Sample records for pharmacologically active derivatives

  1. Novel 16-substituted bifunctional derivatives of huperzine B: multifunctional cholinesterase inhibitors

    PubMed Central

    Shi, Yu-fang; Zhang, Hai-yan; Wang, Wei; Fu, Yan; Xia, Yu; Tang, Xi-can; Bai, Dong-lu; He, Xu-chang

    2009-01-01

    Aim: To design novel bifunctional derivatives of huperzine B (HupB) based on the concept of dual binding site of acetylcholinesterase (AChE) and evaluate their pharmacological activities for seeking new drug candidates against Alzheimer's disease (AD). Methods: Novel 16-substituted bifunctional derivatives of HupB were synthesized through chemical reactions. The inhibitory activities of the derivatives toward AChE and butyrylcholinesterase (BuChE) were determined in vitro by modified Ellman's method. Cell viability was quantified by the reduction of MTT. Results: A new preparative method was developed for the generation of 16-substituted derivatives of HupB, and pharmacological trials indicated that the derivatives were multifunctional cholinesterase inhibitors targeting both AChE and BuChE. Among the derivatives tested, 9c, 9e, 9f, and 9i were 480 to 1360 times more potent as AChE inhibitors and 370 to 1560 times more potent as BuChE inhibitors than the parent HupB. Further preliminary pharmacological trials of derivatives 9c and 9i were performed, including examining the mechanism of AChE inhibition, the substrate kinetics of the enzyme inhibition, and protection against hydrogen peroxide (H2O2)-induced cytotoxicity in PC12 cells. Conclusion: Preliminary pharmacological evaluation indicated that 16-substituted derivatives of HupB, particularly 9c and 9i, would be potentially valuable new drug candidates for AD therapy, and further exploration is needed to evaluate their pharmacological and clinical efficacies. PMID:19578388

  2. Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi

    PubMed Central

    Jin, Liming; Quan, Chunshan; Hou, Xiyan; Fan, Shengdi

    2016-01-01

    In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classification according to the sources of fungi and their biological activities. Those fungi found from 2014 to the present are discussed. PMID:27110799

  3. Novel thiazole derivatives: a patent review (2008 - 2012. Part 2).

    PubMed

    Leoni, Alberto; Locatelli, Alessandra; Morigi, Rita; Rambaldi, Mirella

    2014-07-01

    Thiazole is a well-known five-membered heterocyclic compound. Various methods have been worked out for its synthesis. In the last few decades, a lot of work has been done on the thiazole ring to find new drugs with antioxidant, analgesic, anti-inflammatory, antimicrobial, antifungal, antiviral, diuretic, anticonvulsant, neuroprotective and antitumor or cytotoxic properties and fewer side effects. This review presents the up-to-date development of different thiazole derivatives. The present review gives an account of the recent therapeutic patent literature (2008 - 2012) describing the applications of thiazole and its derivatives on selected activities. In this review, many relevant biological properties and therapeutic applications of thiazole derivatives reported in international patents from all companies have been discussed; an overview of the chemical matter has also been given. Because of the huge amount of patents registered in this period relative to thiazole derivatives, attention has been focused on thiazole derivatives having pharmacological activity toward receptors. Based on the large variety of possible therapeutic applications proposed in patents for thiazole derivatives having pharmacological activity toward receptors, it is possible to point out the unpredictability of pharmacological activity consequent to structural modification, more or less simple, of a prototype drug molecule. In any case, the thiazole scaffold continues to have great potential in chemical pharmaceutical research.

  4. NSAI activity study of 4-phenyl-2-thioxo-benzo[4,5]thieno[2,3-d]pyrimidine derivatives.

    PubMed

    Darias, V; Abdallah, S S; Tello, M L; Delgado, L D; Vega, S

    1994-12-01

    A series of 4-phenyl-2-thioxo-benzo[4,5]thieno[2,3-d]pyrimidine derivatives endowed with anti-inflammatory and related pharmacological properties were submitted to a more extensive study to know their exact pharmacological profile and their possible side effects. The studied compounds possess a remarkable analgesic activity, devoid of central effects. They also show an interesting anti-inflammatory profile evidenced by their effectiveness in different experimental models of inflammation. In addition, these compounds exhibit none or very little activity on CNS, scarce toxicity and low gastrointestinal aggressivity.

  5. Drosophila melanogaster "a potential model organism" for identification of pharmacological properties of plants/plant-derived components.

    PubMed

    Panchal, Komal; Tiwari, Anand K

    2017-05-01

    Plants/plant-derived components have been used from ancient times to treat/cure several human diseases. Plants and their parts possess several chemical components that play the vital role in the improvement of human health and their life expectancy. Allopathic medicines have been playing a key role in the treatment of several diseases. Though allopathic medicines provide fast relief, long time consumption cause serious health concerns such as hyperallergic reactions, liver damage, etc. So, the study of medicinal plants which rarely cause any side effect is very important to mankind. Plants contain many health benefit properties like antioxidant, anti-aging, neuroprotective, anti-genotoxic, anti-mutagenic and bioinsecticidal activity. Thus, identification of pharmacological properties of plants/plant-derived components are of utmost importance to be explored. Several model organisms have been used to identify the pharmacological properties of the different plants or active components therein and Drosophila is one of them. Drosophila melanogaster "fruit fly" is a well understood, high-throughput model organism being used more than 110 years to study the different biological aspects related to the development and diseases. Most of the developmental and cell signaling pathways and ∼75% human disease-related genes are conserved between human and Drosophila. Using Drosophila, one can easily analyze the pharmacological properties of plants/plant-derived components by performing several assays available with flies such as survivorship, locomotor, antioxidant, cell death, etc. The current review focuses on the potential of Drosophila melanogaster for the identification of medicinal/pharmacological properties associated with plants/plant-derived components. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Discovery and structure activity relationships of 2-pyrazolines derived from chalcones from a pest management perspective

    USDA-ARS?s Scientific Manuscript database

    Synthesis of chalcones and 2-pyrazoline derivatives has been an active field of research due to the established pharmacological effects of these compounds. In this study, a series of chalcone (1a-i), 2-pyrazoline-1-carbothioamides (2a-i) and 2-pyrazoline-1-carboxamide derivatives (3a-g) were synthes...

  7. Oxindole: A chemical prism carrying plethora of therapeutic benefits.

    PubMed

    Kaur, Maninder; Singh, Manjinder; Chadha, Navriti; Silakari, Om

    2016-11-10

    Oxindole has emerged as a valuable scaffold in medicinal chemistry possessing diverse range of pharmacological activities. Its value has further been increased by its natural occurrence as alkaloids in variety of plants. It was first extracted from the cat claw's plant Uncaria tomentosa found in the Amazon rainforest and other tropical areas of South and Central America. Traditionally as well as present emerging therapeutic potential of oxindole nucleus has captured the interest of medicinal chemists to synthesize novel oxindole derivatives. In the present review the authors have integrated its chemistry and synthetic strategies developed after 1945. Also the information of naturally occurring oxindole alkaloids has been incorporated. The detailed pharmacological activities including anti-cancer, anti-HIV, antidiabetic, antibacterial, antioxidant, kinase inhibitory, AChE inhibitory, anti-leishmanial, β3 adrenergic receptor agonistic, phosphatase inhibitory, analgesic, spermicidal, vasopressin antagonists, progesterone antagonists, neuroprotection, and NMDA blocker activities of oxindole derivatives alongwith their SAR has also been discussed in detail. Additionally, information regarding the oxindole derivatives in clinical trials has been incorporated. Thus, this review will provide insights for the synthetic as well as medicinal chemist for the designing and synthesis of novel oxindole derivatives with novel improved range of pharmacological implications. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Pharmacological screening technologies for venom peptide discovery.

    PubMed

    Prashanth, Jutty Rajan; Hasaballah, Nojod; Vetter, Irina

    2017-12-01

    Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Regulation of the nitric oxide oxidase activity of myeloperoxidase by pharmacological agents.

    PubMed

    Maiocchi, Sophie L; Morris, Jonathan C; Rees, Martin D; Thomas, Shane R

    2017-07-01

    The leukocyte-derived heme enzyme myeloperoxidase (MPO) is released extracellularly during inflammation and impairs nitric oxide (NO) bioavailability by directly oxidizing NO or producing NO-consuming substrate radicals. Here, structurally diverse pharmacological agents with activities as MPO substrates/inhibitors or antioxidants were screened for their effects on MPO NO oxidase activity in human plasma and physiological model systems containing endogenous MPO substrates/antioxidants (tyrosine, urate, ascorbate). Hydrazide-based irreversible/reversible MPO inhibitors (4-ABAH, isoniazid) or the sickle cell anaemia drug, hydroxyurea, all promoted MPO NO oxidase activity. This involved the capacity of NO to antagonize MPO inhibition by hydrazide-derived radicals and/or the ability of drug-derived radicals to stimulate MPO turnover thereby increasing NO consumption by MPO redox intermediates or NO-consuming radicals. In contrast, the mechanism-based irreversible MPO inhibitor 2-thioxanthine, potently inhibited MPO turnover and NO consumption. Although the phenolics acetaminophen and resveratrol initially increased MPO turnover and NO consumption, they limited the overall extent of NO loss by rapidly depleting H 2 O 2 and promoting the formation of ascorbyl radicals, which inefficiently consume NO. The vitamin E analogue trolox inhibited MPO NO oxidase activity in ascorbate-depleted fluids by scavenging NO-consuming tyrosyl and urate radicals. Tempol and related nitroxides decreased NO consumption in ascorbate-replete fluids by scavenging MPO-derived ascorbyl radicals. Indoles or apocynin yielded marginal effects. Kinetic analyses rationalized differences in drug activities and identified criteria for the improved inhibition of MPO NO oxidase activity. This study reveals that widely used agents have important implications for MPO NO oxidase activity under physiological conditions, highlighting new pharmacological strategies for preserving NO bioavailability during inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Synthesis of Pyridine and Spiropyridine Derivatives Derived from 2-aminoprop- 1-ene-1,1,3-tricarbonitrile Together with their c-Met Kinase and Antiproliferative Evaluations.

    PubMed

    Mohareb, Rafat M; Abouzied, Amr S; Abbas, Nermeen S

    2018-02-07

    Among a wide range of pyridines, 3-cyanopyridines acquired a special attention due to their wide range of pharmacological activities especially the therapeutic activities. Many pharmacological drugs containing the pyridine nucleus were known in the market. The aim of this work was to synthesize target molecules not only possess anti-tumor activities but also kinase inhibitors. To achieve this goal, our strategy was to synthesize a series of 3-cyanopyridine derivatives using 2-aminoprop-1-ene-1,1,3-tricarbonitrile (1) as the key starting material for many heterocyclization reactions. Muticoponent reactions were adopted using compound 1 to get different pyridine derivatives that were capable for different heterocyclization reactions. Antiproliferative evaluations and c-Met kinase, Pim-1 kinse inhibitions were perform where some compounds gave high activities. Compounds that showed high antiprolifeative activity were tested gor c-Met-independent and the results showed that compounds 5c, 5e, 5f, 7c, 7f and 16d were more active than foretinib. The Pim-1 kinase inhibition activity of some selected compounds showed that compounds 5e and 16c were high potent to inhibit Pim-1 activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Modern industrial and pharmacological applications of indigo dye and its derivatives--a review.

    PubMed

    Stasiak, Natalia; Kukuła-Koch, Wirginia; Głowniak, Kazimierz

    2014-01-01

    Plant sources, chemical properties, bioactivities, as well as the synthesis of indigo dye and its derivatives, are reviewed in this paper. These compounds were chosen because of their significant benefits and scope of application as both coloring agents in the textile industry and as pharmacologically active natural products. Their use in traditional chinese medicine (TCM) has directed the attention of European researchers and medical doctors alike. The preparation of indigoferous plants--Indigo naturalis is currently about to be introduced into the European Pharmacopoeia.

  12. Chemical constituents and bioactivities of the plants of genus Flemingia Roxb. et Ait. (Leguminosae).

    PubMed

    Li, Hua; Zhai, Fengyan; Liu, Zhongdong

    2012-09-01

    The genus Flemingia Roxb. et Ait. (Leguminosae) has been used for disease prevention and therapy in China since ancient times. So the material basis of the pharmacological activity in the genus Flemingia should be clear for how to use this kind of traditional Chinese medicines more reasonably in pharmacology. Therefore, this review gives an account of the current knowledge on the chemical constituents, biological activities and pharmacological properties of the plants of the genus. Several different classes of compounds were previously isolated, which the main groups are flavones, particularly prenylated flavones, and triterpenes accompanied with sterols, anthraquinones, and others. The names and structures of the chemical constituents are given in this review. In addition, the pharmacological effects of the extracts and individual compounds (mainly for flavones) derived from the genus plants have been found, including neuroprotection, anti-inflammation, anti-oxidation, cytotoxicity, hormone-like effects, antimicrobial activities, and so on.

  13. Pharmacological and neuroprotective profile of an essential oil derived from leaves of Aloysia citrodora Palau.

    PubMed

    Abuhamdah, Sawsan; Abuhamdah, Rushdie; Howes, Melanie-Jayne R; Al-Olimat, Suleiman; Ennaceur, Abdel; Chazot, Paul L

    2015-09-01

    The Jordanian 'Melissa', (Aloysia citrodora) has been poorly studied both pharmacologically and in the clinic. Essential oils (EO) derived from leaves of A. citrodora were obtained by hydrodistillation, analysed by gas chromatography-mass spectrometry (GC-MS) and were investigated for a range of neurobiological and pharmacological properties, as a basis for potential future use in drug discovery. A selection of central nervous system (CNS) receptor-binding profiles was carried out. Antioxidant activity and ferrous iron-chelating assays were adopted, and the neuroprotective properties of A. citrodora EO assessed using hydrogen peroxide-induced and β-amyloid-induced neurotoxicity with the CAD (Cath.-a-differentiated) neuroblastoma cell line. The major chemical components detected in the A. citrodora EOs, derived from dried and fresh leaves, included limonene, geranial, neral, 1, 8-cineole, curcumene, spathulenol and caryophyllene oxide, respectively. A. citrodora leaf EO inhibited [(3) H] nicotine binding to well washed rat forebrain membranes, and increased iron-chelation in vitro. A. citrodora EO displays effective antioxidant, radical-scavenging activities and significant protective properties vs both hydrogen peroxide- and β-amyloid-induced neurotoxicity. A. citrodora EO displays a range of pharmacological properties worthy of further investigation to isolate the compounds responsible for the observed neuroactivities, to further analyse their mode of action and determine their clinical potential in neurodegenerative diseases. © 2015 Royal Pharmaceutical Society.

  14. Synthesis and pharmacological activity of urea and thiourea derivatives of 4-azatricyclo[5.2.2.0(2,6)]undec-8-ene-3,5-dione.

    PubMed

    Struga, Marta; Kossakowski, Jerzy; Kedzierska, Ewa; Fidecka, Sylwia; Stefańska, Joanna

    2007-05-01

    A series of nineteen new thiourea and urea derivatives of 10-isopropyl-8-methyl-4-azatricyclo[5.2.2.0(2,6)]undec-8-ene-3,5-dione, 1-isopropyl-7-methyl-4-azatricyclo[5.2.2.0(2,6)]undec-8-ene-3,5-dione and 1,7,8,9,10-pentamethyl-4-azatricyclo[5.2.1.0(2,6)]dec-8-ene-3,5-dione have been prepared and studied by (1)H-NMR. The compound k1a (1-(1,7,8,9,10-pentamethyl-3,5-dioxo-4-aza-tricyclo[5.2.1.0(2,6)]dec-8-en-4-yl)-3-phenyl-urea) was tested for pharmacological activity on animal central nervous system (CNS). The activities of synthesized compounds were evaluated for their cytotoxicity and anti-HIV-1 activity in MT-4 cells. Antimicrobial activity of the newly obtained derivatives was tested against some Gram-positive and Gram-negative bacteria and fungi of the Candida species.

  15. Pyrazole derivatives as antitumor, anti-inflammatory and antibacterial agents.

    PubMed

    Liu, Jia-Jia; Zhao, Meng-Yue; Zhang, Xin; Zhao, Xin; Zhu, Hai-Liang

    2013-11-01

    Within the past years, many researches on the synthesis, structure-activity relationships (SAR), antitumor, antiinflammatory and anti-bacterial activities of the pyrazole derivatives have been reported. Several pyrazole derivatives possess important pharmacological activities and they have been proved useful materials in drug research. Pyrazole derivatives play an important role in antitumor agents because of their good inhibitory activity against BRAF(V600E), EGFR, telomerase, ROS Receptor Tyrosine Kinase and Aurora-A kinase. In addition, pyrazole derivatives also show good antiinflammatory and anti-bacterial activities. In this review, the bioactivities of the pyrazole derivatives mentioned above will be summarized in detail. We sincerely hope that increasing knowledge of the SAR and cellular processes underlying the bioactivity of pyrazole derivatives will be beneficial to the rational design of new generation of small molecule drugs.

  16. Synthesis and pharmacological activity of new carbonyl derivatives of 1-aryl-2-iminoimidazolidine: part 2. Synthesis and pharmacological activity of 1,6-diaryl-5,7(1H)dioxo-2,3-dihydroimidazo[1,2-a][1,3,5]triazines.

    PubMed

    Matosiuk, Dariusz; Fidecka, Sylwia; Antkiewicz-Michaluk, Lucyna; Lipkowski, Janusz; Dybala, Izabela; Koziol, Anna E

    2002-09-01

    Synthesis and pharmacological activity of 1,6-diaryl-5,7(1H)dioxo-2,3-dihydroimidazo-[1,2-a][1,3,5]triazines (C) are presented. The title compounds were obtained from 1-arylimidazolinurea derivatives in cyclization reaction with difunctional carbonyl reagents--phosgene (method I) or carbonyldiimidazole (CDI) (method II). Their molecular structures were confirmed by the X-ray analysis of 1-phenyl-6-(4-chlorophenyl)-5,7(1H)-dioxo-2,3-dihydroimidazo[1,2-a][1,3,5]triazine (C2) crystals. Compounds C exhibited significant depressive action on the central nervous system (CNS) of the laboratory animals, correlated with very low acute toxicity (LD(50) > 2000 mg kg(-1) i.p.), and showed antinociceptive activity in behavioural models. Reversion of this effect by small dose of naloxone (5 mg kg(-1)) can suggest opioid-like mechanism of antinociception produced by these and other carbonyl derivatives of 1-aryl-2-iminoimidazolidine. Additionally, an effect on the serotonin neurotransmission pathway was also observed. The receptor mechanism of activity for investigated compounds was confirmed only for the opioid mu receptor in binding affinity assay test. Same tests performed for the serotonin 5-HT(2) and benzodiazepine BZD receptors showed no affinity for tested compounds. The opioid-like and serotonergic activities are similar to these described earlier for chain carbonyl 1-aryl-2-iminoimidazolidine derivatives containing urea moiety, mainly due to similar chemical structure, although compounds C are not able to adopt any of the higher energy conformations of urea derivatives. Rigid location of aromatic ring (Ar') at N6, acting as a spacer blocking any direct access to the carbonyl groups (e.g. through the hydrogen bonding), could be responsible for lack of affinity toward 5-HT(2) expressed in the binding assay test. Copyright 2002 Editions scienctifiques et médicales Elsevier SAS

  17. Microwave-Assisted Synthesis of some Novel Azoles and Azolopyrimidines as Antimicrobial Agents.

    PubMed

    Gomha, Sobhi M; Farghaly, Thoraya A; Mabkhot, Yahia Nasser; Zayed, Mohie E M; Mohamed, Amany M G

    2017-02-23

    In this study, new derivatives of pyrazole, isoxazole, pyrazolylthiazole, and azolopyrimidine having a thiophene ring were synthesized under microwave irradiation. Their pharmacological activity toward bacteria and fungi inhibition was screened and compared to the references Chloramphenicol and Trimethoprim / sulphamethoxazole . The antimicrobial results of the investigated compounds revealed promising results and some derivatives have activities similar to the references used.

  18. Novel selective and potent 5-HT reuptake inhibitors with 5-HT1D antagonist activity: chemistry and pharmacological evaluation of a series of thienopyran derivatives.

    PubMed

    Torrado, Alicia; Lamas, Carlos; Agejas, Javier; Jiménez, Alma; Diaz, Nuria; Gilmore, Jeremy; Boot, John; Findlay, Jeremy; Hayhurst, Lorna; Wallace, Louise; Broadmore, Richard; Tomlinson, Rosemarie

    2004-10-15

    A series of compounds combining the naphthylpiperazine and thienopyran scaffolds has been prepared and evaluated for 5-HT reuptake inhibition with 5-HT1D antagonist activity. The design of these compounds has been based on the 'overlapping type' strategy where two pharmacophores are linked in a single molecule. The resultant dual pharmacological profile has the potential to deliver a more efficient treatment for depression.

  19. Aristoforin, a novel stable derivative of hyperforin, is a potent anticancer agent.

    PubMed

    Gartner, Michael; Müller, Thomas; Simon, Jan C; Giannis, Athanassios; Sleeman, Jonathan P

    2005-01-01

    Hyperforin, a natural product of St. John's wort (Hypericum perforatum L.), has a number of pharmacological activities, including antidepressive and antibacterial properties. Furthermore, hyperforin has pronounced antitumor properties against different tumor cell lines, both in vitro and in vivo. Despite being a promising novel anticancer agent, the poor solubility and stability of hyperforin in aqueous solution limits its potential clinical application. In this study, we present the synthesis of hyperforin derivatives with improved pharmacological activity. The synthesized compounds were tested for their solubility and stability properties. They were also investigated for their antitumor properties, both in vitro and in vivo. One of these hyperforin derivatives, Aristoforin, is more soluble in aqueous solution than hyperforin and is additionally highly stable. Importantly, it retains the antitumor properties of the parental compound without inducing toxicity in experimental animals. These data strongly suggest that Aristoforin has potential as an anticancer drug.

  20. Pinocembrin: A Novel Natural Compound with Versatile Pharmacological and Biological Activities

    PubMed Central

    Rasul, Azhar; Millimouno, Faya Martin; Ali Eltayb, Wafa; Ali, Muhammad; Li, Jiang; Li, Xiaomeng

    2013-01-01

    Pinocembrin (5,7-dihydroxyflavanone) is one of the primary flavonoids isolated from the variety of plants, mainly from Pinus heartwood, Eucalyptus, Populus, Euphorbia, and Sparattosperma leucanthum, in the diverse flora and purified by various chromatographic techniques. Pinocembrin is a major flavonoid molecule incorporated as multifunctional in the pharmaceutical industry. Its vast range of pharmacological activities has been well researched including antimicrobial, anti-inflammatory, antioxidant, and anticancer activities. In addition, pinocembrin can be used as neuroprotective against cerebral ischemic injury with a wide therapeutic time window, which may be attributed to its antiexcitotoxic effects. Pinocembrin exhibits pharmacological effects on almost all systems, and our aim is to review the pharmacological and therapeutic applications of pinocembrin with specific emphasis on mechanisms of actions. The design of new drugs based on the pharmacological effects of pinocembrin could be beneficial. This review suggests that pinocembrin is a potentially promising pharmacological candidate, but additional studies and clinical trials are required to determine its specific intracellular sites of action and derivative targets in order to fully understand the mechanism of its anti-inflammatory, anticancer, and apoptotic effects to further validate its medical applications. PMID:23984355

  1. Docking, synthesis and pharmacological activity of novel urea-derivatives designed as p38 MAPK inhibitors.

    PubMed

    de Oliveira Lopes, Raquel; Romeiro, Nelilma Correia; de Lima, Cleverton Kleiton F; Louback da Silva, Leandro; de Miranda, Ana Luisa Palhares; Nascimento, Paulo Gustavo B D; Cunha, Fernando Q; Barreiro, Eliezer J; Lima, Lídia Moreira

    2012-08-01

    p38 mitogen-activated protein kinase (p38 MAPK) is an important signal transducing enzyme involved in many cellular regulations, including signaling pathways, pain and inflammation. Several p38 MAPK inhibitors have been developed as drug candidates to treatment of autoimmune disorders, such as rheumatoid arthritis. In this paper we reported the docking, synthesis and pharmacological activity of novel urea-derivatives (4a-e) designed as p38 MAPK inhibitors. These derivatives presented good theoretical affinity to the target p38 MAPK, standing out compound 4e (LASSBio-998), which showed a better score value compared to the prototype GK-00687. This compound was able to reduce in vitro TNF-α production and was orally active in a hypernociceptive murine model sensible to p38 MAPK inhibitors. Otherwise, compound 4e presented a dose-dependent analgesic effect in a model of antigen (mBSA)-induced arthritis and anti-inflammatory profile in carrageenan induced paw edema, indicating its potential as a new antiarthritis prototype. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. Antioxidant and antimicrobial activities of cinnamic acid derivatives.

    PubMed

    Sova, M

    2012-07-01

    Cinnamic acid is an organic acid occurring naturally in plants that has low toxicity and a broad spectrum of biological activities. In the search for novel pharmacologically active compounds, cinnamic acid derivatives are important and promising compounds with high potential for development into drugs. Many cinnamic acid derivatives, especially those with the phenolic hydroxyl group, are well-known antioxidants and are supposed to have several health benefits due to their strong free radical scavenging properties. It is also well known that cinnamic acid has antimicrobial activity. Cinnamic acid derivatives, both isolated from plant material and synthesized, have been reported to have antibacterial, antiviral and antifungal properties. Acids, esters, amides, hydrazides and related derivatives of cinnamic acid with such activities are here reviewed.

  3. Angiogenic dysfunction in bone marrow-derived early outgrowth cells from diabetic animals is attenuated by SIRT1 activation.

    PubMed

    Yuen, Darren A; Zhang, Yanling; Thai, Kerri; Spring, Christopher; Chan, Lauren; Guo, Xiaoxin; Advani, Andrew; Sivak, Jeremy M; Gilbert, Richard E

    2012-12-01

    Impaired endothelial repair is a key contributor to microvascular rarefaction and consequent end-organ dysfunction in diabetes. Recent studies suggest an important role for bone marrow-derived early outgrowth cells (EOCs) in mediating endothelial repair, but the function of these cells is impaired in diabetes, as in advanced age. We sought to determine whether diabetes-associated EOC dysfunction might be attenuated by pharmacological activation of silent information regulator protein 1 (SIRT1), a lysine deacetylase implicated in nutrient-dependent life span extension in mammals. Despite being cultured in normal (5.5 mM) glucose for 7 days, EOCs from diabetic rats expressed less SIRT1 mRNA, induced less endothelial tube formation in vitro and neovascularization in vivo, and secreted less of the proangiogenic ELR(+) CXC chemokines CXCL1, CXCL3, and CXCL5. Ex vivo SIRT1 activation restored EOC chemokine secretion and increased the in vitro and in vivo angiogenic activity of EOC conditioned medium derived from diabetic animals to levels similar to that derived from control animals. These findings suggest a pivotal role for SIRT1 in diabetes-induced EOC dysfunction and that its pharmacologic activation may provide a new strategy for the restoration of EOC-mediated repair mechanisms.

  4. Synthesis and activity of phenyl derivatives containing 5,6-dimethylthieno[2,3-d]pyrimidin-4(1H)-one or 4H-pyrimido[5,4-b]indol-4-one heterocyclic system as potential nonsteroidal anti-inflammatory drugs.

    PubMed

    Santagati, Andrea; Granata, Giuseppe; Santagati, Maria; Cutuli, Vincenza; Mangano, Nunzio Guido; Caruso, Antonina

    2002-01-01

    The synthesis, the analgesic and anti-inflammatory activities of two series of phenyl derivatives containing 5,6-dimethyl-thieno[2,3-d]pyrimidin-4(1H)-one and 4H-pyrimido[5,4-b]indol-4-one system, respectively, are reported. Two of these derivatives, 6A and 9B, showed interesting activities. The results of the pharmacological assays are discussed.

  5. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases.

    PubMed

    Kumar, Hemant; Kim, In-Su; More, Sandeep Vasant; Kim, Byung-Wook; Choi, Dong-Kug

    2014-01-01

    Covering: 2000 to 2013. Oxidative stress is the central component of chronic diseases. The nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway is vital in the up-regulation of cytoprotective genes and enzymes in response to oxidative stress and treatment with certain dietary phytochemicals. Herein, we classify bioactive compounds derived from natural products that are Nrf2/ARE pathway activators and recapitulate the molecular mechanisms for inducing Nrf2 to provide favorable effects in experimental models of chronic diseases. Moreover, pharmacological inhibition of Nrf2 signalling has emerged as promising strategy against multi-drug resistance thereby improving the treatment efficacy. We have also enlisted natural product-derived inhibitors of Nrf2/ARE pathway.

  6. [Advances in research of chemical constituents and pharmacological activities of common used spices].

    PubMed

    Sun, Chao-nan; Zhu, Yuan; Xu, Xi-ming; Yu, Jiang-nan

    2014-11-01

    Spices have enjoyed a long history and a worldwide application. Of particular interest is the pharmaceutical value of spices in addition to its basic seasoning function in cooking. Concretely, equipped with complex chemical compositions, spices are of significant importance in pharmacologic actions, like antioxidant, antibacterial, antitumor, as well as therapeutical effects in gastrointestinal disorders and cardiovascular disease. Although increasing evidences in support of its distinct role in the medical field has recently reported, little information is available for substantive, thorough and sophisticated researches on its chemical constituents and pharmacological activities, especially mechanism of these actions. Therefore, in popular wave of studies directed at a single spice, this review presents systematic studies on the chemical constituents and pharmacological activities associated with common used spices, together with current typical individual studies on functional mechanism, in order to pave the way for the exploitation and development of new medicines derived from the chemical compounds of spice (such as, piperine, curcumin, geniposide, cinnamaldehyde, cinnamic acid, linalool, estragole, perillaldehyde, syringic acid, crocin).

  7. Synthesis of Pharmacological Heterocyclic Derivatives Based Surfactants.

    PubMed

    El-Sayed, Refat; Fadda, Ahmed A

    2016-01-01

    Synthesis of chromenopyrimidine derivatives and the related fused system carried out by the reaction of chromene derivative 1 with various reagents under suitable reaction conditions. Condensation of stearoyl chloride with these heterocycles, then, propoxylated the products using propylene oxide to produce surface active agents having a twofold capacity as surface and antimicrobial dynamic specialists which may be served in the production of medications, pesticides, beautifying agents or may be utilized as an antimicrobial. Some of the surface properties and antimicrobial activity were resolved.

  8. Discovery of Benzofuran Derivatives that Collaborate with Insulin-Like Growth Factor 1 (IGF-1) to Promote Neuroprotection.

    PubMed

    Wakabayashi, Takeshi; Tokunaga, Norihito; Tokumaru, Kazuyuki; Ohra, Taiichi; Koyama, Nobuyuki; Hayashi, Satoru; Yamada, Ryuji; Shirasaki, Mikio; Inui, Yoshitaka; Tsukamoto, Tetsuya

    2016-05-26

    A series of benzofuran derivatives with neuroprotective activity in collaboration with IGF-1 was discovered using a newly developed cell-based assay involving primary neural cells prepared from rat hippocampal and cerebral cortical tissues. A structure-activity relationship study identified compound 8 as exhibiting potent activity and brain penetrability. An in vitro pharmacological study demonstrated that although IGF-1 and 8 individually exhibited the neuroprotective effect, the latter acted in collaboration with IGF-1 to enhance neuroprotective activity.

  9. Experimental and Clinical Pharmacology of Andrographis paniculata and Its Major Bioactive Phytoconstituent Andrographolide

    PubMed Central

    Jayakumar, Thanasekaran; Hsieh, Cheng-Ying; Lee, Jie-Jen; Sheu, Joen-Rong

    2013-01-01

    Andrographis paniculata (Burm. F) Nees, generally known as “king of bitters,” is an herbaceous plant in the family Acanthaceae. In China, India, Thailand, and Malaysia, this plant has been widely used for treating sore throat, flu, and upper respiratory tract infections. Andrographolide, a major bioactive chemical constituent of the plant, has shown anticancer potential in various investigations. Andrographolide and its derivatives have anti-inflammatory effects in experimental models asthma, stroke, and arthritis. In recent years, pharmaceutical chemists have synthesized numerous andrographolide derivatives, which exhibit essential pharmacological activities such as those that are anti-inflammatory, antibacterial, antitumor, antidiabetic, anti-HIV, antifeedant, and antiviral. However, what is noteworthy about this paper is summarizing the effects of andrographolide against cardiovascular disease, platelet activation, infertility, and NF-κB activation. Therefore, this paper is intended to provide evidence reported in relevant literature on qualitative research to assist scientists in isolating and characterizing bioactive compounds. PMID:23634174

  10. Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action †

    PubMed Central

    Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2013-01-01

    The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories. PMID:23880931

  11. Marine pharmacology in 2003-4: marine compounds with anthelmintic antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action.

    PubMed

    Mayer, Alejandro M S; Rodríguez, Abimael D; Berlinck, Roberto G S; Hamann, Mark T

    2007-05-01

    The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998-2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as possessing anti-inflammatory effects. Finally, 54 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2003-2004, research on the pharmacology of marine natural products which involved investigators from Argentina, Australia, Brazil, Belgium, Canada, China, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Morocco, the Netherlands, New Zealand, Norway, Panama, the Philippines, Portugal, Russia, Slovenia, South Korea, Spain, Thailand, Turkey, United Kingdom, and the United States, contributed numerous chemical leads for the continued global search for novel therapeutic agents with broad spectrum activity.

  12. Marine pharmacology in 2003-4: Marine Compounds with Anthelminthic, Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiplatelet, Antiprotozoal, Antituberculosis, and Antiviral Activities; affecting the Cardiovascular, Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M.S.; Rodriguez, Abimael D.; Berlinck, Roberto G.S.; Hamann, Mark T.

    2007-01-01

    The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998-2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as possessing anti-inflammatory effects. Finally, 54 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2003-2004, research on the pharmacology of marine natural products which involved investigators from Argentina, Australia, Brazil, Belgium, Canada, China, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Morocco, the Netherlands, New Zealand, Norway, Panama, the Philippines, Portugal, Russia, Slovenia, South Korea, Spain, Thailand, Turkey, United Kingdom, and the United States, contributed numerous chemical leads for the continued global search for novel therapeutic agents with broad spectrum activity. PMID:17392033

  13. Improving amphetamine therapeutic selectivity: N,N-dimethyl-MTA has dopaminergic effects and does not produce aortic contraction.

    PubMed

    Sotomayor-Zárate, Ramón; Jara, Pablo; Araos, Patricio; Vinet, Raúl; Quiroz, Gabriel; Renard, Georgina M; Espinosa, Pedro; Hurtado-Guzmán, Claudio; Moya, Pablo R; Iturriaga-Vásquez, Patricio; Gysling, Katia; Reyes-Parada, Miguel

    2014-05-01

    Amphetamine derivatives have therapeutic potential in diseases such as attention deficit hyperactivity disorder, narcolepsy and obesity. However, their prolonged use has been associated with cardiovascular toxicity and addiction. In recent years, we have studied the pharmacological effects of amphetamine derivatives such as methylthioamphetamine (MTA) and N,N-dimethyl-thioamphetamine, with the aim of improving their therapeutic selectivity. In this work, we show that similarly to MTA, N,N-dimethyl-thioamphetamine has effects on the dopamine system, producing a significant increase in extracellular levels of dopamine (as measured by in vivo brain microdialysis) and locomotor activity, which is a behavioural measure of dopaminergic activation. However, unlike MTA, N,N-dimethyl- thioamphetamine does not produce aortic contraction in vitro. Our results show that N,N-dimethyl-thioamphetamine is a drug that retains the dopaminergic effects of amphetamine derivatives but exhibits a lower potential for producing cardiovascular side effects. © 2013 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  14. Activation of Adhesion G Protein-coupled Receptors: AGONIST SPECIFICITY OF STACHEL SEQUENCE-DERIVED PEPTIDES.

    PubMed

    Demberg, Lilian M; Winkler, Jana; Wilde, Caroline; Simon, Kay-Uwe; Schön, Julia; Rothemund, Sven; Schöneberg, Torsten; Prömel, Simone; Liebscher, Ines

    2017-03-17

    Members of the adhesion G protein-coupled receptor (aGPCR) family carry an agonistic sequence within their large ectodomains. Peptides derived from this region, called the Stachel sequence, can activate the respective receptor. As the conserved core region of the Stachel sequence is highly similar between aGPCRs, the agonist specificity of Stachel sequence-derived peptides was tested between family members using cell culture-based second messenger assays. Stachel peptides derived from aGPCRs of subfamily VI (GPR110/ADGRF1, GPR116/ADGRF5) and subfamily VIII (GPR64/ADGRG2, GPR126/ADGRG6) are able to activate more than one member of the respective subfamily supporting their evolutionary relationship and defining them as pharmacological receptor subtypes. Extended functional analyses of the Stachel sequences and derived peptides revealed agonist promiscuity, not only within, but also between aGPCR subfamilies. For example, the Stachel -derived peptide of GPR110 (subfamily VI) can activate GPR64 and GPR126 (both subfamily VIII). Our results indicate that key residues in the Stachel sequence are very similar between aGPCRs allowing for agonist promiscuity of several Stachel -derived peptides. Therefore, aGPCRs appear to be pharmacologically more closely related than previously thought. Our findings have direct implications for many aGPCR studies, as potential functional overlap has to be considered for in vitro and in vivo studies. However, it also offers the possibility of a broader use of more potent peptides when the original Stachel sequence is less effective. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Molecular docking, synthesis and biological screening of mefenamic acid derivatives as anti-inflammatory agents.

    PubMed

    Savjani, Jignasa K; Mulamkattil, Suja; Variya, Bhavesh; Patel, Snehal

    2017-04-15

    Drug induced gastrointestinal ulceration, renal side effects and hepatotoxicity are the main causes of numerous Non-Steroidal Anti-inflammatory Drugs (NSAIDs). Cyclooxygenase-2 (COX-2) inhibitors discovered to decrease the gastrointestinal issues, but unfortunately, most of them are associated with major cardiovascular adverse effects. Along these lines, various new strategies and frameworks were developed wherein basic alterations of the present medications were accounted for. The aim of the study was to prepare derivatives of mefenamic acid to evaluate anti-inflammatory activity with fewer adverse reactions. In this study, molecular docking investigations of outlined derivatives were done utilizing Protein Data Bank (PDB ID-4PH9). Synthesis of heterocyclic compounds was carried out utilizing Dicyclohexylcarbodiimide/4-Dimethylaminopyridine (DCC/DMAP) coupling. Acute toxicity prediction was performed using free online GUSAR (General Unrestricted Structure-Activity Relationships) software. The study indicated most of the compounds under safe category. In-vitro pharmacological assessment of heterocyclic compounds was done for COX-1 and COX-2 enzymes for the determination of selectivity. In vivo pharmacological screening for anti-inflammatory activity and ED 50 value were determined utilizing carrageenan induced rat paw edema. Gastro intestinal safety study was carried out on selected compounds and found to be devoid of any gastric ulcer toxicity. Most of the compounds indicated high scores as compared to standard during molecular modelling, analysis and displayed interactions with active amino acids of a COX-2 enzyme. The pharmacological screening uncovered that compound substituted with p-bromophenyl indicated maximum potency. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A Systematic Review of Strategies to Foster Activity Engagement in Persons with Dementia

    ERIC Educational Resources Information Center

    Trahan, Maranda A.; Kuo, Julie; Carlson, Michelle C.; Gitlin, Laura N.

    2014-01-01

    Dementia is a growing public health issue. Activity, a positive therapeutic modality, has potential to enhance quality of life and reduce behavioral symptoms in persons with dementia--outcomes eluding pharmacological treatments. However, it is unclear how to effectively engage persons with dementia in activities for them to derive desired…

  17. Imidazopyridines as a source of biological activity and their pharmacological potentials-Infrared and Raman spectroscopic evidence of their content in pharmaceuticals and plant materials.

    PubMed

    Dymińska, Lucyna

    2015-09-15

    Derivatives of imidazopyridine are used in medicinal chemistry due to their biological and pharmaceutical properties. This review article presents imidazopyridine pharmacological activity as antiinflammatory, anticancer, antiviral, antiosteoporotic, antiparasitic, and antihypertensive agents by studying its various synthesized derivatives. Some of compounds with imidazopyridine skeleton are used in psychiatry and autoimmune disorders. The presented data suggest that IR and Raman spectra measurements are a good methods for identification and characterization of the compounds containing imidazopyridine core. Two stretching vibrations: νas(Φ) and νs(Φ) are of a diagnostic importance. The appearance of these bands in the IR and Raman spectra of some plants, tissues and pharmaceuticals confirms the presence of imidazopyridine skeleton in these substances. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin.

    PubMed

    Tuli, Hardeep S; Sandhu, Sardul S; Sharma, A K

    2014-02-01

    An entomopathogenic fungus, Cordyceps sp. has been known to have numerous pharmacological and therapeutic implications, especially, in terms of human health making it a suitable candidate for ethno-pharmacological use. Main constituent of the extract derived from this fungus comprises a novel bio-metabolite called as Cordycepin (3'deoxyadenosine) which has a very potent anti-cancer, anti-oxidant and anti-inflammatory activities. The current review discusses about the broad spectrum potential of Cordycepin including biological and pharmacological actions in immunological, hepatic, renal, cardiovascular systems as well as an anti-cancer agent. The article also reviews the current efforts to delineate the mechanism of action of Cordycepin in various bio-molecular processes. The study will certainly draw the attention of scientific community to improve the bioactivity and production of Cordycepin for its commercial use in pharmacological and medical fields.

  19. Dual/multitargeted xanthone derivatives for Alzheimer's disease: where do we stand?

    PubMed

    Cruz, Maria I; Cidade, Honorina; Pinto, Madalena

    2017-09-01

    To date, the current therapy for Alzheimer's disease (AD) based on acetylcholinesterase inhibitors is only symptomatic, being its efficacy limited. Hence, the recent research has been focused in the development of different pharmacological approaches. Here we discuss the potential of xanthone derivatives as new anti-Alzheimer agents. The interference of xanthone derivatives with acetylcholinesterase and other molecular targets and cellular mechanisms associated with AD have been recently systematically reported. Therefore, we report xanthones with anticholinesterase, monoamine oxidase and amyloid β aggregation inhibitory activities as well as antioxidant properties, emphasizing xanthone derivatives with dual/multitarget activity as potential agents to treat AD. We also propose the structural features for these activities that may guide the design of new, more effective xanthone derivatives. [Formula: see text].

  20. The Chemistry and Pharmacology of Citrus Limonoids.

    PubMed

    Gualdani, Roberta; Cavalluzzi, Maria Maddalena; Lentini, Giovanni; Habtemariam, Solomon

    2016-11-13

    Citrus limonoids (CLs) are a group of highly oxygenated terpenoid secondary metabolites found mostly in the seeds, fruits and peel tissues of citrus fruits such as lemons, limes, oranges, pumellos, grapefruits, bergamots, and mandarins. Represented by limonin, the aglycones and glycosides of CLs have shown to display numerous pharmacological activities including anticancer, antimicrobial, antioxidant, antidiabetic and insecticidal among others. In this review, the chemistry and pharmacology of CLs are systematically scrutinised through the use of medicinal chemistry tools and structure-activity relationship approach. Synthetic derivatives and other structurally-related limonoids from other sources are include in the analysis. With the focus on literature in the past decade, the chemical classification of CLs, their physico-chemical properties as drugs, their biosynthesis and enzymatic modifications, possible ways of enhancing their biological activities through structural modifications, their ligand efficiency metrics and systematic graphical radar plot analysis to assess their developability as drugs are among those discussed in detail.

  1. Review of the chemistry and pharmacology of 7-Methyljugulone.

    PubMed

    Mbaveng, Armelle T; Kuete, Victor

    2014-03-01

    Naphthoquinone is a class of phenolic compounds derived from naphthalene. 7-Methyljuglone (7-MJ) is a naphthoquinone also known as ramentaceone or 6-Methyl-8-hydroxy-1,4-naphthoquinone or 5-Hydroxy-7-methyl-1,4-naphthoquinone or 7-Methyl-5-hydroxy-1,4-naphthoquinone or 5-Hydroxy-7-methyl-,1,4-naphtoquinone or 7-Methyl-5-hydroxynaphthalene-1,4-dione. This compound is a biologically active naphtoquinone, with a molecular weight of 188 g/mol mostly isolated in the genus Diospyros and Euclea. This review was aimed at providing available chemically and pharmacological data on 7-MJ. The chemical and pharmacological data were retrieved from the well-known scientific websites such as Pubmed, Google Scholar, Reaxys, Scirus, Scopus, Sciencedirect, Web-of-knowledge and Scifinder. 7-MJ was reported to have a variety of pharmacological activities such as antibacterial, antifungal, anticancer, antitubercular, anti-inflammatory and antiviral activities. The hemi-synthesis of the compound have been described. The present review pooled out together the knowledge on 7-MJ, and can serve as the start point for future research and valorization accomplishments.

  2. Pharmacological activation of AMPK and glucose uptake in cultured human skeletal muscle cells from patients with ME/CFS.

    PubMed

    Brown, Audrey E; Dibnah, Beth; Fisher, Emily; Newton, Julia L; Walker, Mark

    2018-06-29

    Skeletal muscle fatigue and post-exertional malaise are key symptoms of myalgic encephalomyelitis (ME)/chronic fatigue syndrome (ME/CFS). We have previously shown that AMP-activated protein kinase (AMPK) activation and glucose uptake are impaired in primary human skeletal muscle cell cultures derived from patients with ME/CFS in response to electrical pulse stimulation (EPS), a method which induces contraction of muscle cells in vitro The aim of the present study was to assess if AMPK could be activated pharmacologically in ME/CFS. Primary skeletal muscle cell cultures from patients with ME/CFS and healthy controls were treated with either metformin or compound 991. AMPK activation was assessed by Western blot and glucose uptake measured. Both metformin and 991 treatment significantly increased AMPK activation and glucose uptake in muscle cell cultures from both controls and ME/CFS. Cellular ATP content was unaffected by treatment although ATP content was significantly decreased in ME/CFS compared with controls. Pharmacological activation of AMPK can improve glucose uptake in muscle cell cultures from patients with ME/CFS. This suggests that the failure of EPS to activate AMPK in these muscle cultures is due to a defect proximal to AMPK. Further work is required to delineate the defect and determine whether pharmacological activation of AMPK improves muscle function in patients with ME/CFS. © 2018 The Author(s).

  3. Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications

    PubMed Central

    Shannon, Emer; Abu-Ghannam, Nissreen

    2016-01-01

    The marine environment is home to a taxonomically diverse ecosystem. Organisms such as algae, molluscs, sponges, corals, and tunicates have evolved to survive the high concentrations of infectious and surface-fouling bacteria that are indigenous to ocean waters. Both macroalgae (seaweeds) and microalgae (diatoms) contain pharmacologically active compounds such as phlorotannins, fatty acids, polysaccharides, peptides, and terpenes which combat bacterial invasion. The resistance of pathogenic bacteria to existing antibiotics has become a global epidemic. Marine algae derivatives have shown promise as candidates in novel, antibacterial drug discovery. The efficacy of these compounds, their mechanism of action, applications as antibiotics, disinfectants, and inhibitors of foodborne pathogenic and spoilage bacteria are reviewed in this article. PMID:27110798

  4. Development of novel DIF-1 derivatives that selectively suppress innate immune responses.

    PubMed

    Nguyen, Van Hai; Kikuchi, Haruhisa; Kubohara, Yuzuru; Takahashi, Katsunori; Katou, Yasuhiro; Oshima, Yoshiteru

    2015-08-01

    The multiple pharmacological activities of differentiation-inducing factor-1 (DIF-1) of the cellular slime mold Dictyostelium discoideum led us to examine the use of DIF-1 as a 'drug template' to develop promising seed compounds for drug discovery. DIF-1 and its derivatives were synthesized and evaluated for their regulatory activities in innate immune responses. We found two new derivatives (4d and 5e) with highly selective inhibitory activities against production of the antimicrobial peptide attacin in Drosophila S2 cells and against production of interleukin-2 in Jurkat cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Physicochemical and biological evaluation of a cinnamamide derivative R,S-(2E)-1-(3-hydroxypiperidin-1-yl)-3-phenylprop-2-en-1-one (KM-608) for nervous system disorders.

    PubMed

    Gunia-Krzyżak, Agnieszka; Żesławska, Ewa; Bareyre, Florence M; Nitek, Wojciech; Waszkielewicz, Anna M; Marona, Henryk

    2017-08-01

    A cinnamamide scaffold has been successfully incorporated in several compounds possessing desirable pharmacological activities in central and peripheral nervous system such as anticonvulsant, antidepressant, neuroprotective, analgesic, anti-inflammatory, muscle relaxant, and sedative/hypnotic properties. R,S-(2E)-1-(3-hydroxypiperidin-1-yl)-3-phenylprop-2-en-1-one (KM-608), a cinnamamide derivative, was synthesized, its chemical structure was confirmed by means of spectroscopy and crystallography, and additionally, thermal analysis showed that it exists in one crystalline form. The compound was evaluated in vivo in rodents as anticonvulsant, antiepileptogenic, analgesic, and neuroprotective agent. The beneficial properties of the compound were found in animal models of seizures evoked electrically (maximal electroshock test, 6-Hz) and chemically (subcutaneous pentylenetetrazole seizure test) as well as in three animal models of epileptogenesis: corneal-kindled mice, hippocampal-kindled rats, and lamotrigine-resistant amygdala-kindled rats. Quantitative pharmacological parameters calculated for the tested compound were comparable to those of currently used antiepileptic drugs. In vivo pharmacological profile of KM-608 corresponds with the activity of valproic acid. © 2017 John Wiley & Sons A/S.

  6. Delta Opioid Receptor (DOR) Ligands and Pharmacology: Development of Indolo- and Quinolinomorphinan Derivatives Based on the Message-Address Concept.

    PubMed

    Saitoh, Akiyoshi; Nagase, Hiroshi

    2016-10-28

    The pharmacology of the delta opioid receptor (DOR) has lagged, mainly due to the lack of an agonist with high potency and selectivity in vivo. The DOR is now receiving increasing attention, and there has been progress in the synthesis of better novel ligands. The discovery of a selective receptor DOR antagonist, naltrindole (NTI), stimulated the design and synthesis of (±)TAN-67, which was designed based on the message-address concept and the accessory site theory. Intensive studies using (±)TAN-67 determined the DOR-mediated various pharmacological effects, such as antinociceptive effects for painful diabetic neuropathy and cardiovascular protective effects. We improved the agonist activity of TAN-67 to afford SN-28, which was modified to KNT-127, a novel compound that improved the blood-brain barrier permeability. In addition, KNT-127 showed higher selectivity for the DOR and had potent agonist activity following systemic administration. Interestingly, KNT-127 produced no convulsive effects, unlike prototype DOR agonists. The KNT-127 type derivatives with a quinolinomorphinan structure are expected to be promising candidates for the development of therapeutic DOR agonists.

  7. Beyond reverse pharmacology: Mechanism-based screening of Ayurvedic drugs

    PubMed Central

    Lele, R. D.

    2010-01-01

    This paper reviews the pharmacology of Indian medicinal plants, starting with the historical background of European work on the subject beginning as early as the 17th century, and tracing its history through the work of Sen and Bose in the 1930‘s, and Vakhil’s historic 1949 paper on Sarpaghanda. The often crucial role of patient feedback in early discoveries is highlighted, as is the time lag between proof of pharmacological action and identification of the active principle, and subsequent elucidation of mechanism of action. In the case of Indian plants in the 20th century this process sometimes took almost 50 years. Reserpine and its mechanisms are given in detail, and its current relevance to public health discussed. The foundation of present day methods of pharmacology is briefly presented so the complexity of methods used to identify properties of Ayurveda derived drugs like forskolin and baicalein, and their bioavailability, may be better appreciated. Ayurveda derived anti-oxidants and their levels of action, immuno-modulators, particularly with respect to the NF-kB pathway and its implications for cancer control, are all considered. The example of curcumin derived from turmeric is explained in more detail, because of its role in cancer prevention. Finally, the paper emphasizes the importance of Ayurveda’s concepts of rasayana as a form of dietary chemo-prevention; the significance of ahar, diet, in Ayurveda’s aspiration to prevent disease and restore health thus becomes clear. Understood in this light, Ayurveda may transcend pharmacology as a treatment paradigm. PMID:21731372

  8. Eriosema (Fabaceae) Species Represent a Rich Source of Flavonoids with Interesting Pharmacological Activities.

    PubMed

    Awouafack, Maurice Ducret; Tane, Pierre; Spiteller, Michael; Eloff, Jacobus Nicolaas

    2015-07-01

    Many flavonoids have so far been isolated as main secondary metabolites in plant species of the genus Eriosema (Fabaceae), which contains approximately 160 species. A total of 52 flavonoids including isoflavones, dihydroflavonols, flavonols, flavanones, dihydrochalcones, isoflavanone and their pyrano or glucoside derivatives were isolated and characterized from the five species of this genus investigated to date. Total synthesis and semi-synthesis (acetylation, methylation, hydrogenation, and cyclization) of some isolated flavonoids were reported. Due to several significant pharmacological properties (antimicrobial, cytotoxicity, anti-mycobacterial, antioxidant, antiviral, erectile-dysfunction, vasodilatory and hypoglycemic) of the isolated flavonoids and derivatives, more scientists should be interested in investigating Eriosema species. The present review is the first to document all flavonoids that have been reported from the genus Eriosema to date together with their synthetic and semi-synthetic derivatives, and their pharmacological properties. Dihydrochalcones, which are precursors of other classes of flavonoids, are very rare in natural sources and their isolation from Eriosema species may explain the large number of flavonoids found in this genus. It appears that isoflavone could be a marker for species in this genus. The 83 flavonoids (1-83) documented include 52 isolates, 31 semi-synthetic and 3 totally synthetic derivatives. Data were obtained from Google scholar, Pubmed, Scifinder, Sciencedirect, and Scopus. With 52 different flavonoids isolated from only 5 of the approximately 160 species it shows the remarkable chemical diversity of this genus. This compilation of the biological activities and chemical composition may renew the interest of pharmacologists and phytochemists in this genus.

  9. A Review Study on Macrolides Isolated from Cyanobacteria.

    PubMed

    Wang, Mengchuan; Zhang, Jinrong; He, Shan; Yan, Xiaojun

    2017-04-26

    Cyanobacteria are rich sources of structurally-diverse molecules with promising pharmacological activities. Marine cyanobacteria have been proven to be true producers of some significant bioactive metabolites from marine invertebrates. Macrolides are a class of bioactive compounds isolated from marine organisms, including marine microorganisms in particular. The structural characteristics of macrolides from cyanobacteria mainly manifest in the diversity of carbon skeletons, complexes of chlorinated thiazole-containing molecules and complex spatial configuration. In the present work, we systematically reviewed the structures and pharmacological activities of macrolides from cyanobacteria. Our data would help establish an effective support system for the discovery and development of cyanobacterium-derived macrolides.

  10. 2-Amino-1,3,4-thiadiazole as a potential scaffold for promising antimicrobial agents.

    PubMed

    Serban, Georgeta; Stanasel, Oana; Serban, Eugenia; Bota, Sanda

    2018-01-01

    Pathogenic microorganisms are causative agents for different types of serious and even lethal infectious diseases. Despite advancements in medication, bacterial and fungal infections continue to be a growing problem in health care. As more and more bacteria become resistant to antibiotics used in therapy and an increasing number of invasive fungal species become resistant to current antifungal medications, there is considerable interest in the development of new compounds with antimicrobial activity. The compounds containing a heterocyclic ring play an important role among organic compounds with biological activity used as drugs in human and veterinary medicine or as insecticides and pesticides in agriculture. Thiadiazoles belong to the classes of nitrogen-sulfur heterocycles with extensive application as structural units of biologically active molecules and as useful intermediates in medicinal chemistry. The potency of the thiadiazole nucleus is demonstrated by the drugs currently used. 1,3,4-Thiadiazoles and some of their derivatives are extensively studied because of their broad spectrum of pharmacological activities. The aim of this review was to highlight the main antimicrobial properties exhibited by derivatives possessing 2-amino-1,3,4-thiadiazole moiety. Many of the reported 2-amino-1,3,4-thiadiazole derivatives can be considered as lead compounds for drug synthesis, and several of them have demonstrated higher antimicrobial activity in comparison to standard drugs. Furthermore, taking into account the reactivity of the amine group in the derivatization process, 2-amino-1,3,4-thiadiazole moiety may be a good scaffold for future pharmacologically active 1,3,4-thiadiazole derivatives.

  11. Marine Pharmacology in 2000: Marine Compounds with Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiplatelet, Antituberculosis, and Antiviral Activities; Affecting the Cardiovascular, Immune, and Nervous Systems and Other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M. S.; Hamann, Mark T.

    2016-01-01

    During 2000 research on the pharmacology of marine chemicals involved investigators from Australia, Brazil, Canada, Egypt, France, Germany, India, Indonesia, Israel, Italy, Japan, the Netherlands, New Zealand, Phillipines, Singapore, Slovenia, South Korea, Spain, Sweden, Switzerland, United Kingdom, and the United States. This current review, a sequel to the authors’ 1998 and 1999 reviews, classifies 68 peer-reviewed articles on the basis of the reported preclinical pharmacologic properties of marine chemicals derived from a diverse group of marine animals, algae, fungi, and bacteria. Antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antituberculosis, or antiviral activity was reported for 35 marine chemicals. An additional 20 marine compounds were shown to have significant effects on the cardiovascular and nervous system, and to possess anti-inflammatory or immunosuppressant properties. Finally, 23 marine compounds were reported to act on a variety of molecular targets and thus could potentially contribute to several pharmacologic classes. Thus, as in 1998 and 1999, during 2000 pharmacologic research with marine chemicals continued to contribute potentially novel chemical leads to the ongoing global search for therapeutic agents in the treatment of multiple disease categories. PMID:14583811

  12. Inhibitors of adhesion molecules expression; the synthesis and pharmacological properties of 10H-pyrazino[2,3-b][1,4]benzothiazine derivatives.

    PubMed

    Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Kawahara, Tetsuya; Akamatsu, Hiroshi; Ozaki, Fumihiro; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Muramoto, Kenzo; Ohkuro, Masayoshi; Takenaka, Osamu; Kobayashi, Seiichi

    2002-07-01

    During a search for novel, orally-active inhibitors of upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), we found a new series of 10H-pyrazino[2,3-b][1,4]benzothiazine derivatives to be potent ICAM-1 inhibitors. Of these compounds, N-[1-(10H-Pyrazino[2,3-b][1,4]benzothiazin-8-ylmethyl)piperidin-4-yl]-N',N'-dimethylsulfamide 7p showed the potent oral inhibitory activities against neutrophil migration in a murine interleukin-1 (IL-1) induced paw inflammation model. The synthesis and structure-activity relationships of these amide derivatives are described.

  13. Fentanyl-related compounds and derivatives: current status and future prospects for pharmaceutical applications

    PubMed Central

    Vardanyan, Ruben S; Hruby, Victor J

    2014-01-01

    Fentanyl and its analogs have been mainstays for the treatment of severe to moderate pain for many years. In this review, we outline the structural and corresponding synthetic strategies that have been used to understand the structure–biological activity relationship in fentanyl-related compounds and derivatives and their biological activity profiles. We discuss how changes in the scaffold structure can change biological and pharmacological activities. Finally, recent efforts to design and synthesize novel multivalent ligands that act as mu and delta opioid receptors and NK-1 receptors are discussed. PMID:24635521

  14. Isolation and biotransformation of goniothalamin in the production of goniothalamin analogue

    NASA Astrophysics Data System (ADS)

    Azizan, Izzatul Hidayah; Khalid, Rozida Mohd; Din, Laily; Latip, Jalifah

    2016-11-01

    Goniothalamin is a pharmacologically active styrylpyrone compound extracted from Goniothalamus species. It was found to be selectively preventing proliferation of several cancer cell lines without being cytotoxic towards normal cells. Further research on this compound and its derivatives revealed that some of the derivatives also possess anti proliferative activity. The purpose of this study is to synthesise goniothalamin derivatives via biotransformation of goniothalamin using an enzyme assay. Goniothalamin which was isolated from Goniothalamus andersonii, was allowed to react with dienelactone hydrolase for 30 minutes. The enzyme reaction's product was extracted and analysed using LC-MS. Based on the pseudomelecular ion, one goniothalamin analogue with dihydro functionality was obtained.

  15. New steroid derivative with hypoglycemic activity

    PubMed Central

    Lauro, Figueroa-Valverde; Francisco, Díaz-Cedillo; Lenin, Hau-Heredia; Elodia, García-Cervera; Eduardo, Pool-Gómez; Marcela, Rosas-Nexticapa; Bety, Sarabia-Alcocer

    2014-01-01

    Data indicates that some steroid derivatives may induce changes on glucose levels; nevertheless, data are very confusing. Therefore, more pharmacological data are needed to characterize the activity induced by the steroid derivatives on glucose levels. The aim of this study was to synthesize a new steroid derivative for evaluate its hypoglycemic activity. The effects of steroid derivative on glucose concentration were evaluated in a diabetic animal model using glibenclamide and metformin as controls. In addition, the pregnenolone-dihydrotestosterone conjugate was bound to Tc-99m using radioimmunoassay methods, to evaluate the pharmacokinetics of the steroid derivative over time. The results showed that the pregnenolone-dihydrotestosterone conjugate induces changes on the glucose levels in similar form than glibenclamide. Other data showed that the biodistribution of Tc-99m-steroid derivativein brain was higher in comparison with spleen, stomach, intestine liver and kidney. In conclusion, the pregnenolone-dihydrotestosterone conjugate exerts hypoglycemic activity and this phenomenon could depend of its physicochemical properties which could be related to the degree of lipophilicity of the steroidderivative. PMID:25550906

  16. Synthesis and pharmacological activity evaluation of arctigenin monoester derivatives.

    PubMed

    Chen, Qiulian; Yang, Limin; Han, Mei; Cai, Enbo; Zhao, Yan

    2016-12-01

    Arctigenin (ARG), a nature medicine with many pharmacological activities, was poorly soluble in water and placed restriction on practical usage. Six novel arctigenin monoester derivatives were obtained from the reflux reaction with arctigenin, carboxylic acids (crotonic acid, furoic acid, 2-naphthalene acid and indol-3-acetic acid), EDCI and DMAP in dichloromethane at 60°C for 4-6h and their properties on nitrite scavenging assay were investigated in vitro. Based on the results, the one of the most effective derivatives, arctigenin β-indolylacetate (ARG6), was selected to study anti-tumor activity in vivo at doses of 20 and 40mg/kg. The results showed that comparison with ARG group, ARG6 exhibited more anti-tumor activity in H22 tumor-bearing mice. Furthermore, ARG6 exhibited less damage to the liver, kidney, spleen and thymus when compared with those in positive group. Biochemical parameters of ALT, AST, BUN and Cre showed ARG6 had little toxicity to mice as well. ARG6 significantly improved serum cytokine levels of IL-2, IL-6, IFN-γ and TNF-α, and decreased VEGF compared with ARG. Moreover, H & E staining, TUNEL assay and immunohistochemical of tumor issues also indicated that ARG6 exhibited anti-tumor activity in vivo. In brief, the present study provide a method to improve ARG anti-tumor activity and provide a reference for new anti-tumor agent. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. A SENSITIVE FLUORESCENCE-BASED ASSAY FOR MONITORING GM2 GANGLIOSIDE HYDROLYSIS IN LIVE PATIENT CELLS AND THEIR LYSATES

    PubMed Central

    Tropak, Michael B.; Bukovac, Scott W.; Rigat, Brigitte A.; Yonekawa, Sayuri; Wakarchuk, Warren; Mahuran, Don J.

    2010-01-01

    Enzyme enhancement therapy, utilizing small molecules as pharmacological chaperones, is anattractive approach for the treatment of lysosomal storage diseases that are associated with protein misfolding. However, pharmacological chaperones are alsoinhibitors of their target enzyme. Thus, a major concern with this approach is that, despite enhancing protein folding within, and intracellular transport of the functional mutant enzyme out of the endoplasmic reticulum, the chaperone will continue to inhibit the enzyme in the lysosome, preventing substrate clearance. Herewe demonstrate that the in vitro hydrolysis of a fluorescent derivative of lyso-GM2 ganglioside, like natural GM2 ganglioside, is specifically carried out by the β-hexosaminidase A isozyme, requires the GM2 activator protein as a co-factor, increases when the derivative is incorporated into anionic liposomes and follows similar Michaelis-Menten kinetics. This substrate can also be used to differentiate between lysates from normal and GM2 activator-deficient cells. When added to the growth medium of cells, the substrate is internalized and primarily incorporated into lysosomes. Utilizing adult Tay-Sachs fibroblasts that have been pre-treated with the pharmacological chaperone Pyrimethamine and subsequently loaded with this substrate, we demonstrate an increase in both the levels of mutant β-hexosaminidase A and substrate-hydrolysis as compared to mock treated cells. PMID:19917668

  18. A sensitive fluorescence-based assay for monitoring GM2 ganglioside hydrolysis in live patient cells and their lysates.

    PubMed

    Tropak, Michael B; Bukovac, Scott W; Rigat, Brigitte A; Yonekawa, Sayuri; Wakarchuk, Warren; Mahuran, Don J

    2010-03-01

    Enzyme enhancement therapy, utilizing small molecules as pharmacological chaperones, is an attractive approach for the treatment of lysosomal storage diseases that are associated with protein misfolding. However, pharmacological chaperones are also inhibitors of their target enzyme. Thus, a major concern with this approach is that, despite enhancing protein folding within, and intracellular transport of the functional mutant enzyme out of the endoplasmic reticulum, the chaperone will continue to inhibit the enzyme in the lysosome, preventing substrate clearance. Here we demonstrate that the in vitro hydrolysis of a fluorescent derivative of lyso-GM2 ganglioside, like natural GM2 ganglioside, is specifically carried out by the beta-hexosaminidase A isozyme, requires the GM2 activator protein as a co-factor, increases when the derivative is incorporated into anionic liposomes and follows similar Michaelis-Menten kinetics. This substrate can also be used to differentiate between lysates from normal and GM2 activator-deficient cells. When added to the growth medium of cells, the substrate is internalized and primarily incorporated into lysosomes. Utilizing adult Tay-Sachs fibroblasts that have been pre-treated with the pharmacological chaperone Pyrimethamine and subsequently loaded with this substrate, we demonstrate an increase in both the levels of mutant beta-hexosaminidase A and substrate-hydrolysis as compared to mock-treated cells.

  19. Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity

    PubMed Central

    Venugopala, K. N.; Rashmi, V.; Odhav, B.

    2013-01-01

    Coumarin (2H-1-benzopyran-2-one) is a plant-derived natural product known for its pharmacological properties such as anti-inflammatory, anticoagulant, antibacterial, antifungal, antiviral, anticancer, antihypertensive, antitubercular, anticonvulsant, antiadipogenic, antihyperglycemic, antioxidant, and neuroprotective properties. Dietary exposure to benzopyrones is significant as these compounds are found in vegetables, fruits, seeds, nuts, coffee, tea, and wine. In view of the established low toxicity, relative cheapness, presence in the diet, and occurrence in various herbal remedies of coumarins, it appears prudent to evaluate their properties and applications further. PMID:23586066

  20. Pharmacologic study of calcium influx pathways in rabbit aortic smooth muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukeman, D.S.

    1987-01-01

    Functional characteristics and pharmacologic domains of receptor-operated and potential-sensitive calcium (Ca/sup 2 +/) channels (ROCs and PSCs, respectively) were derived via measurements of /sup 45/Ca/sup 2 +/ influx (M/sup Ca/) during activation by the neurotransmitters norepinephrine (NE), histamine (HS), and serotonin (5-HT) and by elevated extracellular potassium (K/sup +/) in the individual or combined presence of organic Ca/sup 2 +/ channel antagonists (CAts), calmodulin antagonists (Calm-ants), lanthanum (La/sup 3 +/), and agents that increase intracellular levels of cyclic AMP.

  1. An overview of the pharmacological properties and potential applications of natural monoterpenes.

    PubMed

    Kozioł, Agata; Stryjewska, Agnieszka; Librowski, Tadeusz; Sałat, Kinga; Gaweł, Magdalena; Moniczewski, Andrzej; Lochyński, Stanisław

    2014-01-01

    Monoterpenes, the major components of essential oils, belong to the group of isoprenoids containing ten carbon atoms. Being widely distributed in the plant kingdom they are extensively used in cuisine and human health care products. Studies have shown that both natural monoterpenes and their synthetic derivatives are endowed with various pharmacological properties including antifungal, antibacterial, antioxidant, anticancer, antiarrhythmic, anti-aggregating, local anesthetic, antinociceptive, anti-inflammatory, antihistaminic and anti-spasmodic activities. Monoterpenes act also as regulators of growth, heat, transpiration, tumor inhibitors, inhibitors of oxidative phosphorylation, insect repellants, feline and canine attractants and antidiabetics. These interesting activities which might be potentially used not only in pharmaceutical, but also food and cosmetic industries are discussed below.

  2. Marine pharmacology in 2001–2002: Marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action

    PubMed Central

    Mayer, Alejandro M.S.; Hamann, Mark T.

    2016-01-01

    During 2001–2002, research on the pharmacology of marine chemicals continued to be global in nature involving investigators from Argentina, Australia, Brazil, Canada, China, Denmark, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Pakistan, the Philippines, Russia, Singapore, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Thailand, United Kingdom, and the United States. This current article, a sequel to the authors’ 1998, 1999 and 2000 marine pharmacology reviews, classifies 106 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria, on the basis of peer-reviewed preclinical pharmacology. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 56 marine chemicals. An additional 19 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as to possess anti-inflammatory and antidiabetic effects. Finally, 31 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2001–2002 pharmacological research with marine chemicals continued to contribute potentially novel chemical leads for the ongoing global search for therapeutic agents for the treatment of multiple disease categories. PMID:15919242

  3. Clinical Pharmacology in Sleep Medicine

    PubMed Central

    Proctor, Ashley; Bianchi, Matt T.

    2012-01-01

    The basic treatment goals of pharmacological therapies in sleep medicine are to improve waking function by either improving sleep or by increasing energy during wakefulness. Stimulants to improve waking function include amphetamine derivatives, modafinil, and caffeine. Sleep aids encompass several classes, from benzodiazepine hypnotics to over-the-counter antihistamines. Other medications used in sleep medicine include those initially used in other disorders, such as epilepsy, Parkinson's disease, and psychiatric disorders. As these medications are prescribed or encountered by providers in diverse fields of medicine, it is important to recognize the distribution of adverse effects, drug interaction profiles, metabolism, and cytochrome substrate activity. In this paper, we review the pharmacological armamentarium in the field of sleep medicine to provide a framework for risk-benefit considerations in clinical practice. PMID:23213564

  4. Structure-anti-MRSA activity relationship of macrocyclic bis(bibenzyl) derivatives.

    PubMed

    Sawada, Hiromi; Onoda, Kenji; Morita, Daichi; Ishitsubo, Erika; Matsuno, Kenji; Tokiwa, Hiroaki; Kuroda, Teruo; Miyachi, Hiroyuki

    2013-12-15

    We synthesized a series of macrocyclic bis(bibenzyl) derivatives, including riccardin-, isoplagiochin- and marchantin-class structures, and evaluated their antibacterial activity towards methicillin-resistant Staphylococcus aureus (anti-MRSA activity). The structure-activity relationships and the results of molecular dynamics simulations indicated that bis(bibenzyl)s with potent anti-MRSA activity commonly have a 4-hydroxyl group at the D-benzene ring and a 2-hydroxyl group at the C-benzene ring in the hydrophilic part of the molecule, and an unsubstituted phenoxyphenyl group in the hydrophobic part of the molecule containing the A-B-benzene rings. Pharmacological characterization of the bis(bibenzyl) derivatives and 2-phenoxyphenol fragment 25, previously proposed as the minimum structure of riccardin C 1 for anti-MRSA activity, indicated that they have different action mechanisms: the bis(bibenzyl)s are bactericidal, while 25 is bacteriostatic, showing only weak bactericidal activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Synthesis and pharmacological evaluation of pyrazolo[4,3-c]cinnoline derivatives as potential anti-inflammatory and antibacterial agents.

    PubMed

    Tonk, Rajiv Kumar; Bawa, Sandhya; Chawla, Gita; Deora, Girdhar Singh; Kumar, Suresh; Rathore, Vandana; Mulakayala, Naveen; Rajaram, Azad; Kalle, Arunasree M; Afzal, Obaid

    2012-11-01

    A series of pyrazolo[4,3-c]cinnoline derivatives was synthesized, characterized and evaluated for anti-inflammatory and antibacterial activity. Test compounds that exhibited good anti-inflammatory activity were further screened for their ulcerogenic and lipid peroxidation activity. Compounds 4d and 4l showed promising anti-inflammatory activity with reduced ulcerogenic and lipid peroxidation activity when compared to naproxen. Docking results of these two compounds with COX-2 (PDB ID: 1CX2) also exhibited a strong binding profile. Among the test derivatives, compound 4i displayed significant antibacterial property against gram-negative (Escherichia coli and Pseudomonas aeruginosa) and gram-positive (Staphylococcus aureus) bacteria. However, compound 4b emerged as the best dual anti-inflammatory-antibacterial agent in the present study. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. Synthesis, and anticonvulsant activity of new amides derived from 3-methyl- or 3-ethyl-3-methyl-2,5-dioxo-pyrrolidin-1-yl-acetic acids.

    PubMed

    Obniska, Jolanta; Rapacz, Anna; Rybka, Sabina; Góra, Małgorzata; Kamiński, Krzysztof; Sałat, Kinga; Żmudzki, Paweł

    2016-04-15

    This paper describes the synthesis of the library of 22 new 3-methyl- and 3-ethyl-3-methyl-2,5-dioxo-pyrrolidin-1-yl-acetamides as potential anticonvulsant agents. The maximal electroshock (MES) and the subcutaneous pentylenetetrazole (scPTZ) seizure models were used for screening all the compounds. The 6 Hz model of pharmacoresistant limbic seizures was applied for studying selected derivatives. Six amides were chosen for pharmacological characterization of their antinociceptive activity in the formalin model of tonic pain as well as local anesthetic activity was assessed in mice. The pharmacological data indicate on the broad spectra of activity across the preclinical seizure models. Compounds 10 (ED50=32.08 mg/kg, MES test) and 9 (ED50=40.34 mg/kg, scPTZ test) demonstrated the highest potency. These compounds displayed considerably better safety profiles than clinically relevant antiepileptic drugs phenytoin, ethosuximide, or valproic acid. Several molecules showed antinociceptive and local anesthetic properties. The in vitro radioligand binding studies demonstrated that the influence on the sodium and calcium channels may be one of the essential mechanisms of action. Copyright © 2016. Published by Elsevier Ltd.

  7. Genetic and pharmacological suppression of oncogenic mutations in RAS genes of yeast and humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schafer, W.R.; Sterne, R.; Thorner, J.

    1989-07-28

    The activity of an oncoprotein and the secretion of a pheromone can be affected by an unusual protein modification. Specifically, posttranslational modification of yeast-a-factor and Ras protein requires an intermediate of the cholesterol biosynthetic pathway. This modification is apparently essential for biological activity. Studies of yeast mutants blocked in sterol biosynthesis demonstrated that the membrane association and biological activation of the yeast Ras2 protein require mevalonate, a precursor of sterols and other isoprenes such as farnesyl pyrophosphate. Furthermore, drugs that inhibit mevalonate biosynthesis blocked the in vivo action of oncogenic derivatives of human Ras protein in the Xenopus oocyte assay.more » The same drugs and mutations also prevented the posttranslational processing and secretion of yeast a-factor, a peptide that is farnesylated. Thus, the mevalonate requirement for Ras activation may indicate that attachment of a mevalonate-derived (isoprenoid) moiety to Ras proteins is necessary for membrane association and biological function. These observations establish a connection between the cholesterol biosynthetic pathway and transformation by the ras oncogene and offer a novel pharmacological approach to investigating, and possibly controlling, ras-mediated malignant transformations. 50 refs., 3 figs., 3 tabs.« less

  8. [Medicinal chemistry and pharmacology focused on cannabidiol, a major component of the fiber-type cannabis].

    PubMed

    Takeda, Shuso

    2013-01-01

    Considerable attention has focused on cannabidiol (CBD), a major non-psychotropic constituent of fiber-type cannabis plant, and it has been reported to possess diverse biological activities. Although CBD is obtained from non-enzymatic decarboxylation of its parent molecule, cannabidiolic acid (CBDA), several studies have investigated whether CBDA itself is biologically active. In the present report, the author summarizes findings indicating that; 1) CBDA is a selective cyclooxygenase-2 (COX-2) inhibitor, and ii) CBDA possesses an anti-migrative potential for highly invasive cancer cells, apparently through a mechanism involving inhibition of cAMP-dependent protein kinase A, coupled with an activation of the small GTPase, RhoA. Further, the author introduces recent findings on the medicinal chemistry and pharmacology of the CBD derivative, CBD-2',6'-dimethyl ether (CBDD), that exhibits inhibitory activity toward 15-lipoxygenase (15-LOX), an enzyme responsible for the production of oxidized low-density lipoprotein (LDL). These studies establish CBD as both an important experimental tool and as a lead compound for pharmaceutical development. In this review, the author further discusses the potential uses of CBD and its derivatives in future medicines.

  9. Synthesis of 14-Alkoxymorphinan Derivatives and Their Pharmacological Actions

    NASA Astrophysics Data System (ADS)

    Schmidhammer, Helmut; Spetea, Mariana

    Among opioids, morphinans play an important role as therapeutically valuable drugs. They include pain relieving agents such as naturally occurring alkaloids (e.g. morphine, codeine), semisynthetic derivatives (e.g. oxycodone, oxymorphone, buprenorphine), and synthetic analogs (e.g. levorphanol). Currently used opioid analgesics also share a number of severe side effects, limiting their clinical usefulness. The antagonist morphinans, naloxone and naltrexone are used to treat opioid overdose, opioid dependence, and alcoholism. All these opioid drugs produce their biological actions through three receptor types, µ, δ, and κ, belonging to the G-protein-coupled receptor family. Considerable effort has been put forward to understand the appropriate use of opioid analgesics, while medicinal chemistry and opioid pharmacology have been continuously engaged in the search for safer, more efficacious and nonaddicting opioid compounds, with the final goal to reduce complications and to improve patient compliance. Toward this goal, recent advances in chemistry, ligand-based structure activity relationships and pharmacology of 14-alkoxymorphinans are reviewed in this chapter. Current developments of different structural patterns of 14-alkoxymorphinans as research tools and their potential therapeutic opportunities are also summarized.

  10. Physicochemical and Pharmacological Characterization of Permanently Charged Opioids.

    PubMed

    Mazak, Karoly; Noszal, Bela; Hosztafi, Sandor

    2017-01-01

    The main aim of synthesizing permanently charged opioids is to ensure that they do not enter the central nervous system. Such drugs can provide analgesic activity with reduced sedation and other side effects on the central nervous system. We undertook a search of bibliographic databases for peer-reviewed research literature and also summarized our published results in this field. The present review focuses on the characterization of permanently charged opioids by various physicochemical methods, and in vitro as well as in vivo tests. The basicity and lipophilicity of opioid alkaloids are discussed at the microscopic, speciesspecific level. Glucuronide conjugates of opioids are also reviewed. Whereas the primary metabolite morphine-3-glucuronide does not bind to opioid receptors with high affinity, morphine-6-glucuronide is a potent analgesic, at least, partly due to its unexpectedly high lipophilicity. We discuss the quaternary ammonium opioid derivatives of a permanent positive charge, detailing their antinociceptive activity and effects on gastrointestinal motility in various in vivo animal tests and in vitro studies. Compounds with antagonistic activity are also reviewed. The last part of our study concentrates on sulfate conjugates of morphine derivatives that display unique pharmacological properties because they carry a negative charge at any pH value in the human body. In conclusion, the findings of this review confirm the importance of permanently charged opioids in the investigated fields of pharmacology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. The 5-HT(1A) agonism potential of substituted piperazine-ethyl-amide derivatives is conserved in the hexyl homologues: molecular modeling and pharmacological evaluation.

    PubMed

    Dilly, Sébastien; Scuvée-Moreau, Jacqueline; Wouters, Johan; Liégeois, Jean-François

    2011-11-28

    In a series of carboxamide and sulphonamide alkyl (ethyl to hexyl) piperazine analogues, although the size of the linker is very different, ethyl and hexyl derivatives possess a high affinity for 5-HT(1A) receptors. Docking studies clearly show that hexyl and ethyl compounds favorably interact with the binding site of the active conformation of 5-HT(1A) receptors, thus confirming a possible agonist profile. This activity is effectively detected in electrophysiological experiments in which all four compounds inhibit the activity of rat dorsal raphe serotonergic neurons.

  12. Exploring the Role of CYP3A4 Mediated Drug Metabolism in the Pharmacological Modulation of Nitric Oxide Production

    PubMed Central

    Pérez-del Palacio, José; Díaz, Caridad; Vergara, Noemí; Algieri, Francesca; Rodríguez-Nogales, Alba; de Pedro, Nuria; Rodríguez-Cabezas, M. Elena; Genilloud, Olga; Gálvez, Julio; Vicente, Francisca

    2017-01-01

    Nitric-oxide synthase, the enzyme responsible for mammalian nitric oxide generation, and cytochrome P450, the major enzymes involved in drug metabolism, share striking similarities. Therefore, it makes sense that cytochrome P450 drug mediated biotransformations might play an important role in the pharmacological modulation of nitric oxide synthase. In this work, we have undertaken an integrated in vitro assessment of the hepatic metabolism and nitric oxide modulation of previously described dual inhibitors (imidazoles and macrolides) of these enzymes in order assess the implication of CYP450 activities over production of nitric oxide. In vitro systems based in human liver microsomes and activated mouse macrophages were developed for these purposes. Additionally in vitro production the hepatic metabolites of dual inhibitor, roxithromycin, was investigated achieving the identification and isolation of main hepatic biotransformation products. Our results suggested that for some macrolide compounds, the cytochrome P450 3A4 derived drug metabolites have an important effect on nitric oxide production and might critically contribute to the pharmacological immunomodulatory activity observed. PMID:28446877

  13. An overview of the safety pharmacology society strategic plan.

    PubMed

    Pugsley, M K; Authier, S; Koerner, J E; Redfern, W S; Markgraf, C G; Brabham, T; Correll, K; Soloviev, M V; Botchway, A; Engwall, M; Traebert, M; Valentin, J-P; Mow, T J; Greiter-Wilke, A; Leishman, D J; Vargas, H M

    2018-01-09

    Safety Pharmacology studies are conducted to characterize the confidence by which biologically active new chemical entities (NCE) may be anticipated as safe. Non-clinical safety pharmacology studies aim to detect and characterize potentially undesirable pharmacodynamic activities using an array of in silico, in vitro and in vivo animal models. While a broad spectrum of methodological innovation and advancement of the science occurs within the Safety Pharmacology Society, the society also focuses on partnerships with health authorities and technology providers and facilitates interaction with organizations of common interest such as pharmacology, physiology, neuroscience, cardiology and toxicology. Education remains a primary emphasis for the society through content derived from regional and annual meetings, webinars and publication of its works it seeks to inform the general scientific and regulatory community. In considering the future of safety pharmacology the society has developed a strategy to successfully navigate forward and not be mired in stagnation of the discipline. Strategy can be defined in numerous ways but generally involves establishing and setting goals, determining what actions are needed to achieve those goals, and mobilizing resources within the society to accomplish the actions. The discipline remains in rapid evolution and its coverage is certain to expand to provide better guidance for more systems in the next few years. This overview from the Safety Pharmacology Society will outline the strategic plan from 2016 to 2018 and beyond and provide insight into the future of the discipline which builds upon a previous strategic plan established in 2009. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Discovery of novel immunostimulants by dendritic-cell–based functional screening

    PubMed Central

    Mizumoto, Norikatsu; Gao, Jimin; Matsushima, Hironori; Ogawa, Yasushi; Tanaka, Hiroaki; Takashima, Akira

    2005-01-01

    Immunostimulants represent an emerging class of drugs for the treatment of infectious disorders and cancer. CpG oligonucleotides and imiquimod, prototypic drugs in this category, are now known to activate dendritic cells (DCs). Here we report the development of a highly sensitive, unbiased functional screen to detect DC-stimulatory signals. Because interleukin-1β (IL-1β) mRNA expression is closely associated with DC activation, we engineered DCs to stably express a fluorescent marker gene under the control of IL-1β promoter. By screening about 3000 compounds with the resulting DC biosensor clone, we identified DC-stimulatory potentials of topoisomerase I inhibitors (camptothecin derivatives) and microtubule depolymerizing drugs (colchicine and podophyllotoxin). In response to treatment with each agent, bone marrow–derived DC preparations exhibited characteristic phenotypic and/or functional changes associated with DC activation. All of these agents also triggered nuclear factor–κB (NFκB) activation in DCs, suggesting a common pharmacologic mechanism of action. Furthermore, locally administered colchicine induced in situ maturation and migration of DCs and augmented both humoral and cellular immune responses. These results support the practical utility of the DC-based biosensor system to discover novel DC-targeted immunostimulants and unveil previously unrecognized (and totally unexpected) pharmacologic activities of several drugs that are commonly used for the treatment of various disorders. PMID:16002424

  15. Bioactive polyphenols and cardiovascular disease: chemical antagonists, pharmacological agents or xenobiotics that drive an adaptive response?

    PubMed Central

    Goszcz, Katarzyna; Duthie, Garry G; Stewart, Derek; Leslie, Stephen J

    2017-01-01

    Polyphenols are widely regarded to have a wide range of health‐promoting qualities, including beneficial effects on cardiovascular disease. Historically, the benefits have been linked to their well‐recognized powerful antioxidant activity. However, the concept that the beneficial effects are attributable to direct antioxidant activity in vivo does not pay sufficient heed to the fact that polyphenols degrade rapidly, are poorly absorbed and rapidly metabolized, resulting in very low bioavailability. This review explores alternative mechanisms by which polyphenols, or their metabolites, exert biological activity via mechanisms that can be activated by physiologically relevant concentrations. Evidence is presented to support the action of phenolic derivatives on receptors and signalling pathways to induce adaptive responses that drive changes in endogenous antioxidant, antiplatelet, vasodilatory and anti‐inflammatory effects. The implications are that in vitro antioxidant measures as predictors of polyphenol protective activity in vivo hold little relevance and that closer attention needs to be paid to bioavailable metabolites to understand the mode of action of these diet‐derived components. Linked Articles This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc PMID:28071785

  16. New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade.

    PubMed

    Mi, Yue; Zhang, Jinrong; He, Shan; Yan, Xiaojun

    2017-05-05

    Marine cyanobacteria are significant sources of structurally diverse marine natural products with broad biological activities. In the past 10 years, excellent progress has been made in the discovery of marine cyanobacteria-derived peptides with diverse chemical structures. Most of these peptides exhibit strong pharmacological activities, such as neurotoxicity and cytotoxicity. In the present review, we summarized peptides isolated from marine cyanobacteria since 2007.

  17. Synthesis of 2,4-dihydroxychalcone derivatives as potential antidepressant effect.

    PubMed

    Guan, L-P; Zhao, D-H; Chang, Y; Wen, Z-S; Tang, L-M; Huang, F-F

    2013-01-01

    In this study, twelve 2,4-dihydroxychalcone derivatives were synthesized and evaluated for antidepressant activities using the forced swimming test (FST). The pharmacological test showed that 6 compounds significantly reduced the immobility times in the FST at a dose of 10 mg/kg, indicative of antidepressant activity. Among the derivatives, compounds designated 3d and 3 h exhibited the best antidepressant activity, with reduced immobility time by 32.05% and 34.33%, respectively. In the 5-hydroxytryptophan-induced head-twitch test and yohimbine-induced mortality test, compounds 3d and 3 h increased head-twitch and increased the mortality rate. The mechanisms of the antidepressant effects of compounds 3d and 3 h may be related with the 5-HTP and NE nervous system. © Georg Thieme Verlag KG Stuttgart · New York.

  18. On the pharmacological properties of Delta9-tetrahydrocannabinol (THC).

    PubMed

    Costa, Barbara

    2007-08-01

    Cannabis is one of the first plants used as medicine, and the notion that it has potentially valuable therapeutic properties is a matter of current debate. The isolation of its main constituent, Delta9-tetrahydrocannabinol (THC), and the discovery of the endocannabinoid system (cannabinoid receptors CB1 and CB2 and their endogenous ligands) made possible studies concerning the pharmacological activity of cannabinoids. This paper reviews some of the most-important findings in the field of THC pharmacology. Clinical trials, anecdotal reports, and experiments employing animal models strongly support the idea that THC and its derivatives exhibit a wide variety of therapeutic applications. However, the psychotropic effects observed in laboratory animals and the adverse reactions reported during human trials, as well as the risk of tolerance development and potential dependence, limit the application of THC in therapy. Nowadays, researchers focus on other therapeutic strategies by which the endocannabinoid system might be modulated to clinical advantage (inhibitor or activator of endocannabinoid biosynthesis, cellular uptake, or metabolism). However, emerging evidence highlights the beneficial effects of the whole cannabis extract over those observed with single components, indicating cannabis-based medicines as new perspective to revisit the pharmacology of this plant.

  19. Traditional Uses, Phytochemistry, and Pharmacology of Olea europaea (Olive)

    PubMed Central

    Hashmi, Muhammad Ali; Khan, Afsar; Hanif, Muhammad; Farooq, Umar; Perveen, Shagufta

    2015-01-01

    Aim of the Review. To grasp the fragmented information available on the botany, traditional uses, phytochemistry, pharmacology, and toxicology of Olea europaea to explore its therapeutic potential and future research opportunities. Material and Methods. All the available information on O. europaea was collected via electronic search (using Pubmed, Scirus, Google Scholar, and Web of Science) and a library search. Results. Ethnomedical uses of O. europaea are recorded throughout the world where it has been used to treat various ailments. Phytochemical research had led to the isolation of flavonoids, secoiridoids, iridoids, flavanones, biophenols, triterpenes, benzoic acid derivatives, isochromans, and other classes of secondary metabolites from O. europaea. The plant materials and isolated components have shown a wide spectrum of in vitro and in vivo pharmacological activities like antidiabetic, anticonvulsant, antioxidant, anti-inflammatory, immunomodulatory, analgesic, antimicrobial, antiviral, antihypertensive, anticancer, antihyperglycemic, antinociceptive, gastroprotective, and wound healing activities. Conclusions. O. europaea emerged as a good source of traditional medicine for the treatment of various ailments. The outcomes of phytochemical and pharmacological studies reported in this review will further expand its existing therapeutic potential and provide a convincing support to its future clinical use in modern medicine. PMID:25802541

  20. Genus Caulophyllum: An Overview of Chemistry and Bioactivity

    PubMed Central

    Xia, Yong-Gang; Li, Guo-Yu; Liang, Jun; Yang, Bing-You; Lü, Shao-Wa; Kuang, Hai-Xue

    2014-01-01

    Recently, some promising advances have been achieved in understanding the chemistry, pharmacology, and action mechanisms of constituents from genus Caulophyllum. Despite this, there is to date no systematic review of those of genus Caulophyllum. This review covers naturally occurring alkaloids and saponins and those resulting from synthetic novel taspine derivatives. The paper further discussed several aspects of this genus, including pharmacological properties, mechanisms of action, pharmacokinetics, and cell membrane chromatography for activity screening. The aim of this paper is to provide a point of reference for pharmaceutical researchers to develop new drugs from constituents of Caulophyllum plants. PMID:24876877

  1. Genus caulophyllum: an overview of chemistry and bioactivity.

    PubMed

    Xia, Yong-Gang; Li, Guo-Yu; Liang, Jun; Yang, Bing-You; Lü, Shao-Wa; Kuang, Hai-Xue

    2014-01-01

    Recently, some promising advances have been achieved in understanding the chemistry, pharmacology, and action mechanisms of constituents from genus Caulophyllum. Despite this, there is to date no systematic review of those of genus Caulophyllum. This review covers naturally occurring alkaloids and saponins and those resulting from synthetic novel taspine derivatives. The paper further discussed several aspects of this genus, including pharmacological properties, mechanisms of action, pharmacokinetics, and cell membrane chromatography for activity screening. The aim of this paper is to provide a point of reference for pharmaceutical researchers to develop new drugs from constituents of Caulophyllum plants.

  2. Gastric and duodenal antiulcer activity of alkaloids: a review.

    PubMed

    de Sousa Falcão, Heloina; Leite, Jacqueline Alves; Barbosa-Filho, José Maria; de Athayde-Filho, Petrônio Filgueiras; de Oliveira Chaves, Maria Célia; Moura, Marcelo Dantas; Ferreira, Anderson Luiz; de Almeida, Ana Beatriz Albino; Souza-Brito, Alba Regina Monteiro; de Fátima Formiga Melo Diniz, Margareth; Batista, Leônia Maria

    2008-12-17

    Peptic ulcer disease is a deep gastrointestinal erosion disorder that involves the entire mucosal thickness and can even penetrate the muscular mucosa. Numerous natural products have been evaluated as therapeutics for the treatment of a variety of diseases, including this one. These products usually derive from plant and animal sources that contain active constituents such as alkaloids, flavonoids, terpenoids, tannins and others. The alkaloids are natural nitrogen-containing secondary metabolites mostly derived from amino acids and found in about 20% of plants. There has been considerable pharmacological research into the antiulcer activity of these compounds. In this work we review the literature on alkaloids with antiulcer activity, which covers about sixty-one alkaloids, fifty-five of which have activity against this disease when induced in animals.

  3. Discovery of imidazopyridine derivatives as novel c-Met kinase inhibitors: Synthesis, SAR study, and biological activity.

    PubMed

    Yang, Yifei; Zhang, Yuan; Yang, LingYun; Zhao, Leilei; Si, Lianghui; Zhang, Huibin; Liu, Qingsong; Zhou, Jinpei

    2017-02-01

    Receptor tyrosine kinase c-Met acts as an alternative angiogenic pathway in the process and contents of cancers. A series of imidazopyridine derivatives were designed and synthesized according to the established docking studies as possible c-Met inhibitors. Most of these imidazopyridine derivatives displayed nanomolar potency against c-Met in both biochemical enzymatic screens and cellular pharmacology studies. Especially, compound 7g exhibited the most inhibitory activity against c-Met with IC 50 of 53.4nM and 253nM in enzymatic and cellular level, respectively. Following that, the compound 7g was docked into the protein of c-Met and the structure-activity relationship was analyzed in detail. These findings indicated that the novel imidazopyridine derivative compound 7g was a potential c-Met inhibitor deserving further investigation for cancer treatment. Copyright © 2016. Published by Elsevier Inc.

  4. Advances on Semisynthesis, Total Synthesis, and Structure-Activity Relationships of Honokiol and Magnolol Derivatives.

    PubMed

    Yang, Chun; Zhi, Xiaoyan; Xu, Hui

    2016-01-01

    Honokiol and magnolol (an isomer of honokiol) are small-molecule polyphenols isolated from the barks of Magnolia officinalis, which have been widely used in traditional Chinese and Japanese medicines. In the last decade, a variety of biological properties of honokiol and magnolol (e.g., anti-oxidativity, antitumor activity, anti-depressant activity, anti-inflammatory activity, neuroprotective activity, anti-diabetic activity, antiviral activity, and antimicrobial activity) have been reported. Meanwhile, certain mechanisms of action of some biological activities were also investigated. Moreover, many analogs of honokiol and magnolol were prepared by structural modification or total synthesis, and some exhibited very potent pharmacological activities with improved water solubility. Therefore, the present review will provide a systematic coverage on recent developments of honokiol and magnolol derivatives in regard to semisynthesis, total synthesis, and structure-activity relationships from 2000 up to now.

  5. Pharmacology and toxicology of Cannabis derivatives and endocannabinoid agonists.

    PubMed

    Gerra, Gilberto; Zaimovic, Amir; Gerra, Maria L; Ciccocioppo, Roberto; Cippitelli, Andrea; Serpelloni, Giovanni; Somaini, Lorenzo

    2010-01-01

    For centuries Cannabis sativa and cannabis extracts have been used in natural medicine. Delta(9)-tetrahydrocannabinol (THC) is the main active ingredient of Cannabis. THC seems to be responsible for most of the pharmacological and therapeutic actions of cannabis. In a few countries THC extracts (i.e. Sativex) or THC derivatives such as nabilone, and dronabinol are used in the clinic for the treatment of several pathological conditions like chemotherapy-induced nausea and vomiting, multiple sclerosis and glaucoma. On the other hand the severe side effects and the high abuse liability of these agents represent a serious limitation in their medical use. In addition, diversion in the use of these active ingredients for recreational purpose is a concern. Over recent years, alternative approaches using synthetic cannabinoid receptor agonists or agents acting as activators of the endocannabinoid systems are under scrutiny with the hope to develop more effective and safer clinical applications. Likely, in the near future few of these new molecules will be available for clinical use. The present article review recent study and patents with focus on the cannabinoid system as a target for the treatment of central nervous system disorders with emphasis on agonists.

  6. Pharmacological Chaperones and Coenzyme Q10 Treatment Improves Mutant β-Glucocerebrosidase Activity and Mitochondrial Function in Neuronopathic Forms of Gaucher Disease

    PubMed Central

    de la Mata, Mario; Cotán, David; Oropesa-Ávila, Manuel; Garrido-Maraver, Juan; Cordero, Mario D.; Villanueva Paz, Marina; Delgado Pavón, Ana; Alcocer-Gómez, Elizabet; de Lavera, Isabel; Ybot-González, Patricia; Paula Zaderenko, Ana; Ortiz Mellet, Carmen; Fernández, José M. García; Sánchez-Alcázar, José A.

    2015-01-01

    Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes lysosomal β-glucocerebrosidase. Homozygosity for the L444P mutation in GBA1 is associated with high risk of neurological manifestations which are not improved by enzyme replacement therapy. Alternatively, pharmacological chaperones (PCs) capable of restoring the correct folding and trafficking of the mutant enzyme represent promising alternative therapies.Here, we report on how the L444P mutation affects mitochondrial function in primary fibroblast derived from GD patients. Mitochondrial dysfunction was associated with reduced mitochondrial membrane potential, increased reactive oxygen species (ROS), mitophagy activation and impaired autophagic flux.Both abnormalities, mitochondrial dysfunction and deficient β-glucocerebrosidase activity, were partially restored by supplementation with coenzyme Q10 (CoQ) or a L-idonojirimycin derivative, N-[N’-(4-adamantan-1-ylcarboxamidobutyl)thiocarbamoyl]-1,6-anhydro-L-idonojirimycin (NAdBT-AIJ), and more markedly by the combination of both treatments. These data suggest that targeting both mitochondria function by CoQ and protein misfolding by PCs can be promising therapies in neurological forms of GD. PMID:26045184

  7. Intrinsically active and pacemaker neurons in pluripotent stem cell-derived neuronal populations.

    PubMed

    Illes, Sebastian; Jakab, Martin; Beyer, Felix; Gelfert, Renate; Couillard-Despres, Sébastien; Schnitzler, Alfons; Ritter, Markus; Aigner, Ludwig

    2014-03-11

    Neurons generated from pluripotent stem cells (PSCs) self-organize into functional neuronal assemblies in vitro, generating synchronous network activities. Intriguingly, PSC-derived neuronal assemblies develop spontaneous activities that are independent of external stimulation, suggesting the presence of thus far undetected intrinsically active neurons (IANs). Here, by using mouse embryonic stem cells, we provide evidence for the existence of IANs in PSC-neuronal networks based on extracellular multielectrode array and intracellular patch-clamp recordings. IANs remain active after pharmacological inhibition of fast synaptic communication and possess intrinsic mechanisms required for autonomous neuronal activity. PSC-derived IANs are functionally integrated in PSC-neuronal populations, contribute to synchronous network bursting, and exhibit pacemaker properties. The intrinsic activity and pacemaker properties of the neuronal subpopulation identified herein may be particularly relevant for interventions involving transplantation of neural tissues. IANs may be a key element in the regulation of the functional activity of grafted as well as preexisting host neuronal networks.

  8. Intrinsically Active and Pacemaker Neurons in Pluripotent Stem Cell-Derived Neuronal Populations

    PubMed Central

    Illes, Sebastian; Jakab, Martin; Beyer, Felix; Gelfert, Renate; Couillard-Despres, Sébastien; Schnitzler, Alfons; Ritter, Markus; Aigner, Ludwig

    2014-01-01

    Summary Neurons generated from pluripotent stem cells (PSCs) self-organize into functional neuronal assemblies in vitro, generating synchronous network activities. Intriguingly, PSC-derived neuronal assemblies develop spontaneous activities that are independent of external stimulation, suggesting the presence of thus far undetected intrinsically active neurons (IANs). Here, by using mouse embryonic stem cells, we provide evidence for the existence of IANs in PSC-neuronal networks based on extracellular multielectrode array and intracellular patch-clamp recordings. IANs remain active after pharmacological inhibition of fast synaptic communication and possess intrinsic mechanisms required for autonomous neuronal activity. PSC-derived IANs are functionally integrated in PSC-neuronal populations, contribute to synchronous network bursting, and exhibit pacemaker properties. The intrinsic activity and pacemaker properties of the neuronal subpopulation identified herein may be particularly relevant for interventions involving transplantation of neural tissues. IANs may be a key element in the regulation of the functional activity of grafted as well as preexisting host neuronal networks. PMID:24672755

  9. Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation.

    PubMed

    Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-Anun, Sirintorn

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96-63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of N(ɛ)-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications.

  10. Cinnamic Acid and Its Derivatives Inhibit Fructose-Mediated Protein Glycation

    PubMed Central

    Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-anun, Sirintorn

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96–63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of Nɛ-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications. PMID:22408423

  11. Neuroprotective effect of S-allyl-l-cysteine derivatives against endoplasmic reticulum stress-induced cytotoxicity is independent of calpain inhibition.

    PubMed

    Imai, Toru; Kosuge, Yasuhiro; Saito, Hiroaki; Uchiyama, Taketo; Wada, Taira; Shimba, Shigeki; Ishige, Kumiko; Miyairi, Shinichi; Makishima, Makoto; Ito, Yoshihisa

    2016-03-01

    S-allyl-l-cysteine (SAC) is known to have neuroprotective properties. We synthesized various SAC derivatives and tested their effects on endoplasmic reticulum stress-induced neurotoxicity in cultured hippocampal neurons (HPNs). Among the compounds tested, S-propyl-l-cysteine (SPC) exhibited the strongest neuroprotective activity in HPNs, followed by S-ethyl-l-cysteine (SEC) and S-methyl-l-cysteine (SMC). Unlike SAC and SMC, SPC and SEC did not have inhibitory activity on μ-calpain, suggesting that the mechanism underlying the protective activity of SPC and SEC differs from that of SAC. Copyright © 2016 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  12. Fluorinated Cannabidiol Derivatives: Enhancement of Activity in Mice Models Predictive of Anxiolytic, Antidepressant and Antipsychotic Effects.

    PubMed

    Breuer, Aviva; Haj, Christeene G; Fogaça, Manoela V; Gomes, Felipe V; Silva, Nicole Rodrigues; Pedrazzi, João Francisco; Del Bel, Elaine A; Hallak, Jaime C; Crippa, José A; Zuardi, Antonio W; Mechoulam, Raphael; Guimarães, Francisco S

    2016-01-01

    Cannabidiol (CBD) is a major Cannabis sativa constituent, which does not cause the typical marijuana psychoactivity. However, it has been shown to be active in a numerous pharmacological assays, including mice tests for anxiety, obsessive-compulsive disorder, depression and schizophrenia. In human trials the doses of CBD needed to achieve effects in anxiety and schizophrenia are high. We report now the synthesis of 3 fluorinated CBD derivatives, one of which, 4'-F-CBD (HUF-101) (1), is considerably more potent than CBD in behavioral assays in mice predictive of anxiolytic, antidepressant, antipsychotic and anti-compulsive activity. Similar to CBD, the anti-compulsive effects of HUF-101 depend on cannabinoid receptors.

  13. New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade

    PubMed Central

    Mi, Yue; Zhang, Jinrong; He, Shan; Yan, Xiaojun

    2017-01-01

    Marine cyanobacteria are significant sources of structurally diverse marine natural products with broad biological activities. In the past 10 years, excellent progress has been made in the discovery of marine cyanobacteria-derived peptides with diverse chemical structures. Most of these peptides exhibit strong pharmacological activities, such as neurotoxicity and cytotoxicity. In the present review, we summarized peptides isolated from marine cyanobacteria since 2007. PMID:28475149

  14. Design, Synthesis, and Pharmacological Evaluation of Novel Multisubstituted Pyridin-3-amine Derivatives as Multitargeted Protein Kinase Inhibitors for the Treatment of Non-Small Cell Lung Cancer.

    PubMed

    Zhu, Wei; Chen, Hui; Wang, Yulan; Wang, Jiang; Peng, Xia; Chen, Xianjie; Gao, Yinglei; Li, Chunpu; He, Yulong; Ai, Jing; Geng, Meiyu; Zheng, Mingyue; Liu, Hong

    2017-07-27

    A novel series of pyridin-3-amine derivatives were designed, synthesized, and evaluated as multitargeted protein kinase inhibitors for the treatment of non-small cell lung cancer (NSCLC). Hit 1 was first disclosed by in silico screening against fibroblast growth factor receptors (FGFR), which was subsequently validated by in vitro experiments. The structure-activity relationship (SAR) of its analogues was then explored to afford novel FGFR inhibitors 2a-2p and 3a-3q. Among them, 3m showed potent inhibition against FGFR1, 2, and 3. Interestingly, compound 3m not only inhibited various phosphorylation and downstream signaling across different oncogenic forms in FGFR-overactivated cancer cells but also showed nanomolar level inhibition against several other NSCLC-related oncogene kinases, including RET, EGFR, EGFR/T790M/L858R, DDR2, and ALK. Finally, in vivo pharmacology evaluations of 3m showed significant antitumor activity (TGI = 66.1%) in NCI-H1581 NSCLC xenografts with a good pharmacokinetic profile.

  15. Molecular catchers for pharmacologically active substances in wastewaters, a theoretical study

    NASA Astrophysics Data System (ADS)

    Salazar Valencia, P. J.; Pérez Merchancano, S. T.; Paredes, H.; Bolívar Marinez, L. E.

    2016-08-01

    A basic and pressing need in the treatment of residual waste waters for urban and rural centers is the removal of pharmacological active residues from them, these resides are originated in a wide array of domestic, agricultural and industrial sources and can't be removed in the residual waters treatment plants by conventional methods, the result is the incorporation of them into the ecosystem altering the physiology and behavior of living organisms. Among the most active pharmacological substances found in very high concentration in residual waters is paracetamol, an analgesic of very wide excessive use due to its ease of access and low cost [1]. No pharmacological substance is entirely absorbed by the human organism and therefore a wide family of molecular residues is excreted by the urinary tract. In this work we have used the AM1 (Austin Model 1), PM3 (Parametric Method 3) and ZINDO/CI semiempirical methods, from the NDO (Neglect Differential Overlap) family [2] to study and observe the structural, electronic and optical characteristics of paracetamol while immersed in different basic and acidic aqueous environments, either alone or interacting with lignosulphonates. We have previously found that lignosulphonates, a lignin derivatives of wide industrial applications, can be engineered as a binding and flocculant agent and acts as molecular catchers therefore showing the potential to be used as a mean to filter and eliminate molecular residues from the residual waters [3].

  16. In Vitro Anti-Toxoplasma gondii and Antimicrobial Activity of Amides Derived from Cinnamic Acid.

    PubMed

    Silveira, Graziela Rangel; Campelo, Karoline Azerêdo; Lima, Gleice Rangel Silveira; Carvalho, Lais Pessanha; Samarão, Solange Silva; Vieira-da-Motta, Olney; Mathias, Leda; Matos, Carlos Roberto Ribeiro; Vieira, Ivo José Curcino; Melo, Edesio José Tenório de; Maria, Edmilson José

    2018-03-28

    Most cinnamic acids, their esters, amides, aldehydes, and alcohols present several therapeutic actions through anti-inflammatory, antitumor, and inhibitory activity against a great variety of microorganisms. In this work, eight amines derived from cinnamic acid were synthesized and tested against host cells infected with Toxoplasma gondii and the bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, and three strains of Staphylococcus aureus . Compounds 3 and 4 showed the best result against intracellular T. gondii , presenting antiparasitic activity at low concentrations (0.38 and 0.77 mM). The antibacterial activity of these compounds was also evaluated by the agar microdilution method, and amides 2 and 5 had a minimum inhibitory concentration of 250 µg mL -1 against two strains of S. aureus (ATCC 25923 and bovine strain LSA 88). These also showed synergistic action along with a variety of antibiotics, demonstrating that amines derived from cinnamic acid have potential as pharmacological agents.

  17. Stem cell derived phenotypic human neuromuscular junction model for dose response evaluation of therapeutics.

    PubMed

    Santhanam, Navaneetha; Kumanchik, Lee; Guo, Xiufang; Sommerhage, Frank; Cai, Yunqing; Jackson, Max; Martin, Candace; Saad, George; McAleer, Christopher W; Wang, Ying; Lavado, Andrea; Long, Christopher J; Hickman, James J

    2018-06-01

    There are currently no functional neuromuscular junction (hNMJ) systems composed of human cells that could be used for drug evaluations or toxicity testing in vitro. These systems are needed to evaluate NMJs for diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy or other neurodegenerative diseases or injury states. There are certainly no model systems, animal or human, that allows for isolated treatment of motoneurons or muscle capable of generating dose response curves to evaluate pharmacological activity of these highly specialized functional units. A system was developed in which human myotubes and motoneurons derived from stem cells were cultured in a serum-free medium in a BioMEMS construct. The system is composed of two chambers linked by microtunnels to enable axonal outgrowth to the muscle chamber that allows separate stimulation of each component and physiological NMJ function and MN stimulated tetanus. The muscle's contractions, induced by motoneuron activation or direct electrical stimulation, were monitored by image subtraction video recording for both frequency and amplitude. Bungarotoxin, BOTOX ® and curare dose response curves were generated to demonstrate pharmacological relevance of the phenotypic screening device. This quantifiable functional hNMJ system establishes a platform for generating patient-specific NMJ models by including patient-derived iPSCs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Synthesis and properties of 2-(4-substituted)butyl derivatives of some 2,3-dihydro-1,3-dioxo-1H-pyrrolo[3,4-c]pyridines.

    PubMed

    Sladowska, H; Szkatuła, D; Filipek, B; Maciag, D; Sapa, J; Zygmunt, M

    2001-02-01

    The synthesis of 2-(4-substituted)butyl derivatives of 4-alkoxy-2,3-dihydro-6-methyl-1,3-dioxo-1H-pyrrolo[3,4-c]pyridine (10-15) and the results of preliminary pharmacological screening are described in this paper. All the compounds tested showed a strong analgesic action, suppressed spontaneous locomotor activity and prolonged barbiturate sleep. Except 10, all significantly decreased systolic and diastolic blood pressure.

  19. Benzomorphan scaffold for opioid analgesics and pharmacological tools development: A comprehensive review.

    PubMed

    Turnaturi, Rita; Marrazzo, Agostino; Parenti, Carmela; Pasquinucci, Lorella

    2018-03-25

    Benzomorphan, derived by morphine skeleton simplification, has been the subject of exploration in medicinal chemistry for the development of new drugs and pharmacological tools to explore opioid pharmacology in vitro and in vivo. Building upon these evidences, the design and synthesis of benzomorphan-based compounds, appropriately modified at the basic nitrogen and/or the phenolic hydroxyl (8-OH) group, represent a valid and versatile strategy to obtain analgesics. In this review, to improve the body of information in this field, we report structure activity-relationships (SARs) of benzomorphan-based compounds analysing data literature of last 25 years. Collectively, SARs data highlighted that the benzomorphan nucleus represents a template in the achievement of a specific functional profile, by modifying N-substituent or 8-OH group. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. ANMCO/GICR-IACPR/SICI-GISE Consensus Document: the clinical management of chronic ischaemic cardiomyopathy

    PubMed Central

    Gulizia, Michele Massimo; Colivicchi, Furio; Di Lenarda, Andrea; Musumeci, Giuseppe; Faggiano, Pompilio Massimo; Abrignani, Maurizio Giuseppe; Rossini, Roberta; Fattirolli, Francesco; Valente, Serafina; Mureddu, Gian Francesco; Temporelli, Pier Luigi; Olivari, Zoran; Amico, Antonio Francesco; Casolo, Giancarlo; Fresco, Claudio; Menozzi, Alberto; Nardi, Federico

    2017-01-01

    Stable coronary artery disease (CAD) is a clinical entity of great epidemiological importance. It is becoming increasingly common due to the longer life expectancy, being strictly related to age and to advances in diagnostic techniques and pharmacological and non-pharmacological interventions. Stable CAD encompasses a variety of clinical and anatomic presentations, making the identification of its clinical and anatomical features challenging. Therapeutic interventions should be defined on an individual basis according to the patient’s risk profile. To this aim, management flow charts have been reviewed based on sustainability and appropriateness derived from recent evidence. Special emphasis has been placed on non-pharmacological interventions, stressing the importance of lifestyle changes, including smoking cessation, regular physical activity, and diet. Adherence to therapy as an emerging risk factor is also discussed. PMID:28533729

  1. AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy.

    PubMed

    Ljubicic, Vladimir; Jasmin, Bernard J

    2013-10-01

    Recent studies have highlighted the potential of adenosine monophosphate-activated protein kinase (AMPK) to act as a central therapeutic target in Duchenne muscular dystrophy (DMD). Here, we review the role of AMPK as an important integrator of cell signaling pathways that mediate phenotypic plasticity within the context of dystrophic skeletal muscle. Pharmacological AMPK activation remodels skeletal muscle towards a slower, more oxidative phenotype, which is more pathologically resistant to the lack of dystrophin. Moreover, recent studies suggest that AMPK-activated autophagy may be beneficial for myofiber structure and function in mice with muscular dystrophy. Thus, AMPK may represent an ideal target for intervention because clinically approved pharmacological agonists exist, and because benefits can be derived via two independent yet, complementary biological pathways. The availability of several AMPK activators could therefore lead to the rapid development and implementation of novel and highly effective therapeutics aimed at altering the relentless progression of DMD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Epoxyeicosanoids promote organ and tissue regeneration.

    PubMed

    Panigrahy, Dipak; Kalish, Brian T; Huang, Sui; Bielenberg, Diane R; Le, Hau D; Yang, Jun; Edin, Matthew L; Lee, Craig R; Benny, Ofra; Mudge, Dayna K; Butterfield, Catherine E; Mammoto, Akiko; Mammoto, Tadanori; Inceoglu, Bora; Jenkins, Roger L; Simpson, Mary A; Akino, Tomoshige; Lih, Fred B; Tomer, Kenneth B; Ingber, Donald E; Hammock, Bruce D; Falck, John R; Manthati, Vijaya L; Kaipainen, Arja; D'Amore, Patricia A; Puder, Mark; Zeldin, Darryl C; Kieran, Mark W

    2013-08-13

    Epoxyeicosatrienoic acids (EETs), lipid mediators produced by cytochrome P450 epoxygenases, regulate inflammation, angiogenesis, and vascular tone. Despite pleiotropic effects on cells, the role of these epoxyeicosanoids in normal organ and tissue regeneration remains unknown. EETs are produced predominantly in the endothelium. Normal organ and tissue regeneration require an active paracrine role of the microvascular endothelium, which in turn depends on angiogenic growth factors. Thus, we hypothesize that endothelial cells stimulate organ and tissue regeneration via production of bioactive EETs. To determine whether endothelial-derived EETs affect physiologic tissue growth in vivo, we used genetic and pharmacological tools to manipulate endogenous EET levels. We show that endothelial-derived EETs play a critical role in accelerating tissue growth in vivo, including liver regeneration, kidney compensatory growth, lung compensatory growth, wound healing, corneal neovascularization, and retinal vascularization. Administration of synthetic EETs recapitulated these results, whereas lowering EET levels, either genetically or pharmacologically, delayed tissue regeneration, demonstrating that pharmacological modulation of EETs can affect normal organ and tissue growth. We also show that soluble epoxide hydrolase inhibitors, which elevate endogenous EET levels, promote liver and lung regeneration. Thus, our observations indicate a central role for EETs in organ and tissue regeneration and their contribution to tissue homeostasis.

  3. Digitalis metabolism and human liver alcohol dehydrogenase.

    PubMed Central

    Frey, W A; Vallee, B L

    1980-01-01

    Human liver alcohol dehydrogenase (alcohol: NAD" oxidoreductase, EC 1.1.1.1) catalyzes the oxidation of the 3 beta-OH group of digitoxigenin, digoxigenin, and gitoxigenin to their 3-keto derivatives, which have been characterized by high performance liquid chromatography and mass spectrometry. These studies have identified human liver alcohol dehydrogenase as the unknown NAD(H)-dependent liver enzyme specific for the free hydroxyl group at C3 of the cardiac genins; this hydroxyl is the critical site of the genins' enzymatic oxidation and concomitant pharmacological inactivation in humans. Several kinetic approaches have demonstrated that ethanol and the pharmacologically active components of the digitalis glycosides are oxidized with closely similar kcat/Km values at the same site on human liver alcohol dehydrogenase, for which they compete. Human liver alcohol dehydrogenase thereby becomes an important biochemical link in the metabolism, pharmacology, and toxicology of ethanol and these glycosides, structurally unrelated agents that are both used widely. Both the competition of ethanol with these cardiac sterols and the narrow margin of safety in the therapeutic use of digitalis derivatives would seem to place at increased risk those individuals who receive digitalis and simultaneously consume large amounts of ethanol or whose alcohol dehydrogenase function is impaired. PMID:6987673

  4. Fourier transform infrared (FTIR) spectroscopy to monitor the cellular impact of newly synthesized platinum derivatives.

    PubMed

    Berger, Gilles; Gasper, Régis; Lamoral-Theys, Delphine; Wellner, Anja; Gelbcke, Michel; Gust, Ronald; Nève, Jean; Kiss, Robert; Goormaghtigh, Erik; Dufrasne, François

    2010-09-01

    Platinum complexes remain widely used to combat various types of cancers. Three platinum complexes, cisplatin, carboplatin and oxaliplatin, are marketed for various oncological purposes. Additionally, nedaplatin, lobaplatin and heptaplatin have gained regionally limited approval for oncology purposes. Furthermore, various platinum derivatives are currently under clinical trials. More than 40 years after their discovery, however, the precise mechanism of action of platinum antitumor complexes remains elusive, partly because these compounds display numerous intracellular targets. Structure-activity-relationship analyses are therefore difficult to conduct to optimize the synthesis of novel platinum derivatives. The aim of the present study is to illustrate the potential of using Fourier Transform Infrared (FTIR) analyses to monitor the cellular modifications induced by the new platinum derivatives that we have synthesized. We show in the present study the advantages of combining an in vitro assay to determine the IC50 growth inhibition concentrations of a series of compounds belonging to a given chemical series and FTIR analyses carried out at the IC50 concentrations for each compound to identify potential hits within this series of compounds. The original pharmacological approach proposed here could, therefore, avoid large-scale pharmacological experiments to find hits within a given chemical series.

  5. Substituent effect of N-benzylated gramine derivatives that prevent the PP2A inhibition and dissipate the neuronal Ca2+ overload, as a multitarget strategy for the treatment of Alzheimer's disease.

    PubMed

    Gonzalez, Dorleta; Arribas, Raquel L; Viejo, Lucia; Lajarin-Cuesta, Rocio; de Los Rios, Cristobal

    2018-05-15

    Following the premises of the multitarget-directed ligands approach for the drug R&D against neurodegenerative diseases, where Alzheimer's disease (AD) outstands, we have synthesized and evaluated analogues of the gramine derivative ITH12657 (1-benzyl-5-methyl-3-(piperidin-1-ylmethyl-1H-indole, 2), which had shown important neuroprotective properties, such as blocking effect of voltage-gated Ca 2+ channels (VGCC), and prevention of phosphoprotein phosphatase 2A (PP2A) inhibition. The new analogues present different substitutions at the pending phenyl ring, what slightly modified their pharmacological characteristics. The VGCC blockade was enhanced in derivatives possessing nitro groups, while the pro-PP2A feature was ameliorated by the presence of fluorine. Chlorine atoms supplied good activities over the two biological targets aimed; nevertheless that substitution provoked loss of viability at 100-fold higher concentrations (10 μM), what discards them for a deeper pharmacological study. Overall, the para-fluorine derivative of ITH12657 was the most promising candidate for further preclinical assays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives.

    PubMed

    Witaicenis, Aline; Seito, Leonardo Noboru; da Silveira Chagas, Alexandre; de Almeida, Luiz Domingues; Luchini, Ana Carolina; Rodrigues-Orsi, Patrícia; Cestari, Silvia Helena; Di Stasi, Luiz Claudio

    2014-02-15

    Coumarins, also known as benzopyrones, are plant-derived products with several pharmacological properties, including antioxidant and anti-inflammatory activities. Based on the wide distribution of coumarin derivatives in plant-based foods and beverages in the human diet, our objective was to evaluate both the antioxidant and intestinal anti-inflammatory activities of six coumarin derivatives of plant origin (scopoletin, scoparone, fraxetin, 4-methyl-umbeliferone, esculin and daphnetin) to verify if potential intestinal anti-inflammatory activity was related to antioxidant properties. Intestinal inflammation was induced by intracolonic instillation of TNBS in rats. The animals were treated with coumarins by oral route. The animals were killed 48 h after colitis induction. The colonic segments were obtained after laparotomy and macroscopic and biochemical parameters (determination of glutathione level and myeloperoxidase and alkaline phosphatase activities) were evaluated. The antioxidant properties of these coumarins were examined by lipid peroxidation and DPPH assays. Treatment with esculin, scoparone and daphnetin produced the best protective effects. All coumarin derivatives showed antioxidant activity in the DPPH assay, while daphnetin and fraxetin also showed antioxidant activity by inhibiting lipid peroxidation. Coumarins, except 4-methyl-umbeliferone, also showed antioxidant activity through the counteraction of glutathione levels or through the inhibition of myeloperoxidase activity. The intestinal anti-inflammatory activity of coumarin derivatives were related to their antioxidant properties, suggesting that consumption of coumarins and/or foods rich in coumarin derivatives, particularly daphnetin, esculin and scoparone, could prevent intestinal inflammatory disease. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Biotechnological production of hyperforin for pharmaceutical formulation.

    PubMed

    Gaid, Mariam; Biedermann, Eline; Füller, Jendrik; Haas, Paul; Behrends, Sönke; Krull, Rainer; Scholl, Stephan; Wittstock, Ute; Müller-Goymann, Christel; Beerhues, Ludger

    2018-05-01

    Hyperforin is a major active constituent of Hypericum perforatum (St. John's wort). It has amazing pharmacological activities, such as antidepressant properties, but it is labile and difficult to synthesize. Its sensitivity and lipophilicity are challenges for processing and formulation. Its chemical complexity provokes approaches of biotechnological production and modification. Dedifferentiated H. perforatum cell cultures lack appropriate storage sites and hence appreciable hyperforin levels. Shoot cultures are capable of forming hyperforin but less suitable for biomass up-scaling in bioreactors. Roots commonly lack hyperforin but a recently established adventitious root line has been demonstrated to produce hyperforin and derivatives at promising levels. The roots also contained lupulones, the typical constituents of hop (Humulus lupulus). Although shear-sensitive, these root cultures provide a potential production platform for both individual compounds and extracts with novel combinations of constituents and pharmacological activities. Besides in vitro cultivation techniques, the reconstruction of hyperforin biosynthesis in microorganisms is a promising alternative for biotechnological production. The biosynthetic pathway is under study, with omics-technologies being increasingly implemented. These biotechnological approaches may not only yield hyperforin at reasonable productivity but also allow for modifications of its chemical structure and pharmacological profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Hybrid imidazole (benzimidazole)/pyridine (quinoline) derivatives and evaluation of their anticancer and antimycobacterial activity.

    PubMed

    Mantu, Dorina; Antoci, Vasilichia; Moldoveanu, Costel; Zbancioc, Gheorghita; Mangalagiu, Ionel I

    2016-01-01

    The design, synthesis, structure, and in vitro anticancer and antimycobacterial activity of new hybrid imidazole (benzimidazole)/pyridine (quinoline) derivatives are described. The strategy adopted for synthesis is straight and efficient, involving a three-step setup procedure: N-acylation, N-alkylation, and quaternization of nitrogen heterocycle. The solubility in microbiological medium and anticancer and antimycobacterial activity of a selection of new synthesized compounds were evaluated. The hybrid derivatives have an excellent solubility in microbiological medium, which make them promising from the pharmacological properties point of view. One of the hybrid compounds, 9 (with a benzimidazole and 8-aminoquinoline skeleton), exhibits a very good and selective antitumor activity against Renal Cancer A498 and Breast Cancer MDA-MB-468. Moreover, the anticancer assay suggests that the hybrid Imz (Bimz)/2-AP (8-AQ) compounds present a specific affinity to Renal Cancer A498. Concerning the antimycobacterial activity, only the hybrid compound, 9, has a significant activity. SAR correlations have been performed.

  9. Ligands for Ionotropic Glutamate Receptors

    PubMed Central

    Swanson, Geoffrey T.; Sakai, Ryuichi

    2010-01-01

    Marine-derived small molecules and peptides have played a central role in elaborating pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors (iGluRs), the primary mediators of excitatory synaptic transmission in the central nervous system (CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing molecules could prove useful as lead compounds for the development of therapeutics for neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter we discuss natural source origins and pharmacological activities of those marine compounds that target ionotropic glutamate receptors. PMID:19184587

  10. Ligands for Ionotropic Glutamate Receptors

    NASA Astrophysics Data System (ADS)

    Swanson, Geoffrey T.; Sakai, Ryuichi

    Marine-derived small molecules and peptides have played a central role in elaborating pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors (iGluRs), the primary mediators of excitatory syn-aptic transmission in the central nervous system (CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing molecules could prove useful as lead compounds for the development of therapeutics for neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter we discuss natural source origins and pharmacological activities of those marine compounds that target ionotropic glutamate receptors.

  11. Recent advances in medicinal chemistry of sulfonamides. Rational design as anti-tumoral, anti-bacterial and anti-inflammatory agents.

    PubMed

    Shah, Syed Shoaib Ahmad; Rivera, Gildardo; Ashfaq, Muhammad

    2013-01-01

    Now-a-days, cancer is becoming one of the major problems of public health in the world. Pharmacology treatment is a way to increase quality and long life. Predominantly, in last decade sulfonamide derivatives have been described as potential carbonic anhydrase inhibitors. In the present work, we describe recent advances during the last decade in medicinal chemistry of sulfonamides derivatives with some examples of rational design as anti-tumoral, antibacterial and anti-inflammatory agents. We show strategy design, structure-activity relationship, biological activity and advances of new sulfonamide compounds that have more health significance than some clinically used sulfonamides.

  12. Molecular targets of antihypertensive peptides: understanding the mechanisms of action based on the pathophysiology of hypertension.

    PubMed

    Majumder, Kaustav; Wu, Jianping

    2014-12-24

    There is growing interest in using functional foods or nutraceuticals for the prevention and treatment of hypertension or high blood pressure. Although numerous preventive and therapeutic pharmacological interventions are available on the market, unfortunately, many patients still suffer from poorly controlled hypertension. Furthermore, most pharmacological drugs, such as inhibitors of angiotensin-I converting enzyme (ACE), are often associated with significant adverse effects. Many bioactive food compounds have been characterized over the past decades that may contribute to the management of hypertension; for example, bioactive peptides derived from various food proteins with antihypertensive properties have gained a great deal of attention. Some of these peptides have exhibited potent in vivo antihypertensive activity in both animal models and human clinical trials. This review provides an overview about the complex pathophysiology of hypertension and demonstrates the potential roles of food derived bioactive peptides as viable interventions targeting specific pathways involved in this disease process. This review offers a comprehensive guide for understanding and utilizing the molecular mechanisms of antihypertensive actions of food protein derived peptides.

  13. Molecular Targets of Antihypertensive Peptides: Understanding the Mechanisms of Action Based on the Pathophysiology of Hypertension

    PubMed Central

    Majumder, Kaustav; Wu, Jianping

    2014-01-01

    There is growing interest in using functional foods or nutraceuticals for the prevention and treatment of hypertension or high blood pressure. Although numerous preventive and therapeutic pharmacological interventions are available on the market, unfortunately, many patients still suffer from poorly controlled hypertension. Furthermore, most pharmacological drugs, such as inhibitors of angiotensin-I converting enzyme (ACE), are often associated with significant adverse effects. Many bioactive food compounds have been characterized over the past decades that may contribute to the management of hypertension; for example, bioactive peptides derived from various food proteins with antihypertensive properties have gained a great deal of attention. Some of these peptides have exhibited potent in vivo antihypertensive activity in both animal models and human clinical trials. This review provides an overview about the complex pathophysiology of hypertension and demonstrates the potential roles of food derived bioactive peptides as viable interventions targeting specific pathways involved in this disease process. This review offers a comprehensive guide for understanding and utilizing the molecular mechanisms of antihypertensive actions of food protein derived peptides. PMID:25547491

  14. Suppression of atherosclerosis by synthetic REV-ERB agonist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaula, Sadichha; Billon, Cyrielle; Kamenecka, Theodore M.

    2015-05-08

    The nuclear receptors for heme, REV-ERBα and REV-ERBβ, play important roles in the regulation of metabolism and inflammation. Recently it was demonstrated that reduced REV-ERBα expression in hematopoetic cells in LDL receptor null mice led to increased atherosclerosis. We sought to determine if synthetic REV-ERB agonists that we have developed might have the ability to suppress atherosclerosis in this model. A previously characterized synthetic REV-ERB agonist, SR9009, was used to determine if activation of REV-ERB activity would affect atherosclerosis in LDL receptor deficient mice. Atherosclerotic plaque size was significantly reduced (p < 0.05) in mice administered SR9009 (100 mg/kg) for seven weeks comparedmore » to control mice (n = 10 per group). SR9009 treatment of bone marrow-derived mouse macrophages (BMDM) reduced the polarization of BMDMs to proinflammatory M1 macrophage while increasing the polarization of BMDMs to anti-inflammatory M2 macrophages. Our results suggest that pharmacological targeting of REV-ERBs may be a viable therapeutic option for treatment of atherosclerosis. - Highlights: • Synthetic REV-ERB agonist treatment reduced atherosclerosis in a mouse model. • Pharmacological activation of REV-ERB decreased M1 macrophage polarization. • Pharmacological activation of REV-ERB increased M2 macrophage polarization.« less

  15. Comparative pharmacodynamic analysis of imidazoline compounds using rat model of ocular mydriasis with a test of quantitative structure-activity relationships.

    PubMed

    Raczak-Gutknecht, Joanna; Nasal, Antoni; Frąckowiak, Teresa; Kornicka, Anita; Sączewski, Franciszek; Wawrzyniak, Renata; Kubik, Łukasz; Kaliszan, Roman

    2017-09-10

    Imidazol(in)e derivatives, having the chemical structure similar to clonidine, exert diverse pharmacological activities connected with their interactions with alpha2-adrenergic receptors, e.g. hypotension, bradycardia, sedation as well as antinociceptive, anxiolytic, antiarrhythmic, muscle relaxant and mydriatic effects. The mechanism of pupillary dilation observed after systemic administration of imidazol(in)es to rats, mice and cats depends on the stimulation of postsynaptic alpha2-adrenoceptors within the brain. It was proved that the central nervous system (CNS)-localized I1-imidazoline receptors are not engaged in those effects. It appeared interesting to analyze the CNS-mediated pharmacodynamics of imidazole(in)e agents in terms of their chromatographic and calculation chemistry-derived parameters. In the present study a systematic determination and comparative pharmacometric analysis of mydriatic effects in rats were performed on a series of 20 imidazol(in)e agents, composed of the well-known drugs and of the substances used in experimental pharmacology. The eye pupil dilatory activities of the compounds were assessed in anesthetized Wistar rats according to the established Koss method. Among twenty imidazol(in)e derivatives studied, 18 produced diverse dose-dependent mydriatic effects. In the quantitative structure-activity relationships (QSAR) analysis, the pharmacological data (half maximum mydriatic effect - ED 50 in μmol/kg) were considered along with the structural parameters of the agents from molecular modeling. The theoretically calculated lipophilicity parameters, CLOGP, of imidazol(in)es, as well as their lipophilicity parameters from HPLC, logk w , were also considered. The attempts to derive statistically significant QSAR equations for a full series of the agents under study were unsuccessful. However, for a subgroup of eight apparently structurally related imidazol(in)es a significant relationship between log(1/ED 50 ) and logk w values was obtained. The lack of "predictive" QSAR for the whole series of the structurally diverse agents is probably due to a complex mechanism of the ligand-alpha2-adrenergic receptor interactions, which are predominantly of a highly structurally specific polar nature. Such interactions are difficult to quantify with the established chemical structural descriptors, contrary to the less specific, molecular bulkiness-related interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Analgesic Activity of Some 1,2,4-Triazole Heterocycles Clubbed with Pyrazole, Tetrazole, Isoxazole and Pyrimidine

    PubMed Central

    Gajanan Khanage, Shantaram; Raju, Appala; Baban Mohite, Popat; Bhanudas Pandhare, Ramdas

    2013-01-01

    Purpose: In the present study in vivo analgesic activity of some previously synthesized 1,2,4-triazole derivatives containing pyrazole, tetrazole, isoxazole and pyrimidine ring have been evaluated. Methods: Acetic acid induced writhing method and Hot plate method has been described to study analgesic activity of some 1,2,4-triazole derivatives containing pyrazole, tetrazole, isoxazole and pyrimidine as a pharmacological active lead. Results: Thirty six different derivatives containing 1,2,4-triazole ring were subjected to study their in vivo analgesic activity. Chloro, nitro and methoxy, hydroxy and bromo substituted derivatives showed excellent analgesic activity and dimethylamino, furan and phenyl substituted derivatives showed moderate analgesic activity in both of the methods. Compounds IIIa, IIId, IIIf, IIIi, IIIj, IVa, IVb, IVd, IVf, IVh, IVj IV3a and IIj were found to be superior analgesic agents after screening by Acetic acid induced writhing method. Compounds IIIb, IIId, IIIf, IIIh, IIIj, IVa, IVb, IVd, IVf, IVh, IVi, IV3c, IV3e and IIj were showed analgesic potential after screening of Hot plate method. Conclusion: All tested compounds containing 1,2,4-triazole were found to be promising analgesic agents, for this activity pyrazole, tetrazole, isoxazole and pyrimidine leads might be supported. PMID:24312806

  17. Human sympathetic and vagal baroreflex responses to sequential nitroprusside and phenylephrine

    NASA Technical Reports Server (NTRS)

    Rudas, L.; Crossman, A. A.; Morillo, C. A.; Halliwill, J. R.; Tahvanainen, K. U.; Kuusela, T. A.; Eckberg, D. L.

    1999-01-01

    We evaluated a method of baroreflex testing involving sequential intravenous bolus injections of nitroprusside followed by phenylephrine and phenylephrine followed by nitroprusside in 18 healthy men and women, and we drew inferences regarding human sympathetic and vagal baroreflex mechanisms. We recorded the electrocardiogram, photoplethysmographic finger arterial pressure, and peroneal nerve muscle sympathetic activity. We then contrasted least squares linear regression slopes derived from the depressor (nitroprusside) and pressor (phenylephrine) phases with 1) slopes derived from spontaneous fluctuations of systolic arterial pressures and R-R intervals, and 2) baroreflex gain derived from cross-spectral analyses of systolic pressures and R-R intervals. We calculated sympathetic baroreflex gain from integrated muscle sympathetic nerve activity and diastolic pressures. We found that vagal baroreflex slopes are less when arterial pressures are falling than when they are rising and that this hysteresis exists over pressure ranges both below and above baseline levels. Although pharmacological and spontaneous vagal baroreflex responses correlate closely, pharmacological baroreflex slopes tend to be lower than those derived from spontaneous fluctuations. Sympathetic baroreflex slopes are similar when arterial pressure is falling and rising; however, small pressure elevations above baseline silence sympathetic motoneurons. Vagal, but not sympathetic baroreflex gains vary inversely with subjects' ages and their baseline arterial pressures. There is no correlation between sympathetic and vagal baroreflex gains. We recommend repeated sequential nitroprusside followed by phenylephrine doses as a simple, efficientmeans to provoke and characterize human vagal and sympathetic baroreflex responses.

  18. Novel, broad-spectrum anticonvulsants containing a sulfamide group: pharmacological properties of (S)-N-[(6-chloro-2,3-dihydrobenzo[1,4]dioxin-2-yl)methyl]sulfamide (JNJ-26489112).

    PubMed

    McComsey, David F; Smith-Swintosky, Virginia L; Parker, Michael H; Brenneman, Douglas E; Malatynska, Ewa; White, H Steve; Klein, Brian D; Wilcox, Karen S; Milewski, Michael E; Herb, Mark; Finley, Michael F A; Liu, Yi; Lubin, Mary Lou; Qin, Ning; Reitz, Allen B; Maryanoff, Bruce E

    2013-11-27

    Broad-spectrum anticonvulsants are of considerable interest as antiepileptic drugs, especially because of their potential for treating refractory patients. Such "neurostabilizers" have also been used to treat other neurological disorders, including migraine, bipolar disorder, and neuropathic pain. We synthesized a series of sulfamide derivatives (4-9, 10a-i, 11a, 11b, 12) and evaluated their anticonvulsant activity. Thus, we identified promising sulfamide 4 (JNJ-26489112) and explored its pharmacological properties. Compound 4 exhibited excellent anticonvulsant activity in rodents against audiogenic, electrically induced, and chemically induced seizures. Mechanistically, 4 inhibited voltage-gated Na(+) channels and N-type Ca(2+) channels and was effective as a K(+) channel opener. The anticonvulsant profile of 4 suggests that it may be useful for treating multiple forms of epilepsy (generalized tonic-clonic, complex partial, absence seizures), including refractory (or pharmacoresistant) epilepsy, at dose levels that confer a good safety margin. On the basis of its pharmacology and other favorable characteristics, 4 was advanced into human clinical studies.

  19. Novel, Broad-Spectrum Anticonvulsants Containing a Sulfamide Group: Pharmacological Properties of (S)-N-[(6-Chloro-2,3-dihydrobenzo[1,4]dioxin-2-yl)methyl]sulfamide (JNJ-26489112)

    PubMed Central

    McComsey, David F.; Smith-Swintosky, Virginia L.; Parker, Michael H.; Brenneman, Douglas E.; Malatynska, Ewa; White, H. Steve; Klein, Brian D.; Wilcox, Karen S.; Milewski, Michael E.; Herb, Mark; Finley, Michael F. A.; Liu, Yi; Lubin, Mary Lou; Qin, Ning; Reitz, Allen B.; Maryanoff, Bruce E.

    2014-01-01

    Broad-spectrum anticonvulsants are of considerable interest as antiepileptic drugs, especially because of their potential for treating refractory patients. Such “neurostabilizers” have also been used to treat other neurological disorders, including migraine, bipolar disorder, and neuropathic pain. We synthesized a series of sulfamide derivatives (4–9, 10a–i, 11a, 11b, 12) and evaluated their anticonvulsant activity. Thus, we identified promising sulfamide 4 (JNJ-26489112) and explored its pharmacological properties. Compound 4 exhibited excellent anticonvulsant activity in rodents against audiogenic, electrically-induced, and chemically-induced seizures. Mechanistically, 4 inhibited voltage-gated Na+ channels and N-type Ca2+ channels, and was effective as a K+ channel opener. The anticonvulsant profile of 4 suggests that it may be useful for treating multiple forms of epilepsy (generalized tonic-clonic, complex partial, absence seizures), including refractory (or pharmacoresistant) epilepsy, at dose levels that confer a good safety margin. On the basis of its pharmacology and other favorable characteristics, 4 was advanced into human clinical studies. PMID:24205976

  20. Fluorinated Cannabidiol Derivatives: Enhancement of Activity in Mice Models Predictive of Anxiolytic, Antidepressant and Antipsychotic Effects

    PubMed Central

    Fogaça, Manoela V.; Gomes, Felipe V.; Silva, Nicole Rodrigues; Pedrazzi, João Francisco; Del Bel, Elaine A.; Hallak, Jaime C.; Crippa, José A.; Zuardi, Antonio W.; Guimarães, Francisco S.

    2016-01-01

    Cannabidiol (CBD) is a major Cannabis sativa constituent, which does not cause the typical marijuana psychoactivity. However, it has been shown to be active in a numerous pharmacological assays, including mice tests for anxiety, obsessive-compulsive disorder, depression and schizophrenia. In human trials the doses of CBD needed to achieve effects in anxiety and schizophrenia are high. We report now the synthesis of 3 fluorinated CBD derivatives, one of which, 4'-F-CBD (HUF-101) (1), is considerably more potent than CBD in behavioral assays in mice predictive of anxiolytic, antidepressant, antipsychotic and anti-compulsive activity. Similar to CBD, the anti-compulsive effects of HUF-101 depend on cannabinoid receptors. PMID:27416026

  1. Androgen Receptor Antagonists and Anti-Prostate Cancer Activities of Some Newly Synthesized Substituted Fused Pyrazolo-, Triazolo- and Thiazolo-Pyrimidine Derivatives

    PubMed Central

    Bahashwan, Saleh A.; Fayed, Ahmed A.; Ramadan, Mohamed A.; Amr, Abd El-Galil E.; Al-Harbi, Naif O.

    2014-01-01

    A series of substituted pyrazole, triazole and thiazole derivatives (2–13) were synthesized from 1-(naphtho[1,2-d]thiazol-2-yl)hydrazine as starting material and evaluated as androgen receptor antagonists and anti-prostate cancer agents. The newly synthesized compounds showed potent androgen receptor antagonists and anti-prostate cancer activities with low toxicity (lethal dose 50 (LD50)) comparable to Bicalutamide as reference drug. The structures of newly synthesized compounds were confirmed by IR, 1H-NMR, 13C-NMR, and MS spectral data and elemental analysis. The detailed synthesis, spectroscopic data, LD50 values and pharmacological activities of the synthesized compounds are reported. PMID:25421248

  2. Emodin: A Review of its Pharmacology, Toxicity and Pharmacokinetics.

    PubMed

    Dong, Xiaoxv; Fu, Jing; Yin, Xingbin; Cao, Sali; Li, Xuechun; Lin, Longfei; Ni, Jian

    2016-08-01

    Emodin is a natural anthraquinone derivative that occurs in many widely used Chinese medicinal herbs, such as Rheum palmatum, Polygonum cuspidatum and Polygonum multiflorum. Emodin has been used as a traditional Chinese medicine for over 2000 years and is still present in various herbal preparations. Emerging evidence indicates that emodin possesses a wide spectrum of pharmacological properties, including anticancer, hepatoprotective, antiinflammatory, antioxidant and antimicrobial activities. However, emodin could also lead to hepatotoxicity, kidney toxicity and reproductive toxicity, particularly in high doses and with long-term use. Pharmacokinetic studies have demonstrated that emodin has poor oral bioavailability in rats because of its extensive glucuronidation. This review aims to comprehensively summarize the pharmacology, toxicity and pharmacokinetics of emodin reported to date with an emphasis on its biological properties and mechanisms of action. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Naturally Occurring Cinnamic Acid Sugar Ester Derivatives.

    PubMed

    Tian, Yuxin; Liu, Weirui; Lu, Yi; Wang, Yan; Chen, Xiaoyi; Bai, Shaojuan; Zhao, Yicheng; He, Ting; Lao, Fengxue; Shang, Yinghui; Guo, Yu; She, Gaimei

    2016-10-24

    Cinnamic acid sugar ester derivatives (CASEDs) are a class of natural product with one or several phenylacrylic moieties linked with the non-anomeric carbon of a glycosyl skeleton part through ester bonds. Their notable anti-depressant and brains protective activities have made them a topic of great interest over the past several decades. In particular the compound 3',6-disinapoylsucrose, the index component of Yuanzhi (a well-known Traditional Chinese Medicine or TCM), presents antidepressant effects at a molecular level, and has become a hotspot of research on new lead drug compounds. Several other similar cinnamic acid sugar ester derivatives are reported in traditional medicine as compounds to calm the nerves and display anti-depression and neuroprotective activity. Interestingly, more than one third of CASEDs are distributed in the family Polygalaceae . This overview discusses the isolation of cinnamic acid sugar ester derivatives from plants, together with a systematic discussion of their distribution, chemical structures and properties and pharmacological activities, with the hope of providing references for natural product researchers and draw attention to these interesting compounds.

  4. Synthesis and antitumour activity of arctigenin amino acid ester derivatives against H22 hepatocellular carcinoma.

    PubMed

    Cai, Enbo; Guo, Shijie; Yang, Limin; Han, Mei; Xia, Jing; Zhao, Yan; Gao, Xiaorui; Wang, Yu

    2018-02-01

    Arctigenin (ARG) is famous in its abundant pharmacological activity. However, many researches in it entered the bottleneck period because of its poor water solubility. The derivatives of ARG have been synthesised with five amino acids which have t-Butyloxy carbonyl (BOC) as a protective group. We examined the effects of removing BOC. The results showed that the amino acid derivatives without protective group have better water solubility and nitrite-clearing ability than ARG. Based on these results, ARG6' and ARG9' were selected at a dosage of 40 mg/kg to evaluate their antitumour activity. The percentage inhibition rate of ARG6' and ARG9' were 55.87 and 51.40, respectively, which was twice as much as ARG. Furthermore, they could increase liver and kidney indexes and produce less damage in these organs. In brief, this study provides a basis for new drug development.

  5. Network pharmacology-based virtual screening of natural products from Clerodendrum species for identification of novel anti-cancer therapeutics.

    PubMed

    Gogoi, Barbi; Gogoi, Dhrubajyoti; Silla, Yumnam; Kakoti, Bibhuti Bhushan; Bhau, Brijmohan Singh

    2017-01-31

    Plant-derived natural products (NPs) play a vital role in the discovery of new drug molecules and these are used for development of novel therapeutic drugs for a specific disease target. Literature review suggests that natural products possess strong inhibitory efficacy against various types of cancer cells. Clerodendrum indicum and Clerodendrum serratum are reported to have anticancer activity; therefore a study was carried out to identify selective anticancer agents from these plants species. In this report, we employed a docking weighted network pharmacological approach to understand the multi-therapeutics potentiality of C. indicum and C. serratum against various types of cancer. A library of 53 natural products derived from these plants was compiled from the literature and three dimensional space analyses were performed in order to establish the drug-likeness of the NPs library. Further, an NPs-cancer network was built based on docking. We predicted five compounds, namely apigenin 7-glucoside, hispidulin, scutellarein-7-O-beta-d-glucuronate, acteoside and verbascoside, to be potential binding therapeutics for cancer target proteins. Apigenin 7-glucoside and hispidulin were found to have maximum binding interactions (relationship) with 17 cancer drug targets in terms of docking weighted network pharmacological analysis. Hence, we used an integrative approach obtained from network pharmacology for identifying combinatorial drug actions against the cancer targets. We believe that our present study may provide important clues for finding novel drug inhibitors for cancer.

  6. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB. 20

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT{sub 1C} receptor, whichmore » modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing ({sup 3}H)serotonin, ({sup 3}H)lysergic acid diethylamide or ({sup 3}H)dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor.« less

  7. Roles of Chemical Complexity and Evolutionary Theory in Some Hepatic and Intestinal Enzymatic Systems in Chemical Reproducibility and Clinical Efficiency of Herbal Derivatives

    PubMed Central

    2014-01-01

    Despite the great marketing success, most physicians attribute poor efficacy to herbals. This perception is due to two situations that are an integral part of the herbal topic. The first is the poor phytochemical reproducibility obtained during the production process of herbal extracts, as herbal extracts are not always standardized in the whole manufacturing process, but only in their titer. The second problem is linked to the evolution of important enzymatic systems: cytochromes and ABC proteins. They are both enzyme classes with detoxifying properties and seem to have evolved from the molecular mould provided by active plant substances. During the evolution, as still happens today, polyphenols, saponins, terpenes, and alkaloids were ingested together with food. They do not possess any nutritional value but seem to be provided with a potential pharmacological activity. Cytochromes and ABC proteins, which evolved over time to detoxify food from vegetable chemical “actives,” now seem to limit the action of herbal derivatives. The comprehension of these 2 events may explain the origin of the widespread scepticism of physicians about herbal medicine and suggests that, after correct herbal standardization, use of antagonists of cytochromes and ABC systems will make it possible to recover their pharmacological potential. PMID:24977222

  8. Roles of chemical complexity and evolutionary theory in some hepatic and intestinal enzymatic systems in chemical reproducibility and clinical efficiency of herbal derivatives.

    PubMed

    Di Pierro, Francesco

    2014-01-01

    Despite the great marketing success, most physicians attribute poor efficacy to herbals. This perception is due to two situations that are an integral part of the herbal topic. The first is the poor phytochemical reproducibility obtained during the production process of herbal extracts, as herbal extracts are not always standardized in the whole manufacturing process, but only in their titer. The second problem is linked to the evolution of important enzymatic systems: cytochromes and ABC proteins. They are both enzyme classes with detoxifying properties and seem to have evolved from the molecular mould provided by active plant substances. During the evolution, as still happens today, polyphenols, saponins, terpenes, and alkaloids were ingested together with food. They do not possess any nutritional value but seem to be provided with a potential pharmacological activity. Cytochromes and ABC proteins, which evolved over time to detoxify food from vegetable chemical "actives," now seem to limit the action of herbal derivatives. The comprehension of these 2 events may explain the origin of the widespread scepticism of physicians about herbal medicine and suggests that, after correct herbal standardization, use of antagonists of cytochromes and ABC systems will make it possible to recover their pharmacological potential.

  9. Plant-Derived Urease Inhibitors as Alternative Chemotherapeutic Agents.

    PubMed

    Hassan, Sherif T S; Žemlička, Milan

    2016-07-01

    Inhibition of the metalloenzyme urease has important pharmacologic applications in the field of antiulcer and antigastric cancer agents. Urease is involved in many serious infections caused by Helicobacter pylori in the gastric tract as well as by Proteus and related species in the urinary tract. Although numerous studies have described several novel urease inhibitors (UIs) used for the treatment of gastric and urinary infections, all these compounds have exhibited severe side effects, toxicity, and instability. Therefore, to overcome such problems, it is necessary to search for new sources of UIs, such as natural products, that provide reduced side effects, low toxicity, greater stability, and bioavailability. As limited studies have been conducted on plant-derived UIs, this paper aims to highlight and summarize the most promising compounds isolated and identified from plants, such as terpenoids, phenolic compounds, alkaloids, and other substances with inhibitory activities against plant and bacterial ureases; these are in vitro and in vivo studies with an emphasis on structure-activity relationship studies and types of inhibition that show high and promising levels of anti-urease activity. This will aid medicinal chemists in the design and synthesis of novel and pharmacologically potent UIs useful for the development of antiulcer drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Derivation of Cinnamon Blocks Leukocyte Attachment by Interacting with Sialosides

    PubMed Central

    Lin, Wei-Ling; Guu, Shih-Yun; Tsai, Chan-Chuan; Prakash, Ekambaranellore; Viswaraman, Mohan; Chen, Hsing-Bao; Chang, Chuan-Fa

    2015-01-01

    Molecules derived from cinnamon have demonstrated diverse pharmacological activities against infectious pathogens, diabetes and inflammatory diseases. This study aims to evaluate the effect of the cinnamon-derived molecule IND02 on the adhesion of leukocytes to host cells. The anti-inflammatory ability of IND02, a pentameric procyanidin type A polyphenol polymer isolated from cinnamon alcohol extract, was examined. Pretreatment with IND02 significantly reduced the attachment of THP-1 cells or neutrophils to TNF-α-activated HUVECs or E-selectin/ICAM-1, respectively. IND02 also reduced the binding of E-, L- and P-selectins with sialosides. Furthermore, IND02 could agglutinate human red blood cells (RBC), and the agglutination could be disrupted by sialylated glycoprotein. Our findings demonstrate that IND02, a cinnamon-derived compound, can interact with sialosides and block the binding of selectins and leukocytes with sialic acids. PMID:26076445

  11. Curcumin attenuates surgery-induced cognitive dysfunction in aged mice.

    PubMed

    Wu, Xiang; Chen, Huixin; Huang, Chunhui; Gu, Xinmei; Wang, Jialing; Xu, Dilin; Yu, Xin; Shuai, Chu; Chen, Liping; Li, Shun; Xu, Yiguo; Gao, Tao; Ye, Mingrui; Su, Wei; Liu, Haixiong; Zhang, Jinrong; Wang, Chuang; Chen, Junping; Wang, Qinwen; Cui, Wei

    2017-06-01

    Post-operative cognitive dysfunction (POCD) is associated with elderly patients undergoing surgery. However, pharmacological treatments for POCD are limited. In this study, we found that curcumin, an active compound derived from Curcuma longa, ameliorated the cognitive dysfunction following abdominal surgery in aged mice. Further, curcumin prevented surgery-induced anti-oxidant enzyme activity. Curcumin also increased brain-derived neurotrophic factor (BDNF)-positive area and expression of pAkt in the brain, suggesting that curcumin activated BDNF signaling in aged mice. Furthermore, curcumin neutralized cholinergic dysfunction involving choline acetyltransferase expression induced by surgery. These results strongly suggested that curcumin prevented cognitive impairments via multiple targets, possibly by increasing the activity of anti-oxidant enzymes, activation of BDNF signaling, and neutralization of cholinergic dysfunction, concurrently. Based on these novel findings, curcumin might be a potential agent in POCD prophylaxis and treatment.

  12. Salicylanilide Inhibitors of Toxoplasma gondii

    PubMed Central

    Fomovska, Alina; Wood, Richard D.; Mui, Ernest; Dubey, Jitenter P.; Ferriera, Leandra R.; Hickman, Mark R.; Lee, Patricia J.; Leed, Susan E.; Auschwitz, Jennifer M.; Welsh, William J.; Sommerville, Caroline; Woods, Stuart; Roberts, Craig; McLeod, Rima

    2012-01-01

    Toxoplasma gondii(T. gondii) is an apicomplexan parasite that can cause eye disease, brain disease, and death, especially in congenitally infected and immune-compromised people. Novel medicines effective against both active and latent forms of the parasite are greatly needed. The current study focused on the discovery of such medicines by exploring a family of potential inhibitors whose anti-apicomplexan activity has not been previously reported. Initial screening efforts revealed that niclosamide, a drug approved for anthelmintic use, possessed promising activity in vitro against T. gondii. This observation inspired the evaluation of the activity of a series of salicylanilides and derivatives. Several inhibitors with activities in the nanomolar range with no appreciable in vitro toxicity to human cells were identified. An initial structure-activity relationship was explored. Four compounds were selected for evaluation in an in vivo model of infection, and two derivatives with potentially enhanced pharmacological parameters demonstrated the best activity profiles. PMID:22970937

  13. Role of hyperforin in the pharmacological activities of St. John's Wort.

    PubMed

    Zanoli, Paola

    2004-01-01

    The phloroglucinol derivative hyperforin has been recently shown to be a major antidepressant component in the extract of Hypericum perforatum. Experimental studies clearly demonstrated its activity in different behavioral models of depression. Moreover clinical studies linked the therapeutic efficacy of Hypericum extracts to their hyperforin content, in a dose-dependent manner. The molecular mechanism of action of hyperforin is still under investigation. Hyperforin has been shown to inhibit, like conventional antidepressants, the neuronal uptake of serotonin, norepinephrine and dopamine. However, hyperforin inhibits also the uptake of gamma-aminobutyric acid (GABA) and L-glutamate. The uptake inhibition by hyperforin does not involve specific binding sites at the transporter molecules; its mechanism of action seems to be related to sodium conductive pathways, leading to an elevation in intracellular Na(+) concentration. Other additional mechanisms of action of hyperforin, involving ionic conductances as well synaptosomal and vesicular function, have been suggested. In addition to its antidepressant activity, hyperforin has many other pharmacological effects in vivo (anxiolytic-like, cognition-enhancing effects) and in vitro (antioxidant, anticyclooxygenase-1, and anticarcinogenic effects). These effects could be of clinical importance. On the other hand, the role of hyperforin in the pharmacological interactions occurring during Hypericum extract therapy must be fully investigated. Hyperforin seems to be responsible for the induction of liver cytochrome oxidase enzymes and intestinal P-glycoprotein. Several pharmacokinetic studies performed in rats and humans demonstrated oral bioavailability of hyperforin from Hypericum extract. Only recently a new chromatographic method for detection of hyperforin in the brain tissue has been developed and validated. Taking into account the chemical instability of hyperforin, current efforts are directed to the synthesis of new neuroactive derivatives.

  14. Pharmacological Effects of Active Components of Chinese Herbal Medicine in the Treatment of Alzheimer's Disease: A Review.

    PubMed

    Wang, Zhi-Yong; Liu, Jian-Gang; Li, Hao; Yang, Hui-Ming

    2016-01-01

    Alzheimer's disease (AD), the most common neurodegenerative disorder associated with dementia, not only severely decreases the quality of life for its victims, but also brings a heavy economic burden to the family and society. Unfortunately, few chemical drugs designed for clinical applications have reached the expected preventive or therapeutic effect so far, and combined with their significant side-effects, there is therefore an urgent need for new strategies to be developed for AD treatment. Traditional Chinese Medicine has accumulated many experiences in the treatment of dementia during thousands of years of practice; modern pharmacological studies have confirmed the therapeutic effects of many active components derived from Chinese herbal medicines (CHM). Ginsenoside Rg1, extracted from Radix Ginseng, exerts a [Formula: see text]-secretase inhibitor effect so as to decrease A[Formula: see text] aggregation. It can also inhibit the apoptosis of neuron cells. Tanshinone IIA, extracted from Radix Salviae miltiorrhizae, and baicalin, extracted from Radix Scutellariae[Formula: see text] can inhibit the oxidative stress injury in neuronal cells. Icariin, extracted from Epimedium brevicornum, can decrease A[Formula: see text] levels and the hyperphosphorylation of tau protein, and can also inhibit oxidative stress and apoptosis. Huperzine A, extracted from Huperzia serrata, exerts a cholinesterase inhibitor effect. Evodiamine, extracted from Fructus Evodiae, and curcumin, extracted from Rhizoma Curcumae Longae, exert anti-inflammatory actions. Curcumin can act on A[Formula: see text] and tau too. Due to the advantages of multi-target effects and fewer side effects, Chinese medicine is more appropriate for long-term use. In this present review, the pharmacological effects of commonly used active components derived from Chinese herbal medicines in the treatment of AD are discussed.

  15. Discovery, synthesis, and pharmacological evaluation of spiropiperidine hydroxamic acid based derivatives as structurally novel histone deacetylase (HDAC) inhibitors.

    PubMed

    Varasi, Mario; Thaler, Florian; Abate, Agnese; Bigogno, Chiara; Boggio, Roberto; Carenzi, Giacomo; Cataudella, Tiziana; Dal Zuffo, Roberto; Fulco, Maria Carmela; Rozio, Marco Giulio; Mai, Antonello; Dondio, Giulio; Minucci, Saverio; Mercurio, Ciro

    2011-04-28

    New spiro[chromane-2,4'-piperidine] and spiro[benzofuran-2,4'-piperidine] hydroxamic acid derivatives as HDAC inhibitors have been identified by combining privileged structures with a hydroxamic acid moiety as zinc binding group. The compounds were evaluated for their ability to inhibit nuclear extract HDACs and for their in vitro antiproliferative activity on different tumor cell lines. This work resulted in the discovery of spirocycle 30d that shows good oral bioavailability and tumor growth inhibition in an HCT-116 murine xenograft model.

  16. PARP activity and inhibition in fetal and adult oligodendrocyte precursor cells: Effect on cell survival and differentiation.

    PubMed

    Baldassarro, Vito A; Marchesini, Alessandra; Giardino, Luciana; Calzà, Laura

    2017-07-01

    Poly (ADP-ribose) polymerase (PARP) family members are ubiquitously expressed and play a key role in cellular processes, including DNA repair and cell death/survival balance. Accordingly, PARP inhibition is an emerging pharmacological strategy for cancer and neurodegenerative diseases. Consistent evidences support the critical involvement of PARP family members in cell differentiation and phenotype maturation. In this study we used an oligodendrocyte precursor cells (OPCs) enriched system derived from fetal and adult brain to investigate the role of PARP in OPCs proliferation, survival, and differentiation. The PARP inhibitors PJ34, TIQ-A and Olaparib were used as pharmacological tools. The main results of the study are: (i) PARP mRNA expression and PARP activity are much higher in fetal than in adult-derived OPCs; (ii) the culture treatment with PARP inhibitors is cytotoxic for OPCs derived from fetal, but not from adult, brain; (iii) PARP inhibition reduces cell number, according to the inhibitory potency of the compounds; (iv) PARP inhibition effect on fetal OPCs is a slow process; (v) PARP inhibition impairs OPCs maturation into myelinating OL in fetal, but not in adult cultures, according to the inhibitory potency of the compounds. These results have implications for PARP-inhibition therapies for diseases and lesions of the central nervous system, in particular for neonatal hypoxic/ischemic encephalopathy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Structure, spectroscopic analyses (FT-IR and NMR), vibrational study, chemical reactivity and molecular docking study on 3,3'-((4-(trifluoromethyl)phenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione), a promising anticancerous bis-lawsone derivative

    NASA Astrophysics Data System (ADS)

    Yadav, Krishna Kant; Kumar, Abhishek; Kumar, Amarendra; Misra, Neeraj; Brahmachari, Goutam

    2018-02-01

    Lawsone (2-hydroxy-1,4-naphthoquinone)has been evaluated to possess a wide range of biological and pharmacological activities. The interesting structural pattern of lawsone coupled with its so-called multifaceted pharmacological potential have made this scaffolds useful in certain chemical processes, particularly in synthesizing ligands for metal complexations, and also few of its derivatives have shown a number of biological activities. The equilibrium geometry of 3,3‧-((4-(trifluoromethyl)phenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione) (1; TPMHD), a promising anticancerous lawsone derivative, has been determined and analyzed at DFT method employingB3LYP/6-311++G(d,p) level of theory. The reactivity descriptors such as Fukui functions and HOMO-LUMO gap are calculated and discussed. The infrared spectra of TPMHD(1) are calculated and compared with the experimentally observed ones. Moreover, 1H and 13C NMR spectra have been calculated by using the gauge independent atomic orbital method. The docking studies reveal that the TPMHD has strong binding affinity toward target protein 2SHP. Thus the compound has a possible use as a drug in cancer therapy. The study suggests further investigation on TPMHD for their in-depth biological and pharmaceutical importance.

  18. Recent Advances in the Discovery and Development of Marine Natural Products with Cardiovascular Pharmacological Effects.

    PubMed

    Zhou, Jie-Bin; Luo, Rong; Zheng, Ying-Lin; Pang, Ji-Yan

    2018-01-01

    Numerous studies have indicated that marine natural products are one of the most important sources of the lead compounds in drug discovery for their unique structures, various bioactivities and less side effects. In this review, the marine natural products with cardiovascular pharmacological effects reported after 2000 will be presented. Their structural types, relevant biological activities, origin of isolation and information of strain species will be discussed in detail. Finally, by describing our studies as an example, we also discuss the chances and challenges for translating marine-derived compounds into preclinical or clinical trials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Synthesis and pharmacological properties of new derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones.

    PubMed

    Sladowska, Helena; Sabiniarz, Aleksandra; Sapa, Jacek; Filipek, Barbara

    2009-01-01

    Synthesis of 2-(2-hydroxy-3-amino)propyl derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones (24-35) is described. The chlorides used in the above synthesis exist mainly in the cyclic forms (18, 20-23). Only chloride with benzhydryl substituent at the nitrogen atom of piperazine has the chain structure (19). Among the studied imides the most active analgesics in the "writhing" syndrome test proved to be compounds 30 and 31 (with LD50 > 2000 mg/kg) containing 4-benzylpiperidino group. Furthermore, all imides suppressed significantly spontaneous locomotor activity of mice.

  20. Synthesis and topoisomerase II inhibitory and cytotoxic activity of oxiranylmethoxy- and thiiranylmethoxy-chalcone derivatives.

    PubMed

    Na, Younghwa; Nam, Jung-Min

    2011-01-01

    In order to find potential anticancer drug candidate targeting topoisomerases enzyme, we have designed and synthesized oxiranylmethoxy- and thiiranylmethoxy-retrochalcone derivatives and evaluated their pharmacological activity including topoisomerases inhibitory and cytotoxic activity. Of the compounds prepared compound 25 showed comparable or better cytotoxic activity against cancer cell lines tested. Compound 25 inhibited MCF7 (IC(50): 0.49 ± 0.21 μM) and HCT15 (IC(50): 0.23 ± 0.02 μM) carcinoma cell growth more efficiently than references. In the topoisomerases inhibition test, all the compounds were inactive to topoisomerase I but moderate inhibitors to topoisomerase II enzyme. Especially, compound 25 inhibited topoisomerase II activity with comparable extent to etoposide at 100 μM concentrations. Correlation between cytotoxicity and topoisomerase II inhibitory activity implies that compound 25 can be a possible lead compound for anticancer drug impeding the topoisomerase II function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Synthesis and evaluation of 3-[(2,4-dioxo-1,3,8-triazaspiro[4.6]undec-3-yl)methyl]benzonitrile derivatives as potential anticonvulsants.

    PubMed

    Madaiah, Malavalli; Prashanth, Maralekere K; Revanasiddappa, Hosakere D; Veeresh, Bantal

    2013-03-01

    New 3-[(2,4-dioxo-1,3,8-triazaspiro[4.6]undec-3-yl)methyl]benzonitrile derivatives 8-37 were synthesized and their pharmacological activities were determined with the objective to better understand their structure-activity relationship (SAR) for anticonvulsant activity. All the compounds were evaluated for their possible anticonvulsant activity by maximal electroshock seizure (MES) and pentylenetetrazole (PTZ) test. Compounds 11, 18, 31, and 32 showed significant and protective effect on seizure, when compared with the standard drug valproate. The same compounds were found to exhibit advanced anticonvulsant activity as well as lower neurotoxicity than the reference drug. From this study, it is quite apparent that there are at least three parameters for the activity of anticonvulsant drugs, that is, a lipophilic domain, a hydrophobic center, and a two-electron donor. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Traditional uses, phytochemistry, and pharmacology of the genus Acer (maple): A review.

    PubMed

    Bi, Wu; Gao, Ying; Shen, Jie; He, Chunnian; Liu, Haibo; Peng, Yong; Zhang, Chunhong; Xiao, Peigen

    2016-08-02

    The genus Acer (Aceraceae), commonly known as maple, comprises approximately 129 species that primarily grow in the northern hemisphere, especially in the temperate regions of East Asia, eastern North America, and Europe. These plants have been traditionally used to treat a wide range of diseases in East Asia and North America. Moreover, clinical studies have shown that medicinal plants belonging to Acer are highly effective in the treatment of rheumatism, bruises, hepatic disorders, eye disease, and pain, and in detoxification. This review provides a systematic and constructive overview of the traditional uses, chemical constituents, and pharmacological activities of plants of the genus Acer. This review is based on a literature study of scientific journals and books from libraries and electronic sources such as SciFinder, ScienceDirect, Springer, PubMed, CNKI, Google Scholar, Baidu Scholar, and Web of Science. The literature in this review related to chemical constituents and pharmacological activities dates from 1922 to the end of October 2015. Furthermore, ethnopharmacological information on this genus was obtained from libraries and herbaria in China and USA. In traditional medicine, 40 species, 11 subspecies, and one varieta of the genus Acer are known to exhibit a broad spectrum of biological activities. To date, 331 compounds have been identified from 34 species of the genus Acer, including flavonoids, tannins, phenylpropanoids, diarylheptanoids, terpenoids, benzoic acid derivatives, and several other types of compounds, such as phenylethanoid glycosides and alkaloids. Preliminary pharmacological studies have shown that the extracts and compounds isolated from this genus exhibit a broad spectrum of biological activities such as antioxidant, antitumor, anti-inflammatory, antidiabetic, hepatoprotective, and antiobesity activities, as well as promoting osteoblast differentiation. To date, reports on the toxicity of Acer species to humans are very limited, and the major safety concern of these plants is in the veterinary field. Based on our systematic review, Acer species can be used to treat rheumatism, hepatic disorders, eye disease, pain, etc. effectively. Some indications from ethnomedicine have been validated by pharmacological activities, such as the anti-inflammatory and hepatoprotective activities of the species. The available literature showed that most of the activities of these species can be attributed to flavonoids and tannins. To ensure the safety and efficacy in clinical practice in the future, studies identifying active molecules and clarifying their pharmacological mechanisms as well as toxicity are needed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Kojyl cinnamate ester derivatives promote adiponectin production during adipogenesis in human adipose tissue-derived mesenchymal stem cells.

    PubMed

    Rho, Ho Sik; Hong, Soo Hyun; Park, Jongho; Jung, Hyo-Il; Park, Young-Ho; Lee, John Hwan; Shin, Song Seok; Noh, Minsoo

    2014-05-01

    The subcutaneous fat tissue mass gradually decreases with age, and its regulation is a strategy to develop anti-aging compounds to ameliorate the photo-aging of human skin. The adipogenesis of human adipose tissue-mesenchymal stem cells (hAT-MSCs) can be used as a model to discover novel anti-aging compounds. Cinnamomum cassia methanol extracts were identified as adipogenesis-promoting agents by natural product library screening. Cinnamates, the major chemical components of Cinnamomum cassia extracts, promoted adipogenesis in hAT-MSCs. We synthesized kojyl cinnamate ester derivatives to improve the pharmacological activity of cinnamates. Structure-activity studies of kojyl cinnamate derivatives showed that both the α,β-unsaturated carbonyl ester group and the kojic acid moiety play core roles in promoting adiponectin production during adipogenesis in hAT-MSCs. We conclude that kojyl cinnamate ester derivatives provide novel pharmacophores that can regulate adipogenesis in hAT-MSCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Anti-leptospiral activities of an endemic plant Glyptopetalum calocarpum (Kurz.) Prain used as a medicinal plant by Nicobarese of Andaman and Nicobar Islands.

    PubMed

    Chander, M Punnam; Kumar, K Vinod; Shriram, A N; Vijayachari, P

    2015-01-01

    Leaves of an endemic plant Glyptopetalum calocarpum are used by Nicobarese tribes of Andaman and Nicobar Islands, India, to prepare traditional medicine for treating fever. In the present investigation, pharmacologically active compounds were isolated from this plant and their antimicrobial efficacy was evaluated against the leptospiral strains. The anti-leptospiral activity of six plant-derived compounds was determined by both microdilution and macrodilution methods. Two out of six compounds, namely lupenone and stigmasterol, showed anti-leptospiral activity. The minimum inhibitory concentrations of the two compounds tested against pathogenic leptospiral strains belonging to 10 serovars were in the range of 100-200 μg/mL. The range of minimum bactericidal concentrations was 400-800 μg/mL. Compounds lupenone, stigmasterol, lupeol, β-amyrin and β-amyrin acetate had negligible or no haemolytic activity, exhibiting IC50 values of greater than 5 mg/mL. Further in vivo studies are needed to investigate the pharmacological and toxicological properties of G. calocarpum before it can be considered as a new anti-leptospiral agent.

  5. [Design, synthesis and evaluation of bis-nicotine derivatives as inhibitors of cholinesterases and beta-amyloid aggregation].

    PubMed

    Luo, Wen; Zhao, Yong-mei; Tian, Run-guo; Su, Ya-bin; Hong, Chen

    2013-11-01

    A novel series of bis-nicotine derivatives (3a-3i) were designed, synthesized and evaluated as bivalent anti-Alzheimer's disease agents. The pharmacological results indicated that compounds 3e-3i inhibited both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in the micromolar range (IC50, 2.28-117.86 micromol x L(-1) for AChE and 1.67-125 micromol x L(-1) for BChE), which was at the same potency as rivastigmine. A Lineweaver-Burk plot and molecular modeling study showed that these derivatives targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, these compounds could significantly inhibit the self-induced Abeta aggregation with inhibition activity (11.85%-62.14%) at the concentration of 20 micromol x L(-1).

  6. Pharmacological Role of Anions (Sulphate, Nitrate, Oxalate and Acetate) on the Antibacterial Activity of Cobalt(II), Copper(II) and Nickel(II) Complexes With Nicotinoylhydrazine-Derived ONO, NNO and SNO Ligands

    PubMed Central

    Rauf, Abdur

    1996-01-01

    Mixed ligands biologically active complexes of cobalt(II), copper(II) and nickel(II) with nicotinoylhydrazine-derived ONO, NNO and SNO donor schiff-base ligands having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesised and characterised on the basis of their physical, analytical and spectral data. In order to evaluate the role of anions on their bioability, these ligands and their synthesised metal complexes with various anions have been screened against bacterial species such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the title studies have proved a definative role of anions in increasing the biological activity PMID:18472896

  7. Nonpeptidic angiotensin II AT₁ receptor antagonists derived from 6-substituted aminocarbonyl and acylamino benzimidazoles.

    PubMed

    Zhang, Jun; Wang, Jin-Liang; Yu, Wei-Fa; Zhou, Zhi-Ming; Tao, Wen-Chang; Wang, Yi-Cheng; Xue, Wei-Zhe; Xu, Di; Hao, Li-Ping; Han, Xiao-Feng; Fei, Fan; Liu, Ting; Liang, Ai-Hua

    2013-11-01

    Both 6-substituted aminocarbonyl and acylamino benzimidazole derivatives were designed and synthesized as nonpeptidic angiotensin II AT₁ receptor antagonists. Compounds 6f, 6g, 11e, 11f, 11g, and 12 showed nanomolar AT₁ receptor binding affinity and high AT₁ receptor selectivity over AT₂ receptor in a preliminary pharmacological evaluation. Among them, the two most active compounds 6f (AT₁ IC₅₀ = 3 nM, AT₂ IC₅₀ > 10,000 nM, PA₂ = 8.51) and 11g (AT₁ IC₅₀ = 0.1 nM, AT₂ IC₅₀ = 149 nM, PA₂ = 8.43) exhibited good antagonistic activity in isolated rabbit aortic strip functional assay. In addition, they were orally active AT₁ receptor antagonists in spontaneous hypertensive rats. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Synthesis of novel heterocyclic ring-fused 18β-glycyrrhetinic acid derivatives with antitumor and antimetastatic activity.

    PubMed

    Gao, Cheng; Dai, Fu-Jun; Cui, Hai-Wei; Peng, Shi-Hong; He, Yuan; Wang, Xue; Yi, Zheng-Fang; Qiu, Wen-Wei

    2014-08-01

    Glycyrrhetinic acid (GA) is one of the most important triterpenoic acids shows many pharmacological effects, especially antitumor activity. GA triggers apoptosis in various tumor cell lines. However, the antitumor activity of GA is weak, thus the synthesis of new synthetic analogs with enhanced potency is needed. By introducing various five-member fused heterocyclic rings at C-2 and C-3 positions, 18 novel GA derivatives were obtained. These compounds were evaluated for their inhibitory activity against the growth of eight different tumor cell lines using a SRB assay. The most active compound 37 showed IC50 between 5.19 and 11.72 μm, which was about 11-fold more potent than the lead compound GA. An apoptotic effect of GA and 37 was determined using flow cytometry and trypan blue exclusion assays. We also demonstrated here for the first time that GA and the synthetic derivatives exhibited inhibitory effect on migration of the tested tumor cells, especially 37 which was about 20-fold more potent than GA on antimetastatic activity. © 2014 John Wiley & Sons A/S.

  9. Modafinil enhances thalamocortical activity by increasing neuronal electrotonic coupling

    PubMed Central

    Urbano, Francisco J.; Leznik, Elena; Llinás, Rodolfo R.

    2007-01-01

    Modafinil (Provigil, Modiodal), an antinarcoleptic and mood-enhancing drug, is shown here to sharpen thalamocortical activity and to increase electrical coupling between cortical interneurons and between nerve cells in the inferior olivary nucleus. After irreversible pharmacological block of connexin permeability (i.e., by using either 18β-glycyrrhetinic derivatives or mefloquine), modafinil restored electrotonic coupling within 30 min. It was further established that this restoration is implemented through a Ca2+/calmodulin protein kinase II-dependent step. PMID:17640897

  10. Fungal immunomodulatory proteins in the context of biomedicine.

    PubMed

    Uribe-Echeverry, Paula Tatiana; Lopez-Gartner, German Ariel

    2017-06-01

    Fungi represent a large group of biodiverse microorganisms with potential applications ranging from industrial fields to the treatment for human diseases. A large number of pharmacologically active compounds including terpenoids, polysaccharides and proteins have been derived from these microorganisms. Fungal Immunomodulatory Proteins (FIPs) are a group of active compounds that are being considered for the treatment of asthma, allergy, autoimmune diseases and cancer. Here, we discuss the discovery, heterologous production bioactive mechanisms of action and their potential use in biomedicine.

  11. [Auguste Lumière (1862-1943). Cinematography...and microbiology].

    PubMed

    Freney, Jean

    2010-01-01

    Auguste Lumière was the most inventive of the two brothers in the area of therapeutics and pharmacology. In 1896 he created his laboratory of experimental physiology where he discovered some organo-metallic derivatives active against syphilis, the oral vaccination against typhoid, vaseline gauze against burns. Unselfish amateur or real scientist he was a self-taught man who expended a lot of industrial activity even on erroneous scientific bases as he publicly refused the phenomenon of tuberculosis contagion in 1930.

  12. Discriminative stimulus properties of mitragynine (kratom) in rats.

    PubMed

    Harun, Norsyifa; Hassan, Zurina; Navaratnam, Visweswaran; Mansor, Sharif M; Shoaib, Mohammed

    2015-07-01

    Mitragynine (MG) is the primary active alkaloid extracted from the leaves of Mitragyna speciosa or kratom and exhibits pharmacological activities mediated by opioid receptors. The plant has been traditionally used for its opium and psychostimulant-like effects to increase work efficiency or as a substitute in the self-treatment of opiate addiction. The present study was performed to investigate the discriminative stimulus effects of MG in rats. The pharmacological mechanism of MG action and its derivative, 7-hydroxymitragynine (7-HMG) with a specific focus on opioid receptor involvement was examined in rats trained to discriminate morphine from vehicle. In order to study the dual actions of MG, the effect of cocaine substitution to the MG discriminative stimulus was also performed in MG-trained rats. Male Sprague Dawley rats were trained to discriminate MG from vehicle in a two-lever drug discrimination procedure under a tandem variable-interval (VI 60') fixed-ratio (FR 10) schedule of food reinforcement. Rats acquired the MG discrimination (15.0 mg/kg, i.p.) which was similar to the acquisition of morphine discrimination (5.0 mg/kg, i.p.) in another group of rats. MG substituted fully to the morphine discriminative stimulus in a dose-dependent manner, suggesting pharmacological similarities between the two drugs. The administration of 7-HMG derivative in 3.0 mg/kg (i.p.) dose engendered full generalisation to the morphine discriminative stimulus. In addition, the MG stimulus also partially generalised to cocaine (10.0 mg/kg, i.p.) stimulus. The present study demonstrates that the discriminative stimulus effect of MG possesses both opioid- and psychostimulant-like subjective effects.

  13. Structural and pharmacological characteristics of chimeric peptides derived from peptide E and beta-endorphin reveal the crucial role of the C-terminal YGGFL and YKKGE motifs in their analgesic properties.

    PubMed

    Condamine, Eric; Courchay, Karine; Rego, Jean-Claude Do; Leprince, Jérôme; Mayer, Catherine; Davoust, Daniel; Costentin, Jean; Vaudry, Hubert

    2010-05-01

    Peptide E (a 25-amino acid peptide derived from proenkephalin A) and beta-endorphin (a 31-amino acid peptide derived from proopiomelanocortin) bind with high affinity to opioid receptors and share structural similarities but induce analgesic effects of very different intensity. Indeed, whereas they possess the same N-terminus Met-enkephalin message sequence linked to a helix by a flexible spacer and a C-terminal part in random coil conformation, in contrast with peptide E, beta-endorphin produces a profound analgesia. To determine the key structural elements explaining this very divergent opioid activity, we have compared the structural and pharmacological characteristics of several chimeric peptides derived from peptide E and beta-endorphin. Structures were obtained under the same experimental conditions using circular dichroism, computational estimation of helical content and/or nuclear magnetic resonance spectroscopy (NMR) and NMR-restrained molecular modeling. The hot-plate and writhing tests were used in mice to evaluate the antinociceptive effects of the peptides. Our results indicate that neither the length nor the physicochemical profile of the spacer plays a fundamental role in analgesia. On the other hand, while the functional importance of the helix cannot be excluded, the last 5 residues in the C-terminal part seem to be crucial for the expression or absence of the analgesic activity of these peptides. These data raise the question of the true function of peptides E in opioidergic systems. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. Hematopoietic Colony Formation from Human Growth Factor-Dependent TF1 Cells and Human Cord Blood Myeloid Progenitor Cells Depends on SHP2 Phosphatase Function

    PubMed Central

    Etienne-Julan, Maryse; Gotoh, Akihiko; Braun, Stephen E.; Lu, Li; Cooper, Scott; Feng, Gen-Sheng; Li, Xing Jun

    2013-01-01

    The protein tyrosine phosphatase, SHP2, is widely expressed; however, previous studies demonstrated that hematopoietic cell development more stringently requires Shp2 expression compared to other tissues. Furthermore, somatic gain-of-function SHP2 mutants are commonly found in human myeloid leukemias. Given that pharmacologic inhibitors to SHP2 phosphatase activity are currently in development as putative antileukemic agents, we conducted a series of experiments examining the necessity of SHP2 phosphatase activity for human hematopoiesis. Anti-sense oligonucleotides to human SHP2 coding sequences reduced human cord blood- and human cell line, TF1-derived colony formation. Expression of truncated SHP2 bearing its Src homology 2 (SH2) domains, but lacking the phosphatase domain similarly reduced human cord blood- and TF1-derived colony formation. Mechanistically, expression of truncated SHP2 reduced the interaction between endogenous, full-length SHP2 with the adapter protein, Grb2. To verify the role of SHP2 phosphatase function in human hematopoietic cell development, human cord blood CD34+ cells were transduced with a leukemia-associated phosphatase gain-of-function SHP2 mutant or with a phosphatase dead SHP2 mutant, which indicated that increased phosphatase function enhanced, while decreased SHP2 phosphatase function reduced, human cord blood-derived colonies. Collectively, these findings indicate that SHP2 phosphatase function regulates human hematopoietic cell development and imply that the phosphatase component of SHP2 may serve as a pharmacologic target in human leukemias bearing increased SHP2 phosphatase activity. PMID:23082805

  15. Hematopoietic colony formation from human growth factor-dependent TF1 cells and human cord blood myeloid progenitor cells depends on SHP2 phosphatase function.

    PubMed

    Broxmeyer, Hal E; Etienne-Julan, Maryse; Gotoh, Akihiko; Braun, Stephen E; Lu, Li; Cooper, Scott; Feng, Gen-Sheng; Li, Xing Jun; Chan, Rebecca J

    2013-03-15

    The protein tyrosine phosphatase, SHP2, is widely expressed; however, previous studies demonstrated that hematopoietic cell development more stringently requires Shp2 expression compared to other tissues. Furthermore, somatic gain-of-function SHP2 mutants are commonly found in human myeloid leukemias. Given that pharmacologic inhibitors to SHP2 phosphatase activity are currently in development as putative antileukemic agents, we conducted a series of experiments examining the necessity of SHP2 phosphatase activity for human hematopoiesis. Anti-sense oligonucleotides to human SHP2 coding sequences reduced human cord blood- and human cell line, TF1-derived colony formation. Expression of truncated SHP2 bearing its Src homology 2 (SH2) domains, but lacking the phosphatase domain similarly reduced human cord blood- and TF1-derived colony formation. Mechanistically, expression of truncated SHP2 reduced the interaction between endogenous, full-length SHP2 with the adapter protein, Grb2. To verify the role of SHP2 phosphatase function in human hematopoietic cell development, human cord blood CD34+ cells were transduced with a leukemia-associated phosphatase gain-of-function SHP2 mutant or with a phosphatase dead SHP2 mutant, which indicated that increased phosphatase function enhanced, while decreased SHP2 phosphatase function reduced, human cord blood-derived colonies. Collectively, these findings indicate that SHP2 phosphatase function regulates human hematopoietic cell development and imply that the phosphatase component of SHP2 may serve as a pharmacologic target in human leukemias bearing increased SHP2 phosphatase activity.

  16. Low-molecular-weight heparins: pharmacologic profile and product differentiation.

    PubMed

    Fareed, J; Jeske, W; Hoppensteadt, D; Clarizio, R; Walenga, J M

    1998-09-10

    The interchangeability of low-molecular-weight heparins (LMWHs) has been the subject of discussion since these products were first introduced for the prophylaxis of deep vein thrombosis. Experimental evidence now exists to show that LMWHs differ from each other in a number of characteristics. Products have been differentiated on the basis of molecular weight and biologic properties, but only limited information derived from the clinical setting is available. Potency has been described on the basis of anti-Factor Xa activity, but at equivalent anti-Xa activities, the anti-Factor IIa activity of different products shows marked variations. At the relatively small doses used for the management of postsurgical deep vein thrombosis, the effect of these interproduct differences may be relatively minor, but as LMWHs are developed for therapeutic use at much higher doses, such differences may become clinically important. Variations in safety and efficacy reported in clinical trials of LMWHs may reflect the known differences in their molecular composition and pharmacologic properties.

  17. Pharmacological discrimination of plasmalemmal and mitochondrial sodium-calcium exchanger in cardiomyocyte-derived H9c2 cells.

    PubMed

    Namekata, Iyuki; Hamaguchi, Shogo; Tanaka, Hikaru

    2015-01-01

    We examined the effects of SEA0400 and CGP-37157 on the plasmalemmal Na(+)-Ca(2+) exchanger (NCX) and mitochondrial NCX using H9c2 cardiomyocytes loaded with Ca(2+)-sensitive fluorescent probes. The plasmalemmal NCX activity, which was measured as the increase in cytoplasmic Ca(2+) concentration after application of low Na(+) extracellular solution, was inhibited by SEA0400 but not by CGP-37157. The mitochondrial NCX activity, which was measured in permeabilized H9c2 cells as the decrease in mitochondrial Ca(2+) concentration after application of Ca(2+)-free extramitochondrial solution, was inhibited by CGP-37157 but not by SEA0400. These results indicate that SEA0400 and CGP-37157 act as selective inhibitors towards plasmalemmal and mitochondrial NCX, respectively, and provide pharmacological evidence that the plasmalemmal and mitochondrial NCX are distinct molecular entities.

  18. Spectral Response and Diagnostics of Biological Activity of Hydroxyl-Containing Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Mayer, G. V.; Bel'kov, M. V.; Shadyro, O. I.

    2016-08-01

    Using IR Fourier spectra and employing quantum-chemical calculations of electronic structure, spectra, and proton-acceptor properties, synthetic derivatives of aminophenol exhibiting biological activity in the suppression of herpes, influenza, and HIV viruses have been investigated from a new perspective, with the aim of establishing the spectral response of biological activity of the molecules. It has been experimentally established that the participation of the aminophenol hydroxyl group in intramolecular hydrogen bonds is characteristic of structures with antiviral properties. A quantum-chemical calculation of the proton-acceptor ability of the investigated aminophenol derivatives has shown that biologically active structures are characterized by a high proton-acceptor ability of oxygen of the hydroxyl group. A correlation that has been obtained among the formation of an intramolecular hydrogen bond, high proton-acceptor ability, and antiviral activity of substituted aminophenols enables us to predict the pharmacological properties of new medical preparations of the given class of compounds.

  19. Pharmacological Stimulation of NADH Oxidation Ameliorates Obesity and Related Phenotypes in Mice

    PubMed Central

    Hwang, Jung Hwan; Kim, Dong Wook; Jo, Eun Jin; Kim, Yong Kyung; Jo, Young Suk; Park, Ji Hoon; Yoo, Sang Ku; Park, Myung Kyu; Kwak, Tae Hwan; Kho, Young Lim; Han, Jin; Choi, Hueng-Sik; Lee, Sang-Hee; Kim, Jin Man; Lee, InKyu; Kyung, Taeyoon; Jang, Cholsoon; Chung, Jongkyeong; Kweon, Gi Ryang; Shong, Minho

    2009-01-01

    OBJECTIVE Nicotinamide adenine dinucleotides (NAD+ and NADH) play a crucial role in cellular energy metabolism, and a dysregulated NAD+-to-NADH ratio is implicated in metabolic syndrome. However, it is still unknown whether a modulating intracellular NAD+-to-NADH ratio is beneficial in treating metabolic syndrome. We tried to determine whether pharmacological stimulation of NADH oxidation provides therapeutic effects in rodent models of metabolic syndrome. RESEARCH DESIGN AND METHODS We used β-lapachone (βL), a natural substrate of NADH:quinone oxidoreductase 1 (NQO1), to stimulate NADH oxidation. The βL-induced pharmacological effect on cellular energy metabolism was evaluated in cells derived from NQO1-deficient mice. In vivo therapeutic effects of βL on metabolic syndrome were examined in diet-induced obesity (DIO) and ob/ob mice. RESULTS NQO1-dependent NADH oxidation by βL strongly provoked mitochondrial fatty acid oxidation in vitro and in vivo. These effects were accompanied by activation of AMP-activated protein kinase and carnitine palmitoyltransferase and suppression of acetyl-coenzyme A (CoA) carboxylase activity. Consistently, systemic βL administration in rodent models of metabolic syndrome dramatically ameliorated their key symptoms such as increased adiposity, glucose intolerance, dyslipidemia, and fatty liver. The treated mice also showed higher expressions of the genes related to mitochondrial energy metabolism (PPARγ coactivator-1α, nuclear respiratory factor-1) and caloric restriction (Sirt1) consistent with the increased mitochondrial biogenesis and energy expenditure. CONCLUSIONS Pharmacological activation of NADH oxidation by NQO1 resolves obesity and related phenotypes in mice, opening the possibility that it may provide the basis for a new therapy for the treatment of metabolic syndrome. PMID:19136651

  20. The Role of Membrane-Derived Second Messengers and Bmx/Etk in Response to Radiation Treatment of Prostate Cancer

    DTIC Science & Technology

    2008-01-01

    enhanced HUVEC radiosensitization. Furthermore, pretreatment of HUVEC with a pharmacological inhibitor of Bmx, LFM-A13, produced significant...Prostate cancer, Bmx, tyrosine kinase, kinase inhibitors , angiogenesis, tumor vasculature, radiation 16. SECURITY CLASSIFICATION OF: 17...activation and that a small molecule inhibitor of Bmx modulates the cellular viability of endothelial and prostate cancer cells, particularly with radiation

  1. The behavioral pharmacology of hallucinogens

    PubMed Central

    Fantegrossi, William E.; Murnane, Aeneas C.; Reissig, Chad J.

    2008-01-01

    Until very recently, comparatively few scientists were studying hallucinogenic drugs. Nevertheless, selective antagonists are available for relevant serotonergic receptors, the majority of which have now been cloned, allowing for reasonably thorough pharmacological investigation. Animal models sensitive to the behavioral effects of the hallucinogens have been established and exploited. Sophisticated genetic techniques have enabled the development of mutant mice, which have proven useful in the study of hallucinogens. The capacity to study post-receptor signaling events has lead to the proposal of a plausible mechanism of action for these compounds. The tools currently available to study the hallucinogens are thus more plentiful and scientifically advanced than were those accessible to earlier researchers studying the opioids, benzodiazepines, cholinergics, or other centrally active compounds. The behavioral pharmacology of phenethylamine, tryptamine, and ergoline hallucinogens are described in this review, paying particular attention to important structure activity relationships which have emerged, receptors involved in their various actions, effects on conditioned and unconditioned behaviors, and in some cases, human psychopharmacology. As clinical interest in the therapeutic potential of these compounds is once again beginning to emerge, it is important to recognize the wealth of data derived from controlled preclinical studies on these compounds. PMID:17977517

  2. Pharmacological and Toxicological Studies of Essential Oil of Lavandula stoechas subsp. luisieri.

    PubMed

    Arantes, Sílvia; Candeias, Fátima; Lopes, Orlando; Lima, Mónica; Pereira, Marízia; Tinoco, Teresa; Cruz-Morais, J; Martins, M Rosário

    2016-09-01

    The present study was carried out to evaluate the chemical and pharmacological properties of the essential oil of Lavandula stoechas subsp. luisieri, which is a spontaneous shrub widespread in Alentejo (Portugal). Oxygenated monoterpenes, such as 1,8-cineole, lavandulol, and necrodane derivatives, are the main components of essential oil. It revealed important antioxidant activity with a high ability to inhibit lipid peroxidation and showed an outstanding effect against a wide spectrum of microorganisms, such as gram-positive and gram-negative bacteria and pathogenic yeasts. The analgesic effect studied in rats was dose dependent, reaching a maximum of 67 % at 60 min with the dose of 200 mg/kg and the anti-inflammatory activity with this dose caused an inhibition in carrageenan-induced rat paw oedema (83 %) that is higher than dexamethasone 1 mg/Kg (69 %). Besides, animals exhibited normal behaviour after essential oil administration, revealing low toxicity. The essential oil of L. luisieri from Alentejo presents important pharmacological properties and low toxicity, and is a promised candidate to be used as a food supplement or in pharmaceutical applications. Georg Thieme Verlag KG Stuttgart · New York.

  3. Review of Ethnobotanical, Phytochemical, and Pharmacological Study of Thymus serpyllum L.

    PubMed Central

    Jarić, Snežana; Mitrović, Miroslava; Pavlović, Pavle

    2015-01-01

    Thymus serpyllum L. (wild thyme) is a perennial shrub, native to areas of northern and central Europe. Its aerial parts are most frequently used in ethnomedicine (mainly for treating illnesses and problems related to the respiratory and gastrointestinal systems), although recently its essential oils are becoming more popular as an important plant-derived product. The composition of these oils is affected by geographic region, the development stage of the plant, the harvest season, habitat, and climatic conditions. Wild thyme essential oil has an ever-growing number of uses in contemporary medicine due to its pharmacological properties: antioxidative, antimicrobial, and anticancerogenic activities. The antioxidative and antimicrobial properties of the essential oil are related to the synergistic and cumulative effect of its components. In terms of antitumor and cytotoxic activity, further research into the effects of essential oil is necessary, aimed at improving its cytotoxic effects, on the basis of which appropriate medicines can be formulated. Due to its pharmacological properties, the essential oil of wild thyme, a plant used in traditional medicine, represents an important natural resource for the pharmaceutical industry. In addition, it can be a source of natural antioxidants, nutritional supplements, or components of functional foods in the food industry. PMID:26265920

  4. Histamine H4-Receptors Inhibit Mast Cell Renin Release in Ischemia/Reperfusion via Protein Kinase Cε-Dependent Aldehyde Dehydrogenase Type-2 Activation

    PubMed Central

    Aldi, Silvia; Takano, Ken-ichi; Tomita, Kengo; Koda, Kenichiro; Chan, Noel Y.-K.; Marino, Alice; Salazar-Rodriguez, Mariselis; Thurmond, Robin L.

    2014-01-01

    Renin released by ischemia/reperfusion (I/R) from cardiac mast cells (MCs) activates a local renin-angiotensin system (RAS) causing arrhythmic dysfunction. Ischemic preconditioning (IPC) inhibits MC renin release and consequent activation of this local RAS. We postulated that MC histamine H4-receptors (H4Rs), being Gαi/o-coupled, might activate a protein kinase C isotype–ε (PKCε)–aldehyde dehydrogenase type-2 (ALDH2) cascade, ultimately eliminating MC-degranulating and renin-releasing effects of aldehydes formed in I/R and associated arrhythmias. We tested this hypothesis in ex vivo hearts, human mastocytoma cells, and bone marrow–derived MCs from wild-type and H4R knockout mice. We found that activation of MC H4Rs mimics the cardioprotective anti-RAS effects of IPC and that protection depends on the sequential activation of PKCε and ALDH2 in MCs, reducing aldehyde-induced MC degranulation and renin release and alleviating reperfusion arrhythmias. These cardioprotective effects are mimicked by selective H4R agonists and disappear when H4Rs are pharmacologically blocked or genetically deleted. Our results uncover a novel cardioprotective pathway in I/R, whereby activation of H4Rs on the MC membrane, possibly by MC-derived histamine, leads sequentially to PKCε and ALDH2 activation, reduction of toxic aldehyde-induced MC renin release, prevention of RAS activation, reduction of norepinephrine release, and ultimately to alleviation of reperfusion arrhythmias. This newly discovered protective pathway suggests that MC H4Rs may represent a new pharmacologic and therapeutic target for the direct alleviation of RAS-induced cardiac dysfunctions, including ischemic heart disease and congestive heart failure. PMID:24696042

  5. Structure-Activity Relationship Analysis of 3-phenylcoumarin-Based Monoamine Oxidase B Inhibitors

    NASA Astrophysics Data System (ADS)

    Rauhamäki, Sanna; Postila, Pekka A.; Niinivehmas, Sanna; Kortet, Sami; Schildt, Emmi; Pasanen, Mira; Manivannan, Elangovan; Ahinko, Mira; Koskimies, Pasi; Nyberg, Niina; Huuskonen, Pasi; Multamäki, Elina; Pasanen, Markku; Juvonen, Risto O.; Raunio, Hannu; Huuskonen, Juhani; Pentikäinen, Olli T.

    2018-03-01

    Monoamine oxidase B (MAO-B) catalyzes deamination of monoamines such as neurotransmitters dopamine and norepinephrine. Accordingly, small-molecule MAO-B inhibitors potentially alleviate the symptoms of dopamine-linked neuropathologies such as depression or Parkinson’s disease. Coumarin with a functionalized 3-phenyl ring system is a promising scaffold for building potent MAO-B inhibitors. Here, a vast set of 3-phenylcoumarin derivatives was designed using virtual combinatorial chemistry or rationally de novo and synthesized using microwave chemistry. The derivatives inhibited the MAO-B at 100 nM - 1 µM. The IC50 value of the most potent derivative 1 was 56 nM. A docking-based structure-activity relationship analysis summarizes the atom-level determinants of the MAO-B inhibition by the derivatives. Finally, the cross-reactivity of the derivatives was tested against monoamine oxidase A and a specific subset of enzymes linked to estradiol metabolism, known to have coumarin-based inhibitors. Overall, the results indicate that the 3-phenylcoumarins, especially derivative 1, present unique pharmacological features worth considering in future drug development.

  6. Hyodeoxycholic acid derivatives as liver X receptor α and G-protein-coupled bile acid receptor agonists

    NASA Astrophysics Data System (ADS)

    de Marino, Simona; Carino, Adriana; Masullo, Dario; Finamore, Claudia; Marchianò, Silvia; Cipriani, Sabrina; di Leva, Francesco Saverio; Catalanotti, Bruno; Novellino, Ettore; Limongelli, Vittorio; Fiorucci, Stefano; Zampella, Angela

    2017-02-01

    Bile acids are extensively investigated for their potential in the treatment of human disorders. The liver X receptors (LXRs), activated by oxysterols and by a secondary bile acid named hyodeoxycholic acid (HDCA), have been found essential in the regulation of lipid homeostasis in mammals. Unfortunately, LXRα activates lipogenic enzymes causing accumulation of lipid in the liver. In addition to LXRs, HDCA has been also shown to function as ligand for GPBAR1, a G protein coupled receptor for secondary bile acids whose activation represents a promising approach to liver steatosis. In the present study, we report a library of HDCA derivatives endowed with modulatory activity on the two receptors. The lead optimization of HDCA moiety was rationally driven by the structural information on the binding site of the two targets and results from pharmacological characterization allowed the identification of hyodeoxycholane derivatives with selective agonistic activity toward LXRα and GPBAR1 and notably to the identification of the first example of potent dual LXRα/GPBAR1 agonists. The new chemical entities might hold utility in the treatment of dyslipidemic disorders.

  7. Phenylpropanoid profiling reveals a class of hydroxycinnamoyl glucaric acid conjugates in Isatis tinctoria leaves.

    PubMed

    Nguyen, Thi-Kieu-Oanh; Jamali, Arash; Grand, Eric; Morreel, Kris; Marcelo, Paulo; Gontier, Eric; Dauwe, Rebecca

    2017-12-01

    The brassicaceous herb, Isatis tinctoria, is an ancient medicinal plant whose rosette leaf extracts have anti-inflammatory and anti-allergic activity. Brassicaceae are known to accumulate a variety of phenylpropanoids in their rosette leaves acting as antioxidants and a UV-B shield, and these compounds often have pharmacological potential. Nevertheless, knowledge about the phenylpropanoid content of I. tinctoria leaves remains limited to the characterization of a number of flavonoids. In this research, we profiled the methanol extracts of I. tinctoria fresh leaf extracts by liquid chromatography - mass spectrometry (LC-MS) and focused on the phenylpropanoid derivatives. We report the structural characterization of 99 compounds including 18 flavonoids, 21 mono- or oligolignols, 2 benzenoids, and a wide spectrum of 58 hydroxycinnamic acid esters. Besides the sinapate esters of malate, glucose and gentiobiose, which are typical of brassicaceous plants, these conjugates comprised a large variety of glucaric acid esters that have not previously been reported in plants. Feeding with 13 C 6 -glucaric acid showed that glucaric acid is an acyl acceptor of an as yet unknown acyltransferase activity in I. tinctoria rosette leaves. The large amount of hydroxycinnamic acid derivatives changes radically our view of the woad metabolite profile and potentially contributes to the pharmacological activity of I. tinctoria leaf extracts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Investigation of Marine-Derived Fungal Diversity and Their Exploitable Biological Activities

    PubMed Central

    Hong, Joo-Hyun; Jang, Seokyoon; Heo, Young Mok; Min, Mihee; Lee, Hwanhwi; Lee, Young Min; Lee, Hanbyul; Kim, Jae-Jin

    2015-01-01

    Marine fungi are potential producers of bioactive compounds that may have pharmacological and medicinal applications. Fungi were cultured from marine brown algae and identified using multiple target genes to confirm phylogenetic placement. These target genes included the internal transcribed spacer (ITS), the nuclear large subunit (LSU), and the β-tubulin region. Various biological activities of marine-derived fungi were evaluated, including their antifungal, antioxidant and cellulolytic enzyme activities. As a result, a total of 50 fungi was isolated from the brown algae Sargassum sp. Among the 50 isolated fungi, Corollospora angusta was the dominant species in this study. The genus Arthrinium showed a relatively strong antifungal activity to all of the target plant pathogenic fungi. In particular, Arthrinium saccharicola KUC21221 showed high radical scavenging activity and the highest activities in terms of filter paper units (0.39 U/mL), endoglucanase activity (0.38 U/mL), and β-glucosidase activity (1.04 U/mL). PMID:26133554

  9. Ethnomedicinal, phytochemical and pharmacological profile of a mangrove plant Ceriops Decandra GriffDin Hou.

    PubMed

    Mahmud, Imran; Shahria, Naznin; Yeasmin, Sabina; Iqbal, Asif; Mukul, Emdadul Hasan; Gain, Sudipta; Shilpi, Jamil Ahmad; Islam, Md Khirul

    2018-06-22

    Ceriops decandra is a mangrove tree species, reputed for its folkloric uses in the treatment of gastrointestinal disorders, infection, snakebites, inflammation, and cancer. Different parts of the plant are rich with various phytoconstituents which include diterpenoids (ceriopsin A-G), triterpenoids (lupeol, α-amyrin, oleanolic acid, ursolic acid), and phenolics (catechin, procyanidins).These phytoconstituents and their derivatives could form a new basis for developing new drugs against various diseases. The objective of the present study is to compile the phytochemical, ethnobotanical, biological, and pharmacological significance of the plant to provide directions for future research to find out therapeutically active lead compounds for developing new drugs against diseases of current interest including diabetes, inflammation, and cancer.

  10. OCIAD1 Controls Electron Transport Chain Complex I Activity to Regulate Energy Metabolism in Human Pluripotent Stem Cells.

    PubMed

    Shetty, Deeti K; Kalamkar, Kaustubh P; Inamdar, Maneesha S

    2018-06-14

    Pluripotent stem cells (PSCs) derive energy predominantly from glycolysis and not the energy-efficient oxidative phosphorylation (OXPHOS). Differentiation is initiated with energy metabolic shift from glycolysis to OXPHOS. We investigated the role of mitochondrial energy metabolism in human PSCs using molecular, biochemical, genetic, and pharmacological approaches. We show that the carcinoma protein OCIAD1 interacts with and regulates mitochondrial complex I activity. Energy metabolic assays on live pluripotent cells showed that OCIAD1-depleted cells have increased OXPHOS and may be poised for differentiation. OCIAD1 maintains human embryonic stem cells, and its depletion by CRISPR/Cas9-mediated knockout leads to rapid and increased differentiation upon induction, whereas OCIAD1 overexpression has the opposite effect. Pharmacological alteration of complex I activity was able to rescue the defects of OCIAD1 modulation. Thus, hPSCs can exist in energy metabolic substates. OCIAD1 provides a target to screen for additional modulators of mitochondrial activity to promote transient multipotent precursor expansion or enhance differentiation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Development of operational models of receptor activation including constitutive receptor activity and their use to determine the efficacy of the chemokine CCL17 at the CC chemokine receptor CCR4.

    PubMed

    Slack, R J; Hall, D A

    2012-07-01

    BACKGROUND AND PURPOSE The operational model provides a key conceptual framework for the analysis of pharmacological data. However, this model does not include constitutive receptor activity, a frequent phenomenon in modern pharmacology, particularly in recombinant systems. Here, we developed extensions of the operational model which include constitutive activity and applied them to effects of agonists at the chemokine receptor CCR4. EXPERIMENTAL APPROACH The effects of agonists of CCR4 on [(35) S]GTPγS binding to recombinant cell membranes and on the filamentous (F-) actin content of human CD4(+) CCR4(+) T cells were determined. The basal [(35) S]GTPγS binding was changed by varying the GDP concentration whilst the basal F-actin contents of the higher expressing T cell populations were elevated, suggesting constitutive activity of CCR4. Both sets of data were analysed using the mathematical models. RESULTS The affinity of CCL17 (also known as TARC) derived from analysis of the T cell data (pK(a) = 9.61 ± 0.17) was consistent with radioligand binding experiments (9.50 ± 0.11) while that from the [(35) S]GTPγS binding experiments was lower (8.27 ± 0.09). Its intrinsic efficacy differed between the two systems (110 in T cells vs. 11). CONCLUSIONS AND IMPLICATIONS The presence of constitutive receptor activity allows the absolute intrinsic efficacy of agonists to be determined without a contribution from the signal transduction system. Intrinsic efficacy estimated in this way is consistent with Furchgott's definition of this property. CCL17 may have a higher intrinsic efficacy at CCR4 in human T cells than that expressed recombinantly in CHO cells. © 2012 GSK Services Unlimited. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  12. Berberine and its derivatives: a patent review (2009 - 2012).

    PubMed

    Singh, Inder Pal; Mahajan, Shivani

    2013-02-01

    Berberine, a protoberberine alkaloid, and its derivatives exhibit a wide spectrum of pharmacological activities. It has been used in traditional Chinese medicine and Ayurvedic medicine and current research evidences support its use for various therapeutic areas. This review covers the patents on therapeutic activities of berberine and its derivatives in the years between 2009 and 2012. An extensive search was done to collect the patent information using European Patent Office database and SciFinder. The therapeutic areas covered include cancer, inflammation, infectious diseases, cardiovascular, metabolic disorders, and miscellaneous areas such as polycystic ovary syndrome, allergic diseases, and so on. Berberine along with its derivatives or in combination with other pharmaceutically active compounds or in the form of formulations has applications in various therapeutic areas such as cancer, inflammation, diabetes, depression, hypertension, and various infectious areas. Berberine has demonstrated wide physiological functions and has great potential to give a multipotent drug if some inherent problems on poor bioavailability and solubility are taken care of. Additionally, polyherbal formulations with berberine-containing plants as major ingredients can be successfully developed.

  13. Molecular Modeling and Evaluation of Novel Dibenzopyrrole Derivatives as Telomerase Inhibitors and Potential Drug for Cancer Therapy.

    PubMed

    Kalathiya, Umesh; Padariya, Monikaben; Baginski, Maciej

    2014-01-01

    During previous years, many studies on synthesis, as well as on anti-tumor, anti-inflammatory and anti-bacterial activities of the pyrazole derivatives have been described. Certain pyrazole derivatives exhibit important pharmacological activities and have proved to be useful template in drug research. Considering importance of pyrazole template, in current work the series of novel inhibitors were designed by replacing central ring of acridine with pyrazole ring. These heterocyclic compounds were proposed as a new potential base for telomerase inhibitors. Obtained dibenzopyrrole structure was used as a novel scaffold structure and extension of inhibitors was done by different functional groups. Docking of newly designed compounds in the telomerase active site (telomerase catalytic subunit TERT) was carried out. All dibenzopyrrole derivatives were evaluated by three docking programs: CDOCKER, Ligandfit docking (Scoring Functions) and AutoDock. Compound C_9g, C_9k and C_9l performed best in comparison to all designed inhibitors during the docking in all methods and in interaction analysis. Introduction of pyrazole and extension of dibenzopyrrole in compounds confirm that such compound may act as potential telomerase inhibitors.

  14. Pharmacological studies upon neurones of the lateral geniculate nucleus of the cat

    PubMed Central

    Curtis, D. R.; Davis, R.

    1962-01-01

    Indoles related to 5-hydroxytryptamine, lysergic acid derivatives, phenethylamine derivatives and some other compounds have been applied electrophoretically to the neurones of the lateral geniculate nucleus of the cat anaesthetized with pentobarbitone sodium. Many of these compounds, particularly 4-, 5- and 7-hydroxytryptamine and ergometrine, depress the orthodromic excitation of the neurones by volleys in optic nerve fibres, but do not affect antidromic excitation by volleys in the optic radiation or chemical excitation by L-glutamic acid. It is concluded that the active depressants either block the access of the excitatory transmitter to subsynaptic receptors or prevent the release of the transmitter from optic nerve terminals. The structure-activity relationships of the depressant substances are discussed. PMID:13882768

  15. The use of marine-derived bioactive compounds as potential hepatoprotective agents

    PubMed Central

    Nair, Dileep G; Weiskirchen, Ralf; Al-Musharafi, Salma K

    2015-01-01

    The marine environment may be explored as a rich source for novel drugs. A number of marine-derived compounds have been isolated and identified, and their therapeutic effects and pharmacological profiles are characterized. In the present review, we highlight the recent studies using marine compounds as potential hepatoprotective agents for the treatment of liver fibrotic diseases and discuss the proposed mechanisms of their activities. In addition, we discuss the significance of similar studies in Oman, where the rich marine life provides a potential for the isolation of novel natural, bioactive products that display therapeutic effects on liver diseases. PMID:25500871

  16. Interpretation of field potentials measured on a multi electrode array in pharmacological toxicity screening on primary and human pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Tertoolen, L G J; Braam, S R; van Meer, B J; Passier, R; Mummery, C L

    2018-03-18

    Multi electrode arrays (MEAs) are increasingly used to detect external field potentials in electrically active cells. Recently, in combination with cardiomyocytes derived from human (induced) pluripotent stem cells they have started to become a preferred tool to examine newly developed drugs for potential cardiac toxicity in pre-clinical safety pharmacology. The most important risk parameter is proarrhythmic activity in cardiomyocytes which can cause sudden cardiac death. Whilst MEAs can provide medium- to high- throughput noninvasive assay platform, the translation of a field potential to cardiac action potential (normally measured by low-throughput patch clamp) is complex so that accurate assessment of drug risk to the heart is in practice still challenging. To address this, we used computational simulation to study the theoretical relationship between aspects of the field potential and the underlying cardiac action potential. We then validated the model in both primary mouse- and human pluripotent (embryonic) stem cell-derived cardiomyocytes showing that field potentials measured in MEAs could be converted to action potentials that were essentially identical to those determined directly by electrophysiological patch clamp. The method significantly increased the amount of information that could be extracted from MEA measurements and thus combined the advantages of medium/high throughput with more informative readouts. We believe that this will benefit the analysis of drug toxicity screening of cardiomyocytes using in time and accuracy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. 14-Amino-4,5-Epoxymorphinan Derivatives and Their Pharmacological Actions

    NASA Astrophysics Data System (ADS)

    Lewis, John W.; Husbands, Stephen M.

    14-Hydroxy-7,8-dihydromorphinone (oxymorphone) and its derivatives (oxycodone, naloxone, naltrexone) have become among the most important clinical agents to have been produced from opium. 14-Aminocodeinone and its 7,8-dihydro and morphinone derivatives are of more recent origin thanks to the work of Professor Gordon Kirby and his collaborators. The 14-amino parent compounds have proved of limited interest but their 14-acylamino- and 14-alkylamino derivatives have been extensively studied. The 4'-substituted cinnamoylamino-17-cyclopropylmethyl-7,8-dihydronormorphinones, C-CAM and M-CAM are the best available selective MOR irreversible antagonists and the related dihydrocodeinone MC-CAM, 4'-chlorocinnamoylamino-17-cyclopropylmethyl-7,8-dihydronorcodeinone, is a long-acting MOR partial agonist with extended MOR-pseudoirreversible antagonist activity that could be a candidate for pharmacotherapy of opiate abuse/dependence.

  18. Synthesis and evaluation of novel marine bromopyrrole alkaloid-based derivatives as potential antidepressant agents.

    PubMed

    Rane, Rajesh A; Napahde, Shital; Bangalore, Pavan Kumar; Sahu, Niteshkumar U; Shah, Nishant; Kulkarni, Yogesh A; Barve, Kalyani; Lokare, Leena; Karpoormath, Rajshekhar

    2014-11-01

    Herein, we report synthesis and screening of a series of twenty derivatives of bromopyrrole alkaloids with aroyl hydrazone feature for antidepressant activity by forced swim test (FST), tail suspension test (TST), and actophotometer method. The molecules were further evaluated for in vitro human MAO's inhibitory activities. The tested compounds exhibited moderate to good antidepressant activity compared with standard fluoxetine. Among these, most promising antidepressant derivatives 5b (%DID = 60.48), 5e (%DID = 59), and 5j (%DID = 74.86) reduced immobility duration of 50-70% at 30 mg/kg dose levels in FST. Further, derivative 5b, 5e, and 5j displayed good antidepressant activity with %DID value of 47.50, 46.62, and 52.49, respectively, in TST compared with standard fluoxetine (66.56% DID). Compound 5b showed high in vitro MAO-A potency and selectivity (Ki MAO-A (μM) = 2.4 ± 0.99, SI = 0.06) with promising pharmacological activity recognizing its potential as antidepressant lead candidate for further drug development. Study revealed that the presence of halogen atoms such as chlorine and fluorine at ortho- and/or para-position of phenyl ring and N-alkylation of pyrrole core is favored features for antidepressant activity. © 2014 John Wiley & Sons A/S.

  19. Expression and regulation of complement C1q by human THP-1-derived macrophages.

    PubMed

    Walker, D G

    1998-01-01

    The regulation of C1q expression was examined in the human monocytic cell line THP-1. Since these cells can be differentiated into cells with macrophage properties and induced to express C1q, they were used as models for mature human monocyte/macrophages and indirectly microglia. Interferon-gamma (IFN-gamma) and the anti-inflammatory steroid agents dexamethasone and prednisone were powerful stimulators of C1q production, alone or in combination. Interleukin-6 (IL-6) and lipopolysaccharide (LPS) also had significant stimulatory activity. Phorbol myristate acetate, a protein kinase C activator, reduced C1q expression. Four additional classes of pharmacological agents were tested for their effect on C1q secretion. Tacrine, but not indomethacin, cimetidine, or propentofylline, showed activity in inhibiting C1q secretion by IFN-gamma treated THP-1-derived macrophages.

  20. Disubstituted thiourea derivatives and their activity on CNS: synthesis and biological evaluation.

    PubMed

    Stefanska, Joanna; Szulczyk, Daniel; Koziol, Anna E; Miroslaw, Barbara; Kedzierska, Ewa; Fidecka, Sylwia; Busonera, Bernardetta; Sanna, Giuseppina; Giliberti, Gabriele; La Colla, Paolo; Struga, Marta

    2012-09-01

    A series of new thiourea derivatives of 1,2,4-triazole have been synthesized. The difference in structures of obtained compounds are directly connected with the kind of isothiocyanate (aryl/alkyl). The (1)H NMR, (13)C NMR, MS methods were used to confirm structures of obtained thiourea derivatives. The molecular structure of (1, 17) was determined by an X-ray analysis. Two of the new compounds (8 and 14) were tested for their pharmacological activity on animal central nervous system (CNS) in behavioural animal tests. The results presented in this work indicate the possible involvement of the serotonergic system in the activity of 8 and 14. In the case of 14 is also a possible link between its activity and the endogenous opioid system. All obtained compounds were tested for antibacterial activity against gram-positive cocci, gram-negative rods and antifungal activity. Compounds (1, 2, 5, 7, 9) showed significant inhibition against gram-positive cocci. Microbiological evaluation was carried out over 20 standard strains and 30 hospital strains. Selected compounds (1-13) were examined for cytotoxicity, antitumor, and anti-HIV activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  1. Idiopathic Mast Cell Activation Syndrome With Associated Salicylate Intolerance.

    PubMed

    Rechenauer, Tobias; Raithel, Martin; Götze, Thomas; Siebenlist, Gregor; Rückel, Aline; Baenkler, Hanns-Wolf; Hartmann, Arndt; Haller, Florian; Hoerning, André

    2018-01-01

    Idiopathic mast cell activation syndrome can be a rare cause for chronic abdominal pain in children. It remains a diagnosis by exclusion that can be particularly challenging due to the vast variety of possible clinical manifestations. We present a 13-year-old boy who suffered from a multitude of unspecific complaints over a long period of time. In this case, an assessment of mast cell-derived metabolites and immunohistochemical analysis of bioptic specimen was worthwhile. After ruling out, primary (oncologic) and secondary causes for mast cell activation, pharmacologic treatment adapted to the patient's salicylate intolerance resulted in a major relief of symptoms.

  2. N-Heterocyclic choline analogues based on 1,2,3,4-tetrahydro(iso)quinoline scaffold with anticancer and anti-infective dual action.

    PubMed

    Zablotskaya, Alla; Segal, Izolda; Geronikaki, Athina; Shestakova, Irina; Nikolajeva, Vizma; Makarenkova, Galina

    2017-06-01

    Pharmacological effects of biologically active "small molecules" can be improved by their targeted modification, which affects drug delivery and interaction with tumor cells and microorganisms. We aimed to evaluate anticancer and antimicrobial activity of lipid-like choline derivatives modified via simultaneous introduction of tetrahydro(iso)quinoline based pharmacophore system at nitrogen atom and long chain alkyl substituent at oxygen atom. Target compounds were synthesized under phase-transfer catalysis conditions followed by quaternization, and evaluated for cytotoxicity and NO-generation ability on HT-1080 and MG-22A tumor cell lines and NIH 3T3 normal mouse fibroblasts, and screened for antimicrobial activity against gram-positive (Staphylococcus aureus and Bacillus cereus) and gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Proteus mirabilis) and fungi (Candida albicans and Aspergillus niger). Inhibitory action of active compounds towards E. coli DNA gyrase was investigated. Target compounds exhibit high selective cytotoxicity (LC 50 <1μg/mL) and NO-induction ability, and reveal strong antimicrobial activity with MIC and MBC/MFC values of 0.5-32μg/mL, predominantly vs. gram-positive bacteria and fungi. Tested substances displayed inhibitory effect towards E. coli DNA gyrase, though less than ciprofloxacin. Tetrahydroisoquinoline derivatives and compounds possessing substituents with chain length of 10 and 11 carbon atoms have highest indices of activities. Lipid-like N-heterocyclic choline analogues based on 1,2,3,4-tetrahydro(iso)quinoline scaffold, possessing very high cytotoxicity with attendant strong antimicrobial activity are the leads for developing effective dual action therapeutics. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. Therapeutic uses of drug-carrier systems for imidazole-containing dipeptide compounds that act as pharmacological chaperones and have significant impact on the treatment of chronic diseases associated with increased oxidative stress and the formation of advanced glycation end products.

    PubMed

    Babizhayev, Mark A; Yegorov, Yegor E

    2010-01-01

    The purpose of this study was to determine how the naturally occurring molecules N-acetylcarnosine, L-carnosine, and carcinine, which are chemical or pharmacological chaperones, affect the cells and biomolecules of patients with skin diseases, cosmetic skin lesions, or underlying clinically significant visual impairment such as age-related cataracts, age-related retinal degeneration, and ocular complications of diabetes. We evaluated and characterized the effects of cited pharmacological chaperones on enzyme activity, protein structure in tissues, and other biomarkers of diseases in skin cells and tissues or in ocular tissues (human cataractous and normal lenses) derived from ophthalmic patients or age-matched donors. The samples were used to test imidazole-containing peptidomimetic chemical/pharmacological chaperones in relation to oxidative stress induced by reaction with lipid peroxides or advanced non-enzymatic glycation processes. Chaperone function is characterized by interaction with other proteins, mediating their folding, transport, and interaction with other molecules, lipid peroxidation products, and membranes. Although these therapies remain on hold pending further investigation, we present growing evidence demonstrating the ability of N-acetylcarnosine (lubricant eye drops) or carcinine pharmacological chaperone therapy to act as novel treatments for age-related cataracts, age-related macular degeneration, and ocular complications of diabetes. Finally, we examine strategies for identifying potential chaperone compounds and for experimentally demonstrating chaperone and transglycating (de-glycation) types of activity in in vitro and in vivo models of human age-related eye diseases, such as cataracts, and advanced glycation tissue protein-engineered systems.

  4. Azasugar inhibitors as pharmacological chaperones for Krabbe disease

    DOE PAGES

    Hill, Chris H.; Viuff, Agnete H.; Spratley, Samantha J.; ...

    2015-03-23

    Krabbe disease is a devastating neurodegenerative disorder characterized by rapid demyelination of nerve fibers. This disease is caused by defects in the lysosomal enzyme β-galactocerebrosidase (GALC), which hydrolyzes the terminal galactose from glycosphingolipids. These lipids are essential components of eukaryotic cell membranes: substrates of GALC include galactocerebroside, the primary lipid component of myelin, and psychosine, a cytotoxic metabolite. Mutations of GALC that cause misfolding of the protein may be responsive to pharmacological chaperone therapy (PCT), whereby small molecules are used to stabilize these mutant proteins, thus correcting trafficking defects and increasing residual catabolic activity in cells. Here we describe amore » new approach for the synthesis of galacto-configured azasugars and the characterization of their interaction with GALC using biophysical, biochemical and crystallographic methods. We identify that the global stabilization of GALC conferred by azasugar derivatives, measured by fluorescence-based thermal shift assays, is directly related to their binding affinity, measured by enzyme inhibition. X-ray crystal structures of these molecules bound in the GALC active site reveal which residues participate in stabilizing interactions, show how potency is achieved and illustrate the penalties of aza/iminosugar ring distortion. The structure–activity relationships described here identify the key physical properties required of pharmacological chaperones for Krabbe disease and highlight the potential of azasugars as stabilizing agents for future enzyme replacement therapies. This work lays the foundation for new drug-based treatments of Krabbe disease.« less

  5. PACAP receptor pharmacology and agonist bias: analysis in primary neurons and glia from the trigeminal ganglia and transfected cells

    PubMed Central

    Walker, C S; Sundrum, T; Hay, D L

    2014-01-01

    Background and Purpose A major challenge in the development of new medicines targeting GPCRs is the ability to quantify drug action in physiologically relevant models. Primary cell models that closely resemble the clinically relevant in vivo site of drug action are important translational tools in drug development. However, pharmacological studies in these models are generally very limited due to the methodology used. Experimental Approach We used a neuropeptide system to demonstrate the applicability of using highly sensitive signalling assays in primary cells. We quantified the action of pituitary adenylate cyclase-activating peptide (PACAP)-38, PACAP-27 and vasoactive intestinal polypeptide in primary cultures of neurons and glia derived from rat trigeminal ganglia (TG), comparing our observations to transfected cells. Key Results PACAP-responsive receptors in rat trigeminal neurons, glia and transfected PAC1n receptors were pharmacologically distinct. PACAP-38, but not PACAP-27, activated ERK in glia, while both forms stimulated cellular cAMP production. PACAP(6–38) also displayed cell-type-dependent, agonist-specific, antagonism. Conclusions and Implications The complexity of PACAP pharmacology in the TG may help to direct, more effectively, the development of disease treatments targeting the PACAP receptor. We suggest that these methodologies are broadly applicable to other primary cell types of human or animal origin, and that our approach may allow more thorough characterization of ligand properties in physiologically relevant cell types. PMID:24303997

  6. Saffron: a natural product with potential pharmaceutical applications.

    PubMed

    Christodoulou, Eirini; Kadoglou, Nikolaos P E; Kostomitsopoulos, Nikolaos; Valsami, Georgia

    2015-12-01

    Recently, a great deal of interest has been developed to isolate and investigate novel bioactive components from natural resources with health beneficial effects. Saffron is the dried stigma of Crocus sativus L. and has been used for centuries in traditional medicine mainly for its healing properties, as well as for the treatment of various pathological conditions. Objectives of the present review are to unravel its therapeutic properties and investigate the potential applications of saffron in contemporary therapy of a wide spectrum of diseases and summarize previous and current evidence regarding the biological/pharmacological activities of saffron and its active ingredients and their possible therapeutic uses. Recent phytochemistry and pharmacological experiments have indicated that crocin and safranal, the major active ingredients of saffron, exert important actions, such as antioxidant, anti-tumor, anti-diabetic, anti-inflammatory and anti-atherosclerotic. Unfortunately, the vast majority of those data derive from in vitro studies, whereas a limited number of in vivo experiments support the aforementioned effects. In addition to studies with mechanistic implications, very few clinical trials provide preliminary evidence of saffron potentiality to alleviate depression and increase cognitive function in patients with Alzheimer's disease. The history and structural features of saffron constituents are given in the first part of the review, followed by a comprehensive and critical presentation of the published preclinical and clinical studies and review papers on the pharmacology and possible therapeutic uses of saffron and its main active components crocin and safranal. © 2015 Royal Pharmaceutical Society.

  7. Pharmacological characterization of the new histamine H4 receptor agonist VUF 8430

    PubMed Central

    Lim, Herman D; Adami, Maristella; Guaita, Elena; Werfel, Thomas; Smits, Rogier A; de Esch, Iwan JP; Bakker, Remko A; Gutzmer, Ralf; Coruzzi, Gabriella; Leurs, Rob

    2009-01-01

    Background and purpose: We compare the pharmacological profiles of a new histamine H4 receptor agonist 2-(2-guanidinoethyl)isothiourea (VUF 8430) with that of a previously described H4 receptor agonist, 4-methylhistamine. Experimental approach: Radioligand binding and functional assays were performed using histamine H4 receptors expressed in mammalian cell lines. Compounds were also evaluated ex vivo in monocyte-derived dendritic cells endogenously expressing H4 receptors and in vivo in anaesthetized rats for gastric acid secretion activity. Key results: Both VUF 8430 and 4-methylhistamine were full agonists at human H4 receptors with lower affinity at rat and mouse H4 receptors. Both compounds induced chemotaxis of monocyte-derived dendritic cells. VUF 8430 also showed reasonable affinity and was a full agonist at the H3 receptor. Agmatine is a metabolite of arginine, structurally related to VUF 8430, and was a H4 receptor agonist with micromolar affinity. At histamine H3 receptors, agmatine was a full agonist, whereas 4-methylhistamine was an agonist only at high concentrations. Both VUF 8430 and agmatine were inactive at H1 and H2 receptors, whereas 4-methylhistamine is as active as histamine at H2 receptors. In vivo, VUF 8430 only caused a weak secretion of gastric acid mediated by H2 receptors, whereas 4-methylhistamine, dimaprit, histamine and amthamine, at equimolar doses, induced 2.5- to 6-fold higher output than VUF 8430. Conclusions and implications: Our results suggest complementary use of 4-methylhistamine and VUF 8430 as H4 receptor agonists. Along with H4 receptor antagonists, both agonists can serve as useful pharmacological tools in studies of histamine H4 receptors. PMID:19413569

  8. Cyclic Dipeptides: Secondary Metabolites Isolated from Different Microorganisms with Diverse Biological Activities.

    PubMed

    Ortiz, Aurelio; Sansinenea, Estibaliz

    2017-01-01

    Cyclic dipeptides are the simplest peptide derivatives commonly found in nature. These chiral molecules are easily synthesized from readily available α-amino acids using a simple methodology. They are privileged structures with the ability to bind to a wide range of receptors and have a broad variety of biological and pharmacological activities. We will give a brief overview of their status giving and interesting reference list about the last works. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Analgesic and Antineuropathic Drugs Acting Through Central Cholinergic Mechanisms

    PubMed Central

    Bartolini, Alessandro; Cesare Mannelli, Lorenzo Di; Ghelardini, Carla

    2011-01-01

    The role of muscarinic and nicotinic cholinergic receptors in analgesia and neuropathic pain relief is relatively unknown. This review describes how such drugs induce analgesia or alleviate neuropathic pain by acting on the central cholinergic system. Several pharmacological strategies are discussed which increase synthesis and release of acetylcholine (ACh) from cholinergic neurons. The effects of their acute and chronic administration are described. The pharmacological strategies which facilitate the physiological functions of the cholinergic system without altering the normal modulation of cholinergic signals are highlighted. It is proposed that full agonists of muscarinic or nicotinic receptors should be avoided. Their activation is too intense and un-physiological because neuronal signals are distorted when these receptors are constantly activated. Good results can be achieved by using agents that are able to a) increase ACh synthesis, b) partially inhibit cholinesterase activity c) selectively block the autoreceptor or heteroreceptor feedback mechanisms. Activation of M1 subtype muscarinic receptors induces analgesia. Chronic stimulation of nicotinic (N1) receptors has neuronal protective effects. Recent experimental results indicate a relationship between repeated cholinergic stimulation and neurotrophic activation of the glial derived neurotrophic factor (GDNF) family. At least 9 patents covering novel chemicals for cholinergic system modulation and pain control are discussed. PMID:21585331

  10. T-cell receptor signaling activates an ITK/NF-κB/GATA-3 axis in T-cell lymphomas facilitating resistance to chemotherapy

    PubMed Central

    Wang, Tianjiao; Lu, Ye; Polk, Avery; Chowdhury, Pinki; Zamalloa, Carlos Murga; Fujiwara, Hiroshi; Suemori, Koichiro; Beyersdorf, Niklas; Hristov, Alexandra C.; Lim, Megan S.; Bailey, Nathanael G.; Wilcox, Ryan A.

    2016-01-01

    Purpose T-cell lymphomas are a molecularly heterogeneous group of non-Hodgkin lymphomas (NHL) that account for a disproportionate number of NHL disease-related deaths due to their inherent and acquired resistance to standard multiagent chemotherapy regimens. Despite their molecular heterogeneity and frequent loss of various T-cell specific receptors, the T-cell antigen receptor is retained in the majority of these lymphomas. As T-cell receptor (TCR) engagement activates a number of signaling pathways and transcription factors that regulate T-cell growth and survival, we examined the TCR’s role in mediating resistance to chemotherapy. Experimental Design Genetic and pharmacologic strategies were utilized to determine the contribution of tyrosine kinases and transcription factors activated in conventional T cells following T-cell receptor (TCR) engagement in acquired chemotherapy resistance in primary T-cell lymphoma cells and patient-derived cell lines. Results Here we report that TCR signaling activates a signaling axis that includes ITK, NF-κB, and GATA-3, and promotes chemotherapy resistance. Conclusions These observations have significant therapeutic implications, as pharmacologic inhibition of ITK prevented activation of this signaling axis and overcame chemotherapy resistance. PMID:27780854

  11. Pharmacological and Toxicological Screening of Novel Benzimidazole-Morpholine Derivatives as Dual-Acting Inhibitors.

    PubMed

    Can, Nafiz Öncü; Çevik, Ulviye Acar; Sağlık, Begüm Nurpelin; Özkay, Yusuf; Atlı, Özlem; Baysal, Merve; Özkay, Ümide Demir; Can, Özgür Devrim

    2017-08-19

    The aim of this study was to investigate acetylcholinesterase (AChE), monoamine oxidase A (MAO-A), monoamine oxidase B (MAO-B), cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzyme inhibitory, and antimicrobial activities of a new series of 2-(4-substituted phenyl)-1-[2-(morpholin-4-yl)ethyl]-1 H -benzimidazole derivatives, for their possible use as multi-action therapeutic agents. Target compounds ( n = 15) were synthesized under microwave irradiation conditions in two steps, and their structures were elucidated by FT-IR, ¹H-NMR, 13 C-NMR and high resolution mass spectroscopic analyses. Pharmacological screening studies revealed that two of the compounds ( 2b and 2j ) have inhibitory potential on both COX-1 and COX-2 enzymes. In addition, cytotoxic and genotoxic properties of the compounds 2b , 2j and 2m were investigated via the well-known MTT and Ames tests, which revealed that the mentioned compounds are non-cytotoxic and non-genotoxic. As a concise conclusion, two novel compounds were characterized as potential candidates for treatment of frequently encountered inflammatory diseases.

  12. Clinical pharmacology of lubiprostone, a chloride channel activator in defecation disorders.

    PubMed

    Ginzburg, Regina; Ambizas, Emily M

    2008-08-01

    Lubiprostone, a prostaglandin E1 derivative, was approved in January 2006 for the treatment of chronic idiopathic constipation (CIC) in adults and in April 2008 for the treatment of irritable bowel syndrome with constipation (IBS-C) in adult women. To review the pharmacology, efficacy and safety of lubiprostone and recommend its place in therapy for CIC and IBS-C. We conducted a literature search using PubMed/Medline (1966-April 2008) using the keywords lubiprostone, chronic constipation, and irritable bowel syndrome. Data provided by the manufacturer and the FDA were also reviewed. Available literature for lubiprostone is mostly available in abstract data making it difficult to evaluate the clinical evidence. Although this medication shows promise, more information is needed to determine its place in therapy.

  13. Therapeutic potential of cannabinoids in counteracting chemotherapy-induced adverse effects: an exploratory review.

    PubMed

    Ostadhadi, Sattar; Rahmatollahi, Mahdieh; Dehpour, Ahmad-Reza; Rahimian, Reza

    2015-03-01

    Cannabinoids (the active constituents of Cannabis sativa) and their derivatives have got intense attention during recent years because of their extensive pharmacological properties. Cannabinoids first developed as successful agents for alleviating chemotherapy associated nausea and vomiting. Recent investigations revealed that cannabinoids have a wide range of therapeutic effects such as appetite stimulation, inhibition of nausea and emesis, suppression of chemotherapy or radiotherapy-associated bone loss, chemotherapy-induced nephrotoxicity and cardiotoxicity, pain relief, mood amelioration, and last but not the least relief from insomnia. In this exploratory review, we scrutinize the potential of cannabinoids to counteract chemotherapy-induced side effects. Moreover, some novel and yet important pharmacological aspects of cannabinoids such as antitumoral effects will be discussed. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Pedal peptide/orcokinin‐type neuropeptide signaling in a deuterostome: The anatomy and pharmacology of starfish myorelaxant peptide in Asterias rubens

    PubMed Central

    Lin, Ming; Egertová, Michaela; Zampronio, Cleidiane G.; Jones, Alexandra M.

    2017-01-01

    Abstract Pedal peptide (PP) and orcokinin (OK) are related neuropeptides that were discovered in protostomian invertebrates (mollusks, arthropods). However, analysis of genome/transcriptome sequence data has revealed that PP/OK‐type neuropeptides also occur in a deuterostomian phylum—the echinoderms. Furthermore, a PP/OK‐type neuropeptide (starfish myorelaxant peptide, SMP) was recently identified as a muscle relaxant in the starfish Patiria pectinifera. Here mass spectrometry was used to identify five neuropeptides (ArPPLN1a‐e) derived from the SMP precursor (PP‐like neuropeptide precursor 1; ArPPLNP1) in the starfish Asterias rubens. Analysis of the expression of ArPPLNP1 and neuropeptides derived from this precursor in A. rubens using mRNA in situ hybridization and immunohistochemistry revealed a widespread pattern of expression, with labeled cells and/or processes present in the radial nerve cords, circumoral nerve ring, digestive system (e.g., cardiac stomach) and body wall‐associated muscles (e.g., apical muscle) and appendages (e.g., tube feet and papulae). Furthermore, our data provide the first evidence that neuropeptides are present in the lateral motor nerves and in nerve processes innervating interossicular muscles. In vitro pharmacological tests with SMP (ArPPLN1b) revealed that it causes dose‐dependent relaxation of apical muscle, tube foot and cardiac stomach preparations from A. rubens. Collectively, these anatomical and pharmacological data indicate that neuropeptides derived from ArPPLNP1 act as inhibitory neuromuscular transmitters in starfish, which contrasts with the myoexcitatory actions of PP/OK‐type neuropeptides in protostomian invertebrates. Thus, the divergence of deuterostomes and protostomes may have been accompanied by an inhibitory–excitatory transition in the roles of PP/OK‐type neuropeptides as regulators of muscle activity. PMID:28880392

  15. Evaluation of antidepressant-like and anxiolytic-like activity of purinedione-derivatives with affinity for adenosine A2A receptors in mice.

    PubMed

    Dziubina, Anna; Szmyd, Karina; Zygmunt, Małgorzata; Sapa, Jacek; Dudek, Magdalena; Filipek, Barbara; Drabczyńska, Anna; Załuski, Michał; Pytka, Karolina; Kieć-Kononowicz, Katarzyna

    2016-12-01

    It has recently been suggested that the adenosine A 2A receptor plays a role in several animal models of depression. Additionally, A 2A antagonists have reversed behavioral deficits and exhibited a profile similar to classical antidepressants. In the present study, imidazo- and pyrimido[2,1-f]purinedione derivatives (KD 66, KD 167, KD 206) with affinity to A 2A receptors but poor A 1 affinity were evaluated for their antidepressant- and anxiolytic-like activity. The activity of these derivatives was tested using a tail suspension and forced swim test, two widely-used behavioral paradigms for the evaluation of antidepressant-like activity. In turn, the anxiolytic activity was evaluated using the four-plate test. The results showed the antidepressant-like activity of pyrimido- and imidazopurinedione derivatives (i.e. KD 66, KD 167 and KD 206) in acute and chronic behavioral tests in mice. KD 66 revealed an anxiolytic-like effect, while KD 167 increased anxiety behaviors. KD 206 had no effect on anxiety. Furthermore, none of the tested compounds increased locomotor activity. Available data support the proposition that the examined compounds with adenosine A 2A receptor affinity may be an interesting target for the development of antidepressant and/or anxiolytic agents. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. Evolution of the Bifunctional Lead μ Agonist / δ Antagonist Containing the Dmt-Tic Opioid Pharmacophore.

    PubMed

    Balboni, Gianfranco; Salvadori, Severo; Trapella, Claudio; Knapp, Brian I; Bidlack, Jean M; Lazarus, Lawrence H; Peng, Xuemei; Neumeyer, John L

    2010-02-17

    Based on a renewed importance recently attributed to bi- or multifunctional opioids, we report the synthesis and pharmacological evaluation of some analogues derived from our lead μ agonist / δ antagonist, H-Dmt-Tic-Gly-NH-Bzl. Our previous studies focused on the importance of the C-teminal benzyl function in the induction of such bifunctional activity. The introduction of some substituents in the para position of the phenyl ring (-Cl, -CH(3), partially -NO(2), inactive -NH(2)) was found to give a more potent μ agonist / antagonist effect associated with a relatively unmodified δ antagonist activity (pA(2) = 8.28-9.02). Increasing the steric hindrance of the benzyl group (using diphenylmethyl and tetrahydroisoquinoline functionalities) substantially maintained the μ agonist and δ antagonist activities of the lead compound. Finally and quite unexpectedly D-Tic2, considered as a wrong opioid message now; inserted into the reference compound in lieu of L-Tic, provided a μ agonist / δ agonist better than our reference ligand (H-Dmt-Tic-Gly-NH-Ph) and was endowed with the same pharmacological profile.

  17. Anticancer agents derived from natural cinnamic acids.

    PubMed

    Su, Ping; Shi, Yaling; Wang, Jinfeng; Shen, Xiuxiu; Zhang, Jie

    2015-01-01

    Cancer is the most dangerous disease that causes deaths all over the world. Natural products have afforded a rich source of drugs in a number of therapeutic fields including anticancer agents. Many significant drugs have been derived from natural sources by structural optimization of natural products. Cinnamic acid has gained great interest due to its antiproliferative, antioxidant, antiangiogenic and antitumorigenic potency. Currently it has been observed that cinnamic acid and its analogs such as caffeic acid, sinapic acid, ferulic acid, and isoferulic acid display various pharmacological activities, such as immunomodulation, anti-inflammation, anticancer and antioxidant. They have served to be the major sources of potential leading anticancer compounds. In this review, we focus on the anticancer potency of cinnamic acid derivatives and novel strategies to design these derivatives. We hope this review will be useful for researchers who are interested in developing anticancer agents.

  18. Calcium Channels: Structure and Function (Annals of the New York Academy of Sciences. Volume 560)

    DTIC Science & Technology

    1989-06-26

    many protease inhibitors were used , we believe that proteolysis was a problem. We therefore modified our purification protocol and have obtained a...recover activity by selective combination of fractions were unsuccessful. Chemical Cross-Linking of [ 25 Jo-CgTX Cross-linking of w-CgTX derivatives using ... using the planar bilayer recording technique and by comparing ligand-dependent gating, ionic selectivity , and pharmacology of purified ryanodine

  19. Mycotoxins

    PubMed Central

    Bennett, J. W.; Klich, M.

    2003-01-01

    Mycotoxins are secondary metabolites produced by microfungi that are capable of causing disease and death in humans and other animals. Because of their pharmacological activity, some mycotoxins or mycotoxin derivatives have found use as antibiotics, growth promotants, and other kinds of drugs; still others have been implicated as chemical warfare agents. This review focuses on the most important ones associated with human and veterinary diseases, including aflatoxin, citrinin, ergot akaloids, fumonisins, ochratoxin A, patulin, trichothecenes, and zearalenone. PMID:12857779

  20. Shikonin and its derivatives: a patent review.

    PubMed

    Wang, Rubing; Yin, Runting; Zhou, Wen; Xu, Defeng; Li, Shaoshun

    2012-09-01

    Shikonin and its derivatives are the main components of red pigment extracts from Lithospermum erythrorhizon, whose medicinal properties have been confirmed for a long history, and have aroused great interest as the hallmark molecules responsible for their significant biological activities, especially for their striking anticancer effects. Areas covered in this paper include a review of the total synthesis, biological effects and mechanisms of shikonin and its derivatives for their anticancer activities in the past decade, basing on literature and patents. The current state and problems are also discussed. At present, screening for anticancer shikonin derivatives is based on cellular level to find compounds with stronger cytotoxicity. Though several compounds have been discovered with striking cytotoxicity in vitro, however, no selectivity was observed and undoubtedly, the further outcomes have been disappointing because of their great damage to normal cells. Meanwhile, the presumed mechanisms of action are also established in terms of their cytotoxicity. From a pharmacological point of view, most of the shikonin derivatives are at an early stage of their development, and thus it is difficult to determine the exact effectiveness in cancer treatment. With research in this field going deeper, it can be expected that, despite the difficulties, shikonin derivatives as potential anticancer agents will soon follow.

  1. Activation of brain-derived neurotrophic factor/tropomyosin-related kinase B signaling accompanying filial imprinting in domestic chicks (Gallus gallus domesticus).

    PubMed

    Yamaguchi, Shinji; Aoki, Naoya; Kobayashi, Daisuke; Kitajima, Takaaki; Iikubo, Eiji; Katagiri, Sachiko; Matsushima, Toshiya; Homma, Koichi J

    2011-12-07

    Newly hatched domestic chicks serve as an important model for experimental studies of neural and behavioral plasticity. Brain-derived neurotrophic factor (BDNF) has been shown to play a critical role in synaptic plasticity, including long-term potentiation, which underlies learning and memory in rodents. Here we show that BDNF mRNA levels increased in the intermediate medial hyperpallium apicale (IMHA), which is the caudal area of the visual Wulst, of imprinted chick brains, and the upregulation of gene expression correlated with the strength of the learned preference to the training object. In addition, activation of tropomyosin-related kinase B (TrkB)/phosphatidylinositol 3-kinase signaling was associated with filial imprinting. However, pharmacological deprivation of TrkB phosphorylation in IMHA did not impair memory formation, suggesting that activation of BDNF/TrkB signaling in IMHA is not involved in memory acquisition in filial imprinting.

  2. The potential of anti-malarial compounds derived from African medicinal plants, part II: a pharmacological evaluation of non-alkaloids and non-terpenoids

    PubMed Central

    2014-01-01

    Malaria is currently a public health concern in many countries in the world due to various factors which are not yet under check. Drug discovery projects targeting malaria often resort to natural sources in the search for lead compounds. A survey of the literature has led to a summary of the major findings regarding plant-derived compounds from African flora, which have shown anti-malarial/antiplasmodial activities, tested by in vitro and in vivo assays. Considerations have been given to compounds with activities ranging from “very active” to “weakly active”, leading to >500 chemical structures, mainly alkaloids, terpenoids, flavonoids, coumarins, phenolics, polyacetylenes, xanthones, quinones, steroids and lignans. However, only the compounds that showed anti-malarial activity, from “very active” to “moderately active”, are discussed in this review. PMID:24602358

  3. Titration-based screening for evaluation of natural product extracts: identification of an aspulvinone family of luciferase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, P.G.; Auld, D.S.; Schultz, P.J.

    2011-11-28

    The chemical diversity of nature has tremendous potential for the discovery of molecular probes and medicinal agents. However, sensitivity of HTS assays to interfering components of crude extracts derived from plants, and macro- and microorganisms has curtailed their use in lead discovery. Here, we describe a process for leveraging the concentration-response curves obtained from quantitative HTS to improve the initial selection of actives from a library of partially fractionated natural product extracts derived from marine actinomycetes and fungi. By using pharmacological activity, the first-pass CRC paradigm improves the probability that labor-intensive subsequent steps of reculturing, extraction, and bioassay-guided isolation ofmore » active component(s) target the most promising strains and growth conditions. We illustrate how this process identified a family of fungal metabolites as potent inhibitors of firefly luciferase, subsequently resolved in molecular detail by X-ray crystallography.« less

  4. A Review on the Pharmacological Activities and Phytochemicals of Alpinia officinarum (Galangal) Extracts Derived from Bioassay-Guided Fractionation and Isolation

    PubMed Central

    Basri, Aida Maryam; Taha, Hussein; Ahmad, Norhayati

    2017-01-01

    The rhizomes of Alpinia officinarum Hance have been used conventionally for the treatment of various ailments, triggering a wide interest from the scientific research community on this ethnomedicinal plant. This review summarizes the phytochemical and pharmacological properties of the extracts and fractions from A. officinarum, a plant species of the Zingiberaceae family. Different parts of the plant – leaves, roots, rhizomes, and aerial parts – have been extracted in various solvents – methanol, ethanol, ethyl acetate, hexane, dichloromethane, aqueous, chloroform, and petroleum ether, using various techniques – Soxhlet extraction, maceration, ultrasonication, and soaking, whereas fractionation of the plant extracts involves the solvent–solvent partition method. The extracts, fractions, and isolated compounds have been studied for their biological activities – antioxidant, antibacterial, anti-inflammatory, anticancer, antiproliferative, inhibition of enzymes, as well as the inhibition of nitric oxide production. More findings on A. officinarum are certainly important to further develop potential bioactive drug compounds. PMID:28503054

  5. BAX channel activity mediates lysosomal disruption linked to Parkinson disease.

    PubMed

    Bové, Jordi; Martínez-Vicente, Marta; Dehay, Benjamin; Perier, Celine; Recasens, Ariadna; Bombrun, Agnes; Antonsson, Bruno; Vila, Miquel

    2014-05-01

    Lysosomal disruption is increasingly regarded as a major pathogenic event in Parkinson disease (PD). A reduced number of intraneuronal lysosomes, decreased levels of lysosomal-associated proteins and accumulation of undegraded autophagosomes (AP) are observed in PD-derived samples, including fibroblasts, induced pluripotent stem cell-derived dopaminergic neurons, and post-mortem brain tissue. Mechanistic studies in toxic and genetic rodent PD models attribute PD-related lysosomal breakdown to abnormal lysosomal membrane permeabilization (LMP). However, the molecular mechanisms underlying PD-linked LMP and subsequent lysosomal defects remain virtually unknown, thereby precluding their potential therapeutic targeting. Here we show that the pro-apoptotic protein BAX (BCL2-associated X protein), which permeabilizes mitochondrial membranes in PD models and is activated in PD patients, translocates and internalizes into lysosomal membranes early following treatment with the parkinsonian neurotoxin MPTP, both in vitro and in vivo, within a time-frame correlating with LMP, lysosomal disruption, and autophagosome accumulation and preceding mitochondrial permeabilization and dopaminergic neurodegeneration. Supporting a direct permeabilizing effect of BAX on lysosomal membranes, recombinant BAX is able to induce LMP in purified mouse brain lysosomes and the latter can be prevented by pharmacological blockade of BAX channel activity. Furthermore, pharmacological BAX channel inhibition is able to prevent LMP, restore lysosomal levels, reverse AP accumulation, and attenuate mitochondrial permeabilization and overall nigrostriatal degeneration caused by MPTP, both in vitro and in vivo. Overall, our results reveal that PD-linked lysosomal impairment relies on BAX-induced LMP, and point to small molecules able to block BAX channel activity as potentially beneficial to attenuate both lysosomal defects and neurodegeneration occurring in PD.

  6. c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals.

    PubMed

    Nishimura, Christopher D; Brenner, Daniel A; Mukherjee, Malini; Hirsch, Rachel A; Ott, Leah; Wu, Meng-Fen; Liu, Hao; Dakhova, Olga; Orange, Jordan S; Brenner, Malcolm K; Lin, Charles Y; Arber, Caroline

    2017-12-21

    Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL + polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents. © 2017 by The American Society of Hematology.

  7. Neuronal plasticity and neurotrophic factors in drug responses

    PubMed Central

    Castrén, Eero; Antila, Hanna

    2017-01-01

    Neurotrophic factors, particularly brain-derived neurotrophic factor (BDNF) and other members of the neurotrophin family, are central mediators of the activity-dependent plasticity through which environmental experiences, such as sensory information are translated into the structure and function of neuronal networks. Synthesis, release and action of BDNF is regulated by neuronal activity and BDNF in turn leads to trophic effects such as formation, stabilization and potentiation of synapses through its high-affinity TrkB receptors. Several clinically available drugs directly activate neurotrophins and neuronal plasticity. In particular, antidepressant drugs rapidly activate TrkB signaling and gradually increase BDNF expression, and the behavioral effects of antidepressants are mediated by and dependent on BDNF signaling through TrkB at least in rodents. These findings indicate that antidepressants, widely used drugs, effectively act as TrkB activators. They further imply that neuronal plasticity is a central mechanism in the action of antidepressant drugs. Indeed, it was recently discovered that antidepressants reactivate a state of plasticity in the adult cerebral cortex that closely resembles the enhanced plasticity normally observed during postnatal critical periods. This state of induced plasticity, known as iPlasticity, allows environmental stimuli to beneficially reorganize networks abnormally wired during early life. iPlasticity has been observed in cortical as well as subcortical networks and is induced by several pharmacological and non-pharmacological treatments. iPlasticity is a new pharmacological principle where drug treatment and rehabilitation cooperate: the drug acts permissively to enhance plasticity and rehabilitation provides activity to guide the appropriate wiring of the plastic network. Optimization of iPlastic drug treatment with novel means of rehabilitation may help improve the efficacy of available drug treatments and expand the use of currently existing drugs into new indications. PMID:28397840

  8. Privileged scaffolds or promiscuous binders: a glance of pyrrolo[2,1-f][1,2,4]triazines and related bridgehead nitrogen heterocycles in medicinal chemistry.

    PubMed

    Song, Yu'ning; Zhan, Peng; Zhang, Qingzhu; Liu, Xinyong

    2013-01-01

    Pyrrolo[2,1-f][1,2,4]triazine template, a unique bridgehead nitrogen heterocycle, certainly deserves the title of "privileged scaffold" in the drug discovery field because of the versatility and potential to yield derivatives with a wide range of biological activities, such as anti-anaplastic lymphoma kinase (ALK), Janus kinase 2 (JAK2), VEGFR-2, EGFR and/or HER2, Met kinase, p38α mitogen-activated protein (MAP) kinase and insulin-like growth factor receptor (IGF-1R) kinase activities, etc. These different biological properties of pyrrolo[2,1-f][1,2,4]triazine derivatives have motivated new studies in searching for novel derivatives with improved activity and also other applications in pharmaceutical field. However, no systematic review is available in the literature on the pyrrolo[2,1- f][1,2,4]triazine derivatives concerning the design of potent drug-like compounds. Owing to the importance of this heterocyclic system, the present paper is an attempt to the pharmacological activities, structural modifications and the structure-activity relationship (SAR) reported for bridgehead nitrogen heterocycles in the current literature, making an effort to highlight the importance and therapeutic potentials of the pyrrolo[2,1-f][1,2,4]triazine scaffold and its bridgehead nitrogen bioisosters as heterocyclic privileged medicinal scaffolds.

  9. Design, synthesis and antibacterial evaluation of honokiol derivatives.

    PubMed

    Wu, Bo; Fu, Su-Hong; Tang, Huan; Chen, Kai; Zhang, Qiang; Peng, Ai-Hua; Ye, Hao-Yu; Cheng, Xing-Jun; Lian, Mao; Wang, Zhen-Ling; Chen, Li-Juan

    2018-02-15

    Staphylococcus aureus is a major and dangerous human pathogen that causes a range of clinical manifestations of varying severity, and is the most commonly isolated pathogen in the setting of skin and soft tissue infections, pneumonia, suppurative arthritis, endovascular infections, foreign-body associated infections, septicemia, osteomyelitis, and toxic shocksyndrome. Honokiol, a pharmacologically active natural compound derived from the bark of Magnolia officinalis, has antibacterial activity against Staphylococcus aureus which provides a great inspiration for the discovery of potential antibacterial agents. Herein, honokiol derivatives were designed, synthesized and evaluated for their antibacterial activity by determining the minimum inhibitory concentration (MIC) against S. aureus ATCC25923 and Escherichia coli ATCC25922 in vitro. 7c exhibited better antibacterial activity than other derivatives and honokiol. The structure-activity relationships indicated piperidine ring with amino group is helpful to improve antibacterial activity. Further more, 7c showed broad spectrum antibacterial efficiency against various bacterial strains including eleven gram-positive and seven gram-negative species. Time-kill kinetics against S. aureus ATCC25923 in vitro revealed that 7c displayed a concentration-dependent effect and more rapid bactericidal kinetics better than linezolid and vancomycin with the same concentration. Gram staining assays of S. aureus ATCC25923 suggested that 7c could destroy the cell walls of bacteria at 1×MIC and 4×MIC. Copyright © 2017. Published by Elsevier Ltd.

  10. Drug Insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors.

    PubMed

    Gervois, Philippe; Fruchart, Jean-Charles; Staels, Bart

    2007-02-01

    Intensive preclinical investigations have delineated a role for peroxisome proliferator-activated receptors (PPARs) in energy metabolism and inflammation. PPARs are activated by natural lipophilic ligands such as fatty acids and their derivatives. Normalization of lipid and glucose metabolism is achieved via pharmacological modulation of PPAR activity. PPARs may also alter atherosclerosis progression through direct effects on the vascular wall. PPARs regulate genes involved in the recruitment of leukocytes to endothelial cells, in vascular inflammation, in macrophage lipid homeostasis, and in thrombosis. PPARs therefore modulate metabolic and inflammatory perturbations that predispose to cardiovascular diseases and type 2 diabetes. The hypolipidemic fibrates and the antidiabetic thiazolidinediones are drugs that act via PPARalpha and PPARgamma, respectively, and are used in clinical practice. PPARbeta/delta ligands are currently in clinical evaluation. The pleiotropic actions of PPARs and the fact that chemically diverse PPAR agonists may induce distinct pharmacological responses have led to the emergence of new concepts for drug design. A more precise understanding of the molecular pathways implicated in the response to chemically distinct PPAR agonists should provide new opportunities for targeted therapeutic applications in the management of the metabolic syndrome, type 2 diabetes, and cardiovascular diseases.

  11. Pharmacologic inhibition of MEK signaling prevents growth of canine hemangiosarcoma.

    PubMed

    Andersen, Nicholas J; Nickoloff, Brian J; Dykema, Karl J; Boguslawski, Elissa A; Krivochenitser, Roman I; Froman, Roe E; Dawes, Michelle J; Baker, Laurence H; Thomas, Dafydd G; Kamstock, Debra A; Kitchell, Barbara E; Furge, Kyle A; Duesbery, Nicholas S

    2013-09-01

    Angiosarcoma is a rare neoplasm of endothelial origin that has limited treatment options and poor five-year survival. As a model for human angiosarcoma, we studied primary cells and tumorgrafts derived from canine hemangiosarcoma (HSA), which is also an endothelial malignancy with similar presentation and histology. Primary cells isolated from HSA showed constitutive extracellular signal-regulated kinase (ERK) activation. The mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor CI-1040 reduced ERK activation and the viability of primary cells derived from visceral, cutaneous, and cardiac HSA in vitro. HSA-derived primary cells were also sensitive to sorafenib, an inhibitor of B-Raf and multireceptor tyrosine kinases. In vivo, CI-1040 or PD0325901 decreased the growth of cutaneous cell-derived xenografts and cardiac-derived tumorgrafts. Sorafenib decreased tumor size in both in vivo models, although cardiac tumorgrafts were more sensitive. In human angiosarcoma, we noted that 50% of tumors stained positively for phosphorylated ERK1/2 and that the expression of several MEK-responsive transcription factors was upregulated. Our data showed that MEK signaling is essential for the growth of HSA in vitro and in vivo and provided evidence that the same pathways are activated in human angiosarcoma. This indicates that MEK inhibitors may form part of an effective therapeutic strategy for the treatment of canine HSA or human angiosarcoma, and it highlights the use of spontaneous canine cancers as a model of human disease.

  12. Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects.

    PubMed

    Zhou, Y; Ingelman-Sundberg, M; Lauschke, V M

    2017-10-01

    Genetic polymorphisms in cytochrome P450 (CYP) genes can result in altered metabolic activity toward a plethora of clinically important medications. Thus, single nucleotide variants and copy number variations in CYP genes are major determinants of drug pharmacokinetics and toxicity and constitute pharmacogenetic biomarkers for drug dosing, efficacy, and safety. Strikingly, the distribution of CYP alleles differs considerably between populations with important implications for personalized drug therapy and healthcare programs. To provide a global distribution map of CYP alleles with clinical importance, we integrated whole-genome and exome sequencing data from 56,945 unrelated individuals of five major human populations. By combining this dataset with population-specific linkage information, we derive the frequencies of 176 CYP haplotypes, providing an extensive resource for major genetic determinants of drug metabolism. Furthermore, we aggregated this dataset into spectra of predicted functional variability in the respective populations and discuss the implications for population-adjusted pharmacological treatment strategies. © 2017 The Authors Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  13. N-terminal valine adduct from the anti-HIV drug abacavir in rat haemoglobin as evidence for abacavir metabolism to a reactive aldehyde in vivo.

    PubMed

    Charneira, C; Grilo, N M; Pereira, S A; Godinho, A L A; Monteiro, E C; Marques, M M; Antunes, A M M

    2012-11-01

    The aim of this study was to obtain evidence for the activation of the nucleoside reverse transcriptase inhibitor abacavir to reactive aldehyde metabolites in vivo. Protein haptenation by these reactive metabolites may be a factor in abacavir-induced toxic events. The formation of N-terminal valine adducts from the abacavir-derived aldehydes was investigated in the haemoglobin of Wistar rats treated with eight daily doses (120 mg·kg(-1)) of abacavir. The analyses were conducted by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry upon comparison with synthetic standards. An N-terminal valine haemoglobin adduct derived from an α,β-unsaturated aldehyde metabolite of abacavir was identified in vivo for the first time. This preliminary work on abacavir metabolism provides the first unequivocal evidence for the formation of an α,β-unsaturated aldehyde metabolite in vivo and of its ability to form haptens with proteins. The methodology described herein can be used to assess the formation of this metabolite in human samples and has the potential to become a valuable pharmacological tool for mechanistic studies of abacavir toxicity. In fact, the simplicity of the method suggests that the abacavir adduct with the N-terminal valine of haemoglobin could be used to investigate abacavir-induced toxicity for accurate risk/benefit estimations. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  14. Natural product-derived small molecule activators of hypoxia-inducible factor-1 (HIF-1).

    PubMed

    Nagle, Dale G; Zhou, Yu-Dong

    2006-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a key mediator of oxygen homeostasis that was first identified as a transcription factor that is induced and activated by decreased oxygen tension. Upon activation, HIF-1 upregulates the transcription of genes that promote adaptation and survival under hypoxic conditions. HIF-1 is a heterodimer composed of an oxygen-regulated subunit known as HIF-1alpha and a constitutively expressed HIF-1beta subunit. In general, the availability and activity of the HIF-1alpha subunit determines the activity of HIF-1. Subsequent studies have revealed that HIF-1 is also activated by environmental and physiological stimuli that range from iron chelators to hormones. Preclinical studies suggest that HIF-1 activation may be a valuable therapeutic approach to treat tissue ischemia and other ischemia/hypoxia-related disorders. The focus of this review is natural product-derived small molecule HIF-1 activators. Natural products, relatively low molecular weight organic compounds produced by plants, animals, and microbes, have been and continue to be a major source of new drugs and molecular probes. The majority of known natural product-derived HIF-1 activators were discovered through the pharmacological evaluation of specifically selected individual compounds. On the other hand, the combination of natural products chemistry with appropriate high-throughput screening bioassays may yield novel natural product-derived HIF-1 activators. Potent natural product-derived HIF-1 activators that exhibit a low level of toxicity and side effects hold promise as new treatment options for diseases such as myocardial and peripheral ischemia, and as chemopreventative agents that could be used to reduce the level of ischemia/reperfusion injury following heart attack and stroke.

  15. Mitochondriotropic and Cardioprotective Effects of Triphenylphosphonium-Conjugated Derivatives of the Diterpenoid Isosteviol

    PubMed Central

    Strobykina, Irina; Semenov, Victor V.; Semenova, Marina; Martelli, Alma; Citi, Valentina; Breschi, Maria C.; Kataev, Vladimir E.; Calderone, Vincenzo

    2017-01-01

    Mitochondria play a crucial role in the cell fate; in particular, reducing the accumulation of calcium in the mitochondrial matrix offers cardioprotection. This affect is achieved by a mild depolarization of the mitochondrial membrane potential, which prevents the assembly and opening of the mitochondrial permeability transition pore. For this reason, mitochondria are an attractive target for pharmacological interventions that prevent ischaemia/reperfusion injury. Isosteviol is a diterpenoid created from the acid hydrolysis of Stevia rebaudiana Bertoni (fam. Asteraceae) glycosides that has shown protective effects against ischaemia/reperfusion injury, which are likely mediated through the activation of mitochondrial adenosine tri-phosphate (ATP)-sensitive potassium (mitoKATP) channels. Some triphenylphosphonium (triPP)-conjugated derivatives of isosteviol have been developed, and to evaluate the possible pharmacological benefits that result from these synthetic modifications, in this study, the mitochondriotropic properties of isosteviol and several triPP-conjugates were investigated in rat cardiac mitochondria and in the rat heart cell line H9c2. This study’s main findings highlight the ability of isosteviol to depolarize the mitochondrial membrane potential and reduce calcium uptake by the mitochondria, which are typical functions of mitochondrial potassium channel openings. Moreover, triPP-conjugated derivatives showed a similar behavior to isosteviol but at lower concentrations, indicative of their improved uptake into the mitochondrial matrix. Finally, the cardioprotective property of a selected triPP-conjugated derivative was demonstrated in an in vivo model of acute myocardial infarct. PMID:28954424

  16. Monocyte-derived extracellular Nampt-dependent biosynthesis of NAD+ protects the heart against pressure overload

    PubMed Central

    Yano, Masamichi; Akazawa, Hiroshi; Oka, Toru; Yabumoto, Chizuru; Kudo-Sakamoto, Yoko; Kamo, Takehiro; Shimizu, Yu; Yagi, Hiroki; Naito, Atsuhiko T.; Lee, Jong-Kook; Suzuki, Jun-ichi; Sakata, Yasushi; Komuro, Issei

    2015-01-01

    Nicotinamide phosphoribosyltransferase (Nampt) catalyzes the rate-limiting step in the salvage pathway for nicotinamide adenine dinucleotide (NAD+) biosynthesis, and thereby regulates the deacetylase activity of sirtuins. Here we show accommodative regulation of myocardial NAD+ by monocyte-derived extracellular Nampt (eNampt), which is essential for hemodynamic compensation to pressure overload. Although intracellular Nampt (iNampt) expression was decreased in pressure-overloaded hearts, myocardial NAD+ concentration and Sirt1 activity were preserved. In contrast, iNampt was up-regulated in spleen and monocytes, and circulating eNampt protein and nicotinamide mononucleotide (NMN), a key precursor of NAD+, were significantly increased. Pharmacological inhibition of Nampt by FK866 or depletion of monocytes/macrophages by clodronate liposomes disrupted the homeostatic mechanism of myocardial NAD+ levels and NAD+-dependent Sirt1 activity, leading to susceptibility to cardiomyocyte apoptosis and cardiac decompensation in pressure-overloaded mice. These biochemical and hemodynamic defects were prevented by systemic administration of NMN. Our studies uncover a crucial role of monocyte-derived eNampt in myocardial adaptation to pressure overload, and highlight a potential intervention controlling myocardial NAD+ against heart failure. PMID:26522369

  17. Esters of Quinoxaline 1ˏ4-Di-N-oxide with Cytotoxic Activity on Tumor Cell Lines Based on NCI-60 Panel

    PubMed Central

    Rivera, Gildardo; Ahmad Shah, Syed Shoaib; Arrieta-Baez, Daniel; Palos, Isidro; Mongue, Antonio; Sánchez-Torres, Luvia Enid

    2017-01-01

    Quinoxalines display diverse and interesting pharmacological activities as antibacterial, antiviral, antiparasitic and anticancer agents. Particularly, their 1ˏ4-di-N-oxide derivatives have proved to be cytotoxic agents that are active under hypoxic conditions as that of solid tumours. A new series of quinoxaline 1ˏ4-di-N-oxide substitutes at 7-position with esters group were synthetized and characterized by infrared (IR), proton nuclear magnetic resonance (1H-NMR), spectroscopy, and elemental analysis. Seventeen derivatives (M1-M3, E1-E8, P1-P3 and DR1-DR3) were selected and evaluated for antitumor activities using the NCI-60 human tumor cell lines screen. Results showed that E7, P3 and E6 were the most active compounds against the cell lines tested. Substitutions at 7-position with esters group not necessarily affect the biological activity, but the nature of the esters group could exert an influence on the selectivity. Additionally, substitutions at 2-position influenced the cytotoxic activity of the compounds. PMID:29201086

  18. Esters of Quinoxaline 1`4-Di-N-oxide with Cytotoxic Activity on Tumor Cell Lines Based on NCI-60 Panel.

    PubMed

    Rivera, Gildardo; Ahmad Shah, Syed Shoaib; Arrieta-Baez, Daniel; Palos, Isidro; Mongue, Antonio; Sánchez-Torres, Luvia Enid

    2017-01-01

    Quinoxalines display diverse and interesting pharmacological activities as antibacterial, antiviral, antiparasitic and anticancer agents. Particularly, their 1`4-di- N -oxide derivatives have proved to be cytotoxic agents that are active under hypoxic conditions as that of solid tumours. A new series of quinoxaline 1`4-di- N -oxide substitutes at 7-position with esters group were synthetized and characterized by infrared (IR), proton nuclear magnetic resonance ( 1 H-NMR), spectroscopy, and elemental analysis. Seventeen derivatives (M1-M3, E1-E8, P1-P3 and DR1-DR3) were selected and evaluated for antitumor activities using the NCI-60 human tumor cell lines screen. Results showed that E7, P3 and E6 were the most active compounds against the cell lines tested. Substitutions at 7-position with esters group not necessarily affect the biological activity, but the nature of the esters group could exert an influence on the selectivity. Additionally, substitutions at 2-position influenced the cytotoxic activity of the compounds.

  19. Immunomodulatory effects of the aromatic geranyl derivative filifolinone tested by the induction of cytokine expression.

    PubMed

    Valenzuela, Beatriz; Imarai, Mónica; Torres, René; Modak, Brenda

    2013-12-01

    Fish farming crops are constantly exposed to infectious diseases due to intensive production conditions under which microorganisms develop and spread easily, resulting in severe economic losses. The massive use of antibiotics to control these diseases has lead to the accumulation of residues and the development of drug resistance. Consequently, it is urgent to develop new pharmacological tools to stimulate protective immune responses in salmonids to combat infectious diseases. We evaluated the immunostimulant activity of terpenoid derivatives isolated from species of the Heliotropium genus, which had previously shown antiviral activity in salmon. The immunomodulatory effects of the 3 H-spiro [1-benzofuran-2,1'-ciclohexane] derivative called filifolinone, were studied in vitro using the SHK-1 cell line derived from leucocytes of salmon head kidney and in vivo in Atlantic salmon. For the evaluation, we studied the effect of this compound in the expression of various cytokines. The results showed that Filifolinone increases the levels of expression of pro-inflammatory and anti-inflammatory cytokines. This suggests that Filifolinone is a potential alternative immunomodulator for veterinary purposes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Natural Product-Derived Treatments for Attention-Deficit/Hyperactivity Disorder: Safety, Efficacy, and Therapeutic Potential of Combination Therapy

    PubMed Central

    Ahn, James; Ahn, Hyung Seok; Cheong, Jae Hoon; dela Peña, Ike

    2016-01-01

    Typical treatment plans for attention-deficit/hyperactivity disorder (ADHD) utilize nonpharmacological (behavioral/psychosocial) and/or pharmacological interventions. Limited accessibility to behavioral therapies and concerns over adverse effects of pharmacological treatments prompted research for alternative ADHD therapies such as natural product-derived treatments and nutritional supplements. In this study, we reviewed the herbal preparations and nutritional supplements evaluated in clinical studies as potential ADHD treatments and discussed their performance with regard to safety and efficacy in clinical trials. We also discussed some evidence suggesting that adjunct treatment of these agents (with another botanical agent or pharmacological ADHD treatments) may be a promising approach to treat ADHD. The analysis indicated mixed findings with regard to efficacy of natural product-derived ADHD interventions. Nevertheless, these treatments were considered as a “safer” approach than conventional ADHD medications. More comprehensive and appropriately controlled clinical studies are required to fully ascertain efficacy and safety of natural product-derived ADHD treatments. Studies that replicate encouraging findings on the efficacy of combining botanical agents and nutritional supplements with other natural product-derived therapies and widely used ADHD medications are also warranted. In conclusion, the risk-benefit balance of natural product-derived ADHD treatments should be carefully monitored when used as standalone treatment or when combined with other conventional ADHD treatments. PMID:26966583

  1. The Pharmacological Heterogeneity of Nepenthone Analogs in Conferring Highly Selective and Potent κ-Opioid Agonistic Activities.

    PubMed

    Li, Wei; Long, Jian-Dong; Qian, Yuan-Yuan; Long, Yu; Xu, Xue-Jun; Wang, Yu-Jun; Shen, Qing; Wang, Zuo-Neng; Yang, Xi-Cheng; Xiao, Li; Sun, Hong-Peng; Xu, Yu-Long; Chen, Yi-Yi; Xie, Qiong; Wang, Yong-Hui; Shao, Li-Ming; Liu, Jing-Gen; Qiu, Zhui-Bai; Fu, Wei

    2017-04-19

    To develop novel analgesics with no side effects or less side effects than traditional opioids is highly demanded to treat opioid receptor mediated pain and addiction issues. Recently, κ-opioid receptor (KOR) has been established as an attractive target, although its selective agonists could bear heterogeneous pharmacological activities. In this study, we designed and synthesized two new series of nepenthone derivatives by inserting a spacer (carbonyl) between 6α,14α-endo-ethenylthebaine and the 7α-phenyl substitution of the skeleton and by substituting the 17-N-methyl group with a cyclopropylmethyl group. We performed in vitro tests (binding and functional assays) and molecular docking operations on our newly designed compounds. The results of wet-experimental measures and modeled binding structures demonstrate that these new compounds are selective KOR agonists with nanomolar level affinities. Compound 4 from these new derivatives showed the highest affinity (K i = 0.4 ± 0.1 nM) and the highest selectivity (μ/κ = 339, δ/κ = 2034) toward KOR. The in vivo tests revealed that compound 4 is able to induce stronger (ED 50 = 2.1 mg/kg) and much longer antinociceptive effect than that of the typical KOR agonist U50488H (ED 50 = 4.4 mg/kg). Therefore, compound 4 can be used as a perfect lead compound for future design of potent analgesics acting through KOR.

  2. Constituents and Pharmacological Activities of Myrcia (Myrtaceae): A Review of an Aromatic and Medicinal Group of Plants.

    PubMed

    Cascaes, Márcia Moraes; Guilhon, Giselle Maria Skelding Pinheiro; de Aguiar Andrade, Eloisa Helena; das Graças Bichara Zoghbi, Maria; da Silva Santos, Lourivaldo

    2015-10-09

    Myrcia is one of the largest genera of the economically important family Myrtaceae. Some of the species are used in folk medicine, such as a group known as "pedra-hume-caá" or "pedra-ume-caá" or "insulina vegetal" (insulin plant) that it is used for the treatment of diabetes. The species are an important source of essential oils, and most of the chemical studies on Myrcia describe the chemical composition of the essential oils, in which mono- and sesquiterpenes are predominant. The non-volatile compounds isolated from Myrcia are usually flavonoids, tannins, acetophenone derivatives and triterpenes. Anti-inflammatory, antinociceptive, antioxidant, antimicrobial activities have been described to Myrcia essential oils, while hypoglycemic, anti-hemorrhagic and antioxidant activities were attributed to the extracts. Flavonoid glucosides and acetophenone derivatives showed aldose reductase and α-glucosidase inhibition, and could explain the traditional use of Myrcia species to treat diabetes. Antimicrobial and anti-inflammatory are some of the activities observed for other isolated compounds from Myrcia.

  3. Identification of novel 2-benzoxazolinone derivatives with specific inhibitory activity against the HIV-1 nucleocapsid protein.

    PubMed

    Gamba, Elia; Mori, Mattia; Kovalenko, Lesia; Giannini, Alessia; Sosic, Alice; Saladini, Francesco; Fabris, Dan; Mély, Yves; Gatto, Barbara; Botta, Maurizio

    2018-02-10

    In this report, we present a new benzoxazole derivative endowed with inhibitory activity against the HIV-1 nucleocapsid protein (NC). NC is a 55-residue basic protein with nucleic acid chaperone properties, which has emerged as a novel and potential pharmacological target against HIV-1. In the pursuit of novel NC-inhibitor chemotypes, we performed virtual screening and in vitro biological evaluation of a large library of chemical entities. We found that compounds sharing a benzoxazolinone moiety displayed putative inhibitory properties, which we further investigated by considering a series of chemical analogues. This approach provided valuable information on the structure-activity relationships of these compounds and, in the process, demonstrated that their anti-NC activity could be finely tuned by the addition of specific substituents to the initial benzoxazolinone scaffold. This study represents the starting point for the possible development of a new class of antiretroviral agents targeting the HIV-1 NC protein. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Biosynthesis of human diazepam and clonazepam metabolites.

    PubMed

    de Paula, Núbia C; Araujo Cordeiro, Kelly C F; de Melo Souza, Paula L; Nogueira, Diogo F; da Silva e Sousa, Diego B; Costa, Maísa B; Noël, François; de Oliveira, Valéria

    2015-03-01

    A screening of fungal and microbial strains allowed to select the best microorganisms to produce in high yields some of the human metabolites of two benzodiazepine drugs, diazepam and clonazepam, in order to study new pharmacological activities and for chemical standard proposes. Among the microorganisms tested, Cunninghamella echinulata ATCC 9244 and Rhizopus arrhizus ATCC 11145 strains, were the most active producers of the mains metabolites of diazepam which included demethylated, hydroxylated derivatives. Beauveria bassiana ATCC 7159 and Chaetomium indicum LCP 984200 produced the 7 amino-clonazepam metabolite and a product of acid hydrolysis of this benzodiazepine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Pharmacological evaluation of Pachyrrhizus erosus (L) seeds for central nervous system depressant activity.

    PubMed

    Abid, Mohd; Hrishikeshavan, H J; Asad, Mohammed

    2006-01-01

    The research work deals with the screening of ethanol and chloroform extracts of Pachyrrhizus erosus seeds for central nervous system (CNS) depressant activity. The Pachyrrhizus erosus seed is known to contain rotinoids, flavonoids and phenylfuranocoumarin derivatives as chemical components and is reported to have antifungal, antisecretory, insecticides, antibacterial and spasmolytic activity. Since seeds of Pachyrrhizus erosus is used as folk medicine in treatment of insomnia, we made an attempt to study its CNS depressant effect. The different activities studied were potentiation of pentobarbitone-induced sleep, test for locomotor activity, effect on muscle co-ordination, antiaggressive and antianxiety activities. The result of the study reflected that ethanol extract of the seeds (150 mg/kg, p.o) decreased locomotor activity, produced muscle relaxation and showed antianxiety and antiaggressive activity.

  6. Enantiomeric behaviour of albendazole and fenbendazole sulfoxides in domestic animals: pharmacological implications.

    PubMed

    Capece, Bettencourt P S; Virkel, Guillermo L; Lanusse, Carlos E

    2009-09-01

    Albendazole and fenbendazole are methylcarbamate benzimidazole anthelmintics extensively used to control gastrointestinal parasites in domestic animals. These parent compounds are metabolised to albendazole sulfoxide and fenbendazole sulfoxide (oxfendazole), respectively. Both sulfoxide derivatives are anthelmintically active and are manufactured for use in animals. They metabolites have an asymmetric centre on their chemical structures and two enantiomeric forms of each sulfoxide have been identified in plasma, tissues of parasite location and within target helminths. Both the flavin-monooxygenase and cytochrome P450 systems are involved in the enantioselective biotransformation of these anthelmintic compounds in ruminant species. A relevant progress on the understanding of the relationship among enantioselective metabolism and systemic availability of each enantiomeric form has been achieved. This article reviews the current knowledge on the pharmacological implications of the enantiomeric behaviour of albendazole sulfoxide and oxfendazole in domestic animals.

  7. Pharmacologic inhibition of the menin-MLL interaction blocks progression of MLL leukemia in vivo

    DOE PAGES

    Borkin, Dmitry; He, Shihan; Miao, Hongzhi; ...

    2015-03-26

    Chromosomal translocations affecting mixed lineage leukemia gene ( MLL) result in acute leukemias resistant to therapy. The leukemogenic activity of MLL fusion proteins is dependent on their interaction with menin, providing basis for therapeutic intervention. In this paper, we report the development of highly potent and orally bioavailable small-molecule inhibitors of the menin-MLL interaction, MI-463 and MI-503, and show their profound effects in MLL leukemia cells and substantial survival benefit in mouse models of MLL leukemia. Finally, we demonstrate the efficacy of these compounds in primary samples derived from MLL leukemia patients. In conclusion, overall, we demonstrate that pharmacologic inhibitionmore » of the menin-MLL interaction represents an effective treatment for MLL leukemias in vivo and provide advanced molecular scaffold for clinical lead identification.« less

  8. In Silico and In Vitro Analysis of Bacoside A Aglycones and Its Derivatives as the Constituents Responsible for the Cognitive Effects of Bacopa monnieri

    PubMed Central

    Ramasamy, Seetha; Chin, Sek Peng; Sukumaran, Sri Devi; Buckle, Michael James Christopher; Kiew, Lik Voon; Chung, Lip Yong

    2015-01-01

    Bacopa monnieri has been used in Ayurvedic medicine to improve memory and cognition. The active constituent responsible for its pharmacological effects is bacoside A, a mixture of dammarane-type triterpenoid saponins containing sugar chains linked to a steroid aglycone skeleton. Triterpenoid saponins have been reported to be transformed in vivo to metabolites that give better biological activity and pharmacokinetic characteristics. Thus, the activities of the parent compounds (bacosides), aglycones (jujubogenin and pseudojujubogenin) and their derivatives (ebelin lactone and bacogenin A1) were compared using a combination of in silico and in vitro screening methods. The compounds were docked into 5-HT1A, 5-HT2A, D1, D2, M1 receptors and acetylcholinesterase (AChE) using AutoDock and their central nervous system (CNS) drug-like properties were determined using Discovery Studio molecular properties and ADMET descriptors. The compounds were screened in vitro using radioligand receptor binding and AChE inhibition assays. In silico studies showed that the parent bacosides were not able to dock into the chosen CNS targets and had poor molecular properties as a CNS drug. In contrast, the aglycones and their derivatives showed better binding affinity and good CNS drug-like properties, were well absorbed through the intestines and had good blood brain barrier (BBB) penetration. Among the compounds tested in vitro, ebelin lactone showed binding affinity towards M1 (Ki = 0.45 μM) and 5-HT2A (4.21 μM) receptors. Bacoside A and bacopaside X (9.06 μM) showed binding affinity towards the D1 receptor. None of the compounds showed any inhibitory activity against AChE. Since the stimulation of M1 and 5-HT2A receptors has been implicated in memory and cognition and ebelin lactone was shown to have the strongest binding energy, highest BBB penetration and binding affinity towards M1 and 5-HT2A receptors, we suggest that B. monnieri constituents may be transformed in vivo to the active form before exerting their pharmacological activity. PMID:25965066

  9. In Silico and In Vitro Analysis of Bacoside A Aglycones and Its Derivatives as the Constituents Responsible for the Cognitive Effects of Bacopa monnieri.

    PubMed

    Ramasamy, Seetha; Chin, Sek Peng; Sukumaran, Sri Devi; Buckle, Michael James Christopher; Kiew, Lik Voon; Chung, Lip Yong

    2015-01-01

    Bacopa monnieri has been used in Ayurvedic medicine to improve memory and cognition. The active constituent responsible for its pharmacological effects is bacoside A, a mixture of dammarane-type triterpenoid saponins containing sugar chains linked to a steroid aglycone skeleton. Triterpenoid saponins have been reported to be transformed in vivo to metabolites that give better biological activity and pharmacokinetic characteristics. Thus, the activities of the parent compounds (bacosides), aglycones (jujubogenin and pseudojujubogenin) and their derivatives (ebelin lactone and bacogenin A1) were compared using a combination of in silico and in vitro screening methods. The compounds were docked into 5-HT1A, 5-HT2A, D1, D2, M1 receptors and acetylcholinesterase (AChE) using AutoDock and their central nervous system (CNS) drug-like properties were determined using Discovery Studio molecular properties and ADMET descriptors. The compounds were screened in vitro using radioligand receptor binding and AChE inhibition assays. In silico studies showed that the parent bacosides were not able to dock into the chosen CNS targets and had poor molecular properties as a CNS drug. In contrast, the aglycones and their derivatives showed better binding affinity and good CNS drug-like properties, were well absorbed through the intestines and had good blood brain barrier (BBB) penetration. Among the compounds tested in vitro, ebelin lactone showed binding affinity towards M1 (Ki = 0.45 μM) and 5-HT2A (4.21 μM) receptors. Bacoside A and bacopaside X (9.06 μM) showed binding affinity towards the D1 receptor. None of the compounds showed any inhibitory activity against AChE. Since the stimulation of M1 and 5-HT2A receptors has been implicated in memory and cognition and ebelin lactone was shown to have the strongest binding energy, highest BBB penetration and binding affinity towards M1 and 5-HT2A receptors, we suggest that B. monnieri constituents may be transformed in vivo to the active form before exerting their pharmacological activity.

  10. Marine Pharmacology in 2012-2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action.

    PubMed

    Mayer, Alejandro M S; Rodríguez, Abimael D; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2017-08-29

    The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998-2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012-2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories.

  11. Benzoic Acid Derivatives with Trypanocidal Activity: Enzymatic Analysis and Molecular Docking Studies toward Trans-Sialidase.

    PubMed

    Kashif, Muhammad; Moreno-Herrera, Antonio; Villalobos-Rocha, Juan Carlos; Nogueda-Torres, Benjamín; Pérez-Villanueva, Jaime; Rodríguez-Villar, Karen; Medina-Franco, José Lius; de Andrade, Peterson; Carvalho, Ivone; Rivera, Gildardo

    2017-10-30

    Chagas, or American trypanosomiasis, remains an important public health problem in developing countries. In the last decade, trans -sialidase has become a pharmacological target for new anti-Chagas drugs. In this work, the aims were to design and find a new series of benzoic acid derivatives as trans -sialidase (TS) inhibitors and anti-trypanosomal agents. Three compounds ( 14 , 18 , and 19 ) sharing a para -aminobenzoic acid moiety showed more potent trypanocidal activity than the commercially available drugs nifurtimox and benznidazole in both strains: the lysis concentration of 50% of the population (LC 50 ) was <0.15 µM on the NINOA strain, and LC 50 < 0.22 µM on the INC-5 strain. Additionally, compound 18 showed a moderate inhibition (47%) on the trans -sialidase enzyme and a binding model similar to DANA (pattern A).

  12. In Vitro Characterization of Psychoactive Substances at Rat, Mouse, and Human Trace Amine-Associated Receptor 1.

    PubMed

    Simmler, Linda D; Buchy, Danièle; Chaboz, Sylvie; Hoener, Marius C; Liechti, Matthias E

    2016-04-01

    Trace amine-associated receptor 1 (TAAR1) has been implicated in the behavioral effects of amphetamine-type stimulant drugs in rodents. TAAR1 has also been suggested as a target for novel medications to treat psychostimulant addiction. We previously reported that binding affinities at TAAR1 can differ between structural analogs of psychostimulants, and species differences have been observed. In this study, we complement our previous findings with additional substances and the determination of functional activation potencies. In summary, we present here pharmacological in vitro profiles of 101 psychoactive substances at human, rat, and mouse TAAR1. p-Tyramine, β-phenylethylamine, and tryptamine were included as endogenous comparator compounds. Functional cAMP measurements and radioligand displacement assays were conducted with human embryonic kidney 293 cells that expressed human, rat, or mouse TAAR1. Most amphetamines, phenethylamine, and aminoindanes exhibited potentially physiologically relevant rat and mouse TAAR1 activation (EC50 < 5 µM) and showed full or partial (Emax < 80%) agonist properties. Cathinone derivatives, including mephedrone and methylenedioxypyrovalerone, exhibited weak (EC50 = 5-10 µM) to negligible (EC50 > 10 µM) binding properties at TAAR1. Pipradrols, including methylphenidate, exhibited no affinity for TAAR1. We found considerable species differences in activity at TAAR1 among the highly active ligands, with a rank order of rat > mouse > human. This characterization provides information about the pharmacological profile of psychoactive substances. The species differences emphasize the relevance of clinical studies to translationally complement rodent studies on the role of TAAR1 activity for psychoactive substances. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (Araliaceae) as an adaptogen: a closer look.

    PubMed

    Davydov, M; Krikorian, A D

    2000-10-01

    The adaptogen concept is examined from an historical, biological, chemical, pharmacological and medical perspective using a wide variety of primary and secondary literature. The definition of an adaptogen first proposed by Soviet scientists in the late 1950s, namely that an adaptogen is any substance that exerts effects on both sick and healthy individuals by 'correcting' any dysfunction(s) without producing unwanted side effects, was used as a point of departure. We attempted to identify critically what an adaptogen supposedly does and to determine whether the word embodies in and of itself any concept(s) acceptable to western conventional (allopathic) medicine. Special attention was paid to the reported pharmacological effects of the 'adaptogen-containing plant' Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (Araliaceae), referred to by some as 'Siberian ginseng', and to its secondary chemical composition. We conclude that so far as specific pharmacological activities are concerned there are a number of valid arguments for equating the action of so-called adaptogens with those of medicinal agents that have activities as anti-oxidants, and/or anti-cancerogenic, immunomodulatory and hypocholesteroletic as well as hypoglycemic and choleretic action. However, 'adaptogens' and 'anti-oxidants' etc. also show significant dissimilarities and these are discussed. Significantly, the classical definition of an adaptogen has much in common with views currently being invoked to describe and explain the 'placebo effect'. Nevertheless, the chemistry of the secondary compounds of Eleutherococcus isolated thus far and their pharmacological effects support our hypothesis that the reported beneficial effects of adaptogens derive from their capacity to exert protective and/or inhibitory action against free radicals. An inventory of the secondary substances contained in Eleutherococcus discloses a potential for a wide range of activities reported from work on cultured cell lines, small laboratory animals and human subjects. Much of the cited work (although not all) has been published in peer-reviewed journals. Six compounds show various levels of activity as anti-oxidants, four show anti-cancer action, three show hypocholesterolemic activity, two show immunostimulatory effects, one has choleretic activity and one has the ability to decrease/moderate insulin levels, one has activity as a radioprotectant, one shows anti-inflammatory and anti-pyretic activities and yet another has shown activity as an antibacterial agent. Some of the compounds show more than one pharmacological effect and some show similar effects although they belong to different chemical classes. Clearly, Eleutherococcus contains pharmacologically active compounds but one wishes that the term adaptogen could be dropped from the literature because it is vague and conveys no insights into the mechanism(s) of action. If a precise action can be attributed to it, then the exact term for said action should obviously be used; if not, we strongly urge that generalities be avoided. Also, comparison of Eleutherococcus with the more familiar Panax ginseng C.A. Meyer (Araliaceae), 'true ginseng' has underscored that they differ considerably chemically and pharmacologically and cannot be justifiably considered as mutually interchangeable. Accordingly, we recommend that the designation 'Siberian ginseng' be dropped and be replaced with 'Eleutherococcus'. In the case of both Eleutherococcus and true ginseng, problems inherent in herbal preparation use include inconsistencies not only in terms of indications for use, but in the nomenclature of constituent chemical compounds, standardization, dosage and product labeling. (ABSTRACT TRUNCATED)

  14. Metabolomic and elemental analysis of camel and bovine urine by GC-MS and ICP-MS.

    PubMed

    Ahamad, Syed Rizwan; Alhaider, Abdul Qader; Raish, Mohammad; Shakeel, Faiyaz

    2017-01-01

    Recent studies from the author's laboratory indicated that camel urine possesses antiplatelet activity and anti-cancer activity which is not present in bovine urine. The objective of this study is to compare the volatile and elemental components of bovine and camel urine using GC-MS and ICP-MS analysis. We are interested to know the component that performs these biological activities. The freeze dried urine was dissolved in dichloromethane and then derivatization process followed by using BSTFA for GC-MS analysis. Thirty different compounds were analyzed by the derivatization process in full scan mode. For ICP-MS analysis twenty eight important elements were analyzed in both bovine and camel urine. The results of GC-MS and ICP-MS analysis showed marked difference in the urinary metabolites. GC-MS evaluation of camel urine finds a lot of products of metabolism like benzene propanoic acid derivatives, fatty acid derivatives, amino acid derivatives, sugars, prostaglandins and canavanine. Several research reports reveal the metabolomics studies on camel urine but none of them completely reported the pharmacology related metabolomics. The present data of GC-MS suggest and support the previous studies and activities related to camel urine.

  15. Chalcone Derivatives: Anti-inflammatory Potential and Molecular Targets Perspectives.

    PubMed

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar; Asati, Vivek

    2017-11-20

    Chalcone or (E)-1,3-diphenyl-2-propene-1-one scaffold has gained considerable scientific interest in medicinal chemistry owing to its simple chemistry, ease in synthesizing a variety of derivatives and exhibiting a broad range of promising pharmacological activities by modulating several molecular targets. A number of natural and (semi-) synthetic chalcone derivatives have demonstrated admirable anti-inflammatory activity due to their inhibitory potential against various therapeutic targets like Cyclooxygenase (COX), Lipooxygenase (LOX), Interleukins (IL), Prostaglandins (PGs), Nitric Oxide Synthase (NOS), Leukotriene D4 (LTD4), Nuclear Factor-κB (NF- κB), Intracellular Cell Adhesion Molecule-1 (ICAM-1), Vascular Cell Adhesion Molecule-1 (VCAM-1), Monocyte Chemoattractant Protein-1 (MCP-1) and TLR4/MD-2, etc. The chalcone scaffold with hydroxyl, methoxyl, carboxyl, prenyl group and/or heterocyclic ring substitution like thiophene/furan/indole showed promising anti-inflammatory activity. In this review, a comprehensive study (from the year 1991 to 2016) on multi-targets of inflammatory interest, related inflammation reactions and their treatment by chalcone-based inhibitors acting on various molecular targets entailed in inflammation, Structure-Activity Relationships (SARs), Mechanism of Actions (MOAs), and patents are highlighted. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Computational study of molecular electrostatic potential, docking and dynamics simulations of gallic acid derivatives as ABL inhibitors.

    PubMed

    Raghi, K R; Sherin, D R; Saumya, M J; Arun, P S; Sobha, V N; Manojkumar, T K

    2018-04-05

    Chronic myeloid leukemia (CML), a hematological malignancy arises due to the spontaneous fusion of the BCR and ABL gene, resulting in a constitutively active tyrosine kinase (BCR-ABL). Pharmacological activity of Gallic acid and 1,3,4-Oxadiazole as potential inhibitors of ABL kinase has already been reported. Objective of this study is to evaluate the ABL kinase inhibitory activity of derivatives of Gallic acid fused with 1,3,4-Oxadiazole moieties. Attempts have been made to identify the key structural features responsible for drug likeness of the Gallic acid and the 1,3,4-Oxadiazole ring using molecular electrostatic potential maps (MESP). To investigate the inhibitory activity of Gallic acid derivatives towards the ABL receptor, we have applied molecular docking and molecular dynamics (MD) simulation approaches. A comparative study was performed using Bosutinib as the standard which is an approved CML drug acting on the same receptor. Furthermore, the novel compounds designed and reported here in were evaluated for ADME properties and the results indicate that they show acceptable pharmacokinetic properties. Accordingly these compounds are predicted to be drug like with low toxicity potential. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Synthesis and in vitro biological evaluation of novel coumarin derivatives containing isoxazole moieties on melanin synthesis in B16 cells and inhibition on bacteria.

    PubMed

    Pang, Guang Xian; Niu, Chao; Mamat, Nuramina; Aisa, Haji Akber

    2017-06-15

    A novel series of coumarin derivatives 6a-o, bearing isoxazole moieties were designed and synthesized. After that, they were evaluated for melanin synthesis in murine B16 cells and inhibitory effect on the growth of CA (Candida albicans), EC (Escherichia coli), SA (Staphylococcus aureus). It was found that eleven compounds (6b-f, 6j-o) showed a better activity on melanin synthesis than positive control (8-MOP). Among them, compounds 6d (242%) and 6f (390%), with nearly 1.6 and 2.6-fold potency compared with 8-MOP (149%) respectively, were recognized as the most promising candidate hits for further pharmacological study of anti-vitiligo. Seven halogen substituted compounds exhibited moderate antimicrobial activity against CA. It is interesting that 6e-f and 6l-m, which had two halogens on the benzene showed a comparable activity with Amphotericin B against CA. The evaluation of melanin synthesis in B16 cells and inhibitory effect on bacteria of above structurally diverse derivatives had also led to an outline of structure-activity relationship. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. T-cell Receptor Signaling Activates an ITK/NF-κB/GATA-3 axis in T-cell Lymphomas Facilitating Resistance to Chemotherapy.

    PubMed

    Wang, Tianjiao; Lu, Ye; Polk, Avery; Chowdhury, Pinki; Zamalloa, Carlos Murga; Fujiwara, Hiroshi; Suemori, Koichiro; Beyersdorf, Niklas; Hristov, Alexandra C; Lim, Megan S; Bailey, Nathanael G; Wilcox, Ryan A

    2017-05-15

    Purpose: T-cell lymphomas are a molecularly heterogeneous group of non-Hodgkin lymphomas (NHL) that account for a disproportionate number of NHL disease-related deaths due to their inherent and acquired resistance to standard multiagent chemotherapy regimens. Despite their molecular heterogeneity and frequent loss of various T cell-specific receptors, the T-cell antigen receptor is retained in the majority of these lymphomas. As T-cell receptor (TCR) engagement activates a number of signaling pathways and transcription factors that regulate T-cell growth and survival, we examined the TCR's role in mediating resistance to chemotherapy. Experimental Design: Genetic and pharmacologic strategies were utilized to determine the contribution of tyrosine kinases and transcription factors activated in conventional T cells following TCR engagement in acquired chemotherapy resistance in primary T-cell lymphoma cells and patient-derived cell lines. Results: Here, we report that TCR signaling activates a signaling axis that includes ITK, NF-κB, and GATA-3 and promotes chemotherapy resistance. Conclusions: These observations have significant therapeutic implications, as pharmacologic inhibition of ITK prevented the activation of this signaling axis and overcame chemotherapy resistance. Clin Cancer Res; 23(10); 2506-15. ©2016 AACR . ©2016 American Association for Cancer Research.

  19. Thyroid receptor ligands. Part 8: Thyromimetics derived from N-acylated-alpha-amino acid derivatives displaying modulated pharmacological selectivity compared with KB-141.

    PubMed

    Garg, Neeraj; Li, Yi-Lin; Garcia Collazo, Ana Maria; Litten, Chris; Ryono, Denis E; Zhang, Minsheng; Caringal, Yolanda; Brigance, Robert P; Meng, Wei; Washburn, William N; Agback, Peter; Mellström, Karin; Rehnmark, Stefan; Rahimi-Ghadim, Mahmoud; Norin, Thomas; Grynfarb, Marlena; Sandberg, Johnny; Grover, Gary; Malm, Johan

    2007-08-01

    Based on the scaffold of the pharmacologically selective thyromimetic 2b, structurally a close analog to KB-141 (2a), a number of novel N-acylated-alpha-amino acid derivatives were synthesized and tested in a TR radioligand binding assay as well as in a reporter cell assay. On the basis of TRbeta(1)-isoform selectivity and affinity, as well as affinity to the reporter cell assay, 3d was selected for further studies in the cholesterol-fed rat model. In this model 3d revealed an improved therapeutic window between cholesterol and TSH lowering but decreased margins versus tachycardia compared with 2a.

  20. Trace derivatives of kynurenine potently activate the aryl hydrocarbon receptor (AHR).

    PubMed

    Seok, Seung-Hyeon; Ma, Zhi-Xiong; Feltenberger, John B; Chen, Hongbo; Chen, Hui; Scarlett, Cameron; Lin, Ziqing; Satyshur, Kenneth A; Cortopassi, Marissa; Jefcoate, Colin R; Ge, Ying; Tang, Weiping; Bradfield, Christopher A; Xing, Yongna

    2018-02-09

    Cellular metabolites act as important signaling cues, but are subject to complex unknown chemistry. Kynurenine is a tryptophan metabolite that plays a crucial role in cancer and the immune system. Despite its atypical, non-ligand-like, highly polar structure, kynurenine activates the aryl hydrocarbon receptor (AHR), a PER, ARNT, SIM (PAS) family transcription factor that responds to diverse environmental and cellular ligands. The activity of kynurenine is increased 100-1000-fold by incubation or long-term storage and relies on the hydrophobic ligand-binding pocket of AHR, with identical structural signatures for AHR induction before and after activation. We purified trace-active derivatives of kynurenine and identified two novel, closely related condensation products, named trace-extended aromatic condensation products (TEACOPs), which are active at low picomolar levels. The synthesized compound for one of the predicted structures matched the purified compound in both chemical structure and AHR pharmacology. Our study provides evidence that kynurenine acts as an AHR pro-ligand, which requires novel chemical conversions to act as a receptor agonist. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Myxofibrosarcoma primary cultures: molecular and pharmacological profile

    PubMed Central

    De Vita, Alessandro; Recine, Federica; Mercatali, Laura; Miserocchi, Giacomo; Liverani, Chiara; Spadazzi, Chiara; Casadei, Roberto; Bongiovanni, Alberto; Pieri, Federica; Riva, Nada; Amadori, Dino; Ibrahim, Toni

    2017-01-01

    Background: Myxofibrosarcoma (MFS), formerly considered as a myxoid variant of malignant fibrous histiocytoma, is the most common sarcoma of the extremities in adults and is characterized by a high frequency of local recurrence. The clinical behavior of MFS is unpredictable and the efficacy of chemotherapy is still not well documented. Furthermore, given the relatively recent recognition of MFS as a distinct pathologic entity its cellular and molecular biology has still not been extensively studied in patient-derived preclinical models. We examined the molecular biology and treatment outcomes of high-grade, patient-derived MFS primary cultures. Methods: A total of three patient-derived MFS primary cultures were analyzed. We evaluated the role of CD109 expression and also looked for a correlation between transforming growth factor-beta (TGF-β) expression and sensitivity of the primary cultures to different drugs. Results: CD109 was a promising marker for the identification of more aggressive high-grade MFS and a potential therapeutic target. The results also highlighted the potential role of TGF-β in chemoresistance. Pharmacological analysis confirmed the sensitivity of the cultures to chemotherapy. The most active treatments were epirubicin alone and epirubicin in combination with ifosfamide, the latter representing the current standard of care for soft tissue sarcomas (STSs), including MFS. Conclusions: Our results provide a starting point for further research aimed at improving the management of MFS patients undergoing chemotherapy. PMID:29449896

  2. Synthesis of new derivatives of 21-imidazolyl-16-dehydropregnenolone as inhibitors of 5α-reductase 2 and with cytotoxic activity in cancer cells.

    PubMed

    Silva-Ortiz, Aylin Viviana; Bratoeff, Eugene; Ramírez-Apan, Teresa; Heuze, Yvonne; Soriano, Juan; Moreno, Isabel; Bravo, Marisol; Bautista, Lucero; Cabeza, Marisa

    2017-03-01

    The aim of this study was to synthesize several 16-dehydropregnenolone derivatives containing an imidazole ring at C-21 and a different ester moiety at C-3 as inhibitors of 5α-reductase 1 and 2 isoenzymes. Their binding capacity to the androgen receptor (AR) was also studied. Additionally, we evaluated their pharmacological effect in a castrated hamster model and their cytotoxic activity on a panel of cancer cells (PC-3, MCF7, SK-LU-1). The results showed that only the derivatives with an alicyclic ester at C-3 showed 5α-R2 enzyme inhibition activity, the most potent of them being 21-(1H-imidazol-1-yl)-20-oxopregna-5,16-dien-3β-yl-cyclohexanecarboxylate with an IC 50 of 29nM. This is important because prostatic benign hyperplasia is directly associated with the presence of 5α-R2. However, all the derivatives failed to inhibit 5α-R1 or bind to the AR. These alicyclic ester derivatives decreased the weight and size of androgen-dependent glands in the hamster, indicating they are very active in vivo and are not toxic. In addition, the 21-(1H-imidazol-1-yl)-20-oxopregna-5,16-dien-3β-yl-acetate derivative showed the highest cytotoxic activity on the three cancer cell lines studied. It is therefore important in the synthesis of steroidal compounds to consider the size of the ester moiety at C-3 of the steroid skeleton, which is key in obtaining biological activity, as observed in this experiment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Chinese Herbal Medicines Attenuate Acute Pancreatitis: Pharmacological Activities and Mechanisms

    PubMed Central

    Xiang, Hong; Zhang, Qingkai; Qi, Bing; Tao, Xufeng; Xia, Shilin; Song, Huiyi; Qu, Jialin; Shang, Dong

    2017-01-01

    Acute pancreatitis (AP) is a commonly occurring gastrointestinal disorder. An increase in the annual incidence of AP has been observed, and it causes acute hospitalization and high mortality. The diagnosis and treatment guidelines for AP recommend conservative medical treatments focused on reducing pancreatic secretion and secondary injury, as a primary therapeutic approach. Unfortunately, the existing treatment options have limited impact on the incidence and severity of AP due to the complex and multifaceted pathological process of this disease. In recent decades, Chinese herbal medicines (CHMs) have been used as efficient therapeutic agents to attenuate AP in Asian countries. Despite early cell culture, animal models, and clinical trials, CHMs are capable of interacting with numerous molecular targets participating in the pathogenesis of AP; however, comprehensive, up-to-date communication in this field is not yet available. This review focuses on the pharmacological activities of CHMs against AP in vitro and in vivo and the underlying mechanisms. A computational prediction of few selected and promising plant-derived molecules (emodin, baicalin, resveratrol, curcumin, ligustrazine, and honokiol) to target numerous proteins or networks involved in AP was initially established based on a network pharmacology simulation. Moreover, we also summarized some potential toxic natural products for pancreas in order to more safe and reasonable medication. These breakthrough findings may have important implications for innovative drug research and the future development of treatments for AP. PMID:28487653

  4. Audience response technology: engaging and empowering non-medical prescribing students in pharmacology learning.

    PubMed

    Lymn, Joanne S; Mostyn, Alison

    2010-10-27

    Non-medical prescribing (NMP) is a six month course for nurses and certain allied health professionals. It is critical that these students develop a good understanding of pharmacology; however, many students are mature learners with little or no formal biological science knowledge and struggle with the pharmacology component. The implications for patient safety are profound, therefore we encourage students not just to memorise enough pharmacology to pass the exam but to be able to integrate it into clinical practice. Audience response technology (ART), such as the KeePad system (KS) has been shown to promote an active approach to learning and provide instant formative feedback. The aim of this project, therefore, was to incorporate and evaluate the use the KS in promoting pharmacology understanding in NMP students. Questions were incorporated into eight pharmacology lectures, comprising a mix of basic and clinical pharmacology, using TurningPoint software. Student (n = 33) responses to questions were recorded using the KS software and the percentage of students getting the question incorrect and correct was made immediately available in the lecture in graphical form. Survey data collected from these students investigated student perceptions on the use of the system generally and specifically as a learning tool. More in depth discussion of the usefulness of the KS was derived from a focus group comprising 5 students. 100% of students enjoyed using the KS and felt it promoted their understanding of key concepts; 92% stated that it helped identify their learning needs and 87% agreed that the technology was useful in promoting integration of concepts. The most prevalent theme within feedback was that of identifying their own learning needs. Analysis of data from the focus group generated similar themes, with the addition of improving teaching. Repeated questioning produced a significant increase (p < 0.05) in student knowledge of specific pharmacological concepts. The use of ART enhanced non-medical prescribing students' experience of pharmacology teaching. Student perceptions were that this system increased their ability to identify learning needs and promoted understanding and integration of concepts. Students also reported that the technology aided exam revision and reduced associated anxiety.

  5. Audience response technology: Engaging and empowering non-medical prescribing students in pharmacology learning

    PubMed Central

    2010-01-01

    Background Non-medical prescribing (NMP) is a six month course for nurses and certain allied health professionals. It is critical that these students develop a good understanding of pharmacology; however, many students are mature learners with little or no formal biological science knowledge and struggle with the pharmacology component. The implications for patient safety are profound, therefore we encourage students not just to memorise enough pharmacology to pass the exam but to be able to integrate it into clinical practice. Audience response technology (ART), such as the KeePad system (KS) has been shown to promote an active approach to learning and provide instant formative feedback. The aim of this project, therefore, was to incorporate and evaluate the use the KS in promoting pharmacology understanding in NMP students. Methods Questions were incorporated into eight pharmacology lectures, comprising a mix of basic and clinical pharmacology, using TurningPoint software. Student (n = 33) responses to questions were recorded using the KS software and the percentage of students getting the question incorrect and correct was made immediately available in the lecture in graphical form. Survey data collected from these students investigated student perceptions on the use of the system generally and specifically as a learning tool. More in depth discussion of the usefulness of the KS was derived from a focus group comprising 5 students. Results 100% of students enjoyed using the KS and felt it promoted their understanding of key concepts; 92% stated that it helped identify their learning needs and 87% agreed that the technology was useful in promoting integration of concepts. The most prevalent theme within feedback was that of identifying their own learning needs. Analysis of data from the focus group generated similar themes, with the addition of improving teaching. Repeated questioning produced a significant increase (p < 0.05) in student knowledge of specific pharmacological concepts. Conclusions The use of ART enhanced non-medical prescribing students' experience of pharmacology teaching. Student perceptions were that this system increased their ability to identify learning needs and promoted understanding and integration of concepts. Students also reported that the technology aided exam revision and reduced associated anxiety. PMID:20979620

  6. New halogenated phenylcoumarins as tyrosinase inhibitors.

    PubMed

    Matos, Maria João; Santana, Lourdes; Uriarte, Eugenio; Delogu, Giovanna; Corda, Marcella; Fadda, Maria Benedetta; Era, Benedetta; Fais, Antonella

    2011-06-01

    With the aim to find out structural features for the tyrosinase inhibitory activity, in the present communication we report the synthesis and pharmacological evaluation of a new series of phenylcoumarin derivatives with different number of hydroxyl or ether groups and bromo substituent in the scaffold. The synthesized compounds 5-12 were evaluated as mushroom tyrosinase inhibitors showing, two of them, lower IC(50) than the umbelliferone. Compound 12 (IC(50)=215 μM) is the best tyrosinase inhibitor of this series. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Designing green derivatives of β-blocker Metoprolol: a tiered approach for green and sustainable pharmacy and chemistry.

    PubMed

    Rastogi, Tushar; Leder, Christoph; Kümmerer, Klaus

    2014-09-01

    The presences of micro-pollutants (active pharmaceutical ingredients, APIs) are increasingly seen as a challenge of the sustainable management of water resources worldwide due to ineffective effluent treatment and other measures for their input prevention. Therefore, novel approaches are needed like designing greener pharmaceuticals, i.e. better biodegradability in the environment. This study addresses a tiered approach of implementing green and sustainable chemistry principles for theoretically designing better biodegradable and pharmacologically improved pharmaceuticals. Photodegradation process coupled with LC-MS(n) analysis and in silico tools such as quantitative structure-activity relationships (QSAR) analysis and molecular docking proved to be a very significant approach for the preliminary stages of designing chemical structures that would fit into the "benign by design" concept in the direction of green and sustainable pharmacy. Metoprolol (MTL) was used as an example, which itself is not readily biodegradable under conditions found in sewage treatment and the aquatic environment. The study provides the theoretical design of new derivatives of MTL which might have the same or improved pharmacological activity and are more degradable in the environment than MTL. However, the in silico toxicity prediction by QSAR of those photo-TPs indicated few of them might be possibly mutagenic and require further testing. This novel approach of theoretically designing 'green' pharmaceuticals can be considered as a step forward towards the green and sustainable pharmacy field. However, more knowledge and further experience have to be collected on the full scope, opportunities and limitations of this approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. 4,5-Dimethoxy-2-nitrobenzohydrazides and 1-(1-Benzylpiperidin-4-yl)ethan-1-ones as Potential Antioxidant/Cholinergic Endowed Small Molecule Leads.

    PubMed

    Banu, Rukhsar; Gerding, Jason; Franklin, Cynthia; Sikazwe, Donald; Horton, William; Török, Marianna; Davis, Julian; Cheng, Kwan H; Nakazwe, Muziya; Mochona, Bereket

    2017-12-21

    The objective of this research is to generate leads for developing our ultimate poly-active molecules with utility in central nervous system (CNS) diseases. Indeed, poly-active molecules capable of mitigating brain free radical damage while enhancing acetylcholine signaling (via cholinesterase inhibition) are still being sought for combating Alzheimer's disease (AD). We differentiate "poly-active" agents from "multi-target" ones by defining them as single molecular entities designed to target only specific contributory synergistic pharmacologies in a disease. For instance, in AD, free radicals either initiate or act in synergy with other pharmacologies, leading to disease worsening. For this preliminary report, a total of 14 (i.e., 4,5-dimethoxy-2-nitrobenzohydrazide plus 1-(1-benzylpiperidin-4-yl)ethan-1-one) derivatives were synthesized and screened, in silico and in vitro, for their ability to scavenge free radicals and inhibit acetylcholinesterase (AChE)/butyrylcholinesterase (BuChE) enzymes. Overall, six derivatives ( 4a , 4d , 4e , 4f , 4g , 9b ) exhibited potent (>30%) antioxidant properties in the oxygen radical absorbance capacity (ORAC) assay. The antioxidant values were either comparable or more potent than the comparator molecules (ascorbic acid, resveratrol, and trolox). Only three compounds ( 4d , 9a , 9c ) yielded modest AChE/BuChE inhibitions (>10%). Please note that a SciFinder substance data base search confirmed that most of the compounds reported herein are new, except 9a and 9c which are also commercially available.

  9. Resveratrol derivatives as a pharmacological tool.

    PubMed

    Biasutto, Lucia; Mattarei, Andrea; Azzolini, Michele; La Spina, Martina; Sassi, Nicola; Romio, Matteo; Paradisi, Cristina; Zoratti, Mario

    2017-09-01

    Prodrugs of resveratrol are under development. Among the long-term goals, still largely elusive, are (1) modulating physical properties (e.g., water-soluble derivatives bearing polyethylene glycol chains), (2) changing distribution in the body (e.g., galactosyl derivatives restricted to the intestinal lumen), (3) increasing absorption from the gastrointestinal tract (e.g., derivatives imitating the natural substrates of endogenous transporters), and (4) hindering phase II metabolism (e.g., temporarily blocking the hydroxyls), all contributing to (5) increasing bioavailability. The chemical bonds that have been tested for functionalization include carboxyester, acetal, and carbamate groups. A second approach, which can be combined with the first, seeks to reinforce or modify the biochemical activities of resveratrol by concentrating the compound at specific subcellular sites. An example is provided by mitochondria-targeted derivatives. These proved to be pro-oxidant and cytotoxic in vitro, selectively killing fast-growing and tumor cells when supplied in the low micromolar range. This suggests the possibility of anticancer applications. © 2017 New York Academy of Sciences.

  10. Marine Pharmacology in 2012–2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action †

    PubMed Central

    Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2017-01-01

    The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998–2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012–2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories. PMID:28850074

  11. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status.

    PubMed

    Fang, Wan-Yin; Dahiya, Rajiv; Qin, Hua-Li; Mourya, Rita; Maharaj, Sandeep

    2016-10-26

    Peptides have gained increased interest as therapeutics during recent years. More than 60 peptide drugs have reached the market for the benefit of patients and several hundreds of novel therapeutic peptides are in preclinical and clinical development. The key contributor to this success is the potent and specific, yet safe, mode of action of peptides. Among the wide range of biologically-active peptides, naturally-occurring marine-derived cyclopolypeptides exhibit a broad range of unusual and potent pharmacological activities. Because of their size and complexity, proline-rich cyclic peptides (PRCPs) occupy a crucial chemical space in drug discovery that may provide useful scaffolds for modulating more challenging biological targets, such as protein-protein interactions and allosteric binding sites. Diverse pharmacological activities of natural cyclic peptides from marine sponges, tunicates and cyanobacteria have encouraged efforts to develop cyclic peptides with well-known synthetic methods, including solid-phase and solution-phase techniques of peptide synthesis. The present review highlights the natural resources, unique structural features and the most relevant biological properties of proline-rich peptides of marine-origin, focusing on the potential therapeutic role that the PRCPs may play as a promising source of new peptide-based novel drugs.

  12. Synthesis, structure-activity relationship and molecular docking of cyclohexenone based analogous as potent non-nucleoside reverse-transcriptase inhibitors

    NASA Astrophysics Data System (ADS)

    Nazar, Muhammad Faizan; Abdullah, Muhammad Imran; Badshah, Amir; Mahmood, Asif; Rana, Usman Ali; Khan, Salah Ud-Din

    2015-04-01

    The chalcones core in compounds is advantageously chosen effective synthons, which offer exciting perspectives in biological and pharmacological research. The present study reports the successful development of eight new cyclohexenone based anti-reverse transcriptase analogous using rational drug design synthesis principles. These new cyclohexenone derivatives (CDs) were synthesized by following a convenient route of Robinson annulation, and the molecular structure of these CDs were later confirmed by various analytical techniques such as 1H NMR, 13C NMR, FT-IR, UV-Vis spectroscopy and mass spectrometry. All the synthesized compounds were screened theoretically and experimentally against reverse transcriptase (RT) and found potentially active reverse transcriptase (RT) inhibitors. Of the compounds studied, the compound 2FC4 showed high interaction with RT at non-nucleoside binding site, contributing high free binding energy (ΔG -8.01 Kcal) and IC50 (0.207 μg/ml), respectively. Further results revealed that the compounds bearing more halogen groups, with additional hydrophobic character, offered superior anti-reverse transcriptase activity as compared to rest of compounds. It is anticipate that the present study would be very useful for the selection of potential reverse transcriptase inhibitors featuring inclusive pharmacological profiles.

  13. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status

    PubMed Central

    Fang, Wan-Yin; Dahiya, Rajiv; Qin, Hua-Li; Mourya, Rita; Maharaj, Sandeep

    2016-01-01

    Peptides have gained increased interest as therapeutics during recent years. More than 60 peptide drugs have reached the market for the benefit of patients and several hundreds of novel therapeutic peptides are in preclinical and clinical development. The key contributor to this success is the potent and specific, yet safe, mode of action of peptides. Among the wide range of biologically-active peptides, naturally-occurring marine-derived cyclopolypeptides exhibit a broad range of unusual and potent pharmacological activities. Because of their size and complexity, proline-rich cyclic peptides (PRCPs) occupy a crucial chemical space in drug discovery that may provide useful scaffolds for modulating more challenging biological targets, such as protein-protein interactions and allosteric binding sites. Diverse pharmacological activities of natural cyclic peptides from marine sponges, tunicates and cyanobacteria have encouraged efforts to develop cyclic peptides with well-known synthetic methods, including solid-phase and solution-phase techniques of peptide synthesis. The present review highlights the natural resources, unique structural features and the most relevant biological properties of proline-rich peptides of marine-origin, focusing on the potential therapeutic role that the PRCPs may play as a promising source of new peptide-based novel drugs. PMID:27792168

  14. Modelling the interactions between animal venom peptides and membrane proteins.

    PubMed

    Hung, Andrew; Kuyucak, Serdar; Schroeder, Christina I; Kaas, Quentin

    2017-12-01

    The active components of animal venoms are mostly peptide toxins, which typically target ion channels and receptors of both the central and peripheral nervous system, interfering with action potential conduction and/or synaptic transmission. The high degree of sequence conservation of their molecular targets makes a range of these toxins active at human receptors. The high selectivity and potency displayed by some of these toxins have prompted their use as pharmacological tools as well as drugs or drug leads. Molecular modelling has played an essential role in increasing our molecular-level understanding of the activity and specificity of animal toxins, as well as engineering them for biotechnological and pharmaceutical applications. This review focuses on the biological insights gained from computational and experimental studies of animal venom toxins interacting with membranes and ion channels. A host of recent X-ray crystallography and electron-microscopy structures of the toxin targets has contributed to a dramatic increase in the accuracy of the molecular models of toxin binding modes greatly advancing this exciting field of study. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ammonium chloride catalyzed synthesis of novel Schiff bases from spiro[indoline-3,4'-pyran]-3'-carbonitriles and evaluation of their antimicrobial and anti-breast cancer activities.

    PubMed

    Al-Shareef, Hossa F; Elhady, Heba A; Aboellil, Amany H; Hussein, Essam M

    2016-01-01

    Indolinone and spiro-indoline derivatives have been employed in the preparation of different important therapeutic compounds required for treatment of anticonvulsants, antibacterial, Antitubercular, and anticancer activities. Schiff bases have been found to possess various pharmacological activities such as antitubercular, plant growth inhibiting, insecticsidal, central nerve system depressant, antibacterial, anticancer, anti-inflammatory, and antimicrobial. Mannich bases have a variety of biological activities such as antibacterial and antifungal activities. In this study, a green, rapid and efficient protocol for the synthesis of a new series of Schiff bases from spiro[indoline-3,4'-pyran]-3'-carbonitrile derivatives using ammonium chloride as a very inexpensive and readily available reagent. The prepared compounds were assessed in vitro for their antimicrobial activity. Also, the cytotoxic activity of the prepared compounds was assessed in vitro against human cells line MCF7 breast cancer. Good activity was distinguished for Schiff bases from spiro[indoline-3,4'-pyran]-3'-carbonitriles, with some members recorded higher antimicrobial and anti-breast cancer activities.Graphical abstractNovel Schiff bases from spiro[indoline-3,4'-pyran]-3'-carbonitriles.

  16. The type 1 lysophosphatidic acid receptor is a target for therapy in bone metastases

    PubMed Central

    Boucharaba, Ahmed; Serre, Claire-Marie; Guglielmi, Julien; Bordet, Jean-Claude; Clézardin, Philippe; Peyruchaud, Olivier

    2006-01-01

    Platelet-derived lysophosphatidic acid (LPA) supports the progression of breast and ovarian cancer metastasis to bone. The mechanisms through which LPA promotes bone metastasis formation are, however, unknown. Here we report that silencing of the type 1 LPA receptor (LPA1) in cancer cells blocks the production of tumor-derived cytokines that are potent activators of osteoclast-mediated bone destruction and significantly reduces the progression of osteolytic bone metastases. Moreover, functional blockade of LPA action on its cognate receptor LPA1 using a pharmacological antagonist mimics the effects of silencing LPA1 in tumor cells in vitro and substantially reduces bone metastasis progression in animals. Overall, these results suggest that inhibition of platelet-derived LPA action on LPA1 expressed by tumor cells may be a promising therapeutic target for patients with bone metastases. PMID:16769891

  17. Natural Products from Deep-Sea-Derived Fungi ̶ A New Source of Novel Bioactive Compounds?

    PubMed

    Daletos, Georgios; Ebrahim, Weaam; Ancheeva, Elena; El-Neketi, Mona; Song, Weiguo; Lin, Wenhan; Proksch, Peter

    2018-01-01

    Over the last two decades, deep-sea-derived fungi are considered to be a new source of pharmacologically active secondary metabolites for drug discovery mainly based on the underlying assumption that the uniqueness of the deep sea will give rise to equally unprecedented natural products. Indeed, up to now over 200 new metabolites have been identified from deep-sea fungi, which is in support of the statement made above. This review summarizes the new and/or bioactive compounds reported from deepsea- derived fungi in the last six years (2010 - October 2016) and critically evaluates whether the data published so far really support the notion that these fungi are a promising source of new bioactive chemical entities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Pharmacological activity and toxicity of some neurotropic agents under conditions of experimental hypodynamia

    NASA Technical Reports Server (NTRS)

    Kirichek, L. T.

    1980-01-01

    The indices of pharmacological range, risk coefficients, ED50, LD50, the size of the area of toxic activity, and maximal tolerated and absolute lethal doses were compared in hypodynamic mice. The pharmacological activity of the test neurotropic agents exhibiting a central action underwent change, but their toxicity remained unchanged.

  19. 2011 Annual Meeting of the Safety Pharmacology Society: an overview.

    PubMed

    Cavero, Icilio

    2012-03-01

    The keynote address of 2011 Annual Meeting of the Safety Pharmacology Society examined the known and the still to be known on drug-induced nephrotoxicity. The nominee of the Distinguished Service Award Lecture gave an account of his career achievements particularly on the domain of chronically instrumented animals for assessing cardiovascular safety. The value of Safety Pharmacology resides in the benefits delivered to Pharma organizations, regulators, payers and patients. Meticulous due diligence concerning compliance of Safety Pharmacology studies to best practices is an effective means to ensure that equally stringent safety criteria are applied to both in-licensed and in-house compounds. Innovative technologies of great potential for Safety Pharmacology presented at the meeting are organs on chips (lung, heart, intestine) displaying mechanical and biochemical features of native organs, electrical field potential (MEA) or impedance (xCELLigence Cardio) measurements in human induced pluripotent stem cell-derived cardiomyocytes for unveiling cardiac electrophysiological and mechanical liabilities, functional human airway epithelium (MucilAir™) preparations with unique 1-year shelf-life for acute and chronic in vitro evaluation of drug efficacy and toxicity. Custom-designed in silico and in vitro assay platforms defining the receptorome space occupied by chemical entities facilitate, throughout the drug discovery phase, the selection of candidates with optimized safety profile on organ function. These approaches can now be complemented by advanced computational analysis allowing the identification of compounds with receptorome, or clinically adverse effect profiles, similar to those of the drug candidate under scrutiny for extending the safety assessment to potential liability targets not captured by classical approaches. Nonclinical data supporting safety can be quite reassuring for drugs with a discovered signal of risk. However, for marketing authorization this information should be complemented by a clear clinical proof of safety. The ongoing outsourcing process of Regulatory Safety Pharmacology activities from large Pharmas to contract research organizations should be taken as an opportunity to establish long-overdue in-house Exploratory Safety Pharmacology units fully dedicated to the optimization of clinical candidates on organ safety.

  20. Medicinal uses, phytochemistry and pharmacology of Pongamia pinnata (L.) Pierre: a review.

    PubMed

    Al Muqarrabun, L M R; Ahmat, N; Ruzaina, S A S; Ismail, N H; Sahidin, I

    2013-11-25

    Pongamia pinnata (L.) Pierre is one of the many plants with diverse medicinal properties where all its parts have been used as traditional medicine in the treatment and prevention of several kinds of ailments in many countries such as for treatment of piles, skin diseases, and wounds. This review discusses the current knowledge of traditional uses, phytochemistry, biological activities, and toxicity of this species in order to reveal its therapeutic and gaps requiring future research opportunities. This review is based on literature study on scientific journals and books from library and electronic sources such as ScienceDirect, PubMed, ACS, etc. Several different classes of flavonoid derivatives, such as flavones, flavans, and chalcones, and several types of compounds including terpenes, steroid, and fatty acids have been isolated from all parts of this plant. The pharmacological studies revealed that various types of preparations, extracts, and single compounds of this species exhibited a broad spectrum of biological activities such as antioxidant, antimicrobial, anti-inflammatory, and anti-diabetic activities. The results of several toxicity studies indicated that extracts and single compounds isolated from this species did not show any significant toxicity and did not cause abnormality on some rats' organs. Thus, this plant has a potential to be used as an effective therapeutic remedy due to its low toxicity towards mammalian cells. However, further study on chemical constituents and their mechanisms in exhibiting certain biological activities are needed to understand the full phytochemical profile and the complex pharmacological effects of this plant. In addition, further study on the toxicity of the other compounds isolated from this plant required to be assessed to ensure their eligibility to be used as sources of drugs. © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Ciguatoxins: Cyclic Polyether Modulators of Voltage-gated Iion Channel Function

    PubMed Central

    Nicholson, Graham M.; Lewis, Richard J.

    2006-01-01

    Ciguatoxins are cyclic polyether toxins, derived from marine dinoflagellates, which are responsible for the symptoms of ciguatera poisoning. Ingestion of tropical and subtropical fin fish contaminated by ciguatoxins results in an illness characterised by neurological, cardiovascular and gastrointestinal disorders. The pharmacology of ciguatoxins is characterised by their ability to cause persistent activation of voltage-gated sodium channels, to increase neuronal excitability and neurotransmitter release, to impair synaptic vesicle recycling, and to cause cell swelling. It is these effects, in combination with an action to block voltage-gated potassium channels at high doses, which are believed to underlie the complex of symptoms associated with ciguatera. This review examines the sources, structures and pharmacology of ciguatoxins. In particular, attention is placed on their cellular modes of actions to modulate voltage-gated ion channels and other Na+-dependent mechanisms in numerous cell types and to current approaches for detection and treatment of ciguatera.

  2. The Potential Therapeutic Effects of Artesunate on Stroke and Other Central Nervous System Diseases

    PubMed Central

    Zuo, Shilun; Li, Qiang; Liu, Xin

    2016-01-01

    Artesunate is an important agent for cerebral malaria and all kinds of other severe malaria because it is highly efficient, lowly toxic, and well-tolerated. Loads of research pointed out that it had widespread pharmacological activities such as antiparasites, antitumor, anti-inflammation, antimicrobes activities. As we know, the occurrence and development of neurological disorders usually refer to intricate pathophysiologic mechanisms and multiple etiopathogenesis. Recent progress has also demonstrated that drugs with single mechanism and serious side-effects are not likely the candidates for treatment of the neurological disorders. Therefore, the pluripotent action of artesunate may result in it playing an important role in the prevention and treatment of these neurological disorders. This review provides an overview of primary pharmacological mechanism of artesunate and its potential therapeutic effects on neurological disorders. Meanwhile, we also briefly summarize the primary mechanisms of artemisinin and its derivatives. We hope that, with the evidence presented in this review, the effect of artesunate in prevention and curing for neurological disorders can be further explored and studied in the foreseeable future. PMID:28116289

  3. Chemical Composition and Pharmacological Effects of Geopropolis Produced by Melipona quadrifasciata anthidioides.

    PubMed

    Dos Santos, Cintia Miranda; Campos, Jaqueline Ferreira; Dos Santos, Helder Freitas; Balestieri, José Benedito Perrella; Silva, Denise Brentan; de Picoli Souza, Kely; Carollo, Carlos Alexandre; Estevinho, Leticia M; Dos Santos, Edson Lucas

    2017-01-01

    Stingless bees produce geopropolis, which is popularly described for its medicinal properties, but for which few scientific studies have demonstrated pharmacological effects. The objective of this study was to investigate the chemical composition of the geopropolis of Melipona quadrifasciata anthidioides and to evaluate its antioxidant, antimutagenic, anti-inflammatory, and antimicrobial activities. The composition of the hydroethanolic extract of geopropolis (HEG) included di- and trigalloyl and phenylpropanyl heteroside derivatives, flavanones, diterpenes, and triterpenes. HEG showed antioxidant action via the direct capture of free radicals and by inhibiting the levels of oxidative hemolysis and malondialdehyde in human erythrocytes under oxidative stress. HEG also reduced the frequency of gene conversion and the number of mutant colonies of S. cerevisiae . The anti-inflammatory action of HEG was demonstrated by the inhibition of hyaluronidase enzyme activity. In addition, HEG induced cell death in all evaluated gram-positive bacteria, gram-negative bacteria, and yeasts, including clinical isolates with antimicrobial drug resistance. Collectively, these results demonstrate the potential of M. q. anthidioides geopropolis for the prevention and treatment of various diseases related to oxidative stress, mutagenesis, inflammatory processes, and microbial infections.

  4. Chemical Composition and Pharmacological Effects of Geopropolis Produced by Melipona quadrifasciata anthidioides

    PubMed Central

    dos Santos, Cintia Miranda; Campos, Jaqueline Ferreira; dos Santos, Helder Freitas; Balestieri, José Benedito Perrella; Silva, Denise Brentan

    2017-01-01

    Stingless bees produce geopropolis, which is popularly described for its medicinal properties, but for which few scientific studies have demonstrated pharmacological effects. The objective of this study was to investigate the chemical composition of the geopropolis of Melipona quadrifasciata anthidioides and to evaluate its antioxidant, antimutagenic, anti-inflammatory, and antimicrobial activities. The composition of the hydroethanolic extract of geopropolis (HEG) included di- and trigalloyl and phenylpropanyl heteroside derivatives, flavanones, diterpenes, and triterpenes. HEG showed antioxidant action via the direct capture of free radicals and by inhibiting the levels of oxidative hemolysis and malondialdehyde in human erythrocytes under oxidative stress. HEG also reduced the frequency of gene conversion and the number of mutant colonies of S. cerevisiae. The anti-inflammatory action of HEG was demonstrated by the inhibition of hyaluronidase enzyme activity. In addition, HEG induced cell death in all evaluated gram-positive bacteria, gram-negative bacteria, and yeasts, including clinical isolates with antimicrobial drug resistance. Collectively, these results demonstrate the potential of M. q. anthidioides geopropolis for the prevention and treatment of various diseases related to oxidative stress, mutagenesis, inflammatory processes, and microbial infections. PMID:29213354

  5. Cardioprotective effect of sulphonated formononetin on acute myocardial infarction in rats.

    PubMed

    Zhang, Shumin; Tang, Xuexi; Tian, Jingwei; Li, Chunmei; Zhang, Guanbo; Jiang, Wanglin; Zhang, Zunting

    2011-06-01

    This study was designed to investigate the therapeutic effect of sodium formononetin-3'-sulphonate (Sul-F), a water-soluble derivate of formononetin, on acute myocardial infarction in rats. The results showed that treatment with Sul-F significantly prevented the elevation of ST-segment level, decreased the contents of creatine kinase-MB, lactate dehydrogenase, alanine aminotransferase and cardiac troponin T in serum and reduced the myocardium necrosis scores. The number of apoptosis cardiocytes is well accordance with the up-regulated expression of Bcl-2 and the down-regulated expression of Bax. Meanwhile, Sul-F significantly increased the cardiac mitochondrial ATP content, improved ATP synthase activity, decreased thiobarbituric acid-reactive substances content and attenuated the decrease in superoxide dismutase and glutathione peroxidase activities. These findings indicate that Sul-F has a protective potential against myocardial infarction injury. A possible mechanism for the protective effect is the elevated expression of endogenous antioxidant defence enzymes degraded lipid peroxidation products and improved energy metholism of cardiac mitochondrial, thus attenuating cardiocyte apoptosis. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  6. New indole, aminoindole and pyranoindole derivatives with anti-inflammatory activity.

    PubMed

    Nakkady, S S; Fathy, M M; Hishmat, O H; Mahmond, S S; Ebeid, M Y

    2000-01-01

    6-Methoxy-1-methyl-2,3-diphenyl indol-5-carboxaldehyde (2) was demethylated to give the 6-hydroxy derivative (3) which was cyclized to the pyrano[3,2-f]indole derivatives (4a-d) by the action of ethyl acetoacetate, diethyl malonate, malononitrile, ethyl cyanoacetate. When 4c was boiled in acetic acid, it gave 4d. Reduction of 4c by sodium borohydride yielded the orthoaminonitrile (5). Friedel Craft's acetylation of 1b yielded the 5-acetyl derivative (6), which reacted with hydrazine hydrate, o-toluidine and o-aminophenol to afford (7a-c). Demethylation of (1b) yielded the hydroxyl derivative (8), which differs from compound (9) obtained by demethylation of 6-methoxy-2,3-diphenyl-indole (1a). Friedel Craft's acetylation of 9 gave the 7-acetyl compound (10) which yielded the hydrazone (11). The reaction of primary aromatic amines, (i.e. p-nitroaniline, p-anisidine and p-bromo aniline) with 6-methoxy-1-methyl-2,3-diphenyl-indol-5-carboxaldehyde (2) gave the Schiff bases (12a-c). The latter compounds were reduced by sodium borohydride to yield the corresponding Mannich bases (13a-c). Treatment of 12a-c with thioglycolic acid led to the thiazolidin-4-one-derivatives (14a-c). When (12a-c) reacted with cyanoacetamide, the amino group was replaced by the active methylene to form the cyano compound (15). The structure was confirmed by reacting the carboxaldehyde (2) with cyanoacetamide to yield (15). Pharmacological screening was has been carried out to test the anti-inflammatory activity, ulcerogenecity, effect on the isolated rabbit intestine and the antispasmodic activity.

  7. Stereoselective Synthesis of α-Amino-C-phosphinic Acids and Derivatives.

    PubMed

    Viveros-Ceballos, José Luis; Ordóñez, Mario; Sayago, Francisco J; Cativiela, Carlos

    2016-08-29

    α-Amino-C-phosphinic acids and derivatives are an important group of compounds of synthetic and medicinal interest and particular attention has been dedicated to their stereoselective synthesis in recent years. Among these, phosphinic pseudopeptides have acquired pharmacological importance in influencing physiologic and pathologic processes, primarily acting as inhibitors for proteolytic enzymes where molecular stereochemistry has proven to be critical. This review summarizes the latest developments in the asymmetric synthesis of acyclic and phosphacyclic α-amino-C-phosphinic acids and derivatives, following in the first case an order according to the strategy used, whereas for cyclic compounds the nitrogen embedding in the heterocyclic core is considered. In addition selected examples of pharmacological implications of title compounds are also disclosed.

  8. The potential of anti-malarial compounds derived from African medicinal plants, part I: a pharmacological evaluation of alkaloids and terpenoids

    PubMed Central

    2013-01-01

    Traditional medicine caters for about 80% of the health care needs of many rural populations around the world, especially in developing countries. In addition, plant-derived compounds have played key roles in drug discovery. Malaria is currently a public health concern in many countries in the world due to factors such as chemotherapy faced by resistance, poor hygienic conditions, poorly managed vector control programmes and no approved vaccines. In this review, an attempt has been made to assess the value of African medicinal plants for drug discovery by discussing the anti-malarial virtue of the derived phytochemicals that have been tested by in vitro and in vivo assays. This survey was focused on pure compounds derived from African flora which have exhibited anti-malarial properties with activities ranging from “very active” to “weakly active”. However, only the compounds which showed anti-malarial activities from “very active” to “moderately active” are discussed in this review. The activity of 278 compounds, mainly alkaloids, terpenoids, flavonoids, coumarines, phenolics, polyacetylenes, xanthones, quinones, steroids, and lignans have been discussed. The first part of this review series covers the activity of 171 compounds belonging to the alkaloid and terpenoid classes. Data available in the literature indicated that African flora hold an enormous potential for the development of phytomedicines for malaria. PMID:24330395

  9. Benzoxazine derivatives of phytophenols show anti-plasmodial activity via sodium homeostasis disruption.

    PubMed

    Sharma, Vijeta; Amarnath, Nagarjuna; Shukla, Swapnil; Ayana, R; Kumar, Naveen; Yadav, Nisha; Kannan, Deepika; Sehrawat, Seema; Pati, Soumya; Lochab, Bimlesh; Singh, Shailja

    2018-05-15

    Development of new class of anti-malarial drugs is an essential requirement for the elimination of malaria. Bioactive components present in medicinal plants and their chemically modified derivatives could be a way forward towards the discovery of effective anti-malarial drugs. Herein, we describe a new class of compounds, 1,3-benzoxazine derivatives of pharmacologically active phytophenols eugenol (compound 3) and isoeugenol (compound 4) synthesised on the principles of green chemistry, as anti-malarials. Compound 4, showed highest anti-malarial activity with no cytotoxicity towards mammalian cells. Compound 4 induced alterations in the intracellular Na + levels and mitochondrial depolarisation in intraerythrocytic Plasmodium falciparum leading to cell death. Knowing P-type cation ATPase PfATP4 is a regulator for sodium homeostasis, binding of compound 3, compound 4 and eugenol to PfATP4 was analysed by molecular docking studies. Compounds showed binding to the catalytic pocket of PfATP4, however compound 4 showed stronger binding due to the presence of propylene functionality, which corroborates its higher anti-malarial activity. Furthermore, anti-malarial half maximal effective concentration of compound 4 was reduced to 490 nM from 17.54 µM with nanomaterial graphene oxide. Altogether, this study presents anti-plasmodial potential of benzoxazine derivatives of phytophenols and establishes disruption of parasite sodium homeostasis as their mechanism of action. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer.

    PubMed

    Zhao, Na; Cao, Jin; Xu, Longyong; Tang, Qianzi; Dobrolecki, Lacey E; Lv, Xiangdong; Talukdar, Manisha; Lu, Yang; Wang, Xiaoran; Hu, Dorothy Z; Shi, Qing; Xiang, Yu; Wang, Yunfei; Liu, Xia; Bu, Wen; Jiang, Yi; Li, Mingzhou; Gong, Yingyun; Sun, Zheng; Ying, Haoqiang; Yuan, Bo; Lin, Xia; Feng, Xin-Hua; Hartig, Sean M; Li, Feng; Shen, Haifa; Chen, Yiwen; Han, Leng; Zeng, Qingping; Patterson, John B; Kaipparettu, Benny Abraham; Putluri, Nagireddy; Sicheri, Frank; Rosen, Jeffrey M; Lewis, Michael T; Chen, Xi

    2018-04-02

    The unfolded protein response (UPR) is a cellular homeostatic mechanism that is activated in many human cancers and plays pivotal roles in tumor progression and therapy resistance. However, the molecular mechanisms for UPR activation and regulation in cancer cells remain elusive. Here, we show that oncogenic MYC regulates the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) branch of the UPR in breast cancer via multiple mechanisms. We found that MYC directly controls IRE1 transcription by binding to its promoter and enhancer. Furthermore, MYC forms a transcriptional complex with XBP1, a target of IRE1, and enhances its transcriptional activity. Importantly, we demonstrate that XBP1 is a synthetic lethal partner of MYC. Silencing of XBP1 selectively blocked the growth of MYC-hyperactivated cells. Pharmacological inhibition of IRE1 RNase activity with small molecule inhibitor 8866 selectively restrained the MYC-overexpressing tumor growth in vivo in a cohort of preclinical patient-derived xenograft models and genetically engineered mouse models. Strikingly, 8866 substantially enhanced the efficacy of docetaxel chemotherapy, resulting in rapid regression of MYC-overexpressing tumors. Collectively, these data establish the synthetic lethal interaction of the IRE1/XBP1 pathway with MYC hyperactivation and provide a potential therapy for MYC-driven human breast cancers.

  11. Insig proteins mediate feedback inhibition of cholesterol synthesis in the intestine.

    PubMed

    McFarlane, Matthew R; Liang, Guosheng; Engelking, Luke J

    2014-01-24

    Enterocytes are the only cell type that must balance the de novo synthesis and absorption of cholesterol, although the coordinate regulation of these processes is not well understood. Our previous studies demonstrated that enterocytes respond to the pharmacological blockade of cholesterol absorption by ramping up de novo sterol synthesis through activation of sterol regulatory element-binding protein-2 (SREBP-2). Here, we genetically disrupt both Insig1 and Insig2 in the intestine, two closely related proteins that are required for the feedback inhibition of SREBP and HMG-CoA reductase (HMGR). This double knock-out was achieved by generating mice with an intestine-specific deletion of Insig1 using Villin-Cre in combination with a germ line deletion of Insig2. Deficiency of both Insigs in enterocytes resulted in constitutive activation of SREBP and HMGR, leading to an 11-fold increase in sterol synthesis in the small intestine and producing lipidosis of the intestinal crypts. The intestine-derived cholesterol accumulated in plasma and liver, leading to secondary feedback inhibition of hepatic SREBP2 activity. Pharmacological blockade of cholesterol absorption was unable to further induce the already elevated activities of SREBP-2 or HMGR in Insig-deficient enterocytes. These studies confirm the essential role of Insig proteins in the sterol homeostasis of enterocytes.

  12. Insig Proteins Mediate Feedback Inhibition of Cholesterol Synthesis in the Intestine*

    PubMed Central

    McFarlane, Matthew R.; Liang, Guosheng; Engelking, Luke J.

    2014-01-01

    Enterocytes are the only cell type that must balance the de novo synthesis and absorption of cholesterol, although the coordinate regulation of these processes is not well understood. Our previous studies demonstrated that enterocytes respond to the pharmacological blockade of cholesterol absorption by ramping up de novo sterol synthesis through activation of sterol regulatory element-binding protein-2 (SREBP-2). Here, we genetically disrupt both Insig1 and Insig2 in the intestine, two closely related proteins that are required for the feedback inhibition of SREBP and HMG-CoA reductase (HMGR). This double knock-out was achieved by generating mice with an intestine-specific deletion of Insig1 using Villin-Cre in combination with a germ line deletion of Insig2. Deficiency of both Insigs in enterocytes resulted in constitutive activation of SREBP and HMGR, leading to an 11-fold increase in sterol synthesis in the small intestine and producing lipidosis of the intestinal crypts. The intestine-derived cholesterol accumulated in plasma and liver, leading to secondary feedback inhibition of hepatic SREBP2 activity. Pharmacological blockade of cholesterol absorption was unable to further induce the already elevated activities of SREBP-2 or HMGR in Insig-deficient enterocytes. These studies confirm the essential role of Insig proteins in the sterol homeostasis of enterocytes. PMID:24337570

  13. Titration-based screening for evaluation of natural product extracts: identification of an aspulvinone family of luciferase inhibitors

    PubMed Central

    Cruz, Patricia G.; Auld, Douglas S.; Schultz, Pamela J.; Lovell, Scott; Battaile, Kevin P.; MacArthur, Ryan; Shen, Min; Tamayo-Castillo, Giselle; Inglese, James; Sherman, David H.

    2011-01-01

    The chemical diversity of nature has tremendous potential for discovery of new molecular probes and medicinal agents. However, sensitivity of HTS assays to interfering components of crude extracts derived from plants, macro- and microorganisms has curtailed their use in lead discovery efforts. Here we describe a process for leveraging the concentration-response curves (CRCs) obtained from quantitative HTS to improve the initial selection of “actives” from a library of partially fractionated natural product extracts derived from marine actinomycetes and fungi. By using pharmacological activity, the first-pass CRC paradigm aims to improve the probability that labor-intensive subsequent steps of re-culturing, extraction and bioassay-guided isolation of active component(s) target the most promising strains and growth conditions. We illustrate how this process identified a family of fungal metabolites as potent inhibitors of firefly luciferase, subsequently resolved in molecular detail by x-ray crystallography. PMID:22118678

  14. Analgesic, anti-inflammatory, antipyretic and haematological effects of aethiopinone, an o-naphthoquinone diterpenoid from Salvia aethiopis roots and two hemisynthetic derivatives.

    PubMed

    Hernández-Pérez, M; Rabanal, R M; de la Torre, M C; Rodríguez, B

    1995-12-01

    Aethiopinone (1), an o-naphthoquinone diterpene from Salvia aethiopis L. roots and two hemisynthetic derivatives 2 and 3 have been evaluated for toxicity, anti-inflammatory, analgesic, antipyretic, and haemostatic activities. The compounds tested showed low toxicity and a pharmacological profile similar to other NSAI substances on reducing the edema induced by carrageenan and contractions induced by phenyl-p-quinone; the most active compounds were 1 and 2. In the same way and as expected with these types of substances, the bleeding time increased. In the TPA-induced ear inflammation model, the three compounds showed a moderate reduction of edema, and 1 produced a significant increase in the reaction time against thermal painful stimuli in the tail immersion test. The results demonstrated strong anti-inflammatory, peripheral and central analgesic properties for 1, as well as antiedematose topical action and peripheral analgesic properties for 2 and 3.

  15. Impact of divalent metal ions on regulation of adenylyl cyclase isoforms by forskolin analogs.

    PubMed

    Erdorf, Miriam; Mou, Tung-Chung; Seifert, Roland

    2011-12-01

    Mammalian membranous adenylyl cyclases (mACs) play an important role in transmembrane signalling events in almost every cell and represent an interesting drug target. Forskolin (FS) is an invaluable research tool, activating AC isoforms 1-8. However, there is a paucity of AC isoform-selective FS analogs. Therefore, we examined the effects of FS and six FS derivatives on recombinant ACs 1, 2 and 5, representing members of different mAC families. Correlations of the pharmacological properties of the different AC isoforms revealed pronounced differences between ACs 1, 2 and 5. Additionally, potencies and efficacies of FS derivatives changed for any given AC isoform, depending on the metal ion, Mg(2+) or Mn(2+). The most striking effects of Mg(2+) and Mn(2+) on the diterpene profile were observed for AC2 where the large inhibitory effect of BODIPY-FS in the presence of Mg(2+) was considerably reduced in the presence of Mn(2+). Sequence alignment and docking experiments confirmed an exceptional position of AC2 compared to ACs 1 and 5 with respect to the structural environment of the catalytic core and cation-dependent diterpene effects. In conclusion, mAC isoforms 1, 2 and 5 exhibit a distinct pharmacological diterpene profile, depending on the divalent cation present. mAC crystal structures and modelling/docking studies provided an explanation for the pharmacological differences between the AC isoforms. Our study constitutes an important step towards the development of isoform-specific diterpenes exhibiting stimulatory or inhibitory effects. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. A viral peptide for intracellular delivery

    NASA Astrophysics Data System (ADS)

    Falanga, Annarita; Tarallo, Rossella; Cantisani, Marco; Della Pepa, Maria Elena; Galdiero, Massimiliano; Galdiero, Stefania

    2012-10-01

    Biological membranes represent a critical hindrance for administering active molecules which are often unable to reach their designated intracellular target sites. In order to overcome this barrier-like behavior not easily circumvented by many pharmacologically-active molecules, synthetic transporters have been exploited to promote cellular uptake. Linking or complexing therapeutic molecules to peptides that can translocate through the cellular membranes could enhance their internal delivery, and consequently, a higher amount of active compound would reach the site of action. Use of cell penetrating peptides (CPPs) is one of the most promising strategy to efficiently translocate macromolecules through the plasma membrane, and have attracted a lot of attention. New translocating peptides are continuously described and in the present review, we will focus on viral derived peptides, and in particular a peptide (gH625) derived from the herpes simplex virus type 1 (HSV-1) glycoprotein H (gH) that has proved to be a useful delivery vehicle due to its intrinsic properties of inducing membrane perturbation.

  17. Cardiovascular aspects of geriatric medicines in traditional Persian medicine; a review of phytochemistry and pharmacology.

    PubMed

    Zarshenas, Mohammad M; Jamshidi, Sahar; Zargaran, Arman

    2016-10-15

    Geriatrics are a group of patients over 65 years and with multiple comorbidities and different functional impairments. Apart from decline in body mass, presence of exhaustion and general fatigue, an aged person may also suffer from various disorders. Approximately, around 30% of geriatric subjects have significant cardiovascular ailments. Apart from the intensive management of cardiovascular aspects in elderly, monitoring of the complementary cardiac medicine in those people should be received more attention. There are many management lines for a cardio-geriatric condition in Traditional Persian Medicine (TPM). Accordingly, this paper aimed to deal with those medicaments as well as evidence-based clinical aspects and phytochemistry. By searching through main pharmaceutical manuscripts of Persian medicine during 10th-18th centuries (A.D.), concurrently, natural medicines for geriatrics and remedies for cardiovascular ailments were derived. On the other side, related phytochemical and pharmacological aspects of those remedies were highlighted. In all, 38 cardiovascular and 34 geriatric medicaments were found in those manuscripts. Antihyperlipidemic and cholesterol lowering activities of those medicines were the most reported activities in current medicine. However, other pharmacological reports were related to hypotensive, coagulant, cardio-protective and cardiotonic activities. In regard of the chemical composition, medicaments were mainly of polyphenols and flavonoids and also most of the employed extracts and fractions were yielded from polar or semi-polar solvents. With reference to these findings, flavonoid-rich medicaments from Persian medicine may be selected as considerable herbs for geriatrics with cardiovascular ailments. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Glycyrrhetinic Acid and Its Derivatives: Anti-Cancer and Cancer Chemopreventive Properties, Mechanisms of Action and Structure- Cytotoxic Activity Relationship.

    PubMed

    Roohbakhsh, Ali; Iranshahy, Milad; Iranshahi, Mehrdad

    2016-01-01

    The anti-cancer properties of liquorice have been attributed, at least in part, to glycyrrhizin (GL). However, GL is not directly absorbed through the gastrointestinal tract. It is hydrolyzed to 18-β-glycyrrhetinic acid (GA), the pharmacologically active metabolite, by human intestinal microflora. GA exhibits remarkable cytotoxic and anti-tumor properties. The pro-apoptotic targets and mechanisms of action of GA have been extensively studied over the past decade. In addition, GA is an inexpensive and available triterpene with functional groups (COOH and OH) in its structure, which make it an attractive lead compound for medicinal chemists to prepare a large number of analogues. To date, more than 400 cytotoxic derivatives have been prepared on the basis of GA scaffold, including 128 cytotoxic derivatives with IC50 values less than 30 µM. Researchers have also succeeded in synthesizing very potent cytotoxic derivatives with IC50s ≤ 1 µM. Studies have shown that the introduction of a double bound at the C1-C2 position combined with an electronegative functional group, such as CN, CF3 or iodine at C2 position, and the oxidation of the hydroxyl group of C3 to the carbonyl group, significantly increased cytotoxicity. This review describes the cytotoxic and anti-tumor properties of GA and its derivatives, targets and mechanisms of action and provides insight into the structure-activity relationship of GA derivatives.

  19. An Overview of Neolignans of the Genus Piper L.: Isolation Methods and Biological Activities.

    PubMed

    Macedo, Arthur Ladeira; Dos Santos, Thais Carvalho Costa; Valverde, Alessandra Leda; Moreira, Davyson de Lima; Vasconcelos, Thatyana Rocha Alves

    2017-01-01

    The genus Piper L. has the shikimic acid pathway predominantly expressed, biosynthesizing many cinnamic acid derivatives (CAD). Neolignans comprise an important class of CAD that exhibit a wide range of pharmacological properties such as antibacterial, antitumor, insecticidal, anti-inflammatory, antioxidant, smooth muscle relaxant, neuroprotective, antiprotozoal and against platelet aggregation factor. These substances have been extracted and isolated from Piper species using different technics. The present review aims to summarize extraction and isolation methods and biological activities of the different types of neolignans covering the period from 1968 to January 2016. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Brain RVD-haemopressin, a haemoglobin-derived peptide, inhibits bombesin-induced central activation of adrenomedullary outflow in the rat.

    PubMed

    Tanaka, Kenjiro; Shimizu, Takahiro; Yanagita, Toshihiko; Nemoto, Takayuki; Nakamura, Kumiko; Taniuchi, Keisuke; Dimitriadis, Fotios; Yokotani, Kunihiko; Saito, Motoaki

    2014-01-01

    Haemopressin and RVD-haemopressin, derived from the haemoglobin α-chain, are bioactive peptides found in brain and are ligands for cannabinoid CB1 receptors. Activation of brain CB1 receptors inhibited the secretion of adrenal catecholamines (noradrenaline and adrenaline) induced by i.c.v. bombesin in the rat. Here, we investigated the effects of two haemoglobin-derived peptides on this bombesin-induced response Anaesthetised male Wistar rats were pretreated with either haemoglobin-derived peptide, given i.c.v., 30 min before i.c.v. bombesin and plasma catecholamines were subsequently measured electrochemically after HPLC. Direct effects of bombesin on secretion of adrenal catecholamines were examined using bovine adrenal chromaffin cells. Furthermore, activation of haemoglobin α-positive spinally projecting neurons in the rat hypothalamic paraventricular nucleus (PVN, a regulatory centre of central adrenomedullary outflow) after i.c.v. bombesin was assessed by immunohistochemical techniques. Bombesin given i.c.v. dose-dependently elevated plasma catecholamines whereas incubation with bombesin had no effect on spontaneous and nicotine-induced secretion of catecholamines from chromaffin cells. The bombesin-induced increase in catecholamines was inhibited by pretreatment with i.c.v. RVD-haemopressin (CB1 receptor agonist) but not after pretreatment with haemopressin (CB1 receptor inverse agonist). Bombesin activated haemoglobin α-positive spinally projecting neurons in the PVN. The haemoglobin-derived peptide RVD-haemopressin in the brain plays an inhibitory role in bombesin-induced activation of central adrenomedullary outflow via brain CB1 receptors in the rat. These findings provide basic information for the therapeutic use of haemoglobin-derived peptides in the modulation of central adrenomedullary outflow. © 2013 The British Pharmacological Society.

  1. Pedal peptide/orcokinin-type neuropeptide signaling in a deuterostome: The anatomy and pharmacology of starfish myorelaxant peptide in Asterias rubens.

    PubMed

    Lin, Ming; Egertová, Michaela; Zampronio, Cleidiane G; Jones, Alexandra M; Elphick, Maurice R

    2017-12-15

    Pedal peptide (PP) and orcokinin (OK) are related neuropeptides that were discovered in protostomian invertebrates (mollusks, arthropods). However, analysis of genome/transcriptome sequence data has revealed that PP/OK-type neuropeptides also occur in a deuterostomian phylum-the echinoderms. Furthermore, a PP/OK-type neuropeptide (starfish myorelaxant peptide, SMP) was recently identified as a muscle relaxant in the starfish Patiria pectinifera. Here mass spectrometry was used to identify five neuropeptides (ArPPLN1a-e) derived from the SMP precursor (PP-like neuropeptide precursor 1; ArPPLNP1) in the starfish Asterias rubens. Analysis of the expression of ArPPLNP1 and neuropeptides derived from this precursor in A. rubens using mRNA in situ hybridization and immunohistochemistry revealed a widespread pattern of expression, with labeled cells and/or processes present in the radial nerve cords, circumoral nerve ring, digestive system (e.g., cardiac stomach) and body wall-associated muscles (e.g., apical muscle) and appendages (e.g., tube feet and papulae). Furthermore, our data provide the first evidence that neuropeptides are present in the lateral motor nerves and in nerve processes innervating interossicular muscles. In vitro pharmacological tests with SMP (ArPPLN1b) revealed that it causes dose-dependent relaxation of apical muscle, tube foot and cardiac stomach preparations from A. rubens. Collectively, these anatomical and pharmacological data indicate that neuropeptides derived from ArPPLNP1 act as inhibitory neuromuscular transmitters in starfish, which contrasts with the myoexcitatory actions of PP/OK-type neuropeptides in protostomian invertebrates. Thus, the divergence of deuterostomes and protostomes may have been accompanied by an inhibitory-excitatory transition in the roles of PP/OK-type neuropeptides as regulators of muscle activity. © 2017 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  2. Triterpenoids from Gymnema sylvestre and their pharmacological activities.

    PubMed

    Fabio, Giovanni Di; Romanucci, Valeria; De Marco, Anna; Zarrelli, Armando

    2014-07-28

    Because plants are estimated to produce over 200,000 metabolites, research into new natural substances that can be used in the pharmaceutical, agrochemical and agro-industrial production of drugs, biopesticides and food additives has grown in recent years. The global market for plant-derived drugs over the last decade has been estimated to be approximately 30.69 billion USD. A relevant specific example of a plant that is very interesting for its numerous pharmacological properties, which include antidiabetic, anticarcinogenic, and neuroprotective effects is Gymnema sylvestre, used as a medicinal plant in Asia for thousands of years. Its properties are attributed to triterpenoidic saponins. In light of the considerable interest generated in the chemistry and pharmacological properties of G. sylvestre triterpenes and their analogues, we have undertaken this review in an effort to summarise the available literature on these promising bioactive natural products. The review will detail studies on the isolation, chemistry and bioactivity of the triterpenoids, which are presented in the tables. In particular the triterpenoids oxidised at C-23; their isolation, distribution in different parts of the plant, and their NMR spectral data; their names and physico-chemical characterisation; and the biological properties associated with these compounds, with a focus on their potential chemotherapeutic applications.

  3. Medical Application of Spirulina platensis Derived C-Phycocyanin

    PubMed Central

    Liu, Qian; Huang, Yinghong; Zhang, Ronghua; Cai, Tiange; Cai, Yu

    2016-01-01

    Along with the development of marine biological pharmaceutical research, high-effective and low-toxic drugs and functional foods isolated from marine organisms have become a new field of pharmacy and bromatology. The pharmacological actions, such as anti-inflammation, antioxidation, antitumor, immunological enhancement, and hepatorenal protection of C-phycocyanin (C-PC) from Spirulina platensis, have been reported, and C-PC has important value of development and utilization either as drug or as functional food. There are many researches about the various pharmacological actions and mechanisms of C-PC, but related reports are only to some extent integrated deeply and accurately enough, which put some limitations to the further application of C-PC in medicine. Particularly, with the improvement of living standards and attention to health issues, C-PC being a functional food is preferred by more and more people. C-PC is easy to get, safe, and nontoxic; thus, it has a great potential of research and development as a drug or functional food. Here, the separation and purification, physicochemical properties, physiological and pharmacological activities, safety, and some applications are reviewed to provide relevant basis for the development of natural medicine and applied products. PMID:27293463

  4. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation

    PubMed Central

    Jump, Donald B.; Torres-Gonzalez, Moises; Olson, L. Karl

    2010-01-01

    Acetyl CoA carboxylase (ACC1 & ACC2) generates malonyl CoA, a substrate for de novo lipogenesis (DNL) and an inhibitor of mitochondrial fatty acid β-oxidation (FAO). Malonyl CoA is also a substrate for microsomal fatty acid elongation, an important pathway for saturated (SFA), mono- (MUFA) and polyunsaturated fatty acid (PUFA) synthesis. Despite the interest in ACC as a target for obesity and cancer therapy, little attention has been given to the role ACC plays in long chain fatty acid synthesis. This report examines the effect of pharmacological inhibition of ACC on DNL & palmitate (16:0) and linoleate (18:2,n-6) metabolism in HepG2 and LnCap cells. The ACC inhibitor, soraphen A, lowers cellular malonyl CoA, attenuates DNL and the formation of fatty acid elongation products derived from exogenous fatty acids, i.e., 16:0 & 18:2,n-6; IC50 ~ 5 nM. Elevated expression of fatty acid elongases (Elovl5, Elovl6) or desaturases (FADS1, FADS2) failed to override the soraphen A effect on SFA, MUFA or PUFA synthesis. Inhibition of fatty acid elongation leads to the accumulation of 16- and 18-carbon unsaturated fatty acids derived from 16:0 and 18:2,n-6, respectively. Pharmacological inhibition of ACC activity will not only attenuate DNL and induce FAO, but will also attenuate the synthesis of very long chain saturated, mono- and polyunsaturated fatty acids. PMID:21184748

  5. Patient-derived models of acquired resistance can identify effective drug combinations for cancer.

    PubMed

    Crystal, Adam S; Shaw, Alice T; Sequist, Lecia V; Friboulet, Luc; Niederst, Matthew J; Lockerman, Elizabeth L; Frias, Rosa L; Gainor, Justin F; Amzallag, Arnaud; Greninger, Patricia; Lee, Dana; Kalsy, Anuj; Gomez-Caraballo, Maria; Elamine, Leila; Howe, Emily; Hur, Wooyoung; Lifshits, Eugene; Robinson, Hayley E; Katayama, Ryohei; Faber, Anthony C; Awad, Mark M; Ramaswamy, Sridhar; Mino-Kenudson, Mari; Iafrate, A John; Benes, Cyril H; Engelman, Jeffrey A

    2014-12-19

    Targeted cancer therapies have produced substantial clinical responses, but most tumors develop resistance to these drugs. Here, we describe a pharmacogenomic platform that facilitates rapid discovery of drug combinations that can overcome resistance. We established cell culture models derived from biopsy samples of lung cancer patients whose disease had progressed while on treatment with epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors and then subjected these cells to genetic analyses and a pharmacological screen. Multiple effective drug combinations were identified. For example, the combination of ALK and MAPK kinase (MEK) inhibitors was active in an ALK-positive resistant tumor that had developed a MAP2K1 activating mutation, and the combination of EGFR and fibroblast growth factor receptor (FGFR) inhibitors was active in an EGFR mutant resistant cancer with a mutation in FGFR3. Combined ALK and SRC (pp60c-src) inhibition was effective in several ALK-driven patient-derived models, a result not predicted by genetic analysis alone. With further refinements, this strategy could help direct therapeutic choices for individual patients. Copyright © 2014, American Association for the Advancement of Science.

  6. Derivatives of Ergot-alkaloids: Molecular structure, physical properties, and structure-activity relationships

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka B.; Spiteller, Michael

    2012-09-01

    A comprehensive screening of fifteen functionalized Ergot-alkaloids, containing bulk aliphatic cyclic substituents at D-ring of the ergoline molecular skeleton was performed, studying their structure-active relationships and model interactions with α2A-adreno-, serotonin (5HT2A) and dopamine D3 (D3A) receptors. The accounted high affinity to the receptors binding loops and unusual bonding situations, joined with the molecular flexibility of the substituents and the presence of proton accepting/donating functional groups in the studied alkaloids, may contribute to further understanding the mechanisms of biological activity in vivo and in predicting their therapeutic potential in central nervous system (CNS), including those related the Schizophrenia. Since the presented correlation between the molecular structure and properties, was based on the comprehensively theoretical computational and experimental physical study on the successfully isolated derivatives, through using routine synthetic pathways in a relatively high yields, marked these derivatives as 'treasure' for further experimental and theoretical studied in areas such as: (a) pharmacological and clinical testing; (b) molecular-drugs design of novel psychoactive substances; (c) development of the analytical protocols for determination of Ergot-alkaloids through a functionalization of the ergoline-skeleton, and more.

  7. Effects of chalcone derivatives on players of the immune system

    PubMed Central

    Lee, Jian Sian; Bukhari, Syed Nasir Abbas; Fauzi, Norsyahida Mohd

    2015-01-01

    The immune system is the defense mechanism in living organisms that protects against the invasion of foreign materials, microorganisms, and pathogens. It involves multiple organs and tissues in human body, such as lymph nodes, spleen, and mucosa-associated lymphoid tissues. However, the execution of immune activities depends on a number of specific cell types, such as B cells, T cells, macrophages, and granulocytes, which provide various immune responses against pathogens. In addition to normal physiological functions, abnormal proliferation, migration, and differentiation of these cells (in response to various chemical stimuli produced by invading pathogens) have been associated with several pathological disorders. The unwanted conditions related to these cells have made them prominent targets in the development of new therapeutic interventions against various pathological implications, such as atherosclerosis and autoimmune diseases. Chalcone derivatives exhibit a broad spectrum of pharmacological activities, such as immunomodulation, as well as anti-inflammatory, anticancer, antiviral, and antimicrobial properties. Many studies have been conducted to determine their inhibitory or stimulatory activities in immune cells, and the findings are of significance to provide a new direction for subsequent research. This review highlights the effects of chalcone derivatives in different types of immune cells. PMID:26316713

  8. [Testing the pharmacological activity of some synthetic cannabinoids in mice (author's transl)].

    PubMed

    Ganz, A J; Waser, P G

    1980-01-01

    A series of synthetic cannabinoids were tested in mice for analgesic, anticonvulsant, sedative and reserpine antagonistic properties as well as for influence on body temperature and on motor coordination and compared with the natural delta 9-tetrahydrocannabinol (delta 9-THC), delta 8-tetrahydrocannabinol (delta 8-THC) and cannabidiol (CBD). All cannabinoids were injected s.c. or i.p. in mice as solutions in olive oil. The synthetic cannabinoids, with the exception of the lipophilic ones, were less active than the natural delta 9-THC. 1',1'-dimethyl-delta 8-tetrahydrocannabinol (DM-delta 8-THC) has an analgesic ED 50 of 16 mg/kg s.c. (writhing test) and is three times more active than delta 9-THC, but also eight times less active than morphine. The lipophilic derivatives of delta 8-THC prolonged pentobarbitone narcosis and diminished locomotor activity in mice. Anticonvulsant activities could never be detected; all cannabinoids slightly diminished body temperature and antagonized weakly the hypothermia induced by reserpine. The trained capacity of remaining on the rotating rod was severely shortened for a long time after application of all cannabinoids but mainly by the lipophilic ones. The influence of derivation on the activity of delta 9-THC is discussed.

  9. Ergotamine and nicergoline - facts and myths.

    PubMed

    Zajdel, Paweł; Bednarski, Marek; Sapa, Jacek; Nowak, Gabriel

    2015-04-01

    Ergotamine, being a representative of naturally occurring ergoline alkaloids, derived from d-lysergic acid, and nicergoline, a d-lumilysergic acid derivative belonging to semi-synthetic ergot-derived alkaloids, display diversified affinity for adrenergic, serotoninergic, and dopamine receptors. Although introduction of triptans marginalized use of ergotamine, nicergoline is used in cerebral metabolic-vascular disorders, and dementia. Additionally, nicergoline exhibits a safety profile comparable to that of placebo, and none of the reviewed studies reported any incidence of fibrosis or ergotism with nicergoline treatment. In line with the recent data, activation of 5-HT2B receptor by ergot derivatives i.e. ergotamine, methysergide, pergolide, and carbegoline is involved in pathogenesis of drug-induced valvulopathy. In contrary structurally related drugs - lisuride and terguride do not increase the risk of valvular heart disease. It seems, that more detailed mechanistic studies on nicergoline and ergotamine might be beneficial for determining structural requirements related to activation of G-protein as well as alternative signal transduction pathways e.g. β-arrestins or different kinases, and responsible for drug liabilities. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Clinacanthus nutans (Burm. f.) Lindau: A comprehensive review.

    PubMed

    Kamarudin, Muhamad Noor Alfarizal; Sarker, Md Moklesur Rahman; Kadir, Habsah Abdul; Ming, Long Chiau

    2017-07-12

    Clinacanthus nutans (Burm. f.) Lindau, a widely used medicinal plant, is extensively grown in tropical Asia and Southeast Asian countries. C. nutans, with its broad spectrum of pharmacological activities, has been traditionally used to treat cancer, inflammatory disorders, diabetes, insect bites, and skin problems, consumed as a vegetable, mixed with fresh juices, in concoctions, and as a whole plant. The present review analyzes the advances in the ethnopharmacology, phytochemistry, pharmacology, and toxicology of C. nutans. In addition, the needs and perspectives for future investigation of this plant are addressed. This review aims to provide a comprehensive report on the ethnomedicinal use, phytochemistry, pharmacological activities, molecular mechanisms, and nutritional values of C. nutans. The present review will open new avenues for further in-depth pharmacological studies of C. nutans for it to be developed as a potential nutraceutical and to improve the available products in the market. All the available information on C. nutans was collected using the key words "Clinacanthus nutans" and/or "ethnomedicine" and/or "phytochemicals" and/or "anticancer" and/or "anti-inflammatory" and/or "antiviral" through an electronic search of the following databases: PubMed, Web of Science, EMBASE, Cochrane Library, Clinical Trials.org, SciFinder Scholar, Scopus, and Google Scholar. In addition, unpublished materials, Ph.D. and M.Sc. dissertations, conference papers, and ethnobotanical textbooks were used. The Plant List (www.theplantlist.org) and International Plant Name Index databases were used to validate the scientific name of the plant. The literature supported the ethnomedicinal uses of C. nutans as recorded in Thailand, Indonesia, and Malaysia for various purposes. Bioactivities experimentally proven for C. nutans include cytotoxic, anticancer, antiviral, anti-inflammatory, immunomodulatory, antidiabetic, antioxidant, antihyperlipidemic, antimicrobial, and chemotherapeutic (in aquaculture) activities. Most of these activities have so far only been investigated in chemical, cell-based, and animal assays. Various groups of phytochemicals including five sulfur-containing glycosides, eight chlorophyll derivatives, nine cerebrosides, and a monoacylmonogalactosyl glycerol are present in C. nutans. The presence of two glycerolipids, four sulfur-containing compounds, six known flavones, a flavanol, four flavonols, two phytosterols, one polypeptide, and various phenolics and fatty acids largely influences its diverse bioactivities. Numerous reports justify the ethnomedicinal use of C. nutans as an antiviral agent in treating herpes simplex virus and varicella-zoster virus infections and as part of a traditional anticancer anti-inflammatory concoction agent for various inflammatory diseases. C. nutans tea was reported to have a good percentage of carbohydrate, crude protein, minerals, essential amino acids, nonessential amino acids, and essential fatty acids. Acute, subacute, and subchronic toxicity studies demonstrated that oral administration of ethanol and methanol extracts of C. nutans to male Swiss albino mice and male Sprague-Dawley (SD) rats, respectively, did not lead to any toxicity or adverse effects on the animal behavior and organs when used in amounts as high as 2g/kg. The collected literatures demonstrated that, as an important traditional medicine, C. nutans is a promising ethnomedicinal plant with various extracts and bioactive compounds exhibiting multifarious bioactivities. However, it is important for future studies to conduct further in vitro and in vivo bioactivity evaluations systematically, following the standard pharmacology guidelines. It is crucial to elucidate in-depth molecular mechanisms, structure-activity relationships, and potential synergistic and antagonistic effects of multi-component extracts and bioactive constituents derived from C. nutans. Further studies should also focus on comprehensive toxicity that includes long-term effects and adverse effects on target organs of C. nutans and bioactive compounds in correlation with the specific pharmacological effects. Copyright © 2017. Published by Elsevier B.V.

  11. S-Nitroso-N-acetyl-L-cysteine ethyl ester (SNACET) and N-acetyl-L-cysteine ethyl ester (NACET)-Cysteine-based drug candidates with unique pharmacological profiles for oral use as NO, H2S and GSH suppliers and as antioxidants: Results and overview.

    PubMed

    Tsikas, Dimitrios; Schwedhelm, Kathrin S; Surdacki, Andrzej; Giustarini, Daniela; Rossi, Ranieri; Kukoc-Modun, Lea; Kedia, George; Ückert, Stefan

    2018-02-01

    S -Nitrosothiols or thionitrites with the general formula RSNO are formally composed of the nitrosyl cation (NO + ) and a thiolate (RS - ), the base of the corresponding acids RSH. The smallest S -nitrosothiol is HSNO and derives from hydrogen sulfide (HSH, H 2 S). The most common physiological S -nitrosothiols are derived from the amino acid L-cysteine (CysSH). Thus, the simplest S -nitrosothiol is S -nitroso-L-cysteine (CysSNO). CysSNO is a spontaneous potent donor of nitric oxide (NO) which activates soluble guanylyl cyclase to form cyclic guanosine monophosphate (cGMP). This activation is associated with multiple biological actions that include relaxation of smooth muscle cells and inhibition of platelet aggregation. Like NO, CysSNO is a short-lived species and occurs physiologically at concentrations around 1 nM in human blood. CysSNO can be formed from CysSH and higher oxides of NO including nitrous acid (HONO) and its anhydride (N 2 O 3 ). The most characteristic feature of RSNO is the S-transnitrosation reaction by which the NO + group is reversibly transferred to another thiolate. By this way numerous RSNO can be formed such as the low-molecular-mass S -nitroso- N -acetyl-L-cysteine (SNAC) and S -nitroso-glutathione (GSNO), and the high-molecular-mass S -nitrosol-L-cysteine hemoglobin (HbCysSNO) present in erythrocytes and S -nitrosol-L-cysteine albumin (AlbCysSNO) present in plasma at concentrations of the order of 200 nM. All above mentioned RSNO exert NO-related biological activity, but they must be administered intravenously. This important drawback can be overcome by lipophilic charge-free RSNO. Thus, we prepared the ethyl ester of SNAC, the S -nitroso- N -acetyl-L-cysteine ethyl ester (SNACET), from synthetic N -acetyl-L-cysteine ethyl ester (NACET). Both NACET and SNACET have improved pharmacological features over N -acetyl-L-cysteine (NAC) and S -nitroso- N -acetyl-L-cysteine (SNAC), respectively, including higher oral bioavailability. SNACET exerts NO-related activities which can be utilized in the urogenital tract and in the cardiovascular system. NACET, with high oral bioavailability, is a strong antioxidant and abundant precursor of GSH, unlike its free acid N -acetyl-L-cysteine (NAC). Here, we review the chemical and pharmacological properties of SNACET and NACET as well as their analytical chemistry. We also report new results from the ingestion of S -[ 15 N]nitroso- N -acetyl-L-cysteine ethyl ester (S 15 NACET) demonstrating the favorable pharmacological profile of SNACET.

  12. Ultrasound-assisted synthesis of 2,4-thiazolidinedione and rhodanine derivatives catalyzed by task-specific ionic liquid: [TMG][Lac].

    PubMed

    Suresh; Sandhu, Jagir Singh

    2013-03-03

    Synthesized arylidene derivatives of rhodanine and 2,4-thiazolidiendione have potent pharmacological activities, and these are also key substrates for the preparation of clinically used antidiabetics. Some 1,1,3,3-tetramethylguanidine-based task-specific ionic liquids (TSILs) 1a-1e were prepared and employed to the catalyzed solvent-free Knoevenagel condensation of 2,4-thiazolidinedione 3a and rhodanine 3b with a variety of aldehydes. Best results were obtained with 1,1,3,3-tetramethylguanidine lactate ([TMG][Lac]) 1c. The TSIL used can be easily recovered and recycled, yielding products 4-5 in excellent yields under ultrasonic environment without the formation of any side products or toxic waste.

  13. Synthesis and Study of Analgesic and Anti-inflammatory Activities of Amide Derivatives of Ibuprofen.

    PubMed

    Ahmadi, Abbas; Khalili, Mohsen; Olama, Zahra; Karami, Shirin; Nahri-Niknafs, Babak

    2017-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most widely used drugs worldwide and represent a mainstay in the therapy of acute and chronic pain and inflammation. The traditional NSAIDs like ibuprofen (I) contain free carboxylic acid group which can produce gastrointestinal (GI) damage for long-term use. In order to obtain the novel NSAIDs with less side effects; carboxylic acid moiety has been modified into various amide groups which is the most active area of research in this family. In this research, synthesis of various pharmacological heterocyclic amides of ibuprofen is described. All the new compounds were tested for their analgesic and anti-inflammatory activities in mice and compared with standard (Ibuprofen) and control (saline) groups. The results revealed that all the synthesized compounds (III-VI) exhibited more analgesic and anti-inflammatory activities in tail immersion (as a model of acute thermal pain), formalin (as a model of acute chemical and chronic pain) and paw edema (as a model of acute inflammation) tests when compared with standard and control animals. These pharmacological activities were significant for VI compared to other new compounds (III-V) which may be concern to more effective role of morpholin for the reduction of pain and inflammation compared to other used heterocyclic amines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Constituents and Pharmacological Activities of Myrcia (Myrtaceae): A Review of an Aromatic and Medicinal Group of Plants

    PubMed Central

    Cascaes, Márcia Moraes; Guilhon, Giselle Maria Skelding Pinheiro; Andrade, Eloisa Helena de Aguiar; Zoghbi, Maria das Graças Bichara; Santos, Lourivaldo da Silva

    2015-01-01

    Myrcia is one of the largest genera of the economically important family Myrtaceae. Some of the species are used in folk medicine, such as a group known as “pedra-hume-caá” or “pedra-ume-caá” or “insulina vegetal” (insulin plant) that it is used for the treatment of diabetes. The species are an important source of essential oils, and most of the chemical studies on Myrcia describe the chemical composition of the essential oils, in which mono- and sesquiterpenes are predominant. The non-volatile compounds isolated from Myrcia are usually flavonoids, tannins, acetophenone derivatives and triterpenes. Anti-inflammatory, antinociceptive, antioxidant, antimicrobial activities have been described to Myrcia essential oils, while hypoglycemic, anti-hemorrhagic and antioxidant activities were attributed to the extracts. Flavonoid glucosides and acetophenone derivatives showed aldose reductase and α-glucosidase inhibition, and could explain the traditional use of Myrcia species to treat diabetes. Antimicrobial and anti-inflammatory are some of the activities observed for other isolated compounds from Myrcia. PMID:26473832

  15. Novel Method of Preparation and Activity Research on Arctigenin from Fructus Arctii.

    PubMed

    Cai, Enbo; Han, Jiahong; Yang, Limin; Zhang, Weiyuan; Zhao, Yan; Chen, Qiulian; Guo, Meng; He, Xinhong

    2018-01-01

    Arctigenin has many pharmacological activities with clinical significance and is derived from Arctium lappa L. However, the present extraction method is inefficient and does not have meaningful industrial production. A new method to directly prepare arctigenin was established by combining enzyme-assisted extraction and central composite design. Arctigenin's further pharmacological activity was also surveyed in vitro . β-D-Glucosidase, a food-grade enzyme, was added directly to the fruits of A. lappa L. to hydrolyze the arctiin to arctigenin, and the obtained samples were subsequently subjected to ethanol (30%, v/v) extraction. The pharmacological activity of the extraction and arctigenin was determined by inhibiting acetylcholinesterase (AChE) and scavenging nitrite. The factors investigated include the enzyme concentration (0.5%-2.5%), ultrasound time (10 min -3 0 min), and extraction temperature (30°C-50°C). From the analysis of the results by Design-Expert (V8.0.6), the optimal extraction conditions were obtained: enzyme concentration (1.4%), ultrasound time (25 min), and extraction temperature (45°C). The highest yield of arctigenin, obtained under the optimal conditions was 6.39%, representing an increase of 28.15% compared to the reference extraction without enzyme processing. The IC 50 values of the extraction and arctigenin, respectively, for inhibiting AChE were 0.572 mg/ml and 0.462 mg/ml, and those for nitrite-scavenging were 34.571 mg/ml and 17.49 mg/ml. The results demonstrate that using an enzyme directly in the production is an effective means for extracting arctigenin from Fructus arctii. The extraction has the activities of inhibiting AChE and scavenging nitrite, probably because there has arctigenin in it. It is implied that the extraction and arctigenin could contribute to human health in clinical applications. The new method of adding enzyme directly to the preparation of arctigenin was carried out instead of preparing arctigenin by two-step methodThree factors affecting the efficiency of preparation were analyzed and discussed include the enzyme concentration, ultrasound time, and extraction temperature by central composite designThis new method of preparing arctigenin improved the yield significantly than other methodsArctigenin has remarkable pharmacological activities of inhibiting acetylcholinesterase and scavenging nitrite. Abbreviations used: AChE: Acetylcholinesterase, CCD: Central composite design, TCM: Traditional Chinese medicines, AD.

  16. Novel Method of Preparation and Activity Research on Arctigenin from Fructus Arctii

    PubMed Central

    Cai, Enbo; Han, Jiahong; Yang, Limin; Zhang, Weiyuan; Zhao, Yan; Chen, Qiulian; Guo, Meng; He, Xinhong

    2018-01-01

    Background: Arctigenin has many pharmacological activities with clinical significance and is derived from Arctium lappa L. However, the present extraction method is inefficient and does not have meaningful industrial production. Objective: A new method to directly prepare arctigenin was established by combining enzyme-assisted extraction and central composite design. Arctigenin's further pharmacological activity was also surveyed in vitro. Materials and Methods: β-D-Glucosidase, a food-grade enzyme, was added directly to the fruits of A. lappa L. to hydrolyze the arctiin to arctigenin, and the obtained samples were subsequently subjected to ethanol (30%, v/v) extraction. The pharmacological activity of the extraction and arctigenin was determined by inhibiting acetylcholinesterase (AChE) and scavenging nitrite. Results: The factors investigated include the enzyme concentration (0.5%–2.5%), ultrasound time (10 min−3 0 min), and extraction temperature (30°C–50°C). From the analysis of the results by Design-Expert (V8.0.6), the optimal extraction conditions were obtained: enzyme concentration (1.4%), ultrasound time (25 min), and extraction temperature (45°C). The highest yield of arctigenin, obtained under the optimal conditions was 6.39%, representing an increase of 28.15% compared to the reference extraction without enzyme processing. The IC50 values of the extraction and arctigenin, respectively, for inhibiting AChE were 0.572 mg/ml and 0.462 mg/ml, and those for nitrite-scavenging were 34.571 mg/ml and 17.49 mg/ml. Conclusions: The results demonstrate that using an enzyme directly in the production is an effective means for extracting arctigenin from Fructus arctii. The extraction has the activities of inhibiting AChE and scavenging nitrite, probably because there has arctigenin in it. It is implied that the extraction and arctigenin could contribute to human health in clinical applications. SUMMARY The new method of adding enzyme directly to the preparation of arctigenin was carried out instead of preparing arctigenin by two-step methodThree factors affecting the efficiency of preparation were analyzed and discussed include the enzyme concentration, ultrasound time, and extraction temperature by central composite designThis new method of preparing arctigenin improved the yield significantly than other methodsArctigenin has remarkable pharmacological activities of inhibiting acetylcholinesterase and scavenging nitrite. Abbreviations used: AChE: Acetylcholinesterase, CCD: Central composite design, TCM: Traditional Chinese medicines, AD: PMID:29576707

  17. Apoptotic effect of chalcone derivatives of 2-acetylthiophene in human breast cancer cells.

    PubMed

    Fogaça, Tatiana B; Martins, Rosiane M; Begnini, Karine R; Carapina, Caroline; Ritter, Marina; de Pereira, Claudio M P; Seixas, Fabiana K; Collares, Tiago

    2017-02-01

    A variety of chalcones have demonstrated cytotoxic activity toward several cancer cell lines. This study aimed to investigate the cytotoxicity of four chalcones derivatives of 2-acetylthiophene in human breast cancer cell lines. MCF-7 and MDA-MB-231 cells were treated with synthesized chalcones and the cytotoxicity was evaluated by tetrazolium dye (MTT), live/dead, and DAPI assays. Chalcones significantly decreased MCF-7 and MDA-MB-231 cells viability in vitro in a dose dependent manner. After 48h treatment, the IC 50 values ranging from 5.52 to 34.23μM. Chalcone 3c displayed the highest cytotoxic activity from all the tested compounds. Cytotoxic effects of compounds were confirmed in the live/dead assay. In addition, DAPI staining revealed that these compounds induce death by apoptosis. The data speculate that chalcone derivatives of 2-acetylthiophene may represent a source of therapeutic agents for human breast cancer. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. Pharmacological evaluation of a novel cyclic phosphatidic acid derivative 3-S-cyclic phosphatidic acid (3-S-cPA).

    PubMed

    Nozaki, Emi; Gotoh, Mari; Tanaka, Ryo; Kato, Masaru; Suzuki, Takahiro; Nakazaki, Atsuo; Hotta, Harumi; Kobayashi, Susumu; Murakami-Murofushi, Kimiko

    2012-05-15

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator possessing cyclic phosphate ring, which is necessary for its specific biological activities. To stabilize cyclic phosphate ring of cPA, we synthesized a series of cPA derivatives. We have shown that racemic 3-S-cPA, with a phosphate oxygen atom replaced with a sulfur atom at the sn-3, was a more effective autotaxin (ATX) inhibitor than cPA. In this study, we showed that racemic 3-S-cPA also had potent biological activities such as inhibition of cancer cell migration, suppression of the nociceptive reflex, and attenuation of ischemia-induced delayed neuronal cell death in the hippocampal CA1. Moreover, we synthesized both enantiomers of palmitoleoyl derivative of 3-S-cPA, and found that the chirality of 3-S-cPA is not involved in ATX inhibition. Based on these findings, racemic 3-S-cPA is suggested as an effective therapeutic compound like cPA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C.

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation.more » - Highlights: • Dexamethasone accelerates Ca{sup 2+} transient decay in hESC-CMs. • Dexamethasone enhances SERCA and NCX function in hESC-CMs. • Dexamethasone increases force of contraction and sarcomere length in hESC-CMs. • Dexamethasone does not alter I{sub Ca,L} and action potential characteristics in hESC-CMs.« less

  20. Efficacy of Neurofeedback Versus Pharmacological Support in Subjects with ADHD.

    PubMed

    González-Castro, Paloma; Cueli, Marisol; Rodríguez, Celestino; García, Trinidad; Álvarez, Luis

    2016-03-01

    Behavioral training in neurofeedback has proven to be an essential complement to generalize the effects of pharmacological support in subjects who have attention deficit with hyperactivity disorder (ADHD). Therefore, this investigation attempts to analyze the efficacy of neurofeedback compared with pharmacological support and the combination of both. Participants were 131 students, classified into four groups: control (did not receive neurofeedback or pharmacological support), neurofeedback group, pharmacological support group, and combined group (neurofeedback + pharmacological support). Participants' executive control and cortical activation were assessed before and after treatment. Results indicate that the combined group obtained more benefits and that the neurofeedback group improved to a greater extent in executive control than the pharmacological support group. It is concluded that this kind of training may be an alternative to stimulate activation in subjects with ADHD.

  1. Pharmacological properties of Datura stramonium L. as a potential medicinal tree: An overview

    PubMed Central

    Soni, Priyanka; Siddiqui, Anees Ahmad; Dwivedi, Jaya; Soni, Vishal

    2012-01-01

    India has a great wealth of various naturally occurring plant drugs which have great potential pharmacological activities. Datura stramonium (D. stramonium) is one of the widely well known folklore medicinal herbs. The troublesome weed, D. stramonium is a plant with both poisonous and medicinal properties and has been proven to have great pharmacological potential with a great utility and usage in folklore medicine. D. stromonium has been scientifically proven to contain alkaloids, tannins, carbohydrates and proteins. This plant has contributed various pharmacological actions in the scientific field of Indian systems of medicines like analgesic and antiasthmatic activities. The present paper presents an exclusive review work on the ethnomedical, phytochemical, pharmacological activities of this plant. PMID:23593583

  2. Attacking the Multi-tiered Proteolytic Pathology of COPD: New Insights from Basic and Translational Studies

    PubMed Central

    Djekic, Uros V; Gaggar, Amit; Weathington, Nathaniel M

    2015-01-01

    Protease activity in inflammation is complex. Proteases released by cells in response to infection, cytokines, or environmental triggers like cigarette smoking cause breakdown of the extracellular matrix (ECM). In chronic inflammatory diseases like chronic obstructive pulmonary disease (COPD), current findings indicate that pathology and morbidity are driven by dysregulation of protease activity, either through hyperactivity of proteases or deficiency or dysfunction their antiprotease regulators. Animal studies demonstrate the accuracy of this hypothesis through genetic and pharmacologic tools. New work shows that ECM destruction generates peptide fragments active on leukocytes via neutrophil or macrophage chemotaxis towards collagen and elastin derived peptides respectively. Such fragments now have been isolated and characterized in vivo in each case. Collectively, this describes a biochemical circuit in which protease activity leads to activation of local immunocytes, which in turn release cytokines and more proteases, leading to further leukocyte infiltration and cyclical disease progression that is chronic. This circuit concept is well known, and is intrinsic to the protease-antiprotease hypothesis; recently analytic techniques have become sensitive enough to establish fundamental mechanisms of this hypothesis, and basic and clinical data now implicate protease activity and peptide signaling as pathologically significant pharmacologic targets. This review discusses targeting protease activity for chronic inflammatory disease with special attention to COPD, covering important basic and clinical findings in the field; novel therapeutic strategies in animal or human studies; and a perspective on the successes and failures of agents with a focus on clinical potential in human disease. PMID:19026684

  3. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products.

    PubMed

    Kjer, Julia; Debbab, Abdessamad; Aly, Amal H; Proksch, Peter

    2010-03-01

    Marine-derived fungi have been shown in recent years to produce a plethora of new bioactive secondary metabolites, some of them featuring new carbon frameworks hitherto unprecedented in nature. These compounds are of interest as new lead structures for medicine as well as for plant protection. The aim of this protocol is to give a detailed description of methods useful for the isolation and cultivation of fungi associated with various marine organisms (sponges, algae and mangrove plants) for the extraction, characterization and structure elucidation of biologically active secondary metabolites produced by these marine-derived endophytic fungi, and for the preliminary evaluation of their pharmacological properties based on rapid 'in house' screening systems. Some results exemplifying the positive outcomes of the protocol are given at the end. From sampling in marine environment to completion of the structure elucidation and bioactivity screening, a period of at least 3 months has to be scheduled.

  4. Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds

    PubMed Central

    Fan, Meiqi; Nath, Amit Kumar; Tang, Yujiao; Choi, Young-Jin; Debnath, Trishna; Choi, Eun-Ju

    2018-01-01

    This review focuses on marine compounds with anti-prostate cancer properties. Marine species are unique and have great potential for the discovery of anticancer drugs. Marine sources are taxonomically diverse and include bacteria, cyanobacteria, fungi, algae, and mangroves. Marine-derived compounds, including nucleotides, amides, quinones, polyethers, and peptides are biologically active compounds isolated from marine organisms such as sponges, ascidians, gorgonians, soft corals, and bryozoans, including those mentioned above. Several compound classes such as macrolides and alkaloids include drugs with anti-cancer mechanisms, such as antioxidants, anti-angiogenics, antiproliferatives, and apoptosis-inducing drugs. Despite the diversity of marine species, most marine-derived bioactive compounds have not yet been evaluated. Our objective is to explore marine compounds to identify new treatment strategies for prostate cancer. This review discusses chemically and pharmacologically diverse marine natural compounds and their sources in the context of prostate cancer drug treatment. PMID:29757237

  5. Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin

    PubMed Central

    Liu, Qingdu; Binns, Thomas C.; Davidoff, Olena; Kapitsinou, Pinelopi P.; Pfaff, Andrew S.; Olauson, Hannes; Fogo, Agnes B.; Fong, Guo-Hua; Gross, Kenneth W.

    2016-01-01

    Renal peritubular interstitial fibroblast-like cells are critical for adult erythropoiesis, as they are the main source of erythropoietin (EPO). Hypoxia-inducible factor 2 (HIF-2) controls EPO synthesis in the kidney and liver and is regulated by prolyl-4-hydroxylase domain (PHD) dioxygenases PHD1, PHD2, and PHD3, which function as cellular oxygen sensors. Renal interstitial cells with EPO-producing capacity are poorly characterized, and the role of the PHD/HIF-2 axis in renal EPO-producing cell (REPC) plasticity is unclear. Here we targeted the PHD/HIF-2/EPO axis in FOXD1 stroma-derived renal interstitial cells and examined the role of individual PHDs in REPC pool size regulation and renal EPO output. Renal interstitial cells with EPO-producing capacity were entirely derived from FOXD1-expressing stroma, and Phd2 inactivation alone induced renal Epo in a limited number of renal interstitial cells. EPO induction was submaximal, as hypoxia or pharmacologic PHD inhibition further increased the REPC fraction among Phd2–/– renal interstitial cells. Moreover, Phd1 and Phd3 were differentially expressed in renal interstitium, and heterozygous deficiency for Phd1 and Phd3 increased REPC numbers in Phd2–/– mice. We propose that FOXD1 lineage renal interstitial cells consist of distinct subpopulations that differ in their responsiveness to Phd2 inactivation and thus regulation of HIF-2 activity and EPO production under hypoxia or conditions of pharmacologic or genetic PHD inactivation. PMID:27088801

  6. Synthesis, structural, conformational and pharmacological study of some amides derived from 3 -methyl-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9α-amine

    NASA Astrophysics Data System (ADS)

    Iriepa, I.; Bellanato, J.; Gálvez, E.; Gil-Alberdi, B.

    2010-07-01

    Some mono-substituted amides ( 2- 5) derived from 3-methyl-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9α-amine were synthesized and studied by IR, 1H and 13C NMR spectroscopy. The crystal structure of 3-methyl-2,4-diphenyl-9α-(3,5-dichlorobenzamido)-3-azabicyclo[3.3.1]nonane ( 3) was determined by X-ray diffraction. NMR data showed that all compounds adopt in CDCl 3 a preferred flattened chair-chair conformation with the N-CH 3 group in equatorial disposition. X-ray data agreed with this conformation in the case of compound 3. IR data revealed that compounds 2 and 3 present a C dbnd O⋯HN intermolecular bond in the solid state. This conclusion was also confirmed by X-ray data of compound 3. In the case of compound 5, IR results suggested intermolecular NH⋯N-heterocyclic bonding. On the contrary, in the pyrazine derivative ( 4), IR, 1H and 13C NMR data showed the presence of an intramolecular NH⋯N1″-heterocyclic hydrogen bond in the solid state and solution. Moreover, NMR and IR data showed a preferred trans disposition for the NH-C dbnd O group. NMR also revealed free rotation of the -NH-CO-R group around C9-NH bond. Pharmacological assays on mice were drawn to evaluate analgesic activity.

  7. Condensed bridgehead nitrogen heterocyclic system: synthesis and pharmacological activities of 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole derivatives of ibuprofen and biphenyl-4-yloxy acetic acid.

    PubMed

    Amir, Mohd; Kumar, Harish; Javed, S A

    2008-10-01

    Several 3,6-disubstituted-1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazoles were prepared by condensation of 4-amino-5-substituted-3-mercapto-(4H)-1,2,4-triazoles (3a,b) with various substituted aromatic acids and aryl/alkyl isothiocyanates through a one-pot reaction. These compounds were investigated for their anti-inflammatory, analgesic, ulcerogenic, lipid peroxidation, antibacterial and antifungal activities. Some of the synthesized compounds showed potent anti-inflammatory activity along with minimal ulcerogenic effect and lipid peroxidation, compared to those of ibuprofen and flurbiprofen. Some of the tested compounds also showed moderate antimicrobial activity against tested bacterial and fungal strains.

  8. Application of multi-target phytotherapeutic concept in malaria drug discovery: a systems biology approach in biomarker identification.

    PubMed

    Tarkang, Protus Arrey; Appiah-Opong, Regina; Ofori, Michael F; Ayong, Lawrence S; Nyarko, Alexander K

    2016-01-01

    There is an urgent need for new anti-malaria drugs with broad therapeutic potential and novel mode of action, for effective treatment and to overcome emerging drug resistance. Plant-derived anti-malarials remain a significant source of bioactive molecules in this regard. The multicomponent formulation forms the basis of phytotherapy. Mechanistic reasons for the poly-pharmacological effects of plants constitute increased bioavailability, interference with cellular transport processes, activation of pro-drugs/deactivation of active compounds to inactive metabolites and action of synergistic partners at different points of the same signaling cascade. These effects are known as the multi-target concept. However, due to the intrinsic complexity of natural products-based drug discovery, there is need to rethink the approaches toward understanding their therapeutic effect. This review discusses the multi-target phytotherapeutic concept and its application in biomarker identification using the modified reverse pharmacology - systems biology approach. Considerations include the generation of a product library, high throughput screening (HTS) techniques for efficacy and interaction assessment, High Performance Liquid Chromatography (HPLC)-based anti-malarial profiling and animal pharmacology. This approach is an integrated interdisciplinary implementation of tailored technology platforms coupled to miniaturized biological assays, to track and characterize the multi-target bioactive components of botanicals as well as identify potential biomarkers. While preserving biodiversity, this will serve as a primary step towards the development of standardized phytomedicines, as well as facilitate lead discovery for chemical prioritization and downstream clinical development.

  9. Potential for pharmacological manipulation of human embryonic stem cells

    PubMed Central

    Atkinson, Stuart P; Lako, Majlinda; Armstrong, Lyle

    2013-01-01

    The therapeutic potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is vast, allowing disease modelling, drug discovery and testing and perhaps most importantly regenerative therapies. However, problems abound; techniques for cultivating self-renewing hESCs tend to give a heterogeneous population of self-renewing and partially differentiated cells and general include animal-derived products that can be cost-prohibitive for large-scale production, and effective lineage-specific differentiation protocols also still remain relatively undefined and are inefficient at producing large amounts of cells for therapeutic use. Furthermore, the mechanisms and signalling pathways that mediate pluripotency and differentiation are still to be fully appreciated. However, over the recent years, the development/discovery of a range of effective small molecule inhibitors/activators has had a huge impact in hESC biology. Large-scale screening techniques, coupled with greater knowledge of the pathways involved, have generated pharmacological agents that can boost hESC pluripotency/self-renewal and survival and has greatly increased the efficiency of various differentiation protocols, while also aiding the delineation of several important signalling pathways. Within this review, we hope to describe the current uses of small molecule inhibitors/activators in hESC biology and their potential uses in the future. LINKED ARTICLES This article is part of a themed section on Regenerative Medicine and Pharmacology: A Look to the Future. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-2 PMID:22515554

  10. Gastroprotective Efficacy and Safety Evaluation of Scoparone Derivatives on Experimentally Induced Gastric Lesions in Rodents

    PubMed Central

    Son, Dong Ju; Lee, Gyung Rak; Oh, Sungil; Lee, Sung Eun; Choi, Won Sik

    2015-01-01

    This study investigated the gastroprotective efficacy of synthesized scoparone derivatives on experimentally induced gastritis and their toxicological safety. Six scoparone derivatives were synthesized and screened for gastroprotective activities against HCl/ethanol- and indomethacin-induced gastric ulcers in rats. Among these compounds, 5,6,7-trimethoxycoumarin and 6,7,8-trimethoxycoumarin were found to have gastroprotective activity greater than the standard drug rebamipide; 6-methoxy-7,8-methylenedioxycoumarin, 6-methoxy-7,8-(1-methoxy)-methylenedioxycoumarin, 6,7-methylenedioxycoumarin, and 6,7-(1-methoxy)-methylenedioxycoumarin were found to be equipotent or less potent that of rebamipide. Pharmacological studies suggest that the presence of a methoxy group at position C-5 or C-8 of the scoparone’s phenyl ring significantly improves gastroprotective activity, whereas the presence of a dioxolane ring at C-6, C-7, or C-8 was found to have decreased activity. In order to assess toxicological safety, two of the potent gastroprotective scoparone derivatives—5,6,7-trimethoxycoumarin and 6,7,8-trimethoxycoumarin—were examined for their acute toxicity in mice as well as their effect on cytochrome P450 (CYP) enzyme activity. These two compounds showed low acute oral toxicity in adult male and female mice, and caused minimal changes to CYP3A4 and CYP2C9 enzyme activity. These results indicate that compared to other scoparone derivatives, 5,6,7-trimethoxycoumarin and 6,7,8-trimethoxycoumarin can improve gastroprotective effects, and they have low toxicity and minimal effects on drug-metabolizing enzymes. PMID:25781220

  11. Xanthine oxidase inhibitory activities of extracts and flavonoids of the leaves of Blumea balsamifera.

    PubMed

    Nessa, Fazilatun; Ismail, Zhari; Mohamed, Nornisah

    2010-12-01

    Blumea balsamifera DC (Compositae) leaves have been recommended for use as a folk medicine in the treatment of various diseases related to urolithiasis in southeast Asia. Phytochemical studies of this plant revealed it contains four classes of flavonoids (e.g., flavonols, flavones, flavanones, and dihydroflavonol derivatives). In view of the broad pharmacological activity of flavonoids, this study was carried out to determine the xanthine oxidase (XO) inhibitory and enzymatically produced superoxide radical scavenging activity of different organic extracts and that of the isolated flavonoids from B. balsamifera leaves. The inhibitory activity of XO was assayed spectrophotometrically at 295 nm. The superoxide radicals scavenging activity was assessed by NBT reduction method, spectrophotometrically at 560 nm. A dose response curve was plotted for determining IC₅₀ values. The methanol extract (IC₅₀ = 0.111 mg/mL) showed higher XO inhibitory activity than the chloroform (0.138 mg/mL) and pet-ether extracts (0.516 mg/mL). IC₅₀ values of scavenging of superoxide radicals for extracts decreased in the order of: methanol (0.063 mg/mL) > chloroform (0.092 mg/mL) > pet-ether (0.321 mg/mL). The XO inhibitory activity of the isolated flavonoids and reference compounds tested decreased in the order of: allopurinol > luteolin > quercetin > tamarixetin > 5,7,3',5'-tetrahydroxyflavanone > rhamnetin > luteolin-7-methyl ether > blumeatin > dihydroquercetin-4'-methyl ether > dihydroquercetin-7,4'-dimethyl ether > L-ascorbic acid. The results indicated that the flavone derivatives were more active than the flavonol derivatives. The flavanone derivatives were moderately active and the dihydroflavonol derivatives were the least. The higher flavonoid content of extracts contributed to their higher XO inhibitory activity.

  12. The metabolism of berberine and its contribution to the pharmacological effects.

    PubMed

    Wang, Kun; Feng, Xinchi; Chai, Liwei; Cao, Shijie; Qiu, Feng

    2017-05-01

    Berberine, a bioactive alkaloid isolated from several herbal substances, possesses multiple pharmacological effects, including antimicrobial, antidiabetic, anticancer activities. Meanwhile, berberine undergoes extensive metabolism after oral administration which results in its extremely low plasma exposure. Therefore, it is believed that the metabolites of berberine also contribute a lot to its pharmacological effects. Along these lines, this review covers the metabolism studies of berberine in terms of its metabolic pathways and metabolic organs based on the identified metabolites, and it also covers the pharmacological activities of its active metabolites. In brief, the predominant metabolic pathways of berberine are demethylation, demethylenation, reduction, hydroxylation and subsequent conjugation in vivo. Active metabolites such as columbamine, berberrubine and demethyleneberberine also exhibit similar pharmacological effects by comparison with berberine, such as antioxidant, anti-inflammatory, antitumor, antimicrobial, hepatoprotective, neuroprotective, hypolipidemic and hypoglycemic effects. Overall, berberine together with its metabolites formed the material basis of berberine in vivo.

  13. Synthesis, Biological Evaluation and Molecular Docking of New Benzenesulfonylhydrazone as Potential anti-Trypanosoma cruzi Agents.

    PubMed

    Elizondo-Jimenez, Silvia; Moreno-Herrera, Antonio; Reyes-Olivares, Rogelio; Dorantes-Gonzalez, Edith; Nogueda-Torres, Benjamín; Oliveira, Eduardo A Gamosa de; Romeiro, Nelilma C; Lima, Lidia M; Palos, Isidro; Rivera, Gildardo

    2017-01-01

    Chagas disease is a public health problem caused by Trypanosoma cruzi. Cruzain is a pharmacological target for designing a new drug against this parasite. Hydrazone and Nacylhydrazone derivatives have been traditionally associated as potential Cruzain inhibitors. Additionally, benzenesulfonyl derivatives show trypanocidal activity. Therefore, in this study, the combination of both structures has been taken into account for drug design. Seven benzenesulfonylhydrazone (BS-H) and seven N-propionyl benzenesulfonylhydrazone (BS-NAH) derivatives were synthetized and elucidated by infrared spectroscopy, nuclear magnetic resonance, and elemental analysis. All compounds were evaluated biologically in vitro against two strains of Trypanosoma cruzi (NINOA and INC-5), which are endemic in Mexico, and compared with the reference drugs nifurtimox and benznidazole. In order to gain insight into the putative molecular origin of the trypanocidal properties of these derivatives, docking studies were carried out with Cruzain. Compounds 4 and 6 (BS-H) and 10, 12-14 (BS-NAH) showed the best biological activity against NINOA and INC-5 strains, respectively. Compound 13 was the most potent trypanocidal compound showing a LC50 of 0.06 µM against INC-5 strain. However, compound 4 showed the best activity against both strains (LC50 <30 µM). Theoretical binding modes obtained suggested covalent binding that could explain their biological activity. Benzenesulfonyl and N-propionyl benzenesulfonyl hydrazone derivatives are good options for developing new trypanocidal agents. Particularly, compound 4 could be considered a lead compound. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Cannabinoid-based medicines for neurological disorders--clinical evidence.

    PubMed

    Wright, Stephen

    2007-08-01

    Whereas the cannabis plant has a long history of medicinal use, it is only in recent years that a sufficient understanding of the pharmacology of the main plant constituents has allowed for a better understanding of the most rational therapeutic targets. The distribution of cannabinoid receptors, both within the nervous system and without, and the development of pharmacological tools to investigate their function has lead to a substantial increase in efforts to develop cannabinoids as therapeutic agents. Concomitant with these efforts, the understanding of the pharmacology of plant cannabinoids at receptor and other systems distinct from the cannabinoid receptors suggests that the therapeutic applications of plant-derived cannabinoids (and presumably their synthetic derivatives also) may be diverse. This review aims to discuss the clinical evidence investigating the use of medicines derived, directly or indirectly, from plant cannabinoids with special reference to neurological disorders. Published studies suggest that the oral administration of cannabinoids may not be the preferred route of administration and that plant extracts show greater evidence of efficacy than synthetic compounds. One of these, Sativex (GW Pharmaceuticals), was approved as a prescription medicine in Canada in 2005 and is currently under regulatory review in the EU.

  15. Chemical Characteristics, Synthetic Methods, and Biological Potential of Quinazoline and Quinazolinone Derivatives

    PubMed Central

    2014-01-01

    The heterocyclic fused rings quinazoline and quinazolinone have drawn a huge consideration owing to their expanded applications in the field of pharmaceutical chemistry. Quinazoline and quinazolinone are reported for their diversified biological activities and compounds with different substitutions bring together to knowledge of a target with understanding of the molecule types that might interact with the target receptors. Quinazolines and quinazolinones are considered as an important chemical for the synthesis of various physiological significance and pharmacological utilized molecules. Quinazolines and quinazolinone are a large class of biologically active compounds that exhibited broad spectrum of biological activities such as anti-HIV, anticancer, antifungal, antibacterial, antimutagenic, anticoccidial, anticonvulsant, anti-inflammatory, antidepressant, antimalarial, antioxidant, antileukemic, and antileishmanial activities and other activities. Being considered as advantaged scaffold, the alteration is made with different substituent. PMID:25692041

  16. Pharmacology education in North American dental schools: the basic science survey series.

    PubMed

    Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne

    2013-08-01

    As part of the Basic Science Survey Series (BSSS) for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed course directors of basic pharmacology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-nine of sixty-seven (73.1 percent) U.S. and Canadian dental schools. The findings suggest the following: 1) substantial variation exists in instructional hours, faculty affiliation, placement within curriculum, class size, and interdisciplinary nature of pharmacology courses; 2) pharmacology course content emphasis is similar among schools; 3) the number of contact hours in pharmacology has remained stable over the past three decades; 4) recent curricular changes were often directed towards enhancing the integrative and clinically relevant aspects of pharmacology instruction; and 5) a trend toward innovative content delivery, such as use of computer-assisted instruction applications, is evident. Data, derived from this study, may be useful to pharmacology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.

  17. Herb Medicines against Osteoporosis: Active Compounds & Relevant Biological Mechanisms.

    PubMed

    Wu, Lei; Ling, Zhuoyan; Feng, Xueqin; Mao, Caiping; Xu, Zhice

    2017-01-01

    Osteoporosis is one of common bone disorders, affecting millions of people worldwide. Treatments of osteoporosis consist of pharmacotherapy and non-pharmacological interventions, such as mineral supplementation, lifestyle changes, and exercise programs. Due to the minimum side effects and favorable cost-effective therapeutic effects, herbal medicine has been widely applied in clinical practices for more than 2,000 years in China. Of the many traditional formulas reported for treating bone diseases, 4 single herbs namely (1) Herba Epimedii, (2) Rhizoma Drynariae, (3) Fructus Psoraleae, and (4) Cortex Eucommiae, are considered as the featured "Kidney-Yang" tonics, and frequently and effectively applied for preventing and treating osteoporosis. With the accruing development of modern chemistry, hundreds of active compounds have been identified and isolated for their anti-osteoporotic effects. This review would first sketch the phytochemistry of these featured "Kidney- Yang" tonics and present the pharmacological characteristics of the most abundant and bioactive compounds derived from the herb Herba Epimedii and Rhizoma Drynariae, including icariin and naringin. Then, the cellular and molecular underpinnings under anti-osteoporotic effects of icariin and naringin are discussed. The concerned structure-function relationships of the featured active herbal compounds would also be reviewed so as to pave the way for future drug design in treating osteoporosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Metabolism of captopril carboxyl ester derivatives for percutaneous absorption.

    PubMed

    Gullick, Darren R; Ingram, Matthew J; Pugh, W John; Cox, Paul A; Gard, Paul; Smart, John D; Moss, Gary P

    2009-02-01

    To determine the metabolism of captopril n-carboxyl derivatives and how this may impact on their use as transdermal prodrugs. The pharmacological activity of the ester derivatives was also characterised in order to compare the angiotensin converting enzyme inhibitory potency of the derivatives compared with the parent drug, captopril. The metabolism rates of the ester derivatives were determined in vitro (using porcine liver esterase and porcine ear skin) and in silico (using molecular modelling to investigate the potential to predict metabolism). Relatively slow pseudo first-order metabolism of the prodrugs was observed, with the ethyl ester displaying the highest rate of metabolism. A strong relationship was established between in-vitro methods, while in-silico methods support the use of in-vitro methods and highlight the potential of in-silico techniques to predict metabolism. All the prodrugs behaved as angiotensin converting enzyme inhibitors, with the methyl ester displaying optimum inhibition. In-vitro porcine liver esterase metabolism rates inform in-vitro skin rates well, and in-silico interaction energies relate well to both. Thus, in-silico methods may be developed that include interaction energies to predict metabolism rates.

  19. In vitro cytotoxic activity evaluation of phenytoin derivatives against human leukemia cells.

    PubMed

    Śladowska, Katarzyna; Handzlik, Jadwiga; Kieć-Kononowicz, Katarzyna; Mazur, Lidia

    2016-09-01

    Hydantoin derivatives, including phenytoin (5,5-diphenylhydantoin), have recently gained attention as they possess a variety of important biochemical and pharmacological properties. Nevertheless, available information on anticancer activity of hydantoin derivatives is still scarce. Here, we evaluated possible antileukemic potential of four phenytoin analogs, namely: methyl 2-(2,4-dioxo-5,5-diphenylimidazolidin-3-yl)propanoate (1), methyl 2-(1-(3-bromopropyl)-2,4-dioxo-5,5-diphenylimidazolidin-3-yl)propanoate (2), 1-(3-bromopropyl)-3-methyl-5,5-diphenylimidazolidine-2,4-dione (3) and 1-(3-bromobutyl)-3-methyl-5,5-diphenylimidazolidine-2,4-dione (4). The experiments were performed on human acute histiocytic lymphoma U937 cells and human promyelocytic leukemia HL-60 cells. The present study was conducted using spectrophotometric 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay and the electronic Beckman-Coulter method. We observed temporary changes in the leukemia cell viability, volume and count. The effects of the four 5,5-diphenylhydantoin derivatives on U937 and HL-60 cells depended on the agent tested and its concentration, the time intervals after the compound application, and the leukemia cell line used. HL-60 cells were more sensitive than U937 cells to the action of the phenytoin analogs (1-4). The antileukemic activities of the three bromoalkyl diphenylhydantoin derivatives (2, 3, and 4) were stronger than that of the compound 1 [methyl 2-(2,4-dioxo-5,5-diphenylimidazolidin-3-yl) propanoate], with no bromoalkyl substituent. The structural modifications of 5,5-diphenylhydantoin are responsible for such varied antileukemic potential of its four derivatives.

  20. Computational & experimental evaluation of the structure/activity relationship of β-carbolines as DYRK1A inhibitors.

    PubMed

    Drung, Binia; Scholz, Christoph; Barbosa, Valéria A; Nazari, Azadeh; Sarragiotto, Maria H; Schmidt, Boris

    2014-10-15

    DYRK1A has been associated with Down's syndrome and neurodegenerative diseases, therefore it is an important target for novel pharmacological interventions. We combined a ligand-based pharmacophore design with a structure-based protein/ligand docking using the software MOE in order to evaluate the underlying structure/activity relationship. Based on this knowledge we synthesized several novel β-carboline derivatives to validate the theoretical model. Furthermore we identified a modified lead structure as a potent DYRK1A inhibitor (IC50=130 nM) with significant selectivity against MAO-A, DYRK2, DYRK3, DYRK4 & CLK2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Hyperforin: To Be or Not to Be an Activator of TRPC(6).

    PubMed

    Friedland, Kristina; Harteneck, Christian

    2015-01-01

    Meantime, it is well accepted that hyperforin, the chemical instable phloroglucinol derivative of Hypericum perforatum, St. John's wort, is the pharmacophore of St. John's wort extracts. With the decline of this scientific discussion, another controversial aspect has been arisen, the question regarding the underlying mechanism leading to the pharmacological profile of the plant extract used in therapy of depression. We will summarize the different concepts described for hyperforin's antidepressive activity. Starting with unspecific protein-independent mechanisms due to changes in pH, we will summarize data of protein-based concepts beginning with concepts based on involvement of a variety of proteins and will finally present concepts based on the modulation of a single protein.

  2. Investigations on the synthesis and pharmacological properties of 4-alkoxy-2-[2-hydroxy-3-(4-aryl-1-piperazinyl)propyl]-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones.

    PubMed

    Sladowska, Helena; Filipek, Barbara; Szkatuła, Dominika; Sabiniarz, Aleksandra; Kardasz, Małgorzata; Potoczek, Joanna; Sieklucka-Dziuba, Maria; Rajtar, Grazyna; Kleinrok, Zdzisław; Lis, Tadeusz

    2002-11-01

    Synthesis of 2-[2-hydroxy-3-(4-aryl-1-piperazinyl)propyl] derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones (8-12) is described. The chlorides used in the above synthesis can exist in two isomeric forms: chain (18-20) and cyclic (19a, 20a). The compounds 8-12 exhibited potent analgesic activity which was superior than that of acetylsalicylic acid in two different tests. Most of the investigated imides suppressed significantly spontaneous locomotor activity in mice.

  3. Molecular simplification of 1,4-diazabicyclo[4.3.0]nonan-9-ones gives piperazine derivatives that maintain high nootropic activity.

    PubMed

    Manetti, D; Ghelardini, C; Bartolini, A; Dei, S; Galeotti, N; Gualtieri, F; Romanelli, M N; Teodori, E

    2000-11-16

    Several 4-substituted 1-acylpiperazines, obtained by molecular simplification of 4-substituted 1,4-diazabicyclo[4.3.0]nonan-9-ones, have been synthesized and tested in vivo on the mouse passive avoidance test, to evaluate their nootropic activity. The results show that, apparently, an N-acylpiperazine group can mimic the 2-pyrrolidinone ring of 1,4-diazabicyclo[4.3.0]nonan-9-one, as the compounds of the new series maintain high nootropic activity. Moreover molecular simplification produces more clear-cut structure-activity relationships with respect to the parent series. The mechanism of action also appears to be similar in the two series. In fact, although the molecular mechanism remains to be elucidated, the most potent compound of each class (DM232 and 13, DM235) is able to increase acetylcholine release in rat brain. Piperazine derivatives represent a new class of nootropic drugs with an in vivo pharmacological profile very similar to that of piracetam, showing much higher potency with respect to the reference compound. Among the compounds studied, 13 (DM235) shows outstanding potency, being active at a dose of 0.001 mg kg(-1) sc.

  4. An interactive human carbonic anhydrase-II (hCA-II) receptor--pharmacophore molecular model & anti-convulsant activity of the designed and synthesized 5-amino-1,3,4-thiadiazole-2-thiol conjugated imine derivatives.

    PubMed

    Yusuf, Mohammad; Khan, Riaz A; Khan, Maria; Ahmed, Bahar

    2013-05-01

    New imines, derived from aromatic aldehyde, chalcones and 5-amino-1,3,4-thiadiazole-2-thiol exhibited promising anti-convulsant activity which is explained through chemo-biological interactions at receptor site producing the inhibition of human Carbonic Anhydrase-II enzyme (hCA-II) through the proposed pharmacophore model at molecular levels as basis for pharmacological activity. The compounds 5-{1-(4-Chlorophenyl)-3-[4-(methoxy-phenyl)-prop-2-en-1-ylidene]amino}-1,3,4-thiadiazole-2-thiol (2b), 5-{[1-(4-chloro-phenyl)]-3-[4-(dimethyl-amino-phenyl)-prop-2-en-1-ylidene]amino}-1,3,4-thiadiazole-2-thiol (2c) and 5-{[1-(4-chloro-phenyl)]-3-[(4-amino-phenyl)-prop-2-en-1-ylidene]amino}-1,3,4-thiadiazole-2-thiol (2f) showed 100% activity in comparison with standard Acetazolamide, a known anti-convulsant drug. The compounds 2c, 2f also passed the Rotarod and Ethanol Potentiation tests which further confirmed them to be safe in motor coordination activity and safe from generating neurological toxicity. © 2013 John Wiley & Sons A/S.

  5. Tri-partite complex for axonal transport drug delivery achieves pharmacological effect

    PubMed Central

    2010-01-01

    Background Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System) neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. Results We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. Conclusion Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal transport holds great promise. The data shown here provide a basic framework for the intraneural pharmacology of this tripartite complex. The pharmacologically efficacious drug delivery demonstrated here verify the fundamental feasibility of using axonal transport for targeted drug delivery. PMID:20085661

  6. Ethnobotany, phytochemistry and pharmacology of Arctotis arctotoides (L.f.) O. Hoffm.: A review.

    PubMed

    Saleh-E-In, Md Moshfekus; Van Staden, Johannes

    2018-06-28

    Arctotis arctotoides (Asteraceae) is part of the genus Arctotis. Arctotis is an African genus of approximately 70 species that occur widely in the African continent with diverse medicinal values. This plant is used for the treatment of indigestion and catarrh of the stomach, epilepsy, topical wounds and skin disorders among the ethnic groups in South Africa and reported to have a wide spectrum of pharmacological properties. The aim of the present review is to appraise the botany, traditional uses, phytochemistry, pharmacological potential, analytical methods and safety issues of A. arctotoides. Additionally, this review will help to fill the existing gaps in knowledge and highlight further research prospects in the field of phytochemistry and pharmacology. Information on A. arctotoides was collected from various resources, including books on African medicinal herbs and Zulu medicinal plants, theses, reports and the internet databases such as SciFinder, Google Scholar, Pubmed, Scopus, Web of Science, and Mendeley by using a combination of various meaningful keywords. This review surveys the available literature of the species from 1962 to April 2017. In vitro and in vivo studies of the medicinal properties of A. arctotoides were reviewed. The main isolated and identified compounds were reported as sesquiterpenes, farnesol derivatives, germacranolide, guaianolides and some steroids, of which, nine were reported as antimicrobial. Monoterpenoids and sesquiterpenoids were the predominant essential oil compound classes of the leaves, flowers, stems and roots. The present review revealed potential pharmacological properties such as anti-oxidant, antibacterial, antifungal and anticancer activities of plant extracts as well as isolated compounds. Moreover, the review reports the safety profile (toxicity) of the crude extracts that had been screened on brine shrimps, rats and human cell lines. The present review has focused on the phytochemistry, botany, ethnopharmacology, biological activities and toxicological information of A. arctotoides. On the basis of reported data, A. arctotoides has emerged as a good source of natural medicine for the treatment of microbial infections, skin diseases, anti-inflammatory and anticancer agents and also provides new insights for further isolation of new bioactive compounds, especially the discovery of antimicrobial, anti-inflammatory and anticancer novel therapeutic lead drug molecules. Additionally, intensive investigations regarding pharmacological properties, safety assessment and efficacy with their mechanism of action could be future research interests before starting clinical trials for medicinal practices. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage.

    PubMed

    Ciamporcero, E; Shen, H; Ramakrishnan, S; Yu Ku, S; Chintala, S; Shen, L; Adelaiye, R; Miles, K M; Ullio, C; Pizzimenti, S; Daga, M; Azabdaftari, G; Attwood, K; Johnson, C; Zhang, J; Barrera, G; Pili, R

    2016-03-24

    Current standard of care for muscle-invasive urothelial cell carcinoma (UCC) is surgery along with perioperative platinum-based chemotherapy. UCC is sensitive to cisplatin-based regimens, but acquired resistance eventually occurs, and a subset of tumors is intrinsically resistant. Thus, there is an unmet need for new therapeutic approaches to target chemotherapy-resistant UCC. Yes-associated protein (YAP) is a transcriptional co-activator that has been associated with bladder cancer progression and cisplatin resistance in ovarian cancer. In contrast, YAP has been shown to induce DNA damage associated apoptosis in non-small cell lung carcinoma. However, no data have been reported on the YAP role in UCC chemo-resistance. Thus, we have investigated the potential dichotomous role of YAP in UCC response to chemotherapy utilizing two patient-derived xenograft models recently established. Constitutive expression and activation of YAP inversely correlated with in vitro and in vivo cisplatin sensitivity. YAP overexpression protected while YAP knockdown sensitized UCC cells to chemotherapy and radiation effects via increased accumulation of DNA damage and apoptosis. Furthermore, pharmacological YAP inhibition with verteporfin inhibited tumor cell proliferation and restored sensitivity to cisplatin. In addition, nuclear YAP expression was associated with poor outcome in UCC patients who received perioperative chemotherapy. In conclusion, these results suggest that YAP activation exerts a protective role and represents a pharmacological target to enhance the anti-tumor effects of DNA damaging modalities in the treatment of UCC.

  8. Ultrasound-assisted synthesis of 2,4-thiazolidinedione and rhodanine derivatives catalyzed by task-specific ionic liquid: [TMG][Lac

    PubMed Central

    2013-01-01

    Background Synthesized arylidene derivatives of rhodanine and 2,4-thiazolidiendione have potent pharmacological activities, and these are also key substrates for the preparation of clinically used antidiabetics. Findings Some 1,1,3,3-tetramethylguanidine-based task-specific ionic liquids (TSILs) 1a-1e were prepared and employed to the catalyzed solvent-free Knoevenagel condensation of 2,4-thiazolidinedione 3a and rhodanine 3b with a variety of aldehydes. Conclusions Best results were obtained with 1,1,3,3-tetramethylguanidine lactate ([TMG][Lac]) 1c. The TSIL used can be easily recovered and recycled, yielding products 4–5 in excellent yields under ultrasonic environment without the formation of any side products or toxic waste. PMID:23458122

  9. Nonpeptidic Delta (δ) Opioid Agonists and Antagonists of the Diarylmethylpiperazine Class: What Have We Learned?

    NASA Astrophysics Data System (ADS)

    Calderon, Silvia N.

    The discovery of the selective delta (δ) opioid agonists SNC 80 and BW373U86, which possess a diarylmethylpiperazine structure unique among opioids, represented a major advance in the field of δ-opioid ligands. Extensive research has recently been performed to uncover the structure-activity relationships (SAR) of this class of ligands, thereby providing valuable tools for the pharmacological characterization of the δ opioid receptor. This review focuses on the SAR of this unique series of ligands, and provides an overview of the various chemical routes that have been developed and optimized through the years to allow the syntheses of these ligands on a multigram scale. The search for selective δ opioid agonists and antagonists, as well as for those with mixed opioid agonist properties with potential therapeutic value, continues. Several questions regarding the interaction at the molecular level of diphenylmethylpiperazine derivatives and related analogs with opioid receptors and in particular with the δ opioid system still remain unanswered. Indeed, the development and pharmacological characterization of novel nonpeptidic δ opioid ligands remains an active area of research, as it may provide a better understanding of the role of this receptor in multiple disease states and disorders.

  10. Comparison of [(18)F]altanserin and [(18)F]deuteroaltanserin for PET imaging of serotonin(2A) receptors in baboon brain: pharmacological studies.

    PubMed

    Staley, J K; Van Dyck, C H; Tan, P Z; Al Tikriti, M; Ramsby, Q; Klump, H; Ng, C; Garg, P; Soufer, R; Baldwin, R M; Innis, R B

    2001-04-01

    The regional distribution in brain, distribution volumes, and pharmacological specificity of the PET 5-HT(2A) receptor radiotracer [(18)F]deuteroaltanserin were evaluated and compared to those of its non-deuterated derivative [(18)F]altanserin. Both radiotracers were administered to baboons by bolus plus constant infusion and PET images were acquired up to 8 h. The time-activity curves for both tracers stabilized between 4 and 6 h. The ratio of total and free parent to metabolites was not significantly different between radiotracers; nevertheless, total cortical R(T) (equilibrium ratio of specific to nondisplaceable brain uptake) was significantly higher (34-78%) for [(18)F]deuteroaltanserin than for [(18)F]altanserin. In contrast, the binding potential (Bmax/K(D)) was similar between radiotracers. [(18)F]Deuteroaltanserin cortical activity was displaced by the 5-HT(2A) receptor antagonist SR 46349B but was not altered by changes in endogenous 5-HT induced by fenfluramine. These findings suggest that [(18)F]deuteroaltanserin is essentially equivalent to [(18)F]altanserin for 5-HT(2A) receptor imaging in the baboon.

  11. Effects of pesticide chemicals on the activity of metabolic enzymes: focus on thiocarbamates.

    PubMed

    Mathieu, Cécile; Duval, Romain; Xu, Ximing; Rodrigues-Lima, Fernando; Dupret, Jean-Marie

    2015-01-01

    Thiocarbamates are chemicals widely used as pesticides. Occupational exposure is associated with acute intoxication. Populations can be exposed through food and water. Moreover, certain thiocarbamates are used clinically. The widespread use of thiocarbamates raises many issues regarding their toxicological and pharmacological impact. Thiocarbamates and their metabolites can modify biological macromolecules functions, in particular enzymes, through modification of cysteine residues, chelation of metal ions or modulation of the oxidative stress. Loss of enzyme activity can lead to the disruption of metabolic pathways, and explain, at least in part, the effects of these pesticides. Additionally, their reactivity and ability to easily cross biological barrier confer them a great interest for development of clinical applications. Many advances in the study of thiocarbamates metabolism and reactivity have led to a better knowledge of biological effects of these compounds. However, more data are needed on the determination of targets and specificity. Only few data concerning the exposure to a cocktail of pesticides/chemicals are available, raising the need to evaluate the toxic side effects of representative pesticides mixtures. Moreover, the dithiocarbamate Disulfiram has shown great potential in therapeutic applications and leads to the development of pharmacological thiocarbamates derivatives, highly specific to their target and easily distributed.

  12. Imidazo[2,1-b]thiazoles and their use as pharmaceuticals: Sanofi-Aventis EP 1 923 062 A1 (equivalent to WO2008058641).

    PubMed

    Karimian, K

    2009-03-01

    Imidazothiazoles are well-known compounds and many derivatives of this fused ring system have been evaluated for potential biological activity. The present application is focused on imidazo[2,1-b]thiazoles with pharmacological ability to stimulate the expression (transcription) of the enzyme endothelial nitric oxide (NO) synthase. This invention contains two types of claims. First, several imidazo[2,1-b]thiazoles (and compositions thereof) that were not previously reported in chemical literature are claimed (claims 6 - 15). Second, the use of the claimed compounds in the treatment of several different diseases is claimed (claims 1 - 5 and 16). The claimed imidazo[2,1-b]thiazoles are synthesized by the condensation of 2-aminothiazole with an alpha-halo ketone. Evaluation of pharmacological activity of the claimed compounds is based on previously reported methodologies. Results are at their best reported in descriptive terms. The descriptive presentation of results in this application does not allow a critical evaluation of the claims. However, this does not diminish the potential commercial importance of this application. Because of the importance of nitric oxide regulation in physiological systems, more research in this area of medicinal chemistry can be anticipated.

  13. Human immunodeficiency virus-associated depression: contributions of immuno-inflammatory, monoaminergic, neurodegenerative, and neurotrophic pathways.

    PubMed

    Del Guerra, F B; Fonseca, J L I; Figueiredo, V M; Ziff, E B; Konkiewitz, E Castelon

    2013-08-01

    In the era of greatly improved pharmacological treatment of HIV infection through highly active antiretroviral therapy (HAART), HIV patients experience reduced viral loads, reduced opportunistic infections, increased CD4+ T cell count, and greater life expectancy. Although life expectancy is increased, patients often develop neurological disturbances that may persist for long periods, seriously jeopardizing quality of life and adherence to the medication protocols of HAART. For these reasons, HIV-associated neurological disorders have gained importance in both clinical and basic investigations of HIV infection. Depression is the most prevalent neuropsychiatric disorder among people living with HIV. In this review, we discuss how HIV can predispose infected individuals to depression by several interrelated mechanisms. These include inducing chronic elevation of cytokines through activation of microglia and astrocytes; decreasing monoaminergic function; inducing neurotoxicity, especially in dopaminergic neurons; and reducing brain-derived neurotrophic factor. These viral pathways interact with psychosocial factors to create the depressive state. HIV depression has a great impact on quality of life and implementation of antiretroviral therapy, and thus, recognition of these modes of action is significant for understanding HIV neuropathology and for selecting modalities for pharmacologic treatment.

  14. Modification on ursodeoxycholic acid (UDCA) scaffold. discovery of bile acid derivatives as selective agonists of cell-surface G-protein coupled bile acid receptor 1 (GP-BAR1).

    PubMed

    Sepe, Valentina; Renga, Barbara; Festa, Carmen; D'Amore, Claudio; Masullo, Dario; Cipriani, Sabrina; Di Leva, Francesco Saverio; Monti, Maria Chiara; Novellino, Ettore; Limongelli, Vittorio; Zampella, Angela; Fiorucci, Stefano

    2014-09-25

    Bile acids are signaling molecules interacting with the nuclear receptor FXR and the G-protein coupled receptor 1 (GP-BAR1/TGR5). GP-BAR1 is a promising pharmacological target for the treatment of steatohepatitis, type 2 diabetes, and obesity. Endogenous bile acids and currently available semisynthetic bile acids are poorly selective toward GP-BAR1 and FXR. Thus, in the present study we have investigated around the structure of UDCA, a clinically used bile acid devoid of FXR agonist activity, to develop a large family of side chain modified 3α,7β-dihydroxyl cholanoids that selectively activate GP-BAR1. In vivo and in vitro pharmacological evaluation demonstrated that administration of compound 16 selectively increases the expression of pro-glucagon 1, a GP-BAR1 target, in the small intestine, while it had no effect on FXR target genes in the liver. Further, compound 16 results in a significant reshaping of bile acid pool in a rodent model of cholestasis. These data demonstrate that UDCA is a useful scaffold to generate novel and selective steroidal ligands for GP-BAR1.

  15. Lack of Liver X Receptors Leads to Cell Proliferation in a Model of Mouse Dorsal Prostate Epithelial Cell

    PubMed Central

    Dufour, Julie; Pommier, Aurélien; Alves, Georges; De Boussac, Hugues; Lours-Calet, Corinne; Volle, David H.; Lobaccaro, Jean-Marc A.; Baron, Silvère

    2013-01-01

    Recent studies underline the implication of Liver X Receptors (LXRs) in several prostate diseases such as benign prostatic hyperplasia (BPH) and prostate cancer. In order to understand the molecular mechanisms involved, we derived epithelial cells from dorsal prostate (MPECs) of wild type (WT) or Lxrαβ−/− mice. In the WT MPECs, our results show that LXR activation reduces proliferation and correlates with the modification of the AKT-survival pathway. Moreover, LXRs regulate lipid homeostasis with the regulation of Abca1, Abcg1 and Idol, and, in a lesser extent, Srebp1, Fas and Acc. Conversely cells derived from Lxrαβ−/− mice show a higher basal phosphorylation and consequently activation of the survival/proliferation transduction pathways AKT and MAPK. Altogether, our data point out that the cell model we developed allows deciphering the molecular mechanisms inducing the cell cycle arrest. Besides, we show that activated LXRs regulate AKT and MAPK transduction pathways and demonstrate that LXRs could be good pharmacological targets in prostate disease such as cancer. PMID:23554947

  16. Synthesis and pharmacological characterization of novel xanthine carboxylate amides as A2A adenosine receptor ligands exhibiting bronchospasmolytic activity.

    PubMed

    Yadav, Rakesh; Bansal, Ranju; Rohilla, Suman; Kachler, Sonja; Klotz, Karl-Norbert

    2016-04-01

    The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Why use of dienogest for the first contraceptive pill with estradiol?

    PubMed

    Mueck, Alfred O; Seeger, Harald; Bühling, Kai J

    2010-02-01

    Dienogest (DNG) has the essential properties of an effective progestogen for use in a new contraceptive pill using estradiol valerate as estrogenic component -- it inhibits ovulation and protects against endometrial proliferation. DNG is a derivative of norethisterone (NET), but has a cyanomethyl- instead of an ethinyl-group in C17 position which may offer a variety of benefits regarding hepatic effects. The similarity to NET is reflected in the high endometriotropy and in similar pharmacokinetics like short plasma half-live and high bioavailability. However, DNG also elicits properties of progesterone derivatives like neutrality in metabolic and cardiovascular system and considerable antiandrogenic activity, the latter increased by lack of binding to SHBG as specific property of DNG. It has no glucocorticoid and antimineralocorticoid activity and has no antiestrogenic activity with the consequence that possible beneficial estradiol effects should not be antagonized. This may be of special importance for the tolerability and safety of the first pill with estradiol valerate instead of ethinylestradiol, although well-designed postmarketing studies are still ongoing to demonstrate what can be expected on the basis of pharmacology.

  18. Biological evaluation and molecular docking of some chromenyl-derivatives as potential antimicrobial agents.

    PubMed

    Ionuţ, Ioana; Vodnar, Dan Cristian; Oniga, Ilioara; Oniga, Ovidiu; Tiperciuc, Brînduşa; Tamaian, Radu

    2016-01-01

    Various thiosemicarbazones (TSCs) and their heterocyclic thiadiazolines (TDZ) possess important biological effects. In addition, chromenyl derivatives exhibit a wide range of pharmacological activities. Based on these findings and as a continuation of our research on nitrogen and sulfur containing compounds, we investigated a series of previously reported chromenyl-TSCs (1a-j) and chromenyl-TDZs (2a-j) for their in vitro antimicrobial activities against two bacterial and four fungal strains. MIC and MBC/MFC (µg/mL) values of these compounds were evaluated and compared to those of Spectinomycin, Moxifloxacin and Fluconazole, used as reference drugs. For a better understanding of the drug-receptor interactions, all the compounds were further subjected to molecular docking against four targets that were chosen based on the specific mechanism of action of the reference drugs used in the antimicrobial screening. All compounds tested showed equal or higher antibacterial/antifungal activities relative to the used reference drugs. In silico studies (molecular docking) revealed that all the investigated compounds showed good binding energies towards four receptor protein targets and supported their antimicrobial properties.

  19. Differential activation of Fyn kinase distinguishes saturated and unsaturated fats in mouse macrophages.

    PubMed

    Tarabra, Elena; An Lee, Ting-Wen; Zammit, Victor A; Vatish, Manu; Yamada, Eijiro; Pessin, Jeffrey E; Bastie, Claire C

    2017-10-17

    Diet-induced obesity is associated with increased adipose tissue activated macrophages. Yet, how macrophages integrate fatty acid (FA) signals remains unclear. We previously demonstrated that Fyn deficiency ( fynKO ) protects against high fat diet-induced adipose tissue macrophage accumulation. Herein, we show that inflammatory markers and reactive oxygen species are not induced in fynKO bone marrow-derived macrophages exposed to the saturated FA palmitate, suggesting that Fyn regulates macrophage function in response to FA signals. Palmitate activates Fyn and re-localizes Fyn into the nucleus of RAW264.7, J774 and wild-type bone marrow-derived macrophages. Similarly, Fyn activity is increased in cells of adipose tissue stromal vascular fraction of high fat-fed control mice, with Fyn protein being located in the nucleus of these cells. We demonstrate that Fyn modulates palmitate-dependent oxidative stress in macrophages. Moreover, Fyn catalytic activity is necessary for its nuclear re-localization and downstream effects, as Fyn pharmacological inhibition abolishes palmitate-induced Fyn nuclear redistribution and palmitate-dependent increase of oxidative stress markers. Importantly, mono-or polyunsaturated FAs do not activate Fyn, and fail to re-localize Fyn to the nucleus. Together these data demonstrate that macrophages integrate nutritional FA signals via a differential activation of Fyn that distinguishes, at least partly, the effects of saturated versus unsaturated fats.

  20. Synthesis and serotonin transporter activity of sulphur-substituted alpha-alkyl phenethylamines as a new class of anticancer agents.

    PubMed

    Cloonan, Suzanne M; Keating, John J; Butler, Stephen G; Knox, Andrew J S; Jørgensen, Anne M; Peters, Günther H; Rai, Dilip; Corrigan, Desmond; Lloyd, David G; Williams, D Clive; Meegan, Mary J

    2009-12-01

    The discovery that some serotonin reuptake transporter (SERT) ligands have the potential to act as pro-apoptotic agents in the treatment of cancer adds greatly to their diverse pharmacological application. 4-Methylthioamphetamine (MTA) is a selective ligand for SERT over other monoamine transporters. In this study, a novel library of structurally diverse 4-MTA analogues were synthesised with or without N-alkyl and/or C-alpha methyl or ethyl groups so that their potential SERT-dependent antiproliferative activity could be assessed. Many of the compounds displayed SERT-binding activity as well as cytotoxic activity. While there was no direct correlation between these two effects, a number of derivatives displayed anti-tumour effects in lymphoma, leukaemia and breast cancer cell lines, showing further potential to be developed as possible chemotherapeutic agents.

  1. Antioxidant Effect of Berberine and its Phenolic Derivatives Against Human Fibrosarcoma Cells.

    PubMed

    Pongkittiphan, Veerachai; Chavasiri, Warinthorn; Supabphol, Roongtawan

    2015-01-01

    Berberine (B1), isolated from stems of Coscinium fenestratum (Goetgh.) Colebr, was used as a principle structure to synthesize three phenolic derivatives: berberrubine (B2) with a single phenolic group, berberrubine chloride (B3) as a chloride counter ion derivative, and 2,3,9,10-tetra-hydroxyberberine chloride (B4) with four phenolic groups, to investigate their direct and indirect antioxidant activities. For DPPH assay, compounds B4, B3, and B2 showed good direct antioxidant activity (IC50 values=10.7±1.76, 55.2±2.24, and 87.4±6.65 μM, respectively) whereas the IC50 value of berberine was higher than 500 μM. Moreover, compound B4 exhibited a better DPPH scavenging activity than BHT as a standard antioxidant (IC50=72.7±7.22 μM) due to the ortho position of hydroxyl groups and its capacity to undergo intramolecular hydrogen bonding. For cytotoxicity assay against human fibrosarcoma cells (HT1080) using MTT reagent, the sequence of IC50 value at 7-day treatment stated that B1

  2. Synthesis of 4-aminophenyl substituted indole derivatives for the instrumental analysis and molecular docking evaluation studies

    NASA Astrophysics Data System (ADS)

    Singh, Navneet; Kumar, Keshav

    2017-07-01

    The Indole has been known to maintain celebrity status since so many decades and has been a centre point at the spectrum of pharmacological research. The present work stimulates an idea of generating a pool of library of lead compounds. The data collected can be used for the mapping of biologically active compounds. The reported derivatives of 4-aminophenyl substituted Indole were prepared by the methods of Fischer Indole synthesis and Vilsemeier reaction followed by screening for instrumental analysis and molecular docking studies. The synthesized compounds 4-(1-(2-phenylhydrazono)ethyl)aniline, 1, 4-(1H-indol-2-yl)aniline, 2 and 2-(4-aminophenyl)-1H-indole-3-carbaldehyde, 3 were found to have remarkable yield and instrumental data analysis and also showed remarkable docked characteristic. The molecular docking studies revealed that ligand (amino acids) of comp. 1, 2 and 3 had been docked successfully on the binding site of the 3JUS protein selected from PDB with H bonding. The molecular docking data showed that compound 1, would possess remarkable biological activity and compd. 2 and 3 would possess mild to moderate biological activity. Thus this research work paves the way to synthesize new derivatives and thus to develop new compounds in future with accurate prediction.

  3. Microwave-assisted extraction, HPLC analysis, and inhibitory effects on carbonic anhydrase I, II, VA, and VII isoforms of 14 blueberry Italian cultivars.

    PubMed

    Mollica, Adriano; Locatelli, Marcello; Macedonio, Giorgia; Carradori, Simone; Sobolev, Anatoly P; De Salvador, Roberto F; Monti, Simona M; Buonanno, Martina; Zengin, Gokhan; Angeli, Andrea; Supuran, Claudiu T

    2016-01-01

    The multi-component fingerprint and the biological evaluation of plant-derived material are indispensable for the pharmaceutical field, in food quality control procedures, and in all plant-based products. We investigated the quantitative content of biologically active compounds (anthocyanins and chlorogenic acid) of microwave-assisted blueberry extracts from 14 different Italian cultivars, using validated high-performance liquid chromatography-photodiode array detector (HPLC-PDA) method and routinely instrument configuration. The carbonic anhydrase (CA, EC 4.2.1.1) inhibition profiles against several pharmacologically relevant CA isoforms of blueberry extracts and some bioactive compounds were also investigated. The various cultivars showed a highly variable content in anthocyanins and chlorogenic acid, and their CA inhibitory effects were also highly variable. Overall these data prove that antioxidant natural products found in blueberries may be useful for designing pharmacological agents in which various CAs are involved, e.g., antiobesity, antitumor, or anticonvulsants agents.

  4. Lessons from black pepper: piperine and derivatives thereof.

    PubMed

    Chavarria, D; Silva, T; Magalhães e Silva, D; Remião, F; Borges, F

    2016-01-01

    Piperine is a simple and pungent alkaloid found in the seeds of black pepper (Piper nigrum). Following its isolation and full characterization, the biological properties of piperine have been extensively studied, and piperine-like derivatives have shown an interesting range of pharmacological activities. In this context, significant advances have been made in the discovery of new chemical entities based on the piperine scaffold endowed with therapeutic potential. The aim of this review is to provide a thorough inquiry on the therapeutic potential of piperine and related derivatives. It provides an overview of recent developments in patented processes and applications thereof between 2000 and 2015. Cumulative evidence shows that piperine is currently paving its way to become a privileged scaffold for the development of bioactive compounds with therapeutic application in multiple human diseases. In particular, piperine derivatives were shown to modulate the activity of several targets related to neurological disorders, including epilepsy, Parkinson's disease, depression and pain related disorders. Moreover, the efflux pump inhibitory ability of piperine and its analogues tackles important drug resistance mechanisms and may improve the clinical efficacy of antibiotic and anticancer drugs. Although the use of piperine as a scaffold for bioactive compounds is still in its early stages, the continuous exploration of this structure may lead to remarkable advances in drug discovery programs.

  5. Interprofessional education in pharmacology using high-fidelity simulation.

    PubMed

    Meyer, Brittney A; Seefeldt, Teresa M; Ngorsuraches, Surachat; Hendrickx, Lori D; Lubeck, Paula M; Farver, Debra K; Heins, Jodi R

    2017-11-01

    This study examined the feasibility of an interprofessional high-fidelity pharmacology simulation and its impact on pharmacy and nursing students' perceptions of interprofessionalism and pharmacology knowledge. Pharmacy and nursing students participated in a pharmacology simulation using a high-fidelity patient simulator. Faculty-facilitated debriefing included discussion of the case and collaboration. To determine the impact of the activity on students' perceptions of interprofessionalism and their ability to apply pharmacology knowledge, surveys were administered to students before and after the simulation. Attitudes Toward Health Care Teams scale (ATHCT) scores improved from 4.55 to 4.72 on a scale of 1-6 (p = 0.005). Almost all (over 90%) of the students stated their pharmacology knowledge and their ability to apply that knowledge improved following the simulation. A simulation in pharmacology is feasible and favorably affected students' interprofessionalism and pharmacology knowledge perceptions. Pharmacology is a core science course required by multiple health professions in early program curricula, making it favorable for incorporation of interprofessional learning experiences. However, reports of high-fidelity interprofessional simulation in pharmacology courses are limited. This manuscript contributes to the literature in the field of interprofessional education by demonstrating that an interprofessional simulation in pharmacology is feasible and can favorably affect students' perceptions of interprofessionalism. This manuscript provides an example of a pharmacology interprofessional simulation that faculty in other programs can use to build similar educational activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Design, synthesis, and antihypertensive activity of curcumin-inspired compounds via ACE inhibition and vasodilation, along with a bioavailability study for possible benefit in cardiovascular diseases.

    PubMed

    Zhuang, Xiao-Dong; Liao, Li-Zhen; Dong, Xiao-Bian; Hu, Xun; Guo, Yue; Du, Zhi-Min; Liao, Xin-Xue; Wang, Li-Chun

    2016-01-01

    This study describes the synthesis of a novel series of curcumin-inspired compounds via a facile synthetic route. The structures of these derivatives were ascertained using various spectroscopic and analytic techniques. The pharmacological effects of the target analogs were assessed by assaying their inhibition of angiotensin-converting enzyme (ACE). All of the synthesized derivatives exhibited considerable inhibition of ACE, with half-maximal inhibitory concentrations ranging from 1.23 to 120.32 μM. In a docking analysis with testicular ACE (tACE), the most promising inhibitor (4j) was efficiently accommodated in the deep cleft of the protein cavity, making close interatomic contacts with Glu162, His353, and Ala356, comparable with lisinopril. Compounds 4i, 4j, 4k, and 4l were further selected for determination of their vasodilator activity (cardiac output and stroke volume) on isolated rat hearts using the Langendorff technique. The bioavailability of compound 4j was determined in experimental mice.

  7. Insect GDNF:TTC fusion protein improves delivery of GDNF to mouse CNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianhong; Chian, Ru-Ju; Ay, Ilknur

    2009-12-18

    With a view toward improving delivery of exogenous glial cell line-derived neurotrophic factor (GDNF) to CNS motor neurons in vivo, we evaluated the bioavailability and pharmacological activity of a recombinant GDNF:tetanus toxin C-fragment fusion protein in mouse CNS. Following intramuscular injection, GDNF:TTC but not recombinant GDNF (rGDNF) produced strong GDNF immunostaining within ventral horn cells of the spinal cord. Intrathecal infusion of GDNF:TTC resulted in tissue concentrations of GDNF in lumbar spinal cord that were at least 150-fold higher than those in mice treated with rGDNF. While levels of immunoreactive choline acetyltransferase and GFR{alpha}-1 in lumbar cord were not alteredmore » significantly by intrathecal infusion of rGNDF, GDNF:TTC, or TTC, only rGDNF and GDNF:TTC caused significant weight loss following intracerebroventricular infusion. These studies indicate that insect cell-derived GDNF:TTC retains its bi-functional activity in mammalian CNS in vivo and improves delivery of GDNF to spinal cord following intramuscular- or intrathecal administration.« less

  8. Spectral and time-resolved properties of photoinduced hydroxyquinolines doped thin polymer films

    NASA Astrophysics Data System (ADS)

    Mehata, Mohan Singh

    2018-01-01

    Quinoline and its derivatives have a wide range of biological and pharmacological activities. Quinoline ring is used to design functional materials (quinoline derivatives) for OLEDs and field-induce electrooptics. It possesses antibacterial, antifungal, antimalarial, cardiotonic, anthelmintic, anti-inflammatory, anticonvulsant and analgesic activity. Here, we have examined photoexcitation dynamics of 6-hydroxyquinoline (6-HQ) doped in polymer films of polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA) and cellulose acetate (CA) at atmospheric conditions. The absorption maximum of 6-HQ in polymer films was observed at 333 ± 1 nm, whereas fluorescence (FL) maximum fell in the range of 365-371 nm. In PVA film, in addition to the typical FL, a band maximum at 432 nm appeared as a result of an excited-state intermolecular proton transfer (ESIPT) reaction facilitated in the hydrogen-bonded complex formed in the ground state between 6-HQ:PVA. The multi-exponential decay behavior of 6-HQ in all the three polymer films indicates a nanoscale heterogeneity of the polymer environments.

  9. Stimulation of GABA-Induced Ca2+ Influx Enhances Maturation of Human Induced Pluripotent Stem Cell-Derived Neurons

    PubMed Central

    Rushton, David J.; Mattis, Virginia B.; Svendsen, Clive N.; Allen, Nicholas D.; Kemp, Paul J.

    2013-01-01

    Optimal use of patient-derived, induced pluripotent stem cells for modeling neuronal diseases is crucially dependent upon the proper physiological maturation of derived neurons. As a strategy to develop defined differentiation protocols that optimize electrophysiological function, we investigated the role of Ca2+ channel regulation by astrocyte conditioned medium in neuronal maturation, using whole-cell patch clamp and Ca2+ imaging. Standard control medium supported basic differentiation of induced pluripotent stem cell-derived neurons, as assayed by the ability to fire simple, single, induced action potentials. In contrast, treatment with astrocyte conditioned medium elicited complex and spontaneous neuronal activity, often with rhythmic and biphasic characteristics. Such augmented spontaneous activity correlated with astrocyte conditioned medium-evoked hyperpolarization and was dependent upon regulated function of L-, N- and R-type Ca2+ channels. The requirement for astrocyte conditioned medium could be substituted by simply supplementing control differentiation medium with high Ca2+ or γ-amino butyric acid (GABA). Importantly, even in the absence of GABA signalling, opening Ca2+ channels directly using Bay K8644 was able to hyperpolarise neurons and enhance excitability, producing fully functional neurons. These data provide mechanistic insight into how secreted astrocyte factors control differentiation and, importantly, suggest that pharmacological modulation of Ca2+ channel function leads to the development of a defined protocol for improved maturation of induced pluripotent stem cell-derived neurons. PMID:24278369

  10. Synthesis, spectral characterization, molecular structure and pharmacological studies of N'-(1, 4-naphtho-quinone-2yl) isonicotinohyWdrazide

    NASA Astrophysics Data System (ADS)

    Kavitha Rani, P. R.; Fernandez, Annette; George, Annie; Remadevi, V. K.; Sudarsanakumar, M. R.; Laila, Shiny P.; Arif, Muhammed

    2015-01-01

    A simple and efficient procedure was employed for the synthesis of N'-(1,4-naphtho-quinone-2-yl) isonicotinohydrazide (NIH) by the reaction of 2-hydroxy-1,4-naphthaquinone (lawsone) and isonicotinoyl hydrazine in methanol using ultrasonic irradiation. Lawsone is the principal dye, isolated from the leaves of henna (Lawsonia inermis). Structural modification was done on the molecule aiming to get a more active derivative. The structure of the parent compound and the derivative was characterized by elemental analyses, infrared, electronic, 1H, 13C NMR and GC-MS spectra. The fluorescence spectral investigation of the compound was studied in DMSO and ethanol. Single crystal X-ray diffraction studies reveal that NIH crystallizes in monoclinic space group. The DNA cleavage study was monitored by gel electrophoresis method. The synthesized compound was found to have significant antioxidant activity against DPPH radical (IC50 = 58 μM). The in vitro cytotoxic studies of the derivative against two human cancer cell lines MCF-7 (human breast cancer) and HCT-15 (human colon carcinoma cells) using MTT assay revealed that the compound exhibited higher cytotoxic activity with a lower IC50 value indicating its efficiency in killing the cancer cells even at low concentrations. These results suggest that the structural modifications performed on lawsone could be considered a good strategy to obtain a more active drug.

  11. Immunomodulatory Activities of the Benzoxathiole Derivative BOT-4-One Ameliorate Pathogenic Skin Inflammation in Mice.

    PubMed

    Lee, Hyun Gyu; Cho, Nam-Chul; Jeong, Ae Jin; Li, Yu-Chen; Rhie, Sung-Ja; Choi, Jung Sook; Lee, Kwang-Ho; Kim, Youngsoo; Kim, Yong-Nyun; Kim, Myoung-Hwan; Pae, Ae Nim; Ye, Sang-Kyu; Kim, Byung-Hak

    2016-01-01

    T-cell-mediated immune responses play an important role in body protection. However, aberrantly activated immune responses are responsible for inflammatory and autoimmune diseases. The regulation of pathologic immune responses may be a potential therapeutic strategy for the treatment of these diseases. Despite that multiple pharmacologic properties of benzoxathiole derivatives have been defined, the molecular mechanisms underlying these properties remain to be clarified. Here, we demonstrated the benzoxathiole derivative 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo[1,3]oxathiol-4-one (BOT-4-one) regulated immune responses and ameliorated experimentally induced inflammatory skin diseases both in vitro and in vivo. BOT-4-one inhibited the differentiation of CD4(+) T-cell subsets by regulating the expression and production of T-cell lineage-specific master transcription factors and cytokines and activating the signal transducer and activator of transcription proteins. In addition, BOT-4-one inhibited TCR-mediated Akt and NF-κB signaling. Topical application of BOT-4-one ameliorated experimentally induced inflammatory skin diseases in mice models such as 2,4,6-trinitrochlorobenzene-induced contact and atopic dermatitis and IL-23-induced psoriasis-like skin inflammation. Our study demonstrated that BOT-4-one ameliorates inflammatory skin diseases by suppressing the pathogenic CD4(+) T cell differentiation and overall immune responses. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Recombinant ArtinM activates mast cells.

    PubMed

    Barbosa-Lorenzi, Valéria Cintra; Cecilio, Nerry Tatiana; de Almeida Buranello, Patricia Andressa; Pranchevicius, Maria Cristina; Goldman, Maria Helena S; Pereira-da-Silva, Gabriela; Roque-Barreira, Maria Cristina; Jamur, Maria Célia; Oliver, Constance

    2016-07-04

    Mast cells are hematopoietically derived cells that play a role in inflammatory processes such as allergy, as well as in the immune response against pathogens by the selective and rapid release of preformed and lipid mediators, and the delayed release of cytokines. The native homotetrameric lectin ArtinM, a D-mannose binding lectin purified from Artocarpus heterophyllus seeds, is one of several lectins that are able to activate mast cells. Besides activating mast cells, ArtinM has been shown to affect several biological responses, including immunomodulation and acceleration of wound healing. Because of the potential pharmacological application of ArtinM, a recombinant ArtinM (rArtinM) was produced in Escherichia coli. The current study evaluated the ability of rArtinM to induce mast cell degranulation and activation. The glycan binding specificity of rArtinM was similar to that of jArtinM. rArtinM, via its CRD, was able to degranulate, releasing β-hexosaminidase and TNF-α, and to promote morphological changes on the mast cell surface. Moreover, rArtinM induced the release of the newly-synthesized mediator, IL-4. rArtinM does not have a co-stimulatory effect on the FcεRI degranulation via. The IgE-dependent mast cell activation triggered by rArtinM seems to be dependent on NFkB activation. The lectin rArtinM has the ability to activate and degranulate mast cells via their CRDs. The present study indicates that rArtinM is a suitable substitute for the native form, jArtinM, and that rArtinM may serve as an important and reliable pharmacological agent.

  13. Vascular signaling abnormalities in Alzheimer disease.

    PubMed

    Grammas, Paula; Sanchez, Alma; Tripathy, Debjani; Luo, Ester; Martinez, Joseph

    2011-08-01

    Our laboratory has documented that brain microvessels derived from patients with Alzheimer disease (AD) express or release a myriad of factors that have been implicated in vascular activation and angiogenesis. In addition, we have documented that signaling cascades associated with vascular activation and angiogenesis are upregulated in AD-derived brain microvessels. These results are consistent with emerging data suggesting that factors and processes characteristic of vascular activation and angiogenesis are found in the AD brain. Despite increases in proangiogenic factors and signals in the AD brain, however, evidence for increased vascularity in AD is lacking. Cerebral hypoperfusion/hypoxia, a potent stimulus for vascular activation and angiogenesis, triggers hypometabolic, cognitive, and degenerative changes in the brain. In our working model, hypoxia stimulates the angiogenic process; yet, there is no new vessel growth. Therefore, there are no feedback signals to shut off vascular activation, and endothelial cells become irreversibly activated. This activation results in release of a large number of proteases, inflammatory proteins, and other gene products with biologic activity that can injure or kill neurons. Pathologic activation of brain vasculature may contribute noxious mediators that lead to neuronal injury and disease processes in AD brains. This concept is supported by preliminary experiments in our laboratory, which show that pharmacologic blockade of vascular activation improves cognitive function in an animal model of AD. Thus, "vascular activation" could be a novel, unexplored therapeutic target in AD.

  14. Evaluation of drug-induced tissue injury by measuring alanine aminotransferase (ALT) activity in silkworm hemolymph

    PubMed Central

    2012-01-01

    Background Our previous studies suggest silkworms can be used as model animals instead of mammals in pharmacologic studies to develop novel therapeutic medicines. We examined the usefulness of the silkworm larvae Bombyx mori as an animal model for evaluating tissue injury induced by various cytotoxic drugs. Drugs that induce hepatotoxic effects in mammals were injected into the silkworm hemocoel, and alanine aminotransferase (ALT) activity was measured in the hemolymph 1 day later. Results Injection of CCl4 into the hemocoel led to an increase in ALT activity. The increase in ALT activity was attenuated by pretreatment with N-acetyl-L-cysteine. Injection of benzoic acid derivatives, ferric sulfate, sodium valproate, tetracycline, amiodarone hydrochloride, methyldopa, ketoconazole, pemoline (Betanamin), N-nitroso-fenfluramine, and D-galactosamine also increased ALT activity. Conclusions These findings indicate that silkworms are useful for evaluating the effects of chemicals that induce tissue injury in mammals. PMID:23137391

  15. Design, synthesis, pharmacological evaluation, QSAR analysis, molecular modeling and ADMET of novel donepezil-indolyl hybrids as multipotent cholinesterase/monoamine oxidase inhibitors for the potential treatment of Alzheimer's disease.

    PubMed

    Bautista-Aguilera, Oscar M; Esteban, Gerard; Bolea, Irene; Nikolic, Katarina; Agbaba, Danica; Moraleda, Ignacio; Iriepa, Isabel; Samadi, Abdelouahid; Soriano, Elena; Unzeta, Mercedes; Marco-Contelles, José

    2014-03-21

    The design, synthesis, and pharmacological evaluation of donepezil-indolyl based amines 7-10, amides 12-16, and carboxylic acid derivatives 5 and 11, as multipotent ASS234 analogs, able to inhibit simultaneously cholinesterase (ChE) and monoamine oxidase (MAO) enzymes for the potential treatment of Alzheimer's disease (AD), is reported. Theoretical studies using 3D-Quantitative Structure-Activity Relationship (3D-QSAR) was used to define 3D-pharmacophores for inhibition of MAO A/B, AChE, and BuChE enzymes. We found that, in general, and for the same substituent, amines are more potent ChE inhibitors (see compounds 12, 13 versus 7 and 8) or equipotent (see compounds 14, 15 versus 9 and 10) than the corresponding amides, showing a clear EeAChE inhibition selectivity. For the MAO inhibition, amides were not active, and among the amines, compound 14 was totally MAO A selective, while amines 15 and 16 were quite MAO A selective. Carboxylic acid derivatives 5 and 11 showed a multipotent moderate selective profile as EeACE and MAO A inhibitors. Propargylamine 15 [N-((5-(3-(1-benzylpiperidin-4-yl)propoxy)-1-methyl-1H-indol-2-yl)methyl)prop-2-yn-1-amine] resulted in the most potent hMAO A (IC50 = 5.5 ± 1.4 nM) and moderately potent hMAO B (IC50 = 150 ± 31 nM), EeAChE (IC50 = 190 ± 10 nM), and eqBuChE (IC50 = 830 ± 160 nM) inhibitor. However, the analogous N-allyl and the N-morpholine derivatives 16 and 14 deserve also attention as they show an attractive multipotent profile. To sum up, donepezil-indolyl hybrid 15 is a promising drug for further development for the potential prevention and treatment of AD. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Internet discussion forums as part of a student-centred teaching concept of pharmacology.

    PubMed

    Sucha, Michael; Engelhardt, Stefan; Sarikas, Antonio

    2013-01-01

    The world wide web opens up new opportunities to interconnect electronic and classroom teaching and to promote active student participation. In this project article we describe the use of internet discussion forums as part of a student-centred teaching concept of pharmacology and discuss its advantages and disadvantages based on evaluation data and current literature. Final year medical students at the Technische Universität München (Munich, Germany) with the elective pharmacology moderated an internet forum that allowed all students to discuss pharmacology-related questions. Evaluation results of forum participants and elective students demonstrated a learning benefit of internet forums in pharmacology teaching. Internet discussion forums offer an easy-to-implement and effective way to actively engage students and increase the learning benefit of electronic and classroom teaching in pharmacology.

  17. Cameroonian Medicinal Plants: Pharmacology and Derived Natural Products

    PubMed Central

    Kuete, Victor; Efferth, Thomas

    2010-01-01

    Many developing countries including Cameroon have mortality patterns that reflect high levels of infectious diseases and the risk of death during pregnancy and childbirth, in addition to cancers, cardiovascular diseases and chronic respiratory diseases that account for most deaths in the developed world. Several medicinal plants are used traditionally for their treatment. In this review, plants used in Cameroonian traditional medicine with evidence for the activities of their crude extracts and/or derived products have been discussed. A considerable number of plant extracts and isolated compounds possess significant antimicrobial, anti-parasitic including antimalarial, anti-proliferative, anti-inflammatory, anti-diabetes, and antioxidant effects. Most of the biologically active compounds belong to terpenoids, phenolics, and alkaloids. Terpenoids from Cameroonian plants showed best activities as anti-parasitic, but rather poor antimicrobial effects. The best antimicrobial, anti-proliferative, and antioxidant compounds were phenolics. In conclusion, many medicinal plants traditionally used in Cameroon to treat various ailments displayed good activities in vitro. This explains the endeavor of Cameroonian research institutes in drug discovery from indigenous medicinal plants. However, much work is still to be done to standardize methodologies and to study the mechanisms of action of isolated natural products. PMID:21833168

  18. Neuroscience of behavioral and pharmacological treatments for addictions

    PubMed Central

    Potenza, Marc N.; Sofuoglu, Mehmet; Carroll, Kathleen M.; Rounsaville, Bruce J.

    2011-01-01

    Summary Although substantial advances have been made in behavioral and pharmacological treatments for addictions, moving treatment development to the next stage may require novel ways of approaching addictions, particularly those derived from new findings regarding of the neurobiological underpinnings of addictions, while assimilating and incorporating relevant information from earlier approaches. In this review, we first briefly review theoretical and biological models of addiction and then describe existing behavioral and pharmacologic therapies for the addictions within this framework. We then propose new directions for treatment development and targets that are informed by recent evidence regarding the heterogeneity of addictions and the neurobiological contributions to these disorders. PMID:21338880

  19. Atypical 1,4-dihydropyridine derivatives, an approach to neuroprotection and memory enhancement.

    PubMed

    Klusa, Vija

    2016-11-01

    This mini review is devoted to the design and pharmacological studies of novel atypical 1,4-dihydropyridine (DHP) derivatives which differ to a great extent from the traditional DHPs either by lack of neuronal calcium channel blocking activity and/or inability to protect mitochondrial processes. About 100 new DHP derivatives were screened and the mostly active were selected for detailed studies. The compounds of the series of the amino acid ("free" plus "crypto")-containing DHPs and lipophilic di-cyclic DHPs demonstrated long-lasting neuroprotective and/or memory-enhancing action, particularly at low doses (0.005-0.05mg/kg) in different neurodeficiency rat or mice models, and exerted neurotransmitter-modulating effects. The studies have shown an ability of these atypical DHPs to normalize the expression of neuronal proteins, which participate in the regulation of neurotransmission (particularly of the GABAergic system) and synaptic plasticity that has been impaired in animal models, including Alzheimer's disease transgenic mice. The obtained results indicate that the tested DHP compounds can be considered as candidate molecules either for their further chemical modifications or for the more detailed studies to identify cell targets essential for neuroprotection and memory enhancing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Quantitative Determination of Vinpocetine in Dietary Supplements.

    PubMed

    French, John M T; King, Matthew D; McDougal, Owen M

    2016-05-01

    Current United States regulatory policies allow for the addition of pharmacologically active substances in dietary supplements if derived from a botanical source. The inclusion of certain nootropic drugs, such as vinpocetine, in dietary supplements has recently come under scrutiny due to the lack of defined dosage parameters and yet unproven short- and long-term benefits and risks to human health. This study quantified the concentration of vinpocetine in several commercially available dietary supplements and found that a highly variable range of 0.6-5.1 mg/serving was present across the tested products, with most products providing no specification of vinpocetine concentrations.

  1. Cinnamon: A Multifaceted Medicinal Plant

    PubMed Central

    Rao, Pasupuleti Visweswara; Gan, Siew Hua

    2014-01-01

    Cinnamon (Cinnamomum zeylanicum, and Cinnamon cassia), the eternal tree of tropical medicine, belongs to the Lauraceae family. Cinnamon is one of the most important spices used daily by people all over the world. Cinnamon primarily contains vital oils and other derivatives, such as cinnamaldehyde, cinnamic acid, and cinnamate. In addition to being an antioxidant, anti-inflammatory, antidiabetic, antimicrobial, anticancer, lipid-lowering, and cardiovascular-disease-lowering compound, cinnamon has also been reported to have activities against neurological disorders, such as Parkinson's and Alzheimer's diseases. This review illustrates the pharmacological prospective of cinnamon and its use in daily life. PMID:24817901

  2. Sulfoximines as potent RORγ inverse agonists.

    PubMed

    Ouvry, Gilles; Bihl, Franck; Bouix-Peter, Claire; Christin, Olivier; Defoin-Platel, Claire; Deret, Sophie; Feret, Christophe; Froude, David; Hacini-Rachinel, Feriel; Harris, Craig S; Hervouet, Catherine; Lafitte, Guillaume; Luzy, Anne-Pascale; Musicki, Branislav; Orfila, Danielle; Parnet, Veronique; Pascau, Coralie; Pascau, Jonathan; Pierre, Romain; Raffin, Catherine; Rossio, Patricia; Spiesse, Delphine; Taquet, Nathalie; Thoreau, Etienne; Vatinel, Rodolphe; Vial, Emmanuel; Hennequin, Laurent F

    2018-05-01

    Progress in the identification of suitable RORγ inverse agonists as clinical candidates has been hampered by the high lipophilicity that seems required for high potency on this nuclear receptor. In this context, we decided to focus on the replacement of the hydroxymethyl group found on known modulators to determine if more polarity could be tolerated in this position. SAR of the replacement of this moiety is presented in this article leading to the identification of sulfoximine derivatives as potent modulators with pharmacological activity in the in vivo mouse Imiquimod psoriasis model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Metabolic benefits of 1-(3-(4-(o-tolyl)piperazin-1-yl)propyl)pyrrolidin-2-one: a non-selective α-adrenoceptor antagonist.

    PubMed

    Kotańska, Magdalena; Kulig, Katarzyna; Marcinkowska, Monika; Bednarski, Marek; Malawska, Katarzyna; Zaręba, Paula

    2018-05-01

    Previous studies have shown that several components of the metabolic syndrome, such as hypertension, obesity or imbalanced lipid and carbohydrate homeostasis, are associated with the sympathetic nervous system overactivity. Therefore, the inhibition of the adrenergic nervous system seems to be a reasonable and appropriate therapeutic approach for the treatment of metabolic disturbances. It has been suggested that non-selective adrenoceptor antagonists could be particularly beneficial, since α 1 -adrenoceptor antagonists can improve disrupted lipid and carbohydrate profiles, while the inhibition of the α 2 -adrenoceptor may contribute to body weight reduction. The aim of the present study was to investigate the metabolic benefits deriving from administration of a non-selective α-adrenoceptor antagonist from the group of pyrrolidin-2-one derivatives. The aim of the present study was to investigate the potential metabolic benefits deriving from chronic administration of a non-selective α-adrenoceptor antagonist, from the group of pyrrolidin-2-one derivatives. The α 1 - and α 2 -adrenoreceptor affinities of the tested compound-1-(3-(4-(o-tolyl)piperazin-1-yl)propyl)pyrrolidin-2-one had been investigated previously by means of the radioligand binding assay. In the present study, we extended the pharmacological profile characteristics of the selected molecule by additional intrinistic activity assays. Next, we investigated the influence of the tested compound on body weight, hyperglycemia, hypertriglyceridemia, blood pressure in the animal model of obesity induced by a high-fat diet, and additionally we measured the spontaneous activity and body temperature. The intrinistic activity studies revealed that the tested compound is a potent, non-selective antagonist of α 1B and α 2A -adrenoceptors. After the chronic administration of the tested compound, we observed reduced level of triglycerides and glucose in the rat plasma. Interestingly, the tested did not reduce the body weight and did not influence the blood pressure in normotensive animals. Additionally, the administration of the tested compound did not change the animals' spontaneous activity and body temperature. Non-selective α-adrenoceptor antagonist seems to carry potential benefits in the improvement of the reduction of elevated glucose and triglyceride level. The lack of influence on blood pressure suggests that compounds with such a pharmacological profile may be particulary beneficial for the patients with disturbed lipid and carbohydrate profile, who do not suffer from hypertension. These results are particulary valuable, since currently there are no safe α 2A -adrenoceptor antagonist drugs available in clinical use with the ability to modulate hyperglycemia that would not affect blood pressure.

  4. Pharmacological Potential of Sea Cucumbers

    PubMed Central

    Khotimchenko, Yuri

    2018-01-01

    This review presents a detailed analysis of published research data focused on the pharmacological activity exerted by biologically active compounds isolated from sea cucumbers belonging to the class of Holothuroidea, phylum Echinodermata. The review contains descriptions of the structure, physico-chemical properties and pharmacological effects of these active substances. Particular attention is given to compounds with anticoagulant, antithrombotic, antioxidant, anticancer, anti-infectious, immune-stimulating and anti-ACE (angiotensin converting enzyme) activities as well as to the substances exerting a regulating influence on lipid and carbohydrate metabolism. All these compounds may be considered as prototypes for development of new pharmaceutical substances and medicines. PMID:29724051

  5. The immunomodulatory activities of pullulan and its derivatives in human pDC-like CAL-1 cell line.

    PubMed

    Wang, Fang; Qiao, Linan; Chen, Liwei; Zhang, Cong; Wang, Yan; Wang, Yinsong; Liu, Yuanyuan; Zhang, Ning

    2016-05-01

    In this study, acidic and alkaline pullulan derivates were synthesized and their immunomodulatory activities compared to pullulan were investigated in human pDC-like CAL-1 cell line. Pullulan was reacted respectively with succinic anhydride and N-(-2-aminoethyl)-1,3-propanediamine/N,N-carbonyl diimidazole to form acidic pullulan monosuccinate (SUPL) and alkaline pullulan-g-N-(-2-aminoethyl)-1,3-propanediamine (AMPL). In CAL-1 cells, pullulan, SUPL and AMPL up-regulated the mRNA expressions of type I interferons (IFN), including IFN-α and IFN-β1, and some other proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-23 (IL-23), and also significantly enhanced the protein expressions of IFN-α and TNF-α. The activation of nuclear factor kappa B (NF-κB) and the nuclear translocations of interferon regulation factors (IRFs), including IRF-3 and IRF-5, exhibited pivotal roles in the immune responses induced by pullulan, SUPL and AMPL. By comparison, pullulan and SUPL displayed weak effects on the activation of CAL-1 cells, but AMPL showed remarkably enhanced immunomodulatory activities, which were comparable to that induced by R848, an agonist for Toll-like receptor (TLR) 7/8. Our results suggested that AMPL, as an alkaline pullulan derivative, could be used as a potent immunomodulatory agent in the food and pharmacological fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Current Approaches and New Developments in the Pharmacological Management of Tourette Syndrome.

    PubMed

    Quezada, Julio; Coffman, Keith A

    2018-01-01

    Tourette syndrome (TS) is a neurodevelopmental disorder of unknown etiology characterized by spontaneous, involuntary movements and vocalizations called tics. Once thought to be rare, TS affects 0.3-1% of the population. Tics can cause physical discomfort, emotional distress, social difficulties, and can interfere with education and desired activities. The pharmacologic treatment of TS is particularly challenging, as currently the genetics, neurophysiology, and neuropathology of this disorder are still largely unknown. However, clinical experience gained from treating TS has helped us better understand its pathogenesis and, as a result, derive treatment options. The strongest data exist for the antipsychotic agents, both typical and atypical, although their use is often limited in children and adolescents due to their side-effect profiles. There are agents in a variety of other pharmacologic categories that have evidence for the treatment of TS and whose side-effect profiles are more tolerable than the antipsychotics; these include clonidine, guanfacine, baclofen, topiramate, botulinum toxin A, tetrabenazine, and deutetrabenazine. A number of new agents are being developed and tested as potential treatments for TS. These include valbenazine, delta-9-tetrahydrocannabidiol, and ecopipam. Additionally, there are agents with insufficient data for efficacy, as well as agents that have been shown to be ineffective. Those without sufficient data for efficacy include clonazepam, ningdong granule, 5-ling granule, omega-3 fatty acids, and n-acetylcysteine. The agents that have been shown to be ineffective include pramipexole and metoclopramide. We will review all of the established pharmacologic treatments, and discuss those presently in development.

  7. Therapeutic and cosmetic applications of Evodiamine and its derivatives--A patent review.

    PubMed

    Gavaraskar, Kirti; Dhulap, Sivakami; Hirwani, R R

    2015-10-01

    Evodiamine, ((+)-(S)-8,13,13b,14-tetrahydro-14-methylindolo[2',3':3,4]pyrido[2,1-b]quinazolin-5(7H)-one) indoloquinazoline alkaloid, is the major component isolated from the fruits of Evodia rutaecarpa, family Rutaceae. Broad spectrum of pharmacological activities of Evodiamine suggests its imperative role in treating a variety of diseases influencing the function of diverse targets. A comprehensive search was carried out to collect patent information regarding Evodiamine and its derivatives using different patent databases covering priority years to till date. The patents claiming therapeutic as well as cosmetic applications of Evodiamine and its derivatives were analyzed in detail and were classified technically based on the its application such as treatment of metabolic disorders, cancer, neurological disorders, and cardiovascular disorders, etc. The analysis revealed that the use and the mode of actions of Evodiamine and its derivatives in weight management treatments are currently well established. For example the fat reducing property of this alkaloid is primarily due to its mode of actions such as prevention of muscle protein catabolism, enhancement of thermogenesis and lipid oxidation. Apart from its use for treating obesity, Evodiamine and its derivatives are also experimentally explored for their anti-cancer, anti-diabetic and anti-inflammatory properties. The possible mechanisms related to its anti-cancer activity as illustrated by different experimental studies include its potential action as modulator of specific receptors such as topoisomerase I, NF-kappa B and B-cell lymphoma 2 (Bcl2). The analysis hence highlights that, clinical studies pertaining to the anti-cancer, anti-diabetes as well as anti-inflammatory activities of the Evodiamine and its derivatives would possess important market potential for the development of Evodiamine based therapeutics. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data.

    PubMed

    Hettne, Kristina M; Boorsma, André; van Dartel, Dorien A M; Goeman, Jelle J; de Jong, Esther; Piersma, Aldert H; Stierum, Rob H; Kleinjans, Jos C; Kors, Jan A

    2013-01-29

    Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set analysis (GSA) methods for chemical treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles. We created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and derived 1,189 (human) and 588 (mouse) gene sets from the Comparative Toxicogenomics Database (CTD). We tested for significant differential expression (SDE) (false discovery rate -corrected p-values < 0.05) of the next-gen TM-derived gene sets and the CTD-derived gene sets in gene expression (GE) data sets of five chemicals (from experimental models). We tested for SDE of gene sets for six fibrates in a peroxisome proliferator-activated receptor alpha (PPARA) knock-out GE dataset and compared to results from the Connectivity Map. We tested for SDE of 319 next-gen TM-derived gene sets for environmental toxicants in three GE data sets of triazoles, and tested for SDE of 442 gene sets associated with embryonic structures. We compared the gene sets to triazole effects seen in the Whole Embryo Culture (WEC), and used principal component analysis (PCA) to discriminate triazoles from other chemicals. Next-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the triazoles. We confirmed embryotoxic effects, and discriminated triazoles from other chemicals. Gene set analysis with next-gen TM-derived chemical response-specific gene sets is a scalable method for identifying similarities in gene responses to other chemicals, from which one may infer potential mode of action and/or toxic effect.

  9. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    PubMed Central

    2013-01-01

    Background Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set analysis (GSA) methods for chemical treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles. Methods We created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and derived 1,189 (human) and 588 (mouse) gene sets from the Comparative Toxicogenomics Database (CTD). We tested for significant differential expression (SDE) (false discovery rate -corrected p-values < 0.05) of the next-gen TM-derived gene sets and the CTD-derived gene sets in gene expression (GE) data sets of five chemicals (from experimental models). We tested for SDE of gene sets for six fibrates in a peroxisome proliferator-activated receptor alpha (PPARA) knock-out GE dataset and compared to results from the Connectivity Map. We tested for SDE of 319 next-gen TM-derived gene sets for environmental toxicants in three GE data sets of triazoles, and tested for SDE of 442 gene sets associated with embryonic structures. We compared the gene sets to triazole effects seen in the Whole Embryo Culture (WEC), and used principal component analysis (PCA) to discriminate triazoles from other chemicals. Results Next-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the triazoles. We confirmed embryotoxic effects, and discriminated triazoles from other chemicals. Conclusions Gene set analysis with next-gen TM-derived chemical response-specific gene sets is a scalable method for identifying similarities in gene responses to other chemicals, from which one may infer potential mode of action and/or toxic effect. PMID:23356878

  10. Antinociceptive activity of novel amide derivatives of imidazolidine-2,4-dione in a mouse model of acute pain.

    PubMed

    Czopek, Anna; Sałat, Kinga; Byrtus, Hanna; Rychtyk, Joanna; Pawłowski, Maciej; Siwek, Agata; Soluch, Joanna; Mureddu, Valentina; Filipek, Barbara

    2016-06-01

    Antiepileptic drugs are commonly used in non-epileptic disorders. For example, phenytoin and levetiracetam demonstrate analgesic properties in rodent models of pain. In order to enhance their antinociceptive activity, structural features of phenytoin and levetiracetam, such as imidazolidine-2,4-dione and amide bond in alkyl chain, were combined in one molecule. Furthermore, in preliminary studies, methoxyphenylpiperazinpropyl derivatives of imidazolidine-2,4-dione acted as antinociceptive agents in several rodent models of acute pain. The final compounds and the reference drugs - levetiracetam and phenytoin were evaluated in the hot plate test to assess their antinociceptive activity in this acute pain model. Furthermore, for the analgesic active compounds the impact on animals' locomotor activity and motor performance were estimated and the affinity to serotonergic (5-HT1A, 5-HT7) and adrenergic (α1) receptors was determined. Three of the tested compounds: 7, 15 and 18 showed statistically significant antinociceptive properties at the dose of 30mg/kg. Among them, compound 18, 1-methyl-3-[1-(morpholin-4-yl)-1-oxobutan-2-yl]imidazolidine-2,4-dione, exhibited the most significant and long-lasting antinociceptive activity. Noteworthy, this activity was not associated with a negative effect on animals' motor functions. Serotonergic or adrenergic neurotransmission is not involved in this antinociceptive effect. Some amide derivatives of imidazolidine-2,4-diones possess antinociceptive properties in mice but further studies are needed to explain their mechanism of action and assess their toxicity. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Lipophilization of somatostatin analog RC-160 with long chain fatty acid improves its antiproliferative and antiangiogenic activity in vitro.

    PubMed

    Dasgupta, P; Mukherjee, R

    2000-01-01

    The therapeutic potential of the somatostatin analogue RC-160 having antiproliferative activity, is limited by its short serum half life. To overcome this limitation, fatty acids namely butanoic acid and myristic acid were conjugated to the N-terminal residue of RC-160. The lipophilized derivatives of RC-160 were synthesized, purified by reverse phase HPLC and characterized by ES-mass spectroscopy. The antiproliferative activity of lipophilized derivatives of RC-160 on the growth of MIA-PaCa2 (human pancreatic carcinoma), DU145 (human prostate carcinoma), ECV304 (human umbilical chord endothelioma), as well as their antiangiogenic activity was evaluated in vitro. The relative stability of myristoyl-RC-160 towards degradation by proteases and serum was also determined. Myristoyl-RC-160 exhibited significantly higher antiproliferative efficacy than RC-160, on the above cell lines (P<0.01). Receptor binding assays, demonstrated that the affinity of RC-160 towards somatostatin receptors remains unaltered by myristoylation. Unlike RC-160, the myristoylated derivative was found to have significantly greater resistance to protease and serum degradation (P<0.01). Myristoyl-RC-160 exhibited significantly greater antiproliferative activity on ECV304, than RC-160 (P<0.01). Myristoyl RC-160 could also inhibit capillary tube formation more efficiently than RC-160 in a dose dependent manner, suggesting that it possessed enhanced antiangiogenic activity in vitro (P<0.001). Lipophilization of RC-160 with long chain fatty acids like myristic acid endows it with improved antiproliferative and antiangiogenic activity, stability and therapeutic index. British Journal of Pharmacology (2000) 109, 101 - 109

  12. Synthesis and in vitro evaluation of 7-methoxy-N-(pent-4-enyl)-1,2,3,4-tetrahydroacridin-9-amine-new tacrine derivate with cholinergic properties.

    PubMed

    Korabecny, Jan; Musilek, Kamil; Zemek, Filip; Horova, Anna; Holas, Ondrej; Nepovimova, Eugenie; Opletalova, Veronika; Hroudova, Jana; Fisar, Zdenek; Jung, Young-Sik; Kuca, Kamil

    2011-11-01

    Cholinesterase inhibitors are, so far, the only successful strategy for the symptomatic treatment of Alzheimer's disease. Tacrine (THA) is a potent acetylcholinesterase inhibitor that was used in the treatment of Alzheimer's disease for a long time. However, the clinical use of THA was hampered by its low therapeutic index, short half-life and liver toxicity. 7-Methoxytacrine (7-MEOTA) is equally pharmacological active compound with lower toxicity compared to THA. In this Letter, the synthesis, biological activity and molecular modelling of elimination by-product isolated during synthesis of 7-MEOTA based bis-alkylene linked compound is described. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Substituted N-(biphenyl-4'-yl)methyl (R)-2-acetamido-3-methoxypropionamides: potent anticonvulsants that affect frequency (use) dependence and slow inactivation of sodium channels.

    PubMed

    Lee, Hyosung; Park, Ki Duk; Torregrosa, Robert; Yang, Xiao-Fang; Dustrude, Erik T; Wang, Yuying; Wilson, Sarah M; Barbosa, Cindy; Xiao, Yucheng; Cummins, Theodore R; Khanna, Rajesh; Kohn, Harold

    2014-07-24

    We prepared 13 derivatives of N-(biphenyl-4'-yl)methyl (R)-2-acetamido-3-methoxypropionamide that differed in type and placement of a R-substituent in the terminal aryl unit. We demonstrated that the R-substituent impacted the compound's whole animal and cellular pharmacological activities. In rodents, select compounds exhibited excellent anticonvulsant activities and protective indices (PI=TD50/ED50) that compared favorably with clinical antiseizure drugs. Compounds with a polar, aprotic R-substituent potently promoted Na+ channel slow inactivation and displayed frequency (use) inhibition of Na+ currents at low micromolar concentrations. The possible advantage of affecting these two pathways to decrease neurological hyperexcitability is discussed.

  14. Aeroplysinin-1, a Sponge-Derived Multi-Targeted Bioactive Marine Drug

    PubMed Central

    García-Vilas, Javier A.; Martínez-Poveda, Beatriz; Quesada, Ana R.; Medina, Miguel Ángel

    2015-01-01

    Organisms lacking external defense mechanisms have developed chemical defense strategies, particularly through the production of secondary metabolites with antibiotic or repellent effects. Secondary metabolites from marine organisms have proven to be an exceptionally rich source of small molecules with pharmacological activities potentially beneficial to human health. (+)-Aeroplysinin-1 is a secondary metabolite isolated from marine sponges with a wide spectrum of bio-activities. (+)-Aeroplysinin-1 has potent antibiotic effects on Gram-positive bacteria and several dinoflagellate microalgae causing toxic blooms. In preclinical studies, (+)-aeroplysinin-1 has been shown to have promising anti-inflammatory, anti-angiogenic and anti-tumor effects. Due to its versatility, (+)-aeroplysinin-1 might have a pharmaceutical interest for the treatment of different pathologies. PMID:26703630

  15. Pharmacological effects of primaquine ureas and semicarbazides on the central nervous system in mice and antimalarial activity in vitro.

    PubMed

    Kedzierska, Ewa; Orzelska, Jolanta; Perković, Ivana; Knežević, Danijel; Fidecka, Sylwia; Kaiser, Marcel; Zorc, Branka

    2016-02-01

    New primaquine (PQ) urea and semicarbazide derivatives 1-4 were screened for the first time for central nervous system (CNS) and antimalarial activity. Behavioural tests were performed on mice. In vitro cytotoxicity on L-6 cells and activity against erythrocytic stages of Plasmodium falciparum was determined. Compound 4 inhibited 'head-twitch' responses and decreased body temperature of mice, which suggests some involvement of the serotonergic system. Compound 4 protected mice against clonic seizures and was superior in the antimalarial test. A hybrid of two PQ urea 2 showed a strong antimalarial activity, confirming the previous findings of the high activity of bis(8-aminoquinolines) and other bisantimalarial drugs. All the compounds decreased the locomotor activity of mice, what suggests their weak depressive effects on the CNS, while PQ derivatives 1 and 2 increased amphetamine-induced hyperactivity. None of the compounds impaired coordination, what suggests a lack of their neurotoxicity. All the tested compounds presented an antinociceptive activity in the 'writhing' test. Compounds 3 and 4 were active in nociceptive tests, and those effects were reversed by naloxone. Compound 4 could be a useful lead compound in the development of CNS active agents and antimalarials, whereas compound 3 may be considered as the most promising lead for new antinociceptive agents. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  16. Environmental risk assessment of pharmaceutical drug substances--conceptual considerations.

    PubMed

    Länge, Reinhard; Dietrich, Daniel

    2002-05-10

    Drugs, i.e. active ingredients of human medicinal products, may be introduced into the environment after use in patients by sewage effluent pathways and consequently are detected at low concentrations in sewage effluents and in surface waters. Legal requirements in a number of geographical regions (Europe, US, and intended in Canada) demand environmental risk assessments (ERA) for new drug substances. Existing regulatory concepts of ERA are based initially on a set of short-term ecotoxicological studies in three to four different species, environmental behavior and the application of assessment factors to correct for the ERA inherent uncertainty. Based on theoretical considerations and the experience with a very limited, but well investigated, number of examples while considering that drugs are highly biologically active compounds, the appropriateness of this risk assessment procedure for all drug substances might be questioned. Indeed, e.g. long-term effects may occur at much lower concentrations and follow different toxicodynamic mechanism than extrapolated from short-term studies., In such cases, the application of assessment factors for deriving chronic no-observed effect concentration (NOECs) appears to be problematic. Although long-term tests with a variety of organisms would provide a complete database for the evaluation of the environmental risks, this is unachievable for all drugs due to time, money and animal welfare constraints. In order to avoid unnecessary testing, a concept is presented, which makes use of pharmacological and toxicological, as well as pharmaco- and toxicokinetic information derived from mammals during drug substance development. Useful data for adoption in a case-by-case testing strategy can be obtained by evaluating (a) the pharmacological activity, which indicates specific targets in mammalian species and may allow for an analysis, whether a similar target is available in aquatic species; (b) the mammalian toxicity, which may indicate, which targets are most susceptible to adverse effects; (c) the difference between acute and chronic effects in mammals, since the magnitude of this difference may indicate, whether long-term effects are expected at significantly lower levels than acute effects; (d) the (pharmacologically and toxicologically) effective plasma levels in mammalian test organisms, which may be compared with the relevant exposure scenario for the environment. Additionally, activity classes of compounds may be established based on experience with specific substances, in order to develop an appropriate test strategy. The above preliminary considerations should support decisions on the selection of candidate substances for chronic effects studies and for the appropriate selection of test species and endpoints to monitor. Generally, ecologically relevant endpoints such as impairment of growth, development and reproduction should be used to assess the ecotoxicologic effects.

  17. Electrochemical Behavior of Quinoxalin-2-one Derivatives at Mercury Electrodes and Its Analytical Use

    PubMed Central

    Zimpl, Milan; Skopalova, Jana; Jirovsky, David; Bartak, Petr; Navratil, Tomas; Sedonikova, Jana; Kotoucek, Milan

    2012-01-01

    Derivatives of quinoxalin-2-one are interesting compounds with potential pharmacological activity. From this point of view, understanding of their electrochemical behavior is of great importance. In the present paper, a mechanism of electrochemical reduction of quinoxalin-2-one derivatives at mercury dropping electrode was proposed. Pyrazine ring was found to be the main electroactive center undergoing a pH-dependent two-electron reduction process. The molecule protonization of nitrogen in the position 4 precedes the electron acceptance forming a semiquinone radical intermediate which is relatively stable in acidic solutions. Its further reduction is manifested by separated current signal. A positive mesomeric effect of the nonprotonized amino group in the position 7 of the derivative III accelerates the semiquinone reduction yielding a single current wave. The suggested reaction mechanism was verified by means of direct current polarography, differential pulse, cyclic and elimination voltammetry, and coulometry with subsequent GC/MS analysis. The understanding of the mechanism was applied in developing of analytical method for the determination of the studied compounds. PMID:22666117

  18. The genus Caesalpinia L. (Caesalpiniaceae): phytochemical and pharmacological characteristics.

    PubMed

    Zanin, João L Baldim; de Carvalho, Bianca A; Martineli, Paloma Salles; dos Santos, Marcelo Henrique; Lago, João Henrique G; Sartorelli, Patrícia; Viegas, Cláudio; Soares, Marisi G

    2012-06-29

    The genus Caesalpinia (Caesalpiniaceae) has more than 500 species, many of which have not yet been investigated for potential pharmacological activity. Several classes of chemical compounds, such as flavonoids, diterpenes, and steroids, have been isolated from various species of the genus Caesalpinia. It has been reported in the literature that these species exhibit a wide range of pharmacological properties, including antiulcer, anticancer, antidiabetic, anti-inflammatory, antimicrobial, and antirheumatic activities that have proven to be efficacious in ethnomedicinal practices. In this review we present chemical and pharmacological data from recent phytochemical studies on various plants of the genus Caesalpinia.

  19. Ibogaine, an anti-addictive drug: pharmacology and time to go further in development. A narrative review.

    PubMed

    Maciulaitis, R; Kontrimaviciute, V; Bressolle, F M M; Briedis, V

    2008-03-01

    Ibogaine is an indole alkaloid derived from the bark of the root of the African shrub Tabernanthe iboga. Psychoactive properties of ibogaine have been known for decades. More recently, based on experimental data from animals and anectodal reports in human, it has been found that this drug has anti-addictive effects. Several patents were published between 1969 and 1995. The pharmacology of ibogaine is quite complex, affecting many different neurotransmitter systems simultaneously. However, the pharmacological targets underlying the physiological and psychological actions of ibogaine are not completely understood. Ibogaine is rapidly metabolized in the body in noribogaine. The purpose of this article was to review data from the literature concerning physicochemical properties, bio-analytical methods, and pharmacology of ibogaine; this article will be focused on the use of this drug as anti-addictive agent.

  20. Investigation of a thiazolidinone derivative as an allosteric modulator of follicle stimulating hormone receptor: evidence for its ability to support follicular development and ovulation.

    PubMed

    Sriraman, Venkataraman; Denis, Deborah; de Matos, Daniel; Yu, Henry; Palmer, Stephen; Nataraja, Selva

    2014-05-15

    FSH signalling through its cognate receptor is critical for follicular development and ovulation. An earlier study had documented thiazolidinone derivatives to activate FSH receptor expressed in CHO cells and rat granulosa cells; however development of this compound for clinical use was halted for unobvious reasons. The objective of the current study is to extend the previous investigations in detail on the ability of thiazolidinone derivative (henceforth referred to as Compound 5) to activate FSH signalling and learn the barriers that preclude development of this derivative for clinical purposes. Our results demonstrate that the Compound 5 in a dose-dependent manner stimulated cAMP production, activated AKT and ERK signalling pathways and induced estradiol production in cultured rat granulosa cells. Compound 5 also caused dose-dependent increase in estradiol production from human granulosa cells. In increasingly more complex in vitro systems, Compound 5 was able to induce the expansion of mouse cumulus-oocyte-complex and support in vitro development of mouse preantral follicle to preovulatory stage and release of oocyte from the follicle. In vivo, the compound stimulated preovulatory follicular development and ovulation in immature rats. Pharmacokinetic and safety investigations reveal poor oral availability and genotoxicity. Together, our results document Compound 5 to act as a FSHR allosteric modulator but have poor pharmacological properties for development of an oral FSH receptor modulator. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. A review on ethno-medicinal uses and pharmacology of Vernonia cinerea Less.

    PubMed

    Dogra, Nittya K; Kumar, Suresh

    2015-01-01

    Vernonia cinerea Less. (ash-coloured fleabane; Asteraceae) is a widely distributed plant throughout India. The plant has reputation as folklore medicine in various traditional systems of medicine. The plant has been evaluated for varied pharmacological activities to validate its traditional claims, and has been scientifically reported to possess anti-inflammatory, antidiabetic, renoprotective, anticancer, antiviral, antimicrobial activities, etc. This review emphasises on ethnopharmacology and pharmacology of V. cinerea.

  2. [Drugs for intravenous induction of anesthesia: barbiturates].

    PubMed

    Dumps, C; Halbeck, E; Bolkenius, D

    2018-05-09

    The discovery of barbituric acid and research on its derivatives have long been of importance in advancements in modern anesthesia. Decades of clinical use of barbiturates worldwide and their abuse has led to an enormous amount of knowledge. Thiopental and methohexital are ultra-short acting derivatives of barbiturates. Their clinical application has been accompanied by an enormous increase in the knowledge of the pharmacology of cerebrally active drugs, in particular gamma-aminobutyric acid (GABA A ) receptor and GABA-induced effects on nerve cell membranes. Despite the development of newer substances, thiopental still has a firm place in clinical applications. Currently it is mainly used in obstetrics for induction of cesarean sections under general anesthesia. A disadvantage, when properly used to induce anesthesia, is usually only the prolonged elimination kinetics of barbiturates. It is beneficial that barbiturates do not require side effect provoking solubilizers.

  3. Synthesis and Pharmacological Evaluation of New Chemical Entities from Ibuprofen as Novel Analgesic Candidates.

    PubMed

    Ahmadi, A; Naderi, N; Daniali, M; Kazemi, S; Aazami, S; Alizadeh, N; Nahri-Niknafs, B

    2015-09-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are the first choice of drugs that are normally used for the treatment of pain and inflammation. Ibuprofen (I) and its analogues as the most widely used NSAIDs have been synthesized in recent years. In an effort to establish new candidates with improved analgesic properties, derivatives (II-VII) with substituted aromatic as well as aliphatic moieties were synthesized in this experiment and evaluated in formalin test with rats. The results were compared to ibuprofen and control groups. Findings indicated that derivatives with new alkylphenyl rings (VI and VII) had some similar or more analgesic activities relative to the control and ibuprofen groups, respectively; which could be justified as to more alkyl and phenyl groups instead of p-isobutylphenyl moiety in I. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Potent haloperidol derivatives covalently binding to the dopamine D2 receptor.

    PubMed

    Schwalbe, Tobias; Kaindl, Jonas; Hübner, Harald; Gmeiner, Peter

    2017-10-01

    The dopamine D 2 receptor (D 2 R) is a common drug target for the treatment of a variety of neurological disorders including schizophrenia. Structure based design of subtype selective D 2 R antagonists requires high resolution crystal structures of the receptor and pharmacological tools promoting a better understanding of the protein-ligand interactions. Recently, we reported the development of a chemically activated dopamine derivative (FAUC150) designed to covalently bind the L94C mutant of the dopamine D 2 receptor. Using FAUC150 as a template, we elaborated the design and synthesis of irreversible analogs of the potent antipsychotic drug haloperidol forming covalent D 2 R-ligand complexes. The disulfide- and Michael acceptor-functionalized compounds showed significant receptor affinity and an irreversible binding profile in radioligand depletion experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Blended versus lecture learning: outcomes for staff development.

    PubMed

    Sherman, Heidi; Comer, Linda; Putnam, Lorene; Freeman, Helen

    2012-07-01

    Critical care pharmacology education is crucial to safe patient care for nurses orienting to specialized areas. Although traditionally taught as a classroom lecture, it is important to consider effectiveness of alternative methods for education. This study provided experimentally derived evidence regarding effectiveness of blended versus traditional lecture for critical care pharmacology education. Regardless of learner demographics, the findings determined no significant differences in cognitive learning outcomes or learner satisfaction between blended versus lecture formats.

  6. Differential response of terpenes and anthraquinones derivatives in Rumex dentatus and Lavandula officinalis to harsh winters across north-western Himalaya.

    PubMed

    Jan, Sumira; Kamili, Azra N; Parray, Javid A; Bedi, Yashbir S

    2016-01-01

    Herbs adapted to diverse climates exhibit distinct variability to fluctuating temperatures and demonstrate various metabolic and physiological adaptations to harsh environments. In this research, Rumex dentatus L. and Lavandula officinalis L. were collected before snowfall in September-November to evaluate variability in major phytoconstituents to diverse seasonal regime. LC-MS was used for simultaneous determination of eight anthraquinone derivatives in R. dentatus, i.e. emodin, physcion, chrysophanol, physcion glucoside, endocrocin, emodin glucoside, chrysophanol glucoside and chromone derivatives and monoterpenes in L. officinalis i.e. (Z)-β-ocimene, (E)-β-ocimene, terpene alcohol, terpin-4-ol, acetate ester-linalyl acetate and bicyclic sesquiterpene (E)-caryophyllene. The correlation analysis confirmed significant variation in anthraquinone glucoside and terpene content within Rumex and Lavender, respectively, and altitude was established as the determinant factor in secondary metabolism of both herbs. The study concludes the propagation of herbs in bioclimatic belts which favour accumulation of major constituents and validate their greater pharmacological activity.

  7. Patient-derived iPSCs show premature neural differentiation and neuron-type specific phenotypes relevant to neurodevelopment

    PubMed Central

    Yeh, Erika; Dao, Dang Q.; Wu, Zhi Y.; Kandalam, Santoshi M.; Camacho, Federico M.; Tom, Curtis; Zhang, Wandong; Krencik, Robert; Rauen, Katherine A.; Ullian, Erik M.; Weiss, Lauren A.

    2017-01-01

    Ras/MAPK pathway signaling is a major participant in neurodevelopment, and evidence suggests that BRAF, a key Ras signal mediator, influences human behavior. We studied the role of the mutation BRAFQ257R, the most common cause of cardiofaciocutaneous syndrome (CFC), in an induced pluripotent stem cell (iPSC)-derived model of human neurodevelopment. In iPSC-derived neuronal cultures from CFC subjects, we observed decreased p-AKT and p-ERK1/2 compared to controls, as well as a depleted neural progenitor pool and rapid neuronal maturation. Pharmacological PI3K/AKT pathway manipulation recapitulated cellular phenotypes in control cells and attenuated them in CFC cells. CFC cultures displayed altered cellular subtype ratios and increased intrinsic excitability. Moreover, in CFC cells, Ras/MAPK pathway activation and morphological abnormalities exhibited cell subtype-specific differences. Our results highlight the importance of exploring specific cellular subtypes and of using iPSC models to reveal relevant human-specific neurodevelopmental events. PMID:29158583

  8. Enhancement of carer skills and patient function in the non-pharmacological management of frontotemporal dementia (FTD): A call for randomised controlled studies

    PubMed Central

    O'Connor, Claire M.; Clemson, Lindy; da Silva, Thaís Bento Lima; Piguet, Olivier; Hodges, John R.; Mioshi, Eneida

    2013-01-01

    FTD is a unique condition which manifests with a range of behavioural symptoms, marked dysfunction in activities of daily living (ADL) and increased levels of carer burden as compared to carers of other dementias. No efficacious pharmacological interventions to treat FTD currently exist, and research on pharmacological symptom management is variable. The few studies on non-pharmacological interventions in FTD focus on either the carer or the patients' symptoms, and lack methodological rigour. This paper reviews and discusses current studies utilising non-pharmacological approaches, exposing the clear need for more rigorous methodologies to be applied in this field. Finally, a successful randomised controlled trial helped reduce behaviours of concern in dementia, and through implementing participation in tailored activities, the FTD-specific Tailored Activities Program (TAP) is presented. Crucially, this protocol has scope to target both the person with FTD and their carer. This paper highlights that studies in this area would help to elucidate the potential for using activities to reduce characteristic behaviours in FTD, improving quality of life and the caregiving experience in FTD. PMID:29213832

  9. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology.

    PubMed

    Layé, Sophie; Nadjar, Agnès; Joffre, Corinne; Bazinet, Richard P

    2018-01-01

    Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  10. The Pharmacological Chaperone Isofagomine Increases Activity of the Gaucher Disease L444P Mutant Form of β-Glucosidase

    PubMed Central

    Khanna, Richie; Benjamin, Elfrida R.; Pellegrino, Lee; Schilling, Adriane; Rigat, Brigitte A.; Soska, Rebecca; Nafar, Hadis; Ranes, Brian E.; Feng, Jessie; Lun, Yi; Powe, Allan C.; Palling, David J.; Wustman, Brandon A.; Schiffmann, Raphael; Mahuran, Don J.; Lockhart, David J.; Valenzano, Kenneth J.

    2010-01-01

    SUMMARY Gaucher disease is caused by mutations in the gene that encodes the lysosomal enzyme acid β-glucosidase (GCase). We have shown previously that the small molecule pharmacological chaperone isofagomine (IFG) binds and stabilizes N370S GCase, resulting in increased lysosomal trafficking and cellular activity. In this study, we investigated the effect of IFG on L444P GCase. Incubation of Gaucher patient-derived lymphoblastoid cell lines (LCLs) or fibroblasts with IFG led to approximately 3.5- and 1.3-fold increases in L444P GCase activity, respectively, as measured in cell lysates. The effect in fibroblasts was increased approximately 2-fold using glycoprotein-enrichment, GCase-immunocapture, or by incubating cells overnight in IFG-free media prior to assay, methods designed to maximize GCase activity by reducing IFG carryover and inhibition in the enzymatic assay. IFG incubation also increased the lysosomal trafficking and in situ activity of L444P GCase in intact cells, as measured by reduction in endogenous glucosylceramide levels. Importantly, this reduction was seen only following three-day incubation in IFG-free media, underscoring the importance of IFG removal to restore lysosomal GCase activity. In mice expressing murine L444P GCase, oral administration of IFG resulted in significant increases (2- to 5-fold) in GCase activity in disease-relevant tissues, including brain. Additionally, eight-week IFG administration significantly lowered plasma chitin III and IgG levels, and 24-week administration significantly reduced spleen and liver weights. Taken together, these data suggest that IFG can increase the lysosomal activity of L444P GCase in cells and tissues. Moreover, IFG is orally available and distributes into multiple tissues, including brain, and may thus merit therapeutic evaluation for patients with neuronopathic and non-neuronopathic Gaucher disease. PMID:20148966

  11. Oxidative Stress Modulation and ROS-Mediated Toxicity in Cancer: A Review on In Vitro Models for Plant-Derived Compounds.

    PubMed

    Vallejo, María José; Salazar, Lizeth; Grijalva, Marcelo

    2017-01-01

    Medicinal and aromatic plants (MAPs) are known and have been long in use for a variety of health and cosmetics applications. Potential pharmacological usages that take advantage of bioactive plant-derived compounds' antimicrobial, antifungal, anti-inflammatory, and antioxidant properties are being developed and many new ones explored. Some phytochemicals could trigger ROS-mediated cytotoxicity and apoptosis in cancer cells. A lot of effort has been put into investigating novel active constituents for cancer therapeutics. While other plant-derived compounds might enhance antioxidant defenses by either radical scavenging or stimulation of intracellular antioxidant enzymes, the generation of reactive oxygen species (ROS) leading to oxidative stress is one of the strategies that may show effective in damaging cancer cells. The biochemical pathways involved in plant-derived bioactive compounds' properties are complex, and in vitro platforms have been useful for a comprehensive understanding of the mechanism of action of these potential anticancer drugs. The present review aims at compiling the findings of particularly interesting studies that use cancer cell line models for assessment of antioxidant and oxidative stress modulation properties of plant-derived bioactive compounds.

  12. Fluorine walk: The impact of fluorine in quinolone amides on their activity against African sleeping sickness.

    PubMed

    Berninger, Michael; Erk, Christine; Fuß, Antje; Skaf, Joseph; Al-Momani, Ehab; Israel, Ina; Raschig, Martina; Güntzel, Paul; Samnick, Samuel; Holzgrabe, Ulrike

    2018-05-25

    Human African Trypanosomiasis, also known as African sleeping sickness, is caused by the parasitic protozoa of the genus Trypanosoma. If there is no pharmacological intervention, the parasites can cross the blood-brain barrier (BBB), inevitably leading to death of the patients. Previous investigation identified the quinolone amide GHQ168 as a promising lead compound having a nanomolar activity against T. b. brucei. Here, the role of a fluorine substitution at different positions was investigated in regard to toxicity, pharmacokinetics, and antitrypanosomal activity. This 'fluorine walk' led to new compounds with improved metabolic stability and consistent activity against T. b. brucei. The ability of the new quinolone amides to cross the BBB was confirmed using an 18 F-labelled quinolone amide derivative by means of ex vivo autoradiography of a murine brain. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Anti-diabetic activity of fused PPARγ-SIRT1 ligands with limited body-weight gain by mimicking calorie restriction and decreasing SGK1 expression.

    PubMed

    Pirat, Celine; Dacquet, Catherine; Leclerc, Veronique; Hennuyer, Nathalie; Beucher-Gaudin, Monique; Zanirato, Ghislaine; Géant, Anne; Staels, Bart; Ktorza, Alain; Farce, Amaury; Caignard, Daniel-Henri; Berthelot, Pascal; Lebegue, Nicolas

    2017-09-08

    A series of benzothiazol-2-one containing α-ethoxyphenylpropionic acid derivatives incorporating resveratrol or butein scaffolds were designed as fused full PPARγ agonist ligands and SIRT1-activating compounds for the treatment of type 2 diabetes (T2D) and its complications. Compound 14d displayed the best in vitro pharmacological profile with full PPARγ agonist activity (Emax = 98%, EC 50  = 200 nM), SIRT1 enzymatic activation (+128%) and SGK1 expression inhibition (- 57%) which is known to limit side effects as fluid retention and body-weight gain. Compound 14d showed high efficacy in an ob/ob mice model with significant decreases in serum triglyceride, glucose and insulin levels but mostly with limited body-weight gain by mimicking calorie restriction (CR) and inhibiting SGK1 expression. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage

    PubMed Central

    Ciamporcero, Eric; Shen, He; Ramakrishnan, Swathi; Ku, Sheng Yu; Chintala, Sreenivasulu; Shen, Li; Adelaiye, Remi; Miles, Kiersten Marie; Ullio, Chiara; Pizzimenti, Stefania; Daga, Martina; Azabdaftari, Gissou; Attwood, Kris; Johnson, Candace; Zhang, Jianmin; Barrera, Giuseppina; Pili, Roberto

    2015-01-01

    Current standard of care for muscle-invasive urothelial cell carcinoma (UCC) is surgery along with perioperative platinum-based chemotherapy. UCC is sensitive to cisplatin-based regimens, but acquired resistance eventually occurs, and a subset of tumors is intrinsically resistant. Thus, there is an unmet need for new therapeutic approaches to target chemotherapy-resistant UCC. Yes-associated protein (YAP) is a transcriptional co-activator that has been associated with bladder cancer progression and cisplatin resistance in ovarian cancer. In contrast, YAP has been shown to induce DNA damage associated apoptosis in non-small cell lung carcinoma. However, no data have been reported on the YAP role in UCC chemo-resistance. Thus, we have investigated the potential dichotomous role of YAP in UCC response to chemotherapy utilizing two patient-derived xenograft models recently established. Constitutive expression and activation of YAP inversely correlated with in vitro and in vivo cisplatin sensitivity. YAP overexpression protected while YAP knock-down sensitized UCC cells to chemotherapy and radiation effects via increased accumulation of DNA damage and apoptosis. Furthermore, pharmacological YAP inhibition with verteporfin inhibited tumor cell proliferation and restored sensitivity to cisplatin. In addition, nuclear YAP expression was associated with poor outcome in UCC patients who received perioperative chemotherapy. In conclusion, these results suggest that YAP activation exerts a protective role and represents a pharmacological target to enhance the anti-tumor effects of DNA damaging modalities in the treatment of UCC. PMID:26119935

  15. Researching on new species of "Mate": Ilex brevicuspis: phytochemical and pharmacology study.

    PubMed

    Filip, R; Ferraro, G E

    2003-01-01

    Ilex paraguariensis St. Hilaire (Aquifoliaceae) ("Mate" or "Yerba mate") is one of the most commercialized plants of South America which grows naturally in NE Argentina, Uruguay, SE Brazil and E Paraguay, where it is also cultivated. It is used to prepare a tea-like beverage (infusions or decoctions) appreciated for its peculiar flavor, stimulation and nutritional properties. Ilex brevicuspis Reisseck grows in the same habitat and is widely used as a substitute or adulterant of Ilex paraguariensis. In a previous work, methylxanthines (caffeine, theobromine and theophylline) were not detected in it by HPLC. This study was undertaken in order to isolate, identify and quantify the polyphenolic compounds (caffeoyl derivatives and flavonoids) and to investigate some of the pharmacological activities of I. brevicuspis, related with the traditional use of the "Mate" (choleretic, intestinal propulsion and antioxidant activities). Acute toxicity was also investigated. Decoctions, like extracts, were prepared in order to compare the results with preparations commonly used by the local people. For the phytochemical analysis, the extracts were analyzed by HPLC with a diode array detector. Choleretic and intestinal propulsion activities were assayed in rats. Sodium dehydrocholate (DHC) was used as a choleretic reference standard. Antioxidant activity was tested in liposomes that were oxidized by the free radical generator 2,2'-azobis [amidinopropane] chloride (AAPH). For the first time in I. brevicuspis the following compounds were isolated and quantified: A) caffeoyl derivative compounds (chlorogenic acid; caffeic acid; 3,4-dicaffeoylquinic acid; 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid. B) flavonoids (rutin, quercetin and kaempferol). Biological activity assays demonstrated that I. brevicuspis extracts produced a significant increase of bile flow (BF) in rats in the first 30 min period and in the percentage of BF increase accumulated at 120 min. It also produced an increase in the intestinal propulsion activity. Moreover, this species showed a high antioxidant activity. The acute toxicity test showed that Ilex brevicuspis did not produce any sign of toxicity at the analyzed doses. An Argentinean Ilex specie ( I. brevicuspis) has choleretic, intestinal propulsion, antioxidant activities and these results may lead to the potential development of a new "Yerba Mate" and/or phytopharmaceutical products, without central nervous system (CNS) stimulant activity.

  16. Experimental study of the anti-tumour activity and pharmacokinetics of arctigenin and its valine ester derivative.

    PubMed

    Cai, Enbo; Song, Xingzhuo; Han, Mei; Yang, Limin; Zhao, Yan; Li, Wei; Han, Jiahong; Tu, Shumei

    2018-02-19

    Arctigenin (ARG) is a functional active component that has important physiological and pharmacological activities. The anti-tumour and anti-inflammatory activities of ARG show good potential for application and development, but this material has the defect of low water solubility. In this experiment, the valine derivative of ARG (ARG-V) was designed and synthesized to overcome this disadvantage. The ARG amino acid, EDCI and DMAP were raw materials in the addition reaction, with a molar ratio of 1:2:2:0.5. The yield of ARG-V was up to 80%. ARG-V has strong anti-tumour activity in vivo and in vitro. The inhibitory rate of ARG-V was 69.2%, with less damage to the immune organs and different degrees of increased serum cytotoxicity. Moreover, the pharmacokinetics of ARG following oral administration and ARG-V following oral administration in rats were also studied. The C max and AUC values of ARG-V showed significant differences compared to ARG. The relative bioavailabilities of three doses of ARG-V compared to ARG were 664.7%, 741.5% and 812.9%. These pharmacokinetic results may be useful for further studies of the bioactive mechanism of ARG and provide a theoretical basic for clinical use.

  17. Importance of the pharmacological profile of the bound ligand in enrichment on nuclear receptors: toward the use of experimentally validated decoy ligands.

    PubMed

    Lagarde, Nathalie; Zagury, Jean-François; Montes, Matthieu

    2014-10-27

    The evaluation of virtual ligand screening methods is of major importance to ensure their reliability. Taking into account the agonist/antagonist pharmacological profile should improve the quality of the benchmarking data sets since ligand binding can induce conformational changes in the nuclear receptor structure and such changes may vary according to the agonist/antagonist ligand profile. We indeed found that splitting the agonist and antagonist ligands into two separate data sets for a given nuclear receptor target significantly enhances the quality of the evaluation. The pharmacological profile of the ligand bound in the binding site of the target structure was also found to be an additional critical parameter. We also illustrate that active compound data sets for a given pharmacological activity can be used as a set of experimentally validated decoy ligands for another pharmacological activity to ensure a reliable and challenging evaluation of virtual screening methods.

  18. Neurotoxicity and other pharmacological activities of the snake venom phospholipase A2 OS2: The N-terminal region is more important than enzymatic activity

    PubMed Central

    Rouault, Morgane; Rash, Lachlan D.; Escoubas, Pierre; Boilard, Eric; Bollinger, James; Lomonte, Bruno; Maurin, Thomas; Guillaume, Carole; Canaan, Stéphane; Deregnaucourt, Christiane; Schrével, Joseph; Doglio, Alain; Gutiérrez, José María; Lazdunski, Michel; Gelb, Michael H.; Lambeau, Gérard

    2009-01-01

    Several snake venom secreted phospholipases A2 (sPLA2s) including OS2 exert a variety of pharmacological effects ranging from central neurotoxicity to anti-HIV activity by mechanisms that are not yet fully understood. To conclusively address the role of enzymatic activity and map the key structural elements of OS2 responsible for its pharmacological properties, we have prepared single point OS2 mutants at the catalytic site and large chimeras between OS2 and OS1, an homologous but non toxic sPLA2. Most importantly, we found that the enzymatic activity of the active site mutant H48Q is 500-fold lower than that of the wild-type protein, while central neurotoxicity is only 16-fold lower, providing convincing evidence that catalytic activity is at most a minor factor that determines central neurotoxicity. The chimera approach has identified the N-terminal region (residues 1–22) of OS2, but not the central one (residues 58–89), as crucial for both enzymatic activity and pharmacological effects. The C-terminal region of OS2 (residues 102–119) was found to be critical for enzymatic activity, but not for central neurotoxicity and anti-HIV activity, allowing us to further dissociate enzymatic activity and pharmacological effects. Finally, direct binding studies with the C-terminal chimera which poorly binds to phospholipids while it is still neurotoxic, led to the identification of a subset of brain N-type receptors which may be directly involved in central neurotoxicity. PMID:16669624

  19. Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives

    PubMed Central

    Volvert, Marie-Laure; Seyen, Sandrine; Piette, Marie; Evrard, Brigitte; Gangolf, Marjorie; Plumier, Jean-Christophe; Bettendorff, Lucien

    2008-01-01

    Background Lipid-soluble thiamine precursors have a much higher bioavailability than genuine thiamine and therefore are more suitable for therapeutic purposes. Benfotiamine (S-benzoylthiamine O-monophosphate), an amphiphilic S-acyl thiamine derivative, prevents the progression of diabetic complications, probably by increasing tissue levels of thiamine diphosphate and so enhancing transketolase activity. As the brain is particularly sensitive to thiamine deficiency, we wanted to test whether intracellular thiamine and thiamine phosphate levels are increased in the brain after oral benfotiamine administration. Results Benfotiamine that is practically insoluble in water, organic solvents or oil was solubilized in 200 mM hydroxypropyl-β-cyclodextrin and the mice received a single oral administration of 100 mg/kg. Though thiamine levels rapidly increased in blood and liver to reach a maximum after one or two hours, no significant increase was observed in the brain. When mice received a daily oral administration of benfotiamine for 14 days, thiamine derivatives were increased significantly in the liver but not in the brain, compared to control mice. In addition, incubation of cultured neuroblastoma cells with 10 μM benfotiamine did not lead to increased intracellular thiamine levels. Moreover, in thiamine-depleted neuroblastoma cells, intracellular thiamine contents increased more rapidly after addition of thiamine to the culture medium than after addition of benfotiamine for which a lag period was observed. Conclusion Our results show that, though benfotiamine strongly increases thiamine levels in blood and liver, it has no significant effect in the brain. This would explain why beneficial effects of benfotiamine have only been observed in peripheral tissues, while sulbutiamine, a lipid-soluble thiamine disulfide derivative, that increases thiamine derivatives in the brain as well as in cultured cells, acts as a central nervous system drug. We propose that benfotiamine only penetrates the cells after dephosphorylation by intestinal alkaline phosphatases. It then enters the bloodstream as S-benzoylthiamine that is converted to thiamine in erythrocytes and in the liver. Benfotiamine, an S-acyl derivative practically insoluble in organic solvents, should therefore be differentiated from truly lipid-soluble thiamine disulfide derivatives (allithiamine and the synthetic sulbutiamine and fursultiamine) with a different mechanism of absorption and different pharmacological properties. PMID:18549472

  20. Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives.

    PubMed

    Volvert, Marie-Laure; Seyen, Sandrine; Piette, Marie; Evrard, Brigitte; Gangolf, Marjorie; Plumier, Jean-Christophe; Bettendorff, Lucien

    2008-06-12

    Lipid-soluble thiamine precursors have a much higher bioavailability than genuine thiamine and therefore are more suitable for therapeutic purposes. Benfotiamine (S-benzoylthiamine O-monophosphate), an amphiphilic S-acyl thiamine derivative, prevents the progression of diabetic complications, probably by increasing tissue levels of thiamine diphosphate and so enhancing transketolase activity. As the brain is particularly sensitive to thiamine deficiency, we wanted to test whether intracellular thiamine and thiamine phosphate levels are increased in the brain after oral benfotiamine administration. Benfotiamine that is practically insoluble in water, organic solvents or oil was solubilized in 200 mM hydroxypropyl-beta-cyclodextrin and the mice received a single oral administration of 100 mg/kg. Though thiamine levels rapidly increased in blood and liver to reach a maximum after one or two hours, no significant increase was observed in the brain. When mice received a daily oral administration of benfotiamine for 14 days, thiamine derivatives were increased significantly in the liver but not in the brain, compared to control mice. In addition, incubation of cultured neuroblastoma cells with 10 muM benfotiamine did not lead to increased intracellular thiamine levels. Moreover, in thiamine-depleted neuroblastoma cells, intracellular thiamine contents increased more rapidly after addition of thiamine to the culture medium than after addition of benfotiamine for which a lag period was observed. Our results show that, though benfotiamine strongly increases thiamine levels in blood and liver, it has no significant effect in the brain. This would explain why beneficial effects of benfotiamine have only been observed in peripheral tissues, while sulbutiamine, a lipid-soluble thiamine disulfide derivative, that increases thiamine derivatives in the brain as well as in cultured cells, acts as a central nervous system drug. We propose that benfotiamine only penetrates the cells after dephosphorylation by intestinal alkaline phosphatases. It then enters the bloodstream as S-benzoylthiamine that is converted to thiamine in erythrocytes and in the liver. Benfotiamine, an S-acyl derivative practically insoluble in organic solvents, should therefore be differentiated from truly lipid-soluble thiamine disulfide derivatives (allithiamine and the synthetic sulbutiamine and fursultiamine) with a different mechanism of absorption and different pharmacological properties.

  1. A review of traditional pharmacological uses, phytochemistry, and pharmacological activities of Tribulus terrestris.

    PubMed

    Zhu, Wenyi; Du, Yijie; Meng, Hong; Dong, Yinmao; Li, Li

    2017-07-11

    Tribulus terrestris L. (TT) is an annual plant of the family Zygophyllaceae that has been used for generations to energize, vitalize, and improve sexual function and physical performance in men. The fruits and roots of TT have been used as a folk medicine for thousands of years in China, India, Sudan, and Pakistan. Numerous bioactive phytochemicals, such as saponins and flavonoids, have been isolated and identified from TT that are responsible alone or in combination for various pharmacological activities. This review provides a comprehensive overview of the traditional applications, phytochemistry, pharmacology and overuse of TT and provides evidence for better medicinal usage of TT.

  2. Marine pharmacology in 2005–6: Marine Compounds with Anthelmintic, Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiprotozoal, Antituberculosis, and Antiviral Activities; affecting the Cardiovascular, Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M. S.; Rodriguez, Abimael D.; Berlinck, Roberto G. S.; Hamann, Mark T.

    2009-01-01

    BACKGROUND The review presents the 2005–2006 peer-reviewed marine pharmacology literature, and follows a similar format to the authors’ 1998–2004 reviews. The preclinical pharmacology of chemically characterized marine compounds isolated from marine animals, algae, fungi and bacteria is systematically presented. RESULTS Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis and antiviral activities were reported for 78 marine chemicals. Additionally 47 marine compounds were reported to affect the cardiovascular, immune and nervous system as well as possess anti-inflammatory effects. Finally, 58 marine compounds were shown to bind to a variety of molecular targets, and thus could potentially contribute to several pharmacological classes. CONCLUSIONS Marine pharmacology research during 2005–2006 was truly global in nature, involving investigators from 32 countries, and the United States, and contributed 183 marine chemical leads to the research pipeline aimed at the discovery of novel therapeutic agents. SIGNIFICANCE Continued preclinical and clinical research with marine natural products demonstrating a broad spectrum of pharmacological activity and will probably result in novel therapeutic agents for the treatment of multiple disease categories. PMID:19303911

  3. Sonic hedgehog (Shh)/Gli modulates the spatial organization of neuroepithelial cell proliferation in the developing chick optic tectum.

    PubMed

    Rapacioli, Melina; Botelho, Joao; Cerda, Gustavo; Duarte, Santiago; Elliot, Matías; Palma, Verónica; Flores, Vladimir

    2012-10-02

    Sonic hedgehog (Shh)/Gli pathway plays an important regulatory role on the neuroepithelial cells (NEc) proliferation in the dorsal regions of the developing vertebrate Central Nervous System. The aim of this paper was to analyze the effect of the Shh/Gli signaling pathway activation on the proliferation dynamics and/or the spatial organization of the NEc proliferation activity during early stages of the developing chick optic tectum (OT). In ovo pharmacological gain and loss of hedgehog function approaches were complemented with in vivo electroporation experiments in order to create ectopic sources of either Shh or Gli activator (GliA) proteins in the OT. NEc proliferating activity was analyzed at ED 4/4.5 by recording the spatial co-ordinates of the entire population of mitotic NEc (mNEc) located along OT dorsal-ventral sections. Several space signals (numerical sequences) were derived from the mNEc spatial co-ordinate records and analyzed by different standardized non-linear methods of signal analysis. In ovo pharmacologic treatment with cyclopamine resulted in dramatic failure in the OT expansion while the agonist purmorphamine produced the opposite result, a huge expansion of the OT vesicle. Besides, GliA and Shh misexpressions interfere with the formation of the intertectal fissure located along the dorsal midline. This morphogenetic alteration is accompanied by an increase in the mNEc density. There is a gradient in the response of NEcs to Shh and GliA: the increase in mNEc density is maximal near the dorsal regions and decrease towards the OT-tegmental boundary. Biomathematical analyses of the signals derived from the mNEc records show that both Shh and GliA electroporations change the proliferation dynamics and the spatial organization of the mNEc as revealed by the changes in the scaling index estimated by these methods. The present results show that the Shh/Gli signaling pathway plays a critical role in the OT expansion and modelling. This effect is probably mediated by a differential mitogenic effect that increases the NEc proliferation and modulates the spatial organization of the NEc proliferation activity.

  4. Differential activation of Fyn kinase distinguishes saturated and unsaturated fats in mouse macrophages

    PubMed Central

    Tarabra, Elena; An Lee, Ting-Wen; Zammit, Victor A.; Vatish, Manu; Yamada, Eijiro; Pessin, Jeffrey E.; Bastie, Claire C.

    2017-01-01

    Diet-induced obesity is associated with increased adipose tissue activated macrophages. Yet, how macrophages integrate fatty acid (FA) signals remains unclear. We previously demonstrated that Fyn deficiency (fynKO) protects against high fat diet-induced adipose tissue macrophage accumulation. Herein, we show that inflammatory markers and reactive oxygen species are not induced in fynKO bone marrow-derived macrophages exposed to the saturated FA palmitate, suggesting that Fyn regulates macrophage function in response to FA signals. Palmitate activates Fyn and re-localizes Fyn into the nucleus of RAW264.7, J774 and wild-type bone marrow-derived macrophages. Similarly, Fyn activity is increased in cells of adipose tissue stromal vascular fraction of high fat-fed control mice, with Fyn protein being located in the nucleus of these cells. We demonstrate that Fyn modulates palmitate-dependent oxidative stress in macrophages. Moreover, Fyn catalytic activity is necessary for its nuclear re-localization and downstream effects, as Fyn pharmacological inhibition abolishes palmitate-induced Fyn nuclear redistribution and palmitate-dependent increase of oxidative stress markers. Importantly, mono-or polyunsaturated FAs do not activate Fyn, and fail to re-localize Fyn to the nucleus. Together these data demonstrate that macrophages integrate nutritional FA signals via a differential activation of Fyn that distinguishes, at least partly, the effects of saturated versus unsaturated fats. PMID:29156823

  5. Synthesis, structural characterization and density functional studies of ethyl 4-(biphenyl-4-yl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate A non-merohedral twinned structure

    NASA Astrophysics Data System (ADS)

    Yıdırım, Sema Öztürk; Büyükmumcu, Zeki; Butcher, Ray J.; Çetin, Gökalp; Şimşek, Rahime; Şafak, Cihat

    2018-07-01

    1,4-Dihydropyridine (1,4-DHP) derivatives have the reducing effect of extracellular Ca2+ ions influx on the L-type calcium channel. Because of this effect many 1,4-DHP derivatives are potent calcium channel blockers and antihypertensive agents. The biphenyl group is present in the structures of the most biologically active compounds and thus is an important group. By introducing this moiety into the structure of various compounds, active compounds are obtained. Thus, pharmacologically active structures can be condensed with the biphenyl structure to achieve novel biologically active compounds or compounds with increased activity. In this study, to achieve an active calcium channel blocker compound, the biphenyl group was introduced into the 1,4-DHP structure. The structure of the compound is proved by IR, 1H NMR, Mass spectroscopy, X-ray crystallography and elemental analysis. The cytotoxic activity assays have continued and positive results have been obtained. The phenyl rings [C16-C21 and C22-C27] make dihedral angles of 84.4 (1) and 87.5 (1)°, respectively, with the 1,4-dihydropyridine ring [N1/C1/C4-C9]. In the crystal, adjacent molecules are linked by Nsbnd H … O and Csbnd H … O hydrogen bonds into chains parallel to [010].

  6. Pharmacological and Nutritional Effects of Natural Coumarins and Their Structure-Activity Relationships.

    PubMed

    Zhu, Jing-Jing; Jiang, Jian-Guo

    2018-05-11

    Coumarins are fused benzene and pyrone ring systems with a wide spectrum of bioactivities including anti-tumor, anti-inflammation, antiviral and antibacterial effects. In this paper, the current development of coumarins-based drugs is introduced, and their structure-activity relationship is discussed by reviewing the relevant literatures published in the past twenty years. Coumarin molecules can be customized by the target site to prevent systemic side effects by virtue of structural modification. The ortho-phenolic hydroxyl on the benzene ring had remarkable antioxidant and anti-tumor activities. Coumarins with aryl groups at the C-4 position have good activities in anti-HIV, anti-tumor, anti-inflammation and analgesia. C-3 phenylcoumarins have strong anti-HIV and antioxidant effects. Tetracycline pyranocoumarins can significantly inhibit the HIV, osthol structural analogues have antimicrobial activity. Praeruptorin C and its derivatives play an important role in lowering blood pressure and dilating coronary arteries, and khellactone derivatives have significant inhibitory effects on AIDS, cancer and cardiovascular diseases. It is concluded that the specific site on the core structure of coumarin exhibits one or more activities due to the electronic or steric effects of the substituents. This review is designed to be conducive to rational design and development of more active and less toxic agents with a coumarin scaffold. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Studies in neuroendocrine pharmacology

    NASA Technical Reports Server (NTRS)

    Maickel, R. P.

    1976-01-01

    The expertise and facilities available within the Medical Sciences Program section on Pharmacology were used along with informational input from various NASA sources to study areas relevant to the manned space effort. Topics discussed include effects of drugs on deprivation-induced fluid consumption, brain biogenic amines, biochemical responses to stressful stimuli, biochemical and behavioral pharmacology of amphetamines, biochemical and pharmacological studies of analogues to biologically active indole compounds, chemical pharmacology: drug metabolism and disposition, toxicology, and chemical methodology. Appendices include a bibliography, and papers submitted for publication or already published.

  8. Identification of an antagonist that selectively blocks the activity of prostamides (prostaglandin-ethanolamides) in the feline iris.

    PubMed

    Woodward, D F; Krauss, A H; Wang, J W; Protzman, C E; Nieves, A L; Liang, Y; Donde, Y; Burk, R M; Landsverk, K; Struble, C

    2007-02-01

    The prostamides (prostaglandin-ethanolamides) and prostaglandin (PG) glyceryl esters are biosynthesized by COX-2 from the respective endocannabinoids anandamide and 2-arachidonyl glycerol. Agonist studies suggest that their pharmacologies are unique and unrelated to prostanoid receptors. This concept was further investigated using antagonists. The isolated feline iris was used as a key preparation, where prostanoid FP receptors and prostamide activity co-exist. Activity at human recombinant FP and other prostanoid receptors was determined using stable transfectants. In the feline iris, AGN 204396 produced a rightward shift of the dose-response curves for prostamide F2alpha and the prostamide F2alpha analog bimatoprost but did not block the effects of PGF2alpha and synthetic FP receptor agonists. Studies on human recombinant prostanoid receptors confirmed that AGN 204396 did not behave as a prostanoid FP receptor antagonist. AGN 204396 exhibited no antagonism at DP and EP1-4, but was a highly effective TP receptor antagonist. Contrary to expectation, the FP receptor antagonist AL-8810 efficaciously contracted the cat iris. AGN 204396 did not affect AL-8810 induced contractions, demonstrating that AL-8810 and AGN 204396 are pharmacologically distinct. Unlike AL-8810, the ethylamide derivate of AL-8810 was not an agonist. Al-8810 did not block prostamide F2alpha activity. Finally, AGN 204396 did not block PGE2-glyceryl ester activity. The ability of AGN 204396 to selectively block prostamide responses suggests the existence of prostamide sensitive receptors as entities distinct from receptors recognizing PGF2alpha and PGE2-glyceryl ester.

  9. Introduction to the Theme "New Methods and Novel Therapeutic Approaches in Pharmacology and Toxicology".

    PubMed

    Insel, Paul A; Amara, Susan G; Blaschke, Terrence F; Meyer, Urs A

    2017-01-06

    Major advances in scientific discovery and insights can result from the development and use of new techniques, as exemplified by the work of Solomon Snyder, who writes a prefatory article in this volume. The Editors have chosen "New Methods and Novel Therapeutic Approaches in Pharmacology and Toxicology" as the Theme for a number of articles in this volume. These include ones that review the development and use of new experimental tools and approaches (e.g., nanobodies and techniques to explore protein-protein interactions), new types of therapeutics (e.g., aptamers and antisense oligonucleotides), and systems pharmacology, which assembles (big) data derived from omics studies together with information regarding drugs and patients. The application of these new methods and therapeutic approaches has the potential to have a major impact on basic and clinical research in pharmacology and toxicology as well as on patient care.

  10. Glycogen Synthase Kinase-3 Inhibitors as Potent Therapeutic Agents for the Treatment of Parkinson Disease.

    PubMed Central

    2012-01-01

    Parkinson's disease (PD) is a devastating neurodegenerative disorder characterized by degeneration of the nigrostriatal dopaminergic pathway. Because the current therapies only lead to temporary, limited improvement and have severe side effects, new approaches to treat PD need to be developed. To discover new targets for potential therapeutic intervention, a chemical genetic approach involving the use of small molecules as pharmacological tools has been implemented. First, a screening of an in-house chemical library on a well-established cellular model of PD was done followed by a detailed pharmacological analysis of the hits. Here, we report the results found for the small heterocyclic derivative called SC001, which after different enzymatic assays was revealed to be a new glycogen synthase kinase-3 (GSK-3) inhibitor with IC50 = 3.38 ± 0.08 μM. To confirm that GSK-3 could be a good target for PD, the evaluation of a set of structurally diverse GSK-3 inhibitors as neuroprotective agents for PD was performed. Results show that inhibitors of GSK-3 have neuroprotective effects in vitro representing a new pharmacological option for the disease-modifying treatment of PD. Furthermore, we show that SC001 is able to cross the blood–brain barrier, protects dopaminergic neurons, and reduces microglia activation in in vivo models of Parkinson disease, being a good candidate for further drug development. PMID:23421686

  11. Farmer to Pharmacist: Curcumin as an Anti-invasive and Antimetastatic Agent for the Treatment of Cancer

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Debasish

    2014-12-01

    A huge number of compounds are widely distributed in nature and many of these possess medicinal/biological/pharmacological activity. Curcumin, a polyphenol derived from the rhizomes (underground stems) of Curcuma longa Linn (a member of the ginger family, commonly known as turmeric) is a culinary spice and therapeutic used in India for thousands of years to induce color and flavor in food as well as to treat a wide array of diseases. The origin of turmeric as spice and folklore medicine is so old that it is lost in legend. Curcumin has many beneficial pharmacological effects which includes, but are not limited with, antimicrobial, anti-inflammatory, antioxidant, antiviral, antiangiogenic, and antidiabetic activities. Most importantly curcumin possesses immense antitumorigenic effect. It prevents tumor invasion and metastasis in a number of animal models, including models of lung, liver, stomach, colon, breast, esophageal cancer etc. Invasion and metastasis are considered as one of the hallmarks in cancer biology. The pertinent recent applications of curcumin as anti-invasive and antimetastatic agent in in vitro and in vivo and ex vivo studies as well as associated molecular mechanisms have been discussed in this review. Curcumin has also demonstrated the ability to improve patient outcomes in clinical trials.

  12. Farmer to pharmacist: curcumin as an anti-invasive and antimetastatic agent for the treatment of cancer1

    PubMed Central

    Bandyopadhyay, Debasish

    2014-01-01

    A huge number of compounds are widely distributed in nature and many of these possess medicinal/biological/pharmacological activity. Curcumin, a polyphenol derived from the rhizomes (underground stems) of Curcuma longa Linn (a member of the ginger family, commonly known as turmeric) is a culinary spice and therapeutic used in India for thousands of years to induce color and flavor in food as well as to treat a wide array of diseases. The origin of turmeric as spice and folklore medicine is so old that it is lost in legend. Curcumin has many beneficial pharmacological effects which includes, but are not limited with, antimicrobial, anti-inflammatory, antioxidant, antiviral, antiangiogenic, neurodegenerative diseases such as Alzheimer disease, and antidiabetic activities. Most importantly curcumin possesses immense antitumorigenic effect. It prevents tumor invasion and metastasis in a number of animal models, including models of lung, liver, stomach, colon, breast, esophageal cancer etc. Invasion and metastasis are considered as one of the hallmarks in cancer biology. The pertinent recent applications of curcumin as anti-invasive and antimetastatic agent in in vitro and in vivo and ex vivo studies as well as associated molecular mechanisms have been discussed in this review. Curcumin has also demonstrated the ability to improve patient outcomes in clinical trials. PMID:25566531

  13. Genetic and pharmacological analysis identifies a physiological role for the AHR in epidermal differentiation

    PubMed Central

    van den Bogaard, Ellen; Podolsky, Michael; Smits, Jos; Cui, Xiao; John, Christian; Gowda, Krishne; Desai, Dhimant; Amin, Shantu; Schalkwijk, Joost; Perdew, Gary H.

    2015-01-01

    Stimulation of the aryl hydrocarbon receptor (AHR) by xenobiotics is known to affect epidermal differentiation and skin barrier formation. The physiological role of endogenous AHR signaling in keratinocyte differentiation is not known. We used murine and human skin models to address the hypothesis that AHR activation is required for normal keratinocyte differentiation. Using transcriptome analysis of Ahr-/- and Ahr+/+ murine keratinocytes, we found significant enrichment of differentially expressed genes linked to epidermal differentiation. Primary Ahr-/- keratinocytes showed a significant reduction in terminal differentiation gene and protein expression, similar to Ahr+/+ keratinocytes treated with AHR antagonists GNF351 and CH223191, or the selective AHR modulator (SAhRM), SGA360. In vitro keratinocyte differentiation led to increased AHR levels and subsequent nuclear translocation, followed by induced CYP1A1 gene expression. Monolayer cultured primary human keratinocytes treated with AHR antagonists also showed an impaired terminal differentiation program. Inactivation of AHR activity during human skin equivalent development severely impaired epidermal stratification, terminal differentiation protein expression and stratum corneum formation. As disturbed epidermal differentiation is a main feature of many skin diseases, pharmacological agents targeting AHR signaling or future identification of endogenous keratinocyte-derived AHR ligands should be considered as potential new drugs in dermatology. PMID:25602157

  14. Curcumin and its Derivatives: Their Application in Neuropharmacology and Neuroscience in the 21st Century

    PubMed Central

    Lee, Wing-Hin; Loo, Ching-Yee; Bebawy, Mary; Luk, Frederick; Mason, Rebecca S; Rohanizadeh, Ramin

    2013-01-01

    Curcumin (diferuloylmethane), a polyphenol extracted from the plant Curcuma longa, is widely used in Southeast Asia, China and India in food preparation and for medicinal purposes. Since the second half of the last century, this traditional medicine has attracted the attention of scientists from multiple disciplines to elucidate its pharmacological properties. Of significant interest is curcumin’s role to treat neurodegenerative diseases including Alzheimer’s disease (AD), and Parkinson’s disease (PD) and malignancy. These diseases all share an inflammatory basis, involving increased cellular reactive oxygen species (ROS) accumulation and oxidative damage to lipids, nucleic acids and proteins. The therapeutic benefits of curcumin for these neurodegenerative diseases appear multifactorial via regulation of transcription factors, cytokines and enzymes associated with (Nuclear factor kappa beta) NFκB activity. This review describes the historical use of curcumin in medicine, its chemistry, stability and biological activities, including curcumin's anti-cancer, anti-microbial, anti-oxidant, and anti-inflammatory properties. The review further discusses the pharmacology of curcumin and provides new perspectives on its therapeutic potential and limitations. Especially, the review focuses in detail on the effectiveness of curcumin and its mechanism of actions in treating neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases and brain malignancies. PMID:24381528

  15. Novel amidines and analogues as promising agents against intracellular parasites: a systematic review.

    PubMed

    Soeiro, M N C; Werbovetz, K; Boykin, D W; Wilson, W D; Wang, M Z; Hemphill, A

    2013-07-01

    Parasitic protozoa comprise diverse aetiological agents responsible for important diseases in humans and animals including sleeping sickness, Chagas disease, leishmaniasis, malaria, toxoplasmosis and others. They are major causes of mortality and morbidity in tropical and subtropical countries, and are also responsible for important economic losses. However, up to now, for most of these parasitic diseases, effective vaccines are lacking and the approved chemotherapeutic compounds present high toxicity, increasing resistance, limited efficacy and require long periods of treatment. Many of these parasitic illnesses predominantly affect low-income populations of developing countries for which new pharmaceutical alternatives are urgently needed. Thus, very low research funding is available. Amidine-containing compounds such as pentamidine are DNA minor groove binders with a broad spectrum of activities against human and veterinary pathogens. Due to their promising microbicidal activity but their rather poor bioavailability and high toxicity, many analogues and derivatives, including pro-drugs, have been synthesized and screened in vitro and in vivo in order to improve their selectivity and pharmacological properties. This review summarizes the knowledge on amidines and analogues with respect to their synthesis, pharmacological profile, mechanistic and biological effects upon a range of intracellular protozoan parasites. The bulk of these data may contribute to the future design and structure optimization of new aromatic dicationic compounds as novel antiparasitic drug candidates.

  16. Treating autoimmune disorders with venom-derived peptides.

    PubMed

    Shen, Bingzheng; Cao, Zhijian; Li, Wenxin; Sabatier, Jean-Marc; Wu, Yingliang

    2017-09-01

    The effective treatment of autoimmune diseases remains a challenge. Voltage-gated potassium Kv1.3 channels, which are expressed in lymphocytes, are a new therapeutic target for treating autoimmune disease. Consequently, Kv1.3 channel-inhibiting venom-derived peptides are a prospective resource for new drug discovery and clinical application. Area covered: Preclinical and clinical studies have produced a wealth of information on Kv1.3 channel-inhibiting venom-derived peptides, especially from venomous scorpions and sea anemones. This review highlights the advances in screening and design of these peptides with diverse structures and potencies. It focuses on representative strategies for improving peptide selectivity and discusses the preclinical research on those venom-derived peptides as well as their clinical developmental status. Expert opinion: Encouraging results indicate that peptides isolated from the venom of venomous animals are a large resource for discovering immunomodulators that act on Kv1.3 channels. Since the structural diversity of venom-derived peptides determines the variety of their pharmacological activities, the design and optimization of venom-peptides for improved Kv1.3 channel-specificity has been advanced through some representative strategies, such as peptide chemical modification, amino acid residue truncation and binding interface modulation. These advances should further accelerate research, development and the future clinical application of venom-derived peptides selectively targeting Kv1.3 channels.

  17. New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: synthesis, and in vitro antimalarial activity.

    PubMed

    Guillon, Jean; Moreau, Stéphane; Mouray, Elisabeth; Sinou, Véronique; Forfar, Isabelle; Fabre, Solene Belisle; Desplat, Vanessa; Millet, Pascal; Parzy, Daniel; Jarry, Christian; Grellier, Philippe

    2008-10-15

    Following our search for antimalarial compounds, novel series of ferrocenic pyrrolo[1,2-a]quinoxaline derivatives 1-2 were synthesized from various substituted nitroanilines and tested for in vitro activity upon the erythrocytic development of Plasmodiumfalciparum strains with different chloroquine-resistance status. The pyrrolo[1,2-a]quinoxalines 1 were prepared in 6-8 steps through a regioselective palladium-catalyzed monoamination by coupling 4-chloropyrrolo[1,2-a]quinoxalines with 1,3-bis(aminopropyl)piperazine or -methylamine using Xantphos as the ligand. The ferrocenic bispyrrolo[1,2-a]quinoxalines 2 were prepared by reductive amination of previously described bispyrrolo[1,2-a]quinoxalines 9 with ferrocene-carboxaldehyde, by treatment with NaHB(OAc)(3). The best results were observed with ferrocenic pyrrolo[1,2-a]quinoxalines linked by a bis(3-aminopropyl)piperazine. Moreover, it was observed that a methoxy group on the pyrrolo[1,2-a]quinoxaline nucleus and no substitution on the terminal N-ferrocenylmethylamine function enhanced the pharmacological activity. Selected compounds 1b, 1f-h, 1l and 2a were tested for their ability to inhibit beta-haematin formation, the synthetic equivalent of hemozoin, by using the HPIA (heme polymerization inhibitory activity) assay. Of the tested compounds, only 2a showed a beta-haematin formation inhibition, but no inhibition of haem polymerization was observed with the other selected ferrocenic monopyrrolo[1,2-a]quinoxaline derivatives 1b, 1f-h and 1l, as the IC(50) values were superior to 10 equivalents.

  18. Immunomodulatory Activities of the Benzoxathiole Derivative BOT-4-One Ameliorate Pathogenic Skin Inflammation in Mice.

    PubMed

    Lee, Hyun Gyu; Cho, Nam-Chul; Jeong, Ae Jin; Li, Yu-Chen; Rhie, Sung-Ja; Choi, Jung Sook; Lee, Kwang-Ho; Kim, Youngsoo; Kim, Yong-Nyun; Kim, Myoung-Hwan; Pae, Ae Nim; Ye, Sang-Kyu; Kim, Byung-Hak

    2015-09-30

    T cell-mediated immune responses play an important role in body protection. However, aberrantly activated immune responses are responsible for inflammatory and autoimmune diseases. The regulation of pathological immune responses may be a potential therapeutic strategy for the treatment of these diseases. Despite multiple pharmacological properties of benzoxathiole derivatives have been defined, the molecular mechanisms underlying these properties remain to be clarified. Here, we demonstrated the benzoxathiole derivative 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo[1,3]oxathiol-4-one (BOT-4-one) regulated immune responses and ameliorated experimentally induced inflammatory skin diseases both in vitro and in vivo. BOT-4-one inhibited the differentiation of CD4 + T-cell subsets by regulating the expression and production of T cell lineage-specific master transcription factors and cytokines and activating the signal transducer and activator of transcription (STAT) proteins. In addition, BOT-4-one inhibited T-cell receptor (TCR)-mediated Akt and nuclear factor-kappaB (NF-κB) signaling. Topical application of BOT-4-one ameliorated experimentally induced inflammatory skin diseases in mice models such as TNCB-induced contact and atopic dermatitis and IL-23-induced psoriasis-like skin inflammation. Our study demonstrated that BOT-4-one ameliorates inflammatory skin diseases by suppressing the pathogenic CD4 + T cell differentiation and the overall immune responses.Journal of Investigative Dermatology accepted article preview online, 30 September 2015. doi:10.1038/jid.2015.384.

  19. Polymeric drugs: Advances in the development of pharmacologically active polymers

    PubMed Central

    Li, Jing; Yu, Fei; Chen, Yi; Oupický, David

    2015-01-01

    Synthetic polymers play a critical role in pharmaceutical discovery and development. Current research and applications of pharmaceutical polymers are mainly focused on their functions as excipients and inert carriers of other pharmacologically active agents. This review article surveys recent advances in alternative pharmaceutical use of polymers as pharmacologically active agents known as polymeric drugs. Emphasis is placed on the benefits of polymeric drugs that are associated with their macromolecular character and their ability to explore biologically relevant multivalency processes. We discuss the main therapeutic uses of polymeric drugs as sequestrants, antimicrobials, antivirals, and anticancer and anti-inflammatory agents. PMID:26410809

  20. Ginseng leaf-stem: bioactive constituents and pharmacological functions

    PubMed Central

    Wang, Hongwei; Peng, Dacheng; Xie, Jingtian

    2009-01-01

    Ginseng root is used more often than other parts such as leaf stem although extracts from ginseng leaf-stem also contain similar active ingredients with pharmacological functions. Ginseng's leaf-stems are more readily available at a lower cost than its root. This article reviews the pharmacological effects of ginseng leaf-stem on some diseases and adverse effects due to excessive consumption. Ginseng leaf-stem extract contains numerous active ingredients, such as ginsenosides, polysaccharides, triterpenoids, flavonoids, volatile oils, polyacetylenic alcohols, peptides, amino acids and fatty acids. The extract contains larger amounts of the same active ingredients than the root. These active ingredients produce multifaceted pharmacological effects on the central nervous system, as well as on the cardiovascular, reproductive and metabolic systems. Ginseng leaf-stem extract also has anti-fatigue, anti-hyperglycemic, anti-obesity, anti-cancer, anti-oxidant and anti-aging properties. In normal use, ginseng leaf-stem extract is quite safe; adverse effects occur only when it is over dosed or is of poor quality. Extracts from ginseng root and leaf-stem have similar multifaceted pharmacological activities (for example central nervous and cardiovascular systems). In terms of costs and source availability, however, ginseng leaf-stem has advantages over its root. Further research will facilitate a wider use of ginseng leaf-stem. PMID:19849852

  1. Pharmacologic Profile of Naloxegol, a Peripherally Acting µ-Opioid Receptor Antagonist, for the Treatment of Opioid-Induced Constipation.

    PubMed

    Floettmann, Eike; Bui, Khanh; Sostek, Mark; Payza, Kemal; Eldon, Michael

    2017-05-01

    Opioid-induced constipation (OIC) is a common side effect of opioid pharmacotherapy for the management of pain because opioid agonists bind to µ -opioid receptors in the enteric nervous system (ENS). Naloxegol, a polyethylene glycol derivative of naloxol, which is a derivative of naloxone and a peripherally acting µ -opioid receptor antagonist, targets the physiologic mechanisms that cause OIC. Pharmacologic measures of opioid activity and pharmacokinetic measures of central nervous system (CNS) penetration were employed to characterize the mechanism of action of naloxegol. At the human µ -opioid receptor in vitro, naloxegol was a potent inhibitor of binding ( K i = 7.42 nM) and a neutral competitive antagonist (p A 2 - 7.95); agonist effects were <10% up to 30 μ M and identical to those of naloxone. The oral doses achieving 50% of the maximal effect in the rat for antagonism of morphine-induced inhibition of gastrointestinal transit and morphine-induced antinociception in the hot plate assay were 23.1 and 55.4 mg/kg for naloxegol and 0.69 and 1.14 mg/kg by for naloxone, respectively. In the human colon adenocarcinoma cell transport assay, naloxegol was a substrate for the P-glycoprotein transporter, with low apparent permeability in the apical to basolateral direction, and penetrated the CNS 15-fold slower than naloxone in a rat brain perfusion model. Naloxegol-derived radioactivity was poorly distributed throughout the rat CNS and was eliminated from most tissues within 24 hours. These findings corroborate phase 3 clinical studies demonstrating that naloxegol relieves OIC-associated symptoms in patients with chronic noncancer pain by antagonizing the µ -opioid receptor in the ENS while preserving CNS-mediated analgesia. Copyright © 2017 The Author(s).

  2. Pharmacologic Profile of Naloxegol, a Peripherally Acting µ-Opioid Receptor Antagonist, for the Treatment of Opioid-Induced Constipation

    PubMed Central

    Floettmann, Eike; Sostek, Mark; Payza, Kemal; Eldon, Michael

    2017-01-01

    Opioid-induced constipation (OIC) is a common side effect of opioid pharmacotherapy for the management of pain because opioid agonists bind to µ-opioid receptors in the enteric nervous system (ENS). Naloxegol, a polyethylene glycol derivative of naloxol, which is a derivative of naloxone and a peripherally acting µ-opioid receptor antagonist, targets the physiologic mechanisms that cause OIC. Pharmacologic measures of opioid activity and pharmacokinetic measures of central nervous system (CNS) penetration were employed to characterize the mechanism of action of naloxegol. At the human µ-opioid receptor in vitro, naloxegol was a potent inhibitor of binding (Ki = 7.42 nM) and a neutral competitive antagonist (pA2 - 7.95); agonist effects were <10% up to 30 μM and identical to those of naloxone. The oral doses achieving 50% of the maximal effect in the rat for antagonism of morphine-induced inhibition of gastrointestinal transit and morphine-induced antinociception in the hot plate assay were 23.1 and 55.4 mg/kg for naloxegol and 0.69 and 1.14 mg/kg by for naloxone, respectively. In the human colon adenocarcinoma cell transport assay, naloxegol was a substrate for the P-glycoprotein transporter, with low apparent permeability in the apical to basolateral direction, and penetrated the CNS 15-fold slower than naloxone in a rat brain perfusion model. Naloxegol-derived radioactivity was poorly distributed throughout the rat CNS and was eliminated from most tissues within 24 hours. These findings corroborate phase 3 clinical studies demonstrating that naloxegol relieves OIC-associated symptoms in patients with chronic noncancer pain by antagonizing the µ-opioid receptor in the ENS while preserving CNS-mediated analgesia. PMID:28336575

  3. Mangiferin: A review of sources and interventions for biological activities.

    PubMed

    Jyotshna; Khare, Puja; Shanker, Karuna

    2016-09-10

    Xanthones are naturally synthesized in various biological systems such as plants, lichens, and fungi and are stored as by-products. In addition to taxonomic significance they are also important in the treatment/management of a number of human disorders. Mangiferin and its derived lead molecule have never qualified for use in a clinical trial despite a number of pharmacological studies that have proven its effectiveness as an antioxidant, analgesic, antidiabetic, antiproliferative, chemopreventive, radioprotective, cardiotonic, immunomodulatory, and diuretic. For centuries in the traditional practice of medicine in India and China the use of plants containing mangiferin has been a major component for disease management and health benefits. While it resembles biflavones, the C-glucosyl xanthone (mangiferin) has great nutritional and medicinal significance due to its unique structural characteristics. The C-glycoside link of mangiferin, mimicked to nucleophilic phloroglucinol substitution, facilitates its bioavailability and also is responsible for its antioxidant properties. Researchers have also utilized its xanthonic framework for both pharmacophoric backbone and for its use as a substitution group for synthesis and prospects. To date more than 500 derivatives using about 80 reactions have been generated. These reactions include: lipid peroxidation, phosphorylation, glycosylation, methylation, fermentation, deglycosylation, hydrolysis, polymerization, sulfation, acylation, etherification, peroxidation among others. Multiple studies on efficacy and safety have increased the global demand of mangiferin-based food supplements. This review highlights the distribution of mangiferin in plants, its isolation, and assay methods applicable to different sample matrices. In addition we include updates on various strategies and derived products intended for designated pharmacological actions. © 2016 BioFactors, 42(5):504-514, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  4. Anti-CD22 and anti-CD79b antibody-drug conjugates preferentially target proliferating B cells.

    PubMed

    Fuh, Franklin K; Looney, Caroline; Li, Dongwei; Poon, Kirsten A; Dere, Randall C; Danilenko, Dimitry M; McBride, Jacqueline; Reed, Chae; Chung, Shan; Zheng, Bing; Mathews, William Rodney; Polson, Andrew; Prabhu, Saileta; Williams, Marna

    2017-04-01

    CD22 and CD79b are cell-surface receptors expressed on B-cell-derived malignancies such as non-Hodgkin's lymphoma (NHL). An anti-mitotic agent, monomethyl auristatin E, was conjugated to anti-CD22 and anti-CD79b antibodies to develop target-specific therapies for NHL. The mechanism of action (MOA) and pharmacological and pharmacokinetic (PK) profiles of these antibody-drug conjugates (ADCs) were investigated in cynomolgus monkeys. Animals were administered anti-CD22 or anti-CD79b ADCs, respective unconjugated antibodies or vehicle. Pharmacodynamic effects on total and proliferating B cells and serum PK were then assessed. Antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) of the ADCs were evaluated in vitro. Depletion of B cells was observed after administration of either ADC or the respective unconjugated antibodies. An extended duration of depletion was observed in animals administered ADCs. Similarly, preferential depletion of proliferating B cells in blood and germinal centre B cells in spleen were only observed in animals administered ADCs. Serum PK profiles of ADCs and respective unconjugated antibodies were comparable. In vitro, anti-human CD22 and anti-human CD79b antibodies showed no or only moderate ADCC activity, respectively; neither antibody had CDC activity. The findings support the proposed MOA: initial depletion of total B cells by antibody-mediated opsonization, followed by preferential, sustained depletion of proliferating B cells by the auristatin conjugate due to its anti-mitotic action. Delivering potent anti-mitotic agents to B cells via the specificity of monoclonal antibodies provides a means to eliminate pathogenic B cells in NHL with improved risk-benefit profiles over traditional chemotherapeutics. © 2016 Genentech. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  5. The pharmaceutical industry and the German National Socialist Regime: I.G. Farben and pharmacological research.

    PubMed

    López-Muñoz, F; García-García, P; Alamo, C

    2009-02-01

    Before the National Socialist party came to power, the German pharmaceutical industry constituted an international reference as far as the development of new medicines was concerned, having been responsible for synthetic analgesics (phenacetin, phenazones, acetylsalicylic acid), arsphenamine, barbiturates and sulfonamides. The year 1925 saw the founding of I.G. Farben (Interessen-Gemeinschaft Farbenindustrie AG), a conglomerate of companies that would monopolize the country's chemical production and come to own all its major pharmaceutical industries. During the World War II, I.G. Farben participated in numerous operations associated with the criminal activities of the Nazi executive, including the use of slave labour in plants built close to concentration camps, such as that at Auschwitz. With regard to medical and pharmacological research projects, I.G. Farben became involved in experimental programmes using patients from the Nazi regime's euthanasia programmes and healthy subjects recruited without their consent from concentration camps, on whom various pharmacological substances were tested, including sulfamide and arsenical derivatives and other preparations whose composition is not precisely known (B-1012, B-1034, 3382 or Rutenol, 3582 or Acridine), generally in relation to the treatment of infectious diseases, such as typhus, erysipelas, scarlet fever or paratyphoid diarrhoea. Furthermore, I.G. Farben played a decisive role in the German army's chemical warfare programme, contributing to the development of the first two neurotoxic substances, later known as 'nerve agents', tabun and sarin. Some of these activities came to light as a result of the one the famous Nuremberg Trials in 1947, which saw 24 executives and scientists from I.G. Farben brought to justice for, among other offences, the use of slave labour in the concentration camps and forced experimentation with drugs on prisoners.

  6. Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on "tetrad", sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies.

    PubMed

    Canazza, Isabella; Ossato, Andrea; Trapella, Claudio; Fantinati, Anna; De Luca, Maria Antonietta; Margiani, Giulia; Vincenzi, Fabrizio; Rimondo, Claudia; Di Rosa, Fabiana; Gregori, Adolfo; Varani, Katia; Borea, Pier Andrea; Serpelloni, Giovanni; Marti, Matteo

    2016-10-01

    AKB48 and its fluorinate derivate 5F-AKB48 are two novel synthetic cannabinoids belonging to a structural class with an indazole core structure. They are marketed as incense, herbal preparations or chemical supply for their psychoactive Cannabis-like effects. The present study was aimed at investigating the in vitro and in vivo pharmacological activity of AKB48 and 5F-AKB48 in male CD-1 mice and comparing their in vivo effects with those caused by the administration of Δ 9 -THC and JWH-018. In vitro competition binding experiments performed on mouse and human CB 1 and CB 2 receptors revealed a nanomolar affinity and potency of the AKB48 and 5F-AKB48. In vivo studies showed that AKB48 and 5F-AKB48, induced hypothermia, increased pain threshold to both noxious mechanical and thermal stimuli, caused catalepsy, reduced motor activity, impaired sensorimotor responses (visual, acoustic and tactile), caused seizures, myoclonia, hyperreflexia and promoted aggressiveness in mice. Moreover, microdialysis study in freely moving mice showed that systemic administration of AKB48 and 5F-AKB48 stimulated dopamine release in the nucleus accumbens. Behavioural, neurological and neurochemical effects were fully prevented by the selective CB 1 receptor antagonist/inverse agonist AM 251. For the first time, the present study demonstrates the overall pharmacological effects induced by the administration of AKB48 and 5F-AKB48 in mice and suggests that the fluorination can increase the power and/or effectiveness of SCBs. Furthermore, this study outlines the potential detrimental effects of SCBs on human health.

  7. KIRKIA ACUMINATA OLIV.: A REVIEW OF ITS ETHNOBOTANY AND PHARMACOLOGY

    PubMed Central

    Maroyi, Alfred

    2017-01-01

    Background: Local communities in sub-Saharan Africa have a long history of medicinal plant usage. Like in other parts of the developing world, rural and urban communities are still dependent on herbal medicines for primary health care, and the use of herbal medicines is still an integral part of their daily life and socio-cultural life style. The objective of this paper is to summarise information on the ethnobotany and pharmacology of Kirkia acuminata Oliv. throughout its distributional range. Materials and Methods: The information documented in this article is derived from books, theses, scientific journals and reports obtained from library collections, Scopus, Pubmed, MEDLINE, ISI Web of Science, Google Scholar and Science Direct. Results: Kirkia acuminata is the most known and widely distributed Kirkia species in the genus and is one of the most popular and promising plant resources due to its several beneficial uses. Kirkia acuminata is used to treat abdominal pains, backache, cholera, constipation, cough, diarrhea, dysentery, snake bites, toothache and wounds. Other applications include its use as charcoal; hedge, ornamental or shade; stock feed, timber and source of water during drought periods. Preliminary phytochemical assessment of roots and stem bark of K. acuminata showed presence of lignans, neo-lignans, nor-carotinoids and other compounds. The extracts of K. acuminata exhibited antibacterial and antimycobacterial activities. These phytochemical compounds may be responsible for the medicinal uses and biological activities demonstrated by K. acuminata. Conclusion: Detailed research is required aimed at exploring mode of action of bioactive compounds of Kirkia acuminata that are responsible for the documented pharmacological effects. Kirkia acuminata is an important plant species that has potential to contribute to the primary health care and livelihood improvement of local communities in the geographical areas where it is indigenous and found in abundance. PMID:28573238

  8. Curcumin: getting back to the roots.

    PubMed

    Shishodia, Shishir; Sethi, Gautam; Aggarwal, Bharat B

    2005-11-01

    The use of turmeric, derived from the root of the plant Curcuma longa, for treatment of different inflammatory diseases has been described in Ayurveda and in traditional Chinese medicine for thousands of years. The active component of turmeric responsible for this activity, curcumin, was identified almost two centuries ago. Modern science has revealed that curcumin mediates its effects by modulation of several important molecular targets, including transcription factors (e.g., NF-kappaB, AP-1, Egr-1, beta-catenin, and PPAR-gamma), enzymes (e.g., COX2, 5-LOX, iNOS, and hemeoxygenase-1), cell cycle proteins (e.g., cyclin D1 and p21), cytokines (e.g., TNF, IL-1, IL-6, and chemokines), receptors (e.g., EGFR and HER2), and cell surface adhesion molecules. Because it can modulate the expression of these targets, curcumin is now being used to treat cancer, arthritis, diabetes, Crohn's disease, cardiovascular diseases, osteoporosis, Alzheimer's disease, psoriasis, and other pathologies. Interestingly, 6-gingerol, a natural analog of curcumin derived from the root of ginger (Zingiber officinalis), exhibits a biologic activity profile similar to that of curcumin. The efficacy, pharmacologic safety, and cost effectiveness of curcuminoids prompt us to "get back to our roots."

  9. Model Analytical Development for Physical, Chemical, and Biological Characterization of Momordica charantia Vegetable Drug

    PubMed Central

    Guimarães, Geovani Pereira; Santos, Ravely Lucena; Júnior, Fernando José de Lima Ramos; da Silva, Karla Monik Alves; de Souza, Fabio Santos

    2016-01-01

    Momordica charantia is a species cultivated throughout the world and widely used in folk medicine, and its medicinal benefits are well documented, especially its pharmacological properties, including antimicrobial activities. Analytical methods have been used to aid in the characterization of compounds derived from plant drug extracts and their products. This paper developed a methodological model to evaluate the integrity of the vegetable drug M. charantia in different particle sizes, using different analytical methods. M. charantia was collected in the semiarid region of Paraíba, Brazil. The herbal medicine raw material derived from the leaves and fruits in different particle sizes was analyzed using thermoanalytical techniques as thermogravimetry (TG) and differential thermal analysis (DTA), pyrolysis coupled to gas chromatography/mass spectrometry (PYR-GC/MS), and nuclear magnetic resonance (1H NMR), in addition to the determination of antimicrobial activity. The different particle surface area among the samples was differentiated by the techniques. DTA and TG were used for assessing thermal and kinetic parameters and PYR-GC/MS was used for degradation products chromatographic identification through the pyrograms. The infusions obtained from the fruit and leaves of Momordica charantia presented antimicrobial activity. PMID:27579215

  10. Synthesis and Biological Evaluation of Substituted N-[3-(1H-Pyrrol-1-yl)methyl]-1,2,5,6-tetrahydropyridin-1-yl]benzamide/ benzene Sulfonamides as Anti-Inflammatory Agents

    PubMed Central

    Gangapuram, Madhavi; Mazzio, Elizabeth; Eyunni, Suresh; Soliman, Karam F. A.; Redda, Kinfe K.

    2014-01-01

    The pharmacological activities of tetrahydropyridine (THP) derivatives are dependent on the substituent ring moiety. In this study, we investigate the anti-inflammatory activities of 12 newly synthesized substituted N-[3-(1H-pyrrol-1-yl)methyl]-1,2,5,6-tetrahydrobenzamide/benzene sulfonamides (9a–l) in murine BV-2 microglial cells. All compounds were initially screened for attenuation of nitric oxide (NO) production in lipopolysaccharide (LPS) (1 μg/mL)-activated microglial cells. The data show that only SO2-substituted THPs were effective at sub-lethal concentrations (IC50 values of 12.92 μM (9i), 14.64 μM (9j), 19.63 μM (9k)) relative to L-N6-(1-iminoethyl)lysine positive control (IC50 = 3.1 μM). The most potent SO2-substituted compound (9i) also blocked the LPS-inducible nitric oxide synthase (iNOS) and attenuated the release of several cytokines including IL-1α, IL-10, and IL-6. These findings establish the moderate immunomodulating effects of SO2-substituted THP derivatives. PMID:24585402

  11. Rehmannia glutinosa: review of botany, chemistry and pharmacology.

    PubMed

    Zhang, Ru-Xue; Li, Mao-Xing; Jia, Zheng-Ping

    2008-05-08

    Rehmannia glutinosa, a widely used traditional Chinese herb, belongs to the family of Scrophulariaceae, and is taken to nourish Yin and invigorate the kidney in traditional Chinese medicine (TCM) and has a very high medicinal value. In recent decades, a great number of chemical and pharmacological studies have been done on Rehmannia glutinosa. More than 70 compounds including iridoids, saccharides, amino acid, inorganic ions, as well as other trace elements have been found in the herb. Studies show that Rehmannia glutinosa and its active principles possess wide pharmacological actions on the blood system, immune system, endocrine system, cardiovascular system and the nervous system. Currently, the effective monomeric compounds or active parts have been screened for the pharmacological activity of Rehmannia glutinosa and the highest quality scientific data is delivered to support the further application and exploitation for new drug development.

  12. Neural Differentiation of Human Pluripotent Stem Cells for Nontherapeutic Applications: Toxicology, Pharmacology, and In Vitro Disease Modeling.

    PubMed

    Yap, May Shin; Nathan, Kavitha R; Yeo, Yin; Lim, Lee Wei; Poh, Chit Laa; Richards, Mark; Lim, Wei Ling; Othman, Iekhsan; Heng, Boon Chin

    2015-01-01

    Human pluripotent stem cells (hPSCs) derived from either blastocyst stage embryos (hESCs) or reprogrammed somatic cells (iPSCs) can provide an abundant source of human neuronal lineages that were previously sourced from human cadavers, abortuses, and discarded surgical waste. In addition to the well-known potential therapeutic application of these cells in regenerative medicine, these are also various promising nontherapeutic applications in toxicological and pharmacological screening of neuroactive compounds, as well as for in vitro modeling of neurodegenerative and neurodevelopmental disorders. Compared to alternative research models based on laboratory animals and immortalized cancer-derived human neural cell lines, neuronal cells differentiated from hPSCs possess the advantages of species specificity together with genetic and physiological normality, which could more closely recapitulate in vivo conditions within the human central nervous system. This review critically examines the various potential nontherapeutic applications of hPSC-derived neuronal lineages and gives a brief overview of differentiation protocols utilized to generate these cells from hESCs and iPSCs.

  13. The antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo

    NASA Astrophysics Data System (ADS)

    Shi, Dayong; Li, Jing; Guo, Shuju; Su, Hua; Fan, Xiao

    2009-05-01

    To investigate the antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo, six bromophenol derivatives 6-(2,3-dibromo-4,5-dihydroxybenzyl)-2,3-dibromo-4,5-dihydroxy benzyl methyl ether (1), (+)-3-(2,3-dibromo-4,5-dihydroxyphenyl)-4-bromo-5,6-dihydroxy-1,3-dihydroisobenzofuran (2), 3-bromo-4-(2,3-dibromo-4,5-dihydroxybenzyl)-5-methoxymethyl-pyrocatechol (3), 2,2',3,3'-tetrabromo-4,4',5,5'-tetrahydroxy-diphenylmethane (4), bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (5), 2,2',3-tribromo-3',4,4',5-tetrahydroxy-6'-ethyloxymethyldiphenylmethane (6) were isolated from brown alga Leathesia nana, and their cytotoxicity were tested by MTT assays in human cancer cell lines A549, BGC-823, MCF-7, B16-BL6, HT-1080, A2780, Bel7402 and HCT-8. Their inhibitory activity against protein tyrosine kinase (PTK) with over-expression of c-kit was analyzed also by ELISA. The antitumor activity of ethanolic extraction of Leathesia nana (EELN) was evaluated on S180-bearing mice. All compounds showed very potent cytotoxicity against all of the eight cancer cell lines with IC50 below 10 μg/mL. In PTK inhibition study, all bromophenol derivatives showed moderate inhibitory activity and compounds 2, 5 and 6 showed significant bioactivity with the inhibition ratio of 77.5%, 80.1% and 71.4%, respectively. Pharmacological studies reveal that EELN could inhibit the growth of Sarcoma 180 tumor and increase the indices of thymus and spleen to improve the immune system remarkably in vivo. Results indicated that the bromophenol derivatives and EELN can be used as potent antitumor agents for PTK over-expression of c-kit and considered in a new therapeutic strategy for treatment of cancer.

  14. Preparation of four 1,4-dihydropyridine derivatives (DHPs) labeled with carbon-14.

    PubMed

    Ahmadi Faghih, Mohammad Amin; Moslemin, Mohammad Hossein; Shirvani, Gholamhossein; Javaheri, Mohsen

    2018-05-23

    The importance of DHPs compounds and the need for examining the mechanism of their effect, mandated us to synthesize a number of carbon-14 labeled 1,4-dihydropyridine derivatives for pharmacological studies. Simple preparation and suitable radiochemical yield were advantages of this preparation. This article is protected by copyright. All rights reserved.

  15. Pharmacological Activation of Peroxisome Proliferator-Activated Receptor {Delta} Increases Sphingomyelin Synthase Activity in THP-1 Macrophage-Derived Foam Cell.

    PubMed

    Mou, Dongsheng; Yang, Hua; Qu, Changhua; Chen, Juan; Zhang, Chaogui

    2016-08-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors, which mediate glucose and lipid homeostasis by regulating the expression of a large number of transcription factors. Sphingomyelin synthase (SMS) is a key enzyme in the synthesis of sphingomyelin (SM), and its expression and activity have been reported to be associated with atherosclerosis (AS). Although there have been many functional PPAR and SMS studies on atherosclerosis in recent years, few have investigated the correlation between the activation of PPARδ and the activity of SMS. In his study, macrophage-induced foam cells were utilized to model important pathological changes that occur in AS. The influence of PPARδ agonism by GW501516 on SMS and its product molecule SM were measured. Results indicated that the activation of PPARδ was correlated in a positive manner with the activity of SMS2, and the content of SM was dose dependently increased by GW501516. Together, this study represents the first to suggest that PPARδ activation may be a potential risk of AS through enhancing activity of SMS2.

  16. Single unit approaches to human vision and memory.

    PubMed

    Kreiman, Gabriel

    2007-08-01

    Research on the visual system focuses on using electrophysiology, pharmacology and other invasive tools in animal models. Non-invasive tools such as scalp electroencephalography and imaging allow examining humans but show a much lower spatial and/or temporal resolution. Under special clinical conditions, it is possible to monitor single-unit activity in humans when invasive procedures are required due to particular pathological conditions including epilepsy and Parkinson's disease. We review our knowledge about the visual system and visual memories in the human brain at the single neuron level. The properties of the human brain seem to be broadly compatible with the knowledge derived from animal models. The possibility of examining high-resolution brain activity in conscious human subjects allows investigators to ask novel questions that are challenging to address in animal models.

  17. Substituted N-(Biphenyl-4′-yl)methyl (R)-2-Acetamido-3-methoxypropionamides: Potent Anticonvulsants That Affect Frequency (Use) Dependence and Slow Inactivation of Sodium Channels

    PubMed Central

    2015-01-01

    We prepared 13 derivatives of N-(biphenyl-4′-yl)methyl (R)-2-acetamido-3-methoxypropionamide that differed in type and placement of a R-substituent in the terminal aryl unit. We demonstrated that the R-substituent impacted the compound’s whole animal and cellular pharmacological activities. In rodents, select compounds exhibited excellent anticonvulsant activities and protective indices (PI = TD50/ED50) that compared favorably with clinical antiseizure drugs. Compounds with a polar, aprotic R-substituent potently promoted Na+ channel slow inactivation and displayed frequency (use) inhibition of Na+ currents at low micromolar concentrations. The possible advantage of affecting these two pathways to decrease neurological hyperexcitability is discussed. PMID:25004277

  18. A Phenotypic Screen in Zebrafish Identifies a Novel Small-Molecule Inducer of Ectopic Tail Formation Suggestive of Alterations in Non-Canonical Wnt/PCP Signaling

    PubMed Central

    Gebruers, Evelien; Cordero-Maldonado, María Lorena; Gray, Alexander I.; Clements, Carol; Harvey, Alan L.; Edrada-Ebel, Ruangelie; de Witte, Peter A. M.; Crawford, Alexander D.; Esguerra, Camila V.

    2013-01-01

    Zebrafish have recently emerged as an attractive model for the in vivo bioassay-guided isolation and characterization of pharmacologically active small molecules of natural origin. We carried out a zebrafish-based phenotypic screen of over 3000 plant-derived secondary metabolite extracts with the goal of identifying novel small-molecule modulators of the BMP and Wnt signaling pathways. One of the bioactive plant extracts identified in this screen – Jasminum gilgianum, an Oleaceae species native to Papua New Guinea – induced ectopic tails during zebrafish embryonic development. As ectopic tail formation occurs when BMP or non-canonical Wnt signaling is inhibited during the tail protrusion process, we suspected a constituent of this extract to act as a modulator of these pathways. A bioassay-guided isolation was carried out on the basis of this zebrafish phenotype, identifying para-coumaric acid methyl ester (pCAME) as the active compound. We then performed an in-depth phenotypic analysis of pCAME-treated zebrafish embryos, including a tissue-specific marker analysis of the secondary tails. We found pCAME to synergize with the BMP-inhibitors dorsomorphin and LDN-193189 in inducing ectopic tails, and causing convergence-extension defects in compound-treated embryos. These results indicate that pCAME may interfere with non-canonical Wnt signaling. Inhibition of Jnk, a downstream target of Wnt/PCP signaling (via morpholino antisense knockdown and pharmacological inhibition with the kinase inhibitor SP600125) phenocopied pCAME-treated embryos. However, immunoblotting experiments revealed pCAME to not directly inhibit Jnk-mediated phosphorylation of c-Jun, suggesting additional targets of SP600125, and/or other pathways, as possibly being involved in the ectopic tail formation activity of pCAME. Further investigation of pCAME’s mechanism of action will help determine this compound’s pharmacological utility. PMID:24349481

  19. A pharmacologic increase in activity of plasma transaminase derived from small intestine in animals receiving an acyl CoA: diacylglycerol transferase (DGAT) 1 inhibitor.

    PubMed

    Yokoyama, Hideaki; Kobayashi, Akio; Kondo, Kazuma; Oshida, Shin-Ichi; Takahashi, Tadakazu; Masuyama, Taku; Shoda, Toshiyuki; Sugai, Shoichiro

    2018-01-01

    Acyl CoA: diacylglycerol acyltransferase (DGAT) 1 is an enzyme that catalyzes the re-synthesis of triglycerides (TG) from free fatty acids and diacylglycerol. JTT-553 is a DGAT1 inhibitor and exhibits its pharmacological action (inhibition of re-synthesis of TG) in the enterocytes of the small intestine leading to suppression of a postprandial elevation of plasma lipids. After repeated oral dosing JTT-553 in rats and monkeys, plasma transaminase levels were increased but there were neither changes in other hepatic function parameters nor histopathological findings suggestive of hepatotoxicity. Based on the results of exploratory studies for investigation of the mechanism of the increase in transaminase levels, plasma transaminase levels were increased after dosing JTT-553 only when animals were fed after dosing and a main factor in the diet contributing to the increase in plasma transaminase levels was lipids. After dosing JTT-553, transaminase levels were increased in the small intestine but not in the liver, indicating that the origin of transaminase increased in the plasma was not the liver but the small intestine where JTT-553 exhibits its pharmacological action. The increase in small intestinal transaminase levels was due to increased enzyme protein synthesis and was suppressed by inhibiting fatty acid-transport to the enterocytes. In conclusion, the JTT-553-related increase in plasma transaminase levels is considered not to be due to release of the enzymes from injured cells into the circulation but to be phenomena resulting from enhancement of enzyme protein synthesis in the small intestine due to the pharmacological action of JTT-553 in this organ.

  20. Cost-effectiveness analysis of left atrial appendage occlusion compared with pharmacological strategies for stroke prevention in atrial fibrillation.

    PubMed

    Lee, Vivian Wing-Yan; Tsai, Ronald Bing-Ching; Chow, Ines Hang-Iao; Yan, Bryan Ping-Yen; Kaya, Mehmet Gungor; Park, Jai-Wun; Lam, Yat-Yin

    2016-08-31

    Transcatheter left atrial appendage occlusion (LAAO) is a promising therapy for stroke prophylaxis in non-valvular atrial fibrillation (NVAF) but its cost-effectiveness remains understudied. This study evaluated the cost-effectiveness of LAAO for stroke prophylaxis in NVAF. A Markov decision analytic model was used to compare the cost-effectiveness of LAAO with 7 pharmacological strategies: aspirin alone, clopidogrel plus aspirin, warfarin, dabigatran 110 mg, dabigatran 150 mg, apixaban, and rivaroxaban. Outcome measures included quality-adjusted life years (QALYs), lifetime costs and incremental cost-effectiveness ratios (ICERs). Base-case data were derived from ACTIVE, RE-LY, ARISTOTLE, ROCKET-AF, PROTECT-AF and PREVAIL trials. One-way sensitivity analysis varied by CHADS2 score, HAS-BLED score, time horizons, and LAAO costs; and probabilistic sensitivity analysis using 10,000 Monte Carlo simulations was conducted to assess parameter uncertainty. LAAO was considered cost-effective compared with aspirin, clopidogrel plus aspirin, and warfarin, with ICER of US$5,115, $2,447, and $6,298 per QALY gained, respectively. LAAO was dominant (i.e. less costly but more effective) compared to other strategies. Sensitivity analysis demonstrated favorable ICERs of LAAO against other strategies in varied CHADS2 score, HAS-BLED score, time horizons (5 to 15 years) and LAAO costs. LAAO was cost-effective in 86.24 % of 10,000 simulations using a threshold of US$50,000/QALY. Transcatheter LAAO is cost-effective for prevention of stroke in NVAF compared with 7 pharmacological strategies. The transcatheter left atrial appendage occlusion (LAAO) is considered cost-effective against the standard 7 oral pharmacological strategies including acetylsalicylic acid (ASA) alone, clopidogrel plus ASA, warfarin, dabigatran 110 mg, dabigatran 150 mg, apixaban, and rivaroxaban for stroke prophylaxis in non-valvular atrial fibrillation management.

  1. Preclinical studies identify novel targeted pharmacological strategies for treatment of human malignant pleural mesothelioma.

    PubMed

    Favoni, Roberto E; Daga, Antonio; Malatesta, Paolo; Florio, Tullio

    2012-05-01

    The incidence of human malignant pleural mesothelioma (hMPM) is still increasing worldwide. hMPM prognosis is poor even if the median survival time has been slightly improved after the introduction of the up-to-date chemotherapy. Nevertheless, large phase II/III trials support the combination of platinum derivatives and pemetrexed or raltitrexed, as preferred first-line schedule. Better understanding of the molecular machinery of hMPM will lead to the design and synthesis of novel compounds targeted against pathways identified as crucial for hMPM cell proliferation and spreading. Among them, several receptors tyrosine kinase show altered activity in subsets of hMPM. This observation suggests that these kinases might represent novel therapeutic targets in this chemotherapy-resistant disease. Over these foundations, several promising studies are ongoing at preclinical level and novel molecules are currently under evaluation as well. Yet, established tumour cell lines, used for decades to investigate the efficacy of anticancer agents, although still the main source of drug efficacy studies, after long-term cultures tend to biologically diverge from the original tumour, limiting the predictive potential of in vivo efficacy. Cancer stem cells (CSCs), a subpopulation of malignant cells capable of self-renewal and multilineage differentiation, are believed to play an essential role in cancer initiation, growth, metastasization and relapse, being responsible of chemo- and radiotherapy refractoriness. According to the current carcinogenesis theory, CSCs represent the tumour-initiating cell (TIC) fraction, the only clonogenic subpopulation able to originate a tumour mass. Consequently, the recently described isolation of TICs from hMPM, the proposed main pharmacological target for novel antitumoural drugs, may contribute to better dissect the biology and multidrug resistance pathways controlling hMPM growth. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  2. GEBR-7b, a novel PDE4D selective inhibitor that improves memory in rodents at non-emetic doses.

    PubMed

    Bruno, O; Fedele, E; Prickaerts, J; Parker, L A; Canepa, E; Brullo, C; Cavallero, A; Gardella, E; Balbi, A; Domenicotti, C; Bollen, E; Gijselaers, H J M; Vanmierlo, T; Erb, K; Limebeer, C L; Argellati, F; Marinari, U M; Pronzato, M A; Ricciarelli, R

    2011-12-01

    Strategies designed to enhance cerebral cAMP have been proposed as symptomatic treatments to counteract cognitive deficits. However, pharmacological therapies aimed at reducing PDE4, the main class of cAMP catabolizing enzymes in the brain, produce severe emetic side effects. We have recently synthesized a 3-cyclopentyloxy-4-methoxybenzaldehyde derivative, structurally related to rolipram, and endowed with selective PDE4D inhibitory activity. The aim of the present study was to investigate the effect of the new drug, namely GEBR-7b, on memory performance, nausea, hippocampal cAMP and amyloid-β (Aβ) levels. To measure memory performance, we performed object recognition tests on rats and mice treated with GEBR-7b or rolipram. The emetic potential of the drug, again compared with rolipram, was evaluated in rats using the taste reactivity test and in mice using the xylazine/ketamine anaesthesia test. Extracellular hippocampal cAMP was evaluated by intracerebral microdialysis in freely moving rats. Levels of soluble Aβ peptides were measured in hippocampal tissues and cultured N2a cells by elisa. GEBR-7b increased hippocampal cAMP, did not influence Aβ levels and improved spatial, as well as object memory performance in the object recognition tests. The effect of GEBR-7b on memory was 3 to 10 times more potent than that of rolipram, and its effective doses had no effect on surrogate measures of emesis in rodents. Our results demonstrate that GEBR-7b enhances memory functions at doses that do not cause emesis-like behaviour in rodents, thus offering a promising pharmacological perspective for the treatment of memory impairment. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  3. Quantitative determination of vinpocetine in dietary supplements

    PubMed Central

    French, John M. T.; King, Matthew D.

    2017-01-01

    Current United States regulatory policies allow for the addition of pharmacologically active substances in dietary supplements if derived from a botanical source. The inclusion of certain nootropic drugs, such as vinpocetine, in dietary supplements has recently come under scrutiny due to the lack of defined dosage parameters and yet unproven short- and long-term benefits and risks to human health. This study quantified the concentration of vinpocetine in several commercially available dietary supplements and found that a highly variable range of 0.6–5.1 mg/serving was present across the tested products, with most products providing no specification of vinpocetine concentrations. PMID:27319129

  4. Isolation of hydroxyoctaprenyl-1',4'-hydroquinone, a new octaprenylhydroquinone from the marine sponge Sarcotragus spinosulus and evaluation of its pharmacological activity on acetylcholine and glutamate release in the rat central nervous system.

    PubMed

    Bisio, Angela; Fedele, Ernesto; Pittaluga, Anna; Olivero, Guendalina; Grilli, Massimo; Chen, Jiayang; Mele, Giacomo; Malafronte, Nicola; De Tommasi, Nunziatina; Leddae, Fabio; Manconi, Renata; Pronzato, Roberto; Marchi, Mario

    2014-11-01

    Three polyprenyl-1',4'-hydroquinone derivatives, heptaprenyl-1',4'-hydroquinone (1), octaprenyl-1',4'-hydroquinone (2), and hydroxyoctaprenyl-1',4'- hydroquinone (3) were isolated from the marine sponge Sarcotragus spinosulus collected at Baia di Porto Conte, Alghero (Italy). Our findings indicate that the compounds isolated from S. spinosulus can significantly modulate the release of glutamate and acetylcholine in the rat hippocampus and cortex and might, therefore, represent the prototype of a new class of drugs regulating glutamatergic and cholinergic transmission in the mammalian central nervous system.

  5. Food-Derived Antioxidant Polysaccharides and Their Pharmacological Potential in Neurodegenerative Diseases

    PubMed Central

    Li, Haifeng; Ding, Fei; Xiao, Lingyun; Shi, Ruona; Wang, Hongyu; Han, Wenjing

    2017-01-01

    Oxidative stress is known to impair architecture and function of cells, which may lead to various chronic diseases, and therefore therapeutic and nutritional interventions to reduce oxidative damages represent a viable strategy in the amelioration of oxidative stress-related disorders, including neurodegenerative diseases. Over the past decade, a variety of natural polysaccharides from functional and medicinal foods have attracted great interest due to their antioxidant functions such as scavenging free radicals and reducing oxidative damages. Interestingly, these antioxidant polysaccharides are also found to attenuate neuronal damages and alleviate cognitive and motor decline in a range of neurodegenerative models. It has recently been established that the neuroprotective mechanisms of polysaccharides are related to oxidative stress-related pathways, including mitochondrial function, antioxidant defense system and pathogenic protein aggregation. Here, we first summarize the current status of antioxidant function of food-derived polysaccharides and then attempt to appraise their anti-neurodegeneration activities. PMID:28753972

  6. The seco-iridoid pathway from Catharanthus roseus

    PubMed Central

    Miettinen, Karel; Dong, Lemeng; Navrot, Nicolas; Schneider, Thomas; Burlat, Vincent; Pollier, Jacob; Woittiez, Lotte; van der Krol, Sander; Lugan, Raphaël; Ilc, Tina; Verpoorte, Robert; Oksman-Caldentey, Kirsi-Marja; Martinoia, Enrico; Bouwmeester, Harro; Goossens, Alain; Memelink, Johan; Werck-Reichhart, Danièle

    2014-01-01

    The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynthesis. Here we report the discovery of the last four missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes encoding this pathway, together with two genes boosting precursor formation and two downstream alkaloid biosynthesis genes, in an alternative plant host, allows the heterologous production of the complex MIA strictosidine. This confirms the functionality of all enzymes of the pathway and highlights their utility for synthetic biology programmes towards a sustainable biotechnological production of valuable (seco)iridoids and alkaloids with pharmaceutical and agricultural applications. PMID:24710322

  7. A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem cells

    PubMed Central

    Lo Cicero, Alessandra; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Tournois, Johana; Brinon, Benjamin; Pitrez, Patricia R.; Ferreira, Lino; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Nissan, Xavier

    2016-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders. PMID:27739443

  8. A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem cells.

    PubMed

    Lo Cicero, Alessandra; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Tournois, Johana; Brinon, Benjamin; Pitrez, Patricia R; Ferreira, Lino; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Nissan, Xavier

    2016-10-14

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders.

  9. Dual functional cholinesterase and MAO inhibitors for the treatment of Alzheimer's disease: synthesis, pharmacological analysis and molecular modeling of homoisoflavonoid derivatives.

    PubMed

    Wang, Yali; Sun, Yang; Guo, Yueyan; Wang, Zechen; Huang, Ling; Li, Xingshu

    2016-01-01

    Because of the complexity of Alzheimer's disease (AD), the multi-target-directed ligand (MTDL) strategy is expected to provide superior effects for the treatment of AD, instead of the classic one-drug-one-target strategy. In this context, we focused on the design, synthesis and evaluation of homoisoflavonoid derivatives as dual acetyl cholinesterase (AChE) and monoamine oxidase (MAO-B) inhibitors. Among all the synthesized compounds, compound 10 provided a desired balance of AChE and hMAO-B inhibition activities, with IC50 value of 3.94 and 3.44 μM, respectively. Further studies revealed that compound 10 was a mixed-type inhibitor of AChE and an irreversible inhibitor of hMAO-B, which was also confirmed by molecular modeling studies. Taken together, the data indicated that 10 was a promising dual functional agent for the treatment of AD.

  10. [Biologics - nomenclature and classification].

    PubMed

    Eichbaum, Christine; Haefeli, Walter E

    2011-11-01

    Biological medicines are a heterogeneous group of drugs that are produced by living organisms using genetic or biological technology. Unlike chemically derived small molecules biologics are structurally complex making characterization and manufacturing difficult. Moreover, biological medicines show a great variety concerning their clinical use. To appropriately consider these particularities, there are other standards and guidelines for approval of similar derivatives of biologics, the so-called biosimilars or follow-on biologics. In contrast to a generic medicinal product containing a chemically identical active ingredient, a biosimilar is only expected to be similar to the innovator drug. Nowadays, monoclonal antibodies, fragments of antibodies, and fusion proteins manufactured by recombinant procedures play an important role. They have been used in many specialties for diagnostic and therapeutic purposes and are subject to continuous further development and improvement. Their nomenclature is based on a classification by the WHO which allows drawing conclusions for class of substance, origin, and pharmacological target.

  11. Synthesis and biological evaluation of new 2-(4,5-dihydro-1H-imidazol-2-yl)-3,4-dihydro-2H-1,4-benzoxazine derivatives.

    PubMed

    Touzeau, Frédérique; Arrault, Axelle; Guillaumet, Gérald; Scalbert, Elizabeth; Pfeiffer, Bruno; Rettori, Marie-Claire; Renard, Pierre; Mérour, Jean-Yves

    2003-05-08

    2-(4,5-Dihydro-1H-imidazol-2-yl)-3,4-dihydro-2H-1,4-benzoxazine derivatives and tricyclic analogues with a fused additional ring on the nitrogen atom of the benzoxazine moiety have been prepared and evaluated for their cardiovascular effects as potential antihypertensive agents. The imidazoline ring was generated by reaction of the corresponding ethyl ester with ethylenediamine. Affinities for imidazoline binding sites (IBS) I(1) and I(2) and alpha(1) and alpha(2) adrenergic receptors were evaluated as well as the effects on mean arterial blood pressure (MAP) and heart rate (HR) of spontaneously hypertensive rats. With few exceptions the most active compounds on MAP were those with high affinities for IBS and alpha(2) receptor. Among these, compound 4h was the most interesting and is now, together with its enantiomers, under complementary pharmacological evaluation.

  12. Engineered Heart Repair.

    PubMed

    Fujita, B; Zimmermann, W-H

    2017-08-01

    There is a pressing need for the development of advanced heart failure therapeutics. Current state-of-the-art is protection from neurohumoral overstimulation, which fails to address the underlying cause of heart failure, namely loss of cardiomyocytes. Implantation of stem cell-derived cardiomyocytes via tissue-engineered myocardium is being advanced to realize the remuscularization of the failing heart. Here, we discuss pharmacological challenges pertaining to the clinical translation of tissue-engineered heart repair with a focus on engineered heart muscle (EHM). © 2017 American Society for Clinical Pharmacology and Therapeutics.

  13. An Overview of Clinical Pharmacology of Ibuprofen

    PubMed Central

    Bushra, Rabia; Aslam, Nousheen

    2010-01-01

    Ibuprofen was the first member of Propionic acid derivatives introduced in 1969. It is a popular domestic and over the counter analgesic and antipyretic for adults and children. Ibuprofen has been rated as the safest conventional NSAID by spontaneous adverse drug reaction reporting systems in the UK. This article summarizes the main pharmacological effects, therapeutical applications and adverse drug reactions, drug-drug interactions and food drug interactions of ibuprofen that have been reported especially during the last 10 years. PMID:22043330

  14. The pharmacological actions of some murexine-like substances

    PubMed Central

    Erspamer, V.; Glässer, A.

    1958-01-01

    Four choline esters of imidazole acids, two imidazole ethers of choline and thirteen ringsubstituted murexine-like compounds were compared with murexine for their muscle-paralysing and their nicotine-like effects. Dihydromurexine appeared, in animal experiments, to be the most potent derivative, but it was shown to be less effective than murexine in man. Among the other compounds, imidazolebutyrylcholine and imidazolepropoxycholine appeared to be worthy of particular consideration. The relation between the chemical structure of the murexine-like substances studied and their pharmacological effects is discussed. PMID:13618539

  15. Synthesis and characterization of a dual kappa-delta opioid receptor agonist analgesic blocking cocaine reward behavior.

    PubMed

    Váradi, András; Marrone, Gina F; Eans, Shainnel O; Ganno, Michelle L; Subrath, Joan J; Le Rouzic, Valerie; Hunkele, Amanda; Pasternak, Gavril W; McLaughlin, Jay P; Majumdar, Susruta

    2015-11-18

    3-Iodobenzoyl naltrexamine (IBNtxA) is a potent analgesic belonging to the pharmacologically diverse 6β-amidoepoxymorphinan group of opioids. We present the synthesis and pharmacological evaluation of five analogs of IBNtxA. The scaffold of IBNtxA was modified by removing the 14-hydroxy group, incorporating a 7,8 double bond and various N-17 alkyl substituents. The structural modifications resulted in analogs with picomolar affinities for opioid receptors. The lead compound (MP1104) was found to exhibit approximately 15-fold greater antinociceptive potency (ED50 = 0.33 mg/kg) compared with morphine, mediated through the activation of kappa- and delta-opioid receptors. Despite its kappa agonism, this lead derivative did not cause place aversion or preference in mice in a place-conditioning assay, even at doses 3 times the analgesic ED50. However, pretreatment with the lead compound prevented the reward behavior associated with cocaine in a conditioned place preference assay. Together, these results suggest the promise of dual acting kappa- and delta-opioid receptor agonists as analgesics and treatments for cocaine addiction.

  16. Human neural stem cell-derived cultures in three-dimensional substrates form spontaneously functional neuronal networks.

    PubMed

    Smith, Imogen; Silveirinha, Vasco; Stein, Jason L; de la Torre-Ubieta, Luis; Farrimond, Jonathan A; Williamson, Elizabeth M; Whalley, Benjamin J

    2017-04-01

    Differentiated human neural stem cells were cultured in an inert three-dimensional (3D) scaffold and, unlike two-dimensional (2D) but otherwise comparable monolayer cultures, formed spontaneously active, functional neuronal networks that responded reproducibly and predictably to conventional pharmacological treatments to reveal functional, glutamatergic synapses. Immunocytochemical and electron microscopy analysis revealed a neuronal and glial population, where markers of neuronal maturity were observed in the former. Oligonucleotide microarray analysis revealed substantial differences in gene expression conferred by culturing in a 3D vs a 2D environment. Notable and numerous differences were seen in genes coding for neuronal function, the extracellular matrix and cytoskeleton. In addition to producing functional networks, differentiated human neural stem cells grown in inert scaffolds offer several significant advantages over conventional 2D monolayers. These advantages include cost savings and improved physiological relevance, which make them better suited for use in the pharmacological and toxicological assays required for development of stem cell-based treatments and the reduction of animal use in medical research. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Cell-derived microparticles in atherosclerosis: biomarkers and targets for pharmacological modulation?

    PubMed Central

    Baron, Morgane; Boulanger, Chantal M; Staels, Bart; Tailleux, Anne; Simionescu, M

    2012-01-01

    Abstract Cardiovascular diseases remain an important cause of morbi-mortality. Atherosclerosis, which predisposes to cardiovascular disorders such as myocardial infarction and stroke, develops silently over several decades. Identification of circulating biomarkers to evaluate cardiovascular event risk and pathology prognosis is of particular importance. Microparticles (MPs) are small vesicles released from cells upon apoptosis or activation. Microparticles are present in blood of healthy individuals. Studies showing a modification of their concentrations in patients with cardiovascular risk factors and after cardiovascular events identify MPs as potential biomarkers of disease. Moreover, the pathophysiological properties of MPs may contribute to atherosclerosis development. In addition, pharmacological compounds, used in the treatment of cardiovascular disease, can reduce plasma MP concentrations. Nevertheless, numerous issues remain to be solved before MP measurement can be applied as routine biological tests to improve cardiovascular risk prediction. In particular, prospective studies to identify the predictive values of MPs in pathologies such as cardiovascular diseases are needed to demonstrate whether MPs are useful biomarkers for the early detection of the disease and its progression. PMID:22050954

  18. Determining the pharmacological activity of Physalis peruviana fruit juice on rabbit eyes and fibroblast primary cultures.

    PubMed

    Pardo, Juan Manuel; Fontanilla, Marta Raquel; Ospina, Luis Fernando; Espinosa, Lady

    2008-07-01

    The pharmacologic activity of compounds isolated from Physalis peruviana has been demonstrated. The use of this fruit juice for treating pterygium has been reported in Colombian traditional medicine. However, studies demonstrating the fruit juice's pharmacologic activity when used in this disease have not been published to date. In the present study the anti-inflammatory and cytostatic activities of P. peruviana fruit juice in a rabbit eye inflammatory model were investigated. A novel rabbit eye inflammation model was developed for studying the juice's anti-inflammatory activity (based on an adaptation of the Draize test). Cytostatic activity was evaluated by measuring and comparing growth rates of cultured fibroblasts exposed and not exposed to various fruit juice concentrations. P. peruviana fruit juice exhibited a mild anti-inflammatory activity compared with methylprednisolone, a known anti-inflammatory drug. An interesting dose-dependent cytostatic effect on cultured fibroblasts was also established. The data found suggest that the P. peruviana fruit juice anti-pterygium effect described in traditional medicine may be related to its inhibiting fibroblast growth. The present study contributes to the pharmacologic knowledge regarding a remedy commonly used in Colombian traditional medicine.

  19. Design, synthesis, and antihypertensive activity of curcumin-inspired compounds via ACE inhibition and vasodilation, along with a bioavailability study for possible benefit in cardiovascular diseases

    PubMed Central

    Zhuang, Xiao-dong; Liao, Li-zhen; Dong, Xiao-bian; Hu, Xun; Guo, Yue; Du, Zhi-min; Liao, Xin-xue; Wang, Li-chun

    2016-01-01

    This study describes the synthesis of a novel series of curcumin-inspired compounds via a facile synthetic route. The structures of these derivatives were ascertained using various spectroscopic and analytic techniques. The pharmacological effects of the target analogs were assessed by assaying their inhibition of angiotensin-converting enzyme (ACE). All of the synthesized derivatives exhibited considerable inhibition of ACE, with half-maximal inhibitory concentrations ranging from 1.23 to 120.32 μM. In a docking analysis with testicular ACE (tACE), the most promising inhibitor (4j) was efficiently accommodated in the deep cleft of the protein cavity, making close interatomic contacts with Glu162, His353, and Ala356, comparable with lisinopril. Compounds 4i, 4j, 4k, and 4l were further selected for determination of their vasodilator activity (cardiac output and stroke volume) on isolated rat hearts using the Langendorff technique. The bioavailability of compound 4j was determined in experimental mice. PMID:26792980

  20. Multifunctional Hybrid Compounds Derived from 2-(2,5-Dioxopyrrolidin-1-yl)-3-methoxypropanamides with Anticonvulsant and Antinociceptive Properties.

    PubMed

    Abram, Michał; Zagaja, Mirosław; Mogilski, Szczepan; Andres-Mach, Marta; Latacz, Gniewomir; Baś, Sebastian; Łuszczki, Jarogniew J; Kieć-Kononowicz, Katarzyna; Kamiński, Krzysztof

    2017-10-26

    The focused set of new pyrrolidine-2,5-diones as potential broad-spectrum hybrid anticonvulsants was described. These derivatives integrate on the common structural scaffold the chemical fragments of well-known antiepileptic drugs such as ethosuximide, levetiracetam, and lacosamide. Such hybrids demonstrated effectiveness in two of the most widely used animal seizure models, namely, the maximal electroshock (MES) test and the psychomotor 6 Hz (32 mA) seizure models. Compound 33 showed the highest anticonvulsant activity in these models (ED 50 MES = 79.5 mg/kg, ED 50 6 Hz = 22.4 mg/kg). Compound 33 was also found to be effective in pentylenetetrazole-induced seizure model (ED 50 PTZ = 123.2 mg/kg). In addition, 33 demonstrated effectiveness by decreasing pain responses in formalin-induced tonic pain, in capsaicin-induced neurogenic pain, and notably in oxaliplatin-induced neuropathic pain in mice. The pharmacological data of stereoisomers of compound 33 revealed greater anticonvulsant activity by R(+)-33 enantiomer in both MES and 6 Hz seizure models.

  1. A Stilbenoid-Specific Prenyltransferase Utilizes Dimethylallyl Pyrophosphate from the Plastidic Terpenoid Pathway1[OPEN

    PubMed Central

    2016-01-01

    Prenylated stilbenoids synthesized in some legumes exhibit plant pathogen defense properties and pharmacological activities with potential benefits to human health. Despite their importance, the biosynthetic pathways of these compounds remain to be elucidated. Peanut (Arachis hypogaea) hairy root cultures produce a diverse array of prenylated stilbenoids upon treatment with elicitors. Using metabolic inhibitors of the plastidic and cytosolic isoprenoid biosynthetic pathways, we demonstrated that the prenyl moiety on the prenylated stilbenoids derives from a plastidic pathway. We further characterized, to our knowledge for the first time, a membrane-bound stilbenoid-specific prenyltransferase activity from the microsomal fraction of peanut hairy roots. This microsomal fraction-derived resveratrol 4-dimethylallyl transferase utilizes 3,3-dimethylallyl pyrophosphate as a prenyl donor and prenylates resveratrol to form arachidin-2. It also prenylates pinosylvin to chiricanine A and piceatannol to arachidin-5, a prenylated stilbenoid identified, to our knowledge, for the first time in this study. This prenyltransferase exhibits strict substrate specificity for stilbenoids and does not prenylate flavanone, flavone, or isoflavone backbones, even though it shares several common features with flavonoid-specific prenyltransferases. PMID:27356974

  2. Synthesis and biological evaluation of di-aryl urea derivatives as c-Kit inhibitors.

    PubMed

    Ravez, Séverine; Arsenlis, Stéphane; Barczyk, Amélie; Dupont, Anthony; Frédérick, Raphaël; Hesse, Stéphanie; Kirsch, Gilbert; Depreux, Patrick; Goossens, Laurence

    2015-11-15

    Inhibition of receptor tyrosine kinases (RTKs) continued to be a successful approach for the treatment of many types of human cancers and many potent small molecules kinase inhibitors have been discovered the last decade. In the present study, we describe the synthesis of thienopyrimidine derivatives and their pharmacological evaluation against nine kinases (EGFR, PDGFR-ß, c-Kit, c-Met, Src, Raf, VEGFR-1, -2 and -3). Most of the synthesized compounds showed from moderate to potent activities against c-Kit with IC50 values in the nanomolar range. Among them, 4-anilino(urea)thienopyrimidine analogs showed selectivity and potent c-Kit inhibition with IC50 values less than 6 nM. Docking simulation was performed for the most promising compound 9 into the c-Kit active site to determine the potential binding mode. This study reveal that the 4-anilino(urea)thienopyrimidine is an interesting scaffold to design novel potent and selective c-Kit inhibitors which may make promising candidates for cancers where c-Kit receptors are overexpressed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Negative Regulation of Leptin-induced Reactive Oxygen Species (ROS) Formation by Cannabinoid CB1 Receptor Activation in Hypothalamic Neurons.

    PubMed

    Palomba, Letizia; Silvestri, Cristoforo; Imperatore, Roberta; Morello, Giovanna; Piscitelli, Fabiana; Martella, Andrea; Cristino, Luigia; Di Marzo, Vincenzo

    2015-05-29

    The adipocyte-derived, anorectic hormone leptin was recently shown to owe part of its regulatory effects on appetite-regulating hypothalamic neuropeptides to the elevation of reactive oxygen species (ROS) levels in arcuate nucleus (ARC) neurons. Leptin is also known to exert a negative regulation on hypothalamic endocannabinoid levels and hence on cannabinoid CB1 receptor activity. Here we investigated the possibility of a negative regulation by CB1 receptors of leptin-mediated ROS formation in the ARC. Through pharmacological and molecular biology experiments we report data showing that leptin-induced ROS accumulation is 1) blunted by arachidonyl-2'-chloroethylamide (ACEA) in a CB1-dependent manner in both the mouse hypothalamic cell line mHypoE-N41 and ARC neuron primary cultures, 2) likewise blocked by a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, troglitazone, in a manner inhibited by T0070907, a PPAR-γ antagonist that also inhibited the ACEA effect on leptin, 3) blunted under conditions of increased endocannabinoid tone due to either pharmacological or genetic inhibition of endocannabinoid degradation in mHypoE-N41 and primary ARC neuronal cultures from MAGL(-/-) mice, respectively, and 4) associated with reduction of both PPAR-γ and catalase activity, which are reversed by both ACEA and troglitazone. We conclude that CB1 activation reverses leptin-induced ROS formation and hence possibly some of the ROS-mediated effects of the hormone by preventing PPAR-γ inhibition by leptin, with subsequent increase of catalase activity. This mechanism might underlie in part CB1 orexigenic actions under physiopathological conditions accompanied by elevated hypothalamic endocannabinoid levels. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. ELAC (3,12-di-O-acetyl-8-O-tigloilingol), a plant-derived lathyrane diterpene, induces subventricular zone neural progenitor cell proliferation through PKCβ activation.

    PubMed

    Murillo-Carretero, Maribel; Geribaldi-Doldán, Noelia; Flores-Giubi, Eugenia; García-Bernal, Francisco; Navarro-Quiroz, Elkin A; Carrasco, Manuel; Macías-Sánchez, Antonio J; Herrero-Foncubierta, Pilar; Delgado-Ariza, Antonio; Verástegui, Cristina; Domínguez-Riscart, Jesús; Daoubi, Mourad; Hernández-Galán, Rosario; Castro, Carmen

    2017-07-01

    Pharmacological strategies aimed to facilitate neuronal renewal in the adult brain, by promoting endogenous neurogenesis, constitute promising therapeutic options for pathological or traumatic brain lesions. We have previously shown that non-tumour-promoting PKC-activating compounds (12-deoxyphorbols) promote adult neural progenitor cell (NPC) proliferation in vitro and in vivo, enhancing the endogenous neurogenic response of the brain to a traumatic injury. Here, we show for the first time that a diterpene with a lathyrane skeleton can also activate PKC and promote NPC proliferation. We isolated four lathyranes from the latex of Euphorbia plants and tested their effect on postnatal NPC proliferation, using neurosphere cultures. The bioactive lathyrane ELAC (3,12-di-O-acetyl-8-O-tigloilingol) was also injected into the ventricles of adult mice to analyse its effect on adult NPC proliferation in vivo. The lathyrane ELAC activated PKC and significantly increased postnatal NPC proliferation in vitro, particularly in synergy with FGF2. In addition ELAC stimulated proliferation of NPC, specifically affecting undifferentiated transit amplifying cells. The proliferative effect of ELAC was reversed by either the classical/novel PKC inhibitor Gö6850 or the classical PKC inhibitor Gö6976, suggesting that NPC proliferation is promoted in response to activation of classical PKCs, particularly PKCß. ELAC slightly increased the proportion of NPC expressing Sox2. The effects of ELAC disappeared upon acetylation of its C7-hydroxyl group. We propose lathyranes like ELAC as new drug candidates to modulate adult neurogenesis through PKC activation. Functional and structural comparisons between ELAC and phorboids are included. © 2017 The British Pharmacological Society.

  5. Development of operational models of receptor activation including constitutive receptor activity and their use to determine the efficacy of the chemokine CCL17 at the CC chemokine receptor CCR4

    PubMed Central

    Slack, RJ; Hall, DA

    2012-01-01

    BACKGROUND AND PURPOSE The operational model provides a key conceptual framework for the analysis of pharmacological data. However, this model does not include constitutive receptor activity, a frequent phenomenon in modern pharmacology, particularly in recombinant systems. Here, we developed extensions of the operational model which include constitutive activity and applied them to effects of agonists at the chemokine receptor CCR4. EXPERIMENTAL APPROACH The effects of agonists of CCR4 on [35S]GTPγS binding to recombinant cell membranes and on the filamentous (F-) actin content of human CD4+ CCR4+ T cells were determined. The basal [35S]GTPγS binding was changed by varying the GDP concentration whilst the basal F-actin contents of the higher expressing T cell populations were elevated, suggesting constitutive activity of CCR4. Both sets of data were analysed using the mathematical models. RESULTS The affinity of CCL17 (also known as TARC) derived from analysis of the T cell data (pKa= 9.61 ± 0.17) was consistent with radioligand binding experiments (9.50 ± 0.11) while that from the [35S]GTPγS binding experiments was lower (8.27 ± 0.09). Its intrinsic efficacy differed between the two systems (110 in T cells vs. 11). CONCLUSIONS AND IMPLICATIONS The presence of constitutive receptor activity allows the absolute intrinsic efficacy of agonists to be determined without a contribution from the signal transduction system. Intrinsic efficacy estimated in this way is consistent with Furchgott's definition of this property. CCL17 may have a higher intrinsic efficacy at CCR4 in human T cells than that expressed recombinantly in CHO cells. PMID:22335621

  6. The therapeutic journey of benzimidazoles: a review.

    PubMed

    Bansal, Yogita; Silakari, Om

    2012-11-01

    Presence of benzimidazole nucleus in numerous categories of therapeutic agents such as antimicrobials, antivirals, antiparasites, anticancer, anti-inflammatory, antioxidants, proton pump inhibitors, antihypertensives, anticoagulants, immunomodulators, hormone modulators, CNS stimulants as well as depressants, lipid level modulators, antidiabetics, etc. has made it an indispensable anchor for development of new therapeutic agents. Varied substitutents around the benzimidazole nucleus have provided a wide spectrum of biological activities. Importance of this nucleus in some activities like, Angiotensin I (AT(1)) receptor antagonism and proton-pump inhibition is reviewed separately in literature. Even some very short reviews on biological importance of this nucleus are also known in literature. However, owing to fast development of new drugs possessing benzimidazole nucleus many research reports are generated in short span of time. So, there is a need to couple the latest information with the earlier information to understand the current status of benzimidazole nucleus in medicinal chemistry research. In the present review, various derivatives of benzimidazole with different pharmacological activities are described on the basis of substitution pattern around the nucleus with an aim to help medicinal chemists for developing an SAR on benzimidazole derived compounds for each activity. This discussion will further help in the development of novel benzimidazole compounds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Pharmacological Evaluation and Preparation of Nonsteroidal Anti-Inflammatory Drugs Containing an N-Acyl Hydrazone Subunit

    PubMed Central

    de Melo, Thais Regina Ferreira; Chelucci, Rafael Consolin; Pires, Maria Elisa Lopes; Dutra, Luiz Antonio; Barbieri, Karina Pereira; Bosquesi, Priscila Longhin; Trossini, Gustavo Henrique Goulart; Chung, Man Chin; dos Santos, Jean Leandro

    2014-01-01

    A series of anti-inflammatory derivatives containing an N-acyl hydrazone subunit (4a–e) were synthesized and characterized. Docking studies were performed that suggest that compounds 4a–e bind to cyclooxygenase (COX)-1 and COX-2 isoforms, but with higher affinity for COX-2. The compounds display similar anti-inflammatory activities in vivo, although compound 4c is the most effective compound for inhibiting rat paw edema, with a reduction in the extent of inflammation of 35.9% and 52.8% at 2 and 4 h, respectively. The anti-inflammatory activity of N-acyl hydrazone derivatives was inferior to their respective parent drugs, except for compound 4c after 5 h. Ulcerogenic studies revealed that compounds 4a–e are less gastrotoxic than the respective parent drug. Compounds 4b–e demonstrated mucosal damage comparable to celecoxib. The in vivo analgesic activities of the compounds are higher than the respective parent drug for compounds 4a–b and 4d–e. Compound 4a was more active than dipyrone in reducing acetic-acid-induced abdominal constrictions. Our results indicate that compounds 4a–e are anti-inflammatory and analgesic compounds with reduced gastrotoxicity compared to their respective parent non-steroidal anti-inflammatory drugs. PMID:24714090

  8. The Pharmacological Potential of Mushrooms

    PubMed Central

    2005-01-01

    This review describes pharmacologically active compounds from mushrooms. Compounds and complex substances with antimicrobial, antiviral, antitumor, antiallergic, immunomodulating, anti-inflammatory, antiatherogenic, hypoglycemic, hepatoprotective and central activities are covered, focusing on the review of recent literature. The production of mushrooms or mushroom compounds is discussed briefly. PMID:16136207

  9. Nitroglycerin drives endothelial nitric oxide synthase activation via the phosphatidylinositol 3-kinase/protein kinase B pathway

    PubMed Central

    Mao, Mao; Sudhahar, Varadarajan; Ansenberger-Fricano, Kristine; Fernandes, Denise C.; Tanaka, Leonardo Y.; Fukai, Tohru; Laurindo, Francisco R.M.; Mason, Ronald P.; Vasquez-Vivar, Jeannette; Minshall, Richard D.; Stadler, Krisztian; Bonini, Marcelo G.

    2012-01-01

    Nitroglycerin (GTN) has been clinically used to treat angina pectoris and acute heart episodes for over 100 years. The effects of GTN have long been recognized and active research has contributed to the unraveling of numerous metabolic routes capable of converting GTN to the potent vasoactive messenger nitric oxide. Recently, the mechanism by which minute doses of GTN elicit robust pharmacological responses was revisited and eNOS activation was implicated as an important route mediating vasodilation induced by low GTN doses (1–50 nM). Here, we demonstrate that at such concentrations the pharmacologic effects of nitroglycerin are largely dependent on the phosphatidylinositol 3-kinase, Akt/PKB, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signal transduction axis. Furthermore, we demonstrate that nitroglycerin-dependent accumulation of 3,4,5-InsP3, probably because of inhibition of PTEN, is important for eNOS activation, conferring a mechanistic basis for GTN pharmacological action at pharmacologically relevant doses. PMID:22037515

  10. A new cross-correlation algorithm for the analysis of "in vitro" neuronal network activity aimed at pharmacological studies.

    PubMed

    Biffi, E; Menegon, A; Regalia, G; Maida, S; Ferrigno, G; Pedrocchi, A

    2011-08-15

    Modern drug discovery for Central Nervous System pathologies has recently focused its attention to in vitro neuronal networks as models for the study of neuronal activities. Micro Electrode Arrays (MEAs), a widely recognized tool for pharmacological investigations, enable the simultaneous study of the spiking activity of discrete regions of a neuronal culture, providing an insight into the dynamics of networks. Taking advantage of MEAs features and making the most of the cross-correlation analysis to assess internal parameters of a neuronal system, we provide an efficient method for the evaluation of comprehensive neuronal network activity. We developed an intra network burst correlation algorithm, we evaluated its sensitivity and we explored its potential use in pharmacological studies. Our results demonstrate the high sensitivity of this algorithm and the efficacy of this methodology in pharmacological dose-response studies, with the advantage of analyzing the effect of drugs on the comprehensive correlative properties of integrated neuronal networks. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Understanding the risks associated with the use of new psychoactive substances (NPS): high variability of active ingredients concentration, mislabelled preparations, multiple psychoactive substances in single products.

    PubMed

    Zamengo, Luca; Frison, Giampietro; Bettin, Chiara; Sciarrone, Rocco

    2014-08-17

    New psychoactive substances (NPS), are now a large group of substances of abuse not yet completely controlled by international drug conventions, which may pose a public health threat. Anxiety, paranoia, hallucinations, seizures, hyperthermia and cardiotoxicity are some of the common adverse effects associated with these compounds. In this paper, three case reports taken from the archive of processed cases of the authors' laboratory are presented and discussed to stress the risks of possible adverse consequences for NPS users: in particular, (i) the risk deriving from the difficulty of predicting the actual consumed dose, due to variability of active ingredients concentration in consumed products, (ii) the risk deriving from the difficulty of predicting the actual active ingredients present in consumed products, as opposed to those claimed by the manufacturer, and (iii) the risk deriving from the difficulty of predicting the actual pharmacological and toxicological effects related to the simultaneous consumption of different psychoactive ingredients contained in single products, whose interactions are mostly unknown. Each of them individually provide a source of concern for possible serious health related consequences. However, they should be considered in conjunction with each others, with the worldwide availability of NPS through the web and also with the incessantly growing business derived from the manipulation and synthesis of new substances. The resulting scenario is that of a cultural challenge which demands a global approach from different fields of knowledge. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Biotechnological engineering of heparin/heparan sulphate: a novel area of multi-target drug discovery.

    PubMed

    Rusnati, Marco; Oreste, Pasqua; Zoppetti, Giorgio; Presta, Marco

    2005-01-01

    Heparin is a sulphated glycosaminoglycan currently used as an anticoagulant and antithrombotic drug. It consists largely of 2-O-sulphated IdoA not l&r arrow N, 6-O-disulphated GlcN disaccharide units. Other disaccharides containing unsulphated IdoA or GlcA and N-sulphated or N-acetylated GlcN are also present as minor components. This heterogeneity is more pronounced in heparan sulphate (HS), where the low-sulphated disaccharides are the most abundant. Heparin/HS bind to a variety of biologically active polypeptides, including enzymes, growth factors and cytokines, and viral proteins. This capacity can be exploited to design multi-target heparin/HS-derived drugs for pharmacological interventions in a variety of pathologic conditions besides coagulation and thrombosis, including neoplasia and viral infection. The capsular K5 polysaccharide from Escherichia coli has the same structure as the heparin precursor N-acetyl heparosan. The possibility of producing K5 polysaccharide derivatives by chemical and enzymatic modifications, thus generating heparin/HS-like compounds, has been demonstrated. These K5 polysaccharide derivatives are endowed with different biological properties, including anticoagulant/antithrombotic, antineoplastic, and anti-AIDS activities. Here, the literature data are discussed and the possible therapeutic implications for this novel class of multi-target "biotechnological heparin/HS" molecules are outlined.

  13. Overview of non-pharmacological intervention for dementia and principles of brain-activating rehabilitation.

    PubMed

    Yamaguchi, Haruyasu; Maki, Yohko; Yamagami, Tetsuya

    2010-12-01

    Non-pharmacological interventions for dementia are likely to have an important role in delaying disease progression and functional decline. Research into non-pharmacological interventions has focused on the differentiation of each approach and a comparison of their effects. However, Cochrane Reviews on non-pharmacological interventions have noted the paucity of evidence regarding the effects of these interventions. The essence of non-pharmacological intervention is dependent of the patients, families, and therapists involved, with each situation inevitably being different. To obtain good results with non-pharmacological therapy, the core is not 'what' approach is taken but 'how' the therapists communicate with their patients. Here, we propose a new type of rehabilitation for dementia, namely brain-activating rehabilitation, that consists of five principles: (i) enjoyable and comfortable activities in an accepting atmosphere; (ii) activities associated with empathetic two-way communication between the therapist and patient, as well as between patients; (iii) therapists should praise patients to enhance motivation; (iv) therapists should try to offer each patient some social role that takes advantage of his/her remaining abilities; and (v) the activities should be based on errorless learning to ensure a pleasant atmosphere and to maintain a patient's dignity. The behavioral and cognitive status is not necessarily a reflection of pathological lesions in the brain; there is cognitive reserve for improvement. The aim of brain-activating rehabilitation is to enhance patients' motivation and maximize the use of their remaining function, recruiting a compensatory network, and preventing the disuse of brain function. The primary expected effect is that patients recover a desire for life, as well as their self-respect. Enhanced motivation can lead to improvements in cognitive function. Amelioration of the behavioral and psychological symptoms of dementia and improvements in activities of daily living can also be expected due to the renewed positive attitude towards life. In addition, improvements in the quality of life for both patients and caregivers is an expected outcome. To establish evidence for non-pharmacological interventions, research protocols and outcome measures should be standardized to facilitate comparison among studies, as well as meta-analysis. © 2010 The Authors. Journal compilation © 2010 Japanese Psychogeriatric Society.

  14. Soluble guanylate cyclase generation of cGMP regulates migration of MGE neurons.

    PubMed

    Mandal, Shyamali; Stanco, Amelia; Buys, Emmanuel S; Enikolopov, Grigori; Rubenstein, John L R

    2013-10-23

    Here we have provided evidence that nitric oxide-cyclic GMP (NO-cGMP) signaling regulates neurite length and migration of immature neurons derived from the medial ganglionic eminence (MGE). Dlx1/2(-/-) and Lhx6(-/-) mouse mutants, which exhibit MGE interneuron migration defects, have reduced expression of the gene encoding the α subunit of a soluble guanylate cyclase (Gucy1A3). Furthermore, Dlx1/2(-/-) mouse mutants have reduced expression of NO synthase 1 (NOS1). Gucy1A3(-/-) mice have a transient reduction in cortical interneuron number. Pharmacological inhibition of soluble guanylate cyclase and NOS activity rapidly induces neurite retraction of MGE cells in vitro and in slice culture and robustly inhibits cell migration from the MGE and caudal ganglionic eminence. We provide evidence that these cellular phenotypes are mediated by activation of the Rho signaling pathway and inhibition of myosin light chain phosphatase activity.

  15. AMP kinase promotes glioblastoma bioenergetics and tumour growth.

    PubMed

    Chhipa, Rishi Raj; Fan, Qiang; Anderson, Jane; Muraleedharan, Ranjithmenon; Huang, Yan; Ciraolo, Georgianne; Chen, Xiaoting; Waclaw, Ronald; Chow, Lionel M; Khuchua, Zaza; Kofron, Matthew; Weirauch, Matthew T; Kendler, Ady; McPherson, Christopher; Ratner, Nancy; Nakano, Ichiro; Dasgupta, Nupur; Komurov, Kakajan; Dasgupta, Biplab

    2018-06-18

    Stress is integral to tumour evolution, and cancer cell survival depends on stress management. We found that cancer-associated stress chronically activates the bioenergetic sensor AMP kinase (AMPK) and, to survive, tumour cells hijack an AMPK-regulated stress response pathway conserved in normal cells. Analysis of The Cancer Genome Atlas data revealed that AMPK isoforms are highly expressed in the lethal human cancer glioblastoma (GBM). We show that AMPK inhibition reduces viability of patient-derived GBM stem cells (GSCs) and tumours. In stressed (exercised) skeletal muscle, AMPK is activated to cooperate with CREB1 (cAMP response element binding protein-1) and promote glucose metabolism. We demonstrate that oncogenic stress chronically activates AMPK in GSCs that coopt the AMPK-CREB1 pathway to coordinate tumour bioenergetics through the transcription factors HIF1α and GABPA. Finally, we show that adult mice tolerate systemic deletion of AMPK, supporting the use of AMPK pharmacological inhibitors in the treatment of GBM.

  16. Plant medicines of Indian origin for wound healing activity: a review.

    PubMed

    Biswas, Tuhin Kanti; Mukherjee, Biswapati

    2003-03-01

    Research on wound healing drugs is a developing area in modern biomedical sciences. Scientists who are trying to develop newer drugs from natural resources are looking toward the Ayurveda, the Indian traditional system of medicine. Several drugs of plant, mineral, and animal origin are described in the Ayurveda for their wound healing properties under the term Vranaropaka. Most of these drugs are derived from plant origin. Some of these plants have been screened scientifically for the evaluation of their wound healing activity in different pharmacological models and patients, but the potential of most remains unexplored. In a few cases, active chemical constituents were identified. Some Ayurvedic medicinal plants, namely, Ficus bengalensis, Cynodon dactylon, Symplocos racemosa, Rubia cordifolia, Pterocarpus santalinus, Ficus racemosa, Glycyrrhiza glabra, Berberis aristata, Curcuma longa, Centella asiatica, Euphorbia nerifolia, and Aloe vera, were found to be effective in experimental models. This paper presents a limited review of plants used in Ayurvedic medicine.

  17. Antithrombin activity of an algal polysaccharide.

    PubMed

    Trento, F; Cattaneo, F; Pescador, R; Porta, R; Ferro, L

    2001-06-01

    In an effort to reduce the risks of a possible iatrogenic transmission of bovine spongiform encephalitis (BSE) through the use of bovine-derived medicinal products, we patented in the USA in 1999 a polysaccharide from brown algae, endowed with interesting pharmacological activities: (a) concentration-dependent inhibition of thromboplastin or cephalin-kaolin-induced thrombin generation from platelets, (b) concentration-dependent inhibition of thrombin-induced platelet aggregation, (c) thrombin has hypotensive effect, which was blunted and zeroed by our fucansulfate in a dose-dependent way, (d) when aortae are stimulated with thrombin, they become stickier for polymorphonucleated leukocytes (PMNs); our fucansulfate decreased concentration-dependently, PMNs sticking to autologous rabbit aortae, (e) dose-dependent inhibition of thrombin-induced thrombosis. All the above data suggest that our fucansulfate could be a heparin substitute endowed with antithrombotic and anti-inflammatory activities, devoid or the problems caused to heparin by its animal origin, i.e., possible prion protein contamination.

  18. Osthole: A Review on Its Bioactivities, Pharmacological Properties, and Potential as Alternative Medicine

    PubMed Central

    Zhang, Zhong-Rong; Leung, Wing Nang; Cheung, Ho Yee; Chan, Chun Wai

    2015-01-01

    This paper reviews the latest understanding of biological and pharmacological properties of osthole (7-methoxy-8-(3-methyl-2-butenyl)-2H-1-benzopyran-2-one), a natural product found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. In vitro and in vivo experimental results have revealed that osthole demonstrates multiple pharmacological actions including neuroprotective, osteogenic, immunomodulatory, anticancer, hepatoprotective, cardiovascular protective, and antimicrobial activities. In addition, pharmacokinetic studies showed osthole uptake and utilization are fast and efficient in body. Moreover, the mechanisms of multiple pharmacological activities of osthole are very likely related to the modulatory effect on cyclic adenosine monophosphate (cAMP) and cyclic adenosine monophosphate (cGMP) level, though some mechanisms remain unclear. This review aims to summarize the pharmacological properties of osthole and give an overview of the underlying mechanisms, which showcase its potential as a multitarget alternative medicine. PMID:26246843

  19. Marine snail venoms: use and trends in receptor and channel neuropharmacology.

    PubMed

    Favreau, Philippe; Stöcklin, Reto

    2009-10-01

    Venoms are rich mixtures of mainly peptides and proteins evolved by nature to catch and digest preys or for protection against predators. They represent extensive sources of potent and selective bioactive compounds that can lead to original active ingredients, for use as drugs, as pharmacological tools in research and for the biotechnology industry. Among the most fascinating venomous animals, marine snails offer a unique set of pharmacologically active components, targeting a wide diversity of receptors and ion channels. Recent advances still continue to demonstrate their huge neuropharmacological potential. In the quest for interesting pharmacological profiles, researchers face a vast number of venom components to investigate within time and technological constraints. A brief perspective on marine snail venom's complexity and features is given followed by the different discovery strategies and pharmacological approaches, exemplified with some recent developments. These advances will hopefully help further uncovering new pharmacologically important venom molecules.

  20. A review on indole alkaloids isolated from Uncaria rhynchophylla and their pharmacological studies.

    PubMed

    Ndagijimana, Andre; Wang, Xiaoming; Pan, Guixiang; Zhang, Fan; Feng, Hong; Olaleye, Olajide

    2013-04-01

    Uncaria rhynchophylla (Miq.) Jacks, Rubiaceae, is one of the original plants of the important Chinese crude drug, Gou-teng, mainly used for the treatment of convulsion, hypertension, epilepsy, eclampsia, and cerebral diseases. The pharmacological activities of this plant are related to the presence of active compounds predominantly indole alkaloids. In this article, we have reviewed some reports about the pharmacological activities of the main indole alkaloids isolated from U. rhynchophylla. This review paper will contribute to the studies on the chemistry, safety and quality control of medicinal preparations containing Uncaria species. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Synthesis and biological evaluation of chalcone derivatives (mini review).

    PubMed

    Bukhari, Syed Nasir Abbas; Jasamai, Malina; Jantan, Ibrahim

    2012-11-01

    Chalcones are the principal precursors for the biosynthesis of flavonoids and isoflavonoids. A three carbon α, β-unsaturated carbonyl system constitutes chalcones. Chalcones are the condensation products of aromatic aldehyde with acetophenones in attendance of catalyst. They go through an assortment of chemical reactions and are found advantageous in synthesis of pyrazoline, isoxazole and a variety of heterocyclic compounds. In synthesizing a range of therapeutic compounds, chalcones impart key role. They have showed worth mentioning therapeutic efficacy for the treatment of various diseases. Chalcone based derivatives have gained heed since they own simple structures, and diverse pharmacological actions. A lot of methods and schemes have been reported for the synthesis of these compounds. Amongst all, Aldol condensation and Claisen-Schmidt condensation still grasp high up position. Other distinguished techniques include Suzuki reaction, Witting reaction, Friedel-Crafts acylation with cinnamoyl chloride, Photo-Fries rearrangement of phenyl cinnamates etc. These inventive techniques utilize various catalysts and reagents including SOCl(2) natural phosphate, lithium nitrate, amino grafted zeolites, zinc oxide, water, Na(2)CO(3), PEG400, silicasulfuric acid, ZrCl(4) and ionic liquid etc. The development of better techniques for the synthesis of α, β- unsaturated carbonyl compounds is still in high demand. In brief, we have explained the methods and catalysts used in the synthesis of chalcones along with their biological activities in a review form to provide information for the development of new-fangled processes targeting better yield, less reaction time and least side effects with utmost pharmacological properties.

  2. Synthesis of Novel Basic Skeletons Derived from Naltrexone

    NASA Astrophysics Data System (ADS)

    Nagase, Hiroshi; Fujii, Hideaki

    We will describe eight interesting reactions using naltrexone derivatives. Almost all these reactions are characteristic of naltrexone derivatives, and can lead to the synthesis of many novel skeletons that provide new interesting pharmacological data. Some of the new reactions that were found with naltrexone derivatives were expanded into general reactions. For example, the reaction of 6α-hydroxyaldehyde derived from naltrexone led to the oxazoline dimer and the 1,3,5-trioxazatriquinane skeleton (triplet drug); this reaction was applied to general ketones which were converted to α-hydroxyaldehydes, followed by conversion to dimers and trimers, as described in Sect. 7.

  3. Role of Platelet-Derived Microvesicles As Crosstalk Mediators in Atherothrombosis and Future Pharmacology Targets: A Link between Inflammation, Atherosclerosis, and Thrombosis

    PubMed Central

    Badimon, Lina; Suades, Rosa; Fuentes, Eduardo; Palomo, Iván; Padró, Teresa

    2016-01-01

    Reports in the last decade have suggested that the role of platelets in atherosclerosis and its thrombotic complications may be mediated, in part, by local secretion of platelet-derived microvesicles (pMVs), small cell blebs released during the platelet activation process. MVs are the most abundant cell-derived microvesicle subtype in the circulation. High concentrations of circulating MVs have been reported in patients with atherosclerosis, acute vascular syndromes, and/or diabetes mellitus, suggesting a potential correlation between the quantity of microvesicles and the clinical severity of the atherosclerotic disease. pMVs are considered to be biomarkers of disease but new information indicates that pMVs are also involved in signaling functions. pMVs evoke or promote haemostatic and inflammatory responses, neovascularization, cell survival, and apoptosis, processes involved in the pathophysiology of cardiovascular disease. This review is focused on the complex cross-talk between platelet-derived microvesicles, inflammatory cells and vascular elements and their relevance in the development of the atherosclerotic disease and its clinical outcomes, providing an updated state-of-the art of pMV involvement in atherothrombosis and pMV potential use as therapeutic agent influencing cardiovascular biomedicine in the future. PMID:27630570

  4. Synthetic, enzyme kinetic, and protein crystallographic studies of C-β-d-glucopyranosyl pyrroles and imidazoles reveal and explain low nanomolar inhibition of human liver glycogen phosphorylase.

    PubMed

    Kantsadi, Anastassia L; Bokor, Éva; Kun, Sándor; Stravodimos, George A; Chatzileontiadou, Demetra S M; Leonidas, Demetres D; Juhász-Tóth, Éva; Szakács, Andrea; Batta, Gyula; Docsa, Tibor; Gergely, Pál; Somsák, László

    2016-11-10

    C-β-d-Glucopyranosyl pyrrole derivatives were prepared in the reactions of pyrrole, 2-, and 3-aryl-pyrroles with O-peracetylated β-d-glucopyranosyl trichloroacetimidate, while 2-(β-d-glucopyranosyl) indole was obtained by a cross coupling of O-perbenzylated β-d-glucopyranosyl acetylene with N-tosyl-2-iodoaniline followed by spontaneous ring closure. An improved synthesis of O-perbenzoylated 2-(β-d-glucopyranosyl) imidazoles was achieved by reacting C-glucopyranosyl formimidates with α-aminoketones. The deprotected compounds were assayed with isoforms of glycogen phosphorylase (GP) to show no activity of the pyrroles against rabbit muscle GPb. The imidazoles proved to be the best known glucose derived inhibitors of not only the muscle enzymes (both a and b) but also of the pharmacologically relevant human liver GPa (Ki = 156 and 26 nM for the 4(5)-phenyl and -(2-naphthyl) derivatives, respectively). An X-ray crystallographic study of the rmGPb-imidazole complexes revealed structural features of the strong binding, and also allowed to explain the absence of inhibition for the pyrrole derivatives. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Intraplantar injection of bergamot essential oil into the mouse hindpaw: effects on capsaicin-induced nociceptive behaviors.

    PubMed

    Sakurada, Tsukasa; Kuwahata, Hikari; Katsuyama, Soh; Komatsu, Takaaki; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Sakurada, Shinobu

    2009-01-01

    Despite the increasing use of aromatherapy oils, there have not been many studies exploring the biological activities of bergamot (Citrus bergamia, Risso) essential oil (BEO). Recently, we have investigated the effects of BEO injected into the plantar surface of the hindpaw in the capsaicin test in mice. The intraplantar injection of capsaicin produced an intense and short-lived licking/biting response toward the injected hindpaw. The capsaicin-induced nociceptive response was reduced significantly by intraplantar injection of BEO. The essential oils of Clary Sage (Salvia sclarea), Thyme ct. linalool (linalool chemotype of Thymus vulgaris), Lavender Reydovan (Lavandula hybrida reydovan), and True Lavender (Lavandula angustifolia), had similar antinociceptive effects on the capsaicin-induced nociceptive response, while Orange Sweet (Citrus sinensis) essential oil was without effect. In contrast to a small number of pharmacological studies of BEO, there is ample evidence regarding isolated components of BEO which are also found in other essential oils. The most abundant compounds found in the volatile fraction are the monoterpene hydrocarbons, such as limonene, gamma-terpinene, beta-pinene, and oxygenated derivatives, linalool and linalyl acetate. Of these monoterpenes, the pharmacological activities of linalool have been examined. Following intraperitoneal (i.p.) administration in mice, linalool produces antinociceptive and antihyperalgesic effects in different animal models in addition to anti-inflammatory properties. Linalool also possesses anticonvulsant activity in experimental models of epilepsy. We address the importance of linalool or linalyl acetate in BEO-or the other essential oil-induced antinociception.

  6. Physical-chemical properties and the reactivity of pyridoxine and pyrrolidone carboxylate and their protolytic forms.

    PubMed

    Golovenko, N Ya; Larionov, V B; Karpova, O V

    2016-01-01

    Preparation Methadoxine is equimolar salt, which cationic component (pyridoxine) is 3-oxypyridine derivative, possessing B6-vitamine like activity, while anionic component is the cyclic lactame of glutamic acid. Since biopharmaceutical and pharmacological properties of this drug depend on biochemical transformation its components, of the aim of this work was to determine the structure of possible ionized pyridoxine and pyrrolidone carboxylate forms and their reaction ability in biochemical processes. Physical-chemical properties of compounds (pKa, logP, logD, proton donor/acceptor quantity, solubility (g/l)) were calculated with ACD/pKaDB program or obtained from Pub-Med physical/chemical properties database. UV spectra of compounds were obtained after dissolution in different pH solutions (1.0, 4.5 and 6.8). It was found that at different pH values one can observe changes of the absorption spectra due to the presence of prevailing amount of the protonated form. An analysis of both pKa, logP and logD indicators and reactive functional groups of Methadoxine components has revealed that they can be protonated in different regions of gastro-intestinal tract, that influences their solubility in hydrophilic and lypophilic media. Pharmacological properties of pyridoxine and pyrrolidone carboxylate themselves are performed after their preliminary biotransformation to active metabolites. Only ionic interaction between Methadoxine components in the substance composition can appear, that provides its pharmaceutical stability and ensures its activity only in the organism conditions.

  7. A Pharmacogenetic Approach to Identify Mutant Forms of α-Galactosidase A that Respond to a Pharmacological Chaperone for Fabry Disease

    PubMed Central

    Wu, Xiaoyang; Katz, Evan; Valle, Maria Cecilia Della; Mascioli, Kirsten; Flanagan, John J; Castelli, Jeffrey P; Schiffmann, Raphael; Boudes, Pol; Lockhart, David J; Valenzano, Kenneth J; Benjamin, Elfrida R

    2011-01-01

    Fabry disease is caused by mutations in the gene (GLA) that encodes α-galactosidase A (α-Gal A). The iminosugar AT1001 (GR181413A, migalastat hydrochloride, 1-deoxygalactonojirimycin) is a pharmacological chaperone that selectively binds and stabilizes α-Gal A, increasing total cellular levels and activity for some mutant forms (defined as “responsive”). In this study, we developed a cell-based assay in cultured HEK-293 cells to identify mutant forms of α-Gal A that are responsive to AT1001. Concentration-dependent increases in α-Gal A activity in response to AT1001 were shown for 49 (60%) of 81 mutant forms. The responses of α-Gal A mutant forms were generally consistent with the responses observed in male Fabry patient-derived lymphoblasts. Importantly, the HEK-293 cell responses of 19 α-Gal A mutant forms to a clinically achievable concentration of AT1001 (10 µM) were generally consistent with observed increases in α-Gal A activity in peripheral blood mononuclear cells from male Fabry patients orally administered AT1001 during Phase 2 clinical studies. This indicates that the cell-based responses can identify mutant forms of α-Gal A that are likely to respond to AT1001 in vivo. Thus, the HEK-293 cell-based assay may be a useful aid in the identification of Fabry patients with AT1001-responsive mutant forms. Hum Mutat 32:1–13, 2011. © 2011 Wiley-Liss, Inc. PMID:21598360

  8. 1-cyclohexyl-x-methoxybenzene derivatives, novel psychoactive substances seized on the internet market. Synthesis and in vivo pharmacological studies in mice.

    PubMed

    Fantinati, Anna; Ossato, Andrea; Bianco, Sara; Canazza, Isabella; De Giorgio, Fabio; Trapella, Claudio; Marti, Matteo

    2017-05-01

    Among novel psychoactive substances notified to EMCDDA and Europol were 1-cyclohexyl-x-methoxybenzene stereoisomers (ortho, meta, and para). These substances share some structural characteristics with phencyclidine and tramadol. Nowadays, no information on the pharmacological and toxicological effects evoked by 1-cyclohexyl-x-methoxybenzene are reported. The aim of this study was to investigate the effect evoked by each one stereoisomer on visual stimulation, body temperature, acute thermal pain, and motor activity in mice. Mice were evaluated in behavioral tests carried out in a consecutive manner according to the following time scheme: observation of visual placing response, measures of core body temperature, determination of acute thermal pain, and stimulated motor activity. All three stereoisomers dose-dependent inhibit visual placing response (rank order: meta > ortho > para), induce hyperthermia at lower and hypothermia at higher doses (meta > ortho > para) and cause analgesia to thermal stimuli (para > meta = ortho), while they do not alter motor activity. For the first time, this study demonstrates that systemic administration of 1-cyclohexyl-x-methoxybenzene compounds markedly inhibit visual response, promote analgesia, and induce core temperature alterations in mice. This data, although obtained in animal model, suggest their possible hazard for human health (i.e., hyperthermia and sensorimotor alterations). In particular, these novel psychoactive substances may have a negative impact in many daily activities, greatly increasing the risk factors for workplace accidents and traffic injuries. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Pharmacological Activity and Clinical Use of PDRN

    PubMed Central

    Squadrito, Francesco; Bitto, Alessandra; Irrera, Natasha; Pizzino, Gabriele; Pallio, Giovanni; Minutoli, Letteria; Altavilla, Domenica

    2017-01-01

    PDRN is a proprietary and registered drug that possesses several activities: tissue repairing, anti-ischemic, and anti-inflammatory. These therapeutic properties suggest its use in regenerative medicine and in diabetic foot ulcers. PDRN holds a mixture of deoxyribonucleotides with molecular weights ranging between 50 and 1,500 KDa, it is derived from a controlled purification and sterilization process of Oncorhynchus mykiss (Salmon Trout) or Oncorhynchus keta (Chum Salmon) sperm DNA. The procedure guarantees the absence of active protein and peptides that may cause immune reactions. In vitro and in vivo experiments have suggested that PDRN most relevant mechanism of action is the engagement of adenosine A2A receptors. Besides engaging the A2A receptor, PDRN offers nucleosides and nucleotides for the so called “salvage pathway.” The binding to adenosine A2A receptors is a unique property of PDRN and seems to be linked to DNA origin, molecular weight and manufacturing process. In this context, PDRN represents a new advancement in the pharmacotherapy. In fact adenosine and dipyridamole are non-selective activators of adenosine receptors and they may cause unwanted side effects; while regadenoson, the only other A2A receptor agonist available, has been approved by the FDA as a pharmacological stress agent in myocardial perfusion imaging. Finally, defibrotide, another drug composed by a mixture of oligonucleotides, has different molecular weight, a DNA of different origin and does not share the same wound healing stimulating effects of PDRN. The present review analyses the more relevant experimental and clinical evidences carried out to characterize PDRN therapeutic effects. PMID:28491036

  10. Functional characterization of naturally occurring melittin peptide isoforms in two honey bee species, Apis mellifera and Apis cerana.

    PubMed

    Park, Doori; Jung, Je Won; Lee, Mi Ok; Lee, Si Young; Kim, Boyun; Jin, Hye Jun; Kim, Jiyoung; Ahn, Young-Joon; Lee, Ki Won; Song, Yong Sang; Hong, Seunghun; Womack, James E; Kwon, Hyung Wook

    2014-03-01

    Insect-derived antimicrobial peptides (AMPs) have diverse effects on antimicrobial properties and pharmacological activities such as anti-inflammation and anticancer properties. Naturally occurring genetic polymorphism have a direct and/or indirect influence on pharmacological effect of AMPs, therefore information on single nucleotide polymorphism (SNP) occurring in natural AMPs provides an important clue to therapeutic applications. Here we identified nucleotide polymorphisms in melittin gene of honey bee populations, which is one of the potent AMP in bee venoms. We found that the novel SNP of melittin gene exists in these two honey bee species, Apis mellifera and Apis cerana. Nine polymorphisms were identified within the coding region of the melittin gene, of which one polymorphism that resulted in serine (Ser) to asparagine (Asp) substitution that can potentially effect on biological activities of melittin peptide. Serine-substituted melittin (Mel-S) showed more cytotoxic effect than asparagine-substituted melittin (Mel-N) against E. coli. Also, Mel-N and Mel-S had different inhibitory effects on the production of inflammatory factors such as IL-6 and TNF-α in BV-2 cells. Moreover, Mel-S showed stronger cytotoxic activities than Mel-N peptide against two human ovarian cancer cell lines. Using carbon nanotube-based transistor, we here characterized that Mel-S interacted with small unilamellar liposomes more strongly than Mel-N. Taken together, our present study demonstrates that there exist different characteristics of the gene frequency and the biological activities of the melittin peptide in two honey bee species, Apis mellifera and A. cerana. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. β-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue

    PubMed Central

    Henry, Hugues; Bruce, Stephen J.; Aeby, Sébastien; Rosikiewicz, Marta; Sykiotis, Gerasimos P.; Asrih, Mohammed; Jornayvaz, François R.; Denechaud, Pierre Damien; Mohammadi, Moosa; Acierno, James S.; Schoonjans, Kristina; Pitteloud, Nelly

    2017-01-01

    β-Klotho (encoded by Klb) is the obligate coreceptor mediating FGF21 and FGF15/19 signaling. Klb–/– mice are refractory to beneficial action of pharmacological FGF21 treatment including stimulation of glucose utilization and thermogenesis. Here, we investigated the energy homeostasis in Klb–/– mice on high-fat diet in order to better understand the consequences of abrogating both endogenous FGF15/19 and FGF21 signaling during caloric overload. Surprisingly, Klb–/– mice are resistant to diet-induced obesity (DIO) owing to enhanced energy expenditure and BAT activity. Klb–/– mice exhibited not only an increase but also a shift in bile acid (BA) composition featured by activation of the classical (neutral) BA synthesis pathway at the expense of the alternative (acidic) pathway. High hepatic production of cholic acid (CA) results in a large excess of microbiota-derived deoxycholic acid (DCA). DCA is specifically responsible for activating the TGR5 receptor that stimulates BAT thermogenic activity. In fact, combined gene deletion of Klb and Tgr5 or antibiotic treatment abrogating bacterial conversion of CA into DCA both abolish DIO resistance in Klb–/– mice. These results suggested that DIO resistance in Klb–/– mice is caused by high levels of DCA, signaling through the TGR5 receptor. These data also demonstrated that gut microbiota can regulate host thermogenesis via conversion of primary into secondary BA. Pharmacologic or nutritional approaches to selectively modulate BA composition may be a promising target for treating metabolic disorders. PMID:28422755

  12. Morinda citrifolia (Noni) fruit--phytochemistry, pharmacology, safety.

    PubMed

    Potterat, Olivier; Hamburger, Matthias

    2007-03-01

    Products derived from Noni fruit (Morinda citrifolia) have been commercialised in the USA since the 1990s and are increasingly distributed all over the world. A large number of beneficial effects have been claimed for Noni. Fruit juice of Noni has been approved as a Novel Food by the European Commission in 2003. This article reviews current knowledge on the phytochemistry, pharmacology, safety aspects of Noni fruit and Noni-derived products, and health-related claims and benefits. The knowledge on the chemical composition of Noni fruit has considerably increased over recent years. A number of in vitro and, to a certain extent, in vivo studies demonstrate a range of potentially beneficial effects. However, clinical data are essentially lacking. To what extent the findings from experimental pharmacological studies are of potential clinical relevance is not clear at present. Based on a toxicological assessment, Noni juice was considered as safe. Due to recent reports of cases of hepatotoxicity, the safety issue has been re-examined in Europe. While the European Food Safety Authority sees no link between adverse effects on liver and consumption of Noni juice, a continuing monitoring of the situation is desirable and some vigilance advised.

  13. A Review on Ethnopharmacological Applications, Pharmacological Activities, and Bioactive Compounds of Mangifera indica (Mango)

    PubMed Central

    2017-01-01

    Mangifera indica (family Anacardiaceae), commonly known as mango, is a pharmacologically, ethnomedically, and phytochemically diverse plant. Various parts of M. indica tree have been used in traditional medicine for the treatment of different ailments, and a number of bioactive phytochemical constituents of M. indica have been reported, namely, polyphenols, terpenes, sterols, carotenoids, vitamins, and amino acids, and so forth. Several studies have proven the pharmacological potential of different parts of mango trees such as leaves, bark, fruit peel and flesh, roots, and flowers as anticancer, anti-inflammatory, antidiabetic, antioxidant, antibacterial, antifungal, anthelmintic, gastroprotective, hepatoprotective, immunomodulatory, antiplasmodial, and antihyperlipemic. In the present review, a comprehensive study on ethnopharmacological applications, pharmacological activities, and bioactive compounds of M. indica has been described. PMID:29456572

  14. Medicinal cannabis: rational guidelines for dosing.

    PubMed

    Carter, Gregory T; Weydt, Patrick; Kyashna-Tocha, Muraco; Abrams, Donald I

    2004-05-01

    The medicinal value of cannabis (marijuana) is well documented in the medical literature. Cannabinoids, the active ingredients in cannabis, have many distinct pharmacological properties. These include analgesic, anti-emetic, anti-oxidative, neuroprotective and anti-inflammatory activity, as well as modulation of glial cells and tumor growth regulation. Concurrent with all these advances in the understanding of the physiological and pharmacological mechanisms of cannabis, there is a strong need for developing rational guidelines for dosing. This paper will review the known chemistry and pharmacology of cannabis and, on that basis, discuss rational guidelines for dosing.

  15. Autophagic effects of Chaihu (dried roots of Bupleurum Chinense DC or Bupleurum scorzoneraefolium WILD)

    PubMed Central

    2014-01-01

    Chaihu, prepared from the dried roots of Bupleurum Chinense DC (also known as bei Chaihu in Chinese) or Bupleurum scorzoneraefolium WILD (also known as nan Chaihu in Chinese), is a herbal medicine for harmonizing and soothing gan (liver) qi stagnation. Substantial pharmacological studies have been conducted on Chaihu and its active components (saikosaponins). One of the active components of Chaihu, saikosaponin-d, exhibited anticancer effects via autophagy induction. This article reviews the pharmacological findings for the roles of autophagy in the pharmacological actions of Chaihu and saikosaponins. PMID:25228909

  16. T Cell Stimulatory Effects of Korean Red Ginseng through Modulation of Myeloid-Derived Suppressor Cells.

    PubMed

    Jeon, Chanoh; Kang, Soowon; Park, Seungbeom; Lim, Kyungtaek; Hwang, Kwang Woo; Min, Hyeyoung

    2011-11-01

    Myeloid-derived suppressor cells (MDSCs) actively suppress immune cells and have been considered as an impediment to successful cancer immunotherapy. Many approaches have been made to overcome such immunosuppressive factors and to exert effective anti-tumor effects, but the possibility of using medicinal plants for this purpose has been overlooked. Korean red ginseng (KRG) is widely known to possess a variety of pharmacological properties, including immunoboosting and anti-tumor activities. However, little has been done to assess the anti-tumor activity of KRG on MDSCs. Therefore, we examined the effects of KRG on MDSCs in tumor-bearing mice and evaluated immunostimulatory and anti-tumor activities of KRG through MDSC modulation. The data show that intraperitoneal administration of KRG compromises MDSC function and induces T cell proliferation and the secretion of IL-2 and IFN-γ, while it does not exhibit direct cytotoxicity on tumor cells and reduced MDSC accumulation. MDSCs isolated from KRG-treated mice also express significantly lower levels of inducible nitric oxide synthase and IL-10 accompanied by a decrease in nitric oxide production compared with control. Taken together, the present study demonstrates that KRG enhances T cell function by inhibiting the immunosuppressive activity of MDSCs and suggests that although KRG alone does not exhibit direct anti-tumor effects, the use of KRG together with conventional chemo- or immunotherapy may provide better outcomes to cancer patients through MDSC modulation.

  17. (-)-Epigallocatechin 3-Gallate Synthetic Analogues Inhibit Fatty Acid Synthase and Show Anticancer Activity in Triple Negative Breast Cancer.

    PubMed

    Crous-Masó, Joan; Palomeras, Sònia; Relat, Joana; Camó, Cristina; Martínez-Garza, Úrsula; Planas, Marta; Feliu, Lidia; Puig, Teresa

    2018-05-11

    (-)-Epigallocatechin 3-gallate (EGCG) is a natural polyphenol from green tea with reported anticancer activity and capacity to inhibit the lipogenic enzyme fatty acid synthase (FASN), which is overexpressed in several human carcinomas. To improve the pharmacological profile of EGCG, we previously developed a family of EGCG derivatives and the lead compounds G28, G37 and G56 were characterized in HER2-positive breast cancer cells overexpressing FASN. Here, diesters G28, G37 and G56 and two G28 derivatives, monoesters M1 and M2, were synthesized and assessed in vitro for their cytotoxic, FASN inhibition and apoptotic activities in MDA-MB-231 triple-negative breast cancer (TNBC) cells. All compounds displayed moderate to high cytotoxicity and significantly blocked FASN activity, monoesters M1 and M2 being more potent inhibitors than diesters. Interestingly, G28, M1, and M2 also diminished FASN protein expression levels, but only monoesters M1 and M2 induced apoptosis. Our results indicate that FASN inhibition by such polyphenolic compounds could be a new strategy in TNBC treatment, and highlight the potential anticancer activities of monoesters. Thus, G28, G37, G56, and most importantly M1 and M2, are anticancer candidates (alone or in combination) to be further characterized in vitro and in vivo.

  18. FKBP65-dependent peptidyl-prolyl isomerase activity potentiates the lysyl hydroxylase 2-driven collagen cross-link switch.

    PubMed

    Chen, Yulong; Terajima, Masahiko; Banerjee, Priyam; Guo, Houfu; Liu, Xin; Yu, Jiang; Yamauchi, Mitsuo; Kurie, Jonathan M

    2017-04-05

    Bruck Syndrome is a connective tissue disease associated with inactivating mutations in lysyl hydroxylase 2 (LH2/PLOD2) or FK506 binding protein 65 (FKBP65/FKBP10). However, the functional relationship between LH2 and FKBP65 remains unclear. Here, we postulated that peptidyl prolyl isomerase (PPIase) activity of FKBP65 positively modulates LH2 enzymatic activity and is critical for the formation of hydroxylysine-aldehyde derived intermolecular collagen cross-links (HLCCs). To test this hypothesis, we analyzed collagen cross-links in Fkbp10-null and -wild-type murine embryonic fibroblasts. Although LH2 protein levels did not change, FKBP65 deficiency significantly diminished HLCCs and increased the non-hydroxylated lysine-aldehyde-derived collagen cross-links (LCCs), a pattern consistent with loss of LH2 enzymatic activity. The HLCC-to-LCC ratio was rescued in FKBP65-deficient murine embryonic fibroblasts by reconstitution with wild-type but not mutant FKBP65 that lacks intact PPIase domains. Findings from co-immunoprecipitation, protein-fragment complementation, and co-immunofluorescence assays showed that LH2 and FKBP65 are part of a common protein complex. We conclude that FKBP65 regulates LH2-mediated collagen cross-linking. Because LH2 promotes fibrosis and cancer metastasis, our findings suggest that pharmacologic strategies to target FKBP65 and LH2 may have complementary therapeutic activities.

  19. FKBP65-dependent peptidyl-prolyl isomerase activity potentiates the lysyl hydroxylase 2-driven collagen cross-link switch

    PubMed Central

    Chen, Yulong; Terajima, Masahiko; Banerjee, Priyam; Guo, Houfu; Liu, Xin; Yu, Jiang; Yamauchi, Mitsuo; Kurie, Jonathan M.

    2017-01-01

    Bruck Syndrome is a connective tissue disease associated with inactivating mutations in lysyl hydroxylase 2 (LH2/PLOD2) or FK506 binding protein 65 (FKBP65/FKBP10). However, the functional relationship between LH2 and FKBP65 remains unclear. Here, we postulated that peptidyl prolyl isomerase (PPIase) activity of FKBP65 positively modulates LH2 enzymatic activity and is critical for the formation of hydroxylysine-aldehyde derived intermolecular collagen cross-links (HLCCs). To test this hypothesis, we analyzed collagen cross-links in Fkbp10-null and –wild-type murine embryonic fibroblasts. Although LH2 protein levels did not change, FKBP65 deficiency significantly diminished HLCCs and increased the non-hydroxylated lysine-aldehyde–derived collagen cross-links (LCCs), a pattern consistent with loss of LH2 enzymatic activity. The HLCC-to-LCC ratio was rescued in FKBP65-deficient murine embryonic fibroblasts by reconstitution with wild-type but not mutant FKBP65 that lacks intact PPIase domains. Findings from co-immunoprecipitation, protein-fragment complementation, and co-immunofluorescence assays showed that LH2 and FKBP65 are part of a common protein complex. We conclude that FKBP65 regulates LH2-mediated collagen cross-linking. Because LH2 promotes fibrosis and cancer metastasis, our findings suggest that pharmacologic strategies to target FKBP65 and LH2 may have complementary therapeutic activities. PMID:28378777

  20. Balancing Antioxidant, Hypolipidemic and Anti-inflammatory Activity in a Single Agent: The Example of 2-Hydroxy-2-Substituted Morpholine, 1,4-Benzoxazine and 1,4-Benzothiazine Derivatives as a Rational Therapeutic Approach against Atherosclerosis.

    PubMed

    Matralis, Alexios N; Bavavea, Eugenia-Ismini; Incerpi, Sandra; Pedersen, Jens Z; Kourounakis, Angeliki P

    2017-01-01

    In line with our previous studies, novel morpholine and benzoxa(or thia)zine lead compounds have been developed through a rational design that modulate a multiplicity of targets against atherosclerosis. We have evaluated the most promising compounds for their efficiency to a) intercept and scavenge free radicals, b) inhibit the metal ion (Cu2+)- induced LDL oxidation c) act intracellularly as antioxidants in THP-1 monocytes from a leukemic patient and d) inhibit the pro-inflammatory enzymes cyclooxygenase-1 (COX-1) and -2 (COX-2) in vitro. Furthermore, two representative compounds were tested for their potential to decrease lipidemic parameters (TC, LDL and TG) in hyperlipidemic mice. Most derivatives indicated a remarkable antioxidant activity, while at the same time exhibited a significant in vitro anti-inflammatory activity, inhibiting COX-1 or/and COX-2 activity at 20 μΜ. In addition, after their long-term administration, compounds 6 and 8 afforded considerable activity in a chronic experimental animal model of hyperlipidemia (after high fat diet administration). The multifunctional pharmacological profile exhibited by the compounds of this study renders them interesting lead compounds for the development of novel agents against atherosclerosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

Top