Science.gov

Sample records for pharmacokinetics biodistribution safety

  1. Novel endogenous glycan therapy for retinal diseases: safety, in vitro stability, ocular pharmacokinetic modeling, and biodistribution.

    PubMed

    Swaminathan, Shankar; Li, Huiling; Palamoor, Mallika; de Obarrio, Walter T Luchsinger; Madhura, Dorababu; Meibohm, Bernd; Jablonski, Monica M

    2014-03-01

    Asialo, tri-antennary oligosaccharide (NA3 glycan) is an endogenous compound, which supports proper folding of outer segment membranes, promotes normal ultrastructure, and maintains protein expression patterns of photoreceptors and Müller cells in the absence of retinal pigment epithelium support. It is a potential new therapeutic for atrophic age-related macular degeneration (AMD) and other retinal degenerative disorders. Herein, we evaluate the safety, in vitro stability, ocular pharmacokinetics and biodistribution of NA3. NA3 was injected into the vitreous of New Zealand white rabbits at two concentrations viz. 1 nM (minimum effective concentration (MEC)) and 100 nM (100XMEC) at three time points. Safety was evaluated using routine clinical and laboratory tests. Ocular pharmacokinetics and biodistribution of [(3)H]NA3 were estimated using scintillation counting in various parts of the eye, multiple peripheral organs, and plasma. Pharmacokinetic parameters were estimated by non-compartmental modeling. A 2-aminobenzamide labeling and hydrophilic interaction liquid interaction chromatography were used to assess plasma and vitreous stability. NA3 was well tolerated by the eye. The concentration of NA3 in eye tissues was in the order: vitreous > retina > sclera/choroid > aqueous humor > cornea > lens. Area under the curve (0 to infinity) (AUC∞) was the highest in the vitreous thereby providing a positive concentration gradient for NA3 to reach the retina. Half-lives in critical eye tissues ranged between 40 and 60 h. NA3 concentrations were negligible in peripheral organs. Radioactivity from [(3)H]NA3 was excreted via urine and feces. NA3 was stable at 37°C in vitreous over a minimum of 6 days, while it degraded rapidly in plasma. Collectively, these results document that NA3 shows a good safety profile and favorable ocular pharmacokinetics.

  2. Preparation, Pharmacokinetics, Biodistribution, Antitumor Efficacy and Safety of Lx2-32c-Containing Liposome

    PubMed Central

    Lv, Guangyao; Ma, Jinbo; Ma, Pengkai; Du, Guangying; Wang, Zongliang; Tian, Jingwei; Fang, Weishuo; Fu, Fenghua

    2014-01-01

    Lx2-32c is a novel taxane that has been demonstrated to have robust antitumor activity against different types of tumors including several paclitaxel-resistant neoplasms. Since the delivery vehicles for taxane, which include cremophor EL, are all associated with severe toxic effects, liposome-based Lx2-32c has been developed. In the present study, the pharmacokinetics, biodistribution, antitumor efficacy and safety characteristics of liposome-based Lx2-32c were explored and compared with those of cremophor-based Lx2-32c. The results showed that liposome-based Lx2-32c displayed similar antitumor effects to cremophor-based Lx2-32c, but with significantly lower bone marrow toxicity and cardiotoxicity, especially with regard to the low ratio of hypersensitivity reaction. In comparing these two delivery modalities, targeting was superior using the Lx2-32c liposome formulation; it achieved significantly higher uptake in tumor than in bone marrow and heart. Our data thus suggested that the Lx2-32c liposome was a novel alternative formulation with comparable antitumor efficacy and a superior safety profiles to cremophor-based Lx2-32c, which might be related to the improved pharmacokinetic and biodistribution characteristics. In conclusion, the Lx2-32c liposome could be a promising alternative formulation for further development. PMID:25506928

  3. Preclinical safety, pharmacokinetics, pharmacodynamics, and biodistribution studies with Ad35K++ protein: a novel rituximab cotherapeutic

    PubMed Central

    Richter, Maximilian; Yumul, Roma; Saydaminova, Kamola; Wang, Hongjie; Gough, Michael; Baldessari, Audrey; Cattaneo, Roberto; Lee, Frank; Wang, Chung-Huei Katherine; Jang, Haishan; Astier, Anne; Gopal, Ajay; Carter, Darrick; Lieber, André

    2016-01-01

    Rituximab is a mouse/human chimeric monoclonal antibody targeted toward CD20. It is efficient as first-line therapy of CD20-positive B-cell malignancies. However, a large fraction of treated patients relapse with rituximab-resistant disease. So far, only modest progress has been made in treatment options for rituximab refractory patients. One of the mechanisms for rituximab resistance involves the upregulation of CD46, which is a key cell surface protein that blocks the activation of complement. We have recently developed a technology that depletes CD46 from the cell surface and thereby sensitizes tumor cells to complement-dependent cytotoxicity. This technology is based on a small recombinant protein, Ad35K++ that binds with high affinity to CD46. In preliminary studies using a 6 × histidinyl tagged protein, we had demonstrated that intravenous Ad35K++ injection in combination with rituximab was safe and increased rituximab-mediated killing of CD20-positive target cells in mice and nonhuman primates (NHPs). The presence of the tag, while allowing for easy purification by Ni-NTA chromatography, has the potential to increase the immunogenicity of the recombinant protein. For clinical application, we therefore developed an Ad35K++ protein without His-tag. In the present study, we performed preclinical studies in two animal species (mice and NHPs) with this protein demonstrating its safety and efficacy. These studies estimated the Ad35K++ dose range and treatment regimen to be used in patients. Furthermore, we showed that intravenous Ad35K++ injection triggers the shedding of the CD46 extracellular domain in xenograft mouse tumor models and in macaques. Shed serum CD46 can be measured in the serum and can potentially be used as a pharmacodynamic marker for monitoring Ad35K++ activity in patient undergoing treatment with this agent. These studies create the basis for an investigational new drug application for the use of Ad35K++ in combination with rituximab in the

  4. Image Guided Biodistribution and Pharmacokinetic Studies of Theranostics

    PubMed Central

    Ding, Hong; Wu, Fang

    2012-01-01

    Image guided technique is playing an increasingly important role in the investigation of the biodistribution and pharmacokinetics of drugs or drug delivery systems in various diseases, especially cancers. Besides anatomical imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), molecular imaging strategy including optical imaging, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) will facilitate the localization and quantization of radioisotope or optical probe labeled nanoparticle delivery systems in the category of theranostics. The quantitative measurement of the bio-distribution and pharmacokinetics of theranostics in the fields of new drug/probe development, diagnosis and treatment process monitoring as well as tracking the brain-blood-barrier (BBB) breaking through by high sensitive imaging method, and the applications of the representative imaging modalities are summarized in this review. PMID:23227121

  5. Nanodrugs: pharmacokinetics and safety

    PubMed Central

    Onoue, Satomi; Yamada, Shizuo; Chan, Hak-Kim

    2014-01-01

    To date, various nanodrug systems have been developed for different routes of administration, which include dendrimers, nanocrystals, emulsions, liposomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles. Nanodrug systems have been employed to improve the efficacy, safety, physicochemical properties, and pharmacokinetic/pharmacodynamic profile of pharmaceutical substances. In particular, functionalized nanodrug systems can offer enhanced bioavailability of orally taken drugs, prolonged half-life of injected drugs (by reducing immunogenicity), and targeted delivery to specific tissues. Thus, nanodrug systems might lower the frequency of administration while providing maximized pharmacological effects and minimized systemic side effects, possibly leading to better therapeutic compliance and clinical outcomes. In spite of these attractive pharmacokinetic advantages, recent attention has been drawn to the toxic potential of nanodrugs since they often exhibit in vitro and in vivo cytotoxicity, oxidative stress, inflammation, and genotoxicity. A better understanding of the pharmacokinetic and safety characteristics of nanodrugs and the limitations of each delivery option is necessary for the further development of efficacious nanodrugs with high therapeutic potential and a wide safety margin. This review highlights the recent progress in nanodrug system development, with a focus on the pharmacokinetic advantages and safety challenges. PMID:24591825

  6. Preparation, pharmacokinetics and biodistribution of baicalin-loaded liposomes

    PubMed Central

    Wei, Yumeng; Guo, Jianmin; Zheng, Xiaoli; Wu, Jun; Zhou, Yang; Yu, Yu; Ye, Yun; Zhang, Liangke; Zhao, Ling

    2014-01-01

    Baicalin (BA) is a major constituent of Scutellaria baicalensis Georgi, a medicinal herb. Previous pharmacokinetic studies of BA showed its low oral bioavailability. The aim of the present study was to develop a novel BA-loaded liposome (BA-LP) to enhance oral bioavailability. BA-LP, composed of BA, Tween® 80, Phospholipon® 90H, and citric acid at weight ratio of 96/50/96/50, respectively, was prepared by the effervescent dispersion technique and characterized in terms of morphology, size, zeta potential, encapsulation efficiency, and the in vitro release. Pharmacokinetics and biodistribution studies were carried out in rats after oral administration of BA-LP and a carboxymethyl cellulose suspension containing BA (BA-CMC) as a control. BA-LP exhibited a spherical shape by transmission electron microscopy observation. BA-LP had a mean particle size of 373±15.5 nm, zeta potential of −20.1±0.22 mV, and encapsulation efficiency of 82.7%±0.59%. The BA-LP showed a sustained-release behavior, and the in vitro drug-release kinetic model fit well with the Weibull distribution equation: lnln (1/(1−Q)) =0.609 lnt −1.230 (r=0.995). The oral bioavailability and the peak concentration of the BA-LP was threefold and 2.82-fold that of BA-CMC, respectively. The in vivo distribution results indicated that drug concentrations were significantly increased in the liver, kidney, and lung in the case of BA-LP, which were 5.59-fold, 2.33-fold, and 1.25-fold higher than those of BA-CMC, respectively. In conclusion, the study suggested that BA-LP might be a potential oral drug delivery system to improve bioavailability of BA. PMID:25120360

  7. Factors Controlling the Pharmacokinetics, Biodistribution and Intratumoral Penetration of Nanoparticles

    PubMed Central

    Ernsting, Mark J.; Murakami, Mami; Roy, Aniruddha; Li, Shyh-Dar

    2014-01-01

    Nanoparticle drug delivery to the tumor is impacted by multiple factors: nanoparticles must evade clearance by renal filtration and the reticuloendothelial system, extravasate through the enlarged endothelial gaps in tumors, penetrate through dense stroma in the tumor microenvironment to reach the tumor cells, remain in the tumor tissue for a prolonged period of time, and finally release the active agent to induce pharmacological effect. The physicochemical properties of nanoparticles such as size, shape, surface charge, surface chemistry (PEGylation, ligand conjugation) and composition affect the pharmacokinetics, biodistribution, intratumoral penetration and tumor bioavailability. On the other hand, tumor biology (blood flow, perfusion, permeability, interstitial fluid pressure and stroma content) and patient characteristics (age, gender, tumor type, tumor location, body composition and prior treatments) also have impact on drug delivery by nanoparticles. It is now believed that both nanoparticles and the tumor microenvironment have to be optimized or adjusted for optimal delivery. This review provides a comprehensive summary of how these nanoparticle and biological factors impact nanoparticle delivery to tumors, with discussion on how the tumor microenvironment can be adjusted and how patients can be stratified by imaging methods to receive the maximal benefit of nanomedicine. Perspectives and future directions are also provided. PMID:24075927

  8. Preclinical acute toxicity, biodistribution, pharmacokinetics, radiation dosimetry and microPET imaging studies of [(18)F]fluorocholine in mice.

    PubMed

    Silveira, Marina B; Ferreira, Soraya M Z M D; Nascimento, Leonardo T C; Costa, Flávia M; Mendes, Bruno M; Ferreira, Andrea V; Malamut, Carlos; Silva, Juliana B; Mamede, Marcelo

    2016-10-01

    [(18)F]Fluorocholine ([(18)F]FCH) has been proven to be effective in prostate cancer. Since [(18)F]FCH is classified as a new radiopharmaceutical in Brazil, preclinical safety and efficacy data are required to support clinical trials and to obtain its approval. The aim of this work was to perform acute toxicity, biodistribution, pharmacokinetics, radiation dosimetry and microPET imaging studies of [(18)F]FCH. The results could support its use in nuclear medicine as an important piece of work for regulatory in Brazil.

  9. Preclinical acute toxicity, biodistribution, pharmacokinetics, radiation dosimetry and microPET imaging studies of [(18)F]fluorocholine in mice.

    PubMed

    Silveira, Marina B; Ferreira, Soraya M Z M D; Nascimento, Leonardo T C; Costa, Flávia M; Mendes, Bruno M; Ferreira, Andrea V; Malamut, Carlos; Silva, Juliana B; Mamede, Marcelo

    2016-10-01

    [(18)F]Fluorocholine ([(18)F]FCH) has been proven to be effective in prostate cancer. Since [(18)F]FCH is classified as a new radiopharmaceutical in Brazil, preclinical safety and efficacy data are required to support clinical trials and to obtain its approval. The aim of this work was to perform acute toxicity, biodistribution, pharmacokinetics, radiation dosimetry and microPET imaging studies of [(18)F]FCH. The results could support its use in nuclear medicine as an important piece of work for regulatory in Brazil. PMID:27509594

  10. Biodistribution and pharmacokinetics of uniform magnetite nanoparticles chemically modified with polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Hernández, Y.; Cabal, C.; González, E.; Veintemillas-Verdaguer, S.; Martínez, E.; Morales, M. P.

    2013-11-01

    The influence of polyethylene glycol (PEG) grafting on the pharmacokinetics, biodistribution and elimination of iron oxide nanoparticles is studied in this work. Magnetite nanoparticles (12 nm) were obtained via thermal decomposition of an iron coordination complex as a precursor. Particles were coated with meso-2,3-dimercaptosuccinic acid (DMSA) and conjugated to PEG-derived molecules by 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC) chemistry. Using a rat model, we explored the nanoparticle biodistribution pattern in blood and in different organs (liver, spleen and lungs) after intravenous administration of the product. The time of residence in blood was measured from the evolution of water proton relaxivities with time and Fe analysis in blood samples. The results showed that the residence time was doubled for PEG coated nanoparticles and consequently particle accumulation in liver and spleen was reduced. Post-mortem histological analyses showed no alterations in the liver and confirm heterogeneous distribution of NPs in the organ, in agreement with magnetic measurements and iron analysis. Finally, by successive magnetic resonance images we studied the evolution of contrast in the liver and measured the absorption, time of residence and excretion of nanoparticles in the liver during a one month period. On the basis of these results we propose different metabolic routes that determine the fate of magnetic nanoparticles.

  11. Biodistribution and pharmacokinetics of recombinant α1-microglobulin and its potential use in radioprotection of kidneys

    PubMed Central

    Ahlstedt, Jonas; Tran, Thuy A; Strand, Filip; Holmqvist, Bo; Strand, Sven-Erik; Gram, Magnus; Åkerström, Bo

    2015-01-01

    Peptide-receptor radionuclide therapy (PRRT) is a systemically administrated molecular targeted radiation therapy for treatment of neuroendocrine tumors. Fifteen years of clinical use show that renal toxicity, due to glomerular filtration of the peptides followed by local generation of highly reactive free radicals, is the main side-effect that limits the maximum activity that can be administrated for efficient therapy. α1-microglobulin (A1M) is an endogenous radical scavenger shown to prevent radiation-induced in vitro cell damage and protect non-irradiated surrounding cells. An important feature of A1M is that, following distribution to the blood, it is equilibrated to the extravascular compartments and filtrated in the kidneys. Aiming at developing renal protection against toxic side-effects of PRRT, we have characterized the pharmacokinetics and biodistribution of intravenously (i.v.) injected 125I- and non-labelled recombinant human A1M and the 111In- and fluorescence-labelled somatostatin analogue octreotide. Both molecules were predominantly localized to the kidneys, displaying a prevailing distribution in the cortex. A maximum of 76% of the injected A1M and 46% of the injected octreotide were present per gram kidney tissue at 10 to 20 minutes, respectively, after i.v. injection. Immunohistochemistry and fluorescence microscopy revealed a dominating co-existence of the two substances in proximal tubules, with a cellular co-localization in the epithelial cells. Importantly, analysis of kidney extracts displayed an intact, full-length A1M at least up to 60 minutes post-injection (p.i.). In summary, the results show a highly similar pharmacokinetics and biodistribution of A1M and octreotide, thus enabling the use of A1M to protect the kidneys tissue during PRRT. PMID:26269772

  12. Potential of aerosolized rifampicin lipospheres for modulation of pulmonary pharmacokinetics and bio-distribution.

    PubMed

    Singh, Charan; Koduri, L V Seshu Kumar; Dhawale, Vaibhav; Bhatt, Tara Datt; Kumar, Rajdeo; Grover, Vikas; Tikoo, Kulbhushan; Suresh, Sarasija

    2015-11-30

    The aim of the present study was to establish the potential of rifampicin loaded phospholipid lipospheres carrier for pulmonary application. Lipospheres were prepared with rifampicin and phospholipid in the ratio of 1:1 using spray drying method. Further, lipospheres were evaluated for flow properties and surface area measurement. The formulated lipospheres were evaluated in vitro for aerodynamic characterization and in vivo for lung pharmacokinetics and biodistribution studies in Sprague Dawley rats. Powder flow properties finding suggested the free flowing nature of the lipospheres. In-vitro aerosol performance study indicated more than 80±5% of the emitted dose (ED) and 77.61±3% fine particles fraction (FPF). Mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) were found to be 2.72±0.13 μm and 3.28±0.12, respectively. In-vitro aerosol performance study revealed the higher deposition at 3, 4 and 5 stages which simulates the trachea-primary bronchus, secondary and terminal bronchus of the human lung, respectively. The drug concentration from nebulized lipospheres in the non-targeted tissues was lesser than from rifampicin-aqueous solution. The pulmonary pharmacokinetic study demonstrated improved bioavailability, longer residence of drug in the lung and targeting factor of 8.03 for lipospheres as compared to rifampicin-aqueous solution. Thus, the results of the study demonstrated the potential of rifampicin lipospheres formulation would be of use as an alternative to existing oral therapy.

  13. Sterically stabilized superparamagnetic liposomes for MR imaging and cancer therapy: pharmacokinetics and biodistribution.

    PubMed

    Plassat, V; Martina, M S; Barratt, G; Ménager, C; Lesieur, S

    2007-11-01

    Pharmacokinetics of magnetic-fluid-loaded liposomes (MFLs) with mean hydrodynamic diameter of 200 nm sterically stabilized by poly(ethylene glycol) (PEG) and labelled by a fluorescent lipid probe, N-(lissamine rhodamine B sulfonyl) phosphatidylethanolamine (Rho-PE) was studied. The loading consisted in an aqueous suspension of maghemite nanocrystals close to 8 nm in size at 1.7 Fe(III)mol/mol total lipids ratio. Double tracking of MFL in blood was performed versus time after intravenous administration in mice. Lipids constituting vesicle membrane were followed by Rho-PE fluorescence spectroscopy while iron oxide was determined independently by relaxometry. MFLs circulating in the vascular compartment conserved their vesicle structure and content. The pharmacokinetic profile was characterized by two first-order kinetics of elimination with distinct plasmatic half-lives of 70 min and 12.5 h. Iron biodistribution and organ histology clearly highlighted preferential MFL accumulation within liver and spleen. The pathway in spleen supported that elimination was governed by the mononuclear phagocyte system (MPS). PEG coating was essential to prolong MFL circulation time whereas iron oxide loading tends to favour uptake by the MPS. Despite partial uptake in the earlier times after administration, MFLs exhibited long circulation behaviour over a 24-h period that, coupled to magnetic targeting, encourages further use in drug delivery. PMID:17583452

  14. DETERMINING THE PHARMACOKINETICS AND LONG-TERM BIODISTRIBUTION OF SiO2 NANOPARTICLES IN VIVO USING ACCELERATOR MASS SPECTROMETRY

    PubMed Central

    Malfatti, Michael A.; Palko, Heather A.; Kuhn, Edward A.; Turteltaub, Kenneth W.

    2012-01-01

    Biodistribution is an important factor in better understanding silica dioxide nanoparticle (SiNP) safety. Currently, comprehensive studies on biodistribution are lacking, most likely due to the lack of suitable analytical methods. Accelerator mass spectrometry (AMS) was used to investigate the relationship between administered dose, PK, and long-term biodistribution of 14C-SiNPs in vivo. PK analysis showed that SiNPs were rapidly cleared from the central compartment, were distributed to tissues of the reticuloendothelial system, and persisted in the tissue over the 8-week time course, raising questions about the potential for bioaccumulation and associated long-term effects. PMID:23075393

  15. Alterations in favipiravir (T-705) pharmacokinetics and biodistribution in a hamster model of viral hemorrhagic fever.

    PubMed

    Gowen, Brian B; Sefing, Eric J; Westover, Jonna B; Smee, Donald F; Hagloch, Joseph; Furuta, Yousuke; Hall, Jeffery O

    2015-09-01

    Favipiravir (T-705) is a new anti-influenza drug approved for human use in Japan and progressing through Phase 3 clinical trials in the U.S. In addition to its potent inhibitory effects against influenza virus infection, the compound has been shown to be broadly active against RNA viruses from 9 different families, including the Arenaviridae. Several members of the Arenaviridae family of viruses are significant human pathogens that cause viral hemorrhagic fever, a severe systemic syndrome where vascular leak is a cardinal feature. Because arenaviral infections are unlikely to be diagnosed and treated until the illness has progressed to a more advanced state, it is important to understand the effects of the disease state on favipiravir pharmacokinetics (PK) and biodistribution to help guide therapeutic strategy. During acute arenavirus infection in hamsters, we found reduced plasma favipiravir concentrations and altered kinetics of absorption, elimination and time to maximum drug concentration. In addition, the amounts of the favipiravir M1 primary metabolite were higher in the infected animals, suggesting that favipiravir metabolism may favor the formation of this inactive metabolite during viral infection. We also discovered differences in favipiravir and M1 PK parameters associated with arenavirus infection in a number of hamster tissues. Finally, analysis at the individual animal level demonstrated a correlation between reduced plasma favipiravir concentration with increased disease burden as reflected by weight loss and viral load. Our study is the first to show the impact of active viral infection and disease on favipiravir PK and biodistribution, highlighting the need to consider alterations in these parameters when treating individuals with viral hemorrhagic fever of arenavirus or other etiology.

  16. Alterations in favipiravir (T-705) pharmacokinetics and biodistribution in a hamster model of viral hemorrhagic fever

    PubMed Central

    Gowen, Brian B.; Sefing, Eric J.; Westover, Jonna B.; Smee, Donald F.; Hagloch, Joseph; Furuta, Yousuke; Hall, Jeffery O.

    2015-01-01

    Favipiravir (T-705) is a new anti-influenza drug approved for human use in Japan and progressing through Phase 3 clinical trials in the U.S. In addition to its potent inhibitory effects against influenza virus infection, the compound has been shown to be broadly active against RNA viruses from 9 different families, including the Arenaviridae. Several members of the Arenaviridae family of viruses are significant human pathogens that cause viral hemorrhagic fever, a severe systemic syndrome where vascular leak is a cardinal feature. Because arenaviral infections are unlikely to be diagnosed and treated until the illness has progressed to a more advanced state, it is important to understand the effects of the disease state on favipiravir pharmacokinetics (PK) and biodistribution to help guide therapeutic strategy. During acute arenavirus infection in hamsters, we found reduced plasma favipiravir concentrations and altered kinetics of absorption, elimination and time to maximum drug concentration. In addition, the amounts of the favipiravir M1 primary metabolite were higher in the infected animals, suggesting that favipiravir metabolism may favor the formation of this inactive metabolite during viral infection. We also discovered differences in favipiravir and M1 PK parameters associated with arenavirus infection in a number of hamster tissues. Finally, analysis at the individual animal level demonstrated a correlation between reduced plasma favipiravir concentration with increased disease burden as reflected by weight loss and viral load. Our study is the first to show the impact of active viral infection and disease on favipiravir PK and biodistribution, highlighting the need to consider alterations in these parameters when treating individuals with viral hemorrhagic fever of arenavirus or other etiology. PMID:26186980

  17. Native and Complexed IGF-1: Biodistribution and Pharmacokinetics in Infantile Neuronal Ceroid Lipofuscinosis

    PubMed Central

    Huhtala, Tuulia; Rytkönen, Jussi; Jalanko, Anu; Kaasalainen, Martti; Salonen, Jarno; Riikonen, Raili; Närvänen, Ale

    2012-01-01

    Infantile neuronal ceroid lipofuscinosis (INCL) is a severe neurodegenerative disorder of childhood characterized by selective death of cortical neurons. Insulin-like growth factor 1 (IGF-1) is important in embryonic development and is considered as a potential therapeutic agent for several disorders of peripheral and central nervous systems. In circulation IGF-1 is mainly bound to its carrier protein IGFBP-3. As a therapeutic agent IGF-1 has shown to be more active as free than complexed form. However, this may cause side effects during the prolonged treatment. In addition to IGFBP-3 the bioavailability of IGF-1 can be modulated by using mesoporous silicon nanoparticles (NPs) which are optimal carriers for sustained release of unstable peptide hormones like IGF-1. In this study we compared biodistribution, pharmacokinetics, and bioavailability of radiolabeled free IGF-1, IGF-1/IGFBP-3, and IGF-1/NP complexes in a Cln1-/- knockout mouse model. IGF-1/NP was mainly accumulated in liver and spleen in all studied time points, whereas minor and more constant amounts were measured in other organs compared to free IGF-1 or IGF-1/IGFBP-3. Also concentration of IGF-1/NP in blood was relatively high and stable during studied time points suggesting continuous release of IGF-1 from the particles. PMID:22778966

  18. Preparation, characterization, in vivo pharmacokinetics, and biodistribution of polymeric micellar dimethoxycurcumin for tumor targeting

    PubMed Central

    Liu, Hui; Xu, Hui; Jiang, Yunxia; Hao, Shengyuan; Gong, Feirong; Mu, Hongjie; Liu, Ke

    2015-01-01

    Dimethoxycurcumin (DMC) is an analog of curcumin with superior efficacy in various disease models. Currently, drug delivery system research on DMC is very limited, and it has become a huge challenge to realize further developments and clinical applications. In the present study, a kind of amphiphilic block copolymer, N-t-butoxycarbonyl-phenylalanine terminated monomethoxyl poly (ethylene glycol)-b-poly (ε-caprolactone), or mPEG-PCL-Phe(Boc), was prepared from monomethoxyl poly (ethylene glycol)-b-poly (ε-caprolactone) (mPEG-PCL) with its hydroxyl terminal chemically converted into N-t-butoxycarbonyl-phenylalanine (Boc-Phe). This copolymer was determined to have a fairly low critical micelle concentration (2.56×10−3 mg/mL) and passive targeting potential to tumor tissue, and thus was applied to develop a polymeric micellar formulation of DMC for the first time. The DMC-loaded micelles prepared by thin-film hydration method had typical shell–core structure, with an average particle size of 17.9±0.4 nm and a polydispersity index of 0.045±0.011. The drug loading capacity and entrapment efficiency were 9.94%±0.15% and 97.22%±0.18%, respectively, indicating a high-affinity interaction between DMC and the copolymer. At a concentration of 2 mg/mL, the reconstituted micelle solution could be maintained for at least 10 days at room temperature, and displayed a low initial burst release followed by a sustained release in vitro. Pharmacokinetic study in rats revealed that in vivo drug exposure of DMC was significantly increased and prolonged by intravenously administering DMC-loaded micelles when compared with the same dose of free DMC dissolved in dimethyl sulfoxide. Furthermore, in vivo distribution results from tumor-bearing nude mice demonstrated that this micellar formulation significantly changed the biodistribution profile of DMC and increased drug accumulation in tumors. Therefore, the polymeric micellar formulation of DMC, based on the amphiphilic block

  19. Poly(n-butylcyanoacrylate) nanoparticles for oral delivery of quercetin: preparation, characterization, and pharmacokinetics and biodistribution studies in Wistar rats

    PubMed Central

    Bagad, Mayur; Khan, Zaved Ahmed

    2015-01-01

    Background Quercetin (QT) is a potential bioflavonol and antioxidant with poor bioavailability and very low distribution in the brain. A new oral delivery system comprising of poly(n-butylcyanoacrylate) nanoparticles (PBCA NPs) was introduced to improve the oral bioavailability of QT and to increase its distribution in the brain. Physicochemical characteristics, in vitro release, stability in simulated gastric fluid and intestinal fluids, and pharmacokinetics and biodistribution studies of QT-PBCA NPs coated with polysorbate-80 (P-80) were investigated. Objective This study aimed to investigate the physicochemical characteristics, in vitro release, stability in simulated gastric fluid and intestinal fluids, and pharmacokinetics and biodistribution studies of QT-PBCA NPs coated with polysorbate-80 (P-80). Results The results showed that QT-PBCA NPs and QT-PBCA NPs coated with P-80 (QT-PBCA+P-80) had mean particle sizes of 161.1±0.44 nm and 166.6±0.33 nm respectively, and appeared spherical in shape under transmission electron microscopy. The mean entrapment efficiency was 79.86%±0.45% for QT-PBCA NPs and 74.58%±1.44% for QT-PBCA+P-80. The in vitro release of QT-PBCA NPs and QT-PBCA+P-80 showed an initial burst release followed by a sustained release when compared to free QT. The relative bioavailability of QT-PBCA NPs and QT-PBCA+P-80 enhanced QT bioavailability by 2.38- and 4.93-fold respectively, when compared to free QT. The biodistribution study in rats showed that a higher concentration of QT was detected in the brain after the NPs were coated with P-80. Conclusion This study indicates that PBCA NPs coated with P-80 can be potential drug carriers for poorly water-soluble drugs. These NPs were observed to improve the drugs’ oral bioavailability and enhance their transport to the brain. PMID:26089668

  20. Dependence of pharmacokinetics and biodistribution on polymer architecture: effect of cyclic versus linear polymers.

    PubMed

    Nasongkla, Norased; Chen, Bo; Macaraeg, Nichole; Fox, Megan E; Fréchet, Jean M J; Szoka, Francis C

    2009-03-25

    The ability of a polymer to reptate through a nanopore has an influence on its circulatory half-life and biodistribution, since many physiological barriers contain nanopores. A cyclic polymer lacks chain ends, and therefore, cyclic polymers with molecular weights greater than the renal threshold for elimination should circulate longer than their linear-polymer counterparts when injected into animals. As predicted, radiolabeled cyclic polymers with molecular weights greater than the renal threshold have longer blood circulation times in mice than do linear polymers of comparable molecular weight.

  1. Improved nonclinical pharmacokinetics and biodistribution of a new PPAR pan-agonist and COX inhibitor in nanocapsule formulation.

    PubMed

    Garcia, Giani Martins; Oliveira, Líliam Teixeira; Pitta, Ivan da Rocha; de Lima, Maria do Carmo Alves; Vilela, José Mário Carneiro; Andrade, Margareth Spangler; Abdalla, Dulcinéia Saes Parra; Mosqueira, Vanessa Carla Furtado

    2015-07-10

    We report the in vitro release profile and comparative pharmacokinetics and biodistribution of a new peroxisome proliferator-activated receptor-γ agonist and cyclooxygenase inhibitor (Lyso-7) free or associated to poly(D,L-lactic acid) nanocapsules (NC) after intravenous administration in mice. Lyso-7 pertains to the class of insulin-sensitizing agents that shows potential beneficial effects in diabetes therapy. Monodispersed Lyso-7 NC with a mean diameter of 273 nm with high encapsulation efficiency (83%) were obtained. Lyso-7 dissolution rate was reduced (2.6-fold) upon loading in NC. The pharmacokinetic parameters were determined using a non-compartmental approach. In comparison with Lyso-7 in solution, the plasma-AUC increased 14-fold, the mean residence time 2.6-fold and the mean half-life (t1/2) 1.5-fold for Lyso-7-NC; the Lyso-7 plasma clearance, distribution volume and elimination rate were reduced 13, 10 and 1.4 fold, respectively, which indicates higher retention of encapsulated Lyso-7 in the blood compartment. Upon association with NC, organ exposure to Lyso-7 was higher in the heart (3.6-fold), lung (2.8-fold), spleen (2.3-fold), kidney (2-fold) and liver (1.8-fold) compared to Lyso-7 in solution. The analysis of whole data clearly indicates that body exposure to Lyso-7 was enhanced and the general toxicity reduced upon nanoencapsulation, allowing further evaluation of Lyso-7 in nonclinical and clinical studies. PMID:25931305

  2. Fate of nanostructured lipid carriers (NLCs) following the oral route: design, pharmacokinetics and biodistribution.

    PubMed

    Beloqui, Ana; Solinís, María Ángeles; Delgado, Araceli; Evora, Carmen; Isla, Arantxazu; Rodríguez-Gascón, Alicia

    2014-01-01

    The aim of this study was to develop a nanostructured lipid carriers (NLC) formulation containing spironolactone (SPN-NLCs), and to investigate its potential for the oral delivery of poorly water-soluble compounds. SPN-NLCs were orally administered to rabbits and the pharmacokinetics of spironolactone and its metabolites was evaluated. As reference formulation, we administered syrup. Spironolactone was only detected in a few plasma samples; hence, metabolite levels were employed for the pharmacokinetic analysis. The absolute bioavailability of 7α-TMS was significantly higher with the syrup than those obtained with the SPN-NLCs (0.7 versus 0.4, p < 0.05). However, no significant differences were observed in the bioavailability of canrenone, revealing a different canrenone/7α-TMS ratio depending on the administered formulation. Orally administered (99m)Tc-radiolabeled SPN-NLCs were mainly detected in the small intestine. These results suggest the retention of the nanocarriers in the underlying epithelium and further uptake by the epithelial cells. PMID:23631381

  3. Pharmacokinetics, biodistribution and excretion studies of neotuberostemonine, a major bioactive alkaloid of Stemona tuberosa.

    PubMed

    Wu, Yan; Ou, Liting; Han, Dong; Tong, Yongbin; Zhang, Mian; Xu, Xianghong; Zhang, Chaofeng

    2016-07-01

    Neotuberostemonine is a potent antitussive alkaloid extracted from Stemona tuberosa. However, the pharmacokinetics, tissue distribution and excretion of pure neotuberostemonine have not been reported. The present study was aimed to investigate the pharmacokinetic parameters of neotuberostemonine by developing an ultra-high performance liquid chromatography-tandem mass spectrometry method. Neotuberostemonine and tetrahydropalmatine (internal standard, IS) in bio-samples were extracted by protein precipitation with methanol and successfully separated on a Zorbax Extend C18 column by using a mobile phase of acetonitrile and a mixture of 0.1% formic acid and 5mM ammonium acetate. The detection was performed by using positive ion electrospray ionization in multiple reaction monitoring mode. The MS/MS ion transitions were monitored at m/z 376.1→302.0 for neotuberostemonine and 355.8→192.0 for IS. After oral administration of neotuberostemonine in rats, the Cmax and AUC0-∞ were 11.37ng/mL and 17.68ng·h/mL at 20mg/kg and 137.6ng/mL and 167.4ng·h/mL at 40mg/kg, and the t1/2 were 2.28 and 3.04h at 20 and 40mg/kg, respectively. The high neotuberostemonine concentrations were found in intestine, stomach and liver, and there was no long-term accumulation of neotuberostemonine in tissues. Total recoveries of neotuberostemonine were only 0.90% (0.19% in bile, 0.05% in urine and 0.66% in feces), which might be resulted from the intestine and liver first-pass effects, indicating that neotuberostemonine may be mainly excreted as its metabolites. All above results would provide helpful information for the further pharmacological and clinical studies of neotuberostemonine and the crude drug. PMID:27179627

  4. Improved systemic pharmacokinetics, biodistribution, and antitumor activity of CpG oligodeoxynucleotides complexed to endogenous antibodies in vivo

    PubMed Central

    Palma, Enzo; Cho, Moo J.

    2007-01-01

    CpG oligodeoxynucleotides (CpG-ODNs) fail to elicit antitumor immunity after intravenous administration presumably due to their rapid renal clearance and low tumor accumulation. To address this issue, we tested the hypothesis that endogenous IgG can be used as systemic drug carriers to improve the pharmacokinetics, tumor accumulation, and antitumor activity of intravenously administered CpG-ODNs. To this end, tritium-labeled CpG-ODNs conjugated with one or two dinitrophenyl (DNP) haptens (DNP- and DNP2-[3H]-CpG-ODN) were intravenously dosed into DNP-immunized Balb/c mice bearing subcutaneous CT26 colorectal tumors. Serum and tissue samples for pharmacokinetic and biodistribution profiling were collected at predetermined timepoints and analyzed by liquid scintillation. In antitumor efficacy studies, DNP-immunized, CT26 tumor-bearing mice were intravenously dosed with PBS, CpG-ODN, or DNP-CpG-ODN every five days. Tumor volumes and macroscopic and histological examination of resected solid tumors were used to quantitatively and qualitatively assess tumor growth inhibition. Relative to [3H]-CpG-ODN, dinitrophenylated [3H]-CpG-ODNs displayed substantial increases in systemic exposure (900–1650 fold) and half-life (100–300 fold), marked decreases in systemic clearance (750–1500 fold) and volume of tissue distribution (13–37 fold), as well as substantial and sustained tumor accumulation (~30% vs. <2% injected dose/g). Antitumor efficacy studies demonstrated that DNP-CpG-ODN inhibited tumor growth by up to 60% relative to PBS control whereas CpG-ODN treatment had no apparent effect. Macroscopic and histological examination of harvested tumors at various timepoints revealed the presence of regions of necrotic tissue only in tumors from mice treated with DNP-CpG-ODN. Collectively, these results show the potential of endogenous IgG to mediate the systemic delivery of CpG-ODN to solid tumors and to enhance their antitumor activity following intravenous administration

  5. Biodistribution and pharmacokinetics of In-111-labeled Stealth{reg_sign} liposomes in patients with solid tumours

    SciTech Connect

    Harrington, K.J.; Peters, A.M.; Mohammadtaghi, S.

    1996-05-01

    The use of liposomal doxorubicin yields response rates of up to 70-80% in patients with AIDS-related Kaposi`s sarcoma with favourable alteration of the toxicity profile of the drug. Liposomal delivery of therapy in patients with solid cancers is currently under investigation. Our aim is to determine the biodistribution and pharmacokinetics of In-111-labeled Stealth{reg_sign} liposomes (SEQUUS{trademark}) liposomes (SEQUUS{trademark} Pharmaceuticals Inc., Menlo Park, USA) in patients with advanced solid malignant tumours. Ten patients (4 male, 6 female) with a median age of 59 (range 43 - 75) received 100 MBq of In-111-labeled Stealth{reg_sign} liposomes. Four had breast cancer, 3 head and neck tumours, 2 lung and 1 cervical cancer. Blood samples and whole body gamma camera images were obtained at 0.5, 4, 24, 48, 72, 96 and 240 hours after injection and sequential 24 hour urine collections were performed for the first 96 h. SPECT imaging was performed when indicated. High definition images of tumours were obtained in 9 patients (3/4 breast, 3/3 head and neck, 2/2 lung and 1/1 cervix cancers). One patient (breast cancer) had negative images. The median cumulative urinary excretion of In-111 over the first 96 h was 17.8 (range 3.5-21.3) % of the injected dose. The uptake of liposomes in various tissues was estimated from regions of interest on the whole body images. Prominent uptake was seen in the liver (10-15% of injected dose), lungs (4-9%) and spleen (2-8%). Tumour uptake in the first 96 h varied form 0.5-4% of the injected dose. This is approximately 10 fold higher than might be expected from experience with other targeting methods (eg monoclonal antibodies). These data confirm that Stealth liposomes have a prolonged circulation half-life and localise to solid tumour tissue.

  6. Influence of Polyethylene Glycol Density and Surface Lipid on Pharmacokinetics and Biodistribution of Lipid-Calcium-Phosphate Nanoparticles

    PubMed Central

    Liu, Yang; Hu, Yunxia; Huang, Leaf

    2014-01-01

    The pharmacokinetics (PK) and biodistribution of nanoparticles (NPs) are controlled by a complex array of interrelated, physicochemical and biological factors of NPs. The lipid-bilayer core structure of the Lipid-Calcium-Phosphate (LCP) NPs allows us to examine the effects of the density of polyethylene glycol (PEG) and the incorporation of various lipids onto the surface on their fate in vivo. Fluorescence quantification estimated that up to 20% (molar percent of outer leaflet lipids) could be grafted on the surface of LCP NPs. Contrary to the common belief that high level of PEGylation could prevent the uptake of NPs by the reticuloendothelial system (RES) organs such as liver and spleen, a significant amount of the injected dose was observed in the liver. Confocal microscopy revealed that LCP NPs were largely localized in hepatocytes not Kupffer cells. It was further demonstrated that the delivery to hepatocytes was dependent on both the concentration of PEG and the surface lipids. LCP NPs could be directed from hepatocytes to Kupffer cells by decreasing PEG concentration on the particle surface. In addition, LCP NPs with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) exhibited higher accumulation in the hepatocytes than LCP NPs with dioleoylphosphatidylcholine (DOPC). Analysis of the proteins bound to NPs suggested that apolipoprotein E (apoE) might serve as an endogenous targeting ligand for LCP-DOTAP NPs, but not LCP-DOPC NPs. The significant uptake of NPs by the hepatocytes is of great interest to formulation design for oncologic and hepatic drug deliveries. PMID:24388798

  7. Preclinical Evaluation of DMA, a Bisbenzimidazole, as Radioprotector: Toxicity, Pharmacokinetics, and Biodistribution Studies in Balb/c Mice.

    PubMed

    Nimesh, Hemlata; Tiwari, Vinod; Yang, Chunhua; Gundala, Sushma R; Chuttani, Krishna; Hazari, Puja P; Mishra, Anil K; Sharma, Abhisheak; Lal, Jawahar; Katyal, Anju; Aneja, Ritu; Tandon, Vibha

    2015-10-01

    Radiotherapy, a therapeutic modality of cancer treatment, nonselectively damages normal tissues as well as tumor tissues. The search is ongoing for therapeutic agents that selectively reduce radiation-induced normal tissue injury without reducing tumoricidal effect, thereby increasing the therapeutic ratio of radiation therapy. Our laboratory established 5-(4-methylpiperazin-1-yl)-2-[2'-(3,4-dimethoxyphenyl)-5'benzimidazolyl] benzimidazole (DMA) as noncytotoxic radioprotector in mammalian cells. DMA showed an excellent radioprotection in mice at single nontoxic oral dose by a dose-reduction factor of 1.28. An oxygen radical absorbing capacity assay confirmed its free-radical quenching ability. Single bolus dose and 28-days of repeated administration of DMA in mice for toxicity studies determined an LD50 of >2000 mg/kg body weight (bw) and 225 mg/kg bw, respectively, suggesting DMA is safe. Histopathology, biochemical parameters, and relative organ weight analysis revealed insignificant changes in the DMA-treated animals. The pharmacokinetic study of DMA at oral and intravenous doses showed its C(max) = 1 hour, bioavailability of 8.84%, elimination half-life of 4 hours, and an enterohepatic recirculation. Biodistribution study in mice with Ehrlich ascites tumors showed that (99m)Tc-DMA achieved its highest concentration in 1 hour and was retained up to 4 hours in the lungs, liver, kidneys, and spleen, and in a low concentration in the tumor, a solicited property of any radioprotector to protect normal cells over cancerous cells. We observed that the single-dose treatment of tumor-bearing mice with DMA 2 hours before 8 Gy total body irradiation showed an impressive rescue of radiation-induced morbidity in terms of weight loss and mortality without a change in tumor response. PMID:26240287

  8. Mechanisms in photodynamic therapy: Part three—Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction

    PubMed Central

    Castano, Ana P.; Demidova, Tatiana N.; Hamblin, Michael R.

    2013-01-01

    Summary Photodynamic therapy (PDT) has been known for over a hundred years, but is only now becoming widely used. Originally developed as cancer therapy, some of its most successful applications are for non-malignant disease. The majority of mechanistic research into PDT, however, is still directed towards anti-cancer applications. In the final part of series of three reviews, we will cover the possible reasons for the well-known tumor localizing properties of photosensitizers (PS). When PS are injected into the bloodstream they bind to various serum proteins and this can affect their phamacokinetics and biodistribution. Different PS can have very different pharmacokinetics and this can directly affect the illumination parameters. Intravenously injected PS undergo a transition from being bound to serum proteins, then bound to endothelial cells, then bound to the adventitia of the vessels, then bound either to the extracellular matrix or to the cells within the tumor, and finally to being cleared from the tumor by lymphatics or blood vessels, and excreted either by the kidneys or the liver. The effect of PDT on the tumor largely depends at which stage of this continuous process light is delivered. The anti-tumor effects of PDT are divided into three main mechanisms. Powerful anti-vascular effects can lead to thrombosis and hemorrhage in tumor blood vessels that subsequently lead to tumor death via deprivation of oxygen and nutrients. Direct tumor cell death by apoptosis or necrosis can occur if the PS has been allowed to be taken up by tumor cells. Finally the acute inflammation and release of cytokines and stress response proteins induced in the tumor by PDT can lead to an influx of leukocytes that can both contribute to tumor destruction as well as to stimulate the immune system to recognize and destroy tumor cells even at distant locations. PMID:25048669

  9. Biodistribution and pharmacokinetics of the (99m)Tc labeled human elastase inhibitor, elafin, in rats.

    PubMed

    Kaschwich, Mark; Lützen, Ulf; Zhao, Yi; Tjiong, Angelina; Marx, Marlies; Haenisch, Sierk; Wiedow, Oliver; Preuss, Stefanie; Culman, Juraj; Zuhayra, Maaz

    2016-04-01

    Elafin is a potent reversible inhibitor of the pro-inflammatory proteases leukocyte elastase and protease 3. It is currently in clinical development for the use in postoperative inflammatory diseases. We investigated the pharmacokinetics of (99m)Tc-labeled elafin ((99m)Tc-Elafin) in blood and individual organs in rat after bolus intravenous injection using the single photon emission tomography (SPECT). (99m)Tc-Elafin predominantly accumulated in the kidney reaching a maximum of 8.5% ± 0.1% of the injected dose per gram (ID/g) at 5 min post injection (p.i) and decreased only slowly during 24 h. In contrast, the initially high radio activity recorded in the other organs rapidly decreased parallel to the radioactivity detected in blood. The blood kinetics fits to a two compartment kinetics model. The radio activity in the dissected kidney was 4.98 ± 1.24%ID/g 24 h p.i, while in other organs, including the brain, no accumulation of (99m)Tc-Elafin was detected. At this time point 30% of the detected radioactivity in the kidney was identified to be not metabolized (99m)Tc-Elafin. In conclusion, the blood and organ-specific kinetic data provide a basis for planning of adequate dosing regimens and the high accumulation of intact elafin in the kidney favors clinical developments targeting inflammatory kidney diseases, such as chronic allograft nephropathy after kidney transplantation. PMID:26948953

  10. Biodistribution and pharmacokinetics of the (99m)Tc labeled human elastase inhibitor, elafin, in rats.

    PubMed

    Kaschwich, Mark; Lützen, Ulf; Zhao, Yi; Tjiong, Angelina; Marx, Marlies; Haenisch, Sierk; Wiedow, Oliver; Preuss, Stefanie; Culman, Juraj; Zuhayra, Maaz

    2016-04-01

    Elafin is a potent reversible inhibitor of the pro-inflammatory proteases leukocyte elastase and protease 3. It is currently in clinical development for the use in postoperative inflammatory diseases. We investigated the pharmacokinetics of (99m)Tc-labeled elafin ((99m)Tc-Elafin) in blood and individual organs in rat after bolus intravenous injection using the single photon emission tomography (SPECT). (99m)Tc-Elafin predominantly accumulated in the kidney reaching a maximum of 8.5% ± 0.1% of the injected dose per gram (ID/g) at 5 min post injection (p.i) and decreased only slowly during 24 h. In contrast, the initially high radio activity recorded in the other organs rapidly decreased parallel to the radioactivity detected in blood. The blood kinetics fits to a two compartment kinetics model. The radio activity in the dissected kidney was 4.98 ± 1.24%ID/g 24 h p.i, while in other organs, including the brain, no accumulation of (99m)Tc-Elafin was detected. At this time point 30% of the detected radioactivity in the kidney was identified to be not metabolized (99m)Tc-Elafin. In conclusion, the blood and organ-specific kinetic data provide a basis for planning of adequate dosing regimens and the high accumulation of intact elafin in the kidney favors clinical developments targeting inflammatory kidney diseases, such as chronic allograft nephropathy after kidney transplantation.

  11. Flurbiprofen-Loaded Stealth Liposomes: Studies on the Development, Characterization, Pharmacokinetics, and Biodistribution

    PubMed Central

    Begum, MY; Abbulu, K; Sudhakar, M

    2012-01-01

    Flurbiprofen (FP) is a phenyl alkanoic acid derivative and a family of non–steroidal anti-inflammatory drug used in the treatment of arthritis. The aim of this study was to prepare a new parenteral formulation for FP that can prolong the biologic half-life of the drug, improve its therapeutic efficacy, and reduce its associated side effects targeting the inflammation due to arthritis. PEG-anchored (stealth) and non–PEG-anchored liposomes were prepared by thin film hydration technique followed by extrusion cycle and characterized for in vitro and in vivo. Stealth liposomes (SLs) exhibited increase in percent encapsulation efficiency (68%) and percent drug retention during release studies in 24 h (71%) with good stability for a period of 1 month at –20°C and 4°C (refrigerated temperature) compared with other liposomes. The maximum percent edema inhibition (58%) and significant analgesic effect of 13 s were determined for SLs. The pharmacokinetic parameters after i.v. administration to arthritis induced rats were determined and compared with non-SLs. The marked differences produced for SLs over those of non-SL (conventional) formulations with an increase in area under plasma concentration time curve, t1/2, mean residence time, and reduced clearance. The drug localization in liver, spleen, and kidney were significantly higher for non-PEGylated liposomes than the SLs. Nearly 3-fold increase in drug concentration was measured in arthritic paw when compared with the other liposome formulations. Thus SLs may help to increase the therapeutic efficacy of FP by increasing the targeting potential at the site of action. PMID:23493109

  12. In vivo pharmacokinetics, biodistribution and the anti-tumor effect of cyclic RGD-modified doxorubicin-loaded polymers in tumor-bearing mice.

    PubMed

    Wang, Chen; Li, Yuan; Chen, Binbin; Zou, Meijuan

    2016-10-01

    In our previous study, we successfully produced and characterized a multifunctional drug delivery system with doxorubicin (RC/GO/DOX), which was based on graphene oxide (GO) and cyclic RGD-modified chitosan (RC). Its characteristics include: pH-responsiveness, active targeting of hepatocarcinoma cells, and efficient loading with controlled drug release. Here, we report the pharmacokinetics, biodistribution, and anti-tumor efficacy of RC/GO/DOX polymers in tumor-bearing nude mice. The objective of this study is to assess its targeting potential for tumors. Pharmacokinetic and biodistribution profiles demonstrated that tumor accumulation of RC/GO/DOX polymers was almost three times higher than the others, highlighting the efficacy of the active targeting strategy. Furthermore, the tumor inhibition rate of RC/GO/DOX polymers was 56.64%, 2.09 and 2.93 times higher than that of CS/GO/DOX polymers (without modification) and the DOX solution, respectively. Anti-tumor efficacy results indicated that the tumor growth was better controlled by RC/GO/DOX polymers than the others. Hematoxylin and eosin (H&E) staining showed remarkable changes in tumor histology. Compared with the saline group, the tumor section from the RC/GO/DOX group revealed a marked increase in the quantity of apoptotic and necrotic cells, and a reduction in the quantity of the blood vessels. Together, these studies show that this new system could be regarded as a suitable form of DOX-based treatment of the hepatocellular carcinoma.

  13. Pharmacokinetics, biodistribution and dosimetry of 99mTc-labeled anti-human epidermal growth factor receptor humanized monoclonal antibody R3 in rats.

    PubMed

    Iznaga Escobar, N; Morales, A M; Ducongé, J; Torres, I C; Fernández, E; Gómez, J A

    1998-01-01

    The pharmacokinetics, biodistribution and dosimetry of 99mTc-labeled anti-human epidermal growth factor receptor (anti-hEGF-r) humanized monoclonal antibody (MAb) R3 was investigated following intravenous injection in normal Wistar rats. Serum disappearance curves were best fit by a two-compartment model having a mean distribution half-life (t 1/2alpha) of 0.250 h and a mean elimination (t 1/2beta) of 13.89 h. Among the various organs, a little accumulation of the radiolabeled antibody was found only in kidneys. Biodistribution and dosimetry studies in humans were performed by extrapolation of the animal data to humans. Absorbed dose to normal organs and the remainder of the whole body were estimated using the medical internal radiation dose formula, and dose contributions from radioactivity in transit through the gastrointestinal tract were estimated using a compartment model. Extrapolated values of radiation absorbed dose to normal organs in rads per millicurie administered were whole body, 0.0085; lower large intestine wall, 0.0898; small intestine, 0.0530; upper large intestine wall, 0.0731; and kidneys, 0.0455. The effective dose equivalent predicted was 0.0162 rem/mCi and the effective dose was found to be 0.015 rem/mCi. On the basis of the pharmacokinetics, biodistribution and internal radiation dosimetry information obtained in this study, a diagnostic phase I clinical trial with 99mTc-labeled humanized MAb R3 conjugate in patients should be supported.

  14. Pharmacokinetics, Metabolism, Biodistribution, Radiation Dosimetry, and Toxicology of 18F-Fluoroacetate (18F-FACE) in Non-human Primates

    PubMed Central

    Nishii, Ryuichi; Tong, William; Wendt, Richard; Soghomonyan, Suren; Mukhopadhyay, Uday; Balatoni, Julius; Mawlawi, Osama; Bidaut, Luc; Tinkey, Peggy; Borne, Agatha; Alauddin, Mian; Gonzalez-Lepera, Carlos; Yang, Bijun; Gelovani, Juri G.

    2014-01-01

    Introduction To facilitate the clinical translation of 18F-fluoroacetate (18F-FACE), the pharmacokinetics, biodistribution, radiolabeled metabolites, radiation dosimetry, and pharmacological safety of diagnostic doses of 18F-FACE were determined in non-human primates. Methods 18F-FACE was synthesized using a custom-built automated synthesis module. Six rhesus monkeys (three of each sex) were injected intravenously with 18F-FACE (165.4± 28.5 MBq), followed by dynamic positron emission tomography (PET) imaging of the thoracoabdominal area during 0–30 min post-injection and static whole-body PET imaging at 40, 100, and 170 min. Serial blood samples and a urine sample were obtained from each animal to determine the time course of 18F-FACE and its radiolabeled metabolites. Electrocardiograms and hematology analyses were obtained to evaluate the acute and delayed toxicity of diagnostic dosages of 18F-FACE. The time-integrated activity coefficients for individual source organs and the whole body after administration of 18F-FACE were obtained using quantitative analyses of dynamic and static PET images and were extrapolated to humans. Results The blood clearance of 18F-FACE exhibited bi-exponential kinetics with half-times of 4 and 250 min for the fast and slow phases, respectively. A rapid accumulation of 18F-FACE-derived radioactivity was observed in the liver and kidneys, followed by clearance of the radioactivity into the intestine and the urinary bladder. Radio-HPLC analyses of blood and urine samples demonstrated that 18F-fluoride was the only detectable radiolabeled metabolite at the level of less than 9% of total radioactivity in blood at 180 min after the 18F-FACE injection. The uptake of free 18F-fluoride in the bones was insignificant during the course of the imaging studies. No significant changes in ECG, CBC, liver enzymes, or renal function were observed. The estimated effective dose for an adult human is 3.90–7.81 mSv from the administration of 185

  15. [Tetrahydrocannabinol pharmacokinetics; new synthetic cannabinoids; road safety and cannabis].

    PubMed

    Goullé, Jean-Perre; Guerbet, Michel

    2014-03-01

    Delta-9-tetrahydrocannabinol (THC) is the main psychoactive ingredient of cannabis, a drug which is commonly smoked This paper focuses on the pharmacokinetics of THC. The average THC content in cannabis plant material has risen by a factor offour over the past 20 years, from 4% to 16%. This increase has important implications not only for the pharmacokinetics but also for the pharmacology of THC The mean bioavailability of THC in smoked cannabis is about 25%. In a cigarette containing 3.55% of THC, a peak plasma level of about 160 ng/mL occurs approximately 10 min after inhalation. THC is quickly cleared from plasma in a multiphasic manner and is widely distributed to tissues, leading to its pharmacologic effects. Body fat is a long-term storage site. This particular pharmacokinetic behavior explains the lack of correlation between the THC blood level and clinical effects, contrary to ethanol. The main THC metabolites are 11-OH-THC (the only active metabolite) and THC-COOH, which is eliminated in feces and urine over several weeks. Therefore, abstinence can be established by analyzing THC-COOH in urine, while blood THC analysis is used to confirm recent exposure. Cannabis is the main illicit drug found among vehicle drivers. Various traffic safety studies indicate that recent use of this drug at least doubles the risk of causing an accident, and that simultaneous alcohol consumption multiplies this risk by afactor of 14. Since 2009, synthetic cannabinoids have emerged on the illicit drug market. These substances act on the same CB1 receptors as THC, but with higher afinity. Their pharmacokinetics differs from that of THC, as they are metabolized into multiple derivatives, most of which are more active than THC itself. PMID:26427296

  16. In vivo pharmacokinetics, biodistribution and antitumor effect of amphiphilic poly(L-amino acids) micelles loaded with a novel all-trans retinoic acid derivative.

    PubMed

    Tang, Jihui; Wang, Xinqun; Wang, Ting; Chen, Feihu; Zhou, Jianping

    2014-01-23

    Poly(amino acid)s are well-known as biodegradable and environmentally acceptable materials. In this study, a series of poly(L-aspartic acid)-b-poly(L-phenylalanine) (PAA-PPA) compounds with different degrees of polymerization were used to prepare copolymer micelles for a poorly water-soluble drug 4-amino-2-trifluoromethyl-phenyl retinate (ATPR, a novel all-trans retinoic acid derivative) and in vivo pharmacokinetics, biodistribution and antitumor efficacy of ATPR delivered by PAA-PPA micelles were evaluated. The area under the plasma concentration time curve AUC0→∞ of ATPR-loaded PAA20PPA20 micelles was 2.23 and 1.97 times higher than that of ATPR solution and ATPR CrmEL solution, respectively; In addition, the mean residence time (MRT) was increased 1.67 and 1.97-fold, respectively and the total body clearance (CL) was reduced 2.25 and 1.98-fold, respectively. The biodistribution study indicated that most of the ATPR in the ATPR-M group was distributed in the liver and there was delayed liver aggregation compared with the ATPR solution and ATPR CrmEL solution groups. Furthermore, the antitumor efficacy of ATPR-loaded PAA20PPA20 micelles was demonstrated in in vivo antitumor models involving mice inoculated with the human gastric cancer cell line SGC-7901. At the same dose of 7mg/kg, the ATPR-loaded micelles group demonstrated a better tumor growth inhibition and induced differentiation than the groups given ATPR solution and ATPR CrmEL solution. Therefore, the ATPR-loaded PAA-PPA micelles appear to be a potentially useful drug delivery system for ATPR and suitable for the chemotherapy of gastric cancer.

  17. The Pharmacokinetics and Biodistribution of a 64 kDa PolyPEG Star Polymer After Subcutaneous and Pulmonary Administration to Rats.

    PubMed

    Khor, Song Yang; Hu, Jinming; McLeod, Victoria M; Quinn, John F; Porter, Christopher J H; Whittaker, Michael R; Kaminskas, Lisa M; Davis, Thomas P

    2016-01-01

    PolyPEG star polymers have potential utility as cost-effective polymeric drug delivery vehicles, and as such, it is important to develop an understanding of their biopharmaceutical behavior. Moreover, although a number of studies have evaluated the utility of PolyPEG stars in vitro, investigation of these novel materials in vivo has been limited. Herein, we evaluated the pharmacokinetics of a 64 kDa tritiated PEG-based star polymer after subcutaneous and pulmonary administration in rats. After subcutaneous administration, the star polymer showed near complete bioavailability (∼80%) and a similar organ biodistribution profile to the polymer after intravenous administration. After intratracheal instillation to the lungs, the star polymer showed limited bioavailability (∼3%), and most of the administered radiolabel was recovered in lung tissue and feces after 6 d. The data reported here suggest that star polymers display similar pharmaceutical behavior to PEGylated dendrimers after subcutaneous and inhaled delivery and may therefore be used as similar, but more cost-effective drug delivery vehicles.

  18. Rufinamide in children with refractory epilepsy: pharmacokinetics, efficacy, and safety.

    PubMed

    Dahlin, Maria G; Ohman, Inger

    2012-10-01

    We examined the influence of age and type of concomitant antiepileptic drugs (AEDs) on the pharmacokinetics of rufinamide (RUF) as well as its efficacy and safety in 51 children with refractory epilepsy. In a retrospective noninterventional survey, dose-to-concentration ratios of RUF and concomitant AEDs were calculated: the weight-normalized dose (mg/kg/d) divided by the steady-state trough plasma drug level, which was used as a measure of clearance. During treatment with RUF concomitantly with valproic acid (VPA) young children, aged 0 to 4.9 years, had a low clearance of RUF, which did not differ from older children. If not on VPA but on enzyme inducers, young children had a threefold higher clearance of RUF than the older ones. In young children not on VPA, those on enzyme inducers had 1.7-fold higher clearance than those on nonenzyme inducers. In children neither on VPA nor on enzyme inducers, RUF clearance was age-dependent with higher clearance in younger children. Adding RUF did not change the pharmacokinetics of concomitantly used AEDs. Seizure response after 2 to 3 months on RUF treatment was found in 12 of 51 children (23.5%), at mean plasma level of 36.9 ± 22.0 µmol/L. Adverse events were reported in 41% of the patients of which fatigue was most frequent (24%). PMID:22941776

  19. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis

    PubMed Central

    Gaudin, Alice; Lepetre-Mouelhi, Sinda; Mougin, Julie; Parrod, Martine; Pieters, Grégory; Garcia-Argote, Sébastien; Loreau, Olivier; Goncalves, Jordan; Chacun, Hélène; Courbebaisse, Yann; Clayette, Pascal; Desmaële, Didier; Rousseau, Bernard; Andrieux, Karine; Couvreur, Patrick

    2015-01-01

    Adenosine is a pleiotropic endogenous nucleoside with potential neuroprotective pharmacological activity. However, clinical use of adenosine is hampered by its extremely fast metabolization. To overcome this limitation, we recently developed a new squalenoyl nanomedicine of adenosine [Squalenoyl-Adenosine (SQAd)] by covalent linkage of this nucleoside to the squalene, a natural lipid. The resulting nanoassemblies (NAs) displayed a dramatic pharmacological activity both in cerebral ischemia and spinal cord injury pre-clinical models. The aim of the present study was to investigate the plasma profile and tissue distribution of SQAd NAs using both Squalenoyl-[3H]-Adenosine NAs and [14C]-Squalenoyl-Adenosine NAs as respective tracers of adenosine and squalene moieties of the SQAd bioconjugate. This study was completed by radio-HPLC analysis allowing to determine the metabolization profile of SQAd. We report here that SQAd NAs allowed a sustained circulation of adenosine under its prodrug form (SQAd) for at least 1 h after intravenous administration, when free adenosine was metabolized within seconds after injection. Moreover, the squalenoylation of adenosine and its formulation as NAs also significantly modified biodistribution, as SQAd NAs were mainly captured by the liver and spleen, allowing a significant release of adenosine in the liver parenchyma. Altogether, these results suggest that SQAd NAs provided a reservoir of adenosine into the bloodstream which may explain the previously observed neuroprotective efficacy of SQAd NAs against cerebral ischemia and spinal cord injury. PMID:26087468

  20. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis.

    PubMed

    Gaudin, Alice; Lepetre-Mouelhi, Sinda; Mougin, Julie; Parrod, Martine; Pieters, Grégory; Garcia-Argote, Sébastien; Loreau, Olivier; Goncalves, Jordan; Chacun, Hélène; Courbebaisse, Yann; Clayette, Pascal; Desmaële, Didier; Rousseau, Bernard; Andrieux, Karine; Couvreur, Patrick

    2015-08-28

    Adenosine is a pleiotropic endogenous nucleoside with potential neuroprotective pharmacological activity. However, clinical use of adenosine is hampered by its extremely fast metabolization. To overcome this limitation, we recently developed a new squalenoyl nanomedicine of adenosine [Squalenoyl-Adenosine (SQAd)] by covalent linkage of this nucleoside to the squalene, a natural lipid. The resulting nanoassemblies (NAs) displayed a dramatic pharmacological activity both in cerebral ischemia and spinal cord injury pre-clinical models. The aim of the present study was to investigate the plasma profile and tissue distribution of SQAd NAs using both Squalenoyl-[(3)H]-Adenosine NAs and [(14)C]-Squalenoyl-Adenosine NAs as respective tracers of adenosine and squalene moieties of the SQAd bioconjugate. This study was completed by radio-HPLC analysis allowing to determine the metabolization profile of SQAd. We report here that SQAd NAs allowed a sustained circulation of adenosine under its prodrug form (SQAd) for at least 1h after intravenous administration, when free adenosine was metabolized within seconds after injection. Moreover, the squalenoylation of adenosine and its formulation as NAs also significantly modified biodistribution, as SQAd NAs were mainly captured by the liver and spleen, allowing a significant release of adenosine in the liver parenchyma. Altogether, these results suggest that SQAd NAs provided a reservoir of adenosine into the bloodstream which may explain the previously observed neuroprotective efficacy of SQAd NAs against cerebral ischemia and spinal cord injury. PMID:26087468

  1. Transduction of Photoreceptors With Equine Infectious Anemia Virus Lentiviral Vectors: Safety and Biodistribution of StarGen for Stargardt Disease

    PubMed Central

    Binley, Katie; Widdowson, Peter; Loader, Julie; Kelleher, Michelle; Iqball, Sharifah; Ferrige, Georgina; de Belin, Jackie; Carlucci, Marie; Angell-Manning, Diana; Hurst, Felicity; Ellis, Scott; Miskin, James; Fernandes, Alcides; Wong, Paul; Allikmets, Rando; Bergstrom, Christopher; Aaberg, Thomas; Yan, Jiong; Kong, Jian; Gouras, Peter; Prefontaine, Annick; Vezina, Mark; Bussieres, Martin; Naylor, Stuart; Mitrophanous, Kyriacos A.

    2013-01-01

    Purpose. StarGen is an equine infectious anemia virus (EIAV)-based lentiviral vector that expresses the photoreceptor-specific adenosine triphosphate (ATP)-binding cassette transporter (ABCA4) protein that is mutated in Stargardt disease (STGD1), a juvenile macular dystrophy. EIAV vectors are able to efficiently transduce rod and cone photoreceptors in addition to retinal pigment epithelium in the adult macaque and rabbit retina following subretinal delivery. The safety and biodistribution of StarGen following subretinal delivery in macaques and rabbits was assessed. Methods. Regular ophthalmic examinations, IOP measurements, ERG responses, and histopathology were carried out in both species to compare control and vector-treated eyes. Tissue and fluid samples were obtained to evaluate the persistence, biodistribution, and shedding of the vector following subretinal delivery. Results. Ophthalmic examinations revealed a slightly higher level of inflammation in StarGen compared with control treated eyes in both species. However, inflammation was transient and no overt toxicity was observed in StarGen treated eyes and there were no abnormal clinical findings. There was no StarGen-associated rise in IOP or abnormal ERG response in either rabbits or macaques. Histopathologic examination of the eyes did not reveal any detrimental changes resulting from subretinal administration of StarGen. Although antibodies to StarGen vector components were detected in rabbit but not macaque serum, this immunologic response did not result in any long-term toxicity. Biodistribution analysis demonstrated that the StarGen vector was restricted to the ocular compartment. Conclusions. In summary, these studies demonstrate StarGen to be well tolerated and localized following subretinal administration. PMID:23620430

  2. Pharmacokinetics and biodistribution of intravenous Lu-177 CC49 murine monoclonal antibody (MAb) in patients with metastatic adenocarcinoma

    SciTech Connect

    Carrasquillo, J.; Mulligan, T.; Chung, Y.

    1994-05-01

    The pharmacokinetics of Lu-177 labeled CG49, a murine monoclonal antibody that is undergoing testing for radioimmunotherapy, was evaluated. CC49 is a second generation murine MAb that recognizes TAG-72, a pan-carcinoma tumor associated antigen. Labeling of CC49 MAb with Lu-177, a beta emitter was performed by first labeling a derivative of 1,4,5,10-tetraazacyclododecane-tetraacetic acid (PA-DOTA) with Lu-177 and then attaching the Lu-177 labeled PA-DOTA to CC49. CC49 was labeled with Lu-177 at a maximum specific activity of 185 MBq/mg. HPLC showed 96-100% protein bound Lu-177 and <4% aggregate formation. A Phase I dose escalation study was performed. Nine patients with TAG-72 positive, advanced metastatic adenocarcinoma (5- breast, 3- colorectal and 1- lung) were treated with escalating iv doses of Lu-177-(PA-DOTA) CC49: 370 MBq/m2, 555 MBq/m2 and 925 MBq/m2 (range 560-1575 MBq). Pharmacokinetics showed that the plasma cleared with a T1/2 of {approximately}67 hrs which is in the range seen with I-131 CC49. The whole body retention of Lu-177 was prolonged with a biological T1/2 of 223 hr. Urinary excretion ranged from 7 to 26% in the first 96 hrs. Serial images showed early blood pool distribution with prominent uptake in the liver, spleen and marrow. Some intestinal excretion was noted. Tumor imaging was seen in all patients although riot all tumors were visualized. Bone marrow biopsies were obtained in all patients and suggested that the accumulation seen on scan was predominantly in the marrow rather than the bone. MIRDOSE estimates from the first 6 patients suggested doses to the marrow in the range of {approximately}4 cG/37 MBq. This study indicated that while the serum pharmacokinetics of Lu-177-(PA-DOTA)-CC49 are similar to those seen with I-131 CC49, the whole body retention and bone marrow accumulation are different and therefore require further investigation to minimize the bone marrow accumulation.

  3. The Safety, Pharmacokinetics, and Efficacy of Intraocular Celecoxib

    PubMed Central

    Kim, Stephen J.; Toma, Hassanain; Shah, Rohan; Kompella, Uday B.; Vooturi, Sunil K.; Sheng, Jinsong

    2014-01-01

    Purpose. To determine safety, pharmacokinetics, and anti-inflammatory effects of intraocular celecoxib. Methods. The right eye of animals was injected with 1.5, 3, or 6 mg celecoxib prepared in dimethyl sulfoxide (DMSO). Left eyes served as controls and received 0.1 mL DMSO. Electroretinograms (ERG) were obtained at baseline and at 1, 4, and 12 weeks, and eyes were enucleated afterward for histopathologic analysis. For pharmacokinetics, 3 mg celecoxib was injected, and vitreous and retina/choroid drug levels were then analyzed at specific time points. For efficacy, 1 μg lipopolysaccharide was injected to induce inflammation; the right eye was then injected with 3 mg celecoxib (six eyes) or 2 mg triamcinolone acetonide (six eyes) and the left eye with saline. Twenty-four hours later, aqueous fluid was removed, and total leukocyte concentration and prostaglandin E2 (PGE2) concentration were determined. Results. Histologic and ERG studies demonstrated no signs of retinal or optic nerve toxicity. After a single 3-mg injection, vitreous (0.06 μg/mL) and retina/choroid (132.31 μg/g) celecoxib concentrations at 8 weeks exceeded median inhibitory concentration. Treatment with celecoxib and triamcinolone significantly reduced total leukocyte count by 40% (P = 0.02) and 31% (P = 0.01), respectively. Reduction in PGE2 levels paralleled reduction in leukocyte counts (P < 0.05). There was no increase in intraocular pressure, but cataract formation was observed at higher concentrations. Conclusions. Intraocular injection of celecoxib appeared to be nontoxic and demonstrated excellent penetration into the retina/choroid and sustained drug levels out to 8 weeks. Celecoxib demonstrated potent anti-inflammatory effects, but there was an association with cataract formation at higher doses. PMID:24458149

  4. Biodistribution and pharmacokinetics of111In-DTPA-labelled pegylated liposomes in a human tumour xenograft model: implications for novel targeting strategies

    PubMed Central

    Harrington, K J; Rowlinson-Busza, G; Syrigos, K N; Uster, P S; Abra, R M; Stewart, J S W

    2000-01-01

    The biodistribution and pharmacokinetics of111In-DTPA-labelled pegylated liposomes in tumour-bearing nude mice was studied to examine possible applications of pegylated liposome-targeted anti-cancer therapies. Nude mice received an intravenous injection of 100 μl of111In-DTPA-labelled pegylated liposomes, containing 0.37–0.74 MBq of activity. The t 1/2α and t 1/2β of111In-DTPA-labelled pegylated liposomes were 1.1 and 10.3 h, respectively. Tumour uptake was maximal at 24 h at 5.5 ± 3.0% ID g–1. Significant reticuloendothelial system uptake was demonstrated with 19.3 ± 2.8 and 18.8 ± 4.2% ID g–1at 24 h in the liver and spleen, respectively. Other sites of appreciable deposition were the kidney, skin, female reproductive tract and to a lesser extent the gastrointestinal tract. There was no indication of cumulative deposition of pegylated liposomes in the lung, central nervous system, musculoskeletal system, heart or adrenal glands. In contrast, the t 1/2α and t 1/2β of unencapsulated111In-DTPA were 5 min and 1.1 h, respectively, with no evidence of accumulation in tumour or normal tissues. Incubation of111In-DTPA-labelled pegylated liposomes in human serum for up to 10 days confirmed that they are very stable, with only minor leakage of their contents. The potential applications of pegylated liposomes in the arena of targeted therapy of solid cancers are discussed. © 2000 Cancer Research Campaign PMID:10901376

  5. Evaluation of Biodistribution and Safety of Adenovirus Vectors Containing Group B Fibers after Intravenous Injection into Baboons

    PubMed Central

    NI, SHAOHENG; BERNT, KATHRIN; GAGGAR, ANUJ; LI, ZONG-YI; KIEM, HANS-PETER; LIEBER, ANDRÉ

    2005-01-01

    Vectors containing group B adenovirus (Ad) fibers are able to efficiently transduce gene therapy targets that are refractory to infection with standard Ad serotype 5 (Ad5) vectors, including malignant tumor cells, hematopoietic stem cells, and dendritic cells. Preliminary studies in mice indicate that, after intravenous injection, B-group fiber-containing Ads do not efficiently transduce most organs and cause less acute toxicity than Ad5 vectors. However, biodistribution and safety studies in mice are of limited value because the mouse analog of the B-group Ad receptor, CD46, is expressed only in the testis, whereas in humans, CD46 is expressed on all nucleated cells. Unlike mice, baboons have CD46 expression patterns and levels that closely mimic those in humans. We conducted a biodistribution and toxicity study of group B Ad fiber-containing vectors in baboons. Animals received phosphate-buffered saline, Ad5-bGal (a first-generation Ad5 vector), or B-group fiber-containing Ads (Ad5/35-bGal and Ad5/11-bGal) at a dose of 2 × 1012 VP/kg, and vector biodistribution and safety was analyzed over 3 days. The amount of Ad5/35-bGal and Ad5/11-bGal vector genomes was in most tissues one to three orders of magnitude below that of Ad5. Significant Ad5/35- and Ad5/11-mediated transgene (β-galactosidase) expression was seen only in the marginal zone of splenic follicles. Compared with the animal that received Ad5-bGal, all animals injected with B-group fiber-containing Ad vectors had lower elevations in serum proinflammatory cytokine levels. Gross and histopathology were normal in animals that received B-group Ad fiber-containing Ads, in contrast to the Ad5-infused animal, which showed widespread endothelial damage and inflammation. In a further study, a chimeric Ad5/35 vector carrying proapoptotic TRAIL and Ad E1A genes under tumor-specific regulation was well tolerated in a 30-day toxicity study. No major clinical, serologic, or pathologic abnormalities were noticed in

  6. Structure-activity relationships for biodistribution, pharmacokinetics, and excretion of atomically precise nanoclusters in a murine model

    NASA Astrophysics Data System (ADS)

    Wong, O. Andrea; Hansen, Ryan J.; Ni, Thomas W.; Heinecke, Christine L.; Compel, W. Scott; Gustafson, Daniel L.; Ackerson, Christopher J.

    2013-10-01

    The absorption, distribution, metabolism and excretion (ADME) and pharmacokinetic (PK) properties of inorganic nanoparticles with hydrodynamic diameters between 2 and 20 nm are presently unpredictable. It is unclear whether unpredictable in vivo properties and effects arise from a subset of molecules in a nanomaterials preparation, or if the ADME/PK properties are ensemble properties of an entire preparation. Here we characterize the ADME/PK properties of atomically precise preparations of ligand protected gold nanoclusters in a murine model system. We constructed atomistic models and tested in vivo properties for five well defined compounds, based on crystallographically resolved Au25(SR)18 and Au102(SR)44 nanoclusters with different (SR) ligand shells. To rationalize unexpected distribution and excretion properties observed for several clusters in this study and others, we defined a set of atomistic structure-activity relationships (SAR) for nanoparticles, which includes previously investigated parameters such as particle hydrodynamic diameter and net charge, and new parameters such as hydrophobic surface area and surface charge density. Overall we find that small changes in particle formulation can provoke dramatic yet potentially predictable changes in ADME/PK.The absorption, distribution, metabolism and excretion (ADME) and pharmacokinetic (PK) properties of inorganic nanoparticles with hydrodynamic diameters between 2 and 20 nm are presently unpredictable. It is unclear whether unpredictable in vivo properties and effects arise from a subset of molecules in a nanomaterials preparation, or if the ADME/PK properties are ensemble properties of an entire preparation. Here we characterize the ADME/PK properties of atomically precise preparations of ligand protected gold nanoclusters in a murine model system. We constructed atomistic models and tested in vivo properties for five well defined compounds, based on crystallographically resolved Au25(SR)18 and Au102(SR

  7. A 5-fluorouracil-loaded floating gastroretentive hollow microsphere: development, pharmacokinetic in rabbits, and biodistribution in tumor-bearing mice.

    PubMed

    Huang, Yu; Wei, Yumeng; Yang, Hongru; Pi, Chao; Liu, Hao; Ye, Yun; Zhao, Ling

    2016-01-01

    5-Fluorouracil (5-FU) was loaded in hollow microspheres to improve its oral bioavailability. 5-FU hollow microspheres were developed by a solvent diffusion-evaporation method. The effect of Span 80 concentration, ether/ethanol volume ratio, and polyvinyl pyrrolidone/ethyl cellulose weight ratio on physicochemical characteristics, floating, and in vitro release behaviors of 5-FU hollow microspheres was investigated and optimized. The formulation and technology composed of Span 80 (1.5%, w/v), ether/ethanol (1.0:10.0, v/v), and polyvinyl pyrrolidone/ethyl cellulose (1.0:10.0, w/w) were employed to develop three batch samples, which showed an excellent reproducibility. The microspheres were spherical with a hollow structure with high drug loading amount (28.4%±0.5%) and production yield (74.2%±0.6%); they exhibited excellent floating and sustained release characteristics in simulated gastric and intestinal fluid. Pharmacokinetic studies demonstrated that 5-FU hollow microspheres significantly enhanced oral bioavailability (area under curve, [AUC](0-t): 12.53±1.65 mg/L(*)h vs 7.80±0.83 and 5.82±0.83 mg/L(*)h) with longer elimination half-life (t1/2) (15.43±2.12 hours vs 2.25±0.22 and 1.43±0.18 hours) and mean residence time (7.65±0.97 hours vs 3.61±0.41 and 2.34±0.35 hours), in comparison with its solid microspheres and powder. In vivo distribution results from tumor-bearing nude mice demonstrated that the animals administered with 5-FU hollow microspheres had much higher drug content in tumor, plasma, and stomach at 1 and 8 hours except for 0.5 hours sample collection time point in comparison with those administered with 5-FU solid microspheres and its powder. These results suggested that the hollow microspheres would be a promising controlled drug delivery system for an oral chemotherapy agent like 5-FU.

  8. A 5-fluorouracil-loaded floating gastroretentive hollow microsphere: development, pharmacokinetic in rabbits, and biodistribution in tumor-bearing mice

    PubMed Central

    Huang, Yu; Wei, Yumeng; Yang, Hongru; Pi, Chao; Liu, Hao; Ye, Yun; Zhao, Ling

    2016-01-01

    5-Fluorouracil (5-FU) was loaded in hollow microspheres to improve its oral bioavailability. 5-FU hollow microspheres were developed by a solvent diffusion–evaporation method. The effect of Span 80 concentration, ether/ethanol volume ratio, and polyvinyl pyrrolidone/ethyl cellulose weight ratio on physicochemical characteristics, floating, and in vitro release behaviors of 5-FU hollow microspheres was investigated and optimized. The formulation and technology composed of Span 80 (1.5%, w/v), ether/ethanol (1.0:10.0, v/v), and polyvinyl pyrrolidone/ethyl cellulose (1.0:10.0, w/w) were employed to develop three batch samples, which showed an excellent reproducibility. The microspheres were spherical with a hollow structure with high drug loading amount (28.4%±0.5%) and production yield (74.2%±0.6%); they exhibited excellent floating and sustained release characteristics in simulated gastric and intestinal fluid. Pharmacokinetic studies demonstrated that 5-FU hollow microspheres significantly enhanced oral bioavailability (area under curve, [AUC](0−t): 12.53±1.65 mg/L*h vs 7.80±0.83 and 5.82±0.83 mg/L*h) with longer elimination half-life (t1/2) (15.43±2.12 hours vs 2.25±0.22 and 1.43±0.18 hours) and mean residence time (7.65±0.97 hours vs 3.61±0.41 and 2.34±0.35 hours), in comparison with its solid microspheres and powder. In vivo distribution results from tumor-bearing nude mice demonstrated that the animals administered with 5-FU hollow microspheres had much higher drug content in tumor, plasma, and stomach at 1 and 8 hours except for 0.5 hours sample collection time point in comparison with those administered with 5-FU solid microspheres and its powder. These results suggested that the hollow microspheres would be a promising controlled drug delivery system for an oral chemotherapy agent like 5-FU. PMID:27042001

  9. Clindamycin Pharmacokinetics and Safety in Preterm and Term Infants

    PubMed Central

    Gonzalez, Daniel; Delmore, Paula; Bloom, Barry T.; Cotten, C. Michael; Poindexter, Brenda B.; McGowan, Elisabeth; Shattuck, Karen; Bradford, Kathleen K.; Smith, P. Brian; Cohen-Wolkowiez, Michael; Morris, Maurine; Yin, Wanrong; Benjamin, Daniel K.

    2016-01-01

    Clindamycin may be active against methicillin-resistant Staphylococcus aureus, a common pathogen causing sepsis in infants, but optimal dosing in this population is unknown. We performed a multicenter, prospective pharmacokinetic (PK) and safety study of clindamycin in infants. We analyzed the data using a population PK analysis approach and included samples from two additional pediatric trials. Intravenous data were collected from 62 infants (135 plasma PK samples) with postnatal ages of <121 days (median [range] gestational age of 28 weeks [23 to 42] and postnatal age of 17 days [1 to 115]). In addition to body weight, postmenstrual age (PMA) and plasma protein concentrations (albumin and alpha-1 acid glycoprotein) were found to be significantly associated with clearance and volume of distribution, respectively. Clearance reached 50% of the adult value at PMA of 39.5 weeks. Simulated PMA-based intravenous dosing regimens administered every 8 h (≤32 weeks PMA, 5 mg/kg; 32 to 40 weeks PMA, 7 mg/kg; >40 to 60 weeks PMA, 9 mg/kg) resulted in an unbound, steady-state concentration at half the dosing interval greater than a MIC for S. aureus of 0.12 μg/ml in >90% of infants. There were no adverse events related to clindamycin use. (This study has been registered at ClinicalTrials.gov under registration no. NCT01728363.) PMID:26926644

  10. Pharmacokinetics and safety of epinephrine use in liposuction.

    PubMed

    Brown, Spencer A; Lipschitz, Avron H; Kenkel, Jeffrey M; Sorokin, Evan; Shepherd, Greene; Grebe, Stefan; Oliver, Lawrence K; Luby, Maureen; Rohrich, Rod J

    2004-09-01

    Patients are routinely exposed to high-dose epinephrine infiltration during large-volume liposuction. Because of the serious cardiovascular side-effect profile of catecholamine overdose, the authors examined the safety of larger-volume liposuction by assessing epinephrine pharmacokinetics. Five female volunteers with American Society of Anesthesiologists physical status of I or II, aged 29 to 40 years and weighing 75.9 to 95 kg, underwent liposuction. The wetting solution contained 7.3 mg (SEM, 0.7 mg) of epinephrine, corresponding to 0.09 mg/kg (0.04 mg/kg). Total plasma epinephrine and norepinephrine concentrations were assessed by high-performance liquid chromatography. Approximate exogenous epinephrine absorption was calculated after correction for estimated endogenous epinephrine production. Pharmacokinetic assessments were performed using standard equations. The total plasma epinephrine peak occurred at the final intraoperative reading (5 hours after induction) and was 323 pg/ml (24.8 pg/ml), three to four times maximum baseline resting levels. The norepinephrine level was slightly elevated throughout the study period, with a reversal of the normal epinephrine/norepinephrine ratio (<0.5:1) demonstrated intraoperatively (>5:1). Estimated time to peak exogenous epinephrine level ranged from 1 to 4 hours from the start of infiltration. Area under the plasma concentration versus time curve was approximately 2089 to 2610 pg x hour/ml. Peak exogenous epinephrine concentration was estimated to be 286 to 335 pg/ml. Clearance was 764,508 ml/hour and volume of distribution was 0.4 liter/kg (0.006 liter/kg). Total absorbed epinephrine was estimated, 1.8 mg to 2.2 mg, equivalent to 25 to 32 percent of the infiltrated dose. The reversal of the normal epinephrine/norepinephrine ratio and the fact that norepinephrine levels were within normal range implied that the majority of plasma epinephrine measured was exogenously infiltrated and not endogenously synthesized. On the

  11. Single-Dose Pharmacokinetics and Safety of Ziprasidone in Children and Adolescents

    ERIC Educational Resources Information Center

    Sallee, Floyd R.; Miceli, Jeffrey J.; Tensfeldt, Thomas; Robarge, Lisa; Wilner, Keith; Patel, Nick C.

    2006-01-01

    Objective: The purpose of this study was to provide single-dose pharmacokinetic, safety, and tolerability data for ziprasidone in youths with tic disorder, for comparison to adult studies to discern whether ziprasidone pediatric dosing could be modeled from adult data. Method: A single-dose, open-label study of ziprasidone was conducted in youths…

  12. FRAMEWORK FOR EVALUATION OF PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODELS FOR USE IN SAFETY OR RISK ASSESSMENT

    EPA Science Inventory

    ABSTRACT

    Proposed applications of increasingly sophisticated biologically-based computational models, such as physiologically-based pharmacokinetic (PBPK) models, raise the issue of how to evaluate whether the models are adequate for proposed uses including safety or risk ...

  13. The Sheep as a Model of Preclinical Safety and Pharmacokinetic Evaluations of Candidate Microbicides

    PubMed Central

    Cameron, David; Dias, Nicola; Holding, Jeremy; Muntendam, Alex; Oostebring, Freddy; Dreier, Peter; Rohan, Lisa; Nuttall, Jeremy

    2015-01-01

    When developing novel microbicide products for the prevention of HIV infection, the preclinical safety program must evaluate not only the active pharmaceutical ingredient but also the product itself. To that end, we applied several relatively standard toxicology study methodologies to female sheep, incorporating an assessment of the pharmacokinetics, safety, tolerability, and local toxicity of a dapivirine-containing human vaginal ring formulation (Dapivirine Vaginal Ring-004). We performed a 3-month general toxicology study, a preliminary pharmacokinetic study using drug-loaded vaginal gel, and a detailed assessment of the kinetics of dapivirine delivery to plasma, vaginal, and rectal fluid and rectal, vaginal, and cervical tissue over 28 days of exposure and 3 and 7 days after removal of the ring. The findings of the general toxicology study supported the existing data from both preclinical and clinical studies in that there were no signs of toxicity related to dapivirine. In addition, the presence of the physical dapivirine ring did not alter local or systemic toxicity or the pharmacokinetics of dapivirine. Pharmacokinetic studies indicated that the dapivirine ring produced significant vaginal tissue levels of dapivirine. However, no dapivirine was detected in cervical tissue samples using the methods described here. Plasma and vaginal fluid levels were lower than those in previous clinical studies, while there were detectable dapivirine levels in the rectal tissue and fluid. All tissue and fluid levels tailed off rapidly to undetectable levels following removal of the ring. The sheep represents a very useful model for the assessment of the safety and pharmacokinetics of microbicide drug delivery devices, such as the vaginal ring. PMID:25845860

  14. Safety and Pharmacokinetics of Lisinopril in Pediatric Kidney Transplant Recipients

    PubMed Central

    Trachtman, Howard; Frymoyer, Adam; Lewandowski, Andrew; Greenbaum, Larry A.; Feig, Daniel I.; Gipson, Debbie S.; Warady, Bradley A.; Goebel, Jens W.; Schwartz, George J.; Lewis, Kenneth; Anand, Ravinder; Patel, Uptal D.

    2015-01-01

    Hypertension in pediatric kidney transplant recipients contributes to long-term graft loss, yet treatment options—including angiotensin-converting enzyme inhibitors—are poorly characterized in this vulnerable population. We conducted a multicenter, open-label pharmacokinetic (PK) study of daily oral lisinopril in 22 children (ages 7–17 years) with stable kidney transplant function. Standard non-compartmental PK analyses were performed at steady state. Effects on blood pressure were examined in lisinopril-naïve patients (n=13). Oral clearance declined in proportion to underlying kidney function; however, in patients with low estimated glomerular filtration rate (30–59 ml/min per 1.73m2), exposure (standardized to 0.1 mg/kg/day dose) was within the range reported previously in children without a kidney transplant. In lisinopril-naïve patients, 85% and 77% had a ≥6 mmHg reduction in systolic and diastolic blood pressure, respectively. Lisinopril was well tolerated. Our study provides initial insight on lisinopril use in children with a kidney transplant, including starting dose considerations. PMID:25807932

  15. Preclinical pharmacokinetics, biodistribution, radiation dosimetry and toxicity studies required for regulatory approval of a phase I clinical trial with 111In-CP04 in medullary thyroid carcinoma patients

    PubMed Central

    Maina, Theodosia; Konijnenberg, Mark W.; KolencPeitl, Petra; Garnuszek, Piotr; Nock, Berthold A.; Kaloudi, Aikaterini; Kroselj, Marko; Zaletel, Katja; Maecke, Helmut; Mansi, Rosalba; Erba, Paola; von Guggenberg, Elisabeth; Hubalewska-Dydejczyk, Alicja; Mikolajczak, Renata; Decristoforo, Clemens

    2016-01-01

    Introduction From a series of radiolabelled cholecystokinin (CCK) and gastrin analogues, 111In-CP04 (111In-DOTA-(DGlu)6-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2) was selected for further translation as a diagnostic radiopharmaceutical towards a first-in-man study in patients with medullary thyroid carcinoma (MTC). A freeze-dried kit formulation for multicentre application has been developed. We herein report on biosafety, in vivo stability, biodistribution and dosimetry aspects of 111In-CP04 in animal models, essential for the regulatory approval of the clinical trial. Materials and methods Acute and extended single dose toxicity of CP04 was tested in rodents, while the in vivo stability of 111In-CP04 was assessed by HPLC analysis of mouse blood samples. The biodistribution of 111In-CP04 prepared from a freeze-dried kit was studied in SCID mice bearing double A431-CCK2R(±) xenografts at 1, 4 and 24 h pi. Further 4-h animal groups were either additionally treated with the plasma expander gelofusine or injected with 111In-CP04 prepared by wet-labelling. Pharmacokinetics in healthy mice included the 30 min, 1, 4, 24, 48 and 72 h time points pi. Dosimetric calculations were based on extrapolation of mice data to humans adopting two scaling models. Results CP04 was well-tolerated by both mice and rats, with an LD50 > 178.5 μg/kg body weight for mice and a NOAEL (no-observed-adverse-effect-level) of 89 μg/kg body weight for rats. After labelling, 111In-CP04 remained >70% intact in peripheral mouse blood at 5 min pi. The uptake of 111In-CP04 prepared from the freeze-dried kit and by wet-labelling were comparable in the A431-CCK2R(+)-xenografts (9.24 ± 1.35%ID/g and 8.49 ± 0.39%ID/g, respectively; P > 0.05). Gelofusine-treated mice exhibited significantly reduced kidneys values (1.69 ± 0.15%ID/g vs. 5.55 ± 0.94%ID/g in controls, P < 0.001). Dosimetry data revealed very comparable effective tumour doses for the two scaling models applied, of 0.045 and 0.044 m

  16. Ibogaine: complex pharmacokinetics, concerns for safety, and preliminary efficacy measures.

    PubMed

    Mash, D C; Kovera, C A; Pablo, J; Tyndale, R F; Ervin, F D; Williams, I C; Singleton, E G; Mayor, M

    2000-09-01

    Ibogaine is an indole alkaloid found in the roots of Tabernanthe Iboga (Apocynaceae family), a rain forest shrub that is native to western Africa. Ibogaine is used by indigenous peoples in low doses to combat fatigue, hunger and thirst, and in higher doses as a sacrament in religious rituals. Members of American and European addict self-help groups have claimed that ibogaine promotes long-term drug abstinence from addictive substances, including psychostimulants and opiates. Anecdotal reports attest that a single dose of ibogaine eliminates opiate withdrawal symptoms and reduces drug craving for extended periods of time. The purported efficacy of ibogaine for the treatment of drug dependence may be due in part to an active metabolite. The majority of ibogaine biotransformation proceeds via CYP2D6, including the O-demethylation of ibogaine to 12-hydroxyibogamine (noribogaine). Blood concentration-time effect profiles of ibogaine and noribogaine obtained for individual subjects after single oral dose administrations demonstrate complex pharmacokinetic profiles. Ibogaine has shown preliminary efficacy for opiate detoxification and for short-term stabilization of drug-dependent persons as they prepare to enter substance abuse treatment. We report here that ibogaine significantly decreased craving for cocaine and heroin during inpatient detoxification. Self-reports of depressive symptoms were also significantly lower after ibogaine treatment and at 30 days after program discharge. Because ibogaine is cleared rapidly from the blood, the beneficial aftereffects of the drug on craving and depressed mood may be related to the effects of noribogaine on the central nervous system.

  17. Safety, tolerability, and pharmacokinetics of oral and intravenous administration of GSK1322322, a peptide deformylase inhibitor.

    PubMed

    Naderer, Odin J; Jones, Lori S; Zhu, John; Kurtinecz, Milena; Dumont, Etienne

    2013-11-01

    GSK1322322 is the first in a new class of antibiotics that targets peptide deformylase (PDF), an essential bacterial enzyme required for protein maturation. This randomized, double-blind, placebo-controlled, eight-cohort phase I trial enrolled 62 healthy volunteers to assess safety, tolerability, and pharmacokinetic profiles of GSK1322322. GSK1322322 was administered as a single oral or intravenous (IV) dose, escalating from 500 to 3,000 mg or repeat IV doses escalating from 500 to 1,500 mg twice daily. Upon repeat IV administration, GSK1322322 exhibits linear pharmacokinetics over time upon repeat doses as shown by time-invariant pharmacokinetics. A dose-proportional increase in area under concentration-time curve was observed after single or repeat IV dosing, whereas clearance at steady state remained generally unchanged across doses. There was minimal accumulation of GSK1322322 after repeat IV twice-daily administration. After oral tablet doses of GSK1322322 1,000 and 1,500 mg, absolute bioavailability was 69% and 56%, respectively. GSK1322322 administration at single and repeat IV doses and at supratherapeutic single IV doses of 2,000 and 3,000 mg was associated with mild-to-moderate drug-related adverse events. On the basis of the pharmacokinetics and tolerability demonstrated in this study, GSK1322322 has the potential to become the first-in-class PDF inhibitor for clinical use.

  18. Pharmacokinetics, tissue distribution and safety of cinnarizine delivered in lipid emulsion.

    PubMed

    Shi, Shuai; Chen, Hao; Lin, Xia; Tang, Xing

    2010-01-01

    The aim of this study was to assess the potential of cinnarizine loaded in lipid emulsion to modify the pharmacokinetics, tissue distribution and safety of cinnarizine. The cinnarizine-loaded emulsion (CLE) which can remain stable over 18-month storage at 4+/-2 degrees C was prepared by high-pressure homogenization. Nicomp 380 particle sizing system and HPLC were used to evaluate CLE in vitro, while UPLC/MS/MS for pharmacokinetic and tissue distribution study. The pharmacokinetics and tissue distributions of CLE were assessed by comparing with the solution form after intravenous administration to rats at a dose of 2mg/kg. The CLE showed significant higher AUC and lower clearance and distribution volume than those of solution form. This helped cinnarizine to reach higher level in vessel, and circulate in the blood stream for a longer time resulting in better therapeutic effect. The tissue distribution exhibited significant lower uptake of CLE emulsion in lung and brain, indicating the advantage of CLE over the solution form in reducing drug precipitation in vivo and toxicity in CNS. Drug safety assessment studies including hemolysis test, intravenous stimulation and injection anaphylaxis revealed that the CLE was safe for intravenous injection. PMID:19770029

  19. Comparing in vivo biodistribution with radiolabeling and Franz cell permeation assay to validate the efficacy of both methodologies in the evaluation of nanoemulsions: a safety approach.

    PubMed

    Cerqueira-Coutinho, C S; De Campo, V E B; Rossi, A L; Veiga, V F; Holandino, C; Freitas, Z M F; Ricci-Junior, E; Mansur, C R E; Santos, E P; Santos-Oliveira, R

    2016-01-01

    The Franz cells permeation assay has been performed for over 25 years. However, the advent of nanotechnology created a whole new world, especially with regard to topical products. In this new global scenario an increasing number of nanostructure-based delivery systems (NDSs) have emerged and a global warning relating to the safety of these NDSs is arising. This work studied the efficacy of the Franz cells assay, comparing it with the radiolabeling biodistribution test. For this purpose a formulation of sunscreen based on an NDS was developed and characterized. The results demonstrated both that the NDS did not present in vitro cytotoxicity and that the radiolabeling biodistribution test is more precise for the evaluation of NDS cosmetics than the Franz cells assay, since it detected the permeation of the NDS at a picogram order. Due to this fact, and considering all the concerns related to NDSs and nanoparticles in general, more precise methods must be used in order to guarantee the safe use of these new classes of products. PMID:26605997

  20. Comparing in vivo biodistribution with radiolabeling and Franz cell permeation assay to validate the efficacy of both methodologies in the evaluation of nanoemulsions: a safety approach

    NASA Astrophysics Data System (ADS)

    Cerqueira-Coutinho, C. S.; De Campo, V. E. B.; Rossi, A. L.; Veiga, V. F.; Holandino, C.; Freitas, Z. M. F.; Ricci-Junior, E.; Mansur, C. R. E.; Santos, E. P.; Santos-Oliveira, R.

    2016-01-01

    The Franz cells permeation assay has been performed for over 25 years. However, the advent of nanotechnology created a whole new world, especially with regard to topical products. In this new global scenario an increasing number of nanostructure-based delivery systems (NDSs) have emerged and a global warning relating to the safety of these NDSs is arising. This work studied the efficacy of the Franz cells assay, comparing it with the radiolabeling biodistribution test. For this purpose a formulation of sunscreen based on an NDS was developed and characterized. The results demonstrated both that the NDS did not present in vitro cytotoxicity and that the radiolabeling biodistribution test is more precise for the evaluation of NDS cosmetics than the Franz cells assay, since it detected the permeation of the NDS at a picogram order. Due to this fact, and considering all the concerns related to NDSs and nanoparticles in general, more precise methods must be used in order to guarantee the safe use of these new classes of products.

  1. Pharmacokinetic studies of mouse monoclonal antibodies to a rat colon carcinoma: I. Comparison of biodistribution in normal rats, syngeneic tumor-bearing rats, or tumor-bearing nude mice

    SciTech Connect

    Laborda, J.; Douillard, J.Y.; Burg, C.; Lizzio, E.F.; Ridge, J.; Levenbook, I.; Hoffman, T. )

    1990-06-01

    The pharmacokinetics of two iodine-131-({sup 131}I) labeled murine anti-rat colon carcinoma monoclonal antibodies (D3 and E4) were compared in normal Sprague Dawley rats, syngeneic BDIX rats, or nude mice bearing that tumor. Results of antibody uptake after i.v. administration were analyzed in terms of accumulation and localization indices for normal tissues and tumor. Statistically significant differences between rat and mouse tissue biodistribution were found. D3, which reacts in vitro with the tumor and several normal rat tissues, cleared quickly from the blood of rats and was specifically targeted to several normal tissues, notably the lung. Virtually no targeting to the tumor was observed. Nude mice, however, showed a slower blood clearance and specific antibody targeting only in the tumor. Similar results were seen after injection of another antibody, E4, which is tumor-specific in vitro. Data suggest that studies on the xenogeneic nude mouse model may not necessarily be relevant to the choice of monoclonal antibodies for clinical diagnostic imaging or therapy.

  2. The Holy Grail of Polymer Therapeutics for Cancer Therapy: An Overview on the Pharmacokinetics and Bio Distribution.

    PubMed

    Dyawanapelly, Sathish; Junnuthula, Vijayabhaskar Reddy; Singh, AkhileshVikram

    2015-01-01

    In recent years, multifaceted clinical benefits of polymeric therapeutics have been reported. Over the past decades, cancer has been one of the leading causes of mortality in the world. Many clinically approved chemotherapeutics encounter potential challenges against deadly cancer. Moreover, safety and efficacy of anticancer agents have been limited by undesirable pharmacokinetics and biodistribution. To address these limitations, various polymer drug conjugates are being studied and developed to improve the antitumor efficacy. Among other therapeutics, polymer therapeutics are well established platforms that circumvent anticancer therapeutics from enzymatic metabolism via direct conjugation to therapeutic molecules. Interestingly, polymer therapeutics meets an unmet need of small molecules. Further clinical study showed that polymer-drug conjugation can achieve desired pharmacokinetics and biodistribution properties of several anticancer drugs. The present retrospective review mainly enlightens the most recent preclinical and clinical studies include safety, stability, pharmacokinetic behavior and distribution of polymer therapeutics.

  3. [Comparison of the pharmacokinetics and safety of a paclitaxel injection NK and Taxol injection in breast cancer patients].

    PubMed

    Sagara, Yoshiaki; Rai, Yoshiaki; Sagara, Yoshiatsu; Matsuyama, Yoshito; Baba, Shinichi; Tamada, Shugo; Sagara, Yasuaki; Ando, Mitsutake

    2009-02-01

    A paclitaxel injection NK (NK) is a generic product containing the same amount of ingredient as a Taxol Injection. We examined the pharmacokinetics and safety of NK compared to the original product in breast cancer patients. As a result, the transition of plasma paclitaxel concentration and pharmacokinetic parameter in NK and the original drug were almost equal, which suggested that these products were bioequivalent. In adjuvant therapy, there was no significant difference in adverse events reported, and these products were approximately equally safe.

  4. Ultra-performance liquid-chromatography with tandem mass spectrometry for rapid analysis of pharmacokinetics, biodistribution and excretion of schisandrin after oral administration of Shengmaisan.

    PubMed

    Lu, Sheng-Wen; Zhang, Ai-Hua; Sun, Hui; Yan, Guang-Li; Han, Ying; Wu, Xiu-Hong; Wang, Xi-Jun

    2013-12-01

    This study aimed to investigate the in vivo behaviors of the main components in traditional Chinese medicine (TCM) fomulae. The plasma pharmacokinetics, tissue distribution and excretion of the main component-schisandrin in rats after oral administration of a classical TCM prescription, shengmaisan (SMS), were studied by a developed and validated UPLC-MS/MS method. The separation of schisandrin was achieved on a UPLC HSS T3 column with a mobile phase consisting of acetonitrile and water at a flow rate of 0.5 mL/min by linear gradient elution. The MS/MS detection was carried out by monitoring the fragmentation of m/z 415.22 → 384.26 for schisandrin on a triple quadrupole mass spectrometer. The result showed that the method was suitable for the quantification of schisandrin in plasma, tissue and excreta samples with satisfactory selectivity, precision, accuracy, sensitivity, linearity and recovery. Pharmacokinetic results showed a rapid absorption phase with the mean Tmax of 0.17 h and a relatively slow elimination proceeding with a half-life (T1/2 ) of 5.24 ± 1.28 h. The tissue distribution showed the maximum concentration distributions of schisandrin after oral administration of SMS were in the order of small intestine > large intestine > lung > liver > kidney > spleen > heart > brain. Only 0.005-0.006% of schisandrin was recovered in feces and was not detected in urine.

  5. Randomized clinical trial: pharmacokinetics and safety of multimatrix mesalamine for treatment of pediatric ulcerative colitis

    PubMed Central

    Cuffari, Carmen; Pierce, David; Korczowski, Bartosz; Fyderek, Krzysztof; Van Heusen, Heather; Hossack, Stuart; Wan, Hong; Edwards, Alena YZ; Martin, Patrick

    2016-01-01

    Background Limited data are available on mesalamine (5-aminosalicylic acid; 5-ASA) use in pediatric ulcerative colitis (UC). Aim To evaluate pharmacokinetic and safety profiles of 5-ASA and metabolite acetyl-5-ASA (Ac-5-ASA) after once-daily, oral administration of multimatrix mesalamine to children and adolescents with UC. Methods Participants (5–17 years of age; 18–82 kg, stratified by weight) with UC received multi-matrix mesalamine 30, 60, or 100 mg/kg/day once daily (to 4,800 mg/day) for 7 days. Blood samples were collected pre-dose on days 5 and 6. On days 7 and 8, blood and urine samples were collected and safety was evaluated. 5-ASA and Ac-5-ASA plasma and urine concentrations were analyzed by non-compartmental methods and used to develop a population pharmacokinetic model. Results Fifty-two subjects (21 [30 mg/kg]; 22 [60 mg/kg]; 9 [100 mg/kg]) were randomized. On day 7, systemic exposures of 5-ASA and Ac-5-ASA exhibited a dose-proportional increase between 30 and 60 mg/kg/day cohorts. For 30, 60, and 100 mg/kg/day doses, mean percentages of 5-ASA absorbed were 29.4%, 27.0%, and 22.1%, respectively. Simulated steady-state exposures and variabilities for 5-ASA and Ac-5-ASA (coefficient of variation approximately 50% and 40%–45%, respectively) were similar to those observed previously in adults at comparable doses. Treatment-emergent adverse events were reported by ten subjects. Events were similar among different doses and age groups with no new safety signals identified. Conclusion Children and adolescents with UC receiving multimatrix mesalamine demonstrated 5-ASA and Ac-5-ASA pharmacokinetic profiles similar to historical adult data. Multimatrix mesalamine was well tolerated across all dose and age groups. ClinicalTrials.gov Identifier: NCT01130844. PMID:26893546

  6. Dipeptidyl peptidase-4 inhibitors: pharmacokinetics, efficacy, tolerability and safety in renal impairment.

    PubMed

    Davis, T M E

    2014-10-01

    The dipeptidyl peptidase-4 (DPP-4) inhibitors are a new class of blood glucose-lowering therapy with proven efficacy, tolerability and safety. Four of the five commercially available DPP-4 inhibitors are subject to significant renal clearance, and pharmacokinetic studies in people with renal impairment have led to lower recommended doses based on creatinine clearance in order to prevent drug accumulation. Data from these pharmacokinetic studies and from supratherapeutic doses in healthy individuals and people with uncomplicated diabetes during development suggest, however, that there is a wide therapeutic margin. This should protect against toxicity if people with renal impairment are inadvertently prescribed higher doses than recommended. Doses appropriate to renal function are associated with reductions in HbA1c that are equivalent to those observed in people with type 2 diabetes who do not have renal impairment. Recent large-scale cardiovascular safety trials of saxagliptin and alogliptin have identified heart failure as a potential concern and renal impairment may increase the risk of this complication. Although the incidence of pancreatitis does not appear to be significantly increased by DPP-4 inhibitor therapy, renal impairment is also an independent risk factor. Additional data from other ongoing DPP-4 inhibitor cardiovascular safety trials should provide a more precise assessment of the risks of these uncommon complications, including in people with renal impairment. PMID:24684351

  7. Lack of effect of amisulpride on the pharmacokinetics and safety of lithium.

    PubMed

    Canal, Muriel; Legangneux, Eric; van Lier, Jan Jaap; van Vliet, Andre Antonius; Coulouvrat, Catherine

    2003-06-01

    Lithium may be used as adjuvant therapy in schizophrenic patients and antipsychotics can be employed during the early phases of lithium therapy in patients with bipolar disorder. The issue of interactions between lithium and antipsychotics is therefore important. This study investigates the potential influence of repeated administration of amisulpride, an atypical antipsychotic, on the pharmacokinetics of lithium at steady state. Twenty-four healthy male volunteers (aged 1833 yr) received lithium carbonate (500 mg b.i.d.) for 14 d. All subjects were shown to have stable lithium serum concentrations after 57 d and were then randomized to receive double-blind administration of amisulpride (100 mg b.i.d.) or placebo bid from day 8 of lithium administration. Complete pharmacokinetic profiles were obtained on days 7 and 14 for lithium and trough plasma concentrations on days 10, 12 and 14 for amisulpride. Co-administration of amisulpride appeared to exert no effect on the pharmacokinetics of lithium. All treatments were well tolerated and safety assessment revealed no differences between the lithium+placebo and lithium+amisulpride groups. This finding permits the flexible use of amisulpride in patients already receiving lithium therapy.

  8. Pharmacokinetics and safety of glimepiride at clinically effective doses in diabetic patients with renal impairment.

    PubMed

    Rosenkranz, B; Profozic, V; Metelko, Z; Mrzljak, V; Lange, C; Malerczyk, V

    1996-12-01

    The pharmacokinetics, efficacy and safety of glimepiride were investigated in a single- and a multiple-dose open study in patients with non-insulin-dependent diabetes mellitus and renal impairment and an initial creatinine clearance above 10 ml/ min. Patients were divided into three groups with creatinine clearance above 50 ml/min, 20-50 ml/min and under 20 ml/min. Fifteen fasting patients received a single dose of 3 mg glimepiride and serial blood and urine samples were taken over 24 h for pharmacokinetic and efficacy analyses. A further 16 patients received glimepiride over a 3-month period, an initial dose of 1 mg glimepiride being adjusted within the range 1 to 8 mg to achieve good glucose control. Pharmacokinetic evaluation was done on day 1 and after 3 months. Mean relative total clearance and mean volume of distribution of both single (41.6 ml/ min and 8.47 litres, respectively, when creatinine clearance was above 50 ml/min) and multiple doses of glimepiride increased in proportion to the degree of renal impairment (to 91.1 ml/min and 14.98 litres, respectively, when creatinine clearance was below 20 ml/min, single dose), whereas the terminal halflife and mean time remained unchanged. Lower relative total clearance and renal clearance of both glimepiride metabolites correlated significantly with lower creatinine clearance values. Of the 16 patients 12 required between 1 and 4 mg glimepiride to stabilize their fasting blood glucose. Glimepiride was well-tolerated and there were no drug-related adverse events. In conclusion glimepiride is safe, effective and has clearly-definable pharmacokinetics in diabetic patients with renal impairment. The increased plasma elimination of glimepiride with decreasing kidney function is explainable on the basis of altered protein binding with an increase in unbound drug. PMID:8960852

  9. Pharmacokinetics and Safety of Moxifloxacin in Children With Multidrug-Resistant Tuberculosis

    PubMed Central

    Thee, Stephanie; Garcia-Prats, Anthony J.; Draper, Heather R.; McIlleron, Helen M.; Wiesner, Lubbe; Castel, Sandra; Schaaf, H. Simon; Hesseling, Anneke C.

    2015-01-01

    Background. Moxifloxacin is currently recommended at a dose of 7.5–10 mg/kg for children with multidrug-resistant (MDR) tuberculosis, but pharmacokinetic and long-term safety data of moxifloxacin in children with tuberculosis are lacking. An area under the curve (AUC) of 40–60 µg × h/mL following an oral moxifloxacin dose of 400 mg has been reported in adults. Methods. In a prospective pharmacokinetic and safety study, children 7–15 years of age routinely receiving moxifloxacin 10 mg/kg daily as part of multidrug treatment for MDR tuberculosis in Cape Town, South Africa, for at least 2 weeks, underwent intensive pharmacokinetic sampling (predose and 1, 2, 4, 8, and either 6 or 11 hours) and were followed for safety. Assays were performed using liquid chromatography–tandem mass spectrometry, and pharmacokinetic measures calculated using noncompartmental analysis. Results. Twenty-three children were included (median age, 11.1 years; interquartile range [IQR], 9.2–12.0 years); 6 of 23 (26.1%) were human immunodeficiency virus (HIV)-infected. The median maximum serum concentration (Cmax), area under the curve from 0–8 hours (AUC0–8), time until Cmax (Tmax), and half-life for moxifloxacin were 3.08 (IQR, 2.85–3.82) µg/mL, 17.24 (IQR, 14.47–21.99) µg × h/mL, 2.0 (IQR, 1.0–8.0) h, and 4.14 (IQR, 3.45–6.11), respectively. Three children, all HIV-infected, were underweight for age. AUC0–8 was reduced by 6.85 µg × h/mL (95% confidence interval, −11.15 to −2.56) in HIV-infected children. Tmax was shorter with crushed vs whole tablets (P = .047). Except in 1 child with hepatotoxicity, all adverse effects were mild and nonpersistent. Mean corrected QT interval was 403 (standard deviation, 30) ms, and no prolongation >450 ms occurred. Conclusions. Children 7–15 years of age receiving moxifloxacin 10 mg/kg/day as part of MDR tuberculosis treatment have low serum concentrations compared with adults receiving 400 mg moxifloxacin daily

  10. Safety, local tolerability and pharmacokinetics of ceftaroline fosamil administered in a reduced infusion volume

    PubMed Central

    Edeki, Timi; Kujacic, Mirjana; Broadhurst, Helen; Li, Jianguo; Sunzel, Maria

    2014-01-01

    Aims The standard dose of ceftaroline fosamil for patients with normal renal function is 600 mg diluted in 250 ml by 60 min intravenous infusion every 12 h. This two part phase I trial (NCT01577589) assessed safety and local tolerability of multiple ceftaroline fosamil 50 ml and 250 ml infusions, and pharmacokinetics following single administrations of each infusion volume. Methods Part A was a placebo-controlled, double-blind, multiple dose crossover study. Twenty-four healthy subjects were randomized to simultaneous, bilateral ceftaroline fosamil 600 mg and placebo infusions in each arm (50 ml then 250 ml or vice versa) every 12 h for 72 h, with a ≥ 4.5 day washout. Local tolerability was evaluated by the Visual Infusion Phlebitis scale, with scores ≥2 considered infusion site reactions (ISRs). Part B was an open label crossover study. Ten subjects were randomized to single 50 ml and 250 ml ceftaroline fosamil 600 mg infusions on days 1 and 3 (washout on day 2). Blood samples for pharmacokinetic analysis were taken over 24 h. Results In part A, four subjects (16.7%) experienced ISRs, all of which were associated with placebo infusions. No ISRs were reported for either ceftaroline fosamil 50 ml or 250 ml. Plasma pharmacokinetics (ceftaroline fosamil, active ceftaroline and an inactive metabolite) were similar following single 50 ml and 250 ml infusions in part B. Conclusions No new safety concerns were identified for ceftaroline fosamil 600 mg 50 ml compared with 250 ml. These findings suggest infusion volumes down to 50 ml may be used in patients with fluid intake restrictions. PMID:25041494

  11. Safety and Biodistribution Evaluation in Cynomolgus Macaques of rAAV2tYF-CB-hRS1, a Recombinant Adeno-Associated Virus Vector Expressing Retinoschisin

    PubMed Central

    Ye, Guo-Jie; Budzynski, Ewa; Sonnentag, Peter; Miller, Paul E.; Sharma, Alok K.; Ver Hoeve, James N.; Howard, Kellie; Knop, David R.; Neuringer, Martha; McGill, Trevor; Stoddard, Jonathan; Chulay, Jeffrey D.

    2015-01-01

    Applied Genetic Technologies Corporation is developing rAAV2tYF-CB-hRS1, a recombinant adeno-associated virus (rAAV) vector for treatment of X-linked retinoschisis (XLRS), an inherited retinal disease characterized by splitting (schisis) of retinal layers causing poor vision. We report here results of a study evaluating the safety and biodistribution of rAAV2tYF-CB-hRS1 in normal cynomolgus macaques. Three groups of male animals (n = 6 per group) received an intravitreal injection in one eye of either vehicle, or rAAV2tYF-CB-hRS1 at one of two dose levels (4 × 1010 or 4 × 1011 vg/eye). Half the animals were sacrificed after 14 days and the others after 91 or 115 days. The intravitreal injection procedure was well tolerated in all groups. Serial ophthalmic examinations demonstrated a dose-related anterior and posterior segment inflammatory response that improved over time. There were no test article-related effects on intraocular pressure, electroretinography, visual evoked potential, hematology, coagulation, clinical chemistry, or gross necropsy observations. Histopathological examination demonstrated minimal or moderate mononuclear infiltrates in 6 of 12 vector-injected eyes. Immunohistochemical staining showed RS1 labeling of the ganglion cell layer at the foveal slope in vector-injected eyes at both dose levels. Serum anti-AAV antibodies were detected in 4 of 6 vector-injected animals at the day 15 sacrifice and all vector-injected animals at later time points. No animals developed antibodies to RS1. Biodistribution studies demonstrated high levels of vector DNA in the injected eye but minimal or no vector DNA in any other tissue. These results support the use of rAAV2tYF-CB-hRS1 in clinical studies in patients with XLRS. PMID:26390090

  12. A Phase 1 biodistribution study of p-boronophenylalanine

    SciTech Connect

    Coderre, J.A.

    1991-01-01

    The objectives of the Phase I BPA biodistribution study are as follows: Objective 1: To establish the safety of orally administered boronophenylalanine (BPA) as determined by monitoring of patient's vital signs and by clinical analysis of blood before and after BPA administration. Objective 2: To establish BPA pharmacokinetics by monitoring the rates of boron absorption into and clearance from the blood and the rate of urinary excretion of boron. Objective 3: To measure the amount of boron incorporated into human tumors (melanoma, glioma, and breast carcinoma) using samples obtained at surgery or biopsy. This report presents the results obtained from the first thirteen patients entered into the study. Three additional glioblastoma patients have been studied recently at Stony Brook, the tissues are still being analyzed.

  13. A Phase 1 biodistribution study of p-boronophenylalanine

    SciTech Connect

    Coderre, J.A.

    1991-12-31

    The objectives of the Phase I BPA biodistribution study are as follows: Objective 1: To establish the safety of orally administered boronophenylalanine (BPA) as determined by monitoring of patient`s vital signs and by clinical analysis of blood before and after BPA administration. Objective 2: To establish BPA pharmacokinetics by monitoring the rates of boron absorption into and clearance from the blood and the rate of urinary excretion of boron. Objective 3: To measure the amount of boron incorporated into human tumors (melanoma, glioma, and breast carcinoma) using samples obtained at surgery or biopsy. This report presents the results obtained from the first thirteen patients entered into the study. Three additional glioblastoma patients have been studied recently at Stony Brook, the tissues are still being analyzed.

  14. Non-nucleoside reverse transcriptase inhibitors: a review on pharmacokinetics, pharmacodynamics, safety and tolerability

    PubMed Central

    Usach, Iris; Melis, Virginia; Peris, José-Esteban

    2013-01-01

    Introduction Human immunodeficiency virus (HIV) type-1 non-nucleoside and nucleoside reverse transcriptase inhibitors (NNRTIs) are key drugs of highly active antiretroviral therapy (HAART) in the clinical management of acquired immune deficiency syndrome (AIDS)/HIV infection. Discussion First-generation NNRTIs, nevirapine (NVP), delavirdine (DLV) and efavirenz (EFV) are drugs with a low genetic barrier and poor resistance profile, which has led to the development of new generations of NNRTIs. Second-generation NNRTIs, etravirine (ETR) and rilpivirine (RPV) have been approved by the Food and Drug Administration and European Union, and the next generation of drugs is currently being clinically developed. This review describes recent clinical data, pharmacokinetics, metabolism, pharmacodynamics, safety and tolerability of commercialized NNRTIs, including the effects of sex, race and age differences on pharmacokinetics and safety. Moreover, it summarizes the characteristics of next-generation NNRTIs: lersivirine, GSK 2248761, RDEA806, BILR 355 BS, calanolide A, MK-4965, MK-1439 and MK-6186. Conclusions This review presents a wide description of NNRTIs, providing useful information for researchers interested in this field, both in clinical use and in research. PMID:24008177

  15. Solithromycin Pharmacokinetics in Plasma and Dried Blood Spots and Safety in Adolescents

    PubMed Central

    Gonzalez, Daniel; Palazzi, Debra L.; Bhattacharya-Mithal, Leena; Al-Uzri, Amira; James, Laura P.; Bradley, John; Neu, Natalie; Jasion, Theresa; Hornik, Christoph P.; Smith, P. Brian; Benjamin, Daniel K.; Keedy, Kara; Fernandes, Prabhavathi

    2016-01-01

    We assessed the pharmacokinetics and safety of solithromycin, a fluoroketolide antibiotic, in a phase 1, open-label, multicenter study of 13 adolescents with suspected or confirmed bacterial infections. On days 3 to 5, the mean (standard deviation) maximum plasma concentration and area under the concentration versus time curve from 0 to 24 h were 0.74 μg/ml (0.61 μg/ml) and 9.28 μg · h/ml (6.30 μg · h/ml), respectively. The exposure and safety in this small cohort of adolescents were comparable to those for adults. (This study has been registered at ClinicalTrials.gov under registration no. NCT01966055.) PMID:26883693

  16. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles.

    PubMed

    Autio, Karoliina; Knuuttila, Anna; Kipar, Anja; Pesonen, Sari; Guse, Kilian; Parviainen, Suvi; Rajamäki, Minna; Laitinen-Vapaavuori, Outi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2014-01-01

    We evaluated adverse events, biodistribution and shedding of oncolytic vaccinia virus encoding CD40 ligand in two Beagles, in preparation for a phase 1 trial in canine cancer patients. Dog 1 received one dose of vaccinia virus and was euthanized 24 hours afterwards, while dog 2 received virus four times once weekly and was euthanized 7 days after that. Dogs were monitored for adverse events and underwent a detailed postmortem examination. Blood, saliva, urine, feces, and organs were collected for virus detection. Dog 1 had mild fever and lethargy while dog 2 experienced a possible seizure 5.5 hours after first virus administration. Viral DNA declined quickly in the blood after virus administration in both dogs but was still detectable 1 week later by quantitative polymerase chain reaction. Only samples taken directly after virus infusion contained infectious virus. Small amounts of viral DNA, but no infectious virus, were detected in a few saliva and urine samples. Necropsies did not reveal any relevant pathological changes and virus DNA was detected mainly in the spleen. The dogs in the study did not have cancer, and thus adverse events could be more common and viral load higher in dogs with tumors which allow viral amplification.

  17. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles

    PubMed Central

    Autio, Karoliina; Knuuttila, Anna; Kipar, Anja; Pesonen, Sari; Guse, Kilian; Parviainen, Suvi; Rajamäki, Minna; Laitinen-Vapaavuori, Outi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2014-01-01

    We evaluated adverse events, biodistribution and shedding of oncolytic vaccinia virus encoding CD40 ligand in two Beagles, in preparation for a phase 1 trial in canine cancer patients. Dog 1 received one dose of vaccinia virus and was euthanized 24 hours afterwards, while dog 2 received virus four times once weekly and was euthanized 7 days after that. Dogs were monitored for adverse events and underwent a detailed postmortem examination. Blood, saliva, urine, feces, and organs were collected for virus detection. Dog 1 had mild fever and lethargy while dog 2 experienced a possible seizure 5.5 hours after first virus administration. Viral DNA declined quickly in the blood after virus administration in both dogs but was still detectable 1 week later by quantitative polymerase chain reaction. Only samples taken directly after virus infusion contained infectious virus. Small amounts of viral DNA, but no infectious virus, were detected in a few saliva and urine samples. Necropsies did not reveal any relevant pathological changes and virus DNA was detected mainly in the spleen. The dogs in the study did not have cancer, and thus adverse events could be more common and viral load higher in dogs with tumors which allow viral amplification. PMID:27119092

  18. Ultrapure laser-synthesized Si-based nanomaterials for biomedical applications: in vivo assessment of safety and biodistribution

    PubMed Central

    Baati, Tarek; Al-Kattan, Ahmed; Esteve, Marie-Anne; Njim, Leila; Ryabchikov, Yury; Chaspoul, Florence; Hammami, Mohamed; Sentis, Marc; Kabashin, Andrei V.; Braguer, Diane

    2016-01-01

    Si/SiOx nanoparticles (NPs) produced by laser ablation in deionized water or aqueous biocompatible solutions present a novel extremely promising object for biomedical applications, but the interaction of these NPs with biological systems has not yet been systematically examined. Here, we present the first comprehensive study of biodistribution, biodegradability and toxicity of laser-synthesized Si-SiOx nanoparticles using a small animal model. Despite a relatively high dose of Si-NPs (20 mg/kg) administered intravenously in mice, all controlled parameters (serum, enzymatic, histological etc.) were found to be within safe limits 3 h, 24 h, 48 h and 7 days after the administration. We also determined that the nanoparticles are rapidly sequestered by the liver and spleen, then further biodegraded and directly eliminated in urine without any toxicity effects. Finally, we found that intracellular accumulation of Si-NPs does not induce any oxidative stress damage. Our results evidence a huge potential in using these safe and biodegradable NPs in biomedical applications, in particular as vectors, contrast agents and sensitizers in cancer therapy and diagnostics (theranostics). PMID:27151839

  19. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles.

    PubMed

    Autio, Karoliina; Knuuttila, Anna; Kipar, Anja; Pesonen, Sari; Guse, Kilian; Parviainen, Suvi; Rajamäki, Minna; Laitinen-Vapaavuori, Outi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2014-01-01

    We evaluated adverse events, biodistribution and shedding of oncolytic vaccinia virus encoding CD40 ligand in two Beagles, in preparation for a phase 1 trial in canine cancer patients. Dog 1 received one dose of vaccinia virus and was euthanized 24 hours afterwards, while dog 2 received virus four times once weekly and was euthanized 7 days after that. Dogs were monitored for adverse events and underwent a detailed postmortem examination. Blood, saliva, urine, feces, and organs were collected for virus detection. Dog 1 had mild fever and lethargy while dog 2 experienced a possible seizure 5.5 hours after first virus administration. Viral DNA declined quickly in the blood after virus administration in both dogs but was still detectable 1 week later by quantitative polymerase chain reaction. Only samples taken directly after virus infusion contained infectious virus. Small amounts of viral DNA, but no infectious virus, were detected in a few saliva and urine samples. Necropsies did not reveal any relevant pathological changes and virus DNA was detected mainly in the spleen. The dogs in the study did not have cancer, and thus adverse events could be more common and viral load higher in dogs with tumors which allow viral amplification. PMID:27119092

  20. Ultrapure laser-synthesized Si-based nanomaterials for biomedical applications: in vivo assessment of safety and biodistribution

    NASA Astrophysics Data System (ADS)

    Baati, Tarek; Al-Kattan, Ahmed; Esteve, Marie-Anne; Njim, Leila; Ryabchikov, Yury; Chaspoul, Florence; Hammami, Mohamed; Sentis, Marc; Kabashin, Andrei V.; Braguer, Diane

    2016-05-01

    Si/SiOx nanoparticles (NPs) produced by laser ablation in deionized water or aqueous biocompatible solutions present a novel extremely promising object for biomedical applications, but the interaction of these NPs with biological systems has not yet been systematically examined. Here, we present the first comprehensive study of biodistribution, biodegradability and toxicity of laser-synthesized Si-SiOx nanoparticles using a small animal model. Despite a relatively high dose of Si-NPs (20 mg/kg) administered intravenously in mice, all controlled parameters (serum, enzymatic, histological etc.) were found to be within safe limits 3 h, 24 h, 48 h and 7 days after the administration. We also determined that the nanoparticles are rapidly sequestered by the liver and spleen, then further biodegraded and directly eliminated in urine without any toxicity effects. Finally, we found that intracellular accumulation of Si-NPs does not induce any oxidative stress damage. Our results evidence a huge potential in using these safe and biodegradable NPs in biomedical applications, in particular as vectors, contrast agents and sensitizers in cancer therapy and diagnostics (theranostics).

  1. Pharmacokinetics and safety of JTE-522, a novel selective cyclooxygenase-2 inhibitor, in healthy male volunteers

    PubMed Central

    Ikeda, Yasuhiko; Umemura, Kazuo; Kondo, Kazunao; Nakashima, Mitsuyoshi; Kobayashi, Takuo; Takahashi, Mitsuru

    2002-01-01

    Aims The pharmacokinetics and safety profile of JTE-522, 4-(4-cyclohexyl-2 methyloxazol-5-yl)-2-fluorobenzensulphonamide, a novel selective cyclooxygenase-2 inhibitor were investigated in healthy male volunteers. Methods Initially, as a pilot study, five groups of two subjects were given oral doses of 3–100 mg of JTE-522. After safety assessment, subjects were given 150 and 200 mg of JTE-522. The effect of food-intake on the pharmacokinetics of JTE-522 at a dose of 150 mg was examined. In the multiple-dose study, subjects were given 150 mg of JTE-522 once a day for 7 days. Concentrations of unchanged JTE-522 in plasma, blood and urine were determined by high performance liquid chromatography (h.p.l.c.). Concentrations of metabolites were estimated with h.p.l.c. chromatograms and calibration curves for quantification of unchanged JTE-522. Results In the course of this study, no serious abnormality attributable to the test drug was observed, suggesting that JTE-522 was well tolerated in healthy subjects. In a single-dose study, the concentrations of JTE-522 in blood were much higher than the corresponding concentrations in plasma. JTE-522 was readily distributed to blood cells and percentage distribution into blood cells was more than 99.0%. However, the values of Cmax in blood at doses of 100, 150, 200 mg JTE-522 were 15241, 20445 ± 3918 (16333–24556), 20965 ± 3260 (17544–24386) ng ml−1, respectively. These findings suggest that JTE-522 has a high affinity for blood cells and the distribution into blood cells is limited at the higher doses of over 100 mg. In a multiple dose study, pharmacokinetic parameters including t1/2 and AUC after the fourth administration were comparable with that of the seventh administration. Thus, these findings suggest the absence of accumulation on the multiple-dosing of JTE-522. Conclusions These results indicate that JTE-522 has an acceptable pharmacokinetic profile for clinical use without any serious adverse events as we

  2. Pharmacokinetic and Safety Analyses of Tenofovir and Tenofovir-Emtricitabine Vaginal Tablets in Pigtailed Macaques

    PubMed Central

    Pereira, Lara E.; Friend, David R.; Garber, David A.; McNicholl, Janet M.; Hendry, R. Michael; Doncel, Gustavo F.

    2014-01-01

    Vaginal rapidly disintegrating tablets (RDTs) containing tenofovir (TFV) or TFV and emtricitabine (FTC) were evaluated for safety and pharmacokinetics in pigtailed macaques. Two separate animal groups (n = 4) received TFV (10 mg) or TFV-FTC (10 mg each) RDTs, administered near the cervix. A third group (n = 4) received 1 ml TFV gel. Blood plasma, vaginal tissue biopsy specimens, and vaginal fluids were collected before and after product application at 0, 0.5, 1, 4, and 24 h. A disintegration time of <30 min following vaginal application of the RDTs was noted, with negligible effects on local inflammatory cytokines, vaginal pH, and microflora. TFV pharmacokinetics were generally similar for both RDTs and gel, with peak median concentrations in vaginal tissues and vaginal secretions being on the order of 104 to 105 ng/g (147 to 571 μM) and 106 ng/g (12 to 34 mM), respectively, at 1 to 4 h postdose. At 24 h, however, TFV vaginal tissue levels were more sustained after RDT dosing, with median TFV concentrations being approximately 1 log higher than those with gel dosing. FTC pharmacokinetics after combination RDT dosing were similar to those of TFV, with peak median vaginal tissue and fluid levels being on the order of 104 ng/g (374 μM) and 106 ng/g (32 mM), respectively, at 1 h postdose with levels in fluid remaining high at 24 h. RDTs are a promising alternative vaginal dosage form, delivering TFV and/or FTC at levels that would be considered inhibitory to simian-human immunodeficiency virus in the macaque vaginal microenvironment over a 24-h period. PMID:24566178

  3. Pharmacokinetics and Safety of Ofloxacin in Children with Drug-Resistant Tuberculosis.

    PubMed

    Garcia-Prats, Anthony J; Draper, Heather R; Thee, Stephanie; Dooley, Kelly E; McIlleron, Helen M; Seddon, James A; Wiesner, Lubbe; Castel, Sandra; Schaaf, H Simon; Hesseling, Anneke C

    2015-10-01

    Ofloxacin is widely used for the treatment of multidrug-resistant tuberculosis (MDR-TB). Data on its pharmacokinetics and safety in children are limited. It is not known whether the current internationally recommended pediatric dosage of 15 to 20 mg/kg of body weight achieves exposures reached in adults with tuberculosis after a standard 800-mg dose (adult median area under the concentration-time curve from 0 to 24 h [AUC0-24], 103 μg · h/ml). We assessed the pharmacokinetics and safety of ofloxacin in children <15 years old routinely receiving ofloxacin for MDR-TB treatment or preventive therapy. Plasma samples were collected predose and at 1, 2, 4, 8, and either 6 or 11 h after a 20-mg/kg dose. Pharmacokinetic parameters were calculated using noncompartmental analysis. Children with MDR-TB disease underwent long-term safety monitoring. Of 85 children (median age, 3.4 years), 11 (13%) were HIV infected, and of 79 children with evaluable data, 14 (18%) were underweight. The ofloxacin mean (range) maximum concentration (Cmax), AUC0-8, and half-life were 8.97 μg/ml (2.47 to 14.4), 44.2 μg · h/ml (12.1 to 75.8), and 3.49 h (1.89 to 6.95), respectively. The mean AUC0-24, estimated in 72 participants, was 66.7 μg · h/ml (range, 18.8 to 120.7). In multivariable analysis, AUC0-24 was increased by 1.46 μg · h/ml for each 1-kg increase in body weight (95% confidence interval [CI], 0.44 to 2.47; P = 0.006); no other assessed variable contributed to the model. No grade 3 or 4 events at least possibly attributed to ofloxacin were observed. Ofloxacin was safe and well tolerated in children with MDR-TB, but exposures were well below reported adult values, suggesting that dosage modification may be required to optimize MDR-TB treatment regimens in children.

  4. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution

    SciTech Connect

    Vuillemenot, Brian R.; Kennedy, Derek; Reed, Randall P.; Boyd, Robert B.; Butt, Mark T.; Musson, Donald G.; Keve, Steve; Cahayag, Rhea; Tsuruda, Laurie S.; O'Neill, Charles A.

    2014-05-15

    CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20 mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mild increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3–14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS. - Highlights: • TPP1 enzyme replacement therapy to the CNS is in development for CLN2 disease. • Toxicology, pharmacokinetics, and CNS distribution were assessed in monkeys. • TPP1 infusion directly to the brain did not result in any safety concerns. • A positive pharmacokinetic and distribution profile resulted from TPP1 infusion. • This study demonstrates the feasibility of ICV administered

  5. Prodrug oncrasin-266 improves the stability, pharmacokinetics, and safety of NSC-743380

    PubMed Central

    Wu, Shuhong; Wang, Li; Huang, Xiao; Cao, Mengru; Hu, Jing; Li, Hongyu; Zhang, Hui; Sun, Xiaoping; Meng, Qing H.; Hofstetter, Wayne L.; Roth, Jack A.; Swisher, Stephen G.; Fang, Bingliang

    2014-01-01

    Through synthetic lethality screening of isogenic cell lines with and without the oncogenic KRAS gene and through lead compound optimization, we recently developed a novel anticancer agent designated NSC-743380 (oncrasin-72) that has promising in vitro and in vivo anticancer activity in a subset of cancer cell lines, including KRAS-mutant cancer cells. However, NSC-743380 tends to form dimers, which dramatically reduces its anticancer activity. To improve the physicochemical properties of NSC-743380, we synthesized a prodrug of NSC-743380, designated oncrasin-266, by modifying NSC-743380 with cyclohexylacetic acid and evaluated its in vitro and in vivo properties. Oncrasin-266 spontaneously hydrolyzed in phosphate-buffered saline in a time-dependent manner and was more stable than NSC-743380 in powder or stock solutions. In vivo administration of oncrasin-266 in mice led to the release of NSC-743380 which improved the pharmacokinetics of NSC-743380. Tissue distribution analysis revealed that oncrasin-266 was deposited in liver, whereas released NSC-743380 was detected in liver, lung, kidney, and subcutaneous tumor. Oncrasin-266 was better tolerated in mice at a higher dose level treatment (150–300mg/kg, i.p.) than the parent agent was, suggesting that the prodrug reduced the acute toxicity of the parent agent. Our results demonstrated that the prodrug strategy could improve the stability, pharmacokinetic properties, and safety of NSC-743380. PMID:25182964

  6. Pharmacokinetics and unexpected safety issues of LBM415, a novel oral peptide deformylase inhibitor.

    PubMed

    Rolan, P; Sun, H; Macleod, C; Bracken, K; Evans, T G

    2011-08-01

    Peptide deformylase (PDF) inhibitors represent a potential new class of antibiotics targeting a large number of bacterial species. We studied the pharmacokinetics and safety of LBM415, a novel PDF inhibitor, administered as a single oral dose at 100-3,000 mg in the fasted state and at 1,000 mg in the fed state in healthy volunteers. LBM415 was then administered at dosages ranging from 100 mg q.d. to 1,000 mg t.i.d. for 11 days. Dose-proportional pharmacokinetics was observed, with a peak plasma concentration (C(max)) of 17.85 ± 5.96 µg/ml at 1,000 mg b.i.d. (the projected therapeutic dose) and an area under the concentration-time curve (AUC)(0-24h) of 36.83 ± 10.36 µg/ml·h. The half-life, as determined after a 1,000-mg single dose, was 2.18 ± 0.61 h. The compound was well tolerated at low doses, but at the highest dose, 1,000 mg t.i.d., reversible cyanosis and low oxygen saturation, attributable to methemoglobinemia, were detected on day 11. Oxygen saturation was as low as 88% in one subject on day 11.

  7. Pharmacodynamics, pharmacokinetics and safety of ticagrelor in Asian patients with stable coronary artery disease.

    PubMed

    Hiasa, Y; Teng, R; Emanuelsson, H

    2014-10-01

    This randomized, active-controlled, double-blind study assessed the pharmacodynamics, pharmacokinetics and safety of ticagrelor in Japanese patients and a smaller cohort of non-Japanese Asian patients. The study recruited patients aged 20-80 years who had received aspirin 75-100 mg/day for ≥2 weeks and had percutaneous coronary intervention or acute coronary syndrome >3 months previously. Patients received 4 weeks' treatment with ticagrelor 45 mg bid, ticagrelor 90 mg bid or clopidogrel 75 mg qd (all with aspirin). The inhibition of platelet aggregation (IPA, final-extent) and pharmacokinetics of ticagrelor were assessed on days 1 and 28. Overall, 139 Asian patients were randomized (ticagrelor 45 mg bid, n = 50; ticagrelor 90 mg bid, n = 43; clopidogrel, n = 46) of whom 118 were Japanese. Mean final-extent IPA was greater with ticagrelor 90 mg bid versus ticagrelor 45 mg bid and with both ticagrelor doses versus clopidogrel. At the end of the dosing interval on day 28, mean final-extent IPA was 10.0% higher (95% confidence interval 0.5-19.5%) for ticagrelor 90 mg bid versus ticagrelor 45 mg bid, 15.1% higher (5.8-24.4%) for ticagrelor 45 mg bid versus clopidogrel, and 25.1% higher (15.5-34.7%) for ticagrelor 90 mg bid versus clopidogrel. In Japanese patients, exposure to ticagrelor and its active metabolite AR-C124910XX increased dose-proportionally. The safety profile of ticagrelor was consistent with previous studies. Ticagrelor was associated with enhanced IPA versus clopidogrel in Japanese patients. PMID:24935072

  8. IND-Directed Safety and Biodistribution Study of Intravenously Injected Cetuximab-IRDye800 in Cynomolgus Macaques

    PubMed Central

    Zinn, Kurt R.; Korb, Melissa; Samuel, Sharon; Warram, Jason M.; Dion, David; Killingsworth, Cheryl; Fan, Jinda; Schoeb, Trenton; Strong, Theresa V.; Rosenthal, Eben L.

    2014-01-01

    Purpose The use of receptor-targeted antibodies conjugated to fluorophores is actively being explored for real-time imaging of disease states, however, the toxicity of the bioconjugate has not been assessed in non-human primates. Procedures To this end, the in vivo toxicity and pharmacokinetics of IRDye800 conjugated to cetuximab (cetuximab-IRDye800; 21 mg/kg; equivalent to 250 mg/m2 human dose) was assessed in male cynomolgus monkeysover15 days following intravenous injection and compared with an unlabeled cetuximab-dosed control group. Results Cetuximab-IRDye800 was well tolerated. There were no infusion reactions, adverse clinical signs, mortality, weight loss, or clinical histopathology findings. The plasma half-life for the cetuximab-IRDye800 and cetuximab groups were equivalent (2.5 days). The total recovered cetuximab-IRDye800 in all tissues at study termination was estimated to be 12% of the total dose. Both cetuximab-IRDye800 and cetuximab groups showed increased QTc after dosing. The QTc for the cetuximab-dosed group returned to baseline by day 15, while the QTc of the cetuximab-IRDye800 remained elevated compared to baseline. Conclusion IRDye800 in low molar ratios does not significantly impact cetuximab half-life or result in organ toxicity. These studies support careful cardiac monitoring (ECG) for human studies using fluorescent dyes. PMID:25080323

  9. Pharmacokinetics and safety of 0.5% ivermectin lotion for head louse infestations.

    PubMed

    Hazan, Lydie; Berg, Jeffrey E; Bowman, James P; Murray, John V; Ryan, William G

    2013-01-01

    The safety of a novel 0.5% ivermectin lotion (IVL) and potential for ivermectin absorption after application was investigated in an open-label study in young children, and a human repeat insult patch test (HRIPT) and cumulative irritation test (CIT) assessed any potential for cumulative dermal irritation and contact sensitization. In the pharmacokinetic and safety study, 30 head louse-infested children ages 6 months to 3 years received a 10-minute application of IVL on day 1. Blood was collected before application; 0.5, 1, and 6 hours after rinsing; and on days 2 and 8. Samples from 20 subjects were assayed for ivermectin (test sensitivity 0.05 ng/mL). Liver panel and complete blood counts were completed for all subjects. For the HRIPT/CIT, occlusive patches containing IVL or vehicle control lotion (CL) were repeatedly applied to 220 healthy adult subjects to assess contact sensitization; for cumulative dermal irritation testing, additional patches with normal saline and sodium dodecyl sulfate (SDS) were applied to 36 subjects. In the open-label study, all detected ivermectin plasma concentrations were <1 ng/mL. No safety signals emerged, and treatment was well tolerated. In the HRIPT/CIT, IVL was significantly less irritating than normal saline and SDS, with no evidence of dermal irritation or sensitization in human skin. IVL was safe when applied topically, absorption was de minimus, there was no evidence of irritation or sensitization from repeated exposures, and results support the safety of topical IVL use in children as young as 6 months.

  10. The novel AKT inhibitor afuresertib shows favorable safety, pharmacokinetics, and clinical activity in multiple myeloma

    PubMed Central

    Spencer, Andrew; Yoon, Sung-Soo; Harrison, Simon J.; Morris, Shannon R.; Smith, Deborah A.; Brigandi, Richard A.; Gauvin, Jennifer; Kumar, Rakesh; Opalinska, Joanna B.

    2014-01-01

    The PI3K/AKT pathway is constitutively active in hematologic malignancies, providing proliferative and antiapoptotic signals and possibly contributing to drug resistance. We conducted an open-label phase 1 study to evaluate the maximum tolerated dose (MTD), safety, pharmacokinetics, and clinical activity of afuresertib—an oral AKT inhibitor—in patients with advanced hematologic malignancies. Seventy-three patients were treated at doses ranging from 25 to 150 mg per day. The MTD was established at 125 mg per day because of 2 dose-limiting toxicities in the 150-mg cohort (liver function test abnormalities). The most frequent adverse events were nausea (35.6%), diarrhea (32.9%), and dyspepsia (24.7%). Maximum plasma concentrations and area under the plasma concentration-time curves from time 0 to 24 hours were generally dose proportional at >75-mg doses; the median time to peak plasma concentrations was 1.5 to 2.5 hours post dose, with a half-life of approximately 1.7 days. Three multiple myeloma patients attained partial responses; an additional 3 attained minimal responses. Clinical activity was also observed in non-Hodgkin lymphoma, Langerhan's cell histiocytosis, and Hodgkin disease. Single-agent afuresertib showed a favorable safety profile and demonstrated clinical activity against hematologic malignancies, including multiple myeloma. This trial was registered at www.clinicaltrials.gov as #NCT00881946. PMID:25075128

  11. Effect of renal impairment on the pharmacokinetics, pharmacodynamics, and safety of apixaban.

    PubMed

    Chang, Ming; Yu, Zhigang; Shenker, Andrew; Wang, Jessie; Pursley, Janice; Byon, Wonkyung; Boyd, Rebecca A; LaCreta, Frank; Frost, Charles E

    2016-05-01

    This open-label study evaluated apixaban pharmacokinetics, pharmacodynamics, and safety in subjects with mild, moderate, or severe renal impairment and in healthy subjects following a single 10-mg oral dose. The primary analysis determined the relationship between apixaban AUC∞ and 24-hour creatinine clearance (CLcr ) as a measure of renal function. The relationships between 24-hour CLcr and iohexol clearance, estimated CLcr (Cockcroft-Gault equation), and estimated glomerular filtration rate (modification of diet in renal disease [MDRD] equation) were also assessed. Secondary objectives included assessment of safety and tolerability as well as international normalized ratio (INR) and anti-factor Xa activity as pharmacodynamic endpoints. The regression analysis showed that decreasing renal function resulted in modestly increased apixaban exposure (AUC∞ increased by 44% in severe impairment with a 24-hour CLcr of 15 mL/min, compared with subjects with normal renal function), but it did not affect Cmax or the direct relationship between apixaban plasma concentration and anti-factor Xa activity or INR. The assessment of renal function measured by iohexol clearance, Cockcroft-Gault, and MDRD was consistent with that determined by 24-hour CLcr . Apixaban was well tolerated in this study. These results suggest that dose adjustment of apixaban is not required on the basis of renal function alone. PMID:26358690

  12. Effect of renal impairment on the pharmacokinetics, pharmacodynamics, and safety of apixaban.

    PubMed

    Chang, Ming; Yu, Zhigang; Shenker, Andrew; Wang, Jessie; Pursley, Janice; Byon, Wonkyung; Boyd, Rebecca A; LaCreta, Frank; Frost, Charles E

    2016-05-01

    This open-label study evaluated apixaban pharmacokinetics, pharmacodynamics, and safety in subjects with mild, moderate, or severe renal impairment and in healthy subjects following a single 10-mg oral dose. The primary analysis determined the relationship between apixaban AUC∞ and 24-hour creatinine clearance (CLcr ) as a measure of renal function. The relationships between 24-hour CLcr and iohexol clearance, estimated CLcr (Cockcroft-Gault equation), and estimated glomerular filtration rate (modification of diet in renal disease [MDRD] equation) were also assessed. Secondary objectives included assessment of safety and tolerability as well as international normalized ratio (INR) and anti-factor Xa activity as pharmacodynamic endpoints. The regression analysis showed that decreasing renal function resulted in modestly increased apixaban exposure (AUC∞ increased by 44% in severe impairment with a 24-hour CLcr of 15 mL/min, compared with subjects with normal renal function), but it did not affect Cmax or the direct relationship between apixaban plasma concentration and anti-factor Xa activity or INR. The assessment of renal function measured by iohexol clearance, Cockcroft-Gault, and MDRD was consistent with that determined by 24-hour CLcr . Apixaban was well tolerated in this study. These results suggest that dose adjustment of apixaban is not required on the basis of renal function alone.

  13. Raltegravir for HIV-1 infected children and adolescents: efficacy, safety, and pharmacokinetics

    PubMed Central

    Larson, Kajal B; King, Jennifer R; Acosta, Edward P

    2013-01-01

    Raltegravir was the first HIV integrase strand-transfer inhibitor to be approved by the US FDA, in October 2007, for the treatment of HIV-1 infection in combination with other antiretroviral agents. Raltegravir can be used in treatment-naïve and -experienced patients, as well as for the treatment of multidrug-resistant infection. Raltegravir exists in two formulations: a film-coated tablet administered orally at 400 mg twice daily, and a chewable tablet administered orally at 300 mg twice daily. In 2011, raltegravir was also approved for the treatment of children and adolescents, ages 2–18 years. For adolescents (ages 12–18 years), the recommended dose is 400 mg twice daily (film-coated tablet). If children (ages 6–12 years) weigh at least 25 kg, the film-coated tablet is recommended at 400 mg twice daily. Otherwise, patients receive the chewable tablet according to weight-based dosing at approximately 6 mg/kg/dose. Studies are ongoing for children ages 4 weeks to 2 years, and preliminary efficacy and safety data are promising. This article reviews current studies on the efficacy, safety, and pharmacokinetics of raltegravir in the pediatric population and the challenges of treating HIV in children and adolescents. PMID:24600298

  14. Dose selection for the investigational anticancer agent alisertib (MLN8237): Pharmacokinetics, pharmacodynamics, and exposure-safety relationships.

    PubMed

    Venkatakrishnan, Karthik; Zhou, Xiaofei; Ecsedy, Jeffrey; Mould, Diane R; Liu, Hua; Danaee, Hadi; Fingert, Howard; Kleinfield, Robert; Milton, Ashley

    2015-03-01

    We report population pharmacokinetic, pharmacodynamic, and pharmacokinetic-safety analyses to support phase II/III dose/regimen selection of alisertib, a selective Aurora A kinase (AAK) inhibitor. Phase I studies in adult cancer patients evaluated dosing on Days 1-7 in 21-day cycles or Days 1-21 in 35-day cycles, with corresponding maximum tolerated doses of 50 mg twice daily (BID) and 50 mg QD, respectively. Population pharmacokinetic analyses supported dose- and time-linear pharmacokinetics without identification of clinically meaningful covariates. Exposure-related increases in skin mitotic index and decreases in chromosomal alignment/spindle bipolarity in tumor mitotic cells confirmed AAK inhibition. Exposures in the 7-day schedule at or near 50 mg BID are expected to result in tumor AAK inhibition based on pharmacodynamic assessment in patient tumors. Exposure-safety analyses of data from patients receiving doses of 5-200 mg/day in the 7-day schedule support a low (∼7%) predicted incidence of dose-limiting toxicity at 50 mg BID. Taken together, these analyses support a pharmacologically active and acceptably tolerated dose range of alisertib for future clinical development. PMID:25302940

  15. Pharmacokinetics, safety and tolerability of triflusal and its main active metabolite HTB in healthy Chinese subjects.

    PubMed

    Wang, M; Zhang, Q; Huang, M; Zong, S; Hua, W; Zhou, W

    2014-05-01

    Triflusal presents comparable antiplatelet activity to aspirin while presenting a more favourable safety profile, and is used in the treatment of thrombosis. The study aimed to evaluate the pharmacokinetics and safety of triflusal and its major metabolite 2-(hydroxyl)-4-(trifluoromethyl)- benzoic acid (HTB) in healthy Chinese subjects.30 healthy subjects were recruited in this randomized, single-center, and open-label, parallel, single ascending doses (300, 600, 900 mg) and multiple doses (600 mg, once daily for 7 days) study. Plasma samples were analyzed with a validated liquid chromatography tandem mass spectrometry (LC/MS/MS) method. Safety was assessed by adverse events, ECG, laboratory testing, and vital signs.Triflusal was safe and well tolerated. After single-dose administration, triflusal was rapidly absorbed with a mean Tmax of 0.55-0.92 h and a mean t1/2 kel of 0.35-0.65 h, HTB was absorbed with a mean Tmax of 2.35-3.03 h and a mean t1/2 kel of 52.5-65.57 h. Cmax and AUC for triflusal and HTB were approximately dose proportional over the 300-900 mg dose range. In the steady state, the accumulation index (R) indicated that the exposure of triflusal increased slightly with repeated dosing, and the exposure of HTB increased obviously. 3 adverse events certainly related to the investigational drugs occurred in the multiple-dose phase.Following oral dosing under fasting condition, triflusal is promptly absorbed and rapidly depleted from the systemic circulation. HTB is quickly generated from triflusal and slowly eliminated. Triflusal accumulates slightly in the body. HTB plasma concentration builds up progressively toward steady-state. PMID:24105106

  16. Safety and pharmacokinetics of oral cannabidiol when administered concomitantly with intravenous fentanyl in humans

    PubMed Central

    Manini, Alex F.; Yiannoulos, Georgia; Bergamaschi, Mateus M.; Hernandez, Stephanie; Olmedo, Ruben; Barnes, Allan J.; Winkel, Gary; Sinha, Rajita; Jutras-Aswad, Didier; Huestis, Marilyn A.; Hurd, Yasmin L.

    2015-01-01

    Objectives Cannabidiol (CBD) is hypothesized as a potential treatment for opioid addiction, with safety studies an important first step for medication development. We determined CBD safety and pharmacokinetics when administered concomitantly with a high-potency opioid in healthy subjects. Methods This double-blind, placebo-controlled cross-over study of CBD co-administered with intravenous fentanyl, was conducted at the Clinical Research Center in Mount Sinai Hospital, a tertiary care medical center in New York City. Participants were healthy volunteers aged 21–65 years with prior opioid exposure, regardless of route. Blood samples were obtained before and after 400 or 800 mg CBD pretreatment, followed by a single 0.5 (Session 1) or 1.0mcg/Kg (Session 2) intravenous fentanyl dose. The primary outcome was the Systematic Assessment for Treatment Emergent Events (SAFTEE) to assess safety and adverse effects. CBD peak plasma concentrations, time to reach peak plasma concentrations (tmax), and area under the curve (AUC) were measured. Results SAFTEE data were similar between groups without respiratory depression or cardiovascular complications during any test session. Following low dose CBD, tmax occurred at 3 and 1.5h (Sessions 1 and 2, respectively). Following high dose CBD, tmax occurred at 3 and 4h in Sessions 1 and 2, respectively. There were no significant differences in plasma CBD or cortisol (AUC p=NS) between sessions. Conclusions CBD does not exacerbate adverse effects associated with intravenous fentanyl administration. Co-administration of CBD and opioids was safe and well tolerated. These data provide the foundation for future studies examining CBD as a potential treatment for opioid abuse. PMID:25748562

  17. Safety and pharmacokinetics of multiple doses of aclidinium bromide administered twice daily in healthy volunteers.

    PubMed

    Lasseter, K; Dilzer, S; Jansat, J M; Garcia Gil, E; Caracta, C F; Ortiz, S

    2012-04-01

    Chronic obstructive pulmonary disease (COPD) is characterized by progressive airway obstruction and increased cholinergic tone. The global initiative for chronic obstructive lung disease (GOLD) guidelines recommend long-acting anticholinergics for COPD maintenance treatment. Aclidinium bromide is a novel, long-acting muscarinic antagonist developed for the treatment of COPD. A phase I, randomized, single-blind, multiple-dose clinical trial was conducted to assess the safety and pharmacokinetics (PK) of multiple doses of twice-daily (BID) aclidinium in healthy subjects. Thirty healthy male and female subjects received aclidinium 200 μg, 400 μg, 800 μg, or placebo twice daily for 7 days. Subjects were randomized to 1 of 3 cohorts and 10 subjects in each cohort were randomized (8:2) to either aclidinium or placebo groups. Safety was assessed via adverse events (AEs), laboratory evaluations, vital signs, and ECGs. Plasma samples were obtained at multiple time points throughout the study and analyzed for aclidinium and its inactive acid and alcohol metabolites using a fully validated method of liquid chromatography coupled with tandem mass spectrometry. A total of 9 treatment-emergent AEs were reported (1, placebo; 3, aclidinium 400 μg; 5, aclidinium 800 μg), all of which were mild in severity. No serious AEs were reported. There were no clinically meaningful changes in laboratory parameters or vital signs. PK parameters on Day 7 following BID dosing of aclidinium showed that steady state was achieved for aclidinium and its metabolites. On Days 1 and 7, maximum plasma concentrations (Cmax) of aclidinium were generally observed at the first PK time point (5 min postdose) and rapidly declined, with plasma concentrations generally less than 10% of Cmax by 6 h postdose in all aclidinium groups. Mean effective t(½) after the evening dose on Day 7 ranged from 4.6 to 7.0 h for aclidinium 400 μg and 800 μg, similar to the terminal t(½) observed on Day 1 (4.5-5.9 h

  18. Pharmacokinetics and safety of voriconazole intravenous-to-oral switch regimens in immunocompromised Japanese pediatric patients.

    PubMed

    Mori, Masaaki; Kobayashi, Ryoji; Kato, Koji; Maeda, Naoko; Fukushima, Keitaro; Goto, Hiroaki; Inoue, Masami; Muto, Chieko; Okayama, Akifumi; Watanabe, Kenichi; Liu, Ping

    2015-02-01

    The aim of this study was to investigate the pharmacokinetics, safety, and tolerability of voriconazole following intravenous-to-oral switch regimens used with immunocompromised Japanese pediatric subjects (age 2 to <15 years) at high risk for systemic fungal infection. Twenty-one patients received intravenous-to-oral switch regimens based on a recent population pharmacokinetic modeling; they were given 9 mg/kg of body weight followed by 8 mg/kg of intravenous (i.v.) voriconazole every 12 h (q12h), and 9 mg/kg (maximum, 350 mg) of oral voriconazole q12h (for patients age 2 to <12 or 12 to <15 years and <50 kg) or 6 mg/kg followed by 4 mg/kg of i.v. voriconazole q12h and 200 mg of oral voriconazole q12h (for patients age 12 to <15 years and ≥50 kg). The steady-state area under the curve over the 12-h dosing interval (AUC0-12,ss) was calculated using the noncompartmental method and compared with the predicted exposures in Western pediatric subjects based on the abovementioned modeling. The geometric mean (coefficient of variation) AUC0-12,ss values for the intravenous and oral regimens were 51.1 μg · h/ml (68%) and 45.8 μg·h/ml (90%), respectively; there was a high correlation between AUC0-12,ss and trough concentration. Although the average exposures were higher in the Japanese patients than those in the Western pediatric subjects, the overall voriconazole exposures were comparable between these two groups due to large interindividual variability. The exposures in the 2 cytochrome P450 2C19 poor metabolizers were among the highest. Voriconazole was well tolerated. The most common treatment-related adverse events were photophobia and abnormal hepatic function. These recommended doses derived from the modeling appear to be appropriate for Japanese pediatric patients, showing no additional safety risks compared to those with adult patients. (This study has been registered at ClinicalTrials.gov under registration no. NCT01383993.).

  19. Pharmacokinetics and safety of oral levofloxacin in human immunodeficiency virus-infected individuals receiving concomitant zidovudine.

    PubMed Central

    Chien, S C; Chow, A T; Rogge, M C; Williams, R R; Hendrix, C W

    1997-01-01

    This phase I, double-blind, randomized, placebo-controlled, parallel-design study was conducted to evaluate the safety and pharmacokinetics of levofloxacin in human immunodeficiency virus (HIV)-infected subjects concomitantly receiving a stable regimen of zidovudine (AZT). Sixteen HIV-infected males with CD4-cell counts ranging from 100 to 550 and not experiencing significant AZT intolerance were enrolled. Subjects received levofloxacin (350 mg of levofloxacin hemihydrate) or a placebo (eight subjects per treatment group) as a single oral dose on day 1, multiple doses every 8 h from days 3 to 9, and a single dose on day 10. On days 1 and 10, an AZT dose (100 mg) was administered concurrently with the study drug. In between these doses, AZT was administered according to the regimen used by the subject prior to entering the study up to a maximum of 500 mg/day. Plasma levofloxacin concentrations were monitored for 36 h after levofloxacin dosing on day 1, immediately prior to the morning doses on days 3 to 9, and for 72 h after dosing on day 10. Plasma AZT concentrations were monitored on day 0 for baseline (for 6 h after the AZT dose) and for 4 h after the AZT doses on days 1 and 10. Levofloxacin was rapidly absorbed (time to maximum plasma concentration, approximately 1.0 h) and extensively distributed in the body with an apparent volume of distribution of approximately 104 liters (approximately 1.34 liters/kg). Steady-state conditions on day 10 were confirmed. Pharmacokinetic profiles of levofloxacin from single doses and multiple (three-times-daily) doses were similar, with a moderate accumulation (observed day 10-to-day 1 ratio of the maximum plasma concentration, approximately 185% versus expected 169%; for the corresponding ratio of the area under the concentration-time curve from 0 to 8 h [AUC(0-8)], the values were observed 217% versus expected 169%) at steady state. Mean average steady-state peak plasma concentration, plasma levofloxacin concentration at the

  20. Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers.

    PubMed

    Gota, Vikram S; Maru, Girish B; Soni, Tejal G; Gandhi, Tejal R; Kochar, Nitin; Agarwal, Manish G

    2010-02-24

    Curcumin is the lipid-soluble antioxidant compound obtained from the rhizome of Curcuma longa Linn, also known as turmeric. Curcumin targets multiple chemotherapeutic and inflammatory pathways and has demonstrated safety and tolerability in humans, supporting its potential as a therapeutic agent; however, the clinical literature lacks conclusive evidence supporting its use as a therapeutic agent due to its low bioavailability in humans. The purpose of this study was to quantify plasma levels of free curcumin after dosing of a solid lipid curcumin particle (SLCP) formulation versus unformulated curcumin in healthy volunteers and to determine its tolerability and dose-plasma concentration relationship in late-stage osteosarcoma patients. Doses of 2, 3, and 4 g of SLCP were evaluated in 11 patients with osteosarcoma. Plasma curcumin levels were measured using a validated high-performance liquid chromatography method. The limit of detection of the assay was 1 ng/mL of curcumin. In healthy subjects, the mean peak concentration of curcumin achieved from dosing 650 mg of SLCP was 22.43 ng/mL, whereas plasma curcumin from dosing an equal quantity of unformulated 95% curcuminoids extract was not detected. In both healthy individuals and osteosarcoma patients, high interindividual variability in pharmacokinetics and nonlinear dose dependency was observed, suggesting potentially complex absorption kinetics. Overall, good tolerability was noted in both healthy and osteosarcoma groups. PMID:20092313

  1. Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers.

    PubMed

    Gota, Vikram S; Maru, Girish B; Soni, Tejal G; Gandhi, Tejal R; Kochar, Nitin; Agarwal, Manish G

    2010-02-24

    Curcumin is the lipid-soluble antioxidant compound obtained from the rhizome of Curcuma longa Linn, also known as turmeric. Curcumin targets multiple chemotherapeutic and inflammatory pathways and has demonstrated safety and tolerability in humans, supporting its potential as a therapeutic agent; however, the clinical literature lacks conclusive evidence supporting its use as a therapeutic agent due to its low bioavailability in humans. The purpose of this study was to quantify plasma levels of free curcumin after dosing of a solid lipid curcumin particle (SLCP) formulation versus unformulated curcumin in healthy volunteers and to determine its tolerability and dose-plasma concentration relationship in late-stage osteosarcoma patients. Doses of 2, 3, and 4 g of SLCP were evaluated in 11 patients with osteosarcoma. Plasma curcumin levels were measured using a validated high-performance liquid chromatography method. The limit of detection of the assay was 1 ng/mL of curcumin. In healthy subjects, the mean peak concentration of curcumin achieved from dosing 650 mg of SLCP was 22.43 ng/mL, whereas plasma curcumin from dosing an equal quantity of unformulated 95% curcuminoids extract was not detected. In both healthy individuals and osteosarcoma patients, high interindividual variability in pharmacokinetics and nonlinear dose dependency was observed, suggesting potentially complex absorption kinetics. Overall, good tolerability was noted in both healthy and osteosarcoma groups.

  2. The pharmacokinetics and safety of idelalisib in subjects with moderate or severe hepatic impairment.

    PubMed

    Jin, Feng; Robeson, Michelle; Zhou, Huafeng; Hisoire, Grace; Ramanathan, Srini

    2015-08-01

    Idelalisib, a phosphatidylinositol 3-kinase delta (PI3Kδ) inhibitor, is metabolized primarily by aldehyde oxidase to form GS-563117, an inactive metabolite, and is metabolized to a lesser extent by cytochrome P450 3A and uridine 5'-diphospho-glucuronosyltransferase 1A4. In a mass balance study, the orally administered idelalisib dose was recovered mainly in feces (∼78%). This study evaluated the pharmacokinetics and safety of a single 150-mg dose of idelalisib in subjects with moderate or severe hepatic impairment and in age-, sex-, and weight-matched, healthy controls. The idelalisib maximum observed plasma concentration was generally comparable in subjects with moderate or severe hepatic impairment versus healthy controls, whereas the mean area under the curve was higher (58% to 59%). GS-563117 exposures were lower in impaired versus healthy control subjects, likely because of lower formation in the setting of liver impairment. Exploratory analyses indicated no relevant relationships between idelalisib or GS-563117 plasma exposures and Child-Pugh-Turcotte scores. Single oral doses of idelalisib 150 mg were well tolerated, with most treatment-emergent adverse events (AEs) and laboratory abnormalities being grades 1 or 2 in severity. As such, no dose adjustment was required when initiating idelalisib treatment in patients with mild or moderate hepatic impairment, although close monitoring for potential AEs is recommended. PMID:25821156

  3. Pharmacokinetics and safety of olmesartan medoxomil in combination with either amlodipine or atenolol compared to respective monotherapies in healthy subjects.

    PubMed

    Bolbrinker, Juliane; Huber, Matthias; Scholze, Jürgen; Kreutz, Reinhold

    2009-12-01

    The aim of this study was to investigate any influence on olmesartan plasma pharmacokinetics from amlodipine or atenolol. We analysed pharmacokinetics and safety of olmesartan medoxomil in combination with either amlodipine or atenolol compared to respective monotherapies in two separate studies. In one study, 18 subjects received once daily treatment for 7 days with olmesartan medoxomil 20 mg alone or with amlodipine 5 mg or amlodipine 5 mg alone. In the other study, atenolol 50 mg once daily replaced amlodipine. Concentration vs. time profiles for olmesartan monotherapy were similar to combination therapy. Mean olmesartan AUC(ss,tau) for olmesartan alone and with amlodipine were 2439 and 2388 ng h/mL and for olmesartan alone and with atenolol were 2340 and 2247 ng h/mL. Corresponding olmesartan C(ss,max) values were 465.7 and 439.5 ng/mL for amlodipine, and 447.4 and 423.8 ng/mL for atenolol. Median t(max) values for olmesartan were 1.5 h for each group in each study. Bioequivalence was established for all pharmacokinetic parameters. Lack of significant pharmacokinetic interactions between olmesartan and amlodipine or atenolol provides a basis for combination therapy.

  4. Investigation of the safety of topical metronidazole from a pharmacokinetic perspective.

    PubMed

    Iida, Junichi; Kudo, Toshiyuki; Shimada, Kento; Yatsuno, Yoshiyuki; Yamagishi, Saori; Hasegawa, Satoshi; Ike, Hideyuki; Sato, Toru; Kagaya, Hajime; Ito, Kiyomi

    2013-01-01

    Metronidazole (MTZ) ointment has been used widely as a hospital preparation against cancerous malodor. Although cancerous tissue with ulcer-like symptoms is likely to have a higher capacity to absorb drugs than normal skin, the extent to which MTZ is absorbed when a topical preparation is applied to cancerous tissue remains unclear. Furthermore, few studies have investigated the drug interactions involving MTZ despite its long use in clinical practice. In the present study, plasma concentration of MTZ was measured in a breast cancer patient using MTZ ointment for cancerous malodor and basic research was also conducted with the objective of investigating the safety of topical MTZ from a pharmacokinetic perspective. 4.75 µg/mL (27.8 µM) of MTZ was detected in the patient's plasma, which was close to the plasma concentration after oral dosage of MTZ. In a metabolic inhibition study using human liver microsomes, cytochrome P450 (CYP) 2C9-mediated hydroxylation of S-warfarin was almost unaffected by MTZ at the corresponding concentrations. In addition, 3-d repeated oral administration of MTZ (200 mg/kg/d) to rats did not show any significant effects on the hepatic mRNA levels of various CYP isozymes and CYP2C protein levels. These results suggest that the reported interaction of oral MTZ and S-warfarin was not due to CYP2C9 inhibition and that drug interactions via inhibition of CYP2C9 is unlikely to occur when MTZ ointment is applied to ulcerous skin. This information should be valuable for assessing the safety of MTZ ointment used for mitigating cancerous malodor. PMID:23302640

  5. Safety and pharmacokinetics of extended use of palivizumab in Saudi Arabian infants and children

    PubMed Central

    al-Alaiyan, Saleh; Pollack, Paul; Notario, Gerard F

    2015-01-01

    Background: The peak season of respiratory syncytial virus (RSV) infections in warmer climates may extend beyond the typical five-month RSV season of temperate regions. Additional monthly doses of palivizumab may be necessary in warmer regions to protect children at high risk for serious infection by the RSV. Methods: In a Phase II, single-arm, single-center, non-comparative, open-label, prospective study conducted in Saudi Arabia, children at high risk for RSV infection received up to seven monthly injections of palivizumab (15 mg/kg) during the 2000–2001 RSV season. Key enrollment criteria were no previous exposure to palivizumab and gestational age ≤35 weeks, ≤6 months of age at enrollment, or chronic lung disease and ≤24 months of age at enrollment. We wished to assess the safety, immunogenicity, and pharmacokinetics of palivizumab as an extended seven-dose regimen. Results: Of 18 enrolled patients, 17 patients received seven palivizumab injections. Seven adverse events (AEs) occurred in five patients. Bronchiolitis was the most commonly reported AE. Six serious AEs occurred in four patients. No AEs were considered related to palivizumab. Trough levels of palivizumab in serum were >40 μg/mL in most patients after the first injection and in 16/18 and 14/17 patients after the fourth and sixth injections, respectively. Except for one patient at one visit, the anti-palivizumab titer was <1:10 at all visits. Conclusion: These data suggest that an extended palivizumab regimen of up to seven monthly doses during the RSV season exhibited an acceptable safety profile in children at high risk for RSV infection in Saudi Arabia. PMID:25767550

  6. Impact of inter-individual differences in drug metabolism and pharmacokinetics on safety evaluation.

    PubMed

    Dorne, J L C M

    2004-12-01

    Safety evaluation aims to assess the dose-response relationship to determine a dose/level of exposure for food contaminants below which no deleterious effect is measurable that is 'without appreciable health risk' when consumed daily over a lifetime. These safe levels, such as the acceptable daily intake (ADI) have been derived from animal studies using surrogates for the threshold such as the no-observed-adverse-effect-level (NOAEL). The extrapolation from the NOAEL to the human safe intake uses a 100-fold uncertainty factor, defined as the product of two 10-fold factors allowing for human variability and interspecies differences. The 10-fold factor for human variability has been further subdivided into two factors of 10(0.5) (3.16) to cover toxicokinetics and toxicodynamics and this subdivsion allows for the replacement of an uncertainty factor with a chemical-specific adjustment factor (CSAF) when compound-specific data are available. Recently, an analysis of human variability in pharmacokinetics for phase I metabolism (CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, hydrolysis, alcohol dehydrogenase), phase II metabolism (N-acetyltransferase, glucuronidation, glycine conjugation, sulphation) and renal excretion was used to derive pathway-related uncertainty factors in subgroups of the human population (healthy adults, effects of ethnicity and age). Overall, the pathway-related uncertainty factors (99th centile) were above the toxicokinetic uncertainty factor for healthy adults exposed to xenobiotics handled by polymorphic metabolic pathways (and assuming the parent compound was the proximate toxicant) such as CYP2D6 poor metabolizers (26), CYP2C19 poor metabolizers (52) and NAT-2 slow acetylators (5.2). Neonates were the most susceptible subgroup of the population for pathways with available data [CYP1A2 and glucuronidation (12), CYP3A4 (14), glycine conjugation (28)]. Data for polymorphic pathways were not available in neonates but uncertainty factors

  7. Impact of inter-individual differences in drug metabolism and pharmacokinetics on safety evaluation.

    PubMed

    Dorne, J L C M

    2004-12-01

    Safety evaluation aims to assess the dose-response relationship to determine a dose/level of exposure for food contaminants below which no deleterious effect is measurable that is 'without appreciable health risk' when consumed daily over a lifetime. These safe levels, such as the acceptable daily intake (ADI) have been derived from animal studies using surrogates for the threshold such as the no-observed-adverse-effect-level (NOAEL). The extrapolation from the NOAEL to the human safe intake uses a 100-fold uncertainty factor, defined as the product of two 10-fold factors allowing for human variability and interspecies differences. The 10-fold factor for human variability has been further subdivided into two factors of 10(0.5) (3.16) to cover toxicokinetics and toxicodynamics and this subdivsion allows for the replacement of an uncertainty factor with a chemical-specific adjustment factor (CSAF) when compound-specific data are available. Recently, an analysis of human variability in pharmacokinetics for phase I metabolism (CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, hydrolysis, alcohol dehydrogenase), phase II metabolism (N-acetyltransferase, glucuronidation, glycine conjugation, sulphation) and renal excretion was used to derive pathway-related uncertainty factors in subgroups of the human population (healthy adults, effects of ethnicity and age). Overall, the pathway-related uncertainty factors (99th centile) were above the toxicokinetic uncertainty factor for healthy adults exposed to xenobiotics handled by polymorphic metabolic pathways (and assuming the parent compound was the proximate toxicant) such as CYP2D6 poor metabolizers (26), CYP2C19 poor metabolizers (52) and NAT-2 slow acetylators (5.2). Neonates were the most susceptible subgroup of the population for pathways with available data [CYP1A2 and glucuronidation (12), CYP3A4 (14), glycine conjugation (28)]. Data for polymorphic pathways were not available in neonates but uncertainty factors

  8. Safety, tolerability, pharmacokinetics, and pharmacodynamics of exenatide once weekly in Japanese patients with type 2 diabetes.

    PubMed

    Iwamoto, Kazuya; Nasu, Risa; Yamamura, Ayuko; Kothare, Prajakti A; Mace, Kenneth; Wolka, Anne M; Linnebjerg, Helle

    2009-01-01

    This randomized, placebo-controlled, double-blind, parallel study assessed the safety, tolerability, pharmacokinetics, and pharmacodynamics of exenatide once weekly (QW) in 30 Japanese patients with type 2 diabetes (T2D) suboptimally controlled by diet and exercise alone or combined with biguanide, sulfonylurea, thiazolidinedione, or combinations of these agents (58.6% male; 58+/-9 years; body mass index 26.3+/-2.9 kg/m(2); hemoglobin A(1c) [HbA(1c)] 7.4+/-0.8%; fasting plasma glucose [FPG] 156.1+/-29.1 mg/dL; duration of T2D 6+/-5 years; means +/- SD). Patients were randomized in a 1:1:1 ratio to subcutaneous placebo QW, exenatide QW 0.8 mg, or exenatide QW 2.0 mg for 10 weeks. All evaluable patients were analyzed (placebo QW, n=10; exenatide QW 0.8 mg, n=10; exenatide QW 2.0 mg, n=9), unless otherwise stated. Steady-state plasma exenatide concentrations were observed by Week 8 of the study. For the evaluable pharmacokinetic population, geometric mean (90% confidence interval) steady-state plasma concentrations (pg/mL) were 81.2 (68.3-96.4) and 344.5 (256.5-462.7) with exenatide QW 0.8 mg (n=8) and exenatide QW 2.0 mg (n=5), respectively. Baseline-to-Week 10 glycemic improvements with placebo QW, exenatide QW 0.8 mg, and exenatide QW 2.0 mg, respectively, were: HbA(1c) (%): -0.4+/-0.3, -1.0+/-0.7, and -1.5+/-0.7; FPG (mg/dL): -20.5+/-20.4, -25.2+/-10.9, and -50.8+/-27.8; and 2-hour postprandial plasma glucose excursions (mg/dL): -8.8+/-26.9, -50.0+/-41.1, and -59.7+/-26.8 (means +/- SD). No serious adverse events (AEs) were reported and no AEs led to study discontinuation in any group. The most frequent AE observed was mild-to-moderate injection site induration. No serious hypoglycemia was reported. Exenatide QW for 10 weeks was well tolerated and improved short-term glycemic control in Japanese patients with suboptimally controlled T2D. PMID:19706990

  9. Single-dose pharmacokinetics and safety of pegylated interferon-alpha2b in patients with chronic renal dysfunction.

    PubMed

    Gupta, Samir K; Pittenger, Amy L; Swan, Suzanne K; Marbury, Thomas C; Tobillo, Emlyn; Batra, Vijay; Sack, Marshall; Glue, Paul; Jacobs, Sheila; Affrime, Melton

    2002-10-01

    This study evaluates the pharmacokinetics and safety of pegylated interferon-alpha2b (PEG-Intron) following a single-dose subcutaneous injection into subjects with normal renal function, subjects with chronic renal impairment, and patients on hemodialysis. In this open-label, single-dose, parallel group study, subjects were divided into five groups according to their degree of renal function: four groups as defined by measured creatinine clearance and a fifth hemodialysis dependent group. They received 1 microg/kg PEG-Intron subcutaneously after a 10-hour fast. Pharmacokinetic and safety assessments were performed up to 168 hours postdose. Hemodialysis patients had a second PEG-Intron dose 12 hours prior to a hemodialysis session. PEG-Intron pharmacokinetic parameters (AUCtf, Cmax, and t1/2) increased progressively as CL(CR) declined. All subjects reported at least one adverse event, which were typical of those reported after alpha-interferon administration (e.g., flu-like symptoms, headache). Single-dose PEG-Intron administration to volunteers with normal renal function and chronic renal impairment was safe and well tolerated. In patients with CL(CR) < 30 ml/min, AUCand Cmax values were increased 90% compared with controls, while half-life was increased by up to 40% over controls. Based on the relationship between PEG-Intron apparent clearance and CL(CR), renal clearance accountsfor less than half of its total clearance. Hemodialysis did not affect PEG-Intron apparent clearance.

  10. Pharmacokinetic, partial pharmacodynamic and initial safety analysis of (-)-epicatechin in healthy volunteers.

    PubMed

    Barnett, Christopher F; Moreno-Ulloa, Aldo; Shiva, Sruti; Ramirez-Sanchez, Israel; Taub, Pam R; Su, Yongxuan; Ceballos, Guillermo; Dugar, Sundeep; Schreiner, George; Villarreal, Francisco

    2015-03-01

    (-)-Epicatechin ((-)-EPI), a naturally occurring flavanol, has emerged as a likely candidate for cocoa-based product reported reductions in cardiometabolic risk. The present study aimed to determine the safety, tolerability, pharmacokinetics and pharmacodynamics of purified (-)-EPI administered to healthy volunteers. In this phase I, open-label, two-part single- and multiple-dose study, subjects received either a single dose (n = 9) of 50, 100 or 200 mg or multiple doses (n = 8) of 50 mg daily (q.d.) or twice daily (b.i.d) for 5 days. Blood was collected at 0, 0.5, 1, 2, 4 and 6 h after (-)-EPI administration in the single and multiple dose groups (blood collection repeated in day 5). Samples were analyzed by HPLC-HR-ESI-MS for EPI and metabolite quantification. In the q.d. and b.i.d. groups, blood samples were analyzed for NO surrogates and follistatin levels as well as, platelet mitochondrial complexes I, V and citrate synthase activity levels. (-)-EPI was well tolerated and readily absorbed with further phase 2 metabolism. On day 5, in the q.d. and b.i.d. groups, there were significant increases in plasma nitrite of 30% and 17%, respectively. In the q.d. group on day 5 vs. day 1, platelet mitochondrial complexes I, IV and citrate synthase activities demonstrated a significant increase of ∼92, 62 and 8%, respectively. Average day 5 follistatin AUC levels were ∼2.5 fold higher vs. day 1 AUC levels in the b.i.d. group. (-)-EPI was safe to use, with no observed adverse effects, and our findings suggest that increases in NO metabolites, mitochondrial enzyme function and plasma follistatin levels may underlie some of the beneficial effects of cocoa products or (-)-EPI as reported in other studies. PMID:25598082

  11. Pharmacokinetic, partial pharmacodynamic and initial safety analysis of (−)-Epicatechin in healthy volunteers

    PubMed Central

    Barnett, Christopher F.; Moreno-Ulloa, Aldo; Shiva, Sruti; Ramirez-Sanchez, Israel; Taub, Pam R.; Su, Yongxuan; Ceballos, Guillermo; Dugar, Sundeep; Schreiner, George; Villarreal, Francisco

    2015-01-01

    (−)-Epicatechin ((−)-EPI), a naturally occurring flavanol has emerged as a likely candidate for cocoa-based product reported reductions in cardiometabolic risk. The present study aimed to determine the safety, tolerability, pharmacokinetics and pharmacodynamics of purified (−)-EPI administered to healthy volunteers. In this phase I, open-label, two-part single- and multiple-dose study subjects received either a single dose (n=9) of 50, 100 or 200 mg or multiple doses (n=8) of 50 mg daily (q.d.) or twice daily (b.i.d) for 5 days. Blood was collected at 0, 0.5, 1, 2, 4 and 6 hrs after (−)-EPI administration in the single and multiple dose groups (blood collection repeated in day 5). Samples were analyzed by HPLC-HR-ESI-MS for EPI and metabolites quantification. In the q.d. and b.i.d. groups, blood samples were analyzed for NO surrogates, follistatin, platelet mitochondrial complex I, V and citrate synthase level determinations. (−)-EPI was well tolerated and readily absorbed with further phase 2 metabolism. On day 5, in the q.d. and b.i.d. groups, there were significant increases in plasma nitrite of 30 % and 17 %, respectively. In the q.d. group on day 5 vs. day 1, platelet mitochondria complexes I, IV and citrate synthase activities demonstrated a significant increase of ~ 92, 62 and 8 %, respectively. Average day 5 follistatin AUC levels were ~2.5 fold higher vs. day 1 AUC levels in the b.i.d. group. (−)-EPI was safe with no observed adverse effects and our findings suggest that increases in NO metabolites, mitochondrial enzyme function and plasma follistatin levels may underlie some of the beneficial effects of cocoa products or (−)-EPI as reported in other studies. PMID:25598082

  12. Pharmacokinetics, pharmacodynamics, and safety of microencapsulated octreotide acetate in healthy subjects.

    PubMed

    Chen, T; Miller, T F; Prasad, P; Lee, J; Krauss, J; Miscik, K; Kalafsky, G; McLeod, J F

    2000-05-01

    The pharmacokinetics, pharmacodynamics, and safety of the marketed formulation of microencapsulated octreotide acetate were evaluated in an open-label study in 22 healthy cholecystectomized subjects. Each subject received a single 30 mg dose of microencapsulated octreotide acetate intramuscularly (i.m.). Concentrations of octreotide, growth hormone (GH), insulin-like growth factor binding protein 3 (IGFBP-3), and insulin-like growth factor 1 (IGF-1) as well as clinical safety were evaluated over a period of 112 days (16 weeks). After the injection, mean serum octreotide concentration initially increased rapidly, reached the maximum (Cmax, day 1 = 0.96 +/- 0.25 ng/ml) approximately 1.5 hours after dosing, and declined thereafter until 24 hours postdose (Cmin, 24 h = 0.088 +/- 0.093 ng/ml). The octreotide concentration then increased and started a sustained release from day 7 onward. Plateau concentrations were maintained through day 70 and gradually declined to below the lower limit of quantification (LLOQ) by day 112. The plateau height (Cplateau (2-112d, 60%)) was 1.68 +/- 0.88 ng/ml, and the duration (delta plateau, 60%) was 30.2 +/- 15.7 days. The integrated concentration-time curve, AUC0-112d, was 2819 +/- 782 (ng.h/ml), and the apparent half-life (t1/2) was 169 hours. To assess the variability, the drug concentrations were determined hourly for 8 hours on day 28, and the mean octreotide concentration, Cavg, day 28' was 1.55 +/- 1.26 ng/ml. The suppression of IGF-1 was statistically significant compared to the baseline (p < 0.05) through day 63; however, there were no appreciable changes in GH and IGFBP-3 concentrations after a single injection of microencapsulated octreotide acetate. Simulation of a 28-day dose schedule suggested that steady-state octreotide concentrations would be reached by the third injection with steady-state concentrations about twofold greater than the first injection. There were no serious adverse events or clinically meaningful changes

  13. Multiple-dose pharmacokinetics and safety of rufloxacin in normal volunteers.

    PubMed Central

    Kisicki, J C; Griess, R S; Ott, C L; Cohen, G M; McCormack, R J; Troetel, W M; Imbimbo, B P

    1992-01-01

    The pharmacokinetics and safety of rufloxacin were evaluated in a double-blind, placebo-controlled study. Two groups of 16 healthy volunteers were given a single oral loading dose of 400 or 600 mg of rufloxacin on day 1 of the study. A single daily maintenance dose of 200 or 300 mg was then administered for a further 9 days; in addition, four subjects in each group received placebos. Rufloxacin levels in plasma and urine were determined by high-performance liquid chromatography. Following the initial dose, the mean (+/- standard error of the mean) peak concentrations of rufloxacin in plasma were 3.35 +/- 0.12 micrograms/ml in the 400-mg group and 4.54 +/- 0.19 micrograms/ml in the 600-mg group. They were generally reached 2 to 3 h after dosing. At the end of treatment, maximum levels in plasma rose to 4.51 +/- 0.15 and 7.20 +/- 0.25 micrograms/ml in the 400-mg and 600-mg groups, with a mean extent of accumulation (fold) of 3.1 +/- 0.1 and 3.3 +/- 0.1. For the 400-mg and 600-mg groups, the elimination half-lives were 40.0 +/- 1.5 and 44.0 +/- 1.3 h, mean residence times were 57.8 +/- 2.2 and 63.7 +/- 1.8 h, apparent volumes of distribution were 132 +/- 4 and 139 +/- 5 liters, and apparent total body clearance were 39 +/- 1 and 44 +/- 4 ml/min, assuming complete bioavailability. Of the total dose administered, the percentages excreted in urine were 49.6 +/- 1.3 and 51.1 +/-2.1%, with renal clearances of 21 +/- 1 and 22 +/- 2 ml/min, for the 400-mg and 600-mg groups. On the whole, the treatments were well tolerated, but some minor adverse events (mainly headache, insomnia, or abdominal discomfort) were reported for 7 subjects on abnormalities were detected in the laboratory examinations or in ocular function tests. This study shows that a 200-mg daily oral dose of rufloxacin preceded by a loading dose of 400 mg are well tolerated and produce steady-state concentrations in plasma above the MIC for most susceptible pathogens. PMID:1329618

  14. Hemostatic efficacy, safety, and pharmacokinetics of a recombinant von Willebrand factor in severe von Willebrand disease

    PubMed Central

    Gill, Joan C.; Castaman, Giancarlo; Windyga, Jerzy; Kouides, Peter; Ragni, Margaret; Leebeek, Frank W. G.; Obermann-Slupetzky, Ortrun; Chapman, Miranda; Fritsch, Sandor; Pavlova, Borislava G.; Presch, Isabella

    2015-01-01

    This phase 3 trial evaluated the safety and hemostatic efficacy of a recombinant von Willebrand factor (rVWF) for treatment of bleeds in severe von Willebrand disease (VWD). rVWF was initially administered together with recombinant factor VIII (rFVIII) and subsequently alone, as long as hemostatic factor VIII activity (FVIII:C) levels were maintained. Pharmacokinetics (PK) were evaluated in a randomized cross-over design (rVWF vs rVWF:rFVIII at 50 IU VWF:ristocetin cofactor activity [RCo]/kg). Bleed control for all treated bleeds (N = 192 bleeds in 22 subjects) was rated good or excellent (96.9% excellent; 119 of 122 minor, 59 of 61 moderate, and 6 of 7 major bleeds) on a 4-point scale (4 = none to 1 = excellent). A single infusion was effective in 81.8% of bleeds. Treatment success, defined as the number of subjects with a mean efficacy rating of <2.5, was 100%. The PK profile of rVWF was not influenced by rFVIII (mean VWF:RCo terminal half-life: 21.9 hours for rVWF and 19.6 hours for rVWF:rFVIII). FVIII:C levels increased rapidly after rVWF alone, with hemostatic levels achieved within 6 hours and sustained through 72 hours after infusion. Eight adverse events (AEs; 6 nonserious AEs in 4 subjects and 2 serious AEs [chest discomfort and increased heart rate, without cardiac symptomatology] concurrently in 1 subject) were associated with rVWF. There were no thrombotic events or severe allergic reactions. No VWF or FVIII inhibitors, anti-VWF binding antibodies, or antibodies against host cell proteins were detected. These results show that rVWF was safe and effective in treating bleeds in VWD patients and stabilizes endogenous FVIII:C, which may eliminate the need for rFVIII after the first infusion. This trial was registered at www.clinicaltrials.gov as #NCT01410227. PMID:26239086

  15. [Pharmacokinetics and safety of aripiprazole long-acting injection, following multiple deltoid administrations in schizophrenia patients in Japan].

    PubMed

    Ishigooka, Jun; Noda, Takamasa; Nishiyama, Kosuke; Tamaru, Noriko; Shima, Tomoko; Yamasaki, Yumiko; Tadori, Yoshihiro

    2016-06-01

    Aripiprazole once-monthly (AOM) was previously approved for treatment of schizophrenia as monthly injections in the gluteal muscle. The deltoid muscle provides a more accessible injection site. The present study was conducted in Japanese schizophrenia patients as a 24-week, open-label trial that assessed the pharmacokinetics and safety of 5 sequential doses of AOM 400 mg (AOM 400) once every 4 weeks administered in the deltoid muscle. Patients treated with an oral atypical antipsychotic (other than aripiprazole) continued to receive their pre-study medication up to 14 days after the first AOM 400 injection. The completion rate was 76.5% (n = 13/17). Mean aripiprazole plasma C(min) almost reached steady-state by the fourth AOM 400 injection. After the fifth AOM 400 injection, mean aripiprazole AUC(28d), C(max) and C(min) were 165 μg x h/ml, 331 ng/ml and 201 ng/ml, respectively, which were similar to previously published pharmacokinetic parameters after the fifth gluteal injection of AOM 400. The most common treatment-emergent adverse event (TEAE) was injection site pain (35.3%). Most TEAEs were classified as mild in intensity. In conclusion, the deltoid injection of AOM can be considered an alternative route of administration, as deltoid and gluteal injections are interchangeable in terms of aripiprazole plasma concentrations, with no additional safety issues.

  16. Safety, tolerability, pharmacokinetics, and pharmacodynamics of compound SFDAC by intranasal administration of multiple escalating dose in healthy male subjects.

    PubMed

    Thennati, Rajamannar; Khanna, Aman; Khanna, Mallika; Sonaiya, Tushar; Mehta, Tejas; Mehta, Kalpana; Shahi, Pradeep; Patel, Jigneshkumar

    2014-11-01

    A novel corticosteroid compound (short form of IUPAC name: SFDAC) has been discovered by Sun Pharma Advanced Research Company (SPARC) Ltd. A randomized, observer-blind, active-controlled, parallel-groups, intranasal multiple escalating dose study was conducted in healthy male subjects to assess safety, tolerability, pharmacokinetics, and pharmacodynamics of compound SFDAC formulated as an aqueous suspension for intranasal administration. Intranasal sprays of SFDAC, active control fluticasone propionate (FP) and placebo were administered once in a day for 14 days as per randomization. Various clinical evaluations including 24-hour serum cortisol and urinary free cortisol (UFC) profiles were carried out. Blood samples were collected at pre-defined time-points and analyzed using a validated chromatographic method for estimation of SFDAC and its metabolite. The results of the study indicate that multiple dose of SFDAC intranasal spray upto 3,200 µg is safe and tolerated. Clinically significant suppression of hypothalamic pituitary adrenal (HPA) axis was not observed. The plasma concentration of SFDAC was found to be below the lower limit of quantification (LLQ) at most time-points for all subjects. SFDAC M1 metabolite was detected only at picogram level in plasma. The safety and pharmacokinetic characteristics of SFDAC observed in this study support further clinical development of the SFDAC nasal spray.

  17. A Novel Method for Assessing Drug Degradation Product Safety Using Physiologically-Based Pharmacokinetic Models and Stochastic Risk Assessment.

    PubMed

    Nguyen, Hoa Q; Stamatis, Stephen D; Kirsch, Lee E

    2015-09-01

    Patient safety risk due to toxic degradation products is a potentially critical quality issue for a small group of useful drug substances. Although the pharmacokinetics of toxic drug degradation products may impact product safety, these data are frequently unavailable. The objective of this study is to incorporate the prediction capability of physiologically based pharmacokinetic (PBPK) models into a rational drug degradation product risk assessment procedure using a series of model drug degradants (substituted anilines). The PBPK models were parameterized using a combination of experimental and literature data and computational methods. The impact of model parameter uncertainty was incorporated into stochastic risk assessment procedure for estimating human safe exposure levels based on the novel use of a statistical metric called "PROB" for comparing probability that a human toxicity-target tissue exposure exceeds the rat exposure level at a critical no-observed-adverse-effect level. When compared with traditional risk assessment calculations, this novel PBPK approach appeared to provide a rational basis for drug instability risk assessment by focusing on target tissue exposure and leveraging physiological, biochemical, biophysical knowledge of compounds and species. PMID:25900395

  18. [Pharmacokinetics and safety of aripiprazole long-acting injection, following multiple deltoid administrations in schizophrenia patients in Japan].

    PubMed

    Ishigooka, Jun; Noda, Takamasa; Nishiyama, Kosuke; Tamaru, Noriko; Shima, Tomoko; Yamasaki, Yumiko; Tadori, Yoshihiro

    2016-06-01

    Aripiprazole once-monthly (AOM) was previously approved for treatment of schizophrenia as monthly injections in the gluteal muscle. The deltoid muscle provides a more accessible injection site. The present study was conducted in Japanese schizophrenia patients as a 24-week, open-label trial that assessed the pharmacokinetics and safety of 5 sequential doses of AOM 400 mg (AOM 400) once every 4 weeks administered in the deltoid muscle. Patients treated with an oral atypical antipsychotic (other than aripiprazole) continued to receive their pre-study medication up to 14 days after the first AOM 400 injection. The completion rate was 76.5% (n = 13/17). Mean aripiprazole plasma C(min) almost reached steady-state by the fourth AOM 400 injection. After the fifth AOM 400 injection, mean aripiprazole AUC(28d), C(max) and C(min) were 165 μg x h/ml, 331 ng/ml and 201 ng/ml, respectively, which were similar to previously published pharmacokinetic parameters after the fifth gluteal injection of AOM 400. The most common treatment-emergent adverse event (TEAE) was injection site pain (35.3%). Most TEAEs were classified as mild in intensity. In conclusion, the deltoid injection of AOM can be considered an alternative route of administration, as deltoid and gluteal injections are interchangeable in terms of aripiprazole plasma concentrations, with no additional safety issues. PMID:27506082

  19. Human plasma-derived FVIII/VWD concentrate (Biostate): a review of experimental and clinical pharmacokinetic, efficacy and safety data

    PubMed Central

    Harper, Paul; Favaloro, Emmanuel J.; Curtin, Julie; Barnes, Chris; Dunkley, Scott

    2016-01-01

    Human plasma-derived factor VIII/von Willebrand factor complex concentrates are used to control bleeding in patients with von Willebrand disease (VWD) or haemophilia A (HA). The properties of these haemostatic factor concentrates vary widely, which can have significant clinical implications. This review provides an extensive overview of the molecular properties, in addition to pharmacokinetic, efficacy and safety data, and case studies of clinical experience of one such concentrate, Biostate. These data are discussed in the context of various therapeutic applications and compared with other factor concentrate products. Data are presented from data on file from the manufacturer; product information and published experimental and clinical pharmacokinetic, safety and efficacy study data; and example case studies of clinical experience. The data discussed herein demonstrate that Biostate has well-established efficacy profiles in the treatment of patients with VWD or HA, with the control of bleeding rated as ‘excellent’, ‘good’ or ‘moderate’ in >90% of patients. In an immune-tolerance induction setting, 73% of patients achieved a complete response following treatment with Biostate. Biostate was generally well tolerated in patients with HA or VWD, with infrequent minor adverse events reported and no reported cases of clinically relevant thrombosis. PMID:27114741

  20. A Novel Method for Assessing Drug Degradation Product Safety Using Physiologically-Based Pharmacokinetic Models and Stochastic Risk Assessment.

    PubMed

    Nguyen, Hoa Q; Stamatis, Stephen D; Kirsch, Lee E

    2015-09-01

    Patient safety risk due to toxic degradation products is a potentially critical quality issue for a small group of useful drug substances. Although the pharmacokinetics of toxic drug degradation products may impact product safety, these data are frequently unavailable. The objective of this study is to incorporate the prediction capability of physiologically based pharmacokinetic (PBPK) models into a rational drug degradation product risk assessment procedure using a series of model drug degradants (substituted anilines). The PBPK models were parameterized using a combination of experimental and literature data and computational methods. The impact of model parameter uncertainty was incorporated into stochastic risk assessment procedure for estimating human safe exposure levels based on the novel use of a statistical metric called "PROB" for comparing probability that a human toxicity-target tissue exposure exceeds the rat exposure level at a critical no-observed-adverse-effect level. When compared with traditional risk assessment calculations, this novel PBPK approach appeared to provide a rational basis for drug instability risk assessment by focusing on target tissue exposure and leveraging physiological, biochemical, biophysical knowledge of compounds and species.

  1. Effectiveness, Safety, and Pharmacokinetics of Quetiapine in Aggressive Children with Conduct Disorder

    ERIC Educational Resources Information Center

    Findling, Robert L.; Reed, Michael D.; O'Riordan, Mary Ann; Demeter, Christine A.; Stansbrey, Robert J.; McNamara, Nora K.

    2006-01-01

    Objective: To provide an initial description of the effectiveness and pharmacokinetics (PK) of quetiapine in aggressive children with conduct disorder (CD). Method: This 8-week, open-label outpatient trial, enrolled patients ages 6 to 12 years with CD. Outcome measures included the Rating of Aggression Against People and/or Property Scale…

  2. Quantification techniques and biodistribution of semiconductor quantum dots.

    PubMed

    Pic, Emilie; Bezdetnaya, Lina; Guillemin, François; Marchal, Frédéric

    2009-03-01

    Quantum dots (QDs) are fluorescent inorganic nanocrystals with advantageous optical properties, which have been applied for biomedical purposes including imaging, diagnostic, drug delivery or therapy. Potential toxicity of QDs remains the major barrier to clinical translation, and as such the precise analysis of in vivo QDs distribution and pharmacokinetics is of major importance. Biodistribution studies in animal models are, however, sparse. The present review provides in a first lieu a summary of different techniques, which are currently used for relative quantification of QDs in vivo or their absolute quantification ex vivo. Fluorescence and radioactivity based techniques along with mass-spectrometry detection at the elementary level are addressed in this review. We further introduce biodistribution studies in animal models and discuss the possibilities to modify quantum dots biodistribution in function of different injection ways.

  3. Pharmacokinetics of internally labeled monoclonal antibodies as a gold standard: comparison of biodistribution of /sup 75/Se-, /sup 111/In-, and /sup 125/I-labeled monoclonal antibodies in osteogenic sarcoma xenografts in nude mice

    SciTech Connect

    Koizumi, M.; Endo, K.; Watanabe, Y.; Saga, T.; Sakahara, H.; Konishi, J.; Yamamuro, T.; Toyama, S.

    1989-04-01

    In order to know the true biodistribution of anti-tumor monoclonal antibodies, three monoclonal antibodies (OST6, OST7, and OST15) against human osteosarcoma and control antibody were internally labeled with 75Se by incubating (75Se)methionine and hybridoma cells. 75Se-labeled monoclonal antibodies were evaluated both in vitro and in vivo using the human osteogenic sarcoma cell line KT005, and the results were compared with those of 125I- and 111In-labeled antibodies. 75Se-, 125I- and 111In-labeled monoclonal antibodies had identical binding activities to KT005 cells, and the immunoreactivity was in the decreasing order of OST6, OST7, and OST15. On the contrary, in vivo tumor uptake (% injected dose/g) of 75Se- and 125I-labeled antibodies assessed using nude mice bearing human osteosarcoma KT005 was in the order of OST7, OST6, and OST15. In the case of 111In, the order was OST6, OST7, and OST15. High liver uptake was similarly seen with 75Se- and 111In-labeled antibodies, whereas 125I-labeled antibodies showed the lowest tumor and liver uptake. These data indicate that tumor targeting of antibody conjugates are not always predictable from cell binding studies due to the difference of blood clearance of labeled antibodies. Furthermore, biodistribution of both 111In- and 125I-labeled antibodies are not identical with internally labeled antibody. Admitting that internally labeled antibody is a ''gold standard'' of biodistribution of monoclonal antibody, high liver uptake of 111In-radiolabeled antibodies may be inherent to antibodies. Little, if any, increase in tumor-to-normal tissue ratios of antibody conjugates will be expected compared to those of 111In-labeled antibodies if stably coupled conjugates are administered i.v.

  4. Human serum butyrylcholinesterase: in vitro and in vivo stability, pharmacokinetics, and safety in mice.

    PubMed

    Saxena, Ashima; Sun, Wei; Luo, Chunyuan; Doctor, Bhupendra P

    2005-12-15

    The use of exogenously administered cholinesterases (ChEs) as bioscavengers of highly toxic organophosphate (OP) nerve agents is now sufficiently well documented to make them a highly viable prophylactic treatment against this potential threat. Of the ChEs evaluated so far, human serum butyrylcholinesterase (HuBChE) is most suitable for human use. A dose of 200 mg (3 mg/kg) of HuBChE is envisioned as a prophylactic treatment in humans that can protect from an exposure of up to 2 x LD50 of soman. In addition to its use as a prophylactic for a variety of wartime scenarios, including covert actions, it also has potential use for first responders (civilians) reacting to terrorist nerve gas release. We recently, developed a procedure for the large-scale purification of HuBChE, which yielded approximately 6 g of highly purified enzyme from 120 kg of Cohn fraction IV-4. The enzyme had a specific activity of 700-750 U/mg and migrated as a single band on SDS-PAGE. To provide data for initiating an investigational new drug (IND) application for the use of this enzyme as a bioscavenger in humans, we established its pharmacokinetic properties, examined its safety in mice, and evaluated its shelf life at various temperatures. In mice administered various doses up to 90 mg/kg, enzyme activity reached peak levels in circulation at 10 and 24 h following i.p. and i.m. injections, respectively. The enzyme displayed a mean residence time (MRT) of 40-50 h, regardless of the route of administration or dose of injected enzyme. Mice were euthanized 2 weeks following enzyme administration and tissues were examined grossly or microscopically for possible toxic effects. Results suggest that HuBChE does not exhibit any toxicity in mice as measured by general observation, serum chemistry, hematology, gross or histologic tissue changes. The shelf life of this enzyme stored at 4, 25, 37, and 45 degrees C was determined in lyophilized form. The enzyme was found to be stable when stored in

  5. A randomized safety and pharmacokinetic trial of daily tenofovir 1% gel in term and near-term pregnancy

    PubMed Central

    Beigi, Richard H; Noguchi, Lisa M; Montgomery, Elizabeth; Biggio, Joseph; Hendrix, Craig W; Marzinke, Mark A; Dai, James Y; Pan, Jason; Na Ayudhya, Ratiya Kunjara; Schwartz, Jill L; Isaacs, Karen; Piper, Jeanna M; Watts, D Heather

    2016-01-01

    Introduction Vaginal tenofovir (TFV) 1% gel may reduce incident HIV-1 and herpes simplex virus 2 infection. Pregnancy may increase risk of HIV acquisition, and incident HIV in pregnancy potentiates perinatal HIV transmission. Our objective was to investigate the safety and pharmacokinetics of seven days of TFV 1% vaginal gel in term and near-term pregnancy. Methods Ninety-eight healthy pregnant women, stratified to a term cohort followed by a near-term cohort, were enrolled into a 2:1 randomized, double-blinded, placebo-controlled trial. Women received TFV or placebo gel for seven consecutive days with pharmacokinetic sampling on days 0 and 6. Maternal and cord blood were collected at delivery. Primary end points included laboratory and genital adverse events, adverse pregnancy and neonatal outcomes, and maternal TFV levels. Results Most adverse events were grade 1 and none of the grade 3 or 4 adverse events were related to study product. There was no significant difference in safety end points between the two pregnancy cohorts (p=0.18); therefore, their data were combined. Primary safety end point rates were similar for mothers randomized to the TFV gel vs placebo arm (72.7 and 68.8%, p=0.81). The same was true for newborns in the TFV gel vs placebo arms (4.5% vs 6.3%, p=0.66). All women randomized to TFV had quantifiable serum levels within eight hours of dosing, with low overall median (interquartile range) day 0 and day 6 peak values (3.8 (2.0 to 7.0) and 5.8 (2.6 to 9.4) ng/mL, respectively). Conclusions Daily TFV 1% vaginal gel use in term and near-term pregnancy appears to be safe and produces low serum drug levels. PMID:27658440

  6. Safety, pharmacokinetic and pharmacodynamic properties of TV-1106, a long-acting GH treatment for GH deficiency

    PubMed Central

    Cohen-Barak, Orit; Sakov, Anat; Rasamoelisolo, Michele; Bassan, Merav; Brown, Kurt; Mendzelevski, Boaz; Spiegelstein, Ofer

    2015-01-01

    Background TV-1106 (Teva Pharmaceuticals) is a genetically fused recombinant protein of human GH (hGH) and human serum albumin, in development for treatment of GH deficiency (GHD). TV-1106 is expected to have an extended duration of action compared to daily GH treatment and may enable a reduction in the frequency of injections and improve compliance and quality of life for adults and children requiring GHD therapy. Objective To assess the safety, local tolerability, pharmacokinetics and pharmacodynamics of TV-1106 following single s.c. injections in healthy male volunteers. Methods Subjects (n=56) were assigned to one of seven ascending dose groups (3–100 mg) and received either a single dose of TV-1106 (n=6) or placebo (n=2) by s.c. injection. Results Eighteen subjects reported 43 adverse effects (AEs), which were mild to moderate; no serious AEs (SAEs) occurred. In 50, 70 and 100 mg groups there were mild to moderate increases in heart rate and systolic blood pressure that significantly correlated with higher levels of IGF1. TV-1106 showed pharmacokinetic characteristics of a long-acting hGH as demonstrated by a terminal elimination half-life of 23–35 h, delayed time of peak concentration, and systemic levels seen up to 7 days after dosing. IGF1 levels increased in a dose-dependent manner, before reaching a plateau, with levels above baseline extending beyond 7 days post dose. Conclusion Single administration of TV-1106 up to 100 mg was safe in healthy volunteers. Pharmacokinetics and pharmacodynamics support once-weekly administration in patients with GHD. PMID:26286586

  7. Pharmacokinetics, efficacy and safety profiles of etanercept monotherapy in Japanese patients with rheumatoid arthritis: review of seven clinical trials

    PubMed Central

    Miyasaka, Nobuyuki; Kawai, Shinichi; Yuasa, Hirotoshi; Yamashita, Noriaki; Sugiyama, Noriko; Wagerle, Lorin Craig; Vlahos, Bonnie; Wajdula, Joseph

    2015-01-01

    Conventional synthetic disease-modifying anti-rheumatic drugs, including methotrexate, may not be tolerated by all patients with rheumatoid arthritis (RA), and limited international data for etanercept (ETN) monotherapy are available. The aim of this review was to summarize the clinical program for ETN monotherapy in Japanese patients with RA, which has included a pharmacokinetic study, clinical trials for registration, long-term studies, and once-weekly dosing studies. Pharmacokinetic results showed that serum concentrations of ETN were linear with dose levels and were similar to other international studies. Across interventional studies, 652 Japanese patients with active RA were treated with ETN. In the registration studies, ETN treatment led to consistent improvement in American College of Rheumatology 20/50/70 scores, European League Against Rheumatism Good Response, Disease Activity Score 28 erythrocyte sedimentation rate remission, and Health Assessment Questionnaire disability index. In the long-term studies, efficacy was maintained for up to 180 weeks. Similar results were seen in the once-weekly studies. Across the studies, more than 870 patient-years of exposure to ETN were recorded. Discontinuations owing to lack of efficacy or adverse events were modest and no new safety signals were recorded. These studies demonstrated that ETN monotherapy is efficacious and well-tolerated in Japanese patients with RA. PMID:24842477

  8. Psychomotor effects, pharmacokinetics and safety of the orexin receptor antagonist suvorexant administered in combination with alcohol in healthy subjects.

    PubMed

    Sun, Hong; Yee, Ka Lai; Gill, Sean; Liu, Wen; Li, Xiaodong; Panebianco, Deborah; Mangin, Eric; Morrison, Dennis; McCrea, Jacqueline; Wagner, John A; Troyer, Matthew D

    2015-11-01

    A double-blind crossover study investigated psychomotor effects, pharmacokinetics, and safety of the orexin receptor antagonist suvorexant with and without alcohol. Healthy adults (n=31) were randomized to receive placebo or suvorexant (40 mg) plus placebo solution or alcohol (0.7 g/kg) in each of four treatments (single doses; morning administration). The US Food and Drug Administration approved suvorexant dose is 10 mg (up to 20 mg) daily. Pharmacodynamic effects were assessed using tests of digit vigilance (DVT; primary endpoint), choice reaction time, digit symbol substitution, numeric working memory, immediate/delayed word recall, body sway and subjective alertness. Suvorexant alone did not significantly affect DVT reaction time, but did impact some pharmacodynamic tests. Suvorexant with alcohol increased reaction time versus either alone (mean difference at 2 h: 44 ms versus suvorexant, p<0.001; 24 ms, versus alcohol, p<0.05) and had additive negative effects on tests of vigilance, working/episodic memory, postural stability and alertness. No effects of suvorexant alone or with alcohol were observed by 9 h. No important changes in pharmacokinetic parameters were observed upon co-administration. All treatments were generally well tolerated without serious adverse events. In conclusion, co-administration of 40 mg suvorexant and 0.7 g/kg alcohol had additive negative psychomotor effects. Patients are advised not to consume alcohol with suvorexant. PMID:26464455

  9. Psychomotor effects, pharmacokinetics and safety of the orexin receptor antagonist suvorexant administered in combination with alcohol in healthy subjects.

    PubMed

    Sun, Hong; Yee, Ka Lai; Gill, Sean; Liu, Wen; Li, Xiaodong; Panebianco, Deborah; Mangin, Eric; Morrison, Dennis; McCrea, Jacqueline; Wagner, John A; Troyer, Matthew D

    2015-11-01

    A double-blind crossover study investigated psychomotor effects, pharmacokinetics, and safety of the orexin receptor antagonist suvorexant with and without alcohol. Healthy adults (n=31) were randomized to receive placebo or suvorexant (40 mg) plus placebo solution or alcohol (0.7 g/kg) in each of four treatments (single doses; morning administration). The US Food and Drug Administration approved suvorexant dose is 10 mg (up to 20 mg) daily. Pharmacodynamic effects were assessed using tests of digit vigilance (DVT; primary endpoint), choice reaction time, digit symbol substitution, numeric working memory, immediate/delayed word recall, body sway and subjective alertness. Suvorexant alone did not significantly affect DVT reaction time, but did impact some pharmacodynamic tests. Suvorexant with alcohol increased reaction time versus either alone (mean difference at 2 h: 44 ms versus suvorexant, p<0.001; 24 ms, versus alcohol, p<0.05) and had additive negative effects on tests of vigilance, working/episodic memory, postural stability and alertness. No effects of suvorexant alone or with alcohol were observed by 9 h. No important changes in pharmacokinetic parameters were observed upon co-administration. All treatments were generally well tolerated without serious adverse events. In conclusion, co-administration of 40 mg suvorexant and 0.7 g/kg alcohol had additive negative psychomotor effects. Patients are advised not to consume alcohol with suvorexant.

  10. Safety, bioavailability, and pharmacokinetics of VGX-1027-A novel oral anti-inflammatory drug in healthy human subjects.

    PubMed

    Lee, Jessica C; Menacherry, Stanley; Diehl, Malissa C; Giffear, Mary D; White, C Jo; Juba, Rob; Bagarazzi, Mark L; Muthumani, Karuppiah; Boyer, Jean; Agarwal, Vipin; Nicoletti, Ferdinando; Bart, Stephen; Kim, J Joseph; Weiner, David B; Sardesai, Niranjan Y

    2016-03-01

    VGX-1027, a novel oral immune modulator, is under development for the treatment of rheumatoid arthritis. The safety, tolerability, and pharmacokinetics of single (1-800 mg) and multiple (40-400 mg) oral doses were evaluated in 2 clinical studies. The doses were well tolerated up to 800 mg in a single dose and 200 mg twice daily in multiple doses. Adverse events were mild to moderate in severity with no identifiable dose-related pattern. There were no clinically significant physical or laboratory findings. The pharmacokinetic data indicated that increases in Cmax and AUC0-inf were dose-proportional, and AUC0- τ was approximately dose-proportional. For the single-dose study, median Tmax ranged from 0.5 to 2 hours and mean t1/2 ranged from 4.9 to 8.7 hours. For the multiple-dose study, median Tmax ranged from 0.5 to 2.0 hours and mean t1/2 ranged from 7.05 to 10.05 hours. No accumulation of the drug was observed after day 1, indicating that steady-state concentrations were attained with single and multiple dosing for 5 days. Approximately 90% of the administered dose was excreted in urine as unchanged drug. PMID:27138022

  11. Safety and Population Pharmacokinetic Analysis of Intravenous Acetaminophen in Neonates, Infants, Children, and Adolescents With Pain or Fever

    PubMed Central

    Zuppa, Athena F.; Hammer, Gregory B.; Barrett, Jeffrey S.; Kenney, Brian F.; Kassir, Nastya; Mouksassi, Samer; Royal, Mike A.

    2011-01-01

    OBJECTIVES The administration of acetaminophen via the oral and rectal routes may be contraindicated in specific clinical settings. Intravenous administration provides an alternative route for fever reduction and analgesia. This phase 1 study of intravenous acetaminophen (Ofirmev, Cadence Pharmaceuticals, Inc., San Diego, CA) in inpatient pediatric patients with pain or fever requiring intravenous therapy was designed to assess the safety and pharmacokinetics of repeated doses over 48 hours. METHODS Neonates (full-term to 28 days) received either 12.5 mg/kg every 6 hours or 15 mg/kg every 8 hours. Infants (29 days to <2 years), children (2 to <12 years) and adolescents (≥12 years) received either 12.5 mg/kg every 4 hours or 15 mg/kg every 6 hours. Both noncompartmental and population nonlinear mixed-effects modeling approaches were used. Urinary metabolite data were analyzed, and safety and tolerability were assessed. RESULTS Pharmacokinetic parameters of acetaminophen were estimated using a two-compartment disposition model with weight allometrically expressed on clearances and central and peripheral volumes of distribution (Vds). Postnatal age, with a maturation function, was a significant covariate on clearance. Total systemic normalized clearance was 18.4 L/hr per 70 kg, with a plateau reached at approximately 2 years. Total central and peripheral Vds of acetaminophen were 16 and 59.5 L/70 kg, respectively. The drug was well tolerated based on the incidence of adverse events. The primary and minor pathways of elimination were acetaminophen glucuronidation, sulfation, and glutathione conjugate metabolites across all age groups. CONCLUSIONS Intravenous acetaminophen in infants, children, and adolescents was well tolerated and achieved plasma concentrations similar to those achieved with labeled 15 mg/kg body weight doses by oral or rectal administration. PMID:22768009

  12. Dose comparison of conivaptan (Vaprisol®) in patients with euvolemic or hypervolemic hyponatremia – efficacy, safety, and pharmacokinetics

    PubMed Central

    Palmer, Biff F; Rock, Amy D; Woodward, Emily J

    2016-01-01

    Purpose This study aimed to evaluate the efficacy, safety, and pharmacokinetics of 20 and 40 mg/day conivaptan (Vaprisol®) in patients with hypervolemic or euvolemic hyponatremia. Methods Hyponatremic patients – serum sodium (sNa) ≤130 mEq/L – received either 20 or 40 mg/day of conivaptan for 4 days, following an initial 20 mg loading dose. Efficacy was evaluated by the magnitude and extent of change in sNa. Safety was evaluated by the incidence of adverse events, changes in vital signs and laboratory parameters, rate of sNa correction, and frequency of infusion-site reactions. Pharmacokinetic parameters were also measured. Results A total of 37 patients received 20 mg/day and 214 patients received 40 mg/day conivaptan. Baseline-adjusted sNa-area under the concentration–time curve increased by an average of 753.8±499.9 mEq·hr/L (20 mg/day) and 689.2±417.3 mEq·hr/L (40 mg/day) over the course of the 4-day treatment period. The majority of patients in both treatment groups achieved a 4 mEq/L increase in sNa over baseline in ~24 hours (82.5%). Average increase in sNa after 4 days was ~10 mEq/L, varying with dosage level and baseline volume status. Treatment success (normal sNa or increase of ≥6 mEq/L) was attained by 70.3% of patients in the 20 mg/day group and 72.0% in the 40 mg/day group. Conclusion Both 20 and 40 mg/day doses of conivaptan are efficacious in increasing sNa over 4 days of treatment with no observed increase in the frequency of adverse events or specific infusion-site reactions using the higher dose. The pharmacokinetic parameters of both doses were similar to what has been reported previously, exhibiting greater-than-dose-proportional plasma concentrations. PMID:26848258

  13. Pharmacokinetics and safety of recombinant anti-RhD in healthy RhD-negative male volunteers.

    PubMed

    Bichler, J; Spycher, M O; Amstutz, H-P; Andresen, I; Gaede, K; Miescher, S

    2004-04-01

    In this first-in-man study, we assessed the pharmacokinetics, safety and tolerability of MonoRho, a human recombinant monoclonal anti-RhD immunoglobulin G1 (IgG1) antibody. Eighteen RhD-negative healthy male volunteers were randomized in two groups to receive a single administration of 300 micro g of MonoRho either intravenously or intramuscularly. There were no symptoms of allergic or anaphylactic type reaction in any subject, and there was no evidence of any MonoRho-related changes in laboratory safety parameters. None of the subjects mounted a detectable immune response to MonoRho. Serum samples were obtained up to 91 days after injection to measure anti-D IgG concentrations by flow cytometry. After intramuscular administration of MonoRho, anti-D IgG concentrations gradually increased reaching peak levels after a mean of 3.4 days. After 3 weeks, the mean anti-D IgG concentrations after intravenous and intramuscular administration became virtually equal to each other and remained so thereafter. In both the treatment groups, the mean elimination half-life was about 18 days and thus similar to that described for plasma-derived anti-D IgG. The bioavailability of MonoRho after intramuscular administration was estimated as 46%. The excellent tolerability and safety of MonoRho as well as its expected elimination half-life supports the continued clinical development of this compound.

  14. A pharmacokinetic and safety study of a fixed oral dose of enzastaurin HCl in native Chinese patients with refractory solid tumors and lymphoma

    PubMed Central

    Li, Su; Zhang, Weijing; Yang, Nong; Cui, Yimin; Huang, He; Cai, Ruiqing; Lin, Xiaoting; Fu, Xiaohong; Hong, Huangming; Lin, Tongyu

    2016-01-01

    Purpose This study was conducted to assess the pharmacokinetics and safety of enzastaurin in native Chinese patients with refractory solid tumors and lymphoma. Methods Eligible patients received 500 mg of enzastaurin orally once daily. The pharmacokinetics of enzastaurin and its metabolites were assessed on days 14 to 18. Patients were allowed to continue receiving the agent in a safety extension phase until disease progression or presentation with unacceptable toxicity. Results Twenty-five patients received at least 1 dose of enzastaurin, and twenty-one patients completed the pharmacokinetic phase. Fifteen patients entered the safety extension phase. Except for transient, asymptomatic grade 3 QT interval prolongation in one patient who had baseline grade 2 QT prolongation, other adverse events were of grade 1 to 2. The t1/2, Cav, ss, and AUCτ, ss for enzastaurin and its primary active metabolite LSN326020 were 14 and 42 h, 1,210 and 907 nmol/L, and 29,100 and 21,800 nmol•h/L, respectively. One patient with relapsed diffuse large B-cell lymphoma achieved a partial response that lasted for 8.1 months. Conclusions The pharmacokinetics of enzastaurin in Chinese cancer patients were consistent with those observed in previous studies abroad. Enzastaurin 500 mg daily was well tolerated by Chinese patients. We recommend 500 mg daily as the phase II dose in this population. Its efficacy in lymphoma deserves further investigation. Trial Registration ClinicalTrials.gov: NCT01432951 PMID:26942463

  15. Recombinant human pentraxin-2 therapy in patients with idiopathic pulmonary fibrosis: safety, pharmacokinetics and exploratory efficacy.

    PubMed

    van den Blink, Bernt; Dillingh, Marlous R; Ginns, Leo C; Morrison, Lake D; Moerland, Matthijs; Wijsenbeek, Marlies; Trehu, Elizabeth G; Bartholmai, Brian J; Burggraaf, Jacobus

    2016-03-01

    Abnormal fibrogenic repair response upon alveolar injury is believed to play an important role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). PRM-151 (recombinant human pentraxin-2, also known as serum amyloid P), has been shown to reduce fibrosis in preclinical lung fibrosis models, and was well tolerated with a favourable pharmacokinetic profile in an earlier single-dose phase I study.A randomised, double-blind, placebo-controlled, multiple ascending dose trial was performed to assess the tolerability and pharmacokinetic and pharmacodynamic characteristics of multiple doses of PRM-151 in IPF patients. Subjects in three successive cohorts (1, 5, or 10 mg·kg(-1) versus placebo) received intravenous study drug on days 1, 3, 5, 8 and 15, and were followed-up to day 57.PRM-151 was well tolerated at all dose levels, with no serious adverse reactions. Administration of PRM-151 resulted in two- to eight-fold dose-dependent increases in circulating pentraxin-2 levels. Forced vital capacity and 6-min walk test showed trends towards improvement in the combined PRM-151 dose groups. On high-resolution computed tomography scans, stable or improved lung volume unoccupied by interstitial lung abnormality was noted in some PRM-151 subjects compared to placebo subjects on day 57.The efficacy of PRM-151 in IPF remains to be investigated in dedicated future trials.

  16. A First-in-Human Study To Assess the Safety and Pharmacokinetics of Monoclonal Antibodies against Human Cytomegalovirus in Healthy Volunteers.

    PubMed

    Dole, Kiran; Segal, Florencia Pereyra; Feire, Adam; Magnusson, Baldur; Rondon, Juan C; Vemula, Janardhana; Yu, Jing; Pang, Yinuo; Pertel, Peter

    2016-05-01

    Human cytomegalovirus (HCMV) can cause significant disease in immunocompromised patients and treatment options are limited by toxicities. CSJ148 is a combination of two anti-HCMV human monoclonal antibodies (LJP538 and LJP539) that bind to and inhibit the function of viral HCMV glycoprotein B (gB) and the pentameric complex, consisting of glycoproteins gH, gL, UL128, UL130, and UL131. Here, we evaluated the safety, tolerability, and pharmacokinetics of a single intravenous dose of LJP538 or LJP539 or their combination in healthy volunteers. Adverse events and laboratory abnormalities occurred sporadically with similar incidence between antibody and placebo groups and without any apparent relationship to dose. No subject who received antibody developed a hypersensitivity, infusion-related reaction or anti-drug antibodies. After intravenous administration, both LJP538 and LJP539 demonstrated typical human IgG1 pharmacokinetic properties, with slow clearances, limited volumes of distribution, and long terminal half-lives. The pharmacokinetic parameters were linear and dose proportional for both antibodies across the 50-fold range of doses evaluated in the study. There was no apparent impact on pharmacokinetics when the antibodies were administered alone or in combination. CSJ148 and the individual monoclonal antibodies were safe and well tolerated, with pharmacokinetics as expected for human immunoglobulin.

  17. Improved Safety, Bioavailability and Pharmacokinetics of Zidovudine through Lactoferrin Nanoparticles during Oral Administration in Rats

    PubMed Central

    C., Bhaskar; Golla, Kishore; Kondapi, Anand K.

    2015-01-01

    Zidovudine (AZT) is one of the most referred antiretroviral drug. In spite of its higher bioavailability (50–75%) the most important reason of its cessation are bone marrow suppression, anemia, neutropenia and various organs related toxicities. This study aims at the improvement of oral delivery of AZT through its encapsulation in lactoferrin nanoparticles (AZT-lactonano). The nanoparticles (NPs) are of 50–60 nm in size and exhibit 67% encapsulation of the AZT. They are stable in simulated gastric and intestinal fluids. Anti-HIV-1 activity of AZT remains unaltered in nanoformulation in acute infection. The bioavailability and tissue distribution of AZT is higher in blood followed by liver and kidney. AZT-lactonano causes the improvement of pharmacokinetic profile as compared to soluble AZT; a more than 4 fold increase in AUC and AUMC in male and female rats. The serum Cmax for AZT-lactonano was increased by 30%. Similarly there was nearly 2-fold increase in Tmax and t1/2. Our in vitro study confirms that, the endosomal pH is ideal for drug release from NPs and shows constant release from up to 96h. Bone marrow micronucleus assay show that nanoformulation exhibits approximately 2fold lower toxicity than soluble form. Histopathological and biochemical analysis further confirms that less or no significant organ toxicities when nanoparticles were used. AZT-lactonano has shown its higher efficacy, low organs related toxicities, improved pharmacokinetics parameter while keeping the antiviral activity intact. Thus, the nanoformulation are safe for the target specific drug delivery. PMID:26461917

  18. A randomised study in healthy volunteers to investigate the safety, tolerability and pharmacokinetics of idarucizumab, a specific antidote to dabigatran.

    PubMed

    Glund, Stephan; Moschetti, Viktoria; Norris, Stephen; Stangier, Joachim; Schmohl, Michael; van Ryn, Joanne; Lang, Benjamin; Ramael, Steven; Reilly, Paul

    2015-05-01

    Idarucizumab, a monoclonal antibody fragment that binds dabigatran with high affinity, is in development as a specific antidote for dabigatran. In this first-in-human, single-rising-dose study, we investigated the pharmacokinetics, safety and tolerability of idarucizumab. Healthy male volunteers aged 18-45 years received between 20 mg and 8 g idarucizumab as a 1-hour intravenous infusion in 10 sequential dose groups, or 1, 2 or 4 g idarucizumab as a 5-minute infusion. Subjects within each dose group were randomised 3:1 to idarucizumab or placebo. A total of 110 randomised subjects received study drug (27 placebo, 83 idarucizumab). Peak and total exposure to idarucizumab increased proportionally with dose. Maximum plasma concentrations were achieved near the end of infusion, followed by a rapid decline, with an initial idarucizumab half-life of ~45 minutes. For the 5-minute infusions, this resulted in a reduction of plasma concentrations to less than 5 % of peak within 4 hours. Idarucizumab (in the absence of dabigatran) had no effect on coagulation parameters or endogenous thrombin potential. Overall adverse event (AE) frequency was similar for idarucizumab and placebo, and no relationship with idarucizumab dose was observed. Drug-related AEs (primary endpoint) were rare (occurring in 2 placebo and 3 idarucizumab subjects) and were mostly of mild intensity; none of them resulted in study discontinuation. In conclusion, the pharmacokinetic profile of idarucizumab meets the requirement for rapid peak exposure and rapid elimination, with no effect on pharmacodynamic parameters. Idarucizumab was safe and well tolerated in healthy males.

  19. Pharmacokinetics in Drug Discovery: An Exposure-Centred Approach to Optimising and Predicting Drug Efficacy and Safety.

    PubMed

    Reichel, Andreas; Lienau, Philip

    2016-01-01

    The role of pharmacokinetics (PK) in drug discovery is to support the optimisation of the absorption, distribution, metabolism and excretion (ADME) properties of lead compounds with the ultimate goal to attain a clinical candidate which achieves a concentration-time profile in the body that is adequate for the desired efficacy and safety profile. A thorough characterisation of the lead compounds aiming at the identification of the inherent PK liabilities also includes an early generation of PK/PD relationships linking in vitro potency and target exposure/engagement with expression of pharmacological activity (mode-of-action) and efficacy in animal studies. The chapter describes an exposure-centred approach to lead generation, lead optimisation and candidate selection and profiling that focuses on a stepwise generation of an understanding between PK/exposure and PD/efficacy relationships by capturing target exposure or surrogates thereof and cellular mode-of-action readouts in vivo. Once robust PK/PD relationship in animal PD models has been constructed, it is translated to anticipate the pharmacologically active plasma concentrations in patients and the human therapeutic dose and dosing schedule which is also based on the prediction of the PK behaviour in human as described herein. The chapter outlines how the level of confidence in the predictions increases with the level of understanding of both the PK and the PK/PD of the new chemical entities (NCE) in relation to the disease hypothesis and the ability to propose safe and efficacious doses and dosing schedules in responsive patient populations. A sound identification of potential drug metabolism and pharmacokinetics (DMPK)-related development risks allows proposing of an effective de-risking strategy for the progression of the project that is able to reduce uncertainties and to increase the probability of success during preclinical and clinical development. PMID:26330260

  20. Pharmacodynamics, pharmacokinetics and safety of GSK2190915, a novel oral anti‐inflammatory 5‐lipoxygenase‐activating protein inhibitor

    PubMed Central

    Bain, Gretchen; King, Christopher D.; Schaab, Kevin; Rewolinski, Melissa; Norris, Virginia; Ambery, Claire; Bentley, Jane; Yamada, Masanori; Santini, Angelina M.; van de Wetering de Rooij, Jeroen; Stock, Nicholas; Zunic, Jasmine; Hutchinson, John H.; Evans, Jilly F.

    2013-01-01

    Aim To assess the pharmacokinetics, pharmacodynamics, safety and tolerability of the 5‐lipoxygenase‐activating protein inhibitor, GSK2190915, after oral dosing in two independent phase I studies, one in Western European and one in Japanese subjects, utilizing different formulations. Method Western European subjects received single (50–1000 mg) or multiple (10–450 mg) oral doses of GSK2190915 or placebo in a dose‐escalating manner. Japanese subjects received three of four GSK2190915 doses (10–200 mg) plus placebo once in a four period crossover design. Blood samples were collected for GSK2190915 concentrations and blood and urine were collected to measure leukotriene B4 and leukotriene E4, respectively, as pharmacodynamic markers of drug activity. Results There was no clear difference in adverse events between placebo and active drug‐treated subjects in either study. Maximum plasma concentrations of GSK2190915 and area under the curve increased in a dose‐related manner and mean half‐life values ranged from 16–34 h. Dose‐dependent inhibition of blood leukotriene B4 production was observed and near complete inhibition of urinary leukotriene E4 excretion was shown at all doses except the lowest dose. The EC50 values for inhibition of LTB4 were 85 nm and 89 nm in the Western European and Japanese studies, respectively. Conclusion GSK2190915 is well‐tolerated with pharmacokinetics and pharmacodynamics in Western European and Japanese subjects that support once daily dosing for 24 h inhibition of leukotrienes. Doses of ≥50 mg show near complete inhibition of urinary leukotriene E4 at 24 h post‐dose, whereas doses of ≥150 mg are required for 24 h inhibition of blood LTB4. PMID:22803688

  1. Pharmacokinetics in Drug Discovery: An Exposure-Centred Approach to Optimising and Predicting Drug Efficacy and Safety.

    PubMed

    Reichel, Andreas; Lienau, Philip

    2016-01-01

    The role of pharmacokinetics (PK) in drug discovery is to support the optimisation of the absorption, distribution, metabolism and excretion (ADME) properties of lead compounds with the ultimate goal to attain a clinical candidate which achieves a concentration-time profile in the body that is adequate for the desired efficacy and safety profile. A thorough characterisation of the lead compounds aiming at the identification of the inherent PK liabilities also includes an early generation of PK/PD relationships linking in vitro potency and target exposure/engagement with expression of pharmacological activity (mode-of-action) and efficacy in animal studies. The chapter describes an exposure-centred approach to lead generation, lead optimisation and candidate selection and profiling that focuses on a stepwise generation of an understanding between PK/exposure and PD/efficacy relationships by capturing target exposure or surrogates thereof and cellular mode-of-action readouts in vivo. Once robust PK/PD relationship in animal PD models has been constructed, it is translated to anticipate the pharmacologically active plasma concentrations in patients and the human therapeutic dose and dosing schedule which is also based on the prediction of the PK behaviour in human as described herein. The chapter outlines how the level of confidence in the predictions increases with the level of understanding of both the PK and the PK/PD of the new chemical entities (NCE) in relation to the disease hypothesis and the ability to propose safe and efficacious doses and dosing schedules in responsive patient populations. A sound identification of potential drug metabolism and pharmacokinetics (DMPK)-related development risks allows proposing of an effective de-risking strategy for the progression of the project that is able to reduce uncertainties and to increase the probability of success during preclinical and clinical development.

  2. Pharmacokinetics, Pharmacodynamics, Safety, and Clinical Activity of Multiple Doses of RCT-18 in Chinese Patients With Systemic Lupus Erythematosus.

    PubMed

    Zhao, Qian; Chen, Xia; Hou, Yong; Jiang, Ji; Zhong, Wen; Yao, Xuejing; Wang, Wenxiang; Li, Lin; Fang, Jianmin; Zhang, Fengchun; Hu, Pei

    2016-08-01

    RCT-18 is a novel recombinant fusion protein that blocks the activity of a B-lymphocyte stimulator and a proliferation-inducing ligand. This was a randomized, single-blind, and placebo-controlled phase 1 study in 12 patients with systemic lupus erythematosus. Eligible patients were randomized 3:1 to receive multiple subcutaneous doses of RCT-18 for 4 weeks (180 mg, once weekly) or placebo and monitored over an 84-day observation period for pharmacokinetics, pharmacodynamics, immunogenicity, safety, and clinical activity. After multiple-dose RCT-18, the maximal serum concentration (Cmax ) of total and free RCT-18 was reached within 1 to 2 days. Mean elimination half-life for total RCT-18 and free RCT-18 was 11.4 to 26.4 days and 2.4 to 26.5 days, respectively. Slight accumulation was found after multiple subcutaneous administrations. The average accumulation ratios of AUC and Cmax after the fourth administration of RCT-18 were 2.0 and 1.7 for total RCT-18, and 1.8 and 1.6 for free RCT-18. The formation and elimination of BLyS-RCT-18 complex were much slower, with a time to Cmax of 14 to 46 days. Pharmacokinetic characteristics of RCT-18 in SLE patients were similar to those in patients with rheumatoid arthritis. No positive reaction was detected in the immunogenicity assessments. RCT-18 was biologically active, according to serum immunoglobulin and B-cell levels. Treatment-related IgM and IgA reduction was found during this study. CD19(+) , IgD(+) , and CD27(+) B-cell counts were increased after administration and decreased subsequently. SLE patients treated with RCT-18 were more prone to infections, including moderate and severe infections. Lower dosages of RCT-18 should be considered in further clinical development.

  3. The Safety, Pharmacokinetics, and Effects of LGD-4033, a Novel Nonsteroidal Oral, Selective Androgen Receptor Modulator, in Healthy Young Men

    PubMed Central

    Basaria, Shehzad; Collins, Lauren; Dillon, E. Lichar; Orwoll, Katie; Storer, Thomas W.; Miciek, Renee; Ulloor, Jagadish; Zhang, Anqi; Eder, Richard; Zientek, Heather; Gordon, Gilad; Kazmi, Syed; Sheffield-Moore, Melinda

    2013-01-01

    Background. Concerns about potential adverse effects of testosterone on prostate have motivated the development of selective androgen receptor modulators that display tissue-selective activation of androgenic signaling. LGD-4033, a novel nonsteroidal, oral selective androgen receptor modulator, binds androgen receptor with high affinity and selectivity. Objectives. To evaluate the safety, tolerability, pharmacokinetics, and effects of ascending doses of LGD-4033 administered daily for 21 days on lean body mass, muscle strength, stair-climbing power, and sex hormones. Methods. In this placebo-controlled study, 76 healthy men (21–50 years) were randomized to placebo or 0.1, 0.3, or 1.0 mg LGD-4033 daily for 21 days. Blood counts, chemistries, lipids, prostate-specific antigen, electrocardiogram, hormones, lean and fat mass, and muscle strength were measured during and for 5 weeks after intervention. Results. LGD-4033 was well tolerated. There were no drug-related serious adverse events. Frequency of adverse events was similar between active and placebo groups. Hemoglobin, prostate-specific antigen, aspartate aminotransferase, alanine aminotransferase, or QT intervals did not change significantly at any dose. LGD-4033 had a long elimination half-life and dose-proportional accumulation upon multiple dosing. LGD-4033 administration was associated with dose-dependent suppression of total testosterone, sex hormone–binding globulin, high density lipoprotein cholesterol, and triglyceride levels. follicle-stimulating hormone and free testosterone showed significant suppression at 1.0-mg dose only. Lean body mass increased dose dependently, but fat mass did not change significantly. Hormone levels and lipids returned to baseline after treatment discontinuation. Conclusions. LGD-4033 was safe, had favorable pharmacokinetic profile, and increased lean body mass even during this short period without change in prostate-specific antigen. Longer randomized trials should

  4. Pharmacokinetics and safety of recently approved drugs used to treat methicillin-resistant Staphylococcus aureus infections in infants, children, and adults

    PubMed Central

    Gostelow, Martyn; Gonzalez, Daniel; Smith, P. Brian; Cohen-Wolkowiez, Michael

    2014-01-01

    Summary Methicillin-resistant Staphylococcus aureus (MRSA) remains a significant cause of morbidity in hospitalized infants. Over the past 15 years, several drugs have been approved for the treatment of S. aureus infections in adults (linezolid, quinupristin/dalfopristin, daptomycin, telavancin, tigecycline, and ceftaroline). The use of there majority of these drugs has extended into the treatment of MRSA infections in infants, frequently with minimal safety or dosing information. Only linezolid is approved for use in infants, and pharmacokinetic data in infants are limited to linezolid and daptomycin. Pediatric trials are underway for ceftaroline, telavancin, and daptomycin; however, none of these studies includes infants. Here, we review current pharmacokinetic, safety, and efficacy data of these drugs with a specific focus in infants. PMID:24716805

  5. Preclinical Studies on the Pharmacokinetics, Safety and Toxicology of Oxfendazole: Toward First in Human Studies

    PubMed Central

    Codd, Ellen E.; Ng, Hanna H.; McFarlane, Claire; Riccio, Edward S.; Doppalapudi, Rupa; Mirsalis, Jon C.; Horton, R. John; Gonzalez, Armando E.; Garcia, H. Hugo; Gilman, Robert H.

    2015-01-01

    A two-week study in rats identified target organs of oxfendazole toxicity to be bone marrow, epididymis, liver, spleen, testis, and thymus. Female rats had greater oxfendazole exposure and exhibited toxicities at lower doses than did males. Decreased WBC levels, a class effect of benzimidazole anthelminthics, returned to normal during the recovery period. The NOAEL was determined to be >5 but < 25 mg/kg/d and the MTD 100 mg/kg/d. The highest dose, 200 mg/kg/d resulted in significant toxicity and mortality, leading to euthanization of the main study animals in this group after seven days. Oxfendazole did not exhibit genetic toxicology signals in standard Ames bacterial, mouse lymphoma or rat micronucleus assays, nor did it provoke safety concerns when evaluated for behavioral effects in rats or cardiovascular safety effects in dogs. These results support the transition of oxfendazole to First in Human safety studies preliminary to its evaluation in human helminth diseases. PMID:25701764

  6. Efficacy and safety of deferasirox compared with deferoxamine in sickle cell disease: two-year results including pharmacokinetics and concomitant hydroxyurea.

    PubMed

    Vichinsky, Elliott; Torres, Marcela; Minniti, Caterina P; Barrette, Stephane; Habr, Dany; Zhang, Yiyun; Files, Beatrice

    2013-12-01

    We report a prospective, randomized, Phase II study of deferasirox and deferoxamine (DFO) in sickle cell disease patients with transfusional iron overload, with all patients continuing on deferasirox after 24 weeks, for up to 2 years. The primary objective was to evaluate deferasirox safety compared with DFO; long-term efficacy and safety of deferasirox was also assessed. We also report, for the first time, the safety and pharmacokinetics of deferasirox in patients concomitantly receiving hydroxyurea. Deferasirox (n = 135) and DFO (n = 68) had comparable safety profiles over 24 weeks. Adverse events (AEs) secondary to drug administration were reported in 26.7% of patients in the deferasirox cohort and 28.6% in the DFO cohort. Gastrointestinal disorders were more common with deferasirox, including diarrhea (10.4% versus 3.6%) and nausea (5.2% versus 3.6%). The most common AE in the DFO group was injection-site pain irritation, which occurred in 7% of patients. Acute renal failure occurred in one patient on deferasirox who was continued on medication despite progressive impairment of renal function parameters. Serum ferritin levels were reduced in both treatment groups. Patients continuing on deferasirox for up to 2 years demonstrated an absolute median serum ferritin decrease of -614 ng/mL (n = 96). Increasing deferasirox dose was associated with improved response and a continued manageable safety profile. Concomitant hydroxyurea administration (n = 28) did not appear to influence the efficacy, safety (including liver and kidney function), and pharmacokinetic parameters of deferasirox.

  7. Pharmacokinetics and safety of posaconazole delayed-release tablets for invasive fungal infections

    PubMed Central

    Wiederhold, Nathan P

    2016-01-01

    Posaconazole is a broad-spectrum triazole antifungal agent with potent activity against various pathogenic fungi, including yeast and moulds. Clinical studies have demonstrated that this agent is efficacious as prophylaxis against invasive fungal infections in patients at high risk, and may also be useful as salvage therapy against invasive aspergillosis and mucormycosis. However, the bioavailability of posaconazole following administration by oral suspension, which was the only formulation clinically available for many years, is highly variable and negatively influenced by several factors. Because of this, many patients had subtherapeutic or undetectable posaconazole levels when the oral suspension was used. To overcome this limitation, a delayed-release tablet was developed and is now available for clinical use. Hot-melt extrusion technology is used to combine a pH-sensitive polymer with posaconazole to produce a formulation that releases the drug in the elevated pH of the intestine where absorption occurs rather than in the low-pH environment of the stomach. This results in enhanced bioavailability and increased posaconazole exposure. Studies in healthy volunteers have demonstrated significantly higher and more consistent exposures with the tablet formulation compared to the oral suspension. In addition, pharmacokinetic parameters following administration of the tablets were not significantly affected by medications that raise gastric pH or increase gastric motility, and the tablets could also be administered without regard to food. Similar results have also been found in patients at high risk for invasive fungal infections who have received posaconazole tablets. The tablet formulation also appears to be well tolerated to date, although data regarding clinical efficacy are needed. PMID:26730212

  8. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the novel γ-secretase modulator, E2212, in healthy human subjects.

    PubMed

    Yu, Yanke; Logovinsky, Veronika; Schuck, Edgar; Kaplow, June; Chang, Min-Kun; Miyagawa, Takehiko; Wong, Nancy; Ferry, Jim

    2014-05-01

    E2212, a novel γ-secretase modulator, is under development for the treatment of Alzheimer's disease. The safety, tolerability, pharmacokinetics, and pharmacodynamics of single ascending oral doses (10-250 mg, double-blind, placebo-controlled, randomized) of E2212 were evaluated. In this phase I clinical trial, E2212 was found to be well tolerated in single doses. Maximum tolerated dose was not achieved up to 250 mg. Most AEs were mild to moderate in severity with no identifiable dose related pattern. There were no clinically significant findings on physical and ophthalmologic examinations as well as vital signs, laboratory, ECG and C-SSRS assessments. E2212 was rapidly absorbed, with median tmax values ranging from 0.5 to 1.0 h. E2212 exhibited biphasic disposition with the terminal t1/2 of 12.5-19.0 h. Renal excretion was the minor pathway for E2212 elimination. Increased PD response (reduction in plasma concentrations of Aβ(x-42)) was observed with increasing doses. The maximum PD response was observed in the highest dose 250 mg cohort, with ΔAUAC(0-24 h) of 44.1% and Amax of 53.6%. These results support further clinical development of E2212.

  9. Pharmacokinetics, Safety and Tolerability of Melissa officinalis Extract which Contained Rosmarinic Acid in Healthy Individuals: A Randomized Controlled Trial.

    PubMed

    Noguchi-Shinohara, Moeko; Ono, Kenjiro; Hamaguchi, Tsuyoshi; Iwasa, Kazuo; Nagai, Toshitada; Kobayashi, Shoko; Nakamura, Hiroyuki; Yamada, Masahito

    2015-01-01

    The aim of this study was to evaluate the safety, tolerability and pharmacokinetics of single dose of Melissa officinalis extract which contained rosmarinic acid, including food-effects in healthy individuals. A total of eleven healthy individuals were randomly assigned to treatment arms in the two studies [Study 1 (fasted state) and Study 2 (fed state)]. Rosmarinic acid in serum was measured by a coulometric detection method using High-Performance Liquid Chromatography electrochemical detector. The serum concentration of total rosmarinic acid peaked at 1 hour after administration of Melissa officinalis extract containing 500mg rosmarinic acid in fasted state, with a maximum serum concentration 162.20 nmol/ L. The area under the curve for intact rosmarinic acid was calculated from the serum concentration-time profile to be 832.13 nmol • hour/ L. Food intake increases area under the curve and delayed time at which the maximum serum concentration. Rosmarinic acid supplementation did not affect liver, kidney, or blood cell function parameters. No adverse event was reported by any of the participants due to the study treatment. Single dose of Melissa officinalis extract containing 500 mg rosmarinic acid appears to be safe and tolerable in healthy individuals. Food intake increased the exposure of rosmarinic acid and delayed absorption of rosmarinic acid in healthy individuals.

  10. Pharmacokinetics and Safety of a Single Intravenous Dose of myo-Inositol in Preterm Infants of 23 to 29 weeks

    PubMed Central

    Phelps, Dale L.; Ward, Robert M.; Williams, Rick L.; Watterberg, Kristi L.; Laptook, Abbot R.; Wrage, Lisa A.; Nolen, Tracy L.; Fennell, Timothy R.; Ehrenkranz, Richard A.; Poindexter, Brenda B.; Cotten, C. Michael; Hallman, Mikko K.; Frantz, Ivan D.; Faix, Roger G.; Zaterka-Baxter, Kristin M.; Das, Abhik; Ball, M. Bethany; O’Shea, T. Michael; Lacy, Conra Backstrom; Walsh, Michele C.; Shankaran, Seetha; Sánchez, Pablo J.; Bell, Edward F.; Higgins, Rosemary D.

    2014-01-01

    Background Myo-inositol given to preterm infants with respiratory distress has reduced death, increased survival without bronchopulmonary dysplasia (BPD) and reduced severe retinopathy of prematurity (ROP) in 2 randomized trials. Pharmacokinetic (PK) studies in extremely preterm infants are needed prior to efficacy trials. Methods Infants of 23–29 weeks gestation were randomized to a single intravenous (IV) dose of inositol at 60 or 120 mg/kg or placebo. Over 96 h, serum levels (sparse sampling population PK) and urine inositol excretion were determined. Population PK models were fit using a nonlinear mixed effects approach. Safety outcomes were recorded. Results A 1-compartment model that included factors for endogenous inositol production, allometric size based on weight, gestational age (GA) strata and creatinine clearance fit the data best. The central volume of distribution was 0.5115 l/kg, the clearance 0.0679 l/kg/h, endogenous production 2.67 mg/kg/h and the half life 5.22 h when modeled without the covariates. During the first 12 h renal inositol excretion quadrupled in the 120 mg/kg group, returning to near baseline after 48 h. There was no diuretic side-effect. No significant differences in adverse events occurred between the 3 groups (p > 0.05). Conclusions A single compartment model accounting for endogenous production satisfactorily described the PK of IV inositol. PMID:24067395

  11. Pharmacokinetics, Safety and Tolerability of Melissa officinalis Extract which Contained Rosmarinic Acid in Healthy Individuals: A Randomized Controlled Trial

    PubMed Central

    Noguchi-Shinohara, Moeko; Ono, Kenjiro; Hamaguchi, Tsuyoshi; Iwasa, Kazuo; Nagai, Toshitada; Kobayashi, Shoko; Nakamura, Hiroyuki; Yamada, Masahito

    2015-01-01

    The aim of this study was to evaluate the safety, tolerability and pharmacokinetics of single dose of Melissa officinalis extract which contained rosmarinic acid, including food-effects in healthy individuals. A total of eleven healthy individuals were randomly assigned to treatment arms in the two studies [Study 1 (fasted state) and Study 2 (fed state)]. Rosmarinic acid in serum was measured by a coulometric detection method using High-Performance Liquid Chromatography electrochemical detector. The serum concentration of total rosmarinic acid peaked at 1 hour after administration of Melissa officinalis extract containing 500mg rosmarinic acid in fasted state, with a maximum serum concentration 162.20 nmol/ L. The area under the curve for intact rosmarinic acid was calculated from the serum concentration-time profile to be 832.13 nmol • hour/ L. Food intake increases area under the curve and delayed time at which the maximum serum concentration. Rosmarinic acid supplementation did not affect liver, kidney, or blood cell function parameters. No adverse event was reported by any of the participants due to the study treatment. Single dose of Melissa officinalis extract containing 500 mg rosmarinic acid appears to be safe and tolerable in healthy individuals. Food intake increased the exposure of rosmarinic acid and delayed absorption of rosmarinic acid in healthy individuals. Trial Registration Trial Registration: UMIN-CTR UMIN000004997 PMID:25978046

  12. Evaluation of the effect of multiple doses of rifampin on the pharmacokinetics and safety of ponatinib in healthy subjects.

    PubMed

    Narasimhan, Narayana I; Dorer, David J; Davis, Jeffrey; Turner, Christopher D; Sonnichsen, Daryl

    2015-09-01

    Ponatinib, an oral tyrosine kinase inhibitor with significant activity in heavily pretreated patients with chronic myeloid leukemia, is a CYP3A4 substrate. This open-label, nonrandomized, fixed-order crossover study evaluated the effect of multiple oral doses of rifampin, a strong CYP3A4 inducer, on the pharmacokinetics of ponatinib (45 mg, single dose). Twenty healthy adults received ponatinib on day 1, rifampin 600 mg alone on days 8-13, 15, and 16, and rifampin 600 mg with ponatinib on day 14. Rifampin decreased maximum plasma concentration (Cmax ) and area under the plasma concentration-time curve (AUC) from time zero to time of last measurable concentration (AUC0-t ) and from time zero to infinity (AUC0-∞ ) of ponatinib by 42%, 59%, and 63%, respectively, with no effect on time to Cmax . The limits of the 90% confidence intervals of the estimated geometric mean ratios of ponatinib Cmax , AUC0-t , and AUC0-∞ did not fall within the 80-125% margins for equivalence, suggesting a statistically significant interaction. Coadministration of ponatinib with strong CYP3A4 inducers should be avoided unless the benefit outweighs the possible risk of ponatinib underexposure, because the safety of ponatinib dose increases has not been studied in this context. PMID:27137144

  13. Nanoparticles for tumor targeted therapies and their pharmacokinetics.

    PubMed

    Wang, Jianqiu; Sui, Meihua; Fan, Weimin

    2010-02-01

    Various types of nanoparticles, such as liposomes, polymeric micelles, dendrimers, superparamagnetic iron oxide crystals, and colloidal gold, have been employed in targeted therapies for cancer. Both passive and active targeting strategies can be utilized for nano-drug delivery. Passive targeting is based on the enhanced permeability and retention (EPR) effect of the vasculature surrounding tumors. Active targeting relies on ligand-directed binding of nanoparticles to receptors expressed by tumor cells. Release of loaded drugs from nanoparticles may be controlled in response to changes in environmental condition such as temperature and pH. Biodistribution profiles and anticancer efficacy of nano-drugs in vivo would be different depending upon their size, surface charge, PEGylation and other biophysical properties. This review focuses on the recent development of nanoparticles for tumor targeted therapies, including physicochemical properties, tumor targeting, control of drug release, pharmacokinetics, anticancer efficacy and safety. Future perspectives are discussed as well.

  14. Safety profile, efficacy, and biodistribution of a bicistronic high-capacity adenovirus vector encoding a combined immunostimulation and cytotoxic gene therapy as a prelude to a phase I clinical trial for glioblastoma

    SciTech Connect

    Puntel, Mariana; Ghulam, Muhammad A.K.M.; Farrokhi, Catherine; VanderVeen, Nathan; Paran, Christopher; Appelhans, Ashley; Kroeger, Kurt M.; Salem, Alireza; Lacayo, Liliana; Pechnick, Robert N.; Kelson, Kyle R.; Kaur, Sukhpreet; Kennedy, Sean; Palmer, Donna; Ng, Philip; and others

    2013-05-01

    Adenoviral vectors (Ads) are promising gene delivery vehicles due to their high transduction efficiency; however, their clinical usefulness has been hampered by their immunogenicity and the presence of anti-Ad immunity in humans. We reported the efficacy of a gene therapy approach for glioma consisting of intratumoral injection of Ads encoding conditionally cytotoxic herpes simplex type 1 thymidine kinase (Ad-TK) and the immunostimulatory cytokine fms-like tyrosine kinase ligand 3 (Ad-Flt3L). Herein, we report the biodistribution, efficacy, and neurological and systemic effects of a bicistronic high-capacity Ad, i.e., HC-Ad-TK/TetOn-Flt3L. HC-Ads elicit sustained transgene expression, even in the presence of anti-Ad immunity, and can encode large therapeutic cassettes, including regulatory elements to enable turning gene expression “on” or “off” according to clinical need. The inclusion of two therapeutic transgenes within a single vector enables a reduction of the total vector load without adversely impacting efficacy. Because clinically the vectors will be delivered into the surgical cavity, normal regions of the brain parenchyma are likely to be transduced. Thus, we assessed any potential toxicities elicited by escalating doses of HC-Ad-TK/TetOn-Flt3L (1 × 10{sup 8}, 1 × 10{sup 9}, or 1 × 10{sup 10} viral particles [vp]) delivered into the rat brain parenchyma. We assessed neuropathology, biodistribution, transgene expression, systemic toxicity, and behavioral impact at acute and chronic time points. The results indicate that doses up to 1 × 10{sup 9} vp of HC-Ad-TK/TetOn-Flt3L can be safely delivered into the normal rat brain and underpin further developments for its implementation in a phase I clinical trial for glioma. - Highlights: ► High capacity Ad vectors elicit sustained therapeutic gene expression in the brain. ► HC-Ad-TK/TetOn-Flt3L encodes two therapeutic genes and a transcriptional switch. ► We performed a dose escalation study at

  15. Safety and Biodistribution Evaluation in CNGB3-Deficient Mice of rAAV2tYF-PR1.7-hCNGB3, a Recombinant AAV Vector for Treatment of Achromatopsia.

    PubMed

    Ye, Guo-jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T Michael; Miller, Paul E; McPherson, Leslie; Ver Hoeve, James N; Smith, Leia M; Arndt, Tara; Mandapati, Savitri; Robinson, Paulette M; Calcedo, Roberto; Knop, David R; Hauswirth, William W; Chulay, Jeffrey D

    2016-03-01

    Applied Genetic Technologies Corporation (AGTC) is developing rAAV2tYF-PR1.7-hCNGB3, a recombinant adeno-associated virus (rAAV) vector expressing the human CNGB3 gene, for treatment of achromatopsia, an inherited retinal disorder characterized by markedly reduced visual acuity, extreme light sensitivity, and absence of color discrimination. We report here results of a study evaluating safety and biodistribution of rAAV2tYF-PR1.7-hCNGB3 in CNGB3-deficient mice. Three groups of animals (n = 35 males and 35 females per group) received a subretinal injection in one eye of 1 μl containing either vehicle or rAAV2tYF-PR1.7-hCNGB3 at one of two dose concentrations (1 × 10(12) or 4.2 × 10(12) vg/ml) and were euthanized 4 or 13 weeks later. There were no test-article-related changes in clinical observations, body weights, food consumption, ocular examinations, clinical pathology parameters, organ weights, or macroscopic observations at necropsy. Cone-mediated electroretinography (ERG) responses were detected after vector administration in the treated eyes in 90% of animals in the higher dose group and 31% of animals in the lower dose group. Rod-mediated ERG responses were reduced in the treated eye for all groups, with the greatest reduction in males given the higher dose of vector, but returned to normal by the end of the study. Microscopic pathology results demonstrated minimal mononuclear cell infiltrates in the retina and vitreous of some animals at the interim euthanasia and in the vitreous of some animals at the terminal euthanasia. Serum anti-AAV antibodies developed in most vector-injected animals. No animals developed antibodies to hCNGB3. Biodistribution studies demonstrated high levels of vector DNA in vector-injected eyes but little or no vector DNA in nonocular tissue. These results support the use of rAAV2tYF-PR1.7-hCNGB3 in clinical studies in patients with achromatopsia caused by CNGB3 mutations. PMID:27003752

  16. Comparing the cardiovascular therapeutic indices of glycopyrronium and tiotropium in an integrated rat pharmacokinetic, pharmacodynamic and safety model.

    PubMed

    Trifilieff, Alexandre; Ethell, Brian T; Sykes, David A; Watson, Kenny J; Collingwood, Steve; Charlton, Steven J; Kent, Toby C

    2015-08-15

    Long acting inhaled muscarinic receptor antagonists, such as tiotropium, are widely used as bronchodilator therapy for chronic obstructive pulmonary disease (COPD). Although this class of compounds is generally considered to be safe and well tolerated in COPD patients the cardiovascular safety of tiotropium has recently been questioned. We describe a rat in vivo model that allows the concurrent assessment of muscarinic antagonist potency, bronchodilator efficacy and a potential for side effects, and we use this model to compare tiotropium with NVA237 (glycopyrronium bromide), a recently approved inhaled muscarinic antagonist for COPD. Anaesthetized Brown Norway rats were dosed intratracheally at 1 or 6h prior to receiving increasing doses of intravenous methacholine. Changes in airway resistance and cardiovascular function were recorded and therapeutic indices were calculated against the ED50 values for the inhibition of methacholine-induced bronchoconstriction. At both time points studied, greater therapeutic indices for hypotension and bradycardia were observed with glycopyrronium (19.5 and 28.5 fold at 1h; >200 fold at 6h) than with tiotropium (1.5 and 4.2 fold at 1h; 4.6 and 5.5 fold at 6h). Pharmacokinetic, protein plasma binding and rat muscarinic receptor binding properties for both compounds were determined and used to generate an integrated model of systemic M2 muscarinic receptor occupancy, which predicted significantly higher M2 receptor blockade at ED50 doses with tiotropium than with glycopyrronium. In our preclinical model there was an improved safety profile for glycopyrronium when compared with tiotropium. PMID:26026369

  17. Safety, pharmacokinetics, pharmacogenomics and QT concentration-effect modelling of the SirT1 inhibitor selisistat in healthy volunteers

    PubMed Central

    Westerberg, Goran; Chiesa, Joseph A; Andersen, Claus A; Diamanti, Daniela; Magnoni, Letizia; Pollio, Giuseppe; Darpo, Borje; Zhou, Meijian

    2015-01-01

    Aim Selisistat (SEN0014196), a first-in-class SirT1 inhibitor, is being developed as a disease-modifying therapy for Huntington's disease. This first-in-human study investigated the safety, pharmacokinetics and pharmacogenomics of single and multiple doses of selisistat in healthy male and female subjects. Method In this double-blind, randomized, placebo-controlled study, seven cohorts of eight subjects received a single dose of selisistat at dose levels of 5, 25, 75, 150, 300 and 600 mg and four cohorts of eight subjects were administered 100, 200 and 300 mg once daily for 7 days. Blood sampling and safety assessments were conducted throughout the study. Results Selisistat was rapidly absorbed and systemic exposure increased in proportion to dose in the 5–300 mg range. Steady-state plasma concentrations were achieved within 4 days of repeated dosing. The incidence of drug related adverse events showed no correlation with dose level or number of doses received and was comparable with the placebo group. No serious adverse events were reported and no subjects were withdrawn due to adverse events. There were no trends in clinical laboratory parameters or vital signs. No trends in heart rate or ECG parameters, including the QTc interval and T-wave morphology, were observed. There were no findings in physical or neurological examinations or postural control. Transcriptional alteration was observed in peripheral blood. Conclusion Selisistat was safe and well tolerated by healthy male and female subjects after single doses up to 600 mg and multiple doses up to 300 mg day−1. PMID:25223836

  18. Comparing the cardiovascular therapeutic indices of glycopyrronium and tiotropium in an integrated rat pharmacokinetic, pharmacodynamic and safety model

    SciTech Connect

    Trifilieff, Alexandre; Ethell, Brian T.; Sykes, David A.; Watson, Kenny J.; Collingwood, Steve; Charlton, Steven J.; Kent, Toby C.

    2015-08-15

    Long acting inhaled muscarinic receptor antagonists, such as tiotropium, are widely used as bronchodilator therapy for chronic obstructive pulmonary disease (COPD). Although this class of compounds is generally considered to be safe and well tolerated in COPD patients the cardiovascular safety of tiotropium has recently been questioned. We describe a rat in vivo model that allows the concurrent assessment of muscarinic antagonist potency, bronchodilator efficacy and a potential for side effects, and we use this model to compare tiotropium with NVA237 (glycopyrronium bromide), a recently approved inhaled muscarinic antagonist for COPD. Anaesthetized Brown Norway rats were dosed intratracheally at 1 or 6 h prior to receiving increasing doses of intravenous methacholine. Changes in airway resistance and cardiovascular function were recorded and therapeutic indices were calculated against the ED{sub 50} values for the inhibition of methacholine-induced bronchoconstriction. At both time points studied, greater therapeutic indices for hypotension and bradycardia were observed with glycopyrronium (19.5 and 28.5 fold at 1 h; > 200 fold at 6 h) than with tiotropium (1.5 and 4.2 fold at 1 h; 4.6 and 5.5 fold at 6 h). Pharmacokinetic, protein plasma binding and rat muscarinic receptor binding properties for both compounds were determined and used to generate an integrated model of systemic M{sub 2} muscarinic receptor occupancy, which predicted significantly higher M{sub 2} receptor blockade at ED{sub 50} doses with tiotropium than with glycopyrronium. In our preclinical model there was an improved safety profile for glycopyrronium when compared with tiotropium. - Highlights: • We use an in vivo rat model to study CV safety of inhaled muscarinic antagonists. • We integrate protein and receptor binding and PK of tiotropium and glycopyrrolate. • At ED{sub 50} doses for bronchoprotection we model systemic M{sub 2} receptor occupancy. • Glycopyrrolate demonstrates lower M

  19. Dimethyl fumarate in relapsing-remitting multiple sclerosis: rationale, mechanisms of action, pharmacokinetics, efficacy and safety.

    PubMed

    Dubey, Duvyanshu; Kieseier, Bernd C; Hartung, Hans P; Hemmer, Bernhard; Warnke, Clemens; Menge, Til; Miller-Little, William A; Stuve, Olaf

    2015-04-01

    Dimethyl fumarate (DMF), a fumaric acid ester, is a new orally available disease-modifying agent that was recently approved by the US FDA and the EMA for the management of relapsing forms of multiple sclerosis (MS). Fumaric acid has been used for the management of psoriasis, for more than 50 years. Because of the known anti-inflammatory properties of fumaric acid ester, DMF was brought into clinical development in MS. More recently, neuroprotective and myelin-protective mechanism actions have been proposed, making it a possible candidate for MS treatment. Two Phase III clinical trials (DEFINE, CONFIRM) have evaluated the safety and efficacy of DMF in patients with relapsing-remitting MS. Being an orally available agent with a favorable safety profile, it has become one of the most commonly prescribed disease-modifying agents in the USA and Europe. PMID:25800129

  20. Preclinical studies on the pharmacokinetics, safety, and toxicology of oxfendazole: toward first in human studies.

    PubMed

    Codd, Ellen E; Ng, Hanna H; McFarlane, Claire; Riccio, Edward S; Doppalapudi, Rupa; Mirsalis, Jon C; Horton, R John; Gonzalez, Armando E; Garcia, H Hugo; Gilman, Robert H

    2015-01-01

    A 2-week study in rats identified target organs of oxfendazole toxicity to be bone marrow, epididymis, liver, spleen, testis, and thymus. Female rats had greater oxfendazole exposure and exhibited toxicities at lower doses than did males. Decreased white blood cell levels, a class effect of benzimidazole anthelmintics, returned to normal during the recovery period. The no observed adverse effect level was determined to be >5 but <25 mg/kg/d and the maximum tolerated dose 100 mg/kg/d. The highest dose, 200 mg/kg/d, resulted in significant toxicity and mortality, leading to euthanization of the main study animals in this group after 7 days. Oxfendazole did not exhibit genetic toxicology signals in standard Ames bacterial, mouse lymphoma, or rat micronucleus assays nor did it provoke safety concerns when evaluated for behavioral effects in rats or cardiovascular safety effects in dogs. These results support the transition of oxfendazole to First in Human safety studies preliminary to its evaluation in human helminth diseases.

  1. Evaluation of the pharmacokinetic equivalence and 54-week efficacy and safety of CT-P13 and innovator infliximab in Japanese patients with rheumatoid arthritis

    PubMed Central

    Takeuchi, Tsutomu; Yamanaka, Hisashi; Tanaka, Yoshiya; Sakurai, Takeo; Saito, Kazuyoshi; Ohtsubo, Hideo; Lee, Sang Joon; Nambu, Yoshihiro

    2015-01-01

    Objectives. To demonstrate the pharmacokinetic equivalence of CT-P13 and its innovator infliximab (IFX) in Japanese patients with rheumatoid arthritis (RA), and to compare the efficacy and safety of these drugs, administered for 54 weeks. Methods. In a randomized, double-blind, parallel-group, multicenter study, 3 mg/kg of CT-P13 or IFX, in combination with methotrexate (MTX) (6–16 mg/week), was administered for 54 weeks to Japanese active RA patients with an inadequate response to MTX, to demonstrate the pharmacokinetic equivalence, based on the area under the curve (AUCτ) (weeks 6–14) and Cmax (week 6) of these drugs, and to compare their efficacy and safety. Results. The CT-P13-to-IFX ratios (90% confidence intervals) of the geometric mean AUCτ and Cmax values in patients negative for antibodies to infliximab at week 14 were 111.62% (100.24–124.29%) and 104.09% (92.12–117.61%), respectively, demonstrating the pharmacokinetic equivalence of these drugs. In the full analysis set, CT-P13 and IFX showed comparable therapeutic effectiveness, as measured by the American College of Rheumatology, Disease Activity Score in 28 joints, the European League Against Rheumatism, and other efficacy criteria, at weeks 14 and 30. The incidence of adverse events was similar for these drugs. Conclusion. CT-P13 and IFX, administered at a dose of 3 mg/kg in combination with MTX to active RA patients, were pharmacokinetically equivalent and comparable in efficacy and safety. PMID:25736355

  2. Safety, pharmacokinetics, and pharmacodynamics of E5564, a lipid A antagonist, during an ascending single-dose clinical study.

    PubMed

    Wong, Y Nancy; Rossignol, Daniel; Rose, Jeffrey R; Kao, Richard; Carter, Alison; Lynn, Melvyn

    2003-07-01

    E5564, a structural analog of the lipid A portion of lipopolysaccharide (LPS), is a potent antagonist of the biochemical and physiologic effects of LPS in several in vitro and in vivo models and is currently under clinical development as a possible therapeutic for the treatment of sepsis and septic shock. The objectives of this study were to (1) assess the safety and tolerability of E5564 following a 30-minute intravenous (i.v.) infusion, (2) evaluate the pharmacokinetic profile of E5564, and (3) measure the ability of E5564 to block LPS stimulation ex vivo in blood taken from subjects up to 8 hours after ending the infusion. Healthy male volunteers (n = 7/dose group) were randomly assigned to each of four dose levels (350, 1000, 2000, or 3500 micrograms). Within each dose group, 5 subjects received drug and 2 received placebo. E5564 or matching placebo was administered by a 30-minute infusion, and blood samples were collected at predetermined time points. All doses of E5564 were demonstrated to be safe and well tolerated. E5564 plasma concentrations were determined using a validated LC/MS/MS method. The Cmax and AUC of E5564 increased in a dose-proportional manner. E5564 pharma-cokinetics were characterized by a slow clearance (0.67-0.95 mL/h/kg), a small volume of distribution (41-54 mL/kg), and a relatively long elimination half-life (42-51 h). As measured in the ex vivo assay, E5564 inhibited LPS-induced tumor necrosis factor-alpha (TNF-alpha) in a dose-dependent manner, and at the higher doses (2 and 3.5 mg), antagonistic activity was measurable up to 8 hours postinfusion. E5564 lacked LPS-like agonist activity at doses up to 3.5 mg. Taken together, we believe that E5564 is a safe, potent antagonist of LPS in blood and will likely benefit patients in the treatment of LPS-related diseases.

  3. Safety and biodistribution assessment of sc-rAAV2.5IL-1Ra administered via intra-articular injection in a mono-iodoacetate-induced osteoarthritis rat model

    PubMed Central

    Wang, Gensheng; Evans, Christopher H; Benson, Janet M; Hutt, Julie A; Seagrave, JeanClare; Wilder, Julie A; Grieger, Joshua C; Samulski, R Jude; Terse, Pramod S

    2016-01-01

    Interleukin-1 (IL-1) plays an important role in the pathophysiology of osteoarthritis (OA), and gene transfer of IL-1 receptor antagonist (IL-1Ra) holds promise for OA treatment. A preclinical safety and biodistribution study evaluated a self-complementary adeno-associated viral vector carrying rat IL-1Ra transgene (sc-rAAV2.5rIL-1Ra) at 5 × 108, 5 × 109, or 5 × 1010 vg/knee, or human IL-1Ra transgene (sc-rAAV2.5hIL-1Ra) at 5 × 1010 vg/knee, in Wistar rats with mono-iodoacetate (MIA)–induced OA at days 7, 26, 91, 180, and 364 following intra-articular injection. The MIA-induced OA lesions were consistent with the published data on this model. The vector genomes persisted in the injected knees for up to a year with only limited vector leakage to systemic circulation and uptake in tissues outside the knee. Low levels of IL-1Ra expression and mitigation of OA lesions were observed in the vector-injected knees, albeit inconsistently. Neutralizing antibodies against the vector capsid developed in a dose-dependent manner, but only the human vector induced a small splenic T-cell immune response to the vector capsid. No local or systemic toxicity attributable to vector administration was identified in the rats as indicated by clinical signs, body weight, feed consumption, clinical pathology, and gross and microscopic pathology through day 364. Taken together, the gene therapy vector demonstrated a favorable safety profile. PMID:26817025

  4. Single, Escalating Dose Pharmacokinetics, Safety and Food Effects of a New Oral Androgen Dimethandrolone Undecanoate in Man: A prototype oral male hormonal contraceptive

    PubMed Central

    Swerdloff, Ronald S.; Nya-Ngatchou, Jean Jacques; Liu, Peter Y.; Amory, John K.; Leung, Andrew; Hull, Laura; Blithe, Diana L.; Woo, Jason; Bremner, William J.; Wang, Christina

    2014-01-01

    The novel androgen, dimethandrolone (DMA) has both androgenic and progestational activities, properties that may maximize gonadotropin suppression. We assessed the pharmacokinetics of dimethandrolone undecanoate (DMAU), an orally bioavailable, longer-acting ester of DMA, for male contraceptive development. Our objective was to examine the safety and pharmacokinetics of single, escalating doses of DMAU (powder in capsule formulation) administered orally with or without food in healthy men. We conducted a randomized, double-blind Phase 1 study. For each dose of DMAU (25 to 800 mg), ten male volunteers received DMAU and two received placebo at two academic medical centers. DMAU was administered both fasting and after a high fat meal (200–800 mg doses). Serial serum samples were collected over 24h following each dose. DMAU was well tolerated without significant effects on vital signs, safety laboratory tests or electrocardiograms. When administered while fasting, serum DMA (active compound) was detectable in only 4/10 participants after the 800mg dose. When administered with a 50% fat meal, serum DMA was detectable in all participants given 200mg DMAU and showed a dose-incremental increase up to 800mg, with peak levels 4 to 8h after taking the dose. Serum gonadotropins and sex hormone concentrations were significantly suppressed 12h after DMAU administration with food at doses above 200mg. This first-in-man study demonstrated that a single, oral dose of DMAU up to 800 mg is safe. A high-fat meal markedly improved DMAU/DMA pharmacokinetics. PMID:24789057

  5. Mifamurtide in Metastatic and Recurrent Osteosarcoma: A Patient Access Study with Pharmacokinetic, Pharmacodynamic, and Safety Assessments

    PubMed Central

    Anderson, P.M.; Meyers, P.; Kleinerman, E.; Venkatakrishnan, K.; Hughes, D.P.; Herzog, C.; Huh, W.; Sutphin, R.; Vyas, Y. M.; Shen, V.; Warwick, A.; Yeager, N.; Oliva, C.; Wang, B.; Liu, Y.; Chou, A.

    2015-01-01

    Purpose This non-randomized, patient-access protocol, assessed both safety and efficacy outcomes following liposomal muramyl –tripeptide-phosphatidylethanolamine (L-MTP-PE; mifamurtide) in patients with high-risk, recurrent and/or metastatic osteosarcoma. Methods Patients received mifamurtide 2 mg/m2 intravenously twice-weekly ×12 weeks, then weekly ×24 weeks with and without chemotherapy. Serum concentration-time profiles were collected. Adverse events within 24 hours of drug administration were classified as infusion-related adverse events (IRAE); other AEs and overall survival (OS) were assessed. Results The study began therapy in January 2008; the last patient completed therapy in October 2012. 205 patients were enrolled; median age was 16.5 years and 143/204 (72%) had active disease. Mifamurtide serum concentrations declined rapidly in the first 30 minutes post-infusion, then in a loglinear manner 2–6 hours post-dose; t1/2 was 2 hours. There were no readily apparent relationships between age and BSA-normalized clearance, half-life, or pharmacodynamic effects, supporting the dose of 2 mg/m2 mifamurtide across the age range. Patients reported 3,415 IRAE after 7,122 mifamurtide infusions. These were very rarely grade 3 or 4 and most commonly included chills+fever or headache+fatigue symptom clusters. One and two year OS was 70.6% and 41.4%. Patients with initial metastatic disease or progression approximated by within 9 months of diagnosis (N=40) had similar 2-year OS (38.8%) as the entire cohort (41.4%) Conclusions Mifamurtide had a manageable safety profile; PK/PD of mifamurtide in this patient access study was consistent with prior studies. Two-year OS was 41.4%. A randomized clinical trial would be required to definitively determine impact on patient outcomes. PMID:23997016

  6. Evaluation of Herbal Medicines: Value Addition to Traditional Medicines Through Metabolism, Pharmacokinetic and Safety Studies.

    PubMed

    Thelingwani, Roslyn; Masimirembwa, Collen

    2014-01-01

    The safety and efficacy of herbal medicines remain major issues of concern especially in the developing world where the use is high. The World Health Organisation estimates up to 80% of the population in Africa relies on herbal medicines for treatment of many diseases. Minimum safety evaluations need to be done for both the herbal and conventional drugs, in particular when there is a high likelihood of co-administration. This is particularly important in Africa where there is increased access to antiretrovirals in the treatment of HIV/AIDS, which are being used in a population background characterized by rampant use of herbal medicines. Many techniques used in the discovery and evaluation of conventional drugs can be adapted to herbal medicines. Such evaluations will add value to herbal medicines as doctors and patients will be better informed on which drugs and herbal medicines to take or not take together. This can also lead to the adoption of guidelines by regulatory agents such as the European Medicines Agency (EMA), Food and Drug Administration (FDA) and governmental agencies controlling the use of medicines. Of current interest is the evaluation of drug-herb interactions (DHI) involving the absorption, distribution, metabolism and excretion (ADME) of medicines where there is a promising possibility to adopt the current FDA and EMA guidelines on the evaluation of herbal medicines for drug-drug interactions (DDI). In this review we demonstrate progress made so far in DHI and point to possible future developments that will contribute to the safe use of herbal medicines.

  7. Relative bioavailability, food effect, and safety of the single-dose pharmacokinetics of omecamtiv mecarbil following administration of different modified-release formulations in healthy subjects

    PubMed Central

    Palaparthy, Rameshraja; Banfield, Christopher; Alvarez, Paco; Yan, Lucy; Smith, Brian; Johnson, Jessica; Monsalvo, Maria Laura; Malik, Fady

    2016-01-01

    Objective: Omecamtiv mecarbil is a novel small molecule that directly activates cardiac myosin and increases cardiac contractility without increasing cardiac myocyte intracellular calcium. This study evaluated the relative bioavailability, food effect, and safety of several modified-release (MR) formulations of omecamtiv mecarbil. Methods: This was a phase 1, randomized, open-label, 4-way crossover, incomplete block-design study evaluating 5 MR formulations of omecamtiv mecarbil vs. an immediate-release (IR) formulation. Materials: Healthy subjects were randomized to 1 of 30 possible sequences: within each sequence, subjects were assigned to receive a single 25-mg dose of 2 of the 6 possible formulations in the fasting and/or fed states. Results: 65 subjects were screened and enrolled; 5 were replacement subjects. Pharmacokinetic and safety data were analyzed from 62 and 63 subjects in the fasting and fed states, respectively. Compared with the IR formulation, median tmax was longer (0.5 vs. 2 – 10 hours), and mean Cmax was lower for all 5 MR formulations (262 vs. 34 – 78 ng/mL); t1/2,z was similar (18 – 21 hours). The relative bioavailability was high (> 75%) for three MR formulations but lower (< 65%) for the other two. Overall, the effect of food on omecamtiv mecarbil pharmacokinetics was minimal for four of the MR formulations. The pharmacokinetics of the inactive metabolites M3 and M4 were similar across all formulations. Conclusions: The relative bioavailability of omecamtiv mecarbil was high (> 75%) for 3 of the five MR formulations. Food had a marginal, nonclinically meaningful effect on the pharmacokinetics of the MR formulations of omecamtiv mecarbil. PMID:26709596

  8. Combined use of pharmacokinetic modeling and a steady-state delivery approach allows early assessment of IkappaB kinase-2 (IKK-2) target safety and efficacy.

    PubMed

    Chiang, Po-Chang; Kishore, Nandini N; Thompson, David C

    2010-03-01

    NF-kappaB activation is clearly linked to the pathogenesis of multiple inflammatory diseases including arthritis. The prominent role of IkappaB kinase-2 (IKK-2) in regulating NF-kappaB signaling in response to proinflammatory stimuli has made IKK-2 a primary anti-inflammation therapeutic target. PHA-408, a potent and selective IKK-2 inhibitor, was identified internally and used for our studies to assess this target. In early in vivo studies, PHA-408 demonstrated efficacy at high doses; however, the correlation between PHA-408 exposure and efficacy could not be established using standard dosing paradigms for the rat disease models. Similar concerns arose from early in vivo safety studies where appropriate NOAEL margins were not achieved. Following a full investigation of the physicochemical properties of the molecule and pharmacokinetic modeling, an oral steady-state delivery strategy was designed to administer PHA-408 to the rat for both efficacy and safety studies. Using this steady-state delivery, a clear dose-response relationship was established between plasma concentrations of PHA-408 and efficacy in the rat arthritis model. The same steady-state delivery approach was used to demonstrate the target safety. In summary, a combination of pharmacokinetic modeling with a steady-state delivery approach allowed us to establish confidence in both the mechanism and safety of the target.

  9. Pharmacokinetics, Safety and Inducible Cytokine Responses during a Phase 1 Trial of the Oral Histone Deacetylase Inhibitor ITF2357 (Givinostat)

    PubMed Central

    Furlan, Antonio; Monzani, Valmen; Reznikov, Leonid L; Leoni, Flavio; Fossati, Gianluca; Modena, Daniela; Mascagni, Paolo; Dinarello, Charles A

    2011-01-01

    ITF2357 (givinostat) is a histone deacetylase inhibitor with antiinflammatory properties at low nanomolar concentrations. We report here a phase I safety and pharmacokinetics trial in healthy males administered 50, 100, 200, 400 or 600 mg orally. After 50 mg, mean maximal plasma concentrations reached 104 nmol/L 2 h after dosing, with a half-life of 6.9 h. After 100 mg, maximal concentration reached 199 nmol/L at 2.1 h with a half-life of 6.0 h. Repeat doses for 7 consecutive days of 50, 100 or 200 mg resulted in nearly the same kinetics. There were no serious adverse effects (AEs) and no organ toxicities. However, there was a dose-dependent but transient fall in platelets. After 7 daily doses of 50 or 100 mg, the mean decrease in platelets of 17 and 25% was not statistically significant and returned to baseline within 14 d. Blood removed from the subjects after oral dosing was cultured ex vivo with endotoxin, and the release of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-1Ra, interferon (IFN)-γ and IL-10 was determined. Maximal reduction in IL-1β, TNFα, IL-6 and IFNγ was observed 4 h after dosing but returned to baseline at 12 h. There was no significant reduction in IL-1Ra or IL-10. With daily dosing, the fall in cytokine production in blood cultures observed on day 7 was nearly the same as that of the first day. We conclude that dosing of 50 or 100 mg ITF2357 is safe in healthy humans and transiently but repeatedly reduces the production of proinflammatory cytokines without affecting production of antiinflammatory cytokines. PMID:21365126

  10. Pharmacokinetics, safety and inducible cytokine responses during a phase 1 trial of the oral histone deacetylase inhibitor ITF2357 (givinostat).

    PubMed

    Furlan, Antonio; Monzani, Valmen; Reznikov, Leonid L; Leoni, Flavio; Fossati, Gianluca; Modena, Daniela; Mascagni, Paolo; Dinarello, Charles A

    2011-01-01

    ITF2357 (givinostat) is a histone deacetylase inhibitor with antiinflammatory properties at low nanomolar concentrations. We report here a phase I safety and pharmacokinetics trial in healthy males administered 50, 100, 200, 400 or 600 mg orally. After 50 mg, mean maximal plasma concentrations reached 104 nmol/L 2 h after dosing, with a half-life of 6.9 h. After 100 mg, maximal concentration reached 199 nmol/L at 2.1 h with a half-life of 6.0 h. Repeat doses for 7 consecutive days of 50, 100 or 200 mg resulted in nearly the same kinetics. There were no serious adverse effects (AEs) and no organ toxicities. However, there was a dose-dependent but transient fall in platelets. After 7 daily doses of 50 or 100 mg, the mean decrease in platelets of 17 and 25% was not statistically significant and returned to baseline within 14 d. Blood removed from the subjects after oral dosing was cultured ex vivo with endotoxin, and the release of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-1Ra, interferon (IFN)-γ and IL-10 was determined. Maximal reduction in IL-1β, TNFα, IL-6 and IFNγ was observed 4 h after dosing but returned to baseline at 12 h. There was no significant reduction in IL-1Ra or IL-10. With daily dosing, the fall in cytokine production in blood cultures observed on day 7 was nearly the same as that of the first day. We conclude that dosing of 50 or 100 mg ITF2357 is safe in healthy humans and transiently but repeatedly reduces the production of proinflammatory cytokines without affecting production of antiinflammatory cytokines. PMID:21365126

  11. Single-dose safety, tolerability, and pharmacokinetics of the antibiotic GSK1322322, a novel peptide deformylase inhibitor.

    PubMed

    Naderer, Odin J; Dumont, Etienne; Zhu, John; Kurtinecz, Milena; Jones, Lori S

    2013-05-01

    GSK1322322 is a potent inhibitor of peptide deformylase, an essential bacterial enzyme required for protein maturation. GSK1322322 is active against community-acquired skin and respiratory tract pathogens, including methicillin-resistant Staphylococcus aureus, multidrug-resistant Streptococcus pneumoniae, and atypical pathogens. This phase I, randomized, double-blind, placebo-controlled, 2-part, single-dose, dose escalation study (first time in humans) evaluated the safety, tolerability, and pharmacokinetics of GSK1322322 (powder-in-bottle formulation) in healthy volunteers. In part A, dose escalation included GSK1322322 doses of 100, 200, 400, 800, and 1,500 mg under fasting conditions and 800 mg administered with a high-fat meal. In part B, higher doses of GSK1322322 (2,000, 3,000, and 4,000 mg) were evaluated under fasting conditions. Of the 39 volunteers enrolled in the study, 29 and 10 volunteers were treated with GSK1322322 and placebo, respectively. Upon single-dose administration, GSK1322322 was absorbed rapidly, with median times to maximum plasma concentration (T(max)) ranging from 0.5 to 1.0 h. The maximum observed plasma concentration (C(max)) and exposure (area under the concentration-time curve [AUC]) of GSK1322322 were greater than dose proportional between 100 and 1,500 mg and less than dose proportional between 1,500 and 4,000 mg. Administration of the drug with a high-fat meal reduced the rate of absorption (reduced C(max) and delayed T(max)) without affecting the extent of absorption (no effect on AUC). GSK1322322 was generally well tolerated, with all adverse events being mild to moderate in intensity during both parts of the study. The most frequently reported adverse event was headache. Data from this study support further evaluation of GSK1322322. PMID:23403431

  12. Efficacy, safety, and pharmacokinetics of sustained-release lanreotide (lanreotide Autogel) in Japanese patients with acromegaly or pituitary gigantism.

    PubMed

    Shimatsu, Akira; Teramoto, Akira; Hizuka, Naomi; Kitai, Kazuo; Ramis, Joaquim; Chihara, Kazuo

    2013-01-01

    The somatostatin analog lanreotide Autogel has proven to be efficacious for treating acromegaly in international studies and in clinical practices around the world. However, its efficacy in Japanese patients has not been extensively evaluated. We examined the dose-response relationship and long-term efficacy and safety in Japanese patients with acromegaly or pituitary gigantism. In an open-label, parallel-group, dose-response study, 32 patients (29 with acromegaly, 3 with pituitary gigantism) received 5 injections of 60, 90, or 120 mg of lanreotide Autogel over 24 weeks. Four weeks after the first injection, 41% of patients achieved serum GH level of <2.5 ng/mL and insulin-like growth factor-I (IGF-I) level was normalized in 31%. Values at Week 24 were 53% for GH and 44% for IGF-I. Dose-dependent decreases in serum GH and IGF-I levels were observed with dose-related changes in pharmacokinetic parameters. In an open-label, long-term study, 32 patients (30 with acromegaly, 2 with pituitary gigantism) received lanreotide Autogel once every 4 weeks for a total of 13 injections. Dosing was initiated with 90 mg and adjusted according to clinical responses at Weeks 16 and/or 32. At Week 52, 47% of patients had serum GH levels of <2.5 ng/mL and 53% had normalized IGF-I level. In both studies, acromegaly symptoms improved and treatment was generally well tolerated although gastrointestinal symptoms and injection site induration were reported. In conclusion, lanreotide Autogel provided early and sustained control of elevated GH and IGF-I levels, improved acromegaly symptoms, and was well tolerated in Japanese patients with acromegaly or pituitary gigantism. PMID:23337477

  13. Efficacy, safety, and pharmacokinetics of sustained-release lanreotide (lanreotide Autogel) in Japanese patients with acromegaly or pituitary gigantism.

    PubMed

    Shimatsu, Akira; Teramoto, Akira; Hizuka, Naomi; Kitai, Kazuo; Ramis, Joaquim; Chihara, Kazuo

    2013-01-01

    The somatostatin analog lanreotide Autogel has proven to be efficacious for treating acromegaly in international studies and in clinical practices around the world. However, its efficacy in Japanese patients has not been extensively evaluated. We examined the dose-response relationship and long-term efficacy and safety in Japanese patients with acromegaly or pituitary gigantism. In an open-label, parallel-group, dose-response study, 32 patients (29 with acromegaly, 3 with pituitary gigantism) received 5 injections of 60, 90, or 120 mg of lanreotide Autogel over 24 weeks. Four weeks after the first injection, 41% of patients achieved serum GH level of <2.5 ng/mL and insulin-like growth factor-I (IGF-I) level was normalized in 31%. Values at Week 24 were 53% for GH and 44% for IGF-I. Dose-dependent decreases in serum GH and IGF-I levels were observed with dose-related changes in pharmacokinetic parameters. In an open-label, long-term study, 32 patients (30 with acromegaly, 2 with pituitary gigantism) received lanreotide Autogel once every 4 weeks for a total of 13 injections. Dosing was initiated with 90 mg and adjusted according to clinical responses at Weeks 16 and/or 32. At Week 52, 47% of patients had serum GH levels of <2.5 ng/mL and 53% had normalized IGF-I level. In both studies, acromegaly symptoms improved and treatment was generally well tolerated although gastrointestinal symptoms and injection site induration were reported. In conclusion, lanreotide Autogel provided early and sustained control of elevated GH and IGF-I levels, improved acromegaly symptoms, and was well tolerated in Japanese patients with acromegaly or pituitary gigantism.

  14. Tolerability, safety, and pharmacokinetics of the novel cathepsin A inhibitor SAR164653 in healthy subjects.

    PubMed

    Tillner, Joachim; Lehmann, Anne; Paehler, Tobias; Lukacs, Zoltan; Ruf, Sven; Sadowski, Thorsten; Pinquier, Jean-Louis; Ruetten, Hartmut

    2016-01-01

    Cathepsin A (CathA) is a lysosomal protein where it forms a stable complex with neuraminidase and ß-galactosidase. CathA also has enzymatic activity and is involved in the degradation of many peptides. CathA was recently discovered as a target for heart failure, fostering the development of CathA inhibitors with SAR164653 as a frontrunner. The first-in-man study investigated single oral doses from 20 to 800 mg of SAR164653 followed by repeat dose studies at doses up to 800 mg in healthy young and elderly subjects. SAR164653 was safe and well tolerated at doses up to 800 mg in healthy subjects, and a maximum tolerated dose could not be determined from the study. Activity of ß-galactosidase measured in leukocytes did not show any abnormalities. The tmax was 1.0 to 2.5 hours, and the t1/2 was ∼5-11 after single dosing; exposure increased less than dose proportional. Following multiple dosing, accumulation was not observed, Cmax and AUC0-24 increased in a dose-proportional manner, and t1/2 was around 14-20 hours. The novel CathA inhibitor SAR164653 was found to have a favorable safety profile in these early phase 1 studies, but further studies are required to confirm if SAR164653 is equally safe in patients undergoing long-term treatment. PMID:27119579

  15. Relationship of pharmacokinetics and drug distribution in tissue to increased safety of amphotericin B colloidal dispersion in dogs.

    PubMed Central

    Fielding, R M; Singer, A W; Wang, L H; Babbar, S; Guo, L S

    1992-01-01

    The safety, pharmacokinetics, and distribution in tissue of an amphotericin B (AmB)-cholesteryl sulfate colloidal dispersion (ABCD) were compared with those of micellar amphotericin B-deoxycholate (m-AmB). Dogs received 14 daily injections of ABCD (0.6 to 10 mg/kg of body weight per day) or m-AmB (0.6 mg/kg/day). Safety was evaluated by monitoring body weight, hematology, clinical chemistry, and urinalysis during the study and by microscopic examination of tissues at the time of necropsy (day 16). AmB concentrations in plasma were measured in some groups on days 1, 7, and 14 and in necropsy tissue samples. ABCD produced a spectrum of toxic effects in the kidneys, gut, and liver similar to those of m-AmB, but ABCD was eightfold safer than m-AmB. The highest tolerated dose of ABCD (5.0 mg/kg/day) produced effects similar to those of m-AmB (0.6 mg/kg/day). ABCD produced lower concentrations in plasma than an equal dose of m-AmB did. Clearances on days 7 and 14 were higher for ABCD (304 and 295 ml/h.kg) than they were for m-AmB (67 and 53 ml/h.kg). Concentrations in plasma reached steady state after ABCD administration, but they increased after repeated dosing with m-AmB. Diurnal fluctuations in AmB concentrations in plasma were observed 4 to 8 h after the time of dosing. ABCD resulted in lower AmB concentrations in tissue than m-AmB did, except in the reticuloendothelial system. Up to 90% of AmB administered as ABCD was recovered from the liver and spleen on day 16. Reduced drug levels in the kidneys and gut correlated with reduced indications of toxicity in these organs after ABCD administration. Although ABCD increased concentrations of AmB in the reticuloendothelial system, increased toxicity was not observed in these organs. Images PMID:1605595

  16. Pharmacokinetics, thrombogenicity and safety of a double viral inactivated factor IX concentrate compared with a prothrombin complex concentrate.

    PubMed

    Ruiz-Sáez, A; Hong, A; Arguello, A; Echenagucia, M; Boadas, A; Fabbrizzi, F; Minichilli, F; Bosch, N B

    2005-11-01

    Therapeutic options for developing countries have to assure an optimum safety and efficacy and low-cost antihaemophilic concentrates. A single blind randomized crossover study was carried out in 12 previously treated HB patients, comparing the pharmacokinetics (PK), thrombogenicity (TG) and safety of two plasma-derived double-inactivated (solvent/detergent heating at 100 degrees C, 30 min) factor IX (FIX) concentrates, UMAN COMPLEX DI (product A) [plasma-derived prothrombin concentrates (PCC)] and a high purity FIX concentrate AIMAFIX DI (product B, HPFIX). In a non-bleeding state, they received one single intravenous dose 50 IU FIX kg(-1) of PCC or HPFIX, and after a wash-out period of 14 days, the other product. We evaluated acute tolerance and determined PK parameters based on FIX levels measured over a 50 h postinfusion period. We studied fibrinogen, platelets, antithrombin, F1 + 2, TAT, D-dimer, over a 360 min postinfusion period. Ten cases remained in on-demand treatment for 6 months, five with PCC and five with HPFIX. PK and anti-FIX inhibitors were repeated at 3 and 6 months. No inhibitors were detected. PK values (PCC vs. HPFIX): clearence (CL; mL h(-1) kg(-1)) 5.2 +/- 1.4 vs. 6.5 +/- 1.4; the volume of distribution at steady state (mL kg(-1)) 154.9 +/- 54.9 vs. 197.5 +/- 72.5; mean residence time (h) 29.7 +/- 8.1 vs. 30.7 +/- 9.2; T(1/2) (h) 22.3 +/- 7 vs. 23.5 +/- 12.3; incremental recovery (IR; U dL(-1) U(-1) kg(-1)) 0.96 +/- 0.17 vs. 0.76 +/- 0.13. HPFIX showed significant lower IR and higher CL. There were no differences in PK at 3 and 6 months. In TG, significant increments in TAT and F1 + 2 at 30 min and 6 h were found with PCC. Product B PK results agrees with reported results for other HPFIX preparations. Use of PCC product A has to consider its thrombogenic activity.

  17. Pharmacokinetics and safety of S/GSK1349572, a next-generation HIV integrase inhibitor, in healthy volunteers.

    PubMed

    Min, Sherene; Song, Ivy; Borland, Julie; Chen, Shuguang; Lou, Yu; Fujiwara, Tamio; Piscitelli, Stephen C

    2010-01-01

    S/GSK1349572 is a novel integrase inhibitor with potent in vitro anti-HIV activity, an in vitro resistance profile different from those of other integrase inhibitors, and favorable preclinical safety and pharmacokinetics (PK). Randomized, double-blind, placebo-controlled single-dose and multiple-dose, dose escalation studies evaluated the PK, safety, and tolerability of S/GSK1349572 for healthy subjects. In the single-dose study, two cohorts of 10 subjects each (8 active, 2 receiving placebo) received suspension doses of 2, 5, 10, 25, 50, and 100 mg in an alternating panel design. In the multiple-dose study, three cohorts of 10 subjects each (8 active, 2 receiving placebo) received suspension doses of 10, 25, and 50 mg once daily for 10 days. A cytochrome P450 3A (CYP3A) substudy with midazolam was conducted with the 25-mg dose. Laboratory testing, vital signs, electrocardiograms (ECGs), and PK sampling were performed at regular intervals. S/GSK1349572 was well tolerated. Most adverse events (AEs) were mild, with a few moderate AEs reported. Headache was the most common AE. No clinically significant laboratory trends or ECG changes were noted. PK was linear over the dosage range studied. The steady-state geometric mean area under the concentration-time curve over a dosing interval (AUC(0-tau)) and maximum concentration of the drug in plasma (C(max)) ranged from 16.7 microg.h/ml (coefficient of variation [CV], 15%) and 1.5 microg/ml (CV, 24%) at a 10-mg dose to 76.8 microg.h/ml (CV, 19%) and 6.2 microg/ml (CV, 15%) at a 50-mg dose, respectively. The geometric mean steady-state concentration at the end of the dosing interval (C(tau)) with a 50-mg dose was 1.6 microg/ml, approximately 25-fold higher than the protein-adjusted 90% inhibitory concentration (0.064 microg/ml). The half-life was approximately 15 h. S/GSK1349572 had no impact on midazolam exposure, indicating that it does not modulate CYP3A activity. The PK profile suggests that once-daily, low milligram

  18. Pharmacokinetics, Safety, and 48-Week Efficacy of Oral Raltegravir in HIV-1–Infected Children Aged 2 Through 18 Years

    PubMed Central

    Nachman, Sharon; Zheng, Nan; Acosta, Edward P.; Teppler, Hedy; Homony, Brenda; Graham, Bobbie; Fenton, Terence; Xu, Xia; Wenning, Larissa; Spector, Stephen A.; Frenkel, Lisa M.; Alvero, Carmelita; Worrell, Carol; Handelsman, Edward; Wiznia, Andrew; Moultrie, Harry; Kindra, Gurpreet; Sanders, Margaret Ann; Williams, Ruth; Jensen, Jennifer; Acevedo, Midnela; Fabregas, Lizbeth; Jurgrau, Andrea; Foca, Marc; Higgins, Alice; Deville, Jaime G.; Nielsen-Saines, Karin; Carter, Michele F.; Swetnam, John; Wilson, Joan; Donnelly, Margaret; Akleh, Siham; Rigaud, Mona; Kaul, Aditya; Patel, Nehali; Gaur, Aditya; Utech, L. Jill; Cardoso, Edmundo; Moreira, Ana Maria; Santos, Breno; Bobat, Raziya; Mngqibisa, Rosie; Burey, Marlene; Abadi, Jacob; Rosenberg, Michael; Luzuriaga, Katherine; Picard, Donna; Pagano-Therrien, Jessica; Dittmer, Sylvia; Ndiweni, Hilda Ntatule; Patel, Amisha; DelRey, Michelle; McMullen-Jackson, Chivon; Paul, Mary E.; Melvin, Ann; Venema-Weiss, Corry; Lane, Jenna; Beneri, Christy; Ferraro, Denise; Infanzon, Erin; McAuley, James B; Aziz, Mariam; McNichols, Maureen; Pelton, Stephen; McLaud, Deb; Clarke, Diana; Zeichner, Steven; Akar, Arezou; Thompson, Deidre; Douglas, Steven D.; Rutstein, Richard M.; Vincent, Carol A.; Vachon, Mary Elizabeth; Cavallo, Martha; Purswani, Murli Udharam; Masheto, Gaerolwe; Ogwu, Anthony; Kakhu, Tebogo; Viani, Rolando M.; Darcey, Anita,; Norris, Kimberly; Burchett, Sandra K.; Kneut, Catherine; Karthas, Nancy; Casey, Denise; Emmanuel, Patricia; Lujan-Zilbermann, Jorge; Rana, Sohail; Houston, Patricia; Mengistab, Mulu; Rathore, Mobeen; Mirza, Ayesha; Gayton, Tabetha; Barr, Emily; Dunn, Jennifer; Hahn, Kerry; Eysallenne, Zulma; Howard, F. Sholar; Graham, Kathleen; Negra, Marinella Della; Queiroz, Wladimir; Lian, Yu Ching; Wara, Diane; Ruel, Ted; VanDyke, Russell; Reilly, Patricia; Bradford, Sheila; van Rensburg, Anita Janse; Dobbels, Els; Bester, Marietjie; Bamji, Mahrukh; Paul, Santa; Sarza, Mirala; Kovacs, Andrea; Homans, James; Spencer, LaShonda; Hofer, Cristna; Abreu, Thalita; Oliveira, Ricardo; Joao, Esau C.; Pinto, Jorge; Ferreira, Flavia; Kakehasi, Fabiana; Cervi, Maria Celia; Isaac, Marcia De Lima; Losso, Marcelo H.; Stankievich, Erica; Foradori, Irene; Tucker, Diane; Church, Joseph; Belzer, Marvin; Hopkins, Johns; Ellen, Jonathan; Agwu, Allison; Laurel, Borkovic

    2014-01-01

    Background. IMPAACT P1066 is a phase I/II open-label multicenter trial to evaluate pharmacokinetics, safety, tolerability, and efficacy of multiple raltegravir formulations in human immunodeficiency virus (HIV)–infected youth. Methods. Dose selection for each cohort (I: 12 to <19 years; II: 6 to <12 years; and III: 2 to <6 years) was based on review of short-term safety (4 weeks) and intensive pharmacokinetic evaluation. Safety data through weeks 24 and 48, and grade ≥3 or serious adverse events (AEs) were assessed. The primary virologic endpoint was achieving HIV RNA <400 copies/mL or ≥1 log10 reduction between baseline and week 24. Results. The targeted pharmacokinetic parameters (AUC0-12h and C12h) were achieved for each cohort, allowing dose selection for 2 formulations. Of 96 final dose subjects, there were 15 subjects with grade 3 or higher clinical AEs (1 subject with drug-related [DR] psychomotor hyperactivity and insomnia); 16 subjects with grade 3 or higher laboratory AEs (1 with DR transaminase elevation); 14 subjects with serious clinical AEs (1 with DR rash); and 1 subjects with serious laboratory AEs (1 with DR transaminase increased). There were no discontinuations due to AEs and no DR deaths. Favorable virologic responses at week 48 were observed in 79.1% of patients, with a mean CD4 increase of 156 cells/µL (4.6%). Conclusions. Raltegravir as a film-coated tablet 400 mg twice daily (6 to <19 years, and ≥25 kg) and chewable tablet 6 mg/kg (maximum dose 300 mg) twice daily (2 to <12 years) was well tolerated and showed favorable virologic and immunologic responses. Clinical Trials Registration NCT00485264. PMID:24145879

  19. Non-clinical safety and pharmacokinetic evaluations of propylene glycol aerosol in Sprague-Dawley rats and Beagle dogs.

    PubMed

    Werley, Michael S; McDonald, Paddy; Lilly, Patrick; Kirkpatrick, Daniel; Wallery, Jeffrey; Byron, Peter; Venitz, Jürgen

    2011-09-01

    Aerosolized propylene glycol (PG) was generated as log-normally distributed particulate clouds in different concentrations using a novel capillary aerosol generator (CAG) and evaluated in a battery of non-clinical studies intended to assess its potential inhalation and systemic toxicity in 2 species before ICH-compliant "first-time-in-man" studies. Exposures were nose-only in rats, and via face mask with oropharyngeal tube in dogs. The CAG-generated PG aerosol had a mass median aerodynamic diameter (MMAD) of 2.29μm, with a 1.56 geometric standard deviation (GSD) in the rat studies, and a MMAD of 1.34μm (1.45 GSD) in the dog studies, consistent with expected particle size exposures in man. International Congress on Harmonization (ICH) Guidelines were followed, which recommend preliminary non-clinical safety studies using the vehicle and device (CAG-PG) prior to the first human exposure including safety pharmacology, pharmacokinetic (PK) studies, single dose toxicity studies, and repeated dose toxicity studies in two species. In the rat, the only biologically relevant findings included clinical signs of ocular and nasal irritation indicated by minor bleeding around the eyes and nose, and minimal laryngeal squamous metaplasia. This finding is commonly observed in inhalation studies in the rat, and likely related to the unique sensitivity of the tissue, as well as the circuitous airflow pathway through the larynx which increases particle deposition. In the female Beagle dog, treatment-related decreases in hemoglobin, red blood cells and hematocrit were observed in the two highest exposure groups, equivalent to approximately 18 and 60mg/kg/day. In male dogs from the high dose group, similar small decreases, albeit, non-statistically significant decreases were observed in these hematological markers as well. PK studies in rats and dogs showed that the absorption of PG following pulmonary inhalation exposure occurs rapidly, and equilibrium between lung tissue and plasma

  20. Pharmacokinetic and Safety Evaluation of BILR 355, a Second-Generation Nonnucleoside Reverse Transcriptase Inhibitor, in Healthy Volunteers▿

    PubMed Central

    Huang, Fenglei; Koenen-Bergmann, Michael; MacGregor, Thomas R.; Ring, Arne; Hattox, Susan; Robinson, Patrick

    2008-01-01

    BILR 355 is a second-generation nonnucleoside reverse transcriptase inhibitor (NNRTI) under clinical development for the treatment of human immunodeficiency virus infection, particularly in those who harbor virus resistant to the currently available NNRTIs. Two single-center, double-blinded, placebo-controlled, parallel dose-escalation studies were conducted to evaluate the pharmacokinetics and safety of oral BILR 355 administration alone and after coadministration with ritonavir (RTV) at 100 mg. Following a single dose of BILR 355 in oral solution, the mean half life (t1/2) was 2 to 4 h, with peak concentrations occurring at 0.5 to 1 h postadministration. The mean apparent clearance (CL/F) ranged from 79.2 to 246 liters/h for administered doses of 12.5 mg to 100 mg. This observed nonlinearity in CL/F resulted from the increased bioavailability attributed to a saturated absorption and/or elimination process at higher doses. In contrast, after the coadministration of single doses of 5 mg to 87.5 mg of BILR 355 with RTV, the mean CL/F ranged from 5.88 to 8.47 liters/h. Over the dose range (5 to 87.5 mg) studied, systemic BILR 355 exposures were approximately proportional to the doses administered when they were coadministered with RTV. With RTV coadministration, the mean t1/2 increased to 10 to 16 h, and the mean time of the maximum concentration in plasma lengthened to 1.5 to 5 h. Compared to the values for BILR 355 given alone, the mean area under the concentration-time curve from time zero to infinity, the maximum concentration in plasma, and the t1/2 of BILR 355 achieved after coadministration with RTV increased 15- to 30-fold, 2- to 5-fold, and 3- to 5-fold, respectively. In both studies, BILR 355 appeared to be safe and well tolerated in healthy volunteers when the outcomes in the treated volunteers were compared with those in the placebo group. PMID:18824608

  1. A Randomized Phase 1 Dose Escalation Study to Evaluate Safety, Tolerability, and Pharmacokinetics of Trabodenoson in Healthy Adult Volunteers

    PubMed Central

    Laties, Alan; Rich, Cadmus C.; Stoltz, Randall; Humbert, Vernon; Brickman, Chaim; McVicar, William

    2016-01-01

    Abstract Purpose: To investigate the safety, tolerability, and pharmacokinetics of trabodenoson, a highly selective adenosine mimetic targeting the adenosine A1 receptor. Methods: In Part 1, 60 healthy adult volunteers were randomized to 14 days of twice-daily topical monocular application of placebo or trabodenoson (200, 400, 800, 1,600, 2,400, or 3,200 μg). In Part 2, 10 subjects were randomized to placebo or 8 escalating doses of bilateral trabodenoson (total daily doses: 1,800–6,400 μg). Results: The incidence of treatment-related adverse events in Part 1 was similar in the trabodenoson (27.8%) and placebo (25.0%) groups. Most were mild in intensity. The most common adverse events (AEs) for trabodenoson and placebo were headache (25.0% vs. 33%, respectively) and eye pain (11.1% vs. 4.2%, respectively). Ocular AEs were infrequent (16.7% and 17.9%, respectively), were self-limited, lasted <24 h, and were typically mild in intensity. The most common ocular AE was eye pain (9.5% and 3.6%, respectively), with a single observation of ocular hyperemia (200 μg trabodenoson). Trabodenoson was rapidly absorbed [median time to maximum concentration (tmax): ∼0.08 to 0.27 h] and eliminated (t½: 0.48–2.0 h), with no evidence of drug accumulation. Systemic exposure to topical trabodenoson was dose related but not dose proportional, with a plateau effect at doses ≥2,400 mg per eye. No clinically significant treatment-related systemic AEs were observed, and increasing systemic exposure had no effect on heart rate or blood pressure. Conclusions: Ocular doses of trabodenoson up to 3,200 μg per eye were safe and well tolerated in the eye and resulted in no detectable systemic effects in healthy adult volunteers. PMID:27046445

  2. Safety, Pharmacokinetics, Pharmacodynamics, and Activity of Navitoclax, a Targeted High Affinity Inhibitor of BCL-2, in Lymphoid Malignancies

    PubMed Central

    Wilson, Wyndham H.; O’Connor, Owen A.; Czuczman, Myron S.; LaCasce, Ann S.; Gerecitano, John F.; Leonard, John P.; Tulpule, Anil; Dunleavy, Kieron; Xiong, Hao; Chiu, Yi-Lin; Cui, Yue; Busman, Todd; Elmore, Steven W.; Rosenberg, Saul H.; Krivoshik, Andrew P.; Enschede, Sari H.; Humerickhouse, Rod A.

    2010-01-01

    SUMMARY Background BCL-2 family proteins play a central role in regulating clonal selection and survival of lymphocytes and are frequently over expressed in lymphomas. Navitoclax (ABT-263) is a targeted high-affinity small molecule that occupies the BH3 binding groove of BCL-2 and BCL-XL and inhibits their anti-apoptotic activity. Experimentally, navitoclax kills cells in a BAX/BAK-dependent manner and results in regression of lymphoid tumors in xenograft models. Methods This is a phase I dose-escalation study of navitoclax in patients with relapsed or refractory lymphoid malignancies. Study endpoints included safety, maximum tolerated dose (MTD), pharmacokinetic profile and clinical activity. In addition, mechanism-based pharmacodynamic effects on platelets and lymphocytes were assessed. Navitoclax was orally administered and assessed on an intermittent schedule of once daily for 14 days followed by 7 days off (14/21 days) or on a continuous once daily schedule (21/21 days). This trial is registered with ClinicalTrials.gov, number NCT00406809. Findings Fifty-five patients were enrolled, (median age 59 years, IQR 51–67), of whom two did not complete the first cycle and were not evaluable for assessment of dose-limiting toxicity (DLT). Common toxicities included grade 1/2 diarrhea and fatigue in 31 and 21 patients, respectively. Thrombocytopenia and neutropenia were the serious common toxicities with grade 3/4 observed in 29 and 17 patients, respectively. On the intermittent schedule (14/21), 5 DLT’s were observed; two due to hospitalizations for bronchitis and pleural effusion, and one each due to grade 3 transaminase elevation, grade 4 thrombocytopenia and grade 3 cardiac arrhythmia. Navitoclax caused a rapid and dose-dependent decline in peripheral platelets following initial drug exposure, followed by a rebound. To reduce the platelet nadir associated with intermittent dosing, a lead-in dose followed by continuous dosing (21/21 schedule) was examined. Three

  3. Single-cell imaging detection of nanobarcoded nanoparticle biodistributions in tissues for nanomedicine

    NASA Astrophysics Data System (ADS)

    Eustaquio, Trisha; Cooper, Christy L.; Leary, James F.

    2011-03-01

    In nanomedicine, biodistribution studies are critical to evaluate the safety and efficacy of nanoparticles. Currently, extensive biodistribution studies are hampered by the limitations of bulk tissue and single-cell imaging techniques. To ameliorate these limitations, we have developed a novel method for single nanoparticle detection that incorporates a conjugated oligonucleotide as a "nanobarcode" for detection via in situ PCR. This strategy magnifies the detection signal from single nanoparticles, facilitating rapid evaluation of nanoparticle uptake by cell type over larger areas. The nanobarcoding method can enable precise analysis of nanoparticle biodistributions and expedite translation of these nanoparticles to the clinic.

  4. Safety and Pharmacokinetics of Intravenous Zanamivir Treatment in Hospitalized Adults With Influenza: An Open-label, Multicenter, Single-Arm, Phase II Study

    PubMed Central

    Marty, Francisco M.; Man, Choy Y.; van der Horst, Charles; Francois, Bruno; Garot, Denis; Máňez, Rafael; Thamlikitkul, Visanu; Lorente, José A.; Álvarez-Lerma, Francisco; Brealey, David; Zhao, Henry H.; Weller, Steve; Yates, Phillip J.; Peppercorn, Amanda F.

    2014-01-01

    Background. Intravenous zanamivir is a neuraminidase inhibitor suitable for treatment of hospitalized patients with severe influenza. Methods. Patients were treated with intravenous zanamivir 600 mg twice daily, adjusted for renal impairment, for up to 10 days. Primary outcomes included adverse events (AEs), and clinical/laboratory parameters. Pharmacokinetics, viral load, and disease course were also assessed. Results. One hundred thirty patients received intravenous zanamivir (median, 5 days; range, 1–11) a median of 4.5 days (range, 1–7) after onset of influenza; 83% required intensive care. The most common influenza type/subtype was A/H1N1pdm09 (71%). AEs and serious AEs were reported in 85% and 34% of patients, respectively; serious AEs included bacterial pulmonary infections (8%), respiratory failure (7%), sepsis or septic shock (5%), and cardiogenic shock (5%). No drug-related trends in safety parameters were identified. Protocol-defined liver events were observed in 13% of patients. The 14- and 28-day all-cause mortality rates were 13% and 17%. No fatalities were considered zanamivir related. Pharmacokinetic data showed dose adjustments for renal impairment yielded similar zanamivir exposures. Ninety-three patients, positive at baseline for influenza by quantitative polymerase chain reaction, showed a median decrease in viral load of 1.42 log10 copies/mL after 2 days of treatment. Conclusions. Safety, pharmacokinetic and clinical outcome data support further investigation of intravenous zanamivir. Clinical Trials Registration NCT01014988. PMID:23983212

  5. First-in-man safety and pharmacokinetics of synthetic ozonide OZ439 demonstrates an improved exposure profile relative to other peroxide antimalarials

    PubMed Central

    Moehrle, Joerg J; Duparc, Stephan; Siethoff, Christoph; Giersbergen, Paul L M; Craft, J Carl; Arbe-Barnes, Sarah; Charman, Susan A; Gutierrez, Maria; Wittlin, Sergio; Vennerstrom, Jonathan L

    2013-01-01

    Aims To assess the safety and pharmacokinetics of a new synthetic ozonide antimalarial, OZ439, in a first-in-man, double-blind study in healthy volunteers. Methods OZ439 was administered as single oral daily doses of a capsule formulation (50–1200 mg) or an oral dispersion (400–1600 mg, fed and fasted states) and for up to 3 days as an oral dispersion (200–800 mg day−1). Plasma concentrations of OZ439 and its metabolites were measured by LC-MS. Results The pharmacokinetic (PK) profile of OZ439 was characterized by a tmax of around 3 h, followed by a multiphasic profile with a terminal half-life of 25–30 h. The PK parameters were approximately dose proportional for each group and profiles of the metabolites followed a similar pattern to that of the parent compound. Following dosing for 3 days, accumulation was less than two-fold but steady-state was not achieved. In the presence of food, no effect was observed on the t1/2 of OZ439 while the exposure was increased by 3 to 4.5-fold. Exposure was higher and inter-subject variability was reduced when OZ439 was administered as an oral dispersion compared with a capsule. The urinary clearance of OZ439 and its metabolites was found to be negligible and OZ439 did not induce CYP3A4. The antimalarial activity profiles of a subset of serum samples suggested that the major antimalarial activity originated from OZ439 rather than from any of the metabolites. Conclusion The safety and pharmacokinetic profile of OZ439 merits progression to phase 2a proof of concept studies in the target population of acute uncomplicated malaria. PMID:22759078

  6. Phase I, Open-Label, Single-Dose Study To Evaluate the Pharmacokinetics and Safety of Telbivudine in Children and Adolescents with Chronic Hepatitis B

    PubMed Central

    Ke, June; Uy, Grace; Bosheva, Miroslava; Qi, Yin; Praestgaard, Jens

    2013-01-01

    Telbivudine is a nucleoside analogue that has been approved for the treatment of chronic hepatitis B virus (HBV) infection in adults at 600 mg/day. We conducted a phase I, open-label, first-in-pediatrics study to investigate the safety and pharmacokinetics of a single dose of telbivudine in HBV-infected children and adolescents. Eligible patients were enrolled sequentially from older to younger groups, with evaluation of safety and available pharmacokinetic data after each stratum. Adolescent patients (>12 to 18 years) received a single dose of 600 mg telbivudine as an oral solution, while children aged 2 to 12 years received a single dose of 15 or 25 mg/kg of body weight up to a maximum of 600 mg. Telbivudine was well tolerated; all adverse events were mild, and none occurred in more than one patient. The plasma telbivudine concentration-versus-time profiles in adolescents given 600 mg were similar to the mean profile of healthy adults receiving the same oral dose. Children aged 2 to <6 and 6 to 12 years receiving a single 15-mg/kg dose showed similar plasma exposures. To predict the steady-state exposure, plasma concentration-versus-time profiles for patients aged 2 to 12 years (15 mg/kg) and >12 to 18 years (600 mg) were fitted to a two-compartment 1st-order, microconstant, lag time, 1st-order elimination pharmacokinetic (PK) model. This analysis predicted the following dosages to mimic exposures in healthy adults receiving 600 mg/day: 20 mg/kg/day for children 2 to 12 years and 600 mg/day for adolescents. Studies are ongoing to evaluate the efficacy of the recommended dose in pediatric patients. (This study has been registered at ClinicalTrials.gov under registration no. NCT00907894.) PMID:23774433

  7. Safety, tolerability, pharmacokinetics, and pharmacodynamics of macitentan, an endothelin receptor antagonist, in an ascending multiple-dose study in healthy subjects.

    PubMed

    Sidharta, Patricia N; van Giersbergen, Paul L M; Dingemanse, Jasper

    2013-11-01

    This multiple-ascending-dose study investigated safety, tolerability, pharmacokinetics, and pharmacodynamics, of macitentan, a new endothelin receptor antagonist (ERA) with sustained receptor binding and enhanced tissue penetration properties compared to other ERAs. Healthy male subjects (n = 32) received once daily oral doses of macitentan (1 - 30 mg) or placebo for 10 days. Administration of macitentan was safe and well tolerated. Macitentan had no effect on bile salts, suggesting an improved liver safety profile. The multiple-dose pharmacokinetics of macitentan were dose-proportional and were characterized by a median tmax and apparent elimination half-life varying from 6.0 to 8.5 and 14.3 to 18.5 hours, respectively, for the different doses and minimal accumulation. ACT-132577, a metabolite with lower potency than macitentan, had a half-life of about 48 hours and accumulated approximately 8.5-fold. Compared to placebo, administration of macitentan caused a dose-dependent increase in plasma ET-1 with maximum effects attained at 10 mg. A small dose-dependent increase in the 6β-hydroxycortisol/cortisol urinary excretion ratio was observed, although there were no statistically significant differences between treatments including placebo. Effects of macitentan on cytochrome P450 enzyme 3A4 should be further evaluated in dedicated studies. The present results support investigation of macitentan in the management of pulmonary arterial hypertension and ET-1-dependent pathologies.

  8. The value of population pharmacokinetics and simulation for postmarketing safety evaluation of dosing guidelines for drugs with a narrow therapeutic index: buflomedil as a case study.

    PubMed

    Bourguignon, Laurent; Ducher, Michel; Matanza, David; Bleyzac, Nathalie; Uhart, Mathieu; Odouard, Emmanuel; Maire, Pascal; Goutelle, Sylvain

    2012-04-01

    Population pharmacokinetics and simulation techniques currently play an important role in new drug development. This paper illustrates the potential value of those methods in postmarketing safety assessment, using buflomedil in elderly patients as an example. We retrospectively assessed the risk of buflomedil overdosing associated with the latest dosing recommendations of the French Drug Agency (AFSSAPS). First, buflomedil concentrations measured in 24 elderly patients were analysed with a nonparametric population approach. Then, the pharmacokinetic model was used to perform a 1000-patient Monte Carlo simulation for the two recommended buflomedil dosage regimens. The maximum concentrations calculated after 10 days of therapy were compared with levels observed in reported cases of toxicity to assess the probability of overdosing. A three-compartment model best fit concentration data. Population predictions showed little bias (-0.14 mg/L) and good precision (8.73 mg(2) /L(2)). Overall results of the simulation study showed that the application of the two recommended dosage regimens of buflomedil was associated with overdosing (C(max) > 10 mg/L) and potential toxicity in 2.9% of geriatric patients. In patients with mild renal impairment, who may receive the higher-dosage regimen by therapeutic error, the probability of overdosing was 6.2%. Despite specific dosing recommendations in case of renal impairment, this study shows that the use of buflomedil could be associated with significant risk of overdosing in geriatric patients. Such results might have enhanced decision-making when buflomedil safety was reassessed by AFSSAPS in 2006. The retrospective case of buflomedil illustrates how these methods may be valuable in postmarketing safety evaluation of potentially toxic drugs.

  9. The pharmacokinetics, efficacy, safety, and ease of use of a novel portable metered-dose cannabis inhaler in patients with chronic neuropathic pain: a phase 1a study.

    PubMed

    Eisenberg, Elon; Ogintz, Miri; Almog, Shlomo

    2014-09-01

    Chronic neuropathic pain is often refractory to standard pharmacological treatments. Although growing evidence supports the use of inhaled cannabis for neuropathic pain, the lack of standard inhaled dosing plays a major obstacle in cannabis becoming a "main stream" pharmacological treatment for neuropathic pain. The objective of this study was to explore the pharmacokinetics, safety, tolerability, efficacy, and ease of use of a novel portable thermal-metered-dose inhaler (tMDI) for cannabis in a cohort of eight patients suffering from chronic neuropathic pain and on a stable analgesic regimen including medicinal cannabis. In a single-dose, open-label study, patients inhaled a single 15.1 ± 0.1 mg dose of cannabis using the Syqe Inhaler device. Blood samples for Δ(9)-tetrahydrocannabinol (THC) and 11-hydroxy-Δ(9)-THC were taken at baseline and up to 120 minutes. Pain intensity (0-10 VAS), adverse events, and satisfaction score were monitored following the inhalation. A uniform pharmacokinetic profile was exhibited across all participants (Δ(9)-THC plasma Cmax ± SD was 38 ± 10 ng/mL, Tmax ± SD was 3 ± 1 minutes, AUC₀→infinity ± SD was 607 ± 200 ng·min/mL). Higher plasma Cmax increase per mg Δ(9)-THC administered (12.3 ng/mL/mg THC) and lower interindividual variability of Cmax (25.3%), compared with reported alternative modes of THC delivery, were measured. A significant 45% reduction in pain intensity was noted 20 minutes post inhalation (P = .001), turning back to baseline within 90 minutes. Tolerable, lightheadedness, lasting 15-30 minutes and requiring no intervention, was the only reported adverse event. This trial suggests the potential use of the Syqe Inhaler device as a smokeless delivery system of medicinal cannabis, producing a Δ(9)-THC pharmacokinetic profile with low interindividual variation of Cmax, achieving pharmaceutical standards for inhaled drugs. PMID:25118789

  10. Pharmacokinetics in patients with chronic liver disease and hepatic safety of incretin-based therapies for the management of type 2 diabetes mellitus.

    PubMed

    Scheen, André J

    2014-09-01

    Patients with type 2 diabetes mellitus have an increased risk of chronic liver disease (CLD) such as non-alcoholic fatty liver disease and steatohepatitis, and about one-third of cirrhotic patients have diabetes. However, the use of several antidiabetic agents, such as metformin and sulphonylureas, may be a concern in case of hepatic impairment (HI). New glucose-lowering agents targeting the incretin system are increasingly used for the management of type 2 diabetes. Incretin-based therapies comprise oral inhibitors of dipeptidyl peptidase-4 (DPP-4) (gliptins) or injectable glucagon-like peptide-1 (GLP-1) receptor agonists. This narrative review summarises the available data regarding the use of both incretin-based therapies in patients with HI. In contrast to old glucose-lowering agents, they were evaluated in specifically designed acute pharmacokinetic studies in patients with various degrees of HI and their hepatic safety was carefully analysed in large clinical trials. Only mild changes in pharmacokinetic characteristics of DPP-4 inhibitors were observed in patients with different degrees of HI, presumably without major clinical relevance. GLP-1 receptor agonists have a renal excretion rather than liver metabolism. Specific pharmacokinetic data in patients with HI are only available for liraglutide. No significant changes in liver enzymes were reported with DPP-4 inhibitors or GLP-1 receptor agonists, alone or in combination with various other glucose-lowering agents, in clinical trials up to 2 years in length. On the contrary, preliminary data suggested that incretin-based therapies may be beneficial in patients with CLD, more particularly in the presence of non-alcoholic fatty liver disease. Nevertheless, caution should be recommended, especially in patients with advanced cirrhosis, because of a lack of clinical experience with incretin-based therapies in these vulnerable patients.

  11. The pharmacokinetics, efficacy, safety, and ease of use of a novel portable metered-dose cannabis inhaler in patients with chronic neuropathic pain: a phase 1a study.

    PubMed

    Eisenberg, Elon; Ogintz, Miri; Almog, Shlomo

    2014-09-01

    Chronic neuropathic pain is often refractory to standard pharmacological treatments. Although growing evidence supports the use of inhaled cannabis for neuropathic pain, the lack of standard inhaled dosing plays a major obstacle in cannabis becoming a "main stream" pharmacological treatment for neuropathic pain. The objective of this study was to explore the pharmacokinetics, safety, tolerability, efficacy, and ease of use of a novel portable thermal-metered-dose inhaler (tMDI) for cannabis in a cohort of eight patients suffering from chronic neuropathic pain and on a stable analgesic regimen including medicinal cannabis. In a single-dose, open-label study, patients inhaled a single 15.1 ± 0.1 mg dose of cannabis using the Syqe Inhaler device. Blood samples for Δ(9)-tetrahydrocannabinol (THC) and 11-hydroxy-Δ(9)-THC were taken at baseline and up to 120 minutes. Pain intensity (0-10 VAS), adverse events, and satisfaction score were monitored following the inhalation. A uniform pharmacokinetic profile was exhibited across all participants (Δ(9)-THC plasma Cmax ± SD was 38 ± 10 ng/mL, Tmax ± SD was 3 ± 1 minutes, AUC₀→infinity ± SD was 607 ± 200 ng·min/mL). Higher plasma Cmax increase per mg Δ(9)-THC administered (12.3 ng/mL/mg THC) and lower interindividual variability of Cmax (25.3%), compared with reported alternative modes of THC delivery, were measured. A significant 45% reduction in pain intensity was noted 20 minutes post inhalation (P = .001), turning back to baseline within 90 minutes. Tolerable, lightheadedness, lasting 15-30 minutes and requiring no intervention, was the only reported adverse event. This trial suggests the potential use of the Syqe Inhaler device as a smokeless delivery system of medicinal cannabis, producing a Δ(9)-THC pharmacokinetic profile with low interindividual variation of Cmax, achieving pharmaceutical standards for inhaled drugs.

  12. A food effect study and dose proportionality study to assess the pharmacokinetics and safety of bardoxolone methyl in healthy volunteers.

    PubMed

    Teuscher, Nathan S; Kelley, Richard J; Dumas, Emily O; Klein, Cheri Enders; Awni, Walid M; Meyer, Colin J

    2014-07-01

    This study investigated the effect of food on the plasma pharmacokinetics of bardoxolone methyl, an antioxidant inflammation modulator, at a 20 mg dose, and the dose proportionality of bardoxolone methyl pharmacokinetics from 20 to 80 mg. It was a single-dose study conducted at a single center in 32 healthy volunteers aged 18-45 years using an amorphous spray-dried dispersion formulation of bardoxolone methyl. In Part A, 16 subjects received single 20 mg doses of bardoxolone methyl under fasting and non-fasting conditions. In Part B, 16 subjects received a single 60 or 80 mg dose of bardoxolone methyl and a matching placebo dose under fasting conditions. Blood samples for pharmacokinetic analysis were taken over 120 hours following dose administration. Single dose administration of 20, 60, and 80 mg bardoxolone methyl was safe and well-tolerated in healthy volunteers. Total bardoxolone methyl exposure was unchanged in the presence of food. However, doses of bardoxolone methyl above 20 mg appear to have a saturated dissolution or absorption process and are associated with less than proportional increases in drug exposure. PMID:27128838

  13. Phase I/II Trial of the Pharmacokinetics, Safety, and Antiretroviral Activity of Tenofovir Disoproxil Fumarate in Human Immunodeficiency Virus-Infected Adults

    PubMed Central

    Barditch-Crovo, Patricia; Deeks, Steven G.; Collier, Ann; Safrin, Sharon; Coakley, Dion F.; Miller, Michael; Kearney, Brian P.; Coleman, Rebecca L.; Lamy, Patrick D.; Kahn, James O.; McGowan, Ian; Lietman, Paul S.

    2001-01-01

    Tenofovir DF is an antiviral nucleotide with activity against human immunodeficiency virus type 1 (HIV-1). The pharmacokinetics, safety, and activity of oral tenofovir DF in HIV-1-infected adults were evaluated in a randomized, double-blind, placebo-controlled, escalating-dose study of four doses (75, 150, 300, and 600 mg given once daily). Subjects received a single dose of tenofovir DF or a placebo, followed by a 7-day washout period. Thereafter, subjects received their assigned study drug once daily for 28 days. Pharmacokinetic parameters were dose proportional and demonstrated no change with repeated dosing. Reductions in plasma HIV-1 RNA were dose related at tenofovir DF doses of 75 to 300 mg, but there was no increase in virus suppression between the 300- and 600-mg dose cohorts, despite dose-proportional increases in drug exposure. Grade III or IV adverse events were limited to laboratory abnormalities, including elevated creatine phosphokinase and liver function tests, which resolved with or without drug discontinuation and without sequelae. No patients developed detectable sequence changes in the reverse transcriptase gene. PMID:11557462

  14. Pharmacokinetics, Safety, and Tolerability of Fevipiprant (QAW039), a Novel CRTh2 Receptor Antagonist: Results From 2 Randomized, Phase 1, Placebo-Controlled Studies in Healthy Volunteers.

    PubMed

    Erpenbeck, Veit J; Vets, Eva; Gheyle, Lien; Osuntokun, Wande; Larbig, Michael; Neelakantham, Srikanth; Sandham, David; Dubois, Gerald; Elbast, Walid; Goldsmith, Paul; Weiss, Markus

    2016-07-01

    We evaluated the pharmacokinetics (PK), safety, and tolerability of a novel oral CRTh2 antagonist, fevipiprant (QAW039), in healthy subjects. Peak concentrations of fevipiprant in plasma were observed 1-3 hours postdosing. Concentrations declined in a multiexponential manner, followed by an apparent terminal phase (t1/2 , ∼20 hours). Steady state was achieved in 4 days with <2-fold accumulation. Elimination was partly by renal excretion (≤30% of the dose) and glucuronidation. Food had minimal impact on the PK of fevipiprant, and it was well tolerated at single and multiple oral doses up to 500 mg/day. No dose-dependent adverse events were observed, and all the events were mild or moderate in severity. Systemic concentrations were sufficiently high to achieve relevant target occupancy, considering in vitro pharmacology data. In summary, the data support further development as a once-daily oral therapy for allergic diseases. PMID:27310331

  15. Pharmacokinetics, Safety, and Tolerability of Fevipiprant (QAW039), a Novel CRTh2 Receptor Antagonist: Results From 2 Randomized, Phase 1, Placebo‐Controlled Studies in Healthy Volunteers

    PubMed Central

    Vets, Eva; Gheyle, Lien; Osuntokun, Wande; Larbig, Michael; Neelakantham, Srikanth; Sandham, David; Dubois, Gerald; Elbast, Walid; Goldsmith, Paul; Weiss, Markus

    2016-01-01

    Abstract We evaluated the pharmacokinetics (PK), safety, and tolerability of a novel oral CRTh2 antagonist, fevipiprant (QAW039), in healthy subjects. Peak concentrations of fevipiprant in plasma were observed 1‒3 hours postdosing. Concentrations declined in a multiexponential manner, followed by an apparent terminal phase (t1/2, ∼20 hours). Steady state was achieved in 4 days with <2‐fold accumulation. Elimination was partly by renal excretion (≤30% of the dose) and glucuronidation. Food had minimal impact on the PK of fevipiprant, and it was well tolerated at single and multiple oral doses up to 500 mg/day. No dose‐dependent adverse events were observed, and all the events were mild or moderate in severity. Systemic concentrations were sufficiently high to achieve relevant target occupancy, considering in vitro pharmacology data. In summary, the data support further development as a once‐daily oral therapy for allergic diseases. PMID:27310331

  16. A Phase I Safety, Pharmacokinetic, and Pharmacodynamic Presurgical Trial of Vitamin E δ-tocotrienol in Patients with Pancreatic Ductal Neoplasia

    PubMed Central

    Springett, Gregory M.; Husain, Kazim; Neuger, Anthony; Centeno, Barbara; Chen, Dung-Tsa; Hutchinson, Tai Z.; Lush, Richard M.; Sebti, Saïd; Malafa, Mokenge P.

    2015-01-01

    Background Vitamin E δ-tocotrienol (VEDT), a natural vitamin E from plants, has shown anti-neoplastic and chemoprevention activity in preclinical models of pancreatic cancer. Here, we investigated VEDT in patients with pancreatic ductal neoplasia in a window-of-opportunity preoperative clinical trial to assess its safety, tolerability, pharmacokinetics, and apoptotic activity. Methods Patients received oral VEDT at escalating doses (from 200 to 3200 mg) daily for 13 days before surgery and one dose on the day of surgery. Dose escalation followed a three-plus-three trial design. Our primary endpoints were safety, VEDT pharmacokinetics, and monitoring of VEDT-induced neoplastic cell apoptosis (ClinicalTrials.gov number NCT00985777). Findings In 25 treated patients, no dose-limiting toxicity was encountered; thus no maximum-tolerated dose was reached. One patient had a drug-related adverse event (diarrhea) at a 3200-mg daily dose level. The effective half-life of VEDT was ~ 4 h. VEDT concentrations in plasma and exposure profiles were quite variable but reached levels that are bioactive in preclinical models. Biological activity, defined as significant induction of apoptosis in neoplastic cells as measured by increased cleaved caspase-3 levels, was seen in the majority of patients at the 400-mg to 1600-mg daily dose levels. Interpretation VEDT from 200 to 1600 mg daily taken orally for 2 weeks before pancreatic surgery was well tolerated, reached bioactive levels in blood, and significantly induced apoptosis in the neoplastic cells of patients with pancreatic ductal neoplasia. These promising results warrant further clinical investigation of VEDT for chemoprevention and/or therapy of pancreatic cancer. PMID:26844278

  17. Randomised clinical trial: safety, tolerability, pharmacokinetics and pharmacodynamics of repeated doses of TAK-438 (vonoprazan), a novel potassium-competitive acid blocker, in healthy male subjects

    PubMed Central

    Jenkins, H; Sakurai, Y; Nishimura, A; Okamoto, H; Hibberd, M; Jenkins, R; Yoneyama, T; Ashida, K; Ogama, Y; Warrington, S

    2015-01-01

    Background TAK-438 (vonoprazan) is a potassium-competitive acid blocker that reversibly inhibits gastric H+, K+-ATPase. Aim To evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of TAK-438 in healthy Japanese and non-Japanese men. Methods In two Phase I, randomised, double-blind, placebo-controlled studies, healthy men (Japan N = 60; UK N = 48) received TAK-438 10–40 mg once daily at a fixed dose level for 7 consecutive days. Assessments included safety, tolerability, pharmacokinetics and pharmacodynamics (intragastric pH). Results Plasma concentration–time profiles of TAK-438 at all dose levels showed rapid absorption (median Tmax ≤2 h). Mean elimination half-life was up to 9 h. Exposure was slightly greater than dose proportional, with no apparent time-dependent inhibition of metabolism. There was no important difference between the two studies in AUC0-tau on Day 7. TAK-438 caused dose-dependent acid suppression. On Day 7, mean 24-h intragastric pH>4 holding time ratio (HTR) with 40 mg TAK-438 was 100% (Japan) and 93.2% (UK), and mean night-time pH>4 HTR was 100% (Japan) and 90.4% (UK). TAK-438 was well tolerated. The frequency of adverse events was similar at all dose levels and there were no serious adverse events. There were no important increases in serum alanine transaminase activity. Serum gastrin and pepsinogen I and II concentrations increased with TAK-438 dose. Conclusions TAK-438 in multiple rising oral dose levels of 10–40 mg once daily for 7 days was safe and well tolerated in healthy men and caused rapid, profound and sustained suppression of gastric acid secretion throughout each 24-h dosing interval. Clinicaltrials.gov identifiers: NCT02123953 and NCT02141711. PMID:25707624

  18. Safety, Pharmacokinetics, and Pharmacodynamics of the Insulin-Like Growth Factor Type 1 Receptor Inhibitor Figitumumab (CP-751,871) in Combination with Paclitaxel and Carboplatin

    PubMed Central

    Karp, Daniel D.; Pollak, Michael N.; Cohen, Roger B.; Eisenberg, Peter D.; Haluska, Paul; Yin, Donghua; Lipton, Allan; Demers, Laurence; Leitzel, Kim; Hixon, Mary L.; Terstappen, Leon W.; Garland, Linda; Paz-Ares, Luis G.; Cardenal, Felipe; Langer, Corey J.; Gualberto, Antonio

    2010-01-01

    Introduction This phase 1 study was conducted to determine the recommended phase 2 dose of the selective insulin-like growth factor type 1 receptor (IGF-IR) inhibitor figitumumab (F, CP-751,871) given in combination with paclitaxel and carboplatin in patients with advanced solid tumors. Methods Patients received paclitaxel 200 mg/m2, carboplatin (area under the curve of 6), and F (0.05–20 mg/kg) q3 weeks for up to six cycles. Patients with objective response or stable disease were eligible to receive additional cycles of single agent F until disease progression. Safety, efficacy, pharmacokinetic, and pharmacodynamic endpoints were investigated. Results Forty-two patients, including 35 with stages IIIB and IV non-small cell lung cancer (NSCLC), were enrolled in eight dose escalation cohorts. A maximum tolerated dose was not identified. Severe adverse events possibly related to F included fatigue, diarrhea, hyperglycemia, gamma glutamyl transpeptidase elevation, and thrombocytopenia (one case each). F plasma exposure parameters increased with dose. Fifteen objective responses (RECIST) were reported, including two complete responses in NSCLC and ovarian carcinoma. Notably, levels of bioactive IGF-1 seemed to influence response to treatment with objective responses in patients with a high baseline-free IGF-1 to IGF binding protein-3 ratio seen only in the 10 and 20 mg/kg dosing cohorts. Conclusions F was well tolerated in combination with paclitaxel and carboplatin. Based on its favorable safety, pharmacokinetic, and pharmacodynamic properties, the maximal feasible dose of 20 mg/kg has been selected for further investigation. PMID:19745765

  19. Targeted PRINT Hydrogels: The Role of Nanoparticle Size and Ligand Density on Cell Association, Biodistribution, and Tumor Accumulation.

    PubMed

    Reuter, Kevin G; Perry, Jillian L; Kim, Dongwook; Luft, J Christopher; Liu, Rihe; DeSimone, Joseph M

    2015-10-14

    In this Letter, we varied targeting ligand density of an EGFR binding affibody on the surface of two different hydrogel PRINT nanoparticles (80 nm × 320 and 55 nm × 60 nm) and monitored effects on target-cell association, off-target phagocytic uptake, biodistribution, and tumor accumulation. Interestingly, variations in ligand density only significantly altered in vitro internalization rates for the 80 nm × 320 nm particle. However, in vivo, both particle sizes experienced significant changes in biodistribution and pharmacokinetics as a function of ligand density. Overall, nanoparticle size and passive accumulation were the dominant factors eliciting tumor sequestration. PMID:26389971

  20. Safety and pharmacokinetics of lisdexamfetamine dimesylate in adults with clinically stable schizophrenia: a randomized, double-blind, placebo-controlled trial of ascending multiple doses.

    PubMed

    Martin, Patrick; Dirks, Bryan; Gertsik, Lev; Walling, David; Stevenson, Annette; Corcoran, Mary; Raychaudhuri, Aparna; Ermer, James

    2014-12-01

    To assess the safety and pharmacokinetics of lisdexamfetamine dimesylate (LDX), a d-amphetamine prodrug, this double-blind study enrolled adults with clinically stable schizophrenia who were adherent (≥12 weeks) to antipsychotic pharmacotherapy. The participants received placebo or ascending LDX doses (50, 70, 100, 150, 200, and 250 mg) daily for 5 days at each dose (dose periods, 1-6; days, 1-5). Of the 31 enrolled participants, 27 completed the study (placebo, n = 6; LDX, n = 21). Treatment-emergent adverse events (AEs) were reported by 4 participants receiving placebo and by 23 participants receiving LDX (all doses) with no serious AEs while on active treatment. For all periods, the mean postdose change on day 5 (up to 12 hours postdose) in systolic and diastolic blood pressure and pulse, respectively, ranged from -4.62 to 8.05 mm Hg, -3.67 to 4.43 mm Hg, and -3.57 to 14.43 beats per minute for placebo and -3.83 to 11.25 mm Hg, -1.55 to 5.80 mm Hg, and -0.36 to 21.26 beats per minute for LDX. With ascending LDX dose, the mean (SD) maximum plasma concentration for LDX-derived d-amphetamine ranged from 51.68 (10.28) to 266.27 (56.55) ng/mL. The area under the plasma concentration-time curve for 24 hours ranged from 801.8 (170.2) to 4397.9 (1085.9) ng[BULLET OPERATOR]h/mL. The d-amphetamine maximum plasma concentration and area under the plasma concentration-time curve increased linearly with ascending LDX dose. Antipsychotic agents did not markedly affect d-amphetamine pharmacokinetics. Over a wide range of ascending doses, LDX safety profile in adults with schizophrenia was consistent with previous findings with no unexpected treatment-emergent AEs. Pulse tended to increase with LDX dose; overall, blood pressure did not increase with LDX dose. Consistent with previous studies, pharmacokinetic parameters increased linearly with increasing LDX dose.

  1. Pharmacokinetics, safety, and efficacy of APF530 (extended-release granisetron) in patients receiving moderately or highly emetogenic chemotherapy: results of two Phase II trials

    PubMed Central

    Gabrail, Nashat; Yanagihara, Ronald; Spaczyński, Marek; Cooper, William; O’Boyle, Erin; Smith, Carrie; Boccia, Ralph

    2015-01-01

    Background Despite advances with new therapies, a significant proportion of patients (>30%) suffer delayed-onset chemotherapy-induced nausea and vomiting (CINV) despite use of antiemetics. APF530 is a sustained-release subcutaneous (SC) formulation of granisetron for preventing CINV. APF530 pharmacokinetics, safety, and efficacy were studied in two open-label, single-dose Phase II trials (C2005-01 and C2007-01, respectively) in patients receiving moderately emetogenic chemotherapy or highly emetogenic chemotherapy. Methods In C2005-01, 45 patients received APF530 250, 500, or 750 mg SC (granisetron 5, 10, or 15 mg, respectively). In C2007-01, 35 patients were randomized to APF530 250 or 500 mg SC. Injections were given 30 to 60 minutes before single-day moderately emetogenic chemotherapy or highly emetogenic chemotherapy. Plasma granisetron was measured from predose to 168 hours after study drug administration. Safety and efficacy were also evaluated. Results APF530 pharmacokinetics were dose proportional, with slow absorption and elimination of granisetron after a single SC dose. Median time to maximum plasma concentration and half-life were similar for APF530 250 and 500 mg in both trials, with no differences between the groups receiving moderately and highly emetogenic chemotherapy. Exposure to granisetron was maintained at a therapeutic level over the delayed-onset phase, at least 168 hours. Adverse events in both trials were as expected for granisetron; injection site reactions (eg, erythema and induration) were predominantly mild and seen in ≤20% of patients. Complete responses (no emesis, with no rescue medication) were obtained in the acute, delayed, and overall phases in ≥80% and ≥75% of patients in both trials with the 250 and 500 mg doses, respectively. Conclusion After a single injection of APF530, there were dose-proportional pharmacokinetics and sustained concentrations of granisetron over 168 hours. The 250 and 500 mg doses were well tolerated

  2. A randomized dose-escalation study to assess the safety, tolerability, and pharmacokinetics of ruxolitinib (INC424) in healthy Japanese volunteers.

    PubMed

    Ogama, Yoichiro; Mineyama, Tomoko; Yamamoto, Asuka; Woo, Margaret; Shimada, Naomi; Amagasaki, Taro; Natsume, Kazuto

    2013-03-01

    Ruxolitinib (INC424), a potent and selective oral Janus kinase 1 and 2 inhibitor, was recently approved by the US food and drug administration for the treatment of intermediate or high-risk myelofibrosis. The safety, tolerability, and pharmacokinetics (PK) of ruxolitinib have been extensively evaluated in healthy subjects and patients. The present study is the first to investigate the PK and tolerability of ruxolitinib in the Japanese population. Forty subjects were randomized to receive single (10-100 mg) and multiple (10 and 25 mg every 12 h) doses of ruxolitinib or placebo. Cohorts were sequentially enrolled based on the outcome of safety assessments. Ruxolitinib was rapidly absorbed, and its exposure increased dose proportionally up to 100 mg. The half-life of ruxolitinib was approximately 3 h, and drug accumulation was not observed after repeated dosing at a 12-h dosing interval. Decreasing absolute neutrophil counts were observed in five Japanese subjects treated once (100 mg, n = 1) or twice (10 mg, n = 3; 25 mg, n = 1) daily. These events were manageable and reversible upon drug discontinuation. Orally administered ruxolitinib was well tolerated in healthy Japanese volunteers. There were no apparent differences in the safety or PK of ruxolitinib between Japanese and non-Japanese subjects.

  3. Safety and biosimilarity of ior(®) EPOCIM compared with Eprex(®) based on toxicologic, pharmacodynamic, and pharmacokinetic studies in the Sprague-Dawley rat.

    PubMed

    Pucaj, Kresimir; Riddle, Katherine; Taylor, Simon R; Ledon, Nuris; Bolger, Gordon T

    2014-11-01

    This study examined the safety, pharmacodynamic (PD), and pharmacokinetic (PK) biosimilarity of the human recombinant erythropoietin (EPO) products ior(®) EPOCIM and Eprex(®) following a 28-day repeated intravenous dose administration in male and female Sprague-Dawley rats with a 14-day recovery period. Safety profiling was based on clinical observations, clinical pathology, and pathology findings for control rats dosed with vehicle and rats dosed either with 30, 300, and 600 I.U./kg of ior(®) EPOCIM or 600 I.U. of Eprex(®) . Adverse findings for both ior(®) EPOCIM and Eprex(®) were similar and were a consequence of thrombotic events (ulcerative skin lesions, swollen hock joints/lameness, stomach ulcers) and decreased body weight gains, all known adverse reactions to this class of drug in rats. With the exception of stomach ulcers, all other adverse findings were fully reversible. Neither drug stimulated the production of antidrug antibodies. As expected, ior(®) EPOCIM and Eprex(®) both increased reticulocyte, red blood cell, hemoglobin, and hematocrit levels in rats. The PK of EPO following dosing with ior(®) EPOCIM was well behaved and consistent with the literature. The results of this study imply that ior(®) EPOCIM and Eprex(®) had safety profiles, PD responses, and toxicokinetic profiles that were biosimilar.

  4. Genetic variation in aryl N-acetyltransferase results in significant differences in the pharmacokinetic and safety profiles of amifampridine (3,4-diaminopyridine) phosphate

    PubMed Central

    Haroldsen, Peter E; Garovoy, Marvin R; Musson, Donald G; Zhou, Huiyu; Tsuruda, Laurie; Hanson, Boyd; O’Neill, Charles A

    2015-01-01

    The clinical use of amifampridine phosphate for neuromuscular junction disorders is increasing. The metabolism of amifampridine occurs via polymorphic aryl N-acetyltransferase (NAT), yet its pharmacokinetic (PK) and safety profiles, as influenced by this enzyme system, have not been investigated. The objective of this study was to assess the effect of NAT phenotype and genotype on the PK and safety profiles of amifampridine in healthy volunteers (N = 26). A caffeine challenge test and NAT2 genotyping were used to delineate subjects into slow and fast acetylators for PK and tolerability assessment of single, escalating doses of amifampridine (up to 30 mg) and in multiple daily doses (20 mg QID) of amifampridine. The results showed that fast acetylator phenotypes displayed significantly lower Cmax, AUC, and shorter t1/2 for amifampridine than slow acetylators. Plasma concentrations of the N-acetyl metabolite were approximately twofold higher in fast acetylators. Gender differences were not observed. Single doses of amifampridine demonstrated dose linear PKs. Amifampridine achieved steady state plasma levels within 1 day of dosing four times daily. No accumulation or time-dependent changes in amifampridine PK parameters occurred. Overall, slow acetylators reported 73 drug-related treatment-emergent adverse events versus 6 in fast acetylators. Variations in polymorphic NAT corresponding with fast and slow acetylator phenotypes significantly affects the PK and safety profiles of amifampridine. PMID:25692017

  5. Pharmacokinetics, Safety and Cognitive Function Profile of Rupatadine 10, 20 and 40 mg in Healthy Japanese Subjects: A Randomised Placebo-Controlled Trial

    PubMed Central

    Täubel, Jörg; Ferber, Georg; Fernandes, Sara; Lorch, Ulrike; Santamaría, Eva; Izquierdo, Iñaki

    2016-01-01

    Introduction Rupatadine is a marketed second generation antihistamine, with anti-PAF activity, indicated for symptomatic treatment of allergic rhinitis and urticaria. This study was conducted to evaluate the pharmacokinetics (PK), pharmacodynamics (PD), safety and tolerability of rupatadine in healthy Japanese subjects after single and multiple oral doses. Methods In this randomised, double-blind, placebo-controlled study, 27 male and female healthy Japanese subjects were administered single and multiple escalating rupatadine dose of 10, 20 and 40 mg or placebo. Blood samples were collected at different time points for PK measurements and subjects were assessed for safety and tolerability. The effect of rupatadine on cognitive functioning was evaluated by means of computerized cognitive tests: rapid visual information processing (RVP), reaction time (RT), spatial working memory (SWM) and visual analogue scales (VAS). Results Exposure to rupatadine as measured by Cmax and AUC was found to increase in a dose dependent manner over the dose range of 10–40 mg for both single and multiple dose administration. The safety assessments showed that all treatment related side effects were of mild intensity and there were no serious adverse events (SAEs) or withdrawals due to treatment–emergent adverse events (TEAEs) in this study. The therapeutic dose of rupatadine did not show any CNS impairment in any of the cognitive tests. Conclusions This study demonstrated that rupatadine is safe and well tolerated by Japanese healthy subjects. The PK-PD profile confirmed previous experience with rupatadine. PMID:27632557

  6. Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Homan; Mintri, Shrutika; Menon, Archita Venugopal; Lee, Hea Yeon; Choi, Hak Soo; Kim, Jonghan

    2015-11-01

    Nanoparticles (NPs) are considered a promising tool in both diagnosis and therapeutics. Theranostic NPs possess the combined properties of targeted imaging and drug delivery within a single entity. While the categorization of theranostic NPs is based on their structure and composition, the pharmacokinetics of NPs are significantly influenced by the physicochemical properties of theranostic NPs as well as the routes of administration. Consequently, altered pharmacokinetics modify the pharmacodynamic efficacy and toxicity of NPs. Although theranostic NPs hold great promise in nanomedicine and biomedical applications, a lack of understanding persists on the mechanisms of the biodistribution and adverse effects of NPs. To better understand the diagnostic and therapeutic functions of NPs, this review discusses the factors that influence the pharmacokinetics, pharmacodynamics and toxicology of theranostic NPs, along with several strategies for developing novel diagnostic and therapeutic modalities.

  7. Determination of Appropriate Weight-Based Cutoffs for Empiric Cefazolin Dosing Using Data from a Phase 1 Pharmacokinetics and Safety Study of Cefazolin Administered for Surgical Prophylaxis in Pediatric Patients Aged 10 to 12 Years

    PubMed Central

    Schmitz, Michael L.; Blumer, Jeffrey L.; Cetnarowski, Wes

    2015-01-01

    Despite over 40 years of worldwide usage, relatively few data have been published on the pharmacokinetics of cefazolin in pediatric surgical patients. The primary objectives of this study were to examine the pharmacokinetics and safety of cefazolin in children 10 to 12 years of age (inclusive) receiving 1 or 2 g of cefazolin, based on body weight. This multiple-center, open-label study enrolled pediatric patients electively scheduled for surgical procedures who required cefazolin as part of their routine clinical management. Patients weighing ≥25 to <50 kg received a 1-g dose, and patients weighing ≥50 to ≤85 kg received a 2-g dose. Postdose pharmacokinetic and safety assessments were conducted following drug administration. Cefazolin concentration-time data were analyzed by using both noncompartmental and population pharmacokinetics methods. Monte Carlo simulations were performed to identify appropriate weight-based cutoffs for the dosing of children aged 10 to 17 years of age. Twelve patients were enrolled in this study and provided the requisite pharmacokinetic data. In general, cefazolin was well tolerated. The mean cefazolin terminal elimination half-life, clearance, and area under the concentration-time curve from time zero to infinity in this population were 1.95 h, 0.804 ml/min/kg, and 607 mg · h/liter, respectively. Patients weighing 50 to 60 kg exhibited elevated cefazolin exposures. Observed pharmacokinetic parameters and simulation results indicated that a weight-based cutoff of 60 kg is predicted to provide cefazolin exposure consistent with that observed in normal, healthy adults at recommended doses for surgical prophylaxis. (This study has been registered at ClinicalTrials.gov under registration no. NCT01904357.) PMID:25941220

  8. Studies on the biodistribution of dextrin nanoparticles

    NASA Astrophysics Data System (ADS)

    Gonçalves, C.; Ferreira, M. F. M.; Santos, A. C.; Prata, M. I. M.; Geraldes, C. F. G. C.; Martins, J. A.; Gama, F. M.

    2010-07-01

    The characterization of biodistribution is a central requirement in the development of biomedical applications based on the use of nanoparticles, in particular for controlled drug delivery. The blood circulation time, organ biodistribution and rate of excretion must be well characterized in the process of product development. In this work, the biodistribution of recently developed self-assembled dextrin nanoparticles is addressed. Functionalization of the dextrin nanoparticles with a DOTA-monoamide-type metal chelator, via click chemistry, is described. The metal chelator functionalized nanoparticles were labelled with a γ-emitting 153Sm3 + radioisotope and the blood clearance rate and organ biodistribution of the nanoparticles were obtained. The effect of PEG surface coating on the blood clearance rate and organ biodistribution of the nanoparticles was also studied.

  9. A Phase 1 Randomized, Open Label, Rectal Safety, Acceptability, Pharmacokinetic, and Pharmacodynamic Study of Three Formulations of Tenofovir 1% Gel (the CHARM-01 Study)

    PubMed Central

    Mcgowan, Ian; Cranston, Ross D.; Duffill, Kathryn; Siegel, Aaron; Engstrom, Jarret C.; Nikiforov, Alexyi; Jacobson, Cindy; Rehman, Khaja K.; Elliott, Julie; Khanukhova, Elena; Abebe, Kaleab; Mauck, Christine; Spiegel, Hans M. L.; Dezzutti, Charlene S.; Rohan, Lisa C.; Marzinke, Mark A.; Hiruy, Hiwot; Hendrix, Craig W.; Richardson-Harman, Nicola; Anton, Peter A.

    2015-01-01

    Objectives The CHARM-01 study characterized the safety, acceptability, pharmacokinetics (PK), and pharmacodynamics (PD) of three tenofovir (TFV) gels for rectal application. The vaginal formulation (VF) gel was previously used in the CAPRISA 004 and VOICE vaginal microbicide Phase 2B trials and the RMP-02/MTN-006 Phase 1 rectal safety study. The reduced glycerin VF (RGVF) gel was used in the MTN-007 Phase 1 rectal microbicide trial and is currently being evaluated in the MTN-017 Phase 2 rectal microbicide trial. A third rectal specific formulation (RF) gel was also evaluated in the CHARM-01 study. Methods Participants received 4 mL of the three TFV gels in a blinded, crossover design: seven daily doses of RGVF, seven daily doses of RF, and six daily doses of placebo followed by one dose of VF, in a randomized sequence. Safety, acceptability, compartmental PK, and explant PD were monitored throughout the trial. Results All three gels were found to be safe and acceptable. RF and RGVF PK were not significantly different. Median mucosal mononuclear cell (MMC) TFV-DP trended toward higher values for RF compared to RGVF (1136 and 320 fmol/106 cells respectively). Use of each gel in vivo was associated with significant inhibition of ex vivo colorectal tissue HIV infection. There was also a significant negative correlation between the tissue levels of TFV, tissue TFV-DP, MMC TFV-DP, rectal fluid TFV, and explant HIV-1 infection. Conclusions All three formulations were found to be safe and acceptable. However, the safety profile of the VF gel was only based on exposure to one dose whereas participants received seven doses of the RGVF and RF gels. There was a trend towards higher tissue MMC levels of TFV-DP associated with use of the RF gel. Use of all gels was associated with significant inhibition of ex vivo tissue HIV infection. Trial Registration ClinicalTrials.gov NCT01575405 PMID:25942472

  10. Odanacatib, a selective cathepsin K inhibitor to treat osteoporosis: safety, tolerability, pharmacokinetics and pharmacodynamics – results from single oral dose studies in healthy volunteers

    PubMed Central

    Stoch, S Aubrey; Zajic, Stefan; Stone, Julie A; Miller, Deborah L; Bortel, Lucas; Lasseter, Kenneth C; Pramanik, Barnali; Cilissen, Caroline; Liu, Qi; Liu, Lida; Scott, Boyd B; Panebianco, Deborah; Ding, Yu; Gottesdiener, Keith; Wagner, John A

    2013-01-01

    Aims To evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of odanacatib (ODN), a cathepsin K inhibitor, in humans. Methods Two double-blind, randomized, placebo-controlled, single oral dose studies were performed with ODN (2–600 mg) in 44 healthy volunteers (36 men and eight postmenopausal women). Results Adverse experiences (AEs) with single doses of ODN were transient and mild to moderate, with the exception of one severe AE of gastroenteritis. Headache was the most frequent AE. After absorption of ODN (initial peak concentrations 4–6 h postdose), plasma concentrations exhibited a monophasic decline, with an apparent terminal half-life of ∼40–80 h. The area under the curve0-24 hours (AUC0–24 h), concentration at 24 hours (C24 h) and maximum concentration (Cmax,overal) increased in a less than dose-proportional manner from 2 to 600 mg. Administration of ODN with a high-fat meal led to ∼100% increases in AUC0–24 h, Cmax,day1, Cmax,overall and C24 h relative to the fasted state, while administration with a low-fat meal led to a ∼30% increase in those parameters. Reduction of biomarkers of bone resorption, the C- and N-telopeptides of cross-links of type I collagen, (CTx and NTx, respectively), was noted at 24 h for doses ≥5 mg and at 168 h postdose for ≥10 mg. In postmenopausal women administered 50 mg ODN, reductions in serum CTx of −66% and urine NTx/creatinine (uNTx/Cr) of −51% relative to placebo were observed at 24 h. At 168 h, reductions in serum CTx (−70%) and uNTx/Cr (−78%) were observed relative to baseline. Pharmacokinetic/pharmacodynamic modeling characterized the ODN concentration/uNTx/Cr relation, with a modeled EC50 value of 43.8 nM and ∼80% maximal reduction. Conclusions Odanacatib was well tolerated and has a pharmacokinetic and pharmacodynamic profile suitable for once weekly dosing. PMID:23013236

  11. Population Pharmacokinetics, Tolerability, and Safety of Dihydroartemisinin-Piperaquine and Sulfadoxine-Pyrimethamine-Piperaquine in Pregnant and Nonpregnant Papua New Guinean Women

    PubMed Central

    Benjamin, John M.; Moore, Brioni R.; Salman, Sam; Page-Sharp, Madhu; Tawat, Somoyang; Yadi, Gumal; Lorry, Lina; Siba, Peter M.; Batty, Kevin T.; Robinson, Leanne J.; Mueller, Ivo

    2015-01-01

    The tolerability, safety, and disposition of dihydroartemisinin (DHA) and piperaquine (PQ) were assessed in 32 pregnant (second/third trimester) and 33 nonpregnant Papua New Guinean women randomized to adult treatment courses of DHA-PQ (three daily doses) or sulfadoxine-pyrimethamine (SP)-PQ (three daily PQ doses, single dose of SP). All dose adminstrations were observed, and subjects fasted for 2 h postdose. Plasma PQ was assayed by using high-performance liquid chromatography, and DHA was assessed by using liquid chromatography-mass spectrometry. Compartmental pharmacokinetic models were developed using a population-based approach. Both regimens were well tolerated. There was an expected increase in the rate-corrected electrocardiographic QT interval which was independent of pregnancy and treatment. Two pregnant and two nonpregnant women had Plasmodium falciparum parasitemia which cleared within 48 h, and no other subject became slide positive for malaria during 42 days of follow-up. Of 30 pregnant women followed to delivery, 27 (90%) delivered healthy babies and 3 (10%) had stillbirths; these obstetric outcomes are consistent with those in the general population. The area under the plasma PQ concentration-time curve (AUC0–∞) was lower in the pregnant patients (median [interquartile range], 23,721 μg · h/liter [21,481 to 27,951 μg · h/liter] versus 35,644 μg · h/liter [29,546 to 39,541 μg · h/liter]; P < 0.001) in association with a greater clearance relative to bioavailability (73.5 liters/h [69.4 to 78.4] versus 53.8 liters/h [49.7 to 58.2]; P < 0.001), but pregnancy did not influence the pharmacokinetics of DHA. The apparent pharmacokinetic differences between the present study and results from other studies of women with uncomplicated malaria that showed no effect of pregnancy on the AUC0–∞ of PQ and greater bioavailability may reflect differences in postdose fat intake, proportions of women with malaria, and/or racial differences in drug

  12. Population pharmacokinetics, tolerability, and safety of dihydroartemisinin-piperaquine and sulfadoxine-pyrimethamine-piperaquine in pregnant and nonpregnant Papua New Guinean women.

    PubMed

    Benjamin, John M; Moore, Brioni R; Salman, Sam; Page-Sharp, Madhu; Tawat, Somoyang; Yadi, Gumal; Lorry, Lina; Siba, Peter M; Batty, Kevin T; Robinson, Leanne J; Mueller, Ivo; Davis, Timothy M E

    2015-07-01

    The tolerability, safety, and disposition of dihydroartemisinin (DHA) and piperaquine (PQ) were assessed in 32 pregnant (second/third trimester) and 33 nonpregnant Papua New Guinean women randomized to adult treatment courses of DHA-PQ (three daily doses) or sulfadoxine-pyrimethamine (SP)-PQ (three daily PQ doses, single dose of SP). All dose adminstrations were observed, and subjects fasted for 2 h postdose. Plasma PQ was assayed by using high-performance liquid chromatography, and DHA was assessed by using liquid chromatography-mass spectrometry. Compartmental pharmacokinetic models were developed using a population-based approach. Both regimens were well tolerated. There was an expected increase in the rate-corrected electrocardiographic QT interval which was independent of pregnancy and treatment. Two pregnant and two nonpregnant women had Plasmodium falciparum parasitemia which cleared within 48 h, and no other subject became slide positive for malaria during 42 days of follow-up. Of 30 pregnant women followed to delivery, 27 (90%) delivered healthy babies and 3 (10%) had stillbirths; these obstetric outcomes are consistent with those in the general population. The area under the plasma PQ concentration-time curve (AUC0-∞) was lower in the pregnant patients (median [interquartile range], 23,721 μg · h/liter [21,481 to 27,951 μg · h/liter] versus 35,644 μg · h/liter [29,546 to 39,541 μg · h/liter]; P < 0.001) in association with a greater clearance relative to bioavailability (73.5 liters/h [69.4 to 78.4] versus 53.8 liters/h [49.7 to 58.2]; P < 0.001), but pregnancy did not influence the pharmacokinetics of DHA. The apparent pharmacokinetic differences between the present study and results from other studies of women with uncomplicated malaria that showed no effect of pregnancy on the AUC0-∞ of PQ and greater bioavailability may reflect differences in postdose fat intake, proportions of women with malaria, and/or racial differences in drug

  13. Population pharmacokinetics, tolerability, and safety of dihydroartemisinin-piperaquine and sulfadoxine-pyrimethamine-piperaquine in pregnant and nonpregnant Papua New Guinean women.

    PubMed

    Benjamin, John M; Moore, Brioni R; Salman, Sam; Page-Sharp, Madhu; Tawat, Somoyang; Yadi, Gumal; Lorry, Lina; Siba, Peter M; Batty, Kevin T; Robinson, Leanne J; Mueller, Ivo; Davis, Timothy M E

    2015-07-01

    The tolerability, safety, and disposition of dihydroartemisinin (DHA) and piperaquine (PQ) were assessed in 32 pregnant (second/third trimester) and 33 nonpregnant Papua New Guinean women randomized to adult treatment courses of DHA-PQ (three daily doses) or sulfadoxine-pyrimethamine (SP)-PQ (three daily PQ doses, single dose of SP). All dose adminstrations were observed, and subjects fasted for 2 h postdose. Plasma PQ was assayed by using high-performance liquid chromatography, and DHA was assessed by using liquid chromatography-mass spectrometry. Compartmental pharmacokinetic models were developed using a population-based approach. Both regimens were well tolerated. There was an expected increase in the rate-corrected electrocardiographic QT interval which was independent of pregnancy and treatment. Two pregnant and two nonpregnant women had Plasmodium falciparum parasitemia which cleared within 48 h, and no other subject became slide positive for malaria during 42 days of follow-up. Of 30 pregnant women followed to delivery, 27 (90%) delivered healthy babies and 3 (10%) had stillbirths; these obstetric outcomes are consistent with those in the general population. The area under the plasma PQ concentration-time curve (AUC0-∞) was lower in the pregnant patients (median [interquartile range], 23,721 μg · h/liter [21,481 to 27,951 μg · h/liter] versus 35,644 μg · h/liter [29,546 to 39,541 μg · h/liter]; P < 0.001) in association with a greater clearance relative to bioavailability (73.5 liters/h [69.4 to 78.4] versus 53.8 liters/h [49.7 to 58.2]; P < 0.001), but pregnancy did not influence the pharmacokinetics of DHA. The apparent pharmacokinetic differences between the present study and results from other studies of women with uncomplicated malaria that showed no effect of pregnancy on the AUC0-∞ of PQ and greater bioavailability may reflect differences in postdose fat intake, proportions of women with malaria, and/or racial differences in drug

  14. Intranasal Abuse Potential, Pharmacokinetics, and Safety of Once-Daily, Single-Entity, Extended-Release Hydrocodone (HYD) in Recreational Opioid Users

    PubMed Central

    Cipriano, Alessandra; Colucci, Salvatore V.; Kapil, Ram P.; Geoffroy, Pierre; Hopyan, Talar; Levy-Cooperman, Naama

    2016-01-01

    Objectives. A once-daily, extended-release hydrocodone bitartrate tablet with abuse-deterrent properties (Hysingla ER® [HYD]) is available for the treatment of chronic pain in appropriate patients. This study evaluated the intranasal abuse potential and pharmacokinetics of HYD coarse and fine particles vs hydrocodone powder or placebo. Design. Single-center, double-blind, positive- and placebo-controlled, randomized, four-treatment crossover study. Subjects. Healthy adult, nondependent, recreational opioid users with a history of intranasal abuse. Methods. During four treatment periods, subjects (N = 31) received hydrocodone powder 60 mg, HYD coarse particles 60 mg, HYD fine particles 60 mg, or placebo, with five-to-seven-day washouts between treatments. Measures over 36 hours postdose included drug-liking and willingness to take drug again, assessed using visual analog scales (VASs), pupillometry, intranasal irritation, and pharmacokinetics. Results. Insufflation of both HYD coarse and fine particles led to lower “At this Moment” Drug Liking VAS peak values compared with hydrocodone powder, but higher values compared with placebo (P < 0.001 for all comparisons). Similar results were observed for Overall Drug Liking VAS, Take Drug Again VAS, and Subjective Drug Value. Compared with hydrocodone, insufflation of HYD particles led to reduced miosis and increased nasal irritation. Mean hydrocodone Cmax following insufflation of HYD coarse particles, HYD fine particles, and hydrocodone powder was 27.5, 36.5, and 105.8 ng/mL, respectively; median Tmax was ≥2-fold longer with either HYD particle size than hydrocodone powder; and (Cmax/Tmax) was 9.5, 13.4, and 82.0 ng/mL/h, respectively. Safety was consistent with that of opioid agonists. Conclusions. HYD demonstrated reduced intranasal abuse potential compared with hydrocodone powder. PMID:26814240

  15. Preliminary efficacy, safety, pharmacokinetics, pharmacodynamics and quality of life study of pegylated recombinant human arginase 1 in patients with advanced hepatocellular carcinoma.

    PubMed

    Yau, Thomas; Cheng, Paul N; Chan, Pierre; Chen, Li; Yuen, Jimmy; Pang, Roberta; Fan, Sheung Tat; Wheatley, Denys N; Poon, Ronnie T

    2015-04-01

    This study was designed to evaluate the efficacy, safety profile, pharmacokinetics, pharmacodynamics and quality of life of pegylated recombinant human arginase 1 (Peg-rhAgr1) in patients with advanced hepatocellular carcinoma (HCC). Patients were given weekly doses of Peg-rhAgr1 (1600 U/kg). Tumour response was assessed every 8 weeks using RECIST 1.1 and modified RECIST criteria. A total of 20 patients were recruited, of whom 15 were deemed evaluable for treatment efficacy. Eighteen patients (90%) were hepatitis B carriers. Median age was 61.5 (range 30-75). Overall disease control rate was 13%, with 2 of the 15 patients achieving stable disease for >8 weeks. The median progression-free survival (PFS) was 1.7 (95% CI: 1.67-1.73) months, with median overall survival (OS) of all 20 enrolled patients being 5.2 (95% CI: 3.3-12.0) months. PFS was significantly prolonged in patients with adequate arginine depletion (ADD) >2 months versus those who had ≤2 months of ADD (6.4 versus 1.7 months; p = 0.01). The majority of adverse events (AEs) were grade 1/2 non-hematological toxicities. Transient liver dysfunctions (25%) were the most commonly reported serious AEs and likely due to disease progression. Pharmacokinetic and pharmacodynamic data showed that Peg-rhAgr1 induced rapid and sustained arginine depletion. The overall quality of life of the enrolled patients was well preserved. Peg-rhAgr1 is well tolerated with a good toxicity profile in patients with advanced HCC. A weekly dose of 1600 U/kg is sufficient to induce ADD. Significantly longer PFS times were recorded for patients who had ADD for >2 months.

  16. Safety and pharmacokinetic studies of liposomal antioxidant formulations containing N-acetylcysteine, α-tocopherol or γ-tocopherol in beagle dogs.

    PubMed

    Alipour, Misagh; Mitsopoulos, Panagiotis; Smith, Milton G; Bolger, Gordon; Pucaj, Kresimir; Suntres, Zacharias E

    2013-07-01

    The safety and pharmacokinetic profile of liposomal formulations containing combinations of the antioxidants α-tocopherol, γ-tocopherol or N-acetylcysteine in beagle dogs was examined. Each group consisted of beagle dogs of both genders with a control group receiving empty dipalmitoylphosphatidylcholine (DPPC) liposomes (330 mg/kg DPPC, EL), and test groups receiving liposomes prepared from DPPC lipids with (i) N-acetylcysteine (NAC) (60 mg/kg NAC [L-NAC]); (ii) NAC and α-tocopherol (αT) (60 mg/kg NAC and 25 mg/kg α-tocopherol [L-αT-NAC]) and (iii) NAC and γ-tocopherol (60 mg/kg NAC and 25 mg/kg γ-tocopherol (γT) [L-γT-NAC]). The dogs in the control group (EL) and three test groups exhibited no signs of toxicity during the dosing period or day 15 post treatment. Weight gain, feed consumption and clinical pathology findings (hematology, coagulation, clinical chemistry, urinalysis) were unremarkable in all dogs and in all groups. Results from the pharmacokinetic study revealed that the inclusion of tocopherols in the liposomal formulation significantly increased the area under the curve (AUC) and β-half life for NAC; the tocopherols had greater impact on the clearance of NAC, where reductions of central compartment clearance (CL) ranged from 56% to 60% and reductions of tissue clearance (CL2) ranged from 73% to 77%. In conclusion, there was no treatment-related toxicity in dogs at the maximum feasible dose level by a single bolus intravenous administration while the addition of tocopherols to the liposomal formulation prolonged the circulation of NAC in plasma largely due to a decreased clearance of NAC.

  17. Effects of strong CYP2D6 and 3A4 inhibitors, paroxetine and ketoconazole, on the pharmacokinetics and cardiovascular safety of tamsulosin

    PubMed Central

    Troost, Joachim; Tatami, Shinji; Tsuda, Yasuhiro; Mattheus, Michaela; Mehlburger, Ludwig; Wein, Martina; Michel, Martin C

    2011-01-01

    AIM To determine the effect of the strong CYP2D6 inhibitor paroxetine and strong CYP3A4 inhibitor ketoconazole on the pharmacokinetics and safety (orthostatic challenge) of tamsulosin. METHODS Two open-label, randomized, two-way crossover studies were conducted in healthy male volunteers (extensive CYP2D6 metabolizers). RESULTS Co-administration of multiple oral doses of 20 mg paroxetine once daily with a single oral dose of the 0.4 mg tamsulosin HCl capsule increased the adjusted geometric mean (gMean) values of Cmax and AUC(0,∞) of tamsulosin by factors of 1.34 (90% CI 1.21, 1.49) and 1.64 (90% CI 1.44, 1.85), respectively, and increased the terminal half-life (t1/2) of tamsulosin HCl from 11.4 h to 15.3 h. Co-administration of multiple oral doses of 400 mg ketoconazole once dailywith a single oral dose of the 0.4 mg tamsulosin increased the gMean values of Cmax and AUC(0,∞) of tamsulosin by a factor of 2.20 (90% CI 1.96, 2.45) and 2.80 (90% CI 2.56, 3.07), respectively. The terminal half-life was slightly increased from 10.5 h to 11.8 h. These pharmacokinetic changes were not accompanied by clinically significant alterations of haemodynamic responses during orthostatic stress testing. CONCLUSION The exposure to tamsulosin is increased upon co-administration of strong CYP2D6 inhibitors and even more so of strong 3A4 inhibitors, but neither PK alteration was accompanied by clinically significant haemodynamic changes during orthostatic stress testing. PMID:21496064

  18. Safety and pharmacokinetic studies of liposomal antioxidant formulations containing N-acetylcysteine, α-tocopherol or γ-tocopherol in beagle dogs.

    PubMed

    Alipour, Misagh; Mitsopoulos, Panagiotis; Smith, Milton G; Bolger, Gordon; Pucaj, Kresimir; Suntres, Zacharias E

    2013-07-01

    The safety and pharmacokinetic profile of liposomal formulations containing combinations of the antioxidants α-tocopherol, γ-tocopherol or N-acetylcysteine in beagle dogs was examined. Each group consisted of beagle dogs of both genders with a control group receiving empty dipalmitoylphosphatidylcholine (DPPC) liposomes (330 mg/kg DPPC, EL), and test groups receiving liposomes prepared from DPPC lipids with (i) N-acetylcysteine (NAC) (60 mg/kg NAC [L-NAC]); (ii) NAC and α-tocopherol (αT) (60 mg/kg NAC and 25 mg/kg α-tocopherol [L-αT-NAC]) and (iii) NAC and γ-tocopherol (60 mg/kg NAC and 25 mg/kg γ-tocopherol (γT) [L-γT-NAC]). The dogs in the control group (EL) and three test groups exhibited no signs of toxicity during the dosing period or day 15 post treatment. Weight gain, feed consumption and clinical pathology findings (hematology, coagulation, clinical chemistry, urinalysis) were unremarkable in all dogs and in all groups. Results from the pharmacokinetic study revealed that the inclusion of tocopherols in the liposomal formulation significantly increased the area under the curve (AUC) and β-half life for NAC; the tocopherols had greater impact on the clearance of NAC, where reductions of central compartment clearance (CL) ranged from 56% to 60% and reductions of tissue clearance (CL2) ranged from 73% to 77%. In conclusion, there was no treatment-related toxicity in dogs at the maximum feasible dose level by a single bolus intravenous administration while the addition of tocopherols to the liposomal formulation prolonged the circulation of NAC in plasma largely due to a decreased clearance of NAC. PMID:23384394

  19. Safety, tolerability, pharmacokinetics, and pharmacodynamics of fluticasone furoate, a novel inhaled corticosteroid, in children aged 5-11 years with persistent asthma: A randomized trial.

    PubMed

    Oliver, Amanda; Allen, Ann; VanBuren, Sandi; Hamilton, Melanie; Tombs, Lee; Kempsford, Rodger; Qaqundah, Paul

    2014-03-01

    This multi-center, randomized, double-blind, placebo-controlled, two-way crossover study characterized the safety, tolerability, pharmacokinetics, and pharmacodynamics of fluticasone furoate (FF) in children (5-11 years) with persistent asthma. Twenty-seven children received inhaled FF 100 µg or placebo via the ELLIPTA™ dry powder inhaler once daily for 14 days, with a ≥7 day washout period. Adverse events (AEs) were reported by eight (31%) and four (16%) subjects during FF 100 µg and placebo treatment, respectively. Headache was reported by three subjects during FF 100 µg treatment and by no subjects during placebo treatment, all other AEs were reported by only one subject on either treatment; there were no serious AEs. Following repeat dosing, the arithmetic mean (SD) FF Cmax was 26.71 pg/mL (9.16) at 31 minutes post-dose. Arithmetic mean (SD) FF AUC(0-t) was 121.44 pg h/mL (83.04). Arithmetic mean values for weighted mean (SD) serum cortisol (0-12 hours) on day 14 were 56.49 (16.51) and 67.57 (20.66) ng/mL for FF 100 µg and placebo, respectively. No clinically significant effect of FF on serum cortisol levels was observed. FF was well tolerated. Pharmacokinetic profiles were well defined and did not differ between age groups in the study population, and no clinically significant suppression of serum cortisol was observed. PMID:27128459

  20. Phase II, Randomized, Double-Blind, Multicenter Study Comparing the Safety and Pharmacokinetics of Tefibazumab to Placebo for Treatment of Staphylococcus aureus Bacteremia

    PubMed Central

    Weems, J. John; Steinberg, James P.; Filler, Scott; Baddley, John W.; Corey, G. Ralph; Sampathkumar, Priya; Winston, Lisa; John, Joseph F.; Kubin, Christine J.; Talwani, Rohit; Moore, Thomas; Patti, Joseph M.; Hetherington, Seth; Texter, Michele; Wenzel, Eric; Kelley, Violet A.; Fowler, Vance G.

    2006-01-01

    Tefibazumab (Aurexis), a humanized monoclonal antibody that binds to the surface-expressed adhesion protein clumping factor A, is under development as adjunctive therapy for serious Staphylococcus aureus infections. Sixty patients with documented S. aureus bacteremia (SAB) were randomized and received either tefibazumab at 20 mg/kg of body weight as a single infusion or a placebo in addition to an antibiotic(s). The primary objective of the study was determining safety and pharmacokinetics. An additional objective was to assess activity by a composite clinical end point (CCE). Baseline characteristics were evenly matched between groups. Seventy percent of infections were healthcare associated, and 57% had an SAB-related complication at baseline. There were no differences between the treatment groups in overall adverse clinical events or alterations in laboratory values. Two patients developed serious adverse events that were at least possibly related to tefibazumab; one hypersensitivity reaction was considered definitely related. The tefibazumab plasma half-life was 18 days. Mean plasma levels were <100 μg/ml by day 14. A CCE occurred in six patients (four placebo and two tefibazumab patients) and included five deaths (four placebo and one tefibazumab patient). Progression in the severity of sepsis occurred in four placebo and no tefibazumab patients. Tefibazumab was well tolerated, with a safety profile similar to those of other monoclonal antibodies. Additional trials are warranted to address the dosing range and efficacy of tefibazumab. PMID:16870768

  1. Pharmacokinetics and safety of single doses of drisapersen in non-ambulant subjects with Duchenne muscular dystrophy: Results of a double-blind randomized clinical trial

    PubMed Central

    Flanigan, Kevin M.; Voit, Thomas; Rosales, Xiomara Q.; Servais, Laurent; Kraus, John E.; Wardell, Claire; Morgan, Allison; Dorricott, Susie; Nakielny, Joanna; Quarcoo, Naashika; Liefaard, Lia; Drury, Tom; Campion, Giles; Wright, Padraig

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a progressive, lethal neuromuscular disorder caused by the absence of dystrophin protein due to mutations of the dystrophin gene. Drisapersen is a 2′-O-methyl-phosphorothioate oligonucleotide designed to skip exon 51 in dystrophin pre-mRNA to restore the reading frame of the mRNA. This study assessed safety, tolerability, and pharmacokinetics of drisapersen after a single subcutaneous administration in non-ambulatory subjects. Eligible subjects were non-ambulant boys aged ≥9 years, in wheelchairs for ≥1 to ≤4 years, with a diagnosis of DMD resulting from a mutation correctable by drisapersen treatment. Four dose cohorts were planned (3, 6, 9 and 12 mg/kg), but study objectives were met with the 9 mg/kg dose. Less than proportional increase in exposure was demonstrated over the 3–9 mg/kg dose range, though post hoc analysis showed dose proportionality was more feasible over the 3–6 mg/kg range. Single doses of drisapersen at 3 and 6 mg/kg did not result in significant safety or tolerability concerns; however, at the 9 mg/kg dose, pyrexia and transient elevations in inflammatory parameters were seen. The maximum tolerated dose of 6 mg/kg drisapersen was identified for further characterization in multiple dose studies in the non-ambulant DMD population. PMID:24321374

  2. Safety and Upper Respiratory Pharmacokinetics of the Hemagglutinin Stalk-Binding Antibody VIS410 Support Treatment and Prophylaxis Based on Population Modeling of Seasonal Influenza A Outbreaks

    PubMed Central

    Wollacott, Andrew M.; Boni, Maciej F.; Szretter, Kristy J.; Sloan, Susan E.; Yousofshahi, Mona; Viswanathan, Karthik; Bedard, Sylvain; Hay, Catherine A.; Smith, Patrick F.; Shriver, Zachary; Trevejo, Jose M.

    2016-01-01

    Background Seasonal influenza is a major public health concern in vulnerable populations. Here we investigated the safety, tolerability, and pharmacokinetics of a broadly neutralizing monoclonal antibody (VIS410) against Influenza A in a Phase 1 clinical trial. Based on these results and preclinical data, we implemented a mathematical modeling approach to investigate whether VIS410 could be used prophylactically to lessen the burden of a seasonal influenza epidemic and to protect at-risk groups from associated complications. Methods Using a single-ascending dose study (n = 41) at dose levels from 2 mg/kg–50 mg/kg we evaluated the safety as well as the serum and upper respiratory pharmacokinetics of a broadly-neutralizing antibody (VIS410) against influenza A (ClinicalTrials.gov identifier NCT02045472). Our primary endpoints were safety and tolerability of VIS410 compared to placebo. We developed an epidemic microsimulation model testing the ability of VIS410 to mitigate attack rates and severe disease in at risk-populations. Findings VIS410 was found to be generally safe and well-tolerated at all dose levels, from 2–50 mg/kg. Overall, 27 of 41 subjects (65.9%) reported a total of 67 treatment emergent adverse events (TEAEs). TEAEs were reported by 20 of 30 subjects (66.7%) who received VIS410 and by 7 of 11 subjects (63.6%) who received placebo. 14 of 16 TEAEs related to study drug were considered mild (Grade 1) and 2 were moderate (Grade 2). Two subjects (1 subject who received 30 mg/kg VIS410 and 1 subject who received placebo) experienced serious AEs (Grade 3 or 4 TEAEs) that were not related to study drug. VIS410 exposure was approximately dose-proportional with a mean half-life of 12.9 days. Mean VIS410 Cmax levels in the upper respiratory tract were 20.0 and 25.3 μg/ml at the 30 mg/kg and 50 mg/kg doses, respectively, with corresponding serum Cmax levels of 980.5 and 1316 μg/mL. Using these pharmacokinetic data, a microsimulation model showed

  3. Phase I Study Assessing the Pharmacokinetic Profile, Safety, and Tolerability of a Single Dose of Ceftazidime-Avibactam in Hospitalized Pediatric Patients

    PubMed Central

    Armstrong, Jon; Arrieta, Antonio; Bishai, Raafat; Das, Shampa; Delair, Shirley; Edeki, Timi; Holmes, William C.; Li, Jianguo; Moffett, Kathryn S.; Mukundan, Deepa; Perez, Norma; Romero, José R.; Speicher, David; Sullivan, Janice E.; Zhou, Diansong

    2016-01-01

    This study aimed to investigate the pharmacokinetics (PK), safety, and tolerability of a single dose of ceftazidime-avibactam in pediatric patients. A phase I, multicenter, open-label PK study was conducted in pediatric patients hospitalized with an infection and receiving systemic antibiotic therapy. Patients were enrolled into four age cohorts (cohort 1, ≥12 to <18 years; cohort 2, ≥6 to <12 years; cohort 3, ≥2 to <6 years; cohort 4, ≥3 months to <2 years). Patients received a single 2-h intravenous infusion of ceftazidime-avibactam (cohort 1, 2,000 to 500 mg; cohort 2, 2,000 to 500 mg [≥40 kg] or 50 to 12.5 mg/kg [<40 kg]; cohorts 3 and 4, 50 to 12.5 mg/kg). Blood samples were collected to describe individual PK characteristics for ceftazidime and avibactam. Population PK modeling was used to describe characteristics of ceftazidime and avibactam PK across all age groups. Safety and tolerability were assessed. Thirty-two patients received study drug. Mean plasma concentration-time curves, geometric mean maximum concentration (Cmax), and area under the concentration-time curve from time zero to infinity (AUC0–∞) were similar across all cohorts for both drugs. Six patients (18.8%) reported an adverse event, all mild or moderate in intensity. No deaths or serious adverse events occurred. The single-dose PK of ceftazidime and avibactam were comparable between each of the 4 age cohorts investigated and were broadly similar to those previously observed in adults. No new safety concerns were identified. (This study has been registered at ClinicalTrials.gov under registration no. NCT01893346.) PMID:27503642

  4. Concurrent administration of donepezil HCl and sertraline HCl in healthy volunteers: assessment of pharmacokinetic changes and safety following single and multiple oral doses

    PubMed Central

    Nagy, Christa F; Kumar, Dinesh; Perdomo, Carlos A; Wason, Suman; Cullen, Edward I; Pratt, Raymond D

    2004-01-01

    Aim This study evaluated the safety and pharmacokinetics (PK) of donepezil HCl and sertraline HCl when administered separately and in combination. Methods This was a randomized, open-label, three-period crossover study. In consecutive dosing periods separated by washout periods of ≥3 weeks, healthy volunteers received either oral donepezil HCI 5 mg once daily for 15 days, oral sertraline HCl 50 mg once daily for 5 days followed by 10 days of once-daily sertraline HCl 100 mg, or the simultaneous administration of oral donepezil HCl and sertraline HCl. Plasma donepezil and sertraline concentrations were determined by high performance liquid chromatography/mass spectrometry. Safety was evaluated by physical and laboratory evaluations and the monitoring of adverse events (AEs). Results A total of 19 volunteers (16 male and three female) were enrolled. Three male subjects withdrew from the study prematurely due to AEs (one case of nausea/stomach cramps and one case of eosinophilia during combination treatment, and one upper respiratory tract infection during treatment with sertraline HCl alone). In subjects who completed all three treatment periods (n = 16), the concurrent administration of donepezil HCl and sertraline HCl did not alter the steady-state (day 15) PK parameters of donepezil HCl. A small (<12%) but statistically significant (P = 0.02) increase in donepezil Cmax was seen after single doses of sertraline HCl and donepezil HCl on day 1 but this was not thought to be clinically meaningful. No significant differences in the tmax or AUC0–24 h of donepezil were observed between the donepezil HCl only or donepezil HCl plus sertraline HCl groups on day 1. No significant changes in sertraline PK parameters were observed either on day 1 (single dose) or on day 15 (steady state) when sertraline HCl was co-administered with donepezil HCl. Generally, the concurrent administration of donepezil HCl and sertraline HCl was well tolerated, with no serious AEs reported

  5. Infliximab therapy for intestinal, neurological, and vascular involvement in Behcet disease: Efficacy, safety, and pharmacokinetics in a multicenter, prospective, open-label, single-arm phase 3 study

    PubMed Central

    Hibi, Toshifumi; Hirohata, Shunsei; Kikuchi, Hirotoshi; Tateishi, Ukihide; Sato, Noriko; Ozaki, Kunihiko; Kondo, Kazuoki; Ishigatsubo, Yoshiaki

    2016-01-01

    Abstract Behçet disease (BD) is a multisystem disease associated with a poor prognosis in cases of gastrointestinal, neurological, or vascular involvement. We conducted a multicenter, prospective, open-label, single-arm phase 3 study to determine the efficacy, safety, and pharmacokinetics of infliximab (IFX) in BD patients with these serious complications who had displayed poor response or intolerance to conventional therapy. IFX at 5 mg/kg was administered to 18 patients (11 intestinal BD, 3 neurological BD [NBD], and 4 vascular BD [VBD]) at weeks 0, 2, and 6 and every 8 weeks thereafter until week 46. In patients who showed inadequate responses to IFX after week 30, the dose was increased to 10 mg/kg. We then calculated the percentage of complete responders according to the predefined criteria depending on the symptoms and results of examinations (ileocolonoscopy, brain magnetic resonance imaging, computed tomography angiography, positron emission tomography, cerebrospinal fluid, or serum inflammatory markers), exploring the percentage of complete responders at week 30 (primary endpoint). The percentage of complete responders was 61% (11/18) at both weeks 14 and 30 and remained the same until week 54. Intestinal BD patients showed improvement in clinical symptoms along with decrease in C-reactive protein (CRP) levels after week 2. Consistently, scarring or healing of the principal ulcers was found in more than 80% of these patients after week 14. NBD patients showed improvement in clinical symptoms, imaging findings, and cerebrospinal fluid examinations. VBD patients showed improvement in clinical symptoms after week 2 with reductions in CRP levels and erythrocyte sedimentation rate. Imaging findings showed reversal of inflammatory changes in 3 of the 4 VBD patients. Irrespective of the type of BD, all patients achieved improvement in quality of life, leading to the dose reduction or withdrawal of steroids. IFX dose was increased to 10 mg/kg in 3

  6. Bioavailability, pharmacokinetics, and safety of riociguat given as an oral suspension or crushed tablet with and without food

    PubMed Central

    Frey, Reiner; Becker, Corina; Unger, Sigrun; Wensing, Georg; Mück, Wolfgang

    2016-01-01

    Abstract Riociguat is approved for the treatment of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Some patients have difficulty swallowing tablets; therefore, 2 randomized, nonblinded, crossover studies compared the relative bioavailability of riociguat oral suspensions and immediate-release (IR) tablet and of crushed-tablet preparations versus whole IR tablet. In study 1, 30 healthy subjects received 5 single riociguat doses: 0.3 and 2.4 mg (0.15 mg/mL suspensions), 0.15 mg (0.03 mg/mL), and 1.0 mg (whole IR tablet) under fasted conditions and 2.4 mg (0.15 mg/mL) after a high-fat, high-calorie American-style breakfast. In study 2, 25 healthy men received 4 single 2.5-mg doses: whole IR tablet and crushed IR tablet suspended in applesauce and water, respectively, under fasted conditions, and whole IR tablet after a continental breakfast. In study 1, dose-normalized pharmacokinetics of riociguat oral suspensions and 1.0-mg whole IR tablet were similar in fasted conditions; 90% confidence intervals for riociguat area under the curve (AUC) to dose and mean maximum concentration (Cmax) to dose were within bioequivalence criteria. After food, dose-normalized AUC and Cmax decreased by 15% and 38%, respectively. In study 2, riociguat exposure was similar for all preparations; AUC ratios for crushed-IR-tablet preparations to whole IR tablet were within bioequivalence criteria. The Cmax increased by 17% for crushed IR tablet in water versus whole IR tablet. Food intake decreased Cmax of the whole tablet by 16%, with unaltered AUC versus fasted conditions. Riociguat bioavailability was similar between the oral suspensions and the whole IR tablet; exposure was similar between whole IR tablet and crushed-IR-tablet preparations. Minor food effects were observed. Results suggest that riociguat formulations are interchangeable. PMID:27162630

  7. Effect of severe renal impairment on umeclidinium and umeclidinium/vilanterol pharmacokinetics and safety: a single-blind, nonrandomized study

    PubMed Central

    Mehta, Rashmi; Hardes, Kelly; Brealey, Noushin; Tombs, Lee; Preece, Andrew; Kelleher, Dennis

    2015-01-01

    Background Umeclidinium and vilanterol, long-acting bronchodilators for the treatment of chronic obstructive pulmonary disease, are primarily eliminated via the hepatic route; however, severe renal impairment may adversely affect some elimination pathways other than the kidney. Objectives To evaluate the effect of severe renal impairment on the pharmacokinetics of umeclidinium and umeclidinium/vilanterol. Methods Nine patients with severe renal impairment (creatinine clearance <30 mL/min) and nine matched healthy volunteers received a single dose of umeclidinium 125 μg; and after a 7- to 14-day washout, a single dose of umeclidinium/vilanterol 125/25 μg. Results No clinically relevant increases in plasma umeclidinium or vilanterol systemic exposure (area under the curve or maximum observed plasma concentration) were observed following umeclidinium 125 μg or umeclidinium/vilanterol 125/25 μg administration. On average, the amount of umeclidinium excreted in 24 hours in urine (90% confidence interval) was 88% (81%–93%) and 89% (81%–93%) lower in patients with severe renal impairment compared with healthy volunteers following umeclidinium 125 μg and umeclidinium/vilanterol 125/25 μg administration, respectively. Treatments were well tolerated in both populations. Conclusion Umeclidinium 125 μg or umeclidinium/vilanterol 125/25 μg administration to patients with severe renal impairment did not demonstrate clinically relevant increases in systemic exposure compared with healthy volunteers. No dose adjustment for umeclidinium and umeclidinium/vilanterol is warranted in patients with severe renal impairment. PMID:25565796

  8. Pharmacokinetics and safety of olodaterol administered with the Respimat Soft Mist inhaler in subjects with impaired hepatic or renal function

    PubMed Central

    Kunz, Christina; Luedtke, Doreen; Unseld, Anna; Hamilton, Alan; Halabi, Atef; Wein, Martina; Formella, Stephan

    2016-01-01

    Purpose In two trials, the influences of hepatic and renal impairment on the pharmacokinetics of olodaterol, a novel long-acting inhaled β2-agonist for treatment of COPD, were investigated. Subjects and methods The first trial included eight subjects with mild hepatic function impairment (Child–Pugh A), eight subjects with moderate impairment (Child–Pugh B), and 16 matched healthy subjects with normal hepatic function. The second trial included eight subjects with severe renal impairment (creatinine clearance <30 mL·min−1) and 14 matched healthy subjects with normal renal function. Subjects received single doses of 20 or 30 μg olodaterol administered with the Respimat Soft Mist inhaler. Results Olodaterol was well tolerated in all subjects. The geometric mean ratios and 90% confidence intervals of dose-normalized area under the plasma concentration-time curve from time zero to 4 hours (AUC0–4) for subjects with mild and moderate hepatic impairment compared to healthy subjects were 97% (75%–125%) and 105% (79%–140%), respectively. Corresponding values for dose-normalized maximum concentration (Cmax) were 112% (84%–151%) (mild impairment) and 99% (73%–135%) (moderate impairment). The geometric mean ratio (90% confidence interval) of AUC0–4 for subjects with severe renal impairment compared to healthy subjects was 135% (94%–195%), and for Cmax was 137% (84%–222%). There was no significant relationship between creatinine clearance and AUC0–4 or Cmax. Renal clearance of olodaterol was reduced to 20% of normal in severe renal impairment. Conclusion Mild to moderate hepatic function impairment or severe renal function impairment did not result in a clinically relevant increase of olodaterol systemic exposure after a single inhaled dose. PMID:27051282

  9. The Safety and Pharmacokinetics of Cyanidin-3-Glucoside after 2-Week Administration of Black Bean Seed Coat Extract in Healthy Subjects

    PubMed Central

    Jeon, Sangil; Han, Seunghoon; Lee, Jongtae; Hong, Taegon

    2012-01-01

    We analyzed the pharmacokinetics of C3G on data from twelve subjects, after 2-week multiple dosing of black bean (Phaseolus vulgaris, Cheongjakong-3-ho) seed coat extract, using the mixed effect analysis method (NONMEM, Ver. 6.2), as well as the conventional non-compartmental method. We also examined the safety and tolerability. The PK analysis used plasma concentrations of the C3G on day 1 and 14. There was no observed accumulation of C3G after 2-week multiple dosing of black bean seed coat extract. The typical point estimates of PK were CL (clearance)=3,420 l/h, V (volume)=7,280 L, Ka (absorption constant)=9.94 h-1, ALAG (lag time)=0.217 h. The black bean seed coat extract was well tolerated and there were no serious adverse events. In this study, we confirmed that a significant amount of C3G was absorbed in human after given the black bean seed coat extract. PMID:22915990

  10. Pharmacokinetics, pharmacodynamics and safety of single, oral doses of GSK1278863, a novel HIF-prolyl hydroxylase inhibitor, in healthy Japanese and Caucasian subjects.

    PubMed

    Hara, Katsutoshi; Takahashi, Naoki; Wakamatsu, Akira; Caltabiano, Stephen

    2015-12-01

    This study was performed to evaluate the pharmacokinetics (PK), pharmacodynamics (PD) and safety of GSK1278863, a novel prolyl hydroxylase inhibitor, following a single oral administration of GSK1278863 from 10 to 100 mg or placebo in Japanese (n = 19), and 10, 25 and 100 mg in Caucasians (n = 14). Dose-proportional increases were observed in AUCinf of GSK1278863 in both ethnic groups, with a 1.3-1.5-fold higher exposure seen in Japanese relative to Caucasians for all doses. This difference in exposure can be mainly explained by the observed differences in body weights between the two groups. Statistically significant increases in erythropoietin (EPO), vascular endothelial growth factor (VEGF) and reticulocyte counts were observed in Japanese subjects after the 50 and 100 mg dose as compared to placebo. In Caucasians, similar to Japanese, EPO and VEGF levels were observed to be increased in response to the 100 mg dose. Drug-related adverse events, including headache and abdominal pain were reported in 3 Japanese subjects, while headache was reported in 3 Caucasians. In conclusion, GSK1278863 was well tolerated, with dose-proportional increases in exposure observed in both groups. There was no evidence of ethnic differences between Japanese and Caucasian with regard to PK or PD.

  11. Pharmacokinetics and safety of a novel recombinant human von Willebrand factor manufactured with a plasma-free method: a prospective clinical trial

    PubMed Central

    Mannucci, Pier Mannuccio; Kempton, Christine; Millar, Carolyn; Romond, Edward; Shapiro, Amy; Birschmann, Ingvild; Ragni, Margaret V.; Gill, Joan Cox; Yee, Thynn Thynn; Klamroth, Robert; Wong, Wing-Yen; Chapman, Miranda; Engl, Werner; Turecek, Peter L.; Suiter, Tobias M.

    2013-01-01

    Safety and pharmacokinetics (PK) of recombinant von Willebrand factor (rVWF) combined at a fixed ratio with recombinant factor VIII (rFVIII) were investigated in 32 subjects with type 3 or severe type 1 von Willebrand disease (VWD) in a prospective phase 1, multicenter, randomized clinical trial. rVWF was well tolerated and no thrombotic events, inhibitors, or serious adverse events were observed. The PK of rVWF ristocetin cofactor activity, VWF antigen, and collagen-binding activity were similar to those of the comparator plasma-derived (pd) VWF-pdFVIII. In vivo cleavage of ultra-large molecular-weight rVWF multimers by ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13; the endogenous VWF protease) and generation of characteristic satellite bands were demonstrated. In 2 subjects with specific nonneutralizing anti-VWF–binding antibodies already detectable before rVWF infusion, a reduction in VWF multimers and VWF activity was observed. Stabilization of endogenous FVIII was enhanced following post–rVWF-rFVIII infusion as shown by the difference in area under the plasma concentration curve compared with pdVWF-pdFVIII (AUC0-∞) (P < .01). These data support the concept of administering rVWF alone once a therapeutic level of endogenous FVIII is achieved. This trial was registered at www.clinicaltrials.gov as #NCT00816660. PMID:23777763

  12. Phase I study of the safety and pharmacokinetics of plerixafor in children undergoing a second allogeneic hematopoietic stem cell transplantation for relapsed or refractory leukemia

    PubMed Central

    Srinivasan, Ashok; Panetta, John C.; Cross, Shane; Pillai, Asha; Triplett, Brandon M.; Shook, Dave R.; Dallas, Mari H.; Hartford, Christine; Sunkara, Anusha; Kang, Guolian; Jacobsen, Jeffrey; Choi, John; Leung, Wing

    2015-01-01

    The safety, pharmacokinetics and biological effect of plerixafor in children as part of a conditioning regimen for chemo-sensitization in allogeneic hematopoietic stem cell transplantation (HSCT) have not been studied. This is a phase I study of plerixafor designed to evaluate its tolerability at dose of 0.24 mg/kg given intravenously on day -4 (level 1), day -4, and day -3 (level 2), or day -4, -3, and day -2 (level 3) in combination with fludarabine, thiotepa, melphalan, and rabbit anti-thymocytic globulin for a second allogeneic HSCT in children with refractory or relapsed leukemia. Immunophenotype analysis was performed on blood and bone marrow prior to and after plerixafor administration. Twelve patients were enrolled. Plerixafor at all 3 levels was well tolerated without dose-limiting toxicity. Transient gastrointestinal side effects of National Cancer Institute grade 1 or 2 in severity were the most common adverse events. The area under the concentration-time curve increased proportionally to the dose level. Plerixafor clearance was higher in males, and increased linearly with body weight, and glomerular filtration rate. The clearance decreased and the elimination half-life increased significantly from dose level 1 to 3 (P < 0.001). Biologically, the proportion of CXCR4-positive blasts and lymphocytes both in the bone marrow and peripheral blood, increased after plerixafor administration. PMID:24769325

  13. A Double-Blind, Placebo-Controlled Trial to Evaluate the Safety, Tolerability, and Pharmacokinetics of Single, Escalating Oral Doses of JDTic

    PubMed Central

    Buda, Jeffrey J; Carroll, F I; Kosten, Thomas R; Swearingen, Dennis; Walters, Bradford B

    2015-01-01

    Animal studies suggest that kappa opioid receptor antagonists (KORAn) potentially could treat a wide variety of addictive and depressive disorders. We assessed the KORAn JDTic for safety, tolerability, and pharmacokinetics in a double-blind, placebo-controlled, randomized trial evaluating single oral doses in healthy adult males. Predose and postdose safety assessments included orthostatic vital signs; 6-lead continuous telemetry monitoring (approximately 16 h predose to 24 h postdose); 12-lead electrocardiograms (ECGs); clinical chemistry, hematology, coagulation, and urinalysis; psychomotor functioning (using the Wayne Saccadic Fixator (WSF)); and adverse events. As a potential indicator of JDTic effects on affect, the POMS Standard instrument was administered predose and daily postdose Days 1–6. At 1 mg, 2 of the 6 JDTic (and 0/6 placebo) subjects experienced a single, asymptomatic event of multiple beats of nonsustained ventricular tachycardia (NSVT). Their events were temporally similar with respect to time postdose (and the postdose timing of an NSVT event in a monkey). These events triggered a study stopping rule. No differences were observed between the placebo and JDTic subjects with respect to clinical chemistry, hematology, coagulation, urinalysis, orthostatic vital signs, WSF, or 12-lead ECG parameters. Plasma JDTic levels were below the lower limit of quantitation (0.1 nM) in all subjects. There were no significant differences in POMS scores between the placebo and JDTic groups. Although the evidence is circumstantial, it suggests that NSVT is a potential JDTic toxicity in humans. Given the therapeutic potential of KORAn, further investigation is needed to determine whether a significant JDTic human cardiac effect indeed exists, and if so, whether it is specific to JDTic or represents a KORAn class effect. PMID:25628006

  14. Altered biodistribution of radiopharmaceuticals: role of radiochemical/pharmaceutical purity, physiological, and pharmacologic factors.

    PubMed

    Vallabhajosula, Shankar; Killeen, Ronan P; Osborne, Joseph R

    2010-07-01

    One of the most common problems associated with radiopharmaceuticals is an unanticipated or altered biodistribution, which can have a significant clinical impact on safety, scan interpretation, and diagnostic imaging accuracy. In their most extreme manifestations, unanticipated imaging results may even compromise the utility and or accuracy of nuclear medicine studies. We present here an overall summary of altered biodistribution of radiopharmaceuticals with a special emphasis on the molecular mechanisms involved. Important factors affecting the biodistribution of radiopharmaceuticals can be described in 5 major categories and include (1) radiopharmaceutical preparation and formulation problems; (2) problems caused by radiopharmaceutical administration techniques and procedures; (3) by changes in biochemical and pathophysiology; (4) previous medical procedures, such as surgery, radiation therapy and dialysis; and finally (5) by drug interactions. The altered biodistribution of (99m)Tc radiopharmaceuticals are generally associated with increased amounts of (99m)Tc radiochemical impurities, such as free (99m)TcO(4)(-) and particulate impurities, such as (99m)Tc colloids or (99m)Tc-reduced hydrolyzed species. Faulty injection, such as dose infiltration or contamination with antiseptics and aluminum during dose administration, may cause significant artifacts. The patient's own medical problems, such as abnormalities in the regulation of hormone levels; failure in the function of excretory organs and systems, such as hepatobiliary and genitourinary systems; and even simple conditions, such as excessive talking may contribute to altered biodistribution of radiopharmaceuticals. Previous medical procedures (chemotherapy, radiation therapy, dialysis) and drug interaction are the some of the nontechnical factors responsible for unanticipated biodistribution of radiotracers. This review provides a comprehensive summary of various factors and specific examples to illustrate

  15. Pharmacokinetics, pharmacodynamics, and safety of pasireotide LAR in patients with acromegaly: a randomized, multicenter, open-label, phase I study.

    PubMed

    Petersenn, Stephan; Bollerslev, Jens; Arafat, Ayman M; Schopohl, Jochen; Serri, Omar; Katznelson, Laurence; Lasher, Janet; Hughes, Gareth; Hu, Ke; Shen, George; Reséndiz, Karina Hermosillo; Giannone, Vanessa; Beckers, Albert

    2014-11-01

    Pasireotide (SOM230), a multireceptor-targeted somatostatin analogue, has exhibited favorable safety/tolerability in several clinical studies. A long-acting-release (LAR) formulation of pasireotide may offer advantages over the subcutaneous formulation. This randomized, open-label, Phase I study evaluated the safety, PK, and PD of pasireotide LAR 20, 40, or 60 mg/month in patients with acromegaly. Safety assessments and blood samples for PK and PD were taken at designated time points. Thirty-five patients were randomized and completed the study. Steady-state pasireotide concentrations were achieved following three monthly injections. Trough pasireotide concentrations (ng/mL) 28 days after each injection were: 2.48, 4.16, and 3.10 (20 mg group); 6.42, 6.62, and 7.12 (40 mg group); and 9.51, 11.7, and 13.0 (60 mg group). At study end, 51% and 57% of patients achieved GH levels ≤2.5 μg/L and IGF-1 levels below ULN, respectively. Compared with baseline, fasting blood glucose and HbA1c levels increased, whereas fasting blood insulin levels decreased. Acromegaly symptoms were generally improved. Adverse events were mostly gastrointestinal and mild/moderate. Pasireotide LAR was generally well tolerated. Steady-state PK was achieved after three monthly doses; exposures were approximately dose proportional. Control of GH, IGF-1, and symptoms improved, suggesting that pasireotide LAR may be an effective treatment for acromegaly.

  16. Safety and Pharmacokinetics of Quick-Dissolving Polymeric Vaginal Films Delivering the Antiretroviral IQP-0528 for Preexposure Prophylaxis.

    PubMed

    Srinivasan, Priya; Zhang, Jining; Martin, Amy; Kelley, Kristin; McNicholl, Janet M; Buckheit, Robert W; Smith, James M; Ham, Anthony S

    2016-07-01

    For human immunodeficiency virus (HIV) prevention, microbicides or drugs delivered as quick-dissolving films may be more acceptable to women than gels because of their compact size, minimal waste, lack of an applicator, and easier storage and transport. This has the potential to improve adherence to promising products for preexposure prophylaxis. Vaginal films containing IQP-0528, a nonnucleoside reverse transcriptase inhibitor, were evaluated for their pharmacokinetics in pigtailed macaques. Polymeric films (22 by 44 by 0.1 mm; providing 75% of a human dose) containing IQP-0528 (1.5%, wt/wt) with and without poly(lactic-co-glycolic acid) (PLGA) nanoparticle encapsulation were inserted vaginally into pigtailed macaques in a crossover study design (n = 6). With unencapsulated drug, the median (range) vaginal fluid concentrations of IQP-0528 were 160.97 (2.73 to 2,104), 181.79 (1.86 to 15,800), and 484.50 (8.26 to 4,045) μg/ml at 1, 4, and 24 h after film application, respectively. Median vaginal tissue IQP-0528 concentrations at 24 h were 3.10 (0.03 to 222.58) μg/g. The values were similar at locations proximal, medial, and distal to the cervix. The IQP-0528 nanoparticle-formulated films delivered IQP-0528 in vaginal tissue and secretions at levels similar to those obtained with the unencapsulated formulation. A single application of either formulation did not disturb the vaginal microflora or the pH (7.24 ± 0.84 [mean ± standard deviation]). The high mucosal IQP-0528 levels delivered by both vaginal film formulations were between 1 and 5 log higher than the in vitro 90% inhibitory concentration (IC90) of 0.146 μg/ml. The excellent coverage and high mucosal levels of IQP-0528, well above the IC90, suggest that the films may be protective and warrant further evaluation in a vaginal repeated low dose simian-human immunodeficiency virus (SHIV) transmission study in macaques and clinically in women. PMID:27139475

  17. Effect of coadministered fat on the tolerability, safety, and pharmacokinetic properties of dihydroartemisinin-piperaquine in Papua New Guinean children with uncomplicated malaria.

    PubMed

    Moore, B R; Benjamin, J M; Salman, S; Griffin, S; Ginny, E; Page-Sharp, M; Robinson, L J; Siba, P; Batty, K T; Mueller, I; Davis, T M E

    2014-10-01

    Coadministration of dihydroartemisinin-piperaquine (DHA-PQ) with fat may improve bioavailability and antimalarial efficacy, but it might also increase toxicity. There have been no studies of these potential effects in the pediatric age group. The tolerability, safety, efficacy, and pharmacokinetics of DHA-PQ administered with or without 8.5 g fat were investigated in 30 Papua New Guinean children aged 5 to 10 years diagnosed with uncomplicated falciparum malaria. Three daily 2.5:11.5-mg-base/kg doses were given with water (n = 14, group A) or milk (n = 16, group B), with regular clinical/laboratory assessment and blood sampling over 42 days. Plasma PQ was assayed by high-performance liquid chromatography with UV detection, and DHA was assayed using liquid chromatography-mass spectrometry. Compartmental pharmacokinetic models for PQ and DHA were developed using a population-based approach. DHA-PQ was generally well tolerated, and initial fever and parasite clearance were prompt. There were no differences in the areas under the concentration-time curve (AUC0-∞) for PQ (median, 41,906 versus 36,752 μg · h/liter in groups A and B, respectively; P = 0.24) or DHA (4,047 versus 4,190 μg · h/liter; P = 0.67). There were also no significant between-group differences in prolongation of the corrected electrocardiographic QT interval (QTc) initially during follow-up, but the QTc tended to be higher in group B children at 24 h (mean ± standard deviation [SD], 15 ± 10 versus 6 ± 15 ms(0.5) in group A, P = 0.067) and 168 h (10 ± 18 versus 1 ± 23 ms(0.5), P = 0.24) when plasma PQ concentrations were relatively low. A small amount of fat does not change the bioavailability of DHA-PQ in children, but a delayed persistent effect on ventricular repolarization cannot be excluded.

  18. Effect of coadministered fat on the tolerability, safety, and pharmacokinetic properties of dihydroartemisinin-piperaquine in Papua New Guinean children with uncomplicated malaria.

    PubMed

    Moore, B R; Benjamin, J M; Salman, S; Griffin, S; Ginny, E; Page-Sharp, M; Robinson, L J; Siba, P; Batty, K T; Mueller, I; Davis, T M E

    2014-10-01

    Coadministration of dihydroartemisinin-piperaquine (DHA-PQ) with fat may improve bioavailability and antimalarial efficacy, but it might also increase toxicity. There have been no studies of these potential effects in the pediatric age group. The tolerability, safety, efficacy, and pharmacokinetics of DHA-PQ administered with or without 8.5 g fat were investigated in 30 Papua New Guinean children aged 5 to 10 years diagnosed with uncomplicated falciparum malaria. Three daily 2.5:11.5-mg-base/kg doses were given with water (n = 14, group A) or milk (n = 16, group B), with regular clinical/laboratory assessment and blood sampling over 42 days. Plasma PQ was assayed by high-performance liquid chromatography with UV detection, and DHA was assayed using liquid chromatography-mass spectrometry. Compartmental pharmacokinetic models for PQ and DHA were developed using a population-based approach. DHA-PQ was generally well tolerated, and initial fever and parasite clearance were prompt. There were no differences in the areas under the concentration-time curve (AUC0-∞) for PQ (median, 41,906 versus 36,752 μg · h/liter in groups A and B, respectively; P = 0.24) or DHA (4,047 versus 4,190 μg · h/liter; P = 0.67). There were also no significant between-group differences in prolongation of the corrected electrocardiographic QT interval (QTc) initially during follow-up, but the QTc tended to be higher in group B children at 24 h (mean ± standard deviation [SD], 15 ± 10 versus 6 ± 15 ms(0.5) in group A, P = 0.067) and 168 h (10 ± 18 versus 1 ± 23 ms(0.5), P = 0.24) when plasma PQ concentrations were relatively low. A small amount of fat does not change the bioavailability of DHA-PQ in children, but a delayed persistent effect on ventricular repolarization cannot be excluded. PMID:25049242

  19. Efficacy, Safety and Pharmacokinetics of Once-Daily Saquinavir Soft-Gelatin Capsule/Ritonavir in Antiretroviral-Naive, HIV-Infected Patients

    PubMed Central

    2006-01-01

    Context Once-daily HIV treatment regimens are being used in clinical practice with the objective of improving patient acceptance and adherence. Objective To evaluate the efficacy and safety of saquinavir-soft-gelatin capsule (SGC)/ritonavir combination (1600 mg/100 mg) vs efavirenz (600 mg) both once daily and combined with 2 nucleoside analogs twice daily. Setting Twenty-six centers in the United States, Canada, and Puerto Rico. Patients A total of 171 antiretroviral naive HIV-infected individuals were enrolled in a 48-week, phase 3, open-label, randomized study. Main Outcome Measure Proportion of patients with HIV-RNA levels < 50 copies/mL. The pharmacokinetic profile of saquinavir-SGC was analyzed in a subset of randomly selected patients. Results In the primary intent-to-treat population at week 48, 51% (38/75) and 71% (55/77) of patients in the saquinavir-SGC/ritonavir and efavirenz groups, respectively, achieved HIV-RNA suppression < 50 copies/mL (P = .5392, 95% 1-sided confidence interval [CI] = -33.5%). In the on-treatment (OT) population, 73% (38/52) and 93% (54/58) of patients in the saquinavir-SGC/ritonavir and efavirenz groups, respectively, had effective viral suppression < 50 copies/mL (P = .5015, 95% 1-sided CI = -33.4%). Mean CD4+ cell counts increased by 239 and 204 cells/microliters (mcL), in the saquinavir-SGC/ritonavir and efavirenz groups, respectively, in the OT analysis (P = .058). Both regimens were reasonably well tolerated, although more gastrointestinal adverse events were reported with saquinavir-SGC/ritonavir. Pharmacokinetic profiles in 6 patients showed an observed median Cmin at 24 hours of 429 ng/mL (range, 681750 ng/mL). Conclusion Once-daily efavirenz was statistically superior to once-daily saquinavir-SGC/ritonavir. Gastrointestinal adverse effects were commonly associated with treatment failure in the saquinavir-SGC/ritonavir arm of the study.

  20. Efficacy, Safety and Pharmacokinetics of Once-Daily Saquinavir Soft-Gelatin Capsule/Ritonavir in Antiretroviral-Naive, HIV-Infected Patients

    PubMed Central

    Montaner, Julio S.G.; Schutz, Malte; Schwartz, Robert; Jayaweera, Dushyantha T.; Burnside, Alfred F.; Walmsley, Sharon; Saag, Michael S.

    2006-01-01

    Context Once-daily HIV treatment regimens are being used in clinical practice with the objective of improving patient acceptance and adherence. Objective To evaluate the efficacy and safety of saquinavir-soft-gelatin capsule (SGC)/ritonavir combination (1600 mg/100 mg) vs efavirenz (600 mg) both once daily and combined with 2 nucleoside analogs twice daily. Setting Twenty-six centers in the United States, Canada, and Puerto Rico. Patients A total of 171 antiretroviral naive HIV-infected individuals were enrolled in a 48-week, phase 3, open-label, randomized study. Main Outcome Measure Proportion of patients with HIV-RNA levels < 50 copies/mL. The pharmacokinetic profile of saquinavir-SGC was analyzed in a subset of randomly selected patients. Results In the primary intent-to-treat population at week 48, 51% (38/75) and 71% (55/77) of patients in the saquinavir-SGC/ritonavir and efavirenz groups, respectively, achieved HIV-RNA suppression < 50 copies/mL (P = .5392, 95% 1-sided confidence interval [CI] = −33.5%). In the on-treatment (OT) population, 73% (38/52) and 93% (54/58) of patients in the saquinavir-SGC/ritonavir and efavirenz groups, respectively, had effective viral suppression < 50 copies/mL (P = .5015, 95% 1-sided CI = −33.4%). Mean CD4+ cell counts increased by 239 and 204 cells/microliters (mcL), in the saquinavir-SGC/ritonavir and efavirenz groups, respectively, in the OT analysis (P = .058). Both regimens were reasonably well tolerated, although more gastrointestinal adverse events were reported with saquinavir-SGC/ritonavir. Pharmacokinetic profiles in 6 patients showed an observed median Cmin at 24 hours of 429 ng/mL (range, 68-1750 ng/mL). Conclusions Once-daily efavirenz was statistically superior to once-daily saquinavir-SGC/ritonavir. Gastrointestinal adverse effects were commonly associated with treatment failure in the saquinavir-SGC/ritonavir arm of the study. PMID:16926775

  1. Azithromycin to prevent bronchopulmonary dysplasia in ureaplasma-infected preterm infants: pharmacokinetics, safety, microbial response, and clinical outcomes with a 20-milligram-per-kilogram single intravenous dose.

    PubMed

    Viscardi, Rose M; Othman, Ahmed A; Hassan, Hazem E; Eddington, Natalie D; Abebe, Elias; Terrin, Michael L; Kaufman, David A; Waites, Ken B

    2013-05-01

    Ureaplasma respiratory tract colonization is associated with bronchopulmonary dysplasia (BPD) in preterm infants. Previously, we demonstrated that a single intravenous (i.v.) dose of azithromycin (10 mg/kg of body weight) is safe but inadequate to eradicate Ureaplasma spp. in preterm infants. We performed a nonrandomized, single-arm open-label study of the pharmacokinetics (PK) and safety of intravenous 20-mg/kg single-dose azithromycin in 13 mechanically ventilated neonates with a gestational age between 24 weeks 0 days and 28 weeks 6 days. Pharmacokinetic data from 25 neonates (12 dosed with 10 mg/kg i.v. and 13 dosed with 20 mg/kg i.v.) were analyzed using a population modeling approach. Using a two-compartment model with allometric scaling of parameters on body weight (WT), the population PK parameter estimates were as follows: clearance, 0.21 liter/h × WT(kg)(0.75) [WT(kg)(0.75) indicates that clearance was allometrically scaled on body weight (in kilograms) with a fixed exponent of 0.75]; intercompartmental clearance, 2.1 liters/h × WT(kg)(0.75); central volume of distribution (V), 1.97 liters × WT (kg); and peripheral V, 17.9 liters × WT (kg). There was no evidence of departure from dose proportionality in azithromycin exposure over the tested dose range. The calculated area under the concentration-time curve over 24 h in the steady state divided by the MIC90 (AUC24/MIC90) for the single dose of azithromycin (20 mg/kg) was 7.5 h. Simulations suggest that 20 mg/kg for 3 days will maintain azithromycin concentrations of >MIC50 of 1 μg/ml for this group of Ureaplasma isolates for ≥ 96 h after the first dose. Azithromycin was well tolerated with no drug-related adverse events. One of seven (14%) Ureaplasma-positive subjects and three of six (50%) Ureaplasma-negative subjects developed physiologic BPD. Ureaplasma was eradicated in all treated Ureaplasma-positive subjects. Simulations suggest that a multiple-dose regimen may be efficacious for microbial

  2. Influence of formulation variables on the biodistribution of multifunctional block copolymer micelles.

    PubMed

    Fonge, Humphrey; Huang, Huang; Scollard, Deborah; Reilly, Raymond M; Allen, Christine

    2012-02-10

    The physico-chemical characteristics and composition of block copolymer micelles (BCMs) may influence the pharmacokinetics and consequently, the desired delivery characteristics. In this study the influence of formulation variables such as size, density of targeting ligand [i.e. epidermal growth factor (hEGF)] and the bifunctional chelator (BFC) used for labelling the BCMs with (111)In, on the pharmacokinetics and biodistribution in mice were evaluated. BCMs were prepared from Me-PEG(x)-b-PCL(y) (x=2.5 k, y=1.2 k for 15 nm BCMs and x=5 k, y=5 k for 60 nm BCMs) with (targeted, 1 or 5 mol% hEGF) or without (non-targeted) hEGF-PEG(x)-b-PCL(y). To investigate the effect of the BFC on the pharmacokinetics, the BCMs were labelled with (111)In using p-SCN-Bn-DOTA (Bn-DOTA-PEG(x)-b-PCL(y)), H(2)N-DOTA (DOTA-PEG(x)-b-PCL(y)), DTPA anhydride (DTPA-PEG(x)-b-PCL(y)) or p-SCN-Bn-DTPA (Bn-DTPA-PEG(x)-b-PCL(y)). The resulting 15 nm or 60 nm non-targeted or targeted (1 or 5 mol% hEGF) were injected via a tail vein to mice bearing MDA-MB-468 human breast cancer xenograft that overexpress EGFR, followed by pharmacokinetics and biodistribution studies. Pharmacokinetic parameters were determined by fitting the blood concentration vs time data using a two compartment model with i.v. bolus input. Pharmacokinetic parameters were found to depend on BCM size, the BFC used as well as the density of hEGF on the surface of the BCMs. BCMs labelled with p-SCN-Bn-DTPA ((111)In-Bn-BCMs) showed improved pharmacokinetics (i.e. extended circulation lifetime) and tumor uptake compared to those labelled with DOTA-PEG(x)-b-PCL(y), p-SCN-Bn-DOTA or DTPA dianhydride. Formulations with a high density of hEGF (5 mol% hEGF) had short circulation half-lives. BCMs labelled with (111)In via p-SCN-Bn-DTPA showed highest accumulation in the liver and spleen and slower whole body elimination. Smaller sized BCMs were rapidly cleared from the circulation. Increasing the density of hEGF on the surface did not

  3. Pharmacokinetics & Neurophysiology

    ERIC Educational Resources Information Center

    Davis, Andrew S.; Salpekar, Jay A.

    2009-01-01

    Medications administered in clinical practice obtain their therapeutic effect only to the extent that the drug is present in the appropriate concentration at the desired site. To achieve this goal, the prescribing clinician must be aware of how a drug may interact with the physiology of the patient. Pharmacokinetics is the study of this process…

  4. First-in-Humans Study of the Safety, Tolerability, and Pharmacokinetics of ACT-451840, a New Chemical Entity with Antimalarial Activity

    PubMed Central

    Bruderer, Shirin; Hurst, Noémie; de Kanter, Ruben; Miraval, Tommaso; Pfeifer, Thomas; Donazzolo, Yves

    2014-01-01

    Emerging resistance to antimalarial agents raises the need for new drugs. ACT-451840 is a new compound with potent activity against sensitive and resistant Plasmodium falciparum strains. This was a first-in-humans single-ascending-dose study to investigate the safety, tolerability, and pharmacokinetics of ACT-451840 across doses of 10, 50, 200, and 500 mg in healthy male subjects. In the 200- and 500-mg dose groups, the effect of food was investigated, and antimalarial activity was assessed using an ex vivo bioassay with P. falciparum. No (serious) adverse events leading to discontinuation were reported. At the highest dose level, the peak drug concentration (Cmax) and the area under the plasma concentration-time curve from zero to infinity of ACT-451840 under fasted conditions reached 11.9 ng/ml and 100.6 ng · h/ml, respectively, and these were approximately 13-fold higher under fed conditions. Food did not affect the half-life (approximately 34 h) of the drug, while the Cmax was attained 2.0 and 3.5 h postdose under fasted and fed conditions, respectively. The plasma concentrations estimated by the bioassay were approximately 4-fold higher than those measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several potentially active metabolites were also identified. ACT-451840 was well tolerated across all doses. Exposure to ACT-451840 significantly increased with food. The bioassay indicated the presence of circulating active metabolites. (This study has been registered at ClinicalTrials.gov under registration no. NCT02186002.) PMID:25421475

  5. Phase I Study Evaluating the Safety and Pharmacokinetics of MDX-1303, a Fully Human Monoclonal Antibody against Bacillus anthracis Protective Antigen, in Healthy Volunteers▿

    PubMed Central

    Riddle, Valerie; Leese, Phillip; Blanset, Diann; Adamcio, Melany; Meldorf, Matthew; Lowy, Israel

    2011-01-01

    MDX-1303 (Valortim) is a fully human monoclonal antibody (hMAb) with a high affinity for Bacillus anthracis protective antigen (PA). MDX-1303 binds to PA and interferes with the activity of the anthrax toxin; it was selected based on its superior functional activity in the toxin neutralization activity (TNA) assay. MDX-1303 has demonstrated efficacy in the postexposure and therapeutic settings in New Zealand White rabbits, cynomolgus monkeys, and African green monkeys. This phase I study sought to characterize the safety, tolerability, immunogenicity, and pharmacokinetics (PK)/pharmacodynamics (PD) of MDX-1303 in healthy human subjects. Cohorts of 3 to 10 subjects were administered MDX-1303 as either a single intravenous (i.v.) dose at dose levels of 0.3, 1, 3, 10, and 20 mg/kg of body weight or as a single intramuscular (i.m.) dose at 100 mg. Forty-six subjects were enrolled, and 16 (35%) of these subjects experienced one or more grade 1 adverse events considered to be related to treatment with MDX-1303. There were no grade 2 to 4 adverse events or serious adverse events (SAEs) considered to be related to treatment. The mean half-life of MDX-1303 ranged from 22 to 33 days across the i.v. administration cohorts and was approximately 32 days following i.m. administration. Systemic exposure following 100-mg i.m. administration was within the range of exposure following 1-mg/kg i.v. administration with a relative bioavailability of approximately 65%. MDX-1303 was generally well tolerated, and no anti-MDX-1303 antibodies were detected following a single dose. PMID:21976227

  6. A Prospective, Multicenter, Phase I Matched-Comparison Group Trial of Safety, Pharmacokinetics, and Preliminary Efficacy of Riluzole in Patients with Traumatic Spinal Cord Injury

    PubMed Central

    Fehlings, Michael G.; Frankowski, Ralph F.; Burau, Keith D.; Chow, Diana S.L.; Tator, Charles; Teng, Angela; Toups, Elizabeth G.; Harrop, James S.; Aarabi, Bizhan; Shaffrey, Christopher I.; Johnson, Michele M.; Harkema, Susan J.; Boakye, Maxwell; Guest, James D.; Wilson, Jefferson R.

    2014-01-01

    Abstract A prospective, multicenter phase I trial was undertaken by the North American Clinical Trials Network (NACTN) to investigate the pharmacokinetics and safety of, as well as obtain pilot data on, the effects of riluzole on neurological outcome in acute spinal cord injury (SCI). Thirty-six patients, with ASIA impairment grades A–C (28 cervical and 8 thoracic) were enrolled at 6 NACTN sites between April 2010 and June 2011. Patients received 50 mg of riluzole PO/NG twice-daily, within 12 h of SCI, for 14 days. Peak and trough plasma concentrations were quantified on days 3 and 14. Peak plasma concentration (Cmax) and systemic exposure to riluzole varied significantly between patients. On the same dose basis, Cmax did not reach levels comparable to those in patients with amyotrophic lateral sclerosis. Riluzole plasma levels were significantly higher on day 3 than on day 14, resulting from a lower clearance and a smaller volume of distribution on day 3. Rates of medical complications, adverse events, and progression of neurological status were evaluated by comparison with matched patients in the NACTN SCI Registry. Medical complications in riluzole-treated patients occurred with incidences similar to those in patients in the comparison group. Mild-to-moderate increase in liver enzyme and bilirubin levels were found in 14–70% of patients for different enzymes. Three patients had borderline severe elevations of enzymes. No patient had elevated bilirubin on day 14 of administration of riluzole. There were no serious adverse events related to riluzole and no deaths. The mean motor score of 24 cervical injury riluzole-treated patients gained 31.2 points from admission to 90 days, compared to 15.7 points for 26 registry patients, a 15.5-point difference (p=0.021). Patients with cervical injuries treated with riluzole had more-robust conversions of impairment grades to higher grades than the comparison group. PMID:23859435

  7. A prospective, multicenter, phase I matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury.

    PubMed

    Grossman, Robert G; Fehlings, Michael G; Frankowski, Ralph F; Burau, Keith D; Chow, Diana S L; Tator, Charles; Teng, Angela; Toups, Elizabeth G; Harrop, James S; Aarabi, Bizhan; Shaffrey, Christopher I; Johnson, Michele M; Harkema, Susan J; Boakye, Maxwell; Guest, James D; Wilson, Jefferson R

    2014-02-01

    A prospective, multicenter phase I trial was undertaken by the North American Clinical Trials Network (NACTN) to investigate the pharmacokinetics and safety of, as well as obtain pilot data on, the effects of riluzole on neurological outcome in acute spinal cord injury (SCI). Thirty-six patients, with ASIA impairment grades A-C (28 cervical and 8 thoracic) were enrolled at 6 NACTN sites between April 2010 and June 2011. Patients received 50 mg of riluzole PO/NG twice-daily, within 12 h of SCI, for 14 days. Peak and trough plasma concentrations were quantified on days 3 and 14. Peak plasma concentration (Cmax) and systemic exposure to riluzole varied significantly between patients. On the same dose basis, Cmax did not reach levels comparable to those in patients with amyotrophic lateral sclerosis. Riluzole plasma levels were significantly higher on day 3 than on day 14, resulting from a lower clearance and a smaller volume of distribution on day 3. Rates of medical complications, adverse events, and progression of neurological status were evaluated by comparison with matched patients in the NACTN SCI Registry. Medical complications in riluzole-treated patients occurred with incidences similar to those in patients in the comparison group. Mild-to-moderate increase in liver enzyme and bilirubin levels were found in 14-70% of patients for different enzymes. Three patients had borderline severe elevations of enzymes. No patient had elevated bilirubin on day 14 of administration of riluzole. There were no serious adverse events related to riluzole and no deaths. The mean motor score of 24 cervical injury riluzole-treated patients gained 31.2 points from admission to 90 days, compared to 15.7 points for 26 registry patients, a 15.5-point difference (p=0.021). Patients with cervical injuries treated with riluzole had more-robust conversions of impairment grades to higher grades than the comparison group.

  8. Efficacy, Safety, and Pharmacokinetics of a Novel Human Immune Globulin Subcutaneous, 20 % in Patients with Primary Immunodeficiency Diseases in North America.

    PubMed

    Suez, Daniel; Stein, Mark; Gupta, Sudhir; Hussain, Iftikhar; Melamed, Isaac; Paris, Kenneth; Darter, Amy; Bourgeois, Christelle; Fritsch, Sandor; Leibl, Heinz; McCoy, Barbara; Gelmont, David; Yel, Leman

    2016-10-01

    Patients with primary immunodeficiency disease (PIDD) typically require life-long intravenous (IV) or subcutaneous (SC) immunoglobulin (Ig) replacement therapy to prevent recurrent infections. The efficacy, safety, and pharmacokinetics of a highly concentrated (20 %) Ig preparation for SC administration (IGSC 20 %) were evaluated in a prospective trial in patients with PIDD. A total of 74 patients (aged 3-83 years) received 4327 IGSC 20 % infusions over a median of 380.5 days. The rate of validated serious bacterial infections was 0.012 event/patient-year (p < 0.0001 compared with the historical control), and the annualized rate of infection was 2.41 events/patient. Median IgG trough levels were >14.5 g/l. The median maximum infusion rate was 60 ml/h/site (range 4.4-180), resulting in a median infusion duration of 0.95 h. A volume ≥30 ml was infused per site in 74.8 % of IGSC 20 % infusions. Most (84.9 %) infusions were administered using ≤2 infusion sites; for 99.8 % of infusions, there was no need to interrupt/stop administration or reduce the infusion rate. No related serious adverse event (AE) occurred during IGSC 20 % treatment; related non-serious AEs occurred at a rate of 0.036 event/infusion. The incidence of related local AEs was 0.015 event/infusion and of related systemic AEs was 0.021 event/infusion; most were mild in severity, none severe. Increased infusion rates or volumes were not associated with higher AE rates. The investigated IGSC 20 % treatment was shown to be effective and safe, enabling higher infusion rates and volumes per site compared to conventional SC treatments, resulting in fewer infusion sites and shorter infusion durations. PMID:27582171

  9. First-in-humans study of the safety, tolerability, and pharmacokinetics of ACT-451840, a new chemical entity with antimalarial activity.

    PubMed

    Bruderer, Shirin; Hurst, Noémie; de Kanter, Ruben; Miraval, Tommaso; Pfeifer, Thomas; Donazzolo, Yves; Dingemanse, Jasper

    2015-02-01

    Emerging resistance to antimalarial agents raises the need for new drugs. ACT-451840 is a new compound with potent activity against sensitive and resistant Plasmodium falciparum strains. This was a first-in-humans single-ascending-dose study to investigate the safety, tolerability, and pharmacokinetics of ACT-451840 across doses of 10, 50, 200, and 500 mg in healthy male subjects. In the 200- and 500-mg dose groups, the effect of food was investigated, and antimalarial activity was assessed using an ex vivo bioassay with P. falciparum. No (serious) adverse events leading to discontinuation were reported. At the highest dose level, the peak drug concentration (Cmax) and the area under the plasma concentration-time curve from zero to infinity of ACT-451840 under fasted conditions reached 11.9 ng/ml and 100.6 ng·h/ml, respectively, and these were approximately 13-fold higher under fed conditions. Food did not affect the half-life (approximately 34 h) of the drug, while the Cmax was attained 2.0 and 3.5 h postdose under fasted and fed conditions, respectively. The plasma concentrations estimated by the bioassay were approximately 4-fold higher than those measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several potentially active metabolites were also identified. ACT-451840 was well tolerated across all doses. Exposure to ACT-451840 significantly increased with food. The bioassay indicated the presence of circulating active metabolites. (This study has been registered at ClinicalTrials.gov under registration no. NCT02186002.). PMID:25421475

  10. Pharmacokinetics and Safety of Bortezomib in Patients with Advanced Malignancies and Varying Degrees of Liver Dysfunction: Phase 1 NCI Organ Dysfunction Working Group Study NCI-6432

    PubMed Central

    LoRusso, Patricia M; Venkatakrishnan, Karthik; Ramanathan, Ramesh K; Sarantopoulos, John; Mulkerin, Daniel; Shibata, Stephen I; Hamilton, Anne; Dowlati, Afshin; Mani, Sridhar; Rudek, Michelle A; Takimoto, Chris H; Neuwirth, Rachel; Esseltine, Dixie-Lee; Ivy, Percy

    2013-01-01

    Purpose The proteasome inhibitor bortezomib undergoes oxidative hepatic metabolism. This study (NCI-6432; NCT00091117) was conducted to evaluate bortezomib pharmacokinetics and safety in patients with varying degrees of hepatic impairment, to inform dosing recommendations in these special populations. Methods Patients received bortezomib on days 1, 4, 8, and 11 of 21-day cycles. Patients were assigned to four hepatic function groups based on the National Cancer Institute Organ Dysfunction Working Group classification. Those with normal function received bortezomib at the 1.3 mg/m2 standard dose. Patients with severe, moderate, and mild impairment received escalating doses from 0.5, 0.7, and 1.0 mg/m2, respectively, up to a 1.3 mg/m2 maximum. Serial blood samples were collected for 24 hours post-dose on days 1 and 8, cycle 1, for bortezomib plasma concentration measurements. Results Sixty-one patients were treated, including 14 with normal hepatic function and 17, 12, and 18 with mild, moderate, and severe impairment, respectively. Mild hepatic impairment did not alter dose-normalized bortezomib exposure (AUC0-tlast) or Cmax compared with patients with normal function. Mean dose-normalized AUC0-tlast was increased by approximately 60% on day 8 in patients with moderate or severe impairment. Conclusions Patients with mild hepatic impairment do not require a starting dose adjustment of bortezomib. Patients with moderate or severe hepatic impairment should be started at a reduced dose of 0.7 mg/m2. PMID:22394984

  11. Development of safety profile evaluating pharmacokinetics, pharmacodynamics and toxicity of a combination of pioglitazone and olmesartan medoxomil in Wistar albino rats.

    PubMed

    Sengupta, Pinaki; Nandi, Utpal; Pal, Tapan Kumar

    2012-02-01

    Pioglitazone (PIO), an antidiabetic drug and olmesartan medoxomil (OLM), an antihypertensive drug were administered orally alone and in combination to Wistar albino rats for evaluation of pharmacokinetics, pharmacodynamics and repeated dose 28-day oral toxicity of individual drugs and their combination. Pharmacokinetic study was performed by orally administering PIO and OLM at single dose of 3 and 2mg/kg, respectively alone and in combination analyzing the plasma samples using LC-MS/MS. Antidiabetic activity evaluation was done in type-2 diabetes mellitus induced animals at same dose level as in pharmacokinetic study daily for 30 days. PIO and/or OLM were administered orally to animals at daily doses of 50, 100 and 150 mg/kg for 28 days for toxicity study. There was no significant alteration in the pharmacokinetic parameters of either drug indicating absence of any pharmacokinetic interaction when co-administered. Positive pharmacodynamic interaction between PIO and OLM was established in this study. Two drugs in combination showed no evidence of potentiation of 28-day repeated dose toxicity in animals. Again, drugs, alone and in combination, caused only minor changes in clinical-laboratory tests and histopathological change was not found in the experiment performed. In conclusion, PIO and OLM combination can primarily be stated as safe in terms of present toxicity and pharmacokinetics findings.

  12. Safety, Pharmacokinetic, and Functional Effects of the Nogo-A Monoclonal Antibody in Amyotrophic Lateral Sclerosis: A Randomized, First-In-Human Clinical Trial

    PubMed Central

    Meininger, Vincent; Pradat, Pierre-François; Corse, Andrea; Al-Sarraj, Safa; Rix Brooks, Benjamin; Caress, James B.; Cudkowicz, Merit; Kolb, Stephen J.; Lange, Dale; Leigh, P. Nigel; Meyer, Thomas; Milleri, Stefano; Morrison, Karen E.; Orrell, Richard W.; Peters, Gary; Rothstein, Jeffrey D.; Shefner, Jeremy; Lavrov, Arseniy; Williams, Nicola; Overend, Phil; Price, Jeffrey; Bates, Stewart; Bullman, Jonathan; Krull, David; Berges, Alienor; Abila, Bams; Meno-Tetang, Guy; Wurthner, Jens

    2014-01-01

    The neurite outgrowth inhibitor, Nogo-A, has been shown to be overexpressed in skeletal muscle in amyotrophic lateral sclerosis (ALS); it is both a potential biomarker and therapeutic target. We performed a double-blind, two-part, dose-escalation study, in subjects with ALS, assessing safety, pharmacokinetics (PK) and functional effects of ozanezumab, a humanized monoclonal antibody against Nogo-A. In Part 1, 40 subjects were randomized (3∶1) to receive single dose intravenous ozanezumab (0.01, 0.1, 1, 5, or 15 mg/kg) or placebo. In Part 2, 36 subjects were randomized (3∶1) to receive two repeat doses of intravenous ozanezumab (0.5, 2.5, or 15 mg/kg) or placebo, approximately 4 weeks apart. The primary endpoints were safety and tolerability (adverse events [AEs], vital signs, electrocardiogram (ECG), and clinical laboratory tests). Secondary endpoints included PK, immunogenicity, functional endpoints (clinical and electrophysiological), and biomarker parameters. Overall, ozanezumab treatment (0.01–15 mg/kg) was well tolerated. The overall incidence of AEs in the repeat dose 2.5 mg/kg and 15 mg/kg ozanezumab groups was higher than in the repeat dose placebo group and repeat dose 0.5 mg/kg ozanezumab group. The majority were considered not related to study drug by the investigators. Six serious AEs were reported in three subjects receiving ozanezumab; none were considered related to study drug. No study drug-related patterns were identified for ECG, laboratory, or vital signs parameters. One subject (repeat dose 15 mg/kg ozanezumab) showed a weak, positive anti-ozanezumab-antibody result. PK results were generally consistent with monoclonal antibody treatments. No apparent treatment effects were observed for functional endpoints or muscle biomarkers. Immunohistochemical staining showed dose-dependent co-localization of ozanezumab with Nogo-A in skeletal muscle. In conclusion, single and repeat dose ozanezumab treatment was well tolerated and demonstrated co

  13. First‐in‐human study assessing safety, tolerability and pharmacokinetics of BI 409306, a selective phosphodiesterase 9A inhibitor, in healthy males

    PubMed Central

    Boland, Katja; Feifel, Ulrich; Hoch, Anja; Zimdahl‐Gelling, Heike; Sand, Michael

    2016-01-01

    Aims The aim of the present study was to investigate the safety, tolerability, dose proportionality and relative bioavailability of tablet and oral solution formulations of BI 409306 in healthy male subjects, and to compare the safety and pharmacokinetics in subjects who were extensive metabolizers (EMs) or poor metabolizers (PMs) of cytochrome P450 (CYP)‐2C19. Methods The present randomized, double‐blind, placebo‐controlled, single‐centre study evaluated single rising doses of BI 409306 (0.5–500 mg) administered as a tablet or oral solution to EMs or PMs. Results Of 80 enrolled subjects (mean age 36.7 years), 79 (CYP2C19 EMs, 71; CYP2C19 PMs, eight) received treatment and completed the study. Adverse events (AEs) were mild to moderate in intensity. Overall, 17/71 (23.9%) EMs and 6/8 (75.0%) PMs experienced 28 and eight AEs, respectively, of which, 25 and seven AEs, respectively, were considered to be drug related. The most frequently reported AEs were nervous system and eye disorders; all occurred shortly (20–30 min) after administration and mostly resolved within 1–2 h. No serious AEs occurred. BI 409306 systemic absorption and elimination were rapid; peak plasma concentration (Cmax) was reached <1 h after drug administration, and the half‐life ranged from 0.99 h to 2.71 h. Both the tablet and oral solution resulted in similar exposures. In PMs, at dose levels of 10 mg and 100 mg, Cmax was 2.2–2.3‐fold higher, and the area under the plasma concentration–time curve over the time interval 0 extrapolated to infinity was 4.1–5.0‐fold higher compared with EMs. Conclusions In healthy male subjects, BI 409306 was generally safe and well tolerated, with rapid absorption and elimination. Systemic exposure was higher in CYP2C19 PMs than EMs at the same dose level. PMID:27378314

  14. The Safety and Pharmacokinetics of Carprofen, Flunixin and Phenylbutazone in the Cape Vulture (Gyps coprotheres) following Oral Exposure

    PubMed Central

    Fourie, Tamsyn; Cromarty, Duncan; Duncan, Neil; Wolter, Kerri; Naidoo, Vinny

    2015-01-01

    The following study evaluates the overt toxic potential of carprofen (CRP), flunixin (FXN) and phenylbutazone (PBZ) in Old world vultures in relation to historic toxicity data for diclofenac and ketoprofen, with the Cape vulture (Gyps coprotheres) being the indicator species. The toxic potential of a single oral dose of CRP (11.5 mg/kg), FXN (1 mg/kg),PBZ (1.7 mg/kg) or water was evaluated by means of a four-way parallel study (n = 2), as means of ascertaining if these drugs were as toxic as diclofenac in the vulture. No unscheduled deaths or pathological lesions were noted following exposure. Clinical signs of lethargy and depression were, however, noted in one CRP, two FXN and one PBZ treated birds. Mild reversible inhibition of UA excretion was evident in all three groups, although UA remained within the population reference interval in contrast to the effects previously described for diclofenac and ketoprofen. All treatment groups had a drug concentration responsive increase in alanine transferase activity. CRP, FXN and PBZ were characterised by a maximum plasma concentration (Cmax) of 1051.8 ± 620.7 ng/ml, 335.9 ± 36.3 ng/ml and 11150 ± 2474.9 ng/ml at 4 ± 4.3, 0.45 ± 0.02 and 5.3 ± 5.2 hours (Tmax) respectively and a half-life of elimination of 13.3 ±5, 1.8±1 and 18.7 ±11.4 hours respectively. While we could not demonstrate a lethal effect of the tested substances, the presence of toxic clinical signs, clinical pathological changes and/or long half-lives of elimination suggests that all three drugs have a potential for toxicity in a larger population or on repeat administration. In conclusion while the studied substances were not as overtly toxic as diclofenac, they are of safety concern. PMID:26512724

  15. The Safety and Pharmacokinetics of Carprofen, Flunixin and Phenylbutazone in the Cape Vulture (Gyps coprotheres) following Oral Exposure.

    PubMed

    Fourie, Tamsyn; Cromarty, Duncan; Duncan, Neil; Wolter, Kerri; Naidoo, Vinny

    2015-01-01

    The following study evaluates the overt toxic potential of carprofen (CRP), flunixin (FXN) and phenylbutazone (PBZ) in Old world vultures in relation to historic toxicity data for diclofenac and ketoprofen, with the Cape vulture (Gyps coprotheres) being the indicator species. The toxic potential of a single oral dose of CRP (11.5 mg/kg), FXN (1 mg/kg),PBZ (1.7 mg/kg) or water was evaluated by means of a four-way parallel study (n = 2), as means of ascertaining if these drugs were as toxic as diclofenac in the vulture. No unscheduled deaths or pathological lesions were noted following exposure. Clinical signs of lethargy and depression were, however, noted in one CRP, two FXN and one PBZ treated birds. Mild reversible inhibition of UA excretion was evident in all three groups, although UA remained within the population reference interval in contrast to the effects previously described for diclofenac and ketoprofen. All treatment groups had a drug concentration responsive increase in alanine transferase activity. CRP, FXN and PBZ were characterised by a maximum plasma concentration (Cmax) of 1051.8 ± 620.7 ng/ml, 335.9 ± 36.3 ng/ml and 11150 ± 2474.9 ng/ml at 4 ± 4.3, 0.45 ± 0.02 and 5.3 ± 5.2 hours (Tmax) respectively and a half-life of elimination of 13.3 ±5, 1.8±1 and 18.7 ±11.4 hours respectively. While we could not demonstrate a lethal effect of the tested substances, the presence of toxic clinical signs, clinical pathological changes and/or long half-lives of elimination suggests that all three drugs have a potential for toxicity in a larger population or on repeat administration. In conclusion while the studied substances were not as overtly toxic as diclofenac, they are of safety concern.

  16. The Safety and Pharmacokinetics of Carprofen, Flunixin and Phenylbutazone in the Cape Vulture (Gyps coprotheres) following Oral Exposure.

    PubMed

    Fourie, Tamsyn; Cromarty, Duncan; Duncan, Neil; Wolter, Kerri; Naidoo, Vinny

    2015-01-01

    The following study evaluates the overt toxic potential of carprofen (CRP), flunixin (FXN) and phenylbutazone (PBZ) in Old world vultures in relation to historic toxicity data for diclofenac and ketoprofen, with the Cape vulture (Gyps coprotheres) being the indicator species. The toxic potential of a single oral dose of CRP (11.5 mg/kg), FXN (1 mg/kg),PBZ (1.7 mg/kg) or water was evaluated by means of a four-way parallel study (n = 2), as means of ascertaining if these drugs were as toxic as diclofenac in the vulture. No unscheduled deaths or pathological lesions were noted following exposure. Clinical signs of lethargy and depression were, however, noted in one CRP, two FXN and one PBZ treated birds. Mild reversible inhibition of UA excretion was evident in all three groups, although UA remained within the population reference interval in contrast to the effects previously described for diclofenac and ketoprofen. All treatment groups had a drug concentration responsive increase in alanine transferase activity. CRP, FXN and PBZ were characterised by a maximum plasma concentration (Cmax) of 1051.8 ± 620.7 ng/ml, 335.9 ± 36.3 ng/ml and 11150 ± 2474.9 ng/ml at 4 ± 4.3, 0.45 ± 0.02 and 5.3 ± 5.2 hours (Tmax) respectively and a half-life of elimination of 13.3 ±5, 1.8±1 and 18.7 ±11.4 hours respectively. While we could not demonstrate a lethal effect of the tested substances, the presence of toxic clinical signs, clinical pathological changes and/or long half-lives of elimination suggests that all three drugs have a potential for toxicity in a larger population or on repeat administration. In conclusion while the studied substances were not as overtly toxic as diclofenac, they are of safety concern. PMID:26512724

  17. Modeling Pharmacokinetics.

    PubMed

    Bois, Frederic Y; Brochot, Céline

    2016-01-01

    Pharmacokinetics is the study of the fate of xenobiotics in a living organism. Physiologically based pharmacokinetic (PBPK) models provide realistic descriptions of xenobiotics' absorption, distribution, metabolism, and excretion processes. They model the body as a set of homogeneous compartments representing organs, and their parameters refer to anatomical, physiological, biochemical, and physicochemical entities. They offer a quantitative mechanistic framework to understand and simulate the time-course of the concentration of a substance in various organs and body fluids. These models are well suited for performing extrapolations inherent to toxicology and pharmacology (e.g., between species or doses) and for integrating data obtained from various sources (e.g., in vitro or in vivo experiments, structure-activity models). In this chapter, we describe the practical development and basic use of a PBPK model from model building to model simulations, through implementation with an easily accessible free software. PMID:27311461

  18. Modeling the time dependent biodistribution of Samarium-153 ethylenediamine tetramethylene phosphonate using compartmental analysis

    PubMed Central

    Abbasian, Parandoush; Foroghy, Monika; Jalilian, Amir Reza; Hakimi, Amir; Shirvani-Arani, Simindokht

    2013-01-01

    Aim The main purpose of this work was to develop a pharmacokinetic model for the bone pain palliation agent Samarium-153 ethylenediamine tetramethylene phosphonate ([153Sm]-EDTMP) in normal rats to analyze the behavior of the complex. Background The use of compartmental analysis allows a mathematical separation of tissues and organs to determine the concentration of activity in each fraction of interest. Biodistribution studies are expensive and difficult to carry out in humans, but such data can be obtained easily in rodents. Materials and methods We have developed a physiologically based pharmacokinetic model for scaling up activity concentration in each organ versus time. The mathematical model uses physiological parameters including organ volumes, blood flow rates, and vascular permabilities; the compartments (organs) are connected anatomically. This allows the use of scale-up techniques to predict new complex distribution in humans in each organ. Results The concentration of the radiopharmaceutical in various organs was measured at different times. The temporal behavior of biodistribution of 153Sm-EDTMP was modeled and drawn as a function of time. Conclusions The variation of pharmaceutical concentration in all organs is described with summation of 6–10 exponential terms and it approximates our experimental data with precision better than 2%. PMID:24936338

  19. Pharmacokinetics, pharmacodynamics and safety of CEP-26401, a high-affinity histamine-3 receptor antagonist, following single and multiple dosing in healthy subjects.

    PubMed

    Spiegelstein, Ofer; Stevens, Jasper; Van Gerven, Joop; Nathan, Pradeep J; Maynard, James P; Mayleben, David W; Hellriegel, Edward; Yang, Ronghua

    2016-10-01

    CEP-26401 is a novel orally active, brain-penetrant, high-affinity histamine H3 receptor (H3R) antagonist, with potential therapeutic utility in cognition enhancement. Two randomized, double-blind, placebo-controlled dose escalation studies with single (0.02 to 5 mg) or multiple administration (0.02 to 0.5 mg once daily) of CEP-26401 were conducted in healthy subjects. Plasma and urine samples were collected to investigate CEP-26401 pharmacokinetics. Pharmacodynamic endpoints included a subset of tasks from the Cambridge Neuropsychological Test Automated Battery (CANTAB) and nocturnal polysomnography. Population pharmacokinetic-pharmacodynamic modeling was conducted on one CANTAB and one polysomnography parameter of interest. CEP-26401 was slowly absorbed (median tmax range 3-6 hours) and the mean terminal elimination half-life ranged from 24-60 hours. Steady-state plasma concentrations were achieved within six days of dosing. CEP-26401 exhibits dose- and time-independent pharmacokinetics, and renal excretion is a major elimination pathway. CEP-26401 had a dose-dependent negative effect on sleep, with some positive effects on certain CANTAB cognitive parameters seen at lower concentrations. The derived three compartment population pharmacokinetic model, with first-order absorption and elimination, accurately described the available pharmacokinetic data. CEP-26401 was generally well tolerated up to 0.5 mg/day with most common treatment related adverse events being headache and insomnia. Further clinical studies are required to establish the potential of low-dose CEP-26401 in cognition enhancement.

  20. Long-Term Efficacy, Safety, and Pharmacokinetics of Drisapersen in Duchenne Muscular Dystrophy: Results from an Open-Label Extension Study

    PubMed Central

    Goemans, Nathalie M.; Tulinius, Már; van den Hauwe, Marleen; Kroksmark, Anna-Karin; Buyse, Gunnar; Wilson, Rosamund J.; van Deutekom, Judith C.; de Kimpe, Sjef J.; Lourbakos, Afrodite; Campion, Giles

    2016-01-01

    Background Drisapersen induces exon 51 skipping during dystrophin pre-mRNA splicing and allows synthesis of partially functional dystrophin in Duchenne muscular dystrophy (DMD) patients with amenable mutations. Methods This 188-week open-label extension of the dose-escalation study assessed the long-term efficacy, safety, and pharmacokinetics of drisapersen (PRO051/GSK2402968), 6 mg/kg subcutaneously, in 12 DMD subjects. Dosing was once weekly for 72 weeks. All subjects had a planned treatment interruption (weeks 73–80), followed by intermittent dosing (weeks 81–188). Results Subjects received a median (range) total dose of 5.93 (5.10 to 6.02) mg/kg drisapersen. After 177 weeks (last efficacy assessment), median (mean [SD]) six-minute walk distance (6MWD) improved by 8 (-24.5 [161]) meters for the 10 subjects able to complete the 6MWD at baseline (mean age [SD]: 9.5 [1.9] years). These statistics include 2 subjects unable to complete the test at later visits and who scored “zero”. When only the 8 ambulant subjects at week 177 were taken into account, a median (mean [SD]) increase of 64 (33 [121]) meters in 6MWD was observed. Of 7 subjects walking ≥330 m at extension baseline, 5 walked farther at week 177. Of 3 subjects walking <330 m, 2 lost ambulation, while 1 declined overall but walked farther at some visits. Over the 188 weeks, the most common adverse events were injection-site reactions, raised urinary α1-microglobulin and proteinuria. Dystrophin expression was detected in all muscle biopsies obtained at week 68 or 72. Conclusion Drisapersen was generally well tolerated over 188 weeks. Possible renal effects, thrombocytopenia and injection-site reactions warrant continued monitoring. Improvements in the 6MWD at 12 weeks were sustained after 3.4 years of dosing for most patients. For a small, uncontrolled study, the outcomes are encouraging, as natural history studies would anticipate a decline of over 100 meters over a 3-year period in a comparable

  1. Dynamic Biodistribution of Icaritin and Its Phase-II Metabolite in Rat Tissues by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Zhang, Shuang-Qing

    2016-01-01

    Icaritin (ICT), a major component in herb Epimedium brevicornum Maxim., shows beneficial effects for the treatment of osteoporosis and various cancers, and is predominantly metabolized to glucuronidated icaritin (GICT). Although clinical trials of ICT have exhibited good safety and tolerance, the dynamic bioditributions of ICT and GICT have not been reported. In the present study, the chemical structure of GICT was firstly reported, and a reliable ultra-high performance liquid chromatography-tandem mass spectrometry method (UHPLC-MS/MS) was firstly established for the simultaneous quantifications of ICT and GICT in rat tissues. The dynamic distribution of ICT and GICT in rat tissues and their pharmacokinetic parameters have been reported for the first time. ICT, GICT and the internal standard coumestrol were separated on a C18 column with a gradient mobile phase of acetonitrile and water containing ammonium formate and formic acid at a flow rate of 0.3 mL min(-1). The analytes were quantified by a triple quadrupole tandem mass spectrometer in the negative ionization mode. The lower limit of quantification values for ICT and GICT were 0.2 and 2 ng mL(-1), respectively. Good selectivity, linearity, accuracy, precision and recovery were achieved, and no significant matrix effect was observed. The UHPLC-MS/MS was firstly applied to a dynamic biodistribution study of ICT and GICT in rats, following an intraperitoneal administration of ICT at a dose of 10 mg kg(-1). PMID:27302583

  2. Toxicology and Biodistribution Studies for MGH2.1, an Oncolytic Virus that Expresses Two Prodrug-activating Genes, in Combination with Prodrugs

    PubMed Central

    Kasai, Kazue; Nakashima, Hiroshi; Liu, Fang; Kerr, Samantha; Wang, Jiang; Phelps, Mitch; Potter, Philip M; Goins, William B; Fernandez, Soledad A; Chiocca, E Antonio

    2013-01-01

    MGH2.1 is a herpes simplex virus type 1 (HSV1) oncolytic virus that expresses two prodrug-activating transgenes: the cyclophosphamide (CPA)-activating cytochrome P4502B1 (CYP2B1) and the CPT11-activating secreted human intestinal carboxylesterase (shiCE). Toxicology and biodistribution of MGH2.1 in the presence/absence of prodrugs was evaluated in mice. MGH2.1 ± prodrugs was cytotoxic to human glioma cells, but not to normal cells. Pharmacokinetically, intracranial MGH2.1 did not significantly alter the metabolism of intraperitoneally (i.p.) administered prodrugs in mouse plasma, brain, or liver. MGH2.1 did not induce an acute inflammatory reaction. MGH2.1 DNA was detected in brains of mice inoculated with 108 pfus for up to 60 days. However, only one animal showed evidence of viral gene expression at this time. Expression of virally encoded genes was restricted to brain. Intracranial inoculation of MGH2.1 did not induce lethality at 108 pfus in the absence of prodrugs and at 106 pfus in the presence of prodrugs. This study provides safety and toxicology data justifying a possible clinical trial of intratumoral injection of MGH2.1 with peripheral administration of CPA and/or CPT11 prodrugs in humans with malignant gliomas. PMID:23922029

  3. Pharmacokinetics and Safety of FV-100, a Novel Oral Anti-Herpes Zoster Nucleoside Analogue, Administered in Single and Multiple Doses to Healthy Young Adult and Elderly Adult Volunteers▿

    PubMed Central

    Pentikis, Helen S.; Matson, Mark; Atiee, George; Boehlecke, Brian; Hutchins, Jeff T.; Patti, Joseph M.; Henson, Geoffrey W.; Morris, Amy

    2011-01-01

    FV-100 is the prodrug of the highly potent anti-varicella zoster virus bicyclic nucleoside analogue CF-1743. To characterize the pharmacokinetics and safety of oral FV-100, 3 randomized, double-blind, placebo-controlled clinical trials were conducted: (i) a single-ascending-dose study in 32 healthy subjects aged 18 to 55 years (100-, 200-, 400-, and 800-mg doses) with an evaluation of the food effect in the 400-mg group; (ii) a multiple-ascending-dose study in 48 subjects aged 18 to 55 years (100 mg once daily [QD], 200 mg QD, 400 mg QD, 400 mg twice a day, and 800 mg QD for 7 days); and (iii) a 2-part study in subjects aged 65 years and older with a single 400-mg dose in 15 subjects and a 400-mg QD dosing regimen for 7 days in 12 subjects. FV-100 was rapidly and extensively converted to CF-1743, the concentration of which remained above that required to reduce viral activity by 50% for the 24-hour dosing period. Renal excretion of CF-1743 was very low. A high-fat meal reduced exposure to CF-1743; a low-fat meal did not. Pharmacokinetic parameters for the elderly subjects were comparable to those for the younger subjects. FV-100 was well tolerated by all subjects. The pharmacokinetic and safety profiles of FV-100 support its continued investigation for the treatment of herpes zoster and prevention of postherpetic neuralgia with once-daily dosing and without dose modifications for elderly or renally impaired patients. PMID:21444712

  4. Image-driven pharmacokinetics: nanomedicine concentration across space and time.

    PubMed

    Brill, Dab A; MacKay, J Andrew

    2015-01-01

    Clinical pharmacokinetics (PK) primarily measures the concentration of drugs in the blood. For nanomedicines it may be more relevant to determine concentration within a target tissue. The emerging field of image-driven PK, which utilizes clinically accepted molecular imaging technology, empirically and noninvasively, measures concentration in multiple tissues. Image-driven PK represents the intersection of PK and biodistribution, combining to provide models of concentration across space and time. Image-driven PK can be used both as a research tool and in the clinic. This review explores the history of pharmacokinetics, technologies used in molecular imaging (especially positron emission tomography) and research using image-driven pharmacokinetic analysis. When standardized, image-driven PK may have significant implications in preclinical development as well as clinical optimization of targeted nanomedicines.

  5. Synthesis and biodistribution of radioiodinated nicotine analogs

    SciTech Connect

    Chan, S.M.; Basmadjian, G.P.; Marten, D.F.; Sadek, S.; Magarian, R.A.; Grunder, J.R.; Ice, R.D.

    1984-01-01

    The authors reported previously on the synthesis and biodistribution of radioiodinated 5-iodonicotine. In their continuous effort to search for a potential brain as well as adrenal medulla imaging agent, the authors synthesized four radioiodinated nicotine analogs. The labeled compounds were prepared by brominating nicotinic acid, and reacting the acylated product with the appropriate amines to give the respective amides which were then reduced with diborane to the amines. I-125 labeling was done by halogen exchange. Biodistribution studies performed in female Sprague-Dawley rats showed that all these compounds were taken up rapidly by the brain and the adrenal. The highest uptake of all these compounds in both organs occurred at 2 minutes after tail vein injections. The organ:blood ratios at 2 minutes and the T/sub 1/3/ (min.) of radioactivity in these organs were compared.

  6. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies.

    PubMed

    Nallathamby, Prakash D; Mortensen, Ninell P; Palko, Heather A; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J; Gu, Baohua; Roeder, Ryan K; Wang, Wei; Retterer, Scott T

    2015-04-21

    described here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials.

  7. New Surface Radiolabeling Schemes of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) for Biodistribution Studies

    DOE PAGES

    Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; Malfatti, Mike; Smith, Catherine; Sonnett, Jim; Doktycz, Mitchel John; Gu, Baohua; Roeder, Ryan; Wang, Wei; et al

    2015-01-01

    approach described here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials.« less

  8. New Surface Radiolabeling Schemes of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) for Biodistribution Studies

    SciTech Connect

    Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; Malfatti, Mike; Smith, Catherine; Sonnett, Jim; Doktycz, Mitchel John; Gu, Baohua; Roeder, Ryan; Wang, Wei; Retterer, Scott T.

    2015-01-01

    radiolabeling approach described here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials.

  9. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies†

    PubMed Central

    Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J.; Gu, Baohua; Roeder, Ryan K.; Wang, Wei; Retterer, Scott T.

    2016-01-01

    described here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials. PMID:25790032

  10. Biodistribution of mesenchymal stem/stromal cells in a preclinical setting.

    PubMed

    Sensebé, Luc; Fleury-Cappellesso, Sandrine

    2013-01-01

    Due to their multi/pluripotency and immunosuppressive properties, mesenchymal stem/stromal cells (MSCs) are important tools for treatment of immune disorders and tissue repair. The increasing uses of MSCs lead to the development of production processes that need to be in accordance with good manufacturing practices (GMP). In Europe, MSCs are somatic cell-therapy products, referred to as advanced-therapy medicinal products (ATMPs), and in the United States MSCs must comply with current good tissue practice requirements. The safety and efficacy of MSCs must be ensured, whatever the cell source, and studies of dose and biodistribution are important aspects of safety testing. Preclinical data on biodistribution and pharmacodynamics are mandatory for approval. It is important to demonstrate that MSCs do not have unwanted homing that could drive to inappropriate differentiation in some organ or to support cancer development as suggested in some experiments. All these aspects should be addressed in a risk-based approach according to recently published guidelines by EMA. In the present article, we summarize the main approaches for labeling and tracking of infused MSCs, report on current animal models, and give an overview of available results on biodistribution. PMID:24222773

  11. Predicting neonatal pharmacokinetics from prior data using population pharmacokinetic modeling.

    PubMed

    Wang, Jian; Edginton, Andrea N; Avant, Debbie; Burckart, Gilbert J

    2015-10-01

    Selection of the first dose for neonates in clinical trials is very challenging. The objective of this analysis was to assess if a population pharmacokinetic (PK) model developed with data from infants to adults is predictive of neonatal clearance and to evaluate what age range of prior PK data is needed for informative modeling to predict neonate exposure. Two sources of pharmacokinetic data from 8 drugs were used to develop population models: (1) data from all patients > 2 years of age, and (2) data from all nonneonatal patients aged > 28 days. The prediction error based on the models using data from subjects > 2 years of age showed bias toward overprediction, with median average fold error (AFE) for CL predicted/CLobserved greater than 1.5. The bias for predicting neonatal PK was improved when using all prior PK data including infants as opposed to an assessment without infant PK data, with the median AFE 0.91. As an increased number of pediatric trials are conducted in neonates under the Food and Drug Administration Safety and Innovation Act, dose selection should be based on the best estimates of neonatal pharmacokinetics and pharmacodynamics prior to conducting efficacy and safety studies in neonates. PMID:25907280

  12. Synthesis and biodistribution studies of technetium-99m-labeled aminopeptidase N inhibitor conjugates.

    PubMed

    Pathuri, Gopal; Hedrick, Andria F; Disch, Bryan C; Ihnat, Michael A; Awasthi, Vibhudutta; Gali, Hariprasad

    2012-07-15

    Probestin is a potent aminopeptidase N (APN) inhibitor. Four probestin conjugates containing a tripeptide chelator (N(3)S) and a PEG(2) linker were synthesized and radiolabeled with Tc-99m. The number of -COOH groups on the chelator was altered to increase the excretion of the radiotracer from blood stream via the renal-urinary pathway and to decrease its hepatobiliary uptake. Biodistribution of the radiolabeled conjugates was evaluated in healthy CF-1™ mice at 1h post-injection. The results revealed that the Tc-99m labeled probestin conjugate preferentially (>85% injected dose) excreted via the renal route when an aspartic acid residue was added to the linker (conjugate 4). These results suggest that the pharmacokinetic properties of probestin-based APN-targeted agents could be optimized by adding an appropriate amino acid residue in between the linker and the payload.

  13. Magnetic resonance imaging of folic acid-coated magnetite nanoparticles reflects tissue biodistribution of long-acting antiretroviral therapy

    PubMed Central

    Li, Tianyuzi; Gendelman, Howard E; Zhang, Gang; Puligujja, Pavan; McMillan, JoEllyn M; Bronich, Tatiana K; Edagwa, Benson; Liu, Xin-Ming; Boska, Michael D

    2015-01-01

    Regimen adherence, systemic toxicities, and limited drug penetrance to viral reservoirs are obstacles limiting the effectiveness of antiretroviral therapy (ART). Our laboratory’s development of the monocyte-macrophage-targeted long-acting nanoformulated ART (nanoART) carriage provides a novel opportunity to simplify drug-dosing regimens. Progress has nonetheless been slowed by cumbersome, but required, pharmacokinetic (PK), pharmacodynamics, and biodistribution testing. To this end, we developed a small magnetite ART (SMART) nanoparticle platform to assess antiretroviral drug tissue biodistribution and PK using magnetic resonance imaging (MRI) scans. Herein, we have taken this technique a significant step further by determining nanoART PK with folic acid (FA) decorated magnetite (ultrasmall superparamagnetic iron oxide [USPIO]) particles and by using SMART particles. FA nanoparticles enhanced the entry and particle retention to the reticuloendothelial system over nondecorated polymers after systemic administration into mice. These data were seen by MRI testing and validated by comparison with SMART particles and direct evaluation of tissue drug levels after nanoART. The development of alendronate (ALN)-coated magnetite thus serves as a rapid initial screen for the ability of targeting ligands to enhance nanoparticle-antiretroviral drug biodistribution, underscoring the value of decorated magnetite particles as a theranostic tool for improved drug delivery. PMID:26082630

  14. Magnetic resonance imaging of folic acid-coated magnetite nanoparticles reflects tissue biodistribution of long-acting antiretroviral therapy.

    PubMed

    Li, Tianyuzi; Gendelman, Howard E; Zhang, Gang; Puligujja, Pavan; McMillan, JoEllyn M; Bronich, Tatiana K; Edagwa, Benson; Liu, Xin-Ming; Boska, Michael D

    2015-01-01

    Regimen adherence, systemic toxicities, and limited drug penetrance to viral reservoirs are obstacles limiting the effectiveness of antiretroviral therapy (ART). Our laboratory's development of the monocyte-macrophage-targeted long-acting nanoformulated ART (nanoART) carriage provides a novel opportunity to simplify drug-dosing regimens. Progress has nonetheless been slowed by cumbersome, but required, pharmacokinetic (PK), pharmacodynamics, and biodistribution testing. To this end, we developed a small magnetite ART (SMART) nanoparticle platform to assess antiretroviral drug tissue biodistribution and PK using magnetic resonance imaging (MRI) scans. Herein, we have taken this technique a significant step further by determining nanoART PK with folic acid (FA) decorated magnetite (ultrasmall superparamagnetic iron oxide [USPIO]) particles and by using SMART particles. FA nanoparticles enhanced the entry and particle retention to the reticuloendothelial system over nondecorated polymers after systemic administration into mice. These data were seen by MRI testing and validated by comparison with SMART particles and direct evaluation of tissue drug levels after nanoART. The development of alendronate (ALN)-coated magnetite thus serves as a rapid initial screen for the ability of targeting ligands to enhance nanoparticle-antiretroviral drug biodistribution, underscoring the value of decorated magnetite particles as a theranostic tool for improved drug delivery. PMID:26082630

  15. Radiolabeling of Cramoll 1,4: Evaluation of the Biodistribution

    PubMed Central

    Ferreira de Carvalho Patricio, Beatriz; Lima-Ribeiro, Maria Helena Madruga; dos Santos Correia, Maria Tereza; dos Anjos Carneiro-Leão, Ana Maria; de Souza Albernaz, Marta; Barboza, Thiago; de Souza, Sergio Augusto Lopes; Santos-Oliveira, Ralph

    2011-01-01

    The cramoll 1,4 is a well-studied lectin. However, few studies about its biodistribution have been done before. In this study, we radiolabeled the cramol 1,4 with Tc-99m and analyzed the biodistribution. The results showed that the cramol has an abnormal uptake by the bowel with reflections on its clearance mechanism. PMID:21760823

  16. Mathematical modeling and simulation in animal health - Part II: principles, methods, applications, and value of physiologically based pharmacokinetic modeling in veterinary medicine and food safety assessment.

    PubMed

    Lin, Z; Gehring, R; Mochel, J P; Lavé, T; Riviere, J E

    2016-10-01

    This review provides a tutorial for individuals interested in quantitative veterinary pharmacology and toxicology and offers a basis for establishing guidelines for physiologically based pharmacokinetic (PBPK) model development and application in veterinary medicine. This is important as the application of PBPK modeling in veterinary medicine has evolved over the past two decades. PBPK models can be used to predict drug tissue residues and withdrawal times in food-producing animals, to estimate chemical concentrations at the site of action and target organ toxicity to aid risk assessment of environmental contaminants and/or drugs in both domestic animals and wildlife, as well as to help design therapeutic regimens for veterinary drugs. This review provides a comprehensive summary of PBPK modeling principles, model development methodology, and the current applications in veterinary medicine, with a focus on predictions of drug tissue residues and withdrawal times in food-producing animals. The advantages and disadvantages of PBPK modeling compared to other pharmacokinetic modeling approaches (i.e., classical compartmental/noncompartmental modeling, nonlinear mixed-effects modeling, and interspecies allometric scaling) are further presented. The review finally discusses contemporary challenges and our perspectives on model documentation, evaluation criteria, quality improvement, and offers solutions to increase model acceptance and applications in veterinary pharmacology and toxicology.

  17. Pharmacokinetics, safety, and tolerability of BAY 12-9566 and nonsteroidal anti-inflammatory agents (naproxen, ibuprofen) during coadministration in patients with osteoarthritis.

    PubMed

    Shah, A; Woodruff, M; Agarwal, V; Liu, P; Sundaresan, P

    2001-03-01

    The pharmacokinetic interactions between BAY 12-9566 and two nonsteroidal anti-inflammatory drugs (NSAIDs), naproxen and ibuprofen, were investigated in osteoarthritis (OA) patients. The study comprised six groups: two NSAID groups with three levels of treatment (BAY 12-9566 400 mg, BAY 12-9566 100 mg, and placebo). Plasma pharmacokinetic parameters (AUC(0-tau), Cmax, and tmax) were determined for each treatment group following 5 days of NSAID administration, 14 days of BAY 12-9566 administration, and 14 days of concurrent NSAID and BAY 12-9566 administration. For most conditions, the total plasma drug concentrations of both NSAID and BAY 12-9566 were diminished by coadministration; total plasma BAY 12-9566 was not affected by ibuprofen treatment. Importantly, the free drug concentrations were largely unaffected by coadministration. Most side effects were mild or moderate in intensity, and all events, with the exception of headache, were reported in both NSAID groups and in both placebo and BAY 12-9566 groups.

  18. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies

    NASA Astrophysics Data System (ADS)

    Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J.; Gu, Baohua; Roeder, Ryan K.; Wang, Wei; Retterer, Scott T.

    2015-04-01

    here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials.Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 +/- 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90-110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with 14C, with a final activity of 0.097 nCi mg-1 of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical

  19. Bioavailability and biodistribution of nanodelivered lutein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the study was to evaluate the ability of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) to enhance lutein bioavailability. The bioavailability of free lutein and PLGA-NP lutein in rats was assessed by determining plasma pharmacokinetics and deposition in selected tissues. Lutein ...

  20. Biodistribution of meglumine antimoniate in healthy and Leishmania (Leishmania) infantum chagasi-infected BALB/c mice.

    PubMed

    Borborema, Samanta Etel Treiger; Osso Jr, João Alberto; Andrade Jr, Heitor Franco de; Nascimento, Nanci do

    2013-08-01

    Pentavalent antimonials such as meglumine antimoniate (MA) are the primary treatments for leishmaniasis, a complex disease caused by protozoan parasites of the genus Leishmania . Despite over 70 years of clinical use, their mechanisms of action, toxicity and pharmacokinetics have not been fully elucidated. Radiotracer studies performed on animals have the potential to play a major role in pharmaceutical development. The aims of this study were to prepare an antimony radiotracer by neutron irradiation of MA and to determine the biodistribution of MA in healthy and Leishmania (Leishmania) infantum chagasi-infected mice. MA (Glucantime®) was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes, ¹²²Sb and ¹²⁴Sb, with high radionuclidic purity and good specific activity. This irradiated compound presented anti-leishmanial activity similar to that of non-irradiated MA in both in vitro and in vivo evaluations. In the biodistribution studies, healthy mice showed higher uptake of antimony in the liver than infected mice and elimination occurred primarily through biliary excretion, with a small proportion of the drug excreted by the kidneys. The serum kinetic curve was bi-exponential, with two compartments: the central compartment and another compartment associated with drug excretion. Radiotracers, which can be easily produced by neutron irradiation, were demonstrated to be an interesting tool for answering several questions regarding antimonial pharmacokinetics and chemotherapy.

  1. Pharmacokinetics-pharmacology disconnection of herbal medicines and its potential solutions with cellular pharmacokinetic-pharmacodynamic strategy.

    PubMed

    Zhang, Jingwei; Zhou, Fang; Lu, Meng; Ji, Wei; Niu, Fang; Zha, Weibin; Wu, Xiaolan; Hao, Haiping; Wang, Guangji

    2012-06-01

    Recently, there is a global trend of using herbal medicines to treat various chronic diseases and promote health. But the controversy over the safety and efficacy of herbal medicines is a focus of attention, primarily because of the many unknown and unrevealed natures of herbal medicines, which strongly restricts their application and development. Pharmacokinetics is a bridge linking the herbal medicines and their pharmacological responses. It is assumed in traditional pharmacokinetics that an excellent drug should have appropriate pharmacokinetic behaviours and its pharmacological effect is related with plasma drug concentrations. However, most herbal medicines exhibit excellent pharmacological responses despite poor pharmacokinetic behaviours. As most drugs are intracellulartargeted, we put forward cellular pharmacokinetic-pharmacodynamic strategy, which is focused on the intracellular fate of drugs. This strategy could partially explain the marked pharmacological activities of herbal medicines from their intracellular pharmacokinetic behaviours, rather than their plasma concentrations. It is a helpful complementarity to traditional pharmacokinetics, and takes a potential role in the research and development of new herb-origined drugs. In this review, the pharmacokinetics-pharmacology disconnections of herbal medicines (such as ginseng, berberine and danshen) are retrospected. Then our proposed cellular pharmacokineticpharmacodynamic strategy, its characteristics, as well as its research procedures are described, followed by the subcellular distributions of drug transporters and metabolic enzymes which are the determinants of cellular pharmacokinetics-pharmacodynamics. Finally, our successful applications of cellular pharmacokinetic-pharmacodynamic strategy in elucidating ginsenoside Rh2 as an adjuvant agent and tanshinone IIA as an anticancer agent are illustrated.

  2. Pharmacokinetics of oral sitamaquine taken with or without food and safety and efficacy for treatment of visceral leishmaniais: a randomized study in Bihar, India.

    PubMed

    Sundar, Shyam; Sinha, Prabhat K; Dixon, Susan A; Buckley, Renata; Miller, Ann K; Mohamed, Khadeeja; Al-Banna, Mahir

    2011-06-01

    This randomized, open-label study of patients in India with visceral leishmaniasis (VL) investigated the effect of food on sitamaquine and desethyl-sitamaquine pharmacokinetics. Patients were randomized to receive oral sitamaquine, 2 mg/kg/day, once a day for 21 days across four cohorts (n = 41) (fasted/fed, fed/fasted, fed/fed, and fasted/fasted) over two periods (days 1-10 and 11-21), or intravenous amphotericin B (AmB), 1 mg/kg every other day for 30 days (n = 20). Mean day 21 pharmacokinetics across the four cohorts were sitamaquine, area under curve (AUC)((0-τ)) = 6,627-8,903 ng.hr/mL, AUC((0-16)) = 4,859-6,633 ng.hr/mL, maximum plasma concentration (C(max)) = 401-570 ng/mL, apparent terminal half-life (t(1/2)) = 18.3-22.8 hr, time to reach C(max) (t(max)) = 3.5-6 hr; and desethyl-sitamaquine, AUC((0-τ)) = 2,307-3,163 ng.hr/mL, C(max) = 109-154 ng/mL, t(1/2) = 23.0-27.9 hr, t(max) = 2-10 hr, with no significant food effect. On-therapy adverse events were observed for sitamaquine in 4 (10%) of 41 patients and for AmB in 17 (85%) of 20 patients. The final clinical cure (day 180) was 85% (95% confidence interval = 70.8-94.4%) for sitamaquine and 95% (95% confidence interval = 75.1-99.9) for AmB. Sitamaquine can be taken regardless of food intake, was generally well tolerated, and showed potential efficacy in patients with visceral leishmaniasis. PMID:21633025

  3. Development of nano alpha-ketoglutarate nebulization formulation and its pharmacokinetic and safety evaluation in healthy human volunteers for cyanide poisoning.

    PubMed

    Sultana, Shaheen; Singh, Thakuri; Ahmad, Farhan Jalees; Bhatnagar, Aseem; Mittal, Gaurav

    2011-05-01

    Development of nano alpha-ketoglutarate (A-KG) nebulization formulation for neutralization of inhaled cyanide ion toxicity. Objectives of the present study were to (a) develop a novel A-KG nebulization formulation against cyanide poisoning, particularly hydrogen cyanide gas (b) validate its respiratory fraction in vitro and in vivo, and (c) create its pharmacokinetic data in human volunteers. The formulation was optimized on the basis of particle size of aerosolized droplets after nebulization in 6 volunteers. Gamma scintigraphy was used to quantify total and regional lung deposition of nebulized A-KG after radiolabeling it with Technetium-99m. The formulation was optimized using 30% ethanol-saline with particle size in the range of 300-500 nm. In vitro and in vivo studies showed that drug nebulization resulted in a significant respirable fraction of 65 ± 0.6% with whole lung deposition of 13 ± 1%. Human pharmacokinetic data was derived in 6 healthy human volunteers with peak serum concentration (C(max)) of 39 ± 3 μg/ml, while the area under curve (AUC) after inhalation was 376 ± 23 μg × h/ml indicating that the drug was rapidly and completely absorbed when targeted directly to lungs. Significant lung deposition of A-KG was achieved with the developed formulation. The formulation appears to have several advantages, including the potential of neutralizing inhaled CN(-) ions in the lungs themselves. It is a safe and efficacious procedure, suitable for hospital or ambulance use in accidental cyanide poisoning cases, or as a preventive approach for fire-rescue teams.

  4. Comparison of the Efficacy and Safety of a Pharmacokinetic Model-Based Dosing Scheme Versus a Conventional Fentanyl Dosing Regimen For Patient-Controlled Analgesia Immediately Following Robot-Assisted Laparoscopic Prostatectomy: A Randomized Clinical Trial.

    PubMed

    Jin, Seok-Joon; Lim, Hyeong-Seok; Kwon, Youn-Ju; Park, Se-Ung; Yi, Jung-Min; Chin, Ji-Hyun; Hwang, Jai-Hyun; Kim, Young-Kug

    2016-01-01

    Conventional, intravenous, patient-controlled analgesia, which is only administered by demand bolus without basal continuous infusion, is closely associated with inappropriate analgesia. Pharmacokinetic model-based dosing schemes can quantitatively describe the time course of drug effects and achieve optimal drug therapy. We compared the efficacy and safety of a conventional dosing regimen for intravenous patient-controlled analgesia that was administered by demand bolus without basal continuous infusion (group A) versus a pharmacokinetic model-based dosing scheme performed by decreasing the dosage of basal continuous infusion according to the model-based simulation used to achieve a targeted concentration (group B) following robot-assisted laparoscopic prostatectomy.In total, 70 patients were analyzed: 34 patients in group A and 36 patients in group B. The postoperative opioid requirements, pain scores assessed by the visual analog scale, and adverse events (eg, nausea, vomiting, pruritis, respiratory depression, desaturation, sedation, confusion, and urinary retention) were compared on admission to the postanesthesia care unit and at 0.5, 1, 4, 24, and 48 h after surgery between the 2 groups. All patients were kept for close observation in the postanesthesia care unit for 1 h, and then transferred to the general ward.The fentanyl requirements in the postanesthesia care unit for groups A and B were 110.0 ± 46.4 μg and 77.5 ± 35.3 μg, respectively. The pain scores assessed by visual analog scale at 0.5, 1, 4, and 24 h after surgery in group B were significantly lower than in group A (all P < 0.05). There were no differences in the adverse events between the 2 groups.We found that the pharmacokinetic model-based dosing scheme resulted in lower opioid requirements, lower pain scores, and no significant adverse events in the postanesthesia care unit following robot-assisted laparoscopic prostatectomy in comparison with conventional dosing

  5. A phase Ib multiple ascending dose study evaluating safety, pharmacokinetics, and early clinical response of brodalumab, a human anti-IL-17R antibody, in methotrexate-resistant rheumatoid arthritis

    PubMed Central

    2013-01-01

    Introduction The aim of this study was to evaluate the safety, pharmacokinetics, and clinical response of brodalumab (AMG 827), a human, anti-IL-17 receptor A (IL-17RA) monoclonal antibody in subjects with moderate-to-severe rheumatoid arthritis (RA). Methods This phase Ib, randomized, placebo-controlled, double-blind multiple ascending dose study enrolled subjects with moderate to severe RA (≥6/66 swollen and ≥8/68 tender joints). Subjects were randomized 3:1 to receive brodalumab (50 mg, 140 mg, or 210 mg subcutaneously every two weeks for 6 doses per group; or 420 mg or 700 mg intravenously every 4 weeks for two doses per group) or placebo. Endpoints included incidence of adverse events (AEs) and pharmacokinetics. Exploratory endpoints included pharmacodynamics, and improvements in RA clinical metrics. Results Forty subjects were randomized to investigational product; one subject discontinued due to worsening of RA (placebo). The study was not designed to assess efficacy. AEs were reported by 70% (7/10) of placebo subjects and 77% (22/30) of brodalumab subjects. Three serious AEs were reported in two subjects; there were no opportunistic infections. Brodalumab treatment resulted in inhibition of IL-17 receptor signaling and receptor occupancy on circulating leukocytes. No treatment effects were observed with individual measures of RA disease activity. On day 85 (week 13) 37% (11/30) of brodalumab subjects and 22% (2/9) of placebo subjects achieved ACR20; 7% (2/30) brodalumab subjects and 11% (1/9) of placebo subjects achieved ACR50; and 0% (0/30) brodalumab subjects and 0% (0/9) of placebo subjects achieved ACR70. Conclusions Multiple dose administration of brodalumab was tolerated in subjects with active RA. There was no evidence of a clinical response to brodalumab in subjects with RA. Trial registration ClinicalTrials.gov, NCT00771030 PMID:24286136

  6. Safety and pharmacokinetics of single and multiple intravenous bolus doses of diclofenac sodium compared with oral diclofenac potassium 50 mg: A randomized, parallel-group, single-center study in healthy subjects.

    PubMed

    Munjal, Sagar; Gautam, Anirudh; Okumu, Franklin; McDowell, James; Allenby, Kent

    2016-01-01

    In a randomized, parallel-group, single-center study in 42 healthy adults, the safety and pharmacokinetic parameters of an intravenous formulation of 18.75 and 37.5 mg diclofenac sodium (DFP-08) following single- and multiple-dose bolus administration were compared with diclofenac potassium 50 mg oral tablets. Mean AUC0-inf values for a 50-mg oral tablet and an 18.75-mg intravenous formulation were similar (1308.9 [393.0]) vs 1232.4 [147.6]). As measured by the AUC, DFP-08 18.75 mg and 37.5 mg demonstrated dose proportionality for extent of exposure. One subject in each of the placebo and DFP-08 18.75-mg groups and 2 subjects in the DFP-08 37.5-mg group reported adverse events that were considered by the investigator to be related to the study drug. All were mild in intensity and did not require treatment. Two subjects in the placebo group and 1 subject in the DFP-08 18.75-mg group reported grade 1 thrombophlebitis; no subjects reported higher than grade 1 thrombophlebitis after receiving a single intravenous dose. The 18.75- and 37.5-mg doses of intravenous diclofenac (single and multiple) were well tolerated for 7 days. Additional efficacy and safety studies are required to fully characterize the product.

  7. Boron neutron capture therapy for glioblastoma: improvement of boron biodistribution by hyaluronidase.

    PubMed

    Haselsberger, K; Radner, H; Pendl, G

    1998-09-11

    Boron neutron capture therapy (BNCT) represents a highly promising therapeutic alternative for the treatment of the most common malignant brain tumor, glioblastoma multiforme. Both the efficacy and safety of BNCT are greatly dependent on the pattern of 10B biodistribution. The present study investigates the influence of systemic hyaluronidase applied in combination with Na2B12H11SH (BSH), a boron carrier used in current clinical trials. The application of hyaluronidase was associated with a statistically significant improvement in the tumor/blood boron concentration ratio which suggests that hyaluronidase is capable of enhancing the therapeutic potential of BSH.

  8. A Single-Dose, Open-Label Study of the Pharmacokinetics, Safety, and Tolerability of Lisdexamfetamine Dimesylate in Individuals With Normal and Impaired Renal Function

    PubMed Central

    Ermer, James; Corcoran, Mary; Lasseter, Kenneth; Marbury, Thomas; Yan, Brian

    2016-01-01

    Background: Lisdexamfetamine (LDX) and d-amphetamine pharmacokinetics were assessed in individuals with normal and impaired renal function after a single LDX dose; LDX and d-amphetamine dialyzability was also examined. Methods: Adults (N = 40; 8/group) were enrolled in 1 of 5 renal function groups [normal function, mild impairment, moderate impairment, severe impairment/end-stage renal disease (ESRD) not requiring hemodialysis, and ESRD requiring hemodialysis] as estimated by glomerular filtration rate (GFR). Participants with normal and mild to severe renal impairment received 30 mg LDX; blood samples were collected predose and serially for 96 hours. Participants with ESRD requiring hemodialysis received 30 mg LDX predialysis and postdialysis separated by a washout period of 7–14 days. Predialysis blood samples were collected predose, serially for 72 hours, and from the dialyzer during hemodialysis; postdialysis blood samples were collected predose and serially for 48 hours. Pharmacokinetic end points included maximum plasma concentration (Cmax) and area under the plasma concentration versus time curve from time 0 to infinity (AUC0–∞) or to last assessment (AUClast). Results: Mean LDX Cmax, AUClast, and AUC0–∞ in participants with mild to severe renal impairment did not differ from those with normal renal function; participants with ESRD had higher mean Cmax and AUClast than those with normal renal function. d-amphetamine exposure (AUClast and AUC0–∞) increased and Cmax decreased as renal impairment increased. Almost no LDX and little d-amphetamine were recovered in the dialyzate. Conclusions: There seems to be prolonged d-amphetamine exposure after 30 mg LDX as renal impairment increases. In individuals with severe renal impairment (GFR: 15 ≤ 30 mL·min−1·1.73 m−2), the maximum LDX dose is 50 mg/d; in patients with ESRD (GFR: <15 mL·min−1·1.73 m−2), the maximum LDX dose is 30 mg/d. Neither LDX nor d-amphetamine is dialyzable. PMID

  9. Safety, efficacy, and pharmacokinetics/pharmacodynamics of daclizumab (anti-CD25) in patients with adult T-cell leukemia/lymphoma

    PubMed Central

    Berkowitz, Jonathan L.; Janik, John E.; Stewart, Donn M.; Jaffe, Elaine S.; Stetler-Stevenson, Maryalice; Shih, Joanna H.; Fleisher, Thomas A.; Turner, Maria; Urquhart, Nicole E.; Wharfe, Gilian H.; Figg, William D.; Peer, Cody J.; Goldman, Carolyn K.; Waldmann, Thomas A.; Morris, John C.

    2014-01-01

    Interleukin-2 receptor α chain (CD25) is overexpressed in human T-cell leukemia virus 1 associated adult T-cell leukemia/lymphoma (ATL). Daclizumab a humanized monoclonal antibody blocks IL-2 binding by recognizing the interleukin-2 receptor α chain (CD25). We conducted a phase I/II trial of daclizumab in 34 patients with ATL. Saturation of surface CD25 on circulating ATL cells was achieved at all doses; however saturation on ATL cells in lymph nodes required 8 mg/kg. Up to 8 mg/kg of daclizumab administered every 3 weeks was well tolerated. No responses were observed in 18 patients with acute or lymphoma ATL; however, 6 partial responses were observed in 16 chronic and smoldering ATL patients. The pharmacokinetics / pharmacodynamics of daclizumab suggest that high-dose daclizumab would be more effective than low-dose daclizumab in treatment of lymphoid malignancies and autoimmune diseases (e.g., multiple sclerosis) since high-dose daclizumab is required to saturate IL-2R alpha in extravascular sites. PMID:25267440

  10. Safety.

    ERIC Educational Resources Information Center

    Education in Science, 1996

    1996-01-01

    Discusses safety issues in science, including: allergic reactions to peanuts used in experiments; explosions in lead/acid batteries; and inspection of pressure vessels, such as pressure cookers or model steam engines. (MKR)

  11. Evaluation of the safety, immunogenicity, and pharmacokinetic profile of a new, highly purified, heat-treated equine rabies immunoglobulin, administered either alone or in association with a purified, Vero-cell rabies vaccine.

    PubMed

    Lang, J; Attanath, P; Quiambao, B; Singhasivanon, V; Chanthavanich, P; Montalban, C; Lutsch, C; Pepin-Covatta, S; Le Mener, V; Miranda, M; Sabchareon, A

    1998-07-30

    A clinical evaluation of a new, purified, heat-treated equine rabies immunoglobulin (PHT-Erig), F(ab')2 preparation, was carried out in Thailand and in the Philippines-two countries where rabies is endemic. An initial prospective, randomised, controlled trial (Study 1), compared the safety and pharmacokinetics (serum concentrations of rabies antibodies) after administration either of PHT-Erig or of a commercially-available, equine rabies immune globulin (Erig PMC). A second trial (Study 2) simulated post-exposure rabies prophylaxis by using a reference cell culture vaccine, the purified Vero-cell rabies vaccine (PVRV), administered in association with either Erig PMC or PHT-Erig. In Study 1, 27 healthy, Thai adults received a 40 IU kg(-1) dose of either Erig PMC (n = 12) or PHT-Erig (n = 15) via the intramuscular (i.m.) route; half of the dose was injected into the deltoid area and the other half into the buttocks. Serum for rabies antibody determination and F(ab')2 concentration was collected at hours (H) 0, 6 and 12, and on day (D) 2, 3, 4, 6, 8, 10, 12 and 15. Both products were safe, with no serious adverse events, and in particular, no anaphylactic reactions or serum sickness was reported. A statistical comparison of the pharmacokinetic parameters did not demonstrate bioequivalence of the two products. Nonetheless, the relative bioavailability of 93% and the similar absorption rates suggest the pharmacokinetic profiles of Erig and PHT-Erig are similar. The antibody level in either group were low throughout the 15-day study period. The geometric mean titer (GMT) values ranged from group 0.027-0.117 IU ml(-1) in the Erig group and from 0.029 to 0.072 IU ml(-1) in the PHT-Erig. There was no significant difference between the evolution of GMT values for the two groups. In Study 2, 71 healthy volunteers received 40 IU kg(-1) via the intramuscular route of either Erig PMC (n = 36) or PHT-Erig (n = 35) on D0, in association with five doses of PVRV on D0, D3, D7, D14

  12. Preclinical Study of Single-Dose Moxidectin, a New Oral Treatment for Scabies: Efficacy, Safety, and Pharmacokinetics Compared to Two-Dose Ivermectin in a Porcine Model

    PubMed Central

    Bernigaud, Charlotte; Aho, Ludwig Serge; Dreau, Dominique; Kelly, Andrew; Sutra, Jean-François; Moreau, Francis; Lilin, Thomas; Botterel, Françoise; Guillot, Jacques; Chosidow, Olivier

    2016-01-01

    Background Scabies is one of the commonest dermatological conditions globally; however it is a largely underexplored and truly neglected infectious disease. Foremost, improvement in the management of this public health burden is imperative. Current treatments with topical agents and/or oral ivermectin (IVM) are insufficient and drug resistance is emerging. Moxidectin (MOX), with more advantageous pharmacological profiles may be a promising alternative. Methodology/Principal Findings Using a porcine scabies model, 12 pigs were randomly assigned to receive orally either MOX (0.3 mg/kg once), IVM (0.2 mg/kg twice) or no treatment. We evaluated treatment efficacies by assessing mite count, clinical lesions, pruritus and ELISA-determined anti-S. scabiei IgG antibodies reductions. Plasma and skin pharmacokinetic profiles were determined. At day 14 post-treatment, all four MOX-treated but only two IVM-treated pigs were mite-free. MOX efficacy was 100% and remained unchanged until study-end (D47), compared to 62% (range 26–100%) for IVM, with one IVM-treated pig remaining infected until D47. Clinical scabies lesions, pruritus and anti-S. scabiei IgG antibodies had completely disappeared in all MOX-treated but only 75% of IVM-treated pigs. MOX persisted ~9 times longer than IVM in plasma and skin, thereby covering the mite’s entire life cycle and enabling long-lasting efficacy. Conclusions/Significance Our data demonstrate that oral single-dose MOX was more effective than two consecutive IVM-doses, supporting MOX as potential therapeutic approach for scabies. PMID:27732588

  13. Phase I safety, pharmacokinetics, and pharmacogenetics study of the antituberculosis drug PA-824 with concomitant lopinavir-ritonavir, efavirenz, or rifampin.

    PubMed

    Dooley, Kelly E; Luetkemeyer, Anne F; Park, Jeong-Gun; Allen, Reena; Cramer, Yoninah; Murray, Stephen; Sutherland, Deborah; Aweeka, Francesca; Koletar, Susan L; Marzan, Florence; Bao, Jing; Savic, Rada; Haas, David W

    2014-09-01

    There is an urgent need for new antituberculosis (anti-TB) drugs, including agents that are safe and effective with concomitant antiretrovirals (ARV) and first-line TB drugs. PA-824 is a novel antituberculosis nitroimidazole in late-phase clinical development. Cytochrome P450 (CYP) 3A, which can be induced or inhibited by ARV and antituberculosis drugs, is a minor (∼20%) metabolic pathway for PA-824. In a phase I clinical trial, we characterized interactions between PA-824 and efavirenz (arm 1), lopinavir/ritonavir (arm 2), and rifampin (arm 3) in healthy, HIV-uninfected volunteers without TB disease. Participants in arms 1 and 2 were randomized to receive drugs via sequence 1 (PA-824 alone, washout, ARV, and ARV plus PA-824) or sequence 2 (ARV, ARV with PA-824, washout, and PA-824 alone). In arm 3, participants received PA-824 and then rifampin and then both. Pharmacokinetic sampling occurred at the end of each dosing period. Fifty-two individuals participated. Compared to PA-824 alone, plasma PA-824 values (based on geometric mean ratios) for maximum concentration (Cmax), area under the concentration-time curve from 0 to 24 h (AUC0-24), and trough concentration (Cmin) were reduced 28%, 35%, and 46% with efavirenz, 13%, 17%, and 21% with lopinavir-ritonavir (lopinavir/r) and 53%, 66%, and 85% with rifampin, respectively. Medications were well tolerated. In conclusion, lopinavir/r had minimal effect on PA-824 exposures, supporting PA-824 use with lopinavir/r without dose adjustment. PA-824 exposures, though, were reduced more than expected when given with efavirenz or rifampin. The clinical implications of these reductions will depend upon data from current clinical trials defining PA-824 concentration-effect relationships. (This study has been registered at ClinicalTrials.gov under registration no. NCT01571414.).

  14. A phase I study in paediatric patients to evaluate the safety and pharmacokinetics of SPI-77, a liposome encapsulated formulation of cisplatin

    PubMed Central

    Veal, G J; Griffin, M J; Price, E; Parry, A; Dick, G S; Little, M A; Yule, S M; Morland, B; Estlin, E J; Hale, J P; Pearson, A D J; Welbank, H; Boddy, A V

    2001-01-01

    Pre-clinical studies indicate that cisplatin encapsulated in STEALTH®liposomes (SPI-77) retains anti-tumour activity, but has a much reduced toxicity, compared to native cisplatin. A phase I study was conducted to determine the toxicity and pharmacokinetics of SPI-77 administered to children with advanced cancer not amenable to other treatment. Paediatric patients were treated at doses ranging from 40 to 320 mg m−2by intravenous infusion every 4 weeks. Blood samples taken during, and up to 3 weeks after, administration and plasma and ultrafiltrate were prepared immediately. Urine was collected, when possible, for 3 days after administration. SPI-77 administration was well tolerated with the major toxicity being an infusion reaction which responded to modification of the initial infusion rate of SPI-77. Limited haematological toxicity and no nephrotoxicity were observed. No responses to treatment were seen during the course of this phase I study. Measurement of total plasma platinum showed that cisplatin was retained in the circulation with a half life of up to 134 h, with maximum plasma concentrations approximately 100-fold higher than those reported following comparable doses of cisplatin. Comparison of plasma and whole blood indicated that cisplatin was retained in the liposomes and there was no free platinum measurable in the ultrafiltrate. Urine recovery was less than 4% of the dose administered over 72 h. Results from this phase I study indicate that high doses of liposomal cisplatin can safely be given to patients, but further studies are required to address the issue of reformulation of liposomally bound cisplatin. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11308249

  15. Phase I Safety, Pharmacokinetics, and Pharmacogenetics Study of the Antituberculosis Drug PA-824 with Concomitant Lopinavir-Ritonavir, Efavirenz, or Rifampin

    PubMed Central

    Luetkemeyer, Anne F.; Park, Jeong-Gun; Allen, Reena; Cramer, Yoninah; Murray, Stephen; Sutherland, Deborah; Aweeka, Francesca; Koletar, Susan L.; Marzan, Florence; Bao, Jing; Savic, Rada; Haas, David W.

    2014-01-01

    There is an urgent need for new antituberculosis (anti-TB) drugs, including agents that are safe and effective with concomitant antiretrovirals (ARV) and first-line TB drugs. PA-824 is a novel antituberculosis nitroimidazole in late-phase clinical development. Cytochrome P450 (CYP) 3A, which can be induced or inhibited by ARV and antituberculosis drugs, is a minor (∼20%) metabolic pathway for PA-824. In a phase I clinical trial, we characterized interactions between PA-824 and efavirenz (arm 1), lopinavir/ritonavir (arm 2), and rifampin (arm 3) in healthy, HIV-uninfected volunteers without TB disease. Participants in arms 1 and 2 were randomized to receive drugs via sequence 1 (PA-824 alone, washout, ARV, and ARV plus PA-824) or sequence 2 (ARV, ARV with PA-824, washout, and PA-824 alone). In arm 3, participants received PA-824 and then rifampin and then both. Pharmacokinetic sampling occurred at the end of each dosing period. Fifty-two individuals participated. Compared to PA-824 alone, plasma PA-824 values (based on geometric mean ratios) for maximum concentration (Cmax), area under the concentration-time curve from 0 to 24 h (AUC0–24), and trough concentration (Cmin) were reduced 28%, 35%, and 46% with efavirenz, 13%, 17%, and 21% with lopinavir-ritonavir (lopinavir/r) and 53%, 66%, and 85% with rifampin, respectively. Medications were well tolerated. In conclusion, lopinavir/r had minimal effect on PA-824 exposures, supporting PA-824 use with lopinavir/r without dose adjustment. PA-824 exposures, though, were reduced more than expected when given with efavirenz or rifampin. The clinical implications of these reductions will depend upon data from current clinical trials defining PA-824 concentration-effect relationships. (This study has been registered at ClinicalTrials.gov under registration no. NCT01571414.) PMID:24957823

  16. Paediatric pharmacokinetics: key considerations

    PubMed Central

    Batchelor, Hannah Katharine; Marriott, John Francis

    2015-01-01

    A number of anatomical and physiological factors determine the pharmacokinetic profile of a drug. Differences in physiology in paediatric populations compared with adults can influence the concentration of drug within the plasma or tissue. Healthcare professionals need to be aware of anatomical and physiological changes that affect pharmacokinetic profiles of drugs to understand consequences of dose adjustments in infants and children. Pharmacokinetic clinical trials in children are complicated owing to the limitations on blood sample volumes and perception of pain in children resulting from blood sampling. There are alternative sampling techniques that can minimize the invasive nature of such trials. Population based models can also limit the sampling required from each individual by increasing the overall sample size to generate robust pharmacokinetic data. This review details key considerations in the design and development of paediatric pharmacokinetic clinical trials. PMID:25855821

  17. A pharmacokinetics and safety phase 1/1b study of oral ixazomib in patients with multiple myeloma and severe renal impairment or end-stage renal disease requiring haemodialysis.

    PubMed

    Gupta, Neeraj; Hanley, Michael J; Harvey, R Donald; Badros, Ashraf; Lipe, Brea; Kukreti, Vishal; Berdeja, Jesus; Yang, Huyuan; Hui, Ai-Min; Qian, Mark; Zhang, Xiaoquan; Venkatakrishnan, Karthik; Chari, Ajai

    2016-09-01

    Renal impairment (RI) is a major complication of multiple myeloma (MM). This study aimed to characterize the single-dose pharmacokinetics (PK) of the oral proteasome inhibitor, ixazomib, in cancer patients with normal renal function [creatinine clearance (CrCl) ≥90 ml/min; n = 20), severe RI (CrCl <30 ml/min; n = 14), or end-stage renal disease requiring haemodialysis (ESRD; n = 7). PK and adverse events (AEs) were assessed after a single 3 mg dose of ixazomib. Ixazomib was highly bound to plasma proteins (~99%) in all renal function groups. Unbound and total systemic exposures of ixazomib were 38% and 39% higher, respectively, in severe RI/ESRD patients versus patients with normal renal function. Total ixazomib concentrations were similar in pre- and post-dialyser samples collected from ESRD patients; therefore, ixazomib can be administered without regard to haemodialysis timing. Except for anaemia, the incidence of the most common AEs was generally similar across groups, but grade 3 and 4 AEs were more frequent in the severe RI/ESRD groups versus the normal group (79%/57% vs. 45%), as were serious AEs (43%/43% vs. 15%). The PK and safety results support a reduced ixazomib dose of 3 mg in patients with severe RI/ESRD. PMID:27196567

  18. A Phase II clinical trial of a mixture of plasma-derived factor VIIa and factor X (MC710) in haemophilia patients with inhibitors: haemostatic efficacy, safety and pharmacokinetics/pharmacodynamics.

    PubMed

    Shirahata, A; Fukutake, K; Takamatsu, J; Shima, M; Hanabusa, H; Mugishima, H; Amano, K; Takedani, H; Tamashima, S; Matsushita, T; Tawa, A; Tanaka, I; Higasa, S; Kosaka, Y; Fujii, T; Sakai, M; Migita, M; Kawakami, K; Ohashi, Y; Saito, H

    2013-11-01

    MC710, a mixture of plasma-derived activated factor VII and factor X at a protein weight ratio of 1:10, is a novel bypassing agent for haemostasis in haemophilia patients with inhibitors. In a Phase II trial, we evaluated the haemostatic efficacy and safety of single doses of MC710, and investigated pharmacokinetic and pharmacodynamic parameters in nine joint bleeding episodes in six male haemophilia patients with inhibitors. This trial was a multi-centre, open-label, non-randomized study of two doses (60 and 120 μg kg(-1) as FVIIa dose), allowing the re-administration of different MC710 dosages to the same subjects. Haemostatic efficacy was assessed by evaluating reduction in pain and swelling, as well as increase in range of motion in a bleeding joint. The results of the study showed that in nine bleeding episodes, seven treatments were rated as 'excellent' or 'effective' according to investigator's rating system of efficacy at 8 h after administration. No serious or severe adverse events were observed after administration; furthermore, measurement of several diagnostic markers revealed no signs or symptoms of disseminated intravascular coagulation (DIC). The haemostatic potential of MC710 was confirmed at doses of 60 and 120 μg kg(-1) in this trial. MC710 is thus expected to be a safe and efficacious novel bypassing agent for controlling bleeding in haemophilia patients with inhibitors. PMID:23738888

  19. Evaluation of safety and pharmacokinetics of sodium 2,2 dimethylbutyrate, a novel short chain fatty acid derivative, in a phase 1, double-blind, placebo-controlled, single-dose, and repeat-dose studies in healthy volunteers.

    PubMed

    Perrine, Susan P; Wargin, William A; Boosalis, Michael S; Wallis, Wayne J; Case, Sally; Keefer, Jeffrey R; Faller, Douglas V; Welch, William C; Berenson, Ronald J

    2011-08-01

    Pharmacologic induction of fetal globin synthesis is an accepted therapeutic strategy for treatment of the beta hemoglobinopathies and thalassemias, as even small increases in hemoglobin F (HbF) levels reduce clinical severity in sickle cell disease (SCD) and reduce anemia in beta thalassemia. Prior generation short chain fatty acid therapeutics, arginine butyrate (AB), and phenylbutyrate, increased fetal and total hemoglobin levels in patients, but were limited by high doses or intravenous (IV) infusion. A fetal globin-inducing therapeutic with convenient oral dosing would be an advance for these classic molecular diseases. Healthy adult human subjects were treated with a novel short chain fatty acids (SCFA) derivative, sodium 2,2 dimethylbutyrate (SDMB), or placebo, with 1 of 4 single dose levels (2, 5, 10, and 20 mg/kg) or daily doses (5, 10, or 15 mg/kg) over 14 days, and monitored for adverse clinical and laboratory events, drug levels, reticulocytes, and HbF assays. SDMB was well-tolerated with no clinically significant adverse events related to study medication. The terminal half-life ranged from 9 to 15 hours. Increases in mean absolute reticulocytes were observed at all dose levels in the 14-day study. The favorable pharmacokinetics (PK) profiles and safety findings indicate that SDMB warrants further investigation for treatment of anemic subjects with beta hemoglobinopathies.

  20. A Phase 1 study of the safety, pharmacokinetics and anti-leukemic activity of the anti-CD123 monoclonal antibody CSL360 in relapsed, refractory or high-risk acute myeloid leukemia.

    PubMed

    He, Simon Z; Busfield, Samantha; Ritchie, David S; Hertzberg, Mark S; Durrant, Simon; Lewis, Ian D; Marlton, Paula; McLachlan, Andrew J; Kerridge, Ian; Bradstock, Kenneth F; Kennedy, Glen; Boyd, Andrew W; Yeadon, Trina M; Lopez, Angel F; Ramshaw, Hayley S; Iland, Harry; Bamford, Simone; Barnden, Megan; DeWitte, Mark; Basser, Russell; Roberts, Andrew W

    2015-05-01

    Acute myeloid leukemia (AML) blasts express high levels of interlekin-3 (IL-3) receptor-α (CD123). CSL360 is a recombinant, chimeric immunoglobulin G1 (IgG1), anti-CD123 monoclonal antibody (MoAb) that neutralizes IL-3 and demonstrates anti-leukemic activity in vitro. This phase 1 study assessed safety, pharmacokinetics and bioactivity of weekly intravenous CSL360 for 12 weeks in 40 patients with advanced AML across five dose levels (0.1-10.0 mg/kg). Other than mild infusion reactions, CSL360 was well tolerated. The maximal tolerated dose was not reached. The half-life was 4.9 days, and the area under the curve (AUC) and maximum concentration (Cmax) increased proportionally with dose. Doses ≥ 3.0 mg/kg resulted in complete saturation and down-regulation of CD123 and abolition of ex vivo proliferative responsiveness to IL-3, indicating adequate blockade of IL-3 signaling. Two patients responded, with one remaining in complete remission after 17 doses. CSL360 bound CD123 specifically, but did not induce anti-leukemic activity in most patients. While safe, MoAb blockade of CD123 function is insufficient as a therapeutic strategy. PMID:25248882

  1. Single-dose evaluation of safety, tolerability and pharmacokinetics of newly formulated hydromorphone immediate-release and hydrophilic matrix extended-release tablets in healthy Japanese subjects without co-administration of an opioid antagonist.

    PubMed

    Toyama, Kaoru; Uchida, Naoki; Ishizuka, Hitoshi; Sambe, Takehiko; Kobayashi, Shinichi

    2015-09-01

    This single dose, open-label study investigated the safety, tolerability and pharmacokinetics of single oral doses of newly formulated immediate-release (IR) and hydrophilic matrix extended-release (ER) hydromorphone tablets in healthy Japanese subjects without co-administration of an opioid antagonist under fasting and fed conditions. Plasma and urinary concentrations of hydromorphone and metabolites were measured by liquid-chromatography tandem mass-spectroscopy. Following administration of the ER tablet, plasma concentrations of hydromorphone slowly increased with a median tmax of 5.0 h and the Cmax decreased to 37% of the IR tablet, while the AUC0-inf was comparable with that of the IR tablet when administered at the same dose. The degree of fluctuation in the plasma concentration for the ER tablet was much lower than that of the IR tablet and certain levels of plasma concentrations were maintained after 24 h of ER dosing. The AUC0-inf and Cmax increased with food for both IR and ER tablets. The AUC0-inf of hydromorphone-3-glucoside was one-tenth of that of hydromorphone-3-glucuronide. A single oral administration of the hydromorphone tablets would be well-tolerated in healthy Japanese subjects despite a lack of co-administration of an opioid antagonist and the newly developed ER hydromorphone tablets may have the appropriate PK characteristics for once-daily dosing.

  2. Biodistribution of Different Sized Nanodiamonds in Mice.

    PubMed

    Purtov, Konstantin; Petunin, Alexey; Inzhevatkin, Evgeny; Burov, Andrey; Ronzhin, Nikita; Puzyr, Alexey; Bondar, Vladimir

    2015-02-01

    The particle size is one of critical parameters influencing the biodistribution of detonation nanodiamonds (DND) after their administration into the body. As DNDs are prone to aggregation, the difference between their sizes in aqueous and physiological solutions has to be taken into account. Radioactive I125-BSA molecules were covalently immobilized on DNDs divided in three fractions of different average size. The DND-BSAI125 conjugates were intravenously administrated into adult mice and the particle allocation in the animal's organs and blood was evaluated based on the radioactivity distribution. We conclude that most of the conjugates were taken from the bloodstream and trapped in the liver and spleen. The short-term distribution pattern for all DNDs was similar regardless of size and practically unchanged with time. No significant clearance of the particles was observed for 4 h, but the presence of DNDs was detected in the blood. It was found that the largest particles tend to accumulate more into the liver as compared to the smaller ones. However, the size effect was not well pronounced for the studied size range. PMID:26353614

  3. Characterization and biodistribution of human mesenchymal stem cells transduced with lentiviral-mediated BMP2.

    PubMed

    Choi, Kyoung Suk; Ahn, Soon Young; Kim, Tek Seung; Kim, Jiseon; Kim, Byoung-Guk; Han, Kyung Ho; Ban, Sang Ja; Kim, Hyung Soo; Choi, Youngju; Lim, Chul-Joo

    2011-04-01

    Recently, the genetic modification of mesenchymal stem cells (MSCs) has led to increased differentiation potential. For the therapeutic application of genetically modified MSCs, it is crucial to evaluate their characteristics and safety. In this study, we investigated the effects of bone morphogenetic protein 2 (BMP2) gene transfer on the characteristics and biodistribution of human MSCs. Lentiviral-mediated BMP2 transduction to MSCs enhanced osteocyte differentiation and decreased adipocyte differentiation. Although there is no significant difference in cell proliferation capacity, MSCs transduced BMP2 proliferate somewhat higher than nontransduced or GFP transduced MSCs. No significant changes were observed in surface antigen expression in genetically modified MSCs. In vivo transplantation of lentiviral-mediated BMP2 gene transferred MSCs to nude mice did not result in tumor formation. To evaluate the biodistribution of genetically modified cells, MSCs carrying BMP2 were injected into the tail vein of femur fractured mice. The introduced MSCs were detected in the spleen, testis and fractured femur 28 days post-implantation. These findings suggest that diverse safety tests for genetically modified MSCs should be considered, particularly when a lentivirus mediated gene transfer method is used.

  4. A phase I dose‐escalation study to assess safety, tolerability, pharmacokinetics, and preliminary efficacy of the dual mTORC1/mTORC2 kinase inhibitor CC‐223 in patients with advanced solid tumors or multiple myeloma

    PubMed Central

    Bendell, Johanna C.; Kelley, Robin K.; Shih, Kent C.; Grabowsky, Jennifer A.; Bergsland, Emily; Jones, Suzanne; Martin, Thomas; Infante, Jeffrey R.; Mischel, Paul S.; Matsutani, Tomoo; Xu, Shuichan; Wong, Lilly; Liu, Yong; Wu, Xiaoling; Mortensen, Deborah S.; Chopra, Rajesh; Hege, Kristen

    2015-01-01

    BACKGROUND The mammalian target of rapamycin (mTOR) pathway is essential for tumor development, yet mTOR inhibitors have yielded modest results. This phase 1 study investigated the mTORC1/mTORC2 inhibitor CC‐223 in patients with advanced cancer. METHODS Patients with advanced solid tumors or multiple myeloma received an initial dose of 7.5‐60 mg of CC‐223, followed by oral daily dosing in 28‐day cycles until disease progression. The primary objective was to determine the safety, tolerability, nontolerated dosage, maximum tolerated dosage (MTD), and preliminary pharmacokinetic profile. Secondary objectives were to evaluate pharmacodynamic effects and to describe preliminary efficacy. RESULTS Twenty‐eight patients were enrolled and received ≥1 dose of CC‐223. The most common treatment‐related grade 3 adverse events were hyperglycemia, fatigue, and rash. Four patients had dose‐limiting toxicities, including hyperglycemia, rash, fatigue, and mucositis. Therefore, 45 mg/d was determined to be the MTD. The pharmacokinetics of CC‐223 demonstrated a mean terminal half‐life ranging from 4.86 to 5.64 hours and maximum observed plasma concentration ranging from 269 to 480 ng/mL in patients who received CC‐223 ≥45 mg/d. Phosphorylation of mTORC1/mTORC2 pathway biomarkers in blood cells was inhibited by CC‐223 ≥30 mg/d with an exposure‐response relationship. Best responses included 1 partial response (breast cancer; response duration 220 days; 30‐mg/d cohort), stable disease (8 patients across ≥15 mg/d cohorts; response duration range, 36‐168 days), and progressive disease (12 patients). The disease control rate was 32%. CONCLUSIONS CC‐223 was tolerable, with manageable toxicities. Preliminary antitumor activity, including tumor regression, and evidence of mTORC1/mTORC2 pathway inhibition were observed. Cancer 2015;121:3435–43. © 2015 American Cancer Society. PMID:26177599

  5. Lisdexamfetamine: A pharmacokinetic review.

    PubMed

    Comiran, Eloisa; Kessler, Félix Henrique; Fröehlich, Pedro Eduardo; Limberger, Renata Pereira

    2016-06-30

    Lisdexamfetamine (LDX) is a d-amphetamine (d-AMPH) pro-drug used to treat Attention Deficit and Hyperactivity Disorder (ADHD) and Binge Eating Disorder (BED) symptoms. The in vivo pharmacodynamics of LDX is the same as that of its active product d-AMPH, although there are a few qualitative and quantitative differences due to pharmacokinetics. Due to the specific pharmacokinetics of the long-acting stimulants, this article revises the pharmacokinetic studies on LDX, the newest amphetamine pro-drug. The Medline/Pubmed, Science Direct and Biblioteca Virtual em Saúde (Lilacs and Ibecs) (2007-2016) databases were searched for articles and their list of references. As for basic pharmacokinetics studies, since LDX is a newly developed medication, there are few results concerning biotransformation, distribution and the use of different biological matrices for analysis. This is the first robust review on this topic, gathering data from all clinical pharmacokinetics studies available in the literature. The particular pharmacokinetics of LDX plays a major role in studying this pro-drug, since this knowledge was essential to understand some reports on clinical effects in literature, e.g. the small likelihood of reducing the effect by interactions, the effect of long duration use and the still questionable reduction of the potential for abuse. In general the already well-known pharmacokinetic properties of amphetamine make LDX relatively predictable, simplifying the use of LDX in clinical practice. PMID:27125257

  6. Lisdexamfetamine: A pharmacokinetic review.

    PubMed

    Comiran, Eloisa; Kessler, Félix Henrique; Fröehlich, Pedro Eduardo; Limberger, Renata Pereira

    2016-06-30

    Lisdexamfetamine (LDX) is a d-amphetamine (d-AMPH) pro-drug used to treat Attention Deficit and Hyperactivity Disorder (ADHD) and Binge Eating Disorder (BED) symptoms. The in vivo pharmacodynamics of LDX is the same as that of its active product d-AMPH, although there are a few qualitative and quantitative differences due to pharmacokinetics. Due to the specific pharmacokinetics of the long-acting stimulants, this article revises the pharmacokinetic studies on LDX, the newest amphetamine pro-drug. The Medline/Pubmed, Science Direct and Biblioteca Virtual em Saúde (Lilacs and Ibecs) (2007-2016) databases were searched for articles and their list of references. As for basic pharmacokinetics studies, since LDX is a newly developed medication, there are few results concerning biotransformation, distribution and the use of different biological matrices for analysis. This is the first robust review on this topic, gathering data from all clinical pharmacokinetics studies available in the literature. The particular pharmacokinetics of LDX plays a major role in studying this pro-drug, since this knowledge was essential to understand some reports on clinical effects in literature, e.g. the small likelihood of reducing the effect by interactions, the effect of long duration use and the still questionable reduction of the potential for abuse. In general the already well-known pharmacokinetic properties of amphetamine make LDX relatively predictable, simplifying the use of LDX in clinical practice.

  7. Safety, Tolerability, and Pharmacokinetics of SMT C1100, a 2-Arylbenzoxazole Utrophin Modulator, following Single- and Multiple-Dose Administration to Pediatric Patients with Duchenne Muscular Dystrophy

    PubMed Central

    Ricotti, Valeria; Spinty, Stefan; Roper, Helen; Hughes, Imelda; Tejura, Bina; Robinson, Neil; Layton, Gary; Davies, Kay

    2016-01-01

    Purpose SMT C1100 is a utrophin modulator being evaluated as a treatment for Duchenne muscular dystrophy (DMD). This study, the first in pediatric DMD patients, reports the safety, tolerability and PK parameters of single and multiple doses of SMT C1100, as well as analyze potential biomarkers of muscle damage. Methods This multicenter, Phase 1 study enrolled 12 patients, divided equally into three groups (A–C). Group A were given 50 mg/kg on Days 1 and 11, and 50 mg/kg bid on Days 2 to 10. Group B and C received 100 mg/kg on Days 1 and 11; Group B and Group C were given 100 mg/kg bid and 100 mg/kg tid, respectively, on Days 2 to 10. A safety review was performed on all patients following the single dose and there was at least 2 weeks between each dose escalation, for safety and PK review. Adverse events (AEs) were monitored throughout the study. Results Most patients experienced mild AEs and there were no serious AEs. Two patients required analgesia for pain (headache, ear pain and toothache). One patient experienced moderate psychiatric AEs (abnormal behaviour and mood swings). Plasma concentrations of SMT C1100 at Days 1 and 11 indicated a high degree of patient variability regardless of dose. Unexpectedly the SMT C1100 levels were significantly lower than similar doses administered to healthy volunteers in an earlier clinical study. In general, individual baseline changes of creatine phosphokinase, alanine aminotransferase, aspartate aminotransferase levels fell with SMT C1100 dosing. Conclusions SMT C1100 was well tolerated in pediatric DMD patients. Trial Registration ClinicalTrials.gov NCT02383511 PMID:27055247

  8. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy

    PubMed Central

    Wang, Jun-Ying; Chen, Jie; Yang, Jiang; Wang, Hao; Shen, Xiu; Sun, Yuan-Ming; Guo, Meili; Zhang, Xiao-Dong

    2016-01-01

    Gold nanoclusters (Au NCs) have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system. PMID:27555769

  9. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy.

    PubMed

    Wang, Jun-Ying; Chen, Jie; Yang, Jiang; Wang, Hao; Shen, Xiu; Sun, Yuan-Ming; Guo, Meili; Zhang, Xiao-Dong

    2016-01-01

    Gold nanoclusters (Au NCs) have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system. PMID:27555769

  10. Synthesis and biodistribution studies of (3)H- and (64)Cu-labeled dendritic polyglycerol and dendritic polyglycerol sulfate.

    PubMed

    Pant, Kritee; Gröger, Dominic; Bergmann, Ralf; Pietzsch, Jens; Steinbach, Jörg; Graham, Bim; Spiccia, Leone; Berthon, Fannely; Czarny, Bertrand; Devel, Laurent; Dive, Vincent; Stephan, Holger; Haag, Rainer

    2015-05-20

    Dendritic polyglycerol sulfate (dPGS) is a biocompatible, bioactive polymer which exhibits anti-inflammatory activity in vivo and thus represents a promising candidate for therapeutic and diagnostic applications. To investigate the in vivo pharmacokinetics in detail, dPGS with a molecular weight of approx. 10 kDa was radiolabeled with (3)H and (64)Cu, and evaluated by performing biodistribution studies and small animal positron emission tomography (PET). (3)H-labeling was accomplished by an oxidation-reduction process with sodium periodate and [(3)H]-borohydride. (64)Cu-labeling was achieved by conjugation of isothiocyanate- or maleimide-functionalized copper(II)-chelating ligands based on 1,4-bis(2-pyridinylmethyl)-1,4,7-triazacyclononane (DMPTACN) to an amino functionalized dPGS scaffold, followed by reaction with an aqueous solution containing (64)CuCl2. Independent biodistribution by radioimaging and PET imaging studies with healthy mice and rats showed that the neutral dPG was quantitatively renally eliminated, whereas the polysulfated analogues accumulated mainly in the liver and spleen. Small amounts of the dPGS derivatives were slowly excreted via the kidneys. The degree of uptake by the reticuloendothelial system (RES) was similar for dPGS with 40% or 85% sulfation, and surface modification of the scaffold with the DMPTACN chelator did not appear to significantly affect the biodistribution profile. On the basis of our data, the applicability of bioactive dPGS as a therapeutic agent might be limited due to organ accumulation even after 3 weeks. The inert characteristics and clearance of the neutral polymer, however, emphasizes the potential of dPG as a multifunctional scaffold for various nanomedical applications. PMID:25891152

  11. Biodistribution and Bioimaging Studies of Hybrid Paclitaxel Nanocrystals: Lessons Learned of the EPR Effect and Image-Guided Drug Delivery

    PubMed Central

    Hollis, Christin P.; Weiss, Heidi L.; Leggas, Markos; Evers, B. Mark; Gemeinhart, Richard A.; Li, Tonglei

    2013-01-01

    Paclitaxel (PTX) nanocrystals (200 nm) were produced by crystallization from solution. Antitumor efficacy and toxicity were examined through a survival study in a human HT-29 colon cancer xenograft murine model. The antitumor activity of the nanocrystal treatments was comparable with that by the conventional solubilization formulation (Taxol®), but yielded less toxicity as indicated by the result of survival study. Tritium-labeled PTX nanocrystals were further produced with a near infrared (NIR) fluorescent dye physically integrated in the crystal lattice. Biodistribution and tumor accumulation of the tritium-labeled PTX nanocrystals were determined immediately after intravenous administration and up to 48 hours by scintillation counting. Whole-body optical imaging of animals was concurrently carried out; fluorescent intensities were also measured from excised tumors and major organs of euthanized animals. It was found that drug accumulation in the tumor was less than 1% of 20 mg/kg intravenous dose. Qualitatively correlation was identified between the biodistribution determined by using tritium-labeled particles and that using optical imaging, but quantitative divergence existed. The divergent results suggest possible ways to improve the design of hybrid nanocrystals for cancer therapy and diagnosis. The study also raises questions of the general role of the enhanced permeability and retention (EPR) effect in tumor targeting and the effectiveness of bioimaging, specifically for hybrid nanocrystals, in tracking drug distribution and pharmacokinetics. PMID:23920039

  12. Preparation and Biodistribution Studies of a Radiogallium-Acetylacetonate Bis (Thiosemicarbazone) Complex in Tumor-Bearing Rodents

    PubMed Central

    Jalilian, Amir Reza; Yousefnia, Hassan; Shafaii, Kamaleddin; Novinrouz, Aytak; Rajamand, Amir Abbas

    2012-01-01

    Various radiometal complexes have been developed for tumor imaging, especially Ga-68 tracer. In the present study, the development of a radiogallium bis-thiosemicarbazone complex has been reported. [67Ga] acetylacetonate bis(thiosemicarbazone) complex ([67Ga] AATS) was prepared starting [67Ga]Gallium acetate and freshly prepared acetylacetonate bis (thiosemicarbazone) (AATS) in 30 min at 90°C. The partition co-efficient and the stability of the tracer were determined in final solution (25°C) and the presence of human serum (37°C) up to 24 h. The biodistribution of the labeled compound in wild-type and fibrosarcoma-bearing rodents were determined up to 72 h. The radiolabled Ga complex was prepared in high radiochemical purity (> 97%, HPLC) followed by initial biodistribution data with the significant tumor accumulation of the tracer in 2 h which is far higher than free Ga-67 cation while the compound wash-out is significantly faster. Above-mentioned pharmacokinetic properties suggest an interesting radiogallium complex while prepared by the PET Ga radioisotope, 68Ga, in accordance with the physical half life, for use in fibrosarcoma tumors, and possibly other malignancies. PMID:24250475

  13. Blood circulation and tissue biodistribution of lipid--quantum dot (L-QD) hybrid vesicles intravenously administered in mice.

    PubMed

    Al-Jamal, Wafa' T; Al-Jamal, Khuloud T; Cakebread, Andrew; Halket, John M; Kostarelos, Kostas

    2009-09-01

    The present work describes the pharmacokinetics of recently developed liposome-quantum dot (L-QD) hybrid vesicles in nude mice following systemic administration. Hydrophobic QD were incorporated into different bilayer compositions, and the serum stability of such hybrid vesicles was evaluated using turbidity and carboxyfluorescein release measurements. L-QD hybrid blood profile and organ biodistribution were also determined by elemental (cadmium) analysis. Following intravenous administration, different tissue biodistribution profiles and tissue affinities were observed depending on the L-QD lipid bilayer characteristics. Immediate blood clearance was observed with cationic (DOTAP/DOPE/Chol) hybrid with rapid lung accumulation, while incorporation of PEG at the surface of zwitterionic vesicles dramatically prolonged their blood circulation half-life after systemic administration. Overall, the L-QD hybrid vesicle system is considered a viable platform that allows QD delivery to different tissues through facile modulation of the hybrid vesicle characteristics. In addition, L-QD offers many opportunities for the development of combinatory therapeutic and imaging (theranostic) modalities by incorporating both drug molecules and QD within the different compartments of a single vesicle.

  14. Organophosphorus Insecticide Pharmacokinetics

    SciTech Connect

    Timchalk, Charles

    2010-01-01

    This chapter highlights a number of current and future applications of pharmacokinetics to assess organophosphate (OP) insecticide dosimetry, biological response and risk in humans exposed to these agents. Organophosphates represent a large family of pesticides where insecticidal as well as toxicological mode of action is associated with their ability to target and inhibit acetylcholinesterase (AChE). Pharmacokinetics entails the quantitative integration of physiological and metabolic processes associated with the absorption, distribution, metabolism and excretion (ADME) of drugs and xenobiotics. Pharmacokinetic studies provide important data on the amount of toxicant delivered to a target site as well as species-, age-, gender-specific and dose-dependent differences in biological response. These studies have been conducted with organophosphorus insecticides in multiple species, at various dose levels, and across different routes of exposure to understand their in vivo pharmacokinetics and how they contribute to the observed toxicological response. To access human exposure to organophosphorus insecticides, human pharmacokinetic studies have been conducted and used to develop biological monitoring strategies based on the quantitation of key metabolites in biological fluids. Pharmacokinetic studies with these insecticides are also useful to facilitate extrapolation of dosimetry and biological response from animals to humans and for the assessment of human health risk. In this regard, physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) models are being utilized to assess risk and understand the toxicological implications of known or suspected exposures to various insecticides. In this chapter a number of examples are presented that illustrate the utility and limitation of pharmacokinetic studies to address human health concerns associated with organophosphorus insecticides.

  15. Radiolabelling of Antigen and Liposomes for Vaccine Biodistribution Studies

    PubMed Central

    Henriksen-Lacey, Malou; Bramwell, Vincent; Perrie, Yvonne

    2010-01-01

    A relatively simple and effective method to follow the movement of pharmaceutical preparations such as vaccines in biodistribution studies is to radiolabel the components. Whilst single radiolabelling is common practice, in vaccine systems containing adjuvants the ability to follow both the adjuvant and the antigen is favourable. To this end, we have devised a dual-radiolabelling method whereby the adjuvant (liposomes) is labelled with 3H and the antigen (a subunit protein) with 125I. This model is stable and reproducible; we have shown release of the radiolabels to be negligible over periods of up to 1 week in foetal calf serum at 37 °C. In this paper we describe the techniques which enable the radiolabelling of various components, assessing stability and processing of samples which all for their application in biodistribution studies. Furthermore we provide examples derived from our studies using this model in tuberculosis vaccine biodistribution studies.

  16. Pharmacokinetics of biotech drugs: peptides, proteins and monoclonal antibodies.

    PubMed

    Lin, Jiunn H

    2009-09-01

    With the advances in recombinant DNA biotechnology, molecular biology and immunology, the number of biotech drugs, including peptides, proteins and monoclonal antibodies, available for clinical use has dramatically increased in recent years. Although pharmacokinetic principles are equally applicable to the large molecule drugs and conventional small molecule drugs, the underlying mechanisms for the processes of absorption, distribution, metabolism and excretion (ADME) of large molecule drugs are often very different from that of small molecule drugs. Therefore, a good understanding of the ADME processes of large molecule drugs is essential in support of the development of therapeutic biologics. The purpose of this article is to review the current knowledge of the ADME processes that govern the pharmacokinetics of biotech drugs. The challenges encountered by orally administered peptide and protein drugs, and the nature of lymphatic absorption after subcutaneous administration will be discussed. In addition, molecular mechanisms of biodistribution, metabolism and renal excretion of biotech drugs will also be discussed. Finally, approaches used for prediction of human pharmacokinetics of protein drugs will be briefly discussed.

  17. Longitudinal infusion of a complex of insulin-like growth factor-I and IGF-binding protein-3 in five preterm infants: pharmacokinetics and short-term safety

    PubMed Central

    Ley, David; Hansen-Pupp, Ingrid; Niklasson, Aimon; Domellöf, Magnus; Friberg, Lena E.; Borg, Jan; Löfqvist, Chatarina; Hellgren, Gunnel; Smith, Lois E.H.; Hård, Anna-Lena; Hellström, Ann

    2014-01-01

    BACKGROUND In preterm infants, low levels of insulin-like growth factor-I (IGF-I) and IGF binding protein 3 (IGFBP-3) are associated with impaired brain growth and retinopathy of prematurity (ROP). Treatment with IGF-I/IGFBP-3 may be beneficial for brain development and may decrease the prevalence of ROP. METHODS In a phase II pharmacokinetics and safety study, five infants (three girls) with a median (range) gestational age (GA) of 26 wk + 6 d (26 wk + 0 d to 27 wk + 2 d) and birth weight of 990 (900–1,212) g received continuous intravenous infusion of recombinant human (rh)IGF-I/rhIGFBP-3. Treatment was initiated during the first postnatal day and continued for a median (range) duration of 168 (47–168) h in dosages between 21 and 111 µg/kg/24 h. RESULTS Treatment with rhIGF-I/rhIGFBP-3 was associated with higher serum IGF-I and IGFBP-3 concentrations (P < 0.001) than model-predicted endogenous levels. Of 74 IGF-I samples measured during study drug infusion, 37 (50%) were within the target range, 4 (5%) were above, and 33 (45%) were below. The predicted dose of rhIGF-I/rhIGFBP-3 required to establish circulating levels of IGF-I within the intrauterine range in a 1,000 g infant was 75–100 µg/kg/24 h. No hypoglycemia or other adverse effects were recorded. CONCLUSION In this study, continuous intravenous infusion of rhIGF-I/rhIGFBP-3 was effective in increasing serum concentrations of IGF-I and IGFBP-3, and was found to be safe. PMID:23095978

  18. New oral anticoagulants in patients with nonvalvular atrial fibrillation: a review of pharmacokinetics, safety, efficacy, quality of life, and cost effectiveness

    PubMed Central

    Mani, Helen; Lindhoff-Last, Edelgard

    2014-01-01

    Atrial fibrillation (AF) continues to be a leading cause of cerebrovascular morbidity and mortality resulting from cardioembolic stroke. Oral anticoagulation therapy has been shown to decrease the incidence of cardioembolic stroke in patients with AF by more than 50%. Appropriate use of anticoagulation with vitamin K antagonists requires precise adherence and monitoring. A number of factors that potentially induce patients’ dissatisfaction reduce quality of patient life. New direct oral anticoagulants, such as the direct factor Xa inhibitors rivaroxaban, apixaban, edoxaban, and the thrombin inhibitor dabigatran, were developed to overcome the limitations of the conventional anticoagulant drugs. However, models to optimize the benefit of therapy and to ensure that therapy can be safely continued are missing for the new oral anticoagulants. This review will briefly describe the new oral anticoagulants dabigatran, rivaroxaban, apixaban, and edoxaban with focus on their use for prevention of embolic events in AF. Moreover, it will discuss the safety, efficacy, cost data, and benefit for patients’ quality of life and adherence. PMID:24970997

  19. Bioavailability and biodistribution of nanodelivered lutein.

    PubMed

    Kamil, Alison; Smith, Donald E; Blumberg, Jeffrey B; Astete, Carlos; Sabliov, Cristina; Oliver Chen, C-Y

    2016-02-01

    The aim of the study was to evaluate the ability of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) to enhance lutein bioavailability. The bioavailability of free lutein and PLGA-NP lutein in rats was assessed by determining plasma pharmacokinetics and deposition in selected tissues. Lutein uptake and secretion was also assessed in Caco-2 cells. Compared to free lutein, PLGA-NP increased the maximal plasma concentration (Cmax) and area under the time-concentration curve in rats by 54.5- and 77.6-fold, respectively, while promoting tissue accumulation in the mesenteric fat and spleen. In comparison with micellized lutein, PLGA-NP lutein improved the Cmax in rat plasma by 15.6-fold and in selected tissues by ⩾ 3.8-fold. In contrast, PLGA-NP lutein had a lower uptake and secretion of lutein in Caco-2 cells by 10.0- and 50.5-fold, respectively, compared to micellized lutein. In conclusion, delivery of lutein with polymeric NP may be an approach to improve the bioavailability of lutein in vivo.

  20. Biodistribution of the GATA-3-specific DNAzyme hgd40 after inhalative exposure in mice, rats and dogs

    SciTech Connect

    Turowska, Agnieszka; Librizzi, Damiano; Baumgartl, Nadja; Kuhlmann, Jens; Dicke, Tanja; Merkel, Olivia; Homburg, Ursula; Höffken, Helmut; Renz, Harald; Garn, Holger

    2013-10-15

    The DNAzyme hgd40 was shown to effectively reduce expression of the transcription factor GATA-3 RNA which plays an important role in the regulation of Th2-mediated immune mechanisms such as in allergic bronchial asthma. However, uptake, biodistribution and pharmacokinetics of hgd40 have not been investigated yet. We examined local and systemic distribution of hgd40 in naive mice and mice suffering from experimental asthma. Furthermore, we evaluated the pharmacokinetics as a function of dose following single and repeated administration in rats and dogs. Using intranasal administration of fluorescently labeled hgd40 we demonstrated that the DNAzyme was evenly distributed in inflamed asthmatic mouse lungs within minutes after single dose application. Systemic distribution was investigated in mice using radioactive labeled hgd40. After intratracheal application, highest amounts of hgd40 were detected in the lungs. High amounts were also detected in the bladder indicating urinary excretion as a major elimination pathway. In serum, low systemic hgd40 levels were detected already at 5 min post application (p.a.), subsequently decreasing over time to non-detectable levels at 2 h p.a. As revealed by Single Photon Emission Computed Tomography, trace amounts of hgd40 were detectable in lungs up to 7 days p.a. Also in the toxicologically relevant rats and dogs, hgd40 was detectable in blood only shortly after inhalative application. The plasma pharmacokinetic profile was dose and time dependent. Repeated administration did not lead to drug accumulation in plasma of dogs and rats. These pharmacokinetic of hgd40 provide guidance for clinical development, and support an infrequent and convenient dose administration regimen. - Highlights: • Local and systemic distribution of GATA-3-specific DNAzyme hgd40 was investigated. • Pharmacokinetics of hgd40 was tested in rats and dogs. • hgd40 dissolved in PBS was easily taken up into the lungs after local application. • No

  1. Biodistribution of Fracture-Targeted GSK3β Inhibitor-Loaded Micelles for Improved Fracture Healing.

    PubMed

    Low, Stewart A; Galliford, Chris V; Yang, Jiyuan; Low, Philip S; Kopeček, Jindřich

    2015-10-12

    Bone fractures constitute a major cause of morbidity and mortality especially in the elderly. Complications associated with osteoporosis drugs and the age of the patient slow bone turnover and render such fractures difficult to heal. Increasing the speed of fracture repair by administration of a fracture-targeted bone anabolic agent could find considerable application. Aspartic acid oligopeptides are negatively charged molecules at physiological pH that adsorb to hydroxyapatite, the mineral portion of bone. This general adsorption is the strongest where bone turnover is highest or where hydroxyapatite is freshly exposed. Importantly, both of these conditions are prominent at fracture sites. GSK3β inhibitors are potent anabolic agents that can promote tissue repair when concentrated in a damaged tissue. Unfortunately, they can also cause significant toxicity when administered systemically and are furthermore difficult to deliver due to their strong hydrophobicity. In this paper, we solve both problems by conjugating the hydrophobic GSK3β inhibitor to a hydrophilic aspartic acid octapeptide using a hydrolyzable bond, thereby generating a bone fracture-targeted water-soluble form of the drug. The resulting amphiphile is shown to assemble into micelles, extending its circulation time while maintaining its fracture-targeting abilities. For measurement of pharmacokinetics, an 125I was introduced at the location of the bromine in the GSK3β inhibitor to minimize any structural differences. Biodistribution studies demonstrate a greater than 4-fold increase in fracture accumulation over healthy bone. PMID:26331790

  2. Biodistribution of fracture-targeted GSK3β inhibitor-loaded micelles for improved fracture healing

    PubMed Central

    Low, Stewart A.; Galliford, Chris V.; Yang, Jiyuan; Low, Philip S.; Kopeček, Jindřich

    2016-01-01

    Bone fractures constitute a major cause of morbidity and mortality especially in the elderly. Complications associated with osteoporosis drugs and the age of the patient slow bone turnover and render such fractures difficult to heal. Increasing the speed of fracture repair by administration of a fracture-targeted bone anabolic agent could find considerable application. Aspartic acid oligopeptides are negatively charged molecules at physiological pH that adsorb to hydroxyapatite, the mineral portion of bone. This general adsorption is the strongest where bone turnover is highest or where hydroxyapatite is freshly exposed. Importantly, both of these conditions are prominent at fracture sites. GSK3β inhibitors are potent anabolic agents that can promote tissue repair when concentrated in a damaged tissue. Unfortunately, they can also cause significant toxicity when administered systemically and are furthermore difficult to deliver due to their strong hydrophobicity. In this paper, we solve both problems by conjugating the hydrophobic GSK3β inhibitor to a hydrophilic aspartic acid octapeptide using a hydrolyzable bond, thereby generating a bone fracture-targeted water-soluble form of the drug. The resulting amphiphile is shown to assemble into micelles, extending its circulation time while maintaining its fracture-targeting abilities. For measurement of pharmacokinetics, an 125I was introduced at the location of the bromine in the GSK3β inhibitor to minimize any structural differences. Biodistribution studies demonstrate a greater than 4-fold increase in fracture accumulation over healthy bone. PMID:26331790

  3. Biodistribution of the cyclotide MCoTI-II, a cyclic disulfide-rich peptide drug scaffold.

    PubMed

    Wang, Conan K; Stalmans, Sofie; De Spiegeleer, Bart; Craik, David J

    2016-05-01

    Disulfide-rich macrocyclic peptides are promising templates for drug design because of their unique topology and remarkable stability. However, little is known about their pharmacokinetics. In this study, we characterize the biodistribution in mice of Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II), a cyclic three-disulfide-containing peptide that has been used in a number of studies as a drug scaffold. The distribution of MCoTI-II was compared with that of chlorotoxin, which is a four-disulfide-containing peptide that has been used to develop brain tumor imaging agents; dermorphin, which is a disulfide-less peptide; and bovine serum albumin, a large protein. Both MCoTI-II and chlorotoxin distributed predominantly to the serum and kidneys, confirming that they are stable in serum and suggesting that they are eliminated from the blood through renal clearance. Although cell-penetrating peptides have been reported to be able to transport across the blood-brain barrier, MCoTI-II, which is a cell-penetrating peptide, showed no uptake into the brain. The uptake of chlorotoxin was higher than that of MCoTI-II but lower than that of dermorphin, which is considered to have low uptake into the brain. This study provides insight into the behavior of disulfide-rich peptides in vivo. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:26929247

  4. Size dependent biodistribution and SPECT imaging of (111)In-labeled polymersomes.

    PubMed

    Brinkhuis, René P; Stojanov, Katica; Laverman, Peter; Eilander, Jos; Zuhorn, Inge S; Rutjes, Floris P J T; van Hest, Jan C M

    2012-05-16

    Polymersomes, self-assembled from the block copolymer polybutadiene-block-poly(ethylene glycol), were prepared with well-defined diameters between 90 and 250 nm. The presence of ~1% of diethylene triamine penta acetic acid on the polymersome periphery allowed to chelate radioactive (111)In onto the surface and determine the biodistribution in mice as a function of both the polymersome size and poly(ethylene glycol) corona thickness (i.e., PEG molecular weight). Doubling the PEG molecular weight from 1 kg/mol to 2 kg/mol did not change the blood circulation half-life significantly. However, the size of the different polymersome samples did have a drastic effect on the blood circulation times. It was found that polymersomes of 120 nm and larger become mostly cleared from the blood within 4 h, presumably due to recognition by the reticuloendothelial system. In contrast, smaller polymersomes of around 90 nm circulated much longer. After 24 h more than 30% of the injected dose was still present in the blood pool. This sharp transition in blood circulation kinetics due to size is much more abrupt than observed for liposomes and was additionally visualized by SPECT/CT imaging. These findings should be considered in the formulation and design of polymersomes for biomedical applications. Size, much more than for liposomes, will influence the pharmacokinetics, and therefore, long circulating preparations should be well below 100 nm.

  5. Biodistribution of the cyclotide MCoTI-II, a cyclic disulfide-rich peptide drug scaffold.

    PubMed

    Wang, Conan K; Stalmans, Sofie; De Spiegeleer, Bart; Craik, David J

    2016-05-01

    Disulfide-rich macrocyclic peptides are promising templates for drug design because of their unique topology and remarkable stability. However, little is known about their pharmacokinetics. In this study, we characterize the biodistribution in mice of Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II), a cyclic three-disulfide-containing peptide that has been used in a number of studies as a drug scaffold. The distribution of MCoTI-II was compared with that of chlorotoxin, which is a four-disulfide-containing peptide that has been used to develop brain tumor imaging agents; dermorphin, which is a disulfide-less peptide; and bovine serum albumin, a large protein. Both MCoTI-II and chlorotoxin distributed predominantly to the serum and kidneys, confirming that they are stable in serum and suggesting that they are eliminated from the blood through renal clearance. Although cell-penetrating peptides have been reported to be able to transport across the blood-brain barrier, MCoTI-II, which is a cell-penetrating peptide, showed no uptake into the brain. The uptake of chlorotoxin was higher than that of MCoTI-II but lower than that of dermorphin, which is considered to have low uptake into the brain. This study provides insight into the behavior of disulfide-rich peptides in vivo. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  6. UNCERTAINTIES IN TRICHLOROETHYLENE PHARMACOKINETIC MODELS

    EPA Science Inventory

    Understanding the pharmacokinetics of a chemical¯its absorption, distribution, metabolism, and excretion in humans and laboratory animals ¯ is critical to the assessment of its human health risks. For trichloroethylene (TCE), numerous physiologically-based pharmacokinetic (PBPK)...

  7. Neural Stem Cell Tumorigenicity and Biodistribution Assessment for Phase I Clinical Trial in Parkinson’s Disease

    PubMed Central

    Garitaonandia, Ibon; Gonzalez, Rodolfo; Christiansen-Weber, Trudy; Abramihina, Tatiana; Poustovoitov, Maxim; Noskov, Alexander; Sherman, Glenn; Semechkin, Andrey; Snyder, Evan; Kern, Russell

    2016-01-01

    Human pluripotent stem cells (PSC) have the potential to revolutionize regenerative medicine. However undifferentiated PSC can form tumors and strict quality control measures and safety studies must be conducted before clinical translation. Here we describe preclinical tumorigenicity and biodistribution safety studies that were required by the US Food and Drug Administration (FDA) and Australian Therapeutic Goods Administration (TGA) prior to conducting a Phase I clinical trial evaluating the safety and tolerability of human parthenogenetic stem cell derived neural stem cells ISC-hpNSC for treating Parkinson’s disease (ClinicalTrials.gov Identifier NCT02452723). To mitigate the risk of having residual PSC in the final ISC-hpNSC population, we conducted sensitive in vitro assays using flow cytometry and qRT-PCR analyses and in vivo assays to determine acute toxicity, tumorigenicity and biodistribution. The results from these safety studies show the lack of residual undifferentiated PSC, negligible tumorigenic potential by ISC-hpNSC and provide additional assurance to their clinical application. PMID:27686862

  8. Magnetically Targeted Viral Envelopes: A PET Investigation of Initial Biodistribution

    PubMed Central

    Flexman, Jennifer A.; Cross, Donna J.; Lewellen, Barbara L.; Miyoshi, Sosuke; Kim, Yongmin

    2009-01-01

    Gene and drug therapy for organ-specific diseases in part depends on the efficient delivery to a particular region of the body. We examined the biodistribution of a viral envelope commonly used as a nanoscale gene delivery vehicle using positron emission tomography (PET) and investigated the magnetic alteration of its biodistribution. Iron oxide nanoparticles and 18 F-fluoride were encapsulated by hemagglutinating virus of Japan envelopes (HVJ-Es). HVJ-Es were then injected intravenously in the rat and imaged dynamically using high-resolution PET. Control subjects received injections of encapsulated materials alone. For magnetic targeting, permanent magnets were fixed on the head during the scan. Based on the quantitative analysis of PET images, HVJ-Es accumulated in the liver and spleen and activity remained higher than control subjects for 2 h. Histological sections of the liver confirmed imaging findings. Pixel-wise activity patterns on coregistered PET images of the head showed a significantly different pattern for the subjects receiving magnetic targeting as compared to all control groups. Imaging demonstrated the initial biodistribution of a viral envelope within the rodent by providing quantitative behavior over time and in specific anatomical regions. Magnetic force altered the biodistribution of the viral envelope to a target structure, and could enable region-specific delivery of therapeutic vehicles noninvasively. PMID:18779103

  9. Biodistribution and Trafficking of Hydrogel Nanoparticles in Adult Mosquitoes

    PubMed Central

    Paquette, Cynthia C. H.; Phanse, Yashdeep; Perry, Jillian L.; Sanchez-Vargas, Irma; Airs, Paul M.; Dunphy, Brendan M.; Xu, Jing; Carlson, Jonathan O.; Luft, J. Christopher; DeSimone, Joseph M.; Bartholomay, Lyric C.; Beaty, Barry J.

    2015-01-01

    Background Nanotechnology offers great potential for molecular genetic investigations and potential control of medically important arthropods. Major advances have been made in mammalian systems to define nanoparticle (NP) characteristics that condition trafficking and biodistribution of NPs in the host. Such information is critical for effective delivery of therapeutics and molecules to cells and organs, but little is known about biodistribution of NPs in mosquitoes. Methodology/Principal Findings PRINT technology was used to construct a library of fluorescently labeled hydrogel NPs of defined size, shape, and surface charge. The biodistribution (organ, tissue, and cell tropisms and trafficking kinetics) of positively and negatively charged 200 nm x 200 nm, 80 nm x 320 nm, and 80 nm x 5000 nm NPs was determined in adult Anopheles gambiae mosquitoes as a function of the route of challenge (ingestion, injection or contact) using whole body imaging and fluorescence microscopy. Mosquitoes readily ingested NPs in sugar solution. Whole body fluorescence imaging revealed substantial NP accumulation (load) in the alimentary tracts of the adult mosquitoes, with the greatest loads in the diverticula, cardia and foregut. Positively and negatively charged NPs differed in their biodistribution and trafficking. Following oral challenge, negatively charged NPs transited the alimentary tract more rapidly than positively charged NPs. Following contact challenge, negatively charged NPs trafficked more efficiently in alimentary tract tissues. Following parenteral challenge, positively and negatively charged NPs differed in tissue tropisms and trafficking in the hemocoel. Injected NPs were also detected in cardia/foregut, suggesting trafficking of NPs from the hemocoel into the alimentary tract. Conclusions/Significance Herein we have developed a tool box of NPs with the biodistribution and tissue tropism characteristics for gene structure/function studies and for delivery of vector

  10. Efficacy, safety and pharmacokinetic of once-daily boosted saquinavir (1500/100 mg) together with 2 nucleos(t)ide reverse transcriptase inhibitors in real life: a multicentre prospective study

    PubMed Central

    2010-01-01

    Background Ritonavir-boosted saquinavir (SQVr) is nowadays regarded as an alternative antiretroviral drug probably due to several drawbacks, such as its high pill burden, twice daily dosing and the requirement of 200 mg ritonavir when given at the current standard 1000/100 mg bid dosing. Several once-daily SQVr dosing schemes have been studied with the 200 mg SQV old formulations, trying to overcome some of these disadvantages. SQV 500 mg strength tablets became available at the end of 2005, thus facilitating a once-daily regimen with fewer pills, although there is very limited experience with this formulation yet. Methods Prospective, multicentre study in which efficacy, safety and pharmacokinetics of a regimen of once-daily SQVr 1500/100 mg plus 2 NRTIs were evaluated under routine clinical care conditions in either antiretroviral-naïve patients or in those with no previous history of antiretroviral treatments and/or genotypic resistance tests suggesting SQV resistance. Plasma SQV trough levels were measured by HPLV-UV. Results Five hundred and fourteen caucasian patients were included (47.2% coinfected with hepatitis C and/or B virus; 7.8% with cirrhosis). Efficacy at 52 weeks (plasma RNA-HIV <50 copies/ml) was 67.7% (CI95: 63.6 - 71.7%) by intention-to-treat, and 92.2% (CI95: 89.8 - 94.6%) by on-treatment analysis. The reasons for failure were: dropout or loss to follow-up (18.4%), virological failure (7.8%), adverse events (3.1%), and other reasons (4.6%). The high rate of dropout may be explained by an enrollement and follow-up under routine clinical care condition, and a population with a significant number of drug users. The median SQV Cmin (n = 49) was 295 ng/ml (range, 53-2172). The only variable associated with virological failure in the multivariate analysis was adherence (OR: 3.36; CI95, 1.51-7.46, p = 0.003). Conclusions Our results suggests that SQVr (1500/100 mg) once-daily plus 2 NRTIs is an effective regimen, without severe clinical adverse

  11. Comprehensive characterizations of nanoparticle biodistribution following systemic injection in mice

    NASA Astrophysics Data System (ADS)

    Liao, Wei-Yin; Li, Hui-Jing; Chang, Ming-Yao; Tang, Alan C. L.; Hoffman, Allan S.; Hsieh, Patrick C. H.

    2013-10-01

    Various nanoparticle (NP) properties such as shape and surface charge have been studied in an attempt to enhance the efficacy of NPs in biomedical applications. When trying to undermine the precise biodistribution of NPs within the target organs, the analytical method becomes the determining factor in measuring the precise quantity of distributed NPs. High performance liquid chromatography (HPLC) represents a more powerful tool in quantifying NP biodistribution compared to conventional analytical methods such as an in vivo imaging system (IVIS). This, in part, is due to better curve linearity offered by HPLC than IVIS. Furthermore, HPLC enables us to fully analyze each gram of NPs present in the organs without compromising the signals and the depth-related sensitivity as is the case in IVIS measurements. In addition, we found that changing physiological conditions improved large NP (200-500 nm) distribution in brain tissue. These results reveal the importance of selecting analytic tools and physiological environment when characterizing NP biodistribution for future nanoscale toxicology, therapeutics and diagnostics.Various nanoparticle (NP) properties such as shape and surface charge have been studied in an attempt to enhance the efficacy of NPs in biomedical applications. When trying to undermine the precise biodistribution of NPs within the target organs, the analytical method becomes the determining factor in measuring the precise quantity of distributed NPs. High performance liquid chromatography (HPLC) represents a more powerful tool in quantifying NP biodistribution compared to conventional analytical methods such as an in vivo imaging system (IVIS). This, in part, is due to better curve linearity offered by HPLC than IVIS. Furthermore, HPLC enables us to fully analyze each gram of NPs present in the organs without compromising the signals and the depth-related sensitivity as is the case in IVIS measurements. In addition, we found that changing physiological

  12. The biodistribution of gold nanoparticles designed for renal clearance

    NASA Astrophysics Data System (ADS)

    Alric, Christophe; Miladi, Imen; Kryza, David; Taleb, Jacqueline; Lux, François; Bazzi, Rana; Billotey, Claire; Janier, Marc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2013-06-01

    Owing to their tunable optical properties and their high absorption cross-section of X- and γ-ray, gold nanostructures appear as promising agents for remotely controlled therapy. Since the efficiency of cancer therapy is not limited to the eradication of the tumour but rests also on the sparing of healthy tissue, a biodistribution study is required in order to determine whether the behaviour of the nanoparticles after intravenous injection is safe (no accumulation in healthy tissue, no uptake by phagocytic cell-rich organs (liver, spleen) and renal clearance). The biodistribution of Au@DTDTPA nanoparticles which are composed of a gold core and a DTDTPA (dithiolated polyaminocarboxylate) shell can be established by X-ray imaging (owing to the X-ray absorption of the gold core) and by magnetic resonance imaging (MRI) since the DTDTPA shell was designed for the immobilization of paramagnetic gadolinium ions. However scintigraphy appears better suited for a biodistribution study owing to a great sensitivity. The successful immobilization of radioelements (99mTc, 111In) in the DTDTPA shell, instead of gadolinium ions, renders possible the follow up of Au@DTDTPA by scintigraphy which showed that Au@DTDTPA nanoparticles exhibit a safe behaviour after intravenous injection to healthy rats.Owing to their tunable optical properties and their high absorption cross-section of X- and γ-ray, gold nanostructures appear as promising agents for remotely controlled therapy. Since the efficiency of cancer therapy is not limited to the eradication of the tumour but rests also on the sparing of healthy tissue, a biodistribution study is required in order to determine whether the behaviour of the nanoparticles after intravenous injection is safe (no accumulation in healthy tissue, no uptake by phagocytic cell-rich organs (liver, spleen) and renal clearance). The biodistribution of Au@DTDTPA nanoparticles which are composed of a gold core and a DTDTPA (dithiolated polyaminocarboxylate

  13. Altered biodistribution of Ga-67 by intramuscular gold salts

    SciTech Connect

    Moult, R.G.; Bekerman, C. )

    1989-11-01

    The authors observed a deviation from the normal scintigraphic pattern of Ga-67 citrate biodistribution. An 8-year-old black girl with juvenile rheumatoid arthritis, who had been treated with intramuscular injections of gold salts, had a Ga-67 study as part of her workup. The study demonstrated no hepatic uptake, but showed elevated skeletal and renal activity. This characteristic biodistribution of Ga-67 may be due to inhibition of lysosomal enzymes by gold and/or to accumulation of gold in lysosomes. To study these possibilities, the authors reviewed the mechanisms of Ga-67 localization and gold metabolism. Alteration of the Ga-67 citrate scintigraphic pattern due to earlier treatment with gold salts has not been reported previously.

  14. Ac magnetic susceptibility study of in vivo nanoparticle biodistribution

    NASA Astrophysics Data System (ADS)

    Gutiérrez, L.; Mejías, R.; Barber, D. F.; Veintemillas-Verdaguer, S.; Serna, C. J.; Lázaro, F. J.; Morales, M. P.

    2011-06-01

    We analysed magnetic nanoparticle biodistribution, before and after cytokine conjugation, in a mouse model by ac susceptibility measurements of the corresponding resected tissues. Mice received repeated intravenous injections of nanoparticle suspension for two weeks and they were euthanized 1 h after the last injection. In general, only 10% of the total injected nanoparticles after multiple exposures were found in tissues. The rest of the particles may probably be metabolized or excreted by the organism. Our findings indicate that the adsorption of interferon to DMSA-coated magnetic nanoparticles changes their biodistribution, reducing the presence of nanoparticles in lungs and therefore their possible toxicity. The specific targeting of the particles to tumour tissues by the use of an external magnetic field has also been studied. Magnetic nanoparticles were observed by transmission electron microscopy in the targeted tissue and quantified by ac magnetic susceptibility.

  15. Pharmacokinetics of ruminally-dosed sodium chlorate in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recently recognized potential of sodium chlorate as a possible pre-harvest food safety tool in meat animals has spurred interest in the pharmacokinetics of intraruminally-dosed chlorate. Six Loala cattle were assigned (one heifer and one steer per treatment) to one of three intraruminal doses of...

  16. Biodistribution of Encapsulated Indocyanine Green in Healthy Mice

    PubMed Central

    Yaseen, Mohammad A.; Yu, Jie; Jung, Bongsu; Wong, Michael S.; Anvari, Bahman

    2009-01-01

    Indocyanine Green (ICG) is a fluorescent probe used in various optically-mediated diagnostic and therapeutic applications. However, utility of ICG remains limited by its unstable optical properties and non-specific localization. We have encapsulated ICG within electrostatically-assembled mesocapsules (MCs) to explore its potential for targeted optical diagnosis and therapy. In this study, we investigate how the surface coating and size of the MCs influences ICG's biodistribution in vivo. ICG was administered intravenously to Swiss Webster mice as a free solution or encapsulated within either 100 nm diameter MCs coated with dextran; 500 nm diameter MCs coated with dextran; or 100 nm diameter MCs coated with 10 nm ferromagnetic iron oxide nanoparticles, themselves coated with polyethylene glycol. ICG was extracted from harvested blood and organs at various times and its amount quantified with fluorescence measurements. MCs containing ICG accumulated in organs of the reticuloendothelial system, namely the liver and spleen, as well as the lungs. The circulation kinetics of ICG remained unaffected by encapsulation; however, the deposition within organs other than the liver suggests a different biodistribution mechanism. Results suggest that the capsules' coating influences their biodistribution to a greater extent than their size. The MC encapsulation system allows for delivery of ICG to organs other than the liver, enabling the potential development of new optical imaging and therapeutic strategies. PMID:19799463

  17. The pharmacokinetics of meloxicam in vultures.

    PubMed

    Naidoo, V; Wolter, K; Cromarty, A D; Bartels, P; Bekker, L; McGaw, L; Taggart, M A; Cuthbert, R; Swan, G E

    2008-04-01

    Vulture populations across the Asian subcontinent have declined dramatically in the last 15 years and are now on the verge of extinction. Although the cause of the population decline was initially unknown, the decrease has recently been conclusively linked to the use of the nonsteroidal anti-inflammatory drug diclofenac in cattle that inadvertently ended up in the vulture food chain. With the vulture numbers continuing to decline by up to 48% a year, the Indian, Nepali and Pakistan governments have recently banned the manufacture and importation of veterinary diclofenac. They have also suggested meloxicam as an alternate anti-inflammatory for use in cattle. This recommendation was based on extensive acute safety studies in the African White-backed vulture (Gyps africanus), which evaluated worst case scenarios of maximum intake based on a once in three day feeding pattern. However, the possible cumulative pharmacokinetic and pharmacodynamic effects in vultures receiving multiple daily doses of meloxicam over time were not assessed. At present very little pharmacokinetic or pharmacodynamic information is available to add further support for the safety of meloxicam in this animal species. This article discusses the oral and intramuscular pharmacokinetics of meloxicam in Cape Griffon vultures (Gyps coprotheres). Therapeutic drug monitoring was also undertaken in White-backed, Egyptian (Neophron pernopterus) and one Lappet Faced vulture (Torgos tracheliotos). In all these species, meloxicam was characterized by a short half-life of elimination. The rapid metabolism of meloxicam in combination with a short duration of effect in the studied species Gyps vultures shown in this study makes it unlikely that the drug could accumulate. This confirms the safety of repeated exposure to meloxicam in vultures of this genus.

  18. The pharmacokinetics of meloxicam in vultures.

    PubMed

    Naidoo, V; Wolter, K; Cromarty, A D; Bartels, P; Bekker, L; McGaw, L; Taggart, M A; Cuthbert, R; Swan, G E

    2008-04-01

    Vulture populations across the Asian subcontinent have declined dramatically in the last 15 years and are now on the verge of extinction. Although the cause of the population decline was initially unknown, the decrease has recently been conclusively linked to the use of the nonsteroidal anti-inflammatory drug diclofenac in cattle that inadvertently ended up in the vulture food chain. With the vulture numbers continuing to decline by up to 48% a year, the Indian, Nepali and Pakistan governments have recently banned the manufacture and importation of veterinary diclofenac. They have also suggested meloxicam as an alternate anti-inflammatory for use in cattle. This recommendation was based on extensive acute safety studies in the African White-backed vulture (Gyps africanus), which evaluated worst case scenarios of maximum intake based on a once in three day feeding pattern. However, the possible cumulative pharmacokinetic and pharmacodynamic effects in vultures receiving multiple daily doses of meloxicam over time were not assessed. At present very little pharmacokinetic or pharmacodynamic information is available to add further support for the safety of meloxicam in this animal species. This article discusses the oral and intramuscular pharmacokinetics of meloxicam in Cape Griffon vultures (Gyps coprotheres). Therapeutic drug monitoring was also undertaken in White-backed, Egyptian (Neophron pernopterus) and one Lappet Faced vulture (Torgos tracheliotos). In all these species, meloxicam was characterized by a short half-life of elimination. The rapid metabolism of meloxicam in combination with a short duration of effect in the studied species Gyps vultures shown in this study makes it unlikely that the drug could accumulate. This confirms the safety of repeated exposure to meloxicam in vultures of this genus. PMID:18307504

  19. Nanobarcoding for improved nanoparticle detection in nanomedical biodistribution studies

    NASA Astrophysics Data System (ADS)

    Eustaquio, Trisha

    Determination of the fate of nanoparticles (NPs) in a biological system, or NP biodistribution, is critical in evaluating a NP formulation for nanomedicine. Unlike small-molecule drugs, NPs impose unique challenges in the design of appropriate biodistribution studies due to their small size and subsequent detection signal. Current methods to determine NP biodistribution are greatly inadequate due to their limited detection thresholds. There is an overwhelming need for a sensitive and efficient imaging-based method that can (1) detect and measure small numbers of NPs of various types, ideally single NPs, (2) associate preferential NP uptake with histological cell type by preserving spatial information in samples, and (3) allow for relatively quick and accurate NP detection in in vitro (and possibly ex vivo) samples for comprehensive NP biodistribution studies. Herein, a novel method for improved NP detection is proposed, coined "nanobarcoding." Nanobarcoding utilizes a non-endogenous oligonucleotide, or "nanobarcode" (NB), conjugated to the NP surface to amplify the detection signal from a single NP via in situ polymerase chain reaction (ISPCR), and this signal amplification will facilitate rapid and precise detection of single NPs inside cells over large areas of sample such that more sophisticated studies can be performed on the NP-positive subpopulation. Moreover, nanobarcoding has the potential to be applied to the detection of more than one NP type to study the effects of physicochemical properties, targeting mechanisms, and route of entry on NP biodistribution. The nanobarcoding method was validated in vitro using NB-functionalized superparamagnetic iron oxide NPs (NB-SPIONs) as the model NP type for improved NP detection inside HeLa human cervical cancer cells, a cell line commonly used for ISPCR-mediated detection of human papilloma virus (HPV). Nanotoxicity effects of NB-SPIONs were also evaluated at the single-cell level using LEAP (Laser-Enabled Analysis

  20. Pharmacokinetics of oral rufinamide in dogs.

    PubMed

    Wright, H M; Chen, A V; Martinez, S E; Davies, N M

    2012-12-01

    The objective of this study was to determine the pharmacokinetic properties and short-term adverse effect profile of single-dose oral rufinamide in healthy dogs. Six healthy adult dogs were included in the study. The pharmacokinetics of rufinamide were calculated following administration of a single mean oral dose of 20.0 mg/kg (range 18.6-20.8 mg/kg). Plasma rufinamide concentrations were determined using high-performance liquid chromatography, and pharmacokinetic data were analyzed using commercial software. No adverse effects were observed. The mean terminal half-life was 9.86 ± 4.77 h. The mean maximum plasma concentration was 19.6 ± 5.8 μg/mL, and the mean time to maximum plasma concentration was 9.33 ± 4.68 h. Mean clearance was 1.45 ± 0.70 L/h. The area under the curve (to infinity) was 411 ± 176 μg · h/mL. Results of this study suggest that rufinamide given orally at 20 mg/kg every 12 h in healthy dogs should result in a plasma concentration and half-life sufficient to achieve the therapeutic level extrapolated from humans without short-term adverse effects. Further investigation into the efficacy and long-term safety of rufinamide in the treatment of canine epilepsy is warranted. PMID:22132708

  1. Ethanol Pharmacokinetics in Neonates and Infants

    PubMed Central

    Marek, Elizabeth; Kraft, Walter K.

    2014-01-01

    Introduction Ethanol has been used for years in neonatal and infant liquid medications, yet the pharmacokinetics, pharmacodynamics, and safety of ethanol in this vulnerable population have not been well characterized. The purpose of this review is to raise awareness of ethanol use as an excipient in neonatal and infant medications and to provide insight, based on the available evidence, into clearance rates of ethanol in babies. We also discuss ethanol pharmacokinetics in adults, theoretical pharmacokinetic changes in neonates and infants as it may apply to ethanol disposition, and case reports involving ethanol exposure in neonates and infants. Materials and methods This study was a narrative review in which relevant papers were selected using databases and scientific search engines such as PubMed with the key words ethanol, infant, and newborninfant. Results It remains unclear what ethanol exposure is safe for neonates and infants. The Food and Drug Administration and American Academy of Pediatrics have both taken action, by either setting limits of ethanol content in over-the-counter medications or by recommending restricted exposure to ethanol-containing pediatric formulations. Conclusions Until the short- and long-term health effects of chronic ethanol administration can be further characterized, ethanol-containing medications should be used with caution. PMID:25379066

  2. Pharmacokinetic consequences of spaceflight

    NASA Technical Reports Server (NTRS)

    Putcha, L.; Cintron, N. M.

    1991-01-01

    Spaceflight induces a wide range of physiological and biochemical changes, including disruption of gastrointestinal (GI) function, fluid and electrolyte balance, circulatory dynamics, and organ blood flow, as well as hormonal and metabolic perturbations. Any of these changes can influence the pharmacokinetics and pharmacodynamics of in-flight medication. That spaceflight may alter bioavailability was proposed when drugs prescribed to alleviate space motion sickness (SMS) had little therapeutic effect. Characterization of the pharmacokinetic and/or pharmacodynamic behavior of operationally critical medications is crucial for their effective use in flight; as a first step, we sought to determine whether drugs administered in space actually reach the site of action at concentrations sufficient to elicit the therapeutic response.

  3. Pharmacokinetics and molecular detoxication.

    PubMed Central

    Cashman, J R; Perotti, B Y; Berkman, C E; Lin, J

    1996-01-01

    This paper presents a comprehensive overview of the pharmacokinetic parameters used from in vivo and in vitro studies that are important in order to understand the major conceptual approaches of toxicokinetics and the disposition of environmental chemicals. In vitro biochemical information concerning the detoxication of environmental chemicals is also presented. The discussion leads to a more complete appreciation for the use of in vitro measurements for in vivo correlations. The concept of interspecies scaling in the interpolation and extrapolation of fundamental biochemical metabolic processes is illustrated with a number of examples. Additional examples of in vitro-in vivo correlations are presented in the evaluation of the impact of chemical exposure to humans. Finally, several important metabolic detoxication enzymes are presented, including the mammalian microsomal cytochrome P450 and flavin-containing monooxygenases as well as carboxylesterases and glucuronosyltransferases, to provide insight into the processes of chemical detoxication in mammalian tissue and blood. Because interspecies scaling and the pharmacokinetics of chemical disposition have already shown their usefulness in understanding some examples of chemical disposition, our summary focuses on showing the usefulness of the pharmacokinetic equations and providing confidence in using the approach for in vitro-in vivo correlations. Ultimately, the presentation may provide the reader with a conceptual framework for future evaluation of the human health risks associated with environmental toxicants. PMID:8722108

  4. Human safety and pharmacokinetics of the CFC alternative propellants HFC 134a (1,1,1,2-tetrafluoroethane) and HFC 227 (1,1,1,2,3,3, 3-heptafluoropropane) following whole-body exposure.

    PubMed

    Emmen, H H; Hoogendijk, E M; Klöpping-Ketelaars, W A; Muijser, H; Duistermaat, E; Ravensberg, J C; Alexander, D J; Borkhataria, D; Rusch, G M; Schmit, B

    2000-08-01

    HFC 134a (1,1,1,2-tetrafluoroethane) and HFC 227 (1,1,1,2,3,3, 3-heptafluoropropane) are used to replace chlorofluorocarbons (CFCs) in refrigerant and aerosol applications, including medical use in metered-dose inhalers. Production and consumption of CFCs are being phased out under the Montreal Protocol on Substances that Deplete the Ozone Layer. The safety and pharmacokinetics of HFC 134a and HFC 227 were assessed in two separate double-blind studies. Each HFC (hydrofluorocarbon) was administered via whole-body exposure as a vapor to eight (four male and four female) healthy volunteers. Volunteers were exposed, once weekly for 1 h, first to air and then to ascending concentrations of HFC (1000, 2000, 4000, and 8000 parts per million (ppm)), interspersed with a second air exposure and two CFC 12 (dichlorodifluoromethane) exposures (1000 and 4000 ppm). Comparison of either HFC 134a or HFC 227 to CFC 12 or air gave no clinically significant results for any of the measured laboratory parameters. There were no notable adverse events, there was no evidence of effects on the central nervous system, and there were no symptoms of upper respiratory tract irritation. HFC 134a, HFC 227, and CFC 12 blood concentrations increased rapidly and in an exposure-concentration-dependent manner, although not strictly proportionally, and approached steady state. Maximum blood concentrations (C(max)) tended to be higher in males than females; in the HFC 227 study, these were statistically significantly (P < 0. 05) higher in males for each HFC 227 and CFC 12 exposure level. In the HFC 134a study, the gender difference in C(max) was only statistically significant (P < 0.05) for CFC 12 at 4000 ppm and HFC 134a at 8000 ppm. Following the end of exposure, blood concentrations declined rapidly, predominantly biphasically and independent of exposure concentration. For the HFC 134a study, the t(1/2)alpha (alpha elimination half-life) was short for both CFC 12 and HFC 134a (<11 min). The t(1

  5. Characterization of Polymyxin B Biodistribution and Disposition in an Animal Model.

    PubMed

    Manchandani, Pooja; Zhou, Jian; Ledesma, Kimberly R; Truong, Luan D; Chow, Diana S-L; Eriksen, Jason L; Tam, Vincent H

    2016-02-01

    Despite dose-limiting nephrotoxicity concerns, polymyxin B has resurged as the treatment of last resort for multidrug-resistant Gram-negative bacterial infections. However, the pharmacokinetic, pharmacodynamic, and nephrotoxic properties of polymyxin B still are not thoroughly understood. The objective of this study was to provide additional insights into the overall biodistribution and disposition of polymyxin B in an animal model. Sprague-Dawley rats were dosed with intravenous polymyxin B (3 mg/kg of body weight). Drug concentrations in the serum, urine, bile, and tissue (brain, heart, lungs, liver, spleen, kidneys, and skeletal muscle) samples over time were assayed by a validated methodology. Among all the organs evaluated, polymyxin B distribution was highest in the kidneys. The mean renal tissue/serum polymyxin B concentration ratios were 7.45 (95% confidence interval [CI], 4.63 to 10.27) at 3 h and 19.62 (95% CI, 5.02 to 34.22) at 6 h postdose. Intrarenal drug distribution was examined by immunostaining. Using a ratiometric analysis, proximal tubular cells showed the highest accumulation of polymyxin B (Mander's overlap coefficient, 0.998) among all cell types evaluated. Less than 5% of the administered dose was recovered in urine over 48 h, but all 4 major polymyxin B components were detected in the bile over 4 h. These findings corroborate previous results that polymyxin B is highly accumulated in the kidneys, but the elimination likely is via a nonrenal route. Biliary excretion could be one of the routes of polymyxin B elimination, and this should be further explored. The elucidation of mechanism(s) of drug uptake in proximal tubular cells is ongoing.

  6. Characterization of Polymyxin B Biodistribution and Disposition in an Animal Model

    PubMed Central

    Manchandani, Pooja; Zhou, Jian; Ledesma, Kimberly R.; Truong, Luan D.; Chow, Diana S.-L.; Eriksen, Jason L.

    2015-01-01

    Despite dose-limiting nephrotoxicity concerns, polymyxin B has resurged as the treatment of last resort for multidrug-resistant Gram-negative bacterial infections. However, the pharmacokinetic, pharmacodynamic, and nephrotoxic properties of polymyxin B still are not thoroughly understood. The objective of this study was to provide additional insights into the overall biodistribution and disposition of polymyxin B in an animal model. Sprague-Dawley rats were dosed with intravenous polymyxin B (3 mg/kg of body weight). Drug concentrations in the serum, urine, bile, and tissue (brain, heart, lungs, liver, spleen, kidneys, and skeletal muscle) samples over time were assayed by a validated methodology. Among all the organs evaluated, polymyxin B distribution was highest in the kidneys. The mean renal tissue/serum polymyxin B concentration ratios were 7.45 (95% confidence interval [CI], 4.63 to 10.27) at 3 h and 19.62 (95% CI, 5.02 to 34.22) at 6 h postdose. Intrarenal drug distribution was examined by immunostaining. Using a ratiometric analysis, proximal tubular cells showed the highest accumulation of polymyxin B (Mander's overlap coefficient, 0.998) among all cell types evaluated. Less than 5% of the administered dose was recovered in urine over 48 h, but all 4 major polymyxin B components were detected in the bile over 4 h. These findings corroborate previous results that polymyxin B is highly accumulated in the kidneys, but the elimination likely is via a nonrenal route. Biliary excretion could be one of the routes of polymyxin B elimination, and this should be further explored. The elucidation of mechanism(s) of drug uptake in proximal tubular cells is ongoing. PMID:26643340

  7. Uptake and biodistribution of rizatriptan to blood and brain following different routes of administration in rats.

    PubMed

    Wang, Chun; Quan, Li-Hui; Guo, Yi; Liu, Chun-Yu; Liao, Yong-Hong

    2007-06-01

    The objective of the present study was to investigate the biodistribution profiles of rizatriptan in the blood and brain of Wistar rats after peroral, subcutaneous, intranasal and intratracheal administration with a particular view to determining the applicability of inhalation delivery to achieve rapid and high availability of the drug in both blood and the brain. Following the intratracheal administration of the drug (4.0mg/kg) to the rats, the absolute bioavailability was found to be 91.2%, significantly higher than those from intranasal or peroral routes, and T(max) in plasma and brain was attained within 2 min, significantly shorter than the T(max) of intranasal ( approximately 10 min in both plasma and brain), subcutaneous (16.7 min in plasma and 22.5 min in brain) and peroral (30.0 min in plasma and 45.0 min in brain) administration. In addition, other pharmacokinetic parameters associated with rapid onset of action including AUC(plasma/brain) and C(max), of intratracheal instillated rizatriptan appeared also to be comparable or superior to those of other delivered routes. Although AUC(brain)/AUC(plasma) ratios after intranasal delivery (43.4%) differed significantly from the ratios shown after intratracheal instillation (23.2%), the AUC(brain 0-120 min) via the latter routes was slightly but not significantly higher than that from the former routes. The results in the present study indicated that pulmonary delivery of rizatriptan may achieve maximum plasma and brain concentrations significantly more rapidly compared with intranasal, subcutaneous and peroral administration and be a promising delivery method with extremely rapid onset of action in the pain relief of migraine. PMID:17267150

  8. Clinical pharmacokinetics of mirtazapine.

    PubMed

    Timmer, C J; Sitsen, J M; Delbressine, L P

    2000-06-01

    Mirtazapine is the first noradrenergic and specific serotonergic antidepressant ('NaSSA'). It is rapidly and well absorbed from the gastrointestinal tract after single and multiple oral administration, and peak plasma concentrations are reached within 2 hours. Mirtazapine binds to plasma proteins (85%) in a nonspecific and reversible way. The absolute bioavailability is approximately 50%, mainly because of gut wall and hepatic first-pass metabolism. Mirtazapine shows linear pharmacokinetics over a dose range of 15 to 80mg. The presence of food has a minor effect on the rate, but does not affect the extent, of absorption. The pharmacokinetics of mirtazapine are dependent on gender and age: females and the elderly show higher plasma concentrations than males and young adults. The elimination half-life of mirtazapine ranges from 20 to 40 hours, which is in agreement with the time to reach steady state (4 to 6 days). Total body clearance as determined from intravenous administration to young males amounts to 31 L/h. Liver and moderate renal impairment cause an approximately 30% decrease in oral mirtazapine clearance; severe renal impairment causes a 50% decrease in clearance. There were no clinically or statistically significant differences between poor (PM) and extensive (EM) metabolisers of debrisoquine [a cytochrome P450 (CYP) 2D6 substrate] with regard to the pharmacokinetics of the racemate. The pharmacokinetics of mirtazapine appears to be enantioselective, resulting in higher plasma concentrations and longer half-life of the (R)-(-)-enantiomer (18.0 +/-2.5h) compared with that of the (S)-(+)-enantiomer (9.9+/-3. lh). Genetic CYP2D6 polymorphism has different effects on the enantiomers. For the (R)-(-)-enantiomer there are no differences between EM and PM for any of the kinetic parameters; for (S)-(+)-mirtazapine the area under the concentration-time curve (AUC) is 79% larger in PM than in EM, and a corresponding longer half-life was found. Approximately 100% of

  9. Liquid chromatography-tandem mass spectrometry evaluation of the pharmacokinetics of a diacid metabolite of norcantharidin loaded in folic acid-targeted liposomes in mice.

    PubMed

    Liu, Min-Chen; Ma, Xiao-Qiong; Xu, Yong; Peng, Li-Hua; Han, Min; Gao, Jian-Qing

    2016-02-01

    A previous study has reported diacid metabolite (DM) as the stable form of norcantharidin (NCTD), which is almost 100% metabolized to DM-NCTD. However, the unreliable pharmacokinetic characteristics of DM-NCTD could result in low bioavailability, hindering the clinical use of DM-NCTD in the treatment of diseases. A liposomal drug delivery system could overcome the shortcomings of DM-NCTD by improving the relative bioavailability (Fr), reducing drug toxicity, and increasing the therapeutic efficacy. However, there are no data concerning the pharmacokinetics of a DM-NCTD-loaded liposomal drug delivery system in animals, which is required for assessing its safety profile. Therefore, a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the determination of DM-NCTD in mouse plasma. Standard curves were linear (r=0.9966) over the range 10.0-1.00×10(4)ng/ml in mouse plasma with a lower limit of quantification (LLOQ) of 10ng/ml. This study successfully investigated the pharmacokinetics of DM-NCTD and DM-NCTD encapsulated in polyethylene glycol (PEG)-Liposomes (DM-NCTD/PEG-Liposome) or folic acid (FA)-PEG-Liposomes (DM-NCTD/FA-PEG-Liposome) in Kunming mice after a single intravenous dose of 2mg/kg. The plasma profile data of the three groups adhered to a two-compartment model. Compared with the DM-NCTD group, the Liposome groups had longer circulation times following intravenous administration in mice, and the Fr of DM-NCTD increased significantly (P<0.05). Furthermore, the area under the concentration-time curve (AUC) declined with an increase in the volume of distribution (Vd) from the PEG-Liposome to the FA-PEG-Liposome groups, which indicates a more efficient removal of the drug from the plasma of the FA-PEG-Liposome group. This result suggests a possible increased risk of DM-NCTD intoxication in normal tissues with FA-PEG-Liposomes. Based on this study, further investigation of the biodistribution of DM

  10. Amsacrine analog-loaded solid lipid nanoparticle to resolve insolubility for injection delivery: characterization and pharmacokinetics

    PubMed Central

    Fang, Yi-Ping; Chuang, Chih-Hung; Wu, Pao-Chu; Huang, Yaw-Bin; Tzeng, Cherng-Chyi; Chen, Yeh-Long; Liu, Ya-Ting; Tsai, Yi-Hung; Tsai, Ming-Jun

    2016-01-01

    Amsacrine analog is a novel chemotherapeutic agent that provides potentially broad antitumor activity when compared to traditional amsacrine. However, the major limitation of amsacrine analog is that it is highly lipophilic, making it nonconductive to intravenous administration. The aim of this study was to utilize solid lipid nanoparticles (SLN) to resolve the delivery problem and to investigate the biodistribution of amsacrine analog-loaded SLN. Physicochemical characterizations of SLN, including particle size, zeta potential, entrapment efficiency, and stability, were evaluated. In vitro release behavior was also measured by the dialysis method. In vivo pharmacokinetics and biodistribution behavior of amsacrine analog were investigated and incorporated with a non invasion in vivo imaging system to confirm the localization of SLN. The results showed that amsacrine analog-loaded SLN was 36.7 nm in particle size, 0.37 in polydispersity index, and 34.5±0.047 mV in zeta potential. More than 99% of amsacrine analog was successfully entrapped in the SLN. There were no significant differences in the physicochemical properties after storage at room temperature (25°C) for 1 month. Amsacrine analog-loaded SLN maintained good stability. An in vitro release study showed that amsacrine analog-loaded SLN sustained a release pattern and followed the zero equation. An in vivo pharmacokinetics study showed that amsacrine analog was rapidly distributed from the central compartment to the tissue compartments after intravenous delivery of amsacrine analog-loaded SLN. The biodistribution behavior demonstrated that amsacrine analog mainly accumulated in the lungs. Noninvasion in vivo imaging system images also confirmed that the drug distribution was predominantly localized in the lungs when IR-780-loaded SLN was used. PMID:27019595

  11. BIODISTRIBUTION AND PET IMAGING OF [18F]-FLUOROADENOSINE DERIVATIVES

    PubMed Central

    Alauddin, Mian M.; Shahinian, Antranik; Park, Ryan; Tohme, Michael; Fissekis, John D.; Conti, Peter S.

    2007-01-01

    Introduction: Many fluorinated analogues of adenosine nucleoside have been synthesized and studied as potential antitumor and antiviral agents. Earlier we reported radiosynthesis of 2′-deoxy-2′-[18F]fluoro-1-β-D-arabinofuranosyl-adenine ([18F]-FAA) and 3′-deoxy-3′-[18F]fluoro-1-β-D-xylofuranosyl-adenine ([18F]FXA). Now we report their in vivo studies including blood clearance, biodistribution and micro-PET imaging in tumor-bearing nude mice. Methods: Tumors were grown in six weeks old athymic nude mice (Harlan, Indianapolis, IN) by inoculation of HT-29 cells, wild type cells in the left flank and transduced cells with HSV-tk on the right flank. When the tumor was about 1 cm in size, animals were injected with these radiotracers for in vivo studies, including blood clearance, micro-PET imaging and biodistribution. Results: Uptake of [18F]FAA in tumor was 3.3-fold higher than blood, with highest uptake in the spleen. Maximum uptake of [18F]FXA was observed in the heart compared to other organs. There was no tumor uptake of [18F]FXA. Biodistribution results were supported by micro-PET images, which also showed very high uptake of [18F]FAA in spleen and visualization of tumors, and high uptake of [18F]FXA in the heart. Conclusion: These results suggest that [18F]FAA may be useful for tumor imaging, while [18F]FXA may have potential as a heart imaging agent with PET. PMID:17383576

  12. Modulation of the pharmacokinetics of zinc oxide nanoparticles and their fates in vivo

    NASA Astrophysics Data System (ADS)

    Paek, Hee-Jeong; Lee, Youn-Joung; Chung, Hea-Eun; Yoo, Nan-Hui; Lee, Jeong-A.; Kim, Mi-Kyung; Lee, Jong Kwon; Jeong, Jayoung; Choi, Soo-Jin

    2013-11-01

    In the present study, the effects of particle size (20 nm or 70 nm) and surface charge (negative or positive) on the pharmacokinetics, tissue distributions, and excretion of ZnO nanoparticles were examined following the administration of a single oral dose to rats. Pharmacokinetic profiles and biodistributions were not affected by particle size or gender. However, ZnO (-) particles were markedly more absorbed by the systemic circulation than ZnO (+) particles. Furthermore, the kinetic behaviors of ZnO nanoparticles differed from those of zinc ions, as evidenced by the low dissolution (13-14%) of ZnO nanoparticles under gastric conditions. The kidneys, liver, and lungs were found to be target organs. However, the major biological fate of ZnO nanoparticles in tissues was the ionic form, not the particulate form, and this was independent of exposure routes (oral and intravenous). Particle size was only found to affect excretion kinetics, and 20 nm particles were more rapidly eliminated. Most nanoparticles were excreted via the biliary and fecal routes, but a small amount of the nanoparticles was excreted via urine. The study shows that surface charge, rather than particle size or gender, is the critical modulator of the pharmacokinetic behavior of ZnO nanoparticles.In the present study, the effects of particle size (20 nm or 70 nm) and surface charge (negative or positive) on the pharmacokinetics, tissue distributions, and excretion of ZnO nanoparticles were examined following the administration of a single oral dose to rats. Pharmacokinetic profiles and biodistributions were not affected by particle size or gender. However, ZnO (-) particles were markedly more absorbed by the systemic circulation than ZnO (+) particles. Furthermore, the kinetic behaviors of ZnO nanoparticles differed from those of zinc ions, as evidenced by the low dissolution (13-14%) of ZnO nanoparticles under gastric conditions. The kidneys, liver, and lungs were found to be target organs. However

  13. Synthesis, bioanalysis and biodistribution of photosensitizer conjugates for photodynamic therapy

    PubMed Central

    Denis, Tyler GSt; Hamblin, Michael R

    2013-01-01

    Photodynamic therapy (PDT) was discovered in 1900 by Raab, and has since emerged as a promising tool for treating diseases characterized by unwanted cells or hyperproliferating tissue (e.g., cancer or infectious disease). PDT consists of the light excitation of a photosensitizer (PS) in the presence of O2 to yield highly reactive oxygen species. In recent years, PDT has been improved by the synthesis of targeted bioconjugates between monoclonal antibodies and PS, and by investigating PS biodistribution and PD. Here, we provide a comprehensive review of major developments in PS-immunoconjugate-based PDT and the bioanalysis of these agents, with a specific emphasis on anticancer and antimicrobial PDT. PMID:23641699

  14. Dosimetry and pharmacokinetics of monoclonal antibody A6H with human renal cell carcinoma xenografts: single dose study.

    PubMed

    Palme, D F; Berkopec, J M; Wessels, B W; Elson, M K; Lange, P H; Vessella, R L

    1991-01-01

    Implantable miniature thermoluminescent dosimeters and conventional biodistribution analysis were used to determine the locally absorbed radiation dose delivered to three morphologically distinct human renal cell carcinoma xenografts (TK-39, TK-82 and TK-177C; N = 87) following a 50 microCi infusion of 131iodine-labeled monoclonal antibody A6H. Xenografts were clearly detected by radioimmuno-scintigraphy. Pronounced differences were noted among the three xenografts in MAb pharmacokinetics and in the locally absorbed irradiation doses which ranged from 2 to 5 cGy per injected microCi of 131iodine-labelled A6H. PMID:1917523

  15. Cyclophosphamide pharmacokinetics in children.

    PubMed

    Yule, S M; Boddy, A V; Cole, M; Price, L; Wyllie, R; Tasso, M J; Pearson, A D; Idle, J R

    1996-01-01

    1. Cyclophosphamide pharmacokinetics were measured in 38 children with cancer. 2. A high degree of inter-patient variation was seen in all pharmacokinetic parameters. Cyclophosphamide half-life varied between 1.1 and 16.8 h, clearance varied between 1.2 and 10.61 h-1 m-2 and volume of distribution varied between 0.26 and 1.48 1 kg-1. 3. The half-life of cyclophosphamide was prolonged at high dose levels (P = 0.008). 4. Children who had received prior treatment with dexamethasone showed a mean increase in clearance of 2.51 h-1 m-2 (P = 0.001) presumably as a result of CYP450 enzyme induction. 5. Treatment with allopurinol or chlorpromazine was associated with a significant increase in cyclophosphamide half-life (P < 0.001 in both cases). 6. Dose and concurrent treatment may influence cyclophosphamide metabolism in vivo and thus potentially alter the drugs therapeutic effect.

  16. Preparation and biodistribution of F-18 labeled FQNPe

    SciTech Connect

    Luo, H.; Beets, K.; McPherson, D.W.; Knapp, F.F. Jr.

    1996-05-01

    1-Azabicyclo[2.2.2]oct-3-yl {alpha}-(1-fluoropentan-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetate (FQNPe) is an attractive candidate for the in vivo imaging of muscarinic receptors (mAChR) by PET. Initial studies with this new agent demonstrated a high binding affinity and ability to bind to regions of the brain containing mAChR. Fluorine-18 (F-18) labeling of racemic 1 was performed using X = tosyl, triflate, or mesylate group and a decay corrected radiolabeling yields of 2.6, 33, 75%, respectively, were obtained. F-18-3 in 11 % yield (decay corrected to beginning of synthesis). Initial biodistribution studies in rats (n=5) showed F-18-3 had high cerebral uptake of 0.72 ({plus_minus}0.26) and 0.83 ({plus_minus} 0.12) injected dose/gram at 15 and 30 minutes, respectively. The F-18 labeling and biodistribution study of the (-)-quinuclidinyl (-)-acetate and (-)-quinuclidinyl (+)-acetate isomers of FQNPe are currently being pursued.

  17. Biodistribution of antisense nanoparticles in mammary carcinoma rat model.

    PubMed

    Elazar, Victoria; Adwan, Hassan; Rohekar, Keren; Zepp, Michael; Lifshitz-Shovali, Rinat; Berger, Martin R; Golomb, Gershon

    2010-08-01

    Efficient and specific delivery of antisenses (ASs) and protection of the sequences from degradation are critical factors for effective therapy. Sustained release nanoparticles (NP) offer increased resistance to nuclease degradation, increased amounts of AS uptake, and the possibility of control in dosing and sustained duration of AS administration. The biodegradable and biocompatible poly(D,L-lactic-co-glycolic acid) copolymer (PLGA) was utilized to encapsulate AS directed against osteopontin (OPN), which is a promising therapeutic target in mammary carcinoma. Whole body biodistribution of OPN AS NP was evaluated in comparison to naked AS, in intact and mammary carcinoma metastasis model bearing rats. Naked and NP encapsulated AS exhibited different biodistribution profiles. AS NP, in contrast to naked AS, tended to accumulate mostly in the spleen, liver, and at the tumor inoculation site. Drug levels in intact organs were negligible. The elimination of naked AS was faster, due to rapid degradation of the unprotected sequence. It is concluded that AS NP protect the AS from degradation, provide efficient AS delivery to the tumor tissue, and minimize AS accumulation in intact organs due to the AS sustained release profile as well as the favorable NP physicochemical properties.

  18. Macroscopic and microscopic biodistribution of intravenously administered iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Misra, Adwiteeya; Petryk, Alicia A.; Strawbridge, Rendall R.; Hoopes, P. Jack

    2015-03-01

    Iron oxide nanoparticles (IONP) are being developed for use as a cancer treatment. They have demonstrated efficacy when used either as a monotherapy or in conjunction with conventional chemotherapy and radiation. The success of IONP as a therapeutic tool depends on the delivery of a safe and controlled cytotoxic thermal dose to tumor tissue following activation with an alternating magnetic field (AMF). Prior to clinical approval, knowledge of IONP toxicity, biodistribution and physiological clearance is essential. This preliminary time-course study determines the acute toxicity and biodistribution of 110 nm dextran-coated IONP (iron) in mice, 7 days post systemic, at doses of 0.4, 0.6, and 1.0 mg Fe/ g mouse bodyweight. Acute toxicity, manifested as changes in the behavior of mice, was only observed temporarily at 1.0 mg Fe/ g mouse bodyweight, the highest dose administered. Regardless of dose, mass spectrometry and histological analysis demonstrated over 3 mg Fe/g tissue in organs within the reticuloendotheilial system (i.e. liver, spleen, and lymph nodes). Other organs (brain, heart, lungs, and kidney) had less than 0.5 mg Fe/g tissue with iron predominantly confined to the organ vasculature.

  19. Unraveling the Effect of Immunogenicity on the PK/PD, Efficacy, and Safety of Therapeutic Proteins.

    PubMed

    Smith, Alison; Manoli, Hugh; Jaw, Stacey; Frutoz, Kimberley; Epstein, Alan L; Khawli, Leslie A; Theil, Frank-Peter

    2016-01-01

    Biologics have emerged as a powerful and diverse class of molecular and cell-based therapies that are capable of replacing enzymes, editing genomes, targeting tumors, and more. As this complex array of tools arises a distinct set of challenges is rarely encountered in the development of small molecule therapies. Biotherapeutics tend to be big, bulky, polar molecules comprised of protein and/or nucleic acids. Compared to their small molecule counterparts, they are fragile, labile, and heterogeneous. Their biodistribution is often limited by hydrophobic barriers which often restrict their administration to either intravenous or subcutaneous entry routes. Additionally, their potential for immunogenicity has proven to be a challenge to developing safe and reliably efficacious drugs. Our discussion will emphasize immunogenicity in the context of therapeutic proteins, a well-known class of biologics. We set out to describe what is known and unknown about the mechanisms underlying the interplay between antigenicity and immune response and their effect on the safety, efficacy, pharmacokinetics, and pharmacodynamics of these therapeutic agents. PMID:27579329

  20. Unraveling the Effect of Immunogenicity on the PK/PD, Efficacy, and Safety of Therapeutic Proteins

    PubMed Central

    Smith, Alison; Manoli, Hugh; Jaw, Stacey; Frutoz, Kimberley; Epstein, Alan L.

    2016-01-01

    Biologics have emerged as a powerful and diverse class of molecular and cell-based therapies that are capable of replacing enzymes, editing genomes, targeting tumors, and more. As this complex array of tools arises a distinct set of challenges is rarely encountered in the development of small molecule therapies. Biotherapeutics tend to be big, bulky, polar molecules comprised of protein and/or nucleic acids. Compared to their small molecule counterparts, they are fragile, labile, and heterogeneous. Their biodistribution is often limited by hydrophobic barriers which often restrict their administration to either intravenous or subcutaneous entry routes. Additionally, their potential for immunogenicity has proven to be a challenge to developing safe and reliably efficacious drugs. Our discussion will emphasize immunogenicity in the context of therapeutic proteins, a well-known class of biologics. We set out to describe what is known and unknown about the mechanisms underlying the interplay between antigenicity and immune response and their effect on the safety, efficacy, pharmacokinetics, and pharmacodynamics of these therapeutic agents. PMID:27579329

  1. Pharmacokinetics of cefixime

    SciTech Connect

    Tonelli, A.P.

    1987-01-01

    The serum protein binding of cefixime, was concentration-dependent. Below 30 mcg/mL, free-fractions (fu) of cefixime in dog serum were approximately 8%. As cefixime concentrations increased, concomitant increases in free-fraction were observed. At 328 mcg/mL almost half of the cefixime in serum was not bound. To examine the effect of this concentration-dependent binding on cefixime's pharmacokinetics, four dogs were administered 50 mg/kg of the carbon 14-labeled drug by the oral and intravenous routes. The absolute bioavailability of cefixime was 48.0 +/- 17% (mean +/- SD). Absorption of radioactivity was 51.9 +/- 18%. Cefixime's elimination was a function of its free-fraction in serum and reabsorption of filtered drug by the kidney.

  2. Pharmacokinetic interactions with thiazolidinediones.

    PubMed

    Scheen, André J

    2007-01-01

    Type 2 diabetes mellitus is a complex disease combining defects in insulin secretion and insulin action. New compounds called thiazolidinediones or glitazones have been developed for reducing insulin resistance. After the withdrawal of troglitazone because of liver toxicity, two compounds are currently used in clinical practice, rosiglitazone and pioglitazone. These compounds are generally used in combination with other pharmacological agents. Because they are metabolised via cytochrome P450 (CYP), glitazones are exposed to numerous pharmacokinetic interactions. CYP2C8 and CYP3A4 are the main isoenzymes catalysing biotransformation of pioglitazone (as with troglitazone), whereas rosiglitazone is metabolised by CYP2C9 and CYP2C8. For both rosiglitazone and pioglitazone, the most relevant interactions have been described in healthy volunteers with rifampicin (rifampin), which results in a significant decrease of area under the plasma concentration-time curve [AUC] (54-65% for rosiglitazone, p<0.001; 54% for pioglitazone, p<0.001), and with gemfibrozil, which results in a significant increase of AUC (130% for rosiglitazone, p<0.001; 220-240% for pioglitazone, p<0.001). The relevance of such drug-drug interactions in patients with type 2 diabetes remains to be evaluated. However, in the absence of clinical data, it is prudent to reduce the dosage of each glitazone by half in patients treated with gemfibrozil. Conversely, rosiglitazone and pioglitazone do not seem to significantly affect the pharmacokinetics of other compounds. Although some food components have also been shown to potentially interfere with drugs metabolised with the CYP system, no published study deals specifically with these possible CYP-mediated food-drug interactions with glitazones.

  3. Toxicokinetics and biodistribution of dextran stabilized iron oxide nanoparticles in rats

    NASA Astrophysics Data System (ADS)

    Easo, S. L.; Neelima, R.; Mohanan, P. V.

    2015-07-01

    Dextran stabilized iron oxide nanoparticles (DIONPs) synthesized and characterized for hyperthermia application were tested for toxicokinetics and biodistribution in order to analyze the prospect of safety and biocompatibility of these particles for advanced use. Rats were administered a single dose of DIONPs at a concentration of 10 mg kg-1 by intravenous injection with a post-exposure period of 1, 7, 14 and 28 days. Liver, spleen, kidney, blood, urine and feces were examined for iron content by inductively coupled plasma atomic emission spectroscopy. At 24 h, greater amounts of nanoparticles were deposited in liver and spleen. Maximum absorption of iron in blood occurred at day 7 and excess iron appeared to be eliminated by liver, seemingly via biliary excretion. Serum hematology and biochemistry analysis revealed an overall lack of systemic toxicity due to metabolism of DIONPs. Additionally, pathological changes associated with repeated exposure to DIONPs with a post exposure period of 28 days were also assessed. Although no significant pathological alterations were seen in spleen or kidney, slight morphological deviations from normal were observed in liver. Further progression in the analysis of biological response towards DIONPs will be determined in long-term studies in the presence of an alternating magnetic field in the context of hyperthermia application.

  4. The Pharmacokinetics and Pharmacodynamics of Iron Preparations

    PubMed Central

    Geisser, Peter; Burckhardt, Susanna

    2011-01-01

    Standard approaches are not appropriate when assessing pharmacokinetics of iron supplements due to the ubiquity of endogenous iron, its compartmentalized sites of action, and the complexity of the iron metabolism. The primary site of action of iron is the erythrocyte, and, in contrast to conventional drugs, no drug-receptor interaction takes place. Notably, the process of erythropoiesis, i.e., formation of new erythrocytes, takes 3–4 weeks. Accordingly, serum iron concentration and area under the curve (AUC) are clinically irrelevant for assessing iron utilization. Iron can be administered intravenously in the form of polynuclear iron(III)-hydroxide complexes with carbohydrate ligands or orally as iron(II) (ferrous) salts or iron(III) (ferric) complexes. Several approaches have been employed to study the pharmacodynamics of iron after oral administration. Quantification of iron uptake from radiolabeled preparations by the whole body or the erythrocytes is optimal, but alternatively total iron transfer can be calculated based on known elimination rates and the intrinsic reactivity of individual preparations. Degradation kinetics, and thus the safety, of parenteral iron preparations are directly related to the molecular weight and the stability of the complex. High oral iron doses or rapid release of iron from intravenous iron preparations can saturate the iron transport system, resulting in oxidative stress with adverse clinical and subclinical consequences. Appropriate pharmacokinetics and pharmacodynamics analyses will greatly assist our understanding of the likely contribution of novel preparations to the management of anemia. PMID:24310424

  5. Colistin: understanding and applying recent pharmacokinetic advances.

    PubMed

    Ortwine, Jessica K; Kaye, Keith S; Li, Jian; Pogue, Jason M

    2015-01-01

    Colistin, the most widely used polymyxin antibiotic, was originally introduced in the late 1950s before the establishment of the present-day drug approval process. Originally shelved due to toxicity concerns, colistin, in the form of its inactive prodrug colistin methanesulfonate, has undergone a renaissance in the past 15 years. Unfortunately, this is not because of an improved adverse-effect profile but because colistin is among the only remaining antibiotics with activity against multidrug-resistant gram-negative bacilli. Pharmacokinetic and pharmacodynamic data are limited to guide the appropriate use of colistin; however, important advances have occurred over the past 5 years. Since its reintroduction, published reports regarding colistin have produced discordant results in terms of both efficacy and safety. Because the efficacy and toxicity of colistin are dose dependent, the impact of discordant dosing recommendations cannot be understated. This review highlights the issues leading to differing and often conflicting dosing recommendations, reviews the recent pharmacokinetic advances, and provides recommendations for the optimal use of colistin.

  6. Pharmacokinetics and Pharmacodynamics in Space

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Cintron, Nitza M.

    1990-01-01

    The Pharmacokinetics and Pharmacodynamics Panel met on 29-30 Aug. 1988 at the Lunar and Planetary Institute in Houston, Texas to discuss pharmacokinetic and pharmacodynamic implications of space flight and make recommendations for operational and research strategies. Based on the knowledge available on the physiological changes that occur during space flight, the dependence of pharmacokinetics on physiological factors, and the therapeutic requirements for future space missions, the panel made several recommendations for research. It was suggested that using medications available with a large (wide) therapeutic window will avoid unforeseen therapeutic consequences during flight. The sequence for conducting research was outlined as follows: (1) identify ground-based simulation models (e.g., antiorthostatic bed rest) for conducting pharmacokinetic and pharmacodynamic research; (2) estimate parametric changes in these models using pharmacologic agents that have different pharmacokinetic characteristics and a narrow therapeutic index; (3) verify these findings during flight; and (4) develop and identify appropriate and effective drug delivery systems, dosage forms, and regimens. The panel recommended gaining a thorough understanding of the pharmacokinetic deviations of medications that have a narrow therapeutic index (e.g. cardiovascular drugs and sedative hypnotics) in order to ensure safe and effective treatment during flight with these agents. It was also suggested that basic information on physiological factors such as organ blood flow, protein composition and binding, tissue distribution, and metabolism by hepatic enzymes must be accumulated by conducting ground-based animal and human studies using models of weightlessness. This information will be useful to construct and identify physiologically based pharmacokinetic models that can provide valuable information on the pharmacodynamic consequences of space flight and aid in identifying appropriate therapeutic

  7. Riluzole pharmacokinetics in young patients with spinal muscular atrophy

    PubMed Central

    Abbara, Chadi; Estournet, Brigitte; Lacomblez, Lucette; Lelièvre, Benedicte; Ouslimani, Amal; Lehmann, Blandine; Viollet, Louis; Barois, Annie; Diquet, Bertrand

    2011-01-01

    AIMS The objective of the present study was to assess the pharmacokinetics of riluzole in patients with spinal muscular atrophy (SMA). METHODS Fourteen patients were enrolled in an open-label, nonrandomized and repeat-dose pharmacokinetic study. All participants were assigned to receive 50 mg riluzole orally for 5 days. Riluzole plasma concentrations were determined from samples obtained at day 5. RESULTS The pharmacokinetic analysis demonstrated that a dose of 50 mg once a day was sufficient to obtain a daily total exposure [AUC(0,24 h) = 2257 ng ml−1 h] which was comparable with results obtained in adult healthy volunteers or ALS patients in whom a dose of 50 mg twice a day is recommended. The pharmacokinetic simulation demonstrated that the administration of 50 mg twice a day could result in higher concentrations, hence reduced safety margin. CONCLUSION The dose of 50 mg once a day was chosen for the clinical trial evaluating the efficacy of riluzole in SMA patients. PMID:21284699

  8. Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET

    PubMed Central

    Kim, Sung Won; Hooker, Jacob M.; Otto, Nicola; Win, Khaing; Muench, Lisa; Shea, Colleen; Carter, Pauline; King, Payton; Reid, Alicia E.; Volkow, Nora D.; Fowler, Joanna S.

    2013-01-01

    The fatty acids, n-butyric acid (BA), 4-phenylbutyric acid (PBA) and valproic acid (VPA, 2-propylpentanoic acid) have been used for many years in the treatment of a variety of CNS and peripheral organ diseases including cancer. New information that these drugs alter epigenetic processes through their inhibition of histone deacetylases (HDACs) has renewed interest in their biodistribution and pharmacokinetics and the relationship of these properties to their therapeutic and side effect profile. In order to determine the pharmacokinetics and biodistribution of these drugs in primates, we synthesized their carbon-11 labeled analogues and performed dynamic positron emission tomography (PET) in six female baboons over 90 min. The carbon-11 labeled carboxylic acids were prepared by using 11CO2 and the appropriate Grignard reagents. [11C]BA was metabolized rapidly (only 20% of the total carbon-11 in plasma was parent compound at 5 min post injection) whereas for VPA and PBA 98% and 85% of the radioactivity was the unmetabolized compound at 30 min after their administration respectively. The brain uptake of all three carboxylic acids was very low (<0.006%ID/cc, BA>VPA>PBA), which is consistent with the need for very high doses for therapeutic efficacy. Most of the radioactivity was excreted through the kidneys and accumulated in the bladder. However, the organ biodistribution between the drugs differed. [11C]BA showed relatively high uptake in spleen and pancreas whereas [11C]PBA showed high uptake in liver and heart. Notably, [11C]VPA showed exceptionally high heart uptake possibly due to its involvement in lipid metabolism. The unique biodistribution of each of these drugs may be of relevance in understanding their therapeutic and side effect profile including their teratogenic effects. PMID:23906667

  9. Applied Pharmacokinetics: Course Description and Retrospective Evaluation.

    ERIC Educational Resources Information Center

    Beck, Diane E.

    1984-01-01

    An applied course designed to allow students to formulate pharmacokinetic recommendations individually for actual patient data and compare their recommendations to those of a pharmacokinetic consulting service is described and evaluated, and an objective student evaluation method is outlined. (MSE)

  10. Altered biodistribution of gallium-67 in a patient with aluminum toxicity treated with desferoxamine

    SciTech Connect

    Brown, S.J.; Slizofski, W.J.; Dadparvar, S. )

    1990-01-01

    Markedly altered biodistribution of ({sup 67}Ga)citrate was observed in a 66-yr-old hemodialysis patient imaged at 48 hr postinjection. A review of the patient's hospital records revealed toxic serum levels of aluminum, treated with the chelating agent desferoxamine. Based on what is known about the biologic interactions between gallium, aluminum, transferrin, and desferoxamine, we believe that both toxic serum aluminum levels and desferoxamine therapy may cause altered biodistribution on ({sup 67}Ga)citrate scintigraphy.

  11. Intratumoral Pharmacokinetics: Challenges to Nanobiomaterials.

    PubMed

    Al-Abd, Ahmed M; Al-Abbasi, Fahad A; Torchilin, Vladimir P

    2015-01-01

    Resistance of solid tumors to treatment is significantly attributed to pharmacokinetic reasons at both cellular and multi-cellular levels. Anticancer agent must be bio-available at the site of action in a cytotoxic concentration to exert its proposed activity. Solid tumor tissue is characterized by high density of vascular bed however; the vast majority of these blood vessels are not functioning. The vast majority of solid tumors can be described as poorly perfused with blood; and anticancer agents need to penetrate/distribute avascularly within solid tumor micro-milieu. Classic pharmacokinetic parameters correlate drug status within central compartment (blood) to all perfused body tissues according to their degree of perfusion. Yet, these classic pharmacokinetic parameters cannot fully elucidate the intratumoral drug penetration/distribution status of anticancer drugs due to the great discrepancies in perfusion between normal and solid tumor tissues. Herein, we will discuss the recently proposed pharmacokinetic parameters that might accurately portray the distribution of anticancer agents within solid tumor micro-milieu. In addition, we will present the new challenges attributed to these new pharmacokinetic parameters towards designing nanobiomaterial drug delivery system. PMID:26027565

  12. Pharmacokinetics, metabolism and distribution of PEGs and PEGylated proteins: quo vadis?

    PubMed

    Baumann, Andreas; Tuerck, Dietrich; Prabhu, Saileta; Dickmann, Leslie; Sims, Jennifer

    2014-10-01

    The pharmacokinetics (PK), metabolism and biodistribution of polyethylene glycol (PEG) in PEGylated proteins are important to understand the increased cellular vacuolation reported in various tissues in animals. The tissue distribution profile of PEGylated proteins and 'metabolic' PEG is guided largely by absolute PEG load, PEG molecular weight and, where applicable, receptor-mediated uptake via the protein moiety. High molecular weight PEGs show slow renal clearance, and consequently have a greater potential to accumulate within cells. The intracellular nonbiodegradable PEG can accumulate within the lysosome ultimately causing distension and vacuolation observed by standard histological examinations. Improved bioanalytical methodologies will contribute to the identification of specific PK parameters including distribution behavior to support development of PEGylated proteins as therapeutics.

  13. Raltegravir Pharmacokinetics during Pregnancy

    PubMed Central

    Watts, D. Heather; Stek, Alice; Best, Brookie M.; Wang, Jiajia; Capparelli, Edmund V.; Cressey, Tim R.; Aweeka, Francesca; Lizak, Patty; Kreitchmann, Regis; Burchett, Sandra K.; Shapiro, David E.; Hawkins, Elizabeth; Smith, Elizabeth; Mirochnick, Mark

    2014-01-01

    Objective We evaluated the pharmacokinetics (pk) of raltegravir in HIV-infected women during pregnancy and postpartum. Methods IMPAACT 1026s is an on-going prospective study of antiretroviral pk during pregnancy (NCT00042289). Women receiving 400 mg raltegravir twice daily in combination antiretroviral therapy had intensive steady state 12-hour pk profiles performed during pregnancy and at 6–12 weeks postpartum. Targets were trough concentration above 0.035 µg/mL, the estimated tenth percentile in non-pregnant historical controls. Results Median raltegravir AUC was 6.6 µg*hr/mL for second trimester (n= 16), 5.4 µg*hr/mL for third trimester (n=41), and 11.6 µg*hr/mL postpartum (n= 38) (p=0.03 pp vs 2nd trimester, p=0.001 pp vs third trimester). Trough concentrations were above the target in 69%, 80%, and 79% of second trimester, third trimester and postpartum subjects respectively, with wide variability (<0.010–0.917 µg/mL), and no significant difference between third trimester and postpartum trough concentrations was detected. The median ratio of cord blood/maternal raltegravir concentrations was 1.5. HIV RNA levels were < 400 copies/mL in 92% of women at delivery. Adverse events included elevated liver transaminases in one woman and vomiting in one. All infants with known status are HIV-uninfected. Conclusions Median raltegravir AUC was reduced by approximately 50% during pregnancy; trough concentrations were frequently below target both during late pregnancy and postpartum. Raltegravir readily crossed the placenta. High rates of viral suppression at delivery and the lack of a clear relationship between raltegravir concentration and virologic effect in nonpregnant adults suggest that despite the decreased exposure during pregnancy, a higher dose is not necessary. PMID:25162818

  14. Pharmacokinetics of mitragynine in man

    PubMed Central

    Trakulsrichai, Satariya; Sathirakul, Korbtham; Auparakkitanon, Saranya; Krongvorakul, Jatupon; Sueajai, Jetjamnong; Noumjad, Nantida; Sukasem, Chonlaphat; Wananukul, Winai

    2015-01-01

    Background Kratom, known botanically as Mitragyna speciosa (Korth.), is an indigenous tree in Southeast Asia. Kratom is currently easily available worldwide via special shops and the Internet to use as a drug of abuse, opioid alternative, or pain killer. So far, the pharmacokinetics of this plant has been studied only in animals, and there is no such study in humans. The major abundant active alkaloid in Kratom, mitragynine, is one of the promising new chemical substances to be developed as a new drug. The aim of this study was to examine the pharmacokinetics of mitragynine and assess the linearity in pharmacokinetics in chronic users. Methods Since Kratom is illegal in Thailand, studies in healthy subjects would be unethical. We therefore conducted a prospective study by enrolling ten chronic, regular, healthy users. We adjusted the steady state in each subject by giving a known amount of Kratom tea for 7 days before commencement of the experiment. We admitted and gave different oral doses to subjects to confirm linearity in pharmacokinetics. The mitragynine blood concentrations at 17 times points and the urine concentrations during the 24-hour period were collected and measured by liquid chromatography-tandem mass spectrometry method. Results Ten male subjects completed the study without adverse reactions. The median duration of abuse was 1.75 years. We analyzed one subject separately due to the abnormal behavior of blood concentration. From data of nine subjects, the pharmacokinetic parameters established were time to reach the maximum plasma concentration (0.83±0.35 hour), terminal half-life (23.24±16.07 hours), and the apparent volume of distribution (38.04±24.32 L/kg). The urine excretion of unchanged form was 0.14%. The pharmacokinetics were observed to be oral two-compartment model. Conclusion This was the first pharmacokinetic study in humans, which demonstrated linearity and was consistent with the oral two-compartment model with a terminal half

  15. Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process

    PubMed Central

    Bellusci, Mariangela; La Barbera, Aurelio; Padella, Franco; Mancuso, Mariateresa; Pasquo, Alessandra; Grollino, Maria Giuseppa; Leter, Giorgio; Nardi, Elisa; Cremisini, Carlo; Giardullo, Paola; Pacchierotti, Francesca

    2014-01-01

    Superparamagnetic iron oxide nanoparticles are candidate contrast agents for magnetic resonance imaging and targeted drug delivery. Biodistribution and toxicity assessment are critical for the development of nanoparticle-based drugs, because of nanoparticle-enhanced biological reactivity. Here, we investigated the uptake, in vivo biodistribution, and in vitro and in vivo potential toxicity of manganese ferrite (MnFe2O4) nanoparticles, synthesized by an original high-yield, low-cost mechanochemical process. Cultures of murine Balb/3T3 fibroblasts were exposed for 24, 48, or 72 hours to increasing ferrofluid concentrations. Nanoparticle cellular uptake was assessed by flow-cytometry scatter-light measurements and microscopy imaging after Prussian blue staining; cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony-forming assays. After a single intravenous injection, in vivo nanoparticle biodistribution and clearance were evaluated in mice by Mn spectrophotometric determination and Prussian blue staining in the liver, kidneys, spleen, and brain at different posttreatment times up to 21 days. The same organs were analyzed for any possible histopathological change. The in vitro study demonstrated dose-dependent nanoparticle uptake and statistically significant cytotoxic effects from a concentration of 50 μg/mL for the MTT assay and 20 μg/mL for the colony-forming assay. Significant increases in Mn concentrations were detected in all analyzed organs, peaking at 6 hours after injection and then gradually declining. Clearance appeared complete at 7 days in the kidneys, spleen, and brain, whereas in the liver Mn levels remained statistically higher than in vehicle-treated mice up to 3 weeks postinjection. No evidence of irreversible histopathological damage to any of the tested organs was observed. A comparison of the lowest in vitro toxic concentration with the intravenously injected dose and the administered dose of

  16. Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process.

    PubMed

    Bellusci, Mariangela; La Barbera, Aurelio; Padella, Franco; Mancuso, Mariateresa; Pasquo, Alessandra; Grollino, Maria Giuseppa; Leter, Giorgio; Nardi, Elisa; Cremisini, Carlo; Giardullo, Paola; Pacchierotti, Francesca

    2014-01-01

    Superparamagnetic iron oxide nanoparticles are candidate contrast agents for magnetic resonance imaging and targeted drug delivery. Biodistribution and toxicity assessment are critical for the development of nanoparticle-based drugs, because of nanoparticle-enhanced biological reactivity. Here, we investigated the uptake, in vivo biodistribution, and in vitro and in vivo potential toxicity of manganese ferrite (MnFe2O4) nanoparticles, synthesized by an original high-yield, low-cost mechanochemical process. Cultures of murine Balb/3T3 fibroblasts were exposed for 24, 48, or 72 hours to increasing ferrofluid concentrations. Nanoparticle cellular uptake was assessed by flow-cytometry scatter-light measurements and microscopy imaging after Prussian blue staining; cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony-forming assays. After a single intravenous injection, in vivo nanoparticle biodistribution and clearance were evaluated in mice by Mn spectrophotometric determination and Prussian blue staining in the liver, kidneys, spleen, and brain at different posttreatment times up to 21 days. The same organs were analyzed for any possible histopathological change. The in vitro study demonstrated dose-dependent nanoparticle uptake and statistically significant cytotoxic effects from a concentration of 50 μg/mL for the MTT assay and 20 μg/mL for the colony-forming assay. Significant increases in Mn concentrations were detected in all analyzed organs, peaking at 6 hours after injection and then gradually declining. Clearance appeared complete at 7 days in the kidneys, spleen, and brain, whereas in the liver Mn levels remained statistically higher than in vehicle-treated mice up to 3 weeks postinjection. No evidence of irreversible histopathological damage to any of the tested organs was observed. A comparison of the lowest in vitro toxic concentration with the intravenously injected dose and the administered dose of

  17. Real-time fluorescence microscopy monitoring of porphyrin biodistribution

    NASA Astrophysics Data System (ADS)

    Kimel, Sol; Gottfried, Varda; Kunzi-Rapp, Karin; Akguen, Nermin; Schneckenburger, Herbert

    1996-01-01

    In vivo uptake of the natural porphyrins, uroporphyrin III (UP), coproporphyrin III (CP) and protoporphyrin IX (PP), was monitored by fluorescence microscopy. Experiments were performed using the chick chorioallantoic membrane (CAM) model, which allowed video documentation of fluorescence both in real time and after integration over a chosen time interval (usually 2 s). Sensitizers at a concentration of 50 (mu) M (100 (mu) L) were injected into a medium-sized vein (diameter approximately 40 micrometer) using an ultra-fine 10 micrometer diameter needle. Fluorescence images were quantitated by subtracting the fluorescence intensity of surrounding CAM tissue (Fmatrix) from the intravascular fluorescence intensity (Fintravascular), after transformation of the video frames into digital form. The differential fluorescence intensity, Fintravascular - Fmatrix, is a measure of the biodistribution. Real time measurements clearly showed that CP and UP fluorescence is associated with moving erythrocytes and not with endothelial cells of the vessel wall. Fluorescence intensity was monitored, up to 60 minutes after injection, by averaging the fluorescence over time intervals of 2 s and recording the integrated images. The fluorescence intensity reached its maximum in about 20 - 30 min after injection, presumably after monomerization inside erythrocyte membranes. The results are interpreted in terms of physical-chemical characteristics (e.g. hydrophilicity) and correlated with the photodynamically induced hemostasis in CAM blood vessels.

  18. Hybrid polyglycerols with long blood circulation: synthesis, biocompatibility, and biodistribution.

    PubMed

    Imran ul-haq, Muhammad; Lai, Benjamin F L; Kizhakkedathu, Jayachandran N

    2014-10-01

    Multifunctional polymers with defined structure and biocompatibility are critical to the development of drug delivery systems and bioconjugates. In this article, the synthesis, in vitro blood compatibility, cell viability, in vivo circulation, biodistribution, and clearance of hybrid copolymers based on linear and branched polyglycerol are reported. Hybrid polyglycerols (M(n) ≈ 100 kDa) are synthesized with different compositions (15-80 mol% linear polyglycerol). Relatively small hydrodynamic size and radius of gyration of the hybrid polyglycerols suggest that they are highly compact functional nanostructures. The hybrid polyglycerols show excellent blood compatibility as determined by measuring their effects on blood coagulation, red blood cell aggregation, hemolysis, platelet, and complement activation. The cell viability in presence of hybrid polyglycerols is excellent up to 10 mg mL(-1) concentration and is similar to both dextran and polyvinyl alcohol. Furthermore, tritium labeled hybrid polyglycerol shows long blood circulation (t(1/2β)= 34 h) with minimal organ accumulation in mice. Multifunctionality, compact nature, biocompatibility, and the long blood circulation make these polymers attractive for the development of bioconjugates and drug delivery systems.

  19. Disulfide cross-linked Fab-aggregates: preparation and biodistribution.

    PubMed

    Dalkara, S; Petrov, A; Trubetskoy, V S; Khaw, B A; Torchilin, V P

    1998-01-01

    The high-molecular-weight soluble aggregates of Fab fragments of murine antibodies against cardiac myosin were prepared as a potential long-circulating and low immunogenic pharmaceutical carriers by conjugation of thiolated Fab and Fab modified with succinimidyl 3-(2-pyridyldithio)propionate. The clearance time and biodistribution of 111In-radiolabeled aggregates were studied in normal and nude-mice bearing human breast tumor implant and in rabbits with experimental myocardial infarction. The aggregates had a prolonged circulation time (half clearance time ca. 3-5 h) and ability to concentrate in the tumor and in the necrotic area of infarcted myocardium. Similar tumor-to-normal and infarct-to-normal accumulation ratios (ca. 3 h in both cases) suggest that combination of long circulation with impaired filtration in necrotic tissues is responsible for this accumulation rather than a specific interaction. The aggregates prepared may serve as long-circulating drug carriers able to deliver pharmaceuticals into areas with affected and leaky vasculature.

  20. EGFR-specific nanoprobe biodistribution in mouse models

    NASA Astrophysics Data System (ADS)

    Fashir, Samia A.; Castilho, Maiara L.; Hupman, Michael A.; Lee, Christopher L. D.; Raniero, Leandro J.; Alwayn, Ian; Hewitt, Kevin C.

    2015-06-01

    Nanotechnology offers a targeted approach to both imaging and treatment of cancer, the leading cause of death worldwide. Previous studies have found nanoparticles with a wide variety of coatings initiate an immune response leading to sequestration in the liver and spleen. In an effort to find a nanoparticle platform which does not elicit an immune response we created 43/44 nm gold or silver nanoparticles coated with biomolecules normally produced by the body, α-lipoic acid and the Epidermal Growth Factor (EGF), and have used mass spectroscopy to determine their biodistribution in mouse models, 24 hours following tail vein injection. Relative to controls, mouse EGF (mEGF) coated silver and gold nanoprobes are found at reduced levels in the liver and spleen. mEGF coated gold nanoprobes on the other hand do not appear to elicit any immune response, as they are found at background levels in these organs. As a result they should remain in circulation for longer and accumulate at high levels in tumors by the enhanced permeability retention (EPR) effect.

  1. In vivo biodistribution of iron oxide nanoparticles: an overview

    NASA Astrophysics Data System (ADS)

    Tate, Jennifer A.; Petryk, Alicia A.; Giustini, Andrew J.; Hoopes, P. Jack

    2011-03-01

    Iron oxide nanoparticles present a promising alternative to conventional energy deposition-based tissue therapies. The success of such nanoparticles as a therapeutic for diseases like cancer, however, depends heavily on the particles' ability to localize to tumor tissue as well as provide minimal toxicity to surrounding tissues and key organs such as those involved in the reticuloendothelial system (RES). We present here the results of a long term clearance study where mice injected intravenously with 2 mg Fe of 100 nm dextran-coated iron oxide nanoparticles were sacrificed at 14 and 580 days post injection. Histological analysis showed accumulation of the nanoparticles in some RES organs by the 14 day time point and clearance of the nanoparticles by the 580 day time point with no obvious toxicity to organs. An additional study reported herein employs 20 nm and 110 nm starch-coated iron oxide nanoparticles at 80 mg Fe/kg mouse in a size/biodistribution study with endpoints at 4, 24 and 72 hours. Preliminary results show nanoparticle accumulation in the liver and spleen with some elevated iron accumulation in tumoral tissues with differences between the 20 nm and the 110 nm nanoparticle depositions.

  2. Biodistribution of X-ray iodinated contrast agent in nano-emulsions is controlled by the chemical nature of the oily core.

    PubMed

    Attia, Mohamed F; Anton, Nicolas; Chiper, Manuela; Akasov, Roman; Anton, Halina; Messaddeq, Nadia; Fournel, Sylvie; Klymchenko, Andrey S; Mély, Yves; Vandamme, Thierry F

    2014-10-28

    In this study, we investigated the role of the chemical nature of the oil droplet core of nano-emulsions used as contrast agents for X-ray imaging on their pharmacokinetics and biodistribution. To this end, we formulated PEGylated nano-emulsions with two iodinated oils (i.e., iodinated monoglyceride and iodinated castor oil) and compared them with another iodinated nano-emulsion based on iodinated vitamin E. By using dynamic light scattering and transmission electron microscopy, the three iodinated nano-emulsions were found to exhibit comparable morphologies, size, and surface composition. Furthermore, they were shown to be endowed with very high iodine concentration, which leads to stronger X-ray attenuation properties as compared to the commercial iodinated nano-emulsion Fenestra VC. The three nano-emulsions were i.v. administered in mice and monitored by microcomputed tomography (micro-CT). They showed high contrast enhancement in blood with similar half-life around 6 h but very different accumulation sites. While iodinated monoglycerides exhibited low accumulation in liver and spleen, high accumulation in spleen was observed for iodinated castor oil and in liver for vitamin E. These data clearly highlighted the important role of the oil composition of the nano-emulsion core to obtain strong X-ray contrast enhancement in specific targets such as liver, spleen, or only blood. These differences in biodistribution were partly attributed to differences in the uptake of the nanodroplets by the macrophages in vitro. Another key feature of these nano-emulsions is their long half-elimination time (several weeks), which offers sufficient retention for micro-CT imaging. This work paves the way for the design of nanoparticulate contrast agents for X-ray imaging of selected organs.

  3. Biodistribution of AAV8 Vectors Expressing Human Low-Density Lipoprotein Receptor in a Mouse Model of Homozygous Familial Hypercholesterolemia

    PubMed Central

    Chen, Shu-Jen; Sanmiguel, Julio; Lock, Martin; McMenamin, Deirdre; Draper, Christine; Limberis, Maria P.; Kassim, Sadik H.; Somanathan, Suryanarayan; Bell, Peter; Johnston, Julie C.; Rader, Daniel J.

    2013-01-01

    Abstract Recombinant adeno-associated viral vectors based on serotype 8 (AAV8) transduce liver with superior tropism following intravenous (IV) administration. Previous studies conducted by our lab demonstrated that AAV8-mediated transfer of the human low-density lipoprotein receptor (LDLR) gene driven by a strong liver-specific promoter (thyroxin-binding globulin [TBG]) leads to high level and persistent gene expression in the liver. The approach proved efficacious in reducing plasma cholesterol levels and resulted in the regression of atherosclerotic lesions in a murine model of homozygous familial hypercholesterolemia (hoFH). Prior to advancing this vector, called AAV8.TBG.hLDLR, to the clinic, we set out to investigate vector biodistribution in an hoFH mouse model following IV vector administration to assess the safety profile of this investigational agent. Although AAV genomes were present in all organs at all time points tested (up to 180 days), vector genomes were sequestered mainly in the liver, which contained levels of vector 3 logs higher than that found in other organs. In both sexes, the level of AAV genomes gradually declined and appeared to stabilize 90 days post vector administration in most organs although vector genomes remained high in liver. Vector loads in the circulating blood were high and close to those in liver at the early time point (day 3) but rapidly decreased to a level close to the limit of quantification of the assay. The results of this vector biodistribution study further support a proposed clinical trial to evaluate AAV8 gene therapy for hoFH patients. PMID:24070336

  4. Biodistribution of AAV8 vectors expressing human low-density lipoprotein receptor in a mouse model of homozygous familial hypercholesterolemia.

    PubMed

    Chen, Shu-Jen; Sanmiguel, Julio; Lock, Martin; McMenamin, Deirdre; Draper, Christine; Limberis, Maria P; Kassim, Sadik H; Somanathan, Suryanarayan; Bell, Peter; Johnston, Julie C; Rader, Daniel J; Wilson, James M

    2013-12-01

    Recombinant adeno-associated viral vectors based on serotype 8 (AAV8) transduce liver with superior tropism following intravenous (IV) administration. Previous studies conducted by our lab demonstrated that AAV8-mediated transfer of the human low-density lipoprotein receptor (LDLR) gene driven by a strong liver-specific promoter (thyroxin-binding globulin [TBG]) leads to high level and persistent gene expression in the liver. The approach proved efficacious in reducing plasma cholesterol levels and resulted in the regression of atherosclerotic lesions in a murine model of homozygous familial hypercholesterolemia (hoFH). Prior to advancing this vector, called AAV8.TBG.hLDLR, to the clinic, we set out to investigate vector biodistribution in an hoFH mouse model following IV vector administration to assess the safety profile of this investigational agent. Although AAV genomes were present in all organs at all time points tested (up to 180 days), vector genomes were sequestered mainly in the liver, which contained levels of vector 3 logs higher than that found in other organs. In both sexes, the level of AAV genomes gradually declined and appeared to stabilize 90 days post vector administration in most organs although vector genomes remained high in liver. Vector loads in the circulating blood were high and close to those in liver at the early time point (day 3) but rapidly decreased to a level close to the limit of quantification of the assay. The results of this vector biodistribution study further support a proposed clinical trial to evaluate AAV8 gene therapy for hoFH patients. PMID:24070336

  5. Incorporation of ABCB1-mediated transport into a physiologically-based pharmacokinetic model of docetaxel in mice

    PubMed Central

    Hudachek, Susan F.

    2015-01-01

    Docetaxel is one of the most widely used anticancer agents. While this taxane has proven to be an effective chemotherapeutic drug, noteworthy challenges exist in relation to docetaxel administration due to the considerable interindividual variability in efficacy and toxicity associated with the use of this compound, largely attributable to differences between individuals in their ability to metabolize and eliminate docetaxel. Regarding the latter, the ATP-binding cassette transporter B1 (ABCB1, PGP, MDR1) is primarily responsible for docetaxel elimination. To further understand the role of ABCB1 in the biodistribution of docetaxel in mice, we utilized physiologically-based pharmacokinetic (PBPK) modeling that included ABCB1-mediated transport in relevant tissues. Transporter function was evaluated by studying docetaxel pharmacokinetics in wild-type FVB and Mdr1a/b constitutive knockout (KO) mice and incorporating this concentration–time data into a PBPK model comprised of eight tissue compartments (plasma, brain, heart, lung, kidney, intestine, liver and slowly perfused tissues) and, in addition to ABCB1-mediated transport, included intravenous drug administration, specific binding to intracellular tubulin, intestinal and hepatic metabolism, glomerular filtration and tubular reabsorption. For all tissues in both the FVB and KO cohorts, the PBPK model simulations closely mirrored the observed data. Furthermore, both models predicted AUC values that were with 15 % of the observed AUC values, indicating that our model-simulated drug exposures accurately reflected the observed tissue exposures. Overall, our PBPK model furthers the understanding of the role of ABCB1 in the biodistribution of docetaxel. Additionally, this exemplary model structure can be applied to investigate the pharmacokinetics of other ABCB1 transporter substrates. PMID:23616082

  6. The effect of fluorination of zinc oxide nanoparticles on evaluation of their biodistribution after oral administration

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Moon; Jeong, Hwan-Jeong; Kim, Dong Wook; Sohn, Myung-Hee; Lim, Seok Tae

    2012-05-01

    Monitoring of the behavior of metal nanoparticles in the body following exposure is very important for investigation of the physiological fates and safety of these nanoparticles. In this study, we investigated the behavior and accumulation of nano-scaled ZnO (20 nm) and submicro-scaled ZnO (100 nm) particles in organic tissues after oral administration using PET imaging. Both types of ZnO nanoparticle (20 or 100 nm) were labeled with the radionuclide 18F in high yield via ‘click reaction’. 18F labeling on the ZnO nanoparticles was maintained stably in simulated gastric fluid (pH 1.2) for 7 h. PET images indicated that 18F and 18F-ethoxy azide showed radioactivity in the bone and bladder 3 h after oral administration, whereas radioactivity for 18F-labeled ZnO nanoparticles was seen only in the gastrointestinal (GI) tract. At 5 h post-administration, biodistribution studies demonstrate that 18F accumulated in the bone (10.19 ± 1.1%ID g-1) and 18F-ethoxy azide showed radioactivity in the bone (7.55 ± 0.6%ID g-1), liver, and brain (0.94 ± 0.3%ID g-1). Unlike 18F and 18F-ethoxy azide, 18F-labeled ZnO nanoparticles showed radioactivity in the lung, liver and kidney including the GI tract. Submicro-scaled 18F-labeled ZnO nanoparticles (100 nm) showed stronger radioactivity in the liver and kidney compared to nano-scaled 18F-labeled ZnO nanoparticles (20 nm). In conclusion, PET imaging has the potential to monitor and evaluate the behavior of ZnO nanoparticles absorbed in organic tissues following oral exposures.

  7. Pharmacokinetics of Intranasal Scopolamine Gel Formulation (Inscop)

    NASA Technical Reports Server (NTRS)

    Boyd, Jason L.; Du, Brian; Daniels, Vernie; Simmons, Rita; Buckey, Jay; Putcha, Lakshmi

    2009-01-01

    Space Motion Sickness (SMS) is commonly experienced by astronauts and often requires treatment with medications during early flight days of space missions. Orally administered scopolamine is commonly used by astronauts to prevent SMS. Bioavailability of oral (PO) SMS medications is often low and highly variable. Intranasal (IN) administration of medications achieves higher and more reliable bioavailability than from an equivalent PO dose. Methods: To test the safety and reliability of INSCOP, two clinical studies were performed, a dose escalation study and a comparison study administering INSCOP during normal ambulation and head down tilt bedrest. Efficacy was evaluated by testing INSCOP with two, different motion sickness inducing paradigms. Results: Preliminary results indicate that INSCOP demonstrates linear pharmacokinetics and a low side effect profile. In head down tilt bedrest, relative bioavailability of INSCOP was increased for females at both doses (0.2 and 0.4 mg) and for males at the higher dose (0.4 mg) but is reduced at the lower dose (0.2 mg) compared to normal ambulation. INSCOP displays gender specific differences during ABR. One of the treatment efficacy trials conducted at Dartmouth Hitchcock Medical Center demonstrated that INSCOP is efficacious at both doses (0.2 and 0.4 mg) in suppressing motion sickness symptoms as indicated by longer chair ride times with INSCOP administration than with placebo, and efficacy increases with dose. Similar results were seen using another motion sickness simulator, the motion simulator dome, at the Naval Aerospace Medical Research Laboratory, with significantly increased time in the dome in motion-susceptible subjects when using INSCOP compared to untreated controls. Conclusion: Higher bioavailability, linear pharmacokinetics, a low incidence of side effects, and a favorable efficacy profile make INSCOP a desirable formulation for prophylactic and rescue treatment of astronauts in space and military personnel on

  8. In vitro macrophage uptake and in vivo biodistribution of PLA-PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content.

    PubMed

    Sheng, Yan; Yuan, Yuan; Liu, Changsheng; Tao, Xinyi; Shan, Xiaoqian; Xu, Feng

    2009-09-01

    The aim of the present work is to investigate the effect of PEG content in copolymer on physicochemical properties, in vitro macrophage uptake, in vivo pharmacokinetics and biodistribution of poly(lactic acid) (PLA)-poly(ethylene glycol) (PEG) hemoglobin (Hb)-loaded nanoparticles (HbP) used as blood substitutes. The HbP were prepared from PLA and PLA-PEG copolymer of varying PEG contents (5, 10, and 20 wt%) by a modified w/o/w method and characterized with regard to their morphology, size, surface charge, drug loading, surface hydrophilicity, and PEG coating efficiency. The in vitro macrophage uptake, in vivo pharmacokinetics, and biodistribution following intravenous administration in mice of HbP labeled with 6-coumarin, were evaluated. The HbP prepared were all in the range of 100-200 nm with highest encapsulation efficiency 87.89%, surface charge -10 to -33 mV, static contact angle from 54.25 degrees to 68.27 degrees , and PEG coating efficiency higher than 80%. Compared with PLA HbP, PEGylation could notably avoid the macrophage uptake of HbP, in particular when the PEG content was 10 wt%, a minimum uptake (6.76%) was achieved after 1 h cultivation. In vivo, besides plasma, the major cumulative organ was the liver. All PLA-PEG HbP exhibited dramatically prolonged blood circulation and reduced liver accumulation, compared with the corresponding PLA HbP. The PEG content in copolymer affected significantly the survival time in blood. Optimum PEG coating (10 wt%) appeared to exist leading to the most prolonged blood circulation of PLA-PEG HbP, with a half-life of 34.3 h, much longer than that obtained by others (24.2 h). These results demonstrated that PEG 10 wt% modified PLA HbP with suitable size, surface charge, and surface hydrophilicity, has a promising potential as long-circulating oxygen carriers with desirable biocompatibility and biofunctionality.

  9. Biodistribution of 99mTc Labeled Integrin Antagonist

    PubMed Central

    Park, Seung-Hee; Shin, In Soo; Maeng, Jin-Soo; Paik, Chang H.

    2013-01-01

    The selective targeting of an integrin αvβ3 receptor using radioligands may enable the assessment of angiogenesis and integrin αvβ3 receptor status in tumors. The aim of this research was to label a peptidomimetic integrin αvβ3 antagonist (PIA) with 99mTc(CO)3 and to test its receptor targeting properties in nude mice bearing receptor-positive tumors. PIA was reacted with tris-succinimidyl aminotriacetate (TSAT) (20 mM) as a PIA per TSAT. The product, PIA-aminodiacetic acid (ADA), was radiolabeled with [99mTc(CO)3(H2O)3]+1, and purified sequentially on a Sep-Pak C-18 cartridge followed by a Sep-Pak QMA anion exchange cartridge. Using gradient C-18 reverse-phase HPLC, the radiochemical purity of 99mTc(CO)3-ADA-PIA (retention time, 10.5 min) was confirmed to be > 95%. Biodistribution analysis was performed in nude mice (n = 5 per time point) bearing receptor-positive M21 human melanoma xenografts. The mice were administered 99mTc(CO)3-ADA-PIA intravenously. The animals were euthanized at 0.33, 1, and 2 hr after injection for the biodistribution study. A separate group of mice were also co-injected with 200 μg of PIA and euthanized at 1 hr to quantify tumor uptake. 99mTc(CO)3-ADA-PIA was stable in phosphate buffer for 21 hr, but at 3 and 6 hr, 7.9 and 11.5% of the radioactivity was lost as histidine, respectively. In tumor bearing mice, 99mTc(CO)3-ADA-PIA accumulated rapidly in a receptor-positive tumor with a peak uptake at 20 min, and rapid clearance from blood occurring primarily through the hepatobiliary system. At 20 min, the tumor-toblood ratio was 1.8. At 1 hr, the tumor uptake was 0.47% injected dose (ID)/g, but decreased to 0.12% ID/g when co-injected with an excess amount of PIA, indicating that accumulation was receptor mediated. These results demonstrate successful 99mTc labeling of a peptidomimetic integrin antagonist that accumulated in a tumor via receptor-specific binding. However, tumor uptake was very low because of low blood concentrations

  10. Toxicity of nanosilver in intragastric studies: Biodistribution and metabolic effects.

    PubMed

    Hendrickson, Olga D; Klochkov, Sergey G; Novikova, Oksana V; Bravova, Irina M; Shevtsova, Elena F; Safenkova, Irina V; Zherdev, Anatoly V; Bachurin, Sergey O; Dzantiev, Boris B

    2016-01-22

    The unique physicochemical properties of silver nanoparticles explain their extensive application in consumer goods, food, and medicinal products. However, the biological effects of nanosilver after peroral exposure of mammals are still debatable. This study describes the biodistribution and biological action of 12nm non-coated silver nanoparticles intragastrically administered to male rats after acute (single exposure) and sub-acute (multiple exposures over 30 days) toxicity experiments. The daily doses were 2000 and 250mg/kg of body weight for single and multiple administrations, respectively. Silver tissue detection was conducted by elemental analysis with the help of atomic absorption spectroscopy. An estimation of the state of exposed animals was made and the dynamics of hematological and biochemical parameters of rats was studied. It was demonstrated that single and multiple administrations resulted in silver accumulation in the liver, kidneys, spleen, stomach, and small intestine. After both one- and repeated-dose exposures, the highest Ag contents were detected in the liver (0.87±0.37μg/g of organ) and kidneys (0.24±0.02μg/g of organ). The concentrations of silver detected in tissues were far smaller than the administered doses (<99%), indicating its efficient excretion from the organism. Acute and sub-acute exposures caused no animal mortality or signs of toxicity, manifested as changes in outward appearance or notable deviations in behavior or locomotor activity. Postmortem study revealed no visible pathomorphological abnormalities of internal organs. Hematological indices and biochemical parameters of the treated rats did not differ from those of the vehicle control animals. Overall, it can be concluded that nanosilver is able to be absorbed from the gastrointestinal tract into the bloodstream and accumulate in the secondary organs of rats. It showed no distinct toxicity under the experimental conditions of this study.

  11. Drug metabolism: Comparison of biodistribution profile of holmium in three different compositions in healthy Wistar rats.

    PubMed

    Cerqueira-Coutinho, Cristal; Vidal, Lluis Pascual; Pinto, Suyene Rocha; Santos-Oliveira, Ralph

    2016-06-01

    Radioisotope holmium is a candidate to be used in cancer treatment and diagnosis. There are different holmium salts and they present distinct solubility and consequently different biodistribution profiles. In this work, we aimed to evaluate the biodistribution profiles of two holmium salts (chloride and sulfate) and holmium nanoparticles (oxide) through an in vivo biodistribution assay using animal model. Samples were labeled with technetium-99m and administered in Wistar rats by retro-orbital route. Holmium chloride is highly soluble in water and it was quickly filtered by the kidneys while holmium sulfate that presents lower solubility in water was mainly found in the liver and the spleen. However, both the salts showed a similar biodistribution profile. On the other hand, holmium oxide showed a very different biodistribution profile since it seemed to interact with all organs. Due to its particle size range (approximately 100nm) it was not intensively filtered by the kidneys being found in high quantities in many organs, for this reason its use as a nanoradiopharmaceutical could be promising in the oncology field. PMID:26986812

  12. Drug metabolism: Comparison of biodistribution profile of holmium in three different compositions in healthy Wistar rats.

    PubMed

    Cerqueira-Coutinho, Cristal; Vidal, Lluis Pascual; Pinto, Suyene Rocha; Santos-Oliveira, Ralph

    2016-06-01

    Radioisotope holmium is a candidate to be used in cancer treatment and diagnosis. There are different holmium salts and they present distinct solubility and consequently different biodistribution profiles. In this work, we aimed to evaluate the biodistribution profiles of two holmium salts (chloride and sulfate) and holmium nanoparticles (oxide) through an in vivo biodistribution assay using animal model. Samples were labeled with technetium-99m and administered in Wistar rats by retro-orbital route. Holmium chloride is highly soluble in water and it was quickly filtered by the kidneys while holmium sulfate that presents lower solubility in water was mainly found in the liver and the spleen. However, both the salts showed a similar biodistribution profile. On the other hand, holmium oxide showed a very different biodistribution profile since it seemed to interact with all organs. Due to its particle size range (approximately 100nm) it was not intensively filtered by the kidneys being found in high quantities in many organs, for this reason its use as a nanoradiopharmaceutical could be promising in the oncology field.

  13. Radioprotective cerium oxide nanoparticles: Molecular imaging investigations of conps' pharmacokinetics, efficacy, and mechanisms of action

    NASA Astrophysics Data System (ADS)

    McDonagh, Philip Reed Wills, III

    Cerium oxide nanoparticles (CONPs) are being investigated for several anti-oxidant applications in medicine. One of their most promising applications is as a radioprotective drug, an area of research in need due to the severe side effects from radiation therapy. In this work, the potential of CONPs as a radioprotective drug is examined using four criteria: favorable biodistribution/pharmacokinetics, low toxicity, ability to protect normal tissue from radiation damage, and lack of protection of tumor. The mechanisms of action of CONPs are also studied. Biodistribution was determined in radiolabeled CONPs with surface coatings including citrate, dextran T10-amine (DT10-NH2), dextran T10-polyethylene glycol (DT10-PEG), dextran T10-sulfobetaine (DT10-SB) and poly(acrylic acid) (PAA), and compared to uncoated. 89Zr was incorporated into CONPs for positron emission tomography (PET) imaging and ex vivo tissue analysis in tumor bearing mice. Compared to uncoated [ 89Zr]CONPs, coated [89Zr]CONPs showed improved biodistribution, including significantly enhanced renal clearance of PAA- [89Zr]CONPs. The toxicity of CONPs was evaluated in vitro and in vivo, with low toxicity at therapeutic doses. After clinically mimetic radiation therapy, pre-treatment of mice with coated and uncoated CONPs showed greater than 50% reduction of cell death in normal colon tissue, comparable to the clinically available radioprotective drug amifostine. Tumor control after irradiation of spontaneous colon tumors was unchanged with PAA-CONP pre-treatment, while citrate, DT10-PEG, and uncoated CONP pre-treatment had slightly less tumor control. Xenograft tumors were irradiated after pH normalizing treatment with sodium bicarbonate and PAA-CONP pre-treatment. Treatment of these tumors showed slightly less tumor control than irradiation alone or PAA-CONP plus irradiation, demonstrating that the acidic pH of the tumor microenvironment may be the basis of preventing CONPs' radioprotective properties in

  14. In vivo distribution and antitumor activity of doxorubicin-loaded N-isopropylacrylamide-co-methacrylic acid coated mesoporous silica nanoparticles and safety evaluation.

    PubMed

    Chen, Yanzuo; Yang, Wuli; Chang, Baisong; Hu, Hangting; Fang, Xiaoling; Sha, Xianyi

    2013-11-01

    The objective of this study was to develop and evaluate the antitumor activity and the safety of a delivery system containing mesoporous silica nanoparticles (MSN) coated with pH-responsive poly (N-isopropylacrylamide-co-methacrylic acid; P NIPAM-co-MAA) for doxorubicin (DOX) delivery (P-MSN-DOX) in vitro and in vivo. We reported that P-MSN-DOX nanoparticles (190 ± 30 nm) offered a DOX-loading coefficient of more than 20%. DOX release from the P-MSN-DOX formulation was pH-dependent with enhanced antitumor effects in vitro compared with traditional MSN-DOX, which was weakly cytotoxic due to negligible drug release at tested pHs. P-MSN-DOX circulated longer, with less cardiac and renal accumulation as shown by pharmacokinetics and biodistribution studies in vivo. Also, the P-MSN-DOX delivery system had greater antitumor activity in mice bearing a murine sarcoma S-180 cell line. This finding was correlated with both in vitro and in vivo. Subacute toxicity tests revealed a low P-MSN-DOX toxicity in vivo, as well. Thus, P-MSN-DOX appears to be an efficacious and safe cancer treatment strategy.

  15. In vivo measurement of Indocyanine green biodistribution in mammalian organs using fiber based system

    NASA Astrophysics Data System (ADS)

    Chen, Qixiao; Mao, Shuo; Bai, Jing

    2009-11-01

    Indocyanine green (ICG) is a fluorescent probe widely used in recent years, and it is also the fluorescent dye that can be clinical used, in both imaging and treatment. So it is important to study its biodistribution and metabolism in mammalian organs, but the accuracy and sampling speed is limited by the traditional in-vitro methods. Now we present a design of an in-vivo multi-channel fluorescence intensity measurement system and an algorism of data processing, to achieve the accurate measurement of fluorescence intensity, continuous sampling, real time monitoring and curve fitting. This system design is based on customized fiber bundles and the principle of reflective fluorescence microscopy. We also present a mouse experiment using this system to study the Indocyanine green (ICG) biodistribution in small mammalian liver, in order to demonstrate the potential applications of this system and also present a new experiment method in the study of dye biodistribution and metabolism.

  16. Biodistribution of amino-functionalized diamond nanoparticles. In vivo studies based on 18F radionuclide emission.

    PubMed

    Rojas, Santiago; Gispert, Juan D; Martín, Roberto; Abad, Sergio; Menchón, Cristina; Pareto, Deborah; Víctor, Víctor M; Alvaro, Mercedes; García, Hermenegildo; Herance, J Raúl

    2011-07-26

    Nanoparticles have been proposed for several biomedical applications; however, in vivo biodistribution studies to confirm their potential are scarce. Nanodiamonds are carbon nanoparticles that have been recently proposed as a promising biomaterial. In this study, we labeled nanodiamonds with (18)F to study their in vivo biodistribution by positron emission tomography. Moreover, the impact on the biodistribution of their kinetic particle size and of the surfactant agents has been evaluated. Radiolabeled diamond nanoparticles accumulated mainly in the lung, spleen, and liver and were excreted into the urinary tract. The addition of surfactant agents did not lead to significant changes in this pattern, with the exception of a slight reduction in the urinary excretion rate. On the other hand, after filtration of the radiolabeled diamond nanoparticles to remove those with a larger kinetic size, the uptake in the lung and spleen was completely inhibited and significantly reduced in the liver.

  17. Improved pharmacokinetics of Yttrium-90 delivery with multivalent Fab{prime} fragments

    SciTech Connect

    Turner, A.; Boyce, B.A.; Antoniw, P.

    1994-05-01

    Humanised monoclonal antibodies have circulating half-lives in man of many days and one of the problems in using Yttrium-90 labelled versions for tumor therapy is the level of consequent whole body radiation. F(ab`){sub 2} fragments are rapidly cleared from the circulation but have relatively poor tumor uptake in biodistribution experiments. We initially developed a chemically cross-linked F(ab`)2 species (divalent Fab` maleimide or DFM) capable of carrying Yttrium-90 complexed to a 12N4 macrocycle. Although the DFM derived from the Fab` of cB72.3 had the desired pharmacokinetics of blood clearance with good tumor uptake in athymic nude mice carrying human tumor xenografts, significant retention of radioactivity by the kidneys was observed. We then progressed to higher oligomers and found that the trivalent Fab` maleimide (TFM), obtained via the structure below (n=3), when labelled with Y-90 possessed acceptable pharmacokinetics and good tumor uptake without kidney accumulation of radioactivity. The clinical evaluation of this technology is in progress.

  18. Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice

    PubMed Central

    2013-01-01

    Background Single wall carbon nanotubes (SWCNTs) are considered promising nanoparticles for industrial and biomedical applications; however their potential toxicity in several biological systems, including the feto-placental unit, has been demonstrated. Functionalization of SWCNTs with polyethylene glycol chains (PEG-SWCNTs) dramatically reduces their toxicity, and for this reason PEG-SWCNTs are candidates for biomedical applications. However, no data are available on their safety for the developing embryo, in spite of the clinical and social relevance of this topic. The purpose of this study is therefore to investigate the safety of PEG-SWCNTs for their use as biomedical carriers in pregnancy. Methods For toxicological studies, amino-functionalized PEG-SWCNT were intravenously injected in CD1 pregnant mice at different doses (range 0.1-30 μg/mouse), in single or multiple administrations. For biodistribution studies, fluorescently labeled PEG-SWCNTs were obtained by acylation of terminal PEG amino groups with near infrared emitting fluorochromes (PEG-SWCNT-750) and injected at the dosage of 10 μg/mouse, at either day 5.5 (when the placenta is still developing) or day 14.5 of gestation (when the maturation of the placenta is complete). Results We found no adverse effects both on embryos and dams up to the dose of 10 μg/mouse. At the dose of 30 μg/mouse, occasional teratogenic effects, associated with placental damage, were detected both when administered as a single bolus (1 out of 10 dams; 1 malformed embryo) or as multiple doses (2 out of 10 dams; 5 malformed embryos). The difference in the prevalence of dams with malformed embryos between the 30 μg exposed group and controls approached the statistical significance (p = 0.06). Hepatic damage in dams was seen only in the multiple exposure group (4 out of 10; p = 0.04 when compared with the single exposure group or controls). PEG-SWCNT-750 reached the conceptus when administered early in pregnancy

  19. Effect of gemfibrozil and fenofibrate on the pharmacokinetics of atorvastatin.

    PubMed

    Whitfield, Lloyd R; Porcari, Anthony R; Alvey, Christine; Abel, Robert; Bullen, William; Hartman, Daniel

    2011-03-01

    Coadministration of statins and fibrates is beneficial in some patients by allowing simultaneous reduction of triglycerides and low-density lipoprotein cholesterol alongside elevation of high-density lipoprotein cholesterol. However, the potential for drug interactions must be taken into consideration. Gemfibrozil increases systemic exposure to various different statins, whereas similar effects are not observed with fenofibrate, suggesting it may be a more appropriate choice for coadministration with statins. Gemfibrozil is reported to cause a moderate increase in the area under the curve (AUC) of atorvastatin, but the effect of fenofibrate on atorvastatin pharmacokinetics has not been described. This study compared the effects of multiple-dose administration of gemfibrozil and fenofibrate on the single-dose pharmacokinetics of atorvastatin. Gemfibrozil coadministration led to significant increases in the AUC of atorvastatin, 2-hydroxyatorvastatin, 2-hydroxyatorvastatin lactone, and 4-hydroxyatorvastatin lactone. In contrast, fenofibrate administration did not lead to clinically meaningful changes in the AUC for atorvastatin, atorvastatin lactone, 2-hydroxyatorvastatin, or 2-hydroxyatorvastatin lactone. The absence of a significant pharmacokinetic interaction between fenofibrate and atorvastatin is consistent with recent results showing no difference in safety profile between atorvastatin as monotherapy or in combination with fenofibric acid. Together, these data suggest that atorvastatin-fenofibrate combination therapy is unlikely to pose a risk to patients. PMID:20413454

  20. Pharmacokinetic and pharmacodynamic interactions between palifermin and heparin.

    PubMed

    Yang, Bing-Bing; Gillespie, Brad; Smith, Brian; Smith, William; Lissmats, Agneta; Rudebeck, Mattias; Kullenberg, Torbjörn; Olsson, Birgitta

    2015-10-01

    Oral mucositis, a severe complication during chemo- and/or radiotherapy, is prevented with palifermin treatment, a recombinant human keratinocyte growth factor (KGF/FGF-7). The FGF family belongs to the larger family of heparin-binding growth factors. Because it has been shown that heparin modulates binding of KGF to the KGF receptor and subsequently affects cellular proliferation induced by the KGF mitogenic signal, it is critical to understand the drug-drug interactions between palifermin and heparin, particularly because of heparin's narrow therapeutic margin. Two studies were performed in healthy subjects to characterize the effect of palifermin on the pharmacodynamics of heparin (activated partial thromboplastin time) and evaluate the impact of heparin on the pharmacokinetics and pharmacodynamics (Ki67 staining of buccal mucosal tissue) of palifermin. Results demonstrated a pronounced pharmacokinetic interaction; heparin coadministration increased the palifermin AUC 4- to 5-fold and decreased its half-life by 40%-45%, suggesting an approximate 70%-80% decrease in palifermin clearance and volume of distribution. These changes in the pharmacokinetics of palifermin during coadministration of heparin, however, did not affect the pharmacodynamic effect of palifermin, or the anticoagulant activity of heparin, and did not lead to increased safety findings. Therefore, these results suggest that dose adjustments for heparin and palifermin are not warranted when administered concurrently.

  1. Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch coated iron oxide nanoparticles

    PubMed Central

    Cole, Adam J.; David, Allan E.; Wang, Jianxin; Galbán, Craig J.; Yang, Victor C.

    2011-01-01

    Magnetic iron oxide nanoparticles (MNPs) have been studied to circumvent the limitations of status-quo brain tumor therapy and can be targeted by applying an external magnetic field to lesions. To address the pharmacokinetic challenges of MNPs that can limit targeting efficiency, we recently reported a long-circulating polyethylene glycol modified, cross-linked starch MNP (PEG-MNP) suitable for magnetic targeting. Using a rat model, this work explores the biodistribution patterns of PEG-MNPs in organs of elimination (liver, spleen, lung, and kidney) and shows proof-of-concept that enhanced magnetic brain tumor targeting can be achieved due to improvements in the circulation lifetime of MNPs. Reductions in liver (~12 fold) and spleen (~2.5 fold) concentrations at 1 hr compared to parent starch MNPs (D) confirm plasma pharmacokinetics observed previously. While liver concentrations of PEG-MNPs remained considerably lower than those observed for D at 1 hr throughout their plasma clearance, spleen values continue to increase through and are markedly higher at 12 and 60 hr – a trend also observed with histology. Limited to no uptake of PEG-MNPs was visualized in lung or kidney throughout the 60 hr course evaluated. Enhanced, selective magnetic brain tumor targeting (t = 1 hr, 12 mg Fe/kg) of PEG-MNPs was confirmed in 9L glioma tumors, with upto 1.0% injected dose/g tissue accumulation achieved – a 15-fold improvement over targeted D (0.07% injected dose/g tissue). MRI and histological analyses visually confirmed enhanced PEG-MNP delivery to tumors and also suggest limited passive contribution to tissue retention of nanoparticles. Nonetheless, our results are exciting and justify both further development of PEG-MNP as a drug delivery platform and concurrent optimization of the magnetic brain tumor targeting strategy utilized. PMID:21684593

  2. [Interspecies differences of noopept pharmacokinetics].

    PubMed

    Boĭko, S S; Korotkov, S A; Zherdev, V P; Gudasheva, T A; Ostrovskaia, R U; Voronina, T A

    2004-01-01

    Significant interspecific differences in the pharmacokinetics of noopept are manifested by a decrease in the drug elimination rate on the passage from rats to rabbits and humans. Very intensive metabolism of noopept was observed upon intravenous administration in rats. In these animals, presystemic elimination mechanisms lead to the formation of a specific metabolite representing a product of drug biotransformation hydroxylated at the phenyl ring. In rabbits, unchanged noopept circulates in the blood for a longer time upon both intravenous and peroral introduction, biotransformation proceeds at a much slower rate, and no metabolites analogous to that found in rats are detected. The noopept pharmacokinetics in humans differs from that in animals by still slower elimination and considerable individual variability. No drug metabolites are found in the human blood plasma, probably because of a relatively small dose and low concentration. PMID:15079908

  3. Oxygen safety

    MedlinePlus

    COPD - oxygen safety; Chronic obstructive pulmonary disease - oxygen safety; Chronic obstructive airways disease - oxygen safety; Emphysema - oxygen safety; Heart failure - oxygen-safety; Palliative care - oxygen safety; ...

  4. Pharmacokinetics and RC Circuit Concepts

    NASA Astrophysics Data System (ADS)

    Cock, Mieke De; Janssen, Paul

    2013-11-01

    Most introductory physics courses include a chapter on RC circuits in which the differential equations for the charging and discharging of a capacitor are derived. A number of papers in this journal describe lab experiments dealing with the measurement of different parameters in such RC circuits. In this contribution, we report on a lab experiment we developed for students majoring in pharmacy, using RC circuits to simulate a pharmacokinetic process.

  5. Population Pharmacokinetics of Intranasal Scopolamine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Chow, D. S. L.; Putcha, L.

    2013-01-01

    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS).The bioavailability and pharmacokinetics (PK) was evaluated using data collected in Phase II IND protocols. We reported earlier statistically significant gender differences in PK parameters of INSCOP at a dose level of 0.4 mg. To identify covariates that influence PK parameters of INSCOP, we examined population covariates of INSCOP PK model for 0.4 mg dose. Methods: Plasma scopolamine concentrations versus time data were collected from 20 normal healthy human subjects (11 male/9 female) after a 0.4 mg dose. Phoenix NLME was employed for PK analysis of these data using gender, body weight and age as covariates for model selection. Model selection was based on a likelihood ratio test on the difference of criteria (-2LL). Statistical significance for base model building and individual covariate analysis was set at P less than 0.05{delta(-2LL)=3.84}. Results: A one-compartment pharmacokinetic model with first-order elimination best described INSCOP concentration ]time profiles. Inclusion of gender, body weight and age as covariates individually significantly reduced -2LL by the cut-off value of 3.84(P less than 0.05) when tested against the base model. After the forward stepwise selection and backward elimination steps, gender was selected to add to the final model which had significant influence on absorption rate constant (ka) and the volume of distribution (V) of INSCOP. Conclusion: A population pharmacokinetic model for INSCOP has been identified and gender was a significant contributing covariate for the final model. The volume of distribution and Ka were significantly higher in males than in females which confirm gender-dependent pharmacokinetics of scopolamine after administration of a 0.4 mg dose.

  6. Caspofungin: Pharmacodynamics, pharmacokinetics, clinical uses and treatment outcomes.

    PubMed

    Song, Jessica C; Stevens, David A

    2016-09-01

    Over the past decade, echinocandins have emerged as first-line antifungal agents for many Candida infections. The echinocandins have a unique mechanism of action, inhibiting the synthesis of β-1,3-d-glucan polymers, key components of the cell wall in pathogenic fungi. Caspofungin was the first echinocandin antifungal agent to become licensed for use. The objectives of this review are to summarize the existing published data on caspofungin, under the subject headings of chemistry and mechanism of action, spectrum of activity, pharmacodynamics, pharmacokinetics, clinical studies, safety, drug interactions, dosing, and an overview of the drug's current place in therapy. PMID:26369708

  7. The role of physiologically based pharmacokinetic modeling in regulatory review.

    PubMed

    Huang, S-M; Rowland, M

    2012-03-01

    During regulatory review of clinical pharmacology data in new drug applications and biologics license applications, questions are routinely asked about how intrinsic factors (e.g., organ dysfunction, age, and genetics) and extrinsic factors (e.g., drug-drug interactions) might influence dose-response and exposure-response and about the impact of these individual factors on the efficacy and safety of the candidate compound. Physiologically based pharmacokinetic (PBPK) modeling and simulation is one of the tools that can be used to address these critical questions. PMID:22318616

  8. A Dose-Escalation Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Efficacy of 2 and 4 Weeks of Twice-Daily Ocular Trabodenoson in Adults with Ocular Hypertension or Primary Open-Angle Glaucoma

    PubMed Central

    Sall, Kenneth N.; DuBiner, Harvey; Slomowitz, Natanya; McVicar, William; Rich, Cadmus C.; Baumgartner, Rudolf A.

    2016-01-01

    Abstract Purpose: To evaluate the safety and ocular hypotensive efficacy of 4 trabodenoson doses administered twice daily over 14 or 28 days in subjects with ocular hypertension or primary open-angle glaucoma (POAG). Methods: In this multicenter, randomized, double-masked, placebo-controlled, dose-escalation Phase 2 study, patients received unilateral topical twice-daily trabodenoson (50, 100, or 200 mcg) or placebo for 14 days, or 500 mcg trabodenoson or placebo for 28 days. Ocular and systemic safety and tolerability were assessed by examinations, clinical and laboratory studies. Intraocular pressure (IOP) was assessed using Goldmann tonometry. Results: Trabodenoson was well tolerated; no clinically meaningful ocular or systemic side effects were identified. Trabodenoson produced a dose-dependent IOP reduction. IOP reductions in the 500 mcg group were significantly greater than placebo at all time points at Day 28. Mean IOP reductions from diurnal baseline ranged from −3.5 to −5.0 mmHg with a mean change of −4.1 mmHg in the 500 mcg group compared −1.0 to −2.5 mmHg with a mean change of −1.6 mmHg for the placebo group, and the Day 28 drop was significantly greater than at Day 14 (P = 0.0163) indicating improvement in IOP lowering with longer treatment time. IOP remained significantly reduced 24 h after the final 500 mcg dose (P = 0.048). Conclusion: Twice-daily ocular doses of trabodenoson, from 50 to 500 mcg, were well tolerated and showed a dose-related decrease in IOP that was statistically significant and clinically relevant at 500 mcg in patients with ocular hypertension or POAG. PMID:27002298

  9. Pharmacokinetics of drugs in pregnancy.

    PubMed

    Feghali, Maisa; Venkataramanan, Raman; Caritis, Steve

    2015-11-01

    Pregnancy is a complex state where changes in maternal physiology have evolved to favor the development and growth of the placenta and the fetus. These adaptations may affect preexisting disease or result in pregnancy-specific disorders. Similarly, variations in physiology may alter the pharmacokinetics or pharmacodynamics that determines drug dosing and effect. It follows that detailed pharmacologic information is required to adjust therapeutic treatment strategies during pregnancy. Understanding both pregnancy physiology and the gestation-specific pharmacology of different agents is necessary to achieve effective treatment and limit maternal and fetal risk. Unfortunately, most drug studies have excluded pregnant women based on often-mistaken concerns regarding fetal risk. Furthermore, over two-thirds of women receive prescription drugs while pregnant, with treatment and dosing strategies based on data from healthy male volunteers and non-pregnant women, and with little adjustment for the complex physiology of pregnancy and its unique disease states. This review will describe basic concepts in pharmacokinetics and their clinical relevance and highlight the variations in pregnancy that may impact the pharmacokinetic properties of medications.

  10. Synthesis and In Vivo Pharmacokinetic Evaluation of Degradable Shell Crosslinked Polymer Nanoparticles with Poly(carboxybetaine) vs. Poly(ethylene glycol) Surface-grafted Coatings

    PubMed Central

    Li, Ang; Luehmann, Hannah P.; Sun, Guorong; Samarajeewa, Sandani; Zou, Jiong; Zhang, Shiyi; Zhang, Fuwu; Welch, Michael J.; Liu, Yongjian; Wooley, Karen L.

    2012-01-01

    Nanoparticles with tunable pharmacokinetics are desirable for various biomedical applications. Poly(ethylene glycol) (PEG) is well known to create “stealth” effects to stabilize and extend the blood circulation of nanoparticles. In this work, poly(carboxybetaine) (PCB), a new non-fouling polymer material, was incorporated as surface-grafted coatings, conjugated onto degradable shell crosslinked knedel-like nanoparticles (dSCKs) composed of poly(acrylic acid)- based shells and poly(lactic acid) (PLA) cores, to compare the in vivo pharmacokinetics to their PEG-functionalized analogs. A series of five dSCKs was prepared from amphiphilic block copolymers, having different numbers and lengths of either PEG or PCB grafts, by supramolecular assembly in water followed by shell crosslinking, and then studied by a lactate assay to confirm their core hydrolytic degradabilities. Each dSCK was also conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) macrocyclic chelators and tyramine moieties to provide for 64Cu and/or radiohalogen labeling. The high specific activity of 64Cu radiolabeling ensured nanogram administration of dSCKs for in vivo evaluation of their pharmacokinetics. Biodistribution studies demonstrated comparable in vivo pharmacokinetic profiles of PCB-grafted dSCKs to their PEG-conjugated counterparts. These results indicated that PCB-functionalized dSCKs have great potential as a theranostic platform for translational research. PMID:23043240

  11. CNS Delivery and Pharmacokinetic Evaluations of DALDA Analgesic Peptide Analog Administered in Nano-Sized Oil-in-Water Emulsion Formulation

    PubMed Central

    Shah, Lipa; Gattacceca, Florence; Amiji, Mansoor M.

    2014-01-01

    Purpose Although neuro-active peptides are highly potent as central nervous system (CNS) therapeutics, their systemic delivery across the blood-brain barrier (BBB) is limited due to lack of permeability in the brain and rapid systemic metabolism. In this study, we aimed at enhancing the brain delivery and stability of chemically modified [D-Arg2, Lys4]-dermorphin-(1-4)-amide)] (DALDA) peptide to achieve prolonged analgesic effects. Methods The C8-DALDA peptide analog was encapsulated in an oil-in-water nanoemulsion formulation made specifically with oils rich in omega-3 rich polyunsaturated fatty acid (PUFA) to enhance CNS availability. The nanoemulsion formulation was administered systemically in CD-1 mice and qualitative and quantitative biodistribution was evaluated. We have also examined the effect of curcumin, which is known to down-regulate efflux transporters and inhibit systemic metabolism, on the pharmacokinetic properties of the peptide. Results Qualitative and quantitative biodistribution and pharmacokinetic studies in mice clearly demonstrated improved plasma and brain exposure of modified DALDA when administered in nanoemulsion, thereby providing an exciting opportunity towards improved efficacy and/or lowered dose of the peptide. The various dosing regimens tested for modified DALDA solution and curcumin nanoemulsion directed towards a novel combination strategy for improved systemic delivery of peptides across the BBB. Conclusions Encapsulation of the drug in PUFA nanoemulsions is an effective strategy for delivery of peptides. This work provides a novel combination strategy for improved delivery of peptides to the brain. PMID:24297071

  12. A fluorescent imaging method for analyzing the biodistribution of therapeutic monoclonal antibodies that can distinguish intact antibodies from their breakdown products

    PubMed Central

    Suzuki, Takuo; Miyazaki, Chihiro; Ishii-Watabe, Akiko; Tada, Minoru; Sakai-Kato, Kumiko; Kawanishi, Toru; Kawasaki, Nana

    2015-01-01

    Many monoclonal antibodies have been developed for therapy over the last 2 decades. In the development of therapeutic antibodies, the preclinical assessment of an antibody's biodistribution is important for the prediction of the antibody's efficacy and safety. For imaging analyses of such biodistributions, radioisotope (RI) labeling and fluorescence labeling methods are typically used, but the resulting data are limited because these methods cannot distinguish breakdown products from intact antibodies. To resolve this problem, we developed a novel method using fluorescent resonance energy transfer (FRET)-type labeling and a spectral unmixing tool. With FRET-type labeling (labeling with 2 species of fluorophore), different fluorescence properties of labeled intact antibodies and their breakdown products (the hydrolyzed/digested type of breakdown products) are made visible. With the spectral unmixing tool, the fluorescence of a solution containing the intact antibody and its breakdown products could be unmixed in proportion to their contents. Moreover, when labeled antibodies that targeted either human epidermal growth factor receptor-2 or epidermal growth factor receptor were injected into nude mice implanted subcutaneously with tumor cells, the accumulation of the injected labeled antibodies and their breakdown products in the tumor could be separately analyzed by both whole-mouse imaging and a tumor homogenate analysis. These results suggest that our method using FRET-type labeling and a spectral unmixing tool could be useful in distinguishing breakdown products from intact antibodies. PMID:25891896

  13. Pharmacokinetic interactions of cimetidine 1987.

    PubMed

    Somogyi, A; Muirhead, M

    1987-05-01

    The number of studies on drug interactions with cimetidine has increased at a rapid rate over the past 5 years, with many of the interactions being solely pharmacokinetic in origin. Very few studies have investigated the clinical relevance of such pharmacokinetic interactions by measuring pharmacodynamic responses or clinical endpoints. Apart from pharmacokinetic studies, invariably conducted in young, healthy subjects, there have been a large number of in vitro and in vivo animal studies, case reports, clinical observations and general reviews on the subject, which is tending to develop an industry of its own accord. Nevertheless, where specific mechanisms have been considered, these have undoubtedly increased our knowledge on the way in which humans eliminate xenobiotics. There is now sufficient information to predict the likelihood of a pharmacokinetic drug-drug interaction with cimetidine and to make specific clinical recommendations. Pharmacokinetic drug interactions with cimetidine occur at the sites of gastrointestinal absorption and elimination including metabolism and excretion. Cimetidine has been found to reduce the plasma concentrations of ketoconazole, indomethacin and chlorpromazine by reducing their absorption. In the case of ketoconazole the interaction was clinically important. Cimetidine does not inhibit conjugation mechanisms including glucuronidation, sulphation and acetylation, or deacetylation or ethanol dehydrogenation. It binds to the haem portion of cytochrome P-450 and is thus an inhibitor of phase I drug metabolism (i.e. hydroxylation, dealkylation). Although generally recognised as a nonspecific inhibitor of this type of metabolism, cimetidine does demonstrate some degree of specificity. To date, theophylline 8-oxidation, tolbutamide hydroxylation, ibuprofen hydroxylation, misonidazole demethylation, carbamazepine epoxidation, mexiletine oxidation and steroid hydroxylation have not been shown to be inhibited by cimetidine in humans but

  14. Comparative pharmacokinetics of liquid and lyophilized formulations of IV RhIG immune globulin.

    PubMed

    Sinclair, Chris J; Brooks, William; Genereux, Maurice Gilles

    2008-07-01

    To compare the pharmacokinetics, safety, and tolerability of the liquid and lyophilized formulations of Rh(0)(D) immune globulin intravenous (human) (IV RhIG) administered intramuscularly (IM) and intravenously (IV). In 2 randomized, parallel arm, blinded, phase I studies, 142 healthy adult volunteers received a single dose of either the liquid or lyophilized formulation administered IM (300 microg in Study 1; 15 microg/kg in Study 2) or IV (50 microg/kg in Study 1). Pharmacokinetics (area under the curve [AUC}, C(max), t(1/2), T(max)) and safety data were assessed over 84 days. The 2 formulations had comparable pharmacokinetics following both IM and IV administration. The ratios (90% confidence intervals) for AUC and C(max) treatment means were, for most assessments, within the predefined FDA acceptance range of 80%-125%, demonstrating the bioequivalence of the liquid and lyophilized formulations. Both formulations were equally well tolerated. Study results demonstrate comparable safety and pharmacokinetic profiles of the liquid and lyophilized formulations of IV RhIG. These findings suggest that the liquid formulation will be therapeutically equivalent to the lyophilized formulation but in a more convenient ready-to-use dosage form that may also reduce preparation errors.

  15. Biodistribution of the multidentate hydroxypyridinonate ligand [(14) C]-3,4,3-LI(1,2-HOPO), a potent actinide decorporation agent.

    PubMed

    Choi, Taylor A; Endsley, Aaron N; Bunin, Deborah I; Colas, Christophe; An, Dahlia D; Morales-Rivera, Joel A; Villalobos, Jonathan A; Shinn, Walter M; Dabbs, Jack E; Chang, Polly Y; Abergel, Rebecca J

    2015-05-01

    The pharmacokinetics and biodistribution of the (14) C-labeled actinide decorporation agent 3,4,3-LI(1,2-HOPO) were investigated in young adult Swiss Webster mice and Sprague Dawley rats, after intravenous, intraperitoneal, and oral dose administration. In all routes investigated, the radiolabeled compound was rapidly distributed to various tissues and organs of the body. In mice, the 24 h fecal elimination profiles suggested that the biliary route is the predominant route of elimination. In contrast, lower fecal excretion levels were observed in rats. Tissue uptake and retention of the compound did not differ significantly between sexes although some differences were observed in the excretion patterns over time. The male mice eliminated a greater percentage of (14) C through the renal pathway than the female mice after receiving an intravenous or intraperitoneal dose, while the opposite trend was seen in rats that received an intravenous dose. Metabolite profiling performed on selected rat samples demonstrated that a putative major metabolite of [(14) C]-3,4,3-LI(1,2-HOPO) is formed, accounting for approximately 10% of an administered oral dose. Finally, to improve its oral bioavailability, 3,4,3-LI(1,2-HOPO) was coformulated with a proprietary permeability enhancer, leading to a notable increase in oral bioavailability of the compound.

  16. Hand Safety

    MedlinePlus

    ... en gatillo See More... Hand Anatomy Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening ... en gatillo See More... Hand Anatomy Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening ...

  17. Hand Safety

    MedlinePlus

    ... Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening Safety Turkey Carving Removing a Ring Español Artritis ... Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening Safety Turkey Carving Removing a Ring Español Artritis ...

  18. Evaluation of Safety and Pharmacokinetics of Sodium 2,2 Dimethylbutyrate, a Novel Short Chain Fatty Acid Derivative, in a Phase 1, Double-Blind, Placebo-Controlled, Single- and Repeat-Dose Studies in Healthy Volunteers

    PubMed Central

    Perrine, Susan P.; Wargin, William A.; Boosalis, Michael S.; Wallis, Wayne J.; Case, Sally; Keefer, Jeffrey R.; Faller, Douglas V.; Welch, William C.; Berenson, Ronald J.

    2013-01-01

    Pharmacologic induction of fetal globin synthesis is an accepted therapeutic strategy for treatment of the beta hemoglobinopathies and thalassemias, as even small increases in hemoglobin F (HbF) levels reduce clinical severity in sickle cell disease and reduce anemia in beta thalassemia. Prior generation short chain fatty acid therapeutics, arginine butyrate and phenylbutyrate, increased fetal and total hemoglobin levels in patients, but were limited by high doses or intravenous infusion. A fetal globin-inducing therapeutic with convenient oral dosing would be an advance for these classic molecular diseases. Healthy adult human subjects were treated with a novel SCFA derivative, sodium 2,2 dimethylbutyrate (SDMB), or placebo, with one of four single dose levels (2, 5, 10 and 20 mg/kg) or daily doses (5, 10, or 15 mg/kg) over 14 days, and monitored for adverse clinical and laboratory events, drug levels, reticulocytes, and HbF assays. SDMB was well-tolerated with no clinically significant adverse events related to study medication. The terminal half-life ranged from 9–15 hours. Increases in mean absolute reticulocytes were observed at all dose levels in the 14-day study. The favorable PK profiles and safety findings indicate that SDMB warrants further investigation for treatment of anemic subjects with beta hemoglobinopathies. PMID:21422239

  19. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling

    PubMed Central

    Moss, Darren Michael; Siccardi, Marco

    2014-01-01

    The delivery of therapeutic agents is characterized by numerous challenges including poor absorption, low penetration in target tissues and non-specific dissemination in organs, leading to toxicity or poor drug exposure. Several nanomedicine strategies have emerged as an advanced approach to enhance drug delivery and improve the treatment of several diseases. Numerous processes mediate the pharmacokinetics of nanoformulations, with the absorption, distribution, metabolism and elimination (ADME) being poorly understood and often differing substantially from traditional formulations. Understanding how nanoformulation composition and physicochemical properties influence drug distribution in the human body is of central importance when developing future treatment strategies. A helpful pharmacological tool to simulate the distribution of nanoformulations is represented by physiologically based pharmacokinetics (PBPK) modelling, which integrates system data describing a population of interest with drug/nanoparticle in vitro data through a mathematical description of ADME. The application of PBPK models for nanomedicine is in its infancy and characterized by several challenges. The integration of property–distribution relationships in PBPK models may benefit nanomedicine research, giving opportunities for innovative development of nanotechnologies. PBPK modelling has the potential to improve our understanding of the mechanisms underpinning nanoformulation disposition and allow for more rapid and accurate determination of their kinetics. This review provides an overview of the current knowledge of nanomedicine distribution and the use of PBPK modelling in the characterization of nanoformulations with optimal pharmacokinetics. Linked Articles This article is part of a themed section on Nanomedicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-17 PMID:24467481

  20. Biodistribution and Dosimetry of Free 211At, 125I− and 131I− in Rats

    PubMed Central

    Rudqvist, Nils; Forssell-Aronsson, Eva

    2013-01-01

    Abstract 131I is widely used for therapy in the clinic and 125I and 131I, and increasingly 211At, are often used in experimental studies. It is important to know the biodistribution and dosimetry for these radionuclides to determine potential risk organs when using radiopharmaceuticals containing these radionuclides. The purpose of this study was to investigate the biodistribution of 125I−, 131I−, and free 211At in rats and to determine absorbed doses to various organs and tissues. Male Sprague Dawley rats were injected simultaneously with 0.1–0.3 MBq 125I− and 0.1–0.3 MBq 131I−, or 0.05–0.2 MBq 211At and sacrificed 1 hour to 7 days after injection. The activities and activity concentrations in organs and tissues were determined and mean absorbed doses were calculated. The biodistribution of 125I− was similar to that of 131I− but the biodistribution of free 211At was different compared to 125I− and 131I−. The activity concentration of radioiodine was higher compared with 211At in the thyroid and lower in all extrathyroidal tissues. The mean absorbed dose per unit injected activity was highest to the thyroid. 131I gave the highest absorbed dose to the thyroid, and 211At gave the highest absorbed dose to all other tissues studied. PMID:23789969

  1. Biodistribution and dosimetry of free 211At, 125I- and 131I- in rats.

    PubMed

    Spetz, Johan; Rudqvist, Nils; Forssell-Aronsson, Eva

    2013-11-01

    131I is widely used for therapy in the clinic and 125I and 131I, and increasingly 211At, are often used in experimental studies. It is important to know the biodistribution and dosimetry for these radionuclides to determine potential risk organs when using radiopharmaceuticals containing these radionuclides. The purpose of this study was to investigate the biodistribution of 125I-, 131I-, and free 211At in rats and to determine absorbed doses to various organs and tissues. Male Sprague Dawley rats were injected simultaneously with 0.1-0.3 MBq 125I- and 0.1-0.3 MBq 131I-, or 0.05-0.2 MBq 211At and sacrificed 1 hour to 7 days after injection. The activities and activity concentrations in organs and tissues were determined and mean absorbed doses were calculated. The biodistribution of 125I- was similar to that of 131I- but the biodistribution of free 211At was different compared to 125I- and 131I-. The activity concentration of radioiodine was higher compared with 211At in the thyroid and lower in all extrathyroidal tissues. The mean absorbed dose per unit injected activity was highest to the thyroid. 131I gave the highest absorbed dose to the thyroid, and 211At gave the highest absorbed dose to all other tissues studied. PMID:23789969

  2. Effects of concurrent drug therapy on technetium /sup 99m/Tc gluceptate biodistribution

    SciTech Connect

    Hinkle, G.H.; Basmadjian, G.P.; Peek, C.; Barker, K.K.; Ice, R.D.

    1982-11-01

    Drug interactions with /sup 99m/Tc gluceptate resulting in altered biodistribution were studied using chart review and animal tests. Charts of nine patients who had abnormal gallbladder uptake of technetium /sup 99m/Tc gluceptate during a two-year period were reviewed to obtain data such as concurrent drug therapy, primary diagnosis, and laboratory values. Adult New Zealand white rabbits were then used for testing the biodistribution of technetium /sup 99m/Tc gluceptate when administered concurrently with possibly interacting drugs identified in the chart review--penicillamine, penicillin G potassium, penicillin V potassium, acetaminophen, and trimethoprim-sulfamethoxazole. Chart review revealed no conclusive patterns of altered biodistribution associated with other factors. The data did suggest the possibility that the five drugs listed above might cause increased hepatobiliary clearance of the radiopharmaceutical. Animal tests showed that i.v. penicillamine caused substantial distribution of radioactivity into the gallbladder and small bowel. Minimally increased gallbladder radioactivity occurred when oral acetaminophen and trimethoprim-sulfamethoxazole were administered concurrently. Oral and i.v. penicillins did not increase gallbladder activity. Penicillamine may cause substantial alteration of the biodistribution of technetium /sup 99m/Tc gluceptate.

  3. Biodistribution and dosimetry of free 211At, 125I- and 131I- in rats.

    PubMed

    Spetz, Johan; Rudqvist, Nils; Forssell-Aronsson, Eva

    2013-11-01

    131I is widely used for therapy in the clinic and 125I and 131I, and increasingly 211At, are often used in experimental studies. It is important to know the biodistribution and dosimetry for these radionuclides to determine potential risk organs when using radiopharmaceuticals containing these radionuclides. The purpose of this study was to investigate the biodistribution of 125I-, 131I-, and free 211At in rats and to determine absorbed doses to various organs and tissues. Male Sprague Dawley rats were injected simultaneously with 0.1-0.3 MBq 125I- and 0.1-0.3 MBq 131I-, or 0.05-0.2 MBq 211At and sacrificed 1 hour to 7 days after injection. The activities and activity concentrations in organs and tissues were determined and mean absorbed doses were calculated. The biodistribution of 125I- was similar to that of 131I- but the biodistribution of free 211At was different compared to 125I- and 131I-. The activity concentration of radioiodine was higher compared with 211At in the thyroid and lower in all extrathyroidal tissues. The mean absorbed dose per unit injected activity was highest to the thyroid. 131I gave the highest absorbed dose to the thyroid, and 211At gave the highest absorbed dose to all other tissues studied.

  4. An integrated pharmacokinetics ontology and corpus for text mining

    PubMed Central

    2013-01-01

    Background Drug pharmacokinetics parameters, drug interaction parameters, and pharmacogenetics data have been unevenly collected in different databases and published extensively in the literature. Without appropriate pharmacokinetics ontology and a well annotated pharmacokinetics corpus, it will be difficult to develop text mining tools for pharmacokinetics data collection from the literature and pharmacokinetics data integration from multiple databases. Description A comprehensive pharmacokinetics ontology was constructed. It can annotate all aspects of in vitro pharmacokinetics experiments and in vivo pharmacokinetics studies. It covers all drug metabolism and transportation enzymes. Using our pharmacokinetics ontology, a PK-corpus was constructed to present four classes of pharmacokinetics abstracts: in vivo pharmacokinetics studies, in vivo pharmacogenetic studies, in vivo drug interaction studies, and in vitro drug interaction studies. A novel hierarchical three level annotation scheme was proposed and implemented to tag key terms, drug interaction sentences, and drug interaction pairs. The utility of the pharmacokinetics ontology was demonstrated by annotating three pharmacokinetics studies; and the utility of the PK-corpus was demonstrated by a drug interaction extraction text mining analysis. Conclusions The pharmacokinetics ontology annotates both in vitro pharmacokinetics experiments and in vivo pharmacokinetics studies. The PK-corpus is a highly valuable resource for the text mining of pharmacokinetics parameters and drug interactions. PMID:23374886

  5. Population Pharmacokinetics of Abacavir in Pregnant Women

    PubMed Central

    Treluyer, Jean-Marc; Préta, Laure-Helene; Valade, Elodie; Pannier, Emmanuelle; Urien, Saik; Hirt, Déborah

    2014-01-01

    For the first time, a population approach was used to describe abacavir (ABC) pharmacokinetics in HIV-infected pregnant and nonpregnant women. A total of 266 samples from 150 women were obtained. No covariate effect (from age, body weight, pregnancy, or gestational age) on ABC pharmacokinetics was found. Thus, it seems unnecessary to adapt the ABC dosing regimen during pregnancy. PMID:25070097

  6. COMPUTATIONAL PHARMACOKINETICS DURING DEVELOPMENTAL WINDOWS OF SUSPECTIBILITY

    EPA Science Inventory

    ABSTRACT

    Computational modeling has an increasing role in analyses of biological effects including how the body handles chemicals (i.e. pharmacokinetics or toxicokinetics) and how the body responds to chemicals (i.e. pharmacodynamics or toxicodynamics). Pharmacokinetic mo...

  7. Drug Transport and Pharmacokinetics for Chemical Engineers

    ERIC Educational Resources Information Center

    Simon, Laurent; Kanneganti, Kumud; Kim, Kwang Seok

    2010-01-01

    Experiments in continuous-stirred vessels were proposed to introduce methods in pharmacokinetics and drug transport to chemical engineering students. The activities can be incorporated into the curriculum to illustrate fundamentals learned in the classroom. An appreciation for the role of pharmacokinetics in drug discovery will also be gained…

  8. Low energy cyclotron production and separation of yttrium-86 for evaluation of monoclonal antibody pharmacokinetics and dosimetry

    SciTech Connect

    Finn, R. D.; McDevitt, M.; Ma, D.; Jurcic, J.; Scheinberg, D.; Larson, S.; Shoner, S.; Link, J.; Krohn, K.; Schlyer, D.

    1999-06-10

    Although an excellent radionuclide for application to systemic isotopic therapy when complexed to various monoclonal antibodies, the lack of photon emission from yttrium-90 makes the determination of the pharmacokinetics and dosimetry of the resultant radiopharmaceutical difficult. The introduction of the positron-emitting radionuclide yttrium-86 (T{sub 1/2}=14.7 h, {beta}{sup +}=33%) provides the non-invasive quantitation for the biodistribution of the chelated complex. The yttrium-86 radionuclide is produced at Memorial Sloan-Kettering using the CS-15 cyclotron via the (p,n) nuclear reaction on an enriched strontium-86 target. The separation is effectively achieved through a combination of solvent extraction and ion exchange chromatography. Once investigational new drug approval has been received, the mixed nuclides, Y-90 and Y-86, are to be used to formulate the HuM195 labeled monoclonal antibody, a radiopharmaceutical under active investigation against hematopoietic progenitor cells.

  9. Low energy cyclotron production and separation of yttrium-86 for evaluation of monoclonal antibody pharmacokinetics and dosimetry

    NASA Astrophysics Data System (ADS)

    Finn, R. D.; McDevitt, M.; Ma, D.; Jurcic, J.; Scheinberg, D.; Larson, S.; Shoner, S.; Link, J.; Krohn, K.; Schlyer, D.

    1999-06-01

    Although an excellent radionuclide for application to systemic isotopic therapy when complexed to various monoclonal antibodies, the lack of photon emission from yttrium-90 makes the determination of the pharmacokinetics and dosimetry of the resultant radiopharmaceutical difficult. The introduction of the positron-emitting radionuclide yttrium-86 (T1/2=14.7 h, β+=33%) provides the non-invasive quantitation for the biodistribution of the chelated complex. The yttrium-86 radionuclide is produced at Memorial Sloan-Kettering using the CS-15 cyclotron via the (p,n) nuclear reaction on an enriched strontium-86 target. The separation is effectively achieved through a combination of solvent extraction and ion exchange chromatography. Once investigational new drug approval has been received, the mixed nuclides, Y-90 and Y-86, are to be used to formulate the HuM195 labeled monoclonal antibody, a radiopharmaceutical under active investigation against hematopoietic progenitor cells.

  10. Pharmacokinetics of oxfendazole in sheep.

    PubMed

    Marriner, S E; Bogan, J A

    1981-07-01

    Pharmacokinetics of oxfendazole and its sulfone metabolite were determined in 6 sheep. Oxfendazole achieved mean peak plasma concentrations of 0.76 micrograms/ml at 30 hours after oral administration of oxfendazole (10 mg/kg of body weight), and concentrations were detectable for up to 7 days after administration. Mean peak abomasal concentrations of 3.55 micrograms/ml occurred 20 hours after administration and were detectable up to 9 days after administration. Concentrations of sulfone in plasma and abomasal fluid were generally lower than were those of oxfendazole.

  11. Attenuation of neurovirulence, biodistribution, and shedding of a poliovirus:rhinovirus chimera after intrathalamic inoculation in Macaca fascicularis.

    PubMed

    Dobrikova, Elena Y; Goetz, Christian; Walters, Robert W; Lawson, Sarah K; Peggins, James O; Muszynski, Karen; Ruppel, Sheryl; Poole, Karyol; Giardina, Steven L; Vela, Eric M; Estep, James E; Gromeier, Matthias

    2012-03-01

    A dependence of poliovirus on an unorthodox translation initiation mode can be targeted selectively to drive viral protein synthesis and cytotoxicity in malignant cells. Transformed cells are naturally susceptible to poliovirus, due to widespread ectopic upregulation of the poliovirus receptor, Necl-5, in ectodermal/neuroectodermal cancers. Viral tumor cell killing and the host immunologic response it engenders produce potent, lasting antineoplastic effects in animal tumor models. Clinical application of this principle depends on unequivocal demonstration of safety in primate models for paralytic poliomyelitis. We conducted extensive dose-range-finding, toxicity, biodistribution, shedding, and neutralizing antibody studies of the prototype oncolytic poliovirus recombinant, PVS-RIPO, after intrathalamic inoculation in Macaca fascicularis. These studies suggest that intracerebral PVS-RIPO inoculation does not lead to viral propagation in the central nervous system (CNS), does not cause histopathological CNS lesions or neurological symptoms that can be attributed to the virus, is not associated with extraneural virus dissemination or replication and does not induce shedding of virus with stool. Intrathalamic PVS-RIPO inoculation induced neutralizing antibody responses against poliovirus serotype 1 in all animals studied.

  12. Biodistribution Analysis of Oncolytic Adenoviruses in Patient Autopsy Samples Reveals Vascular Transduction of Noninjected Tumors and Tissues

    PubMed Central

    Koski, Anniina; Bramante, Simona; Kipar, Anja; Oksanen, Minna; Juhila, Juuso; Vassilev, Lotta; Joensuu, Timo; Kanerva, Anna; Hemminki, Akseli

    2015-01-01

    In clinical trials with oncolytic adenoviruses, there has been no mortality associated with treatment vectors. Likewise, in the Advanced Therapy Access Program (ATAP), where 290 patients were treated with 10 different viruses, no vector-related mortality was observed. However, as the patient population who received adenovirus treatments in ATAP represented heavily pretreated patients, often with very advanced disease, some patients died relatively soon after receiving their virus treatment mandating autopsy to investigate cause of death. Eleven such autopsies were performed and confirmed disease progression as the cause of death in each case. The regulatory requirement for investigating the safety of advanced therapy medical products presented a unique opportunity to study tissue samples collected as a routine part of the autopsies. Oncolytic adenoviral DNA was recovered in a wide range of tissues, including injected and noninjected tumors and various normal tissues, demonstrating the ability of the vector to disseminate through the vascular route. Furthermore, we recovered and cultured viable virus from samples of noninjected brain metastases of an intravenously treated patient, confirming that oncolytic adenovirus can reach tumors through the intravascular route. Data presented here give mechanistic insight into mode of action and biodistribution of oncolytic adenoviruses in cancer patients. PMID:26156245

  13. Investigating the pharmacokinetics and biological distribution of silver-loaded polyphosphoester-based nanoparticles using 111Ag as a radiotracer

    PubMed Central

    Aweda, Tolulope A.; Zhang, Shiyi; Mupanomunda, Chiedza; Burkemper, Jennifer; Heo, Gyu Seong; Bandara, Nilantha; Lin, Mai; Cutler, Cathy S.; Cannon, Carolyn L.; Youngs, Wiley; Wooley, Karen L.; Lapi, Suzanne E.

    2015-01-01

    Purified 111Ag was used as a radiotracer to investigate silver loading and release, pharmacokinetics and biodistribution of polyphosphoester-based degradable shell crosslinked knedel-like (SCK) nanoparticles as a comparison to the previously reported small molecule, N-heterocyclic silver carbene complex analogue (SCC1) for the delivery of therapeutic silver ions in mouse models. Biodistribution studies were conducted by aerosol administration of 111Ag acetate, [111Ag]SCC1 and [111Ag]SCK doses directly into the lungs of C57BL/6 mice. Nebulization of the 111Ag antimicrobials resulted in an average uptake of 1.07 ± 0.12% of the total aerosolized dose given per mouse. The average dose taken into the lungs of mice was estimated to be 2.6 ± 0.3% of the dose inhaled per mouse for [111Ag]SCC1 and twice as much dose was observed for the [111Ag]SCKs (5.0 ± 0.3% and 5.9 ± 0.8% for [111Ag]aSCK and [111Ag]zSCK, respectively) at 1 h post administration (p.a.). [111Ag]SCKs also exhibited higher dose retention in the lungs; 62 – 68% for [111Ag]SCKs and 43% for [111Ag]SCC1 of the initial 1 h dose was observed in the lungs at 24 h post administration (p.a.). This study demonstrates the utility of 111Ag as a useful tool for monitoring the pharmacokinetics of silver loaded antimicrobials in vivo. PMID:25952472

  14. Pharmacokinetic and toxicological evaluation of multi-functional thiol-6-fluoro-6-deoxy-d-glucose gold nanoparticles in vivo

    NASA Astrophysics Data System (ADS)

    Roa, Wilson; Xiong, Yeping; Chen, Jie; Yang, Xiaoyan; Song, Kun; Yang, Xiaohong; Kong, Beihua; Wilson, John; Xing, James Z.

    2012-09-01

    We synthesized a novel, multi-functional, radiosensitizing agent by covalently linking 6-fluoro-6-deoxy-d-glucose (6-FDG) to gold nanoparticles (6-FDG-GNPs) via a thiol functional group. We then assessed the bio-distribution and pharmacokinetic properties of 6-FDG-GNPs in vivo using a murine model. At 2 h, following intravenous injection of 6-FDG-GNPs into the murine model, approximately 30% of the 6-FDG-GNPs were distributed to three major organs: the liver, the spleen and the kidney. PEGylation of the 6-FDG-GNPs was found to significantly improve the bio-distribution of 6-FDG-GNPs by avoiding unintentional uptake into these organs, while simultaneously doubling the cellular uptake of GNPs in implanted breast MCF-7 adenocarcinoma. When combined with radiation, PEG-6-FDG-GNPs were found to increase the apoptosis of the MCF-7 breast adenocarinoma cells by radiation both in vitro and in vivo. Pharmacokinetic data indicate that GNPs reach their maximal concentrations at a time window of two to four hours post-injection, during which optimal radiation efficiency can be achieved. PEG-6-FDG-GNPs are thus novel nanoparticles that preferentially accumulate in targeted cancer cells where they act as potent radiosensitizing agents. Future research will aim to substitute the 18F atom into the 6-FDG molecule so that the PEG-6-FDG-GNPs can also function as radiotracers for use in positron emission tomography scanning to aid cancer diagnosis and image guided radiation therapy planning.

  15. Investigating the pharmacokinetics and biological distribution of silver-loaded polyphosphoester-based nanoparticles using (111) Ag as a radiotracer.

    PubMed

    Aweda, Tolulope A; Zhang, Shiyi; Mupanomunda, Chiedza; Burkemper, Jennifer; Heo, Gyu Seong; Bandara, Nilantha; Lin, Mai; Cutler, Cathy S; Cannon, Carolyn L; Youngs, Wiley J; Wooley, Karen L; Lapi, Suzanne E

    2015-05-30

    Purified (111) Ag was used as a radiotracer to investigate silver loading and release, pharmacokinetics, and biodistribution of polyphosphoester-based degradable shell crosslinked knedel-like (SCK) nanoparticles as a comparison to the previously reported small molecule, N-heterocyclic silver carbene complex analog (SCC1) for the delivery of therapeutic silver ions in mouse models. Biodistribution studies were conducted by aerosol administration of (111) Ag acetate, [(111) Ag]SCC1, and [(111) Ag]SCK doses directly into the lungs of C57BL/6 mice. Nebulization of the (111) Ag antimicrobials resulted in an average uptake of 1.07 ± 0.12% of the total aerosolized dose given per mouse. The average dose taken into the lungs of mice was estimated to be 2.6 ± 0.3% of the dose inhaled per mouse for [(111) Ag]SCC1 and twice as much dose was observed for the [(111) Ag]SCKs (5.0 ± 0.3% and 5.9 ± 0.8% for [(111) Ag]aSCK and [(111) Ag]zSCK, respectively) at 1 h post administration (p.a.). [(111) Ag]SCKs also exhibited higher dose retention in the lungs; 62-68% for [(111) Ag]SCKs and 43% for [(111) Ag]SCC1 of the initial 1 h dose were observed in the lungs at 24 h p.a.. This study demonstrates the utility of (111) Ag as a useful tool for monitoring the pharmacokinetics of silver-loaded antimicrobials in vivo.

  16. Investigating the pharmacokinetics and biological distribution of silver-loaded polyphosphoester-based nanoparticles using (111) Ag as a radiotracer.

    PubMed

    Aweda, Tolulope A; Zhang, Shiyi; Mupanomunda, Chiedza; Burkemper, Jennifer; Heo, Gyu Seong; Bandara, Nilantha; Lin, Mai; Cutler, Cathy S; Cannon, Carolyn L; Youngs, Wiley J; Wooley, Karen L; Lapi, Suzanne E

    2015-05-30

    Purified (111) Ag was used as a radiotracer to investigate silver loading and release, pharmacokinetics, and biodistribution of polyphosphoester-based degradable shell crosslinked knedel-like (SCK) nanoparticles as a comparison to the previously reported small molecule, N-heterocyclic silver carbene complex analog (SCC1) for the delivery of therapeutic silver ions in mouse models. Biodistribution studies were conducted by aerosol administration of (111) Ag acetate, [(111) Ag]SCC1, and [(111) Ag]SCK doses directly into the lungs of C57BL/6 mice. Nebulization of the (111) Ag antimicrobials resulted in an average uptake of 1.07 ± 0.12% of the total aerosolized dose given per mouse. The average dose taken into the lungs of mice was estimated to be 2.6 ± 0.3% of the dose inhaled per mouse for [(111) Ag]SCC1 and twice as much dose was observed for the [(111) Ag]SCKs (5.0 ± 0.3% and 5.9 ± 0.8% for [(111) Ag]aSCK and [(111) Ag]zSCK, respectively) at 1 h post administration (p.a.). [(111) Ag]SCKs also exhibited higher dose retention in the lungs; 62-68% for [(111) Ag]SCKs and 43% for [(111) Ag]SCC1 of the initial 1 h dose were observed in the lungs at 24 h p.a.. This study demonstrates the utility of (111) Ag as a useful tool for monitoring the pharmacokinetics of silver-loaded antimicrobials in vivo. PMID:25952472

  17. Pharmacokinetic evaluation of fosaprepitant dimeglumine

    PubMed Central

    Colon-Gonzalez, Francheska; Kraft, Walter K.

    2011-01-01

    Importance of the field Chemotherapy induced nausea and vomiting (CINV) is a common complication in the treatment of patients with cancer. The introduction of the first in class neurokinin-1 receptor antagonist aprepitant provided additive control on CINV in combination to existing antiemetics. Due to formulation issues, aprepitant is only available for oral administration. Fosaprepitant, a prodrug of aprepitant, was introduced to the market in 2008 as an intravenous bioequivalent to aprepitant. Areas covered in this review This review examines the chemical development of fosaprepitant, its pharmacokinetic properties, approved uses, and potential applications. What the reader will gain The reader will get up-to-date information on the pharmacology and clinical uses of fosaprepitant. Clinical studies have demonstrated pharmacokinetic bioequivalence of aprepitant 125-mg to fosaprepitant 115-mg, as well as comparable efficacy in prevention of acute and delayed emesis following the first day of chemotherapy regimens. Take home message Fosaprepitant is an IV pro-drug of aprepitant that offers a new alternative to patients with CINV. Currently, fosaprepitant can substitute oral aprepitant in the first day of a 3-day regimen. Current studies show that a single-day fosaprepitant regimen is also bioequivalent to the 3-day aprepitant regimen, this could significantly simplify the care for CINV patients in the future. PMID:20795794

  18. Pharmacokinetics interactions of monoclonal antibodies.

    PubMed

    Ferri, Nicola; Bellosta, Stefano; Baldessin, Ludovico; Boccia, Donatella; Racagni, Giorgi; Corsini, Alberto

    2016-09-01

    The clearance of therapeutic monoclonal antibodies (mAbs) typically does not involve cytochrome P450 (CYP450)-mediated metabolism or interaction with cell membrane transporters, therefore the pharmacokinetics interactions of mAbs and small molecule drugs are limited. However, a drug may affect the clearance of mAbs through the modulation of immune response (e.g., methotrexate reduces the clearance of infliximab, adalimumab, and golimumab, possibly due to methotrexate's inhibitory effect on the formation of antibodies against the mAbs). In addition, mAbs that are cytokine modulators may modify the metabolism of drugs through their effects on P450 enzymes expression. For example, cytokine modulators such as tocilizumab (anti-IL-6 receptor antibody) may reverse the "inhibitory" effect of IL-6 on CYP substrates, resulting in a "normalization" of CYP activities. Finally, a drug may alter the clearance of mAbs by either increasing or reducing the levels of expression of targets of mAbs on the cell surface. For instance, statins and fibrates induce PCSK9 expression and therefore increase cellular uptake and clearance of alirocumab and evolocumab, anti-PCSK9 antibodies. In the present review, we will provide an overview on the pharmacokinetics properties of mAbs as related to the most relevant examples of mAbs-small molecule drug interaction. PMID:27438459

  19. Pharmacokinetics interactions of monoclonal antibodies.

    PubMed

    Ferri, Nicola; Bellosta, Stefano; Baldessin, Ludovico; Boccia, Donatella; Racagni, Giorgi; Corsini, Alberto

    2016-09-01

    The clearance of therapeutic monoclonal antibodies (mAbs) typically does not involve cytochrome P450 (CYP450)-mediated metabolism or interaction with cell membrane transporters, therefore the pharmacokinetics interactions of mAbs and small molecule drugs are limited. However, a drug may affect the clearance of mAbs through the modulation of immune response (e.g., methotrexate reduces the clearance of infliximab, adalimumab, and golimumab, possibly due to methotrexate's inhibitory effect on the formation of antibodies against the mAbs). In addition, mAbs that are cytokine modulators may modify the metabolism of drugs through their effects on P450 enzymes expression. For example, cytokine modulators such as tocilizumab (anti-IL-6 receptor antibody) may reverse the "inhibitory" effect of IL-6 on CYP substrates, resulting in a "normalization" of CYP activities. Finally, a drug may alter the clearance of mAbs by either increasing or reducing the levels of expression of targets of mAbs on the cell surface. For instance, statins and fibrates induce PCSK9 expression and therefore increase cellular uptake and clearance of alirocumab and evolocumab, anti-PCSK9 antibodies. In the present review, we will provide an overview on the pharmacokinetics properties of mAbs as related to the most relevant examples of mAbs-small molecule drug interaction.

  20. Effect of the Route of Administration and PEGylation of Poly(amidoamine) Dendrimers on Their Systemic and Lung Cellular Biodistribution.

    PubMed

    Zhong, Qian; Merkel, Olivia M; Reineke, Joshua J; da Rocha, Sandro R P

    2016-06-01

    There are many opportunities in the development of oral inhalation (oi) formulations for the delivery of small molecule therapeutics and biologics to and through the lungs. Nanocarriers have the potential to play a key role in advancing oi technologies and pushing the boundary of the pulmonary delivery market. In this work we investigate the effect of the route of administration and PEGylation on the systemic and lung cellular biodistribution of generation 3, amino-terminated poly(amidoamine) (PAMAM) dendrimers (G3NH2). Pharmacokinetic profiles show that the dendrimers reach their peak concentration in systemic circulation within a few hours after pulmonary delivery, independent of their chemistry (PEGylated or not), charge (+24 mV for G3NH2 vs -3.7 mV for G3NH2-24PEG1000), or size (5.1 nm for G3NH2 and 9.9 nm for G3NH2-24PEG1000). However, high density of surface modification with PEG enhances pulmonary absorption and the peak plasma concentration upon pulmonary delivery. The route of administration and PEGylation also significantly impact the whole body and local (lung cellular) distribution of the dendrimers. While ca. 83% of G3NH2 is found in the lungs upon pulmonary delivery at 6.5 h post administration, only 2% reached the lungs upon intravenous (iv) delivery. Moreover, no measurable concentration of either G3NH2 or G3NH2-24PEG1000 is found in the lymph nodes upon iv administration, while these are the tissues with the second highest mass distribution of dendrimers post pulmonary delivery. Dendrimer chemistry also significantly impacts the (cellular) distribution of the nanocarriers in the lung tissue. Upon pulmonary delivery, approximately 20% of the lung endothelial cells are seen to internalize G3NH2-24PEG1000, compared to only 6% for G3NH2. Conversely, G3NH2 is more readily taken up by lung epithelial cells (35%) when compared to its PEGylated counterpart (24%). The results shown here suggest that both the pulmonary route of administration and dendrimer

  1. Effect of particle size on the biodistribution of lipid nanocapsules: comparison between nuclear and fluorescence imaging and counting.

    PubMed

    Hirsjärvi, Samuli; Sancey, Lucie; Dufort, Sandrine; Belloche, Camille; Vanpouille-Box, Claire; Garcion, Emmanuel; Coll, Jean-Luc; Hindré, François; Benoît, Jean-Pierre

    2013-09-10

    In vivo biodistribution of nanoparticles depends on several physicochemical parameters such as size. After intravenous injection of 25, 50 and 100 nm lipid nanocapsules (LNC) in nude mice bearing HEK293(β3) tumour xenografts, biodistribution was evaluated by γ-scintigraphy and by γ-counting. The small LNC 25 nm disappeared faster than the larger LNC 50 and 100 nm from the blood circulation due to faster elimination and wider tissue distribution. At 24h, biodistribution profiles of all these LNC were similar. Low LNC quantities were found in this weak EPR (enhanced permeability and retention) tumour regardless the particle size. Co-injected 50 nm fluorescent DiD-LNC and (99m)Tc-LNC allowed direct comparison of biodistribution as evaluated by the two methods. Optical imaging underestimated LNC quantity especially in dark-colored organs that were observed to capture extensive quantities of the particles by γ-counting (i.e. liver, spleen, and kidney).

  2. In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI(-PEG)/siRNA complexes

    SciTech Connect

    Malek, Anastasia; Merkel, Olivia; Fink, Ludger; Czubayko, Frank; Kissel, Thomas; Aigner, Achim

    2009-04-01

    Background: RNA interference (RNAi) represents a novel therapeutic strategy allowing the knockdown of any pathologically relevant target gene. Since it relies on the action of small interfering RNAs (siRNAs), the in vivo delivery of siRNAs is instrumental. Polyethylenimines (PEIs) and PEGylated PEIs have been shown previously to complex siRNAs, thus mediating siRNA protection against nucleolytic degradation, cellular uptake and intracellular release. Purpose: The present study determines in vivo pharmacokinetics, tissue distribution/efficacy of siRNA delivery and adverse effects of a broad panel of PEI(-PEG)-based siRNA complexes. The aim is to systematically evaluate the effects of different degrees and patterns of PEGylation in PEI-PEG copolymers on the in vivo behavior of PEI(-PEG)/siRNA complexes in mice. Results: Upon i.v. injection of radioactively l