan, Ambar; Shah, Naumita; Chettiar, Shiva; Patel, Alpesh; Dattani, Jignasha; Chandel, Divya; Rao, Mandava; Jhala, Devendrasinh
2018-01-01
Lead, a heavy metal and multifaceted toxicant, is well studied for its distribution and toxicity in ecosystem, yet there is no consensus on its amelioration by any synthetic or phytochemical compounds. Curcumin, a known antioxidant and dietary element, is a well-known herb, for its therapeutic uses and having a wide spectrum of its beneficial properties against several adverse effects. Hence, the current study was taken into consideration to evaluate the ameliorative effects of curcumin (3.87 μM, i.e. 1.43 μg/ml) against lead acetate (doses: 10 -6 M, i.e. 0.379 μg/ml and 10 -4 M, i.e. 37.9 μg/ml, durations: 24 h and 69 h) induced genotoxicity and oxidative stress in human peripheral blood lymphocyte cultures (PBLC). On one hand, antigenotoxic and antioxidative potentials of curcumin against lead were simultaneously evaluated by the array of genotoxicity and oxidative stress indices. The result postulated that lead acetate showed dose- and duration-dependent increase in both genotoxicity and oxidative stress whereas curcumin, when added along with lead acetate, showed the significant amelioration in all genotoxic and oxidative stress-related indices. The study indicated that, due to alteration in antioxidant defense system, there is an adverse genotoxic effect of lead. On the other hand, curcumin, a potent antidote, can protect chromatin material against lead -mediated genotoxicity by balancing the activity of antioxidant defense system.
Ahmad, Waseem; Shaikh, Sibhghatulla; Nazam, Nazia; Lone, Mohammad Iqbal
2014-01-01
The present investigation was directed to study the possible protective activity of quercetin—a natural antioxidant against dimethoate-induced cyto- and genotoxicity in meristematic cells of Allium sativum. So far there is no report on the biological properties of quercetin in plant test systems. Chromosome breaks, multipolar anaphase, stick chromosome, and mitotic activity were undertaken in the current study as markers of cyto- and genotoxicity. Untreated control, quercetin controls (@ 5, 10 and 20 μg/mL for 3 h), and dimethoate exposed groups (@ 100 and 200 μg/mL for 3 h) were maintained. For protection against cytogenotoxicity, the root tip cells treated with dimethoate at 100 and 200 μg/mL for 3 h and quercetin treatment at 5, 10, and 20 μg/mL for 16 h, prior to dimethoate treatment, were undertaken. Quercetin was found to be neither cytotoxic nor genotoxic in Allium sativum control at these doses. A significant increase (P < 0.05) in chromosomal aberrations was noted in dimethoate treated Allium. Pretreatment of Allium sativum with quercetin significantly (P < 0.05) reduced dimethoate-induced genotoxicity and cytotoxicity in meristematic cells, and these effects were dose dependent. In conclusion, quercetin has a protective role in the abatement of dimethoate-induced cyto- and genotoxicity in the meristematic cells of Allium sativum that resides, at least in part, on its antioxidant effects. PMID:27379342
Ahmad, Waseem; Shaikh, Sibhghatulla; Nazam, Nazia; Lone, Mohammad Iqbal
2014-01-01
The present investigation was directed to study the possible protective activity of quercetin-a natural antioxidant against dimethoate-induced cyto- and genotoxicity in meristematic cells of Allium sativum. So far there is no report on the biological properties of quercetin in plant test systems. Chromosome breaks, multipolar anaphase, stick chromosome, and mitotic activity were undertaken in the current study as markers of cyto- and genotoxicity. Untreated control, quercetin controls (@ 5, 10 and 20 μg/mL for 3 h), and dimethoate exposed groups (@ 100 and 200 μg/mL for 3 h) were maintained. For protection against cytogenotoxicity, the root tip cells treated with dimethoate at 100 and 200 μg/mL for 3 h and quercetin treatment at 5, 10, and 20 μg/mL for 16 h, prior to dimethoate treatment, were undertaken. Quercetin was found to be neither cytotoxic nor genotoxic in Allium sativum control at these doses. A significant increase (P < 0.05) in chromosomal aberrations was noted in dimethoate treated Allium. Pretreatment of Allium sativum with quercetin significantly (P < 0.05) reduced dimethoate-induced genotoxicity and cytotoxicity in meristematic cells, and these effects were dose dependent. In conclusion, quercetin has a protective role in the abatement of dimethoate-induced cyto- and genotoxicity in the meristematic cells of Allium sativum that resides, at least in part, on its antioxidant effects.
Ortiz, Carmen; Morales, Luisa; Sastre, Miguel; Haskins, William E; Matta, Jaime
2016-01-01
Sandalwood essential oil (SEO) is extracted from Santalum trees. Although α-santalol, a main constituent of SEO, has been studied as a chemopreventive agent, the genotoxic activity of the whole oil in human breast cell lines is still unknown. The main objective of this study was to assess the cytotoxic and genotoxic effects of SEO in breast adenocarcinoma (MCF-7) and nontumorigenic breast epithelial (MCF-10A) cells. Proteins associated with SEO genotoxicity were identified using a proteomics approach. Commercially available, high-purity, GC/MS characterized SEO was used to perform the experiments. The main constituents reported in the oil were (Z)-α-santalol (25.34%), (Z)-nuciferol (18.34%), (E)-β-santalol (10.97%), and (E)-nuciferol (10.46%). Upon exposure to SEO (2-8 μg/mL) for 24 hours, cell proliferation was determined by the MTT assay. Alkaline and neutral comet assays were used to assess genotoxicity. SEO exposure induced single- and double-strand breaks selectively in the DNA of MCF-7 cells. Quantitative LC/MS-based proteomics allowed identification of candidate proteins involved in this response: Ku70 (p = 1.37E - 2), Ku80 (p = 5.8E - 3), EPHX1 (p = 3.3E - 3), and 14-3-3ζ (p = 4.0E - 4). These results provide the first evidence that SEO is genotoxic and capable of inducing DNA single- and double-strand breaks in MCF-7 cells.
Ortiz, Carmen; Morales, Luisa; Sastre, Miguel; Haskins, William E.; Matta, Jaime
2016-01-01
Sandalwood essential oil (SEO) is extracted from Santalum trees. Although α-santalol, a main constituent of SEO, has been studied as a chemopreventive agent, the genotoxic activity of the whole oil in human breast cell lines is still unknown. The main objective of this study was to assess the cytotoxic and genotoxic effects of SEO in breast adenocarcinoma (MCF-7) and nontumorigenic breast epithelial (MCF-10A) cells. Proteins associated with SEO genotoxicity were identified using a proteomics approach. Commercially available, high-purity, GC/MS characterized SEO was used to perform the experiments. The main constituents reported in the oil were (Z)-α-santalol (25.34%), (Z)-nuciferol (18.34%), (E)-β-santalol (10.97%), and (E)-nuciferol (10.46%). Upon exposure to SEO (2–8 μg/mL) for 24 hours, cell proliferation was determined by the MTT assay. Alkaline and neutral comet assays were used to assess genotoxicity. SEO exposure induced single- and double-strand breaks selectively in the DNA of MCF-7 cells. Quantitative LC/MS-based proteomics allowed identification of candidate proteins involved in this response: Ku70 (p = 1.37E − 2), Ku80 (p = 5.8E − 3), EPHX1 (p = 3.3E − 3), and 14-3-3ζ (p = 4.0E − 4). These results provide the first evidence that SEO is genotoxic and capable of inducing DNA single- and double-strand breaks in MCF-7 cells. PMID:27293457
Ladeira, Carina; Pádua, Mário; Veiga, Luísa; Viegas, Susana; Carolino, Elisabete; Gomes, Manuel C; Brito, Miguel
2015-01-01
Formaldehyde is classified as carcinogenic to humans, making it a major concern, particularly in occupational settings. Fat-soluble vitamins, such as vitamins A, D, and E, are documented as antigenotoxic and antimutagenic and also correlate with the cell antioxidant potential. This study investigates the influence of these vitamins on genotoxicity biomarkers of formaldehyde-exposed hospital workers. The target population were hospital workers exposed to formaldehyde (n = 55). Controls were nonexposed individuals (n = 80). The most used genotoxicity biomarkers were the cytokinesis-block micronucleus assay for lymphocytes and the micronucleus test for exfoliated buccal cells. Vitamins A and E were determined by high-performance liquid chromatography with a diode array detector (HPLC-DAD) and vitamin D receptor (VDR) polymorphisms by real-time PCR. Significant correlations were found between genotoxicity biomarkers and between vitamins A and E in controls. Multiple regression showed that vitamin A was significantly associated with a higher mean of nucleoplasmic bridges (p < 0.001), and vitamin E was significantly associated with a decreased frequency of nuclear buds (p = 0.045) in the exposed group. No effect of vitamin D was observed. The VDRBsmI TT genotype carriers presented higher means of all the genotoxicity biomarkers; however, we found no significant associations. The study suggests that vitamin levels may modulate direct signs of genotoxicity. © 2016 S. Karger AG, Basel.
Environmental nitration processes enhance the mutagenic potency of aromatic compounds.
Bonnefoy, Aurélie; Chiron, Serge; Botta, Alain
2012-05-01
This work is an attempt to establish if aromatic nitration processes are always associated with an increase of genotoxicity. We determined the mutagenic and genotoxic effects of Benzene (B), Nitrobenzene (NB), Phenol (P), 2-Nitrophenol (2-NP), 2,4-Dinitrophenol (2,4-DNP), Pyrene (Py), 1-Nitropyrene (1-NPy), 1,3-Dinitropyrene (1,3-DNPy), 1,6-Dinitropyrene (1,6-DNPy), and 1,8-Dinitropyrene (1,8-DNPy). The mutagenic activities were evaluated with umuC test in presence and in absence of metabolic activation with S9 mix. Then, we used both cytokinesis-blocked micronucleus (CBMN) assay, in combination with fluorescent in situ hybridization (FISH) of human pan-centromeric DNA probes on human lymphocytes in order to evaluate the genotoxic effects. Analysis of all results shows that nitro polycyclic aromatic hydrocarbons (PAHs) are definitely environmental genotoxic/mutagenic hazards and confirms that environmental aromatic nitration reactions lead to an increase in genotoxicity and mutagenicity properties. Particularly 1-NPy and 1,8-DNPy can be considered as human potential carcinogens. They seem to be significant markers of the genotoxicity, mutagenicity, and potential carcinogenicity of complex PAHs mixtures present in traffic emission and industrial environment. In prevention of environmental carcinogenic risk 1-NPy and 1,8-DNPy must therefore be systematically analyzed in environmental complex mixtures in association with combined umuC test, CBMN assay, and FISH on cultured human lymphocytes. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012. Copyright © 2010 Wiley Periodicals, Inc.
Genotoxicity in native fish associated with agricultural runoff events
Whitehead, Andrew; Kuivila, Kathryn; Orlando, James L.; Kotelevtsev, S.; Anderson, Susan L.
2004-01-01
The primary objective of the present study was to test whether agricultural chemical runoff was associated with in-stream genotoxicity in native fish. Using Sacramento sucker (Catostomus occidentalis), we combined field-caging experiments in an agriculturally dominated watershed with controlled laboratory exposures to field-collected water samples, and we coupled genotoxicity biomarker measurements in fish with bacterial mutagenicity analysis of water samples. We selected DNA strand breakage as a genotoxicity biomarker and Ames Salmonella mutagenicity tests as a second, supporting indicator of genotoxicity. Data from experiments conducted during rainfall runoff events following winter application of pesticides in 2000 and 2001 indicated that DNA strand breaks were significantly elevated in fish exposed to San Joaquin River (CA, USA) water (38.8, 28.4, and 53.6% DNA strand breakage in year 2000 field, year 2000 lab, and year 2001 field exposures, respectively) compared with a nearby reference site (15.4, 8.7, and 12.6% DNA strand breakage in year 2000 field, year 2000 lab, and year 2001 field exposures, respectively). Time-course measurements in field experiments supported a linkage between induction of DNA strand breakage and the timing of agricultural runoff. San Joaquin River water also caused significant reversion mutation in two Ames Salmonella tester strains. Salmonella mutagenicity corroborated in-stream effects, further strengthening a causal relationship between runoff events and genotoxicity. Potentially responsible agents are discussed in the context of timing of runoff events in the field, concordance between laboratory and field exposures, pesticide application patterns in the drainage, and analytical chemistry data.
Stevanović, M; Cadez, P; Zlender, B; Filipic, M
2000-07-01
The preformed cooked cured meat pigment (CCMP) synthesized directly from bovine red blood cells or through a hemin intermediate was found to be a viable colorant for application to comminuted pork as a nitrite substitute. However the genotoxicity of CCMP and meat emulsion coagulates prepared with CCMP has not been evaluated. Therefore the objectives of this work were to investigate genotoxicity of CCMP and the influence of CCMP addition on genotoxicity and the content of residual nitrite in model meat emulsion coagulates. Meat emulsions were prepared from white (musculus longissimus dorsi) and red (musculus quadriceps femoris) pork muscles with two different amounts of synthesized pigment CCMP. Comparatively, emulsions with fixed addition of nitrite salt and emulsions without any addition for color development were made. Genotoxicity of CCMP and meat emulsion coagulates was tested with the SOS/umu test and the Ames test. Neither CCMP nor meat emulsion coagulates prepared with CCMP or nitrite salt were genotoxic in the SOS/umu test. In the Ames test using Salmonella Typhimurium strains TA98 and TA100 samples of coagulates prepared with CCMP and with nitrite showed weak mutagenic activity in Salmonella Typhimurium strain TA100 but only in the absence of the metabolic activation, while CCMP was not mutagenic. Coagulates prepared with CCMP contained significantly less residual nitrite than coagulates prepared with nitrite salt. These results indicate that from the human health standpoint the substitution of nitrite salt with CCMP would be highly recommendable.
Aasa, Jenny; Törnqvist, Margareta; Abramsson-Zetterberg, Lilianne
2017-11-01
In this study 3-monochloropropane-1,2-diol (3-MCPD), a compound that appears as contaminant in refined cooking oils, has been studied with regard to genotoxicity in vivo (mice) with simultaneous measurement of internal dose using state-of-the-art methodologies. Genotoxicity (chromosomal aberrations) was measured by flow cytometry with dual lasers as the frequency of micronuclei in erythrocytes in peripheral blood from BalbC mice intraperitoneally exposed to 3-MCPD (0, 50, 75, 100, 125 mg/kg). The internal doses of 3-MCPD in the mice were calculated from N-(2,3-dihydroxypropyl)-valine adducts to hemoglobin (Hb), quantified at very low levels by high-resolution mass spectrometry. Convincing evidence for absence of genotoxic potency in correlation to measured internal doses in the mice was demonstrated, despite relatively high administered doses of 3-MCPD. The results are discussed in relation to another food contaminant that is formed as ester in parallel to 3-MCPD esters in oil processing, i.e. glycidol, which has been studied previously by us in a similar experimental setup. Glycidol has been shown to be genotoxic, and in addition to have ca. 1000 times higher rate of adduct formation compared to that observed for 3-MCPD. The conclusion is that at simultaneous exposure to 3-MCPD and glycidol the concern about genotoxicity would be glycidol. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Xinan; Liu, Yun; Wang, Juan; Nie, Yaguang; Chen, Shaopeng; Hei, Tom K; Deng, Zhaoxiang; Wu, Lijun; Zhao, Guoping; Xu, An
2017-10-01
Titanium dioxide nanoparticles (TiO 2 NPs) have shown great adsorption capacity for arsenic (As); however, the potential impact of TiO 2 NPs on the behavior and toxic responses of As remains largely unexplored. In the present study, we focused on the physicochemical interaction between TiO 2 NPs and As(III) to clarify the underlying mechanisms involved in their synergistic genotoxic effect on mammalian cells. Our data showed that As(III) mainly interacted with TiO 2 NPs by competitively occupying the sites of hydroxyl groups on the surface of TiO 2 NP aggregates, resulting in more aggregation of TiO 2 NPs. Although TiO 2 NPs at concentrations used here had no cytotoxic or genotoxic effects on cells, they efficiently increased the genotoxicity of As(III) in human-hamster hybrid (A L ) cells. The synergistic genotoxicity of TiO 2 NPs and As(III) was partially inhibited by various endocytosis pathway inhibitors while it was completely blocked by an As(III)-specific chelator. Using a mitochondrial membrane potential fluorescence probe, a reactive oxygen species (ROS) probe together with mitochondrial DNA-depleted ρ 0 A L cells, we discovered that mitochondria were essential for mediating the synergistic DNA-damaging effects of TiO 2 NPs and As(III). These data provide novel mechanistic proof that TiO 2 NPs enhanced the genotoxicity of As(III) via physicochemical interactions, which were mediated by mitochondria-dependent ROS.
Platt, K L; Edenharder, R; Aderhold, S; Muckel, E; Glatt, H
2010-12-21
Heterocyclic aromatic amines (HAAs) can be formed during the cooking of meat and fish at elevated temperatures and are associated with an increased risk for cancer. On the other hand, epidemiological findings suggest that foods rich in fruits and vegetables can protect against cancer. In the present study three teas, two wines, and the juices of 15 fruits and 11 vegetables were investigated for their protective effect against the genotoxic effects of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). To closely mimic the enzymatic activation of these HAAs in humans, genetically engineered V79 Chinese hamster fibroblasts were employed that express human cytochrome P450-dependent monooxygenase (hCYP) 1A2 (responsible for the first step of enzymatic activation) and human N(O)-acetyltransferase (hNAT) 2*4 or human sulfotransferase (hSULT)1A1*1 (responsible for the second step of enzymatic activation): V79-hCYP1A2-hNAT2*4 for IQ activation and V79-hCYP1A2-hSULT1A1*1 for PhIP activation. HAA genotoxicity was determined by use of the comet assay. Black, green and rooibos tea moderately reduced the genotoxicity of IQ (IC(50)=0.8-0.9%), whereas red and white wine were less active. From the fruit juices, sweet cherry juice exhibited the highest inhibitory effect on IQ genotoxicity (IC(50)=0.17%), followed by juices from kiwi fruit, plum and blueberry (IC(50)=0.48-0.71%). The juices from watermelon, blackberry, strawberry, black currant, and Red delicious apple showed moderate suppression, whereas sour cherry, grapefruit, red currant, and pineapple juices were only weakly active. Granny Smith apple juice and orange juice proved inactive. Of the vegetable juices, strong inhibition of IQ genotoxicity was only seen with spinach and onion juices (IC(50)=0.42-0.54%). Broccoli, cauliflower, beetroot, sweet pepper, tomato, chard, and red-cabbage juices suppressed IQ genotoxicity only moderately, whereas cucumber juice was ineffective. In most cases, fruits and vegetables inhibited PhIP genotoxicity less strongly than IQ genotoxicity. As one possible mechanism of antigenotoxicity, the inhibition of activating enzymes was studied either indirectly with diagnostic substrates or directly by measuring CYP1A2 inhibition. Only sour cherry, blueberry, and black currant juices suppressed the first step of HAA enzymatic activation, whereas most plant-derived beverages inhibited the second step. 2010 Elsevier B.V. All rights reserved.
Genotoxic effect of Physalis angulata L. (Solanaceae) extract on human lymphocytes treated in vitro.
Alves dos Santos, Raquel; Cabral, Teresinha Rosa; Cabral, Isabel Rosa; Antunes, Lusânia Maria; Pontes Andrade, Cristiane; Cerqueira dos Santos Cardoso, Plínio; de Oliveira Bahia, Marcelo; Pessoa, Claudia; Martins do Nascimento, José Luis; Rodríguez Burbano, Rommel; Takahashi, Catarina Satie
2008-08-01
Physalis angulata L (Solanaceae) is a medicinal plant from North of Brazil, whose different extracts and infusions are commonly used in the popular medicine for the treatment of malaria, asthma, hepatitis, dermatitis and rheumatism. However, the genotoxic effects of P. angulata on human cells is not well known. The main purpose of the present study was to evaluate the in vitro genotoxic effects of aqueous extract of P. angulata using the comet assay and the micronucleus assay in human lymphocytes provided from 6 healthy donors. Treatments with P. angulata extracts were performed in vitro in order to access the extent of DNA damage. The comet assay has shown that treatments with P. angulata at 0.5, 1.0, 2.0, 3.0 and 6.0 microg/mL in culture medium were genotoxic. Lymphocytes treated with P. angulata at the concentrations of 3.0 and 6.0 microg/mL in culture medium showed a statistically significant increase in the frequency of micronucleus (p<0.05), however, the cytokinesis blocked proliferation index (CBPI) was not decreased after P. angulata treatment. In conclusion, the present work demonstrated the genotoxic effects of P. angulata extract on human lymphocytes in vitro.
Yurtcu, E; İşeri, Öd; Sahin, Fi
2014-12-01
The aim of this study was to investigate genotoxic and cytotoxic effects of doxorubicin, silymarin, or in combination on HepG2 cells for 24 and 48 h. Both doxorubicin and silymarin caused dose-dependent inhibition of cell proliferation. After 48 h of treatment, doxorubicin application caused dramatically increased ratio of apoptotic cells. Both 24 and 48 h of silymarin and doxorubicin-silymarin combination caused significant increases in the rate of apoptotic cells. Applications of doxorubicin and silymarin separately for 24 h led to deoxyribonucleic acid (DNA) damages. After 48 h of incubation, doxorubicin-induced genotoxic damage was 2-fold higher than the silymarin-induced damage. After 24 and 48 h, DNA damage in response to combined applications of doxorubicin and silymarin was indifferent from silymarin- and doxorubicin-induced damage respectively. There was not any difference in genotoxicity levels between incubation periods in combined applications of doxorubicin and silymarin. Lipid peroxidation levels increased in all applications. Biopharmacotherapy with chemotherapeutic agents are of interest in the issue of adjuvant therapy. Here, we demonstrate in vitro potential genotoxic and cytotoxic antitumor effect of silymarin on HepG2 cells at achievable plasma level concentrations. © The Author(s) 2014.
Merhi, Maysaloun; Dombu, Christophe Youta; Brient, Alizée; Chang, Jiang; Platel, Anne; Le Curieux, Frank; Marzin, Daniel; Nesslany, Fabrice; Betbeder, Didier
2012-02-14
We used well-characterized and positively charged nanoparticles (NP(+)) to investigate the importance of cell culture conditions, specifically the presence of serum and proteins, on NP(+) physicochemical characteristics, and the consequences for their endocytosis and genotoxicity in bronchial epithelial cells (16HBE14o-). NP(+) surface charge was significantly reduced, proportionally to NP(+)/serum and NP(+)/BSA ratios, while NP(+) size was not modified. Microscopy studies showed high endocytosis of NP(+) in 16HBE14o-, and serum/proteins impaired this internalization in a dose-dependent manner. Toxicity studies showed no cytotoxicity, even for very high doses of NP(+). No genotoxicity was observed with classic comet assay while primary oxidative DNA damage was observed when using the lesion-specific repair enzyme, formamidopyrimidine DNA-glycosylase (FPG). The micronucleus test showed NP(+) genotoxicity only for very high doses that cannot be attained in vivo. The low toxicity of these NP(+) might be explained by their high exocytosis from 16HBE14o- cells. Our results confirm the importance of serum and proteins on nanoparticles endocytosis and genotoxicity. Copyright © 2011 Elsevier B.V. All rights reserved.
Kolarević, Stoimir; Milovanović, Dragana; Kračun-Kolarević, Margareta; Kostić, Jovana; Sunjog, Karolina; Martinović, Rajko; Đorđević, Jelena; Novaković, Irena; Sladić, Dušan; Vuković-Gačić, Branka
2018-01-04
In this study, mutagenic and genotoxic potential of anti-tumor compounds avarol, avarone, and its derivatives 3'-methoxyavarone, 4'-(methylamino)avarone and 3'-(methylamino)avarone was evaluated and compared to cytostatics commonly used in chemotherapy (5-fluorouracil, etoposid, and cisplatin). Mutagenic potential of selected hydroquinone and quinones was assessed in prokaryotic model by the SOS/umuC assay in Salmonella typhimurium TA1535/pSK1002. Genotoxic potential was also assessed in eukaryotic models using comet assay in human fetal lung cell line (MRC-5), human adenocarcinoma epithelial cell line (A549), and in human peripheral blood cells (HPBC). The results indicated that avarol and avarone do not exert mutagenic/genotoxic potential. Among the studied avarone derivatives, mutagenic potential was detected by SOS/umuC test for 3'-(methylamino)avarone, but only after metabolic activation. The results of comet assay indicated that 3'-methoxyavarone and 3'-(methylamino)avarone have a significant impact on the level of DNA damage in the MRC-5 cell line. Genotoxic potential was not observed in A549 cells or HPBC probably due to a different uptake rate for the compounds and lower in metabolism rate within these cells.
Contributions of flumequine and nitroarenes to the genotoxicity of river and ground waters.
Ma, Fujun; Yuan, Guanxiang; Meng, Liping; Oda, Yoshimitsu; Hu, Jianying
2012-07-01
The SOS/umuC assay was performed in conjunction with analytical measurements to identify potential genotoxins in river and adjacent ground waters in the Jialu River basin, China. The major genotoxic activities of the river and adjacent ground waters occurred in the same two fractions (F4 and F11) when assayed using the Salmonella typhimurium strain TA1535/pSK1002. This indicates that ground water near the Jialu River was influenced by the river water. LC-MS/MS analysis indicated that flumequine accounted for 86% and 76% of the genotoxicity in fraction F11 of the river and adjacent ground waters, respectively. When HPLC fractions were tested using the strain NM3009, three fractions showed genotoxic activities for river water sample, while no fractions from ground water samples elicited genotoxic activities. The specific response to the strain NM3009 in one fraction compared with the strain TA1535/pSK1002 suggested the presence of nitroarenes. However, we failed to identify the exact nitroarenes when GC-MS analysis was used to analyze nitroarenes which are well detected in air and soil samples in previous papers. Copyright © 2012 Elsevier Ltd. All rights reserved.
Salazar, Ana María; Mendlovic, Fela; Cruz-Rivera, Mayra; Chávez-Talavera, Oscar; Sordo, Monserrat; Avila, Guillermina; Flisser, Ana; Ostrosky-Wegman, Patricia
2013-06-01
Genotoxicity induced by neurocysticercosis has been demonstrated in vitro and in vivo in humans. The adult stage of Taenia solium lodges in the small intestine and is the main risk factor to acquire neurocysticercosis, nevertheless its carcinogenic potential has not been evaluated. In this study, we determined the genotoxic effect of T. solium infection in the hamster model of taeniosis. In addition, we assessed the effect of oral immunization with recombinant T. solium calreticulin (rTsCRT) plus cholera toxin as adjuvant on micronuclei induction, as this protein has been shown to induce 33-44% protection in the hamster model of taeniosis. Blood samples were collected from the orbital venous plexus of noninfected and infected hamsters at different days postinfection, as well as from orally immunized animals, to evaluate the frequency of micronucleated reticulocytes as a measure of genotoxicity induced by parasite exposure and rTsCRT vaccination. Our results indicate that infection with T. solium caused time-dependent DNA damage in vivo and that rTsCRT immunization reduced the genotoxic damage induced by the presence of the tapeworms. Copyright © 2013 Wiley Periodicals, Inc.
Considering mutagenicity and genotoxicity in the cancer mode ...
It is well known that genotoxicity plays a significant role in the development of tumor formation. Mutations in somatic cells can play a key role early in cancer initiation and might affect other stages of the carcinogenic process. Determination of carcinogens that operate through a genotoxic mode of action entails evaluation of the available data. One way of determining if a chemical is acting through a genotoxic mechanism is to assemble the relevant data (human, animal, in vivo, in vitro) of individual genetic end points, evaluating the data against a current acceptance criteria (study quality, methodology used etc.), and determining the weight of evidence based on both the available data as well as evaluating against other existing information such as epidemiological data, ADME information etc. This presentation will lay-out key, currently available genotoxicity information on naphthalene, styrene and ethylbenzene. These three chemicals were chosen because all three chemicals cause mouse lung tumors, in particular bronchiolar-alveolar adenomas and carcinomas. This analysis of the data will enable further understanding of the mode of action of mouse lung tumor formation and species differences, which will impact the hazard identification and use of mode of action in the risk assessment of naphthalene, styrene, and ethylbenzene.
Kirkland, David; Kasper, Peter; Müller, Lutz; Corvi, Raffaella; Speit, Günter
2008-05-31
At a recent ECVAM workshop considering ways to reduce the frequency of irrelevant positive results in mammalian cell genotoxicity tests [D. Kirkland, S. Pfuhler, D. Tweats, M. Aardema, R. Corvi, F. Darroudi, A. Elhajouji, H.-R. Glatt, P. Hastwell, M. Hayashi, P. Kasper, S. Kirchner, A. Lynch, D. Marzin, D. Maurici, J.-R. Meunier, L. Müller, G. Nohynek, J. Parry, E. Parry, V. Thybaud, R. Tice, J. van Benthem, P. Vanparys, P. White, How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary followup animal tests: Report of an ECVAM Workshop, Mutat. Res. 628 (2007) 31-55], recommendations for improvements/modifications to existing tests, and suggestions for new assays were made. Following on from this, it was important to identify chemicals that could be used in the evaluation of modified or new assays. An expert panel was therefore convened and recommendations made for chemicals to fit three different sets of characteristics, namely: This paper therefore contains these three recommended lists of chemicals and describes how these should be used for any test-evaluation programme.
Nesslany, Fabrice
2017-08-01
The standard regulatory core battery of genotoxicity tests generally includes 2 or 3 validated tests with at least one in vitro test in bacteria and one in vitro test on cell cultures. However, limitations in in vitro genotoxicity testing may exist at many levels. The knowledge of the underlying mechanisms of genotoxicity is particularly useful to assess the level of relevance for the in vivo situation. In order to avoid wrong conclusions regarding the actual genotoxicity status of any test substance, it appears very important to be aware of the various origins of related bias leading to 'false positives and negatives' by using in vitro methods. Among these, mention may be made on the metabolic activation system, experimental (extreme) conditions, specificities of the test systems implemented, cell type used etc. The knowledge of the actual 'limits' of the in vitro test systems used is clearly an advantage and may contribute to avoid some pitfalls in order to better assess the level of relevance for the in vivo situation. Copyright © 2016. Published by Elsevier Ltd.
Gulten, Tuna; Evke, Elif; Ercan, Ilker; Evrensel, Turkkan; Kurt, Ender; Manavoglu, Osman
2011-01-01
In this study we aimed to investigate the genotoxic effects of antineoplastic agents in occupationally exposed oncology nurses. Genotoxic effects mean the disruptive effects in the integrity of DNA and they are associated with cancer development. Biomonitoring of health care workers handling antineoplastic agents is helpful for the evaluation of exposure to cytostatics. The study included an exposed and two control groups. The exposed group (n=9) was comprised of oncology nurses. The first (n=9) and second (n=10) control groups were comprised of subjects who did not come into contact with antineoplastic drugs working respectively in the same department with oncology nurses and in different departments. Genotoxicity evaluation was performed using SCE analysis. After applying culture, harvest and chromosome staining procedures, a total of 25 metaphases were analyzed per person. Kruskal Wallis test was used to perform statistical analysis. A statistically significant difference of sister chromatid exchange frequencies was not observed between the exposed and control groups. Lack of genotoxicity in medical oncology nurses might be due to good working conditions with high standards of technical equipment and improved personal protection.
Potential genotoxic effects of melted snow from an urban area revealed by the Allium cepa test.
Blagojević, Jelena; Stamenković, Gorana; Vujosević, Mladen
2009-09-01
The presence of well-known atmospheric pollutants is regularly screened for in large towns but knowledge about the effects of mixtures of different pollutants and especially their genotoxic potential is largely missing. Since falling snow collects pollutants from the air, melted snow samples could be suitable for evaluating potential genotoxicity. For this purpose the Allium cepa anaphase-telophase test was used to analyse melted snow samples from Belgrade, the capital city of Serbia. Samples of snow were taken at two sites, characterized by differences in pollution intensity, in three successive years. At the more polluted site the analyses showed a very high degree of both toxicity and genotoxicity in the first year of the study corresponding to the effects of the known mutagen used as the positive control. At the other site the situation was much better but not without warning signals. The results showed that standard analyses for the presence of certain contaminants in the air do not give an accurate picture of the possible consequences of urban air pollution because the genotoxic potential remains hidden. The A. cepa test has been demonstrated to be very convenient for evaluation of air pollution through analyses of melted snow samples.
Sommers, Cynthia D; Mans, Daniel J; Mecker, Laura C; Keire, David A
2011-05-01
In this work we describe a 96-well microplate assay for oversulfated chondroitin sulfate A (OSCS) in heparin, based on a water-soluble cationic polythiophene polymer (3-(2-(N-(N'-methylimidazole))ethoxy)-4-methylthiophene (LPTP)) and heparinase digestion of heparin. The assay takes advantage of several unique properties of heparin, OSCS, and LPTP, including OSCS inhibition of heparinase I and II activity, the molecular weight dependence of heparin-LPTP spectral shifts, and the distinct association of heparin fragments and OSCS to LPTP. These factors combine to enable detection of the presence of 0.003% w/w spiked OSCS in 10 μg of heparin sodium active pharmaceutical ingredient (API) using a plate reader and with visual detection to 0.1% levels. The same detection limit for OSCS was observed in the presence of 10% levels of dermatan sulfate (DS) or chondroitin sulfate A (CSA) impurities. In addition, we surveyed a selection of crude heparin samples received by the agency in 2008 and 2009 to determine average and extreme DS, CSA, and galactosamine weight percent levels. In the presence of these impurities and the variable heparin content in the crude heparin samples, spiked OSCS was reliably detected to the 0.1% w/w level using a plate reader. Finally, authentically OSCS contaminated heparin sodium API and crude samples were distinguished visually by color from control samples using the LPTP/heparinase test.
Venhuis, B J; Zwaagstra, M E; Keizers, P H J; de Kaste, D
2014-02-01
In this report, we show three examples of how the variability in dose units in single packages of counterfeit medicines and adulterated dietary supplements may contribute to a false negative screening result and inaccurate health risk assessments. We describe a counterfeit Viagra 100mg blister pack and a box of an instant coffee both containing dose units with and without an active pharmaceutical ingredient (API). We also describe a purportedly herbal slimming product with capsules that mutually differed in API and impurities. The adulterated dietary supplements contained sibutramine, benzyl-sibutramine, N-desmethyl-sibutramine (DMS), N,N-didesmethyl-sibutramine (DDMS) and several other related impurities. Counterfeit medicines and adulterated dietary supplements are a health risk because their quality is unreliable. Health risks are even greater when such unreliability extends to fundamental differences between dose units in one package. Because dose-to-dose variability for these products is unpredictable, the confidence interval of a sample size is unknown. Consequently, the analyses of a selection of dose units may not be representative for the package. In the worst case, counterfeit or unauthorised medicines are not recognised as such or a health risk is not identified. In order to reduce erroneous results particular care should be taken when analysing a composite of dose units, when finding no API in a dietary supplement and when finding conformity in a suspect counterfeit medicine. Copyright © 2013 Elsevier B.V. All rights reserved.
Cares-Pacheco, M G; Vaca-Medina, G; Calvet, R; Espitalier, F; Letourneau, J-J; Rouilly, A; Rodier, E
2014-11-20
Nowadays, it is well known that surface interactions play a preponderant role in mechanical operations, which are fundamental in pharmaceutical processing and formulation. Nevertheless, it is difficult to correlate surface behaviour in processes to physical properties measurement. Indeed, most pharmaceutical solids have multiple surface energies because of varying forms, crystal faces and impurities contents or physical defects, among others. In this paper, D-mannitol polymorphs (α, β and δ) were studied through different characterization techniques highlighting bulk and surface behaviour differences. Due to the low adsorption behaviour of β and δ polymorphs, special emphasis has been paid to surface energy analysis by inverse gas chromatography, IGC. Surface energy behaviour has been studied in Henry's domain showing that, for some organic solids, the classical IGC infinite dilution zone is never reached. IGC studies highlighted, without precedent in literature, dispersive surface energy differences between α and β mannitol, with a most energetically active α form with a γ(s)(d) of 74.9 mJ·m⁻². Surface heterogeneity studies showed a highly heterogeneous α mannitol with a more homogeneous β (40.0 mJ·m⁻²) and δ mannitol (40.3 mJ·m⁻²). Moreover, these last two forms behaved similarly considering surface energy at different probe concentrations. Copyright © 2014 Elsevier B.V. All rights reserved.
Zdravkovic, Steven A
2016-10-10
It has been reported that the presence of polysorbate 80 in a pharmaceutical product's formulation may increase the number and/or amount of impurities leached from materials used during its manufacture, storage, and/or administration. However, it is uncertain if/how the solubilization properties of this surfactant compare to non-surfactant solvent systems. The goal of this study is to provide insight into this area of uncertainty by comparing the solubilization properties of polysorbate 80 to those of isopropanol/water solutions while in contact with a plasticized polyvinylchloride parenteral delivery bag, a single-use type manufacturing bag, and a polypropylene bottle. These properties were determined via a binding experiment, in which a set of model compounds was introduced into the solutions, and via an extraction experiment, in which compounds were extracted from the packaging material by the solutions. In both experiments, the amount of each compound present at equilibrium was assayed to determine the extent they were solubilized by the solution from the packaging material. Results from these experiments illustrate differences in the magnitude of solubilization obtained from solutions containing polysorbate 80 as compared to those composed of isopropanol/water. However, it was also demonstrated that their solubilization properties can be linked via a mathematical model. Copyright © 2016 Elsevier B.V. All rights reserved.
Genetic toxicology of abused drugs: a brief review.
Li, J H; Lin, L F
1998-11-01
Although numerous studies have been conducted on abused drugs, most focus on the problems of addiction (dependence) and their neurotoxicities. Now accumulated data have demonstrated that the genotoxicity and/or carcinogenicity of abused drugs can also be detrimental to our health. In this review, commonly abused substances, including LSD, opiates (diacetylmorphine, morphine, opium and codeine), cocaine, cannabis, betel quid and khat, are discussed for their potential genotoxicity/carcinogenicity. The available literature in the field, although not as abundant as for neurotoxicity, clearly indicates the capability of abused drugs to induce genotoxicity.
Edenharder, R; Sager, J W; Glatt, H; Muckel, E; Platt, K L
2002-11-26
Chinese hamster lung fibroblasts, genetically engineered for the expression of rat cytochrome P450 dependent monooxygenase 1A2 and rat sulfotransferase 1C1 (V79-rCYP1A2-rSULT1C1 cells), were utilized to check for possible protective effects of beverages of plant origin, fruits, vegetables, and spices against genotoxicity induced by 2-acetylaminofluorene (AAF) or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Antigenotoxic activities of juices from spinach and red beets against AAF could be monitored with similar effectivity by the HPRT-mutagenicity test (IC(50)=0.64%; 2.57%) and alkaline single cell gel electrophoresis (comet assay; IC(50)=0.12%; 0.89%) which detects DNA strand breaks and abasic sites. Applying the comet assay, genotoxicity of PhIP could, however, be demonstrated only in the presence of hydroxyurea and 1-[beta-D-arabinofuranosyl]cytosine, known inhibitors of DNA repair synthesis. As expected, AAF and PhIP were unable to induce any genotoxic effects in the parent V79 cells. Genotoxic activity of PhIP was strongly reduced in a dose-related manner by green tea and red wine, by blueberries, blackberries, red grapes, kiwi, watermelon, parsley, and spinach, while two brands of beer, coffee, black tea, rooibos tea, morellos, black-currants, plums, red beets, broccoli (raw and cooked), and chives were somewhat less active. One brand of beer was only moderately active while white wine, bananas, white grapes, and strawberries were inactive. Similarly, genotoxicity of AAF was strongly reduced by green, black, and rooibos tea, red wine, morellos, black-currants, kiwi, watermelon, and spinach while plums, red beets, and broccoli (raw) were less potent. Broccoli cooked exerted only moderate and white wine weak antigenotoxic activity. With respect to the possible mechanism(s) of inhibition of genotoxicity, benzo[a]pyrene-7,8-dihydrodiol (BaP-7,8-OH) and N-OH-PhIP were applied as substrates for the CYP1A family and for rSULT 1C1, respectively. Morellos, black-currants, and black tea strongly reduced the genotoxicity of BaP-7,8-OH, onions, rooibos tea, and red wine were less potent while red beets and spinach were inactive. On the other hand, red beets and spinach strongly inhibited the genotoxicity of N-OH-PhIP, rooibos tea was weakly active while all other items were inactive. These results are suggestive for enzyme inhibition as mechanism of protection by complex mixtures of plant origin. Taken together, our results demonstrate that protection by beverages, fruits, and vegetables against genotoxicity of heterocyclic aromatic amines may take place within metabolically competent mammalian cells as well as under the conditions of the Salmonella/reversion assay.
Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying
2016-01-01
A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry. PMID:27445061
Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.
Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian
Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.
Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying.
Glavas, Lidija; Odelius, Karin; Albertsson, Ann-Christine
2016-09-12
A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry.
NASA Technical Reports Server (NTRS)
Vekilov, Peter G.
2003-01-01
Insight into the crystallization processes of biological macromolecules into crystals or aggregates can provide valuable guidelines in many fundamental and applied fields. Such insight will prompt new means to regulate protein phase transitions in-vivo, e.g., polymerization of hemoglobin S in the red cells, crystallization of crystallins in the eye lens, etc. Understanding of protein crystal nucleation will help achieve narrow crystallite size distributions, needed for sustained release of pharmaceutical protein preparations such as insulin or interferon. Traditionally, protein crystallization studies have been related to the pursuit of crystal perfection needed to improve the structure details provided by x-ray, electron or neutron diffraction methods. Crystallization trials for the purposes of structural biology carried out in space have posed an intriguing question related to the inconsistency of the effects of the microgravity growth on the quality of the crystals.
Malakahmad, Amirhossein; Manan, Teh Sabariah Binti Abd; Sivapalan, Subarna; Khan, Taimur
2018-02-01
Allium cepa assay was carried out in this study to evaluate genotoxic effects of raw and treated water samples from Perak River in Perak state, Malaysia. Samples were collected from three surface water treatment plants along the river, namely WTPP, WTPS, and WTPK. Initially, triplicates of equal size Allium cepa (onions) bulbs, 25-30 mm in diameter and average weight of 20 g, were set up in distilled water for 24 h at 20 ± 2 °C and protected from direct sunlight, to let the roots to grow. After germination of roots (0.5-1.0 cm in length), bulbs were transferred to collected water samples each for a 96-h period of exposure. The root physical deformations were observed. Genotoxicity quantification was based on mitotic index and genotoxicity level. Statistical analysis using cross-correlation function for replicates from treated water showed that root length has inverse correlation with mitotic indices (r = - 0.969) and frequencies of cell aberrations (r = - 0.976) at lag 1. Mitotic indices and cell aberrations of replicates from raw water have shown positive correlation at lag 1 (r = 0.946). Genotoxicity levels obtained were 23.4 ± 1.98 (WTPP), 26.68 ± 0.34 (WTPS), and 30.4 ± 1.13 (WTPK) for treated water and 17.8 ± 0.18 (WTPP), 37.15 ± 0.17 (WTPS), and 47.2 ± 0.48 (WTPK) for raw water. The observed cell aberrations were adherence, chromosome delay, C-metaphase, chromosome loss, chromosome bridge, chromosome breaks, binucleated cell, mini cell, and lobulated nuclei. The morphogenetic deformations obtained were likely due to genotoxic substances presence in collected water samples. Thus, water treatment in Malaysia does not remove genotoxic compounds.
NASA Astrophysics Data System (ADS)
Golbamaki, Nazanin; Rasulev, Bakhtiyor; Cassano, Antonio; Marchese Robinson, Richard L.; Benfenati, Emilio; Leszczynski, Jerzy; Cronin, Mark T. D.
2015-01-01
Nanotechnology has rapidly entered into human society, revolutionized many areas, including technology, medicine and cosmetics. This progress is due to the many valuable and unique properties that nanomaterials possess. In turn, these properties might become an issue of concern when considering potentially uncontrolled release to the environment. The rapid development of new nanomaterials thus raises questions about their impact on the environment and human health. This review focuses on the potential of nanomaterials to cause genotoxicity and summarizes recent genotoxicity studies on metal oxide/silica nanomaterials. Though the number of genotoxicity studies on metal oxide/silica nanomaterials is still limited, this endpoint has recently received more attention for nanomaterials, and the number of related publications has increased. An analysis of these peer reviewed publications over nearly two decades shows that the test most employed to evaluate the genotoxicity of these nanomaterials is the comet assay, followed by micronucleus, Ames and chromosome aberration tests. Based on the data studied, we concluded that in the majority of the publications analysed in this review, the metal oxide (or silica) nanoparticles of the same core chemical composition did not show different genotoxicity study calls (i.e. positive or negative) in the same test, although some results are inconsistent and need to be confirmed by additional experiments. Where the results are conflicting, it may be due to the following reasons: (1) variation in size of the nanoparticles; (2) variations in size distribution; (3) various purities of nanomaterials; (4) variation in surface areas for nanomaterials with the same average size; (5) differences in coatings; (6) differences in crystal structures of the same types of nanomaterials; (7) differences in size of aggregates in solution/media; (8) differences in assays; (9) different concentrations of nanomaterials in assay tests. Indeed, due to the observed inconsistencies in the recent literature and the lack of adherence to appropriate, standardized test methods, reliable genotoxicity assessment of nanomaterials is still challenging.
Wang, Wei; Huang, Xuan; Xin, Hong-Bo; Fu, Mingui; Xue, Aimin; Wu, Zhao-Hui
2015-05-22
DNA damage-induced NF-κB activation plays a critical role in regulating cellular response to genotoxic stress. However, the molecular mechanisms controlling the magnitude and duration of this genotoxic NF-κB signaling cascade are poorly understood. We recently demonstrated that genotoxic NF-κB activation is regulated by reversible ubiquitination of several essential mediators involved in this signaling pathway. Here we show that TRAF family member-associated NF-κB activator (TANK) negatively regulates NF-κB activation by DNA damage via inhibiting ubiquitination of TRAF6. Despite the lack of a deubiquitination enzyme domain, TANK has been shown to negatively regulate the ubiquitination of TRAF proteins. We found TANK formed a complex with MCPIP1 (also known as ZC3H12A) and a deubiquitinase, USP10, which was essential for the USP10-dependent deubiquitination of TRAF6 and the resolution of genotoxic NF-κB activation upon DNA damage. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of TANK in human cells significantly enhanced NF-κB activation by genotoxic treatment, resulting in enhanced cell survival and increased inflammatory cytokine production. Furthermore, we found that the TANK-MCPIP1-USP10 complex also decreased TRAF6 ubiquitination in cells treated with IL-1β or LPS. In accordance, depletion of USP10 enhanced NF-κB activation induced by IL-1β or LPS. Collectively, our data demonstrate that TANK serves as an important negative regulator of NF-κB signaling cascades induced by genotoxic stress and IL-1R/Toll-like receptor stimulation in a manner dependent on MCPIP1/USP10-mediated TRAF6 deubiquitination. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Comet assay evaluation of six chemicals of known genotoxic potential in rats.
Hobbs, Cheryl A; Recio, Leslie; Streicker, Michael; Boyle, Molly H; Tanaka, Jin; Shiga, Atsushi; Witt, Kristine L
2015-07-01
As a part of an international validation of the in vivo rat alkaline comet assay (comet assay) initiated by the Japanese Center for the Validation of Alternative Methods (JaCVAM) we examined six chemicals for potential to induce DNA damage: 2-acetylaminofluorene (2-AAF), N-nitrosodimethylamine (DMN), o-anisidine, 1,2-dimethylhydrazine dihydrochloride (1,2-DMH), sodium chloride, and sodium arsenite. DNA damage was evaluated in the liver and stomach of 7- to 9-week-old male Sprague Dawley rats. Of the five genotoxic carcinogens tested in our laboratory, DMN and 1,2-DMH were positive in the liver and negative in the stomach, 2-AAF and o-anisidine produced an equivocal result in liver and negative results in stomach, and sodium arsenite was negative in both liver and stomach. 1,2-DMH and DMN induced dose-related increases in hedgehogs in the same tissue (liver) that exhibited increased DNA migration. However, no cytotoxicity was indicated by the neutral diffusion assay (assessment of highly fragmented DNA) or histopathology in response to treatment with any of the tested chemicals. Therefore, the increased DNA damage resulting from exposure to DMN and 1,2-DMH was considered to represent a genotoxic response. Sodium chloride, a non-genotoxic non-carcinogen, was negative in both tissues as would be predicted. Although only two (1,2-DMH and DMN) out of five genotoxic carcinogens produced clearly positive results in the comet assay, the results obtained for o-anisidine and sodium arsenite in liver and stomach cells are consistent with the known mode of genotoxicity and tissue specificity exhibited by these carcinogens. In contrast, given the known genotoxic mode-of-action and target organ carcinogenicity of 2-AAF, it is unclear why this chemical failed to convincingly increase DNA migration in the liver. Thus, the results of the comet assay validation studies conducted in our laboratory were considered appropriate for five out of the six test chemicals. Copyright © 2015 Elsevier B.V. All rights reserved.
Martínez-Paz, Pedro; Morales, Mónica; Martínez-Guitarte, José Luis; Morcillo, Gloria
2013-12-12
Genotoxicity is one of the most important toxic endpoints in chemical toxicity testing and environmental risk assessment. The aim of this study was to evaluate the genotoxic potential of various environmental pollutants frequently found in aquatic environments and characterized by their endocrine disrupting activity. Monitoring of DNA damage was undertaken after in vivo exposures of the aquatic larvae of the midge Chironomus riparius, a model organism that represents an abundant and ecologically relevant macroinvertebrate, widely used in freshwater toxicology. DNA-induced damage, resulting in DNA fragmentation, was quantified by the comet assay after short (24 h) and long (96 h) exposures to different concentrations of the selected toxicants: bisphenol A (BPA), nonylphenol (NP), pentachlorophenol (PCP), tributyltin (TBT) and triclosan (TCS). All five compounds were found to have genotoxic activity as demonstrated by significant increases in all the comet parameters (%DNA in tail, tail length, tail moment and Olive tail moment) at all tested concentrations. Persistent exposure did not increase the extent of DNA damage, except for TCS at the highest concentration, but generally there was a reduction in DNA damage thought to be associated with the induction of the detoxification processes and repairing mechanisms. Comparative analysis showed differences in the genotoxic potential between the chemicals, as well as significant time and concentration-dependent variations, which most likely reflect differences in the ability to repair DNA damage under the different treatments. The present report demonstrates the sensitivity of the benthic larvae of C. riparius to these environmental genotoxins suggesting its potential as biomonitor organism in freshwater ecosystems. The results obtained about the DNA-damaging potential of these environmental pollutants reinforce the need for additional studies on the genotoxicity of endocrine active substances that, by linking genotoxic activity to other biological responses, could provide further understanding of adverse effects in aquatic environments. Copyright © 2013 Elsevier B.V. All rights reserved.
Canalejo, Antonio; Diaz-de-Alba, Margarita; Granado-Castro, M Dolores; Cordoba, Francisco; Espada-Bellido, Estrella; Galindo-Riaño, M Dolores; Torronteras, Rafael
2016-02-01
Cu, Pb, and As, which are among the most abundant metals in the aquatic environment, are also among the most health-threatened by causing diverse cellular injuries. The aim of this study was to assess and compare the potential early induction of genotoxic effects after waterborne Cu, Pb, and As exposure in European seabass, Dicentrarchus labrax, a commercial widely cultured fish, using the micronucleus (MN) assay in peripheral blood erythrocytes. Fish were exposed under laboratory conditions to nominal solutions ranging 0-10 mg/L for 24 and 96 h. Furthermore, actual metal ion concentrations were measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES) or differential pulse anodic stripping voltammetry (DPASV) in water and four fish tissues differentially related to environmental exposition and metal accumulation, i.e. the gills, liver, muscle, and brain. Dose-dependent increases of micronuclei (MNi) frequency were observed after these very short exposures; based on measured metal concentrations in water, the genotoxic effect ordered as Cu > As > Pb. Significant genotoxic effect at 0.009 mg/L Cu, 0.57 mg/L Pb, and 0.01 mg/L As was seen. For Cu and Pb these are only slightly higher, but for As it is notably lower than the USEPA criteria of maximum concentration to prevent acute toxicity in aquatic organisms. Furthermore, genotoxicity was differentially related to metal accumulation. MNi frequency correlated positively with the content of Pb in all the organs, with the content of As in liver and gills and only with the content of Cu in the brain. In conclusion, our findings raised environmental concerns because these depicted a genotoxic potential of Cu, Pb, and As after a very short exposure to low but environmentally relevant concentrations, too close to regulatory thresholds. In addition, the MN test in D. labrax could be considered an early biomarker of genotoxicity induced by these metals in fish.
Kirkland, David; Kasper, Peter; Martus, Hans-Jörg; Müller, Lutz; van Benthem, Jan; Madia, Federica; Corvi, Raffaella
2016-01-01
In 2008 we published recommendations on chemicals that would be appropriate to evaluate the sensitivity and specificity of new/modified mammalian cell genotoxicity tests, in particular to avoid misleading positive results. In light of new data it is appropriate to update these lists of chemicals. An expert panel was convened and has revised the recommended chemicals to fit the following different sets of characteristics: • Group 1: chemicals that should be detected as positive in in vitro mammalian cell genotoxicity tests. Chemicals in this group are all in vivo genotoxins at one or more endpoints, either due to DNA-reactive or non DNA-reactive mechanisms. Many are known carcinogens with a mutagenic mode of action, but a sub-class of probable aneugens has been introduced. • Group 2: chemicals that should give negative results in in vitro mammalian cell genotoxicity tests. Chemicals in this group are usually negative in vivo and non-DNA-reactive. They are either non-carcinogenic or rodent carcinogens with a non-mutagenic mode of action. • Group 3: chemicals that should give negative results in in vitro mammalian cell genotoxicity tests, but have been reported to induce gene mutations in mouse lymphoma cells, chromosomal aberrations or micronuclei, often at high concentrations or at high levels of cytotoxicity. Chemicals in this group are generally negative in vivo and negative in the Ames test. They are either non-carcinogenic or rodent carcinogens with an accepted non-mutagenic mode of action. This group contains comments as to any conditions that can be identified under which misleading positive results are likely to occur. This paper, therefore, updates these three recommended lists of chemicals and describes how these should be used for any test evaluation program. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
De Sibio, Maria Teresa; Luvizotto, Renata Azevedo Melo; Olimpio, Regiane Marques Castro; Corrêa, Camila Renata; Marino, Juliana; de Oliveira, Miriane; Conde, Sandro José; Ferreira, Ana Lúcia dos Anjos; Padovani, Carlos Roberto; Nogueira, Célia Regina
2013-01-01
This study was designed to determine the genotoxicity of a supraphysiological dose of triiodothyronine (T3) in both obese and calorie-restricted obese animals. Fifty male Wistar rats were randomly assigned to one of the two following groups: control (C; n = 10) and obese (OB; n = 40). The C group received standard food, whereas the OB group was fed a hypercaloric diet for 20 weeks. After this period, half of the OB animals (n = 20) were subjected to a 25%-calorie restriction of standard diet for 8 weeks forming thus a new group (OR), whereas the remaining OB animals were kept on the initial hypercaloric diet. During the following two weeks, 10 OR animals continued on the calorie restriction diet, whereas the remaining 10 rats of this group formed a new group (ORS) given a supraphysiological dose of T3 (25 µg/100 g body weight) along with the calorie restriction diet. Similarly, the remaining OB animals were divided into two groups, one that continued on the hypercaloric diet (OB, n = 10), and one that received the supraphysiological dose of T3 (25 µg/100 g body weight) along with the hypercaloric diet (OS, n = 10) for two weeks. The OB group showed weight gain, increased adiposity, insulin resistance, increased leptin levels and genotoxicity; T3 administration in OS animals led to an increase in genotoxicity and oxidative stress when compared with the OB group. The OR group showed weight loss and normalized levels of adiposity, insulin resistance, serum leptin and genotoxicity, thus having features similar to those of the C group. On the other hand, the ORS group, compared to OR animals, showed higher genotoxicity. Our results indicate that regardless of diet, a supraphysiological dose of T3 causes genotoxicity and potentiates oxidative stress.
De Sibio, Maria Teresa; Luvizotto, Renata Azevedo Melo; Olimpio, Regiane Marques Castro; Corrêa, Camila Renata; Marino, Juliana; de Oliveira, Miriane; Conde, Sandro José; Ferreira, Ana Lúcia dos Anjos; Padovani, Carlos Roberto; Nogueira, Célia Regina
2013-01-01
This study was designed to determine the genotoxicity of a supraphysiological dose of triiodothyronine (T3) in both obese and calorie-restricted obese animals. Fifty male Wistar rats were randomly assigned to one of the two following groups: control (C; n = 10) and obese (OB; n = 40). The C group received standard food, whereas the OB group was fed a hypercaloric diet for 20 weeks. After this period, half of the OB animals (n = 20) were subjected to a 25%-calorie restriction of standard diet for 8 weeks forming thus a new group (OR), whereas the remaining OB animals were kept on the initial hypercaloric diet. During the following two weeks, 10 OR animals continued on the calorie restriction diet, whereas the remaining 10 rats of this group formed a new group (ORS) given a supraphysiological dose of T3 (25 µg/100 g body weight) along with the calorie restriction diet. Similarly, the remaining OB animals were divided into two groups, one that continued on the hypercaloric diet (OB, n = 10), and one that received the supraphysiological dose of T3 (25 µg/100 g body weight) along with the hypercaloric diet (OS, n = 10) for two weeks. The OB group showed weight gain, increased adiposity, insulin resistance, increased leptin levels and genotoxicity; T3 administration in OS animals led to an increase in genotoxicity and oxidative stress when compared with the OB group. The OR group showed weight loss and normalized levels of adiposity, insulin resistance, serum leptin and genotoxicity, thus having features similar to those of the C group. On the other hand, the ORS group, compared to OR animals, showed higher genotoxicity. Our results indicate that regardless of diet, a supraphysiological dose of T3 causes genotoxicity and potentiates oxidative stress. PMID:23468891
Reus, Astrid A; Reisinger, Kerstin; Downs, Thomas R; Carr, Gregory J; Zeller, Andreas; Corvi, Raffaella; Krul, Cyrille A M; Pfuhler, Stefan
2013-11-01
Reconstructed 3D human epidermal skin models are being used increasingly for safety testing of chemicals. Based on EpiDerm™ tissues, an assay was developed in which the tissues were topically exposed to test chemicals for 3h followed by cell isolation and assessment of DNA damage using the comet assay. Inter-laboratory reproducibility of the 3D skin comet assay was initially demonstrated using two model genotoxic carcinogens, methyl methane sulfonate (MMS) and 4-nitroquinoline-n-oxide, and the results showed good concordance among three different laboratories and with in vivo data. In Phase 2 of the project, intra- and inter-laboratory reproducibility was investigated with five coded compounds with different genotoxicity liability tested at three different laboratories. For the genotoxic carcinogens MMS and N-ethyl-N-nitrosourea, all laboratories reported a dose-related and statistically significant increase (P < 0.05) in DNA damage in every experiment. For the genotoxic carcinogen, 2,4-diaminotoluene, the overall result from all laboratories showed a smaller, but significant genotoxic response (P < 0.05). For cyclohexanone (CHN) (non-genotoxic in vitro and in vivo, and non-carcinogenic), an increase compared to the solvent control acetone was observed only in one laboratory. However, the response was not dose related and CHN was judged negative overall, as was p-nitrophenol (p-NP) (genotoxic in vitro but not in vivo and non-carcinogenic), which was the only compound showing clear cytotoxic effects. For p-NP, significant DNA damage generally occurred only at doses that were substantially cytotoxic (>30% cell loss), and the overall response was comparable in all laboratories despite some differences in doses tested. The results of the collaborative study for the coded compounds were generally reproducible among the laboratories involved and intra-laboratory reproducibility was also good. These data indicate that the comet assay in EpiDerm™ skin models is a promising model for the safety assessment of compounds with a dermal route of exposure.
Comet assay evaluation of six chemicals of known genotoxic potential in rats
Hobbs, Cheryl A.; Recio, Leslie; Streicker, Michael; Boyle, Molly H.; Tanaka, Jin; Shiga, Atsushi; Witt, Kristine L.
2015-01-01
As a part of an International validation of the in vivo rat alkaline comet assay (comet assay) initiated by the Japanese Center for the Validation of Alternative Methods (JaCVAM) we examined six chemicals for potential to induce DNA damage: 2-acetylaminofluorene (2-AAF), N-nitrosodimethylamine (DMN), o-anisidine, 1,2-dimethylhydrazine dihydrochloride (1,2-DMH), sodium chloride, and sodium arsenite. DNA damage was evaluated in the liver and stomach of 7- to 9-week-old male Sprague Dawley rats. Of the five genotoxic carcinogens tested in our laboratory, DMN and 1,2-DMH were positive in the liver and negative in the stomach, 2-AAF and o-anisidine produced an equivocal result in liver and negative results in stomach, and sodium arsenite was negative in both liver and stomach. 1,2-DMH and DMN induced dose-related increases in hedgehogs in the same tissue (liver) that exhibited increased DNA migration. However, no cytotoxicity was indicated by the neutral diffusion assay (assessment of highly fragmented DNA) or histopathology in response to treatment with any of the tested chemicals. Therefore, the increased DNA damage resulting from exposure to DMN and 1,2-DMH was considered to represent a genotoxic response. Sodium chloride, a non-genotoxic non-carcinogen, was negative in both tissues as would be predicted. Although only two (1,2-DMH and DMN) out of five genotoxic carcinogens produced clearly positive results in the comet assay, the results obtained for o-anisidine and sodium arsenite in liver and stomach cells are consistent with the known mode of genotoxicity and tissue specificity exhibited by these carcinogens. In contrast, given the known genotoxic mode-of-action and target organ carcinogenicity of 2-AAF, it is unclear why this chemical failed to convincingly increase DNA migration in the liver. Thus, the results of the comet assay validation studies conducted in our laboratory were considered appropriate for five out of the six test chemicals. PMID:26212309
Yang, Fan; Zhang, Qianqian; Guo, Huarong; Zhang, Shicui
2010-10-01
Marine sediments are often a final sink for numerous anthropogenic contaminants and may impose serious effects on benthic organisms and ecosystem. An in vitro cell assay using a cell line derived from flounder gill (FG) cells, an in vitro comet assay in FG cells, and an in vitro zebrafish embryo assay were used to evaluate the in vitro cytotoxicity (measured by MTT reduction), genotoxicity and teratogenicity of crude sediment extracts of Li Cang (LC), Zhan Qiao (ZQ) and Olympic Sailing Center (OSC) from Qingdao coastal area. Sediments from the three sites displayed different cytotoxicity, genotoxicity and teratogenicity potencies; however, all three assays yielded similar LOECs (lowest observed effect concentration) for each site, suggesting that the assays were equally sensitive to and suitable for initial screening of the LOECs of marine sediments. The cytotoxicity, genotoxicity and teratogenicity for these three sampling sites were in the same order of LC>ZQ>OSC, indicating different degrees of contamination. Interestingly, trials with the three sediment extracts at the doses inducing a similar cytotoxicity as evaluated with MTT reduction did not produce similar genotoxicity and teratogenicity, with the genotoxic and teratogenic activities of LC and ZQ extracts being markedly higher than those of OSC sediments. These findings indicate that cytotoxicity does not form a fully equivalent toxicity index with that of genotoxicity and teratogenicity. Therefore, in order to assess the true toxic potential of marine sediments, all three assays should be performed. Analysis of 16 EPA (US Environmental Protection Agency) priority PAHs in these three sediment samples showed a clear correlation between PAH concentrations and sediment toxicities, with a higher PAH content corresponding to higher toxicity although PAHs are surely not the only cause. Copyright © 2010 Elsevier Ltd. All rights reserved.
George, Jiya M; Magogotya, Millicent; Vetten, Melissa A; Buys, Antoinette V; Gulumian, Mary
2017-03-01
The suitability of 4 in vitro assays, commonly used for mutagenicity and genotoxicity assessment, was investigated in relation to treatment with 14 nm citrate-stabilized gold nanoparticles (AuNPs). Specifically, the Ames test was conducted without metabolic activation, where no mutagenic effects were observed. High resolution transmission electron microscopy and Cytoviva dark-field image analysis showed that AuNPs did not enter the bacterial cells, thus confirming the unreliability of the Ames test for nanoparticle mutagenicity studies. In addition, the Chinese hamster ovary (CHO) cell line was used for Comet, Chromosome aberration and Micronucleus assays. CHO cells were treated with AuNPs for 20 h at 37 °C. Cytotoxicity was not detected by cell impedance studies even though AuNP uptake was confirmed using Cytoviva image analysis. The DNA damage was statistically significant in treated cells when assessed by the Comet assay. However, minimal and nonstatistically significant chromosomal DNA damage was observed using the chromosome aberration and micronucleus assays. In this study, we showed that false positive results obtained with Comet assay may have been due to the possibility of direct contact between the residual, intracellular AuNPs and DNA during the assay procedure. Therefore, the chromosome aberration and micronucleus assays are better suited to assess the genotoxic effects of nanoparticles due to low probability of such direct contact occurring. Genotoxic effect of 14 and 20 nm citrate-stabilized, as well as, 14 nm PCOOH AuNPs were also investigated using chromosome aberration and micronucleus assays. Based on our acceptance criteria for a positive genotoxic response, none of the AuNPs were found to be genotoxic in either of these assays. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Pfuhler, Stefan
2013-01-01
Reconstructed 3D human epidermal skin models are being used increasingly for safety testing of chemicals. Based on EpiDerm™ tissues, an assay was developed in which the tissues were topically exposed to test chemicals for 3h followed by cell isolation and assessment of DNA damage using the comet assay. Inter-laboratory reproducibility of the 3D skin comet assay was initially demonstrated using two model genotoxic carcinogens, methyl methane sulfonate (MMS) and 4-nitroquinoline-n-oxide, and the results showed good concordance among three different laboratories and with in vivo data. In Phase 2 of the project, intra- and inter-laboratory reproducibility was investigated with five coded compounds with different genotoxicity liability tested at three different laboratories. For the genotoxic carcinogens MMS and N-ethyl-N-nitrosourea, all laboratories reported a dose-related and statistically significant increase (P < 0.05) in DNA damage in every experiment. For the genotoxic carcinogen, 2,4-diaminotoluene, the overall result from all laboratories showed a smaller, but significant genotoxic response (P < 0.05). For cyclohexanone (CHN) (non-genotoxic in vitro and in vivo, and non-carcinogenic), an increase compared to the solvent control acetone was observed only in one laboratory. However, the response was not dose related and CHN was judged negative overall, as was p-nitrophenol (p-NP) (genotoxic in vitro but not in vivo and non-carcinogenic), which was the only compound showing clear cytotoxic effects. For p-NP, significant DNA damage generally occurred only at doses that were substantially cytotoxic (>30% cell loss), and the overall response was comparable in all laboratories despite some differences in doses tested. The results of the collaborative study for the coded compounds were generally reproducible among the laboratories involved and intra-laboratory reproducibility was also good. These data indicate that the comet assay in EpiDerm™ skin models is a promising model for the safety assessment of compounds with a dermal route of exposure. PMID:24150594
GENOTOXICITY RISK ASSESSMENT: A PROPOSED CLASSIFICATION STRATEGY
Recent advances in genetic toxicity (mutagenicity) testing methods and in approaches to performing risk assessment are prompting a renewed effort to harmonize genotoxicity risk assessment across the world. The US Environmental Protection Agency (EPA) first published Guidelines fo...
Genotoxicity Biomarkers Associated with Exposure to Traffic And Near-Road Atmospheres: A Review
Genotoxicity Biomarkers Associated with Exposure to Traffic And Near-Road Atmospheres: A Review Diesel and gasoline emissions, which are the primary components of traffic exhaust, are known or possible human carcinogens, re...
Moesin Is a Biomarker for the Assessment of Genotoxic Carcinogens in Mouse Lymphoma
Lee, Yoen Jung; Choi, In-Kwon; Sheen, Yhun Yhong; Park, Sue Nie; Kwon, Ho Jeong
2012-01-01
1,2-Dibromoethane and glycidol are well known genotoxic carcinogens, which have been widely used in industry. To identify a specific biomarker for these carcinogens in cells, the cellular proteome of L5178Y mouse lymphoma cells treated with these compounds was analyzed by 2-dimensional gel electrophoresis (2-DE) and MALDI-TOF mass spectrometry (MS). Of 50 protein spots showing a greater than 1.5-fold increase or decrease in intensity compared to control cells on a 2-D gel, we focused on the candidate biomarker moesin. Western analysis using monoclonal rabbit anti-moesin confirmed the identity of the protein and its increased level of expression upon exposure to the carcinogenic compounds. Moesin expression also increased in cells treated with six additional genotoxic carcinogens, verifying that moesin could serve as a biomarker to monitor phenotypic change upon exposure to genotoxic carcinogens in L5178Y mouse lymphoma cells. PMID:22358511
In vitro genotoxic effects of four Helichrysum species in human lymphocytes cultures.
Erolu, Erhan H; Hamzaolu, Ergin; Aksoy, Ahmet; Budak, Ümit; Özkul, Yusuf
2010-01-01
Helichrysum sanguineum, Helichrysum pamphylicum, Helichrysum orientale, Helichrysum noeanum (Asteraceae) are medicinal plants. For centuries, they have been used as tea in Turkey because of their medicinal properties. So far no scientific evidence has been found in a literature survey regarding the genotoxic effects of these plants. This work evaluated the genotoxic effects on human lymphocyte cultures induced by methanol extracts of these plants, assayed in different concentrations (0.01, 0.05, 0.1, 0.5 and 1 mg/mL). According to the results, Helichrysum noeanum, Helichrysum pamphylicum and Helichrysum sanguineum induced the formation of micronuclei and decreased the mitotic and replication indexes. Helichrysum orientale did not affect these parameters, whereas Helichrysum noeanum, Helichrysum pamphylicum and Helichrysum sanguineum were clearly genotoxic. They should therefore not be used freely in alternative medicine, although their antiproliferative activity may suggest antimitotic and anticarcinogenic properties. Helichrysum orientale could be used in alternative medicine.
Moesin is a biomarker for the assessment of genotoxic carcinogens in mouse lymphoma.
Lee, Yoen Jung; Choi, In-Kwon; Sheen, Yhun Yhong; Park, Sue Nie; Kwon, Ho Jeong
2012-02-01
1,2-Dibromoethane and glycidol are well known genotoxic carcinogens, which have been widely used in industry. To identify a specific biomarker for these carcinogens in cells, the cellular proteome of L5178Y mouse lymphoma cells treated with these compounds was analyzed by 2-dimensional gel electrophoresis (2-DE) and MALDI-TOF mass spectrometry (MS). Of 50 protein spots showing a greater than 1.5-fold increase or decrease in intensity compared to control cells on a 2-D gel, we focused on the candidate biomarker moesin. Western analysis using monoclonal rabbit anti-moesin confirmed the identity of the protein and its increased level of expression upon exposure to the carcinogenic compounds. Moesin expression also increased in cells treated with six additional genotoxic carcinogens, verifying that moesin could serve as a biomarker to monitor phenotypic change upon exposure to genotoxic carcinogens in L5178Y mouse lymphoma cells.
Jacociunas, Laura Vicedo; Dihl, Rafael Rodrigues; Lehmann, Mauricio; de Barros Falcão Ferraz, Alexandre; Richter, Marc François; da Silva, Juliana; de Andrade, Heloísa Helena Rodrigues
2014-01-01
The genotoxicity of bloom head (BHE) and leaf (LE) extracts from artichoke (Cynara scolymus L.), and their ability to modulate the mutagenicity and recombinogenicity of two alkylating agents (ethyl methanesulfonate – EMS and mitomycin C – MMC) and the intercalating agent bleomycin (BLM), were examined using the somatic mutation and recombination test (SMART) in Drosophila melanogaster. Neither the mutagenicity nor the recombinogenicity of BLM or MMC was modified by co- or post-treatment with BHE or LE. In contrast, co-treatment with BHE significantly enhanced the EMS-induced genotoxicity involving mutagenic and/or recombinant events. Co-treatment with LE did not alter the genotoxicity of EMS whereas post-treatment with the highest dose of LE significantly increased this genotoxicity. This enhancement included a synergistic increase restricted to somatic recombination. These results show that artichoke extracts promote homologous recombination in proliferative cells of D. melanogaster. PMID:24688296
Jacociunas, Laura Vicedo; Dihl, Rafael Rodrigues; Lehmann, Mauricio; de Barros Falcão Ferraz, Alexandre; Richter, Marc François; da Silva, Juliana; de Andrade, Heloísa Helena Rodrigues
2014-03-01
The genotoxicity of bloom head (BHE) and leaf (LE) extracts from artichoke (Cynara scolymus L.), and their ability to modulate the mutagenicity and recombinogenicity of two alkylating agents (ethyl methanesulfonate - EMS and mitomycin C - MMC) and the intercalating agent bleomycin (BLM), were examined using the somatic mutation and recombination test (SMART) in Drosophila melanogaster. Neither the mutagenicity nor the recombinogenicity of BLM or MMC was modified by co- or post-treatment with BHE or LE. In contrast, co-treatment with BHE significantly enhanced the EMS-induced genotoxicity involving mutagenic and/or recombinant events. Co-treatment with LE did not alter the genotoxicity of EMS whereas post-treatment with the highest dose of LE significantly increased this genotoxicity. This enhancement included a synergistic increase restricted to somatic recombination. These results show that artichoke extracts promote homologous recombination in proliferative cells of D. melanogaster.
Akbaba, Giray Buğra; Türkez, Hasan
The aim of this study was to investigate the genotoxicity of aluminum oxide (Al 2 O 3 ), β-tricalcium phosphate (β-TCP) (Ca 3 (PO 4 ) 2 ), and zinc oxide (ZnO) nanoparticles (NPs) that were 4.175, 9.058, and 19.8 nm sized, respectively, on human peripheral blood lymphocytes using micronucleus (MN) and chromosome aberration (CA) techniques. Aluminum oxide and β-TCP NPs did not show genotoxic effects on human peripheral blood cultures in vitro, even at the highest concentrations; therefore, these materials may be suitable for use as biocompatible materials. It was observed that, even at a very low dose (≥12.5 ppm), ZnO NPs had led to genotoxicity. In addition, at high concentrations (500 ppm and above), ZnO NPs caused mortality of lymphocytes. For these reasons, it was concluded that ZnO NPs are not appropriate for using as a biocompatible biomaterial.
Environmental genotoxicity: Probing the underlying mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shugart, L.; Theodorakis, C.
1993-12-31
Environmental pollution is a complex issue because of the diversity of anthropogenic agents, both chemical and physical, that have been detected and catalogued. The consequences to biota from exposure to genotoxic agents present an additional problem because of the potential for these agents to produce adverse change at the cellular and organismal levels. Past studies in genetic toxicology at the Oak Ridge National Laboratory have focused on structural damage to the DNA of environmental species that may occur after exposure to genotoxic agents and the use of this information to document exposure and to monitor remediation. In an effort tomore » predict effects at the population, community and ecosystem levels, current studies in genetic ecotoxicology are attempting to characterize the biological mechanisms at the gene level that regulate and limit the response of an individual organism to genotoxic factors in their environment.« less
Landsiedel, Robert; Ma-Hock, Lan; Van Ravenzwaay, Ben; Schulz, Markus; Wiench, Karin; Champ, Samantha; Schulte, Stefan; Wohlleben, Wendel; Oesch, Franz
2010-12-01
Titanium dioxide and zinc oxide nanomaterials, used as UV protecting agents in sunscreens, were investigated for their potential genotoxicity in in vitro and in vivo test systems. Since standard OECD test methods are designed for soluble materials and genotoxicity testing for nanomaterials is still under revision, a battery of standard tests was used, covering different endpoints. Additionally, a procedure to disperse the nanomaterials in the test media and careful characterization of the dispersed test item was added to the testing methods. No genotoxicity was observed in vitro (Ames' Salmonella gene mutation test and V79 micronucleus chromosome mutation test) or in vivo (mouse bone marrow micronucleus test and Comet DNA damage assay in lung cells from rats exposed by inhalation). These results add to the still limited data base on genotoxicity test results with nanomaterials and provide congruent results of a battery of standard OECD test methods applied to nanomaterials.
Erturk, Filiz Aygun; Nardemir, Gokce; Hilal, A Y; Arslan, Esra; Agar, Guleray
2015-11-01
In this research, we aimed to determine genotoxic effects of boron (B) and zinc (Zn) on Zea mays by using total soluble protein content and random amplification of polymorphic DNA (RAPD) analyses. For the RAPD analysis, 16 RAPD primers were found to produce unique polymorphic band profiles on treated maize seedlings. With increased Zn and B concentrations, increased polymorphism rate was observed, while genomic template stability and total soluble protein content decreased. The treatment with Zn was more effective than that of B groups on the levels of total proteins. The obtained results from this study revealed that the total soluble protein levels and RAPD profiles were performed as endpoints of genotoxicity and these analyses can offer useful biomarker assays for the evaluation of genotoxic effects on Zn and B polluted plants. © The Author(s) 2013.
Genotoxicity of metal nanoparticles.
Xie, Hong; Mason, Michael M; Wise, John Pierce
2011-01-01
Nanotechnology is currently used in industry, medicine, and military applications, as well as in more than 300 commercial products. Yet, the same properties that make these particles exciting for technology also make them daunting public health concerns because their toxicity is unknown and relatively unexplored. Increased attention is being placed on the study of metal particle genotoxicity; however, a lot of unknowns remain about their effects and the mechanisms. In this article, we highlight some metal and metal oxide nanoparticles of interest and discuss the current in vivo and in vitro studies of genotoxic effects. Many metal nanoparticles were found to cause chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations. Inconsistencies are found in the literature, however, thus drawing conclusions is difficult due to a variety of factors. Therefore, the areas requiring further attention are highlighted and recommendations to improve our understanding of the genotoxic potential are addressed.
Boriollo, Marcelo Fabiano Gomes; Souza, Luiz Silva; Resende, Marielly Reis; Silva, Thaísla Andrielle da; Oliveira, Nelma de Mello Silva; Resck, Maria Cristina Costa; Dias, Carlos Tadeu dos Santos; Fiorini, João Evangelista
2014-04-02
This research evaluated the genotoxicity of oil and tincture of H. annuus L. seeds using the micronucleus assay in bone marrow of mice. The interaction between these preparations and the genotoxic effects of doxorubicin (DXR) was also analysed (antigenotoxicity test). Experimental groups were evaluated at 24-48 h post treatment with N-Nitroso-N-ethylurea (positive control - NEU), DXR (chemotherapeutic), NaCl (negative control), a sunflower tincture (THALS) and two sources of sunflower oils (POHALS and FOHALS). Antigenotoxic assays were carried out using the sunflower tincture and oils separately and in combination with NUE or DXR. For THALS, analysis of the MNPCEs showed no significant differences between treatment doses (250-2,000 mg.Kg-1) and NaCl. A significant reduction in MNPCE was observed when THALS (2,000 mg.Kg-1) was administered in combination with DXR (5 mg.Kg-1). For POHALS or FOHALS, analysis of the MNPCEs also showed no significant differences between treatment doses (250-2,000 mg.Kg-1) and NaCl. However, the combination DXR + POHALS (2,000 mg.Kg-1) or DXR + FOHALS (2,000 mg.Kg-1) not contributed to the MNPCEs reduction. This research suggests absence of genotoxicity of THALS, dose-, time- and sex-independent, and its combination with DXR can reduce the genotoxic effects of DXR. POHALS and FOHALS also showed absence of genotoxicity, but their association with DXR showed no antigenotoxic effects.
2014-01-01
Background This research evaluated the genotoxicity of oil and tincture of H. annuus L. seeds using the micronucleus assay in bone marrow of mice. The interaction between these preparations and the genotoxic effects of doxorubicin (DXR) was also analysed (antigenotoxicity test). Methods Experimental groups were evaluated at 24-48 h post treatment with N-Nitroso-N-ethylurea (positive control – NEU), DXR (chemotherapeutic), NaCl (negative control), a sunflower tincture (THALS) and two sources of sunflower oils (POHALS and FOHALS). Antigenotoxic assays were carried out using the sunflower tincture and oils separately and in combination with NUE or DXR. Results For THALS, analysis of the MNPCEs showed no significant differences between treatment doses (250–2,000 mg.Kg-1) and NaCl. A significant reduction in MNPCE was observed when THALS (2,000 mg.Kg-1) was administered in combination with DXR (5 mg.Kg-1). For POHALS or FOHALS, analysis of the MNPCEs also showed no significant differences between treatment doses (250–2,000 mg.Kg-1) and NaCl. However, the combination DXR + POHALS (2,000 mg.Kg-1) or DXR + FOHALS (2,000 mg.Kg-1) not contributed to the MNPCEs reduction. Conclusions This research suggests absence of genotoxicity of THALS, dose-, time- and sex-independent, and its combination with DXR can reduce the genotoxic effects of DXR. POHALS and FOHALS also showed absence of genotoxicity, but their association with DXR showed no antigenotoxic effects. PMID:24694203
Conventional and whitening toothpastes: cytotoxicity, genotoxicity and effect on the enamel surface.
Camargo, Samira Esteves Afonso; Jóias, Renata Pilli; Santana-Melo, Gabriela Fátima; Ferreira, Lara Tolentino; El Achkar, Vivian Narana Ribeiro; Rode, Sigmar de Mello
2014-12-01
To evaluate the cytotoxicity and genotoxicity of whitening and common toothpastes, and the surface roughness of tooth enamel submitted to brushing with both toothpastes. Samples of whitening toothpastes [Colgate Whitening (CW) and Oral-B Whitening (OBW)] and regular (non-whitening) toothpastes (Colgate and Oral-B) were extracted in culture medium. Gingival human fibroblasts (FMM-1) were placed in contact with different dilutions of culture media that had been previously exposed to such materials, and the cytotoxicity was evaluated using the MTT assay. The genotoxicity was assessed by the micronucleus formation assay in Chinese hamster fibroblasts (V79). The cell survival rate and micronuclei number were assessed before and after exposure to the toothpaste extracts. For the surface roughness evaluation, 20 bovine tooth specimens, divided into four groups according to toothpastes, were submitted to 10,000 brushing cycles. The results were analyzed using the Mann-Whitney U and two-way ANOVA tests (P < 0.05). MTT assay showed that Colgate was significantly less cytotoxic than CW, Oral-B and OBW at all dilutions (P < 0.01). CW was the most cytotoxic toothpaste (P < 0.01). The whitening toothpastes showed the highest numbers of micronuclei compared to the untreated control (UC) (P < 0.01). Colgate and Oral-B toothpastes were not genotoxic compared to UC (P = 0.326). The OBW toothpaste was statistically significantly abrasive to the enamel surface (P < 0.01). The whitening toothpastes and Oral-B were cytotoxic to the cells. The whitening toothpastes were more genotoxic to cells in vitro than the common toothpastes, and genotoxicity was more pronounced in the OBW toothpaste.
Atlı Şekeroğlu, Zülal; Kefelioğlu, Haluk; Kontaş Yedier, Seval; Şekeroğlu, Vedat; Delmecioğlu, Berrin
2017-03-01
There has been considerable debate about the relationship between epilepsy and cancer. Oxcarbazepine (OXC) is used for treating certain types of seizures in patients with epilepsy. There have been no detailed investigations about genotoxicity of OXC and its metabolites. Therefore, the aim of this study is to investigate the cytotoxic and genotoxic effects of OXC and its metabolites on cultured human lymphocytes. The cytotoxicity and genotoxicity of OXC on human peripheral blood lymphocytes were examined in vitro by sister chromatid exchange (SCE), chromosomal aberration (CA) and micronucleus (MN) tests. Cultures were treated with 125, 250 and 500 μg/ml of OXC in the presence (3 h treatment) and absence (24 h and 48 h treatment) of a metabolic activator (S9 mix). Dimethyl sulfoxide (DMSO) was used as a solvent control. OXC showed cytotoxic activities due to significant decreases in mitotic index (MI), proliferation index (PI) and nuclear division index (NDI) in the absence of S9 mix when compared with solvent control. Metabolites of OXC also significantly reduced MI and PI in cultures with S9 mix. OXC significantly increased the CAs, aberrant cells, SCE and MN values in the presence and absence of S9 mix. Our results indicated that both OXC and its metabolites have cytotoxic, cytostatic and genotoxic potential on human peripheral blood lymphocyte cultures under the experimental conditions. Further studies are necessary to elucidate the relationship between cytotoxic, cytostatic and genotoxic effects, and to make a possible risk assessment in patients receiving therapy with this drug.
Cross-Platform Toxicogenomics for the Prediction of Non-Genotoxic Hepatocarcinogenesis in Rat
Metzger, Ute; Templin, Markus F.; Plummer, Simon; Ellinger-Ziegelbauer, Heidrun; Zell, Andreas
2014-01-01
In the area of omics profiling in toxicology, i.e. toxicogenomics, characteristic molecular profiles have previously been incorporated into prediction models for early assessment of a carcinogenic potential and mechanism-based classification of compounds. Traditionally, the biomarker signatures used for model construction were derived from individual high-throughput techniques, such as microarrays designed for monitoring global mRNA expression. In this study, we built predictive models by integrating omics data across complementary microarray platforms and introduced new concepts for modeling of pathway alterations and molecular interactions between multiple biological layers. We trained and evaluated diverse machine learning-based models, differing in the incorporated features and learning algorithms on a cross-omics dataset encompassing mRNA, miRNA, and protein expression profiles obtained from rat liver samples treated with a heterogeneous set of substances. Most of these compounds could be unambiguously classified as genotoxic carcinogens, non-genotoxic carcinogens, or non-hepatocarcinogens based on evidence from published studies. Since mixed characteristics were reported for the compounds Cyproterone acetate, Thioacetamide, and Wy-14643, we reclassified these compounds as either genotoxic or non-genotoxic carcinogens based on their molecular profiles. Evaluating our toxicogenomics models in a repeated external cross-validation procedure, we demonstrated that the prediction accuracy of our models could be increased by joining the biomarker signatures across multiple biological layers and by adding complex features derived from cross-platform integration of the omics data. Furthermore, we found that adding these features resulted in a better separation of the compound classes and a more confident reclassification of the three undefined compounds as non-genotoxic carcinogens. PMID:24830643
Thinner inhalation effects on oxidative stress and DNA repair in a rat model of abuse.
Martínez-Alfaro, Minerva; Cárabez-Trejo, Alfonso; Gallegos-Corona, Marco-Antonio; Pedraza-Aboytes, Gustavo; Hernández-Chan, Nancy Georgina; Leo-Amador, Guillermo Enrique
2010-04-01
Humans can come into contact with thinner by occupational exposure or by intentional inhalation abuse. Numerous studies of workers for genotoxic effects of thinner exposure have yielded conflicting results, perhaps because co-exposure to variable other compounds cannot be avoided in workplace exposure studies. In contrast, there is no data concerning the genotoxic effects of intentional inhalation abuse. The aim of this project was to examine the genotoxic effects of thinner inhalation in an animal model of thinner abuse (rats exposed to 3000 ppm toluene, a high solvent concentration over a very short, 15 min time period, twice a day for 6 weeks). The data presented here provides evidence that thinner inhalation in our experimental conditions is able to induce weight loss, lung abnormalities and oxidative stress. This oxidative stress induces oxidative DNA damage that is not a characteristic feature of genotoxic damage. No significant difference in DNA damage and DNA repair (biomarkers of genotoxicity) in lymphocytes from thinner-treated and control rats was found. Lead treatment was used as a positive control in these assays. Finally, bone marrow was evaluated as a biomarker of cellular alteration associated with thinner inhalation. The observed absence of hemopoietic and genetic toxicity could be explained in part by the absence of benzene, the only carcinogenic component of thinner; however, benzene is no longer a common component of thinner. In conclusion, thinner did not cause genotoxic effects in an experimental model of intentional abuse despite the fact that thinner inhalation induces oxidative stress. (c) 2009 John Wiley & Sons, Ltd.
Johnson, B. Thomas
1992-01-01
A new short-term in vitro genotoxicity assay with marine bioluminescent bacteria was evaluated for sensitivity and cost. Known under the trade name of Mutatox™, this assay is a simple and rapid screening tool that detects DNA-damaging substances (genotoxins) by measuring light output from an isolated dark mutant strain of the luminescent bacterium Photobacterium phosphoreum. A positive response indicates the ability of the test chemical to restore the luminescent state in the dark mutant strain; the degree of light increase indicates the relative genotoxicity of the sample. In this study, the Mutatox assay with rat hepatic fractions (S9) as an exogenous metabolic activation system detected genotoxic activity with known progenotoxins: 2-acetamidofluorene, aflatoxin B1, 2-aminoanthracene, 2-aminofluorene, 2-aminonaphthalene, benzo[a]pyrene, 3-methyl-cholanthrene, and pyrene. Each chemical clearly demonstrated a dose response between 5.0 and 0.6 μg per tube. Known nongenotoxic controls carbofuran, di-2-ethylhexyl phthalate, malathion, simazine, and permethrin showed no genotoxic responses. The optimum assay conditions were determined to be rat S9 concentration of 0.4 mg/ml, preincubation at 37°C for 30 min, and 18 h incubation at 23°C. Genotoxicity data were obtained in <24 h. The Mutatox assay compared favorably in sensitivity with the Ames test; it was easier and more rapid to perform and, as a result, cost less. The sensitivity, specificity, and predictive value suggested that the Mutatox assay could be a valuable screening tool to monitor complex environmental samples for genotoxins.
Martínez-Valdivieso, Damián; Font, Rafael; Fernández-Bedmar, Zahira; Merinas-Amo, Tania; Gómez, Pedro; Alonso-Moraga, Ángeles
2017-01-01
Zucchini (Cucurbita pepo subsp. pepo) is a seasonal vegetable with high nutritional and medical values. Many useful properties of this fruit are attributed to bioactive compounds. Zucchini fruits (“Yellow” and “Light Green” varieties) and four distinctive components (lutein, β-carotene, zeaxanthin and dehydroascorbic acid) were selected. Firstly, the lutein, β-carotene, zeaxanthin and dehydroascorbic acid contents were determined in these fruits. Then, in order to evaluate the safety and suitability of their use, different assays were carried out: (i) genotoxicity and anti-genotoxicity tests to determine the safety and DNA-protection against hydrogen peroxide; (ii) cytotoxicity; and (iii) DNA fragmentation and Annexin V/PI (Propidium Iodide) assays to evaluate the pro-apoptotic effect. Results showed that: (i) all the substances were non-genotoxic; (ii) all the substances were anti-genotoxic except the highest concentration of lutein; (iii) “Yellow” zucchini epicarp and mesocarp exhibited the highest cytotoxic activity (IC50 > 0.1 mg/mL and 0.2 mg/mL, respectively); and (iv) “Light Green” zucchini skin induced internucleosomal DNA fragmentation, β-carotene being the possible molecule responsible for its pro-apoptotic activity. To sum up, zucchini fruit could play a positive role in human health and nutrition due to this fruit and its components were safe, able to inhibit significantly the H2O2-induced damage and exhibit anti-proliferative and pro-apoptotic activities toward HL60 (human promyelocytic leukemia cells) tumor cells. The information generated from this research should be considered when selecting potential accessions for breeding program purposes. PMID:28708122
Martínez-Valdivieso, Damián; Font, Rafael; Fernández-Bedmar, Zahira; Merinas-Amo, Tania; Gómez, Pedro; Alonso-Moraga, Ángeles; Del Río-Celestino, Mercedes
2017-07-14
Zucchini ( Cucurbita pepo subsp. pepo ) is a seasonal vegetable with high nutritional and medical values. Many useful properties of this fruit are attributed to bioactive compounds. Zucchini fruits ("Yellow" and "Light Green" varieties) and four distinctive components (lutein, β-carotene, zeaxanthin and dehydroascorbic acid) were selected. Firstly, the lutein, β-carotene, zeaxanthin and dehydroascorbic acid contents were determined in these fruits. Then, in order to evaluate the safety and suitability of their use, different assays were carried out: (i) genotoxicity and anti-genotoxicity tests to determine the safety and DNA-protection against hydrogen peroxide; (ii) cytotoxicity; and (iii) DNA fragmentation and Annexin V/PI (Propidium Iodide) assays to evaluate the pro-apoptotic effect. Results showed that: (i) all the substances were non-genotoxic; (ii) all the substances were anti-genotoxic except the highest concentration of lutein; (iii) "Yellow" zucchini epicarp and mesocarp exhibited the highest cytotoxic activity (IC 50 > 0.1 mg/mL and 0.2 mg/mL, respectively); and (iv) "Light Green" zucchini skin induced internucleosomal DNA fragmentation, β-carotene being the possible molecule responsible for its pro-apoptotic activity. To sum up, zucchini fruit could play a positive role in human health and nutrition due to this fruit and its components were safe, able to inhibit significantly the H₂O₂-induced damage and exhibit anti-proliferative and pro-apoptotic activities toward HL60 (human promyelocytic leukemia cells) tumor cells. The information generated from this research should be considered when selecting potential accessions for breeding program purposes.
Guruprasad, Yadavalli; Jose, Maji; Saxena, Kartikay; K, Deepa; Prabhu, Vishnudas
2014-01-01
Background: Oral cancer is one of the most debilitating diseases afflicting mankind. Consumption of tobacco in various forms constitutes one of the most important etiological factors in initiation of oral cancer. When the focus of today’s research is to determine early genotoxic changes in human cells, micronucleus (MN) assay provides a simple, yet reliable indicator of genotoxic damage. Aims and Objectives: To identify and quantify micronuclei in the exfoliated cells of oral mucosa in individuals with different tobacco related habits and control group, to compare the genotoxicity of different tobacco related habits between each group and also with that of control group. Patients and Methods: In the present study buccal smears of 135 individuals with different tobacco related habits & buccal smears of 45 age and sex matched controls were obtained, stained using Giemsa stain and then observed under 100X magnification in order to identify and quantify micronuclei in the exfoliated cells of oral mucosa. Results: The mean Micronucleus (MN) count in individuals having smoking habit were 3.11 while the count was 0.50, 2.13, and 1.67 in normal control, smoking with beetle quid and smokeless tobacco habit respectively. MN count in smokers group was 2.6 times more compared to normal controls. MN count was more even in other groups when compared to normal control but to a lesser extent. Conclusion: From our study we concluded that tobacco in any form is genotoxic especially smokers are of higher risk and micronucleus assay can be used as a simple yet reliable marker for genotoxic evaluation. PMID:24995238
NASA Astrophysics Data System (ADS)
Liu, Yanping; Xia, Qiyue; Liu, Ying; Zhang, Shuyang; Cheng, Feng; Zhong, Zhihui; Wang, Li; Li, Hongxia; Xiao, Kai
2014-10-01
Magnetic iron oxide nanoparticles (IONPs) have been widely used for various biomedical applications such as magnetic resonance imaging and drug delivery. However, their potential toxic effects, including genotoxicity, need to be thoroughly understood. In the present study, the genotoxicity of IONPs with different particle sizes (10, 30 nm) and surface coatings (PEG, PEI) were assessed using three standard genotoxicity assays, the Salmonella typhimurium reverse mutation assay (Ames test), the in vitro mammalian chromosome aberration test, and the in vivo micronucleus assay. In the Ames test, SMG-10 (PEG coating, 10 nm) showed a positive mutagenic response in all the five test bacterial strains with and without metabolic activation, whereas SEI-10 (PEI coating, 10 nm) showed no mutagenesis in all tester strains regardless of metabolic activation. SMG-30 (PEG coating, 30 nm) was not mutagenic in the absence of metabolic activation, and became mutagenic in the presence of metabolic activation. In the chromosomal aberration test, no increase in the incidence of chromosomal aberrations was observed for all three IONPs. In the in vivo micronucleus test, there was no evidence of increased micronuclei frequencies for all three IONPs, indicating that they were not clastogenic in vivo. Taken together, our results demonstrated that IONPs with PEG coating exhibited mutagenic activity without chromosomal and clastogenic abnormalities, and smaller IONPs (SMG-10) had stronger mutagenic potential than larger ones (SMG-30); whereas, IONPs with SEI coating (SEI-10) were not genotoxic in all three standard genotoxicity assays. This suggests that the mutagenicity of IONPs depends on their particle size and surface coating.
METHYLATED TRIVALENT ARSENIC SPECIES ARE GENOTOXIC
ABSTRACT
The genotoxic effects of arsenic compounds are generally believed to result from other than direct interacton with DNA. The reactivties of methyloxarsine (MAsIII) and iododimethylarsine (DMAsIII), two methylated trivalent arsenicals, toward supercoiled X174 RFI ...
Arsenic Is A Genotoxic Carcinogen
Arsenic is a recognized human carcinogen; however, there is controversy over whether or not it should be considered a genotoxic carcinogen. Many possible modes of action have been proposed on how arsenic induces cancer, including inhibiting DNA repair, altering methylation patter...
METABOLISM AND GENOTOXICITY OF 1-NITROPYRENE
1-Nitropyrene (NP), a nitrated polycyclic aromatic hydrocarbon and a potent bacterial mutagen, has been identified in combustion emissions and may contribute to the burden of genotoxicity associated with air pollution. NP undergoes rapid metabolism by rat hepatic subcellular frac...
Dieter, H H; Mückter, H
2007-03-01
More than 2500 chemically defined substances are approved as drugs in Germany. Unlike agricultural pesticides, these biologically active structures are not used in open environmental compartments and therefore their environmental toxicological data base is not nearly as complete. Nevertheless, some of them become environmental contaminants after their intended use. Therefore, from the viewpoint of environmental health protection, there are gaps in their health-related environmental risk assessment. Organic trace compounds that lack an adequate toxicological database, and their mixtures, in drinking water can be safely regulated and provisionally assessed by combining the "similar joint action" addition rule with the recommendation of the Federal Environment Agency of March 2003 "Assessing the presence of substances in drinking water without (adequate) toxicological database from the health point of view". The general precautionary value (Gesundheitlicher Orientierungswert GOW1=0.10 microg/l), which is a recommendation for weakly to not genotoxic compounds, re presents a workable compromise between preventive health protection, water management considerations and aesthetic quality claims (purity). Compliance with this value in the long term will only be possible if the chemical and biological degradation of pharmaceuticals and their metabolites in waste water and waste water treatment plants is effectively improved. Alternatively, there is the risk of drinking water degenerating into a sink for highly mobile, polar and persistent compounds. Their elimination at a stage as late as technical drinking water treatment would be neither close to the initial cause nor justifiable in terms of technical effectiveness. The risk assessment of their byproducts would give rise to further uncertainties. Possible conflicts with the therapeutic quality must be solved by developing substitute products which are environmentally sound.
THE GENOTOXICITY OF AMBIENT OUTDOOR AIR, A REVIEW: SALMONELLA MUTAGENICITY
The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity
Abstract
Mutagens in urban air pollution come from anthropogenic sources (especially combustion sources) and are products of airborne chemical reactions. Bacterial mutation tests have been used ...
IS THE DOSE-RESPONSE LINEAR OR NONLINEAR FOR GENOTOXIC EFFECTS?
IS THE DOSE-RESPONSE LINEAR OR NONLINEAR FOR GENOTOXIC EFFECTS?
Preston, RJ. Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
For considerations of cancer risk assessment from exposure to environmenta...
Shi, Dejing; Zhu, Chunbo; Lu, Rengui; Mao, Shitong; Qi, Yanhua
2014-10-01
The aim of this study was to evaluate effects of intermediate frequency magnetic fields (IFMF) generated by a wireless power transmission (WPT) based on magnetic resonance from the perspective of cellular genotoxicity on cultured human lens epithelial cells (HLECs). We evaluated the effects of exposure to 90 kHz magnetic fields at 93.36 µT on cellular genotoxicity in vitro for 2 and 4 h. The magnetic flux density is approximately 3.5 times higher than the reference level recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. For assessment of genotoxicity, we studied cellular proliferation, apoptosis and DNA damage by Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis, alkaline comet assay and phosphorylated histone H2AX (γH2AX) foci formation test. We did not detect any effect of a 90 kHz IFMF generated by WPT based on magnetic resonance on cell proliferation, apoptosis, comet assay, and γH2AX foci formation test. Our results indicated that exposure to 90 kHz IFMF generated by WPT based on magnetic resonance at 93.36 µT for 2 and 4 h does not cause detectable cellular genotoxicity. © 2014 Wiley Periodicals, Inc.
Patenković, Aleksandra; Stamenković-Radak, Marina; Nikolić, Dragana; Marković, Tamara; Anđelković, Marko
2013-03-27
Gentiana lutea L., the yellow gentian, is herb known for its pharmacological properties, with a long tradition of use for the treatment of a variety of diseases including the use as a remedy for digestion, also in food products and in bitter beverages. The aim of the present study is to evaluate, for the first time, genotoxicity of gentian alone, and its antigenotoxicity against methyl methanesulfonate (MMS). The water infusion of the underground part of gentian were evaluated in vivo using the Drosophila wing spot test, at the dose commonly used in traditional medicine. For antigenotoxic study two types of treatment with gentian and MMS were performed: chronic co-treatment, as well as post-treatment with gentian after acute exposure with MMS. Water infusion of gentian alone did not exhibit genotoxicity. The results of co- and post-treatment experiments with gentian show that gentian enhanced the frequency of mutant clones over the values obtained with MMS alone, instead of reducing the genotoxicity of MMS, for 22.64% and 27.13% respectively. This result suggests a synergism of gentian with MMS, and indicates that water infusion of gentian used in traditional medicine may have particular effects with regard to genotoxicity indicating careful use. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Evaluation of the Bronchorelaxant, Genotoxic, and Antigenotoxic Effects of Cassia alata L.
Ouédraogo, M.; Da, F. L.; Fabré, A.; Konaté, K.; Dibala, C. I.; Carreyre, H.; Thibaudeau, S.; Coustard, J.-M.; Vandebrouck, C.; Bescond, J.; Belemtougri, R. G.
2013-01-01
Aqueous-ethanolic extract of Cassia alata (AECal) and its derived fractions obtained through liquid-liquid fractionation were evaluated for their bronchorelaxant, genotoxic, and antigenotoxic effects. Contractile activity of rats' tracheas in the presence of tested materials, as well as its modifications with different inhibitors and blockers, was isometrically recorded. The antigenotoxic potential of AECal was evaluated on cyclophosphamide- (CP-) induced genotoxicity in the rat. Animals were pretreated with the extract, then liver comet assay was performed. AECal and its chloroformic fractions (CF-AECal) relaxed the contraction induced by Ach, but both were significantly less potent in inhibiting contraction induced by KCl (30 mM; 80 mM). Propranolol, indomethacin, L-NAME, methylene blue, and glibenclamide did not modify the relaxant effect of CF-AECal. TEA altered the response of trachea to CF-AECal. CF-AECal caused a rightward shift without affecting the E max in cumulative concentration-response curves of Ach only at low concentrations. In animals pretreated with the extract, the percentage of CP-induced DNA damage decreased. Our results suggest that (1) muscarinic receptors contribute at least in part to the relaxant effects of CF-AECal; (2) CF-AECal interferes with membrane polarization; and (3) AECal is not genotoxic in vivo and contains chemopreventive phytoconstituents offering protection against CP-induced genotoxicity. PMID:23710211
Approaches to the risk assessment of genotoxic carcinogens in food: a critical appraisal.
O'Brien, J; Renwick, A G; Constable, A; Dybing, E; Müller, D J G; Schlatter, J; Slob, W; Tueting, W; van Benthem, J; Williams, G M; Wolfreys, A
2006-10-01
The present paper examines the particular difficulties presented by low levels of food-borne DNA-reactive genotoxic carcinogens, some of which may be difficult to eliminate completely from the diet, and proposes a structured approach for the evaluation of such compounds. While the ALARA approach is widely applicable to all substances in food that are both carcinogenic and genotoxic, it does not take carcinogenic potency into account and, therefore, does not permit prioritisation based on potential risk or concern. In the absence of carcinogenicity dose-response data, an assessment based on comparison with an appropriate threshold of toxicological concern may be possible. When carcinogenicity data from animal bioassays are available, a useful analysis is achieved by the calculation of margins of exposure (MOEs), which can be used to compare animal potency data with human exposure scenarios. Two reference points on the dose-response relationship that can be used for MOE calculation were examined; the T25 value, which is derived from linear extrapolation, and the BMDL10, which is derived from mathematical modelling of the dose-response data. The above approaches were applied to selected food-borne genotoxic carcinogens. The proposed approach is applicable to all substances in food that are DNA-reactive genotoxic carcinogens and enables the formulation of appropriate semi-quantitative advice to risk managers.
Arslan, Mehmet; Sevgiler, Yusuf; Buyukleyla, Mehmet; Yardimci, Mustafa; Yilmaz, Mehmet; Rencuzogullari, Eyyup
2016-01-01
Despite its intended use, imidacloprid causes genotoxic and cytotoxic effects in mammals, especially in the presence of metabolic activation systems. The aim of this study was to determine to which extent these effects are sex related and how its metabolism modulators piperonyl butoxide and menadione affect its toxicity. Male and female Sprague-Dawley rats were injected with the intraperitoneal LD50 dose of imidacloprid alone (170 mg/kg) or pretreated with piperonyl butoxide (100 mg/kg) and menadione (25 mg/kg) for 12 and 24 h. Structural chromosome aberrations, abnormal cells and mitotic index were determined microscopically in bone marrow cells. Male rats showed susceptibility to the genotoxic effects of imidacloprid. Piperonyl butoxide was effective in countering this effect only at 24 h, whereas menadione exacerbated imidacloprid-induced genotoxicity. Piperonyl butoxide and menadione pretreatments increased the percentage of structural chromosome aberrations and abnormal cells in females. Imidacloprid decreased the mitotic index, whereas pretreatment with piperonyl butoxide and menadione showed improvement in both sexes. We believe that CYP450-mediated metabolism of imidacloprid is under the hormonal control and therefore that its genotoxicity is sex related. Piperonyl butoxide pretreatment also showed sex-related modulation. The hormonal effects on imidacloprid biotransformation require further investigation.
Gamma radiation at a human relevant low dose rate is genotoxic in mice
NASA Astrophysics Data System (ADS)
Graupner, Anne; Eide, Dag M.; Instanes, Christine; Andersen, Jill M.; Brede, Dag A.; Dertinger, Stephen D.; Lind, Ole C.; Brandt-Kjelsen, Anicke; Bjerke, Hans; Salbu, Brit; Oughton, Deborah; Brunborg, Gunnar; Olsen, Ann K.
2016-09-01
Even today, 70 years after Hiroshima and accidents like in Chernobyl and Fukushima, we still have limited knowledge about the health effects of low dose rate (LDR) radiation. Despite their human relevance after occupational and accidental exposure, only few animal studies on the genotoxic effects of chronic LDR radiation have been performed. Selenium (Se) is involved in oxidative stress defence, protecting DNA and other biomolecules from reactive oxygen species (ROS). It is hypothesised that Se deficiency, as it occurs in several parts of the world, may aggravate harmful effects of ROS-inducing stressors such as ionising radiation. We performed a study in the newly established LDR-facility Figaro on the combined effects of Se deprivation and LDR γ exposure in DNA repair knockout mice (Ogg1-/-) and control animals (Ogg1+/-). Genotoxic effects were seen after continuous radiation (1.4 mGy/h) for 45 days. Chromosomal damage (micronucleus), phenotypic mutations (Pig-a gene mutation of RBCCD24-) and DNA lesions (single strand breaks/alkali labile sites) were significantly increased in blood cells of irradiated animals, covering three types of genotoxic activity. This study demonstrates that chronic LDR γ radiation is genotoxic in an exposure scenario realistic for humans, supporting the hypothesis that even LDR γ radiation may induce cancer.
Fetoui, Hamadi; Feki, Ameni; Salah, Ghada Ben; Kamoun, Hassen; Fakhfakh, Feiza; Gdoura, Radhouane
2015-05-01
Lambda-cyhalothrin (LTC) is a synthetic pyrethroid with a broad spectrum of insecticidal and acaricidal activities used to control a wide range of insect pests in a variety of applications. However, there is little known about its adverse effects, in particular those related to its genotoxicity in humans. To elucidate the genotoxicity mechanisms of LTC, the micronuclei (MN) frequencies, the levels of reactive oxygen species (ROS), erythrocyte osmotic fragility, nitrite (NO) formation, protein carbonyl (PCO) levels and malondialdehyde (MDA) production were evaluated for a period of 7, 14 and 21 days. Our results show that exposure rat to LTC (1/10DL50 = 6.23 mg/kg) for a period of 7, 14 and 21 days induced a noticeable genotoxic effect in rat peripheral blood evidenced by a significant increase in the frequency of MN only at day 21 of treatment. Significant differences between the two groups were observed in erythrocyte osmotic fragility. Further, a significant (p < 0.01) increase in ROS contents, NO formation, PCO levels and lipid peroxidation in erythrocytes were observed at different times of treatments, suggesting the implication of oxidative stress in its toxicity. These results confirm the genotoxic and the pro-oxidant effects of LTC in rat peripheral blood. © The Author(s) 2013.
Review of genotoxicity biomonitoring studies of glyphosate-based formulations
Kier, Larry D.
2015-01-01
Abstract Human and environmental genotoxicity biomonitoring studies involving exposure to glyphosate-based formulations (GBFs) were reviewed to complement an earlier review of experimental genotoxicity studies of glyphosate and GBFs. The environmental and most of the human biomonitoring studies were not informative because there was either a very low frequency of GBF exposure or exposure to a large number of pesticides without analysis of specific pesticide effects. One pesticide sprayer biomonitoring study indicated there was not a statistically significant relationship between frequency of GBF exposure reported for the last spraying season and oxidative DNA damage. There were three studies of human populations in regions of GBF aerial spraying. One study found increases for the cytokinesis-block micronucleus endpoint but these increases did not show statistically significant associations with self-reported spray exposure and were not consistent with application rates. A second study found increases for the blood cell comet endpoint at high exposures causing toxicity. However, a follow-up to this study 2 years after spraying did not indicate chromosomal effects. The results of the biomonitoring studies do not contradict an earlier conclusion derived from experimental genotoxicity studies that typical GBFs do not appear to present significant genotoxic risk under normal conditions of human or environmental exposures. PMID:25687244
Zeng, Qiang; Zhang, Shao-Hui; Liao, Jing; Miao, Dong-Yue; Wang, Xin-Yi; Yang, Pan; Yun, Luo-Jia; Liu, Ai-Lin; Lu, Wen-Qing
2015-10-15
Potential genotoxic effects of chlorinated drinking water now are of a great concern. In this study, raw water, finished water, and tap water from a water plant in Wuhan, China were collected in two different sampling times of the year (January and July). Genotoxic effects of water extracts were evaluated using a combination of three different bioassays: SOS/umu test, HGPRT gene mutation assay, and micronucleus assay, which were separately used to detect DNA damage, gene mutation, and chromosome aberration. The results of three different bioassays showed that all water samples in January and July induced at least one types of genotoxic effects, of which the DNA-damage effects were all detectable. The levels of DNA-damage effects and gene-mutation effects of finished water and tap water in January were higher than those in July. Chlorination could increase the DNA-damage effects of drinking water in January and the gene-mutation effects of drinking water in both January and July, but did not increase the chromosome-aberration effects of drinking water in both January and July. Our results highlighted the importance of using a combination of different bioassays to evaluate the genotoxicity of water samples in different seasons. Copyright © 2015 Elsevier B.V. All rights reserved.
Pathiratne, Asoka; Hemachandra, Chamini K; De Silva, Nimal
2015-12-01
Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of treated effluents originated from four types of industrial activities (two textile industries, three rubber based industries, two common treatment plants of industrial zones, and two water treatment plants) was assessed. Physico-chemical parameters including the heavy metal/metalloid levels of the effluents varied depending on the industry profile, but most of the measured parameters in the effluents were within the specified tolerance limits of Sri Lankan environmental regulations for discharge of industrial effluents into inland surface waters. In the A. cepa test system, the undiluted effluents induced statistically significant root growth retardation, mitosis depression, and chromosomal aberrations in root meristematic cells in most cases in comparison to the dilution water and upstream water signifying effluent induced cytotoxicity and genotoxicity. Ethyl methane sulphonate (a mutagen, positive control) and all the effluents under 1:8 dilution significantly induced total chromosomal aberrations in root meristematic cells in comparison to the dilution water and upstream water indicating inadequacy of expected 1:8 dilutions in the receiving waters for curtailing genotoxic impacts. The results support the use of a practically feasible A. cepa test system for rapid screening of cytotoxicity and genotoxicity of diverse industrial effluents discharging into inland surface waters.
Chromosome-damaging activity of saliva of betel nut and tobacco chewers.
Stich, H F; Stich, W
1982-01-01
Saliva of volunteers chewing betel quid, cured betel nut (Areca catechu), betel leaves (Piper betle), a mixture of quid ingredients (dried betel nut flakes, catechu, cardamon, lime, copra and menthol) and Indian tobacco was collected and examined for its genotoxic activity. Chromosome aberrations (chromatid breaks and chromatid exchanges) in Chinese hamster ovary (CHO) cells were used to estimate the genotoxic effect. No detectable levels of clastogenic activity were observed in the saliva of non-chewing individuals. After 5 min of chewing betel quid, betel nut, betel leaves, quid ingredients and Indian tobacco, the saliva samples showed relatively potent clastogenic activities. The addition of transition metals Mn2+ and Cu2+ to the saliva samples of betel nut and Indian tobacco chewers enhanced their clastogenic activities, whereas Fe3+ increased the clastogenicity of the betel nut saliva but decreased the genotoxic effect of the saliva of Indian tobacco chewers. After removal of the betel quid or its components from the mouth, the clastogenic activity disappeared within 5 min. The western-type chewing tobacco did not produce a genotoxic activity in the saliva of chewers. A possible association between the genotoxicity in the saliva of betel quid chewers and the development of oral, pharyngeal and esophageal carcinomas is discussed.
Evaluation of genetic damage induced by glyphosate isopropylamine salt using Tradescantia bioassays.
Alvarez-Moya, Carlos; Silva, Mónica Reynoso; Arámbula, Alma Rosa Villalobos; Sandoval, Alfonso Islas; Vasquez, Hugo Castañeda; González Montes, Rosa María
2011-01-01
Glyphosate is noted for being non-toxic in fishes, birds and mammals (including humans). Nevertheless, the degree of genotoxicity is seriously controversial. In this work, various concentrations of a glyphosate isopropylamine salt were tested using two methods of genotoxicity assaying, viz., the pink mutation assay with Tradescantia (4430) and the comet assay with nuclei from staminal cells of the same plant. Staminal nuclei were studied in two different forms, namely nuclei from exposed plants, and nuclei exposed directly. Using the pink mutation assay, isopropylamine induced a total or partial loss of color in staminal cells, a fundamental criterion utilized in this test. Consequently, its use is not recommended when studying genotoxicity with agents that produce pallid staminal cells. The comet assay system detected statistically significant (p < 0.01) genotoxic activity by isopropylamine, when compared to the negative control in both the nuclei of treated plants and directly treated nuclei, but only the treated nuclei showed a dose-dependent increase. Average migration in the nuclei of treated plants increased, when compared to that in treated nuclei. This was probably due, either to the permanence of isopropylamine in inflorescences, or to the presence of secondary metabolites. In conclusion, isopropylamine possesses strong genotoxic activity, but its detection can vary depending on the test systems used.
Evaluation of genetic damage induced by glyphosate isopropylamine salt using Tradescantia bioassays
Alvarez-Moya, Carlos; Silva, Mónica Reynoso; Arámbula, Alma Rosa Villalobos; Sandoval, Alfonso Islas; Vasquez, Hugo Castañeda; González Montes, Rosa María
2011-01-01
Glyphosate is noted for being non-toxic in fishes, birds and mammals (including humans). Nevertheless, the degree of genotoxicity is seriously controversial. In this work, various concentrations of a glyphosate isopropylamine salt were tested using two methods of genotoxicity assaying, viz., the pink mutation assay with Tradescantia (4430) and the comet assay with nuclei from staminal cells of the same plant. Staminal nuclei were studied in two different forms, namely nuclei from exposed plants, and nuclei exposed directly. Using the pink mutation assay, isopropylamine induced a total or partial loss of color in staminal cells, a fundamental criterion utilized in this test. Consequently, its use is not recommended when studying genotoxicity with agents that produce pallid staminal cells. The comet assay system detected statistically significant (p < 0.01) genotoxic activity by isopropylamine, when compared to the negative control in both the nuclei of treated plants and directly treated nuclei, but only the treated nuclei showed a dose-dependent increase. Average migration in the nuclei of treated plants increased, when compared to that in treated nuclei. This was probably due, either to the permanence of isopropylamine in inflorescences, or to the presence of secondary metabolites. In conclusion, isopropylamine possesses strong genotoxic activity, but its detection can vary depending on the test systems used. PMID:21637555
Kwak, Jihoon; Genovesio, Auguste; Kang, Myungjoo; Hansen, Michael Adsett Edberg; Han, Sung-Jun
2015-01-01
Genotoxicity testing is an important component of toxicity assessment. As illustrated by the European registration, evaluation, authorization, and restriction of chemicals (REACH) directive, it concerns all the chemicals used in industry. The commonly used in vivo mammalian tests appear to be ill adapted to tackle the large compound sets involved, due to throughput, cost, and ethical issues. The somatic mutation and recombination test (SMART) represents a more scalable alternative, since it uses Drosophila, which develops faster and requires less infrastructure. Despite these advantages, the manual scoring of the hairs on Drosophila wings required for the SMART limits its usage. To overcome this limitation, we have developed an automated SMART readout. It consists of automated imaging, followed by an image analysis pipeline that measures individual wing genotoxicity scores. Finally, we have developed a wing score-based dose-dependency approach that can provide genotoxicity profiles. We have validated our method using 6 compounds, obtaining profiles almost identical to those obtained from manual measures, even for low-genotoxicity compounds such as urethane. The automated SMART, with its faster and more reliable readout, fulfills the need for a high-throughput in vivo test. The flexible imaging strategy we describe and the analysis tools we provide should facilitate the optimization and dissemination of our methods. PMID:25830368
Cytotoxicity and genotoxicity of natural resin-based experimental endodontic sealers.
Silva, Gleyce O; Cavalcanti, Bruno N; Oliveira, Tatiana R; Bin, Claudia V; Camargo, Samira E A; Camargo, Carlos H R
2016-05-01
The development of endodontic sealers based on natural resins seems to be promising, given their improved biological properties. This study evaluated the cytotoxic and genotoxic effects of two experimental root canal sealers, based on extracts from Copaifera multijuga and Ricinus communis (castor oil polymer), comparing them to synthetic resin-based sealers: a single methacrylate-based, a multi-methacrylate-based, and an epoxy resin-based sealers. Sealers were prepared, set, and exposed to cell culture medium for 24 h at 37 °C with CO2. V79 cells were exposed to serial dilutions of the extracts of each sealer for 24 h. Cell viability was measured by the MTT assay and genotoxicity was assessed by the formation of micronuclei. The single methacrylate-based sealer had the most cytotoxic effects, with significant reduction in cell viability in all dilutions of the extract. The castor oil polymer-based sealer was, on the other hand, the most biocompatible sealer, with no cytotoxic effects at any concentration. All tested sealers were not genotoxic, excepting the single methacrylate-based sealer. The tested natural resin-based sealers presented low cytotoxic and no genotoxic effects on cell cultures. These results may suggest a good alternative to develop new endodontic sealers, in order to achieve better biological response and healing, when compared to commercially available sealers.
Heres-Pulido, María Eugenia; Dueñas-García, Irma; Castañeda-Partida, Laura; Santos-Cruz, Luis Felipe; Vega-Contreras, Viridiana; Rebollar-Vega, Rosa; Gómez-Luna, Juan Carlos; Durán-Díaz, Angel
2010-01-01
Broccoli (Brassica oleracea var. italica) has been defined as a cancer preventive food. Nevertheless, broccoli contains potentially genotoxic compounds as well. We performed the wing spot test of Drosophila melanogaster in treatments with organically grown broccoli (OGB) and co-treatments with the promutagen urethane (URE), the direct alkylating agent methyl methanesulfonate (MMS) and the carcinogen 4-nitroquinoline-1-oxide (4-NQO) in the standard (ST) and high bioactivation (HB) crosses with inducible and high levels of cytochrome P450s (CYPs), respectively. Larvae of both crosses were chronically fed with OGB or fresh market broccoli (FMB) as a non-organically grown control, added with solvents or mutagens solutions. In both crosses, the OGB added with Tween-ethanol yielded the expected reduction in the genotoxicity spontaneous rate. OGB co-treatments did not affect the URE effect, MMS showed synergy and 4-NQO damage was modulated in both crosses. In contrast, FMB controls produced damage increase; co-treatments modulated URE genotoxicity, diminished MMS damage, and did not change the 4-NQO damage. The high dietary consumption of both types of broccoli and its protective effects in D. melanogaster are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.
Cardoso, Felipe S; Araujo-Lima, Carlos F; Aiub, Claudia A F; Felzenszwalb, Israel
2016-10-17
Sorbitol is a polyol used by the food industry as a sweetener. Women are consuming diet and light products containing sorbitol during pregnancy and in the postnatal period to prevent themselves from excessive weight gain and maintain a slim body. Although there is no evidence for the genotoxicity of sorbitol in the perinatal period, this study focused on evaluating the effects of the maternal intake of sorbitol on the biochemical and toxicological parameters of lactating Wistar rat offspring after 14days of mother-to-offspring exposure. A dose-dependent reduction of offspring length was observed. An increase in sorbitol levels determined in the milk was also observed. However, we detected an inverse relationship between the exposition dose in milk fructose and triacylglycerols concentrations. There was an increase in the plasmatic levels of ALT, AST and LDLc and a decrease in proteins, cholesterol and glucose levels in the offspring. Sorbitol exposure caused hepatocyte genotoxicity, including micronuclei induction. Maternal sorbitol intake induced myelotoxicity and myelosuppression in their offspring. The Comet assay of the blood cells detected a dose-dependent genotoxic response within the sorbitol-exposed offspring. According to our results, sorbitol is able to induce important metabolic alterations and genotoxic responses in the exposed offspring. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.